

A Frontend
Web Developer's
Guide to Testing

Explore leading web test automation frameworks
and their future driven by low-code and AI

Eran Kinsbruner

BIRMINGHAM—MUMBAI

A Frontend Web Developer's Guide to Testing
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Bhavya Rao
Senior Editor: Mark D'Souza
Content Development Editor: Feza Shaikh
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Roshan Kawale
Marketing Coordinator: Anamika Singh

First published: April 2022
Production reference: 1280322

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-831-9

www.packt.com

http://www.packt.com

This book, which is the fourth of my career, is dedicated to my mother,
Rodica Kinsbruner, and my supportive family: my wife, Shikma

Kinsbruner, and my two sons, Ariel and Yahly.

– Eran Kinsbruner

Foreword
I have known and worked with Eran Kinsbruner for more than 3 years. Eran is a software
testing expert in web and mobile applications. He contributes to the community through
his speaking engagements and content creation as part of his role as Chief Evangelist at
Perfecto by Perforce.

As web applications have become so complex in recent years, test automation needed to
advance as well. In this book, Eran picked the top leading open source frameworks that
practitioners will find useful in maturing their test automation coverage.

As one of the main contributors to the Cypress testing framework, I can confidently state
that by using the insights covered in this book for network control testing, API testing,
functional and accessibility testing, visual testing, and more, frontend web application
developers can learn a lot and ensure that they are building better apps that can function
and perform well across all leading web browsers.

Beyond getting familiarity and getting started with the top testing JavaScript frameworks,
you will also learn how to build a solid testing strategy for your web application from the
ground up.

In A Frontend Web Developer's Guide to Testing, Eran provides a complete and informative
guide to both newcomers as well as veteran frontend web application developers around
building test automation that works, scales, and provides value to the business.

Lastly, the book is filled with great and simple-to-use code examples, references, and
visuals that can help practitioners ramp up quickly with their testing activities.

Gleb Bahmutov

Senior Director of Engineering at Mercari US

Previously VP of Engineering at Cypress.IO

Contributors

About the author
Eran Kinsbruner is a bestselling author, chief evangelist, and senior director at Perforce
Software. He was a DevOps evangelist of the year finalist in 2021 for DevOps.com. His
published books include the 2016 Amazon bestseller The Digital Quality Handbook,
Continuous Testing for DevOps Professionals, and Accelerating Software Quality – ML and
AI in the Age of DevOps, which was named the "best new software testing book" by Book
Authority. Eran has many years of experience in development and testing at companies
such as Sun Microsystems, Neustar, Texas Instruments, and General Electric. Eran is a
patent-holding inventor and is active in the software development and testing community.
He can be found across social media (LinkedIn – https://www.linkedin.com/
in/erankinsbruner/, Twitter - https://twitter.com/ek121268, Medium
Articles – https://ek121268.medium.com/) and has his own blog, http://
continuoustesting.dev.

https://www.linkedin.com/in/erankinsbruner/
https://www.linkedin.com/in/erankinsbruner/
https://twitter.com/ek121268
https://ek121268.medium.com/
http://continuoustesting.dev
http://continuoustesting.dev

About the reviewer
Bruno Bosshard is an experienced software quality assurance manager and test
automation architect at Pepgo Pty Ltd, based in Sydney, Australia. He has experience
in test management, functional testing, and performance testing, working for clients in
Europe, the Middle East, and Australia, both on a management level, such as developing
test strategies, plans, processes, and templates, as well as on a practical, hands-on level,
including development and implementation of automated test frameworks in Agile
continuous integration environments. He is a test automation specialist with good
development and DevOps knowledge who knows how to implement successful test
automation to achieve real business value. Bruno can be contacted via LinkedIn.

Table of Contents
Preface

Part 1 – Frontend Web Testing Overview

1
Cross-Browser Testing Methodologies

An overview of the
web landscape 4
Understanding web
application types 6
Traditional web applications 6
Responsive web applications 8
PWAs 9

Testing types for
web applications 12
Functional testing of web applications 12

The non-functional testing
of web applications 13

Understanding headless and
headed browsers within app
development and testing 15
Choosing between headed browsers
and headless browsers 16
Headless browser testing frameworks 19

Summary 22

2
Challenges Faced by Frontend Web Application Developers

Web application
development challenges 24
Quality vs velocity 26

Coverage challenges for web
application developers 27
Non-functional challenges in
web application development 32

Performance challenges 32
Accessibility challenges 33

Compliance challenges for web
applications 35
Summary 38

viii Table of Contents

3
Top Web Test Automation Frameworks

An overview of the web
testing market 40
Getting started with the
Selenium WebDriver framework 43
Setting up Selenium WebDriver 43
Selenium Grid 46

Getting started with the
Cypress framework 49

Important features of Cypress 52

Getting started with the
Google Puppeteer framework 55
Getting started with the
Microsoft Playwright framework 58
Summary 60

4
Matching Personas and Use Cases to Testing Frameworks

Technical requirements 64
Web testing personas overview 64
Use cases and considerations
for picking a solid test
automation framework 66
Community considerations 67
Scale testing capabilities 67

Tool stack integrations and plugins 67
Ease of use and adoption 68
Reusability and maintainability 68
Reporting, test analysis, and intelligence 69

Testing automation
evaluation matrix 70
Summary 75

5
Introducing the Leading Frontend Web Development
Frameworks

Technical requirements 78
Introduction to the leading web
development frameworks 78
Guidelines for picking a web
development framework 80
ReactJS 81

AngularJS 85
Vue.js 87
Ember.js 89
Svelte 92

Summary 94

Table of Contents ix

Part 2 – Continuous Testing Strategy for
Web Application Developers

6
Map the Pillars of a Dev Testing Strategy for
Web Applications

The key pillars of a web
application testing plan
and strategy 98
Know your target users 99
Building a test plan 99
Prep your tool stack and environments 100
Set quality criteria and objectives 100
Build a timeline and a schedule 101

Execute, monitor, measure,
and document 101

Measuring the success of your
continuous testing strategy 102
A case study – a real-life web
application testing strategy 104
Summary 106

7
Core Capabilities of the Leading JavaScript Test Automation
Frameworks

Comparing the test automation
framework capabilities 108
Visual testing 108
API testing 112
Supported development languages 115
Mobile device testing 115
Performance testing 118
Accessibility testing 121

Network control testing
and mock services 123
Working with elements 125

A re-evaluation of test
automation frameworks due to
compelling events 131
Summary 132

8
Measuring Test Coverage of the Web Application

Introduction to code coverage
and test coverage 134
Test coverage 134

Code coverage 135

JavaScript code coverage tools
for web application developers 137

x Table of Contents

Measuring JavaScript code coverage
using Istanbul and Cypress 138

Complementing code coverage
with test coverage 142
Summary 143

Part 3 – Frontend JavaScript Web Test
Automation Framework Guides

9
Working with the Selenium Framework

Technical requirements 148
Understanding the Selenium
framework and its components 148
Selenium WebDriver 148
The advanced features of Selenium 151

Various testing methods with Selenium 156

The future of the Selenium
framework 162
Summary 163

10
Working with the Cypress Framework

Technical requirements 166
Getting started with Cypress 166
The Cypress GUI 166
Cypress IDE and
command-line executions 169

Cypress's advanced test
automation capabilities 173
Cypress test retries 173

Using stubs, spies, and clocks
with Cypress 174
Running Cypress within CI 177
Component testing 178
Cypress Studio 180
Cypress plugins 182
Cypress API testing 184

The future of the Cypress
framework 186
Summary 187

11
Working with the Playwright Framework

Technical requirements 190
Getting started with Playwright 190

Playwright's advanced test
automation capabilities 194
Playwright Inspector 194

Table of Contents xi

Emulating mobile devices 196
Playwright test annotations 197
Playwright API testing 199
Playwright assertions 201
Playwright network mocking 202
Playwright POM (Page Object Model) 203
Playwright test reporting 203

Playwright test runners 204
Playwright trace viewer 205
Playwright advanced configurations 206
Playwright integration with CI 210

The future of the Playwright
framework 211
Summary 213

12
Working with the Puppeteer Framework

Technical requirements 216
Getting started with Puppeteer 216
Learning about Puppeteer's
advanced test automation
capabilities 221
Puppeteer namespaces 221
Puppeteer working with elements 223
Puppeteer load test option 226
Puppeteer and Cucumber BDD 227

Puppeteer accessibility testing 229
Puppeteer web app tracing 230
Puppeteer for API testing 231
Puppeteer with Google DevTools 231
Puppeteer and CodeceptJS integration 233
Puppeteer testing within CI 235

The future of the Puppeteer
framework 237
Summary 238

13
Complementing Code-Based Testing with Low-Code
Test Automation

Fundamental features of low-
code/codeless testing tools 240
Codeless tool overview within
the open source landscape 243
Open source codeless tool lineup 243

Leading commercial
codeless testing tools
for web applications 251
Perfecto scriptless web overview 252
Testim codeless web tool overview 255
Mabl codeless web testing tool
overview 259

Summary 265

xii Table of Contents

14
Wrapping Up

Major takeaways
from the book 268
Useful references and
bookmarks 269

Cypress framework-specific 269
Playwright framework-specific 270
Selenium framework-specific 270
Puppeteer framework-specific 270

Index
Other Books You May Enjoy

Preface
Testing web applications during a sprint poses a challenge for frontend web app
developers, which can be overcome by harnessing the power of new, open source cross-
browser test automation frameworks. This book will introduce you to a range of leading,
powerful frameworks, such as Selenium, Cypress, Puppeteer, and Playwright, and serve
as a guide to using their test coverage capability. You'll learn essential concepts of web
testing and get an overview of the different web automation frameworks to be able to
integrate them into your frontend development workflow. Throughout the book, you'll
explore the unique features of top open source test automation frameworks, as well as
their trade-offs, and learn how to set up each of them to create tests that don't break with
changes in the app.

By the end of this book, you'll be able to not only choose the framework that best suits
your project needs but also create an initial JavaScript-based test automation suite. This
will enable fast feedback upon code changes and increase test automation reliability.
As the open source market for these frameworks evolves, this guide will help you to
continuously validate your project needs and adapt to the changes.

Who this book is for
If you are a frontend developer working with popular frameworks, such as Vue or
React, and want to develop testing skills by learning the essentials of test automation,
this book is for you. An intermediate-level understanding of JavaScript and frontend
development is assumed.

What this book covers
Chapter 1, Cross-Browser Testing Methodologies, covers the most advanced web
technologies and web application types you will come across, including responsive
and progressive types. It is specifically designed to cover the main trends that typically
impact web application developers, along with the various testing types that are relevant
for such applications.

xiv Preface

Chapter 2, Challenges Faced by Frontend Web Application Developers, covers the key
challenges modern web application developers face and their root causes. It is specifically
designed to cover the constant debate about velocity, quality, and key non-functional
challenges that are a pain for developers.

Chapter 3, Top Web Test Automation Frameworks, focuses on the top four leading open
source frameworks on the market and provides an intermediate tutorial on how to get
started with each of these.

Chapter 4, Matching Personas and Use Cases to Testing Frameworks, provides a set of
considerations to help the two main personas within web application development and
testing (developers and test automation engineers) to choose the best test automation
framework for their needs.

Chapter 5, Introducing the Leading Frontend Web Development Frameworks, looks at the
test frameworks from the web development and application perspectives and provides
guidelines on how to ensure that your test framework best fits the application type, as well
as the web development frameworks used to build these apps.

Chapter 6, Map the Pillars of a Dev Testing Strategy for Web Applications, looks at how to
combine the relevant considerations into a testing strategy that covers all quality aspects
and continuously meets the end user experience. In addition, it offers frontend developers
key metrics that can be used to monitor and measure the success of the strategy.

Chapter 7, Core Capabilities of the Leading JavaScript Test Automation Frameworks,
provides an overview of the most critical testing capabilities that are required for web
applications and provides the recommended test framework to go with each capability.

Chapter 8, Measuring Test Coverage of the Web Application, provides guidelines for how to
complement the quality assessment of your web application with code coverage across the
various test automation frameworks featured in this book (Selenium, Cypress, Playwright,
and Puppeteer).

Chapter 9, Working with the Selenium Framework, provides you with a deep technical
overview of the Selenium framework with a focus on the advanced capabilities, including
support for CDP, relative locators, visual testing, cloud testing, behavior-driven
development (BDD) testing, and self-healing add-ons.

Chapter 10, Working with the Cypress Framework, provides a technical overview of the
framework with a focus on its advanced capabilities, including time travel, component
testing, network control, API testing, supported plugins, and cloud testing.

Preface xv

Chapter 11, Working with the Playwright Framework, offers a technical overview of
the framework with a focus on the advanced capabilities of Playwright, such as API
testing, network control, visual testing, the retrying mechanism, Inspector, and the code
generator tool.

Chapter 12, Working with the Puppeteer Framework, provides a technical overview of the
framework with a focus on the advanced capabilities, including HAR file generation and
using headless mode for testing. The chapter comes with some code-based examples that
can be used out of the box.

Chapter 13, Complementing Code-Based Testing with Low-Code Test Automation, discusses
how, while the open source community offers a wide range of coding test frameworks, as
highlighted in this book, there are also new and emerging intelligent testing solutions that
can combine their record and playback abilities with self-healing machine learning-driven
features to provide an additional layer of test automation coverage. In this chapter, we
uncover the available options on the market, the relevant places and use cases to use such
tools within a development pipeline, and the caveats or pitfalls to be aware of.

Chapter 14, Wrapping Up, concludes the book with a set of references, additional blogs,
and websites to bookmark to expand on the content offered in this book.

To get the most out of this book

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

xvi Preface

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-
Testing. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803238319_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Cypress performs most of its API tests via the cy.request()
method, which serves as a GET command to the web server being tested."

A block of code is set as follows:

cy

 .get('list')

 .first(); // "select first item in the list "

cy

 .get('list')

 .last(); // "select last item in the list "

cy

 .get('list')

 .eq(2); // "select 2nd item in the list

"

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

describe("Docket Post Test 2", () => {

 it("Should create a Todo item", () => {

https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803238319_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803238319_ColorImages.pdf

Preface xvii

 cy.request({

 method: "POST",

 url:

 "https://docket-test.herokuapp.com/api/Todo/",

 headers: {

 token: "YOUR TOKEN ID",

 },

 body: {

 Body: "Barclays Demo",

 },

 })

Any command-line input or output is written as follows:

npm install axe-puppeteer

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Upon any
test launch from the GUI, users will have the ability to click on the Add New Test button."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us
at customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata

xviii Preface

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read A Frontend Web Developer's Guide to Testing, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1803238313

Web technology has significantly advanced over the past few years. With mature web
apps in the form of responsive and progressive apps, React, and others, developers are
being challenged more than ever to ensure the continuous quality of web apps, regardless
of which platforms they are being consumed on (mobile, desktop, or both). In the first
part of this book, you will be able to catch up on all the important advancements within
web technologies, the challenges in building a top-notch web app, the available testing
solutions that can help overcome some of these challenges within a development team,
and the main differences between the leading web development frameworks that can
impact testing strategies.

In this part, we will cover the following chapters:

• Chapter 1, Cross-Browser Testing Methodologies

• Chapter 2, Challenges Faced by Fronted Web Application Developers

• Chapter 3, Top Web Test Automation Frameworks

• Chapter 4, Matching Personas and Use Cases to Testing Frameworks

• Chapter 5, Introducing the Leading Frontend Web Development Frameworks

Part 1 –
Frontend Web

Testing Overview

1
Cross-Browser

Testing
Methodologies

Over the past few years, web technology has advanced significantly. End users are
now exposed to a whole new level of mature web apps in the form of responsive and
progressive apps such as React and Flutter. With these advancements, developers are
challenged more than ever with ensuring the continuous quality of their web apps,
regardless of which platforms (mobile, desktop, or both) they are being used on.

This chapter covers the most advanced web technologies and web application types you
will come across, including responsive and progressive types. It is specifically designed
to cover the main trends that typically impact web application developers, along with
the various testing types that are relevant for such applications. The web landscape offers
developers a wide range of web application types across different application frameworks.
Applications such as responsive web, progressive web, Flutter, React Native, and more are
only a subset of the range of such applications. In this chapter, we will outline the main
application types and what they mean as well as how they differ from each other to help
frontend developers consider different testing activities.

4 Cross-Browser Testing Methodologies

This chapter will cover the following main topics:

• An overview of the web landscape

• Understanding web application types

• Testing types for web applications

• Understanding headed and headless browsers within app development and testing

An overview of the web landscape
The web landscape is at its most advanced stage today compared to some years ago.
Today, web applications can leverage the unique capabilities of the different web browsers
that were simply not available a few years ago. From interaction with location services,
cameras, and more to being installed as apps on a smartphone, tablet, or laptop, today,
web applications are closer than ever to mobile applications.

With all of this in mind, there are other aspects within the web landscape that are
important to understand: web technologies that are available and are constantly changing
for web application developers.

Based on Hackr.io (https://hackr.io/blog/web-development-frameworks),
web developers have a wide array of choices when building their websites. With
ExpressJS, Angular, React, Vue, Ember, and more, developers can choose the most relevant
technology for their next web application.

With web technologies growing and running on different omni-channels, the quality
and growth of vulnerabilities are also becoming a great challenge. Based on the ongoing
monitoring of web trends by the HTTP Archive (https://httparchive.org/
reports/state-of-the-web), 59.4% of crawled pages contain at least one known
third-party JavaScript vulnerability:

https://hackr.io/blog/web-development-frameworks
https://httparchive.org/reports/state-of-the-web
https://httparchive.org/reports/state-of-the-web

An overview of the web landscape 5

Figure 1.1 – Web pages with vulnerable JavaScript code
(source: https://httparchive.org/reports/state-of-the-web)

In addition to the level of growth of web technologies and maturity of browser
capabilities, an additional area that has completely changed in terms of both awareness
and importance is web application accessibility compliance. Organizations that build
web applications today, and in the future, must adhere to strict accessibility rules across
desktop and mobile devices. Not meeting these guidelines, such as section 508, Americans
with Disabilities Act (ADA), and Web Content Accessibility Guidelines (WCAG), can
result in massive fines and brand damage.

6 Cross-Browser Testing Methodologies

Today, web application developers should be more equipped with the knowledge,
tools, and continuous training around web application quality. This is to ensure their
apps are solid and don't introduce any kind of business risk to their brand – whether
quality-related, security-related, accessibility-related, availability-related, or in terms of
compatibility across factors that includes different screen sizes and resolutions.

Now that we've looked at a brief overview of the current web landscape, let's examine the
various types of web applications and what each of them mean from a development and
testing perspective.

Understanding web application types
When building a web application in the ever-changing digital marketplace, developers
have various choices in terms of whether to build a traditional web application, a
responsive one, or a progressive application. Each choice comes with advantages,
disadvantages, and technology implications, such as the language in which the app is
developed, the target platforms on which it will run, and which technology stack would
fit such an application. A progressive web application (PWA) that is intended to run
on both web and mobile apps can be developed in JavaScript; however, testing one on
real mobile devices and browsers will require a mix of frameworks such as Selenium,
Appium, and more.

Let's learn more about each of the application types.

Traditional web applications
The most basic web application type is one that is developed and designed from the
bottom up to run on desktop machines (for example, Windows 11 with the Edge browser
and macOS with Safari). While fully supported to run on mobile smartphones and tablets,
such applications are not designed to be responsive.

Understanding web application types 7

If you navigate from your Windows desktop Chrome browser to the MSN website
(http://msn.com), you will be able to work through the site, navigate around it,
and use it as required. However, if you choose to navigate to the browser menu, under
the More tools submenu, and select the Developer tools option (this one can also be
triggered through a click on by pressing the F12 button on your keyboard), you will see
a Toggle device toolbar button that is aimed at helping developers and testers to validate
their web apps from a responsive standpoint. In this menu option, if a user selects an
iPhone device, they will see that the website isn't mobile-ready. As a matter of fact, in the
top-level banner of this web application, there is a callout to download a relevant mobile
app for both Android and iOS:

Figure 1.2 – The MSN web application on an iPhone 13 Pro Max in landscape orientation mode

Such a web application type would be developed, tested, and mostly dedicated to desktop
web users. Additionally, it will require the organization to maintain a mobile-specific
native or hybrid app to ensure a proper user experience across all digital devices.

http://msn.com

8 Cross-Browser Testing Methodologies

Responsive web applications
In contrast to traditional web applications, responsive web applications are adjustable
across most desktop and mobile screen sizes and resolutions. Such a unique design
allows web developers to make their apps accessible across the maximum number of
digital channels using a single code base and a consistent user experience. However, it is
not as simple as that; responsive web apps require, in addition to a unique development
workflow, things such as an agreed content strategy that shows customers the most
relevant content above and beyond the fold. Such visible content across all types of screens
needs to be constantly maintained, optimized, and tested to ensure business growth and
success:

Figure 1.3 – Responsive Web Design for Desktop, Notebook, Tablet and Mobile Phone (originally
created by Muhammad Rafizeldi (Mrafizeldi), retrieved from https://commons.wikimedia.org/wiki/

File:Responsive_Web_Design_for_Desktop,_Notebook,_Tablet_and_Mobile_Phone.png, licensed and
made available under CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/deed.en))

Responsive web apps are a much stronger application type with clear benefits to both the
developers and the end users. Maintaining a single code base over time and automatically
serving any screen size or resolution are clear cost-efficient software development
methods.

New types of digital platforms such as foldable smartphones and home devices, such as
Google Hub and Amazon Echo Show, have also entered the market; such applications
need to be updated to ensure a continuous user journey across all platforms.

In a nutshell, here is a list of the building blocks of a solid responsive web design (RWD)
test plan that both developers and test engineers should execute continuously:

• Compatibility testing across the most relevant desktop browsers, OS versions, and
mobile devices

https://commons.wikimedia.org/wiki/File:Responsive_Web_Design_for_Desktop,_Notebook,_Tablet_and_Mobile_Phone.png
https://commons.wikimedia.org/wiki/File:Responsive_Web_Design_for_Desktop,_Notebook,_Tablet_and_Mobile_Phone.png

Understanding web application types 9

• Visual testing coverage across different layouts, screen sizes, resolutions, and
languages to ensure the proper display of all graphical elements on these platforms

• The end-to-end functional testing of all business flows, links, forms, and other web
UI dependencies

• Accessibility of the pages across all different platforms

• Client-side performance testing

• Load testing at peak levels and normal ones

• Testing across different environment conditions (both web and mobile), including
networks, working with sensors, incoming events, location-aware events, and more

PWAs
PWAs are one of the most advanced web application types with unique characteristics.
Initially developed and led by Google, these application types have been adopted by all
the other browser vendors, including Apple, Microsoft, and Mozilla. PWAs are those
applications that are built on top of the responsive web app code base, allowing mobile
users to install a web link on their Android and iOS devices. Following this, they can
interact with these apps offline through different sensors with access to mobile OS
functions such as the contact list, camera, location, and more:

Figure 1.4 – PWA icons on a mobile device (Originally titled "Progressive web apps on my home screen."
Created by Jeremy Keith, retrieved from https://www.flickr.com/photos/adactio/42535353742, and

licensed and made available under CC BY 2.0 (https://creativecommons.org/licenses/by/2.0/))

https://creativecommons.org/licenses/by/2.0/

10 Cross-Browser Testing Methodologies

A PWA can be installed through a link on any mobile iOS or Android device, as well as on
Windows hybrid laptops such as Microsoft Surface. Once they are installed, the user can
launch them from their mobile device home screen and enjoy the unique features of the
app, which are attributed to the ServiceWorker component that is built into each PWA. In
the preceding screenshot, the Twitter Lite icon is the PWA application shortcut that was
installed from the web browser on the mobile device.

Service Workers
Service workers are scripts that run in the background of a user's browser,
enabling web application developers to add features such as push notifications,
offline caching, mobile device sensor engagement, and a proxy that can handle
various network requests from your web application. PWAs utilize service
workers to enrich web applications running on mobile devices.

PWAs offer users from a single code base the ability to consume a web application on any
desktop screen or mobile device screen with the additional features of offline caching,
push notifications, sensor support (such as location, camera, and audio), and contact list
access. With such reach supported capabilities, web application developers can deploy
their apps easily, immediately, and bypass the mobile application stores.

Google and other browser vendors provide tools to validate the PWAs via their browser
developer tool capabilities that are available from within the browser, as well as other
guidelines and recommended practices. Developers can generate MANIFEST.MF files and
JavaScript service worker scripts, which will be added to their web applications. Many
enterprise web applications (https://www.pwastats.com/) across market verticals
such as Instagram, Lyft, Twitter, eBay, and others, have already adopted this technology
and are seeing many benefits daily. As the leader behind these types of applications,
Google has created a great baseline (https://web.dev/progressive-web-apps/)
and checklist for complying with the PWA requirements.

The building blocks of a PWA test plan include those of the solid RWD that were
mentioned earlier, along with the following PWA-specific scenarios:

• The validation of PWA manifests file correctness (pointing to the home URL,
theme, icon, and more).

• The validation of the PWA service workers, which comprises critical components of
the PWA application, includes registering for push notifications, caching abilities,
and more.

https://www.pwastats.com/
https://web.dev/progressive-web-apps/

Understanding web application types 11

• PWA installation and functionality across the platform and in parallel with the
native applications.

• PWAs provide a custom offline page to serve users when they are offline.

• PWAs work with any input type such as a mouse, keyboard, stylus, or touch.

• PWAs work fine with all mobile device sensors such as location services, audio,
camera, and more.

• PWAs should be tested against all third-party dependencies such as social media
integrations (for instance, Facebook and LinkedIn), other APIs, analytics services,
and more.

• The PWA testing of security, privacy policies, and permissions of the app to adhere
to Apple and Google requirements.

As you might have gathered, this is a superset of the pillars of an RWD plan with
additional PWA-specific testing considerations.

The following code snippet demonstrates a basic service worker registration in JavaScript
as part of building the foundation of a PWA application:

If ('serviceWorker' in navigator) {

window.addEventListener('load',function(){

navigator.serviceWorker.regisdter('/sw.js').then(function(

 registration) {

//Registration was successful

console.log('ServiceWorker registration with scope:'

 ,registration.scope);

} function(err){

//registration failed ☹
console.log('ServiceWorker registration failed:',err);

});

});

12 Cross-Browser Testing Methodologies

Now that we've established the main web application types that are available for
application developers, let's go through the key testing types that need to be considered
upon each web application release.

Testing types for web applications
Software testing consists of various types: functional, API, integration, non-functional,
unit, accessibility, and ad hoc exploratory testing. In this chapter, we will only discuss the
high-level functional and non-functional testing types, while later in the book, we will
also cover API testing and other types of testing as part of the specific test automation
framework overview. Each of these types can be divided within the traditional testing
pyramid and scoped based on whether there is a major release or a small hotfix release on
the market.

In this section, we will highlight the key testing considerations across the previously
mentioned types as they relate to modern web applications.

With web applications that are intended to run on any kind of desktop and mobile OS and
device, covering all angles of the app is crucial to ensure a top-notch user experience.

Web applications are based on continuous interactions between components, UIs (the
presentation layer), databases, microservices that communicate through an API gateway
with other components, servers, various APIs such as payment, authentications, business
workflows (the business layer), and more.

Testing these types of applications that have multiple layers of architecture, as identified
earlier, is a challenging task, especially in an Agile and DevOps reality. Multiple
personas take part in the software development life cycle, different code changes
(that is, pull requests) are submitted many times a day, and this ought to be properly
classified and tested.

Functional testing of web applications
Let's go through the key areas of the functional testing category of web applications. Bear
in mind that such testing scenarios can be broken into different types of testing, including
sanity, regression, smoke, integration, and usability testing by the customer. The scope
of the testing suite should be determined by the phase in the software development life
cycle (SDLC), the changes within the software iteration, and the defect history of your
web application (that is, stability and reliability).

Testing types for web applications 13

The following list offers a few suggested testing pillars to consider as part of your web
app testing plans. Whether you validate the following scenarios through manual testing
or automation, these are the fundamental pillars to ensure that your web apps work well
across the entire user journey on your website:

• The website links across the entire website should work fine, including the
following:

 � Navigation links

 � Social media links

 � MailTo links

• Website forms to test for relevant pages such as registration forms and order forms:

 � Form field testing (positive/negative inputs)

 � The verification of mandatory filled fields

 � The submission of forms across all platforms (mobile/desktop)

• Testing web application policies regarding cookies:

 � Cookies are deleted when the web cache is cleared

• Business flow verification of the entire user flow within the website:

 � All internal links and user journeys are working

 � UI and layout testing

 � Localization testing

 � The compatibility of the website across all screen sizes and resolutions

 � Usability and user experience testing

The non-functional testing of web applications
Complementing functional testing with non-functional testing is imperative for the
quality of your web application. At the end of the day, it does not really matter if your app
fails in production either because of a functional crash or due to an availability issue due
to load-related defects.

14 Cross-Browser Testing Methodologies

Including all types of testing within continuous integration (CI) jobs makes all the
difference between a high-performing Agile team and a slow one. Such testing types
should include both functional and non-functional tests that are running through
automation frameworks upon any code changes.

When covering non-functional testing activities, typically, teams should consider security
testing (both static and dynamic), performance and load testing, and accessibility. In some
practices, teams might consider accessibility as a functional testing type, but regardless
of the bucket that these testing types fit, they are all important. And executing as many of
them that bring value is part of the definition of a ready and high-quality web application
– if they all pass of course 😊.

Security testing
Security testing involves the following:

• Ensuring authorized access to secure pages is kept

• Preventing users from downloading restricted files without appropriate access and
authentication

• Terminating user inactivity sessions automatically

• Redirecting a website to encrypted SSL pages, upon the use of SSL certificates

• Adopting industry-proven tests such as OWASP Top 10, CWE, CERT, and others

• Including code quality standards such as JSLint within SAST and DAST
(https://www.jslint.com/)

Performance and load testing
Performance and load testing involve the following:

• Measuring against benchmarks and KPI web application response times according
to different network conditions (web and mobile)

• Load testing your web application to determine its behavior under normal (single-
user performance) and peak loads (millions of virtual users)

• Stress testing your web app to determine its breakpoint when it is pushed to beyond
normal load at peak time

• Determining how the site recovers from crashes or availability issues

https://www.jslint.com/

Understanding headless and headed browsers within app development and testing 15

Accessibility testing
Accessibility testing involves the following:

• Covering the most common accessibility rules: WCAG, ADA, 508, and, if in
Canada, ACA

• Executing accessibility tests across different platforms and languages (web
and mobile)

• Ensuring proper accessibility IDs (web elements) for ease of test automation

As mentioned earlier, the combination of exploratory testing and automated testing of
both the functional and non-functional areas of your web application should be included
in every organization's test plan. Additionally, this should be continuously maintained
to adapt to recent web application changes, defects coming from production, platform
changes in the market such as new OS versions or mobile devices, and changes to industry
standards such as accessibility and new security rules.

Later in this book, we will cover specific examples and tools to help cover most of the
testing types recommended in this section.

After covering the main testing types that are applicable for web applications, in the
next section, we will focus on the main differences between using headed browsers and
headless browsers throughout the development and testing phases.

Understanding headless and headed browsers
within app development and testing
In the same way that web application developers and testers have choices around
frameworks and languages, they also have the option to choose whether to exercise
their web application against a web browser with its UI loaded (that is, headed) or its UI
unloaded (that is, headless).

16 Cross-Browser Testing Methodologies

Headless Browsers
A headless browser is a normal browser that simply does not load its UI
during runtime.

The decision regarding how to use the web browser depends on the goal and objectives
behind the developer's and tester's actions. We will cover these methods in a bit more
detail next.

Choosing between headed browsers and
headless browsers
Using a headless browser could be extremely beneficial when there is no need to explore
any elements or actions on the browser UI, and the main objective is to ensure that tests or
other actions on the browsers are just running properly. Another scenario where headless
browsers can become very cost-effective is when running a massive set of tests in parallel
where there is no need to view the browser UI. Such execution will run much faster due to
the savings on memory and other hardware resources that UI browsers typically consume,
along with the environment initiation time that each browser would typically take to
render the HTML pages. Additionally, you can consider the parallel-testing-at-scale use
case as part of a regression build within CI after or in parallel with the UI-based cross-
browser testing.

It is important to understand that developers and testers cannot only rely on headless
browser testing, which is harder to debug and does not always expose the real end user
experience across the different platforms. Combining headed testing with headless testing
should be strategically planned and executed by the different teams. All major browser
vendors including Google, Mozilla, and Microsoft offer a headless option that the end
user can turn on through command-line flags or within the various test automation
frameworks such as Selenium and Puppeteer.

Understanding headless and headed browsers within app development and testing 17

Selenium offers a nice set of code samples that can be used to launch any of the supported
web browsers in headed or headless mode. Here is a sample configuration within the
Selenium 4 (https://github.com/SeleniumHQ/selenium/blob/trunk/
javascript/node/selenium-webdriver/chrome.js#L333) framework that
would launch the Chrome browser in headless mode:

let driver = new Builder()

.forBrowser('chrome')

.setChromeOptions(new chrome.Options().headless())

.build();

Note that, later in the book, as we dive deeper into the Selenium framework, we will learn
how to use this framework in both headed and headless modes. In general, most testing
frameworks such as Selenium, Playwright, and Cypress support the two methods of how
to test a web application.

To use the various browsers from the command-line interface, developers and testers
can leverage dozens of options to take screenshots, remotely debug a web application,
and more.

Here is a simple command-line option that uses the headless Microsoft Edge browser that
is built on Chromium to capture a screenshot of the PacktPub website home page:

Msedge –-headless –-disable-gpu –screenshot=c:\[..]\packt.png –
window-size=1280,1696 https://www.packtpub.com/

Prior to running the preceding command, please ensure that you have the Edge browser
in the system environment path.

https://github.com/SeleniumHQ/selenium/blob/trunk/javascript/node/selenium-webdriver/chrome.js#L333
https://github.com/SeleniumHQ/selenium/blob/trunk/javascript/node/selenium-webdriver/chrome.js#L333

18 Cross-Browser Testing Methodologies

As you can see, in Figure 1.5, the browser captured the home page with the window size
that was specified in the command line:

Figure 1.5 – The PacktPub website screen capture using the Edge headless browser CLI

Understanding headless and headed browsers within app development and testing 19

Headless browser testing frameworks
Now that we've established the notion of a headless browser environment that is fast, cost-
efficient, and quite easy to use, let's explore an automation framework that works well with
the Chrome headless browser, called Puppeteer (https://developers.google.
com/web/tools/puppeteer). This tool is a node library developed by Google and
comes with a high-level API to control headless Chrome over the DevTools protocol. It
has all the benefits of the Chrome browser, including form submission, user inputs, along
with additional headless-specific features such as measuring the runtime performance of
the web application and more.

Note
Microsoft is leading the development of an equivalent framework that is
derived from Puppeteer, called Playwright. Later in the book, we will examine
it in more depth.

To get started with this headless solution, please run the following npm install
command:

npm install puppeteer

While installing the solution, developers can start scripting in JavaScript and utilize
the APIs available in this framework. Using the following code snippet as an example,
developers can automatically navigate to a specific website and capture a screenshot:

const puppeteer = require('puppeteer');

(async() => {

const browser = await puppeteer.launch({headless:false});
// default is true

const page = await browser.newPage();

await page.goto('https://www.packtpub.com');

await page.screenshot({path: 'Packt.png'});

await browser.close();

})();

If setting the headless flag to false, the execution of the code will launch the built-in
Chrome browser.

https://developers.google.com/web/tools/puppeteer
https://developers.google.com/web/tools/puppeteer

20 Cross-Browser Testing Methodologies

Figure 1.6 is a screenshot of the preceding code sample that was executed:

Figure 1.6 – A screenshot of the Packt home page taken through Puppeteer JavaScript
test in headless mode

The preceding example is a simple use case of Puppeteer; however, this framework can
extend the DevTools protocol capabilities and generate, through automated code, an
HTTP Archive file (HAR) for security, performance, and other web traffic analysis. In the
recent Selenium 4 version, as well as within Cypress, developers can also leverage the
Chrome DevTools Protocol (CDP) to benefit from some of Puppeteer's capabilities.

To generate an HAR file as part of a test automation script, developers should include
the following lines of code in their test automation scenarios, after installing the
puppeteer-har node module:

const puppeteerHar = require('puppeteer-har');

const har = new puppeteerHar(page);

await har.start({path: 'results.har'});

await page.goto('https://www.packtpub.com');

await har.stop();

Understanding headless and headed browsers within app development and testing 21

Adding the preceding code to the screenshot example will generate a results.har
file from the PacktPub website. Developers can use any HAR file viewer to analyze the
generated resource or simply add the Google Chrome HAR viewer browser extension.

When examining the generated HAR file, developers can get insights on page load times,
page statistics, website requests, and response header details:

Figure 1.7 – A screenshot of the Packt home page HAR file generated through the
automated Puppeteer script

22 Cross-Browser Testing Methodologies

Developers can then use these insights to optimize website performance, detect security
vulnerabilities, and more.

As mentioned earlier, Google designed the headless browser tool to help developers test
and debug their web applications. Additionally, to succeed in debugging a web application
while running in headless mode, Headless browsers provide a remote debugging capability
that can be used either manually from the CLI or within the automated JavaScript code:

--remote-debugging-port=9222 (example)

While running the tests with headless mode and adding this command, developers can
use a headed Chrome browser to navigate to http://localhost:9222 and inspect all
the outputs coming from the execution.

Summary
Nowadays, building a winning web application is harder than ever due to the massive
digital transformation in progress, and the cost of failure to the brands when something
goes wrong. Utilizing all testing types earlier on in the development stages and
acknowledging the different methods, tools, and browser-provided capabilities can be a
great start in terms of building a quality plan for your web application. Such a plan must
cover all the functional and non-functional aspects of testing. Additionally, it should
consider cost and time efficiency tools such as headless browser testing, web developer
tools, HAR files, and more techniques that were mentioned in this chapter.

Throughout this chapter, we have learned about the advanced web landscape and the
new modern application types. We defined and provided insights into responsive web
applications, PWAs, and how to properly address the quality of these types of applications.
Additionally, we looked at the different testing types that are available to developers and
test engineers and broke down each testing type into a web-related use case.

After covering those topics, we then discussed the concept of using headless browsers
in conjunction with a headed browser as part of a development workflow to expedite
feedback, address environment setup, performance, and stability, and help debug on real
browsers more efficiently.

Finally, we closed the chapter with a few statements around overall cross-browser
testing considerations.

That concludes this chapter! Hopefully, it will help you learn more about the web application
landscape and how to build a proper testing strategy for your future web applications.

In the following chapter, we will unfold the key challenges that web application developers
face and explain the reasons behind these challenges.

2
Challenges Faced

by Frontend
Web Application

Developers
Frontend web application developers are tasked with a tough challenge: ensuring that web
apps work and perform exceptionally well across all digital channels (web and mobile). In
an era when a new desktop web browser version is released into the market every month,
with numerous mobile smartphones and OS versions to support, this task is quite hard.
Frontend web developers should address both the quality and velocity, as well as the
stability of their apps, continuously.

This chapter covers the key challenges modern web application developers face and their
root causes. It is specifically designed to cover the constant debate about velocity, quality,
and key non-functional challenges that are a pain for developers. By the end of this
chapter, you will have an understanding about the common pitfalls in web application
quality assurance that covers both the functional aspects, the non-functional ones like
performance, and equally important – the security level of the application being built.

24 Challenges Faced by Frontend Web Application Developers

This chapter will cover the following topics:

• Web application development challenges

• Coverage challenges for web application developers

• Non-functional challenges in web application development

• Compliance challenges for web applications

Web application development challenges
As highlighted in the previous chapter, the digital transformation over the years has
increased the complexities in building top-notch web applications. By top-notch, we mean
apps that can function properly across all web browsers, mobile devices, and operating
systems, across various environment conditions, and under massive load conditions.
In addition, with the rise of digitalization, security and accessibility have become key
requirements for any application prior to its release.

In an insightful report (https://insights.developer.mozilla.org/
reports/mdn-browser-compatibility-report-2020.html) published
by two of the leading browser vendors, (Mozilla and Google), it was clear how
complicated it is to build a web application that is compatible with all technologies
and platforms in the market.

One of the top items found in this study was ensuring compatibility with old browsers,
even with the old and end-of-life Internet Explorer 11 browser. Next on that list were
layout and styling items, which consist of CSS, responsive web layout issues such as
viewports, scrolling on responsive web apps, and other UI-related issues.

Layout and styling around CSS were attributed to two main CSS configurations: Flexbox
and Grid.

A comparison between these two configurations can be found at https://www.
geeksforgeeks.org/comparison-between-css-grid-css-flexbox/.

These two options help developers position UI elements within the web application in
ways that can fit different screen sizes, layouts, and platforms. At the URL showing a
comparison between the two configurations, there are a few examples of how the HTML
code looks in both the implementation of the <style> code block and the trade-offs
between them. While we won't dive deep into the implementation of CSS types, this
item is one of the challenges developers face when building their apps. Developers find it
challenging to ensure the CSS sticky and animation grids are consistent among browsers.

https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html
https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html
https://www.geeksforgeeks.org/comparison-between-css-grid-css-flexbox/
https://www.geeksforgeeks.org/comparison-between-css-grid-css-flexbox/

Web application development challenges 25

CSS sticky elements are used by developers to keep an element fixed on the web page
while a user is scrolling throughout the page. Items such as headers and navigation bars or
other core elements of the web application could be set as sticky to always be visible and
accessible to the user. While this is a great usability feature for developers, this isn't always
a compatible feature across browsers on web and mobile.

Other issues that were high on the list were web performance maintainability, web app
quality on the Safari browser on mobile platforms, and the item previously covered in
Chapter 1, Cross-Browser Testing Methodologies: PWAs.

In the following summary graph, for each survey respondent, the report classified their
top five categories out of the 12 available. With that in mind, the following shows the top
pain points averaged by all respondents that are listed; the IE browser and layout and
styling emerged as top challenges.

Figure 2.1 – Top pain points for web application developers (source: MDN Web Docs, Mozilla
(https://insights.developer.mozilla.org/reports/mdn-browser-

compatibility-report-2020.html))

https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html)
https://insights.developer.mozilla.org/reports/mdn-browser-compatibility-report-2020.html)

26 Challenges Faced by Frontend Web Application Developers

JavaScript is the dominant development language for building web applications, but it
is also among the pain points developers tend to highlight. In some cases, the reason is
coping with different ECMAScript versions that are not always aligned across all browser
versions, and sometimes it can be very specific language issues on a given browser version
and how that version can be used in each web application scenario.

ECMAScript
ECMAScript is a standard for ensuring the interoperability of web pages across
different browsers. JavaScript is, in a sense, an implementation of the original
ECMAScript standard. The most recent standard version out there is the ES6
edition (https://262.ecma-international.org/12.0/).
Web application developers should use this set of standards throughout the
implementation phases.

Next, we will dive into additional challenges around market platform coverage, and
later in the chapter, we will discuss non-functional related aspects such as security,
performance, availability, and accessibility.

Quality vs velocity
An important debate that is agnostic to any software development project is the one
that tries to balance between the velocity of the release cycles and the quality of the
deliverables. To take the debate forward, practices such as Agile, DevOps, and continuous
testing were defined to allow practitioners to better balance release velocity and quality
while being able to continuously deliver value to customers. Velocity varies between
organizations, and it depends on the application complexity, the scope of the release, and
the maturity of the teams working on the release. All these considerations can impact the
release frequency (velocity). On the other hand, the quality of the app is something that
can be considered infinite because you cannot test each single line of code and use case;
therefore, risks are taken all the time. The art of Agile software development is to properly
balance the speed and release cadence with the quality criteria that are considered safe
to the end users. Test automation is a key enabler for software velocity since it drives
faster feedback back to the developers and allows them to gain confidence in their latest
code changes as well as the overall application quality from a regression standpoint.
When product management and engineering work together with the QA teams to define
a software iteration cadence of, for example, every 2 weeks, the teams must plan these
iterations carefully and allocate room for test automation development and execution so
that quality goals match the velocity ones with minimal risks.

https://262.ecma-international.org/12.0/

Coverage challenges for web application developers 27

Coverage challenges for web
application developers
An additional challenge that developers face is coverage across web and mobile
operating systems and platforms. On a monthly basis, both Google (https://www.
chromestatus.com/features/schedule) and Mozilla (https://wiki.
mozilla.org/Release_Management/Calendar) release public General
Availability (GA) and beta versions to the market. Such releases disrupt the web
applications in many cases and require developers to ensure that the new versions are
still compliant with their apps. As web traffic is higher on mobile platforms nowadays,
ensuring the continuous quality of the web application across different iOS and Android
devices and OS versions is key to success.

The following figure shows the browser market share month on month for the period
from October 2020 to October 2021:

Figure 2.2 – Browser market share worldwide, all platforms (source: Statcounter GlobalStats)

https://www.chromestatus.com/features/schedule
https://www.chromestatus.com/features/schedule
https://wiki.mozilla.org/Release_Management/Calendar
https://wiki.mozilla.org/Release_Management/Calendar

28 Challenges Faced by Frontend Web Application Developers

Google Chrome is the most used browser in the market, but with a monthly release
cadence, the cost of failure is high; hence, developers and testers must keep up with the
newly introduced browsers and features. After the Apple Safari browser, which holds a
significant market share, the bigger problem is the rest of the market share is distributed
across five or six browser vendors with similar levels of adoption. This mandates proper
attention to the other less popular browsers such as Opera and Samsung internet since
these browsers carry similar market share as Firefox and Edge.

In the following market share snippet, also from Statcounter (https://
gs.statcounter.com/browser-market-share/mobile/worldwide),
we can see a different market segmentation across browsers when we only focus on
mobile platforms:

Figure 2.3 – Browser market share worldwide, mobile only (source: Statcounter GlobalStats)

https://gs.statcounter.com/browser-market-share/mobile/worldwide
https://gs.statcounter.com/browser-market-share/mobile/worldwide

Coverage challenges for web application developers 29

In the preceding screenshot, Google Chrome on Android is leading the industry, with
the second highest market adoption rate being seen for Safari WebKit, and Samsung
Internet Browser.

We should now also consider on top of the above web browser compatibility challenge, the
ever-growing mobile challenge with so many Android device providers globally, and the
numerous iPhones and iPads on the market.

Based on the Statcounter market share analysis of mobile device providers (https://
gs.statcounter.com/vendor-market-share/mobile), Apple holds around
28% of the global mobile market share, which leaves the remainder of the market to
various Android providers, such as Samsung, Xiaomi, and Huawei, among others. Some
of these vendors (for example, Samsung) provide their own built-in browsers, and others
support Chrome, Opera, Firefox, and UC browsers running on their devices.

With the various types of web applications that were introduced in Chapter 1, Cross-
Browser Testing Methodologies, web developers need to ensure that regardless of whether
they are building a responsive web app, a PWA, or a standard web application, they should
all work perfectly well across the different mobile and web platforms.

To be able to at least know where to focus the platforms testing on in this complex
marketplace, it is highly recommended to periodically obtain a web traffic analytics report
that can provide developers and testers visibility into the top user agents and platforms
that are visiting the websites, and also, from which country or location they originate.
It's known that each geography has a different mobile and web market share; therefore,
knowing which users visit your website the most is key to building a proper development
and testing lab.

https://gs.statcounter.com/vendor-market-share/mobile
https://gs.statcounter.com/vendor-market-share/mobile

30 Challenges Faced by Frontend Web Application Developers

From market analytics sources like the one in Figure 2.4, developers and testers can realize
the breakdown of mobile platform per country and better plan their testing.

Figure 2.4 – Mobile vendor market share worldwide (source: Statcounter GlobalStats
retrieved from https://gs.statcounter.com/vendor-market-share/mobile)

Note that on top of the standard web and mobile platforms, there is a new set of mobile
devices called foldables. Such devices are unique in many ways, having two layout features
(folded and unfolded) and the ability to run up to three applications in the foreground in
parallel, including the browser; therefore, these devices need to be also considered as part
of the web application development and testing. Another growing trend in the market is a
new type of framework called Flutter, (some organizations might consider React Native as
an alternative to Flutter). The challenge with such apps is that while a single code base can
produce multiple binaries that run on mobile devices and desktop browsers, such apps are
built with the Dart language and use a unique architecture developed by Google that web
application developers are not yet familiar with.

Coverage challenges for web application developers 31

Flutter
Flutter is Google's free and open source UI framework for developing cross-
platform rich applications from a single code base. A Flutter application can
be compiled into a mobile Android and iOS binary, as well as a desktop and
Linux application. The Flutter framework consists of various reusable UI
elements, such as sliders, buttons, and text inputs. Developers building mobile
applications with the Flutter framework will do so using a programming
language called Dart. You can read more about Flutter architecture here:
https://flutter.dev/docs/resources/architectural-
overview

Figure 2.5 – Flutter application architecture (source: the Flutter.dev website)

https://flutter.dev/docs/resources/architectural-overview
https://flutter.dev/docs/resources/architectural-overview

32 Challenges Faced by Frontend Web Application Developers

With the aforementioned challenges in mind, it's also important to note the growing
selection of web development frameworks as highlighted in Chapter 1, Cross-Browser
Testing Methodologies, which includes Vue, React, and Ember. This is an additional
challenge for developers who need to select a framework that will grow with their web
applications for the long term. There is a lot at stake when choosing the right technology.

Let's summarize the high-level pain points that we've covered so far in this chapter:

• Compatibility with new and trending digital platforms as well as old browser support

• Coverage strategy for web and mobile platforms

• Style and layout across different browser versions and OS versions (CSS,
animation grids)

• JavaScript and ECMAScript compatibility across browsers

• Complexities around new types of web applications, including PWAs and Flutter

• Choosing the right web development framework

Now that we have understood these key functional challenges, let's learn about
non-functional challenges web application developers face.

Non-functional challenges in web
application development
In addition to the challenges mentioned so far, web application developers are also
required to continuously guarantee high-performing web applications that are always
on and available, as well as an app that 100% adheres to complex accessibility
requirements. In this section, we will explore performance and accessibility
challenges across web applications.

Performance challenges
For many years, the industry considered a response time of more than 3 seconds for a
web application to load (whether running on a desktop browser or a mobile browser)
to cause a customer to move to a different website. Research conducted by Limelight
Networks, which was featured in an online document published by Broadcom (https://
docs.broadcom.com/doc/its-all-about-the-user-experience), shows
the different time thresholds and the patience levels of end users today when using web
applications. The majority of users will not be willing to wait more than 3-5 seconds
for a website to load. For websites that exceed these thresholds, users will switch to an
alternative website.

https://docs.broadcom.com/doc/its-all-about-the-user-experience
https://docs.broadcom.com/doc/its-all-about-the-user-experience

Non-functional challenges in web application development 33

Ensuring high-performing web apps with the growing load and usage that is experienced
nowadays is a huge challenge for developers. Developers should consider performance
and availability as part of the web application design, think about ways to optimize load
times across the different web pages in a web application, consider multiple platforms
across geographies and network conditions, and consider peak usage versus standard
usage. Businesses consider data-driven strategies to enhance the user and customer
experience (UX/CX) by providing the most relevant, highly downloaded content at the
top of their web applications to keep users engaged and satisfied.

Performance testing as well as load/stress testing is no longer simply a nice-to-have or an
activity that can be left to the end of the software sprint; rather, it needs to be shifted to the
early stages of the sprint. Identifying bottlenecks and performance issues against agreed
benchmarks and key performance indicators (KPIs) late in the cycle is a very risky and
expensive practice. Finding the root causes of such issues and fixing them is a highly
time-consuming activity for developers; hence, this type of testing must be given equal
importance among other functional testing processes.

Developers have various mature performance testing tools that perfectly integrate with
the CI and Continuous Deployment (CD) tool stack that can be adopted and used
regularly to ensure the continuous performance of web applications. In addition, web
browser vendors, including Google, Microsoft, Mozilla, and Apple, provide built-in
developer tools that can cover performance and monitoring aspects, as well as accessibility
and PWA compliance.

Accessibility challenges
Organizations and practitioners might argue that accessibility is not a non-functional
requirement but rather a function of the app that needs to be always covered. Regardless
of the segment or testing type in which we classify accessibility testing, this type of testing,
like performance testing, should be part of any software sprint and automated and shifted
left as early as possible in the development cycle. Web and mobile accessibility is not an
option but a key requirement that comes with massive fines and business implications
when done wrong.

Based on the ADA compliance law website (https://getadaaccessible.com/
ada-compliance-law-and-penalties/), organizations can expect fines of $55,000
for their first WCAG violation and/or 508 non-compliance, with a double fine of $110,000
for any subsequent violation.

https://getadaaccessible.com/ada-compliance-law-and-penalties/
https://getadaaccessible.com/ada-compliance-law-and-penalties/

34 Challenges Faced by Frontend Web Application Developers

WCAG
WCAG is a wide range of recommendations that can help make websites more
accessible for impaired users and people with disabilities. W3C stands behind
the definition of the rules, and constantly updates and maintains them. These
rules are technology agnostic and are developed to ensure that people who
suffer from low vision, deafness and hearing loss, cognitive limitations, and
other issues can also consume website content at all times.

The WCAG (https://www.w3.org/TR/WCAG21/) organization has defined and
continuously maintained its requirements around web accessibility to ensure that any
user with any kind of disability can consume the web application content, engage with the
application across any form factor, and get the same value from the web as any other user.
Developers are required to keep accessibility at the front of their minds when adding any
new field or element to their web application. They are required to provide accessibility
IDs, tooltips, voice-over functionality for screen readers, and much more. To comply with
these accessibility requirements, product managers, R&D managers, and businesses need
to properly allocate time within the sprint to allow developers to properly implement their
features and meet these guidelines.

At the other end, software testers must continuously test and cover the accessibility aspects
of the web applications using automated software and other exploratory techniques.

There are several tools available for automatically checking for accessibility issues. Here is
an example of an accessibility issue that can be easily and automatically captured through
the Google Chrome built-in Lighthouse tool running against a given website, in this case,
http://msn.com. As identified by the scan, the contrast ratio between the background
and foreground colors is insufficient, which will make it hard for visually impaired users
to see the images on the website:

https://www.w3.org/TR/WCAG21/
http://msn.com

Compliance challenges for web applications 35

Figure 2.6 – Accessibility scan via the Google Lighthouse tool on the msn.com website

Web testing for accessibility can be done free today by using the open source AXE
(https://www.deque.com/axe/) framework from Deque. Running this tool
in conjunction with the W3C Selenium framework provides both functional and
accessibility coverage. The AXE plugin was also added to the Cypress plugin store and
allows developers and test engineers to create JavaScript test code that validates both the
functionality of a web application as well as its accessibility level.

Later in the book, we will cover in more depth how Selenium and Cypress can help web
application developers validate many of the challenges highlighted in this chapter.

Now that we've looked at some of the non-functional challenges faced by developers
during testing, let's look at some compliance challenges.

Compliance challenges for web applications
Data privacy and cyber security have grown to become two of the biggest challenges and
concerns for web and mobile application developers. Failing to protect a web application
from significant data breaches and other vulnerabilities can mean the difference between
a living business and a failing one. Since security and data privacy is a 24/7 risk, web
application developers must build security early into the functionality of their apps,
leverage Static Application Security Testing (SAST) and Dynamic Application Security
Testing (DAST) tools, and maintain their code continuously.

https://www.deque.com/axe/

36 Challenges Faced by Frontend Web Application Developers

SAST
SAST is a method for inspecting and analyzing application source code, byte
code, and binaries for coding and design conditions to determine security
vulnerabilities. Unlike DAST, SAST is also known as a white box testing
approach that scans the source code of the application in a non-running state.

DAST
DAST is a method that is also known as black box testing. It is designed to scan
the source code of a running and compiled application. It tests the application
software from the outside in, unlike SAST, which tests the application code
from the inside out. To run a DAST scan, developers need a running and
compiled application made available to them.

There is no good or bad with SAST and DAST: both are important and provide value to
developers in the different stages of the software development life cycle.

Developers are adopting static and dynamic code analysis tools more than ever and are
executing security scans across their web apps to ensure high security and compliance
with standards.

Google is enhancing its data privacy restrictions, and GDPR requirements are becoming
stricter across Europe and North America. Developers should better understand the
various risks and rules around data privacy and security across different market segments;
for example, if the web application is intended for healthcare, then regulations such as
Health Insurance Portability and Accountability Act (HIPAA) are relevant, and for
financial industries and payments web applications, Payment Card Industry Data Security
Standard (PCI DSS) is relevant.

Based on a Forrester report (https://www.forrester.com/report/Using-AI-
For-Evil/RES143162), cyberattacks will soon be utilizing AI to attack businesses in
more sophisticated ways, and with greater implications for the business.

Also, with the rise in 5G and IoT, more data streaming services are out there and being
consumed across automotive infotainment systems, such as Apple CarPlay, Android Auto,
and other devices. This big data and greater exposure bring higher risks to the business.

Developers and software testers should embrace coding standards and static and
dynamic analysis of their source code earlier in their development cycle. There are
many maintained security compliances, including Common Weakness Enumeration
(CWE), Open Web Application Security Project (OWASP (https://owasp.org/
www-project-top-ten/), and other market-specific compliances such as those
mentioned earlier, to be executed and scanned within the CI/CD pipelines.

https://www.forrester.com/report/Using-AI-For-Evil/RES143162
https://www.forrester.com/report/Using-AI-For-Evil/RES143162
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

Compliance challenges for web applications 37

The following figure shows the trend summary of security vulnerabilities, revealing that
there are a lot of shifts in security issues across applications over time:

Figure 2.7 – OWASP top 10 security vulnerabilities
(source: OWASP.org - https://owasp.org/www-project-top-ten/)

As shown in the preceding figure, broken access control has shifted from being fifth on
the OWASP list to first in 2021. Such shifts are attributed to the number of incidents that
are being reported in the market across applications. More occurrences of such cases
contribute to moving such risks higher on the list of issues. The broken access control
vulnerability is part of the common weakness enumerations (CWE) set of security rules
that applications should cover as part of their security testing. There are many areas under
that rule that can cause a broken access vulnerability. Based on OWASP documentation,
allowing attackers to bypass access control by modifying a URL, permitting a view or edit
of someone else's account, or elevation of privilege through acting as a user without being
logged in, can result in the above security issue.

Developers should in such cases enforce record ownership as part of the web application
model access control or disable a web server directory listing to ensure file metadata and
backup files are not present within web roots.

Security, data privacy, and compliance are huge challenges and great business risks, and
as such, must be part of web developers' objectives and strategy. As identified previously,
security threats are dynamic and can vary across segments; hence, it is critical to train web
application developers on security topics, mitigation of such vulnerabilities, and provide
them with access to online training tools around security such as Secure Code Warrior
(https://www.securecodewarrior.com/) and others.

https://www.securecodewarrior.com/

38 Challenges Faced by Frontend Web Application Developers

Summary
Web application developers today are not only required to be highly skilled JavaScript
developers, but also trained and aware of many other considerations, to ensure that a web
application is successful, high-performing, and secure.

In this chapter, we covered the various challenges that developers should not only be
aware of but need to plan for, as part of their ongoing software iterations. We specifically
covered the functional challenges involved in building a winning web application, such as
coverage and cross-browser compatibility, as well as the layout and styling, such as CSS,
of web applications. We then touched on JavaScript coding challenges before moving on
to non-functional challenges. These non-functional challenges included the performance,
accessibility, and security of web applications, and what web application developers should
consider daily to prevent such issues.

Keep in mind that all the challenges that were covered in this chapter are relevant for a
moment in time – security risks change, accessibility requirements change, and so do
functional issues across new browsers and mobile platforms. Continuous coverage of
the previously mentioned challenges as part of a quality strategy can ensure ongoing
application functionality, performance, and security.

When building a quality plan for your web application, developers, testers, and product
management must huddle together and ensure that all of the considerations covered
earlier in this chapter are addressed and have dedicated owners.

In the following chapter, we will start covering the top market cross-browser test
automation frameworks: Selenium, Playwright, Cypress, and Puppeteer.

3
Top Web Test

Automation
Frameworks

When it comes to end-to-end test automation frameworks, frontend developers have a
variety of choices to pick from. The open source community continues to innovate, as well
as leverage, existing technologies to enhance testing frameworks and offer more coverage
and depth to practitioners.

This chapter focuses on the top four leading open source frameworks in the market
and provides an intermediate tutorial on how to get started with each of these. Since
web developers have so many choices around testing their application code, it is very
important that they understand the architecture and fundamentals of the top frameworks
out there, so they can make guided decisions.

40 Top Web Test Automation Frameworks

After reading this chapter, you will know how to get started with the four leading
JavaScript open source test automation frameworks and run a basic test scenario on a
web browser.

This chapter is specifically designed to cover the following:

• An overview of the web testing market

• Getting started with the Selenium WebDriver framework

• Getting started with the Cypress framework

• Getting started with the Google Puppeteer framework

• Getting started with the Microsoft Playwright framework

An overview of the web testing market
The web testing market constantly changes, and newer versions of existing frameworks
are being developed with brand new solutions. A great resource to learn about what's
trending, what's declining, and how big the community is behind leading open source
technologies is the npm trends website (https://www.npmtrends.com/site).
When focusing on the top four frameworks available for frontend developers that support
JavaScript, at the time of writing this book, Cypress emerges as the leading framework.
As highlighted in an npm trends report (https://www.npmtrends.com/cypress-
vs-playwright-vs-selenium-webdriver-vs-puppeteer), Cypress has over
3 million weekly downloads compared to Selenium WebDriver, which has just over 2
million downloads. Keep in mind that we are only showing in this resource the JavaScript
flavor of these frameworks. For frameworks such as Selenium and Playwright that support
more language bindings, the market share and downloads will probably be higher;
however, here we are focusing only on JavaScript testing:

https://www.npmtrends.com/site
https://www.npmtrends.com/cypress-vs-playwright-vs-selenium-webdriver-vs-puppeteer
https://www.npmtrends.com/cypress-vs-playwright-vs-selenium-webdriver-vs-puppeteer

An overview of the web testing market 41

Figure 3.1 – npmtrends frameworks comparison – Cypress, Playwright, Selenium, and Puppeteer
(source: https://www.npmtrends.com/cypress-vs-playwright-vs-

selenium-webdriver-vs-puppeteer)

It is not only the number of downloads that helps determine the popularity of one
framework over another, but also the number of ratings (known as stars) each repository
on GitHub receives, the last change made to the framework, the number of versions,
and other factors. The decision of a frontend developer to go with one framework over
another is larger than just the stats behind the framework on GitHub and the number
of downloads, but such stats do help us to realize whether a technology is backed by
a community, and whether it's being adopted. In addition to these stats, a user would
obviously need to perform proofs of concept, understand the best fit for their needs,
and other requirements. In Chapter 7, Core Capabilities of the Leading JavaScript Test
Automation Frameworks, we will dive deeper into ways to better compare frameworks
and match each one based on relevant considerations.

While in the previous statistics and this book we are only focusing on the four leading
open source frameworks, it's important to note that the market is flooded with dozens of
additional open source frameworks, as well as many commercial tools that can be used for
cross-browser testing, such as WebDriver.io, TestCafe, and NightWatch.js. These are not
part of the scope of this book.

As Gleb Bahmutov classifies the four different frameworks in his blog (https://
glebbahmutov.com/blog/cypress-vs-other-test-runners/), it is important
to understand some of the fundamental differences between the four technologies.

https://www.npmtrends.com/cypress-vs-playwright-vs-selenium-webdriver-vs-puppeteer
https://www.npmtrends.com/cypress-vs-playwright-vs-selenium-webdriver-vs-puppeteer
https://glebbahmutov.com/blog/cypress-vs-other-test-runners/
https://glebbahmutov.com/blog/cypress-vs-other-test-runners/

42 Top Web Test Automation Frameworks

While Selenium and its underlying frameworks are built on the WebDriver protocol and
provide maximum cross-browser platform coverage and various language bindings, this
framework is known to be flakier than Cypress, as well as slower from a test execution
performance perspective. On the other hand, Playwright and Puppeteer are built on top
of the Chrome DevTools Protocol (CDP), which gives them the advantage of gaining
deep coverage of inner features of browsers, as well as enhanced debugging abilities.
Cypress is unique in its architecture since it is a JavaScript framework that runs on the
browser itself, making the execution performance extremely fast, and the debugging,
including the document object model (DOM) access, great. Cypress is also known for its
test reliability and low flakiness – it is also a framework that utilizes a flakiness test filter
that comes with the framework itself:

Figure 3.2 – High-level classification of cross-browser testing frameworks (sourced from Gleb
Bahmutov: https://glebbahmutov.com/blog/cypress-vs-other-test-runners/)

Now that we've classified the web testing landscape at a high level and examined the
high-level architecture of each framework, let's dive into the frameworks and learn how to
install and get started with them.

https://glebbahmutov.com/blog/cypress-vs-other-test-runners/

Getting started with the Selenium WebDriver framework 43

Getting started with the Selenium
WebDriver framework
To get started with Selenium, you'll need to follow a number of steps that include the
installation of the framework, as well as setting up the grid for the specific browser drivers
on which you would like to run your tests (Chrome, Firefox, Safari, or Edge).

Your main website to learn from and get started with Selenium is https://www.
selenium.dev/. From this link, you will be able to download the relevant driver, see
the latest release notes, obtain documentation and code samples, and more.

As you'll learn in this chapter, and even more so later in this book, the Selenium
framework consists of three main components:

• Selenium WebDriver: This is a collection of several language bindings to
drive different browsers for testing purposes, as well as the individual browsers
controlling code.

• Selenium Grid: This is a Selenium framework component that is designed to
distribute and scale test automation by running tests in parallel across different
combinations of browsers/OS versions.

• Selenium IDE: This is a quick ramp-up solution that through recording helps
generate, the first basic Selenium scripts through a browser plugin, with no lines of
code needing to be written.

In this chapter, we will only cover Selenium WebDriver and Selenium Grid. Selenium IDE
is a basic entry-level browser plugin that allows beginners to record their first Selenium
script without writing a single line of code. Once the script is recorded, they can copy the
code to their IDE and continue building on top of it using code.

Setting up Selenium WebDriver
To install the Selenium libraries, please run the following command from your desktop
command-line interface (CLI):

npm install selenium-webdriver

Selenium WebDriver is a recommended W3C testing technology that is intended to drive
native browsers effectively and in adherence to the W3C standards. This conformance
ensures that all scripts across different browsers are written in the same way and are
simple to use.

https://www.selenium.dev/
https://www.selenium.dev/

44 Top Web Test Automation Frameworks

As illustrated in the Selenium provided architecture (https://www.selenium.dev/
documentation/webdriver/understanding_the_components/), a test
framework that implements the WebDriver technology would drive the tests through an
installed Selenium server that communicates with a specific browser driver (for example, a
Chrome or Firefox driver):

Figure 3.3 – Selenium WebDriver framework components and architecture (sourced from selenium.dev)

Now that we have installed the Selenium framework locally, let's move on to the
next steps.

Download any of the WebDriver that you're interested in using locally, for example,
the Chrome driver from the following URL: (https://www.selenium.dev/
documentation/getting_started/installing_browser_drivers/). Once
downloaded and installed, make sure to set the path to where the driver is placed to ease
the execution from the CLI, as indicated here:

Setx PATH "%PATH";c:\users\ekinsbruner\WebDriver\bin"

Now that we've installed the Selenium package and a specific browser driver, let's run the
first basic test written in JavaScript. Next, we will enhance the project to run within a grid
across more than one browser.

From your CLI (Windows machine), launch the Google chromedriver:

chromedriver

You should see a prompt in your CLI with the following text:

"Started ChromeDriver (v2.0) on port 9515"

The version number in the output would obviously match the version you downloaded
from the previous URL.

https://www.selenium.dev/documentation/webdriver/understanding_the_components/
https://www.selenium.dev/documentation/webdriver/understanding_the_components/
https://www.selenium.dev/documentation/getting_started/installing_browser_drivers/
https://www.selenium.dev/documentation/getting_started/installing_browser_drivers/

Getting started with the Selenium WebDriver framework 45

Now that chromedriver is running, run the following JavaScript Selenium scenario
from any of your preferred environments. It can be from Visual Studio Code, Eclipse,
IntelliJ Idea, or from a simple command line. Note that you would also need to have
installed node.js on your local machine. I named the file GoogleSelenium.js:

const {By,Key,Builder} = require("selenium-webdriver");

require("chromedriver");

async function example(){

 var searchString = "packt publishing";

 //To wait for browser to build and launch properly

 let driver =

 await new Builder().forBrowser("chrome").build();

 //To fetch http://google.com from the browser with

 //our code.

 await driver.get("http://google.com");

 //To send a search query by passing the value in

 //searchString.

 await driver.findElement(By.name("q")).sendKeys(

 searchString,Key.RETURN);

 //Verify the page title and print it

 var title = await driver.getTitle();

 console.log('Title is:',title);

 //It is always a safe practice to quit the browser

 //after execution

 await driver.quit();

}

example()

46 Top Web Test Automation Frameworks

To run the preceding test that open a Chrome browser and search for Packt publishing,
simply run the following command:

node GoogleSelenium.js

If there are no issues within your environment, you should see the Chrome browser
launched and the preceding test running. At the end of the test, you will also get the
following prompt to your CLI:

Figure 3.4 – First Selenium test execution example in JavaScript

Note that all the previous scenarios could have been similarly executed against Mozilla
geckodriver upon installation of the driver.

Node.js
Based on the Wikipedia definition (https://en.wikipedia.org/
wiki/Node.js), Node.js is an open source, cross-platform, backend
JavaScript runtime environment that executes JavaScript code outside of a web
browser. In the previous example, we used the node command to run the
Selenium script from a CLI outside of the browser.

Selenium Grid
Let's scale the previous execution example to run using Selenium Grid's capabilities

The Grid option can be set up as standalone or as a hub with nodes. We will look at the
standalone option. On a simple setup of a Selenium local Grid, the Selenium server will
listen by default at http://localhost:4444 and detect any installed drivers that the
developer downloaded and added to their machine PATH.

After downloading the selenium-server JAR file from the Selenium website, simply
run the following command to launch the server:

java -jar WebDriver\bin\selenium-server-4.1.0.jar standalone

Do make sure prior to running the command, that the relevant drivers you wish to
run against are launched in the background (for example, Chrome, Gecko, or Edge).
Please also ensure you have Java installed on your machine prior to running the
preceding command.

https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Node.js
http://localhost:4444

Getting started with the Selenium WebDriver framework 47

You should see the following prompt in your CLI:

Figure 3.5 – Launching output of Selenium Grid command-line execution

Once the Grid command has been executed and assuming all local drivers were installed
and launched successfully, you should be able to see the following output on your browser
when navigating to localhost:4444:

Figure 3.6 – Local Selenium Grid output within a browser

To run a code sample against a Grid of browsers, you will need to modify your code and
point the WebdDriver URL to the local host Selenium grid:

let driver = await new webdriver.builder()

 .forBrowser(' chrome')

 .usingServer('http://localhost:4444/wd/hub')

 .build();

When running the new project when the grid is set as the target driver, the test would run
against the browsers that are registered in that grid, as shown in Figure 3.6.

48 Top Web Test Automation Frameworks

Lastly, developers can easily configure their desired capabilities when using larger grids
and trying to run their Selenium tests in parallel using the supported W3C capabilities
(https://w3c.github.io/webdriver/). Selenium supports a wide range of
capabilities that allow the test to run across different and complex configurations. To
learn about the supported driver capabilities, please visit https://www.selenium.
dev/documentation/webdriver/capabilities/driver_specific_
capabilities/.

In the below subset table taken from the W3C documentation (https://w3c.
github.io/webdriver/#capabilities), you can see some of the common
WebDriver capability that a Selenium test would need to use in order to launch a specific
browser with a specific version:

Figure 3.7 – W3C WebDriver supported capabilities (sourced from W3C - https://w3c.
github.io/webdriver/#capabilities)

https://w3c.github.io/webdriver/
https://www.selenium.dev/documentation/webdriver/capabilities/driver_specific_capabilities/
https://www.selenium.dev/documentation/webdriver/capabilities/driver_specific_capabilities/
https://www.selenium.dev/documentation/webdriver/capabilities/driver_specific_capabilities/
https://w3c.github.io/webdriver/#capabilities
https://w3c.github.io/webdriver/#capabilities
https://w3c.github.io/webdriver/#capabilities
https://w3c.github.io/webdriver/#capabilities

Getting started with the Cypress framework 49

Selenium is a rich framework and while we are focusing on JavaScript in this chapter (and
book), the framework fully supports multiple language bindings, including C#, Python,
Ruby, and Java. It also supports all the different browsers that are out there.

To better develop Selenium code, developers should leverage best practices including the
page object model (POM), the use of relative locators that were introduced in Selenium
4, the use of reliable locators out of the eight types that are supported by Selenium, and
more. Later in the book, we will cover advanced practices with Selenium, and I expand on
these items.

Selenium-Supported Element Locators
Selenium supports the use of finding elements across the following element
types:

ID, name, tagName, className, linkText, partialLinkText,
xpath, and cssSelector

For example, to search for an element on the website under test, a developer
would use the following command:

driver.find_elements(By.XPATH, //button)

Now that we've gone through the basics of Selenium WebDriver and Selenium Grid, let's
continue with an introduction to the Cypress framework.

Getting started with the Cypress framework
As noted earlier in the chapter, Cypress (https://www.cypress.io/) is by far the
fastest and most adopted cross-browser frontend JavaScript testing framework. It is a
developer-friendly, fast execution solution by design, and runs on the browser. In this
section, we will learn how to install, set up, and run the first Cypress test in JavaScript.
Note that Cypress also supports TypeScript and can be configured to run with the
Cucumber BDD framework as well.

To get started with Cypress, please run the following command to install the node package
on your machine:

npm install cypress --save-dev

Similar to Selenium and JavaScript, Cypress also requires Node.js to be installed on the
local machine to run the Cypress tests. If you do not have Node.js installed, please make
sure that, in addition to the installation of Cypress, you install it as a dependency as well.

https://www.cypress.io/

50 Top Web Test Automation Frameworks

Once the Cypress framework is installed, users can drive the tests either through an IDE
such as IntelliJ or Visual Studio Code or through the CLI/Jenkins.

From the CLI, users can launch the GUI version of Cypress and launch any tests that
are available in the testing directory or connect the Cypress framework with the online
Cypress web dashboard.

We can launch the Cypress GUI by using the following command:

npx cypress open

Upon execution of this command, the Cypress GUI will launch as follows:

Figure 3.8 – Cypress GUI interface when launched from the CLI

When a user clicks on any of the available JavaScript tests on the left panel under
INTEGRATION TESTS, the execution will immediately start on a local browser. Users
who have multiple browsers installed locally can define which of these will be used for the
target executions.

Getting started with the Cypress framework 51

The following is a screenshot of a live execution on a local browser using Cypress:

Figure 3.9 – Cypress live execution of a JavaScript test scenario on a local browser

To run the exact same test spec, you can also use the following command line:

Cypress run -–spec .\cypress\tests\cypress\integration\
examples\actions.spec.js

If you want to get started with a basic test spec that you can use with Cypress, the basic
installation comes with a set of pre-defined scenarios. Many of them use the https://
example.cypress.io website as a target to learn and ramp up with the frameworks
and their APIs. Here is basic test code that you can use:

describe('My First Test', () => {

 it('Gets, types and asserts', () => {

 cy.visit('https://example.cypress.io')

 cy.contains('type').click()

 // Should be on a new URL which includes

 // '/commands/actions'

 cy.url().should('include', '/commands/actions')

 // Get an input, type into it and verify that the value

https://example.cypress.io
https://example.cypress.io

52 Top Web Test Automation Frameworks

 // has been updated

 cy.get('.action-email')

 .type('fake@email.com')

 .should('have.value', 'fake@email.com')

 })

})

To learn more about the basic steps that you can do with Cypress, visit (https://docs.
cypress.io/guides/getting-started/writing-your-first-test#Add-
a-test-file).

Now that we've covered the basics of Cypress, let's briefly explore some additional
capabilities of this framework. Later in the book, we will dive much deeper into using the
advanced features of the Cypress framework.

Important features of Cypress
A unique and very powerful feature that Cypress offers developers as part of the
debugging and real-time feedback from the web application is Time Travel.

Time travel allows developers to hover their mouse over commands on the left panel of
the test runner and view in real time what happened on the web application, including
DOM snapshots and other debugging insights. Such a capability allows developers to
debug their web applications step by step and fix issues in real time. The following is a
screenshot of a mouse hover action on a test step in the left panel of the test runner, with
synchronized action visibility on the right side, as it occurred on the web application
under test:

https://docs.cypress.io/guides/getting-started/writing-your-first-test#Add-a-test-file
https://docs.cypress.io/guides/getting-started/writing-your-first-test#Add-a-test-file
https://docs.cypress.io/guides/getting-started/writing-your-first-test#Add-a-test-file

Getting started with the Cypress framework 53

 Figure 3.10 – Cypress time travel example (mouse hover action in sync with web DOM tree)

Developers who wish to expand the abilities of Cypress and run tests in parallel, examine
flaky tests, and track test execution history, can easily connect their Cypress framework to
the web-based Cypress dashboard, and more. From the Cypress UI test runner, developers
would sign in with email or GitHub credentials and be able to get started. Cypress offers
through its web portal multiple types of reporting dashboards that are add-ons and
require a paid license as opposed to the free open source framework covered earlier.

Figure 3.11 – Cypress dashboard user interface and capabilities

54 Top Web Test Automation Frameworks

Now that we've covered the basics of Cypress, let's briefly explore some of the additional
capabilities of this framework.

Cypress offers developers the ability to create component test scenarios (https://
docs.cypress.io/guides/component-testing/introduction#Getting-
Started). Such tests are the middle layer between unit and integration tests that allows
us to test the quality of a single component within a web application. The capability of
component testing is still being built by Cypress, but developers can already start using it
by running Cypress with the relevant command-line option, as follows:

npx cypress open-ct

Do note, that prior to running the preceding command, a project needs to be set up
according to the Cypress guidelines. The following image shows the Cypress component
testing screen that you can access after running the preceding command:

Figure 3.12 – Cypress component testing screen

https://docs.cypress.io/guides/component-testing/introduction#Getting-Started
https://docs.cypress.io/guides/component-testing/introduction#Getting-Started
https://docs.cypress.io/guides/component-testing/introduction#Getting-Started

Getting started with the Google Puppeteer framework 55

As mentioned previously, the Selenium framework comes with a basic Selenium IDE
recorder to help users get started with their first Selenium scripts. Similarly, Cypress
is developing its own version of such a recorder under the name of Cypress Studio
(https://docs.cypress.io/guides/core-concepts/cypress-studio).
This solution will allow new users of the technology to record Cypress scripts through
a GUI tool. The recorded tests will generate a JavaScript test code that can then be
modified and enhanced. In addition, there is also a good list of browser extensions, such
as this Chrome Cypress recorder: https://chrome.google.com/webstore/
detail/cypress-recorder/glcapdcacdfkokcmicllhcjigeodacab, that are
worth exploring.

Later in this book, when we cover the advanced capabilities of Cypress, we will touch upon
the mocking and network control abilities of Cypress, using various plugins with Cypress,
automating Cypress for react native applications, and more.

Now that we have covered the basic abilities of Cypress, let's proceed to Google Puppeteer.

Getting started with the Google Puppeteer
framework
Puppeteer is an open source node library and a framework developed by Google that is
based on the CDP. It allows web application developers to control headless or headed
chrome browsers through high-level APIs over the above mentioned CDP or DevTools
protocol (https://chromedevtools.github.io/devtools-protocol/). As
described earlier in this chapter, Puppeteer and Playwright share the same architecture
and CDP to create and run tests.

Unlike Selenium and Cypress, Puppeteer only supports Chrome and Chromium-based
browsers, which means that testing end-to-end across all other browsers, such as WebKit
Safari and Mozilla Firefox, isn't supported.

Among the core capabilities of Puppeteer is the generation of screenshots and PDFs of
websites' pages, crawling a single-page application, and generating pre-rendered content,
automating form submission, UI testing, and user gestures such as keyboard inputs.
With the support of the CDP, developers can test Chrome extensions, as well as capture
a timeline trace of the site for performance monitoring.

To get started with Google Puppeteer, you should obviously have Node.js installed on your
local machine, and then run the install command as follows:

npm install puppeteer

https://docs.cypress.io/guides/core-concepts/cypress-studio
https://chrome.google.com/webstore/detail/cypress-recorder/glcapdcacdfkokcmicllhcjigeodacab
https://chrome.google.com/webstore/detail/cypress-recorder/glcapdcacdfkokcmicllhcjigeodacab
https://chromedevtools.github.io/devtools-protocol/

56 Top Web Test Automation Frameworks

Keep in mind that Google provides two versions of Puppeteer: a standard installation,
which is done using the preceding command, and a puppeteer-core version that by default
does not download any of the Chrome browsers to your local machine. The standard
installation downloads the latest Chrome browser to the local machine and uses it as the
target browser for testing. Puppeteer supports both the headed and headless execution
modes. Scripting with Puppeteer is done with JavaScript, which makes the framework
very appealing for frontend web application developers. As seen in Chapter 2, Challenges
Faced by FrontEnd Web Application Developers, a developer can easily create a Puppeteer
script that takes a full website screenshot, monitors performance, or even validates the
accessibility of a website that is under development.

A website HTTP archive (HAR) file can be easily generated using Puppeteer. Using a
generated HAR file, developers can review the entire traffic within their website and get
performance and security insights for each of the transactions.

The following code snippet will navigate to the Packt website and generate a HAR file for
review (for that, you need to install the npm package puppeteer-har):

const puppeteer = require('puppeteer');

const PuppeteerHar = require('puppeteer-har');

(async () => {

 const browser = await puppeteer.launch();

 const page = await browser.newPage();

 const har = new PuppeteerHar(page);

 await har.start({ path: 'book_demo.har' });

 await page.goto('https://www.packtpub.com/');

 await har.stop();

 await browser.close();

})();

On running the preceding test code, a new HAR file under the name book_demo.har
will be generated:

node [filename.js] //depends on the JavaScript file name given
above

Opening the generated HAR file with the Google HAR analyzer web tool will show the
following output that can be examined by the frontend developers for web traffic issues,
performance issues, and more.

Getting started with the Google Puppeteer framework 57

Figure 3.13 – Puppeteer-generated HAR file example

To get more examples, it's highly recommended to bookmark the Google GitHub
repository for Puppeteer (https://github.com/puppeteer/puppeteer).

Later in the book, we will cover more advanced features of the Puppeteer framework.

Now that we have covered the basics of Puppeteer, let's proceed with Microsoft's
Playwright framework.

https://github.com/puppeteer/puppeteer

58 Top Web Test Automation Frameworks

Getting started with the Microsoft
Playwright framework
Playwright is one of the newest but fastest-growing cross-browser test automation
frameworks. Built by the same team that built Puppeteer, Playwright is also a CDP-based
framework. As opposed to Google's Puppeteer, Playwright supports multiple languages
and most leading browsers. With Playwright, developers can script in JavaScript,
TypeScript, Python, Java, and .NET, and execute across most leading browsers including
Chrome, Firefox, Edge, and WebKit Safari. The Playwright framework can be executed in
headed or headless mode and can also support mobile viewport emulation (https://
playwright.dev/docs/emulation#devices) with various user agents, as
opposed to Cypress, for example.

From an architecture perspective, Playwright uses the CDP to interact with the browsers,
drive actions such as browsers' pages inputs, scan for security, monitor network processes,
and much more. A thorough architectural review is presented by Microsoft in this online
session: https://www.youtube.com/watch?v=PXTspGn1im0.

To get started with Playwright, simply install the Node.js package through the
following commands:

npm i -D @playwright/test

npx playwright install

Note that Playwright automatically downloads the Chromium, WebKit, and Firefox
browsers to a local folder on your machine. You can learn more about the installation of
the framework here: https://playwright.dev/docs/intro#installation.

Once installed, simply create a basic JavaScript test file, save it with the extension of
*.spec.js, and place it in the tests folder:

const { test, expect } = require('@playwright/test');

test('basic test', async ({ page }) => {

await page.goto('https://github.com/login/');

await page.fill('input[name="login"]', ' [user name]');

await page.fill('input[name="password"]', '[password]');

await page.click('text=Sign in');

});

https://playwright.dev/docs/emulation#devices
https://playwright.dev/docs/emulation#devices
https://www.youtube.com/watch?v=PXTspGn1im0
https://playwright.dev/docs/intro#installation

Getting started with the Microsoft Playwright framework 59

The preceding code snippet will navigate to the GitHub website and perform a
simple sign-in.

To run the test with the browser in a headed mode, run the following command:

npx playwright test --headed

If the preceding command is not specified, the execution will run in headless mode.

Figure 3.14 – Playwright command-line options

If you wish to run the previous test on a specific browser, you'd need to use
"--browser=webkit" as an example.

When using Playwright, unlike using Cypress, developers cannot utilize the time travel
functionality for immediate debugging; however, Playwright does support some very
valuable features including geolocation testing, mocking, file handling, using parameters,
and iFrames, which are specifically unsupported by Cypress at the time of writing
this book.

iFrame
An iFrame is an HTML document that is embedded inside another document
on a website. It is typically used to insert content taken from another source
or website.

60 Top Web Test Automation Frameworks

While for most of the frameworks that we cover in this book, there is available integration
with cloud vendors such as Perfecto, Sauce Labs, and BrowserStack, Playwright offers
built-in parallelization and sharding to drive the tests faster and at scale.

Playwright uses the term worker to run tests in parallel. From a practitioner standpoint,
there are two methods to run tests in parallel.

The first one is through an additional command-line option that should be added to
the execution:

npx playwright test -–headed -–workers 4

The second option is to edit the playwright.config.js file that comes with the
framework installation, and add the following line:

Const config = {

Workers: process.env.CI ? 4: undefined,};

Module.exports = config;

There are additional useful features within Playwright, such as stopping the entire test
execution upon a certain amount of test failures. For example, if within a large test
execution of a suite, the failure number (using --max-failures=10) reached 10
failures, the entire test run will stop at that point to avoid running the full suite.

Playwright can also help perform visual validations, monitor network traffic, and help test
complex scenarios. We will discuss some of these capabilities later in the book.

Lastly, Playwright integrates with most of the continuous integration tools, as well as with
Docker, and other third-party test runners, such as Jest and Mocha.

Summary
As highlighted in this chapter, web application developers have a wide range of technology
selections when it comes to their frontend web application testing. There are some
commonalities between the frameworks; however, there are also some material differences
between them. Selecting what makes the most sense for the short term, as well as for the
long term, is a tough challenge that we will cover later in this book.

In this chapter, we covered the fundamentals of the top four JavaScript test automation
frameworks for web developers.

Summary 61

We provided an overview of the core benefits of the frameworks together with some
getting started instructions, so that developers can get a sense of what it takes to use these
frameworks for a new project.

As we move forward in the book, we will provide a deeper dive into the advanced
capabilities of each framework, as well as some recommendations on when it's best to use
one framework over another.

In the following chapter, we will cover tips and recommendations to help developers
and other testing personas within the project better match the test framework to their
objectives and use cases.

4
Matching Personas

and Use Cases to
Testing Frameworks

Choosing a test automation framework is a fundamental aspect of the software
development life cycle. A test automation framework serves so many different objectives
and, as such, must be suited to cover different needs of both developers as well as test
engineers. Specifically, in web application testing, the variety of frameworks that are
available is huge; hence, there needs to be a prescriptive methodology that considers all
the relevant pillars, as well as meeting the current and future-looking needs of users.
Within a typical web application software release, there are a couple of personas that
contribute to the overall quality of the product, including frontend developers and test
automation engineers (also known as SDETs – software developer engineers in testing).
A test automation framework and, in many cases, a combination of more than a single
framework ought to match these personas' needs, skill sets, and expected velocity around
scale and feedback loops.

64 Matching Personas and Use Cases to Testing Frameworks

In this chapter, we will provide a set of considerations to help these two main personas
to choose the best test automation framework for their needs and suggest an innovative
Venn diagram that illustrates these requirements and differences between the personas,
their use cases, and the top-four test automation frameworks (Selenium, Cypress,
Puppeteer, and Playwright).

The chapter is designed to cover the following:

• Introduction to the key personas within a web application development project

• Specifying the various use cases and considerations that need to be top of the mind
when picking a test framework

• The test automation frameworks evaluation matrix – a table comparing the features
across leading test frameworks

Upon completion of the chapter, you will understand the differences between each
persona, the main objectives of various persona within a web application development
project, and the differences in each test automation framework by category.

Technical requirements
The code files for this chapter can be found here: https://github.com/
PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing.

Web testing personas overview
As already stated earlier in this book, it takes a village to build high-quality web
applications, and specifically, testing such advanced apps is quite a challenge.

To cover all the testing types, including functional and non-functional, in a short amount
of time, feature teams or squads consist of both developers and SDETs. Such high-skilled
and technical resources are tasked with creating new test code upon any new product
requirements, as well as maintaining older regression testing suites.

The frontend developer usually cares about the following objectives:

• Ease of creation of test code.

• High-scale and parallel testing to expedite feedback from their test runs.

• The creation of unit and API tests are typically top of mind.

• Having a framework with debugging and mocking abilities

https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing

Web testing personas overview 65

• Integration with CI/CD tools, such as Jenkins and Azure DevOps.

• Integration with defect management and task management tools, such as Jira.

Since the developer persona commits multiple code changes a day, they need to develop
very specific test code to cover these changes. In addition, developers unfortunately also
create defects; hence, having the ability to properly reproduce bugs, analyze logs and
network traffic, and monitor APIs is key for fast resolution of these defects (MTTR –
mean time to resolution).

Some of the test automation frameworks cover the preceding objectives more than
others, as we will specify later in this chapter. However, these are some of the top-of-mind
objectives developers care about when evaluating different test automation frameworks.
As Indeed, which is a hiring website, defines, a frontend web application developer is
a developer that is responsible for all user-/client-side web application creations, from
UI elements, buttons, and menus to compatibility across web and mobile platforms,
high-quality code creation, and much more (https://www.indeed.com/hire/
job-description/front-end-developer).

For frontend developers to be successful in what they create, they get tremendous help
and support from SDETs.

SDETs are responsible for complementing the quality objectives that the developer
doesn't. This includes higher coverage of testing types, multiple-platform testing,
performance, accessibility, and different functionality testing that isn't in the scope of the
developer to cover.

The SDET usually cares about the following objectives:

• Test automation scenario coverage (including the most advanced user flows within
the app)

• Cross-platform support (web and mobile)

• Support and documentation within the community

• Support for multiple testing methodologies (functional, non-functional)

• Ease of use and ramping up

• Reporting and debugging abilities

• Integration with CI/CD tools, such as Jenkins

• Integration with defect management and task management tools, such as Jira

https://www.indeed.com/hire/job-description/front-end-developer
https://www.indeed.com/hire/job-description/front-end-developer

66 Matching Personas and Use Cases to Testing Frameworks

As identified, there are a few commonalities between the two persona types of objectives,
which makes sense. Test code is code like any other software development project; hence,
it needs to be managed, maintained, and used like production code.

Now that we've listed, at a very high level, some of the persona types and their objectives,
let's identify what constitutes a solid test automation framework.

Use cases and considerations for picking a
solid test automation framework
When considering the long list of activities that both developers and SDETs are
responsible for, considering the tool stack that's available for them to accomplish these
activities is imperative for success.

The following diagram presents a set of very important considerations that should be part
of any proof of concept when choosing a web application testing framework:

Figure 4.1 – Key pillars of a high-value test automation framework

Use cases and considerations for picking a solid test automation framework 67

When starting to investigate a web application test automation framework, looking at
the previously illustrated pillars is imperative. Let's look at each of them in the following
sections. We will not address C.E.L.A as a standalone section since this refers to the overall
capabilities together and it sums the software testing life cycle from test creation through
its report at the end of execution.

Community considerations
Having a strong community behind the test automation framework is a key requirement
for many reasons. Getting ongoing support, innovation, best practices, online discussions,
code samples, and more are just a subset of the benefits a strong community can bring to
any technology. A small community, an inactive community, and lack of contributions to
an open source technology can be a negative sign that this solution is not really ramping
up and adopted, and it can suggest that developers should look into other alternatives.

Scale testing capabilities
Building web applications these days with the ever-growing prevalence of digital
transformation isn't just about covering a large range of desktop browsers and OS
versions; it is also about mobile devices and OS versions. A test automation framework
that can support high-scale parallel testing across these platforms is obviously important.
Among the various test automation frameworks, there are a few frameworks that do not
support all browsers, including mobile devices, which poses a limitation for developers
and SDETs. Setting a coverage platform matrix during the test automation framework
evaluation phase can help surface such limitations.

Tool stack integrations and plugins
Both developers and SDETs work with a wide range of technologies and tools when
building their applications. Such tools include CI/CD tools, such as Jenkins and TeamCity,
as well as defect management and user story management tools, such as Jira. In addition,
these personas also work with Source Control Management (SCM) tools, such as
GitHub, and other tools, such as Perforce's Helix Core, API management tools, security
scanning tools, and network analysis tools. Test automation frameworks that can create
and execute various testing types should also integrate properly with the existing tools
within squad teams to ensure a fluent process as well as continuous productivity. In
addition, such personas also rely on different plugins for accessibility, visual testing, code
coverage analysis, and more; hence, working nicely with these plugins is a great advantage
to consider and evaluate.

68 Matching Personas and Use Cases to Testing Frameworks

Ease of use and adoption
Getting started with any technology can make the difference between the successful
evaluation and adoption of a tool and a failure. To get started quickly and have a positive
experience, a test automation framework should have an easy-to-use guide with basic code
samples and environment setup and dependency instructions, as well as documentation
and examples of more advanced capabilities. Since the personas that are evaluating these
frameworks have very technical knowledge and skills but are also short on time, it's
important to inform them upfront what the unsupported features and limitations are so
they do not waste time chasing something that is simply unavailable. A good example that
I found was from Cypress. The Cypress documentation clearly states what's never going
to be supported by the tool, as well as providing a dynamic web page with its upcoming
roadmap items (https://docs.cypress.io/guides/references/roadmap).

For example, the iFrames testing capability is not supported at the time of writing this
book (https://docs.cypress.io/api/commands/clock#iframes), which is
clearly stated in the documentation, but appears as a future roadmap item.

Reusability and maintainability
Both developers and SDETs do not try to reinvent the wheel when it's not required. Since
their time is short within the software sprints, they love to use framework capabilities that
enable them to optimize their workloads and be more efficient.

Things such as test reusability, page object model support, and working with advanced
framework capabilities (for example, the new Selenium 4 introduced one called Relative
Locators) are great examples of productivity features developers would appreciate.

When evaluating a test automation framework, it's important to look for things that can
optimize our workload and make our daily tasks more efficient. Also, thinking about
maintaining the test code over time is very important, since the product and the web
landscape evolve over time and the tests should also be resilient to these changes.

https://docs.cypress.io/guides/references/roadmap
https://docs.cypress.io/api/commands/clock#iframes

Use cases and considerations for picking a solid test automation framework 69

Reporting, test analysis, and intelligence
Test execution cycles happen multiple times a day, and this results in huge volumes of test
data across different environments and from target web and mobile platforms. Having
the ability to analyze test reports properly, either through intelligence (AI/ML) or built-in
capabilities, is key for agility. When evaluating test automation frameworks, developers
and SDETs should investigate the reporting layer and see what they can get out of the box
from the framework, and if it's not directly built into the framework, whether there can
be solid integrations with reporting frameworks such as Allure (https://github.
com/allure-framework/allure-js) or the Perfecto cloud solution reporting SDK
(https://help.perfecto.io/perfecto-help/content/perfecto/test-
analysis/test_analysis_with_smart_reporting.htm).

Figure 4.2 – Cypress test automation flakiness dashboard

A nice example of a reporting feature Cypress provides within its dashboard is the
automated classification of flaky and inconsistent testing scenarios (https://docs.
cypress.io/guides/dashboard/flaky-test-management#Flaky-Test-
Analytics). With such an ability, frontend developers can filter out noise and keep
their testing pipeline more stable and reliable.

Now that we've looked at some of the core pillars and considerations of a test automation
framework that both developers and SDETs should care about, let's look at a methodology
that can help to connect all these dots and serve as a tool to evaluate the different
frameworks continuously.

https://github.com/allure-framework/allure-js
https://github.com/allure-framework/allure-js
https://help.perfecto.io/perfecto-help/content/perfecto/test-analysis/test_analysis_with_smart_reporting.htm
https://help.perfecto.io/perfecto-help/content/perfecto/test-analysis/test_analysis_with_smart_reporting.htm
https://docs.cypress.io/guides/dashboard/flaky-test-management#Flaky-Test-Analytics
https://docs.cypress.io/guides/dashboard/flaky-test-management#Flaky-Test-Analytics
https://docs.cypress.io/guides/dashboard/flaky-test-management#Flaky-Test-Analytics

70 Matching Personas and Use Cases to Testing Frameworks

Testing automation evaluation matrix
To realize continuous value from your selected test automation framework, you need to
get support for the core elements that you need, as highlighted previously. From language
support through to community, advanced testing scenarios support, and testing types of
support, those in charge must have a clear picture that they can analyze prior to, as well
as during, the adoption and usage of these technologies. The continuous part here is very
important, since, for example, as described previously, Cypress currently does not cover
iFrames and cannot test WebKit Safari browsers, but these are on their roadmap, so that
soon might change. Note that picking your tool stack is good for a given time frame,
hopefully long enough, up until you need to re-evaluate your choices and either keep on
using what you have or make changes.

In the following table, we will look at the differences and commonalities across the four
leading test automation frameworks. This tool can help us visualize the benefits and
disadvantages of each.

Other resources and comparisons between the frameworks are constantly being done by
individuals, and such comparisons might change over time. A nice resource I was able to
find was from BlazeMeter (https://www.blazemeter.com/blog/selenium-
vs-cypress-a-complete-comparison-between-the-two-testing-
frameworks?utm_content=180888216&utm_medium=social&utm_
source=linkedin&hss_channel=lcp-2364558), which is worth reading.

Any given web application project has unique requirements, and these requirements
should be compared across the available tools. While not supporting iFrames can seem
like a limitation of Cypress, if this is not something that your app uses, it's not really a
relevant limitation.

The following is a categorized table that breaks down each of the test automation
frameworks according to the core capabilities test engineers would mostly care about.
As you will observe, there are a few capabilities that are supported by more than a single
framework; however, when considering the wider range of capabilities and matching them
to the persona requirements, the decision around which framework to use becomes easier:

https://www.blazemeter.com/blog/selenium-vs-cypress-a-complete-comparison-between-the-two-testing-frameworks?utm_content=180888216&utm_medium=social&utm_source=linkedin&hss_channel=lcp-2364558
https://www.blazemeter.com/blog/selenium-vs-cypress-a-complete-comparison-between-the-two-testing-frameworks?utm_content=180888216&utm_medium=social&utm_source=linkedin&hss_channel=lcp-2364558
https://www.blazemeter.com/blog/selenium-vs-cypress-a-complete-comparison-between-the-two-testing-frameworks?utm_content=180888216&utm_medium=social&utm_source=linkedin&hss_channel=lcp-2364558
https://www.blazemeter.com/blog/selenium-vs-cypress-a-complete-comparison-between-the-two-testing-frameworks?utm_content=180888216&utm_medium=social&utm_source=linkedin&hss_channel=lcp-2364558

Testing automation evaluation matrix 71

72 Matching Personas and Use Cases to Testing Frameworks

Testing automation evaluation matrix 73

74 Matching Personas and Use Cases to Testing Frameworks

While the preceding table is not a complete deep dive and does not go through, API by
API, everything that is supported by the various frameworks, it can be used to understand
some of the core commonalities as well as unique strengths of each.

In many projects, a combination of more than one framework might prove to be the
best approach since all the preceding have JavaScript support as a common entry point
with similar test runners driving the test creations (Mocha, Jest, and so on). In addition,
specific frameworks offer built-in unique features that frontend developers and SDETs
would benefit a lot from.

Test coverage across web and mobile platforms is also among the strong requirements
of each web application; hence, Selenium in such cases is the most mature framework to
support real and virtual device testing either through its parallel Appium framework or its
integration with mobile cloud vendors such as Perfecto (http://perfecto.io).

The preceding table should help frontend developers to better look at the different
frameworks. In Chapter 7, Consideration Matrix between JavaScript Test Automation
Frameworks, we will dive deeper and provide a breakdown of the key use cases
mentioned previously.

It is important that frontend developers consider that as part of a single pipeline, there
are various quality-check activities to perform, ranging from API testing, visual testing,
accessibility testing, and performance testing to network control, functional testing, and
other types of integration testing. As we will learn later, while almost every capability
can be implemented by developers, there are some capabilities that are built into some
frameworks that need to be integrated by others.

As an example, visual testing could be advanced through built-in capabilities within the
Playwright framework, while for other frameworks, frontend developers will need to rely
on third-party integrations.

http://perfecto.io

Summary 75

Summary
In this chapter, we went deeper into the high-level considerations frontend web
application developers have when it comes to selecting a test automation framework.

As outlined in the chapter, there are a few generic considerations, such as ease of use and
reporting, but also some specific requirements around test coverage, API and mock testing
abilities, visual testing, and others that would vary from one project to another.

We provided a useful table that can be used as a baseline for a comparison of the various
test automation frameworks.

Later in the book, in chapters 9-12, we will look into each of the capabilities (supported
languages, community engagement, and so on) represented in the table, and provide a
deep-dive analysis and comparison of each of these categories.

That concludes this chapter!

In the following chapter, we will advance the preceding test consideration matrix and
provide a way to match each test automation framework with a testing methodology, such
as API testing, performance testing, and functional and accessibility testing.

5
Introducing the

Leading Frontend
Web Development

Frameworks
In previous chapters, we looked at the four leading frontend web test automation
frameworks (Playwright, Puppeteer, Selenium, and Cypress), and outlined the key testing
types, which include functional, non-functional, API, and accessibility. We also looked
at some of the key testing objectives that developers and SDETs (software developer
engineer in testing) consider when choosing a test automation framework.

In this chapter, we will look at the test frameworks from the web development and
application perspectives and provide guidelines on how to ensure that your test
framework best fits the application type as well as the web development frameworks.

The chapter is designed to cover the following:

• Charting the leading web development frameworks by their types

• Guidelines for picking the most advanced JavaScript web development technology

78 Introducing the Leading Frontend Web Development Frameworks

The goal of this chapter is to familiarize you with the most used web development
frameworks on the market. As a test engineer, knowing these leading technologies, their
advantages, and core features, as well as getting references to sample web applications built
using these frameworks, can help with test planning activities.

Technical requirements
The code files for this chapter can be found here: https://github.com/
PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing.

Introduction to the leading web
development frameworks
We've already established a good level of understanding about the advancements in
web testing frameworks and reviewed some of the differences and unique capabilities of
each. The four leading test automation frameworks that we are covering in this book are
challenged daily by the technology that frontend web application developers use to build
their software.

After looking at the State of JavaScript survey for the past few years, specifically for 2020
(https://2020.stateofjs.com/en-US/), as well as researching dozens of blogs
and online resources, we can see that there are 5-7 web development technologies that are
leading the industry and have become the preferred choices for frontend developers.

The following are the most used frameworks:

• Vue.js (https://vuejs.org/)

• ReactJS (https://reactjs.org/)

• AngularJS (https://angularjs.org/)

• Ember.js (https://guides.emberjs.com/release/tutorial/part-
1/)

• Svelte (https://svelte.dev/)

https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://2020.stateofjs.com/en-US/
https://vuejs.org/
https://reactjs.org/
https://angularjs.org/
https://guides.emberjs.com/release/tutorial/part-1/
https://guides.emberjs.com/release/tutorial/part-1/
https://svelte.dev/

Introduction to the leading web development frameworks 79

These frameworks are the ones that are used for most web applications; however, with the
rise of more modern digital apps, we also see frameworks such as React Native, which is
an older technology but very rich and popular for mobile-friendly app development, and
Flutter (https://flutter.dev/), which is considered for newly built applications
to create a single code base that can run on both mobile and desktop platforms. Since the
landscape is so rich and dynamic, we will only focus on the preceding five frameworks.
However, it is worth mentioning that other frameworks, such as the following, also
received positive feedback from developers across surveys: Preact (https://
preactjs.com/), Backbone.js (https://backbonejs.org/), jQuery (https://
jquery.com/), Flutter, and Semantic UI (https://semantic-ui.com/).

Figure 5.1 – Leading web development frameworks' logos

Now that we've identified the most commonly used web development frameworks, we
are going to dive deeper into each and every one of these frameworks and learn their key
strengths and characteristics, as well as how to get started using them.

https://flutter.dev/
https://preactjs.com/
https://preactjs.com/
https://backbonejs.org/
https://jquery.com/
https://jquery.com/
https://semantic-ui.com/

80 Introducing the Leading Frontend Web Development Frameworks

Guidelines for picking a web
development framework
When picking a web development framework, frontend developers must consider
the following:

• Features and differentiating abilities of the framework against the user stories at
hand

• Rapid development abilities with fewer coding requirements

• Vast community support (open source benefits)

• Simplified debugging

• Learning curve

• Consistent performance

• Reusability of application components

• Built-in security features of the framework

• Misc: Built-in dev tools (DOM snapshots), plugin-friendly, app layout design,
support for the TypeScript language, accessibility support

The previously mentioned development frameworks vary by their age, features,
community, and suitability for the application types that are being built. It is
nice to see how these frameworks have trended throughout the years based on
Stack Overflow questions (https://insights.stackoverflow.com/
trends?tags=angular%2Creactjs%2Cjquery%2Cvue.js%2Cember.
js%2Csvelte).

https://insights.stackoverflow.com/trends?tags=angular%2Creactjs%2Cjquery%2Cvue.js%2Cember.js%2Csvelte
https://insights.stackoverflow.com/trends?tags=angular%2Creactjs%2Cjquery%2Cvue.js%2Cember.js%2Csvelte
https://insights.stackoverflow.com/trends?tags=angular%2Creactjs%2Cjquery%2Cvue.js%2Cember.js%2Csvelte

Guidelines for picking a web development framework 81

Figure 5.2 – Stack Overflow trends for JavaScript web development frameworks (source: Stack Overflow)

Let's compare, at a high level, the top web development frameworks and understand some
of the pros and cons of each.

ReactJS
ReactJS is an open source framework developed and created by Facebook. With over
179,000 stars on GitHub, 36.500 forks, and 110 branches, it is by far the most adopted web
development framework.

Among the main benefits of ReactJS are the use of a virtual DOM for efficient web page
loading and server-side rendering, which does most of the page rendering on the server
side and contributes to the high performance of the web application. In addition, ReactJS
uses JSX, which is a JavaScript extension that looks like an XML file and can be mixed
with the JavaScript website code to set up tree structures and other complex blocks within
the code by using opening and closing XML tags.

Some sample and very well-known websites that are built using ReactJS are Pinterest,
Netflix, and Dropbox.

82 Introducing the Leading Frontend Web Development Frameworks

Many frontend web application developers would agree that ReactJS offers great
reusability of components and high-performing applications across high-traffic
websites due to its built-in capabilities, being easy to learn and ramp up, its rich dev
tools for building and debugging web apps, and the strong community behind the open
source framework.

However, while JSX is aimed at helping developers cope with challenging DOM trees, the
community argues that it's hard to understand and use this JavaScript syntax extension.

To get started with building a new web application with ReactJS, run this set
of commands:

npx create-react-app packt-app

cd packt-app

npm start

The preceding commands will create a basic web application for a developer to start
editing and building upon.

Once the preceding commands are executed, the developer will need to edit the
App.js file that was created under the new folder (in our case, under packt-app), as
well as the index.html and the related JSX files as and if needed.

The following is a basic welcome page for a newly created web application using ReactJS
that frontend developers can use as a baseline for their new application:

Figure 5.3 – Sample main website application page built using ReactJS

Guidelines for picking a web development framework 83

Virtual DOM
Virtual DOM is a very efficient capability of ReactJS. It is a tree based on
JavaScript objects created with ReactJS that mimics the web page DOM tree.
Every time a developer changes something in the DOM, ReactJS employs a
different algorithm that only refreshes and renders the changed DOM nodes.
This contributes to the performance and loading of the DOM, which enhances
the end user experience when visiting ReactJS-based websites across desktop
and especially mobile devices.

This chapter and book are not aimed at guiding you on how to develop different web
applications but rather how to test them. But to understand how to test such apps, it is
beneficial to understand how these frameworks are built and how they differ from each
other, since the framework of choice impacts the testing activities and framework that will
be picked, also because not every test automation framework is suited to test every type of
web application. As highlighted in Chapter 4, Matching Personas and Use Cases to Testing
Frameworks, Playwright and Puppeteer support the Jest test runner, and Jest is among the
frameworks that are suited to test ReactJS applications (https://jestjs.io/docs/
tutorial-react), since it gets shipped and installed when you run the preceding
ReactJS setup commands.

To use Jest with Playwright, you will need to install the Jest dependency on top of your
Playwright and Node.js environment:

npm install -D jest jest-playwright-preset playwright

In addition, you will need to add a file instruction to the jest.config.js so it knows
to use the previously installed preset:

module.exports = {

 preset: "jest-playwright-preset"

}

To learn more about how to test ReactJS apps using Playwright and Jest, please refer to
this great online resource: https://playwright.tech/blog/using-jest-
with-playwright. Since Playwright is a rich testing framework that covers more than
just functional testing, it is recommended to build the test strategy around a higher-level
and broader technology than just Jest.

https://jestjs.io/docs/tutorial-react
https://jestjs.io/docs/tutorial-react

84 Introducing the Leading Frontend Web Development Frameworks

Like Playwright, Google's Puppeteer framework is also built with support for the Jest test
runner. Hence, it can also be used to test ReactJS applications; however, as highlighted in
Chapter 4, Matching Personas and Use Cases to Testing Frameworks, Puppeteer is limited
to only Chromium browsers and has limited testing abilities, such as unsupported API
testing and smaller community support. To get started with setting up a Puppeteer test
environment with Jest for ReactJS application testing, you can refer to this nice guide:
https://rexben.medium.com/end-to-end-testing-in-react-with-
puppeteer-and-jest-6a0b1b8cff6b.

Since Selenium is the most mature and commonly used framework on the market and
supports the Jest test runner, it can also be used for the end-to-end (E2E) testing of
ReactJS applications. It has JavaScript language binding and can be used to test such apps
at scale and in the cloud using vendors such as Perfecto, Sauce Labs, and BrowserStack.
Since the Selenium WebDriver technology is React-agnostic, it may be a bit complex to
handle element locators, deal with waits, and more.

Lastly, the Cypress framework also offers a modern way to test ReactJS applications
through its new component-based testing methodology (https://www.cypress.io/
blog/2021/04/06/cypress-component-testing-react/), as well as through
standard JavaScript and TypeScript testing specs.

Figure 5.4 – Main testing screen for testing a React web application with Cypress
(source: Cypress documentation)

Now that we've introduced the ReactJS web development framework, let's move on to the
next leading framework, which is AngularJS.

https://www.cypress.io/blog/2021/04/06/cypress-component-testing-react/
https://www.cypress.io/blog/2021/04/06/cypress-component-testing-react/

Guidelines for picking a web development framework 85

AngularJS
AngularJS is among the leading frontend web application development frameworks.
Originally established by Google in 2016, AngularJS allows developers to use HTML
as their template language and then extend it through four different directives: ng-app
and ng-init, ng-bind, and ng-model. One of the benefits of the AngularJS framework
is that it requires less coding to build a web application through the use of data binding
and dependency injection. Based on the main website of AngularJS (https://docs.
angularjs.org/guide/introduction), this framework was built with create,
read, update, and delete (CRUD) in mind, allowing developers to build efficient websites
using a high level of abstraction. With that in mind, the Angular community itself states
that complex GUI or gaming websites might not be the sweet spot for AngularJS.

From a community standpoint, AngularJS has over 78,000 stars and 20,500 forks on
GitHub, and it is actively maintained by contributors (https://github.com/
angular/angular).

Figure 5.5 – Basic AngularJS web application code snippet (source: https://www.w3schools.com/
angular/tryit.asp?filename=try_ng_intro)

As highlighted in the preceding code snippet, the application code is a sample HTML
template with added directives, such as ng-bind, which equals name.

Among the key benefits of AngularJS, frontend developers consistently list low coding
effort, the reusability of code components, the usage of dependency injection, and
HTML extensions using declaratives, as well as the vast community standing behind this
technology. In addition, the use of a two-way data binding architecture is considered
a huge benefit to AngularJS developers. Two-way data binding enables real-time
synchronization between the view and the model of the application. This capability can be
quite powerful in cases where a user changes the order within a drop-down menu on the
website, as AngularJS will cause the view of the menu on the page to automatically update
with no need to manipulate any of the DOM code.

https://docs.angularjs.org/guide/introduction
https://docs.angularjs.org/guide/introduction
https://github.com/angular/angular
https://github.com/angular/angular

86 Introducing the Leading Frontend Web Development Frameworks

Some of the challenges that come up with AngularJS are dealing with complex websites
with dynamic content, such as games websites, as well as coping with large-scale web
applications from a code structure perspective.

AngularJS is powerful when building frontend web applications, as well as
progressive web apps (PWAs), and it is considered a high-performing web
application development framework.

When it comes to testing AngularJS applications, there are multiple test automation
framework choices. In the past, Protractor was a great choice; however, over the years,
it has become obsolete and the support for it has seized. So, as of the time of writing,
frontend web application developers who build AngularJS applications can use the
dedicated framework built by the AngularJS team called Karma (http://karma-
runner.github.io/latest/index.html). Karma can be used with a test
runner such as Mocha or QUnit, or with Jasmine, which is more of a behavior-driven
development (BDD) JavaScript test framework.

To install Karma for your AngularJS web application testing, simply run the
following commands:

npm install karma karma-chrome-launcher karma-jasmine

npm install karma-cli

Leading frameworks such as Selenium can test AngularJS applications; however, you
need to be aware of the asynchronous nature of AngularJS applications and the use of
implicit and explicit waits, as well as dedicated libraries such as JavaScriptExecutor,
which can help better and more reliably identify web page elements and handle complex
testing scenarios.

Cypress is also able to test AngularJS applications (https://github.com/
bahmutov/cypress-angular-unit-test) through a dedicated library that is
added to the framework.

To add AngularJS testing support to your Cypress framework, run the following
command:

npm install -D cypress cypress-angular-unit-test

The next step is to add the preceding dependency to the Cypress index.js file:

require('cypress-angular-unit-test/support');

http://karma-runner.github.io/latest/index.html
http://karma-runner.github.io/latest/index.html
https://github.com/bahmutov/cypress-angular-unit-test
https://github.com/bahmutov/cypress-angular-unit-test

Guidelines for picking a web development framework 87

Lastly, Playwright also has the ability to test AngularJS applications through its built-in
APIs (https://stackoverflow.com/questions/69891101/how-to-
run-e2e-angular-tests-with-playwright/69891102), as well as Google's
Puppeteer, which can be configured within the outdated Protractor configuration file to be
used as the test runner (https://stackoverflow.com/questions/51536244/
how-to-use-puppeteer-in-an-angular-application).

It is important to note that the top-four leading frameworks featured in this book can
cope agnostically with any web application development framework; however, as we see
in this case with AngularJS, there are some unique frameworks that were built as part
of the development life cycle of these technologies, such as Karma, that should also be
heavily considered.

Vue.js
Vue.js (https://vuejs.org/) is definitely one of the most widely adopted
technologies by frontend developers. It is a very strong open source framework backed
by a large number of contributors, with over 191,000 stars, 30,000 forks, and 72 branches
on GitHub (https://github.com/vuejs/vue#readme). The Vue.js framework is
designed to enable frontend web application developers to build rich UI websites. With
a core, focused library dedicated to the view layer, Vue.js is designed to be flexible in
building single- page applications (SPA), full stack applications, and even apps that target
both desktop and mobile.

To install Vue.js on your local environment, run the following command:

npm install vue

The preceding installation of Vue.js will install different builds of this framework,
including full, runtime-only, full (production), and runtime-only (production). Typically,
you would use the full build so you can use both the compiler and the runtime capabilities
of the framework.

One of the great capabilities of Vue.js is the DevTools extension (https://devtools.
vuejs.org/), which offers advanced debugging abilities of web applications. Developers
can add this extension as a plugin to their Chrome or Firefox browsers.

Alternatively, developers can install it as a command- line interface through the following
command:

npm install -g @vue/devtools

https://stackoverflow.com/questions/69891101/how-to-run-e2e-angular-tests-with-playwright/69891102
https://stackoverflow.com/questions/69891101/how-to-run-e2e-angular-tests-with-playwright/69891102
https://stackoverflow.com/questions/51536244/how-to-use-puppeteer-in-an-angular-application
https://stackoverflow.com/questions/51536244/how-to-use-puppeteer-in-an-angular-application
https://vuejs.org/
https://github.com/vuejs/vue#readme
https://devtools.vuejs.org/
https://devtools.vuejs.org/

88 Introducing the Leading Frontend Web Development Frameworks

Once the DevTools extension is installed, frontend developers will find the tool quite
powerful for the real-time debugging of their web applications, analyzing the elements
of a page, and measuring other aspects of their web application, such as performance
and accessibility.

Figure 5.6 – Screenshot of Vue.js DevTools (source: https://github.com/vuejs/devtools)

Frontend web application developers state that Vue.js is powerful due to its extensive
and detailed documentation, vast community, contributions to the open source project,
simple syntax that allows getting started quickly with the framework, and flexibility from a
website design perspective.

Like with AngularJS, Vue.js also employs two-way data binding and supports both
modern web application development as well as complex PWAs.

Vue.js is so successful due to its simplicity, flexibility, and advanced DevTools extension, as
well as its ability to support most web application types.

The Vue.js community recommends using a mix of tools to test web applications. The
community splits the frameworks based on the following testing types:

• Unit testing

• Component testing

• E2E testing

Guidelines for picking a web development framework 89

For unit testing, Mocha (https://mochajs.org/) and Jest (https://jestjs.
io/) are the recommended frameworks. To cover component testing, the testing
framework should ensure that the component under test is mounted to the DOM for
assertion purposes. Vue.js offers a built-in component testing library (https://
testing-library.com/docs/vue-testing-library/intro/); however,
we also learned that Cypress has its own ability to perform component-based testing in
Chapter 4, Matching Personas and Use Cases to Testing Frameworks.

To get started with component testing using the built-in Vue.js library, you should install
the dedicated testing library using the following command:

npm install –save-dev @testing-library/vue

Lastly, for E2E testing, the Vue.js community recommends the Cypress and Puppeteer
frameworks as the most capable ones. For Cypress, there is even a dedicated Vue
CLI plugin (https://cli.vuejs.org/core-plugins/e2e-cypress.
html#injected-commands).

Ember.js
Ember.js (https://emberjs.com/) is also one of the top JavaScript web development
frameworks, founded in 2011. With over 22,000 stars, 4,300 forks, and 45 branches on
GitHub (https://github.com/emberjs/ember.js), the framework is very well
known and adopted by frontend web developers. Among the key benefits that
Ember.js promises developers are stability and security of the code together with
most modern JavaScript features (https://guides.emberjs.com/release/
upgrading/current-edition/), including autotracking and advanced app
configuration capabilities that support feature flags (https://guides.emberjs.
com/release/configuring-ember/feature-flags/) and environment type
settings (test, production, and so on).

Ember.js Autotracking
One of the features of the Ember.js framework is autotracking. It is defined
as a reactive model that automatically decides which elements of the web
application need to be rerendered and when. As an example, when there is a
component within the website that might change, a developer will mark it as
@tracked, and when there is a change to that element (for example, to the
language), the website will autorender only the impacted areas of the page (for
example, the relevant text in the relevant language).

https://mochajs.org/
https://jestjs.io/
https://jestjs.io/
https://testing-library.com/docs/vue-testing-library/intro/
https://testing-library.com/docs/vue-testing-library/intro/
https://cli.vuejs.org/core-plugins/e2e-cypress.html#injected-commands
https://cli.vuejs.org/core-plugins/e2e-cypress.html#injected-commands
https://emberjs.com/
https://github.com/emberjs/ember.js
https://guides.emberjs.com/release/upgrading/current-edition/
https://guides.emberjs.com/release/upgrading/current-edition/
https://guides.emberjs.com/release/configuring-ember/feature-flags/
https://guides.emberjs.com/release/configuring-ember/feature-flags/

90 Introducing the Leading Frontend Web Development Frameworks

Obviously, such advanced capabilities as autotracking should be properly tested using unit
tests and so on to ensure that the autorendering works as expected.

Some very well-known websites are built on top of Ember.js, including LinkedIn, Netflix,
and Microsoft.

Among the most loved features that Ember.js has are the speed and performance that
the framework provides, the two-way data binding features, which was also listed
as an advantage of some of the preceding frameworks (such as AngularJS), solid
documentation, and the previously highlighted features: autotracking and zero-config
for apps.

Compared to the other frameworks, the community behind Ember.js is relatively small
and there is a steep learning curve.

The Ember.js community recommends testing web applications through three types of
testing methods:

• Unit tests

• Rendering (integration) tests

• Application (acceptance) tests

For unit tests, the community refers to QUnit (https://qunitjs.com/) and Mocha
as recommended tools, as well as the built-in Ember.js CLI tools (https://cli.
emberjs.com/release/advanced-use/blueprints/). To create rendering tests,
which can also be considered component tests, you can use the preceding CLI tools to
create such testing scenarios. A great guide to get started with the preceding testing types
for an Ember.js application is available here: https://medium.com/@sarbbottam/
the-ember-js-testing-guide-i-made-for-myself-c9a073a0c718.

https://qunitjs.com/
https://cli.emberjs.com/release/advanced-use/blueprints/
https://cli.emberjs.com/release/advanced-use/blueprints/

Guidelines for picking a web development framework 91

Figure 5.7 – Sample rendering testing-type code snippet for Ember.js (source: https://guides.emberjs.
com/release/testing/test-types/)

Based on community discussions, while leading frameworks, such as Selenium, Cypress,
Playwright, and Puppeteer, can automate any type of web application, Ember.js apps can
be quite challenging to test using them. A set of recent posts on Stack Overflow shows
some of the challenges in dealing with dynamic objects generated within Ember.js apps
across Selenium and Cypress:

https://stackoverflow.com/questions/37026817/automate-ember-
js-application-using-selenium-when-object-properties-are-
changed

https://stackoverflow.com/questions/53422339/ember-cypress-
integration-test-failing-likely-due-to-lack-of-store-context

https://stackoverflow.com/questions/37026817/automate-ember-js-application-using-selenium-when-object-properties-are-changed
https://stackoverflow.com/questions/37026817/automate-ember-js-application-using-selenium-when-object-properties-are-changed
https://stackoverflow.com/questions/37026817/automate-ember-js-application-using-selenium-when-object-properties-are-changed

92 Introducing the Leading Frontend Web Development Frameworks

Svelte
Svelte (https://svelte.dev/) is considered a transformational web development
framework.

To quote the home page of the Svelte framework:

Svelte is a radical new approach to building user interfaces. Whereas
traditional frameworks like React and Vue do the bulk of their work in

the browser, Svelte shifts that work into a compile step that happens when
you build your app.

Instead of using techniques like virtual DOM diffing, Svelte writes code that
surgically updates the DOM when the state of your app changes.

With over 53,600 stars on GitHub (https://github.com/sveltejs/
svelte#README), Svelte is becoming very well known and adopted by the frontend
developer community. The framework was downloaded ~250,00 times over the second
half of 2021 (https://www.npmtrends.com/svelte).

Figure 5.8 – Download and community trends for the Svelte framework
(source: npmtrends https://insights.stackoverflow.com/

trends?tags=angular%2Creactjs%2Cjquery%2Cvue.js%2Cember.
js%2Csvelte)

https://svelte.dev/
https://github.com/sveltejs/svelte#README
https://github.com/sveltejs/svelte#README
https://www.npmtrends.com/svelte
https://insights.stackoverflow.com/trends?tags=angular%2Creactjs%2Cjquery%2Cvue.js%2Cember.js%2Csvelte
https://insights.stackoverflow.com/trends?tags=angular%2Creactjs%2Cjquery%2Cvue.js%2Cember.js%2Csvelte
https://insights.stackoverflow.com/trends?tags=angular%2Creactjs%2Cjquery%2Cvue.js%2Cember.js%2Csvelte

Guidelines for picking a web development framework 93

To get started with building websites using Svelte, please use the following commands:

npx degit sveltejs/template my-first-project

cd my-first-project

npm install

npm run dev

Svelte also provides a quick ramp-up for building a web application online from their
main website.

Among the core benefits of the Svelte framework, frontend developers list the better
reactivity of web apps, faster performance compared to AngularJS and React apps, and
it being more lightweight than others. Among the disadvantages, developers list the
community size, which is relatively small, and the lack of tooling and support for the
framework. Websites such as eBay and Pixar are built using Svelte technology.

From a testing perspective, since Svelte considers itself a compiler rather than a library
(https://svelte.dev/faq), it has different approaches to testing. Svelte comes with
its own testing library (https://svelte-recipes.netlify.app/testing/), as
well as Jest, like other app types covered previously.

To use the integrated testing library, you will need to install the dedicated component
through this command:

npm install @testing-library/svelte --D

To get started with the library, you can refer to this basic tutorial: https://
timdeschryver.dev/blog/how-to-test-svelte-components#writing-
a-test.

The community recommends Cypress as the leading test framework for apps built on top
of Svelte (https://www.thisdot.co/blog/svelte-component-testing-
with-cypress-vite) and states that a test engineer would need to create a testing
bundle for each component of the web application prior to testing it using Playwright,
Puppeteer, Selenium (https://medium.com/@oyetoketoby80/automating-
your-front-end-application-testing-with-selenium-8e9d51f0f73c),
and Cypress.

https://svelte.dev/faq
https://svelte-recipes.netlify.app/testing/
https://www.thisdot.co/blog/svelte-component-testing-with-cypress-vite
https://www.thisdot.co/blog/svelte-component-testing-with-cypress-vite
mailto:https://medium.com/@oyetoketoby80/automating-your-front-end-application-testing-with-selenium-8e9d51f0f73c
mailto:https://medium.com/@oyetoketoby80/automating-your-front-end-application-testing-with-selenium-8e9d51f0f73c

94 Introducing the Leading Frontend Web Development Frameworks

Summary
In this chapter, we looked into the leading and most used web development frameworks.
We provided a high-level overview of their main features, information to get started, as
well as pros and cons of each.

We specifically looked at, for each of the web development frameworks, some of the
testing tools that cover a wide range of testing types.

What is important to take away from this chapter is that while the variety of web
development frameworks is rich, there are material differences in the development
workflow and the core features and abilities of each web framework, and these differences
have implications on the testing tools that should and can be used.

We have learned some core terms that are common across the different web development
frameworks, including virtual DOM and two-way data binding.

That concludes this chapter!

In the following chapter, which opens part 2 of this book, we will look into the key pillars
of building a continuous testing strategy for a web application and how to measure the
success of the strategy over time.

Ensuring web application quality isn't a one-and-done activity but, rather, a continuous
process that should be built upon a solid strategy, involve multiple personas, and be
properly measured through metrics and Key Performance Indicators (KPIs). In this
part of the book, you will learn how to build a proper testing strategy for any of the web
application types, and maintain and modify the strategy over time based on changes to
objectives, roadmaps, market events, and so on.

In this part, we will cover the following chapters:

• Chapter 6, Map the Pillars of a Dev Testing Strategy for Web Applications

• Chapter 7, Core Capabilities of the Leading JavaScript Test Automation Frameworks

• Chapter 8, Measuring Test Coverage of the Web Application

Part 2 –
Continuous Testing

Strategy for
Web Application

Developers

6
Map the Pillars of a

Dev Testing Strategy
for Web Applications
This chapter opens the second part of the book and is aimed at addressing the testing
strategy aspects of a web application development project, from the requirements and
objectives stages up until the measurements of success.

Building a testing strategy for a given web application depends on the product
requirements, the quality acceptance criteria, the available skills and resources within
the team, and the target markets (end users) for which the application is intended. In
this chapter, you will learn how to combine the relevant considerations into a testing
strategy that covers all quality aspects and continuously meets the end user experience. In
addition, you will learn about some key metrics that can be used to monitor and measure
the success of a strategy.

The chapter is designed to cover the following topics:

• The key pillars of a web application testing plan and strategy

• Measuring the success of your continuous testing strategy

• A case study – a real-life web application testing strategy

98 Map the Pillars of a Dev Testing Strategy for Web Applications

The key pillars of a web application testing
plan and strategy
In the first part of the book, we covered both the leading frontend test automation
frameworks available for web developers, as well as the leading web application
development frameworks. We learned that each development or testing framework comes
with pros and cons. Knowing this upfront is an advantage, but this alone does not make
up the main element within a testing strategy. These frameworks are the tools and, most
likely, the enablers to drive a solid test plan from A to Z.

How and which tool to use needs to be driven by the testing plan and strategy itself, and
to build such a plan, software leaders must rely on the core fundamentals of the testing
pyramid matched to the product business requirements.

Let's start with the types of testing that any web application needs to undergo prior
to being released to production. In Chapter 1, Cross-Browser Testing Methodologies,
we covered the main web application testing types, which consist of functional,
non-functional (performance, security, accessibility, and so on), APIs, visual, and so on.
Illustrated at a high level in Figure 6.1 is the basic testing pyramid:

Figure 6.1 – The basic software testing pyramid (source – "The test automation pyramid.png" uploaded
by Croncal, licensed under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/

deed.en) at https://commons.wikimedia.org/wiki/File:The_test_automation_pyramid.png)

When you build a web application, you ought to consider each aspect of the product
from an end user experience perspective. The end user cares about the look and feel of
a website, how fast it performs, whether the site is available across all digital platforms
(mobile and web), and how the services and third parties that the app uses work for them.

The key pillars of a web application testing plan and strategy 99

It's a recommended practice to spread all testing types throughout the pipeline. When
doing so and providing frontend developers with a proper feedback loop, it allows
them to fix issues faster and reduce the number of escaped defects that seep through
to production.

In addition, partnering with the SDETs within the agile teams early in the requirements
phase is imperative to allow them to develop test automation scenarios in time for the
End-to-End (E2E) testing cycles.

In this section, we are going to discuss six pillars or considerations for building a reliable
and robust web application. But all development must start with recognizing and defining
the target users of the application.

Know your target users
When releasing a web application version to the public, knowing more about your end
user traits can serve as a huge advantage from both development and testing perspectives.
If the release is a brand-new application that doesn't carry any user analytics history,
it is important to get clear targets from the product managers and business units so that
a tester knows which mobile and web platforms, including versions and geographies, the
application supports. If the release is a follow-up on top of an existing web application,
web traffic analytics can be leveraged to figure out user journeys, the most used mobile
and web platforms, regression defects from previous releases, and so on. This process can
help to tailor the scoping of the testing plan and allow a timely release, optimize testing
activities, and reduce risk.

When you consider your audience, of course, it should also be very industry- and
vertical-specific. End users across verticals differ in many ways: age, expectations, the
mobile and web platforms used, accessibility focus, the languages known, compliance
requirements, and so on. So, knowing about all these traits pertaining to target users is
essential to build a proper test plan.

Building a test plan
By knowing your target audience and understanding the product requirements for an
upcoming release, test managers and developers can realize the scope of testing that needs
to be part of the release definition of done.

100 Map the Pillars of a Dev Testing Strategy for Web Applications

Such a test plan needs to properly cover all the website workflows and end user journeys,
as well as consider every dependency on the web application that can be an issue from
a quality perspective. The test plan must cover all the relevant testing types and the most
critical mobile and web configurations. Test data and test environments for both the
development stages and testing stages must be part of the plan and become available prior
to initiating the testing process.

We won't define again what each testing type means, since we did a lot of this in Chapter
1, Cross-Browser Testing Methodologies; however, as a reminder, we covered testing all
internal and external links, the functionalities of each web page and user flow, usability
and accessibility, localization and internationalization, coverage of the legacy, the latest
and beta versions of web and mobile, layouts and views, and so on.

Make sure that you outline the preceding and check all boxes from a testing type
perspective as part of the plan. As already highlighted in previous chapters, it takes
a village to build and test a modern web application, so, ensuring that there are sufficient
resources and tools and acquiring licenses for the project are other key requirements to
address upfront.

Prep your tool stack and environments
Test development and execution do not happen in a void and require solid and up-to-
date environments for both the creation, maintenance, and execution of each of the
aforementioned testing types. Ensure as part of your plan that each resource from your
team has valid access to the tools and environments that they need to accomplish their
goals. In many cases, these practitioners will need a mocking services environment and
pre-production test datasets to create and validate their testing. Development and testing
leaders should be responsible for the tools and environments that their team members will
use throughout the pipeline.

Set quality criteria and objectives
This is a crucial part of the test plan and requires handshakes between testing,
development, product, and business owners. To know with confidence that a release is
ready from a quality perspective, it needs to adhere to key metrics such as test coverage,
defects opened with severity/priority in the system, platform coverage, functional and
non-functional quality criteria, performance and availability measures, proper product
release notes, available documentation, and so on.

The key pillars of a web application testing plan and strategy 101

Build a timeline and a schedule
Based on the available resources, tools, environments, and testing requirements,
there needs to be an agreed-upon timeline that illustrates the different phases of the
development life cycle, a definition and criteria that allows movement from one stage to
another, and of course, a target release date with quality criteria and metrics to measure
the release readiness. Orchestrating the release pipeline across the different practitioners
is an art and requires communication and discipline across the different parties. Bear in
mind that times and schedules have their own external and internal dependencies; hence,
ensure that you put buffers (some would recommend +25% extra time added to the
original estimates) into the planning to accommodate the unexpected.

Execute, monitor, measure, and document
This might be among the most critical and challenging phases of a plan, since it involves
different personas, different objectives, and different goals that need to be tracked,
monitored, and measured to provide decision-makers with the right data to make a go/
no-go release decision.

The execution upon the agreed timeline and schedule together with the evidence of
quality metrics and criteria are the ingredients of a successful release. Confidence is
derived from data and test analysis, which needs to be present prior to the release date.

Making all the six pillars come together is dependent on the three well-known agile
components – people, process, and technology:

Figure 6.2 – People, process, and technology enable release success

102 Map the Pillars of a Dev Testing Strategy for Web Applications

It is important to consider all the preceding aspects as part of your development of the
testing plan as well as measuring the test deliverables coming from the different personas.
Note that some of the preceding items need to be maintained over time as the product
changes, the market evolves, and the end user's behavior changes.

Now that we've covered the building blocks of a solid test plan, including the technology
stack, customer profiles, and processes within the software development life cycle, let's
understand how to measure the preceding plan and determine whether a software release
is on track and meets the criteria of success or not.

Measuring the success of your continuous
testing strategy
Now that we've defined at a high level the steps and scoping for a generic test plan,
let's look at some common and important metrics and KPIs that can help assess the
level of quality of your web application. These KPIs should be part of the Definition
of Done (DOD) (to learn more about DOD, see https://www.scruminc.com/
definition-of-done/) for a scoped software release. In addition, quality metrics
should be part of the quality criteria section within any test plan document.

Success, like quality, is a moment in time; therefore, it needs to be well monitored and
structured in a way that decision-makers can analyze on demand.

There are various types of metrics that can be used, based on product requirements, the
market vertical that is being served, historical data, and any other category of metrics that
is relevant to the business.

The following are 27 suggested metrics by categories that can be adopted by web
application teams and used as a basis to add more specific organizational metrics.

I decided to break these metrics into three categories:

• Speed

• Quality

• Cost:

https://www.scruminc.com/definition-of-done/
https://www.scruminc.com/definition-of-done/

Measuring the success of your continuous testing strategy 103

Figure 6.3 – The recommended continuous quality metrics for agile teams

As you can see in the preceding figure, each category focuses on a challenge or an
objective and offers only a few items for measurement. Teams can pick all of them or a
subset, as well as add to these, but successful projects are the ones that cover all three
aspects over time.

To highlight a few of the preceding metrics, starting with quality, we can focus on the
Mean Time to Detect (MTTD). The MTTD refers to the time it takes to identify
a defect in the code based on the total test execution time. Obviously, the shorter it takes
to uncover a defect and then resolve it, the better. It also reflects on the effectiveness of
the test code. Another example from the preceding metric is the defect distribution by
different considerations – priority, severity, functionality, and so on. Knowing the volume
of defects and the priority attributed to each testing type and web application area helps
to determine the current quality plans, as well as the future testing scope. From a speed
and velocity perspective, knowing within the testing suites the percentage of false-positive
and blocked tests provides visibility into the value of your testing suite and can eliminate
waste within the pipeline. From a cost perspective, looking at the cost of test execution can
provide insights to decision-makers regarding tools and testing lab utilization, how well
parallel testing is being implemented within the teams, and so on.

Make sure that you use the preceding set of metrics and include the relevant ones within
your testing plan and strategy, as well as leveraging the preceding metrics as part of your
evaluation process for tools that you have within your DevOps stack.

104 Map the Pillars of a Dev Testing Strategy for Web Applications

As a last tip from a measurement and continuous improvement perspective, it is always a
great idea to benchmark your own web application and compare it to previous historical
industry incidents, such as security issues, functionality, performance, and other quality-
related pitfalls.

There is a useful list of common performance defects published on the iLabquality
website (https://www.ilabquality.com/the-10-most-common-web-app-
performance-problems/), highlighting things such as unoptimized databases,
poorly written code that does not follow best practices, poor load distribution, and
troublesome third-party services as common root causes for performance problems in
web applications. From a functional standpoint, common bugs that keep coming up
across web applications involve poor site navigation, poor mobile device optimizations,
inconsistent user experience across platforms, navigating back and forward within
a website, negative input into textboxes, and so on.

Functionality and performance are only a subset of an entire test plan and strategy, so
learning from others' mistakes around different types of defects can save a great amount of
time, resources, and money throughout the life cycle of your project.

The preceding guidelines should help frontend developers and test engineers to properly
define metrics to measure their success in a given software release. Now that we have
provided in the preceding two categories of functional and non-functional quality both
a structured way of building a test plan and measuring its success, let's take a real-time
web application and design a test plan that covers the aforementioned building blocks.

A case study – a real-life web application
testing strategy
Let's take a specific website and design a testing strategy that will fit end user expectations.
For this exercise, I used the Miro tool to create a mind map of the E2E website application
flows and scoping of the tests.

The following illustration is based on the Barclays website application, serving mainly
the UK. I placed the major testing types with some real-life navigation options that are
available for the customers of this bank from any mobile device or desktop OS:

https://www.ilabquality.com/the-10-most-common-web-app-performance-problems/
https://www.ilabquality.com/the-10-most-common-web-app-performance-problems/

A case study – a real-life web application testing strategy 105

Figure 6.4– A mind map example of web testing for the Barclays website, drawn with Miro boards

As you can see from the preceding mind map, the website testing plan covers all types
of test categories to ensure the high quality and performance of the web application.
The mind map focuses on tests such as API testing, functional testing broken by the
navigation flows within the website, the usability of the web application, performance, and
availability. In addition, it covers more advanced aspects of the web application, including
accessibility and chatbots, and considers full platform coverage for the types of mobile
and desktop systems that will be used within the testing lab. Lastly, the mind map covers
production testing for both performance and availability of the web application, as well as
service monitoring.

The preceding mind map is not complete; it is just a subset, since each branch continues
to an inner link or page, which includes usability, accessibility, performance, security, and
many other testing items that fall into the testing plan. However, the mind map provides
an understanding of what a real-life testing plan and scoping exercise should look like,
and how many complex considerations ought to be planned throughout the teams.

106 Map the Pillars of a Dev Testing Strategy for Web Applications

Since agile and DevOps teams are issuing daily to weekly releases, the mind map and
testing activities must be part of a strategy that does some level of incremental and
differential analysis of the changes between the previous and current version of the web
application so that teams can better optimize and scope the entire testing throughout the
pipeline, within and outside of the CI process. In addition, even if there is no change to
the website, as we learned earlier in the book, every few weeks a new web platform or
a mobile platform is introduced and needs to be fully covered and supported, and that is
what continuous testing is all about – automating and running continuously tested subsets
to ensure high-quality production websites.

Summary
This chapter offered an experience-driven testing plan and strategy so that developers
and test managers can scope properly their web application projects from one release to
the next.

We then unfolded the scoping of a test plan into three categories of metrics and KPIs
to help decision-makers better assess, using data, the quality of a given application. We
focused on quality, speed, and cost to categorize these metrics.

Lastly, we took a real-life production website from the financial industry and created
a thorough mind map that scopes most testing types across the different testing types:
functional, performance, security, APIs, usability, and so on.

We clarified that scoping and planning is always a moment in time, especially for agile and
DevOps teams; hence, they need to be always validated and modified to be relevant at the
right production moments.

That concludes this chapter! In the following chapter, we will provide a deeper
consideration matrix between the top four JavaScript test automation frameworks.

7
Core Capabilities

of the Leading
JavaScript Test

Automation
Frameworks

Earlier in the book in Chapter 4, Matching Personas and Use Cases to Testing Frameworks,
we provided a table that broke down all the critical capabilities across the top four test
automation frameworks – Selenium, Cypress, Playwright, and Puppeteer. In this chapter,
we will connect these capabilities and provide per each capability the recommended test
framework to go with it. When combining multiple capabilities with the recommended
frameworks, frontend developers can use this chapter to make a data-driven decision.

108 Core Capabilities of the Leading JavaScript Test Automation Frameworks

The chapter is designed to offer the following:

• An overview of the core capabilities of the leading test automation frameworks

• A compelling events list that can suggest a re-assessment of the test automation
framework currently in use

After reading this chapter, you should be able to better evaluate a web test automation
framework while considering its core capabilities, as well as understand the differences
between built-in capabilities and capabilities obtained through plugin installation.

Comparing the test automation
framework capabilities
As illustrated by the core capabilities in Chapter 4, Matching Personas and Use Cases to
Testing Frameworks, each aspect of a web application needs to be tested; however, there are
strengths and weaknesses across the top four testing frameworks, which need to be known
upfront.

In the following section, we will dive deeper into the core categories of a web application
testing plan and provide some recommendations for a framework that can get the highest
coverage of testing per category or use case. The order of the following use cases and
categories is random and not based on any kind of priority.

Visual testing
A successfully built web application obviously needs to function properly and perform
at high speed; however, the look and feel from a UI standpoint is also a key factor within
testing, since the range of screen sizes, resolutions, and devices that the web app will run
on is huge.

This is where visual testing comes into play. The visual testing of a responsible Progressive
Web App (PWA) or standard web application can be either done within a core capability
of a test framework that the developers are using or through a third-party library that is
imported as part of the framework dependencies.

In many cases, having visual testing as a core capability of the framework that we use is
a great advantage, since we do not need to continuously maintain and import updates
to the dependent library. However, sometimes, there will be exceptions where the third-
party solution (such as Happo) provides unique capabilities that are not built into the
framework out of the box.

Comparing the test automation framework capabilities 109

Let's look at visual testing across the different frameworks, starting with Cypress.

Cypress visual testing
For the Cypress framework, visual testing elements that are built into the framework are
limited to taking a screenshot of the web application screens that are under test using
the cy.screenshot() APIs (https://docs.cypress.io/api/commands/
screenshot), as well as taking screenshots upon a validation failure using the
cy.OnRunFailure() APIs. Also, as part of the Cypress APIs, a test developer can
leverage the CSS assertion functions via have.css, but as the Cypress framework
suggests, this might become hard to maintain, especially when a web application has many
CSS styles.

The main Cypress screenshots commands are listed as follows and can be used within the
JavaScript test code:

cy.screenshot()

cy.screenshot(fileName)

cy.screenshot(options)

cy.screenshot(fileName, options)

To extend visual testing on top of the aforementioned capabilities, Cypress relies on
third-party plugins such as Applitools (https://applitools.com/tutorials/
cypress.html), Percy (https://docs.percy.io/docs/cypress), Happo
(https://github.com/happo/happo-cypress), and the snapshots plugin
(https://github.com/meinaart/cypress-plugin-snapshots).

Keep in mind that all the aforementioned tools, including Applitools, Happo, and
Percy, are commercial add-ons to Cypress that you'd need to obtain a license to use.
To a limited level, some of these tools such as Happo can be used for free through the
open source library.

There is also an existing integration between Cypress and Storybook that can be used for
free for visual testing (https://github.com/storybookjs/storybook/tree/
next/cypress).

Playwright visual testing
Playwright offers a nice out-of-the-box way of creating visual test assertions against a
baseline of images that are captured upon the first test run (https://playwright.
dev/docs/test-snapshots). From the second run and beyond, each screenshot or
visual assertion is compared with the stored baseline, and any inconsistencies are reported
to the tester for evaluation and decision making.

https://docs.cypress.io/api/commands/screenshot
https://docs.cypress.io/api/commands/screenshot
https://applitools.com/tutorials/cypress.html
https://applitools.com/tutorials/cypress.html
https://docs.percy.io/docs/cypress
https://github.com/happo/happo-cypress
https://github.com/meinaart/cypress-plugin-snapshots
https://github.com/storybookjs/storybook/tree/next/cypress
https://github.com/storybookjs/storybook/tree/next/cypress
https://playwright.dev/docs/test-snapshots
https://playwright.dev/docs/test-snapshots

110 Core Capabilities of the Leading JavaScript Test Automation Frameworks

To make the aforementioned clearer, when running the following sample code for the first
time, what Playwright will do is create a new visual baseline image called landing.png
that will be compared and validated from the next run.

The concept of baselines in visual testing isn't new, and that's the main methodology
behind many of the aforementioned commercial tools. Some would add AI as a method of
analyzing these screenshots, such as Applitools, but that's an added benefit, of course:

// snapshot.spec.js

const { test, expect } = require('@playwright/test');

test('example test', async ({ page }) => {

 await page.goto('https://www.packtpub.com');

 expect(await

 page.screenshot()).toMatchSnapshot('landing.png');

});

Playwright visual comparisons can compare images and also text on these screens. It uses
a library called pixelmatch (https://github.com/mapbox/pixelmatch) to
perform its visual analysis.

If you need to extend the aforementioned visual testing built-in capabilities and perform
at a higher scale and more intelligent visual testing, you can use the available integration
Playwright has with Applitools through this tutorial (https://applitools.com/
tutorials/playwright.html) and/or with Percy (https://docs.percy.io/
docs/playwright).

Puppeteer visual testing
Google's Puppeteer framework has built-in capabilities to take basic web page screenshots,
which are not that useful from a complete visual testing perspective. There is a more
solid integration between Puppeteer and Percy (https://docs.percy.io/docs/
puppeteer) that developers can use to perform visual analysis comparisons with the
baseline concept and higher scale and assertions.

To easily get started with Percy and Puppeteer, you will need to install the dependency,
and since it is commercial, you'll need to obtain a license and a security token to use it:

npm install --save-dev @percy/cli @percy/puppeteer

https://github.com/mapbox/pixelmatch
https://applitools.com/tutorials/playwright.html
https://applitools.com/tutorials/playwright.html
https://docs.percy.io/docs/playwright
https://docs.percy.io/docs/playwright
https://docs.percy.io/docs/puppeteer
https://docs.percy.io/docs/puppeteer

Comparing the test automation framework capabilities 111

For each JavaScript file that you have and want to use Percy for visual testing, you would
need to add this dependency requirement:

const percySnapshot = require('@percy/puppeteer')

Once the preceding dependencies are set, you can start using the Percy APIs such as
percySnapshot().

Selenium visual testing
Selenium is one of the oldest and most mature frameworks in the industry, which
integrates with a variety of commercial visual testing tools and works nicely with the open
source platform called Storybook (https://storybook.js.org/tutorials/
design-systems-for-developers/react/en/test/) and Galen (http://
galenframework.com/docs/reference-javascript-tests-guide/).

Unlike Playwright, which has some built-in APIs for visual testing, with Selenium,
a developer would need to learn the methodologies of Galen, Storybook, and Applitools
to integrate them into their source code. It is, of course, doable, and fully supported and
maintained by both communities and vendors, so adding visual testing to Selenium is a
matter of choice and budget if you choose to go with the commercial vendors (Applitools,
Percy – https://docs.percy.io/docs/selenium-for-javascript).

Adding such code to a Selenium JavaScript test scenario would perform the visual
validation and check the page layout. Galen with Selenium is very strong for responsive
web application testing (responsive web design):

test("Home page", function() {

var driver = createDriver("http://galenframework.com",

 "1024x768");

checkLayout(driver, "homePage.gspec", ["all", "desktop"]);

});

So far, we have seen that visual testing can be accomplished across all four test automation
frameworks; however, Playwright is the only framework that has such capabilities built
into its core APIs, while the others require third-party integrations with either open
source frameworks such as Galen and Storybook, or commercial ones such as Percy
and Applitools.

https://storybook.js.org/tutorials/design-systems-for-developers/react/en/test/
https://storybook.js.org/tutorials/design-systems-for-developers/react/en/test/
http://galenframework.com/docs/reference-javascript-tests-guide/
http://galenframework.com/docs/reference-javascript-tests-guide/
https://docs.percy.io/docs/selenium-for-javascript

112 Core Capabilities of the Leading JavaScript Test Automation Frameworks

API testing
In the traditional testing pyramid, it's clear that lower-level automated testing is API
testing. However, it is powerful, fast, very reliable, and stable. Most testing projects use
API testing as part of their test plan scoping; however, when it comes to API testing within
the four leading frameworks, not all of them offer this ability as a built-in capability.

Cypress API testing
Cypress offers built-in support for API testing. With the Cypress testing framework,
developers and test engineers can create any kind of API testing across all different types
of methods (GET, POST, DELETE, PATCH, and PUT).

Cypress performs most of its API tests via the cy.request() method, which serves as a
GET command to the web server being tested.

In the following examples, we will be using a free website (http://
jsonplaceholder.typicode.com/) that is available for API testing activities. On
the website, there are several resources that can be used for testing purposes and training,
such as 200 to-do list items, thousands of photos, 10 usernames, and many other options.

With the Cypress API testing abilities, you can perform various validations on the
aforementioned sample website.

When a user installs Cypress locally, they can learn from a built-in code sample how to
test different network requests.

In the following snippet, Cypress uses the request method to retrieve the first user
ID from the user's website and then adds a new entry with the ID 'Cypress Test
Runner':

it('cy.request() - pass result to the second request', () => {

 // first, let's find out the userId of the first user

 // we have

 cy.request(

 'https://jsonplaceholder.cypress.io/users?_limit=1')

 .its('body') // yields the response object

 .its('0') // yields the first element of the returned

 // list

 // the above two commands its('body').its('0')

 // can be written as its('body.0')

http://jsonplaceholder.typicode.com/
http://jsonplaceholder.typicode.com/

Comparing the test automation framework capabilities 113

 // if you do not care about TypeScript checks

 .then((user) => {

 expect(user).property('id').to.be.a('number')

 // make a new post on behalf of the user

 cy.request('POST',

 'https://jsonplaceholder.cypress.io/posts', {

 userId: user.id,

 title: 'Cypress Test Runner',

 body: 'Fast, easy and reliable testing for

 anything that runs in a browser.',

 })

 })

 // note that the value here is the returned value of

 // the 2nd request which is the new post object

 .then((response) => {

 // new entity created

 expect(response).property('status').to.equal(201)

 expect(response).property('body').to.contain({

 title: 'Cypress Test Runner',

 })

})

It is very clear from an API testing standpoint that Cypress can check the box of
a supported capability. While it is not as thorough as dedicated solutions such as
Postman, REST-Assured, and others, it does provide an easy user experience to add to the
functional testing layer API tests and the creation of network request scenarios.

114 Core Capabilities of the Leading JavaScript Test Automation Frameworks

Playwright API testing
Similar to Cypress, the Playwright framework also provides a set of capabilities to create
API test scenarios (https://playwright.dev/docs/test-api-testing).
With Playwright's methods under appiRequestContext (get, post, fetch, put,
delete, patch, dispose, head, and storageState), developers can perform a
wide range of API test validations. apiResponse (body, status, headers, and so on)
methods will return the responses returned by the apiRequestContext methods:

Figure 7.1 – An apiRequestContext syntax example (source – Playwright documentation https://
playwright.dev/docs/api/class-apirequestcontext#api-request-

context-get)

At the time of writing, Playwright supports API testing only using JavaScript and Python
languages, with Java and .NET coming later in the roadmap.

Selenium API testing
This is a short section since Selenium cannot automate API testing as a built-in capability,
only through integrations with third-party API testing frameworks such as REST-Assured
(https://rest-assured.io/).

Puppeteer API testing
This is a short section since Google Puppeteer cannot automate API testing as a built-in
capability.

https://playwright.dev/docs/test-api-testing
https://playwright.dev/docs/api/class-apirequestcontext#api-request-context-get
https://playwright.dev/docs/api/class-apirequestcontext#api-request-context-get
https://playwright.dev/docs/api/class-apirequestcontext#api-request-context-get
https://rest-assured.io/

Comparing the test automation framework capabilities 115

Supported development languages
While this book is 100% focused on JavaScript test automation development, some of the
four leading frameworks that we're covering can support other language bindings.

To give a brief comparison of the supported languages, here is a snippet from Chapter 4,
Matching Personas and Use Cases to Testing Frameworks, that should make it clear and
easy to understand the differences between the test frameworks:

Knowing the supported languages of each framework lets test and development managers
know that for some frameworks, they can have more flexibility around test creation.
If among the developers there are individuals that, for example, are stronger in Java
or Python, Selenium and Playwright are strong options to consider. As shown in the
preceding table, languages such as C#, Ruby, and Kotlin are only supported by Selenium.

Mobile device testing
It is a fact that websites are used more nowadays on mobile devices than on desktop
machines. With that in mind, developers and test engineers must include mobile
device testing as part of their test plan. This core capability can be a bit complicated
across analyzed test automation frameworks, since testing on simulated viewports or
emulators/simulators is only good to some extent. To ensure real-world user experience,
performance, and quality on mobile devices, testing must be also done on real devices.

116 Core Capabilities of the Leading JavaScript Test Automation Frameworks

Cypress mobile device testing
Cypress can use the cy.viewport() APIs to mimic the width and height of a
mobile phone screen's viewport for the website under test; however, this will only
give you a basic look and feel for your web application across specified screen sizes.
In addition, Cypress offers the use of userAgent as part of the simulation of a real
mobile device property (https://docs.cypress.io/guides/references/
configuration#Browser). A developer can either specify the use of a specific mobile
platform userAgent string within the cypress.json file or embed it in the test code
itself within the onBeforeLoad() method. The Mozilla Developer Network (MDN)
web docs by Mozilla provide very useful documentation on how to use and specify
userAgent (https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/User-Agent).

As an example, to test a Cypress web application scenario on a Google Pixel 6 device
running on Android 12 on a Chrome 96 browser version, you can use the following
declaration in your test code with the value: [userAgent] attribute, as specified in
the following:

value: Mozilla/5.0 (Linux; Android 12; Pixel 6 Pro)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.92
Mobile Safari/537.36

userAgent
userAgent is a characteristic string that lets servers and network peers
identify the properties of an application, type of operating system, vendor,
and the OS version of the requesting platform. W3C defines it at a high level
as "software that retrieves, renders and facilitates end user interaction with
Web content, or whose user interface is implemented using Web technologies."
(https://www.w3.org/WAI/UA/work/wiki/Definition_
of_User_Agent).

With the preceding two methods in mind (userAgent and using a viewport), this is still
considered a very limited set of capabilities from a mobile testing perspective.

Playwright mobile device testing
Similar to how Cypress offers testing different viewports as part of its extended mobile
testing abilities, Playwright also offers the use of the playwright.devices() API
(https://playwright.dev/docs/api/class-playwright#playwright-
devices), which allows frontend developers and SDETs to specify device characteristics.

https://docs.cypress.io/guides/references/configuration#Browser
https://docs.cypress.io/guides/references/configuration#Browser
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://www.w3.org/WAI/UA/work/wiki/Definition_of_User_Agent
https://www.w3.org/WAI/UA/work/wiki/Definition_of_User_Agent
https://playwright.dev/docs/api/class-playwright#playwright-devices
https://playwright.dev/docs/api/class-playwright#playwright-devices

Comparing the test automation framework capabilities 117

The preceding capability is used by adding to your test code the following specific lines (in
the following, we are using iPhone 12 characteristics to test the Packt website):

const { webkit, devices } = require('playwright');

const iPhone = devices['iPhone 12'];

(async () => {

const browser = await webkit.launch();

const context = await browser.newContext({

 ...iPhone

})

const page = await context.newPage();

await page.goto('http://packtpub.com');

await browser.close();

})();

As clarified in the previous Cypress section, Playwright does not offer any advanced
mobile testing ability here.

Puppeteer mobile device testing
Google's Puppeteer framework also offers a simulation capability through the
emulate() method. Basically, the previous code snippet is very close to the Puppeteer
syntax with minor adjustments, as shown in the official Google documentation
(https://pptr.dev/#?product=Puppeteer&version=v12.0.1&show=api-
pageemulateoptions). As with Cypress, Puppeteer can also specify userAgent
and viewports through the page.setUserAgent(userAgent) and page.
setViewport(viewport) methods. If you're planning to juggle multiple devices,
using the Puppeteer-supported device descriptors option can be very useful.

Selenium mobile device testing
Selenium is the most advanced testing framework when it comes to mobile and web
application testing. The Appium framework (https://appium.io/) is derived
from the Selenium WebDriver implementation, but it's fully aimed at testing mobile
web, hybrid, and mobile-native applications across most language bindings, including
JavaScript. If you wish to extend your web testing to mobile devices at scale, using Appium
might be a good option, and it leverages the same core APIs with new and specific ones
that are relevant to the mobile landscape.

https://pptr.dev/#?product=Puppeteer&version=v12.0.1&show=api-pageemulateoptions
https://pptr.dev/#?product=Puppeteer&version=v12.0.1&show=api-pageemulateoptions
https://appium.io/

118 Core Capabilities of the Leading JavaScript Test Automation Frameworks

Performance testing
The user experience and performance of a web application are equally important as
functionality. Ensuring that the response time of any web application transaction is
reasonable across mobile and web platforms, including when the load on the backend
servers is growing, should be part of any web application testing plan. There are leading
performance-testing frameworks on the market, such as JMeter (open source) with its
supported load testing product BlazeMeter (https://www.blazemeter.com/)
and NeoLoad from Tricentis. From the perspective of the four main JavaScript testing
frameworks covered in this book, most can offer measurements of transaction timing or,
through browser developer tools (such as the CDP), utilize the Lighthouse tool to perform
some advanced measurements of such transactions. Keep in mind that none of these
frameworks comes with built-in load testing capabilities.

Cypress performance testing
As we will see, in most of the test automation frameworks that we're evaluating in
this book, Google Lighthouse can be utilized to measure the following top six key
performance indicators:

• First Contentful Paint (FCP)

• Large Contentful Paint (LCP)

• Speed index

• Time To Interactive (TTI)

• Total blocking time

• Cumulative Layout Shift (CLS):

Figure 7.2 – The Google Lighthouse performance output on the Packt website

https://www.blazemeter.com/

Comparing the test automation framework capabilities 119

In addition to embedding Lighthouse in the Cypress test code, frontend developers can
also measure specific web application transactions using the two following methods:

win.performance.mark("start-loading");

performance.mark("end-loading");

performance.measure("pageLoad", "start-loading",

 "end-loading");

The preceding commands will measure a given page load time from the start of the load
until the end-load command. This code can measure any given components that are being
loaded on the page in between the start and endpoints.

Playwright and Puppeteer performance testing
Since both frameworks were developed by the same team, we can see that there are many
similarities in the APIs offered by Playwright and Puppeteer. Specifically for performance
testing, both Playwright and Puppeteer provide navigation timing (https://www.
w3.org/TR/navigation-timing/) and resource timing APIs (https://www.
w3.org/TR/resource-timing-1/) that frontend developers can embed in their
test code to measure timestamps for a given web application load. A short simple code
snippet that assesses basic performance metrics for a web application can be obtained
from this GitHub repository (https://github.com/PacktPublishing/A-
Frontend-Web-Developers-Guide-to-Testing/blob/master/perfTest.
js). Download and execute it using the following:

node perfTest.js

https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/resource-timing-1/
https://www.w3.org/TR/resource-timing-1/
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing/blob/master/perfTest.js
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing/blob/master/perfTest.js
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing/blob/master/perfTest.js

120 Core Capabilities of the Leading JavaScript Test Automation Frameworks

When running the test, you should observe the following output in your console:

Figure 7.3 – Performance test execution output on the Packt website

The preceding output consists of the most common performance metrics such as
domLoading and domInteractive. Note that the test was executed locally without
applying any kind of load on the backend. To analyze the web application under high user
volume, it is recommended to use a load testing tool that applies a significant load on the
backend while running this test.

The preceding code snippet uses the performance timing APIs to measure the timestamp
of the Packt page load time.

For the Puppeteer framework, there are also external libraries such as the Web Perf
measurement library, which was developed by the community and can be used to perform
web page KPI measurements using Chrome DevTools (https://github.com/
addyosmani/puppeteer-webperf).

Obviously, since both frameworks are based on the CDP, they can use the developer tools
from the Chromium and Edge browsers, as well as the Lighthouse tool to perform single-
user performance testing on their web applications.

https://github.com/addyosmani/puppeteer-webperf
https://github.com/addyosmani/puppeteer-webperf

Comparing the test automation framework capabilities 121

Selenium performance testing
Selenium is a very thorough test automation framework; however, even the Selenium
documentation states that using Selenium for performance testing is not advised
(https://www.selenium.dev/documentation/test_practices/
discouraged/performance_testing/), since it's not optimized to measure user
experience. Selenium is built on the WebDriver protocol, which may add a payload
to the measurements of page load time and other testing transactions. Therefore, it is
recommended to use a neutral tool for such testing activities. Selenium refers users
to JMeter for performance testing, which can then be extended using BlazeMeter, as
previously mentioned.

Accessibility testing
Each website these days must adhere to the strict accessibility requirements defined by
WCAG and other bodies. Enabling people with various disabilities to consume data
on websites and perform all available transactions is a mandatory requirement. Hence,
designing a web application for accessibility and testing for it is a key requirement for each
software iteration. For web accessibility testing, Deque has developed the widely adopted
axe open source framework (https://www.deque.com/axe/), which most test
automation frameworks today support through APIs and plugins.

Cypress accessibility testing
As mentioned, most frameworks utilize the axe framework for checking website
accessibility issues.

To validate your website accessibility, install the axe plugin on top of your local Cypress
installation folder by running the following command:

npm install --save-dev cypress-axe

npm install --save-dev cypress axe-core

After both libraries are installed, add the import line to the index.js file in your
cypress/support folder:

import 'cypress-axe'

The axe library will provide you with the following useful methods:

• cy.injectAxe()

• cy.configureAxe()

• cy.checkA11Y()

https://www.selenium.dev/documentation/test_practices/discouraged/performance_testing/
https://www.selenium.dev/documentation/test_practices/discouraged/performance_testing/
https://www.deque.com/axe/

122 Core Capabilities of the Leading JavaScript Test Automation Frameworks

Running your test code in JavaScript or TypeScript with the axe plugin will generate a
detailed A11Y accessibility test report, which will be available on both the Cypress GUI
dashboard as well as within the local test report. Frontend developers should then analyze
and resolve all violations.

Puppeteer accessibility testing
Google Puppeteer can also leverage the axe framework to run accessibility tests on web
applications.

A dedicated plugin can be installed above the local Puppeteer folder through this
command:

npm install axe-puppeteer

This plugin will add the AxePuppeteer(page).analyze() method, which can be
used to run a scan on a given page and report back the results. A dedicated document was
created by the Deque team to help get started with the solution (https://www.deque.
com/blog/axe-and-attest-integration-puppeteer/).

Playwright accessibility testing
As with Puppeteer, axe is the preferred and recommended plugin to use with Playwright
to test for web application accessibility. To get started with the plugin and to add its
supported APIs to your Playwright test code, run the following command:

npm i -D axe-playwright

A complete guide of how to use the plugin with Playwright was created by Deque and
can be obtained here: https://www.deque.com/blog/new-axe-devtools-
integration-playwright/. In contrast to Puppeteer, with Playwright, the method
to use within the test code to analyze the accessibility of a specific page is AxeBuilder(
{page}).analyze().

Selenium accessibility testing
To use Selenium WebDriver with the axe plugin, visit the Deque GitHub repository
(https://github.com/dequelabs/axe-webdriverjs).

As with the preceding framework, you will need to install the node library. To do so, run
the following command:

npm i axe-webdriverjs

https://www.deque.com/blog/axe-and-attest-integration-puppeteer/
https://www.deque.com/blog/axe-and-attest-integration-puppeteer/
https://www.deque.com/blog/new-axe-devtools-integration-playwright/
https://www.deque.com/blog/new-axe-devtools-integration-playwright/
https://github.com/dequelabs/axe-webdriverjs

Comparing the test automation framework capabilities 123

Once you have the library installed and added to your local Selenium environment, you
can start using it to analyze your web application pages. Since axe is constantly updating
its rules, frontend developers can specify and pass the axe-core source file as a
parameter and use a specific rules version out of the many that axe provides.

Network control testing and mock services
Testing web applications is not just about the functionality of an app; it's also about all
the services that build the app and that the app relies on. Some of the problems when
testing web apps pre-production are that not all the services are ready to be used during
the development stage, or that these services and test data are dynamically changing, and
developers and testers have no control over the data.

Test automation frameworks can utilize mock services as well as use network control
capabilities, such as changing the clock time, to assess web application output based on
triggered events.

Cypress network control and mocking
Cypress has a great set of network controls and mocking capabilities that can solve
problems around a lack of control over test or production data and thereby add more
reliability to the testing cycles.

cy.intercept() and cy.clock() are two of the strong capabilities of Cypress
for controlling and testing some services of a web application. An additional use case
of cy.intercept() is stubbing. Using the method testers can stub a response and
control the body, status, and headers and even delay them. It is a way of manipulating
an application by cutting off parts of the application to send a controlled response and
validate the application behavior.

The use of cy.clock() and cy.tick() help to override native global functions related
to time and allow them to be controlled synchronously. You can set timeouts and much
more and, thereby, perform time-based assertions on a dynamic page where elements
appear or change when you want. Lastly, when using Cypress with mock data, testers can
utilize the fixtures folder and place in it mock data files in a JSON format. Such test
data can be any relevant data that your web app should be tested against, such as items in
a cart prior to purchasing, notes, and a list of items. Using the test data under that folder
is done by calling cy.fixture() with the path to the JSON test data file. To learn more
about Cypress network control as well as get some code samples, refer to the Cypress
documentation (https://docs.cypress.io/guides/guides/network-
requests).

https://docs.cypress.io/guides/guides/network-requests
https://docs.cypress.io/guides/guides/network-requests

124 Core Capabilities of the Leading JavaScript Test Automation Frameworks

Playwright network control and mocking
Playwright has its own APIs that can be used to monitor and modify the network
traffic for a web application under test. All the supported APIs are documented here
(https://playwright.dev/docs/network) and include capabilities around
authentication, and handling and modifying network requests. There is a great use case
that combines Playwright's context.route() method and the CodeceptJS testing
framework to perform mocking of network requests (https://codecept.io/
playwright/#accessing-playwright-api).

You can learn more about network mocking APIs with Playwright here: https://
playwright.dev/docs/test-configuration#network-mocking.

Puppeteer network control and mocking
Google Puppeteer, as mentioned previously in this book, is at the core of Playwright
and comes with built-in network control capabilities, including mocking services. To
perform network interception within your test code, you should utilize the page.
setRequestInterception(true) APIs. The following insightful blog provides
a great example of how, by using the preceding method, testers can block unnecessary
elements such as images from loading to expedite page load time and test faster:
https://www.checklyhq.com/learn/headless/request-interception/.

In addition to the preceding, the Puppeteer framework also has a way of
emulating cellular network conditions (3G, 4G, and so on) by using the page.
emulateNetworkConditions(networkConditions) method (https://pptr.
dev/#?product=Puppeteer&version=v13.0.1&show=api-pageemulatene
tworkconditionsnetworkconditions).

Lastly, there is a useful library called puppeteer-mock that can be used as a bridge
between the Puppeteer framework and an open source mocking library (https://www.
npmjs.com/package/puppeteer-mock). To install it on top of your local Puppeteer
framework, run the following command:

npm install --save-dev puppeteer-mock

The preceding library has three main functions – activate(), deactivate(), and
isActive().

https://playwright.dev/docs/network
https://codecept.io/playwright/#accessing-playwright-api
https://codecept.io/playwright/#accessing-playwright-api
https://playwright.dev/docs/test-configuration#network-mocking
https://playwright.dev/docs/test-configuration#network-mocking
https://www.checklyhq.com/learn/headless/request-interception/
https://pptr.dev/#?product=Puppeteer&version=v13.0.1&show=api-pageemulatenetworkconditionsnetworkconditions
https://pptr.dev/#?product=Puppeteer&version=v13.0.1&show=api-pageemulatenetworkconditionsnetworkconditions
https://pptr.dev/#?product=Puppeteer&version=v13.0.1&show=api-pageemulatenetworkconditionsnetworkconditions
https://www.npmjs.com/package/puppeteer-mock
https://www.npmjs.com/package/puppeteer-mock

Comparing the test automation framework capabilities 125

Selenium network control and mocking
Selenium 4 brought advanced capabilities around network control and mocking APIs.
The added support for CDP (https://chromedevtools.github.io/devtools-
protocol/) opened the door for Selenium to use the DevTools package and perform
network requests among other things. Prior to Selenium 4, this was quite difficult and, in
many cases, required additional third-party plugins and libraries, or setting servers such
as WireMock (http://wiremock.org/docs/getting-started/).

With Selenium 4 and the CDP DevTools, testers can use the devTool.send() API
and other APIs to block CSS from loading, intercept network requests, ignore security
certificates, and so on.

To learn more about the aforementioned CDP in Selenium 4, refer to the Selenium official
documentation (https://www.selenium.dev/blog/2020/what-is-coming-
in-selenium-4-new-tricks/).

Working with elements
At the core of test automation scenarios are element locators. Without properly identifying
web application elements, the test automation code will not be able to run properly, since
it can't find the elements on the web pages and perform actions on them. Obviously,
all the four leading test automation frameworks work perfectly well with the elements
within the website DOM tree. Some of the frameworks even make element identification
and maintenance easier through object spies, page object model support, and even test
automation recording.

Cypress working with elements
Unlike Selenium, Cypress queries the DOM and works only on CSS selectors (https://
www.w3schools.com/cssref/css_selectors.asp), which include ID, class,
and attribute. To use XPATH within the Cypress test code, you will need to install the
cypress-xpath (https://www.npmjs.com/package/cypress-xpath) plugin.
Cypress can also use .contains() to select an element that contains, for example, some
text. Cypress can also find elements by their position in a list by using the .first(),
.last(), or .eq() methods:

cy

 .get('list')

 .first(); // "select first item in the list "

cy

 .get('list')

https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
http://wiremock.org/docs/getting-started/
https://www.selenium.dev/blog/2020/what-is-coming-in-selenium-4-new-tricks/
https://www.selenium.dev/blog/2020/what-is-coming-in-selenium-4-new-tricks/
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.npmjs.com/package/cypress-xpath

126 Core Capabilities of the Leading JavaScript Test Automation Frameworks

 .last(); // "select last item in the list "

cy

 .get('list')

 .eq(2); // "select 2nd item in the list

"

There are various methods to locate elements in Cypress. You can use the DevTools
utilities from the browsers themselves and inspect specific pages and elements, or
you can use the Cypress GUI element selector and identify the target elements that
you want to perform an automated action on. Another method that can be used
is the SelectorsHub Google Chrome extension utility (https://chrome.
google.com/webstore/detail/selectorshub-xpath-plugin/
ndgimibanhlabgdgjcpbbndiehljcpfh):

Figure 7.4 – The Cypress CSS selector playground within the Cypress GUI used to identify web page
elements

Playwright working with elements
Unlike Cypress, Playwright performs all of its actions on the .page() class (https://
playwright.dev/docs/api/class-page). It has unique methods that are used
to click on elements, enter text, navigate, and so on. The most common methods that are
used to perform actions on elements within web applications are .page.fill("some
text "), .page.press("button "), .page.dblclick("selector,options "),
and assertThat(page.locator(".'selector')).hasText("some text "),
which is used to find text in a given element on the website.

https://chrome.google.com/webstore/detail/selectorshub-xpath-plugin/ndgimibanhlabgdgjcpbbndiehljcpfh
https://chrome.google.com/webstore/detail/selectorshub-xpath-plugin/ndgimibanhlabgdgjcpbbndiehljcpfh
https://chrome.google.com/webstore/detail/selectorshub-xpath-plugin/ndgimibanhlabgdgjcpbbndiehljcpfh
https://playwright.dev/docs/api/class-page
https://playwright.dev/docs/api/class-page

Comparing the test automation framework capabilities 127

In addition to the page APIs that are quite efficient in performing actions on the elements,
Playwright also supports and recommends the implementation of a Page Object Model
(POM) as part of its best practices (https://playwright.dev/docs/pom). A POM
is a great way to maintain elements across test code and simplify test code creation.

As with Cypress, Playwright also offers a built-in inspector tool (https://
playwright.dev/docs/inspector) that can help with element identification, as
well as test code debugging:

Figure 7.5 – The Playwright Inspector tool (source – https://playwright.dev/docs/inspector)

Puppeteer working with elements
Google's Puppeteer frameworks inevitably allow frontend developers and testers
to use Chrome DevTools and a built-in browser inspector to identify elements on
web applications.

https://playwright.dev/docs/pom
https://playwright.dev/docs/inspector
https://playwright.dev/docs/inspector

128 Core Capabilities of the Leading JavaScript Test Automation Frameworks

Great documentation can be found at https://devdocs.io/puppeteer/ on how
to work with Puppeteer across the different layers of a web application, including the page,
the frames within the page, and the application context. Since Puppeteer drives the test
through the DevTools protocol from the browser through the page, that's how you would
design the test as well. The following code snippet shows how you would first launch
Puppeteer and then create a new Incognito browser context before opening a new page on
the Packt website:

(async () => {

 const browser = await puppeteer.launch();

 // Create a new incognito browser context.

 const context =

 await browser.createIncognitoBrowserContext();

 // Create a new page in a pristine context.

 const page = await context.newPage();

 // Do stuff

 await page.goto('https://www.packtpub.com');

})();

Puppeteer also uses the CSS selector syntax and specifically provides the
querySelectorAll(selectors) APIs to search through the list of elements on the
page (https://devdocs.io/dom/element/queryselectorall), as you can see
in the following screenshot:

Figure 7.6 – Google's DevTools console used to perform an element query

https://devdocs.io/puppeteer/
https://devdocs.io/dom/element/queryselectorall

Comparing the test automation framework capabilities 129

Selenium working with elements
Earlier in the book in Chapter 3, Top Web Test Automation Frameworks, we covered
the eight supported element locators by Selenium. The Selenium framework offers, like
Playwright, the use of a POM, and through the Selenium IDE, it allows the recording
of test scripts that can automatically identify the elements of a web application. Being
the oldest framework on the market, Selenium already has very structured methods of
working with elements through findElement(By. [supported locators]). As
with the other testing frameworks, users can also leverage the browser DevTools inspector
to identify elements and use them within their test code:

Figure 7.7 – Selenium-supported web element locators

It is the test engineer's responsibility to properly use the most robust and reliable element
locator to ensure test stability over time. With the most recent release of Selenium
4, the community introduced the use of relative locators to better identify complex
elements, based on their relationship with other elements on a page. Users can choose
from the following relative locator-supported methods – preceding(), below(),
toLeftof(), toRightof(), and near(). I strongly recommend reading Angie Jones's
blog on relative locators in Selenium 4 (https://angiejones.tech/selenium-4-
relative-locators/) to better understand the syntax and value of this feature.

https://angiejones.tech/selenium-4-relative-locators/
https://angiejones.tech/selenium-4-relative-locators/

130 Core Capabilities of the Leading JavaScript Test Automation Frameworks

CI/CD integration
Lastly, to meet the strict timelines within a software iteration, developers and testers
run their test automation scenarios within Continuous Integration (CI). All the test
automation frameworks support running tests in CI as well as in CI through cloud
vendors such as Perfecto, SauceLabs, and BrowserStack.

As already identified in Chapter 4, Matching Personas and Use Cases to Testing
Frameworks, these test frameworks somewhat differ from the CI servers that they best
work with. It is up to developers to choose whether they prefer one framework over
another, based on the following supported tools:

With the preceding CI tools overview, we conclude the full coverage of the different test
automation framework capabilities.

In this section, we provided an overview of the most important capabilities across the
leading test automation frameworks, including working with elements, performing visual
testing, accessibility testing, network control, API testing, integrating into a CI/CD tool
stack, performance testing, mobile testing, and more.

In the following section, we will provide the key compelling events that may cause
a change to the existing test automation framework that is in use by your teams.

A re-evaluation of test automation frameworks due to compelling events 131

A re-evaluation of test automation
frameworks due to compelling events
Comparing all the preceding capabilities is a great way to perform due diligence across
the leading test automation frameworks on the market; however, such a comparison is
a timely activity that must be done multiple times.

The market and the web application project life cycle often trigger a need to change the
framework that's being used by frontend developers and SDETs. The following are a few
examples of such compelling events:

• A new web application developed from scratch: Within a web project life cycle,
the product management team or the business as a whole may decide that it's time
for a full refresh of a website. With such a refresh, developers might pick a new
development framework, as well as decide that the web application will be of the
PWA type. A new project has a new UI, new requirements, new business flows, and
so on. That's a valid trigger to re-assess the test automation framework that a team
has been using and decide on a different one, based on the project requirements.

• Instability and flakiness within the testing pipeline: Even though a team has been
using a solid test automation framework for an existing web application project,
there are cases where the test automation percentage as well as the pass rate are too
low, due to a mismatch of the framework to the testing scenarios, a skillset within
the team, or simply the limitations of the framework. This is also a great moment
to reassess and make changes to the tool stack. In many cases, bringing a secondary
framework to complement the existing one can prove a great strategy to fix these
instabilities and increase the test scenario coverage.

• Organizational-related changes: In this category, the change can involve offshoring
the testing activities to a remote team that uses a different test framework and has
different skillset levels, or within the development team there is a re-organization,
and new leadership is brought in that has better experience with different tools.
In such cases, a reassessment of the test frameworks might happen to better fit the
technology with the current test developers' skills and needs.

• Market tool stack evolution: Lastly, as software development projects evolve, so
do test automation frameworks. In this chapter, we gave some examples of the
modifications made to the Selenium 4 framework, and such changes are constantly
being made to other leading frameworks. Closing gaps in test frameworks by adding
new features and the evolution of frameworks are great examples, providing an
"excuse" to re-evaluate an existing test framework selection and either bring in
a second one or replace the existing one with another.

132 Core Capabilities of the Leading JavaScript Test Automation Frameworks

Summary
In this chapter, we explored the different but important capabilities of a test automation
framework and dived deeper into how each of the four leading test automation
frameworks supports and works to address these capabilities. There is no clear-cut
choice of framework, since a web application project is very complex and has different
requirements and testing criteria.

This chapter gave some guidance in terms of each capability about whether a test
framework can accomplish more, or if it's easier to use one compared to another. We have
seen examples of capabilities that are built into the test frameworks as opposed to those
that require an external plugin to be installed (such as XPath support).

As a frontend developer and/or SDET, you can use this chapter to create your own tailored
consideration matrix that will fit your project. If your project requires more in-depth
visual testing, performance testing, and network control, you can clearly see which of
the four frameworks supports these requirements and to what extent, making your
decision easier.

We also listed a few of the top compelling events that might cause a team to re-evaluate
and change an existing framework for another.

This concludes this chapter! In the following chapter, we will focus on measuring test
coverage across the four test automation frameworks and offer guidance on tools and
practices to succeed in this objective.

8
Measuring Test
Coverage of the

Web Application
How do you know that you've tested your web application enough? There are many
metrics and measures for code quality, including defect density, user stories covered, and
other "black-box" measurements. However, there is also a complementary metric that has
been on the market for a long while and is more of a "white-box" metric, which is code
coverage. In this chapter, you will learn how to complement the quality assessment of
your web application with code coverage across the various test automation frameworks
featured in this book (Selenium, Cypress, Playwright, and Puppeteer).

134 Measuring Test Coverage of the Web Application

The chapter is designed to cover the following:

• Understand the differences between code coverage and test coverage and when to
use them.

• Learn about the recommended tool(s) for JavaScript code coverage measurements.

• Understand how to complement code coverage measurements with test coverage
capabilities (for example, production data, platform coverage, and analytics).

The goal of this chapter is to help frontend developers and SDETs build code coverage
into their software development life cycles and recommend the right tools to use with the
leading test automation frameworks.

Introduction to code coverage and
test coverage
When assessing code quality, there are various metrics and methods to do so.
However, when referring to quality and coverage metrics, there is often confusion
between code coverage and test coverage. In this section, we will define and clarify
what each of them means and focus on the definition and value of code coverage to
frontend web application developers.

Test coverage
Test coverage refers to the level of testing against requirements that you cover via all types
of testing (functional, non-functional, API, security, accessibility, and more). Within test
coverage, you can also identify the platform coverage metric, which includes the required
permutations of browser/OS and mobile/OS platforms. Within the tool stack landscape,
there are application life cycle management (ALM) solutions as well as other test
management tools that can measure and provide high-level metrics around test coverage.

Typically, the QA manager would build a test plan that specifies all the testing efforts that
are planned for the software version under test. As part of the plan, the QA manager will
also provide test coverage goals and criteria.

Running all testing types that are required based on the test plan should ensure not only
the high quality of the release but also a decent test coverage percentage. Based on the
pass/fail ratio, decision-makers will know whether the product is ready to be released or
whether it has quality risks.

Introduction to code coverage and test coverage 135

In many practices, test coverage encapsulates the following pillars:

• Product features coverage – how well we are covering all business flows, website
screens, and navigation flows within the application, and how they work from a
quality perspective.

• Product requirements coverage – this pillar refers to all the product user stories
and capabilities that were supposed to be part of the product. The fact that we've
tested, as identified previously, all available features does not mean that all the
features that were supported to be included in the version are implemented.

• Boundary values coverage – this aspect ensures that the application works fine in
all types of user inputs, whether they are appropriate or unappropriate. This can
be testing all types of input fields and forms, entering different characters, mixing
languages, and more.

• Compatibility coverage – as mentioned previously, this type of category refers
to the level of platforms that are covered within all types of testing. For web
applications, we typically refer to the most relevant configurations of web and
mobile platforms against supported OS versions.

• Risk coverage – in specific market verticals, this type of pillar is even greater than
others. However, measuring and addressing product risks within the test plan and
the test coverage analysis is critical to ensure safe and high-quality software. An
example of risk coverage is ensuring that dependencies for the web application
are properly monitored and that there is a fallback plan (for example, third-party
services or databases).

The bottom line is, test coverage looks at the software from a higher level and from
a product requirement testing perspective.

Code coverage
Unlike test coverage, code coverage is very much technical and goes down to the code
level to measure and assess how many lines of code are exercised and "touched" by
different types of tests. In many cases and practices, unit tests would be the highest-
priority testing type to attach to code coverage since the method of measuring
code coverage requires high development skills, instrumentation of the code, and
understanding of the code coverage outputs. With that in mind, this does not state that
code coverage cannot be measured by running functional and other types of testing, as we
will learn later in this chapter.

136 Measuring Test Coverage of the Web Application

In a more scientific manner, code coverage aims to indicate the percentage of the code that
is covered by different types of test cases. The output of a code coverage report typically
consists of the following pillars of categories:

• Branch coverage – this metric ensures that every possible branch used in a
decision-making process is executed. A good example is if within the code for your
web application there is a conditional scenario based on user input, you are properly
covering all possible cases.

• Function coverage – this metric measures whether all available functions within
the web application code are executed.

• Statement coverage – this metric, which is part of most common code coverage
tools, will show that every executable statement in the code is executed at least once.

• Loop coverage – as in statement coverage, loop coverage refers to the measurement
of loops within the source code of the application under test being executed at
least once.

To perform code coverage properly, frontend web application developers need to perform
code instrumentation to add the coverage measurements to the code under test.

Figure 8.1 – Sample code coverage output from the Istanbul JavaScript code coverage tool (source:
https://istanbul.js.org/)

Now that we have clarified the differences between code and test coverage, let's see how
one of the leading coverage tools can work with the leading test automation frameworks
on the market.

JavaScript code coverage tools for web application developers 137

JavaScript code coverage tools for web
application developers
As identified in the previous section, to measure code coverage, frontend web application
developers should use tools that can measure the depth of testing done by the testing
types during the test execution phase. To do so, frontend developers use tools that
instrument their website source code by adding different counters and analyzers that in
return report back the percentage of lines of code covered by testing and the percentage
of statements and branches, and with that, they can assess the overall coverage and quality
of their product.

For the JavaScript development language, the most used tool is Istanbul, which also uses
the Babel plugin. Most leading test automation frameworks have a plugin for Istanbul,
making it the most recommended tool for measuring code coverage.

The Cypress Istanbul plugin can be obtained here: https://www.npmjs.com/
package/cypress-istanbul. If you're using Jest, it comes with a built-in
coverage capability (https://jestjs.io/) that allows measuring coverage by
simply adding the --coverage flag to your testing command line. There are many
other guides for using Istanbul with Selenium (https://stackoverflow.com/
questions/67913176/how-to-implement-istanbul-coverage-with-
selenium-and-mocha) that can be used, as well as similar guides for using Istanbul
with Playwright (https://github.com/mxschmitt/playwright-test-
coverage; https://medium.com/@novyludek/code-coverage-of-e2e-
tests-with-playwright-6f8b4c0b56e1). Lastly, to accomplish the same for
your web application in JavaScript with Google Puppeteer and Istanbul, here are two
useful guides: https://github.com/istanbuljs/puppeteer-to-istanbul
and https://github.com/puppeteer/puppeteer/blob/main/docs/api.
md#class-coverage.

Since in theory measuring code coverage across all the preceding test automation
frameworks is done using Istanbul and the Babel plugin, we will pick Cypress as
a reference framework and explain how to set up, instrument, and measure code
coverage of a sample web application.

https://www.npmjs.com/package/cypress-istanbul
https://www.npmjs.com/package/cypress-istanbul
https://jestjs.io/
https://stackoverflow.com/questions/67913176/how-to-implement-istanbul-coverage-with-selenium-and-mocha
https://stackoverflow.com/questions/67913176/how-to-implement-istanbul-coverage-with-selenium-and-mocha
https://stackoverflow.com/questions/67913176/how-to-implement-istanbul-coverage-with-selenium-and-mocha
https://github.com/mxschmitt/playwright-test-coverage
https://github.com/mxschmitt/playwright-test-coverage
mailto:https://medium.com/@novyludek/code-coverage-of-e2e-tests-with-playwright-6f8b4c0b56e1
mailto:https://medium.com/@novyludek/code-coverage-of-e2e-tests-with-playwright-6f8b4c0b56e1
https://github.com/istanbuljs/puppeteer-to-istanbul
https://github.com/puppeteer/puppeteer/blob/main/docs/api.md#class-coverage
https://github.com/puppeteer/puppeteer/blob/main/docs/api.md#class-coverage

138 Measuring Test Coverage of the Web Application

Measuring JavaScript code coverage using Istanbul
and Cypress
Assuming you already have a working environment for Cypress locally installed, we will
now focus on setting up Istanbul and Babel.

The first step would be to install the code coverage libraries and dependencies on the
Cypress local installation folder. Here, we install two main plugins – the Istanbul plugin
and the code-coverage plugin from Cypress:

npm install -D babel-plugin-istanbul

npm install -D @cypress/code-coverage

The preceding plugin installation will not only enable you to measure the code coverage of
your application but also allow you to perform the source code instrumentation using the
nyc module (https://github.com/istanbuljs/nyc). The use of the preceding
plugins on JavaScript code will transform the source code into code that is measured
through counters of functions, statements, branches, and lines of code.

Another step that is required is to add the following import statement to the Cypress/
support/ index.js file:

import '@cypress/code-coverage/support';

After that, you need to register your code-coverage plugin into the Cypress test by adding
the following block to Cypress/plugins/index.js:

module.exports = (on,config) => {

 require('@cypress/code-coverage/task')(on, config);

 return config;

}

The next step in the setup is to perform source code instrumentation for your application.
By just installing the plugins, your code is not yet instrumented and ready to be measured.
To do so, you need to either run the following command that operates on the application's
src folder (this will be the main source folder of your application under test):

npx nyc instrument -compact=false src instrumented

https://github.com/istanbuljs/nyc

JavaScript code coverage tools for web application developers 139

Alternatively, to instrument your code on the fly, you need to add the Istanbul plugin to
the .babelrc file.

Lastly, in the cypress.json file under your local installation, you should set the
coverage parameter to true (replacing true with false will disable the coverage
measurements) by placing the following lines in the file:

{

 "env": {

 "coverage": "true"}

}

Now, when I run the Cypress GUI tool and execute any of my tests under the Cypress
installation, they will run by default with the coverage capabilities on.

Figure 8.2 – Example for executing a Cypress test with the Istanbul/Babel plugin enabled
for code coverage

140 Measuring Test Coverage of the Web Application

For well-instrumented code using Istanbul and Babel, you will get the following output
for test coverage both in the GUI as well as within the coverage/lcov-report
folder under your Cypress local folder. As a code coverage practitioner, you need access
to the source code of the web application, as well as having a clear understanding of the
application architecture, so you can understand and act upon the results of this tool.

Figure 8.3 – Example of code coverage output when running Cypress with the Istanbul/Babel plugin
(source: https://github.com/cypress-io/code-coverage)

To summarize the code coverage section with Istanbul and Cypress, it is important to
follow the few simple steps given previously, which include the plugin installation, setting
up the configuration files, and then instrumenting your website JavaScript source code
prior to running your end-to-end or unit tests.

The setting-up guides might vary between the various frameworks; however, the result is
similar – the reports that will be generated will provide you with percentage coverage of
the core pillars of your app (statements, branches, functions, and lines).

JavaScript code coverage tools for web application developers 141

The percentage for each of the pillars should not just be a number for developers and
QA managers, but rather guidance and actionable insight for future testing that might
be required. For areas that have lower than 65-70% coverage, it is recommended
to add more test cases (unit, functional, APIs, and so on) so there are no quality
risks that escape to production. In general, having a source code average coverage
below 70% is not a good sign (https://www.bullseye.com/minimum.
html#:~:text=Summary,higher%20than%20for%20system%20testing).
Hence, measuring and continuously adjusting the code coverage toward 80% and above is
highly recommended.

In a great code coverage measurement article that explains how to set up Cypress with
Istanbul and the Babel plugin, written by Marie Drake (https://www.mariedrake.
com/post/generating-code-coverage-report-for-cypress), you can see
at the end of it a sample code coverage report that was captured by testing the Zoopla
UK website.

Figure 8.4 – Code coverage report for the Zoopla website using Cypress and the Istanbul plugin (source:
https://www.mariedrake.com/post/generating-code-coverage-report-for-cypress)

The overall lines of code (LOC) coverage, as well as the branches, functions,
and statements, are quite decent across most of the source code, except for the
EmbeddedEntry and ArticlePage files, which are marked in yellow to highlight a
potential code coverage risk. As a frontend developer and SDET, I would try and focus
in the future on complementing the coverage for these two files and functional areas to
enhance the coverage and raise the percentage toward 80% and above.

https://www.bullseye.com/minimum.html#:~:text=Summary,higher%20than%20for%20system%20testing
https://www.bullseye.com/minimum.html#:~:text=Summary,higher%20than%20for%20system%20testing
https://www.mariedrake.com/post/generating-code-coverage-report-for-cypress
https://www.mariedrake.com/post/generating-code-coverage-report-for-cypress

142 Measuring Test Coverage of the Web Application

In this section, we covered the use of Istanbul and Babel and their role within code
coverage measurements within the leading test automation frameworks. We specifically
featured Istanbul within the Cypress test framework and provided a guide on how to
enable this capability for any JavaScript test spec. We also provided a nice real-life report
example of a code coverage measurement to explain how to read such a report and what
to focus on from a coverage percentage perspective. Next, we'll see how to complement
code coverage with test coverage.

Complementing code coverage with
test coverage
As we explained in the previous section, measuring code coverage is critical to assessing
the depth of code that is being executed and covered via testing. However, such code-level
analysis alone is not sufficient and requires the combination of test coverage analysis as
well. When trying to ensure the high quality of your web application, there are various
factors that play a critical role in that. Code coverage guarantees that the application is
tested at runtime across multiple scenarios and that most of the code is being exercised.
The outcomes of the code coverage report guide managers on which areas to invest in
further to reduce risks and enhance overall application quality.

Test coverage as a superset of the quality plan looks at other aspects of the application
quality, such as user experience, security, accessibility, compatibility, and boundary
testing. Together, code and test coverage make a great set of metrics and analysis of the
entire application. It is important to understand that both code coverage and test coverage
are dynamic measurements since both the landscape and platforms keep on changing,
as well as the application source code changing from one iteration to the next. It is
imperative to continuously test the app and report the metrics back to management, so
the quality bar remains high.

Summary 143

Summary
In this chapter, we explored the two confusing terms of code and test coverage. We
properly defined them and clarified the differences between them.

We then focused on code coverage for JavaScript web applications through the leading
open source tool called Istanbul with its supporting Babel plugin.

Lastly, we gave as a reference and an example a guide for integrating the Istanbul/Babel
tools into Cypress for measuring code coverage through end-to-end functional testing.

That concludes this chapter!

In the following chapter, which opens the last part of this book (Part 3), we will start
diving deeper into the most advanced features of the leading test automation frameworks.
The following chapter will start with the advanced features of Selenium.

In this part, you will learn about the main features of the top test automation frameworks
on the market. Each chapter in this part will feature a specific framework, with guides
on how to use the framework, examples, recommended practices, and pointers to
become a professional with these technologies. You will be able to use what you have
learned from this part to implement various test automation suites using one or more
of the featured frameworks.

In this part, we will cover the following chapters:

• Chapter 9, Working with the Selenium Framework

• Chapter 10, Working with the Cypress Framework

• Chapter 11, Working with the Playwright Framework

• Chapter 12, Working with the Puppeteer Framework

• Chapter 13, Complementing Code-Based Testing with Low-Code Test Automation

• Chapter 14, Wrapping Up

Part 3 –
Frontend

JavaScript Web
Test Automation

Framework Guides

9
Working with
the Selenium

Framework
As highlighted in Chapter 3, Top Web Test Automation Frameworks, Selenium is one of
the oldest test automation frameworks on the market. The framework is open source
and supports many language bindings (Java, JavaScript, Python, and so on), and it is the
base for many other leading frameworks in the marketplace such as WebdriverIO. Being
W3C-compliant and based on the WebDriver protocol, this client-server framework allows
developers to build test automation across all available browsers (desktop and mobile) and
through its Grid tool, run in parallel and at scale. In this chapter, the reader will get a deep
technical overview of the framework with a focus on its advanced capabilities, including
support for CDP, relative locators, visual testing, cloud testing, support for Behavior-
Driven Development (BDD) testing, and self-healing add-ons. The goal of the chapter is
to help frontend developers enrich their test automation coverage with the more advanced
capabilities of the framework, whether these are built-in features or plugins.

The chapter is designed to cover the following:

• Understanding the Selenium framework and its components

• The future of the Selenium framework

148 Working with the Selenium Framework

Technical requirements
The code files for this chapter can be found here: https://github.com/
PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing.

Understanding the Selenium framework
and its components
As explained in Chapter 3, Top Web Test Automation Frameworks, the Selenium
framework (available at https://www.selenium.dev/) consists of three core
pillars – Selenium WebDriver, Selenium IDE, and Selenium Grid (you can read more
about the pillars here: https://www.selenium.dev/documentation/grid/
getting_started/). In this chapter, we will only focus on the WebDriver protocol
with JavaScript language binding and Grid, and leave Selenium IDE for Chapter 13,
Complementing Code-Based Testing With Low-Code Test Automation.

Selenium WebDriver
With the release of Selenium 4, the latest release at the time of writing, the framework
became fully W3C-compliant (https://www.w3.org/TR/webdriver1/).
The richness of the WebDriver protocol enables developers to drive any possible action
on a web application, running on all types of browsers.

To get started with Selenium WebDriver, simply install the node package through the
following command:

npm install selenium-webdriver

Next, you need to install your relevant browser drivers (Chrome, Firefox, Safari, and so
on) by following the Selenium documentation (https://www.selenium.dev/
documentation/webdriver/getting_started/install_drivers/).

To start from your JavaScript code on an Edge browser, for example, you add the following
lines of code (for Firefox, simply replace edge in the following code with firefox):

const {Builder} = require('selenium-webdriver');

var driver = new Builder().forBrowser('edge').build();

https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://www.selenium.dev/
https://www.selenium.dev/documentation/grid/getting_started/
https://www.selenium.dev/documentation/grid/getting_started/
https://www.w3.org/TR/webdriver1/
https://www.selenium.dev/documentation/webdriver/getting_started/install_drivers/
https://www.selenium.dev/documentation/webdriver/getting_started/install_drivers/

Understanding the Selenium framework and its components 149

Since we are looking to cover the more advanced capabilities of Selenium, let's start the
Selenium Grid component. This step assumes that you have downloaded Grid from the
Selenium website (https://www.selenium.dev/downloads/).

To start Selenium Grid, simply run this command:

java -jar .\selenium-server-4.1.1.jar standalone

The preceding command refers to the version of Grid that you've downloaded and the
path to it.

At this stage, you have successfully installed Selenium for the JavaScript WebDriver
package and Selenium Grid and run the Grid command. If everything is okay, when
navigating from your local browser to http://localhost:4444, you should see
something like the following screenshot:

Figure 9.1 – The local Selenium Grid home page within the local browser

What we will do now is run a simple JavaScript code that navigates to the Packt website
and searches for a specific book called UI Testing with Puppeteer, and then
validate that the book home page opens successfully:

const {Builder, By, Key, until} =

 require('selenium-webdriver');

const by = require('selenium-webdriver/lib/by');

https://www.selenium.dev/downloads/
http://localhost:4444

150 Working with the Selenium Framework

(async function helloSelenium() {

 let driver = await new Builder().forBrowser(

 'MicrosoftEdge').usingServer(

 'http://localhost:4444/wd/hub').build();

 await driver.get('https://www.packtpub.com');

 await driver.getTitle(); // => "Packt"

 let searchBox = await driver.findElement(By.name('q'));

 let searchButton = await driver.findElement(

 By.className('magnifying-glass'));

 await searchBox.click();

 await searchBox.sendKeys('UI Testing with Puppeteer');

 await searchButton.click();

 await driver.getTitle().then(function(title) {

 console.log("The title is: " + title)

});

 console.log

 await driver.quit();

})();

To better understand the preceding code, here are some of the main steps:

1. Request within the local Selenium Grid ('http://localhost:4444/wd/
hub') to open a WebDriver connection in an Edge browser ('MicrosoftEdge').

2. Specify the website URL to navigate to. In our case, we are navigating to the Packt
website home page.

3. Define two key element locators (objects) for the test to interact with on the web
page. In this case, we are defining the Packt website searchBox object and the
searchButton object to click. Note that we are identifying the objects by ID
and className.

4. Input a book title in the search box (in our case, we selected 'UI Testing with
Puppeteer'), and then click on the search button to navigate to that book's
home page.

5. Lastly, output to the console the page title so that you can see that you've
successfully reached the preceding book's home page.

Understanding the Selenium framework and its components 151

To run the preceding code from an IDE such as Visual Studio Code, simply use the
following command:

node .\tests\test1.js

In this case, I named the JavaScript Selenium test test1.js, which resides in a subfolder
called tests.

Assuming there are no environment issues, when running the preceding command, you
will get a local Edge browser to launch and run the preceding steps in headed (with the
browser UI) mode, and the following output will be shown in the IDE console:

Figure 9.2 – The IDE console output of the page title assertion from the preceding code sample

In the preceding example, we used Grid with only one browser; however, we could have
run Grid with the role of hub. When running Grid with such an option, Grid listens on
port 4444 and can operate in parallel with all the subscribed nodes. To scale multiple
nodes for multiple browser versions when you run the preceding test1.js, you can use
a JSON file that will hold these configurations:

java -Dwebdriver.chrome.driver=chromedriver.exe -jar selenium-
server-standalone.jar -role node -nodeConfig node1Config.json

To learn more about configuring JSON-based Selenium Grid nodes, please refer to the
following documentation: https://www.selenium.dev/documentation/
legacy/grid_3/setting_up_your_own_grid/.

Now that we have set up Selenium locally, launched Selenium Grid, and run a
nice JavaScript Selenium test, let's highlight the most useful and advanced features
of Selenium 4.

The advanced features of Selenium
Selenium, as mentioned throughout this book, is a powerful and mature test automation
framework, and as we learned in the preceding test code, with very little programming
effort, you can perform many actions on a frontend web application. Modern websites are
written with powerful web application frameworks, as described in Chapter 5, Introducing
the Leading Frontend Web Development Frameworks, which enable developers to enrich
their websites and add complex logic and components to their pages. Realizing the power
of a test automation framework such as Selenium can help to automate and test with wide
coverage these advanced components.

https://www.selenium.dev/documentation/legacy/grid_3/setting_up_your_own_grid/
https://www.selenium.dev/documentation/legacy/grid_3/setting_up_your_own_grid/

152 Working with the Selenium Framework

Let's start covering a newly added feature of Selenium 4 called relative locators.

Selenium relative locators
In previous versions of Selenium, it was quite challenging to identify an element on a web
page, especially if there were other elements that are similar or when the web page was
too crowded with UI elements. For that purpose, the Selenium community implemented
a new feature that allows test developers to clearly specify an element location and a name
relative to other elements on that page.

If we look at the Packt website under test that we covered in the previous test code, we will
see that there are three buttons on the upper viewport of that page. While each of these
elements has unique text that describes them, all three buttons have the same className
identifier ('subscribe_cta'). With Selenium 4, we can be very accurate in identifying
each of them by utilizing relative locators:

Figure 9.3 – A Packt home page screenshot used for an example of multiple close elements

To identify the middle button in the preceding screenshot with the Essential Bundles
text, we will specify the following code that specifies that this button is to the right of the
Enter the SALE button, as follows:

let enterSale = driver.findElement(By.className(

 subscribe_cta));

let essentialBundles = await driver.findElement(

 locateWith(By.className('subscribe_cta')).toRightof(

 enterSale));

Selenium 4 provides five relative locator options:

• above

• below

• toLeftOf

Understanding the Selenium framework and its components 153

• toRightof

• near

Documentation on all of these locators is available here: https://www.selenium.
dev/documentation/webdriver/elements/locators/#relative-
locators.

The Selenium Chrome debugging protocol
While we mentioned CDP in the context of the Playwright and Puppeteer frameworks,
for Selenium, this is a new feature that was introduced with Selenium 4. With Selenium
4, frontend web application developers can utilize the DevTools interface (you can
learn more here: https://www.selenium.dev/documentation/webdriver/
bidirectional/chrome_devtools/) to connect with the CDP and use features
such as network control, geolocation emulation, performance, accessibility, a profiler, and
an application cache.

Through the newly added CDP connection option (driver.
createCDPConnection(page');), the preceding capabilities can be used.

We will not expand on all of the CDP's available APIs but will give a simple example from
the Selenium community of using the CDP to set a specific geographical location through
a test.

In the following code snippet, we navigate to a free geolocation website (https://
my-location.org) that is offered as a reference to identify, via latitude and longitude
coordinates, the exact location:

await driver.get("https://my-location.org/");

 const pageCdpConnection =

 await driver.createCDPConnection('page');

 //Latitude and longitude of Tokyo, Japan

 const coordinates = {

 latitude: 35.689487,

 longitude: 139.691706,

 accuracy: 100,

 };

 await pageCdpConnection.execute(

 "Emulation.setGeolocationOverride",

 1,

https://www.selenium.dev/documentation/webdriver/elements/locators/#relative-locators
https://www.selenium.dev/documentation/webdriver/elements/locators/#relative-locators
https://www.selenium.dev/documentation/webdriver/elements/locators/#relative-locators
https://www.selenium.dev/documentation/webdriver/bidirectional/chrome_devtools/
https://www.selenium.dev/documentation/webdriver/bidirectional/chrome_devtools/
https://my-location.org
https://my-location.org

154 Working with the Selenium Framework

 coordinates

);

Within the preceding code sample, we navigate to the website as if we were based in
Tokyo, Japan, by providing the geo-coordinates and executing the command through the
CDP connection. Such a testing capability is important, since many websites are location-
aware by design. Hence, based on the end user location, a specific output will be displayed
and, sometimes, even with a language relevant to that location.

The CDP within Selenium 4 is a powerful capability with many features and is very
important to know about and use within the testing suites.

Selenium multi windows and tab management
Selenium 4 also enriches the testing of complex websites with multiple tabs and windows
(you can learn more here: https://www.selenium.dev/documentation/
webdriver/browser/windows/). Within any traditional website, there are
various menus that open new windows and tabs that should be tested in an automated
fashion. Unlike frameworks such as Cypress, Selenium provides a good method of
testing multiple tabs, including new windows. To perform tests on a web application
when you need to switch between windows or tabs, Selenium provides APIs, including
getWindowHandle();, getAllWindowHandles();, and driver.switchTo().
newWindows('tab'), to open a new window, switch to a new tab, close an active
window or a tab, and so on.

Selenium Actions APIs – support for mouse and keyboard events
With Selenium, frontend developers can utilize mouse and keyboard events to perform
actions (https://www.selenium.dev/documentation/webdriver/
actions_api/) on given web pages within the web application under test. The ability to
send text strings to a web element such as a textbox as well as perform an Enter key press
on a keyboard through Selenium isn't new but very useful:

await driver.findElement(By.name('q')).sendKeys(

 'webdriver', Key.ENTER);

https://www.selenium.dev/documentation/webdriver/browser/windows/
https://www.selenium.dev/documentation/webdriver/browser/windows/
https://www.selenium.dev/documentation/webdriver/actions_api/
https://www.selenium.dev/documentation/webdriver/actions_api/

Understanding the Selenium framework and its components 155

In addition, Selenium also offers a wide range of mouse events such as clickAndHold,
doubleClick, and dragAndDrop. In the following line of code, Selenium performs
a mouse action that performs a drag from the source element (sourceEle) and a drop
onto the target element (targetEle):

await actions.dragAndDrop(sourceEle, targetEle).perform();

Self-healing scripts
While this section won't look at Artificial Intelligence (AI), Machine Learning (ML), or
low code within testing, the community has built a very interesting framework on top of
Selenium to stabilize test code and, whenever possible, fix the test executions to reduce the
level of brittleness. This project is called Healenium (https://healenium.io/), and
its value proposition is to improve Selenium test cases' stability and better handle dynamic
changes to web elements. With a nice set of documentation (available at https://
github.com/healenium/healenium-example-maven), code samples, and IDE
plugins (such as for IntelliJ IDEA), this framework is a great add-on to any Selenium
project. The following is an example of how Healenium works:

Figure 9.4 – An example of how Healenium updates broken locators within IntelliJ IDEA (source –
https://github.com/healenium/healenium-example-maven/blob/master/img_4.png)

Selenium Grid in the cloud
While this is not unique to the Selenium project, teams can leverage cloud providers and
run their Selenium test code in the cloud at scale and in parallel without worrying about
setting up and maintaining a local Grid.

https://healenium.io/
https://github.com/healenium/healenium-example-maven
https://github.com/healenium/healenium-example-maven

156 Working with the Selenium Framework

Sauce Labs, Perfecto, and BrowserStack offer a robust cloud-based Selenium Grid that
covers all different browser/OS combinations across geographies, so frontend developers
and testers can scale up their test executions and reduce the amount of time a test cycle
takes compared to when running it locally:

Figure 9.5 – Selenium Grid in the Perfecto cloud with support for all web and mobile combinations

Various testing methods with Selenium
In this section, we are going to cover a few testing types that are supported by the
Selenium framework. We will cover testing that includes BDD with Cucumber,
accessibility testing, and visual testing.

BDD testing with Selenium
In this section, we will not provide a thorough deep dive into BDD. However, it is
important to understand that BDD can be used with Selenium easily. In the context of
agile testing practices, developers who are building software through the BDD method
create the test scenarios in Gherkin, which follows the built-in keyword-driven syntax
based on GIVEN, WHEN, and THEN. In the following screenshot, we can see an example of
a Cucumber test scenario in Gherkin:

Understanding the Selenium framework and its components 157

Figure 9.6 – A Cucumber test scenario in Gherkin with a Selenium-based step definition methods

In the preceding screenshot, we can see a full Gherkin-based test scenario with the
annotation name of WebDD. The scenario simply navigates to a Google search page to find
two search keys that are provided within a table (a data-driven test). A data-driven test
within Cucumber is defined using the Examples keyword. Previously, we created two
types of data input for the test under the Examples block.

On the right side of the preceding screenshot, there is a simple Selenium code, in Java,
that through the WebDriver protocol navigates to the Google home page and clicks on
the search button on the page. Basically, with Selenium and BDD (Cucumber), frontend
developers and testers can build all possible testing scenarios and run them through Grid
or the cloud providers.

Creating test scenarios with the underlying step definitions in Selenium and JavaScript
is a great way to create test automation. BDD is all about putting developers, testers, and
business-facing staff on the same page through clear product scenarios that are written in
the form of a user story, with a functional test that validates it. A few years ago, I delivered
a deep workshop on testing with BDD, and you can find some interesting insights in the
guide I created: https://www.slideshare.net/ek121268/mastering-bdd-
eran-kinsbruner-workshop-quest-2018.

https://www.slideshare.net/ek121268/mastering-bdd-eran-kinsbruner-workshop-quest-2018
https://www.slideshare.net/ek121268/mastering-bdd-eran-kinsbruner-workshop-quest-2018

158 Working with the Selenium Framework

Visual testing with Selenium
As highlighted briefly in Chapter 7, Core Capabilities of the Leading JavaScript Test
Automation Frameworks, practitioners can grab screenshots for basic visual assertions
with Selenium's built-in functions, as well as utilize some of the tools and frameworks out
there, which include Storybook, Galen, and Percy. To conduct advanced visual testing with
Selenium, leverage AI and ML capabilities, and increase testing scale, it is also possible
to integrate the Applitools Eyes SDK into Selenium across its language bindings, generate
baselines, and perform visual assertions at a much higher quality. Figure 9.1 shows an
Applitools visual test result, which we can further analyze:

Figure 9.7 – The Applitools visual test results within their web-based dashboard

From the preceding visual, if we focus on the Unresolved test case titled 2/2 App
Window, the solution will be able to spot visual differences between that screen and the
saved baseline.

Understanding the Selenium framework and its components 159

Figure 9.8 shows the analysis of the differences, which allows a practitioner to either waive
these differences as not an issue or report them as a regression bug:

Figure 9.8 – A deep analysis of an unresolved test case with the differences highlighted in pink

To get started with Applitools and Selenium with JavaScript language binding, follow
the simple steps in the documentation: https://applitools.com/tutorials/
selenium-javascript.html.

Basically, you need to create an account and obtain an Applitools API Key, and then install
the node package by running the following command:

npm install @applitools/eyes-selenium –save-dev

The SDK offers a few easy APIs to visually analyze the web applications under test.
Developers can use eyes.open();, eyes.check();, and eyes.close(); within
their Selenium test code and report all captures onto the cloud-based dashboard. There
is a ready-to-use open source project offered by Applitools on GitHub (available at
https://github.com/applitools/tutorial-selenium-javascript-
basic) that can be used to get started with the SDK.

https://applitools.com/tutorials/selenium-javascript.html
https://applitools.com/tutorials/selenium-javascript.html
https://github.com/applitools/tutorial-selenium-javascript-basic
https://github.com/applitools/tutorial-selenium-javascript-basic

160 Working with the Selenium Framework

Accessibility testing with Selenium
As highlighted in Chapter 7, Core Capabilities of the Leading JavaScript Test Automation
Frameworks, all leading test automation frameworks can easily integrate with the leading
axe accessibility SDK provided by Deque and create accessibility tests within their
functional test code.

A very useful GitHub repository is offered by Deque with access to the accessibility engine
(axe-core), code samples, and so on at https://github.com/dequelabs.

To install the engine, simply run the following command in the folder where you have the
Selenium project:

npm install axe-core --save-dev

In addition to the preceding installation, you will need to specify within your JavaScript
test code the path to the axe accessibility spec file (in the following code example, the file
is axe.min.js):

const {Builder, By, Key, until} =

 require('selenium-webdriver');

const fs = require('fs')

const by = require('selenium-webdriver/lib/by');

(async function helloSelenium() {

let driver = await new Builder().forBrowser(

 'MicrosoftEdge').usingServer(

 'http://192.168.1.157:4444/wd/hub').build();

await driver.get('https://www.packtpub.com');

const data = await fs.readFileSync(

 'node_modules/axe-core/axe.min.js','

utf8'

)

await driver.executeScript(data.toString());

let result = await driver.executeAsyncScript('var callback

 = arguments[arguments.length -1];axe.run().then(results

 => callback(results))');

await fs.writeFileSync('tests/report.json',

 JSON.stringify(result));

await driver.getTitle(); // => "Packt"

https://github.com/dequelabs

Understanding the Selenium framework and its components 161

let searchBox = await driver.findElement(By.name('q'));

let searchButton = await driver.findElement(

 By.className('magnifying-glass'));

await searchBox.click();

await searchBox.sendKeys('UI Testing with Puppeteer');

await searchButton.click();

await driver.getTitle().then(function(title) {

console.log("The title is: " + title)

});

console.log

await driver.quit();

})();

This spec file holds the relevant accessibility checks, based on which the test will run and
report the results back to the user. If we take the preceding test1.js source code and
add the bold marked lines, it will not only open the Packt website and search for the UI
Testing with Puppeteer book but will also perform an accessibility check via the axe.
run() method and store the entire results in a report.json file.

After the preceding test completes and a report.json file is generated, it will include a
set of arrays broken by the violations, passes, incomplete, and inapplicable
results, as follows:

Figure 9.9 – A sample accessibility violation, detected by running Selenium with the axe SDK on the
Packt website

The entire preceding project is also available in my GitHub repository, which you
can clone and build from here: https://github.com/PacktPublishing/A-
Frontend-Web-Developers-Guide-to-Testing/tree/master/Selenium_
examples.

https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing/tree/master/Selenium_examples
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing/tree/master/Selenium_examples
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing/tree/master/Selenium_examples

162 Working with the Selenium Framework

Upgrading your Selenium code to Selenium 4
This is not an advanced feature of Selenium. However, to enjoy the new features of
Selenium 4, you will need to upgrade your version to the latest one. With any such
upgrade, you will need to ensure that your test code is W3C-compliant and adheres to
the new syntax of a framework. Here, we will not provide a complete guide to migrate
Selenium 3 and below to Selenium 4. If you need information for the complete changes
that need to be considered as part of the migration, please refer to this link: https://
www.selenium.dev/documentation/webdriver/getting_started/
upgrade_to_selenium_4/. As an example, let's focus on the changes to the most
used feature of Selenium, which is the findElement method. This is used to identify
an object within a web application and perform any kind of action on it. Within
the preceding link, you will find a consolidation of changes that need to happen to
your Maven and Gradle dependencies within your IDEs and changes to the desired
capabilities, such as platform, browserName, and others. In addition, the preceding guide
covers changes that you need to know and perform to your waits and timeout usage, and
deprecation of old APIs that aren't supported anymore.

With the preceding accessibility summary, we can wrap up the highlights of Selenium
framework capabilities. Selenium is, of course, richer than just the preceding features
and includes the Page Object Model (POM) design pattern (you can learn more about
POM here: https://learn-automation.com/page-object-model-using-
selenium-webdriver/), different waiting methods, and other useful APIs that can be
learned and used outside of this chapter.

Now that we have covered both the Selenium project components, and its core and
important features that we need to be familiar with, let's explore the future of the
Selenium project and how it will stack up against other advanced frameworks and the rise
of AI and low-code technologies.

The future of the Selenium framework
While Selenium 4 marks a phenomenal milestone for this framework and cross-browser
testing technology, as highlighted in the book, frontend developers have other options and
competitive frameworks to choose from. To remain relevant and shine as it has over the
many years since it was launched, Selenium and its community need to think about the
future of modern web applications such as PWAs, Flutter, and React Native.

https://www.selenium.dev/documentation/webdriver/getting_started/upgrade_to_selenium_4/
https://www.selenium.dev/documentation/webdriver/getting_started/upgrade_to_selenium_4/
https://www.selenium.dev/documentation/webdriver/getting_started/upgrade_to_selenium_4/
https://learn-automation.com/page-object-model-using-selenium-webdriver/
https://learn-automation.com/page-object-model-using-selenium-webdriver/

Summary 163

In the age of intelligent testing and analysis, with digital apps also becoming more
complex and demanding, test automation frameworks including Selenium and others
must also become richer and more capable. In Selenium 4, the community launched a
modified version of Selenium IDE that records all the user actions in a browser, including
all the web elements, and can export the recorded script into code. Projects such as
Healenium that were covered in this chapter should not be created, and instead, the
abilities within Healenium should be part of the Selenium core project.

In future releases, such tools should be able to perform more complex test creation
activities, generate reports, ensure no flakiness in the resultant script, and much more.
With Cypress's experimental project called Cypress Studio, the Cypress team is already
aiming higher in its test recording technology.

The core pillars of a futuristic test automation framework such as Selenium should be able
to also match all business roles that are doing test automation. Developers, SDETs, and
manual testers should find it easier to work and set up the test framework. At the time of
writing, Selenium isn't considered the easiest ramping-up test automation framework to
use compared with Cypress and Playwright.

Selenium, as a great multichannel framework that can support both web platforms
and mobile ones, should continue evolving its APIs and capabilities and run its
roadmap in parallel with the Appium tools so that it remains a unique offering for
such application types.

To conclude this section, the hope of practitioners that use Selenium is to have a more
advanced AI-based, self-healing, and very capable testing technology that can ease the
ramping up, maintenance, and analysis of test runs across web and mobile apps of
any kind.

Summary
In this chapter, we started by providing a recap of the Selenium project core pillars and
how to get started with the basic Selenium framework. We then zoomed in and went
deeper into the core features and abilities of the Selenium test automation framework.
We highlighted the features with a practical example on how to get started and use these
features, as well as providing some ready-to-use code samples that can help you build an
advanced testing project for your web application.

164 Working with the Selenium Framework

We also offered a more futuristic vision for such a test automation framework,
looking at desirable capabilities that practitioners are lacking today and could find
useful going forward.

That concludes this chapter! In the following chapter, we will do the exact same analysis
as we did for Selenium but for the Cypress test automation framework.

10
Working with the

Cypress Framework
As highlighted in Chapter 3, Top Web Test Automation Frameworks, Cypress is the
fastest-growing cross-browser and developer-friendly test automation framework.
Focused on JavaScript and TypeScript development languages, the framework offers an
end-to-end web application testing ability. While Cypress is an open source framework,
as opposed to Selenium and other featured frameworks in this book, Cypress also has a
paid functionality through its dashboard (https://docs.cypress.io/guides/
dashboard/introduction#Features) and reporting platform. In this chapter, you
will get a technical overview of the framework with a focus on its advanced capabilities,
including time travel, component testing, network control, API testing, supported plugins,
cloud testing, and support for Behavior-Driven Development (BDD) testing.

The chapter will cover the following topics:

• Getting started with Cypress and running a first test scenario

• Highlighting the most advanced and important-to-know capabilities of
the framework

• Understanding where the framework is heading in the future

166 Working with the Cypress Framework

The goal of this chapter is to help frontend developers enrich their test automation
coverage with more advanced capabilities of the framework, whether they are built-in
features or plugins.

Technical requirements
The code files for this chapter can be found here: https://github.com/
PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing.

Getting started with Cypress
As explained in Chapter 3, Top Web Test Automation Frameworks, to get started with
the Cypress (https://www.cypress.io/) framework, you need to install the node
package through the following command line:

npm install cypress -D

After the installation is complete, you can use both the Cypress GUI and the IDE (in our
case, we will use Visual Studio Code) to run your Cypress tests.

Launching the Cypress GUI is done by running the following command:

npx cypress open

The Cypress GUI
After launching the Cypress GUI using the preceding command, you will be presented
with three windows:

• Tests: This gives an overview of scripts and execution. In this window, you
can either launch a single JavaScript or TypeScript test against any of your
local browsers.

• Runs: In this window, a user can log in to the dashboard and run tests in parallel,
identify test flakiness and debug failures, manage multiple users and organizations,
integrate easily with the Jira defect management tool as well as CI tools, and get
more scaled analytics on the overall test suites.

https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing

Getting started with Cypress 167

• Settings: In this window, a user can review their Cypress workspace configuration,
the Node.js version used, the proxy settings configuration, the file opener
preference, and so on:

Figure 10.1 – The Cypress GUI main window with a focus on the Tests tab

168 Working with the Cypress Framework

When running a test script from the GUI runner, the practitioner sees in real time all the
steps running side by side on the browser and the website under test. It provides a unique
time-travel ability that shows upon each step in the test what happened, what the website
status was, and so on:

Figure 10.2 – The Cypress test execution window with the time-travel ability demonstrated

Another great feature that can be used within the GUI runner is the Cypress selector. The
Cypress selector is an advanced built-in object spy that can be used to analyze the DOM
elements, as well as provide the element locator IDs to be used in test code creation:

Getting started with Cypress 169

Figure 10.3 – The Cypress element selector capabilities within the Cypress GUI

In the preceding Cypress selector screenshot, a user can analyze and copy and paste the
textbox element locator into their JavaScript test code (in this case, the element ID is
#email1).

Cypress IDE and command-line executions
Alternatively, to run the Cypress tests from the command line within an IDE such as
Visual Studio Code and utilize the Cypress dashboard, you will need to log in with a valid
email and place the generated project ID in the cypress.json file. You will also receive
a new private generated key. Running the following command will execute and present in
the web-based dashboard your test results:

npx cypress run --record --key ["private key"]

170 Working with the Cypress Framework

If all was properly set up, you should see in your command-line output the execution
progress, as well as the results being populated on your Cypress dashboard:

Figure 10.4 – The Cypress dashboard test results output

As you can see from the preceding dashboard screenshot, there are a few pillars of the
platform that include the test results (passed, failed, pending, and so on) and the test
execution insights, covering test duration, the slowest tests, test suite size, and so on. In
the paid version, users can also obtain much deeper insights from their suite as well as
more test analysis and scale.

To run Cypress tests in parallel, you will need to set up local machines with the supported
CI servers (Jenkins, Bitbucket Pipelines, GitLab, GitHub Actions, CircleCI, and so
on), and pass the --parallel command-line option at the end of the aforementioned
execution command (https://docs.cypress.io/guides/guides/
parallelization#Overview).

To get the feel for a simple Cypress JavaScript test scenario that navigates to the Packt
website and checks the different viewport visuals when changing screen resolutions, we
have created the following test code. The first validation is to provide the test with a very
small screen resolution that will collapse the main home page navigation bar, then expand
the size to various sizes, and assert the screen's UI.

To execute all of your test code from the command line, you will need to use the following
option from your IDE command line:

npx cypress run --headed

Getting started with Cypress 171

To specifically run a JavaScript test spec, you will need to add the --spec command-line
option with the path to the specific test file:

/// <reference types="cypress" />

context('Viewport', () => {

 beforeEach(() => {

 cy.visit('https://www.packtpub.com')

 })

 it('cy.viewport() - set the viewport size and dimension',

 () => {

 // https://on.cypress.io/viewport

 cy.get('#search').should('be.visible')

 cy.viewport(320, 480)

 cy.viewport(2999, 2999)

 cy.viewport('macbook-15')

 cy.wait(200)

 cy.viewport('macbook-13')

 cy.wait(200)

 cy.viewport('macbook-11')

 cy.wait(200)

 cy.viewport('ipad-2')

 cy.wait(200)

 cy.viewport('ipad-mini')

 cy.wait(200)

 cy.viewport('iphone-6+')

 cy.wait(200)

 cy.viewport('iphone-6')

 cy.wait(200)

 cy.viewport('iphone-5')

 cy.wait(200)

 cy.viewport('iphone-4')

 cy.wait(200)

 cy.viewport('iphone-3')

172 Working with the Cypress Framework

 cy.wait(200)

 // cy.viewport() accepts an orientation for all presets

 // the default orientation is 'portrait'

 cy.viewport('ipad-2', 'portrait')

 cy.wait(200)

 cy.viewport('iphone-4', 'landscape')

 cy.wait(200)

 // The viewport will be reset back to the default

 // dimensions in between tests (the default can be set

 // in cypress.json)

 })

})

After running the preceding functional test spec from the Cypress GUI, we will see how
the Packt home page looks with various screen sizes and resolutions. Specifically, as shown
in the following screenshot, we can see what the page will look like in an iPhone 6+
smartphone screen resolution:

Figure 10.5 – The Cypress viewport test execution output on the Packt homepage

Cypress's advanced test automation capabilities 173

Now that we successfully have set up a Cypress test environment and explored the two
main methods of running Cypress test code (the GUI and the IDE command line), let's
explore the most advanced features of the Cypress framework.

Cypress's advanced test automation
capabilities
In Chapter 9, Working with the Selenium Framework, we explored the advanced features of
the framework that frontend developers and SDETs can use, and we will now do a similar
overview of the most advanced features of Cypress.

Note that measuring code coverage is also considered a powerful capability within
software test automation; however, since we covered the abilities of code coverage with
Istanbul and Babel in Chapter 8, Measuring Test Coverage of the Web Application, we will
not repeat it here.

Cypress test retries
When creating test automation scenarios, one of the most complex cases as well as the
most time-consuming is test stability and flakiness. Tests can often fail due to platform
availability, environmental issues such as loss of network connectivity on the test machine,
synchronization issues on the web application under tests, and so on. For such cases,
Cypress offers a test retry mechanism (https://docs.cypress.io/guides/
guides/test-retries#How-It-Works) that, in cases of failures, will attempt to
rerun tests up to three times prior to marking them as failed.

To enjoy this useful feature globally for all your tests, you will need to add a short block of
code to the cypress.json file, as shown here:

{

 "retries": {

 // Configure retry attempts for 'cypress run'

 // Default is 0

 "runMode": 2,

 // Configure retry attempts for 'cypress open'

 // Default is 0

 "openMode": 0

 }

}

174 Working with the Cypress Framework

Alternatively, to use this feature on a test-by-test case basis, you will need to include this
code block within the JavaScript test spec:

It(

'do something',

{

 retries: {

 runMode: 2,

 openMode: 1,

 },

},…

When using the retry mechanism, all flaky and retried test executions are visible in the
Cypress web-based dashboard. Users can go to the project test suite menu, and within the
Flaky tests option, they can look at the identified flaky test cases, as well as see the overall
percentage of flakiness within the project. Users can then analyze and decide what the
next steps are for these unstable test scenarios.

Using stubs, spies, and clocks with Cypress
When it comes to developing units, APIs, and integration tests, having the ability to
manipulate output or force different behaviors of your web application can expand
your test coverage and uncover defects earlier in the cycle. For that purpose, Cypress
comes equipped with stubbing, spying, and mocking tools through its bundled Sinon.
js (https://sinonjs.org/), Lolex (https://github.com/sinonjs/fake-
timers), and Sinon-chai (https://github.com/domenic/sinon-chai)
libraries.

To better understand the use of the Cypress network control and specifically the
cy.clock() method, here is a short code sample that goes to a Cypress web page
(https://example.cypress.io/commands/spies-stubs-clocks), which is
used for demonstration purposes, and validates the time by moving the clock 10 seconds
forward through the cy.tick() method:

/// <reference types="cypress" />

const now = new Date(Date.UTC(2017, 2, 14)).getTime()

context('Viewport', () => {

 beforeEach(() => {

Cypress's advanced test automation capabilities 175

 cy.visit('https://example.cypress.io/commands/

 spies-stubs-clocks')

 })

 it('set timer',() => {

 cy.clock(now)

 cy.get('#tick-div').click().should('have.text',

 '1489449600')

 cy.tick(10000) // 10 seconds passed

 cy.get('#tick-div').click().should('have.text',

 '1489449610')

 cy.wait(2000)

 cy.clock()

 cy.tick(60000)

 cy.clock().invoke('restore')

})

})

In the preceding code snippet, we are setting the date in Coordinated Universal Time
(UTC) (https://en.wikipedia.org/wiki/Coordinated_Universal_Time)
to keep it consistent and the same for each test run (we are using February 14, 2017).
Within the test, we are initiating the clock to the current time and then validating the time
prior to using the cy.tick(10000) method and afterward to assert that 10 seconds
moved by running the command.

176 Working with the Cypress Framework

After running the preceding test code, we can see in the following screenshot (taken from
the Cypress GUI runner) the before and after time change after using the clock and
tick commands:

Figure 10.6 – The Cypress clock and tick methods used to push the actual time 10 seconds forward

Within Cypress, you can also use cy.stub() inherited from the SinonJS library
to validate different outputs for a test, as well as use the various SinonJS matchers
(https://sinonjs.org/releases/latest/matchers/).

Capabilities such as stubbing and network/clock control are very beneficial for test
coverage expansion with more negative and boundary conditions, as well as different test
case conditions. If you need to validate a web page's output if there is a specified time
change or other input to the page, you can use the preceding capabilities and make the
proper assertions.

Lastly, for this section, it is very important to be familiar with the cy.intercept()
method. This capability is super-powerful in routing API calls from the original/expected
and often cached routes to a "controlled" and specific one. This helps to test more often,
across different scenarios, and sometimes prior to the real production API being available
for testing (https://docs.cypress.io/api/commands/intercept#cy-
intercept-and-request-caching). As documented in detail on the Cypress
website (https://docs.cypress.io/api/commands/intercept#Matching-
url), using the intercept option can provide greater flexibility to test against production,
QA, staging, and other environments within a single test code.

Cypress's advanced test automation capabilities 177

Running Cypress within CI
Creating test automation is great; however, within Agile teams and to save time, a lot
of tests are being integrated into a CI process that runs them upon a specified trigger.
Such a trigger can be any code change made within the source code repository or at
a specific time within a day. Cypress integrates perfectly with most of the CI server
tools (https://docs.cypress.io/guides/continuous-integration/
ci-provider-examples), including CircleCI, Jenkins, GitHub Actions, GitLab,
AWS CodeBuild, and Bitbucket Pipelines. You can also configure a local Docker image
(https://github.com/cypress-io/cypress-docker-images) that will
run your tests via a GitHub action in a container. Note that Cypress already provides
ready-made Docker images on Docker Hub. A step-by-step guide on how to configure
and run a set of Cypress tests through GitHub Actions is available at https://github.
com/marketplace/actions/cypress-io and basically provides a list of .YML
configuration files for each of the CI servers supported by Cypress.

In the following file, we specify that any code or repository change driven by the [push]
command will trigger a Cypress test run against a Chrome browser:

Figure 10.7 – A sample YML GitHub Actions configuration file
(source – https://github.com/marketplace/actions/cypress-io)

Based on the CI server that is adopted by the development and testing team, you should
select the workflow and configure the respective .YML files accordingly.

https://github.com/marketplace/actions/cypress-io
https://github.com/marketplace/actions/cypress-io
https://github.com/marketplace/actions/cypress-io

178 Working with the Cypress Framework

Component testing
An innovative and unique testing method is being introduced and driven by Cypress.
Component testing (https://docs.cypress.io/guides/component-
testing/introduction) aims to bridge the gap between unit and integration testing
and offers a test engineer focused and isolated component-based testing to expedite
feedback and identify core defects more effectively. This feature is still at an experimental
stage at the time of writing; however, it already has great documentation and code samples
for practitioners to get started with it.

The key fundamentals for testing a component within a web application is not to use
the usual cy.visit() method that will navigate to a specified web page but instead
utilize the mount capability, and home in on a target feature or component on the web
page under test. Using the mount capability allows the test engineer to perform assertion
directly on the rendered component from within the website.

The component testing structure utilizes the webpack JavaScript technology (https://
webpack.js.org/concepts/) to process and "bundle" the web application into
modules. On top of your existing Cypress installation, you will need to install both the
webpack node module as well as the relevant web development framework that you are
using for your web application development (React or Vue.js).

In the following command, we will assume that Vue.js is the framework used for web
application development:

npm install --save-dev cypress @cypress/vue @cypress/webpack-
dev-server webpack-dev-server

After the preceding installation, add the following block to your local cypress/
plugins/index.js file:

module.exports = (on, config) => {

 if (config.testingType === 'component') {

 const { startDevServer } =

 require('@cypress/webpack-dev-server')

 // Your project's Webpack configuration

 const webpackConfig =

 require('../../webpack.config.js')

 on('dev-server:start', (options) =>

 startDevServer({ options, webpackConfig })

Cypress's advanced test automation capabilities 179

)

 }

}

Now that the setup is ready, we can create a basic component test in a similar way, as
provided by the Cypress documentation (we'll name the file Button.spec.jsx):

import { mount } from '@cypress/vue'

import Button from './Button'

it('Button', () => {

 // with JSX

 mount(() => <Button>Test button</Button>)

 // ... or ...

 mount(Button, {

 slots: {

 default: 'Test button',

 },

 })

 cy.get('button').contains('Test button').click()

})

Running the tests is done by opening the Cypress GUI runner with the -ct command-
line option and, from the GUI, selecting the spec file to run. In the preceding example, it
would be the Button.spec.jsx file:

npx cypress open-ct

Alternatively, you can run all of your component tests from your IDE command line using
the following command:

npx cypress run-ct

That's it!

180 Working with the Cypress Framework

Cypress Studio
Similar to component testing, Cypress Studio (https://docs.cypress.io/
guides/core-concepts/cypress-studio) is under development. This capability
is evolving and is aimed at providing a low-code option for frontend developers and
SDETs. It comes with a recorded GUI-based test that automatically generates JavaScript
test specs.

To use this feature, it needs to be enabled within the cypress.json file. Simply include
the following line in that file:

{

 "experimentalStudio": true

}

At the time of writing, Cypress Studio supports the .click(), .type(), .check(),
.uncheck(), and .select() commands.

The Cypress community provides a preparatory project that leverages an open source web
application called Real World App (https://github.com/cypress-io/cypress-
realworld-app).

One of the great benefits of the studio is the ability to record directly against the web
application under test without writing any lines of code. Another benefit is simply to use
the studio as an entry-level point and a learning experience of the Cypress technology.

Let's take the preceding code sample from our Cypress clock demonstration and run it
using the Cypress GUI runner. After clicking on the edit test step, we will then see the
studio platform enabled, and we can interact with the web application under test as well as
record new steps, as shown in the following screenshot:

Figure 10.8 – The Cypress Studio launch button within the Cypress GUI

Cypress's advanced test automation capabilities 181

Upon any test launch from the GUI, users will have the ability to click on the Add New
Test button, as highlighted in Figure 10.8, and start the test recording process:

Figure 10.9 – The Cypress Studio UI in action from within an available JavaScript test spec

When I used the recorder on the preceding existing test, I was able to generate in seconds
a new test scenario that was added as "studio commands," as shown in the following
screenshot:

Figure 10.10 – The Cypress Studio newly generated test spec, titled cy_studio_demo

182 Working with the Cypress Framework

To realize what code was generated by the studio in the current test spec, here is a
screenshot of the test code. You can see that the code is annotated with a message that says
it was created with Cypress Studio:

Figure 10.11 – The Cypress Studio-created code snippet example

Cypress plugins
Cypress alone is a great and powerful testing framework; however, as an open source
framework, it enjoys the benefit of external contributors. Among the contributions
to Cypress, there is a rich set of available plugins (https://docs.cypress.io/
plugins/directory) that can extend the core capabilities of the framework towards
code coverage measurements, accessibility testing using the AXE tool (https://
github.com/component-driven/cypress-axe), visual testing with Applitools
(https://applitools.com/tutorials/cypress.html), code analysis
using ESLint (https://github.com/chinchiheather/cypress-eslint-
preprocessor), webpack for component testing (as described earlier in this chapter),
and so on.

A very useful plugin that is also supported by Cypress is the cucumber plugin (https://
github.com/TheBrainFamily/cypress-cucumber-preprocessor). It
enables you to utilize BDD for test automation. As with any other Cypress plugin, with
cucumber, you will need to install the relevant node package through this command:

npm install --save-dev cypress-cucumber-preprocessor

Then, you will need to declare it in the cypress/plugins/index.js file accordingly:

const cucumber = require('cypress-cucumber preprocessor').
default

module.exports = (on, config) => {

 on('file:preprocessor', cucumber())

}

Cypress's advanced test automation capabilities 183

In addition, within the cypress.json file, you will need to specify that the test files are
BDD feature files, as follows:

{

"testFiles": "**/*.feature}

Lastly, and specifically for cucumber within Cypress, you will need to add this
configuration to the package.json file:

"cypress-cucumber-preprocessor": {

 "nonGlobalStepDefinitions": true

}

The following is a screenshot of Cypress with a cucumber BDD test spec (a feature file)
that I developed while running on a web-based designer tool called Gliffy (https://
www.gliffy.com/). The entire test while using underneath the feature file
JavaScript step definitions is fully built using the Gherkin syntax of Given, When,
and Then:

Figure 10.12 – Cypress with the cucumber BDD test execution example

https://www.gliffy.com/
https://www.gliffy.com/

184 Working with the Cypress Framework

Another invaluable option within Cypress is the ability to create simple but powerful
plugins. A good example is a plugin that can help switch between test environments. If
you are running tests and wish to control the target environment (whether it is staging,
QA, production, and so on), you can use Cypress to generate a configuration plugin that
will redirect your test to the right environment. Filip Hric wrote a nice blog that explains
the process (https://filiphric.com/create-a-configuration-plugin-
in-cypress).

That's it!

Cypress API testing
Among all the features of Cypress, there is also a built-in capability to create and execute
API testing that covers the core methods of an API – GET, PUT, POST, DELETE, and so
on.

Using the cy.request() commands, you can create rich API tests and perform API
assertions with Cypress in JavaScript. A nice guide that was created by one of the leading
CI vendors, CircleCI (https://circleci.com/blog/api-testing-with-
cypress/), showcases how to not only create an API test with Cypress but also how to
run it through CI.

In addition to the preceding guide, you can take this ready-to-run JavaScript Cypress
test spec and, upon creating a username and a token through the Register menu item on
the open source website (https://docket-test.herokuapp.com/), run these
API POST test scenarios. An alternative website to use for API testing is https://
jsonplaceholder.typicode.com/.

Basically, the following code sample uses the API POST method to add a few to-do items
to the free web application (https://docket-test.herokuapp.com/). It consists
of two test scenarios that add a to-do item with the text Walk cat and a to-do item
called Packt publishing. It validates that the response status for both requests is OK
(200):

/// <reference types="cypress" />

describe("Docket Post Test", () => {

 it("Should create a Todo item", () => {

 cy.request({

 method: "POST",

 url:

 "https://docket-test.herokuapp.com/api/Todo/",

 headers: {

https://filiphric.com/create-a-configuration-plugin-in-cypress
https://filiphric.com/create-a-configuration-plugin-in-cypress
https://docket-test.herokuapp.com/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://docket-test.herokuapp.com/

Cypress's advanced test automation capabilities 185

 token: "[YOUR TOKEN ID",

 },

 body: {

 Body: "Walk cat",

 },

 })

 .its("status")

 .should("be.ok");

 });

});

describe("Docket Post Test 2", () => {

 it("Should create a Todo item", () => {

 cy.request({

 method: "POST",

 url:

 "https://docket-test.herokuapp.com/api/Todo/",

 headers: {

 token: "YOUR TOKEN ID",

 },

 body: {

 Body: "Barclays Demo",

 },

 })

 .its("status")

 .should("be.ok");

 });

});

});

In this section, we explored many of the advanced capabilities of the Cypress framework,
including component testing, Cypress Studio, network control, code coverage
measurements, BDD, running tests within CI, the rich plugin archive, API testing, and the
test retries. While these are not all the features in this massive framework but it is a great
list to focus on and utilize within tour test development activities.

We will now move on to explore where Cypress might be heading in the future and some
of the expected directions for this framework.

186 Working with the Cypress Framework

The future of the Cypress framework
While Cypress has made amazing progress in a very short amount of time in this industry,
it is already looking at some transformational capabilities in the shape of the studio and
component testing. For Cypress to mature even further, it will need to tick a few more
boxes for the expected capabilities of a test automation framework:

• Support for all browser types and versions, including Safari's WebKit on macOS.

• Support for web applications on mobile platforms.

• Potentially expand to testing more easier multiple tabs and windows as Selenium
4 does.

• There is a rise in the adoption of languages such as Python, so more language
support by Cypress could expand its usage within the community.

• Better support for modern application types such as the Progressive Web Apps
(PWAs) Flutter and React Native.

In addition to the preceding, if the Cypress framework can develop its low-code studio
solution with more intelligent capabilities driven by Machine Learning (ML), it will
stand out compared with the Selenium IDE and Selenium framework extension called
Healenium, which was covered in the previous chapter, Chapter 9, Working with the
Selenium Framework.

Another great opportunity for Cypress to advance through its dashboard is reporting
and test analysis. The ability to identify flaky test cases, tests that take longer than others
to execute, and so on is a huge productivity boost for frontend developers and SDETs.
Investing in these features and making them easier to adopt would allow this framework
to stand out from the alternatives.

What is also important to find within a modern frontend web application testing
framework from a capability standpoint is performance testing. As we know, all the
featured test frameworks in this book do not come with built-in performance testing
capabilities and are either integrating and relying on open source JMeter or are staying
away from such types of tests. As this framework matures, this type of non-functional
testing should be given equal consideration within this framework.

Summary 187

The way that Cypress has partnered with cloud vendors and supported the development
of SDKs to scale up and run Cypress tests in the cloud was a great initiative, which
many large enterprise organizations adopted. It would be very beneficial to deepen
these partnerships and see how cloud solutions can contribute to the Cypress ecosystem
with features such as reporting and scale. Currently, Cypress works well with a set of
reporters that includes JUnit and TeamCity (https://docs.cypress.io/guides/
tooling/reporters); however, when expanding partnerships with other technology
vendors, Cypress can benefit from a much more meaningful reporting solution.

Finally, investing in more security testing of web applications in the age of cyberattacks
and denials of service would be a huge advantage for Cypress. Currently, Cypress
users can work with Auth0 authentication features (https://docs.cypress.
io/guides/testing-strategies/auth0-authentication#Auth0-
Application-Setup) and other authentication solution providers such as Okta,
Google, GraphQL, and Amazon; however, this is only one aspect of security, which
isn't sufficient.

With these suggestions and opportunities for enhancements, we will conclude this section
and provide a summary for this chapter.

Summary
In this chapter, we covered the fundamentals of the Cypress framework and learned how
to get started, and run a JavaScript Cypress test in both IDE mode and from the GUI
runner. We then dived deeper into the most advanced features of the Cypress framework
and provided code samples, references, and insights on how to use them and for what
benefits. Among the core features that we touched upon were the network control
capabilities, running from CI, Cypress Studio, component testing, and API testing.
We then tried to project the future of Cypress through capabilities that are currently
experimental as well as the missing and greatly needed features for this framework.

The two main code examples from this chapter that show the use of the clock and the API
test are in the following GitHub repository, forked from the Cypress master repository:
https://github.com/PacktPublishing/A-Frontend-Web-Developer-s-
Guide-to-Testing/tree/master/Cypress_examples.

That concludes this chapter! In the following chapter, we will perform the exact same
analysis we did for Cypress for the Playwright test automation framework.

https://github.com/PacktPublishing/A-Frontend-Web-Developer-s-Guide-to-Testing/tree/master/Cypress_examples
https://github.com/PacktPublishing/A-Frontend-Web-Developer-s-Guide-to-Testing/tree/master/Cypress_examples

11
Working with

the Playwright
Framework

As highlighted in Chapter 3, Top Web Test Automation Frameworks, Playwright is among
the newest and most modern frontend test automation frameworks. Being built on top
of CDP (the Chrome Debugger Protocol) allows the framework to acquire the deep
coverage and testing abilities of any web application across all browser types. With CDP
(https://chromedevtools.github.io/devtools-protocol/), frontend
web application developers can better inspect their web applications, debug them, cover
the network and performance aspects of the app, scan the app for accessibility and PWA
compliance, and much more besides. As opposed to the Cypress and Google Puppeteer
frameworks, which only come with JavaScript and TypeScript language support,
Playwright comes with more language binding support, including Python, Java, and .NET.

The framework is maintained by Microsoft and led by the same team that built the Google
Puppeteer framework. With rich built-in capabilities that include an inspector, test
generator, visual testing, parallel testing and sharding, API testing, a retry mechanism,
page object model practice, and more, this framework is positioning itself quite high on
the candidate's list for frontend developers.

https://chromedevtools.github.io/devtools-protocol/

190 Working with the Playwright Framework

In this chapter, you will get a technical overview of the framework with a focus on the
advanced capabilities with working examples that can be used out of the box, some core
differences between Playwright and the other leading frameworks covered in this book,
and much more.

The chapter is designed to cover the following areas:

• Getting started with Playwright and running a first test scenario

• Highlights of the most advanced and important capabilities of the framework

• Understanding where the framework is heading in the future

The goal of the chapter is to help frontend developers enrich their test automation
coverage with the more advanced capabilities of the framework, whether these are
built-in features or plugins.

Technical requirements
You can find complete code examples on GitHub under the following repository:

https://github.com/PacktPublishing/A-Frontend-Web-Developers-
Guide-to-Testing

Getting started with Playwright
As explained in Chapter 3, Top Web Test Automation Frameworks, to get started with the
Playwright (https://playwright.dev/) framework, you need to install the node
package through the following command lines:

npm install -D @playwright/test

npx playwright install

Once the preceding package has been installed, together with its dependencies, you are
ready to start writing and running your first test locally in either Headed or Headless
mode, as explained in Chapter 1, Cross-Browser Testing Methodologies.

To get right down to the code, simply use the JavaScript test code depicted below that
performs a login scenario on the GitHub website:

const { test, expect } = require('@playwright/test');

test('basic test', async ({ page }) => {

 await page.goto('https://github.com/login');

 await page.fill('input[name="login"]', 'USER NAME');

https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing

Getting started with Playwright 191

 await page.fill('input[name="password"]', 'PASSWORD');

 await page.click('text=Sign in');

});

To run the simple script above, which logs in to GitHub across three browsers in
parallel, you would use a configuration file, as shown below. This configuration file
will launch three workers through Playwright and validate the login scenario on
Chrome, Firefox, and Edge. The config file should be placed in the project root folder
and not in the tests folder.

As you will see in Figure 11.1 at the end of the execution, Playwright uses workers to run
tests in parallel across one type of browser or many browser platforms. You can think of
workers as processes that are executed in parallel to expedite the test execution time as
well as coverage:

// playwright.config.js

const { devices } = require('@playwright/test');

/** @type {import('@playwright/test').PlaywrightTestConfig} */

const config = {

 forbidOnly: !!process.env.CI,

 retries: process.env.CI ? 2 : 0,

 use: {

 trace: 'on-first-retry',

 },

 projects: [

 {

 name: 'chromium',

 use: { ...devices['Desktop Chrome'] },

 },

 {

 name: 'firefox',

 use: { ...devices['Desktop Firefox'] },

 },

 {

 name: 'edge',

 use: { ...devices['Desktop Edge'] },

 },

],

192 Working with the Playwright Framework

};

module.exports = config;

At the end of the execution of the script in parallel, you should get the following output
on your IDE terminal. You can also observe in the following screenshot that the entire
parallel execution only took 4 seconds:

Figure 11.1 – Playwright command-line interface output for parallel testing

If you only want to run a single test or a few tests on one of the browsers within your
Playwright configuration file, just like the one above, you will add --project with the
browser name that you are interested in testing. For example, running just the preceding
test in Headed mode on the Firefox browser is done through the following command line:

npx playwright test --headed --project=firefox

In addition to the keyword used for parallel testing called workers, Playwright uses the
keyword expect to perform test assertions. Also, Playwright performs all its actions
on a page, which is one of the several fixtures that are part of the framework. The Page
component within Playwright (https://playwright.dev/docs/api/class-
page) provides all the methods needed to interact with a single tab within a browser to
test your web application. Other fixtures supported by the framework in addition to Page
are context (https://playwright.dev/docs/test-configuration), browser,
and browserName.

https://playwright.dev/docs/api/class-page
https://playwright.dev/docs/api/class-page

Getting started with Playwright 193

If, for example, you wanted to validate the fact that after logging in to your GitHub
account, you can see the Pull requests tab, and by clicking on that tab, you will get a list
of your Created pull requests, you would simply add the following two lines of code to the
preceding JavaScript test:

await page.click('text=Pull requests');

await expect(page.locator(

 'text=Created').first()).toBeVisible();

Many of the testing capabilities of Playwright use, and are derived from, the Test class and
its underlying APIs (https://playwright.dev/docs/api/class-test). In
the next sections, we will cover some of the key methods that a practitioner needs to be
familiar with.

Playwright also allows its users to record all the test executions within a video file. To do
so, you will need to add a few lines to the configuration used above:

Use: {

 Video: ' on',

},

Lastly, like the Cypress framework, with Playwright, you can specify up to three test
execution retries in the event of failure. You can either specify them in the preceding
sample configuration file or within the command line through a parameter:

npx playwright test --retries=3

Another powerful built-in capability that comes with the Playwright framework is the
auto-waiting feature, which ensures less flaky and more synchronized test execution
(https://playwright.dev/docs/actionability). The framework
automatically waits for elements to be visible, stable, and in a ready state within the
Document Object Model (DOM) prior to performing an action such as click, tap,
or check.

In addition, and unlike the Cypress framework, the Playwright framework can work with
multiple frames within a web application through the page.frame() APIs that support
actions such as interacting with specific elements through frame.fill() and other
options (https://playwright.dev/docs/frames).

Now that we have briefly covered the first installation and execution steps of a single piece
of JavaScript test code within Playwright, let's start reviewing the other core capabilities,
including the most advanced ones.

194 Working with the Playwright Framework

Playwright's advanced test
automation capabilities
Just as we explored the advanced features of the Selenium and Cypress frameworks
that frontend developers and SDETs can, and should, use in Chapter 9, Working with the
Selenium Framework, and Chapter 10, Working with the Cypress Framework, respectively,
we will carry out a similar overview of the most advanced features of Playwright.

Note
Measuring code coverage (https://playwright.dev/docs/api/
class-coverage) is also considered a powerful capability within software
test automation. However, since we've covered the abilities of code coverage
with Istanbul and Babel in Chapter 8, Measuring Test Coverage of the Web
Application, we will not repeat it here. Keep in mind that for Playwright, the
code coverage with Istanbul is currently only supported on Chromium-based
browsers.

Playwright Inspector
The Playwright framework provides a GUI tool that can facilitate test automation creation
and debugging. The Inspector tool (https://playwright.dev/docs/inspector)
allows users to view the DOM elements and debug the tests through breakpoints or
test stops. It also allows the DevTools browser to be used for additional debugging and
analysis of the web application under test.

To launch the Inspector tool in a PowerShell (https://code.visualstudio.com/
docs/languages/powershell) command line, simply run the following command
(note that on non-Microsoft machines, PowerShell must be installed separately):

$env:PWDEBUG=1

After running the preceding command, you will launch the Playwright test execution
using the normal command:

npx playwright codegen wikipedia.org

The browser will launch with the Inspector tool running in a separate window, as you can
see in the following screenshot. From the Inspector window, you can now record your test
steps and perform a step over from an existing action to the next.

https://code.visualstudio.com/docs/languages/powershell
https://code.visualstudio.com/docs/languages/powershell

Playwright's advanced test automation capabilities 195

Figure 11.2 – Playwright Inspector tool running in parallel with the JavaScript test

Users of the Inspector tool can step through the test code line by line and see in real
time the behavior of the web application under test. In the example below, we are
looking at the Firefox browser in a simple login test scenario with a simple step into
the input of the username.

Figure 11.3 – Synchronized Page elements and execution timeline

The GUI has the step-over option, along with a Record button that allows the addition of
more steps to an existing test scenario. In the bottom GUI of the Inspector, users can see
the elements that the test is interacting with and view all their properties.

When a user clicks on the Explore button on the bottom part of the Inspector GUI, they
will get the option to mouse hover the elements on the browser as well as launch and use
the browser DevTools mentioned earlier.

196 Working with the Playwright Framework

When running the test with the Inspector tool enabled, you can launch the Test Generator
(https://playwright.dev/docs/codegen) option by clicking on the Record
button. Any action performed by the user when the Record button is ON will be
converted into test code added to the existing script.

This tool is an awesome addition to the framework that can be leveraged as frontend
developers are creating their test code and during debugging processes.

Emulating mobile devices
As opposed to the Cypress framework (which is not mobile-friendly at this stage),
Playwright offers built-in mobile device emulation capabilities that can validate against the
mobile device viewports and color schemes to show how a web application will look and
behave. While it doesn't replace a real mobile device test, it does extend the test coverage
capabilities within Playwright. Additional mobile-specific capabilities center on specifying
the geolocation, time zones, and locales of the web application under test.

In the code snippet screenshot that follows, you can see how, by using Playwright, you can
navigate to the Google website on an iPhone 13 Pro smartphone while setting a German
locale (de-DE).

When running the following command, it will open in an iPhone 13 Pro viewport size:

const { webkit, devices } = require('@playwright/test');

const iPhone = devices['iPhone 13 Pro'];

(async () => {

 const browser =

 await webkit.launch({headless: false, slowMo: 300});

 const context = await browser.newContext({

 ...iPhone,

 locale: 'de-DE'

 });

 const page = await context.newPage();

 await page.goto('https://www.google.com/');

 // other actions...

 await page.screenshot({path: 'DE-Google.png'})

 await browser.close();

})();

Playwright's advanced test automation capabilities 197

The preceding code from your IDE terminal can be run by node and the path to the
preceding JavaScript source file.

Figure 11.3 – Playwright code snippet that emulates the Google home page on an iPhone 13 Pro device
in the German locale

As explained in this section, with Playwright, you can emulate many viewports and
mobile devices and cover to some extent your web application responsiveness across these
different layouts.

Playwright test annotations
In addition to the above capabilities, the Playwright framework also offers annotations
(https://playwright.dev/docs/test-annotations) such as skipping tests,
focusing, grouping tests, tagging, and conditionally skipping a group of tests. Such
abilities can provide more control and governance within a test suite. A very cool and
unique annotation within the Playwright framework is test.fixme(). This annotation
marks a test that is constantly failing and lets Playwright ignore it; so, it does not appear
as a failure case.

198 Working with the Playwright Framework

Let's see how we can use the fixme annotation in the earlier code sample of the GitHub
login scenario:

const { test, expect } = require('@playwright/test');

test.fixme('basic test', async ({ page }) => {

await page.goto('https://github.com/login');

await page.fill('input[name="login"]', 'EMAIL ADDRESS');

await page.fill('input[name="password"]', 'PASSWORD');

await page.click('text=Sign in');

});

As you can see in the preceding code snippet, .fixme has been added at the beginning of
the test and, upon running the test, you will see that it gets skipped.

Figure 11.4 – Playwright fixme annotation example – IDE terminal output

If you had three test cases in your test suite after adding the .fixme annotation,
Playwright would only execute two tests and skip the third annotated one, marking it in
yellow with the tag skipped, as shown in the preceding screenshot.

You can also enhance the preceding .fixme annotation by adding a condition,
for example, ensuring that you only skip a specific browser if it is not supported by
the web application (https://playwright.dev/docs/api/class-test#test-
fixme-1).

Playwright's advanced test automation capabilities 199

Playwright API testing
Playwright, similar to the Cypress framework, supports API testing activities. We have
clarified in Chapter 10, Working with the Cypress Framework, the importance of API
testing within the test pyramid as well as the additional layer of coverage that such a
testing type adds to the overall testing activities. With Playwright, frontend developers
and SDETs can develop API testing (https://playwright.dev/docs/test-
api-testing) for their web applications. As with Cypress, you can use the GET, POST,
DELETE, and other API methods to send API requests and validate their responses. You
can learn more about the common RESTful API methods supported by Playwright in the
context of automating expected versus actual results of service API tests here: https://
www.restapitutorial.com/lessons/httpmethods.html.

Developing API tests with Playwright can be done through the specified methods of
request.get(), request.post(), request.delete(), and so on, or by means
of a request context that you create through the following code.

When using a request context, the newly created context, const , is the one that drives all
of the API methods through context.get(), context.post(), and so on:

const context = await request.newContext({

 baseURL: 'https://api.github.com',

});

Based on the context created above, which will trigger the HTTP requests, we can create a
GitHub API POST test scenario:

await context.post('/user/repos', {

 headers: {

 'Accept': 'application/vnd.github.v3+json',

 // Add GitHub personal access token.

 'Authorization': 'token ${process.env.API_TOKEN}' },

 data: {

 name: REPO

https://www.restapitutorial.com/lessons/httpmethods.html
https://www.restapitutorial.com/lessons/httpmethods.html

200 Working with the Playwright Framework

 }

 });

In the same way as we perform a POST command on the GitHub website, Playwright
provides more code examples that cover all other API methods.

As an additional example in the context of GitHub source control capabilities, the
following code snippet will create a new feature request on a repository that resides
in GitHub. In the following code block, the test performs an API POST request to a
specific user (${USER}) and repository (${REPO}) that are configurable as environment
variables for the test, with a given title and body for this request:

test('should create a feature request', async ({ request })

 => {

 const newIssue = await request.post(

 '/repos/${USER}/${REPO}/issues', {

 data: {

 title: '[Feature] request 1',

 body: 'Feature description',

 }

 });

This code simply creates a new repository on GitHub via a user API token based on the
baseURL that we provided in the preceding short code snippet.

Playwright's advanced test automation capabilities 201

Playwright assertions
Like many test automation frameworks, Playwright also comes with built-in assertion
capabilities. Such assertions are used for test scenario validations across positive
and negative use cases, as well as for test anchoring or synchronizations. To know
that the test step reached its target web page and has the proper title or text, you
can use the framework assertions such as expect() and assert.equal(),
and also visual assertions using expect(await page.screenshot()).
toMatchSnapshot('image name');.

To understand a bit more about assertions, we can use the code snippet provided by
Playwright that simply navigates to the Playwright home page and validates the page title
and text through the expect method.

We are using assertions on the page URLs to ensure that we have landed on the right
pages within the test flow:

const { test, expect } = require('@playwright/test');

test('my test', async ({ page }) => {

 await page.goto('https://playwright.dev/');

 // Expect a title "to contain" a substring.

 await expect(page).toHaveTitle(/Playwright/);

 // Expect an attribute "to be strictly equal" to the

 // value.

 await expect(page.locator('text=Get Started')

 .first()).toHaveAttribute('href', '/docs/intro');

 // Expect an element "to be visible".

 await expect(page.locator('text=Learn more')

 .first()).toBeVisible();

 await page.click('text=Get Started');

 // Expect some text to be visible on the page.

 await expect(page.locator(

 'text=Introduction').first()).toBeVisible();

});

202 Working with the Playwright Framework

Instead of the URL assertions, we could have taken screenshots and validated against
the saved visuals that we are on the right page, or used expect() with specific web
page locators.

Playwright network mocking
We covered network mocking and network control abilities in Chapter 10, Working
with the Cypress Framework, where we covered the use of cy.intercept(),
cy.clock(), and more. Playwright also has built-in network testing abilities
(https://playwright.dev/docs/test-configuration#network) that
support network mocking, specifying proxy settings, ignoring HTTPS errors during
test navigation, and more.

A simple example that Playwright provides its users with is to automatically abort any
CSS requests within the test file by adding this command in the beforeEach() method
that is inherited and used as part of the Mocha test runner (https://mochajs.org/)
in Playwright. You can see more fundamental examples of the MochaJS framework and
its supported features here: https://www.tabnine.com/code/javascript/
functions/mocha/beforeEach:

await context.route(/.css/, route => route.abort());

In addition, using the network capabilities within the Playwright framework, you can add
to your test network request monitoring or use the waitForResponse() method as a
preliminary step before performing an action on your web page under test (this method
also has the equivalent waitForRequest()):

page.waitForResponse('SOME RESPONSE')

page.click('ACTION')

Within the documentation and API reference (https://playwright.dev/docs/
test-api-testing#configuration), you can see additional capabilities and code
samples on top of the aforementioned ones.

https://mochajs.org/
https://www.tabnine.com/code/javascript/functions/mocha/beforeEach
https://www.tabnine.com/code/javascript/functions/mocha/beforeEach
https://playwright.dev/docs/test-api-testing#configuration
https://playwright.dev/docs/test-api-testing#configuration

Playwright's advanced test automation capabilities 203

Playwright POM (Page Object Model)
As described earlier in the book, modern test automation frameworks support the
POM design pattern. Such a tool helps simplify the test development as well as the
test maintenance by storing all web application page elements in a code-based class as
a centralized hub for other tests to use. With Playwright, you can also create a POM
(https://playwright.dev/docs/test-pom) to store and maintain all the
web elements across all your test scenarios. In the above reference link that Playwright
provides, you can see in a simple way how, by creating a JavaScript class that, in this
example, is named playwright-dev-page.js (https://playwright.dev),
which defines the home page elements, a test scenario separate class named example.
spec.js simply utilizes these elements in much cleaner test code. This design pattern
makes frontend web application developers' lives easier from the perspective of source
code maintenance. In case some element locators change, you only need to change
their properties in the main POM class, and all the dependent test classes will inherit
these changes.

Playwright test reporting
In stark contrast to Cypress and Selenium, which provide nice test reports with flakiness
filtering and more either through plugins such as Allure or their own dashboard, for
Playwright, test reporting is not as advanced at the time this book is being developed.
Several test reporters can be used out of the box (https://playwright.dev/docs/
test-reporters); however, they are either console outputs with pass and fail results,
or if you wish to utilize JUnit test reports, you can set this environment variable through
the following Microsoft Windows PowerShell command:

$env:PLAYWRIGHT_JUNIT_OUTPUT_NAME="results.xml"

For non-Microsoft Windows operating systems, $env:PLAYWRIGHT should be replaced
with env=PLAYWRIGHT.

204 Working with the Playwright Framework

And upon running the test with --reporter=junit, the output report of the
execution will be saved in a results.xml file:

npx playwright test --reporter=junit

Figure 11.5 – Playwright test report output in a JUnit XML format

As the Playwright framework evolves, it would be expected that the test reporting features
will also mature, either through built-in reporters or better integrations that can provide
better and actionable test data to frontend developers.

Playwright test runners
Like the Selenium and Cypress frameworks, Playwright also integrates and can be easily
used with many of the JavaScript test runners (https://playwright.dev/docs/
test-runners), including Mocha, Jest, Jasmine, and AVA. Mocha (https://
mochajs.org/#getting-started) is the most well-known and commonly used
test runner along with Jest (https://jestjs.io/); however, Playwright offers its
own test runner (https://playwright.dev/docs/intro) that gets installed
within the initial installation steps that we covered earlier in the chapter. To use the
built-in Playwright test runner, you have to specify the following at the beginning of your
JavaScript file:

const { test, expect } = require('@playwright/test');

If you wish to use Jest and Jasmine in your test code, which allow you to use methods
such as expect(), you will need to specify the following at the beginning of your source
code file:

Playwright's advanced test automation capabilities 205

const {chromium} = require('playwright');

const expect = require('expect');

For Mocha to be used in your JavaScript code to enable capabilities such as before(),
after(), beforeEach(), and more, you will need the following lines added at the
beginning of your file:

const {chromium} = require('playwright');

const assert = require('assert');

To utilize the AVA (https://playwright.dev/docs/test-runners#ava) test
runner within Playwright, you need to install the NODE package first, and then include it
as a required capability in your JavaScript code:

npm install --save-dev ava

Const test = require(' ava').default

With the inclusion of AVA (https://github.com/avajs/ava), the test code
will run by default, concurrently and quite quickly. The AVA test runner has some
unique capabilities regarding code simplicity, test execution speed as a result of the
aforementioned concurrency, reporting abilities, resolving the promise challenges
(https://github.com/avajs/ava/blob/main/docs/01-writing-tests.
md#promise-support), creating test assertions, and much more.

Playwright trace viewer
Playwright offers frontend developers a GUI tool (https://playwright.dev/
docs/trace-viewer) that can help explore and visualize the test execution traces
once the test run is complete. Users are offered an online viewer (https://trace.
playwright.dev/) that can open the trace recorded files for further analysis.

You can also open the trace recorded files in your IDE terminal command-line tool by
running this command:

npx playwright show-trace trace.zip

To record a trace during a test run, you will need to enable tracing in your Playwright
config JavaScript file by adding the following option:

Use: {

 Trace: ' on',

},

https://playwright.dev/docs/test-runners#ava
https://github.com/avajs/ava
https://github.com/avajs/ava/blob/main/docs/01-writing-tests.md#promise-support
https://github.com/avajs/ava/blob/main/docs/01-writing-tests.md#promise-support

206 Working with the Playwright Framework

You can either record a trace for each test execution or in the event of failure by setting the
option to be on-first-retry instead of on.

Figure 11.6 – Playwright trace viewer tool following test execution completion

As you can see in the preceding screenshot taken from the Playwright web-based trace
viewer, users can examine each step within the test execution and gather timing, network
analysis, and other insights. The trace.zip file that is created also includes screenshots,
log files, network trace files with all requests and responses, snapshots taken before and
after, and other useful artifacts for debugging and analyzing test runs.

Playwright advanced configurations
Within the Playwright framework, users can also enjoy a wide range of useful testing
configuration capabilities (https://playwright.dev/docs/test-advanced).

Playwright's advanced test automation capabilities 207

Within the TestConfig object that comes with Playwright (https://playwright.
dev/docs/api/class-testconfig), users can make very useful and productive
changes to their test suites, test execution cadence, and much more. Being able
to configure your browser under test conditions, your security options, including
ignoreHTTPSErrors, viewports for different platforms screen resolutions, the
base URL for your tests, the number of test retries, the number of workers for parallel
execution, and other test environment variables, are key for testing at scale and testing
efficiently. These are all supported through the TestConfig component.

Please refer to the framework configuration documentation section to review the
wide range of configuration options (https://playwright.dev/docs/test-
configuration).

If we configure the playwright.config.js file used previously and add specific
test scenarios to run through the testMatch and testIgnore options, we can really
orchestrate a single suite to run a subset of tests versus other tests with and without retries.

In the following screenshot of a JavaScript configuration file, we are specifying the
Playwright execution to ignore tests that start with the word Playwright when running on
the mobile Chrome platform (a Pixel 5 device in the following example).

The following configuration file includes five platform configurations that mix both
mobile and desktop web configurations. The maximum number of test executions for 2
test specifications would be 10.

We are going to run each of our tests against a desktop Chrome browser, Firefox, Pixel
5, Edge, and iPhone 12 on Safari mobile. Note that for the mobile Chrome configuration
with the Pixel 5 platform, we added the following line:

testIgnore: '/.*Playwright*.spec.ts/',

https://playwright.dev/docs/api/class-testconfig
https://playwright.dev/docs/api/class-testconfig
https://playwright.dev/docs/test-configuration
https://playwright.dev/docs/test-configuration

208 Working with the Playwright Framework

That line will ensure that for each test in my suite that starts with Playwright characters,
the test runner will ignore them and not execute them. This means that if, in my suite, I
have two test cases, I will only run them against the four remaining configurations instead
of all five.

Figure 11.7 – Playwright advanced configuration using the testMatch and testIgnore options

Playwright's advanced test automation capabilities 209

To run the two test specifications, ConfigTestExample.spec.js and
PlayWrightExample.spec.js, based on the following configuration, we can use the
usual command:

npx playwright test

After running the two test files with the preceding configuration, this is the output that
you will get on your IDE terminal (Visual Studio Code).

As you can see in the following screenshot, we have a total of eight test executions
out of possible 10, since Playwright is ignoring the two test cases on the mobile
Chrome platform:

Figure 11.8 – Playwright terminal output upon execution with an advanced configuration

The two specification files and the configuration used above are on a public GitHub
repository for you to clone and use (https://github.com/ek121268/
PlaywrightExamples).

The TestConfig class is very extensive and rich, and we only looked at a few of
its capabilities. However, there are many other useful options, including testConfig.
grep and testConfig.reporter. The entire set of options that are part of this
class is well documented here: https://playwright.dev/docs/api/class-
testconfig.

210 Working with the Playwright Framework

Playwright integration with CI
Like Cypress, Selenium, and the next framework in the book, Puppeteer, the Playwright
framework also integrates with continuous integration (CI) servers (https://
playwright.dev/docs/ci) to expedite the testing and feedback loop. Among the CI
servers that Playwright works with are GitHub Actions. As with Cypress, you will need to
configure a .yml file that will install and run the Playwright test specs on the target new
web application build.

The following is a sample GitHub Actions configuration file that will install all the
Playwright dependencies and execute an end-to-end Playwright test in the event of a
successful deployment state:

name: Playwright Tests

on:

 deployment_status:

jobs:

 test:

 timeout-minutes: 60

 runs-on: ubuntu-latest

 if: github.event.deployment_status.state == 'success'

 steps:

 - uses: actions/checkout@v2

 - uses: actions/setup-node@v2

 with:

 node-version: '14.x'

 - name: Install dependencies

 run: npm ci

 - name: Install Playwright

 run: npx playwright install --with-deps

 - name: Run Playwright tests

 run: npm run test:e2e

 env:

 # This might depend on your test-runner/language

 binding

 PLAYWRIGHT_TEST_BASE_URL:

 ${{ github.event.deployment_status.target_url }}

The future of the Playwright framework 211

In addition to GitHub Actions, frontend developers can alternatively use Docker, Azure
Pipelines, Travis CI, Circle CI, Jenkins, GitLab CI, and Bitbucket Pipelines.

In case you are using CI tools other than GitHub Actions, you can find the dedicated
configuration for each of the supported tools here: https://playwright.dev/
docs/ci.

With the above CI section, we have concluded our overview of the advanced features of
the Playwright testing framework. In this section, we've covered the various supported
test runners, the retry mechanism, advanced configuration abilities, POM design patterns,
how to use Playwright Inspector, API testing, annotations, reporters, and a few more
capabilities that can help expand web application testing coverage.

Now that we've completed our review of these capabilities, let's explore where Playwright
is heading in the future and what we can expect to see.

The future of the Playwright framework
Even though Playwright is the newest open source test automation framework in the
marketplace, it has matured fast and offers unique as well as advanced capabilities
that some of the other older frameworks do not support. Its ability to cover the major
development languages, including Java, .NET, and Python, in addition to JavaScript, as
well as all the browser platforms, gives it the flexibility and capability to fit into any web
application testing project. This framework can perform complete end-to-end testing with
visual comparisons, API testing, and network mocking abilities, as well as use the unique
Inspector and CodeGen options to autogenerate test code in various languages. From
a frontend test development perspective, the test creation process is accompanied by a
powerful debugger tool and a set of stabilization features including autowaiting and the
retry mechanism.

From a future standpoint, Playwright is very promising as far as frontend web application
developers are concerned because, unlike Selenium and Cypress, this framework is 100%
backed and owned by Microsoft. That means a few things: huge community support,
great funding resources, potential merges, and acquisitions to expand the richness and
testing capabilities of the framework.

https://playwright.dev/docs/ci
https://playwright.dev/docs/ci

212 Working with the Playwright Framework

It is anticipated that in the future, Playwright will better support the following areas
of testing:

• Mobile platform advanced support testing abilities: While Playwright can already
emulate mobile viewports and other parameters, such as locale, geolocation, and
others, this is not sufficient in the growing digital landscape. Expanding to more
mobile-specific testing of a web application will position this framework higher
than its competitors. The only alternative today for testing web apps on mobile
platforms is a combination of Selenium + Appium.

• Visual and user experience testing: There is a great opportunity to build more user
experience testing capabilities into this framework. From visual analysis through
network virtualization, to performance testing and other end user-specific traits
coverage, this framework can lead the way for this kind of testing.

• Modern web application testing: None of the frameworks featured in this book
properly support Progressive Web Apps (PWAs), or modern Flutter and React
Native apps. Having dedicated abilities to test such apps would make the framework
future-proven technology.

• Low code and intelligent testing: As highlighted in this book through the Inspector
and CodeGen features, Playwright is already well positioned to take the low-code
generation functionality to the next level. Building reliable JavaScript and other
language-based test automation can be a game-changer if it can reliably support the
creation of more advanced testing scenarios and scale them across platforms upon
recording completion.

• Test reporting: The current test reporter of Playwright is too basic and not
informative enough for users. Playwright needs to try and match the Cypress
dashboard or properly integrate with Allure or other good test reporters so that
users get proper feedback from their test execution and can analyze their test
failures at scale.

• Performance testing: While Selenium integrates and recommends using the JMeter
open source framework for performance testing, with Playwright, it is challenging
to cover this type of testing. It is important for Playwright and Microsoft to invest
and offer such capabilities within Playwright, either through built-in features or
through integrations.

Summary 213

• Static code analysis: Investing in enhanced security testing of web applications
in the age of cyber attacks and denials of service would be a huge advantage for
Playwright. Within the Playwright framework, users can cover basic authentication
testing (https://playwright.dev/docs/test-auth); however, this
is not a software application security testing (SAST) capability. With a recent
launch from Perforce SAST, the Klocwork (https://www.perforce.com/
products/klocwork) product that now supports JavaScript static code analysis,
teams can use such add-ons within their IDEs and get more code-quality insights
within their pipelines. The benefit of SAST (https://en.wikipedia.org/
wiki/Static_application_security_testing) is to provide code
security coverage in earlier development stages of the application, either from the
local developer workstation, or through the CI.

Summary
In this chapter, we covered the fundamentals of the Playwright framework and learned
how to get started and run a JavaScript Playwright test in both IDE mode and in
debugging mode through the GUI Inspector. We then dived deeper into the most
advanced features of the Playwright framework and provided code samples, references,
and insights on how to use them and for what benefits. Among the core features that we
touched on were API testing, test retries, test annotations, network control capabilities,
running from CI, Playwright's CodeGen tool, advanced configuration, auto-retries, and
more. We then concluded the chapter by looking into the future of Playwright through
capabilities that are only just emerging, such as the low-code ones, as well as those features
that are missing and very much required by this framework.

By reading through this chapter, you should have received a thorough overview of
Playwright as well as an understanding of how the Playwright framework is different from
other testing frameworks, as well as some useful code samples and references to help you
get started with writing your test code for your web application.

The two main code examples from this chapter are stored in this GitHub repository for
you to use as baseline and learning material: https://github.com/ek121268/
PlaywrightExamples.

That concludes this chapter!

In the following chapter, we will do the exact same analysis as we did for Playwright but
for the Puppeteer test automation framework and conclude the advanced guides for all
frameworks covered in this book.

https://en.wikipedia.org/wiki/Static_application_security_testing
https://en.wikipedia.org/wiki/Static_application_security_testing

12
Working with

the Puppeteer
Framework

As highlighted in Chapter 3, Top Web Test Automation Frameworks, Google Puppeteer is
the baseline framework that was built by the Microsoft team that is now responsible for
Playwright. Both frameworks are node libraries based on the CDP, and that obviously
allows the Puppeteer framework to acquire deep coverage and testing abilities for any web
application. Unlike the Playwright framework, which supports most web browsers as well
as other language bindings, Google's Puppeteer framework only works on Chromium-
based browsers and only supports JavaScript.

The framework runs by default in Headless mode, but can also be run with the browser
UI (in Headed mode). With rich built-in capabilities that support the generation of
screenshots and PDFs from web pages, network HAR file creation, and the automation
of complex web applications, including keyboard inputs, UI, capturing timeline traces of
the website under test, and much more, this framework is a great option for frontend web
application developers.

216 Working with the Puppeteer Framework

In this chapter, you will get a technical overview of the framework, with a focus on the
advanced capabilities with some code-based examples that can be used out of the box. In
addition, and since this framework is older than Playwright, but was the foundation of that
framework, we will also uncover some core differences between Puppeteer and Playwright.

The chapter is designed to cover the following topics:

• Getting started with Puppeteer

• Learning about Puppeteer's advanced test automation capabilities

• The future of the Puppeteer framework

The goal of the chapter is to help frontend developers enrich their test automation
coverage with more advanced capabilities of the framework, whether these are built-in
features or plugins.

Technical requirements
The code files for this chapter can be found here: https://github.com/
PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing.

Getting started with Puppeteer
As explained in Chapter 3, Top Web Test Automation Frameworks, to get started with
the Puppeteer framework, you need to install the node package through the following
command line:

npm install puppeteer

Once the preceding package, together with its dependencies, is installed, you are ready to
start writing and running your first test locally in either Headed or Headless mode.

To see the full documentation of the Puppeteer framework along with code samples, API
descriptions, release notes, and more, please see https://pptr.dev/.

Like the Playwright framework, Puppeteer also drives its automation through the Browser
object, which then drills down into the multiple browserContext sessions that can operate
on multiple pages, extensions (https://pptr.dev/#?product=Puppeteer&ver
sion=v13.1.0&show=api-working-with-chrome-extensions), and frames.

https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://pptr.dev/
https://pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-working-with-chrome-extensions
https://pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-working-with-chrome-extensions

Getting started with Puppeteer 217

Figure 12.1 – Google Puppeteer high-level architecture diagram

Since Google is the leader in progressive web applications (PWAs) and was the first
technology provider to launch such application types, within this framework, you will be
able to use built-in methods to test such application types. In the preceding architecture
diagram, you can see the Service Workers support under the BrowserContext
component within the web applications.

In this chapter, we will expand on the Puppeteer JavaScript class from Chapter 3, Top Web
Test Automation Frameworks, so here is the code for it again (note that to run this code,
you will also need to install the puppeteer-har node module):

npm install puppeteer-har

const puppeteer = require('puppeteer');

const PuppeteerHar = require('puppeteer-har');

(async () => {

 const browser = await puppeteer.launch();

 const page = await browser.newPage();

 const har = new PuppeteerHar(page);

 await har.start({ path: 'book_demo.har' });

 await page.goto('https://www.packtpub.com/');

 await har.stop();

 await browser.close();

})();

218 Working with the Puppeteer Framework

The preceding code snippet, as explained previously, navigates to the Packt website and
generates an HAR file for frontend developer review.

After running the preceding test code using the following command, a new HAR file
under the name book_demo.har is generated:

node [filename.js] //depends on the JavaScript file name given
above

The default Puppeteer node library that Google provides comes built-in with Chromium's
latest browser locally installed. However, with this technology, frontend developers can
also install the puppeteer-core package, which is mostly the same as the default Puppeteer
framework, just without the installation of the browser on your local machine.

As with the default Puppeteer installation, to get the core package, simply run
this command:

npm install puppeteer-core

With the preceding installation, also make sure to replace the first line in your source code
with this code:

const puppeteer = require('puppeteer-core');

Since JavaScript and the tests written in that language within Puppeteer are asynchronous
when we write our tests across all frameworks, we need to make sure that all actions and
promises are resolved as a condition to move to the next step in the code (https://
web.dev/promises/?gclid=Cj0KCQiAraSPBhDuARIsAM3Js4orqfiLBv1p_
jh76YWTW40rTL1yf6HNgeR31knsv7WlAWVJio06XZgaAkjqEALw_wcB).

Promise
Promise in JavaScript is an object and a way to manage the asynchronous
nature of the language within the frameworks that use it. To ensure that code
can move from one action or a step to the next, promises ought to be resolved
by returning a value, or if not resolved, throw an error. Only after they have
been resolved can the next block of code be executed. Promises consist of three
possible states: Fulfilled, Rejected, or Pending.

https://web.dev/promises/?gclid=Cj0KCQiAraSPBhDuARIsAM3Js4orqfiLBv1p_jh76YWTW40rTL1yf6HNgeR31knsv7WlAWVJio06XZgaAkjqEALw_wcB
https://web.dev/promises/?gclid=Cj0KCQiAraSPBhDuARIsAM3Js4orqfiLBv1p_jh76YWTW40rTL1yf6HNgeR31knsv7WlAWVJio06XZgaAkjqEALw_wcB
https://web.dev/promises/?gclid=Cj0KCQiAraSPBhDuARIsAM3Js4orqfiLBv1p_jh76YWTW40rTL1yf6HNgeR31knsv7WlAWVJio06XZgaAkjqEALw_wcB

Getting started with Puppeteer 219

Let's better understand this important concept through a short JavaScript example.

In the following code snippet, we are using a web application with a file chooser button
that allows users to upload files to the website. We are using the Promise.all()
method to ensure that all of the code is running properly and in sequence. We can see that
only after the file chooser button has been clicked is the promise code block closed and
then the file upload operation will take place, followed by the browser closing.

To run the following code, please make sure to also install the selenium-webdriver
module through the following command:

npm install selenium-webdriver

const puppeteer = require('puppeteer');

const { waitForUrl } =

 require('selenium-webdriver/http/util');

(async () => {

 const browser = await puppeteer.launch({headless:false,

 args: ['--window-size=1920,1080']});

 const page = await browser.newPage();

 await page.goto('https://uppy.io/examples/xhrupload/',

 {"waitUntil": 'networkidle2'});

 const [fileChooser] = await Promise.all([

 page.waitForFileChooser(),

 page.click('.uppy-FileInput-btn')

])

 await fileChooser.accept(['Packtpub.png']);

 await page.screenshot({ path: 'FileChooser.png' });

 await browser.close();

})();

220 Working with the Puppeteer Framework

After running the preceding code on the XHR file and uploading a screenshot of the Packt
Publishing home page, this is what the website looks like:

Figure 12.2 – Example of Puppeteer with Promise and the FileChooser method

As highlighted with the other test automation frameworks in this book, Puppeteer also
supports common JavaScript test runners such as Jest and Mocha (https://www.
npmjs.com/package/mocha-puppeteer). Such frameworks extend the richness of
the test scenarios with methods such as expect(), assert(), and much more, which
allow improved coding flexibility.

To install both Mocha and Jest (https://jestjs.io/docs/puppeteer) and work
with them in Puppeteer, simply install the node library accordingly:

npm install jest-puppeteer

npm install mocha-puppeteer

https://www.npmjs.com/package/mocha-puppeteer
https://www.npmjs.com/package/mocha-puppeteer
https://jestjs.io/docs/puppeteer

Learning about Puppeteer's advanced test automation capabilities 221

In the next section of this chapter, we will dive deeper into the core features and some of
the advanced capabilities of the Puppeteer framework.

Learning about Puppeteer's advanced test
automation capabilities
Following Chapter 11, Working with the Playwright Framework, we will cover the
advanced capabilities of Google Puppeteer.

Note that measuring code coverage (https://pptr.dev/#?product=Puppeteer&
version=v13.1.0&show=api-class-coverage) is also considered a
powerful capability within software test automation; however, since we covered the
abilities of code coverage with Istanbul and Babel in Chapter 8, Measuring Test
Coverage of the Web Application, we will not repeat it here. Keep in mind that, like
Playwright, Puppeteer JavaScript and CSS code coverage with Istanbul (https://
github.com/istanbuljs/puppeteer-to-istanbul) is only supported on
Chromium-based browsers.

Puppeteer namespaces
Within the Puppeteer framework, frontend web application developers can utilize the
device's methods, network conditions, and error-handling capabilities.

To perform web application testing on specific devices, including mobile
viewports, you can utilize the puppeteer.devices['DEVICE NAME'], page.
emulateNetworkConditions(), and page.emulate() methods (https://
pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-
pageemulateoptions). From the preceding URL, you can find all of the supported
page.emulate() APIs with code samples and useful documentation.

Now, let's try navigating to the Packt website using the following code:

const puppeteer = require('puppeteer');

const iPhone = puppeteer.devices['iPhone 11'];

(async () => {

 const browser =

 await puppeteer.launch({headless: false});

 const page = await browser.newPage();

 await page.emulate(iPhone);

 await page.goto('https://www.packtpub.com');

https://pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-class-coverage
https://pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-class-coverage
https://github.com/istanbuljs/puppeteer-to-istanbul
https://github.com/istanbuljs/puppeteer-to-istanbul
https://pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-pageemulateoptions
https://pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-pageemulateoptions
https://pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-pageemulateoptions

222 Working with the Puppeteer Framework

 await page.screenshot({path: 'packtpub.png'});

 await browser.close();

})();

The preceding code snippet simply navigates to the Packt Publishing website and
emulates it on an iPhone 11 device through a slow 3G network profile specified within the
Puppeteer framework. Here is the 3G network profile spec used in the test:

'Slow 3g' {

Download: ((500 * 1000) /8) *0.8,

Upload: ((500 * 1000) / 8) * 0.8,

Latency: 400 *5,

},

Prior to closing the browser session, the code for navigating to the Packt website performs
a screen capture that is saved under Packtpub.png:

'Slow 3g' {

Download: ((500 * 1000) /8) *0.8,

Upload: ((500 * 1000) / 8) * 0.8,

Latency: 400 *5,

},

In the context of mobile testing, you can use the page.setViewport() methods
and specify a screen resolution using the width and height as required. From the
following device descriptor page, you can see the built-in mobile device specifications:
https://github.com/puppeteer/puppeteer/blob/main/src/common/
DeviceDescriptors.ts. For example, for the iPhone 11 used in the preceding
code snippet, the test uses the specification for that iPhone platform from the preceding
descriptor to virtualize a slow 3G network connection.

https://github.com/puppeteer/puppeteer/blob/main/src/common/DeviceDescriptors.ts
https://github.com/puppeteer/puppeteer/blob/main/src/common/DeviceDescriptors.ts

Learning about Puppeteer's advanced test automation capabilities 223

Puppeteer working with elements
To interact with web page elements, Puppeteer uses the page APIs to type text, click,
scroll, and conduct other events on the web application under test.

In the following code sample, still on the Packt website, we are clicking on the book
search box and performing a search of JavaScript books together with a screenshot
of the JavaScript books landing page. We are using both the type method and
waitForNavigation to ensure that the landing page is loaded prior to taking a
screenshot (refer to the next page):

const puppeteer = require('puppeteer');

const { waitForUrl } =

 require('selenium-webdriver/http/util');

(async () => {

 const browser = await puppeteer.launch({headless:false});

 const page = await browser.newPage();

 await page.goto('https://www.packtpub.com');

 const searchElement = await page.$('#search');

 await searchElement.type("JavaScript");

 await page.type('#search',String.fromCharCode(13));

 await Promise.all([

 await page.waitForNavigation({waitUntil: 'load'})

]);

 await page.screenshot({ path: 'Packtpub.png' });

 await browser.close();

})();

224 Working with the Puppeteer Framework

The following is the screenshot taken from the JavaScript landing page on the
Packt website:

Figure 12.3 – Packt JavaScript books landing page screenshot taken by Puppeteer at the end of the
preceding test

Learning about Puppeteer's advanced test automation capabilities 225

To take Puppeteer to a new level, please refer to this elegant and free demo code provided
by Google to test their online PacMan game:

const readline = require('readline');

const puppeteer = require('puppeteer');

(async() => {

const browser = await puppeteer.launch({

 headless: false,

 args: ['--window-size=800,500']

});

const page = await browser.newPage();

await page.setViewport({width: 800, height: 500,

 deviceScaleFactor: 2});

await page.goto(

 'https://www.google.com/logos/2010/pacman10-i.html');

process.stdin.on('keypress', async (str, key) => {

 // In "raw" mode, so create own kill switch.

 if (key.sequence === '\u0003') {

 await browser.close();

 process.exit();

 }

 if (['up', 'down', 'left', 'right'].includes(key.name)) {

 const capitalized =

 key.name[0].toUpperCase() + key.name.slice(1);

 const keyName = 'Arrow${capitalized}';

 console.log('page.keyboard.down('${keyName}')');

 await page.keyboard.down(keyName);

 }

});

readline.emitKeypressEvents(process.stdin);

process.stdin.setRawMode(true);

})();

226 Working with the Puppeteer Framework

As you can see in the preceding JavaScript code sample, the code navigates to the Google
PacMan game site and, once loaded in its set viewport sizes, a user can play the game via
the keyboard's arrow keys.

Figure 12.4 – Google PacMan game being executed within a browser through keyboard arrows driven
by Puppeteer test code

To perform more actions using elements through the keyboard APIs, you can also refer
to some nice code samples provided by the Tabnine website (https://www.tabnine.
com/code/javascript/functions/puppeteer/Page/keyboard).

Puppeteer load test option
Google Puppeteer offers a powerful node library that can be installed and used to run
multiple instances in parallel on any JavaScript test against your web application and
perform load testing (https://github.com/svenkatreddy/puppeteer-
loadtest).

https://www.tabnine.com/code/javascript/functions/puppeteer/Page/keyboard
https://www.tabnine.com/code/javascript/functions/puppeteer/Page/keyboard
https://github.com/svenkatreddy/puppeteer-loadtest
https://github.com/svenkatreddy/puppeteer-loadtest

Learning about Puppeteer's advanced test automation capabilities 227

Simply install that package using this command:

npm install -g puppeteer-loadtest

Once installed, you should include the package as required within the JavaScript test code:

const startPuppeteerLoadTest =

 require('puppeteer-loadtest');

Running a specific test is possible through various command-line options as follows:

• --file – Provides a path to your JavaScript test file.

• --s and --c – This is the sample size configuration for the load (such as
--s=100 --c=25 will run a total of 100 specified scripts across 25 concurrent
Chrome headless instances).

Running a load test using the preceding command-line option can be triggered through
the following:

npx puppeteer-loadtest –-file=./test/sample.js --s=100 --c=25

To view a generated JSON performance test report, please refer to this GitHub repository:
https://github.com/svenkatreddy/puppeteer-loadtest/blob/
master/test/performance.json.

Puppeteer and Cucumber BDD
As with Cypress and Selenium, you can also implement BDD testing with Puppeteer
through a feature file written in Gherkin and step-definition functions in JavaScript.

To use Cucumber BDD with Puppeteer, please install the node library for cucumber-js
by means of the following command:

npm install @cucumber/cucumber

https://github.com/svenkatreddy/puppeteer-loadtest/blob/master/test/performance.json
https://github.com/svenkatreddy/puppeteer-loadtest/blob/master/test/performance.json

228 Working with the Puppeteer Framework

Following the installation, you should be able to use a folder structure that includes both
step-definition files as well as Gherkin feature files.

Figure 12.5 – Puppeteer and Cucumber BDD directory structure example (source: https://
github.com/mlampedx/cucumber-puppeteer-example)

A full open source project that showcases BDD and Puppeteer can be obtained from
the following GitHub repository: https://github.com/mlampedx/cucumber-
puppeteer-example.

https://github.com/mlampedx/cucumber-puppeteer-example
https://github.com/mlampedx/cucumber-puppeteer-example
https://github.com/mlampedx/cucumber-puppeteer-example
https://github.com/mlampedx/cucumber-puppeteer-example

Learning about Puppeteer's advanced test automation capabilities 229

With the help of the preceding code samples, you can easily get started with this agile
testing method.

Puppeteer accessibility testing
You can create accessibility testing with Puppeteer and the common Deque axe
(https://www.deque.com/axe/) open source accessibility analyzer library. To do
so, simply install the axe-puppeteer node library and add it to your source code using
the following command. It will allow you to utilize the AxePuppeteer.analyze APIs
and report back to the console and create an output file with the accessibility results and
issues identified:

npm install axe-puppeteer

Running the short code sample on the Packt Publishing website will report accessibility
issues back to the console using the following code:

const puppeteer = require('puppeteer');

const { waitForUrl } =

 require('selenium-webdriver/http/util');

const {AxePuppeteer} = require ('axe-puppeteer');

(async () => {

 const browser = await puppeteer.launch({headless:false,

 args: ['--window-size=1920,1080']});

 const page = await browser.newPage();

 await page.setBypassCSP(true);

 await page.goto('https://www.packtpub.com');

 const accessibilityResults =

 await new AxePuppeteer(page).analyze();

 console.log(accessibilityResults);

 await page.close();

 await browser.close();

})();

https://www.deque.com/axe/

230 Working with the Puppeteer Framework

The preceding code execution output to the console will look as follows:

Figure 12.6 – Using Puppeteer with axe-puppeteer for an accessibility audit on the Packt website

Alternatively, you can also use basic accessibility APIs that are built into the Puppeteer
framework, https://pptr.dev/#?product=Puppeteer&version=v13
.1.0&show=api-class-accessibility, which will provide you with the
accessibility.snapshot() capabilities on a given page on your website under
testing; however, it will be much more basic than the axe tool coverage.

Puppeteer web app tracing
Within Puppeteer, we have already reviewed the ability to generate an HAR file through
the har.start() and har.stop() capabilities. However, Puppeteer also provides
the ability to generate JSON trace files from a web application under test through the
tracing.start() and tracing.stop() APIs. Such an ability enables frontend
developers to gain insights regarding page loading times, performance issues such as slow
loading resources on the page, and more.

The following code will generate two output files, trace_demo.har and traceDemo.
json, for frontend developers to analyze and debug their network traffic, its performance,
and other traffic that is happening on their website:

const puppeteer = require('puppeteer');

const PuppeteerHar = require('puppeteer-har');

(async () => {

 const browser = await puppeteer.launch({headless:false});

 const page = await browser.newPage();

 const har = new PuppeteerHar(page);

https://pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-class-accessibility
https://pptr.dev/#?product=Puppeteer&version=v13.1.0&show=api-class-accessibility

Learning about Puppeteer's advanced test automation capabilities 231

 await har.start({ path: 'trace_demo.har' });

 await page.tracing.start({path: 'traceDemo.json'});

 await page.goto('https://www.packtpub.com/');

 await har.stop();

 await page.tracing.stop();

 await browser.close();

})();

The preceding two output files can be opened in a GUI manner through the Google-
provided URL: https://chromedevtools.github.io/timeline-viewer/.

Puppeteer for API testing
As we covered earlier in this book with Cypress in Chapter 10, Working with the
Cypress Framework, and Playwright in Chapter 11, Working with the Playwright
Framework, frontend web application developers can also create API tests within the
Puppeteer built-in APIs. To do so, they can utilize the Puppeteer httpRequest()
and httpResponse() set of methods. All options are well documented in the Google
documentation portal (https://devdocs.io/puppeteer/index#class-
httprequest). Advanced API calls for network interceptions and the mocking of
responses are supported. In addition, retrieving page header-request methods, getting
a response back from the website cache, and much more besides can be used within
test code.

Puppeteer with Google DevTools
As we know, Google owns the Chrome browser DevTools, which enables users to
debug their web applications, launch the Lighthouse tools, measure performance and
accessibility, and much more. Within Puppeteer, users can easily integrate with DevTools
(https://developers.google.com/web/tools/puppeteer/debugging)
and maximize their testing activities. From the preceding URL, you can learn more about
the debugging process that is enabled through DevTools and how to slow down the test
execution for further analysis of the web application under test.

To use DevTools within your test code, simply call the puppeteer.launch() method,
with devtools set to true accordingly:

const browser = await puppeteer.launch({ devtools: true });

https://chromedevtools.github.io/timeline-viewer/
https://devdocs.io/puppeteer/index#class-httprequest
https://devdocs.io/puppeteer/index#class-httprequest
https://developers.google.com/web/tools/puppeteer/debugging

232 Working with the Puppeteer Framework

The preceding settings will allow you to utilize the page.evaluate() method and
leverage the DevTools debugger.

Figure 12.7 – Puppeteer test execution with the DevTools debugger enabled on the Packt home page

Within the aforementioned Chrome browser DevTools, there is a rich automated
inspection tool called Lighthouse. Lighthouse is basically an open source automation
tool that can be used either interactively or through test automation frameworks such as
Puppeteer and others. With this tool, web application developers and testers can validate
web application accessibility, performance, compliance with PWA guidance, network calls,
and much more.

The Lighthouse tool can also be used from the command-line interface (https://
developers.google.com/web/tools/lighthouse#cli). Using the command-
line interface, frontend developers can launch the Google Lighthouse audit against their
web application from any command-line interface. To install the tools for use within the
command line, run the following command:

npm install -g lighthouse

To perform an audit on a web application once the tool is installed, run this command:

lighthouse <url>

To use Google DevTools with the Puppeteer framework, you may refer to this great
documentation: https://github.com/GoogleChrome/lighthouse/blob/
master/docs/puppeteer.md.

https://developers.google.com/web/tools/lighthouse#cli
https://developers.google.com/web/tools/lighthouse#cli
https://github.com/GoogleChrome/lighthouse/blob/master/docs/puppeteer.md
https://github.com/GoogleChrome/lighthouse/blob/master/docs/puppeteer.md

Learning about Puppeteer's advanced test automation capabilities 233

Puppeteer and CodeceptJS integration
A notable third-party integration that is available and worth considering is the
one between Puppeteer and CodeceptJS. The CodeceptJS framework (https://
codecept.io/) allows users to easily create end-to-end acceptance testing for web
applications in JavaScript (https://codecept.io/puppeteer/#setup).

To add CodeceptJS to your testing environment, simply install the node library using
these commands:

npm install codeceptjs

npx codeceptjs init

This library, together with Puppeteer, will allow you to build rich end-to-end testing with
the unique and easy-to-understand code syntax of CodeceptJS.

Upon the Init command, you will need to specify your JavaScript test file path as well
as the framework with which you want to work. In our case, we are selecting Puppeteer;
however, as you can see in the following screenshot, CodeceptJS also works with the
Playwright framework:

Figure 12.8 – The output from the CodeceptJS initialization process for Puppeteer framework selection

Upon completion of the initialization process of CodeceptJS, a simple JavaScript
configuration file will be created together with sample JavaScript test code as a baseline for
your development.

In the following code, we are performing a simple and invalid login process to the Dribble
website using CodeceptJS syntax.

Note that this code must be saved with the file extension that is defined in codecept.
conf.js. By default, that is the following:

tests: './*_test.js'

Feature('login');

https://codecept.io/
https://codecept.io/
https://codecept.io/puppeteer/#setup

234 Working with the Puppeteer Framework

Scenario('Login to dribble page', ({ I }) => {

 I.amOnPage('https://dribbble.com/')

 I.click('Sign in');

 I.fillField('login', "erank@email.com");

 I.pressKey('Tab');

 I.fillField('password', "pass12345");

 pause();

 I.pressKey('Enter');

 I.see('We could not find an account matching');

});

As you can see, it uses plain and meaningful commands such as I.amOnPage() and
I.see(). Running the preceding code is achieved through the following command:

npx codeceptjs run --steps

Upon running the preceding code sample, a Puppeteer browser is launched, and the test
code gets executed.

Figure 12.9 – CodeceptJS and Puppeteer code execution example on the Dribble website

Learning about Puppeteer's advanced test automation capabilities 235

Puppeteer testing within CI
You can integrate your Puppeteer JavaScript testing with many of the CI servers that
are available on the market, including CircleCI, GitLab (https://touch4it.com/
blog/ui-testing-with-puppeteer-and-gitlab-ci), GitHub Actions,
Jenkins, and Azure DevOps. In this section, we will provide a single example of how to
use Puppeteer with GitHub Actions.

I am using my own GitHub Puppeteer examples repository and will create a new action
workflow with a Node.js type through the web UI from GitHub. This step will generate
a .yml configuration file that will be used to run my Puppeteer tests upon a CI trigger
or schedule.

Upon committing the new GitHub action, a new .YML file with the selected name will be
generated and placed under the .github/workflows directory in my repository.

As you can see in the screenshot from the creation of the GitHub action file in Figure
12.10, there is a list of generated steps that will define this specific workflow and sequence
of actions:

Figure 12.10 – Screenshot of the GitHub Actions .YML file created on the Puppeteer repository (source:
https://github.com/ek121268/PuppeteerExamples)

https://touch4it.com/blog/ui-testing-with-puppeteer-and-gitlab-ci
https://touch4it.com/blog/ui-testing-with-puppeteer-and-gitlab-ci
https://github.com/ek121268/PuppeteerExamples

236 Working with the Puppeteer Framework

With this new workflow, in the event of any change to the repository, such as merging
a branch into the master, this will trigger the execution of GitHub Actions (https://
docs.github.com/en/actions/quickstart), as you can see in the following
screenshot, which was taken in the event of a source code change.

From the preceding Quickstart guide provided by GitHub, you can learn how to create
and customize actions to your CI process, create new workflows, and analyze the
workflow results.

Figure 12.11 – GitHub Actions workflow execution example

Successful DevOps teams typically shift their test automation activities into their CI/CD
processes. By doing it right and using tools such as GitHub, Jenkins, and others, teams are
able to expedite feedback and identify issues as early as they commit their code changes.
In addition, such a method of shifting testing left allows more frequent releases of new
functionality and innovation.

With the preceding section, we have wrapped up the Puppeteer features overview.
The framework has, of course, a wider range of APIs and other capabilities and
integrations that can be reviewed through the Puppeteer documentation page
(https://pptr.dev/).

We will now look at the opportunities and the future of the Puppeteer framework while
considering the other mature and advanced frameworks that we've covered in this book.

https://docs.github.com/en/actions/quickstart
https://docs.github.com/en/actions/quickstart
https://pptr.dev/

The future of the Puppeteer framework 237

The future of the Puppeteer framework
Google's Puppeteer framework is quite mature and has been on the market since
January 2018 (https://github.com/puppeteer/puppeteer/releases/
tag/v1.0.0). As mentioned earlier in this chapter, it is the baseline for the Playwright
framework. The fact that this framework has been on the market longer than Playwright
and Cypress is not well reflected in its maturity and capabilities. As we've learned in this
chapter, there are some very useful and unique capabilities for this CDP-based framework,
such as generating traces, HAR files, grabbing screenshots, working seamlessly with
the DevTools APIs, performing advanced audits of websites through Lighthouse tool
integration, working with BDD, integrating with CI tools and third-party frameworks
such as CodeceptJS, and more. While these are very great features that allow frontend
web application developers to test and debug their websites, this framework lacks some
important capabilities that, unless implemented by Google, will position this framework
lower in the marketplace.

Features that are missing in Puppeteer as this book is being developed consist of
the following:

• Cross-browser testing support: Puppeteer only supports Chromium browsers,
which includes Chrome and Edge. Without supporting all other browsers, such as
Firefox and Safari, developers will have to utilize other tools.

• Limited language bindings: While JavaScript is the dominant language for web
application development, testers' skillsets vary, and they often seek alternatives,
such as Java, Python, and C#. Playwright and Selenium in that regard cover more
language bindings and provide more flexibility for testers.

• Mobile testing: Testing web applications and network conditions across many
mobile platforms is possible through Appium, which is built on top of Selenium.
With Puppeteer, users can emulate basic network conditions and a very limited
number of mobile platforms. With Google behind Flutter and PWA, the expectation
is for better mobile landscape coverage within the testing tool stack.

• Low-code support: Most test frameworks have built-in test code generation.
Selenium has its Selenium IDE, Cypress has its Cypress Studio, and Playwright has
its codegen within Inspector. Puppeteer does not have a built-in capability other
than automated audits through DevTools and Lighthouse.

• Test reporting: The ability to generate actionable and meaningful test reports is a
weakness of this framework, especially when compared to the Cypress dashboards,
and Selenium with Allure integration. Puppeteer will need to find a better and
easier way to report test results with richer artifacts if it wishes to compete in this
space with the other frameworks.

https://github.com/puppeteer/puppeteer/releases/tag/v1.0.0
https://github.com/puppeteer/puppeteer/releases/tag/v1.0.0

238 Working with the Puppeteer Framework

From a future standpoint, Puppeteer will have to make a few investments in its framework
to close some of the aforementioned gaps and provide new cutting-edge features that will
convince developers to continue using it over the other options.

An impressive opportunity from a codeless and intelligent testing perspective has emerged
through a project called Puppetry (https://puppetry.app/). This project facilitates
the creation of codeless, end-to-end Puppeteer-based test automation without the need
to write any lines of JavaScript code. With such a tool incorporated into the Puppeteer
project, this solution can close one of Puppeteer's gaps and provide a nice alternative to
both developers and non-developers who wish to develop test automation. Getting started
with this project can be done through the following GitHub repository: https://
github.com/dsheiko/puppetry/releases. This project also extends support to
the Firefox browser. In the case of code generation, users can export the recorded tests to
Jest JavaScript code.

With these suggestions and opportunities for enhancement, we will conclude this section
and provide a summary for this chapter.

Summary
In this chapter, we covered the fundamentals of the Puppeteer framework and learned
how to get started and run a JavaScript Puppeteer test. We reviewed Puppeteer's core
capabilities; both the basic ones as well as the advanced ones, such as API testing, network
mocking, BDD, accessibility, DevTools, CI integrations, working with elements, emulating
mobile platforms, and more.

We then concluded the chapter by looking into the future of Puppeteer, while covering
the framework's currently missing, and very much needed, features, along with emerging
opportunities, such as the codeless solution, complementing web testing with support for
PWA and Flutter within Puppeteer, reporting, and more.

With the core skills that were introduced in this chapter, you can now get started with
your own Puppeteer project in JavaScript, create web application assertions, including
monitoring network traces, run Lighthouse audits, create performance testing from
your own workstation, and be more familiar with the rich set of Puppeteer APIs that
Google provides.

In the following chapter, we will focus solely on the intelligent cross-browser test
automation landscape and learn what is supported within the top four test automation
frameworks, and what can be extended through other commercial low-code and
AI-based tools.

https://puppetry.app/
https://github.com/dsheiko/puppetry/releases
https://github.com/dsheiko/puppetry/releases

13
Complementing

Code-Based Testing
with Low-Code

Test Automation
While the open source community offers a wide range of coding test frameworks as
highlighted in this book, there are also new and emerging intelligent testing solutions
that can base their record-and-playback abilities with self-healing machine learning
(ML)-driven features to provide an additional layer of test automation coverage. In this
chapter, we will learn about the available options in the market, the relevant places and
use cases to use such tools within a development pipeline, and caveats or pitfalls to be
aware of.

240 Complementing Code-Based Testing with Low-Code Test Automation

Through our study of the four leading testing frameworks that we've covered in this book,
Selenium, Playwright, Cypress, and Puppeteer, we've seen that each of these frameworks
have some level of low-code/no-code capabilities. Within this chapter, we will highlight
these specific capabilities but mostly provide an overview of the additional intelligent
codeless test automation tools for web applications. We will look into Perfecto codeless
web (https://www.perfecto.io/products/scriptless), Testim (https://
www.testim.io/), Mabl (https://www.mabl.com/), and a few other tools that
are new and emerging.

The chapter is designed to cover the following:

• Learning about the fundamental features of low-code testing tools for web
applications

• Providing a technical overview of the leading codeless tools within the open source
frameworks

• Providing an overview of commercial artificial intelligence (AI)-based codeless
tools for web application testing

• Understanding when to use low-code over code-based solutions and what some of
the trade-offs are

The goal of the chapter is to help frontend developers and testers consider additional tools
that can support their overall test coverage objectives, as well as realizing in which cases
such tools are more useful than the core open source tools.

Fundamental features of low-code/codeless
testing tools
Over the past few years, we've seen tremendous growth and investment in codeless
and low-code software testing tools. Some of these advancements occurred within the
open source landscape community (for example, Selenium integrated development
environment (IDE), Playwright CodeGen Inspector, and so on), while other
advancements were seen within the rise of commercial intelligence tools.

Prior to exploring the available options, let's first understand what it takes from a
features perspective for a codeless or low-code testing tool to compete in the cross-
browser testing landscape.

https://www.perfecto.io/products/scriptless
https://www.testim.io/)
https://www.testim.io/)
https://www.mabl.com/

Fundamental features of low-code/codeless testing tools 241

As we have explored throughout this book, properly testing a modern web application
across all relevant browser configurations and mobile viewports requires massive coverage
and thorough planning. Functional testing, non-functional testing—such as performance,
security, and accessibility—through visual and user interface (UI) testing, application
programming interface (API) testing, mocking capabilities, scaling, and testing in
parallel and within continuous integration (CI) are all critical pillars of a web
application testing plan. Most of the open source test automation frameworks that we've
covered in this book support in one way or the other the aforementioned capabilities,
either as built-in features or through third-party integrations. For a codeless testing tool
to equally be considered a competitor, such a tool needs to have most of these capabilities
built in as well, and with high reliability and maintainability. Web applications change
often and changing source code is relatively easy. Code is being managed within version
control systems (VCSs), hence keeping up with changes and maintaining the code
base is manageable. With codeless solutions where there are typically no code artifacts,
it is critical to have an easier method to scale and version the test scenarios in
between changes.

Have a look at the following diagram:

Figure 13.1 – Decision tree visualization

242 Complementing Code-Based Testing with Low-Code Test Automation

These are the high-level pillars and features that we would expect from a low-code/
codeless web testing solution:

• Test methodologies coverage

 � Functional testing

 � API testing and mocking capabilities

 � Visual testing

 � Accessibility testing

 � Performance testing

• Testing at scale/parallelization

 � Grid executions

 � Cloud integrations

 � CI server integrations (GitHub Actions, Jenkins, and so on)

• Test development capabilities

 � Advanced scenario support (inline frames (iFrames), multi-tabs, dynamic
locators, varying authentication options, and so on)

 � Working with elements across test scripts

 � Support for Agile testing methods (for example, behavior-driven development,
or BDD)

 � Test scenario editing and maintenance

• Complementing code-based suites with codeless

 � Exporting codeless to code

 � Extending codeless with code modules for advanced cases

• Test reporting and analysis

 � Test result artifacts

 � Trends and analysis

 � Integration of test reports to code-based reporting dashboards

Codeless tool overview within the open source landscape 243

• Ease of use and ramp-up

 � Time to get started with easy and more advanced test scenario development

 � Solid documentation with recommended practices

 � Ongoing and online support

• Cost of ownership

 � Compared to open source, how costly are such tools?

 � Return on investment (ROI) models for such tools compared to open source

As highlighted in the preceding list, there are quite a lot of considerations that
practitioners and managers need to deal with when selecting technology for testing their
web applications. With code-based open source frameworks, it is a bit simpler to choose,
since these frameworks are all JavaScript-based, backed by large communities, proven
for several years, and clearly valuable from a test automation creation and execution
perspective. When looking into the low-code/codeless marketplace, these tools are newer
and less flexible to modify to the needs of an organization; they come with a cost, and they
are often limited from a test coverage perspective.

Note
With the preceding information in mind, this raises the following question: So,
why do we need codeless intelligent testing tools anyway?

In the next section, we will uncover the leading codeless testing tools for web applications
and highlight their core features and added value on top of the open source frameworks. It
is important to realize that these codeless tools are still new and emerging, and this needs
to be considered as teams adopt such tools.

Codeless tool overview within the open source
landscape
In this section, we will cover the leading codeless testing tools that are available and
supported for free within the open source testing frameworks.

Open source codeless tool lineup
Selenium, Playwright, Cypress, and even Puppeteer provide a level of codeless testing
abilities through recording and playing back the test scenarios.

244 Complementing Code-Based Testing with Low-Code Test Automation

Let's provide a brief overview of codeless open source tools, starting with Selenium.

Selenium IDE codeless tool overview
Selenium offers a browser plugin, Selenium IDE (https://github.com/
SeleniumHQ/selenium-ide/releases), which is a basic record-and-playback
solution to help new users of the Selenium project get started with the technology. The
evolution of this IDE has led to it being a multi-browser extension (Chrome and Firefox)
with a built-in element locator tool and a nice recorder with export-to-code abilities. It is
not even close to the capabilities of a codeless AI-based testing tool but provides an entry-
level option to Selenium.

Getting Selenium IDE for the Chrome browser can be done from here:

https://chrome.google.com/webstore/detail/selenium-ide/
mooikfkahbdckldjjndioackbalphokd

Once you install the browser extension for Selenium IDE, you can immediately
start recording a test scenario against your web application, as illustrated in the
following screenshot:

Figure 13.2 – Selenium IDE browser extension main UI

https://github.com/SeleniumHQ/selenium-ide/releases
https://github.com/SeleniumHQ/selenium-ide/releases
https://chrome.google.com/webstore/detail/selenium-ide/mooikfkahbdckldjjndioackbalphokd
https://chrome.google.com/webstore/detail/selenium-ide/mooikfkahbdckldjjndioackbalphokd

Codeless tool overview within the open source landscape 245

If you simply record a navigation scenario to the Packt Publishing home page, search for
JavaScript books, and open a secondary tab, the generated test script will resemble the one
shown in Figure 13.3.

As you can see, the IDE is built out of commands that are being performed on the web
application, the target, which consists of the element locators, and the value that is being
sent when relevant. All Selenium IDE projects are exported and saved under the *.side
file format, which is basically the Selenium command-line runner (https://www.
selenium.dev/selenium-ide/docs/en/introduction/command-line-
runner). A saved Selenium IDE project that has been created can be executed through
the command line with the saved *.side file as the target.

You will need to install the node library to run such saved projects by running
this command:

npm install -g selenium-side-runner

npx selenium-side-runner [path to *.side test file]

Figure 13.3 shows a simple recorded scenario with the Selenium IDE browser
plugin. It performs a navigation to the Packt homepage and records a few actions
on the website.

Figure 13.3 – Selenium IDE-generated test scenario example

https://www.selenium.dev/selenium-ide/docs/en/introduction/command-line-runner
https://www.selenium.dev/selenium-ide/docs/en/introduction/command-line-runner
https://www.selenium.dev/selenium-ide/docs/en/introduction/command-line-runner

246 Complementing Code-Based Testing with Low-Code Test Automation

Under the Target menu item, users can change and use different locators such as ID,
Name, CSS, XPATH, and any other exposed property of the object.

After generating the sample codeless Selenium script within the IDE, you can easily export
it to any of the Selenium language bindings that are supported, as shown in the following
screenshot, by hovering over the test name and clicking on the three vertical dots:

Figure 13.4 – Selenium IDE codeless test scenario export feature to language bindings

The generated code in JavaScript will look like this and will have the upper header line
stating that this code was generated through Selenium IDE:

Codeless tool overview within the open source landscape 247

Figure 13.5 – Selenium IDE-generated code in a JavaScript language binding

As mentioned previously, Selenium IDE is a very basic tool to generate Selenium scripts,
but it does provide a quick ramp-up to generate codeless tests that can be then exported
into different languages.

248 Complementing Code-Based Testing with Low-Code Test Automation

Playwright CodeGen Inspector overview
As highlighted in Chapter 11, Working with the Playwright Framework, this framework
also offers a nice entry-level codeless solution (https://playwright.dev/docs/
codegen) that can record web applications through a GUI-based tool and export the
generated script into code.

You can start the tool by running the following command from your command line or the
Visual Studio Code (VS Code) IDE terminal window:

npx playwright codegen [website under test URL], e.g.,
packtpub.com

Upon running this command from your local Playwright installation folder path, you
will get a browser window with the web page, and you can perform actions on the page
while they are being recorded and converted in real time to JavaScript. You can see in
the following screenshot that the recording already generates test code without any need
to manually export the code, as you would need to do in Selenium IDE. This obviously
enables better maintenance of the code, editing, and much more flexibility:

Figure 13.6 – Playwright CodeGen Inspector-generated test code example

The default test is generated in JavaScript Playwright test syntax; however, you can
easily convert the code through the upper-right menu into the other language bindings
supported by Playwright, as seen in the following screenshot, including JavaScript, Java,
Python, and C#:

https://playwright.dev/docs/codegen
https://playwright.dev/docs/codegen

Codeless tool overview within the open source landscape 249

Figure 13.7 – Playwright-generated code: supported exporting language bindings

Compared to Selenium IDE, the Playwright CodeGen tool seems more modern and more
frontend developer-friendly, as well as more capable. It can easily cope with complex
websites, multiple tabs, and other challenging elements. It doesn't use self-healing or
advanced AI capabilities, but it is a solid, codeless, free-to-use tool that comes with the
Playwright open source installation.

Cypress Studio codeless tool overview
As we highlighted in Chapter 10, Working with the Cypress Framework, users of the
Cypress framework can also benefit from the emerging Cypress Studio codeless tool
(https://docs.cypress.io/guides/core-concepts/cypress-studio).

https://docs.cypress.io/guides/core-concepts/cypress-studio

250 Complementing Code-Based Testing with Low-Code Test Automation

 To get started with the Cypress Studio tool, you will need to enable its usage through the
cypress.json file by adding the following lines of code:

{

 "experimentalStudio": true

}

Once you enable this feature, when you run the Cypress framework in GUI mode, you
will get the option to click on the Edit button near your existing test code in JavaScript
on the left panel, and it will enable the Cypress Studio test-recording capabilities.
Alternatively, you can start a new test using Cypress Studio by placing a test specification
JavaScript file under your local Cypress integration folder, as specified in the following
instructions: https://docs.cypress.io/guides/core-concepts/cypress-
studio#Using-Cypress-Studio.

In the following screenshot, I took the getting started basic JavaScript test code and used
Cypress Studio to add a step to the test. As you can see, as of the time of writing this
book, there are several commands that are supported by the tool, such as .check(),
.click(), .select(), .type(), and .uncheck():

Figure 13.8 – Cypress Studio (beta) in action on an existing JavaScript test specification file

Simply interfering with the existing test code and recording a few more actions generated
the following code block in the existing JavaScript file:

https://docs.cypress.io/guides/core-concepts/cypress-studio#Using-Cypress-Studio
https://docs.cypress.io/guides/core-concepts/cypress-studio#Using-Cypress-Studio

Leading commercial codeless testing tools for web applications 251

Figure 13.9 – Cypress Studio-generated JavaScript code block example

Such a tool can easily extend in a short amount of time the test coverage and the time it
takes to write code in JavaScript. As this tool is still evolving as this book is being written,
it will be interesting to see how it matures and which advanced features will be added to
this tool. As with the Selenium and Playwright frameworks covered previously, this tool is
free and comes within the Cypress open source framework, which is quite nice.

Now that we've covered the main open source codeless tools within the leading test
frameworks, let's explore some of the leading commercial web testing tools that are
available in the market at this time.

Leading commercial codeless testing tools for
web applications
In the commercial landscape, there are a few leading tools that should be known to
frontend web application developers, software development engineers in test (SDETs),
and manual testers. While we will only focus on three tools in this section, there are a few
others that are not in the scope of this chapter, including Katalon Studio and Tricentis
Tosca.

This section will feature the following three commercial tools:

• Perfecto scriptless web (based on the acquired TestCraft solution)

• Testim codeless testing solution for the web

• Mabl codeless testing solution for the web

These three tools are quite different in their features and capabilities, as well as the vision
that the companies behind these tools have.

252 Complementing Code-Based Testing with Low-Code Test Automation

Perfecto scriptless web overview
The Perfecto scriptless solution is an integration of a codeless web testing AI-driven
solution that was acquired by Perfecto's owning company Perforce (https://
www.perforce.com/press-releases/perforce-expands-portfolio-
testcraft). After TestCraft was acquired, it was fully integrated into the Perfecto cloud-
based continuous testing platform for web and mobile (https://www.perfecto.
io/products/scriptless). With this tool, users can easily record any type of web
application and generate keyword-driven test scenarios without writing a single line of
code. At the backbone of the implementation, Perfecto scriptless utilizes the Selenium
framework to perform actions on the web application under test; however, it also provides
a wide range of testing capabilities, as listed here:

• Test creation and recording

• Test management and cloning

• Self-healing and element locator weighting

• Running tests within CI, schedulers, and in parallel

• A unique feature called Selenium-Based Extended Module (SBEM) for importing
code into the codeless solution

• Fully integrated into the Perfecto platform with access to the code/codeless
reporting and manual testing of web applications

You can see an example of a Perfecto scriptless test scenario in the following screenshot:

Figure 13.10 – Perfecto scriptless test scenario example

https://www.perforce.com/press-releases/perforce-expands-portfolio-testcraft
https://www.perforce.com/press-releases/perforce-expands-portfolio-testcraft
https://www.perforce.com/press-releases/perforce-expands-portfolio-testcraft
https://www.perfecto.io/products/scriptless
https://www.perfecto.io/products/scriptless

Leading commercial codeless testing tools for web applications 253

In the preceding screenshot, you can see the high-level and keyword-driven syntax of a
test scenario that is available to view and edit after it has been recorded on the canvas.
Developers can change sequence, add steps, modify the element locators used in the
script, and much more. In addition, if there is a need to extend the test beyond what's
supported in the codeless tool, developers can import JavaScript code into the tool via the
SBEM, as seen in the following screenshot. Such an ability can add a command to the GUI
recorder and expand the test flow:

Figure 13.11 – Perfecto scriptless SBEM extension capability example

254 Complementing Code-Based Testing with Low-Code Test Automation

Perfecto scriptless also encapsulates a self-healing mechanism that, through learning and
continuous analysis of the web application DOM, can weight each of the elements on the
page and use the highest-rated and most probable element during the test execution, as
illustrated in the following screenshot:

Figure 13.12 – Perfecto scriptless advanced element locators weighting algorithm

In the preceding screenshot, the type attribute has the highest weight distribution, with
19.3%. Unless a user manually overrides the use of this element, this is the element that
the tool will use in the script by default. From one test run to the next, the algorithm keeps
learning and adjusting these weights to always use the ones that have the highest chances
of being found and interacted with.

Test execution at scale, in parallel, and within CI is key for Agile testing and velocity. With
Perfecto scriptless, users can use a built-in scheduler, connect to CI, and run the tests in
the Perfecto cloud, as illustrated in the following screenshot:

Leading commercial codeless testing tools for web applications 255

 Figure 13.13 – Perfecto scriptless CI/CD integration option and configuration window

Clearly, Perfecto scriptless provides rich and complete end-to-end (E2E) test framework
abilities from the creation standpoint, through execution, maintenance, and integration to
CI/CD.

Another capability of the Perfecto scriptless solution is to create and execute API tests on
the web application under test. As we will learn later in this chapter, Mabl can also cover
API testing.

It will be interesting to follow this product and see how it evolves, expands to mobile app
testing as well, and enriches its AI abilities beyond element self-healing.

Testim codeless web tool overview
Testim has a great codeless solution for web application testing. Unlike Perfecto scriptless,
which is fully cloud-based and embedded into the wider Perfecto platform, Testim
(https://www.testim.io/) is a browser extension that allows practitioners to point
to a web application under test and record the action on the app. The test scenarios are
converted into keyword sets of sequential commands. After registering with a company
account or your personal GitHub account, you will be redirected to download the Testim
browser extension (https://chrome.google.com/webstore/detail/testim-
editor/pebeiooilphfmbohdbhbomomkkoghoia). Once the extension is installed,
you can start by recording a new test scenario on any web application.

https://www.testim.io/
https://chrome.google.com/webstore/detail/testim-editor/pebeiooilphfmbohdbhbomomkkoghoia
https://chrome.google.com/webstore/detail/testim-editor/pebeiooilphfmbohdbhbomomkkoghoia

256 Complementing Code-Based Testing with Low-Code Test Automation

With the acquisition by Tricentis (https://www.tricentis.com/news/
tricentis-acquires-ai-based-saas-test-automation-platform-
testim/), it will be interesting to see how this tool evolves and integrates into the overall
portfolio Tricentis has.

You can see an example of a Testim-generated test flow here:

Figure 13.14 – Testim-generated test flow on the Packt Publishing home page

Each step in the exploratory test flow that was recorded and shown in the preceding
screenshot is attached to a dedicated screenshot and element locator properties with
options and conditions, such as when to mark the step as failed, options to run the step
only when an element is visible, and more.

You can see an example for a specific recorded step here:

Figure 13.15 – Testim-generated screenshot for a specific recorded step with a highlight of the element
under test

https://www.tricentis.com/news/tricentis-acquires-ai-based-saas-test-automation-platform-testim/
https://www.tricentis.com/news/tricentis-acquires-ai-based-saas-test-automation-platform-testim/
https://www.tricentis.com/news/tricentis-acquires-ai-based-saas-test-automation-platform-testim/

Leading commercial codeless testing tools for web applications 257

At the end of a test recording, if you like, you can click from the menu on export to code,
and the tool will convert the high-level test scenario into source code using a tool called
the Dev Kit. A nice feature of the Testim product is the ability to branch from a recorded
test suite, as well as copying and pasting an existing test.

The tool also offers a nice structure for managing single test cases, test suites—which are
groups of single test cases—test plans, labels to use per test case (for example, Nightly),
and shared steps that can be used by other test scenarios. You can see an example of this in
the following screenshot:

Figure 13.16 – Testim GUI options for managing test cases and test suites

An additional set of capabilities within Testim is the ability to use data-driven tests
through spreadsheets, JavaScript Object Notation (JSON) files, or other test data
configuration options to maximize test coverage, including happy path testing, negative
scenarios, and boundary cases. You can see an example of this here:

Figure 13.17 – Testim Test Data capabilities: built-in example

258 Complementing Code-Based Testing with Low-Code Test Automation

Also, Testim provides the ability to perform network mocking, as we've seen in code-
based testing frameworks such as Cypress, Playwright, and Puppeteer. To use the mock
features, users need to record an HTTP Archive (HAR) format file and upload it to the
system. You can see an overview of this here:

Figure 13.18 – Testim project settings options and mocking network capability

At the end of executions, whether they are triggered from the Testim GUI or from CI,
users have a dedicated reporting portal within the tool to view all their test results and
filter the test data based on their results. From this view, users can also change and
create new test configurations such as browser version, operating system (OS), screen
resolution, and step timeouts.

A newly created offer from Testim is their TestOps dashboard (https://www.testim.
io/testops/). This dashboard offers granular governance across all test cases within
the Agile team, an additional layer of test management at scale, and allows developers and
testers to better analyze trends and failures.

Two additional and notable features of the product are outlined here:

• Testim Dev Kit

• Testim recorder for Playwright and Puppeteer frameworks

The Testim Dev Kit (https://help.testim.io/docs/index) provides a set of
JavaScript APIs that allow frontend developers to create and edit test code.

To get started with this solution, you need to install a dedicated node library through
this command:

npm install -g @testim/testim-cli

https://www.testim.io/testops/
https://www.testim.io/testops/
https://help.testim.io/docs/index

Leading commercial codeless testing tools for web applications 259

This library connects through your Testim credentials to the Testim tool.

The installation and initiation of the library creates a skeleton of a JavaScript test case
that you can then edit and expand (https://help.testim.io/docs/getting-
started). Once you finish coding, you can run it locally or within CI. Also, recorded
tests from the Testim GUI can be exported to the Dev Kit framework and be used as a
quick jumpstart to coding web test automation.

The Testim recorder for Playwright and Puppeteer is called Playground. After you have
your Testim account created and the browser extension installed, simply go to https://
www.testim.io/playground/, which consists of two tabs—Playwright and
Puppeteer. You can record within the relevant tab an E2E scenario, and the code will be
generated in the background and can be copied and pasted into your IDE of choice, such
as VS Code, IntelliJ, and so on. From that point, you can continue editing the code from
the IDE itself. This is a free offering from Testim.

The nice thing about Testim is that it provides a hybrid model of web application test
automation that is both codeless-driven by AI to self-heal elements through the use of
visual layers, automated waits, and support for smart locators (https://www.testim.
io/test-stability/), as well as through code via its Dev Kit and Playground tools.

To learn more and even get Testim certifications, go to this resource and register:

https://www.testim.io/education/

Mabl codeless web testing tool overview
The third and last codeless tool that we will cover in this section is Mabl (https://
www.mabl.com/). After registering for a free trial with Mabl, you will be asked to
download the desktop application called Mabl trainer. This tool allows users to record
and generate web application codeless test scenarios. There are two main views and
interfaces for Mabl users: the trainer and the web platform. The trainer is where you
record and generate tests, and the web view is where you run tests either locally or in the
Google cloud. Tests can be executed either headed or headless.

https://help.testim.io/docs/getting-started
https://help.testim.io/docs/getting-started
https://www.testim.io/playground/
https://www.testim.io/playground/
https://www.testim.io/test-stability/
https://www.testim.io/test-stability/
https://www.testim.io/education/
https://www.mabl.com/
https://www.mabl.com/

260 Complementing Code-Based Testing with Low-Code Test Automation

The execution report also supports downloading autogenerated HAR files and testing logs.
You can see an example of the Mabl application here:

Figure 13.19 – Mabl trainer desktop application main GUI

After filling in the initial details in the desktop application from Mabl, you can get
started with recording your test flow. As you can see in the preceding screenshot, you can
configure the web application URL and the screen resolution for desktop, and even mobile
web is supported in the early stages.

When clicking on the Create test button on the app, a Chrome browser will launch and
start recording all the user actions, as illustrated in the following screenshot:

Leading commercial codeless testing tools for web applications 261

Figure 13.20 – Mabl trainer side by side with the generated test script

After the recording is completed, the trainer application allows you to edit tests, as well
as adding assertions. After saving the newly created test scenario, you can view it in the
application GUI. Within the Mabl tool, users can also inspect their web application's
single-user performance through the built-in speed index (https://help.mabl.
com/docs/speed-index), as well as performing coverage analysis of their tests against
the web application under test. As you can see in the following launch console, the Mabl
execution engine uses Playwright to run the tests:

Figure 13.21 – Mabl test execution console in runtime

https://help.mabl.com/docs/speed-index
https://help.mabl.com/docs/speed-index

262 Complementing Code-Based Testing with Low-Code Test Automation

Here is the generated test scenario in a keyword-based syntax. The test can be added to a
plan or executed within CI or a defined schedule:

Figure 13.22 – Mabl-generated test flow example

Leading commercial codeless testing tools for web applications 263

Executing the tests from the Mabl application can be done, as mentioned previously,
locally or through the Google cloud, as shown in the following screenshot. Users can add
loops (https://help.mabl.com/docs/using-loops), conditions, mouse hovers,
page refreshes, environment variables, and other abilities to their test scenarios:

Figure 13.23 – Mabl test execution GUI configuration window

https://help.mabl.com/docs/using-loops

264 Complementing Code-Based Testing with Low-Code Test Automation

In addition, and in parallel with functional E2E testing, Mabl also supports API test
creation and execution. Users can define a set of API calls and use them within the test
suite, as well as within the overall test coverage analysis that is provided by Mabl. This is
illustrated in the following screenshot:

Figure 13.24 – Mabl API test creation window and supported capabilities

Mabl is indeed a rich product that supports functional, API, single-user performance,
and visual testing (https://help.mabl.com/docs/visual-testing-and-
monitoring). It has various integrations into many development-operations (DevOps)
tool stacks including CI tools such as Jenkins, Azure Pipelines, GitLab, CircleCI, Slack, Jira,
Microsoft Teams, and others.

Mabl, as with Testim and Perfecto scriptless, also uses its AI algorithm within the element
locators and self-healing functionality (https://www.mabl.com/auto-healing-
tests). However, as opposed to the other tools, with Mabl, users cannot export the
recorded scripts into code, and that's a limitation.

With the upcoming support for mobile web testing, this solution can also be a solid
complementary tool to the code-based testing frameworks that were covered in this book.

Now that we have covered the major commercial codeless tools in the market, let's provide
a summary and conclude this chapter.

https://help.mabl.com/docs/visual-testing-and-monitoring
https://help.mabl.com/docs/visual-testing-and-monitoring
https://www.mabl.com/auto-healing-tests
https://www.mabl.com/auto-healing-tests

Summary 265

Summary
In this chapter, we focused 100% on codeless tools that are offered by the open source
community, as well as commercial tools. We looked at the capabilities of such tools and
what to look for in such tools from a feature set perspective and provided a quick getting
started guide for each of the tools. We dived deeper into the three main commercial
codeless and AI-based tools and explored their core capabilities. While these tools mark a
transformation milestone in the marketplace, they are still new and emerging, and there
are still major gaps in using them. As opposed to open source codeless tools, commercial
tools are licensable and paid products, and the expectations are high. From my evaluation
of all the commercial tools, it was clear that they provide great value and can complement
code-based testing tools with exploratory and mid-level complex test creations. However,
the level of stability in such tests as the scenario becomes more advanced and the ability
to playback the tests are not always consistent. In addition, the scaling of test execution
in most of the tools (excluding Perfecto scriptless) is not straightforward and requires
additional cloud licenses and a separate paid package.

To place all three commercial tools in a comparison table, they look like this:

266 Complementing Code-Based Testing with Low-Code Test Automation

With the preceding summary table in mind, you can get an understanding of the weak
spots and strengths, as well as commonalities between the three commercial tools.

The future of web application testing across desktop platforms and mobile is
promising, and when combining open source code-based testing frameworks with
codeless commercial tools, teams can really maximize the test coverage, stability, and
maintainability of their test assets.

That concludes this chapter!

With this chapter, we conclude this book. The next chapter will provide a summary of
the book and some predictions for the future, as well as expectations of this dynamic
marketplace.

14
Wrapping Up

In this very thorough book that is aimed mainly at web application frontend developers,
we've provided a complete compilation of all testing aspects that are important to keep
web applications at high quality and performance. The book was divided into three parts,
each building upon the ones before it.

To achieve continuous software delivery performance, both frontend developers and
SDETs must keep evaluating their testing assets, reviewing their results, and maintaining
and adding to their existing suites. In addition, knowing all options in the marketplace,
both open source and commercial, can help practitioners to make better decisions and
even combine multiple technologies to enhance testing coverage and capabilities.

In Part 1 of the book, we provided a deep overview of the web application testing types,
the marketplace for frontend web application developers and testers, the key testing
objectives, and the main roles that need to be concerned about these marketplaces.
We also covered, in the first part, the variety of web application types, both legacy and
emerging, such as PWAs, Flutter, React Native, and responsive.

In Part 2 of the book, we dived deeper into the world of frontend developers and
provided instructions on building an efficient test plan from the ground up, as well as
tools to measure success within the continuous testing of web applications. We then
broke down the core capabilities of the leading JavaScript testing frameworks and
covered items such as visual testing, accessibility testing, and API testing. We concluded
the second part of the book with a dedicated chapter around code and test coverage
analysis for web applications.

268 Wrapping Up

In Part 3, we dedicated most of the content to the most advanced features of the
four leading open source web testing frameworks: Selenium, Cypress, Playwright,
and Puppeteer. We concluded that part with an overview of intelligent web testing
solutions that are based on low-code and codeless from within both the open source
and commercial landscapes. We provided an overview for getting started with the three
leading codeless tools on the market: Perfecto Codeless, Testim, and Mabl.

Throughout the entire book, I provided basic and advanced code samples with GitHub
repository pointers and other references to help practitioners from all levels to get started
or advance their testing skills and knowledge.

Major takeaways from the book
While writing this book, I solidified my belief that while there are many other open source
test automation frameworks for web applications that are great and have nice capabilities,
such as Robot (https://robotframework.org/), TestCafe (https://
testcafe.io/), WebdriverIO (https://webdriver.io/), and CodeceptJS
(https://codecept.io/), the most valuable and rich frameworks for frontend web
application developers that should be considered are the four that we've covered.

The main insights to keep in mind are as follows:

• The web application testing marketplace is divided into three architecture-based
frameworks:

 � Chrome debugging protocol (CDP)-based, including Playwright and Puppeteer

 � WebDriver protocol frameworks, including Selenium (as well as WebdriverIO)

 � In-browser JavaScript testing, including Cypress

• There are many commonalities between the four covered frameworks; however,
each brings a unique value that the others don't. Hence, combining more than
a single framework within the testing strategy might be a productive decision. For
multi-skillset teams, consider the use of Selenium, which comes with more language
bindings, and Playwright or Cypress, which add additional features, such as API
testing, built-in code coverage, ease of debugging, and stronger codeless
creation abilities.

• The future of web application testing will depend on the synergy between new
and emerging commercial codeless tools and open source frameworks. If they can
complement each other and maintain a proper balance of test coverage, stability, and
maintainability, teams that adopt both types of solutions will be highly successful.

https://robotframework.org/
https://testcafe.io/)
https://testcafe.io/)
https://webdriver.io/
https://codecept.io/

Useful references and bookmarks 269

• Continuous testing for web applications must consider the entire digital landscape,
which is both web and mobile platforms, PWAs, Flutter, React Native, and other
types of modern applications. To remain competitive in the market across verticals
(healthcare, insurance, finance, and so on), teams have to build stronger and higher-
coverage test suites and shift left all testing types, including security, accessibility, APIs,
and performance.

The software testing world for both web and other digital apps, including mobile and IoT,
is constantly evolving and advancing. As a takeaway from this book, I recommend all
developers and testers keep an eye on digital transformation-related trends, follow their
industry-specific trends, and learn/adopt things that can improve their daily work and
contribute to greater application quality.

You can find an additional set of references and links as follows to expand your
knowledge and skills around web application testing with the aforementioned open
source testing frameworks.

I do hope that this book will continue to contribute to your overall testing practices
throughout the software development life cycle and beyond.

GitHub main repository – https://github.com/PacktPublishing/A-
Frontend-Web-Developers-Guide-to-Testing

Useful references and bookmarks
For future reference and more examples and best practices, I recommend bookmarking
the following.

Cypress framework-specific
• Cypress ambassadors – https://www.cypress.io/ambassadors/

• Cypress Gitter – https://gitter.im/cypress-io/cypress#

• Marie Drake's personal blog – https://www.mariedrake.com/blog

• Gleb Bahmutov – https://glebbahmutov.com/blog/

• Filip Hric's blog – https://filiphric.com/

• Cypress Courses by Gleb Bahmutov - https://cypress.tips/courses

https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://github.com/PacktPublishing/A-Frontend-Web-Developers-Guide-to-Testing
https://www.cypress.io/ambassadors/
https://gitter.im/cypress-io/cypress#
https://www.mariedrake.com/blog
https://glebbahmutov.com/blog/
https://filiphric.com/
https://cypress.tips/courses

270 Wrapping Up

Playwright framework-specific
• Microsoft Playwright documentation – https://docs.microsoft.com/

en-us/microsoft-edge/playwright/

• Playwright community documentation – https://playwright.tech/

• A basic but useful getting started with Playwright guide – https://dev.to/
leading-edje/automate-your-testing-with-playwright-1gag

• Extending Playwright testing with C# support – https://medium.com/
version-1/playwright-a-modern-end-to-end-testing-for-web-
app-with-c-language-support-c55e931273ee

• Execute automation YouTube Playwright tutorial – https://www.youtube.
com/watch?v=2_BPIA5RgXU

• Playwright Slack channel – https://playwright.slack.com/join/
shared_invite/zt-smuwd93l-Itgcv8IKYaF~wRnLQl4UMg#/shared-
invite/email

Selenium framework-specific
• Online Selenium tutorial – https://artoftesting.com/selenium-

tutorial

• Selenium testing guide by Mozilla – https://developer.mozilla.org/
en-US/docs/Learn/Tools_and_testing/Cross_browser_testing/
Your_own_automation_environment

Puppeteer framework-specific
• Google Developers Puppeteer guides:

 � https://developers.google.com/web/tools/puppeteer/
get-started

 � https://pptr.dev/

• Puppeteer official documentation – https://devdocs.io/puppeteer/

• Getting started with Puppeteer: an insightful blog – https://codoid.com/
puppeteer-tutorial-the-complete-guide-to-using-a-headless-
browser-for-your-testing/

https://docs.microsoft.com/en-us/microsoft-edge/playwright/
https://docs.microsoft.com/en-us/microsoft-edge/playwright/
https://playwright.tech/
https://dev.to/leading-edje/automate-your-testing-with-playwright-1gag
https://dev.to/leading-edje/automate-your-testing-with-playwright-1gag
https://medium.com/version-1/playwright-a-modern-end-to-end-testing-for-web-app-with-c-language-support-c55e931273ee
https://medium.com/version-1/playwright-a-modern-end-to-end-testing-for-web-app-with-c-language-support-c55e931273ee
https://medium.com/version-1/playwright-a-modern-end-to-end-testing-for-web-app-with-c-language-support-c55e931273ee
https://www.youtube.com/watch?v=2_BPIA5RgXU
https://www.youtube.com/watch?v=2_BPIA5RgXU
https://playwright.slack.com/join/shared_invite/zt-smuwd93l-Itgcv8IKYaF~wRnLQl4UMg#/shared-invite/email
https://playwright.slack.com/join/shared_invite/zt-smuwd93l-Itgcv8IKYaF~wRnLQl4UMg#/shared-invite/email
https://playwright.slack.com/join/shared_invite/zt-smuwd93l-Itgcv8IKYaF~wRnLQl4UMg#/shared-invite/email
https://playwright.slack.com/join/shared_invite/zt-smuwd93l-Itgcv8IKYaF~wRnLQl4UMg#/shared-invite/email
https://artoftesting.com/selenium-tutorial
https://artoftesting.com/selenium-tutorial
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Cross_browser_testing/Your_own_automation_environment
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Cross_browser_testing/Your_own_automation_environment
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Cross_browser_testing/Your_own_automation_environment
https://developers.google.com/web/tools/puppeteer/get-started
https://developers.google.com/web/tools/puppeteer/get-started
https://pptr.dev/
https://devdocs.io/puppeteer/
https://codoid.com/puppeteer-tutorial-the-complete-guide-to-using-a-headless-browser-for-your-testing/
https://codoid.com/puppeteer-tutorial-the-complete-guide-to-using-a-headless-browser-for-your-testing/
https://codoid.com/puppeteer-tutorial-the-complete-guide-to-using-a-headless-browser-for-your-testing/

Index

A
accessibility testing

about 15, 121
Cypress accessibility testing 121
Playwright accessibility testing 122
Puppeteer accessibility

testing 122, 229, 230
Selenium accessibility testing 122
with Selenium 160, 161

Actions APIs, Selenium 154, 155
advanced configurations,

Playwright 206, 209
advanced test automation

capabilities, Cypress 173
advanced test automation

capabilities, Playwright
about 194
advanced configurations 206, 209
API testing 199, 200
assertions 201, 202
Inspector 194, 195
integration, with CI 210, 211
mobile devices, emulating 196, 197
network mocking 202
POM (Page Object Model) 203

test annotations 197, 198
test reporting 203, 204
test runners 204, 205
trace viewer 205, 206

advanced test automation
capabilities, Puppeteer

accessibility testing 229, 230
API testing 231
CodeceptJS integration 233, 234
Cucumber BDD 227, 228
elements 223-226
Google DevTools 231, 232
load test option 226, 227
namespaces 221, 222
testing within CI 235, 236
web app tracing 230

AngularJS
about 85-87
URL 79

API testing
about 112
Cypress API testing 112, 113
Playwright API testing 114, 199, 200
Puppeteer API testing 114, 231
Selenium API testing 114

272 Index

Appium
about 6
reference link 117

Applitools
references 109, 110

assertions, Playwright 201, 202
automation evaluation matrix

testing 70-74
AXE

references 35, 121

B
Babel plugin 137
Backbone.js

URL 79
BDD testing

with Selenium 156, 157
behavior-driven development (BDD) 86
BlazeMeter

URL 70, 118
boundary values coverage 135
branch coverage 136
BrowserStack 84, 130, 156
built-in inspector tool, Playwright

reference link 127

C
Chrome Cypress recorder

reference link 55
Chrome debugging protocol (CDP) 268
Chrome DevTools Protocol (CDP) 20, 42
CircleCI

reference link 184
CodeceptJS

URL 233
CodeceptJS integration, Puppeteer 233

code coverage
about 135
complementing, with test coverage 142

code coverage, Playwright
reference link 194

codeless open source tools
Cypress 249, 250
Playwright 248, 249
Selenium 244-247

codeless testing tools
fundamental features 240-243

codeless testing tools, for web applications
about 251
Mabl 259-264
Perfecto 252-255
Testim 255-259

codeless tool overview
within open source landscape 243

common weakness enumerations
(CWE) 37

common web app performance problems
reference link 104

compatibility coverage 135
compliance challenges, web

applications 35-37
component testing 89
continuous integration (CI) jobs 14
continuous testing strategy

success, measuring 102, 103
Coordinated Universal Time (UTC)

reference link 175
coverage challenges, web

application developers 27
create, read, update, and

delete (CRUD) 85
cross-browser testing frameworks

high-level classification 42

Index 273

CSS selectors
reference link 125

Cucumber BDD
with Puppeteer 227

Cypress
about 17, 42, 49, 165, 166
accessibility testing 121
advanced test automation

capabilities 173
API testing 112, 113, 184
clocks, setting 175
command-line executions 170-172
component testing 178, 179
features 52-55
future 186
JavaScript code coverage,

measuring 138-141
live execution, on local browser 50, 51
mobile device testing 116
performance testing 118, 119
reference link 52
running, within CI 177
spies, setting 174
stubs, setting 176
test retries 173, 174
URL 49, 166
visual testing 109
working, with elements 125, 126

Cypress ambassadors
reference link 269

Cypress Component Testing
reference link 84

Cypress Gitter
reference link 269

Cypress GUI 166-168
Cypress IDE 169-172
Cypress Istanbul plugin

reference link 137

Cypress plugins
about 182, 183
references 182

Cypress selector 168, 169
Cypress Studio

about 163, 180-182
reference link 55, 180

Cypress Studio codeless tool 249, 250
Cypress-Xpath

reference link 125
cy.screenshot() APIs

reference link 109

D
Dart 30
DAST 36
Definition of Done (DOD)

about 102
reference link 102

Dev Kit 257
Document Object Model (DOM) 193
Dropbox 81

E
ECMAScript 26
elements

working with 125
elements, Puppeteer 223-226
Ember.js

about 89-91
autotracking 89
reference link 79
testing methods 90

274 Index

F
Flutter

about 31
reference link 31, 79

foldables 30
Forrester report 36
frontend developer

objectives 64
functional testing, web applications 12, 13
function coverage 136

G
Galen

reference link 111
General Availability (GA) 27
Gherkin 156
Google Chrome 28
Google Developers Puppeteer guides

reference link 270
Google DevTools, Puppeteer 231, 232
Google Lighthouse 118

H
Happo

reference link 109
headed browsers 17
headless browser

about 16
testing frameworks 19-22

Healenium
URL 155

Health Insurance Portability and
Accountability Act (HIPAA) 36

HTTP archive (HAR) file 56

I
iFrame 59
iFrames testing capability

reference link 68
Indeed 65
Inspector tool

URL 194
using 194, 195

Istanbul
about 137
JavaScript code coverage,

measuring 138-141

J
Jasmine

about 86
URL 204

JavaScript 26
JavaScript code coverage

measuring, with Cypress 138-141
measuring, with Istanbul 138-141
tools, for web application developers 137

JavaScript extension (JSX) 81
Jest

references 89, 137, 204, 220
jQuery

URL 79
JSLint

URL 14
JUnit 187

K
Karma

about 86
reference link 86

Index 275

L
Lighthouse

about 232
reference link 232

lines of code (LOC) coverage 141
LinkedIn 90
load test option, Puppeteer 226, 227
Lolex

reference link 174
loop coverage 136
low-code testing tools

fundamental features 240-243

M
Mabl 259-264
Mabl Trainer 259
Mean Time to Detect (MTTD) 103
Microsoft 90
mobile devices

emulating 196, 197
mobile device testing

about 115
Cypress mobile device testing 116
Playwright mobile device

testing 116, 117
Puppeteer mobile device testing 117
Selenium mobile device testing 117

Mocha
about 86
references 89, 204, 220

MochaJS
reference link 202

mock services
about 123
for Cypress 123
for Playwright 124

for Puppeteer 124
for Selenium 125

monitoring of web trends, HTTP Archive
reference link 4

Mozilla Developer Network (MDN) 116
MSN

URL 7
MTTR (mean time to resolution) 65
multi windows, Selenium 154

N
namespaces, Puppeteer 221, 222
Netflix 81, 90
network control testing

about 123
Cypress 123
Playwright 124
Puppeteer 124
Selenium 125

network mocking APIs, Playwright
reference link 124

network mocking, Playwright 202
ng-app 85
ng-bind 85
ng-init 85
ng-model 85
Node.js

reference link 46
non-functional challenges, web

application development
about 32
accessibility challenges 33, 34
performance challenges 32

non-functional testing, web applications
about 13
accessibility testing 15

276 Index

performance and load testing 14
security testing 14

npmtrends frameworks comparison
reference link 40

npm trends website
URL 40

nyc module
reference link 138

O
Open Web Application Security

Project (OWASP) 36

P
Page Object Model (POM)

about 49
reference link 127

Percy
references 109, 110

Perfecto
about 84, 130, 156
URL 74

Perfecto cloud solution reporting SDK
reference link 69

Perfecto scriptless web 252-255
performance and load testing 14
performance testing

about 118
Cypress performance testing 118, 119
Playwright and Puppeteer

performance testing 119, 120
Selenium performance testing 121

Pinterest 81
pixelmatch

reference link 110

Playground
URL 259

Playwright
about 19, 42, 58, 190
accessibility testing 122
advanced test automation

capabilities 194
API testing 114
command-line interface output,

for parallel testing 192
command-line options 59
documentation link 270
expect keyword 192
frames 193
future 211, 212
mobile device testing 116, 117
Page component 192
performance testing 119, 120
reference link 58, 270
Test class 193
URL 190
visual testing 109, 110
workers 191, 192
working 59
working, with elements 126, 127

Playwright CodeGen Inspector 248, 249
playwright.devices() API

reference link 116
Playwright Slack channel

reference link 270
Playwright testing, with C# support

reference link 270
POM design pattern 203
Preact

URL 79
product features coverage 135

Index 277

product requirements coverage 135
progressive web application

(PWA) 6, 9, 10, 86
promise 218
Puppeteer

about 16, 42, 55, 56, 216
accessibility testing 122
advanced test automation

capabilities 221
API testing 114
documentation link 270
example, with FileChooser

method 219, 220
example, with promise 219, 220
future 237, 238
generated HAR file example 56
high-level architecture diagram 217
mobile device testing 117
performance testing 119, 120
reference link 270
URL 216
visual testing 110
working, with elements 127

puppeteer-core package 218
Puppetry

URL 238
PWA Stats

URL 10
PWA test plan

building blocks 10, 11

Q
quality 26
Qunit

about 86
URL 90

R
ReactJS

about 81-84
URL 78

ReactJS applications, testing
reference link 83

Real World App
reference link 180

Relative Locators 68
relative locators, Selenium 152
responsive web applications 8
responsive web design (RWD) test plan

building blocks 8, 9
REST Assured

reference link 114
risk coverage 135
roadmap items

reference link 68
Robot

URL 268

S
SAST 36
Sauce Labs 84, 130, 156
SDETs (software developer

engineers in testing)
about 65
objectives 65, 66

Secure Code Warrior
URL 37

security testing 14
Selenium

about 6, 17, 86
accessibility testing 122, 160, 161
API testing 114
BDD testing 156, 157

278 Index

components 148
future 162, 163
mobile device testing 117
performance testing 121
reference link 270
supported element locators 49
testing methods 156
URL 43
visual testing 111, 158, 159
working, with elements 129

Selenium 4 68
Selenium, advanced features

about 151
Action APIs 154, 155
Chrome debugging protocol 153, 154
multi-windows 154
relative locators 152
tab management 154

Selenium-Based Extended
Module (SBEM) 252

Selenium Chrome debugging
protocol 153, 154

Selenium code
upgrading, to Selenium 4 162

Selenium Grid
about 43, 46, 47, 148
in cloud 155
reference link, for supported

driver capabilities 48
starting 149-151

Selenium IDE
about 43, 148
codeless tool 244-247

Selenium, testing guide by Mozilla
reference link 270

Selenium WebDriver
about 43, 148
setting up 43-46

self-healing scripts, Selenium 155
Semantic UI

URL 79
service workers 10
Sinon-chai

reference link 174
Sinon.js

URL 174
snapshots plugin

reference link 109
software development life cycle (SDLC) 12
solid test automation framework

adoption 68
community considerations 67
considerations 66, 67
ease of use 68
intelligence 69
maintainability 68
reporting 69
reusability 68
scale testing capabilities 67
test analysis 69
tool stack integrations and plugins 67
use cases 66

Stack Overflow Trends
reference link 80

statement coverage 136
Storybook

reference link 111
stubbing 123
Svelte

about 92, 93
reference link 79

Index 279

T
tab management, Selenium 154
TeamCity 187
test annotations, Playwright 197, 198
test automation framework

capabilities, comparing 108
CI/CD integration 130
compelling events, examples 131
re-evaluation 131
supported development languages 115

TestCafe
URL 268

TestConfig class 209
test coverage

about 134
code coverage, complementing with 142

Testim
overview 255-259
URL 255

Testim certifications
reference link 259

Testim DevKit
reference link 258

Testim recorder 259
testing methods, Selenium

accessibility testing 160, 161
BDD testing 156, 157
visual testing 158, 159

TestOps dashboard
reference link 258

test reporting, Playwright 203, 204
test retries, Cypress

about 173, 174
reference link 173

test runners, Playwright 204, 205
trace viewer, Playwright 205, 206
traditional web applications 6, 7

two-way data binding 85
TypeScript 49

U
unit testing 89
userAgent

about 116
reference link 116

V
velocity 26
Virtual DOM 83
visual testing

about 108
Cypress visual testing 109
Playwright visual testing 109, 110
Puppeteer visual testing 110
Selenium visual testing 111
with Selenium 158, 159

Vue CLI plugin
reference link 89

Vue.js
about 87, 88
URL 78

W
WCAG

about 34
reference link 34

web application developers
coverage challenges 27-30
JavaScript code coverage tools 137

web application development
challenges 24, 25
non-functional challenges 32

280 Index

web applications
compliance challenges 35-37
document 101, 102
environments, preparing 100
execution 101, 102
functional testing 12, 13
measure 101, 102
monitor 101, 102
non-functional testing 13
objectives, setting 100
PWAs 9, 10
quality criteria, setting 100
responsive web applications 8
schedule, building 101
target users, knowing 99
testing plan 98
testing strategy 98
testing types 12
test plan, building 99
timeline, building 101
tool stack, preparing 100
traditional web applications 6, 7
types 6

web application testing marketplace
architecture-based framework 268, 269

web application testing strategy
case study 104, 105

web app tracing, Puppeteer 230
web development frameworks

about 78, 79
AngularJS 85-87
Ember.js 89-91
guidelines 80, 81
ReactJS 81-84
Svelte 92, 93
Vue.js 87, 88

web development frameworks, Hackr.io
reference link 4

WebdriverIO
URL 268

WebDriver protocol 42
web landscape 4, 5
webpack

reference link 178
web testing market 40-42
web testing personas 64, 65
WireMock

reference link 125

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

282 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

API Testing and Development with Postman

Dave Westerveld

ISBN: 978-1-80056-920-1

• Find out what is involved in effective API testing

• Use data-driven testing in Postman to create scalable API tests

• Understand what a well-designed API looks like

• Become well-versed with API terminology, including the different types of APIs

• Get to grips with performing functional and non-functional testing of an API

• Discover how to use industry standards such as OpenAPI and mocking in Postman

https://www.packtpub.com/product/api-testing-and-development-with-postman/9781800569201

Other Books You May Enjoy 283

End-to-End Web Testing with Cypress

Waweru Mwaura

ISBN: 978-1-83921-385-4

• Get to grips with Cypress and understand its advantages over Selenium

• Explore common Cypress commands, tools, and techniques for writing complete
tests for web apps

• Set up and configure Cypress for cross-browser testing

• Understand how to work with elements and animation to write non-flaky tests

• Discover techniques for implementing and handling navigation requests in tests

• Implement visual regression tests with Applitools eyes

https://www.packtpub.com/product/end-to-end-web-testing-with-cypress/9781839213854

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Hi!

I Eran Kinsbruner, author of A Frontend Web Developer's Guide to Testing, I really hope
you enjoyed reading this book and found it useful for increasing your productivity and
efficiency in ensuring web application quality.

It would really help us (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on A Frontend Web Developer's Guide to Testing.

Go to the link below to leave your review:

https://packt.link/r/1803238313

Your review will help us to understand what's worked well in this book, and what could be
improved upon for future editions, so it really is appreciated.

Best wishes,

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1803238313

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1 –
Frontend Web Testing Overview
	Chapter 1: Cross-Browser Testing Methodologies
	An overview of the web landscape
	Understanding web application types
	Traditional web applications
	Responsive web applications
	PWAs

	Testing types for web applications
	Functional testing of web applications
	The non-functional testing of web applications

	Understanding headless and headed browsers within app development and testing
	Choosing between headed browsers and
headless browsers
	Headless browser testing frameworks

	Summary

	Chapter 2: Challenges Faced by Frontend Web Application Developers
	Web application development challenges
	Quality vs velocity

	Coverage challenges for web
application developers
	Non-functional challenges in web
application development
	Performance challenges
	Accessibility challenges

	Compliance challenges for web applications
	Summary

	Chapter 3: Top Web Test Automation Frameworks
	An overview of the web testing market
	Getting started with the Selenium
WebDriver framework
	Setting up Selenium WebDriver
	Selenium Grid

	Getting started with the Cypress framework
	Important features of Cypress

	Getting started with the Google Puppeteer framework
	Getting started with the Microsoft
Playwright framework
	Summary

	Chapter 4: Matching Personas and Use Cases to Testing Frameworks
	Technical requirements
	Web testing personas overview
	Use cases and considerations for picking a solid test automation framework
	Community considerations
	Scale testing capabilities
	Tool stack integrations and plugins
	Ease of use and adoption
	Reusability and maintainability
	Reporting, test analysis, and intelligence

	Testing automation evaluation matrix
	Summary

	Chapter 5: Introducing the Leading Frontend Web Development Frameworks
	Technical requirements
	Introduction to the leading web development frameworks
	Guidelines for picking a web
development framework
	ReactJS
	AngularJS
	Vue.js
	Ember.js
	Svelte

	Summary

	Part 2 –
Continuous Testing Strategy for Web Application Developers
	Chapter 6: Map the Pillars of a Dev Testing Strategy for Web Applications
	The key pillars of a web application testing plan and strategy
	Know your target users
	Building a test plan
	Prep your tool stack and environments
	Set quality criteria and objectives
	Build a timeline and a schedule
	Execute, monitor, measure, and document

	Measuring the success of your continuous testing strategy
	A case study – a real-life web application testing strategy
	Summary

	Chapter 7: Core Capabilities of the Leading JavaScript Test Automation Frameworks
	Comparing the test automation
framework capabilities
	Visual testing
	API testing
	Supported development languages
	Mobile device testing
	Performance testing
	Accessibility testing
	Network control testing and mock services
	Working with elements

	A re-evaluation of test automation frameworks due to compelling events
	Summary

	Chapter 8: Measuring Test Coverage of the
Web Application
	Introduction to code coverage and
test coverage
	Test coverage
	Code coverage

	JavaScript code coverage tools for web application developers
	Measuring JavaScript code coverage using Istanbul and Cypress

	Complementing code coverage with
test coverage
	Summary

	Part 3 –
Frontend JavaScript Web Test Automation Framework Guides
	Chapter 9: Working with the Selenium Framework
	Technical requirements
	Understanding the Selenium framework
and its components
	Selenium WebDriver
	The advanced features of Selenium
	Various testing methods with Selenium

	The future of the Selenium framework
	Summary

	Chapter 10: Working with the Cypress Framework
	Technical requirements
	Getting started with Cypress
	The Cypress GUI
	Cypress IDE and command-line executions

	Cypress's advanced test automation capabilities
	Cypress test retries
	Using stubs, spies, and clocks with Cypress
	Running Cypress within CI
	Component testing
	Cypress Studio
	Cypress plugins
	Cypress API testing

	The future of the Cypress framework
	Summary

	Chapter 11: Working with the Playwright Framework
	Technical requirements
	Getting started with Playwright
	Playwright's advanced test
automation capabilities
	Playwright Inspector
	Emulating mobile devices
	Playwright test annotations
	Playwright API testing
	Playwright assertions
	Playwright network mocking
	Playwright POM (Page Object Model)
	Playwright test reporting
	Playwright test runners
	Playwright trace viewer
	Playwright advanced configurations
	Playwright integration with CI

	The future of the Playwright framework
	Summary

	Chapter 12: Working with the Puppeteer Framework
	Technical requirements
	Getting started with Puppeteer
	Learning about Puppeteer's advanced test automation capabilities
	Puppeteer namespaces
	Puppeteer working with elements
	Puppeteer load test option
	Puppeteer and Cucumber BDD
	Puppeteer accessibility testing
	Puppeteer web app tracing
	Puppeteer for API testing
	Puppeteer with Google DevTools
	Puppeteer and CodeceptJS integration
	Puppeteer testing within CI

	The future of the Puppeteer framework
	Summary

	Chapter 13: Complementing Code-Based Testing with Low-Code
Test Automation
	Fundamental features of low-code/codeless testing tools
	Codeless tool overview within the open source landscape
	Open source codeless tool lineup

	Leading commercial codeless testing tools for web applications
	Perfecto scriptless web overview
	Testim codeless web tool overview
	Mabl codeless web testing tool overview

	Summary

	Chapter 14: Wrapping Up
	Major takeaways from the book
	Useful references and bookmarks
	Cypress framework-specific
	Playwright framework-specific
	Selenium framework-specific
	Puppeteer framework-specific

	Index
	Other Books You May Enjoy

