
Advanced
Python
Development

Using Powerful Language Features
in Real-World Applications
—
Matthew Wilkes

Advanced Python
Development

Using Powerful Language Features
in Real-World Applications

Matthew Wilkes

Advanced Python Development: Using Powerful Language Features in Real-World
Applications

ISBN-13 (pbk): 978-1-4842-5792-0 ISBN-13 (electronic): 978-1-4842-5793-7
https://doi.org/10.1007/978-1-4842-5793-7

Copyright © 2020 by Matthew Wilkes

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The author asserts the moral right to be identified as the author of this work.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Photographs by Mark Wheelwright (Matthew), Stephanie Shadbolt (Jesse) and Niteo GmbH (Nejc)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5792-0. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Matthew Wilkes
Leeds, West Yorkshire, UK

https://doi.org/10.1007/978-1-4842-5793-7

iii

About the Author ��� xi

About the Technical Reviewers ��� xiii

Acknowledgments ���xv

Introduction ���xvii

Table of Contents

Chapter 1: Prototyping and environments �� 1

Prototyping in Python �� 1

Prototyping with the REPL ��� 2

Prototyping with a Python script ��� 6

Prototyping with scripts and pdb �� 7

Prototyping with Jupyter ��� 11

Prototyping in this chapter �� 15

Environment setup �� 18

Setting up a new project ��� 19

Prototyping our scripts �� 20

Installing dependencies ��� 23

Exporting to a �py file �� 27

Building a command-line interface ��� 29

The sys module and argv �� 30

argparse �� 32

click ��� 34

Pushing the boundaries �� 37

Remote kernels ��� 38

Developing code that cannot be run locally �� 42

iv

The completed script �� 46

Summary��� 48

Additional resources �� 49

Chapter 2: Testing, checking, linting �� 51

Testing��� 54

When to write tests ��� 57

Creating formatting functions for improved testability�� 59

pytest ��� 63

Type checking ��� 77

Installing mypy �� 78

Adding type hints ��� 79

Subclasses and inheritance �� 82

Generic types ��� 85

Debugging and overuse of typing �� 87

When to use typing and when to avoid it �� 89

Keeping type hints separate from code ��� 90

Linting ��� 92

Installing flake8 and black �� 94

Fixing existing code ��� 94

Running automatically ��� 96

Running on pull requests ��� 98

Summary��� 99

Additional resources �� 100

Chapter 3: Packaging scripts ��� 103

Terminology �� 104

Directory structure �� 105

Setup scripts and metadata �� 108

Dependencies ��� 109

Declarative configurations �� 110

Things to avoid in setup�py �� 111

Using setup�cfg �� 117

Table of ConTenTs

v

Custom index servers ��� 119

Setting up pypiserver �� 121

Durability ��� 123

Confidentiality�� 123

Integrity ��� 124

Wheel formats and executing code on installation ��� 125

Installing the console script using entrypoints ��� 129

README, DEVELOP, and CHANGES �� 130

Markdown format �� 131

reStructured text format �� 133

README ��� 135

CHANGES�md and versioning��� 136

Upstream dependency version pins �� 138

Loose pins ��� 139

Strict pins �� 140

Which pinning scheme to use ��� 141

Uploading a version �� 141

Configuring twine �� 143

Summary��� 144

Additional resources �� 144

Chapter 4: From script to framework ��� 147

Writing a sensor plugin ��� 148

Developing the plugin �� 149

Adding a new command option �� 152

Subcommands ��� 153

Command options�� 156

Error handling �� 157

Off-loading parsing to Click with argument types ��� 162

Custom click argument types �� 163

Canned options �� 166

Table of ConTenTs

vi

Allowing third-party sensor plugins �� 167

Plugin detection using fixed names �� 169

Plugin detection using entrypoints �� 170

Configuration files ��� 174

Environment variables ��� 178

Approach for apd�sensors vs� similar programs �� 179

Summary��� 180

Additional resources �� 181

Chapter 5: Alternative interfaces �� 183

Web microservices �� 183

WSGI �� 184

API design �� 190

Flask �� 192

Python decorators ��� 196

Testing the view function �� 210

Deployment ��� 213

Extending software as a third party �� 214

Agreeing on an ad hoc signature with peers ��� 221

Abstract base classes�� 223

Fallback strategies �� 227

Bringing it all together ��� 233

Fixing the serialization problem in our code ��� 235

Tidying up �� 239

Versioning APIs ��� 240

Testability �� 242

Summary��� 244

Additional resources �� 245

Chapter 6: Aggregation process ��� 247

Cookiecutter �� 247

Creating a new template ��� 249

Creating the aggregation package �� 252

Table of ConTenTs

vii

Database types �� 254

Our example �� 257

Object-relational mappers ��� 258

Versioning the database �� 263

Loading data �� 270

New technologies ��� 279

Databases �� 279

Custom attribute behavior ��� 279

Generators ��� 280

Summary��� 280

Additional resources �� 280

Chapter 7: Parallelization and async �� 283

Nonblocking IO �� 284

Making our code nonblocking ��� 289

Multithreading and multiprocessing ��� 291

Low-level threads �� 292

Bytecode �� 296

Locks and deadlocks ��� 300

Avoiding global state ��� 306

Other synchronization primitives ��� 312

ProcessPoolExecutors ��� 321

Making our code multithreaded �� 321

AsyncIO ��� 322

async def ��� 323

await �� 324

async for �� 327

async with ��� 331

Async locking primitives�� 332

Working with synchronous libraries �� 334

Making our code asynchronous �� 335

Table of ConTenTs

viii

Comparison ��� 339

Making a choice �� 341

Summary��� 343

Additional resources �� 343

Chapter 8: Advanced asyncio ��� 345

Testing async code ��� 345

Testing our code �� 347

Mocking objects for easier unit testing ��� 356

Asynchronous databases �� 368

Classic SQLAlchemy style�� 369

Using run_in_executor �� 373

Querying data �� 376

Avoiding complex queries ��� 378

Alternatives ��� 391

Global variables in asynchronous code ��� 392

Summary��� 395

Additional resources �� 395

Chapter 9: Viewing the data ��� 397

Query functions ��� 397

Filtering data ��� 404

Multilevel iterators��� 408

Additional filters �� 415

Testing our query functions ��� 417

Displaying multiple sensors �� 421

Processing data �� 425

Interactivity with Jupyter widgets ��� 430

Multiply nested synchronous and asynchronous code �� 431

Tidying up �� 437

Persistent endpoints ��� 439

Table of ConTenTs

ix

Charting maps and geographic data ��� 440

New plot types ��� 442

Supporting map type charts in apd�aggregation ��� 445

Drawing a custom map using the new configs ��� 448

Summary��� 451

Additional resources �� 452

Chapter 10: Speeding things up ��� 453

Optimizing a function �� 453

Profiling and threads ��� 455

Interpreting the profile report �� 459

Other profilers ��� 462

Optimizing control flow ��� 468

Visualizing profiling data ��� 473

Caching �� 477

Summary��� 489

Additional resources �� 489

Chapter 11: Fault tolerance �� 491

Error handling ��� 491

Getting items from a container �� 492

Custom exceptions �� 498

Tracebacks involving multiple exceptions ��� 502

Testing for exception handling �� 507

Warnings ��� 514

Warning filters ��� 518

Logging ��� 520

Nested loggers �� 522

Custom actions �� 523

Logging configuration �� 530

Other handlers ��� 532

Table of ConTenTs

x

Designing around problems �� 533

Scheduling sensor lookups ��� 533

Summary��� 539

Additional resources �� 540

Chapter 12: Callbacks and data analysis ��� 541

Generator data flow �� 541

Generators that consume their own output ��� 543

Enhanced generators �� 548

Queues �� 556

Choosing a control flow ��� 559

Structure for our actions ��� 560

Analysis coroutines ��� 561

Ingesting data �� 567

Running the analysis process �� 571

Process status �� 574

Callbacks ��� 578

Extending the actions available �� 581

Summary��� 584

Additional resources �� 584

Epilogue ��� 585

 Index ��� 589

Table of ConTenTs

xi

About the Author
Matthew Wilkes is a European software developer who has

worked with Python on web projects for the last 15 years.

As well as developing software, he has a long experience in

mentoring Python developers in a commercial setting.

He is also very involved in open source software, with

commits to many popular frameworks. His contributions

in that space are focused on the details of database and

security interactions of web frameworks.

xiii

About the Technical Reviewers

Coen de Groot is a freelance Python developer and trainer.

He has been passionate about computers and programming

since the late 1970s when he built his first “computer.”

After nearly finishing his computer science degree at

Leiden University, Coen has worked for a large oil company,

small startups, software agencies, and others. He has written

a lot of software in many different programming languages.

And he has worked in software support, delivered training,

led teams, and managed technical projects.

After about 20 years in IT, Coen tried something

different, trained as a business coach, hosted a large

community of coaches, and organized five conferences. But he quickly got pulled back

into building websites and other IT services for coaches and others.

For the last 10 years, Coen has mostly been programming in Python, with hints of

SQL, JavaScript, and others. And he still enjoys learning more Python and passing on

that knowledge face to face, in writing or on video.

Geek since he was able to walk, Nejc Zupan developed his

first computer game in primary school, won the national

robotics championship in high school, and cofounded

niteo.co while still in college. He has spoken at conferences

in five continents, mostly relating to the Web, Python, and

productivity. Whenever he is not coding, he is chasing big

waves around the world.

xiv

Jesse Snyder began programming after many years of

deferring graduate studies in ethnomusicology and was

pleasantly surprised by how completely engrossing he found

the challenges and rewards of software design. After several

years in the Pacific Northwest nonprofit technology scene,

he now works as an independent consultant. When not at

work or playing Javanese gamelan music, he is likely out for

a long run through the beautiful parks and neighborhoods

around his home in Seattle, Washington.

abouT The TeChniCal RevieweRs

xv

Acknowledgments

Many people helped with this book in various ways. The thousands of contributors to

Python’s open source ecosystem must come first; without them there would be no book

to write. Thank you to Joanna for encouraging me, despite the difficulty and long hours.

Thanks also to the rest of my family for their unfailing support over the years.

For this book specifically, I’d like to thank Nejc Zupan, Jesse Snyder, Tom Blockley,

Alan Hoey, and Cris Ewing, all of whom gave valuable comments on the plan and

implementation. Thank you also to Mark Wheelwright of ISO Photography for his

excellent work in getting a good photograph of me and to the team at Apress for their

hardwork.

Finally, thank you to the people who continue to make the Web as weird and

wonderful a thing as it was when I was first drawn into working with the Internet.

Thomas Heasman-Hunt, Julia Evans, Ian Fieggen, Foone Turing, and countless

more – I doubt industrial software would have captured so much of my attention without

people like you.

xvii

Introduction

Python is a very successful programming language. In the three decades that it has

existed, it has become very widely used. It ships by default with major operating systems;

some of the largest websites in the world use Python for their back ends, and scientists

are using Python every day to advance our collective knowledge. As so many people are

working on and with Python daily, improvements come thick and fast. Not all Python

developers have the chance to attend conferences, or the time to follow the work done by

different parts of the community, so it’s inevitable that some features of the language and

ecosystem are not as well known as they deserve to be.

The objective of this book is to examine parts of the language and Python tooling

that may not be known to everyone. If you’re an experienced Python developer, you

may well know many of these tools, but a good many more may be on your to-do list of

things to try when you have time. This is especially true if you’re working on established

systems, where rearchitecting a component to take advantage of new language features

isn’t something that can be done frequently.

If you’ve been using Python for a shorter period, you may be more familiar with

recent additions to the language but less aware of some of the libraries available in the

wider ecosystem. A large part of the benefit of attending events like Python conferences

is the chance to notice minor quality-of-life improvements fellow programmers have

made and integrate them into your workflow.

This is not a reference book with stand-alone sections covering different features of

Python: the flow from chapter to chapter is dictated by how we would build a real piece

of software.

With many pieces of technical documentation, there is a tendency to provide simple

examples. Simple examples are great for explaining how something works, but not so

useful for understanding when to use it. They can also be tricky to build on, as complex

code is often architected quite differently to simple code.

By following this one example, we are able to consider technology choices in

context. You will learn what considerations to bear in mind when choosing if a particular

approach is suitable. Topics that are related by how they’re used will be covered together,

rather than topics that are related by how they work.

xviii

 This book
My objective in writing this book is to share knowledge from different parts of the

community and lessons learned over 15 years of writing Python code for a living. It will

help you to be productive, both with the core language and add-on libraries. You will

learn how to effectively use features of the language that are not strictly essential to be a

productive programmer, such as asynchronous programming, packaging, and testing.

However, this book is aimed at people who want to write code, not people who are

looking to understand deep magics. I will not delve too far into subjects that involve

implementation details of Python. You will not be expected to grok1 Python C extensions,

metaclasses, or algorithms to benefit from this book.

Substantive code samples are shown as numbered listings, and the accompanying

code for this book includes electronic versions of these listings. Some of these listings

also have output shown directly beneath, rather than separately as a numbered figure.

The accompanying code for this book is also where you’ll find copies of the full

codebase for the example on a chapter-by-chapter basis, as well as helper code for

the exercises. In general, I would recommend that you follow along with the code by

checking out the Git repository from the book’s website or the code distribution and

changing to the relevant branch for the chapter you’re reading.

As well as listings, I show some console sessions. When lines which are formatted

like code begin with >, that indicates that a shell session is being shown. These sections

cover commands to be run from your operating system’s terminal. Any that involve >>>

are demonstrating a Python console session and should be run from within a Python

interpreter.

 The example
This book’s example is that of a general-purpose data aggregator. If you work in DevOps,

then it is very likely you use a program of this sort to track the resource utilization of

servers. Alternatively, as a web developer, you may use something like this for statistics

aggregation from different deployments of the same system. Some scientists use similar

methods, for example, for aggregating the findings of air-quality sensors distributed

1 A jargon word that became popular during the 1960s, when computing was a much smaller field.
To grok something is to understand it on a very deep and intuitive level. It is derived from Robert
Heinlein’s novel Stranger in a Strange Land.

inTRoduCTion

xix

across a city. It isn’t something that every developer will need to build, but it is a problem

space that is familiar to many developers.

It has been picked not just because it’s a common task, but because it allows us to

explore many of the subjects we want to cover in a natural, unified way. You will be able

to follow the complete example perfectly well using any modern computer running any

modern operating system,2 without purchasing any additional hardware. You may find

you get more out of some of the examples if you have additional computers to act as

remote data sources.

I will be using a Raspberry Pi Zero equipped with some aftermarket sensors for my

examples. This platform is widely available for approximately 5 US dollars and provides

lots of interesting data. There are commercial sensor add-ons available from many

Raspberry Pi stockists.

Although I’ll be recommending things specific to the Raspberry Pi to make following

the examples easier, this book is not about the Internet of Things or the Raspberry Pi

itself. It’s a means to an end; you should feel comfortable to adapt the examples to fit

tasks that are more relevant to your interests if you like. Any of the similar problems

mentioned earlier would follow the same design process.

 Choice of topics
The topics covered by this book have been chosen to shine a light on a variety of different

aspects of Python programming. All are underused or under-understood by the Python

community as a whole, and none are things likely to be taught as a matter of course to

beginners. That’s not to say that they are necessarily complex or hard to understand

(although some certainly are), but they are techniques that I believe all Python

programmers should be familiar with, even if they choose not to use them.

Chapter 1 will introduce you to different ways of approaching the writing of very

simple programs in Python and, in particular, will cover Jupyter notebooks and an

introduction to the use of the Python debugger. Although both are relatively well-known

tools, many people are proficient in the use of one but not both. It will also cover ways

2 However, if using Windows, I’d suggest you consider something like the Windows Subsystem for
Linux, as most add-ons are written with Linux or macOS systems in mind and so may perform
better under WSL.

inTRoduCTion

xx

of approaching the writing of command-line interfaces and some useful third-party

libraries to support succinct command-line tool development.

Chapter 2 will cover tools that help you identify mistakes in your code, such as

automated testing and linting tools. These tools all make it easier to write code that you

can be confident in, whether it’s a large codebase, one that you rarely need to edit, or

one that will garner contributions from third parties. The tools covered here are all ones

I would recommend; however, the focus will be on understanding their advantages

and disadvantages. You may have used one or more of these tools, and you may have

opinions on whether some of them are appropriate to use. This chapter will help you

understand the trade-offs to help you make informed decisions.

Chapter 3 covers code packaging and dependency distribution in Python. These are

key features for writing applications that can be distributed to others and for designing

deployment systems that work reliably. We will use this to convert our stand-alone script

into an installable application.

Chapter 4 introduces plugin architectures. This is a powerful feature; it’s not

uncommon for people who learn them to try and apply them everywhere, which means

people can be wary of teaching them. For our example, a plugin architecture is a natural

fit. It also covers some advanced techniques for command-line tools that can make

debugging plugin-based systems easier.

Chapter 5 covers web interfaces and techniques such as decorators and closures to

write complex functions. These techniques are idiomatic in Python but hard to express

in many other programming languages. It also covers the appropriate use of abstract

base classes. It’s common for people to advise against using ABCs because of the

tendency of people who learn them to want to use them everywhere. There are definite

advantages to a restrained use of ABCs in particular circumstances, especially when

combined with some of the tools from Chapter 2.

Chapter 6 expands our example with another major component, the aggregation

server that collects the data. This chapter also demonstrates some of the most useful

third-party libraries you will use as a Python programmer, such as “requests.”

Chapter 7 covers threading and asynchronous programming in Python. Threading

is often the source of subtle bugs. Asynchronous code can be used for similar tasks, but it

is an idiom that many Python programmers haven’t used because the program behaves

quite differently to synchronous programming. This chapter focuses on the real-world

use of concurrency to achieve a result, rather than demonstrations of a simple example

or the limits of what asynchronous programming can do. The objective is working code

inTRoduCTion

xxi

that is usable in the real world and a thorough understanding of the trade-offs, not a

stand-alone technology demonstration.

Chapter 8 goes further with asynchronous programming, adding in the testing of

asynchronous code and the various libraries that exist to write code that deals with

external tools (such as databases) in an async context. We will also look briefly at

some advanced techniques for writing good APIs that are helpful for asynchronous

programming, like context managers and context variables.

Chapter 9 sees us return to Jupyter to use its features for data visualization and easy

user interaction. We will look at how to use our asynchronous functions with widgets

in Jupyter notebooks as well as advanced use of iterators and ways of implementing

complex data types.

Chapter 10 details how to make Python code faster, using different types of caching

and for which situations they are an appropriate choice. It covers benchmarking

individual Python functions in your applications and how to interpret the results to find

the reasons for slowdown.

Chapter 11 extends some of the concepts we’ve visited earlier in the book to handle

faults more gracefully. We’ll look at ways that our plugin architecture can be modified

to allow for handling errors seamlessly while retaining full backward compatibility, and

we’ll take a closer look at designing processes that handle errors that they encounter.

In Chapter 12, the final chapter, we use Python’s iterator and coroutine features to

enhance the dashboards we’ve developed with features that aren’t passive data gatherers

but actively introspect the data we’ve gathered, allowing us to build multistep analysis

flows.

 Python version
At the time of writing, the current release of Python is 3.8, and as such the examples in

this book are being tested against 3.8 and first development versions of Python 3.9. I do

not recommend using older versions. Very few code samples in this book do not work on

Python 3.7 or Python 3.6.

You will need Python pip installed to follow along with this book. It should already

be installed on your system if you have Python installed. Some operating systems

intentionally remove pip from their default installations of Python, in which case

you’ll need to install it using the operating system’s package manager explicitly. This is

common on Debian-based systems, where it can be installed with sudo apt install

inTRoduCTion

xxii

python3-pip. On other operating systems, use python -m ensurepip --upgrade to have

Python find the latest version of pip itself or find instructions specific to your operating

system.

Electronic versions of code samples and errata are available from the publisher and

the book’s website at https://advancedpython.dev. This should be your first port of call

if you encounter any problems working through this book.

inTRoduCTion

https://advancedpython.dev/

1
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_1

CHAPTER 1

Prototyping
and environments
In this chapter, we will explore the different ways that you can experiment with what

different Python functions do and when is an appropriate time to use those different

options. Using one of those methods, we will build some simple functions to extract the

first pieces of data that we will be aggregating and see how to build those into a simple

command-line tool.

 Prototyping in Python
During any Python project, from something that you’ll spend a few hours developing to

projects that run for years, you’ll need to prototype functions. It may be the first thing

you do, or it may sneak up on you mid-project, but sooner or later, you’ll find yourself in

the Python shell trying code out.

There are two broad approaches for how to approach prototyping: either running a

piece of code and seeing what the results are or executing statements one at a time and

looking at the intermediate results. Generally speaking, executing statements one by one

is more productive, but at times it can seem easier to revert to running a block of code if

there are chunks you’re already confident in.

The Python shell (also called the REPL for Read, Eval, Print, Loop) is most people’s

first introduction to using Python. Being able to launch an interpreter and type

commands live is a powerful way of jumping right into coding. It allows you to run

commands and immediately see what their result is, then adjust your input without

erasing the value of any variables. Compare that to a compiled language, where the

development flow is structured around compiling a file and then running the executable.

There is a significantly shorter latency for simple programs in interpreted languages like

Python.

https://doi.org/10.1007/978-1-4842-5793-7_1#DOI

2

 Prototyping with the REPL
The strength of the REPL is very much in trying out simple code and getting an intuitive

understanding of how functions work. It is less suited for cases where there is lots of flow

control, as it isn’t very forgiving of errors. If you make an error when typing part of a loop

body, you’ll have to start again, rather than just editing the incorrect line. Modifying

a variable with a single line of Python code and seeing the output is a close fit to an

optimal use of the REPL for prototyping.

For example, I often find it hard to remember how the built-in function filter(...)

works. There are a few ways of reminding myself: I could look at the documentation

for this function on the Python website or using my code editor/IDE. Alternatively, I

could try using it in my code and then check that the values I got out are what I expect,

or I could use the REPL to either find a reference to the documentation or just try the

function out.

In practice, I generally find myself trying things out. A typical example looks like the

following one, where my first attempt has the arguments inverted, the second reminds

me that filter returns a custom object rather than a tuple or a list, and the third reminds

me that filter includes only elements that match the condition, rather than excluding

ones that match the condition.

>>> filter(range(10), lambda x: x == 5)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'function' object is not iterable

>>> filter(lambda x: x == 5, range(10))

<filter object at 0x033854F0>

>>> tuple(filter(lambda x: x == 5, range(10)))

(5,)

Note The built-in function help(...) is invaluable when trying to understand
how functions work. As filter has a clear docstring, it may have been even more
straightforward to call help(filter) and read the information. However, when
chaining multiple function calls together, especially when trying to understand
existing code, being able to experiment with sample data and see how the
interactions play out is very helpful.

CHApTer 1 proToTyping And environmenTs

3

If we do try to use the REPL for a task involving more flow control, such as the

famous interview coding test question FizzBuzz (Listing 1-1), we can see its unforgiving

nature.

Listing 1-1. fizzbuzz.py – a typical implementation

for num in range(1, 101):

 val = ''

 if num % 3 == 0:

 val += 'Fizz'

 if num % 5 == 0:

 val += 'Buzz'

 if not val:

 val = str(num)

 print(val)

If we were to build this up step by step, we might start by creating a loop that outputs

the numbers unchanged:

>>> for num in range(1, 101):

... print(num)

...

1

.

.

.

98

99

100

At this point, we will see the numbers 1 to 100 on new lines, so we would start adding

logic:

>>> for num in range(1, 101):

... if num % 3 == 0:

... print('Fizz')

... else:

... print(num)

CHApTer 1 proToTyping And environmenTs

4

...

1

.

.

.

98

Fizz

100

Every time we do this, we are having to reenter code that we entered before,

sometimes with small changes, sometimes verbatim. These lines are not editable once

they’ve been entered, so any typos mean that the whole loop needs to be retyped.

You may decide to prototype the body of the loop rather than the whole loop, to

make it easier to follow the action of the conditions. In this example, the values of n

from 1 to 14 are correctly generated with a three-way if statement, with n=15 being the

first to be incorrectly rendered. While this is in the middle of a loop body, it is difficult to

examine the way the conditions interact.

This is where you’ll find the first of the differences between the REPL and a script’s

interpretation of indenting. The Python interpreter has a stricter interpretation of how

indenting should work when in REPL mode than when executing a script, requiring you

to have a blank line after any unindent that returns you to an indent level of 0.

>>> num = 15

>>> if num % 3 == 0:

... print('Fizz')

... if num % 5 == 0:

 File "<stdin>", line 3

 if num % 5 == 0:

 ^

SyntaxError: invalid syntax

In addition, the REPL only allows a blank line when returning to an indent level of 0,

whereas in a Python file it is treated as an implicit continuation of the last indent level.

Listing 1-2 (which differs from Listing 1-1 only in the addition of blank lines) works when

invoked as python fizzbuzz_blank_lines.py.

CHApTer 1 proToTyping And environmenTs

5

Listing 1-2. fizzbuzz_blank_lines.py

for num in range(1, 101):

 val = ''

 if num % 3 == 0:

 val += 'Fizz'

 if num % 5 == 0:

 val += 'Buzz'

 if not val:

 val = str(num)

 print(val)

However, typing the contents of Listing 1-2 into a Python interpreter results in the

following errors, due to the differences in indent parsing rules:

>>> for num in range(1, 101):

... val = ''

... if num % 3 == 0:

... val += 'Fizz'

... if num % 5 == 0:

... val += 'Buzz'

...

>>> if not val:

 File "<stdin>", line 1

 if not val:

 ^

IndentationError: unexpected indent

>>> val = str(num)

 File "<stdin>", line 1

 val = str(num)

 ^

CHApTer 1 proToTyping And environmenTs

6

IndentationError: unexpected indent

>>>

>>> print(val)

 File "<stdin>", line 1

 print(val)

 ^

IndentationError: unexpected indent

It’s easy to make a mistake when using the REPL to prototype a loop or condition

when you’re used to writing Python in files. The frustration of making a mistake and

having to reenter the code is enough to undo the time savings of using this method over

a simple script. While it is possible to scroll back to previous lines you entered using

the arrow keys, multiline constructs such as loops are not grouped together, making it

very difficult to re-run a loop body. The use of the >>> and ... prompts throughout the

session also makes it difficult to copy and paste previous lines, either to re-run them or

to integrate them into a file.

 Prototyping with a Python script
It is very much possible to prototype code by writing a simple Python script and running

it until it returns the correct result. Unlike using the REPL, this ensures that it is easy

to re-run code if you make a mistake, and code is stored in a file rather than in your

terminal’s scrollback buffer.1 Unfortunately, it does mean that it is not possible to interact

with the code while it’s running, leading to this being nicknamed “printf debugging,”

after C’s function to print a variable.

As the nickname implies, the only practical way to get information from the

execution of the script is to use the print(...) function to log data to the console

window. In our example, it would be common to add a print to the loop body to see what

is happening for each iteration:

Tip f-strings are useful for printf debugging, as they let you interpolate variables
into a string without additional string formatting operations.

1 You’ll be glad of this the first time you accidentally close the window and lose the code you’re
working on.

CHApTer 1 proToTyping And environmenTs

7

for num in range(1,101):

 print(f"n: {num} n%3: {num%3} n%5: {num%5}")

The following is the result:

n: 1 n%3: 1 n%5: 1

.

.

.

n: 98 n%3: 2 n%5: 3

n: 99 n%3: 0 n%5: 4

n: 100 n%3: 1 n%5: 0

This provides an easily understood view at what the script is doing, but it does

require some repetition of logic. This repetition makes it easier for errors to be missed,

which can cause significant losses of time. The fact that the code is stored permanently

is the biggest advantage this has over the REPL, but it provides a poorer user experience

for the programmer. Typos and simple errors can become frustrating as there is a

necessary context switch from editing the file to running it in the terminal.2 It can also

be more difficult to see the information you need at a glance, depending on how you

structure your print statements. Despite these flaws, its simplicity makes it very easy to

add debugging statements to an existing system, so this is one of the most commonly

used approaches to debugging, especially when trying to get a broad understanding of a

problem.

 Prototyping with scripts and pdb
pdb, the built-in Python debugger, is the single most useful tool in any Python

developer’s arsenal. It is the most effective way to debug complex pieces of code and is

practically the only way of examining what a Python script is doing inside multistage

expressions like list comprehensions.3

2 Some text editors integrate a terminal precisely to cut down on this kind of context switching.
3 Pdb allows you to step through each iteration of a list comprehension, as you would do with a
loop. This is useful when you have existing code that you are trying to diagnose a problem with,
but frustrating when the list comprehension is incidental to your debugging.

CHApTer 1 proToTyping And environmenTs

8

In many ways, prototyping code is a specialized form of debugging. We know that

the code we’ve written is incomplete and contains errors, but rather than trying to find a

single flaw, we’re trying to build up complexity in stages. Many of pdb’s features to assist

in debugging make this easier.

When you start a pdb session, you see a (Pdb) prompt that allows you to control the

debugger. The most important commands, in my view, are step, next, break, continue,

prettyprint, and debug.4

Both step and next execute the current statement and move to the next one. They

differ in what they consider the “next” statement to be. Step moves to the next statement

regardless of where it is, so if the current line contains a function call, the next line is the

first line of that function. Next does not move execution into that function; it considers

the next statement to be the following statement in the current function. If you want to

examine what a function call is doing, then step into it. If you trust that the function is

doing the right thing, use next to gloss over its implementation and get the result.

break and continue allow for longer portions of the code to run without direct

examination. break is used to specify a line number where you want to be returned to

the pdb prompt, with an optional condition that is evaluated in that scope, for example,

break 20 x==1. The continue command returns to the normal flow of execution; you

won’t be returned to a pdb prompt unless you hit another breakpoint.

Tip if you find visual status displays more natural, you may find it hard to keep
track of where you are in a debugging session. i would recommend you install
the pdb++ debugger which shows a code listing with the current line highlighted.
ides, such as pyCharm, go one step further by allowing you to set breakpoints in a
running program and control stepping directly from your editor window.

Finally, debug allows you to specify any arbitrary python expression to step into. This

lets you call any function with any data from within a pdb prompt, which can be very

useful if you’ve already used next or continue to pass a point before you realize that’s

where the error was. It is invoked as debug somefunction() and modifies the (Pdb)

4 These can all be abbreviated, as shown in bold. step becomes s, prettyprint becomes pp, etc.

CHApTer 1 proToTyping And environmenTs

9

prompt to let you know that you’re in a nested pdb session by adding an extra pair of

parentheses, making the prompt ((Pdb)).5

 Post-mortem debugging

There are two common ways of invoking pdb, either explicitly in the code or directly

for so-called “post-mortem debugging.” Post-mortem debugging starts a script in

pdb and will trigger pdb if an exception is raised. It is run through the use of python

-m pdb yourscript.py rather than python yourscript.py. The script will not start

automatically; you’ll be shown a pdb prompt to allow you to set breakpoints. To begin

execution of the script, you should use the continue command. You will be returned to

the pdb prompt either when a breakpoint that you set is triggered or when the program

terminates. If the program terminates because of an error, it allows you to view the

variables that were set at the time the error occurred.

Alternatively, you can use step commands to run the statements in the file one by

one; however, for all but the simplest of scripts, it is better to set a breakpoint at the point

you want to start debugging and step from there.

The following is the result of running Listing 1-1 in pdb and setting a conditional

breakpoint (output abbreviated):

> python -m pdb fizzbuzz.py

> c:\fizzbuzz_pdb.py(1)<module>()

-> def fizzbuzz(num):

(Pdb) break 2, num==15

Breakpoint 1 at c:\fizzbuzz.py:2

(Pdb) continue

1

.

.

.

13

14

5 I once so badly misunderstood a bug that I overused debug until the pdb prompt looked like
((((((Pdb)))))). This is an antipattern as it’s very easy to accidentally lose your place; try and
use conditional breakpoints if you find yourself in a similar situation.

CHApTer 1 proToTyping And environmenTs

10

> c:\fizzbuzz.py(2)fizzbuzz()

-> val = ''

(Pdb) p num

15

This style works well when combined with the previous script-based approach.

It allows you to set arbitrary breakpoints at stages of the code’s execution and

automatically provides a pdb prompt if your code triggers an exception without you

needing to know in advance what errors occur and where.

The breakpoint function

The breakpoint() built-in6 allows you to specify exactly where in a program pdb takes

control. When this function is called, execution immediately stops, and a pdb prompt is

shown. It behaves as if a pdb breakpoint had previously been set at the current location.

It’s common to use breakpoint() inside an if statement or in an exception handler, to

mimic the conditional breakpoint and post-mortem debugging styles of invoking pdb

prompts. Although it does mean changing the source code (and therefore is not suitable

for debugging production-only issues), it removes the need to set up your breakpoints

every time you run the program.

Debugging the fizzbuzz script at the point of calculating the value of 15 would be

done by adding a new condition to look for num == 15 and putting breakpoint() in the

body, as shown in Listing 1-3.

Listing 1-3. fizzbuzz_with_breakpoint.py

for num in range(1, 101):

 val = ''

 if num == 15:

 breakpoint()

 if num % 3 == 0:

 val += 'Fizz'

6 You may find documentation recommending import pdb; pdb.set_trace(). This is an
older style that is still quite common, but does the same thing albeit without some of the
configurability and less readable.

CHApTer 1 proToTyping And environmenTs

11

 if num % 5 == 0:

 val += 'Buzz'

 if not val:

 val = str(num)

 print(val)

To use this style when prototyping, create a simple Python file that contains

imports you think you might need and any test data you know you have. Then, add

a breakpoint() call at the bottom of the file. Whenever you execute that file, you’ll

find yourself in an interactive environment with all the functions and data you need

available.

Tip i strongly recommend the library remote-pdb for debugging
complex multithreaded applications. To use this, install the remote-pdb
package and start your application with the environment variable
PYTHONBREAKPOINT=remote_pdb.set_trace python yourscript.py.
When you call breakpoint() in your code, the connection information is logged
to the console. see the remote-pdb documentation for more options.

 Prototyping with Jupyter
Jupyter is a suite of tools for interacting with languages that support a REPL in a more

user-friendly way. It has extensive support for making it easier to interact with the code,

such as displaying widgets that are bound to the input or output of functions, which

makes it much easier for nontechnical people to interact with complex functions. The

functionality that’s useful to us at this stage is the fact that it allows breaking code into

logical blocks and running them independently as well as being able to save those blocks

and return to them later.

Jupyter is written in Python but as a common front end for the Julia, Python,

and R programming languages. It is intended as a vehicle for sharing self-contained

programs that offer simple user interfaces, for example, for data analysis. Many Python

programmers create Jupyter notebooks rather than console scripts, especially those who

work in the sciences. We’re not using Jupyter in that way for this chapter; we’re using it

because its features happen to align well with prototyping tasks.

CHApTer 1 proToTyping And environmenTs

12

The design goal of supporting multiple languages means it also supports Haskell,

Lua, Perl, PHP, Rust, Node.js, as well as many others. Each of these languages has IDEs,

REPLs, documentation websites, and so on. One of the most significant advantages

of using Jupyter for this type of prototyping is that it allows you to develop a workflow

that also works with unfamiliar environments and languages. For example, full-stack

web programmers often have to work on both Python and JavaScript code. In contrast,

scientists may need easy access to both Python and R. Having a single interface means

that some of the differences between languages are smoothed over.

As Jupyter is not Python-specific and has built-in support for selecting what back

end to use to run the current code, I recommend installing it in such a way that it’s

conveniently available across your whole system. If you generally install Python utilities

into a virtual environment, that’s fine.7 However, I have installed Jupyter into my user

environment:

> python -m pip install --user jupyter

Note As Jupyter has been installed in user mode, you need to ensure that the
binaries directory is included in your system path. installing into the global python
environment or through your package manager is an acceptable alternative; it’s
more important to be consistent with how your tools are installed than to use a
variety of methods.

When prototyping with Jupyter, you can separate our code into logical blocks that

you can run either individually or sequentially. The blocks are editable and persistent,

as if we were using a script, but we can control which blocks run and write new code

without discarding the contents of variables. In that way, it is similar to using the REPL,

as we can try things out without any interruption from the coding flow to run a script.

There are two main ways of accessing the Jupyter tools, either through the Web using

Jupyter’s notebook server or as a replacement for the standard Python REPL. Each works

on the idea of cells, which are independent units of execution that can be re-run at any

7 In fact, many people prefer to create a virtual environment just for Jupyter and add that to the
system path, to avoid any risk of version conflicts in their global namespace.

CHApTer 1 proToTyping And environmenTs

13

time. Both the notebook and the REPL use the same underlying interface to Python,

called IPython. IPython has none of the trouble understanding indenting that the

standard REPL does and has support for easily re-running code from earlier in a session.

The notebook is more user-friendly than the shell but has the disadvantage of only

being accessible through a web browser rather than your usual text editor or IDE.8 I

strongly recommend using the notebook interface as it provides a significant boost to

your productivity through the more intuitive interface when it comes to being able to

re-run cells and to edit multiline cells.

 Notebooks

To begin prototyping, start the Jupyter notebook server and then create a new notebook

using the web interface.

> jupyter notebook

Once the notebook has loaded, enter the code into the first cell, then click the run

button. Many keyboard shortcuts that are common to code editors are present, along

with automatic indenting when a new block is begun (Figure 1-1).

8 Some editors, such as the professional version of PyCharm IDE and Microsoft’s VSCode editor,
have begun to offer a partial equivalent to the notebook interface from within the IDE. They
don’t have all the functionality available, but it’s surprisingly good.

CHApTer 1 proToTyping And environmenTs

14

Pdb works with Jupyter notebooks through the web interface, interrupting execution

and displaying a new input prompt (Figure 1-2), in the same way that it does in the

command line. All the standard pdb functionality is exposed through this interface, so

the tips from the pdb section of this chapter can also be used in a Jupyter environment.

Figure 1-1. fizzbuzz in a Jupyter notebook

CHApTer 1 proToTyping And environmenTs

15

 Prototyping in this chapter
There are advantages and disadvantages to all the methods we’ve explored, but each

has its place. For very simple one-liners, such as list comprehensions, I often use the

REPL, as it’s the fastest to start up and has no complex control flow that would be hard to

debug.

For more complex tasks, such as bringing functions from external libraries together

and doing multiple things with them, a more featureful approach is usually more efficient.

I encourage you to try different approaches when prototyping things to understand where

the sweet spot is in terms of convenience and your personal preferences.

The various features of the different methods should go a long way to making it

clear which one is best for your particular use case. As a general rule, I’d suggest using

the leftmost entry in Table 1-1 that meets your requirements for the features you want

Figure 1-2. pdb in a Jupyter notebook

CHApTer 1 proToTyping And environmenTs

16

to have available. Using something further to the right may be less convenient; using

something too far to the left may mean you get frustrated trying to perform tasks that are

easier in other tools.

In this chapter, we will be prototyping a few different functions that return data about

the system they’re running on. They will depend on some external libraries, and we may

need to use some simple loops, but not extensively.

Table 1-1. Comparison of prototyping environments

Feature REPL Script Script + pdb Jupyter Jupyter + pdb

indenting

code

strict rules normal rules normal rules normal rules normal rules

re-running

previous

commands

single typed

line

entire script only entire script

or jump to the

previous line

Logical blocks Logical blocks

stepping indented

blocks run as

one

The entire script

runs as one

step through

statements

Logical blocks

run as one

step through

statements

introspection Can

introspect

between

logical blocks

no introspection Can introspect

between

statements

Can introspect

between logical

blocks

Can introspect

between

statements

persistence nothing is

saved

Commands are

saved

Commands

are saved,

interactions at

the pdb prompt

are not

Commands

and output are

saved

Commands

and output are

saved

editing Commands

must be

reentered

Any command

can be edited,

but the whole

script must be

re-run

Any command

can be edited,

but the whole

script must be

re-run

Any command

can be edited,

but the logical

block must be

re-run

Any command

can be edited,

but the logical

block must be

re-run

CHApTer 1 proToTyping And environmenTs

17

As we’re unlikely to have complex control structures, the indenting code feature isn’t

a concern. Re-running previous commands will be useful as we’re dealing with multiple

different data sources. It’s possible that some of these data sources will be slow, so we don’t

want to be forced to always re-run every data source command when working on one of

them. That discounts the REPL and is a closer fit for Jupyter than the script-based processes.

We want to be able to introspect the results of each data source, but we are unlikely

to need to introspect the internal variables of individual data sources, which suggests the

pdb-based approaches are not necessary (and, if that changes, we can always add in a

breakpoint() call). We will want to store the code we’re writing, but that only discounts

the REPL which has already been discounted. Finally, we want to be able to edit code

and see the difference it makes.

If we compare these requirements to Table 1-1, we can create Table 1-2, which shows

that the Jupyter approach covers all of the features we need well, whereas the script

approach is good enough but not quite optimal in terms of ability to re-run previous

commands.

For that reason, in this chapter we will be using a Jupyter notebook to do our

prototyping. Throughout the rest of the chapter, we will cover some other advantages that

Jupyter affords us, as well as some techniques for using it effectively as part of a Python

development process, rather than to create stand-alone software distributed as a notebook.

Table 1-2. Matrix of whether the features of the various approaches match our

requirements9

Feature REPL Script Script + pdb Jupyter Jupyter + pdb

indenting code ✔ ✔ ✔ ✔ ✔

re-running previous commands ❌ ⚠ ⚠ ✔ ✔

stepping ❌ ❌ ⚠ ✔ ⚠

introspection ✔ ✔ ✔ ✔ ✔

persistence ❌ ✔ ✔ ✔ ✔

editing ❌ ✔ ✔ ✔ ✔

9 ✔ indicates that our requirements are met, ❌ indicates that they are not, and ⚠ represents
that our requirements are met, but with a poor user experience.

CHApTer 1 proToTyping And environmenTs

18

 Environment setup
That said, we need to install libraries and manage dependencies for this project, which

means that we need a virtual environment. We specify our dependencies using pipenv,

a tool that handles both the creation of isolated virtual environments and excellent

dependency management.

> python -m pip install --user pipenv

WHY PIPENV

There has been a long history of systems to create isolated environments in python. The one

you’ll most likely have used before is called virtualenv. you may also have used venv, conda,

buildout, virtualenvwrapper, or pyenv. you may even have created your own by manipulating

sys.path or creating lnk files in python’s internal directories.

each of these methods has positives and negatives (except for the manual method, for which i

can think of only negatives), but pipenv has excellent support for managing direct dependencies

while keeping track of a full set of dependency versions that are known to work correctly and

ensuring that your environment is kept up to date. That makes it a good fit for modern pure

python projects. if you’ve got a workflow that involves building binaries or working with outdated

packages, then sticking with the existing workflow may be a better fit for you than migrating it

to pipenv. in particular, if you’re using Anaconda because you do scientific computing, there’s

no need to switch to pipenv. if you wish, you can use pipenv --site-packages to make

pipenv include the packages that are managed through conda as well as its own.

pipenv’s development cycle is rather long, as compared to other python tools. it’s not

uncommon for it to go months or years without a release. in general, i’ve found pipenv to be

stable and reliable, which is why i’m recommending it. package managers that have more

frequent releases sometimes outstay their welcome, forcing you to respond to breaking

changes regularly.

For pipenv to work effectively, it does require that the maintainers of packages you’re

declaring a dependency on correctly declare their dependencies. some packages do not

do this well, for example, by specifying only a dependency package without any version

restrictions when restrictions exist. This problem can happen, for example, because a new

major release of a subdependency has recently been released. in these cases, you can add

your own restrictions on what versions you’ll accept (called a version pin).

CHApTer 1 proToTyping And environmenTs

19

if you find yourself in a situation where a package is missing a required version pin, please

consider contacting the package maintainers to alert them. open source maintainers are

often very busy and may not yet have noticed the issue – don’t assume that just because

they’re experienced that they don’t need your help. most python packages have repositories

on gitHub with an issue tracker. you see from the issue tracker if anyone else has reported the

problem yet, and if not, it is an easy way to contribute to the packages that are easing your

development tasks.

 Setting up a new project
First, create a new directory for this project and change to it. We want to declare

ipykernel as a development dependency. This package contains the code to manage an

interface between Python and Jupyter, and we want to ensure that it and its library code

is available within our new, isolated environment.

> mkdir advancedpython

> cd advancedpython

> pipenv install ipykernel --dev

> pipenv run ipython kernel install --user --name=advancedpython

The final line here instructs the copy of IPython within the isolated environment

to install itself as an available kernel for the current user account, with the name

advancedpython. This allows us to select the kernel without having to activate this

isolated environment manually each time. Installed kernels can be listed with jupyter

kernelspec list and removed with jupyter kernelspec remove.

Now we can start Jupyter and see options to run code against our system Python or

our isolated environment. I recommend opening a new command window for this, as

Jupyter runs in the foreground and we will need to use the command line again shortly.

If you have a Jupyter server open from earlier in this chapter, I’d recommend stopping

that one before opening the new one. We want to use the working directory we created

previously, so change to that directory if the new window isn’t already there.

> cd advancedpython

> jupyter notebook

CHApTer 1 proToTyping And environmenTs

20

A web browser automatically opens and displays the Jupyter interface with a

directory listing of the directory we created. This will look like Figure 1-3. With the

project set up, it’s time to start prototyping. Choose “New” and then “advancedpython”.

We now see the main editing interface for a notebook. We have one “cell” that

contains nothing and has not been executed. Any code we type into the cell can be

run by clicking the “Run” button just above. Jupyter displays the output of the cell

underneath, as well as a new empty cell for further code. You should think of a cell as

being approximately equal to a function body. They generally contain multiple related

statements which you want to run as a logical group.

 Prototyping our scripts
A logical first step is to create a Python program that returns various information about

the system it is running on. Later on, these pieces of information will be part of the data

that’s aggregated, but for now some simple data is an appropriate first objective.

Figure 1-3. The Jupyter home screen in a new pipenv directory

CHApTer 1 proToTyping And environmenTs

21

In the spirit of starting small, we’ll use the first cell for finding the version of Python

we are running, shown in Figure 1-4. As this is exposed by the Python standard library

and works on all platforms, it is a good placeholder for something more interesting.

Jupyter shows the value of the last line of the cell, as well as anything explicitly printed.

As the last line of our cell is sys.version_info, that is what is shown in the output.10

Figure 1-4. A simple Jupyter notebook showing sys.version_info

10 This means that if your cell ends with an assignment, it won’t show the value being assigned.
This is because assignments in Python do not evaluate to a variable. It’s common to explicitly
show this with

version = sys.version_info

version

While you could also use Python 3.8’s “walrus” operator, (version := sys.version_info), as that
does evaluate to the value being assigned, it looks rather strange so I recommend against using it for a
stand-alone assignment. This operator is best used in the condition of loops and if statements, where it
looks a lot more natural as the parentheses are not required in such cases.

CHApTer 1 proToTyping And environmenTs

22

Another useful piece of information to aggregate is the current machine’s IP address.

This isn’t exposed in a single variable; it’s the result of a few API calls and processing of

information. As this requires more than a simple import, it makes sense to build up the

variables step by step in new cells. When doing so, you can see at a glance what you got

from the previous call, and you have those variables available in the next cell. This

step-by-step process allows you to concentrate on the new parts of the code you’re

writing, ignoring the parts you’ve completed.

By the end of this process, you will have something similar to the code in Figure 1-5,

showing the various IP addresses associated with the current computer. At the second

stage, it became apparent that there were both IPv4 and IPv6 addresses available. This

makes the third stage slightly more complex, as I decided to extract the type of address

along with the actual value. By performing these steps individually, we can adapt to things

we learn in one when writing the next. Being able to re-run the loop body individually

without changing window is a good example of where Jupyter’s strengths lie in prototyping.

Figure 1-5. Prototyping a complex function in multiple cells11

11 Part of the world-routable IPv6 address has been censored in these screenshots.

CHApTer 1 proToTyping And environmenTs

23

At this point, we have three cells to find the IP addresses, meaning there’s no one-to-one

mapping between cells and logical components. To tidy this up, select the top cell and

select “Merge Cell Below” from the edit menu. Do this twice to merge both additional

cells, and the full implementation is now stored as a single logical block (Figure 1-6). This

operation can now be run as a whole, rather than all three cells needing to have been run

to produce the output. It is a good idea to tidy the contents of this cell up, too: as we no

longer want to print the intermediate values, we can remove the duplicate addresses line.

 Installing dependencies
A more useful thing to know would be how much load the system is experiencing. In

Linux, this can be found by reading the values stored in /proc/loadavg. In macOS this

is sysctl -n vm.loadavg. Both systems also include it in the output of other programs,

such as uptime, but this is such a common task that there is undoubtedly a library that

can help us. We don’t want to add any complexity if we can avoid it.

Figure 1-6. The result of merging the cells from Figure 1-5

CHApTer 1 proToTyping And environmenTs

24

We’re going to install our first dependency, psutil. As this is an actual dependency

of our code, not a development tool that we happen to want available, we should omit

the --dev flag we used when installing dependencies earlier:

> pipenv install psutil

Note We have no preferences about which version of psutil is needed, so
we have not specified a version. The install command adds the dependency to
Pipfile and the particular version that is picked to Pipfile.lock. Files with
the extension .lock are often added to the ignore set in version control. you
should make an exception for Pipfile.lock as it helps when reconstructing old
environments and performing repeatable deployments.

When we return to the notebook, we need to restart the kernel to ensure the new

dependency is available. Click the Kernel menu, then restart. If you prefer keyboard

shortcuts, you can press <ESCAPE> to exit editing mode (the green highlight for your

current cell will turn blue to confirm) and press 0 (zero) twice.

With that done, we can start to explore the psutils module. In the second cell, import

psutil:

import psutil

and click Run (or, <SHIFT+ENTER> to run the cell from the keyboard). In a new cell, type

psutil.cpu<TAB>.12 You’ll see the members of psutil that jupyter can autocomplete for

you. In this case, cpu_stats appears to be a good option, so type that out. At this point,

you can press <SHIFT+TAB> to see minimal documentation on cpu_stats, which tells us

that it doesn’t require any arguments.

Finish the line, so the cells now read:

import psutil

psutil.cpu_stats()

12 This shortcut only works if the variable is available to the kernel, so you may find you have to
run the cell that defines it before you can use the autocompletion. If you’re overwriting the same
variable name with different data, then you may see the wrong information, but I’d recommend
against doing this where possible as it can be confusing.

CHApTer 1 proToTyping And environmenTs

25

When we run the second cell, we see that cpu_stats gives us rather opaque

information on the operating system’s internal use of the CPU. Let’s try cpu_percent

instead. Using <SHIFT+TAB> on this function, we see that it takes two optional

parameters. The interval parameter determines how long the function takes before it

returns and works best if it’s nonzero. For that reason, we’ll modify the code as follows

and get a simple floating-point number between 0 and 100:

import psutil

psutil.cpu_percent(interval=0.1)

EXERCISE 1-1: EXPLORE THE LIBRARY

numerous other functions in the psutil library make good sources of data, so let’s create a

cell for each function that looks interesting. There are different functions available on different

operating systems, so be aware that if you’re following this tutorial on Windows, you have a

slightly more limited choice of functions.

Try the autocomplete and help functions of Jupyter to get a feel for what information you find

useful and create at least one more cell that returns data.

Including psutil’s import in each cell would be repetitive and not good practice for

a Python file, but we do want to make sure it’s easy to run a single function in isolation.

To solve this, we’ll move the imports to a new top cell, which is the equivalent of the

module scope in a standard Python file.

Once you’ve created additional cells for your data sources, your notebook will look

something like Figure 1-7.

CHApTer 1 proToTyping And environmenTs

26

While you’ve been doing this, the numbers in square brackets next to the cell have

been increasing. This number is the sequence of operations that have been run. The

number next to the first cell has stayed constant, meaning this cell hasn’t been run while

we’ve experimented with the lower one.

In the Cell menu, there is an option to Run All, which will run each cell in sequence

like a standard Python file. While it’s useful to be able to run all cells to test the entire

notebook, being able to run each cell individually lets you split out complex and slow

logic from what you’re working on without having to re-run it each time.

To demonstrate how this could be useful, we’ll modify our use of the cpu_percent

function. We picked an interval of 0.1 as it’s enough to get accurate data. A larger

interval, while less realistic, helps us see how Jupyter allows us to write expensive setup

code while still allowing us to re-run faster parts without waiting for the slow ones.

import psutil

psutil.cpu_percent(interval=5)

Figure 1-7. An example of a complete notebook following the exercise

CHApTer 1 proToTyping And environmenTs

27

 Exporting to a .py file
Although Jupyter has served us well as a prototyping tool, it’s not a good match for

the main body of our project. We want a traditional Python application, and the great

presentation features of Jupyter aren’t useful right now. Jupyter has built-in support for

exporting notebooks in a variety of formats, from slideshows to HTML, but the one we’re

interested in is Python scripts.

The script to do the conversion is part of the Jupyter command, using the nbconvert

(notebook convert) subcommand.13

> jupyter nbconvert --to script Untitled.ipynb

The untitled notebook we created is left unchanged, and a new Untitled.py

file (Listing 1-4) is generated. If you renamed your notebook, then the names match the

name you assigned. If you didn’t, and want to rename it now as you hadn’t noticed that

it was just called Untitled.ipynb previously, click “Untitled” at the top of the notebook

view and enter a new title.

Listing 1-4. Untitled.py, generated from the preceding notebook

#!/usr/bin/env python

coding: utf-8

In[1]:

import sys

sys.version_info

In[4]:

import socket

hostname = socket.gethostname()

addresses = socket.getaddrinfo(hostname, None)

for address in addresses:

 print(address[0].name, address[4][0])

13 IDEs and editors that offer notebook compatibility usually have a feature to do this from within
the editor window, too.

CHApTer 1 proToTyping And environmenTs

28

In[5]:

import psutil

In[6]:

psutil.cpu_percent()

In[7]:

psutil.virtual_memory().available

In[8]:

psutil.sensors_battery().power_plugged

In[]:

As you can see, each cell is separated from the others with comments, and the

standard boilerplate around text encoding and shebang is present at the top of the file.

Starting the prototyping in Jupyter rather than directly in a Python script or in the REPR

hasn’t cost us anything in terms of flexibility or time; rather it gave us more control over

how we executed the individual blocks of code while we were exploring.

We can now tidy this up to be a utility script rather than bare statements by moving

the imports to the top of the file and converting each cell into a named function. The

In comments that show where cells started are useful reminders as to where a function

should start. We also have to convert the code to return the value, not just leave it at the

end of the function (or print it, in the case of the IP addresses). The result is Listing 1-5.

Listing 1-5. serverstatus.py

coding: utf-8

import sys

import socket

import psutil

def python_version():

 return sys.version_info

CHApTer 1 proToTyping And environmenTs

29

def ip_addresses():

 hostname = socket.gethostname()

 addresses = socket.getaddrinfo(hostname, None)

 address_info = []

 for address in addresses:

 address_info.append(address[0].name, address[4][0])

 return address_info

def cpu_load():

 return psutil.cpu_percent()

def ram_available():

 return psutil.virtual_memory().available

def ac_connected():

 return psutil.sensors_battery().power_plugged

 Building a command-line interface
These functions alone are not especially useful, most only each wrap an existing Python

function. The obvious thing we want to do is to print their data, so you may wonder why

we’ve gone to the trouble of creating single-line wrapper functions. This will be more

obvious as we create more complex data sources and multiple ways of consuming them,

as we will benefit from not having special-cased the simplest ones. For now, to make

these useful, we can give users a simple command-line application that displays this data.

As we are working with a bare Python script rather than something installable, we

use an idiom commonly called “ifmain”. This is built into many coding text editors and

IDEs as a snippet as it’s hard to remember and very unintuitive. It looks like this:

def do_something():

 print("Do something")

if __name__ == '__main__':

 do_something()

CHApTer 1 proToTyping And environmenTs

30

It really is quite horrid. The __name__14 variable is a reference to the fully qualified

name of a module. If you import a module, the __name__ attribute will be the location

from which it can be imported.

>>> from json import encoder

>>> type(encoder)

<class 'module'>

>>> encoder.__name__

'json.encoder'

However, if you load code through an interactive session or by providing a path to a

script to run, then it can’t necessarily be imported. Such modules, therefore, get the special

name "__main__". The ifmain trick is used to detect if that is the case. That is, if the module

has been specified on the command line as the file to run, then the contents of the block

will execute. The code inside this block will not execute when the module is imported by

other code because the __name__ variable would be set to the name of the module instead.

Without this guard in place, the command-line handler would execute whenever this

module is imported, making it take over any program that uses these utility functions.

Caution As the contents of the ifmain block can only be run if the module is
the entrypoint into the application, you should be careful to keep it as short as
possible. generally, it’s a good idea to limit it to a single statement that calls a
utility function. This allows that function call to be testable and is required for some
of the techniques we will be looking at in the next chapter.

 The sys module and argv
Most programming languages expose a variable named argv, which represents the

name of the program and the arguments that the user passed on invocation. In Python,

this is a list of strings where the first entry is the name of the Python script (but not the

location of the Python interpreter) and any arguments listed after that.

14 This is usually pronounced “dunder main” for “double underscore” as saying “underscore” four
times adds 12 syllables and feels silly.

CHApTer 1 proToTyping And environmenTs

31

Without checking the argv variable, we can only produce very basic scripts. Users

expect a command-line flag that provides help information about the tool. Also, all but

the simplest of programs need to allow users to pass configuration variables in from the

command line.

The simplest way of doing this is to check the values that are present in sys.argv and

handle them in conditionals. Implementing a help flag might look like Listing 1-6.

Listing 1-6. sensors_argv.py – cli using manual checking of argv

#!/usr/bin/env python

coding: utf-8

import socket

import sys

import psutil

HELP_TEXT = """usage: python {program_name:s}

Displays the values of the sensors

Options and arguments:

--help: Display this message"""

def python_version():

 return sys.version_info

def ip_addresses():

 hostname = socket.gethostname()

 addresses = socket.getaddrinfo(socket.gethostname(), None)

 address_info = []

 for address in addresses:

 address_info.append((address[0].name, address[4][0]))

 return address_info

def cpu_load():

 return psutil.cpu_percent(interval=0.1)

def ram_available():

 return psutil.virtual_memory().available

CHApTer 1 proToTyping And environmenTs

32

def ac_connected():

 return psutil.sensors_battery().power_plugged

def show_sensors():

 print("Python version: {0.major}.{0.minor}".format(python_version()))

 for address in ip_addresses():

 print("IP addresses: {0[1]} ({0[0]})".format(address))

 print("CPU Load: {:.1f}".format(cpu_load()))

 print("RAM Available: {} MiB".format(ram_available() / 1024**2))

 print("AC Connected: {}".format(ac_connected()))

def command_line(argv):

 program_name, *arguments = argv

 if not arguments:

 show_sensors()

 elif arguments and arguments[0] == '--help':

 print(HELP_TEXT.format(program_name=program_name))

 return

 else:

 raise ValueError("Unknown arguments {}".format(arguments))

if __name__ == '__main__':

 command_line(sys.argv)

The command_line(...) function is not overly complicated, but this is a very simple

program. You can easily imagine situations where there are multiple flags allowed in

any order and configurable variables being significantly more complex. This is only

practically possible because there is no ordering or parsing of values involved. Some

helper functionality is available in the standard library to make it easier to create more

involved command-line utilities.

 argparse
The argparse module is the standard method for parsing command-line arguments

without depending on external libraries. It makes handling the complex situations

alluded to earlier significantly less complicated; however, as with many libraries that

offer developers choices, its interface is rather difficult to remember. Unless you’re

CHApTer 1 proToTyping And environmenTs

33

writing command-line utilities regularly, it’s likely to be something that you read the

documentation of every time you need to use it.

The model that argparse follows is that the programmer creates an explicit parser

by instantiating argparse.ArgumentParser with some basic information about the

program, then calling functions on that parser to add new options. Those functions

specify what the option is called, what the help text is, any default values, as well as how

the parser should handle it. For example, some arguments are simple flags, like --dry-run;

others are additive, like -v, -vv, and -vvv; and yet others take an explicit value, like

--config config.ini.

We aren’t using any parameters in our program just yet, so we skip over adding

these options and have the parser parse the arguments from sys.argv. The result of

that function call is the information it has gleaned from the user. Some basic handling is

also done at this stage, such as handling --help, which displays an autogenerated help

screen based on the options that were added.

Our command-line program looks like Listing 1-7, when written using argparse.

Listing 1-7. sensors_argparse.py – cli using the standard library module argparse

#!/usr/bin/env python

coding: utf-8

import argparse

import socket

import sys

import psutil

def python_version():

 return sys.version_info

def ip_addresses():

 hostname = socket.gethostname()

 addresses = socket.getaddrinfo(socket.gethostname(), None)

 address_info = []

 for address in addresses:

 address_info.append((address[0].name, address[4][0]))

 return address_info

CHApTer 1 proToTyping And environmenTs

34

def cpu_load():

 return psutil.cpu_percent(interval=0.1)

def ram_available():

 return psutil.virtual_memory().available

def ac_connected():

 return psutil.sensors_battery().power_plugged

def show_sensors():

 print("Python version: {0.major}.{0.minor}".format(python_version()))

 for address in ip_addresses():

 print("IP addresses: {0[1]} ({0[0]})".format(address))

 print("CPU Load: {:.1f}".format(cpu_load()))

 print("RAM Available: {} MiB".format(ram_available() / 1024**2))

 print("AC Connected: {}".format(ac_connected()))

def command_line(argv):

 parser = argparse.ArgumentParser(

 description='Displays the values of the sensors',

 add_help=True,

)

 arguments = parser.parse_args()

 show_sensors()

if __name__ == '__main__':

 command_line(sys.argv)

 click
Click is an add-on module that simplifies the process of creating command-line

interfaces on the assumption that your interface is broadly similar to the standard that

people expect. It makes for a significantly more natural flow when creating command-line

interfaces and encourages you toward intuitive interfaces.

Whereas argparse requires the programmer to specify the options that are available

when constructing a parser, click uses decorators on methods to infer what the

parameters should be. This approach is a little less flexible, but easily handles 80% of

CHApTer 1 proToTyping And environmenTs

35

typical use cases. If you’re writing a command-line interface, you generally want to

follow the lead of other tools, so it is intuitive for the end-user.

As click isn’t in the standard library, we need to install it into our environment. Like

psutil, click is a code dependency, not a development tool, so we install it as follows:

> pipenv install click

As we only have one primary command and no options, click only requires two

lines of code to be added, an import and the @click.command(...) decorator. The

print(...) calls should all be replaced with click.echo(...), but this isn’t strictly

required. The result is shown as Listing 1-8. click.echo is a helper function that

behaves like print, but also handles situations where there is a mismatch in character

encodings, and intelligently strips or retains color and formatting markers depending on

the capabilities of the terminal that called the program and whether the output is being

piped elsewhere.

Listing 1-8. sensors_click.py – cli using the contributed library click

#!/usr/bin/env python

coding: utf-8

import socket

import sys

import click

import psutil

def python_version():

 return sys.version_info

def ip_addresses():

 hostname = socket.gethostname()

 addresses = socket.getaddrinfo(socket.gethostname(), None)

 address_info = []

 for address in addresses:

 address_info.append((address[0].name, address[4][0]))

 return address_info

def cpu_load():

 return psutil.cpu_percent(interval=0.1)

CHApTer 1 proToTyping And environmenTs

36

def ram_available():

 return psutil.virtual_memory().available

def ac_connected():

 return psutil.sensors_battery().power_plugged

@click.command(help="Displays the values of the sensors")

def show_sensors():

 click.echo("Python version: {0.major}.{0.minor}".format(python_version()))

 for address in ip_addresses():

 click.echo("IP addresses: {0[1]} ({0[0]})".format(address))

 click.echo("CPU Load: {:.1f}".format(cpu_load()))

 click.echo("RAM Available: {} MiB".format(ram_available() / 1024**2))

 click.echo("AC Connected: {}".format(ac_connected()))

if __name__ == '__main__':

 show_sensors()

It also has many utility functions which make creating more complex interfaces

easier and compensate for nonstandard terminal environment on end-user systems.

For example, if we decided to make the headers bold in the show_sensors command,

in click we can use the secho(...) command, for echoing to the terminal with styling

information. A version that styles headings is shown as Listing 1-9.

Listing 1-9. Extract from sensors_click_bold.py

@click.command(help="Displays the values of the sensors")

def show_sensors():

 click.secho("Python version: ", bold=True, nl=False)

 click.echo("{0.major}.{0.minor}".format(python_version()))

 for address in ip_addresses():

 click.secho("IP addresses: ", bold=True, nl=False)

 click.echo("{0[1]} ({0[0]})".format(address))

 click.secho("CPU Load: ", bold=True, nl=False)

 click.echo("{:.1f}".format(cpu_load()))

 click.secho("RAM Available: ", bold=True, nl=False)

 click.echo("{} MiB".format(ram_available() / 1024**2))

 click.secho("AC Connected: ", bold=True, nl=False)

 click.echo("{}".format(ac_connected()))

CHApTer 1 proToTyping And environmenTs

37

The secho(...) function prints some information to the screen with the formatting

specified. The nl= argument allows us to specify if a new line should be printed or not. If

you’re not using click, the simplest method would be

BOLD = '\033[1m'

END = '\033[0m'

def show_sensors():

 print(BOLD + "Python version:" + END + " ({0.major}.{0.minor})".

format(python_version()))

 for address in ip_addresses():

 print(BOLD + "IP addresses: " + END + "{0[1]} ({0[0]})".

format(address))

 print(BOLD + "CPU Load:" + END + " {:.1f}".format(cpu_load()))

 print(BOLD + "RAM Available:" + END + "{} MiB".format(ram_available() /

1024**2))

 print(BOLD + "AC Connected:" + END + " {}".format(ac_connected()))

Click also provides transparent support for autocomplete in terminals and a number

of other useful functions. We will revisit these later in the book when we expand on this

interface.

 Pushing the boundaries
We’ve looked at using Jupyter and IPython for doing prototyping, but sometimes we

need to run prototype code on a specific computer, rather than the one we’re using for

day-to-day development work. This could be because the computer has a peripheral or

some software we need, for example.

This is mainly a matter of comfort; editing and running code on a remote machine

can vary from slightly inconvenient to outright difficult, especially when there are

differences in the operating system.

In the preceding examples, we’ve run all the code locally. However, we are planning

to run the final code on a Raspberry Pi as that’s where we attach our specialized sensors.

As an embedded system, it has significant hardware differences, both in terms of

performance and peripherals.

CHApTer 1 proToTyping And environmenTs

38

 Remote kernels
Testing this code would require running a Jupyter environment on a Raspberry Pi

and connecting to that over HTTP or else connecting over SSH and interacting with

the Python interpreter manually. This is suboptimal, as it requires ensuring that the

Raspberry Pi has open ports for Jupyter to bind to and requires manually synchronizing

the contents of notebooks between the local and remote hosts using a tool like scp. This

is even more of a problem with real-world examples. It’s hard to imagine opening a port

on a server and connecting to Jupyter there to test log analysis code.

Instead, it is possible to use the pluggable kernel infrastructure of Jupyter and

IPython to connect a locally running Jupyter notebook to one of many remote

computers. This allows testing of the same code transparently on multiple machines and

with minimal manual work.

When Jupyter displays its list of potential execution targets, it is listing its list of

known kernel specifications. When a kernel specification has been selected, an instance

of that kernel is created and linked to the notebook. It is possible to connect to remote

machines and manually start an individual kernel for your local Jupyter instance to

connect to. However, this is rarely an effective use of time. When we ran pipenv run

ipython kernel install at the start of this chapter, we were creating a new kernel

specification for the current environment and installing that into the list of known kernel

specifications.

To add kernel specifications that use remote hosts, we can use the helper utility

remote_ikernel. We should install this to the same location as Jupyter, as it is a helper

for Jupyter rather than a specific development tool for this environment.

> pip install --user remote_ikernel

We then need to set up the environment and kernel helper program on the remote

host. Connect to the Raspberry Pi (or another machine that we want to send code to)

and create a pipenv on that computer as we did earlier:

rpi> python -m pip install --user pipenv

rpi> mkdir development-testing

rpi> cd development-testing

rpi> pipenv install ipykernel

CHApTer 1 proToTyping And environmenTs

39

Tip some low-performance hosts, such as raspberry pis, may make installing
ipython_kernel frustratingly slow. in this case, you may consider using the package
manager’s version of ipython_kernel instead. The ipython kernel does require many
support libraries which may take some time to install on a low-powered computer.
in that case, you could set up the environment as

rpi> sudo apt install python3-ipykernel

rpi> pipenv --three --site-packages

Alternatively, if y0ou are using the raspberry pi, there is a repository of
precompiled wheels at https://www.piwheels.org which can be enabled by
adding the following new source to your pipfile, in addition to the existing one:

[[source]]

url = "https://www.piwheels.org/simple"

name = "piwheels"

verify_ssl = true

you would then install the ipython_kernel package as normal using pipenv
install. if you’re using a raspberry pi running raspbian, you should always
add piwheels to your pipfile, as raspbian comes preconfigured to use piWheels
globally. not listing it in your pipfile can cause installations to fail.

This will install the IPython kernel program on the Raspberry Pi machine; however,

we still need to install it on our host machine. To start with, we’ll install a kernel pointing

at the pipenv environment that we’ve created. After this, the Raspberry Pi will have two

kernels available, one for the system Python install and one called development-testing

for our environment. After installing the kernel, we can view the configuration file for the

specification:

rpi> pipenv run ipython kernel install --user --name=development-testing

Installed kernelspec development-testing in /home/pi/.local/share/jupyter/

kernels/development-testing

> cat /home/pi/.local/share/jupyter/kernels/development-testing/kernel.json

 {

 "argv": [

CHApTer 1 proToTyping And environmenTs

https://www.piwheels.org/

40

 "/home/pi/.local/share/virtualenvs/development-testing-nbi70cWI/bin/

python",

 "-m",

 "ipykernel_launcher",

 "-f",

 "{connection_file}"

],

 "display_name": "development-testing",

 "language": "python"

}

This output shows us how Jupyter would run the kernel if it were installed on

that computer. We can use the information from this specification to create a new

remote_ikernel specification on our development machine that points at the same

environment as the development-testing kernel on the Raspberry Pi.

The preceding kernel specification lists how the kernel is started on the Raspberry Pi.

We can verify this by testing the command over SSH to the Raspberry Pi, for example, by

changing -f {connection_file} to --help to show the help text.

rpi> /home/pi/.local/share/virtualenvs/development-testing-nbi70cWI/bin/

python -m ipykernel –help

We can now return to our development computer and create the remote kernel

specification, as follows:

> remote_ikernel manage --add --kernel_cmd="/home/pi/.local/share/

virtualenvs/development-testing-nbi70cWI/bin/python

-m ipykernel_launcher -f {connection_file}"

--name="development-testing" --interface=ssh --host=pi@raspberrypi

--workdir="/home/pi/developmenttesting" --language=python

It looks a bit intimidating, spanning five lines of text, but it can be broken up:

• The --kernel_cmd parameter is the contents of the argv section

from the kernel spec file. Each line is space separated and without

the individual quotation marks. This is the command that starts the

kernel itself.

CHApTer 1 proToTyping And environmenTs

41

• The --name parameter is the equivalent of display_name from the

original kernel spec. This is what will be shown in Jupyter when

you select this kernel, alongside SSH information. It doesn’t have to

match the remote kernel’s name that you’ve copied from, it’s just for

your reference.

• The --interface and --host parameters define how to connect to

the remote machine. You should ensure that passwordless15 SSH is

possible to this machine so that Jupyter can set up connections.

• The --workdir parameter is the default working directory that the

environment should use. I recommend setting this to be the directory

that contains your remote Pipfile.

• The --language parameter is the value of the language value from

the original kernel spec to differentiate different programming

languages.

Tip if you’re having difficulty connecting to the remote kernel, you can try
opening a shell using Jupyter on the command line. This often shows useful error
messages. Find the name of the kernel using jupyter kernelspec list and
then use that with jupyter console:

> jupyter kernelspec list

Available kernels:

 advancedpython

C:\Users\micro\AppData\Roaming\jupyter\kernels\advancedpython

 rik_ssh_pi_raspberrypi_developmenttesting

C:\Users\micro\AppData\Roaming\jupyter\kernels\

rik_ssh_pi_raspberrypi_developmenttesting

> jupyter console --kernel= rik_ssh_pi_raspberrypi_developmenttesting

In [1]:

15 Use ssh-copy-id user@host to set this up automatically, rather than manually editing the
authorized_hosts file.

CHApTer 1 proToTyping And environmenTs

42

At this point, when we reenter the Jupyter environment, we see a new kernel

available that matches the connection information we supplied. We can then select that

kernel and execute commands that require that environment,16 with the Jupyter kernel

system taking care of connecting to the Raspberry Pi and activating the environment in

~/development-testing.

 Developing code that cannot be run locally
There are some useful sensors available on the Raspberry Pi; these provide the actual

data that we are interested in collecting. In other use cases, this might be information

gathered by calling custom command-line utilities, introspecting a database, or making

local API calls.

This isn’t a book on how to make the most of the Raspberry Pi, so we will gloss

over much of the detail of exactly how it does its work, but suffice it to say that there is

a large amount of documentation and support for doing exciting things using Python.

In this case, there is a library that we want to use that provides a function to retrieve

both temperature and relative humidity from a sensor that can be added to the board.

Like many other tasks, this is relatively slow (it can take a good portion of a second

to measure) and requires a specific environment (an external sensor being installed)

to execute. In that way, it is similar to monitoring active processes on a web server by

communicating through their management ports.

To begin with, we add the Adafruit DHT17 library to our environment. We have

currently got copies of a pipfile both on the Raspberry Pi and locally. The remote copy

only contains the dependency on ipykernel, which is already in the local copy, so it’s safe

to overwrite the remote file with the one we’ve created locally. As we know that the DHT

library is only useful on Raspberry Pis, we can restrict it so that it only installed on Linux

machines with ARM processors, using the conditional dependency syntax:18

> pipenv install "Adafruit-CircuitPython-DHT ; 'arm' in platform_machine"

16 If you prefer a console environment to the web environment of the Jupyter notebook, you
can see a list of available kernels using jupyter kernelspec list and open an IPython shell
connected to the specification of your choice with jupyter console --kernel kernelname.

17 This is part of Adafruit’s excellent CircuitPython ecosystem. They have a lot more information on
these sensors and how to use them in a variety of projects at https://learn.adafruit.com/dht

18 This is defined by PEP508 at www.python.org/dev/peps/pep-0508/. There is a table on that
page which lists the valid filters, although more may be added in future.

CHApTer 1 proToTyping And environmenTs

https://learn.adafruit.com/dht
http://www.python.org/dev/peps/pep-0508/

43

This results in the Pipfile and Pipfile.lock files being updated to include this

dependency. We want to make use of these dependencies on the remote host, so we

must copy these files across and install them using Pipenv. It would be possible to

run this command in both environments, but that risks mistakes creeping in. Pipenv

assumes that you use the same version of Python for both development and deployment,

in keeping with its philosophy of avoiding problems during deployment. For that

reason, if you’re planning to deploy to a set version of Python, you should use that for

development locally.

However, if you do not want to install unusual versions of Python in your local

environment, or if you’re targeting multiple different machines, it is possible to

deactivate this check. To do so, remove the python_version line from the end of your

Pipfile. This allows your environment to be deployed to any Python version. However,

you should ensure that you’re aware of what versions you need to support and test

accordingly.

Copy both Pipfile and Pipfile.lock files to the remote host using scp (or your tool

of choice), and then on the remote machine, run pipenv install with the --deploy

flag. --deploy instructs pipenv only to proceed if the exact versions match, which is very

useful for deploying a known-good environment from one machine to another.

rpi> cd /home/pi/development-testing

rpi> pipenv install --deploy

Be aware, however, that if you’ve created your Pipfile on a different operating system

or a different CPU architecture (such as files created on a standard laptop and installed

on a Raspberry Pi), it is possible that the pinned packages will not be suitable when

deploying them on another machine. In this case, it is possible to relock the dependencies

without triggering version upgrades by running pipenv lock --keep-outdated.

You now have the specified dependencies available in the remote environment. If

you’ve relocked the files, you should transfer the changed lock file back and store it, so

you can redeploy in future without having to regenerate this file. At this stage, you can

connect to the remote server through your Jupyter client and begin prototyping. We’re

looking to add the humidity sensor, so we’ll use the library we just added and can now

receive a valid humidity percentage.

CHApTer 1 proToTyping And environmenTs

44

The Raspberry Pi that I copied these files to has a DHT22 sensor connected to pin

D4, as demonstrated in Figure 1-8. This sensor is readily available from Raspberry Pi

or general electronics suppliers. If you don’t have one to hand, then try an alternative

command that demonstrates that the code is running on the Pi, such

as platform.uname().

This notebook is stored locally on your development machine, not on the remote

server. It can be migrated into being a Python script using nbconvert, in the same way

as before. However, before we do that, we can also change the kernel back to our local

instance to check that the code behaves correctly there. The objective is to create code

that works on both environments, returning either the humidity or a placeholder value.

Figure 1-8. Jupyter connected to a remote Raspberry Pi

CHApTer 1 proToTyping And environmenTs

45

Figure 1-9 demonstrates that the code is not suitable for all environments. We

would very much like to be able to run at least some of the code locally, so we can adjust

our code to take the limitations of other platforms into account. When this has been

converted to the more general function form, it will look something like

def get_relative_humidity():

 try:

 # Connect to a DHT22 sensor on GPIO pin 4

 from adafruit_dht import DHT22

 from board import D4

Figure 1-9. Demonstration of the same code being run on the local machine

CHApTer 1 proToTyping And environmenTs

46

 except (ImportError, NotImplementedError):

 # No DHT library results in an ImportError.

 # Running on an unknown platform results in a NotImplementedError

 # when getting the pin

 return None

 return DHT22(D4).humidity

This allows for the function to be called on any machine, unless it has a temperature

and humidity sensor connected to pin D4 and to return a None anywhere else.

 The completed script
Listing 1-10 shows the completed script. There are still hurdles to overcome to ensure

that this is a useful library, most notably the fact that the show_sensors function is doing

formatting of the values. We don’t want to integrate formatting into the data sources at

this point as we want to be sure the raw values are available to other interfaces. This is

something we will look at in a later chapter.

Listing 1-10. The final version of our script from this chapter

#!/usr/bin/env python

coding: utf-8

import socket

import sys

import click

import psutil

def python_version():

 return sys.version_info

def ip_addresses():

 hostname = socket.gethostname()

 addresses = socket.getaddrinfo(socket.gethostname(), None)

CHApTer 1 proToTyping And environmenTs

47

 address_info = []

 for address in addresses:

 address_info.append((address[0].name, address[4][0]))

 return address_info

def cpu_load():

 return psutil.cpu_percent(interval=0.1) / 100.0

def ram_available():

 return psutil.virtual_memory().available

def ac_connected():

 return psutil.sensors_battery().power_plugged

def get_relative_humidity():

 try:

 # Connect to a DHT22 sensor on GPIO pin 4

 from adafruit_dht import DHT22

 from board import D4

 except (ImportError, NotImplementedError):

 # No DHT library results in an ImportError.

 # Running on an unknown platform results in a NotImplementedError

 # when getting the pin

 return None

 return DHT22(D4).humidity

@click.command(help="Displays the values of the sensors")

def show_sensors():

 click.echo("Python version: {0.major}.{0.minor}".format(python_version()))

 for address in ip_addresses():

 click.echo("IP addresses: {0[1]} ({0[0]})".format(address))

 click.echo("CPU Load: {:.1%}".format(cpu_load()))

 click.echo("RAM Available: {:.0f} MiB".format(ram_available() / 1024**2))

 click.echo("AC Connected: {!r}".format(ac_connected()))

 click.echo("Humidity: {!r}".format(get_relative_humidity()))

if __name__ == '__main__':

 show_sensors()

CHApTer 1 proToTyping And environmenTs

48

 Summary
This concludes the chapter on prototyping; in the following chapters, we will build on

the data extraction functions we’ve created here to create libraries and tools that follow

Python best practice. We have followed the path from playing around with a library up to

the point of having a working shell script that has genuine utility. As we continue, it will

develop to better fit our end goal of distributed data aggregation.

The tips we’ve covered here can be useful at many points in the software

development life cycle, but it’s important not to be inflexible and only follow a process.

While these methods are effective, sometimes opening the REPL or using pdb (or even

plain print(...) calls) will be more straightforward than setting up a remote kernel. It

is not possible to pick the best way of approaching a problem unless you’re aware of the

options.

To recap:

 1. Jupyter is an excellent tool for exploring libraries and doing initial

prototyping of their use.

 2. There are special-purpose debuggers available for Python that can

be integrated easily into your workflow using the breakpoint()

function and environment variables.

 3. Pipenv helps you to define version requirements that are kept up

to date, involve minimal specification, and facilitate reproducible

builds.

 4. The library click allows for simple command-line interfaces in an

idiomatic Python style.

 5. Jupyter’s kernel system allows for seamless integration of multiple

programming languages running both locally and on other

computers into a single development flow.

CHApTer 1 proToTyping And environmenTs

49

 Additional resources
Each of the tools we’ve used in this chapter has a lot of depth to it, while we’ve only

skimmed the surface to achieve our ends.

• The Pipenv documentation at https://pipenv.pypa.io/en/latest/

has a lot of useful explanation on customizing pipenv to work as you

want, specifically with regard to customizing virtual environment

creation and integration into existing processes. If you’re new to

pipenv but have used virtual environments a lot, then this has good

documentation to help you bridge the gap.

• If you’re interested in prototyping other programming languages in

Jupyter, I’d recommend you read through the Jupyter documentation

at https://jupyter.readthedocs.io/en/latest/ – especially the

kernels section.

• For information on Raspberry Pis and compatible sensors, I

recommend the CircuitPython project’s documentation on the

Raspberry Pi: https://learn.adafruit.com/circuitpython-on-

raspberrypi-linux.

CHApTer 1 proToTyping And environmenTs

https://pipenv.pypa.io/en/latest/
https://jupyter.readthedocs.io/en/latest/
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

51
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_2

CHAPTER 2

Testing, checking, linting
Python is famously “duck” typed,1 that is, you’re expected to write code without explicit

type checks. If you write a function that implements some algorithm on numeric

types, it should work equally well when presented with int, float, decimal.Decimal,

fractions.Fraction, or numpy.uint64. As long as the object provides the right functions

and those functions have the correct meanings, they work correctly.

Python accomplishes this through the related features of late binding and dynamic

dispatch. We will come back to this topic in more depth later, but suffice it to say

dynamic dispatch is the difference between being able to run

some_int + other_int

some_float + other_float

and having to use2

int.__add__(some_int, other_int)

float.__add__(some_float, other_float)

That is, functions are resolved through an object to find the proper implementation

for that type. Late binding means that this lookup happens when it’s time to call that

function, rather than when the program is being written. The combination of these

two makes for what we call duck typing and allows for functions to be written that

trust underlying object implementations without knowing what they are in advance.

1 Derived from the phrase “If it walks like a duck and quacks like a duck, then it probably is a
duck.” In this context, it means that Python doesn’t check that the type of a variable matches an
existing declaration; rather it will accept any object in the place of any other so long as all the
methods and attributes required to execute the code are present.

2 Strictly speaking, it’s the difference between some_int.__add__(other_int) and int.__add__
(some_int, other_int). Python will convert x + y to x.__add__(y) automatically, but I don’t
want to suggest that this is an appropriate way to add integers.

https://doi.org/10.1007/978-1-4842-5793-7_2#DOI

52

However, this also means that Python programs don’t benefit from the same level of

automated checking that languages with early binding3 offer.

Up until now, we’ve been writing simple functions that operate on Python’s

built-in data types, such as float. This works well for trivial functions, but as the

program becomes more complex, it becomes harder and harder to write code that

has no formal relationship to other parts of the code.

In the previous chapter, we added a humidity value to the data collection, but it’s

coming from a sensor that also collects the ambient temperature. The sensor returns

this in degrees Celsius. We can add a matching temperature sensor, as demonstrated in

Listing 2-1.

Listing 2-1. A simple temperature sensor function

def get_temperature():

 # Connect to a DHT22 sensor on GPIO pin 4

 try:

 from adafruit_dht import DHT22

 from board import D4

 except (ImportError, NotImplementedError):

 # No DHT library results in an ImportError.

 # Running on an unknown platform results in a NotImplementedError

 # when getting the pin

 return None

 return DHT22(D4).temperature

However, we might want to allow users to see this in different formats. When we

write a conversion function, we know from our understanding of what the program does

and the name that we give the function that it operates on numbers to convert from one

temperature system to another, but that relationship is purely one of the developer’s

understanding, it isn’t implied by any of the code. The code we’d write to do this is

shown in Listing 2-2.

3 Early binding is the requirement that the exact function that will be used is known when the
program is being written.

Chapter 2 testing, CheCking, linting

53

Listing 2-2. Conversion functions for Celsius to Fahrenheit and Celsius to Kelvin

As you can see from the screenshot, these work correctly for integer arguments. They

also return the correct value if they are supplied with a Fraction,4 Decimal, or float

argument. Our functions will actually return values for any numeric type. Python’s type

system would throw TypeError if we were to call celsius_to_fahrenheit("21"), as the

divide operation is not specified on strings, but our functions are only meaningful on

real numbers, not just objects that implement a divide method. We haven’t captured this

requirement anywhere, so if someone were to pass some numeric values that we aren’t

expecting, these functions would still produce an output (Listing 2-3).

4 The fractions.Fraction(...) class isn’t used much, which is a real shame. It allows
manipulating fractions without any loss of precision. The precision of floating-point numbers is
enough for most calculations, but if your values represent meaningful fractions, then they can
be useful. Imagine you’ve cut a cake into quarters, then you eat two thirds of a slice. Which of the
following makes it clearer how much you’ve eaten?

>>> from fractions import Fraction
>>> 1/4 * 2/3
0.16666666666666666
>>> Fraction("1/4") * Fraction("2/3")
Fraction(1, 6)

Chapter 2 testing, CheCking, linting

54

Listing 2-3. The result of converting a complex number or a matrix from Celsius

to Fahrenheit

The first two concepts this chapter covers are shown in these examples. Testing is the

process of determining that a function works correctly. Checking, or rather static type

checking, is the process of identifying the types that function operates on at the time that

it is written rather than the time it’s run. When writing a library, it is normal to write tests

for the code. You may be the only person that ever runs these tests; they are to bolster

your confidence in the code and aid in contributions.

On the other hand, any type checking you add is of direct benefit to anyone who

uses your code as a source of library functions. You may derive less confidence in your

code from these checks personally (although they certainly help you catch errors),

but their real power is in making your code easier to use for people who are not as

intimately familiar with it as their author. That’s not to say that you will derive little

benefit from type checking; the hints they provide are invaluable for making subtle

misunderstandings clearer. Many IDEs even use the extra information they provide to

offer a more user- friendly programming experience.

 Testing
Untested code is broken code.

Python has built-in support for testing, in the form of the unittest module in the standard

library. This offers a TestCase class which wraps individual tests with setup and

teardown code, as well as offers helper functions for asserting relationships between

values. While it’s possible to write tests using this module alone, I strongly recommend

using the add-on module pytest.

Chapter 2 testing, CheCking, linting

55

Pytest negates much of the need for boilerplate in setting up a test system. Compare

the following tests written in unittest style (Listing 2-5) and pytest style (Listing 2-6).

These are testing the temperature conversion function we prototyped earlier, shown as

Listing 2-4.

Listing 2-4. temperature.py being tested

def celsius_to_fahrenheit(celsius):

 return celsius * 9 / 5 + 32

def celsius_to_kelvin(celsius):

 return 273.15 + celsius

Listing 2-5. Unittest style of testing the conversion function

import unittest

from temperature import celsius_to_fahrenheit

class TestTemperatureConversion(unittest.TestCase):

 def test_celsius_to_fahrenheit(self):

 self.assertEqual(celsius_to_fahrenheit(21), 69.8)

 def test_celsius_to_fahrenheit_equivlance_point(self):

 self.assertEqual(celsius_to_fahrenheit(-40), -40)

 def test_celsius_to_fahrenheit_float(self):

 self.assertEqual(celsius_to_fahrenheit(21.2), 70.16)

 def test_celsius_to_fahrenheit_string(self):

 with self.assertRaises(TypeError):

 f = celsius_to_fahrenheit("21")

if __name__ == '__main__':

 unittest.main()

Chapter 2 testing, CheCking, linting

56

Listing 2-6. Pytest style of testing the conversion function

import pytest

from temperature import celsius_to_fahrenheit

def test_celsius_to_fahrenheit():

 assert celsius_to_fahrenheit(21) == 69.8

def test_celsius_to_fahrenheit_equivlance_point():

 assert celsius_to_fahrenheit(-40) == -40

def test_celsius_to_fahrenheit_float():

 assert celsius_to_fahrenheit(21.2) == 70.16

def test_celsius_to_fahrenheit_string():

 with pytest.raises(TypeError):

 f = celsius_to_fahrenheit("21")

The clearest difference is that between self.assertEqual(x, y) and assert

x == y. These both do the same thing, but the pytest style allows for significantly more

natural code. The unittest style wraps most operations in helper functions, which both

perform the comparison and generate an appropriate error message if the assertion

fails. For example, if x and y are differing lists, assertEqual calls assertListEqual which

compares the list and generates a diff of missing and additional elements and marks

the current test as failed. Table 2-1 demonstrates the ways that pytest’s assertion style is

clearer than the unittest assertion style.

Table 2-1. Some common assertion formats in unittest and pytest styles

Comparison Unittest Pytest

Values are equal self.assertEqual(x, y) assert x == y

Values are unequal self.assertNotEqual(x, y) assert x != y

Value is none self.assertIsNone(x) assert x is None

list containment self.assertIn(x, y) assert x in y

(continued)

Chapter 2 testing, CheCking, linting

57

In addition, unittest has a TestCase class which is used as the base class for all

groups of tests. These test cases can have common setup and tear down functionality for

ensuring that common variables and data are in place. The unittest.main() function

called in the ifmain block is the entrypoint into the testing system. That function collects

all test classes in the current module and executes them. For larger projects, there are

usually multiple files containing tests which are discovered by the test loader and their

contents collected and run.

Pytest behaves somewhat differently; running the executable begins test discovery,

rather than relying on the Python source files to collate the tests. Once tests have

been discovered, any filters passed as command-line arguments are applied, and the

remaining tests are run.

The split between code defining the tests and a separate executable doing the setup

and discovery allows for much more control over the Python environment where the

tests are executed, for example, allowing for the use of bare assert statements rather

than requiring wrapper functions for assertions.

 When to write tests
There are a lot of strong opinions in software engineering about when is the appropriate

time to write tests, should they be written before the code is written or after the code is

written. Writing the tests first is often called test-driven development (TDD), and it has

very vocal proponents. There’s a good reason for this; it can be very satisfying to work

in a test-driven environment, as it makes the triumphant feeling of getting a feature

working the last part of developing a feature. If you plan to write the tests afterward, they

can feel like an unnecessary chore.

Comparison Unittest Pytest

Floating-point

numbers differ by

less than 0.000001

self.assertAlmostEqual(x, y) assert x == pytest.approx(y)

exception is raised with self.assertRaises(TypeError):

 doSomething()

with pytest.raises(TypeError):

 doSomething()

Table 2-1. (continued)

Chapter 2 testing, CheCking, linting

58

In many situations in software engineering, there’s a best choice for any given

problem, but I believe that TDD vs. writing tests later is a more personal choice. I firmly

believe that developers can be productive either way, but some people are naturally

attracted to writing tests first, and others feel it makes for a slow start that they want to

avoid. It’s also very possible that which one you prefer depends on your mood or how

familiar you are with the codebase on which you’re working.

I generally prefer to write tests first, as I find it helps me think through the

implications of the code before I get too deep into implementation details, but often

I find myself wanting to get something working quickly and then polish it later. Both

approaches are entirely valid; writing tests before you’ve written the code is no more

correct or proper than writing them afterward. Try them both and see which feels more

natural to you.

In some cases, you may even decide tests are not worth writing, or you may have

a client or manager that pressures you not to write tests to save time. I’m not going to

tell you that this is a good idea, but equally, there are times when it’s a valid approach.

If you’re writing a program that will only ever be run once, or working with a complex

existing codebase that is untested, the cost/benefit ratio of writing tests is skewed away

from where it typically is. It’s perfectly acceptable to decide in these situations that tests

are not a priority for time investment. However, if this happens, you should remember

that the decision is not irreversible. If you find yourself manually testing the same thing

repeatedly and getting frustrated, that’s generally a sign that you should have written

tests. Don’t let the sunk cost of the time you’ve spent manually testing dissuade you from

spending some time adding tests if you think it’ll save time.

EXERCISE 2-1: TRY TEST-DRIVEN DEVELOPMENT

in this chapter, we are writing the tests after we’ve written the code. there’s no particular

reason for this; the choice was made to make the flow of the chapter more natural. if you’d

like to try writing tests first, this is a great opportunity. if you’d prefer to write tests after and

follow the flow of the chapter, then feel free to skip this exercise.

pick one of the sensors we looked at in the previous chapter and write some tests for it. You

will find an environment that is set up with the code from the previous chapter in the support

code for this chapter. it also contains documentation for how to run the tests.

Chapter 2 testing, CheCking, linting

59

if you do complete this exercise, be aware that the structure of the code you end up with

may be quite different from what’s suggested in this chapter. remember that future chapters

will build on this and you do not know all the requirements yet. there are many ways of

approaching this problem; this exercise aims to help you get a feel for the kind of decision-

making you need to do as part of test writing in a tDD process; there is no right answer here.

 Creating formatting functions for improved testability
In the previous chapter, we created a simple script to print the values of individual

sensors as a simple command-line script. This involved manually calling multiple

functions from a prewritten main() function and handling their formatting

independently. Although this served as a proof of concept, this isn’t a sustainable way

to build a large system. For each sensor value, we need a way to extract the raw value for

quantitative analysis as well as a formatted value for display to end-users.

Another significant reason to do this split is to make sure that functions have a strict

separation of concerns. We want to be able to test that the correct value is extracted and

that values are formatted correctly without having to do them both at once. If we had a

tightly coupled data extraction and formatting function, we wouldn’t be able to check that

a range of different values are formatted correctly. We would only be able to check the

value of the machine currently running the tests, which may vary wildly from run to run.

To achieve this, we will expand the functions into a Python class that provides

both the raw value retrieved by the sensor and a helper function for formatting it

appropriately (Listing 2-7). This approach makes it easier to display the current value

of the sensor in user-facing environments like the command-line script as there is no

special casing of individual sensor values in the surrounding script.

For example, the sensor that determines how much RAM is available should display

the number of bytes formatted into an appropriate unit. Previously we did this by

assuming that the megabyte5 was a suitable unit and statically scaling the number with

"{:.0f} MiB".format(ram_available() / 1024**2). This was both too complex to be

appropriate for a one-liner and too simple to be generally useful.

5 Technically, mebibytes: 1024 × 1024 bytes rather than 1000 × 1000 bytes. While the term megabyte
(and the corresponding abbreviation MB) is frequently used with both definitions, the mebibyte
(abbreviation MiB) refers exclusively to the larger, binary definition.

Chapter 2 testing, CheCking, linting

60

Listing 2-7. New temperature sensor implementation from sensors.py

class Temperature(Sensor[Optional[float]]):

 title = "Ambient Temperature"

 def value(self) -> Optional[float]:

 try:

 # Connect to a DHT22 sensor on GPIO pin 4

 from adafruit_dht import DHT22

 from board import D4

 except (ImportError, NotImplementedError):

 # No DHT library results in an ImportError.

 # Running on an unknown platform results in a

 # NotImplementedError when getting the pin

 return None

 try:

 return DHT22(D4).temperature

 except RuntimeError:

 return None

 @staticmethod

 def celsius_to_fahrenheit(value: float) -> float:

 return value * 9 / 5 + 32

 @classmethod

 def format(cls, value: Optional[float]) -> str:

 if value is None:

 return "Unknown"

 else:

 re turn "{:.1f}C ({:.1f}F)".format(value,

cls.celsius_to_fahrenheit(value))

 def __str__(self) -> str:

 return self.format(self.value())

Chapter 2 testing, CheCking, linting

61

The most significant difference between this and the original version is the switch from

function to a class. This is a simple class that does not inherit from a base class, so there

are no parentheses after the class name containing the bases. The most straightforward

method,6 value(), is the direct analogue of the original ram_available() function in that

it extracts the data without any formatting.

The format(...) method is the equivalent of the formatting that was previously

happening directly in the display logic for the command-line program. By making this

a method on the sensor class, we implicitly associate the formatting functions with the

data retrieval functions they work with. This makes it easier to understand what code

is related and reduces the cognitive load in understanding the module as a whole, as

compared to dozens of functions all at the global scope.

INSTANCE, CLASS, AND STATIC METHODS ON CLASSES

the celsius_to_fahrenheit(...) function has been defined as a staticmethod with

a decorator just above, and the format(...) method has been defined as a classmethod,

with first argument as cls rather than self.

these methods behave slightly differently to a standard instance method. When you define

a function on a class, it takes self as a first parameter. this makes it an instance method;

it can only be invoked on instances of the class and has access to attributes set on that

instance as well as other methods. Temperature().value() will return a result, but

Temperature.value() raises a TypeError.

in the typical case, when a function is defined on an object in python, it has an argument

of self in the first position. this is bound to an instance of the class, so each function can

access the data stored in the class and can invoke functions that have the same access. When

the class object is called with Temperature(), an instance of the class is returned, and when

a method on that instance is called, it will automatically have the instance passed as the first

argument. this means that Temperature().value() is all that is needed to retrieve the

value. so long as you’re calling a method by accessing it through an instance, you never need

to explicitly pass the self argument.

6 A function that’s defined on an object rather than at the global scope is traditionally called a
method.

Chapter 2 testing, CheCking, linting

62

a class method takes cls7 as the first argument, which points to the class rather than an

instance. the function can still access other functions on the class as well as any attributes

stored on the class, but it cannot call instance methods as it doesn’t have an instance of the

class available. Class methods can be invoked on instances as normal or on the class directly.

they’re useful for writing custom constructors (such as from_json(...)) or for utility

functions that use other functions or attributes of the class. a class method can be invoked on

the class (Temperature.format(21)) or an instance (Temperature().format(21)); it

will receive the class as the first argument in either case.

Finally, a static method is a method that has no implicit first argument. there are no

significant advantages to a static method over a class method, but the absence of the implicit

argument makes it clear to readers of the code that it’s a completely stand-alone method

that is only being grouped with the class for reasons of convenience. it can also be invoked

on either the class or an instance, as Temperature.celsius_to_fahrenheit(21) or

Temperature().celsius_to_fahrenheit(21).

The preceding sensor code is intended to retrieve and format sensor data. It’s

possible that the __init__() method of some sensors may perform some expensive8

setup that’s required to make value() work. The reason we’re marking the format(...)

method as a class method is to ensure that we can still format the data without

instantiating the class. This allows us to format data without having an instance of the

relevant sensor, just its class.

The __str__() method is a Python internal convention; it determines how an object

is converted into a string representation.9 As this is only ever used on instances of the

class, we can make this a shorthand way of saying “retrieve the current value and format

it.” As such, the code for displaying all sensor values is considerably shortened and easier

to understand:

7 Or klass. class is a reserved word so it can’t be used for variable names. Both cls and self
argument names are only conventions, but I strongly recommend you follow them.

8 Expensive in terms of time or memory. Although some APIs can cause real money to be spent, I’d
recommend against ever writing code where this happens implicitly just by instantiating a class.

9 __str__() is used when an object is converted to a user-facing string. This happens when
an object is printed or is used in string manipulation methods such as ”{}”.format(obj).
__repr__() is used by Python internally for programmer-facing string representation, such as in
tracebacks and typing its name into the REPL prompt. You can explicitly choose which you’d like
to see by using the built-in str(obj) and repr(obj) functions.

Chapter 2 testing, CheCking, linting

63

@click.command(help="Displays the values of the sensors")

def show_sensors():

 for sensor in [PythonVersion(), IPAddresses(), CPULoad(), RAMAvailable(),

 ACStatus(), RelativeHumidity()]:

 click.secho(sensor.title, bold=True)

 click.echo(sensor)

 click.echo("")

The work of displaying the sensor values has almost entirely been delegated to the

sensor itself. All that is required is that the sensor has a __str__() method that returns

a formatted version of its current value and that it has a title attribute that contains a

header for the display.

Now that we’ve reorganized the code to have independent formatting and value

extraction functions, we can write tests to ensure that values are formatted as we expect

them to be. As always, you can find the reorganized code in the support files for this

chapter, available on the book’s website.

 pytest
The first thing to do to be able to run our tests is that we need to install pytest itself. We

consider this a development package, as it’s not required for the system to be used, just

to allow developers to be confident that it is behaving as intended.

pipenv install --dev pytest

This creates a new pytest script available in the environment for our project. At this

point, we can run pipenv run pytest and see the results of our test run, which is that

0 tests ran. To test that we have a working environment, we can create a sample test.

This is often done by code skeleton generators, where the test will be something like

assert 1 == 1. We are going to assert that the file that contains our cli script has one

of the sensors we expect to see.

To do this we create a new tests/ directory and add an empty __init__.py and a

test_sensors.py as follows:

import sensors

def test_sensors():

 assert hasattr(sensors, 'PythonVersion')

Chapter 2 testing, CheCking, linting

64

 Unit, integration, and functional testing

The hardest part of writing tests is knowing which tests to write. It can be tempting to

write tests that run the entire application and check the output, effectively interacting with

the code in the same way that an end-user would. This is known as functional testing.

Functional testing is especially popular with web frameworks, where there may be many

different layers of code interacting to provide services such as authentication, sessions, and

template rendering. While this does effectively test that the correct output is generated, it

can be difficult to write tests that go further than confirming the common case.

If we took this approach with our command-line script, we’d be looking to see that

the script returns the values that we are expecting when it’s run. The immediate problem

that we’ll come up against is that it’s challenging to know what the correct values we’re

expecting are. The easiest of our sensors to predict is the Python version as there are only

a handful of possible values, but even then it’s not possible to know in advance which

version of Python is being used.

For example, the following test uses the CliRunner helper tools from click to simulate

running the command-line tool and capturing the output:

def test_python_version_is_first_two_lines_of_cli_output ():

 runner = CliRunner()

 result = runner.invoke(sensors.show_sensors)

 assert ["Python Version", "3.8"] == result.stdout.split("\n")[:2]

This looks fine, until the first time someone runs it on Python 3.7 and sees the failure:

__________ test_python_version_is_first_two_lines_of_cli_output ___________

 def test_python_version_is_first_two_lines_of_cli_output():

 runner = CliRunner()

 result = runner.invoke(sensors.show_sensors)

> assert ["Python Version", "3.8"] == result.stdout.split("\n")[:2]

E AssertionError: assert ['Python Version', '3.8'] == ['Python Version', '3.7']

E At index 1 diff: '3.8' != '3.7'

E Use -v to get the full diff

tests\test_sensors.py:11: AssertionError

Chapter 2 testing, CheCking, linting

65

For many people, the natural thing to do at this point is to change the test to detect

the Python version that the system is running and use that to determine what to expect,

something like

def test_python_version_is_first_two_lines_of_cli_output():

 runner = CliRunner()

 result = runner.invoke(sensors.show_sensors)

 python_version = "{}.{}".format(sys.version_info.major,

sys.version_info.minor)

 assert ["Python Version", python_version] == (result.stdout.split("\n")[:2])

It will successfully run on any Python version. This is a perfectly reasonable change

to make, but it’s important to realize that you’re no longer testing the same thing.

Remember that the implementation of the PythonVersion sensor is

class PythonVersion:

 def value(self):

 return sys.version_info

 @classmethod

 def format(cls, value):

 return "{0.major}.{0.minor}".format(value)

So, if we strip away all the function call indirection involved in the sensor script, our

test is effectively testing the following:

assert "{}.{}".format(sys.version_info.major, sys.version_info.minor) ==

"{0.major}.{0.minor}".format(sys.version_info)

Writing a test where the results of assertions are calculated rather than known in

advance often results in a tautological test. It may not be this obvious, but in all cases

it is suboptimal. It’s not wrong, the test is still checking the header, the ordering of the

sensors, and that the value displayed is based on sys.version_info, but it looks like it’s

testing the version detection and does not look like it’s checking sensor order.

This test is now only testing that the Python version “sensor” comes first in the listing

and that an appropriate header is shown. It is no longer testing any of the behavior of the

Python version sensor.

Chapter 2 testing, CheCking, linting

66

To ensure that the sensor is behaving correctly, we break down the test into smaller

units. The things we want to know about the PythonVersion sensor are

 1. The sensor’s value is equal to sys.version_info.

 2. The sensor’s formatter returns a version string like “3.8”, that is,

major.minor.

 3. The sensor’s string representation is the formatted version of the

current value.

 4. The CLI output contains the header “Python version” and then

the result of formatting the value on the first two lines of the

output. This is the test we started with.

These should all be independent tests, as they’re all potential failure modes. If we

only had the functional test that checked the output of the script and saw a failure, it

would be impossible to know if the value, formatter, or script integration was incorrect

without debugging the failing test and understanding the whole context of the tool.

For some of these tests, we can call functions in total isolation and look at their

inputs and outputs. For example, the formatter takes an input and returns an output with

no side effects.10 This kind of tests is called unit tests, as we are testing a single logical

unit of source code at one time.

Unit tests are the kind of tests that are hardest to write on complex code. If the

structure of the code is not conducive to testing, it may be impossible to write useful unit

tests. If we think back to the version of the script at the end of the previous chapter, the

logical units are not as well defined as they are in the class-based implementation.

Each of the functions we’ve written involves calling some other functions to get their

data, and the formatting logic is tightly bound up with the command-line processing

logic. Unit tests are also some of the most useful types of tests to have because a failing

unit test very accurately narrows down the broken code to a single location. Unit tests

also generally execute very quickly and require minimal test setup, making for a more

satisfying experience as a developer.

Other functions, such as the __str__() method, are more complex and call out to

other functions to find their results. Finding the string value involves getting the value,

which delegates to library methods, then formatting that value. This type of function

10 This is called a “pure function”: its output is determined only by its inputs. Functions that
behave inconsistently, like random.random(), are not pure functions and are harder to test.

Chapter 2 testing, CheCking, linting

67

requires some setup to be tested effectively, as we need to write tests that override the

behavior of the library functions the code is calling, so that they return known values.

These types of test are best described as integration tests, but an exact meaning is difficult

to define. An integration test generally tests a small number of related functions as one, but

there is some flexibility in what different developers consider to be integration tests.

Integration tests are a happy medium between unit tests and functional tests.

By writing tests that cover a group of related functions, they ensure that a logical

component of the codebase is working correctly on given inputs and outputs. It’s harder

to really check edge cases with an integration test, but they’re a great choice for tests that

known- good or known-bad data is correctly processed.

The four planned test types mentioned earlier fall roughly into these three categories

of test. The first of these tests that very simple functions behave correctly. For more

complex sensors, it’s possible that these would be more like integration tests, but the

distinction is to help us reason about tests, it’s not something that should concern us.

The third test is an example of an integration test. The string representation function

calls the two functions tested in the previous step and ensures they work correctly

together. These tests should complement each other; it’s normal for an integration test

to test multiple things in passing, some of which may overlap with the explicit unit tests

that have been written.

Finally, we have a functional test to ensure that the sensor is being used in the output

of the CLI program. Like the integration test, this inevitably tests things that are more

appropriately tested elsewhere; you shouldn’t concern yourself with trying to minimize

this. What is important is that it’s clear from the functional test’s name and comments

what it’s intended to test. Often functional tests are deliberately wide ranging without

explaining their logic, which is counterproductive when they fail due to a change later

on. If it’s not clear what a test is doing, then it won’t be clear where a bug has been

introduced when it starts to fail. Many different issues can cause failing functional tests,

some of which may not appear to be related at first glance.

Tip When an integration or a functional test fails due to a change to part of the
codebase, it’s a good idea to write a more specific test to cover this case. that is,
if a functional test fails, try to add a unit or an integration test to isolate the issue.
a test demonstrating a bug that was fixed is a much more useful artifact to have
than an aging Jira ticket, especially if that bug is ever reintroduced.

Chapter 2 testing, CheCking, linting

68

 Pytest fixtures

For all but the most basic functions, it’s likely that there will be a few different cases

being tested, all of which should have their own test function. It’s quite common that

there will be setup code required, for example, instantiating classes if the function is a

class member rather than an importable function. One way of doing this is to organize

the tests into classes that contain both all related tests and setup code that is shared by

all these tests.

All test frameworks have some method of providing common setup and teardown

code to support tests. In pytest these are called “fixtures” and allow for a very flexible

way of picking and choosing between different pieces of support code. Pytest fixtures are

automatically invoked to match the arguments to the test function.

A good way of structuring tests is to define a class to contain related tests and any

fixtures that are specific to these tests only and to keep more generally useful fixtures

available for other tests to use as they like. This allows for using a style often referred

to generically as “Subject Under Test” style, or SUT. The subject changes depending on

the context. You may see FUT (Function Under Test), MUT (Method Under Test), OUT

(Object Under Test), and so on.

In this layout of tests, each class has a fixture called something like MUT(), method(),

or subject() which returns the function to be tested.11 A fixture for a FUT might just

import the function and return it, whereas a MUT, being a class method, likely involves

creating an instance of a class and returning the specific method from that instance. This

allows the individual functions to test a callable without having to worry about how that

callable is obtained, which can be especially useful when testing methods of classes that

take many arguments for their construction.

To begin with, we’ll create a test class designed to test the Python version number

sensor’s formatter and give it a range of values to test. This consists of a test file

(Listing 2-8) for the version sensor which provides a sensor fixture that represents the

sensor being tested and a TestPythonVersionFormatter class that defines a MUT as the

format method of that sensor, using the subject fixture.

11 This is a matter of personal style. You might find it clearer to name the fixture something that
makes it clear what the function is.

Chapter 2 testing, CheCking, linting

69

Listing 2-8. Initial version of test_pythonversion.py

from collections import namedtuple

import pytest

from sensors import PythonVersion

@pytest.fixture

def version():

 return namedtuple(

 "sys_versioninfo", ("major", "minor", "micro", "releaselevel", "serial")

)

@pytest.fixture

def sensor():

 return PythonVersion()

class TestPythonVersionFormatter:

 @pytest.fixture

 def subject(self, sensor):

 return sensor.format

 def test_format_py38(self, subject, version):

 py38 = version(3, 8, 0, "final", 0)

 assert subject(py38) == "3.8"

 def test_format_large_version(self, subject, version):

 large = version(255, 128, 0, "final", 0)

 assert subject(large) == "255.128"

 def test_alpha_of_minor_is_marked(self, subject, version):

 py39 = version(3, 9, 0, "alpha", 1)

 assert subject(py39) == "3.9.0a1"

 def test_alpha_of_micro_is_unmarked(self, subject, version):

 py39 = version(3, 9, 1, "alpha", 1)

 assert subject(py39) == "3.9"

Chapter 2 testing, CheCking, linting

70

The version fixture provides a structure that appears similar to the result of

sys.version_info, as the particular object type that Python uses internally there

cannot be instantiated with new values. This ensures that we can create values that

behave the same way as sys.version_info but where we control their values.

These tests can be run with pipenv run pytest tests, and they pass, but any

readers who have used other unit test frameworks may be concerned that we’ve moved

too much into the fixtures and that it may be difficult to debug problems. Specifically, it’s

not clear at a glance of the code to what subject refers. To demonstrate that this is fine,

we’ll add a new failing test to cover a feature that we would like to add.

Our formatter here only shows the major and minor components of the release, on

the assumption that the micro versions do not contain any changes significant enough

to highlight. However, as I write this, there is a new Python version in the alpha stage,

where the difference between alpha versions is significant in terms of new feature

additions. To this end, it may be useful to special-case prerelease versions of the first

micro release in a new minor line. I’ll add a pair of new tests to demonstrate that we

expect a different output for 3.9.0a1 (but to go back to the default for 3.9.1a1).

 def test_prerelease_of_minor_is_marked(self, subject, version):

 py39 = version(3, 9, 0, "alpha", 1)

 assert subject(py39) == "3.9.0a1"

 def test_prerelease_of_micro_is_unmarked(self, subject):

 py39 = (3, 9, 1, "alpha", 1)

 assert subject(py39) == "3.9"

One of these two tests fails, and the other passes. The reason for adding two tests

here is to make it clear that the alpha tag only matters for cases where the micro version

is 0. Without the second test, we’d have a passing test suite if all prerelease versions

showed the full version string, which is not the feature we’re looking for.

If we now re-run the tests, we’ll see the failure of the

test_prerelease_of_minor_is_marked test and the amount of contextual information

that pytest automatically includes:

________ TestPythonVersionFormatter.test_alpha_of_minor_is_marked ________

Chapter 2 testing, CheCking, linting

71

self = <tests.test_pythonversion.TestPythonVersionFormatter object at 0x03BA4670>

subject = <bound method PythonVersion.format of <class 'sensors.

PythonVersion'>>

version = <class 'tests.test_pythonversion.sys_versioninfo'>

 def test_alpha_of_minor_is_marked(self, subject, version):

 py39 = version(3, 9, 0, "alpha", 1)

> assert subject(py39) == "3.9.0a1"

E AssertionError: assert '3.9' == '3.9.0a1'

E - 3.9

E + 3.9.0a1

tests\test_pythonversion.py:28: AssertionError

=============== 1 failed, 3 passed in 0.11 seconds ========================

The first thing that is reported is the name of the test that’s failed, followed by

representations of the fixtures that are being used. These are displayed at the top of

the failure information, so we can see at a glance that the subject fixture is the format

method of an instance12 of the PythonVersion class.

The next thing to be shown is the body of the test method up to the line that caused

the error, followed by the formatted error. In this case, it’s an assertion error as the

assert line failed. We see the expanded version of the assertion, so we can see what

subject(py39) evaluated to, then below we see a diff of the two strings. In this case, a

diff is not especially useful, but with longer strings it is handy to get a line-by-line diff.

If we were to change the formatter method to be

 @classmethod

 def format(cls, value):

 if value.micro == 0 and value.releaselevel == "alpha":

 return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value)

 return "{0.major}.{0.minor}".format(value)

and re-run the tests, we would instead see a confirmation that all the tests in

test_pythonversion.py have passed.

12 The representation of the method says “bound method,” which means it’s a method which is
attached to an instance.

Chapter 2 testing, CheCking, linting

72

Categorizing test functions

We’ve decided to write multiple different types of tests for our code, covering everything

from unit tests to full-stack functional tests. As functional tests are significantly slower

than unit tests, we may want to exclude them from test runs from time to time, running

only the fast subset of tests quickly. If we’re expecting to see test failures, this can save a

significant amount of time, so we can avoid running the longer verification tests until we

know there are no failures in the fast, unit tests.

This can be done using the @pytest.mark decorator. We will use the “functional”

marker to mark our test_python_version_is_first_two_lines_of_cli_output as

being a functional test.

@pytest.mark.functional

def test_python_version_is_first_two_lines_of_cli_output():

 runner = CliRunner()

 result = runner.invoke(sensors.show_sensors)

 python_version = str(sensors.PythonVersion())

 assert ["Python Version", python_version] == result.stdout.split("\n")[:2]

This allows us to invoke tests with pytest -m functional to run only the

functional tests

============ 1 passed, 5 deselected, 1 warnings in 3.17 seconds ============

or using pytest -m "not functional" to run all but the functional tests:

============ 5 passed, 1 deselected, 1 warnings in 0.11 seconds ============

The overhead for running the functional tests is huge, with running one functional

test taking 30 times longer than running the five unit tests. A 3-second test run isn’t so

slow that it would discourage you from running tests, but we’re just starting to write our

test suite. When it’s 10x larger, it will be the difference between 30 seconds of tests and

1 second. If your tests are too much hassle for you to want to run, then they will not be

nearly as useful.

It’s possible to create arbitrary markers just by using @pytest.mark.something as a

decorator, but a warning is generated to advise you that it has not been explicitly declared.

These warnings are useful for spotting typographical errors in your marker names, so we

should create a pytest.ini file that declares that we use a functional marker.

Chapter 2 testing, CheCking, linting

73

[pytest]

markers = functional: these tests are significantly slower

 Coverage

Code coverage is a metric for how extensive a test suite is. It represents the proportion

of an application’s codebase that is executed during the test run. Some people feel very

strongly about a high level of test coverage being necessary, often going as far as saying

that 100% coverage should be expected of all software.

I’d encourage you to take a more pragmatic view. The most important thing a test

suite can do is to give you confidence that the software is behaving as expected. A high

coverage percentage is usually correlated with confidence, and I’d encourage you to

aim for a high level of coverage, but it shouldn’t give you a false sense of security. In

particular, as you approach 100% test coverage, it becomes harder and harder to ensure

the last lines are covered, but the benefit remains constant. It’s better to have a lower

amount of coverage and an easily understood test suite than an overly complex one that

hits 100%.

To enable code coverage, we need a pytest plugin to collect the data. The easiest

way to approach this is to install the pytest-cov plugin, using pipenv install --dev

pytest-cov. Once this is done, the --cov argument becomes available on the pytest

executable. This argument takes a path to part of your codebase as an optional

parameter. When this is provided, the coverage report only shows the coverage data for

that subpath. To see the coverage of all the code, use just --cov, as follows:

> pipenv run pytest tests --cov

We should also create a .coveragerc file to configure the coverage report

we’d like to see. The most important thing is to exclude the test directory, as the

proportion of test files that were executed while running tests is not a useful metric

and skews our average.

[run]

branch = True

omit = tests/*

Chapter 2 testing, CheCking, linting

74

We also add the branch configuration parameter, which changes the calculation

of coverage to only consider an if statement to be covered if both the True and False

conditions are encountered. If we run the tests with the --cov flag, we can see the

coverage of our project to date:

----------- coverage: platform win32, python 3.8.0-alpha-1 -----------

Name Stmts Miss Branch BrPart Cover

--

sensors.py 121 17 22 7 83%

========================= 8 passed in 3.23 seconds =========================

This shows that our test run detected that 83% of the code has been covered by the

test suite, which demonstrated exactly why we should be skeptical of coverage figures

as a measure of test quality. Remember that we’ve only written tests for one of the seven

sensors in our script, so the suggestion that 83% of our code is tested in any meaningful

way is clearly wrong. This has been caused by the functional test that runs the script

and looks at the output, as it causes all of the code to be executed. If we re-run the tests

excluding the functional tests, we get

----------- coverage: platform win32, python 3.8.0-alpha-1 -----------

Name Stmts Miss Branch BrPart Cover

--

sensors.py 121 62 22 1 43%

================== 7 passed, 1 deselected in 0.38 seconds ==================

Forty-three percent still seems like an overestimate, given what we know about

the number of tests we’ve written, but the coverage option lets us see which lines are

covered and which are missed. There are a few different ways of displaying this, but

they’re all controlled by the --cov-report flag. A number of machine-readable formats

are included, like an XML format, which is useful if you’re using continuous integration,

but for direct human consumption, the two most useful are --cov-report html and

--cov- report annotate.

The HTML report format creates a directory called htmlcov which contains an index.

html file that lists the overall coverage and the coverage of each file. By clicking the

Chapter 2 testing, CheCking, linting

75

filename you’re interested in, you see a listing of the file contents with lines color coded

by their status in the coverage report, as shown in Figure 2-1.13

Lines with a green border and no shading are covered lines. The test suite has

executed these lines. Lines with a red border and red shading are uncovered lines. These

were not executed. Assuming that branch coverage is enabled, some lines may have a

yellow border and be shaded yellow. These are lines that are partially covered, such as

the if __name__== "__main__" construction at the bottom of the file. As the body of that

if statement is red, it’s clear that the case where the condition evaluated to False was

covered but the case where it evaluated to True was not.

13 For those reading this in black and white, the red lines are below the green.

Figure 2-1. Visual representation of covered and uncovered lines when not
running functional tests

Chapter 2 testing, CheCking, linting

76

Alternatively, the annotate report type creates a sensors.py,cover file in the same

directory as sensors.py. Lines prefixed with a > are covered or partially covered; lines

prefixed with a ! are uncovered. The section of sensors.py,cover that matches the

preceding HTML screenshot is shown as Listing 2-9.

Listing 2-9. sensors.py,cover representing coverage when not running

functional tests

> class PythonVersion:

> title = "Python Version"

> def value(self):

> return sys.version_info

> @classmethod

> def format(cls, value):

> if value.micro == 0 and value.releaselevel == "alpha":

> return "{0.major}.{0.minor}.{0.micro}a{0.serial}".

format(value)

> return "{0.major}.{0.minor}".format(value)

> def __str__(self):

> return self.format(self.value())

> class IPAddresses:

> title = "IP Addresses"

> def value(self):

! hostname = socket.gethostname()

! addresses = socket.getaddrinfo(socket.gethostname(), None)

! address_info = []

! for address in addresses:

! value = (address[0].name, address[4][0])

! if value not in address_info:

! address_info.append(value)

! return address_info

I find the HTML report easier to work with, but your preferences may vary.

Either way, we can see that the function bodies of the various sensors other than

Chapter 2 testing, CheCking, linting

77

PythonVersion are all uncovered, but the class and function definitions are all covered.

This makes sense, as the Python interpreter has to execute the declaration lines to know

what functions, classes, and class attributes are available. As our function bodies are

relatively short, the tested function bodies plus the class and function declarations do

make up almost half of the lines with statements on them.

EXERCISE 2-2: EXPANDING THE TEST SUITE

We’ve written the tests for one of the most straightforward sensors, but there are still several

others that are untested. practice writing some tests by adding tests to the other sensors.

Most of the sensors follow the same pattern, with the exception being the temperature and

humidity sensors, which are somewhat harder to write tests for that cover the value method.

if you can write a test suite that covers 75% of sensors.py when running with -m "not

functional", then you have a test suite that should give you great confidence in the

program as a whole.

 Type checking
The work we’ve done on a test suite gives us a lot of confidence that the code we’ve

written behaves as we intend it to, but it doesn’t help so much with confidence that we’re

using it correctly. We make heavy use of the psutil library in many of the sensors without

writing any direct tests for this. Some programmers fall into the trap of writing tests that

do more to test their dependency libraries than their own code.

If you feel yourself needing to write tests to cover the workings of the libraries that

your code depends on, then you should step back and consider what the best course of

action is. It’s a lot easier to write tests for a library as part of its test suite, rather than in a

consumer application’s tests.

What people generally need when they use a third-party library is the confidence

that they are using it correctly: passing arguments consistently, handling exceptions and

unusual return values, and understanding what functions are intended to do. There’s no

automated way of checking our understanding, but type checking does allow us to check

some of the other cases.

Chapter 2 testing, CheCking, linting

78

If you’ve used a programming language like Java, you’ll be familiar with the impact a

thorough type checker can have on code: it’s not possible to overlook an exception or to

call a function with an invalid value, but to other people it can feel quite restrictive.

Python has recently gained syntax to optionally annotate variables with types, to

allow for type checking to be built on top of the base Python language. Python itself does

not do any type checking for you, but the mypy project offers a program for running

static type checks on your Python code.

 Installing mypy
Mypy is distributed as a Python module, so it is installed in the same way as our other

development dependencies, using

> pipenv install --dev mypy

This adds the mypy executable to our environment, as well as installs the mypy

type- checking library and the typeshed collection of type definitions. The Python standard

library does not include type-checking hints, and at the time of writing, most third-party

libraries do not either. Type annotations were always intended to be an optional feature,

so it shouldn’t be surprising that many developers choose not to use them. Typeshed is

a project of the Python Software Foundation that maintains a set of type declarations for

the standard library and various commonly used third-party libraries.

That said, many libraries neither provide type annotations nor have entries in the

typeshed, so when we run type checking on code that uses them, it generates typing

warnings. If we invoke mypy on our code, we see such errors about psutil, as well as the

optional dependencies adafruit_dht and board.

> pipenv run mypy sensors.py

sensors.py:9: error: No library stub file for module 'psutil'

sensors.py:9: note: (Stub files are from https://github.com/python/

typeshed)

sensors.py:116: error: Cannot find module named 'adafruit_dht'

sensors.py:116: note: See https://mypy.readthedocs.io/en/latest/

running_mypy.html#missing-imports

sensors.py:117: error: Cannot find module named 'board'

Chapter 2 testing, CheCking, linting

79

There are two approaches to this problem: ignoring it and fixing it. In almost all

cases, it’s a more effective use of time to configure mypy to ignore these problems, rather

than to add type hints to all the dependencies your code uses. To do that, we need to add

a mypy configuration file, either as mypy.ini or as part of a setup.cfg file, which can

contain configuration for multiple different tools. Add the following as setup.cfg and

re- run mypy to see it complete with no warnings:

[mypy]

ignore_missing_imports = True

 Adding type hints
As our code is currently relatively simple, it’s not difficult to go through the sensors and

add type hints. The format Python uses is

def function_name(argument: type, other: type) -> type:

So, our CPULoad sensor would look like

class CPULoad:

 title = "CPU Usage"

 def value(self) -> float:

 return psutil.cpu_percent(interval=3) / 100.0

 @classmethod

 def format(cls, value: float) -> str:

 return "{:.1%}".format(value)

 def __str__(self) -> str:

 return self.format(self.value())

The return value of the value function is always the same as the value parameter of

the format function. Once this has been added, we can experiment with mypy directly.

For example, we could create a new file that misuses the sensor, shown in Listing 2-10.

Chapter 2 testing, CheCking, linting

80

Listing 2-10. incorrect.py

import sensors

sensor = sensors.CPULoad()

print("The CPU load is " + sensor.value())

Mypy can pick up this error by analyzing the file with the incorrect code and the

sensors.py file, resulting in the following error:

> pipenv run mypy incorrect.py

incorrect.py:4: error: Unsupported operand types for + ("str" and "float")

However, some of the sensors are more complex. The ACStatus, Temperature, and

RelativeHumidity sensors all have a value that can be None if for whatever reason the

value cannot be determined. For these, we need to declare the return type differently.

Python’s typing allows for types to be wrapped into containers, in a similar way to

generics in other languages. The typing.Union type defines a type that is one of a

number of different options. In our case, ACStatus.value returns typing.Union[bool,

None] and the temperature sensor returns typing.Union[float, None].

We can further simplify this by using the Optional type. Optional is a special case

of Union, which takes one type argument and Unions it with None. It doesn’t behave

differently; it’s just easier to read. Therefore, our ACStatus.value() function becomes

 def value(self) -> typing.Optional[bool]:

 battery = psutil.sensors_battery()

 if battery is not None:

 return battery.power_plugged

 else:

 return None

Finally, the IPAddresses sensor’s value is a more complex object. Each IP address

is represented by a two-element tuple, containing a string representation of the address

family and the address itself. The sensor returns a list of these 2-tuples. We could declare

this as

 def value(self) -> typing.List:

 ...

Chapter 2 testing, CheCking, linting

81

but if we did, a return value of [None, None, None] would be considered valid. We can

declare some more of the internal structure of the list to ensure that mypy can be strict

with its checks. The syntax for declaring the internals of List is the same as that of Union.

For a list of (str, str) 2-tuples, we would use

 def value(self) -> typing.List[typing.Tuple[str, str]]:

 ...

This does not prevent any mistakes where the data structure matches what’s

expected, as we still can’t automatically check semantics, but it does prevent several

classes of typographical errors and oversights. For example, we’re not protected from

mixing up the two values inside the tuple, but we are protected from assuming that a

tuple is returned directly or that the return type is a list of strings containing IP addresses

with no address family information.

For this sensor, we may wish to loosen the symmetry between the return type of

value and the argument type in format. In all the other sensors, these have been exactly

the same, as we only want to be able to format the data that we’ve received. In a few

cases, it may be useful to be more flexible in the formatter. The type definition of the

formatter should represent the data that may be formatted, not the data that we’re

expecting. We can format any iterable that contains an indexable sequence of at least

two elements, both of which are strings. Our formatter code works if we pass in a tuple of

lists just as well as it does when we pass in a list of tuples.

The following types would all be valid choices:

• List[Tuple[str, str]]

• List[Sequence[str]]

• Sequence[Tuple[str, str]]

• Sequence[Sequence[str]]

• Iterable[Tuple[str, str]]

• Iterable[Sequence[str]]

all with slightly different semantics. Using Sequence rather than List allows for the outer

variable type to be a list or a tuple, and using Iterable as the outer type allows for it to

be a list, a tuple, a set, or a generator. If we use Sequence[str] over Tuple[str, str]

Chapter 2 testing, CheCking, linting

82

for the inner type, we gain the flexibility for the inner type to be a list, but we lose the

assertion regarding the internal structure of that sequence. Of these, I believe the best

choice is

def format(cls, value: Iterable[Tuple[str, str]]) -> str:

as it is the least restrictive type hint that does not allow invalid data.

Tip rather than importing all these marker types individually, you may wish to
import typing as t and then use t.Union[...], t.Sequence[...], and
so on. this makes the fact that these types are part of the typing hints clearer to
casual readers of the source code and avoids having to manage imports when
adding functions with a new type signature.

 Subclasses and inheritance
Perhaps the most confusing thing for Python developers not used to using type

hinting when writing code that is checked by mypy is that a much stricter view of type

inheritance is used, as compared to what they are used to. In our sensor file so far, we

have many classes that share the same __str__() method implementation. It is natural

to want to move these to a superclass. You may naturally think that this would have great

benefits for type hinting, as it would allow code to be written that explicitly operates on a

subclass of Sensor.

The problem with doing this is that we do not have a common interface for Sensor.

We have several subclasses that behave similarly, but they are not interchangeable. If you

know that you have an instance of Sensor, then you know you have a value function, but

you have no more concrete guarantees about what the output of that function is.

If we were to add a __str__() method to a superclass, then that method would

need to be type-checked on the superclass itself. If either a value() or a format(...)

method were missing, then type checks would fail, regardless of if those methods are

implemented on subclasses. The type check must fail as the base class itself would not

work in isolation. Equally, if we do define stub value() and format(...) methods on the

superclass, then those definitions are used for determining if the __str__() method is

correct, not the definitions on the individual subclasses.

Chapter 2 testing, CheCking, linting

83

This is the crux of the difference between static typing and dynamic typing. In a

dynamically typed language, you can rely on things that happen to be true, whereas in a

static typing environment, your assertions must necessarily be true.

Imagine the superclass that we would define here. The basic one we’d write untyped

Python would be

class Sensor:

 def __str__(self):

 return self.format(self.value())

Writing this in a typed context, with __str__(self) -> str, would cause the

function to be type-checked and therefore raise errors that "Sensor" has no attribute

"format". So, we need to add placeholder format(...) and value() methods. The

problem is, what type should the value method return? We have sensors that return

float, Optional[bool], Optional[float], or List[Tuple[str, str]]. The stub

methods can’t use any one of these return types as they are incompatible with the other

options. If we use the special typing.Any type, it effectively disables type checking

for this method. If we use the extremely verbose Union[float, Optional[bool],

Optional[float], List[Tuple[str, str]]] for the value() method, then we’re saying

that all of these types are equally valid as an output for any given sensor.

If we try to use that same Union as the argument type for the format(...) method,

then we hit a more subtle error. All subclasses are bound by the type restrictions of

their superclasses, but this manifests in different ways. When specifying the output of a

function, the subclasses must return a value that is as specific or more specific than the

definition of the superclass. So

class Sensor:

 ...

 def value(self) -> Union[float, Optional[bool], Optional[float],

List[Tuple[str, str]]]:

 raise NotImplementedError

class ToySensor(Sensor):

 ...

 def value(self) -> Optional[bool]:

 return True

Chapter 2 testing, CheCking, linting

84

is completely valid as any consumer that expects a Sensor and is given a ToySensor

will always find a value method that returns Optional[bool] when it’s expecting one of

several possible values, including Optional[bool].

This cuts the opposite way when working with function arguments. In the case of the

format(...) function, the type definition of the superclass is guaranteeing to users of

the class that any of the passed value types is acceptable; the subclass cannot restrict this

as it means that the calling code would have to know specifically which sensor is being

used. As such, the following code fails:

class Sensor:

 ...

 def format(self, value:Union[float, Optional[bool], Optional[float],

List[Tuple[str, str]]]) -> str:

 raise NotImplementedError

class ToySensor(Sensor):

 ...

 def format(self, value: Optional[bool]) -> str:

 return "Yes"

with the error

Argument 1 of "format" incompatible with supertype "Sensor".

There are two approaches we can take here, and which you choose will very much

depend on how much benefit you gain from type checking. The simplest is leaving some

of the functions untyped, either implicitly or explicitly. Leaving this untyped would

mean that we would not receive significant benefits of type checking when working

with sensors in general, only when working with specific individual sensors. This may

be sufficient for many applications and would certainly be simpler. To achieve this, we

would create a Sensor superclass as follows:

class Sensor:

 def value(self) -> Any:

 raise NotImplementedError

 @classmethod

 def format(cls, value: Any) -> str:

 raise NotImplementedError

Chapter 2 testing, CheCking, linting

85

 def __str__(self) -> str:

 return self.format(self.value())

and all of our code in future will restrict the type checking to the fact that the __str__()

and format(...) methods always return strings. No checking will be done on the value

type.

 Generic types
The alternative is to go all in on the type checking. We’ve already seen that the

typing.List type can take arguments to specify what the contents of the list are.

In the same way, we can tell the typing system that the Sensor base class takes a single

type argument that represents the type this sensor operates on.

Adding the ability to specify contained types is called making the type generic. We

need to convert Sensor to be a generic type with a single type variable, which is used as

both the return type of the value function and the argument type of the superclass.

T_value = TypeVar("T_value")

class Sensor(Generic[T_value]):

 def value(self) -> T_value:

 raise NotImplementedError

 @classmethod

 def format(cls, value: T_value) -> str:

 raise NotImplementedError

 def __str__(self) -> str:

 return self.format(self.value())

Here, T_value isn’t a type; it’s a placeholder for a type of the value which is specified

using the square bracket syntax on Sensor. If there is a variable of type Sensor[str],

then mypy associates T_value for that variable with str, and therefore the value() and

format(...) methods are both associated with str. Importantly, the type associated

with T_value varies from sensor to sensor; it’s not bound to a single type but rather is

dynamically associated with the subtype of Sensor that is declared by any particular

piece of code.

Chapter 2 testing, CheCking, linting

86

The sensors themselves use Sensor[type] as their base class, but still need to

declare their own typing hints on functions. While the typing hints of the parent class

are analyzed by mypy, it requires that any subclasses must still define type hints for

them to participate in type checking. It may seem like a waste of time, but this makes it

clear to anyone reading the code what the types required are without having to read the

superclass. It also allows for checking both that the code is internally consistent within a

 subclass and that it is consistent with the assertions of the superclass. The result is that

real sensor implementations look like Listing 2-11.

Listing 2-11. Typed version of sensors

class CPULoad(Sensor[float]):

 title = "CPU Usage"

 def value(self) -> float:

 return psutil.cpu_percent(interval=3) / 100.0

 @classmethod

 def format(cls, value: float) -> str:

 return "{:.1%}".format(value)

Caution in the preceding CPULoad sensor example, we have value(self) ->
float, but we can change this to value(self) -> int or even value(self)
-> bool without seeing any error. this is an unfortunate design decision to
support easier duck typing. the argument is that any function that accepts a float
can accept an integer, which although not entirely true is close enough for most
purposes. in addition, in python bool is a subclass of int, so functions that accept
floats can also accept bools without raising an error. therefore, a function that is
expected to return a float but returns a bool is seen as returning something
that’s compatible. i hope that this might generate warnings in future. For now, you
should bear this limitation in mind.

A surprising consequence of the fact that T_value is bound to the specified subtype

is the meaning of Sensor[Any]. This would appear to mean any valid Sensor, but in

fact it means a Sensor that whose value is not type-checked. Using Sensor[Any] still

has benefits over not using type checking at all. Although the type checker won’t be

Chapter 2 testing, CheCking, linting

87

able to check code that runs over a loop of Iterable[Sensor[Any]] for type safety in its

handling of the value parameter, the assertions about the presence of a title attribute

and the common __str__() method are common across all sensor types and so can still

be checked.

 Debugging and overuse of typing
When working with mypy, it can sometimes be useful to view debugging information.

Mypy does not have an interactive debugger, so if we have problems with understanding

why an error has occurred, we have to resort to printf style debugging, through the

reveal_type function.

For example, let’s create a test script that uses some of the code from sensors.py in an

incorrect manner:

from sensors import CPULoad

sensor = CPULoad()

print(sensor.format("3.2"))

If we invoke pipenv run mypy broken.py, we will get the following expected error:

broken.py:4: error: Argument 1 to "format" of "CPULoad" has incompatible

type "str"; expected "float"

but if we update broken.py to be a little more complex

from sensors import CPULoad, ACStatus

two_sensors = [CPULoad(), ACStatus()]

print(two_sensors[0].format("3.2"))

then re-run mypy, the error we see is more basic:

broken.py:4: error: "object" has no attribute "format"

In this case, mypy appears to have inferred an incorrect type for the two_sensors list.

We can add reveal_type(two_sensors) to the source file anywhere after it is defined

to see what mypy discovered. Be aware, reveal_type isn’t a real function. It doesn’t

require importing as it’s a construction of the mypy parser, not Python code. If you leave

it in your code, then it will cause errors when the code is run. Only add it as a temporary

Chapter 2 testing, CheCking, linting

88

debugging aid when running mypy. When reveal_type(two_sensors) has been added,

we see the following additional line in the mypy output:

broken.py:4: error: Revealed type is 'builtins.list[builtins.object*]'

showing that mypy has interpreted the variable as a list of objects, not a list of sensors. If

we import the appropriate names from the typing module and add an explicit type to the

two_sensors line, such as

two_sensors: List[Sensor[Any]] = [CPULoad(), ACStatus()]

then the output of mypy becomes

broken.py:6: error: Revealed type is 'builtins.list[sensors.Sensor[Any]]'

As mentioned earlier, the use of typing.Any is a mixed bag. This definition

means that any sensor retrieved from this list is of type Sensor[Any], so

two_sensors[0].format("3.2") would no longer be detected as an error by mypy.

In the current example, we have two sensors, one that returns a float and one that

returns an Optional[bool], so we could declare the list as

two_sensors: List[Union[Sensor[float], Sensor[Optional[bool]]]] = [

CPULoad(), ACStatus()]

meaning that two_sensors will only ever contain those types of sensor, but this is still not

especially helpful. We now get the pair of error lines:

broken.py:7: error: Argument 1 to "format" of "Sensor" has incompatible

type "str"; expected "float"

broken.py:7: error: Argument 1 to "format" of "Sensor" has incompatible

type "str"; expected "Optional[bool]"

showing that mypy has indeed determined that the call is incorrect, but based

on the information, it cannot know if float or Optional[bool] is the correct choice.

We can see more information about the format method it’s complaining about with

reveal_type(two_sensors[0].format), which returns

broken.py:6: error: Revealed type is 'Union[def (value: builtins.float*) ->

builtins.str, def (value: Union[builtins.bool, None]) -> builtins.str]'

Chapter 2 testing, CheCking, linting

89

That is, mypy knows that it’s one of two function signatures, one that takes a float

called value and one that takes a bool or a None called value, both returning str. Either

one of these is equally valid according to the typing hints. We wouldn’t be able to cause

mypy to detect the one correct function unless we declared the type as

two_sensors: Tuple[Sensor[float], Sensor[Optional[bool]]] = (CPULoad(),

ACStatus())

These are absurd lengths to go to. This demonstrates how quickly your code can

become unmaintainable if you approach typing too dogmatically. In such a situation,

you have a choice, to accept a lower level of type checking or to completely rearchitect

your program to allow for easier type checking by avoiding situations where you have

mixed types together. Personally, I would pick opting for less checking.

 When to use typing and when to avoid it
Type hinting, in general, is very much an optional feature in Python. Some people prefer

the more rigorous style that static typing encourages, but if this style doesn’t feel natural to

you, then I wouldn’t recommend making the switch just because it makes tooling easier.

Approach type checking as a way of helping yourself, not as a way of detecting all

possible errors. You will have to make judgments in your coding about the benefits of

individual bits of typing being correct, weighed against the disadvantages of increased code

complexity. There is usually a clear middle ground, where any additional typing is much

harder to represent correctly, and any less typing does not markedly simplify the code.

For example, much later in this project, we will want to chart the output of some of

the sensors over time. The sensors that return float or int are easy to chart, as they’re a

quantitative value. Sensors that return a list of lists of strings or sys.version_info do not

have a natural way of being translated into charts.

For these, we could imagine writing code that uses a sequence of sensors that all use

numeric types (or optional numeric types) as their input. That would allow us to limit the

expected types returned from the value function and ensure the rest of that function was

type-safe without us having to ensure that the exact type of every sensor was maintained

in all variables throughout the codebase.

More generally, not all projects benefit hugely from static typing. If a project has a

relatively simple set of functions that return known types, it can be a real benefit. As soon

as you start to require extensive use of Union or custom generic types, the argument in

favor of typing becomes weaker.

Chapter 2 testing, CheCking, linting

90

The overriding consideration, in my view, is if the people developing the software want

to use static typing. If you and your colleagues like the rigor that this way of working enforces,

then it is likely to be a good idea to use static typing. If you spend lots of time and effort on

code review and testing, then the benefits of adding testing may be significantly less.

If you’re writing a library to be used by others, then it’s nice to have at least the

external interfaces type hinted, as it allows your users to use type hinting without

marking your library as excluded from the type-checking process.

Throughout this book, we will include type hints for our code. As the code is being

written by one person who does not object to type hinting, there is no particular reason

to avoid it. The benefits are twofold. Firstly, books are hard to update if a small bug is

found in a code example. Using type hinting makes it easier to get code right the first

time. Secondly, it is much easier to have good intuitions on if this feature is going to be

useful in your projects if you’ve used it before. As we build the example up through the

chapters, you may find yourself disagreeing with the type hints I’ve picked. Don’t dismiss

these thoughts, knowing what feels natural to you is half the battle with designing test

suites and static checkers.

 Keeping type hints separate from code
An alternative to using type hints in your code is to define them alongside your code in

a pyi file. These act like .h files, for those familiar with C programming. The structure of

your code is maintained, but no implementations are present. This can be beneficial if

the majority of developers working on a piece of software do not use the type hints (e.g.,

if they’re intended for external consumers of the code) or if your type structure is so

complex that it makes the code appear messy. A partial implementation of this would

look like that shown in Listing 2-12.

Listing 2-12. Partial sensors.py file without inline type definitions

#!/usr/bin/env python

coding: utf-8

import math

import socket

import sys

import click

import psutil

Chapter 2 testing, CheCking, linting

91

class Sensor:

 def value(self):

 raise NotImplementedError

 @classmethod

 def format(cls, value):

 raise NotImplementedError

 def __str__(self):

 return self.format(self.value())

class PythonVersion(Sensor):

 title = "Python Version"

 def value(self):

 return sys.version_info

 @classmethod

 def format(cls, value):

 if value.micro == 0 and value.releaselevel == "alpha":

 return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value)

 return "{0.major}.{0.minor}".format(value)

Matching sensors.pyi for the preceding partial file

from typing import Any, Iterable, List, Optional, Tuple, TypeVar, Generic

T_value = TypeVar('T_value')

class Sensor(Generic[T_value]):

 title: str

 def value(self) -> T_value: ...

 @classmethod

 def format(cls: Any, value: T_value) -> str: ...

class PythonVersion(Sensor[Any]):

 title: str = ...

 def value(self) -> Any: ...

 @classmethod

 def format(cls: Any, value: Any) -> str: ...

Chapter 2 testing, CheCking, linting

92

These stub files can be generated by mypy from a standard Python file. These

generated files must be edited before they can be used, as they will not contain any type

declarations other than typing.Any. The files are generated with the stubgen tool, as

follows:

> pipenv run stubgen sensors.py

> cp out/sensors.pyi ./sensors.pyi

In my opinion, this format should be avoided unless there are strong reasons for

using it. It is harder to maintain, as new functions need to be added to the pyi file as

well as the py file, and using the type annotations is slightly more difficult in some

cases. For example, in the combined syntax, Sensor[float] is valid Python, but in

this split form, the Sensor base class has no __getitem__ method inherited from

Generic, so Sensor[float] is only valid in pyi files, not in py files. If we ever wanted to

use Sensor[float] in a py file rather than just in a pyi file, we’d have to use the legacy

comment syntax for defining the type:

sensor = [CPULoad(),] # type: List[Sensor[float]]

EXERCISE 2-3: EXPANDING THE TYPING COVERAGE

We’ve got a base class for the sensors and have looked at how we apply that to one sensor.

go through the rest of the sensors in the sensors.py file and update them to use the sensor

base class with appropriate type hints.

You may want to try the --strict command-line flag to mypy to see additional warnings that

aren’t raised by default, for example, because we’ve ignored external modules.

there are a few choices you’ll have to make, particularly regarding how to handle the untyped

variables coming from psutil and one particular sensor that is difficult to type.

 Linting
Linting is a general term for many different types of static analysis of code. In a way,

the static analysis done by mypy in the previous section is a very technical, computer

science–driven type of linting. The linting we’re going to discuss in this section is a lot

less involved and is much easier to introduce to existing projects than type checking is.

Chapter 2 testing, CheCking, linting

93

My linter of choice is flake8, a reference to the Python Enhancement Proposal (PEP8)

that defines a style guide for Python code.14 Flake8 and other linters go much further than

this style guide to produce code that matches best practice and the opinions of some

well-respected Python developers. You may find that a different linter integrates particularly

well with your code editor of choice, in which case I’d recommend using that one.

You will inevitably find that some linters perform checks that you don’t feel are

important or may miss some checks that you think should be enforced on your code. For

this reason, flake8 is very customizable, allowing the author of a piece of software to define

how its code should be checked. As the author or maintainer of a piece of software, you

are able to set these values how you like, so you get the most benefit from the linter. If you

find yourself contributing to code maintained by someone else, then their choices for

their flake8 configuration help you to know if you’ve written some code that they’re likely

to dislike the style of before you even submit your patches. It can be frustrating to have to

adjust your code to pass an overly zealous linter, but it’s less frustrating than having to go

through comments one by one on a pull request as they’re noticed by the maintainer.

As many of the complaints that linters have are based on formatting, there is a

growing trend for the linter to fix the formatting to be consistent itself. The runaway

leader in this field in the Python community is black.15 Black automatically reformats

your code in a consistent fashion. There are many advantages to using black over other

linters. The main one is that it’s emotionally a lot easier to accept having no control

over the formatting of your code than it is to deal with a large number of seemingly

insignificant changes being demanded. Not having to placate the linter on whitespace is

a big advantage to using black.

Caution if you’re contributing to a codebase that does not use black, make
sure you only contribute the changes you intend to. the git command git add
--patch is an excellent tool for choosing exactly what changes are staged for
commit. if you make a commit to a project that reformats code unrelated to your
change, it is likely that the commit will be reverted and people will be upset.

14 Technically, the name flake8 is actually based on the pyflakes and pep8 libraries, both of which
are static analysis tools. The pep8 library is named after PEP8 as it attempts to check for PEP8
compliance.

15 Black has very few configuration options; it does what it thinks is best. Its name is a reference to the
Henry Ford quote: “Any customer can have a car painted any color that he wants so long as it is black.”

Chapter 2 testing, CheCking, linting

94

 Installing flake8 and black
We’re going to install and set up both flake8 and black to run against our code. Both of

these are development dependencies, not core dependencies, and so are installed with

the --dev flag.16

> pipenv install --dev flake8 black

 Fixing existing code
We can then run flake8 against our code (or our tests) with

> pipenv run flake8 sensors.py

> pipenv run flake8 tests

If you do run either of these, you’ll see several required changes. Many of these are

whitespace changes, but others are to do with code formatting. We don’t want to make

all these changes manually, so let’s use black to reformat our code.17

> pipenv run black sensors.py tests

Now that these files have been reformatted, we’d expect flake8 only to report errors

not resulting from formatting. However, there are a couple more things we need to do.

Firstly, black’s default line length is 88 characters, but flake8’s is 80 characters. We need

16 At the time of writing, the authors of black have been promising to imminently remove the
prerelease flag from black for the last 18 months. If this still hasn’t been done by the time you’re
reading this, you may need to add the --pre flag to pipenv to allow this to be installed. Despite it
claiming to not be production ready, it’s my opinion that it is.

17 When converting a project to use black, you should add black to the environment in one git
commit and make all the automated changes in a second commit. It’s easier to drop the second
commit and re-run black if merge conflicts occur later on. The commit that contains the
reformatted code should be done as

 git commit -m "Apply initial black formatting" --author="Black Formatter
<black@example.com>"

 to ensure that the fact that this is an automatic reformatting is clear to developers in future. If
you don’t specify an author, then you will forever be assumed to have been the last person to
touch various parts of the codebase.

Chapter 2 testing, CheCking, linting

95

to update the flake configuration to use the same value as black. This is done by adding a

[flake8] section to setup.cfg, alongside the existing mypy configuration.

[mypy]

ignore_missing_imports = True

[flake8]

max-line-length = 88

When we run pipenv run flake8 sensors.py, we still see a couple of errors.

These are because we have overly long comments, and as comments are intended for

humans rather than the Python interpreter, black does not split them for us. The changes

required to make sensors.py pass a flake8 test are minimal, but when we run against the

tests, we see several real mistakes to fix.18

> pipenv run flake8 tests

tests\test_acstatus.py:2:1: F401 'socket' imported but unused

tests\test_acstatus.py:41:26: E712 comparison to True should be 'if cond is

True:' or 'if cond:'

tests\test_acstatus.py:46:26: E711 comparison to None should be 'if cond is

None:'

tests\test_acstatus.py:51:26: E711 comparison to None should be 'if cond is

None:'

tests\test_cpuusage.py:2:1: F401 'socket' imported but unused

tests\test_dht.py:2:1: F401 'socket' imported but unused

tests\test_dht.py:57:13: F841 local variable 'f' is assigned to but never

used

tests\test_ramusage.py:2:1: F401 'socket' imported but unused

tests\test_sensors.py:1:1: F401 'sys' imported but unused

In this output, we are given the filename, followed by the line number, followed by the

column number within the line (or 1 if not applicable). Finally, we’re given the flake8 code

number for the style error and a human-readable explanation. The code number is what is

used to exclude checks from being run, by adding them to an ignore= line in setup.cfg.

18 Some of these I’ve been pretending not to notice so there would be things to find in this section,
others I had not noticed. It’s very easy to miss things when refactoring code, even when you’re
paying attention.

Chapter 2 testing, CheCking, linting

96

Each of these complaints is quite clear; it’s a relatively mechanical task to go through

line by line and make the changes suggested. I would recommend starting from the

bottom of the list of errors and working upward. If you start at the top and work your way

down, then the line numbers may not be correct due to removing unneeded import lines

to fix F401 errors.

 Running automatically
It’s certainly possible to run linters by hand, but we’ve now got four different checks

to remember to run to ensure that the code is acceptable. It’s very easy to miss one of

these and accidentally commit something that isn’t up to standard. Once it’s committed,

making a fix is much more difficult; either the commit needs to be edited to include the

fixes or a new commit containing only those fixes is needed. It’s somewhat common to

see commit messages like “PEP8”, “Fixes”, or “Flake8” in projects that use linters but do

not use them consistently.

One of the main reasons to use a linter is to get things right the first time, so to get the

most benefit, it should be run for every commit, not just every push or when the author

feels like it. This is especially important if the codebase accepts external contributions

or work from more than one developer as if some developers are not running the linter,

then errors it picks up are not guaranteed to be related to the change you’re working on.

For this reason, the last tool that I’ll be recommending in this chapter is called pre-

commit. This is a tool for managing the hooks that Git offers for determining if a commit

should be allowed or not. It’s written in Python and so can easily be installed in the same

method as all our other development tools.

> pipenv install --dev pre-commit

We need to configure pre-commit to know about the three things we want to run by

entering them into the .pre-commit-config.yaml configuration file. Pre-commit has

extensive support for using community-written configuration through GitHub, which is

the officially recommended way to configure hooks. However, I find that for many, it’s

faster to write a manual hook directly in the repository, as shown in Listing 2-13. There

are many externally maintained hooks for you to choose from if you prefer, but this

explicit approach is usually sufficient.

Chapter 2 testing, CheCking, linting

97

Listing 2-13. .pre-commit-config.yaml

repos:

- repo: local

 hooks:

 - id: black

 name: black

 entry: pipenv run black

 args: [--quiet]

 language: system

 types: [python]

 - id: mypy

 name: mypy

 entry: pipenv run mypy

 args: ["--follow-imports=skip"]

 language: system

 types: [python]

 - id: flake8

 name: flake8

 entry: pipenv run flake8

 language: system

 types: [python]

We are not automatically running pytest as part of this suite, as we expect pytest to

become slower as the project progresses. The static analysis tools should never become

much slower as the codebase grows, but tests may well do.

Once this file is in place, pre-commit is configured. Every user needs to enable

pre- commit in their checkout, which is done with

> pipenv run pre-commit install

Chapter 2 testing, CheCking, linting

98

From this point on, all commits are guarded by these three checkers. It is possible to

skip the checks (e.g., if making a quick work-in-progress commit that you intend to change

later). Skipping the checks is done with the --no-verify parameter in your git commit call

or by setting the SKIP environment variable to be the names of the checkers to skip.19

Tip i often use git add --patch to interactively stage “hunks”20 of my work
rather than adding entire files at once. if you also work this way, you may be wary
about linters and formatters as, when you’re making a commit, there may already
be code in place for the next commit you intend to make.

the pre-commit program handles this excellently. any unstaged changes will be
stashed in an independent store managed by pre-commit (it doesn’t interfere with
your existing stashes), so the validators and reformatters only work on the code
you have staged. in my opinion, this is the “killer” feature of pre-commit.

 Running on pull requests
Modern front ends to version control software like GitHub and GitLab support continuous

integration hooks. These allow external services to run verification on your commits,

branches, and pull requests and annotate them with the results in the user interface. Many

different products offer this, all with different feature sets and pricing structures.

Github offers a simple docker-based CI runner, as well as many commercial offerings.

The GitLab approach mirrors GitLab itself in that all are open source and available to

be configured to your requirements. The number of different approaches here makes it

impossible for me to give a single recommendation that would be useful to everyone, so

this section only covers the general approach. Personally, I usually use Github’s actions.

There are two intended users of the information provided by continuous integration

software. The obvious one is the maintainer of the package. If you have some code that

other people have access to, either open to public patches or just from your colleagues,

you will want to know if a suggested patch has any obvious errors in it. It can be very hard

19 For most shells other than Windows cmd.exe, this can be done as SKIP="mypy" git commit.
20 I’m not sure why the authors of GNU diff chose to call a group of changed lines a hunk, but it has

since become the standard term.

Chapter 2 testing, CheCking, linting

99

work maintaining a piece of software; if you have to check out a branch and build it on your

local computer to find out that the submission has a typo that prevents it from working,

then it gets even harder. Continuous integration reduces your workload by performing the

common checks that you would always do and lets you concentrate on reviewing the code.

The less obvious user of the information is the author of the change. Whenever

you’re contributing to some software for the first time, it can be nerve-wracking making

sure that you’ve not made a trivial mistake. Nobody likes to make mistakes, especially

in public or in front of your peers. Continuous integration helps by warning you if

something has gone wrong without any active interaction from other people. When you

submit a pull request, you can watch the individual checks pass and be sure that your

contribution isn’t going to be seen as wasting someone’s time because of a simple error.

This is especially useful for projects that have very slow test suites or test suites

that rely on specific operating systems or dependency versions. It’s possible to set

up continuous integration to run your software on Linux, Windows, and macOS. The

Django test suite runs against each of the supported database architectures, including

nonfree databases like Oracle. It wouldn’t be feasible to ask all people submitting a patch

to run tests against all these different configurations, so the CI server handles it.

 Summary
Throughout this chapter, we’ve extended our worked example from a handful of basic

functions to classes that implement the functionality in a way that makes it easier to

build upcoming features. We’ve implemented automated testing so we can be confident

that the changes we’re making are not breaking things along the way as well as type

checking and linting to catch basic errors that creep in.

We’ve looked at three broad categories of software (testing, type checking, and

linting) that help you as a software engineer to write code that you’re confident in.

You may often see people advocating for these three approaches and for specific

philosophies that should be applied to their use, such as 100% test coverage. The value

of these approaches is in the time it saves you and the people who contribute to your

software, and that should be the standard by which you judge how you will use them.

In general, the approaches that involve the most effort have the most significant

payoffs. As such, testing your code has the highest potential payoffs and is widely

regarded to be a good idea. The relative advantages of test-driven development and

writing tests after the main development, as well as of 100% test coverage, and the

benefits of different types of tests are much less significant. For anything more involved

Chapter 2 testing, CheCking, linting

100

than a toy project, I strongly recommend writing at least some tests. They don’t have to

be great tests, but some level of testing usually helps you over time.

Static type checking has significant benefits, especially when writing large, complex

code. It also requires some decision-making regarding how to approach the process, and

there is a significant learning curve. Developers who are not proficient with tests are not

confronted with the details of the test suite at every turn; that’s not the case with static

typing. There is evidence of the typing work throughout the codebase, and writing a

new function requires some thought about static typing. For this reason, I’d recommend

only using static typing if you have a good reason to. The best reason, in my view, is that

the development team believes it is helpful. Others such as an expectation of high code

complexity or that future users may want to use type checks on their code are also quite

convincing.

Finally, linting is very easy to implement, but the benefits are relatively minor. It will

certainly save you some time (and perhaps some bikeshedding21), but it will only find

relatively shallow bugs and stylistic improvements. It’s worth doing, but it’s not worth

stressing over. I would strongly recommend all Python projects use some sort of linter,

and I would encourage any projects where multiple people are going to be contributing

to use a code formatter. That said, don’t be afraid to disregard certain classes of warning

if you don’t find them helpful.

In the next chapter, we will package this software in an installable way and provide a

way for additional sensors to be added to the available set through a plugin architecture.

 Additional resources
The following resources provide additional information on the topics covered in this

chapter:

• The typeshed library contains type hints for the standard library and

many third-party libraries. It and its documentation are a great place

to look for examples of complex typing done well. Its Git repository is

available at https://github.com/python/typeshed.

21 “Bikeshedding” is focusing on a trivial aspect of a design rather than the important parts. The
name is a reference to the idea that when presented with detailed plans for a nuclear power
plant, people are more likely to comment on something trivial but universal, such as the color of
the bike shed, than something complex, such as the power plant design.

Chapter 2 testing, CheCking, linting

https://github.com/python/typeshed

101

• The documentation for pre-commit has a lot of information on

advanced features and prewritten hooks for various tools. See

https://pre-commit.com/ for more details.

• PEP561 defines how type hints can be distributed, especially as

packages that just provide hints for existing packages. We’ll be

looking at packages in the next chapter, but www.python.org/dev/

peps/pep-0561/#stub-only-packages provides information on this

which may be useful for developers who are considering if adding

stubs to an existing codebase is practical.

• A list of error codes used by flake8 is available at https://flake8.

pycqa.org/en/latest/user/error-codes.html, which are used

in addition to the pycodestyle list at https://pycodestyle.

readthedocs.io/en/latest/intro.html#error-codes.

Chapter 2 testing, CheCking, linting

https://pre-commit.com/
http://www.python.org/dev/peps/pep-0561/#stub-only-packages
http://www.python.org/dev/peps/pep-0561/#stub-only-packages
https://flake8.pycqa.org/en/latest/user/error-codes.html
https://flake8.pycqa.org/en/latest/user/error-codes.html
https://pycodestyle.readthedocs.io/en/latest/intro.html#error-codes
https://pycodestyle.readthedocs.io/en/latest/intro.html#error-codes

103
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_3

CHAPTER 3

Packaging scripts
We want the Python code that we’ve developed so far to run on several different

computers, but as it’s currently stored as a directory of Python files, it’s difficult to deploy

updated versions and to ensure that all deployments are synchronized. We’ve already

interacted with package management in Python throughout the last two chapters with

our use of the pipenv script, but the next step is to use this system ourselves, rather than

only depend on it.

The packaging process used in Python has been in flux for several years. The overall

process has been improving steadily, and changes are still landing frequently. For

many years, the setup process has been mediated through a file called setup.py which

declares dependencies and metadata in a function call. That function is imported from

one of several helper libraries (usually setuptools, but not always).

Perhaps the biggest problem with this approach is that some packages want to make

use of dependency libraries to calculate the metadata in setup.py (e.g., for extracting

version information from version control), but this dependency needs to be specified

in setup.py itself. This leads to a chicken and egg situation, where it’s not possible to

determine the dependencies required to run the script that declares the dependencies.

This isn’t a great situation to be in, but as most software doesn’t make use of this

feature, this has been somewhat of an academic problem. There has also been a

profusion of distribution formats, the common ones were for many years tar.gz and

zip, which are simple archives of the source code. They’re the easiest to create but suffer

from the circular dependency problem and require that code is executed to perform

an installation. If installing into a system Python environment, this means running

code downloaded from the Internet as root, which is enough to scare most information

security teams.

For this reason, a standard zip-based format called wheel was developed in 2012.

Wheel allows for installation of Python packages without executing any custom code.

In fact, all that is required to install a Python wheel is to extract the contents into the

https://doi.org/10.1007/978-1-4842-5793-7_3#ESM

104

correct directory.1 Wheel is similar to an earlier distribution format called egg which also

allowed for Python code to be installed without arbitrary code execution at install time,

but made some different technical choices. You generally won’t need to interact with egg

files, but it’s good to be aware of what they are in case you come across one.

There have been many changes in the way Python files are packaged over the

years. Indeed one of the persistent criticisms leveled against Python over the years has

been related to the packaging story. Almost every professional Python developer has

experienced issues with packaging not working as intended. Still, in the last few years,

the reliability of package installation seems to have improved. Most innovation now

seems to be around better user experience for environment management, rather than

fixing broken systems. There is still a way to go and a few different ways to approach the

problem of packaging Python software, some of which may well overtake the methods

this chapter recommends as the current best practice in the coming years. It’s currently

unclear which (if any) of these pieces of software will win the race.

 Terminology
Some of the terms used in this chapter are sometimes misused in casual speech, more

so than most programming terms. It’s usually clear from the context what is meant,

and the specific meaning of each term isn’t something that developers need to concern

themselves with on a day-to-day basis, but it is important to make sure the meaning

used in documentation is clear.

File, script, and module are often used to mean the same thing when talking about

Python code. A Python file is the foo.py file on the filesystem that contains the code. A

script is a file that can be executed directly as a logical unit. A module is what you get

when importing that code from a Python environment.

Similarly, directory (or folder) and package are conflated. The directory is the location

on the filesystem where the files are stored; a package is an importable container for

modules. If import foo.bar is valid, then foo must be a package, but bar could be either

a package or a module. In this case, the code that does import foo binds foo to be the

module backed by the file foo/__init__.py. If there’s a need to differentiate packages

from the packages that they contain, they are called top-level packages and subpackages.

1 This is a slight simplification. For some packages, there is also parsing of various configuration
files and copying of subtrees depending on their contents. The crucial factor is that no arbitrary
code execution occurs.

Chapter 3 paCkaging sCripts

105

The most confusion comes from the fact that the act of preparing a group of files and

folders for distribution to users is called packaging. The result of this, a zip, a tar.gz, or a

wheel file, is called a distribution. A distribution can contain multiple top-level packages

(and their contained subpackages and modules) and/or modules directly.

In informal speech, it’s common to refer to an independently distributed library

or application as a package, using the top-level package as a placeholder for the

distribution itself.

 Directory structure
The first thing we should do to package up our code is to move it into a directory to

house the related code. This isn’t strictly required, and some packages like the Python

2/3 compatibility shim six are distributed as a single six.py file, rather than a six/

directory, but it is by far the most common approach. Most Python packages are

installed in a flat namespace, where a directory contains Python files and subdirectories,

and that directory is added to the import namespace. For example, django is packaged

in a directory called django/, so it can be imported as import django. The result of

importing django is a module object corresponding to django/__init__.py which is

stored in the Python environment’s internal site-packages/ directory. In general, this is

the structure that you should adopt for your software.

An alternative is to use namespace packages. Namespace packages are directories

in the module namespace that are guaranteed not to contain any code, only other

packages. This allows developers to create multiple different distributions of code

that install their software into a single location. This is usually overkill for simple

programs, but very large applications may have multiple loosely coupled components

for which this is a good fit. This multiple package approach can be an advantage and a

disadvantage. It allows for different logical components of an application to be versioned

and released independently, at the cost of adding substantial overhead to the release

process if it’s likely that all the components will be released together.

If it does make sense to release your code as multiple distributions, there are a

few different ways to name them. Namespace packages themselves do not have many

inherent advantages; there is very little practical difference between import apd_sensors

and import apd.sensors; the namespace layout appears slightly cleaner, so I generally

use it when working on code that is distributed as multiple packages.

Chapter 3 paCkaging sCripts

106

Tip as a rule of thumb, foo should be a namespace package if you anticipate
creating foo.bar, foo.baz, and foo.xyzzy but never foo itself.

It makes sense for us to create an apd namespace for our examples. This allows our

apd.sensors package to sit alongside the apd.collector package that we will create in a

later chapter to collate and analyze the data we find.

We need to move our sensors.py into a new directory structure that matches the

packages we want to offer, so it becomes apd/sensors/sensors.py. This apd/sensors

directory needs an __init__.py to be a valid package, but we can leave that empty. It’s

required that namespace packages do not contain an __init__.py (as multiple pieces

of code can be in the same namespace, there could otherwise be multiple __init__.pys

that are equally valid).2

This directory layout is widespread in Python projects, but there is an alternative

that I strongly recommend, often called “src layout”. When using this layout, the apd/

directory is stored inside an src/ directory, so the sensors.py file is found at src/apd/

sensors/sensors.py. The reason for this is that Python allows importing of code from

the current working directory, so import apd.sensors automatically reads code from

apd/sensors/__init__.py if available. The src/ structure ensures that this cannot

happen, so the version imported is always the one installed in the environment.

Up to now, we’ve been relying on this trick to make our code importable. The

sensors.py file is in the working directory, so the test code can import it. Being able to

import code from the current working directory may, therefore, seem like a benefit. It

means that the code you’re working on is always available to Python, but it can make for

confusing bugs in some situations.

Pipenv supports a flag -e which means “editable” which provides a structured way

of achieving the same thing. When we install code into an environment, the relevant

files are copied into the internal directories of that environment, so there is a consistent

place for Python to find all the files. When something is installed with this flag, the code

isn’t squirrelled away inside the virtual environment. Instead, a link is set up between

the internal directory of Python files and the files in your working directory (or checked

2 This requirement wasn’t always the case. You may come across some older packages that have
__init__.py files in their namespace packages. These always include some special code to cause
them to be disregarded and nothing else.

Chapter 3 paCkaging sCripts

107

out from version control system, if a VCS URL is given rather than a filesystem path – see

Table 3-1 for details of how this flag affects different installation types). This means that

any changes made to those files are reflected immediately in the virtual environment.

Table 3-1. Behavior of installing packages from different sources with and without

the editable flag

Installation source With -e Without -e

Filesystem path

./six

packages defined in setup

scripts are installed in place as a

reference.

packages defined in setup

scripts are copied to the

virtual environment.

VCs path3

git+ssh://git@github.com/

benjaminp/six.git#egg=six

repository is checked out to

$(pipenv --venv)/src and

installed in place as a reference.

repository is downloaded,

then copied into virtual

environment.

Distribution from pypi

six

not supported. packages are

downloaded and installed as

normal.

packages are downloaded

and installed as normal.

This approach allows us to ensure that the code we’re editing is in use by the Python

interpreter, but also gives us confidence in the packaging of the code by using the same

dependency and environment management system that end-users will be using.

Given we have a way of ensuring that the local files are used in the environment,

there is no reason to rely on the current working directory trick. Indeed, it can, on rare

occasions, cause confusion. If there is a problem with the installation into the virtual

environment, for example, due to an error in the metadata files for the code, it can result

in an installation that partially works (rather than not working at all, as we’d expect). This

behavior would often be inconsistent, behaving differently depending on which working

directory commands are issued from.

3 Note the use of #egg=six here. This is one of the few places you’ll see the egg terminology in
modern Python development. The reason this is here is to assist with dependency resolution
when installing multiple packages at once.

Chapter 3 paCkaging sCripts

108

Our rearrangement of the code gives us the following directory structure:

apd.sensors/

├── src/
│ └── apd/
│ └── sensors/
│ ├── __init__.py
│ └── sensors.py
├── tests/
│ ├── __init__.py
│ ├── test_acstatus.py
│ └── ...
├── .pre-commit-config.yaml
├── Pipfile
├── Pipfile.lock
├── pytest.ini
└── setup.cfg

 Setup scripts and metadata
In the introduction to this chapter, we mentioned that the metadata for a Python

package is traditionally stored in a setup.py file. This file contains a call to a special

setup(...) function, with the various metadata about the package given as parameters.

For our package the minimum we’d require the following setup.py:

from distutils.core import setup

setup(

 name="apd.sensors",

 version="1.0",

 packages=["apd.sensors"],

 package_dir={"": "src"},

 license='MIT'

)

Chapter 3 paCkaging sCripts

109

With this file in place, our packaging of the code is at a minimally functional stage.

We can install the package in the current directory into our isolated environment and

run the script that’s defined in the sensors module of apd.sensors:

> pipenv install -e .

> pipenv run python -m apd.sensors.sensors

 Dependencies
We now have an environment that includes all our dependent libraries and our code

installed into the environment just like any package available on PyPI. However, the

dependencies are still managed by Pipenv rather than being resolved through the

apd.sensors package. We’ve only added a total of eight development dependencies to

our environment, but their dependencies, both direct and indirect, have added

70 packages to our environment. We don’t want our users to have to manually install the

libraries that apd.sensors requires to work correctly; to achieve this we move the hard

dependencies of the library to setup.py.

The contents of [packages] in Pipfile are our nondevelopment requirements, which

looks like

[packages]

psutil = "*"

click = "*"

adafruit-circuitpython-dht = {markers = "'arm' in platform_machine",

version = "*"}

apd-sensors = {editable = true,path = "."}

We can see that there are three dependencies declared. Of these three, none have

any version limits set, as shown by the fact that the version set is "*", but one has a

platform marker. If we translate this to the format that setup.py expects, it becomes

from setuptools import setup

setup(

 name="apd.sensors",

 version="1.0",

 packages=["apd.sensors"],

Chapter 3 paCkaging sCripts

110

 package_dir={"": "src"},

 install_requires=[

 "psutil",

 "click",

 "adafruit-circuitpython-dht ; 'arm' in platform_machine"

],

 license='MIT'

)

At this point, we can remove the extraneous lines from Pipfile, either manually or

using pipenv uninstall psutil (and so on).

Caution Conditional dependencies defined in Pipfile are always added to
the Pipfile.lock file, regardless of whether they’re required on the current
platform. Conditional dependencies of the packages you install are only added if
they are required for the current platform. For us, that means that we need to re-run
pipenv lock on a raspberry pi to lock the arM-specific dependencies. in general,
a Pipfile.lock file creates reproducible builds on a given computer. it is not
guaranteed to produce a reproducible build that works on a range of different python
versions, operating systems, or processor hardware (although it often does).

This is the minimal usable form of the setup.py file for generating distributions for

use by other people. The command pipenv run python setup.py sdist generates a

source distribution that can be shared with other people to allow for easy installation

of the code. A source distribution is the most common format for Python software

distribution. This file is stored in the dist/ directory and can be shared online, in which

case users can install it by URL.

 Declarative configurations
So far, we’ve followed the setup.py approach that most Python packages use, but

setuptools does allow for a more declarative configuration approach using setup.cfg.

The approach is newer, and I prefer it, as it provides helper functionality for a variety of

features that people commonly want for their metadata management.

Chapter 3 paCkaging sCripts

111

The following section explains three common requirements for package metadata,

all of which can cause problems when using the setup.py style. While some are possible

to achieve with setup.py, all are trivial in the setup.cfg style detailed in the subsequent

section.

 Things to avoid in setup.py
It’s best to avoid any logic in setup.py as environment management tools make several

assumptions that expect setup.py to behave as though it calls setup(...) only. Any

additional logic can cause these assumptions to be faulty.

 Conditional dependencies

A common pattern in the past was to conditionally include dependencies based on

detection of the state of the host machine. For example, we only need the temperature

sensor code on the Raspberry Pi. We’ve achieved this using a dependency definition

with a built-in condition. Consider the following (made-up) example showing a manual

system for use of conditional dependencies:

if sys.platform == "win32":

 dependencies = [

 "example-forwindows"

]

else:

 dependencies = [

 "example"

]

setup(

 ...

 install_requires=dependencies

)

This would broadly work as expected for most people. The preceding code listing

represents using a fork of the example package that is distributed as example-forwindows

when installing on a Windows computer. Although not very common, it’s not unheard of

for a package to be forked when users want to use it on a very different platform, but the

maintainers don’t want to maintain that compatibility.

Chapter 3 paCkaging sCripts

112

The problem with this approach is that there is no guarantee that setup.py is

executed on the installation target machine (or, indeed, that it isn’t executed on

other machines). If we were working with this code on both a Windows development

environment and a Linux production environment, we would see the consequences of

this. When the developer runs pipenv lock, then Pipenv executes the setup.py scripts

of each dependency to find the full set of dependencies needed.4 It would, therefore,

determine that the package here depends on example-forwindows and would lock

the latest version (including saving verification hashes of all installation files that are

permissible) for example-forwindows without ever looking at example. This procedural

declaration of conditional dependencies makes it possible for users to declare

conditional dependencies in such a way that the setup(...) function (and therefore, the

package manager) does not know they are conditional.

If this Pipfile.lock is then used to install the software on a production host, then

it’s the windows fork library that pipenv installs. At best, this won’t work, but it could

also create an inconsistent installation environment. If other packages depend on the

example library using the proper conditional dependencies, then both distributions

could be installed at once.

These forks often use the same name in the global package namespace, so code

works seamlessly regardless of which version of example you’re using. If both versions

are installed at once, then one overwrites the files of the other.5 Pipenv disables

dependency resolution at install time, performing it only at the time the lock file is

generated,6 meaning that only packages mentioned in the lock file can be installed.

The correct way of representing this, as we’ve seen in earlier chapters, is by

unconditionally declaring dependencies that are themselves conditional, such as

dependencies = [

 "example-forwindows ; sys_platform == 'win32' "

 "example ; sys_platform != 'win32' "

]

4 It may use cached metadata instead of executing the scripts, if such files are available.
5 It’s actually worse than this. Any files present in only one of the two distributions will be present
and can be imported from, so you wouldn’t just have one version or the other, but a mixture of
both.

6 When using pipenv install example, the dependencies are resolved because example is added
to the pipfile, which causes the lockfile to be seen as out of date.

Chapter 3 paCkaging sCripts

113

setup(

 ...

 install_requires=dependencies

)

This causes Pipenv to investigate appropriate versions of both packages and

their versions to be locked, with the appropriate metadata annotated to ensure that

only the correct one is used at install time. You can see this already by looking at the

Pipfile.lock of our running example, as one of the packages is only used when

running on an ARM processor.

 Readme in metadata

A more common reason to have code in setup.py other than the setup(...) call is to

avoid duplication, especially in the long_description field. It is normal for this to be the

contents of the README file, or a concatenation of the README and HISTORY files, or similar.

Developers sometimes achieve this by reading those files in setup.py:

with open("README") as readme_file:

 readme_text = readme_file.read()

setup(

 ...

 long_description=readme_text

)

There are a couple of problems with this example. Firstly, open(...) has two

optional parameters that should be specified. These are mode and encoding. As we

haven’t passed an explicit mode, we’re effectively using mode rt, and therefore Python

is handling the encoding and decoding of strings to bytes for us. As we haven’t specified

an encoding, this is dependent on settings of the computer we’re using. The two default

values of this function result in a situation where the behavior is not consistent across

different computers. We have added an implicit assumption that this file will only ever

be read on systems where the default encoding matches the encoding this file is saved as.

Chapter 3 paCkaging sCripts

114

FILE MODES

By default, the mode in which files are opened is rt for read-only text. instead of r it is

possible to use the following:

w (open a file in write-only mode and discard any contents, if present)

x (open a file in write-only mode and raise an exception if it already exists)

a (open a file in write-only mode and position the file pointer after the existing

contents)

r+ (open a file in both reading and write modes but position the file pointer at

the start of the file)

w+ (open a file in both reading and write modes and discard any contents if

present)

the b modifier can be added to any of these access modes in place of t to indicate that the

file is being opened in binary mode, meaning that read and write calls should use bytes rather

than strings. it is common for t to be omitted, as it is the default, but i recommend keeping r

for clarity despite it also being the default mode.

Encoding issues have become much more commonplace with the rise in popularity

of emojis. Many people who speak European languages have been able to ignore

encoding and have text handling seemingly work correctly. They’re now experiencing

bugs where emojis break applications, as these characters are not handled properly by

their systems’ default encoding.

The main reason for this is that the Latin-1 encoding (and the very similar

Windows- 1252) and the UTF-8 encoding use the same bytes to represent most characters

commonly used in European languages. Therefore, switching between these three

encodings still produces the correct values for most characters used by European languages.

As the default encoding in Windows is Windows-1252 and the default encoding in

Linux is UTF-8, any program that runs on both of these operating systems produces

inconsistent output files unless an encoding is specified.

One character that differs in encoding between Windows-1252 and UTF-8 is £, the

symbol for the British Pound. Table 3-2 shows the effect of failing to include an encoding

in file operations that involve this symbol.

Chapter 3 paCkaging sCripts

115

When the same system is used to read and to write the file, there is no problem with

this character.7 When there is a mismatch, there’s a chance of an error occurring. This

could take the form of a garbled character being read (such as "Â£" rather than "£"), an

exception being raised, or it could work as intended. The exact result depends on the

combination of the two default encodings.

To go back to our long_description example earlier, if my README file included

“Thanks to Company X for supporting the development of this package with a donation

of £1000,” I might experience this problem. If I wrote this on a Windows computer that

saved the data in the default Windows encoding, then setup.py would not be executable

on Linux hosts.

This would mean that the source distribution file we created for the package would

not work for most users, and users who specified this package as a dependency would

find that their invocations of pipenv install and pipenv lock would fail on Linux hosts.

It is possible to correct these shortcomings and have a reliable setup.py by

correcting the use of the open call. The following is an improved example of loading

README to long_description:

with open("README", "rt", encoding="utf-8") as readme_file:

 readme_text = readme_file.read()

setup(

 ...

 long_description=readme_text

)

Table 3-2. Implicit encoding problems across operating systems

Result of writing "£100"
to a file and reading back

Windows reading Linux reading

Windows writing "£100" UnicodeDecodeError

Linux writing "Â£100" "£100"

7 This isn’t true for all cases, just the case for this example. Writing " " to a file on a Windows
machine without specifying an encoding will result in UnicodeEncodeError being raised
immediately.

Chapter 3 paCkaging sCripts

116

It is still possible that open(...) could raise an exception, such as if the README file is

missing. Still, any exceptions raised in this case would likely be transient or symptomatic

of underlying issues that would cause the installation to fail regardless.

Some people do even more involved processing of the input files in setup.py,

for example, converting between different markup languages, but this increases the

likelihood of accidentally introducing buggy code that would cause exceptions to be

raised when running on other hardware.

 Version numbers

Finally, many packages include their version number in a way that is accessible to

Python code. This is often stored as __version__ or VERSION in the highest level

__init__.py in the package. We previously left apd/sensors/__init__.py empty; let’s

now add a version number:

VERSION = "1.0.0"

This version number can be imported as apd.sensors.VERSION. Making version

numbers available in code is useful for users of our library. It means they can easily log

what version of a library a piece of data was generated with or even view the value in an

interactive session or in a debugger to confirm what version of a dependency is installed

in a given environment.

Tip if you want to include many other things in your __init__.py file, you may
want to set the version in a version.py file instead. You can then import that
value in __init__.py for convenience or access it from version.py to be sure
there are no side effects from your other code in __init__.py.

The problem is adding this attribute means two places need to be updated every

time a new version is released, both setup.py and src/apd/sensors/__init__.py.

This can lead to mistakes, where one version is updated but not the other. If these two

numbers are ever out of sync, it becomes useless to offer both as users cannot trust them.

Therefore, they must be kept absolutely synchronized.

Chapter 3 paCkaging sCripts

117

The attribute needs to be accessible from the setup.py script, but the setup.py

script is executed before the code is installed (except when upgrading, in which case a

previous version is available), so it cannot just import apd.sensors.

Although this is a very useful feature, there is no advisable way to achieve this when

using setup.py style of metadata. There are a few methods that try to work around this

problem, such as tools that synchronize the version number automatically.

 Using setup.cfg
We can achieve the same results without writing any code in setup.py by declaring the

information that would usually be passed as parameters to setup.py in the setup.cfg file.

Converting our existing setup.py to declarations in setup.cfg is quite

straightforward. Rather than all the values being stored in the flat namespace of the

arguments to the setup(...) function, they are stored within sections in the ini file. Two

of the more complex patterns we saw earlier have been baked into the configuration

language in Listing 3-1 (highlighted in bold).

Listing 3-1. setup.cfg

[mypy]

ignore_missing_imports = True

[flake8]

max-line-length = 88

[metadata]

name = apd.sensors

version = attr: apd.sensors.VERSION
description = APD Sensor package

long_description = file: README.md, CHANGES.md, LICENCE
keywords = iot

license = MIT

classifiers =

 Programming Language :: Python :: 3

 Programming Language :: Python :: 3.7

[options]

zip_safe = False

include_package_data = True

Chapter 3 paCkaging sCripts

118

package-dir =

 =src

packages = find-namespace:

install_requires =

 psutil

 click

 adafruit-circuitpython-dht ; 'arm' in platform_machine

[options.packages.find]

where = src

setup.py

from setuptools import setup

setup()

PYPROJECT.TOML AND PEP517

this approach is specific to setuptools, the default and recommended build system for python

packaging, but this is one of the areas of the packaging process that is in flux. a pair of

standards called pep517 and pep518 defined that pyproject.toml can be used to pick

between many different packaging tools. this is an important step, as it clarifies some implicit

understandings about how python packages are built.

pep517 has enabled some alternatives to setuptools already, such as poetry and flit. One or

both of these tools may become the clear best practice in the future, but at the time of writing,

they are promising minority approaches.

however, some important questions raised by pep517 have not yet been resolved. the one

that affects us is that we use pipenv install -e . to install our code as an editable

dependency. this instructs the setuptools build system to create links to our code in our

environment, so the code is loaded directly rather than needing to be copied.

this feature is specific to setuptools, and while other build tools offer equivalent features,

they have not yet been standardized. any codebase that contains a pyproject.toml file is

considered to have opted in to only use the pep517 build system, so there is no guarantee that

pipenv install -e . will work as expected.

Chapter 3 paCkaging sCripts

119

some tools (like mypy) use setup.cfg as a place to store their configuration, but others (like

black) store their configuration in pyproject.toml. as more and more tools start storing

their configuration in this file, it’ll be more likely that you’ll need to create it and therefore opt

in to pep517.

For now, i must recommend that you avoid adding a pyproject.toml file to any codebase

that uses setuptools. if, however, you experiment with other build systems (such as flit and

poetry), these generate a pyproject.toml file which you must not remove, or else users will

not be able to install your package. hopefully, the problems with editable installations will be

resolved soon, but in the meantime we’ll take a brief look at the general structure of this new

feature.

the [build-system] section of the file declares which tooling is responsible for building

releases of this software and comprises a requires line and a build-backend line. the

following is the pyproject.toml for using setuptools. it declares that building requires

setuptools and wheel format support and uses the modern setuptools builder (as opposed to

the legacy setuptools builder).

[build-system]

requires = [

 "setuptools >= 40.6.0",

 "wheel"

]

build-backend = "setuptools.build_meta"

With this in place, the setup.py file is completely optional, but editable installations are not

guaranteed to be possible.

 Custom index servers
It’s a good idea to use an index server to allow people to download your code. The Python

Software Foundation offers an index server called PyPI.8 PyPI is managed by the Python

Software Foundation for the benefit of all Python developers and is financed through

8 This is often pronounced “pie pie,” but to avoid ambiguity between PyPI and the Python
implementation PyPy, a better way might be “pie pee eye.”

Chapter 3 paCkaging sCripts

120

donations, both cash and in-kind donations like web hosting from large technology

companies. This is appropriate for open source libraries that anyone could depend on,

but not for private projects. You shouldn’t be afraid of publishing code on PyPI if you’re

happy for other people to use it.

There are a few open source projects which act as alternatives for PyPI that allow you

to store your private packages, following the requirements documented in PEP503. The

code that runs pypi.org is called Warehouse and is available as an open source project.

This may seem like an attractive place to start, but it’s likely that your requirements are

nothing like the requirements of PyPI.

There is another open source implementation of the same interface that PyPI

provides, imaginatively called pypiserver. To be clear, pypiserver is not used to host

pypi.org; rather, it is a server that provides an alternative to pypi.org.

Both implementations provide for browsing of projects through the Web and

downloading distributions by name. The version of the site that humans access (through

https://pypi.org) is different from what is accessed by pip and setuptools when

finding a package. The “simple” index is used by dependency management tools, which

is also HTTP based but not intended to be used by humans. You can see it for yourself at

https://pypi.org/simple/: it is an unstyled page consisting only of the names of the

200,000 or so packages available on PyPI. If you click one of these links, you’ll see the

filenames of each distribution that has been uploaded and a download link.

This simple listing is the minimum required for a repository of distributions.

Warehouse and pypiserver also offer an upload API that is common to both systems. The

API can be accessed using the tool twine, which uploads any distributions you give it to

the index server of your choice.

When you upload a package using twine, you may need to provide credentials.

Warehouse checks that you can authenticate yourself as a user who is authorized to

upload new releases to the project in question. Only users who have been authorized by

the initial uploader of a project (directly or by others that the original uploader delegated

access control to) may upload new releases. This prevents malicious change being made

by members of the public.

Per-package delegated permissions are excessive for a private index server used by

only a few people who trust each other. Pypiserver protects actions in a flat hierarchy; if

you’re allowed to upload a distribution to an instance of pypiserver, you may upload any

distribution without having to be explicitly authorized for each individual project.

This is a much better fit for commercial environments, as all developers (or, a

subset who are responsible for handling releases) can add new distributions of any

Chapter 3 paCkaging sCripts

https://pypi.org
https://pypi.org/simple/

121

internal packages without worrying about coordinating access levels. If you and a

group of colleagues are regularly creating new releases of packages you’ve written, then

pypiserver is an excellent way of managing this.

There are alternatives which offer fewer features but are even easier to set up.

As the index server only requires a listing of packages by name which each link to a

listing of files, a web server that serves a directory of files and is configured to generate

directory listings is enough. This can be done with Apache, Nginx, or even simply

python -m http.server from the appropriate directory.

This cannot support direct uploads as there is no logic backing the server, but it

does allow for hosting your dependencies on any standard web server at the cost of

making the upload process more complicated. This approach does not provide the same

metadata information that full index servers do, so tasks such as having Pipenv lock

dependencies take much longer. I would, therefore, not recommend this approach.

 Setting up pypiserver
We will create an index server the code we’re developing, so we can publish it to a

repository without having to clutter up PyPI with multiple versions of this tool. This

index server should be set up in a new isolated environment; you should not install the

index server as part of your development environment for apd.sensors.

I will be installing the index server on a Raspberry Pi 4B. To do so, I connect to the

Raspberry Pi and create a new user account for the index server and follow the on-screen

prompts. A different user account allows for better separation of concerns between the

main user of the system and its role as the index server.

rpi> sudo adduser indexserver

We should also run sudo apt install apache2-utils to install the htpassword

utility, as we will need that to configure authentication information in a moment.

Now, change user to the indexserver user, either with sudo -iu indexserver or

reconnecting via SSH as indexserver. We can now install pipenv for this user, add it to the

user’s path, and set up our new environment.

rpi> sudo -iu indexserver

rpi> pip install --user pipenv

rpi> echo "export PATH=/home/indexserver/.local/bin:$PATH" >> ~/.bashrc

rpi> source ~/.bashrc

Chapter 3 paCkaging sCripts

122

rpi> mkdir indexserver

rpi> mkdir packages

rpi> cd indexserver

rpi> pipenv install pypiserver passlib>=1.6

rpi> htpasswd -c htaccess your_desired_username

We then need to configure the Raspberry Pi to run this server automatically on

startup, which we do with a systemd file.9 This should be done as the default pi user, as

it involves using sudo to edit system files. Create the file in Listing 3-2 to configure the

system.

Listing 3-2. /lib/systemd/system/indexserver.service

[Unit]

Description=Custom Index Server for Python distributions

After=multi-user.target

[Service]

Type=idle

User=indexserver

WorkingDirectory=/home/indexserver/indexserver

ExecStart=/home/indexserver/.local/bin/pipenv run pypi-server -p 8080 -P

htaccess ../packages

[Install]

WantedBy=multi-user.target

We can then enable and start the service with

$ sudo systemctl enable indexserver

$ sudo service indexserver start

From this point on, the service will start up automatically when the machine is

powered up and listen on http://rpi4:8080 or whatever hostname or IP address is

associated with the Raspberry Pi on your network.

9 This varies by operating system. These instructions are for the default Raspberry Pi operation
system, Raspbian.

Chapter 3 paCkaging sCripts

123

 Durability
When running your own index server, it’s important to consider what would happen if

there were to be a catastrophic hardware failure on your infrastructure. Distributions

themselves are not stored in version control, although the versions of the source code

they’re generated from should be tagged for easy access in future; regenerating the

distributions from the same tag may result in files with different check hashes being

generated. Ensuring the exact same files are always available is key to being able to

rebuild older versions of the software.

Pipenv automatically records the hashes of all distributions that were available when

it last locked, so as long as the same files are available in future, the same environment

can be reconstructed.

Therefore, the distribution files being stored on your index server should be treated

as being as important to keep backups of as your main source tree. As all dependencies

are required to rebuild the environment exactly, many Python developers choose to also

keep backups of all their dependency distributions on their private index server. This

allows for builds of the application to happen without access to PyPI, such as on private

networks or during planned maintenance windows.

There are many ways of doing this, such as specialized proxy servers that cache

packages as they are downloaded. It’s easy to overcomplicate this, however. I

recommend using a tool like wget to create partial mirrors of pypi for the packages you

depend on.

The full set of packages that are needed for a given environment can be extracted

using pipenv lock -r and pipenv lock -r --dev. These will output a listing of the

dependent packages as well as the version that was picked and any conditions that apply

to that dependency. You can use these command outputs to create a list of required

packages.

Alternatively, the open source project jq provides for an easy way to extract data

from JSON files, like the Pipenv.lock file. The command jq ".default + .develop |

keys" Pipfile.lock extracts the names of each package referenced in the main and

development dependency lists and their dependencies.

 Confidentiality
In a situation where you’re running your own index server, you will almost certainly

have packages that you do not wish to become publicly available. Generally, these are

Chapter 3 paCkaging sCripts

124

closed source packages developed on a commercial basis, where their release would be

a problem for the relevant copyright owner. They could also be tools that are so specific

that they won’t be generally useful. They could even be open source packages that have

been forked, so long as the relevant license terms are being upheld; even if you have a

legal obligation to share the code with someone who requests it, there is no requirement

to provide access to an index server for their use.

Confidentiality is the property of an index server that ensures that people who are

not authorized cannot access the distributions that it stores. This usually also includes

preventing people from accessing the names of packages it stores unless so authorized.

The best way of approaching this problem depends very much on your appetite for

risk and your expectations for what kind of people may try to find your code. For most

companies, there is a relatively low risk of direct, targeted attacks against infrastructure

aimed at extracting source code. For these companies, it’s probably acceptable to use the

security features afforded by pypiserver or a web server like Apache or Nginx.

A slightly higher level of control can be achieved by using a private network, such as

running the index server from within a physical office or in a cloud hosting provider’s

virtual network offerings, ensuring that only computers that are connected via a

company- controlled network can access the index server. Network-based security would

generally be combined with a more traditional authentication system, for additional

protection.

It is important to remember that developers are not the only consumers of the index

server; production deployments are generally granted access to the same index server to

facilitate automatic downloading and installation of application code.

I find that confidentiality is often the least important of these three pillars, due to the

lack of a convincing potential threat for most developers. You should certainly apply at

least one level of protection to your index server, both to prevent spiders from indexing

your code and to protect against casual snooping by people, but you should absolutely

balance an assessment of the likelihood of someone trying to gain access (and the effects

it would have on your business) with the amount of effort and hassle it would be to set

up a more secure system.

 Integrity
The final of the three pillars is integrity, that is, can you be sure that a distribution has not

been changed by a malicious third party. This is generally accomplished by recording

Chapter 3 paCkaging sCripts

125

the list of cryptographic hashes that are available when a package is added to the

dependency set or its version is updated. When installing the packages, the downloaded

files are examined and their hashes are calculated. If the hash doesn’t match the list of

allowed hashes, then the file will be rejected as incorrect.

An important one is that we expect distributions to never change. If we are installing

version 1.0.3 of a piece of software, then it should always have the same bugs as

other copies of 1.0.3. Unfortunately, this is not always the case outside of PyPI. Some

developers have been known to surreptitiously replace distributions that they have made

public when noticing what they consider to be an embarrassingly simple error. These

“brown bag” releases are quite dangerous, as it’s not possible to know if you have the

fixed or broken version other than through checking the hash of the distribution that you

downloaded (or manually auditing the code).

There is another, less commonly used, aspect of integrity checking: distribution

signing. The PyPI server supports uploading a cryptographic signature at the time a

distribution is added. These signatures are available through the same interfaces as

the distribution files themselves and can be used to check that the distribution was

uploaded by a specific trusted party.

This makes sense only if the threat model you’re using is that your index server

cannot be trusted to only allow uploads by authorized people. A very few people may

legitimately distrust public index servers like PyPI. However, it’s unlikely that anyone

with a risk appetite that does not include trusting PyPI is happy to trust individual

contributors to PyPI. I do not use the signing feature.

 Wheel formats and executing code on installation
As a general rule, you should not use sudo pipenv (or sudo pip, sudo easy_install,

or curl ... | sudo ...) when installing anything, as this allows for the execution

of unseen downloaded code as root. It would be best if all developers always audited

third- party code before trusting it, but that is not practical for the vast majority of people.

If you are lucky enough to work in an environment where this happens and is done

efficiently, then running an index server is the perfect way to ensure that only code that

has passed your organization’s gate keepers is available for installation.

If you do audit third-party code before allowing its installation, or if your

organization’s security policies do not allow for the running of code during installation,

Chapter 3 paCkaging sCripts

126

you should make sure that all dependencies are available in the wheel format.10 As

mentioned in the introduction to this topic, the wheel format allows for the installation

of Python packages in a purely mechanical fashion. Many software authors make a point

of uploading wheel-formatted distributions to PyPI, as it’s trivially easy for pure Python

packages.

Warning While creating wheel distributions is trivial for pure python packages,
if you are using code that involves a compilation of libraries in its installation
process, then you should bear in mind that you will need to produce a wheel for
every environment that you want to use the wheel in. Wheels are tagged with
the environments they support, with the -manylinux tag being a popular one to
indicate that it will work on most distributions of the gnU/Linux operating system.

if you are using such packages, you will need to generate the wheel on a system
that closely matches the target it will be installed on. i would recommend
you generate wheels for both the production environment and development
environments, if they differ. a wheel is significantly faster to install than a
distribution that involves compilation; your fellow developers will thank you.

 Creating wheels from existing distributions

It is possible to convert an existing distribution to wheel format, even if it’s a distribution

of a package that you are not the maintainer of. This could be done by recreating the

development environment of the package, but that is not always an easy task, so I

would not recommend doing it. Instead, you can use the existing package installation

infrastructure to build wheels. This uses the tool pip (which Pipenv is built around) to

download and build the wheels.

Firstly, we should create a fresh Pipenv environment, as any packages that are being

built into wheels may define build or setup requirements.

10 Any package installed from a .tar.gz or a .zip file may execute arbitrary code during
installation, no matter how it is installed. This is something that many infrastructure security
teams are unaware of, thinking that only python setup.py install has the chance to run
arbitrary code.

Chapter 3 paCkaging sCripts

127

> cd ~

> mkdir wheelbuilding

> cd wheelbuilding

> pipenv install

Warning pipenv does not allow for nested environments. if you’ve created
a pipenv environment in your home directory, then you cannot have other
environments in subdirectories. this shouldn’t happen, as you’ll want each
environment to be self-contained rather than floating in your home directory, but
if it does just run pipenv --rm from the home directory and move the Pipfile
and Pipfile.lock files to a more appropriate location.

Using a fresh pipenv to run the tool will ensure that these build requirements do

not pollute our other environments. The command to build a wheel of a given package

is pipenv run pip wheel packagename.11 You may also need to run pipenv install

wheel first, depending on your Python version and installation method.

If we want to build wheels of all our dependencies, we can use a Pipfile.lock file from

one of our other environments. Pip itself cannot read the Pipfile.lock file format, so

we would need to extract the information. As we saw in the durability section, this can be

done with pipfile lock -r > ~/wheelbuilding/requirements.txt.

EXERCISE 3-1: EXTRACT A BETTER REQUIREMENTS.TXT

the Pipfile.lock file has more information than is exported by pipenv lock -r,

specifically the hashing information.

For example, i see

adafruit-pureio==0.2.3

11 If you have already downloaded the file that you want to convert to a wheel, you can provide the
path to the file instead of the name:

> pipenv run pip wheel ./packagename-1.0.0.tar.gz

Chapter 3 paCkaging sCripts

128

rather than

adafruit-pureio==0.2.3 --hash=sha256:e65cd929f1d8e109513ed1e457c2742bf
4f15349c1a9b7f5b1e04191624d7488

so my generated requirements list does not have the hash checking enabled. Write a

small python script to extract this additional data and save it to a requirements.txt

file. this is a good opportunity to practice prototyping and testing, as in previous chapters.

there is a sample implementation in the code accompanying this chapter for you to check

your work.

Once you have your requirements list file, you can pass it to the pip tool to generate

wheels. This is done with

> cd ~/wheelbuilding

> pipenv run pip wheel -r requirements.txt -w wheels

The generated wheel files are then stored in the wheels/ directory, ready to be

uploaded to your custom index server.

In the first chapter of this book, we added the PiWheels server to our Pipfile.

The process we’ve just completed is very similar to what PiWheels does. PiWheels

automatically downloads every distribution available on PyPI and converts it to a wheel

and makes it available on their alternative index server.

The PiWheels process is a little more complex, as they have a custom wheel build

process to generate files that are likely to work on many different Raspberry Pi hosts with

different software versions installed, but the idea is the same. Distributions that only use

Python code are very easy to convert to wheel format, but it is possible to add compiled

components that would then require appropriate libraries and tools to be installed.

The benefit we get from this is that packages such as sysv_ipc and psutil which

would otherwise involve length build steps on every Raspberry Pi installation target are

much faster to install. In general, if a package has a wheel available for the environment

you’re targeting, then you no longer need to install a compiler and build chain on

production servers. Being able to do any compilation in advance on a nonproduction

server is a very appealing benefit for many systems administrators.

Chapter 3 paCkaging sCripts

129

 Installing the console script using entrypoints
We’re now able to build distributions that install cleanly on other users’ environments

without error, but our invocations of the command-line tool have changed again. Over

time we’ve used python sensors.py, python src/apd/sensors/sensors.py, and

python -m apd.sensors.sensors to invoke the script. None of these are acceptable

solutions for users, and the change is a symptom of a lack of indirection in our setup.

We want users to be able to run the script as though it were any binary installed

into their environment. Python provides for this using the console_scripts feature

of packages. When a distribution is installed that has values in the console_scripts

metadata field, these are created in the binaries directory of the install location as

executables.

For example, in the first chapter, we installed pipenv into our global environment.

This puts the Python code into C:\Users\micro\AppData\Roaming\Python\

Python38\site-packages\pipenv__init__.py on a typical Windows machine.

When invoking pipenv on the command line, the file that’s executed by the shell is

C:\Users\micro\AppData\Roaming\Python\Python38\Scripts\pipenv.exe. This is a

real executable file that runs natively, not a batch file. That said, it is not self-contained;

this is just a wrapper that invokes Python with the appropriate options, the code itself

isn’t compiled into the executable. If we look at Pipenv’s setup.py, we can see

 entry_points={

 "console_scripts": [

 "pipenv=pipenv:cli",

 "pipenv-resolver=pipenv.resolver:main",

]

 },

as part of the setup(...) call. This declares two python callables that should be

wrapped up as executables that can be run directly. The format for these lines starts with

the name that should be exposed as an executable. In the case of the first entry here,

that’s pipenv. Then an = separates the executable name from the reference to the callable

that should be invoked. This is a dotted name to a module followed by a colon, then the

name of the callable within that module. In this case, cli is available as from pipenv

import cli from Python code.

Chapter 3 paCkaging sCripts

130

We want to make the show_sensors callable in apd.sensors.sensors available as

a command-line script, so we will add the following to our setup.cfg file, which is the

equivalent of the dictionary of lists from the preceding setup.py example:

[options.entry_points]

console_scripts =

 sensors = apd.sensors.sensors:show_sensors

These executables are only created at install time, so we need to re-run the

installation process so that this new script is processed. This hasn’t been necessary for

most changes as we’ve installed the directory in editable mode, meaning changes in

Python code are picked up immediately. This is another advantage of the setup.cfg

approach rather than setup.py, as it could be counterintuitive that changes to setup.py

require a reinstallation as it is also a Python file. Putting the metadata in setup.cfg

might make it easier to remember that this is installation metadata, not normal Python

code.

To trigger this installation, we run pipenv install. At this point, the script is now

runnable as pipenv run sensors. We’re almost at the stage of having a complete first

version of the software; all that’s missing are the documentation files.

 README, DEVELOP, and CHANGES
If your instinct toward writing these files is that they are less important than other parts

of the packaging system, you’ve been very lucky in your time as a developer. When

approaching a new project, having sufficient documentation to hand to get started is

invaluable. Best practices change over time and knowledge of how to use tools that are

no longer in common use fade. More than that, it’s common to want other developers to

get started working on a piece of software with a minimum of trouble.

Sometimes the most challenging part of getting started on a new project is

understanding what patterns the developers have followed. Do you use pipenv to install

the dependencies or an older system like virtualenv and pip? What command do you run

to start the tests or to start the program? Do you need to configure API accesses or load

sample data? All this information is strictly necessary to be able to work productively in a

new environment.

We need to write up a README file for our apd.sensors package that explains what the

package is, how to install it, and how to use it. This file will be the first thing that users

Chapter 3 paCkaging sCripts

131

see when they visit the GitHub12 repository and the PyPI information page by virtue of it

being used to form the long_description. Most users will never extract the archive to

see the other files in the distribution. In fact, in some distribution formats, the README

won’t even be included. The contents may only exist as the metadata for the package.

PyPI supports README files in plain text, reStructuredText and Markdown formats.

reStructured text is familiar to many as the format that is used by the popular Sphinx

documentation, and Markdown is used by many sites, such as GitHub, Bitbucket, and

Stack Exchange. As git hosting providers tend to use Markdown and Markdown is easier

to read when viewed as plain text than reStructured text, I generally recommend picking

Markdown as the format to use for README files.

The selection is declared by filling in the long_description_content_type

parameter of the setup.cfg file to be text/plain, text/x-rst, or text/markdown.

 Markdown format
Readme files in the Markdown format are stored with the .md extension, so we will

create a README.md file in the root of the project directory to begin with. We can then start

writing a simple description of the project under a heading. In Markdown, headers are

represented by leading # symbols, so the minimal README.md would be

Advanced Python Development Sensors

This is the data collection package that forms part of the running example

for the book Advanced Python Development.

Other aspects of the formatting are likely to be quite familiar to many readers, as

they’re now commonly used online. An extended example is shown as Listing 3-3.

Listing 3-3. cheatsheet.md

Header 1

Header 2

Header 3

Header 4

12 Other distributed version control hosting providers are available.

Chapter 3 paCkaging sCripts

132

italic **bold** **_bold and italic_**

1. Numbered List

2. With more items

 1. Sublists are indented

 1. The numbers in any level of list need not be correct

3. It can be confusing if the numbers don't match the reader's expectation

* Unordered lists

* Use asterisks in the first position

 - Sublists are indented

 - Hyphens can be used to visually differentiate sublists

 + As with numbered lists, * - and + are interchangeable and do not need

to be used consistently

* but it is best to use them consistently

When referring to things that should be rendered in a monospace font,

such as file names or the names of classes, these should be surrounded by

`backticks`.

Larger blocks of code should be surrounded with three backticks. They

can optionally have a language following the first three backticks, to

facilitate syntax highlighting

```python

def example():

    return True

```

> Quotations are declared with a leading right chevron

> and can cover multiple lines

Links and images are handled similarly to each other, as a pair of square

brackets that defines the text that should be shown followed by a pair of

parentheses that contain the target URL.

[Link to book's website](https://advancedpython.dev)

Images are differentiated by having a leading exclamation mark:

![Book's cover](https://advancedpython.dev/cover.png)

Chapter 3 paCkaging sCripts

133

Finally, tables use pipes to delimit columns and new lines to delimit rows.

Hyphens are used to split the header row from the body, resulting in a very

readable ASCII art style table:

| Multiplications | One | Two |

| --------------- | --- | --- |

| One | 1 | 2 |

| Two | 2 | 4 |

However, the alignment is not important. The table will still render

correctly even if the pipes are not aligned correctly. The row that

contains the hyphens must include at least three hyphens per column, but

otherwise, the format is relatively forgiving.

 reStructured text format
Readme files in the reStructured text format are stored with the .rst extension, so if we

were using this format, we would create a README.rst file. This may not be in the root

directory, as rst formatted README files are often used to tie in with the use of the Sphinx

documentation system. In this case, they’re likely to be stored in a docs/ directory in the

project. The equivalent file to the preceding markdown readme would be as shown in

Listing 3-4.

Listing 3-4. cheatsheet.rst

Header 1

========

Header 2

Header 3

++++++++

Header 4

italic **bold** Combining bold and italic is not possible.

Chapter 3 paCkaging sCripts

134

1. Numbered List

2. With more items

 #. Sublists are indented with a blank line surrounding them

 #. The # symbol can be used in place of the number to auto-number the list

3. It can be confusing if the numbers don’t match the reader’s

 expectation

- Unordered lists

- Use asterisks in the first position

 - Sublists are indented with a blank line surrounding them

 - Hyphens can be used to visually differentiate sublists

 - As with numbered lists, * - and + are interchangeable but must be

used consistently

- but it is best to use them consistently

When referring to things that should be rendered in a monospace font,

such as file names or the names of classes. These should be surrounded

by ``double backticks``.

Larger blocks of code are in a named block, starting with ``.. code ::``. They

can optionally have a language following the double colon, to

facilitate syntax highlighting

.. code:: python

 def example():

 return True

..

 Quotations are declared with an unnamed block, declared with ``..``

 and can cover multiple lines. They must be surrounded by blank lines.

Chapter 3 paCkaging sCripts

135

Links have a confusing structure. The link definition is a pair of backticks

with a trailing underscore. Inside the backticks are the link text followed by

the target in angle brackets.

`Link to book's website <https://advancedpython.dev>`_

Images are handled similarly to code blocks, with a ``.. image::``

declaration followed by the URL of the image. They can have indented

arguments, such as to define alt text.

.. image:: https://advancedpython.dev/cover.png

 :alt: Book’s cover

Finally, tables use pipes to delimit columns and new lines to delimit

rows. Equals signs are used to delimit the columns as well as the top

and bottom of the table and the end of the header.

=============== === ===

Multiplications One Two

=============== === ===

One 1 2

Two 2 4

=============== === ===

The alignment here is essential. The table will not render unless the

equals signs all match the extent of the column they define, with no

discrepancy. Any text that extends wider will also cause rendering to fail.

 README
We are not writing a large documentation piece, so Markdown is the most appropriate

choice for the README. We should include a simple description of what the package does as

well as any important information that prospective users should know (Listing 3-5).

Chapter 3 paCkaging sCripts

136

Listing 3-5. README.md

Advanced Python Development Sensors

This is the data collection package that forms part of the running example

for the book [Advanced Python Development](https://advancedpython.dev).

Usage

This installs a console script called `sensors` that returns a report on

various aspects of the system. The available sensors are:

* Python version

* IP Addresses

* CPU Usage

* RAM Available

* Battery charging state

* Ambient Temperature

* Ambient Humidity

There are no command-line options, to view the report run `sensors` on the

command line.

Caveats

The Ambient Temperature and Ambient Humidity sensors are only available on

Raspberry Pi hosts and assume that a DHT22 sensor is connected to pin `D4`.

If there is an entry in `/etc/hosts` for the current machine's hostname that

value will be the only result from the IP Addresses sensor.

Installation

Install with `pip3 install apd.sensors` under Python 3.7 or higher

 CHANGES.md and versioning
We should also create a CHANGES.md file that indicates what changes between versions

in the apd.sensors package. This will let people understand when they need to upgrade

the version to gain access to new features they want or bug fixes they need.

Chapter 3 paCkaging sCripts

137

Our setup.cfg is configured to join the contents of the README.md and CHANGES.md

files to form the long_description which will be shown on PyPI, so we need to match

the format and make this a Markdown file too. We should also be aware of making sure

that the heading levels are consistent.

CHANGES files have a very standard format; for each version there should be a header

(of an appropriate level, 3 in our case) followed by the version number and the release

date in parentheses. Then, there should be an unordered list of changes, optionally with

the author of the change in parentheses, as shown here:

Changes

1.0.0 (2019-06-20)

* Added initial sensors (Matthew Wilkes)

The version numbers themselves are not inherently meaningful; they do need to

follow PEP440 which defines how Python code should parse version strings. Generally

speaking, version numbers are series of integers separated by periods, such as 1.0.0 or

2019.06. Some other additions to this are commonly used, such as a1, b1, or rc1 suffixes,

to identify a distribution as being a prerelease13 of the otherwise specified version

number.

 Semantic versioning

A good rule of thumb is to follow the principles of semantic versioning (https://

semver.org/). It is a versioning policy that is intended for libraries, but it is possible to

use something broadly similar for application versioning. Semver assumes three position

version numbers, with the positions being called the major, minor, and patch versions.

The major version number should be incremented whenever there is a backward

incompatible change to the API, no matter how small. Examples of this include any

new required arguments to functions, functions being renamed or moved to a different

module, or a change in the intended return values or exception behavior of a function

that makes up the public API. Making any of these changes to functions that aren’t part

of the public API does not require incrementing the major tag, so long as it’s clear which

functions make up the public API. It’s also fine to change the behavior of functions to

13 a1 means the first alpha, b1 the first beta, and rc1 the first release candidate.

Chapter 3 paCkaging sCripts

https://semver.org/
https://semver.org/

138

fix bugs, so long as it’s not foreseeable that people will depend on the broken behavior.

The intention is that a consumer can upgrade to any later version within a major version

series and have a guarantee that the code will work.

The minor version number is incremented whenever there is a change in the public

API that does not break backward compatibility. This includes new functions being

added or new optional arguments to existing functions. This allows users to specify in a

two-digit version number what the minimum version required that offers the required

feature set is.

Finally, the patch version number is incremented if there are bug fixes in the

software without adding any features to the public API. Patch releases are the smallest

increment; they should be completely invisible to end users who are not triggering the

error case.

 Calendar versioning

Another popular scheme for version numbers is to use the date of the release as a

version number. Calendar versioning (https://calver.org/) makes deciding on a

version number much easier, as there is no need to consider the impact of changes on

your users. The downside is that the version numbers are not a good predictor of the

difference between two versions.

Calver is really useful for projects where releases are always a big adjustment or always

very minor. If there is a mixture of big and small changes, then it’s not a good choice. There

are a few variations of how dates are formatted for calver version numbers, but they’re

usually quite recognizable as starting with a year rather than a major version number.

 Upstream dependency version pins
Consumers of libraries will want to set a limit to the versions of the library that they are

willing to accept, starting with the lowest version they require up to just before the next

major version. To demonstrate this, we’ll look at the direct dependencies we have in apd.

sensors and determine what pin ranges would be appropriate.

It is very hard for end-users to override version numbers that have been set in the

install_requires lines, so you should err on the side of loose version specifications. You

should certainly exclude any version that you know will not work, but the end-users of

your application will be pinning versions too. Some library developers go too far with

Chapter 3 paCkaging sCripts

https://calver.org/

139

pinning and will pin single versions that are known to work or a narrow range that they

expect to work. This can cause more problems than not pinning versions at all.

To demonstrate this, imagine we pinned the psutil library to version 5.6.3, the

latest version at the time of writing. Then, sometime later, somebody wants to build

an application that uses the sensor functions we’ve developed as well as those from

some other library that itself depends on a later version of psutil. There would then be

conflicting version requirement which the application developer would have to resolve

manually, judging for themself which version of psutil is the correct one to use.

If we had used a less restrictive version specification than ==5.6.3, then the

dependency resolution system may have been able to find a mutually agreeable version

for the two libraries, without needing manual intervention from the downstream

developer.

 Loose pins
The loose version pinning strategy involves setting version pins only to exclude versions

that you know don’t work. This involves either searching for the particular versions or

leaving a version unpinned. The latter is much more common than the former, because

of the amount of work required.

One way of determining these pins would be to run pipenv install psutil==4.0.0

and similar, making a note of which the earliest version is that passes the test suite. As

the latest version of the software works, we cannot set an upper bound that we know is

incompatible. On the machine I am currently using, psutil==5.5.0 is the earliest that

installs cleanly (although earlier versions may work on different systems, it provides

precompiled wheels for Python 3.7 on MS Windows), click==6.7 fails to complete the

test suite, and adafruit_circuitpython_dht appears to work at any version. We have

rather weak confidence that the version pins psutil >= 5.5 and click >= 7.0 would

be appropriate.

Given we don’t know of any versions that absolutely will not work, it may be more

appropriate to list all of these dependencies as unpinned, until we become aware of real

limitations. In this case, it is important to document a known good set of dependencies,

such as having a Pipfile.lock committed. This will allow future users a starting point

where they know versions that did work if they have to construct pins for a future,

unmaintained version. The following is the recommended version pins in the loose

scheme:

Chapter 3 paCkaging sCripts

140

install_requires =

 psutil

 click

 adafruit-circuitpython-dht ; 'arm' in platform_machine

 Strict pins
An alternative is to use knowledge of the versioning scheme in use (or, assumed to be in

use) to set a relatively wide range of pins that should definitely work. This is one reason

that semantic versioning is so useful; it allows developers to reason about what is a safe

range to pin without having to examine the code or changelog to decode your intentions.

The click library does not use semver; however, from looking at the changelog, it

appears that they use a major.minor version scheme that is relatively close in meaning

to semver. Therefore, we’ll assume that it is safe to update minor versions but not major

versions. As we are currently using version 7.0, we will set a version pin that contains

>=7.0. We also want to allow versions 7.1, 7.2, and so on but not 8.0. You may be

tempted to specify <8.0, but 8.0a1 would be caught by this (as 8.0 is a later release than

8.0a1). Instead, we will want the version pin >=7.0,==7.*, meaning any 7.x version that

is at least 7.0. This is such a common pattern that it has its own alias: ~=7.0.

psutil is similar; it also doesn’t follow semver, but does not appear to introduce

backward incompatible changes in minor versions. Again, this is a judgment call, but

it feels likely that 5.x version later than the 5.6.0 would be safe to use, so we will use

~=5.6 as the version specifier.

Finally, our third dependency is adafruit-circuitpython-dht. This is the trickiest

one, as it doesn’t declare that it follows semver and it doesn’t include a changelog. The

earliest version to be released was 3.2.0 and the newest at the time of writing is 3.2.3,

which makes reasoning about the intentions of the author rather difficult. In this case,

my instinct is that 3.2.x are likely to be safe. Here are the recommended version pins in

the strict scheme:

install_requires =

 psutil ~= 5.6

 click ~= 7.0

 adafruit-circuitpython-dht ~= 3.2.0 ; 'arm' in platform_machine

Chapter 3 paCkaging sCripts

141

 Which pinning scheme to use
Each scheme has advantages and disadvantages; each has been in fashion at some

points of Python’s lifetime and not others. At the time of writing, the loose style is in

fashion, and I tend to agree with that. If you’re writing a very large application that is

distributed as multiple packages, then you may find the strict style more appropriate

for your needs, but using the strict scheme means more frequent testing of versions

and releasing new patch releases that only update the version pins of upstream

dependencies.

I would not recommend using the strict scheme unless you had a compelling reason

to; the advent of environment management tools like Pipenv allows for end-users

to manage their dependency version set with ease. Set version pins that prevent the

installation of versions that you know will not work, but leave it up to end users to deal

with future versions.

 Uploading a version
We now have a complete 1.0.0 version of the apd.sensors package, so it’s time to upload

it to our custom index server. I will also be uploading this to PyPI, as this will allow for

real-world uses of this code, as well as making it easier to follow along with some later

examples in this book. I am also making sure to upload it to PyPI as I want to be sure that

people following the examples in this book get the correct code that I’m distributing and

therefore need to ensure that the name is reserved on PyPI.

Note You should not attempt to upload your version of this package to pypi,
under the name apd.sensors or any other name. it is acceptable to fork
someone else’s package to add features or fix bugs, assuming the license
permits it and you’ve made something generally useful, but you should not upload
packages you’ve created just for personal learning. https://test.pypi.org/
is a good server to use for learning about distribution tools. it is specifically for
trying things out, and data is regularly deleted.

Chapter 3 paCkaging sCripts

https://test.pypi.org/

142

I will be using the tool twine to upload to PyPI. Twine is the preferred method to

upload packages and can be installed with pipenv install --dev twine. You may

alternatively consider installing twine in the same way as you installed Pipenv, as it’s a

generally useful package for all Python developers. In this case, it would be pip install

--user twine.

We now need to build the distributions that we’re planning on installing. This

is done with pipenv run python setup.py sdist bdist_wheel. This command

generates a source distribution and a wheel distribution. It is considered best practice to

upload a source distribution as well as a wheel, even in cases where the wheel should be

universal. This ensures interoperability with different python versions.

We now have two files in the dist directory, apd.sensors-1.0.0.tar.gz and

apd.sensors-1.0.0-py3-none-any.whl. The tag on the wheel indicates that it is a

Python 3–compatible wheel that does not specify a Python ABI14 requirement and

works on any operating system.

Twine includes a basic linter to ensure that the generated distributions will not have

any rendering errors when displayed on PyPI. You can do this with the twine check

command, as shown:

> pipenv run twine check dist*

Checking distribution dist\apd.sensors-1.0.0-py3-none-any.whl: Passed

Checking distribution dist\apd.sensors-1.0.0.tar.gz: Passed

These files could then be uploaded to PyPI, if appropriate. The command to do so is

> pipenv run twine upload dist*

You will be prompted for authentication information during this process (you can

sign up for an account at https://pypi.org). Once this process has been completed,

you will not be able to overwrite the distributions; any changes will require you to

increment the patch version, even if they’re only minor.15

14 Application Binary Interface, a specification for how compiled components interact. Python’s
ABI can differ based on things like the amount of memory allocated for strings.

15 In fact, I quickly uploaded 1.0.1 to replace 1.0.0 due to accidentally uploading a distribution with
broken metadata while writing this chapter. This is the kind of mistake that twine check aims to
prevent.

Chapter 3 paCkaging sCripts

https://pypi.org

143

 Configuring twine
There are a few configuration options for twine that you may find useful. For one, if you

install the library keyring, you can configure twine to remember your credentials in your

operating system’s credential manager, such as macOS’s Keyring, Windows’ Windows

Credential Locker, or KDE’s KWallet. If you’re using a supported operating system, you

can then store your credentials using

> keyring set https://upload.pypi.org/legacy/ your-username

You can also set these values in plain text if your risk appetite allows for this. If so,

you would set them in the ~/.pypirc file, which is also used to configure custom index

server data.

[distutils]

index-servers =

 pypi

 rpi4

[pypi]

username:MatthewWilkes

[rpi4]

repository: http://rpi4:8080

username: MatthewWilkes

password: hunter2

You will then be able to upload the files to your local repository server, just like with

PyPI. To do this, you will need to specify the target index you’re aiming for, in this case, rpi4:

> pipenv run twine upload -r rpi4 dist*

You can use twine to upload any package to your local index server, including the

wheels we generated earlier, as follows:

> pipenv lock -r requirements.txt

> pipenv run pip wheel -r requirements.txt -w wheels

> pipenv run twine upload --skip-existing -r rpi4 wheels*

Chapter 3 paCkaging sCripts

144

If you’ve built your own wheels and uploaded them to your index server, you will

need to re-run pipenv lock to make sure that the new hashes are recorded as valid

install options.

 Summary
For all but the simplest of Python projects, I recommend you package the code using

setuptools. The declarative format has significant advantages over the older setup.py

format and is widely supported. Using the packaging system is very useful, even for small

proof-of-concept style projects as it helps avoid bugs relating to Python code being in the

right location to be imported.

For commercial environments, I would strongly recommend setting up a private

index server using pypiserver and protecting this through the use of the built-in

authentication mechanisms, as well as IP filtering if appropriate for your system. I also

recommend mirroring your dependencies into the private index server, potentially as

wheel files built on your infrastructure.

 Additional resources
The landscape of packaging tools changes very quickly, but if you’re interested in this

topic, I’d recommend reading through the following links and trying out some of the

other tools:

There are many Python specification documents explaining decisions

and technical details of the improvements to the packaging system.

If you’re interested in these, the following are the most relevant:

www.python.org/dev/peps/pep-0508/ (conditional dependency

specifications), www.python.org/dev/peps/pep-0517/ (pluggable

build systems), www.python.org/dev/peps/pep-0518/ (dependencies

on build systems), www.python.org/dev/peps/pep- 0420 (namespace

packages), and www.python.org/dev/peps/pep- 0427/ (Wheels).

Poetry, an alternative to setuptools and Pipenv with very different

goals, is worth investigating. Its dependency resolution scheme in

particular is excellent: https://python-poetry.org/.

Chapter 3 paCkaging sCripts

https://www.python.org/dev/peps/pep-0508/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-0427/
https://python-poetry.org/

145

Flit (https://flit.readthedocs.io/en/latest/) is an

alternative to setuptools and twine that is especially well suited

to small projects. It is a very good fit for stand-alone tools without

many dependencies, where you want to avoid some of the

complexity of setuptools.

The setuptools documentation has a lot of information about

legacy configuration, but https://setuptools.readthedocs.io/

en/latest/setuptools.html#configuring-setup-using-setup-

cfg- files in particular has a detailed explanation of the different

keys to use in setup.cfg files.

Detailed information on the Markdown format can be found at

www.markdownguide.org/.

Guides to writing more extensive documentation in

reStructuredText can be found at www.sphinx-doc.org/.

Chapter 3 paCkaging sCripts

https://flit.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
https://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
https://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
https://www.markdownguide.org/
http://www.sphinx-doc.org/en/stable/

147
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_4

CHAPTER 4

From script to framework
The package we’ve created so far has a relatively basic script interface and no

extensibility. The majority of applications do not need a way to be extended; it is often

easier to package all optional code together rather than go to the trouble of maintaining

plugins that are distributed apart from the main codebase. However, it can be very

appealing to use a plugin architecture to manage (for example) optional features of an

application.

If your direct users are other programmers, then it might be a good idea to provide

a plugin architecture to make their jobs easier. This is often the case for open source

frameworks, where external developers may create additional features, either for their

own use or through consulting agreements for their clients. If you’re working on an open

source project and are unsure if you should use a plugin architecture, I’d err on the side

of including it. People will extend your code either way; it’s easier to make sense of bug

reports that include well-defined plugins than it is for forks of your software that add

additional features.

The users of our sensor tool aren’t necessarily programmers; they’re people that

want to get information on a given system. However, it’s possible that they’ll want

custom information for their particular use case, in which case they may well engage a

programmer to add a new feature.

We’re already well on our way to being able to offer a plugin architecture; we

have a well-defined class that describes the behavior of our sensors in the form of our

Sensor[type] generic base class. Aside from a well-defined interface, we need a way of

enumerating the sensors that we have available to us. We do this in the show_sensors

function, which hard-codes all the sensors in the file. This works perfectly well for

applications that don’t need a plugin architecture, where all the sensors are written by

the same developers and distributed as a single group. It fails as soon as we expect third

parties to be writing custom sensors.

https://doi.org/10.1007/978-1-4842-5793-7_4#ESM

148

 Writing a sensor plugin
For a moment, let’s think about what we’d want from this tool as a user. As well as the

temperature and humidity sensors that many people might use, there are a few things I’d

like to monitor that very few other people would find useful. One of them is the output

of my roof-mounted solar panels. I have a script to pull readings over Bluetooth from my

inverter, which uses an existing open source command-line tool to do the hard work of

collecting and interpreting the data. I’d like to be able to incorporate this into my data

collection.

As integration with a specific brand and model of solar panel inverter is not a useful

component for most people, I am not going to integrate it into the core apd.sensors

package. Instead, I’ll create a stand-alone plugin, as users might for their custom logic.

If I envisioned this being a generally useful sensor, I might be tempted to add this

sensor to the same file as the existing ones and list it alongside the others in show_sensors.

This would mean that every other user of the software would see the following as part of

the script’s output:

> pipenv run sensors

...

Solar panel cumulative output

Unknown

Solar panel output isn’t a useful addition for the vast majority of people; it’s better as

an optional component that users can install if needed. I wouldn’t even run this on all

of the Raspberry Pi nodes that I have set up, as only one is connected to the solar panel

inverter.

If you are building a server monitoring setup with this code, you likely need a

few different sets of plugins. While you may have CPU and RAM usage figures on all

machines, there are application-specific metrics for some server roles, for example, job

queue length for machines that handle asynchronous tasks, the number of blocked hosts

for a web application firewall server, or connection statistics for a database server.

There are two broad approaches as to how to deal with the fact that this requires an

outside tool. Firstly, I could create a Python distribution that includes the C code for the

tool that I require. I would then have to arrange for that to be compiled and linked when

Chapter 4 From sCript to Framework

149

my Python package is installed. I’d need to include error handling for problems with this

tool not being installable and document its requirements. Once it’s installed, I could use

that binary using either its existing script interface or directly with Python’s support for

calling native code.

Alternatively, I could document that my sensor only works if that tool is installed and

make the code assume that it is present. This massively simplifies the process for me,

the developer, but makes installation harder for end-users. As I don’t envision this being

generally useful, this is by far the most appealing choice. There is no sense in building

something perfect over something good enough, especially when you have very few

users.

I choose the path of assuming that the existing tool is in place, and my code

will not return a result if that program is missing. The standard library function

subprocess.check_output(...) is very useful for this, as it makes it simple to call

another process, wait for it to finish, and read both its output status and what was printed.

 Developing the plugin
Developing this sensor is another great opportunity to use Jupyter notebooks for

prototyping. We need a remote environment on a Raspberry Pi server, as discussed in

Chapter 1, with the apd.sensors package installed into it. This allows us to connect

through our local Jupyter instance and be able to import the Sensor base class from the

version of apd.sensors installed on the server.

We can then begin prototyping, starting off with a Jupyter cell that only gets the

data out of the inverter and another underneath that formats it as we’d like, as shown in

Listing 4-1.

Chapter 4 From sCript to Framework

150

Listing 4-1. Prototype for extracting solar power information

We can then build that up to contain a cell with the whole sensor subclass in

and then “kick the tires” by checking that str(SolarCumulativeOutput) and similar

function calls behave as expected. You may also like to take this opportunity to write

some test bodies in Jupyter cells. There are a few projects that attempt to integrate

pytest directly in jupyter, such as ipytest, but very few of your tests should need to be run

on the target host. Any that do require specific host hardware should be marked with

@pytest.mark.skipif(...) decorators when converted to standard Python files. You

should only write enough testing code in the notebook to make sure you’ve not made an

error in the raw data collection.

The relevant cell of the prototyping can be brought into a sensor.py file, as shown in

Listing 4-2.

Chapter 4 From sCript to Framework

151

Listing 4-2. apd/sunnyboy_solar/sensor.py

import typing as t

import subprocess

import sys

from apd.sensors.sensors import Sensor

bt_addr = "00:80:25:00:00:00"

class SolarCumulativeOutput(Sensor[t.Optional[float]]):

 title = "Solar panel cumulative output"

 def value(self) -> t.Optional[float]:

 try:

 output: bytes = subprocess.check_output(

 ["opensunny", "-i", bt_addr],

 stderr=subprocess.STDOUT,

 timeout=15,

)

 except subprocess.CalledProcessError:

 return None

 lines = [line for line in output.split(b"\n") if line]

 found = {}

 # Data format: datetime:INFO:[value] timestamp=0000 key=value

 for line in lines:

 start, value = line.rsplit(b"=", 1)

 _, key = start.rsplit(b" ", 1)

 found[key] = value

 try:

 yield_total = float(found[b"yield_total"][:-3].replace(b".", b""))

 except (ValueError, IndexError):

 return None

 return yield_total

 @classmethod

 def format(cls, value: t.Optional[float]) -> str:

Chapter 4 From sCript to Framework

152

 if value is None:

 return "Unknown"

 return "{} kWh".format(value / 1000)

Even for this one-shot sensor, I’d strongly recommend creating a package, following

the same approach as in Chapter 3. A package makes it easy to distribute the sensor

code to our servers and to keep them up to date. You could write a single package that

contains multiple custom sensors if you’d like to reduce the overhead involved, but don’t

be tempted to work around the packaging system and just have free-floating Python files.

Once we’ve written our sensor, we include the relevant details in its setup.cfg

and the same setup.py from our apd.sensors package and build and can publish a

distribution to our local index server. Alternatively, if we were not entirely confident

that we’d covered all the edge cases during development, we might choose to install an

editable checkout from version control on the server in question. That would allow us to

run its tests and potentially make tweaks without having to round-trip code from a local

machine to the remote host.

 Adding a new command option
We’ve just created a new package that includes a single sensor, but we don’t have any

way of viewing its data from the command-line tool that we created in the previous

chapter. That tool has a few built-in sensors and iterates over them when generating its

output. We need to modify the script so that it can also show the values of sensors in

other Python files.

To begin with, we can add a new option to apd.sensors that loads a sensor by its

Python import location. That is, given the name of the sensor and the module it’s defined

in, it would load that sensor and display its results. This is inspired by the --develop

option in the pre-commit script for loading a hook by its path, for ease of testing.

With this option in place, we will be able to specify that we want the value of our

solar power sensor instead of the built-in sensors, meaning we don’t have to write a

special command to handle this sensor specifically.

Chapter 4 From sCript to Framework

153

 Subcommands
We currently have a show_sensors function that includes the sensors to show as a hard-

coded list. In this case, we’d want to do the same processing but change the way the list is

generated to accept command-line arguments. There are two broad approaches that we

could take, either we could create subcommands or we could add command-line flags.

Subcommands might not be a term you’ve heard before, but you’ve certainly used

them. Tools like Git make heavy use of subcommands, where the git command on

its own has no meaning. In fact, the commands git, git --help, and git help are

synonyms: they all print a usage guide to the terminal. The more common invocations

of git, such as git add, git clone, and git commit, are all examples of subcommands.

The Git process does not have a single function that implements all the behaviors of

the program; it uses subcommands to group similar functionality together. Some git

commands even use multiple levels of subcommand, such as git bisect start.1

We could adopt this approach by moving the existing show_sensors(...) function

to be a subcommand called show and add a new develop subcommand.

Click provides infrastructure called parameters for this purpose; you can add

options and/or arguments to functions, which are exposed as part of the command-line

interface. You should think of arguments as always being present, even though the

end- user may not specify a value for them. If the user doesn’t supply a value, then a

default value would be used. Arguments are the core bits of data that a function operates on.

On the other hand, options are flags that are not always passed. They can change

the behavior merely by being present, or they can contain optional values similar to

arguments.

1 git bisect is one of the single most useful functions of git, it deserves to be much more widely
known than it is. If you’re trying to find where a problem was introduced, it will automate
performing a binary search on your history. For example, if you have written a new test for a bug
that was introduced after version 1.0 and before 1.2 and you want to find the exact commit that
introduced it, you could run

> git bisect start
> git bisect bad 1.2
> git bisect good 1.0
> pipenv run git bisect run pytest tests/test_new_bug.py

Chapter 4 From sCript to Framework

154

This subcommand uses @click.argument to specify that some data is passed as a

required parameter on the command line. The metavar= parameter of @argument is the

placeholder for the value to be displayed to users when they use --help.

@click.argument("sensor_path", required=True, metavar="path")

In the following example, I haven’t yet included an implementation of

get_sensor_by_path(...); it can just return a hard-coded instance of the solar

power sensor for now. We will provide an implementation later; for now, we’re focusing

on whether we should use subcommands or not. The following is an example of creating

subcommands with click:

@click.group()

def sensors() -> None:

 return

@sensors.command(help="Displays the values of the sensors")

def show() -> None:

 sensors = get_sensors()

 for sensor in sensors:

 click.secho(sensor.title, bold=True)

 click.echo(str(sensor))

 click.echo("")

@sensors.command(help="Displays the values of a specific sensor in"

"development")

@click.argument("sensor_path", required=True, metavar="path")

def develop(sensor_path) -> None:

 sensor = get_sensor_by_path(sensor_path)

 click.secho(sensor.title, bold=True)

 click.echo(str(sensor))

 click.echo("")

if __name__ == "__main__":

 sensors()

Chapter 4 From sCript to Framework

155

Here, the entrypoint into the system is no longer a show_sensors() command, it is

a sensors() group. The show_sensors() function has been renamed to show() and is

now declared with @sensors.command rather than @click.command. The change in the

command decorator is what connects this command to the group named sensors.

The console_scripts entrypoint would also have to be changed to match this

refactoring:

[options.entry_points]

console_scripts =

 sensors = apd.sensors.sensors:sensors

Tip Just like when we first added the console_scripts declaration, this change
only takes effect during the installation of the package. You can force this by running
pipenv install -e . which is useful when you’re experimenting with different
approaches. once you’ve incremented the version number in __init__.py and
re-run pipenv lock, pipenv notices this change and automatically reinstalls the
package. You can take advantage of this and set a version number like 1.1.0dev1.
the dev marker lets you increment the version number without any risk of using a
version number that you later use for a real release.

i would recommend incrementing the VERSION attribute to a dev release for
features such as this unless there are only a small number of developers working
on the code and they have no barriers to communication (such as timezone
differences).

Once these changes have been made, it is possible to execute the subcommand to

show the value of the in-development sensor we have. As I created an apd.sunnyboy_solar

package that contains a sensor.py file and a SolarCumulativeOutput class, the string that

represents my sensor is apd.sunnyboy_solar.sensor:SolarCumulativeOutput.2 I can

check the output with the following command:

2 Of course, the function to resolve a sensor by path is only a placeholder right now, so the value
doesn’t really matter.

Chapter 4 From sCript to Framework

156

> pipenv run sensors develop apd.sunnyboy_solar.

sensor:SolarCumulativeOutput

Solar panel cumulative output

14070.867 kWh

However, the transition to subcommands does mean that the command pipenv run

sensors no longer behaves as it did previously. To get the data we expect for the preset

sensors, we now need to run pipenv run sensors show. Because of this change, users

cannot safely upgrade from an old version to a new one without changing the way they

interact with the software. The upshot of this is that we need a large bump to the version

number to communicate this change’s importance to our users.

If we consider the principles of the semantic versioning policy, we are considering

a change that adds a feature and breaks backward compatibility. Breaking backward

compatibility implies we should change the major version number, making any release

of the software with this new subcommand layout be version 2.0.0. Some developers

may find this unintuitive, as there is not a large conceptual change between versions

1.0.0 and 2.0.0. However, this is often borne out of a desire to avoid large major version

numbers from a sense of aesthetics. I would strongly advise you don’t shy away from

incrementing version numbers when there is a backward compatible change, as it really

does help users reason about what upgrades are safe to apply.

 Command options
The other way of looking at this feature is that displaying a single sensor’s output is

fundamentally the same task as displaying the output of all sensors, albeit with some

different preferences. This is the core of the decision you need to make when deciding

between subcommands and options: is the feature you’re adding another logical feature

of the application, or is it a different behavior for an existing feature?

There is no hard-and-fast rule for how to differentiate the two; in our case, there are

arguments to be made each way. In my opinion, changing either the sensors that are

being read or the format of the output are all arguments to the same underlying “show”

function. My implementation uses the “option” approach, but this is a subtle difference

that depends very much on how you view the tool that you’re creating.

To use the option approach, we need to add a @click.option line to the existing

show_sensors(...) function that represents the path to the sensor that we should use

instead of the hard-coded sensor list.

Chapter 4 From sCript to Framework

157

In our case, we would add an option called --develop which is not required and

then use an if statement to decide if we should load the sensor referred to by the develop

option or if we should use our hard-coded list as usual.

@click.command(help="Displays the values of the sensors")

@click.option(

 "--develop", required=False, metavar="path",

help="Load a sensor by Python path"

)

def show_sensors(develop: str) -> None:

 sensors: Iterable[Sensor[Any]]

 if develop:

 sensors = [get_sensor_by_path(develop)]

 else:

 sensors = get_sensors()

 for sensor in sensors:

 click.secho(sensor.title, bold=True)

 click.echo(str(sensor))

 click.echo("")

 return

This behaves very similarly to the subcommand approach with the default syntax

being unchanged and the new code path being available with

> pipenv run sensors --develop=apd.sunnyboy_solar.

sensor:SolarCumulativeOutput

Solar panel cumulative output

14070.867 kW

 Error handling
The program we’ve written has, thus far, not had a real implementation of

get_sensor_by_path(...), which is vital for it to be usable in the real world.

We could write a naïve function that implements this, for example:

Chapter 4 From sCript to Framework

158

Unsafe version of get_sensor_by_path

def get_sensor_by_path(sensor_path: str) -> Any:

 module_name, sensor_name = sensor_path.split(":")

 module = importlib.import_module(module_name)

 return getattr(module, sensor_name)()

This implementation has some significant flaws. Firstly, we are assuming that

sensor_path always contains a colon. If this isn’t true, a ValueError is raised for

insufficient values to unpack on the first line. Then, the next line could raise an

ImportError and the third line an AttributeError. Those errors would be shown to the

user as tracebacks, which is not very user-friendly. The more useful error messages we

want to offer to the user, the more conditions we need to add.

That isn’t the biggest problem with this implementation, in any case. On the final line

of this function, we want to instantiate the sensor that the user has selected, but we don’t

know that it’s a sensor subclass. If the user ran pipenv run sensors --develop=sys:exit,

then the command would call sys.exit() and immediately terminate. If they ran pipenv

run sensors --develop=http.server:test, then the command would block and an

unconfigured HTTP server would start up listening on port 8000 on all addresses.

These aren’t serious security vulnerabilities, as anyone who could run the sensor

script could presumably run Python themselves and invoke these functions themselves.

However, there is no good reason to allow users to do things that are clearly wrong and

potentially damaging. It’s essential to consider the safety of such code every time you

write it, as the trade-offs are always different.

The following implementation of get_sensor_by_path(...) traps all the common

errors that could be caused by bad user input and reraises as a RuntimeError3 with the

appropriate user message.

Implementation of get_sensor_by_path that optionally raises RuntimeError

def get_sensor_by_path(sensor_path: str) -> Sensor[Any]:

 try:

 module_name, sensor_name = sensor_path.split(":")

3 ValueError would be more appropriate here, but I’m raising RuntimeError to be confident that
only the errors I explicitly raise will be captured as user-facing messages. We’ll return to this
choice in Chapter 11.

Chapter 4 From sCript to Framework

159

 except ValueError:

 raise RuntimeError("Sensor path must be in the format "

"dotted.path.to.module:ClassName")

 try:

 module = importlib.import_module(module_name)

 except ImportError:

 raise RuntimeError(f"Could not import module {module_name}")

 try:

 sensor_class = getattr(module, sensor_name)

 except AttributeError:

 raise RuntimeError(f"Could not find attribute {sensor_name} in "

f"{module_name}")

 if (isinstance(sensor_class, type) and issubclass(sensor_class, Sensor)

and sensor_class != Sensor):

 return sensor_class()

 else:

 raise RuntimeError(f"Detected object {sensor_class!r} is not "

f"recognised as a Sensor type")

AUTOMATIC TYPE INFERENCE

it’s worth paying attention to the type annotations of both versions of this function. the first

version had no check to see if the specified component was a sensor, so we declared it as

returning Any.

if we create the following test code in src/apd/sensors/mypyexample.py and then run it
through the mypy type checker, we see that it can’t identify the type of sensor:

import importlib

module = importlib.import_module("apd.sensors.sensors")

class_ = getattr(module, "PythonVersion")

sensor = class_()

reveal_type(sensor)

Chapter 4 From sCript to Framework

160

Result

mypyexample.py:6: note: Revealed type is 'Any'

the parser cannot tell what type the class in the class_ variable is, as it would need to

execute the particular code in import_module and getattr(...) to find what object is

returned. in the preceding example, both of these are hard-coded, but if one or both of these

strings were supplied by user input, then it would be impossible without knowing what the

user input would be in advance. therefore, as far as mypy is concerned, class_ and sensor

can be any type.

however, if we guard the line that instantiates class_ with some checks to determine if

class_ is a type, and if that type is a subclass of Sensor, then mypy understands the

situation well enough4 to detect that sensor is an instance of Sensor[Any].

import importlib

from .sensors import Sensor

module = importlib.import_module("apd.sensors.sensors")

class_ = getattr(module, "PythonVersion")

if isinstance(class_, type) and issubclass(class_, Sensor):

 sensor = class_()

 reveal_type(sensor)

4 At the time of writing, mypy still has some minor issues with understanding namespace
packages. This is why the revealed type is sensors.sensors.Sensor[Any] without the leading
apd. and why I put this trivial example in the src/apd/sensors directory. This is unlikely to
present a problem in real-world development, but adding the following to setup.cfg can help
work around this problem for local development:

[mypy]

namespace_packages = True

mypy_path = src

This explicitly enables looking for namespace packages and declares that the directory src should be
in the search path. You can then whitelist missing modules with package-specific config sections to
ensure that only modules that you know have no type information are excluded from processing, as
follows:

[mypy-psutil]
ignore_missing_imports = True

Chapter 4 From sCript to Framework

161

Result

mypyexample.py:6: note: Revealed type is 'sensors.sensors.Sensor[Any]'

it is possible to force an instance to be considered as Sensor[Any] manually by using

typing.cast(Sensor[Any], sensor), but this is rarely necessary and can potentially

mask some errors.

The calling function can then trap any RuntimeError that we generate and display a

user-suitable error message by coercing the exception to a string:

if sensor_path:

 try:

 sensors = [get_sensor_by_path(sensor_path)]

 except RuntimeError as error:

 click.secho(str(error), fg="red", bold=True, err=True)

 sys.exit(ReturnCodes.BAD_SENSOR_PATH)

This prints the value of the RuntimeError in bold red text to the standard error

stream and then exits the script with a known exit code. Exit codes are a handy feature

of console scripts in Unix-like environments. It allows for scripted calling of the program

that can handle error cases without having to parse the resultant errors.

We should use an enumeration to store the valid codes. This is a special base class

for classes that contain only a mapping from a name to an integer that includes some

useful features like custom string representations that can be useful when debugging.

class ReturnCodes(enum.IntEnum):

 OK = 0

 BAD_SENSOR_PATH = 17

Many tools use low numbers and numbers approximately equal to 255 to define their

own internal errors, so picking an offset of 16 makes it unlikely that our return codes

would conflict with any others that our tools raise. In particular, we should not use 1 as

anything but a general failure code. I have picked 17 as the exit code to represent errors

where the arguments passed to the program mean that parsing could not succeed.

Chapter 4 From sCript to Framework

162

 Off-loading parsing to Click with argument types
Click supports decoding the values passed in as parameters automatically. For some

argument types, this makes intuitive sense; it is easier to declare that a parameter is a

number (or a boolean value, etc.) than always to pass on a string and have the command

parse the value itself.

There are built-in types in Click that can be used to improve the usability of

command-line tools. The simple types click.STRING, click.INT, click.FLOAT, and

click.BOOL do relatively straightforward parsing of their input values, converting the

norms of command-line invocations to Python values. For example, click.FLOAT calls

float(...) on the input, and click.BOOL checks the input against a short list of known

values that mean True or False, such as y/n, t/f, 1/0, and so on. It is possible to specify

these types by using the Python type (i.e., str, int, float, bool) directly as a shorthand,

and if no type is specified, Click attempts to guess the type.

There are some more involved types, such as click.IntRange which applies

validation on top of click.INT and click.Tuple(...) which allows for specifying

the type of options that take multiple options. For example, if you were working on a

program that accepts locations, you might have a --coordinate argument which would

be defined as follows:

@click.option(

 "--coordinate",

 nargs=2,

 metavar="LAT LON",

 help="Specify a latitude and longitude according to the WGS84 \

coordinate system",

 type=click.Tuple((click.FloatRange(-90, 90), click.FloatRange(-180, 180))),

)

Using these types ensures that data passed to your functions is valid and that end-

users get useful error messages. It also significantly reduces the amount of parsing and

validation logic you have to write. This can be especially useful with the most complex

of all the types Click offers, click.File. This type allows you to specify that an open file

reference should be passed to the function and closed properly after the function has

finished executing. It also allows for specifying - to mean that the standard input and

standard output streams should be used instead of files on the drive, which is a feature

that many command-line tools offer and usually has to be added as a special case.

Chapter 4 From sCript to Framework

163

Perhaps the most surprisingly useful type is click.Choice, which takes a tuple

of strings to check the value against. For example, click.Choice(("red", "green",

"blue"), case_sensitive=False) provides a type validator that only accepts the strings

“red”, “green”, and “blue”. Additionally, if your user has enabled autocomplete for your

program, then these values can be suggested automatically if a user hits tab during this

argument.

 Custom click argument types
New types can be added to Click’s parsing system, which allows for programs that need

to do the same command-line parsing regularly to split this out into a single reusable

function and trust the framework to invoke it.

In our case, we only have one place where we expect a reference to a Python class to

be passed as an argument so there is no practical reason to implement Python class as a

type that functions can expect. It’s relatively rare for this to be the right approach, but it’s

certainly possible that you’ll need to do this for a project in future.

The following is a parser for Python class:

from click.types import ParamType

class PythonClassParameterType(ParamType):

 name = "pythonclass"

 def __init__(self, superclass=type):

 self.superclass = superclass

 def get_sensor_by_path(self, sensor_path: str, fail: Callable[[str],

None]) -> Any:

 try:

 module_name, sensor_name = sensor_path.split(":")

 except ValueError:

 return fail(

 "Class path must be in the format dotted.path."

"to.module:ClassName"

)

 try:

 module = importlib.import_module(module_name)

Chapter 4 From sCript to Framework

164

 except ImportError:

 return fail(f"Could not import module {module_name}")

 try:

 sensor_class = getattr(module, sensor_name)

 except AttributeError:

 return fail(f"Could not find attribute {sensor_name} in "

f"{module_name}")

 if (

 isinstance(sensor_class, type)

 and issubclass(sensor_class, self.superclass)

 and sensor_class != self.superclass

):

 return sensor_class

 else:

 return fail(

 f"Detected object {sensor_class!r} is not recognised as a "

f"{self.superclass} type"

)

 def convert(self, value, param, ctx):

 fail = functools.partial(self.fail, param=param, ctx=ctx)

 return self.get_sensor_by_path(value, fail)

 def __repr__(self):

 return "PythonClass"

A PythonClassParameterType that only accepts sensors

SensorClassParameter = PythonClassParameterType(Sensor)

And here is the updated option call to use built-in parser:

@click.option(

 "--develop",

 required=False,

 metavar="path",

 help="Load a sensor by Python path",

 type=SensorClassParameter,

)

Chapter 4 From sCript to Framework

165

EXERCISE 4-1: ADDING AUTOCOMPLETE SUPPORT

i mentioned click.Choice earlier in this chapter, which provides support for autocompleting

the values of certain options. it is possible to provide a callback for any option parameter to

allow custom autocompletion.

it isn’t feasible to write a perfect autocomplete implementation for the --develop flag,

as it involves autocompleting python module names. it would be too difficult to scan the

environment to determine all possibilities.

however, it is much easier to write an autocomplete implementation that completes the class

part once the module has been entered. there is an example of one such implementation in

the accompanying code for this chapter; try writing one yourself before looking at it.

the method signature for the autocomplete method is

def AutocompleteSensorPath(

 ctx: click.core.Context, args: list, incomplete: str

) -> t.List[t.Tuple[str, str]]:

the autocompletion method is enabled for an option by adding autocompletion=Autocomp

leteSensorPath as an argument.

when testing this, you may need to drop into a shell within the virtual environment and

manually enable autocompletion for the sensors executable. For example, to enable

autocomplete for the bash shell, you’d use

> pipenv shell

> eval "$(_SENSORS_COMPLETE=source_bash sensors)"

You need to manually enable autocompletion because autocomplete configuration is

usually handled by a package installer and varies wildly between operating systems.

the _SENSORS_COMPLETE=source_bash environment variable tells click to generate

a bash autocomplete configuration instead of the normal handling. in the preceding example,

this is processed immediately using eval, but you could also save the result in a file and then

include that in your shell’s profile. You should check what the recommended approach is for

your particular operating system and shell combination.

in addition, the : character may cause some shells to abort autocompletion. in this case,

enclose the argument to --develop in quotation marks and try again.

Chapter 4 From sCript to Framework

166

 Canned options
Finally, some uses of options are more common than others. The most common

option that people want in their program is --help to display information about how a

command is to be invoked. Click automatically adds this option to all commands unless

you specify add_help_option=False in the @click.command(...) call. You can manually

add help options using the @click.help_option(...) decorator function, for example,

if you need to support different languages:

@click.command(help="Displays the values of the sensors")

@click.help_option("--hilfe")

def show_sensors(develop: str) -> int:

 ...

Another frequently desired function is --version, which prints the version of the

command that is installed on the user’s computer. Like --help, this is implemented

internally as an option with is_flag=True and is_eager=True, as well as having a

specialized callback method. Options that have is_flag set do not have an explicit

value attached, they are either present or not, which is represented by their value being

either True or False.

The is_eager parameter marks an option as being important to parse early on in

the process of parsing the command-line options. It allows the --help and --version

commands to implement their logic before the other arguments to the function have

been parsed, which helps the program to feel quick and responsive.

The version parameter is applied using the @click.version_option(...)

decorator. The decorator takes the options prog_name to specify the name of the

current application and version to specify the current version number. These are both

optional: if prog_name is not set, then the name the program was invoked with is used.

If the version parameter is omitted, then the currently installed version is looked up

from the Python environment. As such, it’s usual not to need to override either of

these values. The standard way to add this option is therefore to add the decorator:

@click.version_option().

Chapter 4 From sCript to Framework

167

For some operations, such as deletions, you may want to get explicit

confirmation from the user before continuing. This can be implemented with

@click.confirmation_option(prompt="Are you sure you want to delete all

records?"). The prompt= option is optional: if it is omitted, the default prompt of “Do

you want to continue?” is used. Users can also skip the prompt by passing the command-

line flag --yes.

Finally, there is a @click.password_option decorator, which prompts the user for

a password immediately after the application starts. This defaults to asking the user

for their password and to then confirm it, as though a password is being set, but the

confirmation step can be disabled with confirmation_prompt=False. The password

itself is not shown in the terminal, preventing it from being read by people near the

computer at the time. If you use this option, you should ensure that the underlying

command takes a password= option, so you have access to the password the user

entered.

 Allowing third-party sensor plugins
Now that we’ve upgraded the command-line tool to allow for testing our external sensor

and we’ve completed an implementation that returns useful data, we have covered the

rarer of two use cases: helping developers write new plugins. The more common case is

that of end-users – people who have installed a plugin sensor and want it to “just work.”

It would not be appropriate to have these users need to specify Python paths on every

command-line invocation. We need a way of dynamically generating the list of available

sensors.

There are two broad approaches that we can take to this problem: autodetection

and configuration. Autodetection involves sensors registering themselves with the

command-line tool in such a way that a list of all installed sensors is available at runtime.

Alternatively, configuration relies on users maintaining a file that points to what sensors

they want to install, which is then parsed at runtime.

Like most decisions between two approaches that we’ve made so far, there are

strengths and weaknesses of both methods, and the trick is in picking the right one for

your particular use case, as shown in Table 4-1.

Chapter 4 From sCript to Framework

168

Using a configuration-based system allows for a lot more control over the details

of the plugin system. It is very well suited for plugin architectures that are likely to

be used by developers or systems integrators as it allows them to configure the exact

environment they want and to store this in version control. An example of this is the

Django apps system. Apps are installed into the local environment but do not affect the

website until they have been added to the settings.py file, at which point they can have

plugin-specific settings added.

This approach is appropriate for Django and other systems where a customized

deployment is created by mixing and matching third-party code and specially developed

software. It is common to want to use a subset of the features offered by apps that have

been installed, for example, by omitting some middleware options or setting up different

URL schemes. This complexity stands in stark contrast to systems like WordPress, where

installation of a plugin is intended to be well within the capabilities of nontechnical

users. In this case, installing the plugin is sufficient itself, and more complex

configuration is handled by the application rather than a central configuration file.

The autodetection method is significantly easier for nontechnical end-users, as they do

not need to edit configuration files. It also makes the system less sensitive to typographical

errors. For our use case, it’s unlikely that we would need to disable plugins, as users can

ignore any data they don’t require. The ordering of plugins is similarly unimportant.

Overriding plugins with a new implementation may seem useful at first glance, but

it would mean that collected values might have slightly different meanings depending

on which version is used. For example, we might want to add a “Temperature” sensor

Table 4-1. Comparison of configuration and autodetection of sensor types

Comparison Configuration Autodetection

ease of installation install package and edit configuration file install package

reorder plugins possible Not possible

override built-in plugin with a

new implementation

possible Not possible

exclude installed plugin possible Not possible

plugins can have parameters possible Not possible

User-friendliness requires that users be comfortable editing

configuration files

No additional steps

are required

Chapter 4 From sCript to Framework

169

that returns the system temperature rather than the ambient temperature. For some use

cases, these might be interchangeable, but it’s best to keep the distinction in the data. We

can always draw an equivalence when analyzing the data if required.

The one feature that a configuration-based system has that would be useful for this

program is the ability to pass configuration values through to the sensors themselves.

So far we have three sensors that would very much benefit from configuration: the

temperature and humidity sensors are hard-coded to expect the sensor to be on IO

pin D4 of the system they’re running on, and the solar panel sensor is hard-coded to a

specific Bluetooth hardware address.

Both of these are acceptable for private plugins that we don’t expect to work for other

people (such as the solar panel monitor), but the temperature and humidity sensors are

a more general-purpose sensor that we would expect a range of users to be interested in

installing. The temperature and humidity sensors need to have minimal configuration

options for end-users.

 Plugin detection using fixed names
It would be possible to write a plugin architecture that detects sensors defined in a file

that’s importable by virtue of it being in the current working directory. This approach

uses Python’s source code parsing as the parsing system for the configuration files. For

example, we could create a custom_sensors.py file and import any sensors that we want

to use in that file.

def get_sensors() -> t.Iterable[Sensor[t.Any]]:

 try:

 import custom_sensors

 except ImportError:

 discovered = []

 else:

 discovered = [

 attribute

 for attribute in vars(custom_sensors).values()

 if isinstance(attribute, type)

 and issubclass(attribute, Sensor)

]

 return discovered

Chapter 4 From sCript to Framework

170

The vars(custom_sensors) function here is the most unusual part of the code. It

returns a dictionary of all things defined in that module where the keys are the variable

names and the values the contents of the variable.

Note the vars(...) function is helpful when debugging. if you have a variable
obj and call vars(obj), you get a dictionary of the data set on that object.5 the
related function dir(obj) returns a list of all attribute names resolvable on that
instance. if you want to learn about an object during a debugging session, these
are both very useful.

Using Python as the configuration has the advantage of being very simple, but

writing a custom Python file is a very technical approach that most users wouldn’t like

to use. Users would have to manually copy the sensor code into this file (or import it

from elsewhere) and manage any dependencies themselves. I cannot recommend this

as a plugin architecture system for any circumstance, but the idea of having a python file

be importable through being in a working directory is sometimes useful as a means of

configuration, as we will see toward the end of this book.

 Plugin detection using entrypoints
For our use case, I think that the ease of use is the most important consideration, so we

should adopt an approach that does not rely on configuration files for plugin detection.

Python has a feature for implementing this type of autodetection that we briefly

mentioned in a previous chapter. It’s called entrypoints. The entrypoint feature was what

we used to declare that a function should be exposed as a console script (in fact, that is

by far the most common use of the feature), but any Python code can use the entrypoint

system for its own plugins.

A Python package can declare that it provides entrypoints, but as they’re a feature of

the packaging tools, entrypoints cannot be set up from anywhere but a Python package’s

metadata. When a Python distribution is created, much of the metadata is split out into

files in a metadata directory. This is distributed along with the actual code. This parsed

version of the metadata is what is scanned when code requests the registered values for

5 This works on almost all objects, but a few highly optimized objects don’t support it. Specifically,
it works for objects defined in Python code that don’t have a __slots__ attribute.

Chapter 4 From sCript to Framework

171

an entrypoint. If a package provides entrypoints, then they can be enumerated as soon

as the package is installed, making for a very effective way for code to discover plugins

across packages.

Entrypoints are registered in a two-level namespace. The outer name is the entrypoint

group, which is a simple string identifier. For the automatic generation of command-

line tools, this group name is console_scripts (and, less commonly, gui_scripts for

graphical tools). These group names do not have to be preregistered, so your packages

can provide entrypoints that other software may use. If your end-user does not have that

software installed, then they are ignored. The group name can be any string, which can

then be used to query all the things referred to by the entrypoint.

You can find what entrypoint groups are in use in your Python installation using the

pkg_resources module. This isn’t something you ever need to do in code, as evidenced

by the fact that there isn’t an easy API for it, but it is interesting to look at when learning

about the feature and how other Python tools use it. The following is a one-line program6

(excluding imports and formatting for ease of reading) used to list the entrypoint types in

use in a Python environment:

6 This program is an example of flattening lists (or, in this case, sets) in Python. This is my preferred
way of doing this, using a list comprehension to create a list of sets and then the reduce function,
which is equivalent to

set.union(set.union(set.union(x[0], x[1]), x[2]), x[3])

for a four-item list called x.

Another way of approaching this is to create an empty set and update it inside a for loop over the
entries, like

groups = set()
for package in pkg_resources.working_set: groups.update(set(
package.get_entry_map(group=None).keys()))

or using the itertools module, with

set(itertools.chain.from_iterable(package.get_entry_map(group=None).keys() for
package in pkg_resources.working_set))

Any of these are appropriate; you should use whichever feels more natural to you. There is one other
style which is sometimes recommended; in my opinion it is significantly harder to read and should be
avoided. That is a list (or set) comprehension where two or more loops form a single comprehension,
read from left to right. It would look like this:

{group for package in pkg_resources.working_set for group in
package.get_entry_map(group=None).keys()}

Chapter 4 From sCript to Framework

172

>>> functools.reduce(

... set.union,

... [

... set(package.get_entry_map(group=None).keys())

... for package in pkg_resources.working_set

...],

...)

...

{'nbconvert.exporters', 'egg_info.writers', 'gui_scripts', 'pygments.

lexers', 'console_scripts', 'babel.extractors', 'setuptools.installation',

'distutils.setup_keywords', 'distutils.commands'}

The preceding example shows that there are nine different groups of entrypoints

in use on my computer. Most of these are involved in Python package management,

but three are other plugin systems installed on my computer. nbconvert.exporters

is part of the Jupyter suite of tools; in the first chapter, we used nbconvert to convert

our notebook to a standard Python script. That converter was found by checking this

entrypoint, meaning that it would be possible for us to write our own exporters if desired.

pygments.lexers is part of the pygments code formatting library; these entrypoints

allow for new languages to be supported by pygments, and babel.extractors are

entrypoints to help the i18n tool babel find translatable strings in different types of

source code.

The second layer of namespacing is the name of the individual entrypoint. These

must be unique within a group and are not inherently meaningful. You can search for

a particular entrypoint name with iter_entry_points(group, name), but it’s more

common to get all entrypoints within a group, with iter_entry_points(group).

All this means that we need to decide on a standard string to use as the entrypoint

group name and have plugins declare that they provide entrypoints in this group. We

must also update our core code to ensure that all the plugins are declared as such. We

will use the string apd.sensors.sensor as that is meaningful and unlikely to conflict

with things other developers might do. The setup.cfg file of apd.sensors would have

the entrypoints section modified as follows:

[options.entry_points]

console_scripts =

 sensors = apd.sensors.cli:show_sensors

Chapter 4 From sCript to Framework

173

apd.sensors.sensor =

 PythonVersion = apd.sensors.sensors:PythonVersion

 IPAddresses = apd.sensors.sensors:IPAddresses

 CPULoad = apd.sensors.sensors:CPULoad

 RAMAvailable = apd.sensors.sensors:RAMAvailable

 ACStatus = apd.sensors.sensors:ACStatus

 Temperature = apd.sensors.sensors:Temperature

 RelativeHumidity = apd.sensors.sensors:RelativeHumidity

The apd.sunnyboy_solar package use the same entrypoint group name to add its

one plugin to the set of known plugins, by declaring the following entrypoints section in

its setup.cfg:

[options.entry_points]

apd.sensors.sensor =

 SolarCumulativeOutput = apd.sunnyboy_solar.sensor:SolarCumulativeOutput

The only change we’d need to make to the code to use entrypoints instead of

hard- coding the sensors is to rewrite the get_sensors method, as follows:

def get_sensors() -> t.Iterable[Sensor[t.Any]]:

 sensors = []

 for sensor_class in pkg_resources.iter_entry_points(

"apd.sensors.sensor"):

 class_ = sensor_class.load()

 sensors.append(t.cast(Sensor[t.Any], class_()))

 return sensors

The cast here is not strictly necessary. We could also use the isinstance(...)

guarding7 that we looked at for the --develop option; however in this case, we’re willing

to trust that plugin authors only create entrypoints that refer to valid sensors. Previously

we were relying on command-line invocations, where the chance of errors is rather

higher. The effect of this is that we’re telling the typing framework that anything we get

from loading an apd_sensors entrypoint and calling the result is a valid sensor.

7 That is, isinstance(sensor_class, type) and issubclass(sensor_class, Sensor) and
sensor_class != Sensor

Chapter 4 From sCript to Framework

174

Like with the console_scripts entrypoints, we need to reinstall both of these

packages to make sure that the entrypoints are processed. For real releases of the script,

we would increment the minor version number as we’ve introduced a new feature

that doesn’t break backward compatibility, but as we’re working with a development

installation, we would re-run pipenv install -e . to force the installation.

 Configuration files
The alternative approach, which we dismissed earlier, was to write a configuration file.

Python’s standard library supports parsing ini files, which are relatively easy for users to

edit. Alternatively, a configuration format like YAML or TOML may make parsing easier,

but editing would be less familiar for users.

Generally speaking, I would recommend using the ini format for configuration

due to the benefits of its familiarity to end-users.8 We also need to decide where to

keep the ini files; they could be in a working directory, perhaps explicitly included as

a command- line argument if appropriate, or in a well-known default directory for the

current operating system.

Wherever we decide to store the files, we would create a new argument to the

command line that accepts the location of a configuration file to use; only the

default behavior would differ. We would also need to create a function that reads the

configuration file and instantiates the sensors using any relevant configuration data.

The configparser module in the standard library has a simple interface for loading

ini formatted data from one or more files, so this is what we would use to load the

configuration values. We’ll define our ini format as having a [config] section that

contains a plugins= value. The items in the plugins value point at new sections, each of

which defines a sensor with its (optional) configuration values. The following is a basic

config.cfg file for apd.sensors:

[config]

plugins =

 PythonVersion

 IPAddress

8 TOML is close enough to ini format that it would also be a good choice.

Chapter 4 From sCript to Framework

175

[PythonVersion]

plugin = apd.sensors.sensors:PythonVersion

[IPAddress]

plugin = apd.sensors.sensors:IPAddresses

This shows some of the power of a configuration system, as this configuration file

only loads two of the sensors, which greatly speeds up execution time. Less obvious is

the fact that the sensor configuration blocks do not need to have the same name as the

sensor classes from which they’re derived, for example, IPAddress vs. IPAddresses.

The same sensor class can be listed multiple times in this way, making it possible to

have a configuration that defines multiple instances of the same sensor with different

parameters, and collects data from each.9 A sensor could also be removed from the

plugins line to disable it temporarily without needing to delete its configuration.

The parser for this config file maps the plugins line of the [config] section to the

key config.plugins. Our code must check this value, extract the names, and then iterate

over the sections to which it refers. It’s a good idea to keep the parsing and the sensor

instantiation as independent functions, as this dramatically improves the testability of

each. The testability would be slightly better if reading the config and parsing it were

distinct functions, but as configparser provides this functionality, it makes sense to

reduce the amount of file handling code we need to write ourselves and leave that to

configparser.

Like the previous --develop helper functions, we would catch any relevant errors

here and reraise as RuntimeError with a user-friendly message. These would then

be raised to end-users as an error message and with a new return code to represent a

problem with the config file:

def parse_config_file(

 path: t.Union[str, t.Iterable[str]]

) -> t.Dict[str, t.Dict[str, str]]:

 parser = configparser.ConfigParser()

 parser.read(path, encoding="utf-8")

9 For this to be useful, there would also need to be support code to allow picking a human-
readable name for the different instances.

Chapter 4 From sCript to Framework

176

 try:

 plugin_names = [

 name for name in parser.get("config", "plugins").split() if name

]

 except configparser.NoSectionError:

 raise RuntimeError(f"Could not find [config] section in file")

 except configparser.NoOptionError:

 raise RuntimeError(f"Could not find plugins line in [config] section")

 plugin_data = {}

 for plugin_name in plugin_names:

 try:

 plugin_data[plugin_name] = dict(parser.items(plugin_name))

 except configparser.NoSectionError:

 raise RuntimeError(f"Could not find [{plugin_name}] section "

f"in file")

 return plugin_data

def get_sensors(path: t.Iterable[str]) -> t.Iterable[Sensor[t.Any]]:

 sensors = []

 for plugin_name, sensor_data in parse_config_file(path).items():

 try:

 class_path = sensor_data.pop("plugin")

 except TypeError:

 raise RuntimeError(

 f"Could not find plugin= line in [{plugin_name}] section"

)

 sensors.append(get_sensor_by_path(class_path, **sensor_data))

 return sensors

The get_sensors(...) function would take an iterable of strings which are the

possible paths to config files. A new --config parameter can be added to the

 show_sensors command that defaults to "config.cfg" to collect the value of path that

will be passed to get_sensors(...).

Chapter 4 From sCript to Framework

177

@click.option(

 "--config",

 required=False,

 metavar="config_path",

 help="Load the specified configuration file",

)

Each sensor that needs a configuration variable must now accept it as a parameter

to the __init__(...) function for the sensor class. This function defines the behavior

for creating instances of the class and is where you would handle arguments to the

class instantiation. The Temperature sensor would store the variables it needs in the

__init__(...) function and then refer back to them in the value(...) function.

The following is a partial listing of Temperature sensor that accepts configuration

parameters:

class Temperature(Sensor[Optional[float]]):

 title = "Ambient Temperature"

 def __init__(self, board="DHT22", pin="D4"):

 self.board = board

 self.pin = pin

 def value(self) -> Optional[float]:

 try:

 import adafruit_dht

 import board

 except (ImportError, NotImplementedError):

 return None

 try:

 sensor_type = getattr(adafruit_dht, self.board)

 pin = getattr(board, self.pin)

 return sensor_type(pin).temperature

 except RuntimeError:

 return None

Chapter 4 From sCript to Framework

178

For some applications, you may want to provide more standardized loading of

configuration files, in which case we can take advantage of the fact that configparser can

handle a list of potential paths to pass in all possible config file locations.10 A simple way

of doing this would be to include /etc/apd.sensors/config.cfg and ~/.apd_sensors/

config.cfg in the code, but this would not work on Windows. The Python package

installer pip follows the configuration pattern. It has a very sophisticated code path for

determining where config files could be, correctly implementing the expected locations

for a range of platforms. As pip is MIT licensed, which is compatible with apd.sensors’s

license, we can make use of those functions to make the sensors command feel more like

a well-behaved citizen of those different operating system ecosystems. An example of

this is included in the accompanying code for this chapter.

Of course, changing the way that plugins are loaded has a knock-on effect for the

tests of apd.sensors, meaning that some new fixtures and patches are required to

support the substantive changes in cli.py. This does also allow us to be more flexible in

our tests, by including configuration files that set up dummy sensors that are only ever

used to test the infrastructure of the program.

 Environment variables
A final way that we could approach the need to configure a small number of sensors is

to make use of environment variables. These are variables that are made available to

programs by the system, often containing information like library paths. We can write

the few sensors that need configuration to look in the environment variables for their

configuration. In this case, we wouldn’t need any loading of configuration files. We

could use the autodetect style of sensor discovery and put the value extraction in the

__init__ functions. Environment variables are exposed like a dictionary on the attribute

os.environ, so the equivalent to the preceding implementation of Temperature that

uses the environment would be

def __init__(self):

 self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22")

 self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D4")

10 Configuration in files that are listed later will overwrite conflicting configuration from files
listed earlier. The ordering should therefore always be from system to user to instance-specific
configuration.

Chapter 4 From sCript to Framework

179

These could be set on the command line; however, the easiest way to define them

when using pipenv is to use the “dotenv” standard, that is, creating a file called .env in

the root of your pipenv installation that contains the relevant definitions. The pipenv run

command loads this file and sets any variables defined every time a program is run. In

this case, the file would look something like

.env

APD_SENSORS_TEMPERATURE_BOARD=DHT22

APD_SENSORS_TEMPERATURE_PIN=D4

Managing environment variables can be difficult on some platforms. This .env file

paradigm allows us to treat them like a minimal configuration file, which makes them

a good choice for very minimal configuration. There is a similar trade-off to the one

we looked at for command-line parameters; we are choosing a simpler solution that

offers no automatic parsing for configuration, rather than the more involved parsing

for arguments, because unlike the argument parsing, these decisions have a substantial

effect on the usability of the program.

 Approach for apd.sensors vs. similar programs
While there are arguments for using a comprehensive configuration filesystem, for my

particular use case, I want something that works out of the box with minimal effort from

end-users. People following along who are thinking of, say, server status aggregation may

find themselves coming down on the other side of this decision. It very much depends

on the user interface that you want to offer, with it being possible to write more and more

complex code to support your exact desires.

For example, some tools that make use of the subcommand style of command

invocation actually define a config command to assist users in managing their config

files, rather than having them edit them directly. The version control software git is

an example of this, where any user-facing setting can be set using the git config

command, specifying which of various configuration files should be read.

For apd.sensors, at this stage, the path of least resistance is to use entrypoints to

enumerate the plugins and environment variables to configure them, disregarding any

possibility to ignore installed plugins or reorder them.

Chapter 4 From sCript to Framework

180

 Summary
Much of the rest of this chapter has covered general software engineering topics, such

as configuration file management and command-line tool user experience. The tools

available to us in Python offer a lot of flexibility in these regards, so we can focus on

making the best decision for our users, rather than being pushed toward an approach by

limitations of the software.

The plugin system requirement is where Python really shines, however. The tool

we’re building is somewhat unusual, in that it’s designed to allow other code to extend

it. Although it’s common for developer frameworks to use plugin systems, most software

that you write is a stand-alone application. This makes it all the more surprising that

Python’s entrypoint system is so good. It is a fantastic way of defining simple plugin

interfaces; it deserves to be more well known.

The overall approach that we’ve taken with the software during the course of this

chapter is to opt for the simplest user interface that we can offer to users. We have looked

at alternatives that we may choose to introduce in future, but have decided that the

features they offer are not important at this stage.

Our command-line tool is effectively complete. We have a working plugin interface

that allows for configuration of individual sensor parameters and for application-

specific sensors to be installed. The program is a stand-alone Python application that

can be installed on the various computers we want to monitor. The best way of doing

this is to use a new Pipfile, as the one we have been using so far is intended to build a

development environment of the code.

The new Pipfile will use a released version of apd.sensors and the private

distribution server we created to house releases. We can create this on a Raspberry Pi

and then distribute the Pipfile and Pipfile.lock to all other Raspberry Pis that we

want to install on.

Production deployment Pipfile

[[source]]

name = "pypi"

url = "https://pypi.org/simple"

verify_ssl = true

Chapter 4 From sCript to Framework

181

[[source]]

name = "piwheels"

url = "https://piwheels.org/simple"

verify_ssl = true

[[source]]

name = "rpi"

url = "http://rpi4:8080/simple"

verify_ssl = false

[packages]

apd-sensors = "*"

[requires]

python_version = "3.8"

 Additional resources
As this chapter has focused on decision-making more than features of Python, there

are not many new pieces of software introduced in this chapter. The following online

resources provide some additional detail on approaches that were not relevant to our

use case, as well as some help with advanced use of command-line scripts on different

operating systems:

The Python Packaging Authority documentation has a section on

enumerating plugins using other methods, such as finding modules

that match a given name. If you’re interested in other ways of

discovering code, take a look at https://packaging.python.org/

guides/creating-and-discovering-plugins/.

The TOML language specification document may be of interest if

you’re looking to write a configuration file–based system.

https://github.com/toml-lang/toml. A Python implementation is

available at https://pypi.org/project/toml/.

Chapter 4 From sCript to Framework

https://packaging.python.org/guides/creating-and-discovering-plugins/
https://packaging.python.org/guides/creating-and-discovering-plugins/
https://github.com/toml-lang/toml
https://pypi.org/project/toml/

182

Developers using Windows may find the following Microsoft page

describing how to manage environment variables in PowerShell to be

useful: https://docs.microsoft.com/en-us/powershell/module/

microsoft.powershell.core/about/about_environment_variables

(Linux and macOS users have it easier with NAME=value and echo

$NAME).

Some more information on setting up autocomplete for your

click-based programs can be found in the Click documentation, at

https://click.palletsprojects.com/en/7.x/bashcomplete.

Chapter 4 From sCript to Framework

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_environment_variables
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_environment_variables
https://click.palletsprojects.com/en/7.x/bashcomplete

183
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_5

CHAPTER 5

Alternative interfaces
We have a command-line tool that reports the results of various data collection functions

on a server, but being able to connect to a server and run a command-line tool to

check their current state isn’t a sustainable way to monitor a lot of data collection

systems. We don’t want to have to note down the results from multiple command-line

tool invocations and analyze them by hand. It would be better to be able to collect the

information automatically, as well as be able to analyze the raw values, rather than the

formatted result that we show to users.

Rather than write a program that connects over SSH to each server in turn and

invokes the command-line tool, we can create a simple HTTP-based web server that

returns the value of the sensors in response to an API call. For this, we’ll have to create a

new interface to the same sensors.

 Web microservices
There has been a trend in the last few years toward creating web applications by loosely

coupling many services, each of which performs a specific task. This architecture trades

the convenience of a unified codebase for the flexibility to evolve each component

independently. Some web frameworks are better suited to this kind of problem than

others – with some being created specifically to work in this niche.

There are lots of Python web frameworks, like Django, Pyramid, Flask, and Bottle,

any of which would work as a basis for an API server. Both Django and Pyramid are

excellent choices for complex web applications, offering many built-in features like

translation, session management, and database transaction management. Others, like

Flask and Bottle, are much more minimal. They have a small set of dependencies and

excel as bases for microservices.

We need a very simple API server, without any interface designed for humans. There’s

no need for HTML templating, navigation systems, or CSS and Javascript management.

Web frameworks designed for microservices are perfect for very small API servers.

https://doi.org/10.1007/978-1-4842-5793-7_5#ESM

184

 WSGI
All Python web frameworks use a standard for creating applications that are served over

HTTP, called the Web Server Gateway Interface, or WSGI. WSGI is a simple API that we

can use directly to write functions that are exposed to the Web.

A WSGI application is a Python callable that takes two arguments. The first is a

dictionary that represents the environment (which contains the various HTTP headers

and server information such as the remote address of the client), and the second is a

start_response(...) function, which expects a HTTP status code as a string and an

iterable of response headers, as 2-tuples of strings.

The Python standard library includes a simple WSGI server for trying out WSGI

applications. It’s not good enough to be used for production code, but it’s handy for

development. It is imported from the wsgiref.simple_server module, where the

make_server(...) context manager takes the host and port bind parameters as well as

a function to serve. The resulting context object has a serve_forever() method to run

the HTTP server until interrupted with <CTRL+c> and a handle_request() method to

respond to a single request. Using the wsgiref server to run a demo, Hello World website

is demonstrated in Listing 5-1.

Listing 5-1. Hello world WSGI app

import wsgiref.simple_server

def hello_world(environ, start_response):

 headers = [

 ("Content-type", "text/plain; charset=utf-8"),

 ("Content-Security-Policy", "default-src 'none';"),

]

 start_response("200 OK", headers)

 return [b"hello world",]

if __name__ == "__main__":

 with wsgiref.simple_server.make_server("", 8000, hello_world) as

server:

 server.serve_forever()

The start_response(...) function is specific to whatever WSGI-compatible server

is responsible to handling incoming connections, but it always behaves the same way.

Chapter 5 alternative interfaCes

185

The hello_world(...) function will work equally well if it’s served on Python’s built- in

testing web server, a specialized production-quality web server like Gunicorn or even

a PaaS provider like Heroku. There are no server-specific imports or function calls

involved in hello_world(...); it is all entirely generic.

The return value for this function is the body of the response, which perhaps

counterintuitively, is an iterable of byte strings, rather than a single byte string. If we open

http://localhost:8000 in a web browser, we see “hello world”, as shown in Figure 5-1.

Using a generator function allows the server to begin passing some data to the client

before everything has been generated, by yielding partial data before computing the

rest. If we switch from plain text to HTML,1 we can see the effect of this by introducing

some intentional delays, such as in Listing 5-2.

Listing 5-2. Generator-based hello world WSGI app

import time

import wsgiref.simple_server

def hello_world(environ, start_response):

 headers = [

 ("Content-type", "text/html; charset=utf-8"),

 ("Content-Security-Policy", "default-src 'none';"),

]

Figure 5-1. Browser view of hello world application

1 Many browsers will only render plain text data as a whole, but will render partial HTML
responses while waiting for the rest.

Chapter 5 alternative interfaCes

186

 start_response("200 OK", headers)

 yield b"<html><body>"

 for i in range(20):

 yield b"<p>hello world</p>"

 time.sleep(1)

 yield b"</body></html>"

if __name__ == "__main__":

 with wsgiref.simple_server.make_server("", 8000, hello_world) as

server:

 server.serve_forever()

When we open http://localhost:8000 in a browser, we now see the hello world

messages appearing as new lines once per second. This is useful for large responses,

in terms of throughput, and also to reduce memory usage on the server. For example,

if we had written a WSGI application that transmits every line of a 500MB log file, then

iterating over the lines and yielding them one by one would mean that no more than one

line is in memory at once, and that data is sent as soon as the file begins to be read. If we

had to return a single string, then the entire file would have to be read into memory, then

passed to the server for transmission as a whole.

We could use this same approach to make a WSGI endpoint that iterates over the

sensors and yields the information about each sensor in turn. However, a single JSON

object is easier to parse as an API response, so it’s better to create a dictionary of sensor

title to value and serialize that as a whole. Now is a good time to add typing information

to this function, so that we can take advantage of mypy’s type hinting for flagging errors.

The resulting server is Listing 5-3, which we should save as src/apd/sensors/wsgi.py.

Listing 5-3. Basic WSGI server to show sensor data

import json

import typing as t

import wsgiref.simple_server

from apd.sensors.cli import get_sensors

if t.TYPE_CHECKING:

 # Use the exact definition of StartResponse, if possible

 from wsgiref.types import StartResponse

Chapter 5 alternative interfaCes

187

else:

 StartResponse = t.Callable

def sensor_values(

 environ: t.Dict[str, str], start_response: StartResponse

) -> t.List[bytes]:

 headers = [

 ("Content-type", "application/json; charset=utf-8"),

 ("Content-Security-Policy", "default-src 'none';"),

]

 start_response("200 OK", headers)

 data = {}

 for sensor in get_sensors():

 data[sensor.title] = sensor.value()

 encoded = json.dumps(data).encode("utf-8")

 return [encoded]

if __name__ == "__main__":

 with wsgiref.simple_server.make_server("", 8000, sensor_values) as server:

 server.handle_request()

We can test this by starting the server on our development machine using

> pipenv run python -m apd.sensors.wsgi

Accessing this web server and passing it through the jq JSON formatter2 result in the

following output:

{

 "AC Connected": false,

 "CPU Usage": 0.098,

 "IP Addresses": [

 [

 "AF_INET6",

 "fe80::xxxx:xxxx:xxxx:fa5"

],

2 curl http://localhost:8000/ | jq on a Linux or macOS system with the relevant programs
installed. You could equally open this URL in a browser and view the data there.

Chapter 5 alternative interfaCes

188

 [

 "AF_INET6",

 "2001:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:1b9b"

],

 [

 "AF_INET6",

 "2001:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:fa5"

],

 [

 "AF_INET",

 "192.168.1.246"

]

],

 "Python Version": [

 3,

 8,

 0,

 "final",

 0

],

 "RAM Available": 716476416,

 "Relative Humidity": null,

 "Ambient Temperature": null,

 "Solar panel cumulative output": null

}

Note We have checked t.TYPE_CHECKING and conditionally imported
something. some names can only be imported in mypy, not normal python.
this happens when there are helper variables defined in a .pyi file rather than
integrating type hints directly in the .py file. the StartResponse variable is one
of these; it represents the type of the standard start_response(...) function,
which isn’t needed by the actual definition of the wsgiref server, just the type

Chapter 5 alternative interfaCes

189

hints. this block lets us import the correct value when type checking, but in other
situations, we fall back to the less specific t.Callable, as the type hint is not
important outside of type checking runs.

Of course, we should write a test to make sure that the endpoint works as expected.

As we’ve not yet written any code to handle error cases, there aren’t many tests we

can usefully write, but an analogue of the high-level functional test of the CLI in

test_sensors.py is appropriate.

As the WSGI interface is a Python API, it’s possible to write functional tests for them

by calling the sensor_values(...) function with placeholder values for the environ

and start_response parameters. The package WebTest provides a way of wrapping a

WSGI function and interacting with it using an API that behaves like a high-level HTTP

API, making for much easier test writing. After installing WebTest, we can add the test in

Listing 5-4 to the tests/ directory and run it.

> pipenv install --dev webtest

Listing 5-4. Functional test for wsgi service

import pytest

from webtest import TestApp

from apd.sensors.wsgi import sensor_values

from apd.sensors.sensors import PythonVersion

@pytest.fixture

def subject():

 return sensor_values

@pytest.fixture

def api_server(subject):

 return TestApp(subject)

@pytest.mark.functional

def test_sensor_values_returned_as_json(api_server):

 json_response = api_server.get("/sensors/").json

 python_version = PythonVersion().value()

Chapter 5 alternative interfaCes

190

 sensor_names = json_response.keys()

 assert "Python Version" in sensor_names

 assert json_response["Python Version"] == list(python_version)

While our WSGI application works, it’s far from production quality. This is where

microframeworks are useful; they let us move from single endpoint web applications

with no error checking into reliable, production-quality web applications.

 API design
Before we go any further, we should plan the API we want to offer. We want to be able

to retrieve all of the sensor values, but it may be useful to get a single specific value,

as the extraction of the sensor values may take some time. We also need to decide on

the authentication for this API, as it will no longer be protected by virtue of only being

available to people who can log in to the relevant server.

Most APIs don’t use a traditional username and password login system; rather, they

use a single API key as their credentials. The considerations for picking an authorization

system are the same whether our users are people, identified by a username and

password, or other programs, identified by an API key.

There are three broad approaches to user authorization.3 A flat permission structure

is popular for simple applications, where a user only needs to be logged in to access

all the functionality of the site. This method is commonly used in simple Django

applications. If a user is logged in and the is_staff attribute is set on the user object,

they have access to the administrator features of the website.

The second option is demonstrated by the full authorization system in Django. It

works on a groups and permissions system. Users can have permissions assigned to

them, either directly or through their membership of a group. These permissions are

granular but relatively global. If a user has, for example, the “Edit users” permission, they

would be able to edit any user.

Finally, the most complex system involves permissions that have flexible

relationships between both users and data. In this case, users are not assigned a

permission directly, but rather permissions are assigned to a user or group in the context

3 Authorization as opposed to authentication. Authorization is the process of determining if a
given person is permitted to do something; authentication is the process of determining if a user
is the person they claim to be. These are often shortened to authn and authz (which may confuse
people used to the British spelling, authorisation).

Chapter 5 alternative interfaCes

191

of a piece of data in the site. In this case, we might see that in the context of a given

user, the “Edit users” permission is assigned to the whole administrators group and the

individual user in question.

Figure 5-2 shows the decision tree that I recommend using to determine which of the

three approaches is the best fit for your use case.

Our API will be read-only; the only function that we need to guard is the ability to

read the sensor values. To answer the first question, we need to decide if we want to

grant API access to different sets of sensors depending on the identity of the requesting

Figure 5-2. Decision tree for choosing between the different authz approaches

Chapter 5 alternative interfaCes

192

user. Are some users allowed to see the Python version but not the Temperature? Our

only use case for this API is to collect the information from multiple sources and store it

centrally, meaning we only ever want to load all sensor values and we want to do so with

a minimum of HTTP requests. An authorization solution that treats all users the same is

the most appropriate. The objective of this access control is not to differentiate between

users with different permission levels; all we care about is that the user is valid or not.

Therefore, we take the right-hand branch at the first question. The next decision

is if we need to be able to create new users through the system or if we can define user

credentials in advance. We only need a single user to have access to the information, so

we don’t need to add new users as we go.

The result of this is that we have the authentication system on the far right; user

accounts are defined in advance as a property of the deployment.

 Authentication

The authentication framework we choose should also match how we expect to interact

with the API server. The form of authentication that users are most familiar with is a

dedicated login page which provides a session credential, usually in the form of a cookie.

Cookies have a limited lifespan, although that could be a very long time, which allows

the user to avoid actively reauthenticating regularly.

The alternative, which is somewhat more common among APIs, is that each request

could contain the authentication information, either as a dedicated HTTP header or

through the use of the HTTP Basic and Digest auth features.

As we intend for our API to be accessed by an automated process and the login

information is not expected to change, an API key style authentication system fits our needs.

 Flask
The Flask microframework was inspired by an April Fool’s joke: a microframework

called denied that was distributed as a single file with a very simple interface. The author,

Armin Ronacher, wrote a 160-line framework that emphasized marketing over advanced

features. Perhaps unsurprisingly for a time when most web frameworks focused on large,

fully featured applications, many people were actually interested in a simple interface

for web programming. A year later, Flask was born, a high-quality web framework that

aimed to satisfy the people who were so interested in denied.

Chapter 5 alternative interfaCes

193

Flask provides for generating HTML using the Jinja2 templating language, managing

request and response headers, managing URL routing, and generating errors when

needed. This flexibility makes it much easier to simplify the function we wrote earlier

to remove some of the implementation details, as well as to extend the interface to offer

more features.

Before we can start writing our Flask-based web server, we need to add Flask to the

dependencies of our project. We’ll take a different approach to what we’ve done in the

past and add this as an “extra”. Extras are optional dependency sets for Python packages

which a user can select at install time. Users who only want the command-line tool

would run pipenv install apd.sensors, whereas users who also want the API access

would run pipenv install apd.sensors[webapp].

setup.cfg section to define the webapp extra

[options.extras_require]

webapp = flask

The choice to make the CLI dependencies a core requirement and the API server

optional is completely arbitrary; it’s entirely possible for developers to require an extra

for both features or to include them both as default dependencies.

Tip You should decide on what dependencies are installed by default and
which are extras based on the needs of your users. if you suspect some users
may not want to use an entirely self-contained feature, especially if it has a large
dependency set, then it is a good candidate for an extra.

Bear in mind that trying to import a module that has imports from packages
specified in extras_require can result in an import error. if you have a
command-line script in such a module, you should catch import errors and
return a useful error on the command line. an ImportError traceback is not an
appropriate error to show to users who try to run a Cli tool without specifying that
they wanted the Cli dependencies at install time.

Once we’ve added the webapp extra declaration, we can declare our environment as

needing that extra, using pipenv install -e .[webapp]. This causes flask to be added

to the set of dependencies and installed into the environment. A flask executable is

Chapter 5 alternative interfaCes

194

installed, which can be accessed with pipenv run flask, but the important thing for us

is that we are able to import the Flask application code.

The equivalent Flask app to the basic sensor listing WSGI application we created

is very similar (Listing 5-5), which demonstrates how little Flask interposes between

the web server and the programmer. The key to this is the @app.route(...) decorator

call. We’ll look at decorators in the next section, but for now it’s enough to know that

a decorator manipulates a function or class whose definition it directly precedes. In

this case, the @app.route("/sensors/") defines that the following function is the

implementation responsible for http://localhost:8000/sensors/.

Listing 5-5. Minimal example of sensor API server in Flask

import json

import typing as t

import wsgiref.simple_server

from flask import Flask

from apd.sensors.cli import get_sensors

app = Flask(__name__)

@app.route("/sensors/")

def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]:

 headers = {"Content-Security-Policy": "default-src 'none'"}

 data = {}

 for sensor in get_sensors():

 data[sensor.title] = sensor.value()

 return data, 200, headers

if __name__ == "__main__":

 with wsgiref.simple_server.make_server("", 8000, app) as server:

 server.serve_forever()

If we weren’t setting any explicit header values, we could simplify the sensor_values()

function even further, returning just the dictionary of data.4 Flask automatically handles

4 Flask provides type annotations, so some errors in defining this function would be caught
by mypy. For example, if you want to provide a status, it must be an integer. Returning
t.Tuple[t.Dict, str] would result in a type checking error.

Chapter 5 alternative interfaCes

195

converting dictionaries returned by view functions to their JSON representation, as well as

encoding the string and setting the appropriate Content-Type header.

The biggest difference that this WSGI endpoint has over the basic one we created

by hand is that this one returns different things depending on URL. Our original

implementation did not check for a particular URL and always returned the values

of the sensors. The new implementation will return 404 for any URL except /sensors/

(and /sensors, which will be redirected to /sensors/).

To test this new Flask version, we need to import the name app rather than

sensor_values(), as sensor_values() has become an implementation detail and

app is the actual WSGI endpoint. Also, if we hadn’t done so before, we would have to

make sure that we made a GET request to the correct URL.

DISPATCHING FUNCTIONS ON THE WEB

in Chapter 2, we discussed the concept of dynamic dispatch, where functions are looked up

through the class they’re called on at runtime. so, the @app.route(...) decorator we’re

using has an implicit first argument of app, allowing the decorator to register the function

being decorated as a known route on the app object.

WsGi applications have the same function called with the same environ and request types,

no matter what the request. it’s up to that function to determine what code is responsible for

responding to that request.

the app object has a set of registered view functions to pick between. these are usually

annotated with conditions, such as a specific regular expression to match for Urls; whether

the request was a Get, a pOst, a Delete, and so on; and even complex conditions like

permission lookups or accept headers.

it’s the responsibility of the framework to determine which of the user-supplied functions

should be called for a given web request. as this allows single functions to be mapped to

Urls, this makes the process of writing code for the Web easier to manage than the WsGi

default of a single function that does all the work.

the pyramid web framework takes this to an extreme with its predicate system, allowing any

arbitrary conditions to be associated with a view function. it allows for different functions to be

responsible for a given Url based on any arbitrary condition and is a very powerful feature.

Chapter 5 alternative interfaCes

196

 Python decorators
Before we’re able to call this API production-ready, we need to implement the access

control that we discussed. We can implement this by using a decorator, just as Flask

annotates a function with the URL pattern it is associated with using the route decorator.

A decorator is a Python function that takes a single callable or class as an argument

and returns the same type of argument which it was passed.5 The decorator pattern

allows users to write custom function prologues or epilogues – code which is run before

or after the main body of the function. You have no access to the function’s internal

variables, just the inputs and outputs, but this is enough to add additional error checking

on the inputs or transformations on the output. In addition, some decorator function

code runs at the time the function is defined, which can be used to set up metadata

(such as URL routing) at the time the application starts.

It is possible to accomplish many of the things that decorators do by calling a

utility function at the start or end of the function body; decorators are very much a

convenience feature. Python developers generally prefer to write decorators as they are

seen as more idiomatic of the language, but they also have a few real advantages.

Using a utility function to do the work of a decorator means that the function being

manipulated needs to have some conditional logic added to handle the various utility

function results. Table 5-1 shows an example of a utility function and a decorator to make

a function return 0 if any of its arguments are negative. The has_negative_arguments(...)

function determines if the case we’re looking to disallow applies, but the code to handle

that case has to be added to the power(...) function itself.

5 Technically, any value can be returned, but it is very confusing to end users to return something
that doesn’t have a compatible call signature.

Chapter 5 alternative interfaCes

197

The decorator approach places the condition inside the decorator, along with the test.

This approach means the decorator is entirely self-contained; functions that want to use it

are not required to include any logic beyond that needed for their own implementation.

There is no difference in behavior between the two implementations; however, the

decorator version moves all the complexity to the decorator definition itself, leaving the

user function free. Generally, decorators are used by multiple functions, so this pattern

allows for clean, easily understood code.

 Closures

Decorators rely on a language feature called closures, which are a somewhat complex

consequence of variable scoping. In Python, when a function uses internal variables,

those variables are only available by name inside that function: although their value

may be returned, the binding of the internal name of that variable is lost when execution

passes from the function.

def example(x, y):

 a = x + y

 b = x * y

 c = b * a

 print(f"a: {a}, b: {b}, c: {c}")

 return c

Table 5-1. A helper function and a decorator approach to validating arguments

Helper function approach

def has_negative_arguments(*args):

 for arg in args:

 if arg < 0:

 return True

 return False

def power(x, y):

 if has_negative_arguments(x, y):

 return 0

 return x ** y

Decorator approach

def disallow_negative(func):

 def inner(*args):

 for arg in args:

 if arg < 0:

 return 0

 return func(*args)

 return inner

@disallow_negative

def power(x, y):

 return x ** y

Chapter 5 alternative interfaCes

198

>>> result = example(1, 2)

a: 3, b: 2, c: 6

>>> print(result)

6

During the execution of the example(...) function, the variables x and y are the

parameters that were passed to the function. The variables a, b, and c get defined

progressively as the execution continues. Once execution passes back through the return

function to the containing scope, all these variable associations are lost. Only the value

that was once associated with c is kept, which is then stored in the result variable of the

containing scope.

However, if we’d defined a function within this function and returned that, then

that inner function must still have access to all the variables it needs to execute. The

interpreter will not disassociate these variables as long as they’re still required. Any

variables defined in the outer function scope that are used by the inner function will pass

their associations down into this new function,6 and the variables stay available to that

inner function, but not any other functions. This inner function is called a closure.

def example(x, y):

 a = x + y

 b = x * y

 c = b * a

 print(f"a: {a}, b: {b}, c: {c}")

 def get_value_of_c():

 print(f"Returning c: {c}")

 return c

 return get_value_of_c

>>> getter = example(1, 2)

a: 3, b: 2, c: 6

6 The associations of this function are stored as attributes on the function and its code object. The
names of the values are stored as inner_function.__code__.co_freevars and their values are
stored as cell objects on inner_function.__closure__, which themselves have a cell_contents
attribute. The name “freevars” refers to “free variables” – variables that are used in a scope but
not defined in it. You never need to look at these for anything other than curiosity about how the
Python interpreter works.

Chapter 5 alternative interfaCes

199

>>> print(getter)

<function example.<locals>.get_value_of_c at 0x034F96F0>

>>> print(getter())

Returning c: 6

6

In this example, the variable c is associated with the get_value_of_c() function, so

that it can be returned when the function is called. When we call the get_value_of_c()

function, it has access to the variable c from the example, but not the variables a or b as it

doesn’t use them.

Modifying variables in parent scopes

It’s possible to go even further than this and write complex sets of functions that operate

on variables in their containing scope, potentially changing their values. I can’t think of

any time I’ve needed this functionality, but it is helpful to understand how the variable

scoping works.

To achieve this, we need to use the nonlocal keyword. While Python can infer that

a variable should be pulled from the containing scope if its value is used, it cannot infer

if setting a variable is an attempt to modify the outer variable or create a new one. The

assumption would be that you were creating a new variable that shadowed the outer

one,7 in just the same way that functions could shadow names available in their module’s

global scope.

Toy example of a pair of functions that operate on a variable they share through closures.

def private_variable():

 value = None

 def set(new_value):

 nonlocal value

 value = new_value

 def get():

 return value

 return set, get

7 Shadowing is the name given to defining a new variable with the same name as something else
that’s accessible. For example, list = [1, 2,3] shadows the built-in list type, making it
impossible to use list(...) in that scope.

Chapter 5 alternative interfaCes

200

>>> a_set, a_get = private_variable()

>>> b_set, b_get = private_variable()

>>> print(a_get, a_set)

<function private_variable.<locals>.get at 0x034F98E8>

<function private_variable.<locals>.set at 0x034F9660>

>>> print(b_get, b_set)

<function private_variable.<locals>.get at 0x034F9858>

<function private_variable.<locals>.set at 0x034F97C8>

>>> a_set(10)

>>> print(f"a={a_get()} b={b_get()}")

a=10 b=None

>>> b_set(4)

>>> print(f"a={a_get()} b={b_get()}")

a=10 b=4

This demonstrates that it’s possible to write a function that contains a function and

that inner function can use data defined in the outer function. Decorators take this one

step further, by having the data that’s shared between the outer and inner functions be a

third function, the one being extended.

 Basic decorators

The simplest possible decorator function is one that has no effect on the function that it

is decorating. This is demonstrated as Listing 5-6. In this example, the function outer()

takes a user function as the argument func= and returns a function called inner(...)

as its result. This makes @outer a decorator function whose behavior is defined by

inner(...). The function inner is a closure, so it has access to the func= argument of the

outer(...) function. This variable is the original function, so inner(...) can call it with

the same arguments it received and return its result to delegate to the function being

decorated.

Chapter 5 alternative interfaCes

201

Listing 5-6. A decorator that does nothing but prints the variables it uses

internally

def outer(func):

 print(f"Decorating {func}")

 def inner(*args, **kwargs):

 print(f"Calling {func}(*{args}, **{kwargs})")

 value = func(*args, **kwargs)

 print(f"Returning {value}")

 return value

 return inner

@outer

def add_five(num):

 return num+5

The line Decorating <function add_five at 0x034F9930> is printed as soon

as this code is interpreted. If it’s stored as a module, it would be shown as soon as the

module is imported. This demonstrates that the contents of the outer(...) function in a

decorator are run when a function is parsed, not when it’s executed.

If we use this in an interactive session, we can see that the add_five(...) function

has been replaced by inner, but it still works the same way, albeit with the additional

printing.

>>> print(add_five)

<function outer.<locals>.inner at 0x034F9A50>

>>> add_five(1)

Calling <function add_five at 0x034F9930>(*(1,), **{})

Returning 6

6

The inner function uses *args, **kwargs as its arguments to accept any number

of arguments and passes them on to func. The decorator we’ve written here does

not change the arguments, so the function signatures of inner and func need to be

compatible. If inner(...) defined arguments that were different to func’s, then this

decorator couldn’t be used.

Chapter 5 alternative interfaCes

202

Tip Often the wrapper function needs to access at least one argument that’s
passed to the inner function, but pass them through unchanged. in this case i’d
recommend trying to match the function arguments precisely, rather than trying
to extract the value from *args or **kwargs. this avoids any bugs introduced in
finding the right value from args or kwargs.

Sometimes we want to create a decorator that manipulates the arguments, for

example, to fill in one or more arguments without the caller needing to pass them or

to drop one or more arguments that the underlying function doesn’t expect. In this

way, decorators can be used to change a function signature. Being able to change the

signature allows us to write decorators to simplify an API for programmers while still

matching a more complex signature for other parts of the application.

For example, the sorted(...) standard library function used to have an optional

cmp= argument as well as a key= argument. The cmp= argument was removed in Python 3,

so old code being ported to Python 3 sometimes needs to be updated.

The two approaches are quite different; it’s not easy to convert code written as a

cmp function to an equivalent key function. The functools module in the standard

library includes a cmp_to_key function that can be used as a decorator and performs this

conversion.

 Decorators with arguments

There is one more common form of decorators, one which adds yet another nested

function to the mix. This form is by far the most confusing to see written out but is a

logical consequence of the code that we’ve seen so far. This last form is a decorator that

takes immediate arguments.

The syntax for using a decorator is adding @decorator on the line above a function

or a class, which is equivalent to adding the line function = decorator(function) after

the function has been defined.

When using a decorator that takes arguments, the format for supplying

those arguments is @decorator(arg), which could be rewritten as function =

decorator(arg)(function). That is, the decorator function is no longer decorator(...)

itself, but the return value of decorator(arg). An example is shown as Listing 5-7.

Chapter 5 alternative interfaCes

203

Listing 5-7. A simple decorator that takes an argument

def add_integer_to_all_arguments(offset):

 def decorator(func):

 def inner(*args):

 args = [arg + offset for arg in args]

 return func(*args)

 return inner

 return decorator

@add_integer_to_all_arguments(10)

def power(x, y):

 return x ** y

@add_integer_to_all_arguments(3)

def add(x, y):

 return x + y

These decorated functions have an offset added to all arguments, but the offset is

different in each case as the decorator’s parameter defines the offset.

>>> print(power)

<function add_integer_to_all_arguments.<locals>.decorator.<locals>.inner at

0x00B0CBB8>

>>> power(0, 0)

10000000000

>>> print(add)

<function add_integer_to_all_arguments.<locals>.decorator.<locals>.inner at

0x00B0CC48>

>>> add(0,0)

6

Chapter 5 alternative interfaCes

204

Tip there is a decorator that helps with the writing of user-friendly decorators.
Decorating the inner function with @functools.wraps(func) ensures that if
a user tries to view the documentation, help, or even the name of the decorated
function, they see the same information as an undecorated version of that same
function.

if we had used this decorator on the inner(...) function earlier, the terminal
session would have looked as follows:

>>> print(power)

<function power at 0x00B0CCD8>

>>> power(0, 0)

10000000000

>>> print(add)

<function add at 0x00B0CB70>

>>> add(0,0)

6

Nesting three functions can be a difficult thing to keep straight in your head,

especially as there are two levels of closure, one providing the offset variable and the

other providing func. This syntax is the kind of confusing nested logic that is generally

a good idea to avoid. On the rare occasions that such a decorator is needed, it’s quite

common for developers to remind themselves of the correct syntax by consulting

documentation.

An alternative to triple-nested functions is to use a class-based decorator

(Listing 5-8), which looks a lot more like standard Python, so it is easier to understand

from a glance. This works because a class defines an __init__(...) function to accept

parameters on instantiation and can provide a __call__(...) method to allow the class

to be called directly, like a function. It follows the same pattern as the private variable

example earlier in this chapter; it’s bad practice to use a closure just to store a variable

for a long period before a function uses it. A class instance is a better fit for this.

Chapter 5 alternative interfaCes

205

Listing 5-8. A class-based version of an offset decorator

class add_integer_to_all_arguments:

 def __init__(self, offset):

 self.offset = offset

 def __call__(self, func):

 def inner(*args):

 args = [arg + self.offset for arg in args]

 return func(*args)

 return inner

The class-based decorator and the multiply-nested function–based decorators are

functionally equivalent; but I find the class-based approach to be more natural and

easier to remember.

 Decorator-based security

Now we’ve looked at how decorators work; we can apply this to checking for authorized

API access in our functions. Flask view functions do not expect arguments; the HTTP

request data is stored on a global variable, so the decorator that we write doesn’t need

to process any arguments. We don’t have to worry about matching the arguments to the

function as very few Flask view functions take arguments.

We do need to ensure that the return value of the function is allowed by the type

annotations, though. Flask supports quite a few different ways of returning a response

from a view function. The body of a response can be returned as a string or as a

dictionary in the case of a JSON response. The function can return either the body or a

(body, status) tuple, or (body, headers), or (body, status, headers), and many

more. This flexibility makes typing more complex.8

A typed decorator for a flask view that doesn’t do anything is shown as Listing 5-9. This

is a generic function, in the same way that we defined Sensor to be a generic class. The

decorator @outer takes as an argument a function that needs no arguments and returns

something. The return value of the decorator is a function that takes no arguments and

returns the same thing as the argument function.

8 These are still a matter of personal taste; use them if you find them useful. As this function isn’t
part of a public API, there is no additional benefit to users of the code, just those maintaining it.

Chapter 5 alternative interfaCes

206

Listing 5-9. A decorator for a flask function

import functools

import typing as t

ViewFuncReturn = t.TypeVar("ViewFuncReturn")

def outer(func: t.Callable[[], ViewFuncReturn]) -> t.Callable[[],

ViewFuncReturn]:

 @functools.wraps(func)

 def wrapped() -> ViewFuncReturn:

 return func()

 return wrapped

The ViewFuncReturn type variable is the placeholder for the return value of the

function being decorated. If that function is declared to return a string, then the

dictionary would be seen as equivalent to

def outer(func: t.Callable[[], str]) -> t.Callable[[], str]:

 @functools.wraps(func)

 def wrapped() -> str:

 return func()

 return wrapped

If the same function were decorating a view that returned a tuple of (dict, int),

then the decorator would match that instead.

We want to create a decorator that checks for the user being authenticated. The

code for this is given as Listing 5-10. If the user is authenticated, we want to use the

function as normal. If they aren’t, then the decorator should return an error value. The

appropriate error would be a JSON document with the error details and the status 403

Forbidden. Therefore, the wrapper function must be declared to return either whatever

the underlying function would return or t.Tuple[t.Dict[str, str], int].

Chapter 5 alternative interfaCes

207

Listing 5-10. Authentication decorator for flask API methods

from hmac import compare_digest

import functools

import os

import typing as t

import flask

ViewFuncReturn = t.TypeVar("ViewFuncReturn")

ErrorReturn = t.Tuple[t.Dict[str, str], int] # The type of response we

generate as an error

def require_api_key(

 func: t.Callable[[], ViewFuncReturn]

) -> t.Callable[[], t.Union[ViewFuncReturn, ErrorReturn]]:

 """ Check for the valid API key and return an error if missing. """

 api_key = os.environ.get["APD_SENSORS_API_KEY"]

 @functools.wraps(func)

 def wrapped(*args, **kwargs) -> t.Union[ViewFuncReturn, ErrorReturn]:

 """ Extract the API key from the inbound request and return an

error if no match """

 headers = flask.request.headers

 supplied_key = headers.get("X-API-Key", "")

 if not compare_digest(api_key, supplied_key):

 return {"error": "Supply API key in X-API-Key header"}, 403

 # Return the value of the underlying view

 return func(*args, **kwargs)

 return wrapped

The upshot of this is that the require_api_key decorator changes the function it

decorates to return either the same type of data that func returns9 or a tuple containing a

string-to-string dictionary and an integer.

9 Note, this doesn’t guarantee that it’s the same data, just the same type.

Chapter 5 alternative interfaCes

208

The way the function implements the permission check is as follows. To start

with, we extract the API key we’re looking for from the environment, under the name

APD_SENSORS_API_KEY. There is no fallback to a default value here, and this part of the

decorator code is executed at startup, so if the API key isn’t set, the program fails with a

KeyError.

Next, there is the function definition that wraps the original func() function, called

wrapped(). This wrapping function is what’s defined as returning either ViewFuncReturn

or ErrorReturn.

EXERCISE 5-1: TYPING

the type definitions in this section are very complex; it can be hard to understand what is

happening. i recommend you try writing some simple functions and checking them with mypy

to get an intuitive understanding of what’s happening here.

You could start with the base program in listing 5-11 and experiment with changing the type

of the hello() function, the ErrorReturn type and whether or not the hello function has

the @result_or_number decorator. this may be an easier start, as the return types are

much simpler than those of the actual flask functions.

Listing 5-11. Sample file for experimenting with decorator typing

import functools
import random
import typing as t

ViewFuncReturn = t.TypeVar("ViewFuncReturn")
ErrorReturn = int

def result_or_number(
 func: t.Callable[[], ViewFuncReturn]
) -> t.Callable[[], t.Union[ViewFuncReturn, ErrorReturn]]:

 @functools.wraps(func)
 def wrapped() -> t.Union[ViewFuncReturn, ErrorReturn]:

 pass_through = random.choice([True, False])
 if pass_through:
 return func()

Chapter 5 alternative interfaCes

209

 else:
 return random.randint(0, 100)

 return wrapped

@result_or_number
def hello() -> str:
 return "Hello!"

if t.TYPE_CHECKING:
 reveal_type(hello)
else:
 print(hello())

The body of this wrapped function is where the actual work takes place. The supplied

API key is read from the flask request headers, which are accessed as global state

within the flask framework, hence why there is no request argument involved in these

functions. The key supplied by the request is read from the X-API-Key header, with a

default value of an empty string if no header is supplied.

The empty string default is there because in the next line a call to compare_digest

is used to compare the received and expected API keys. This is a string comparison

function that is suitable for comparing authentication strings of known lengths, such as

HMAC digests.10 There is a theoretical chance that using standard comparison could leak

information about the correct API key through how long it takes the error to be returned,

so it’s best practice to use a constant-time comparison. This compare_digest function

can still leak information about the length of the secret string. Although that is not a

serious concern in this case, it’s such a simple problem to fix that there’s no reason not

to use a secure comparison function.

Finally, depending on the result of the compare_digest function, we either delegate

to the original function or return the stock error response.

Sensor endpoint code

@app.route("/sensors/")

@require_api_key

def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]:

10 HMAC digests are a cryptographic hash used for authenticating data against a shared secret key.
They are almost impossible to forge, so they are often used in authentication systems.

Chapter 5 alternative interfaCes

210

 headers = {"Content-Security-Policy": "default-src 'none'"}

 data = {}

 for sensor in get_sensors():

 data[sensor.title] = sensor.value()

 return data, 200, headers

Here, the sensor view function we created earlier is decorated with our new

@require_api_key decorator, and API key checks will happen automatically. It is

important to note that the decorators here are ordered; they are applied from bottom to

top, where the output of the bottom decorator becomes the input to the one above.

def sensor_values():

 ...

sensor_values = app.route("/sensors/")(require_api_key(sensor_values))

The app.route(...) decorator is what associates the function with the flask URL

routing system. It’s the function it decorates that is associated with the URL; the function

isn’t looked up at runtime. While this difference might sound academic, it means that

only decorators below the app.route(...) decorator will be applied to the function that

is available on the Web.

If these decorators were applied in the opposite order, there would be no API key

validation on this view. This is where we return to functional testing; calling the function

directly from a unittest does not find it through the flask view registry and could make

the programmer think that the view was correctly protected. It is important to test

security features end to end, not just in isolation.

 Testing the view function
We already have a basic test to see if the sensor data is returned over an API request

using the WebTest framework, but we’ve broken this test by adding the API key validator.

If no API key is set in your environment and you run pipenv run pytest, then the test

fails with a KeyError. If you have set an API key in your local environment, then it fails

with a Forbidden error.

We’ve made a slight error in judgment in our decorator function when it comes to

testability. As mentioned, the expected API key is loaded at import time, which has the

nice side effect of causing an error on startup if the API key isn’t set. However, import

time data loading can make testing code harder. We want to run tests with a known

Chapter 5 alternative interfaCes

211

API key setup, but to do this, we need to ensure that the key is set into the environment

before the first time the module containing the view functions is imported.

Flask provides a config attribute on the application that can be used to store

configuration data, which is a much more sensible place to store the expected API key than

within a decorator closure. This way, the configuration data can still be loaded when the

web server starts, or the test framework can provide it for any test-specific configuration.

Flask assumes configuration data is loaded from a Python file, which might tempt us

to change the configuration system of the apd.sensors package to the same pattern, but

as we only need to add one configuration variable, we’ll stick to the existing environment

variable pattern here.

The best approach is to create a setup function that populates the Flask configuration

with information from the environment. The check for the API key configuration variable

happens here explicitly, as we’ve had to remove the check for os.environ inside the

decorator to support testing. An explicit check is usually easier to understand than an

implicit requirement causing a KeyError, which should help reassure us that this is a

better approach. Without an explicit check here, the API key would not be checked until

the first time a protected view was loaded.

Setup function

REQUIRED_CONFIG_KEYS = {"APD_SENSORS_API_KEY"}

def set_up_config(environ: t.Optional[t.Dict[str, str]] = None) -> flask.

Flask:

 if environ is None:

 environ = dict(os.environ)

 missing_keys = REQUIRED_CONFIG_KEYS - environ.keys()

 if missing_keys:

 raise ValueError("Missing config variables: {}".format(",

".join(missing_keys)))

 app.config.from_mapping(environ)

 return app

Note the REQUIRED_CONFIG_KEYS variable here is set to a set literal, not a dict
literal. set literals look very similar to dictionary literals, as do set comprehensions
and dictionary comprehensions. the difference is the lack of :value.

Chapter 5 alternative interfaCes

212

The test setup can then be modified to call this setup function with the appropriate

testing configuration values. We create a new fixture to provide the testing API key, which

can be hard-coded or random,11 then change the subject fixture to depend on this API

key fixture and pass its value in as explicit settings.

import pytest

from webtest import TestApp

from apd.sensors.wsgi import app, set_up_config

from apd.sensors.sensors import PythonVersion

@pytest.fixture

def api_key():

 return "Test API Key"

@pytest.fixture

def subject(api_key):

 set_up_config({"APD_SENSORS_API_KEY": api_key})

 return app

@pytest.fixture

def api_server(subject):

 return TestApp(subject)

The individual tests will either need to depend on the api_key fixture if they’re

testing the behavior of authorized access or to use the expect_errors option of the

WebTest framework to allow checking of error responses, rather than needing to

surround the get request with a try/except block.

Example tests for the API endpoint

@pytest.mark.functional

def test_sensor_values_fails_on_missing_api_key(api_server):

 response = api_server.get("/sensors/", expect_errors=True)

 assert response.status_code == 403

 assert response.json["error"] == "Supply API key in X-API-Key header"

11 If the API key were generated randomly, we’d also have to ensure that the subject fixture gets
the same value as the individual test methods. This is done in pytest with fixture scoping and is
explained in Chapter 11 of this book.

Chapter 5 alternative interfaCes

213

@pytest.mark.functional

def test_sensor_values_returned_as_json(api_server, api_key):

 value = api_server.get("/sensors/", headers={"X-API-Key": api_key}).json

 python_version = PythonVersion().value()

 sensor_names = value.keys()

 assert "Python Version" in sensor_names

 assert value["Python Version"] == list(python_version)

These tests verify that the API server is working as intended, so at this stage, it’s

safe to cut a new release of the apd.sensors package, one that documents this new API

server so that we can install it on our Raspberry Pi servers.

The new release adds a new feature without breaking backward compatibility, which

once again means we increment the minor version number, making the first release that

supports web API access 1.3.0.

 Deployment
We now have a working API endpoint that we can serve locally as a test using python

-m apd.sensors.wsgi, or we can serve it through a production-quality WSGI server

such as Waitress. To do this, we’d need to install Waitress and give it a reference to the

WSGI app we want to run. Many other WSGI servers are available, such as mod_wsgi,

which has tight integration with Apache; Gunicorn, which is a stand-alone application

with good control over performance; Circus and Chaussette, which include process

management and fine-grained control over workers; and uWSGI, which has a reputation

for good performance.

We are using Waitress, as it has a simple interface and is implemented in pure Python

with no compiled extensions, so it is installable on a wide range of operating systems.

> pipenv install waitress

> pipenv run waitress-serve --call apd.sensors.wsgi:set_up_config

The API web service is served by default on port 8080, but it can be configured with

any port or a UNIX socket. If it is intended to be run on a machine that is accessible

over the Internet rather than on a local network, you should consider setting up a TLS

termination reverse proxy such as apache, nginx, or HAProxy for your deployments.

The modern Web is encrypted by default, and users expect to access services over a secure

Chapter 5 alternative interfaCes

214

connection only. Luckily, there are multiple ways to obtain a free TLS certificate for your

domains. LetsEncrypt and AWS Certificate Manager are perhaps the most common.

In the preceding example, the apd.sensors.wsgi:set_up_config is being addressed

with the same dotted path and then colon syntax that we used in our command-line

argument and for defining entrypoints. I’ve pointed it to the set_up_config(...)

function, which is not itself a WSGI callable. This is possible thanks to the --call option,

which means that the target is not a WSGI application but is a WSGI application factory:

a callable that returns a configured WSGI application.

Our flask application is instantiated at module scope; we could refer to it directly

with pipenv run waitress-serve apd.sensors.wsgi:app, but this would not work

as expected as the configuration variables would not have been set. By returning the

module-scope app object from our set_up_config function, we make it act like a factory

and ensure that the configuration variables are loaded.

The set_up_config(...) function modifies globally scoped values like app, rather

than returning a stand-alone application, so it is not a true factory. However, as its

signature is the same and we only need one app at a time, we can abuse the feature.

It’s also common for users to write a custom wsgi.py file that sets up their WSGI

application, potentially wrapping it in any middlewares that provide extra functionality.

If we were to do this for this API server, it would look like

wsgi.py

from apd.sensors.wsgi import set_up_config

app = set_up_config()

Starting the server

> pipenv run waitress-serve wsgi:app

 Extending software as a third party
Nothing that we have done in this chapter involves changing the API of the apd.sensors

package, so the API server we created in the core package could equally have been

created by someone other than the core maintainer of the software. Anyone could

have written a WSGI server to expose sensor values and created a new package, say

apd.apiserver, that loaded the sensors and provided an API endpoint to query their values.

Chapter 5 alternative interfaCes

215

Note the following section, up to the “fixing the serialization problem in our
code” heading, will consider the experience that other developers would have
trying to extend our code and the tools they could use. after this, we will return to
improvements we can make ourselves.

However, there are times when we do need to change the interface to extend a piece

of software. If we look back at our Temperature sensor, we made a decision early on that

made JSON serialization trivial. The value function returns a float, which represents

the temperature in degrees centigrade. JSON can serialize integers, strings, lists, and

dictionaries, but it cannot serialize datetimes or custom objects. There is a package

called pint that has dedicated representations of physical constants which we might have

chosen to use instead,12 in which case the value of the temperature sensor would not

have been serializable.

Pint doesn’t declare support type annotations, as its use of metaclasses and

on- the- fly construction of types from data files make it hard to provide a useful set of

types to expose to end-users. The developer of pint has understandably chosen to focus

on flexibility for end-users in terms of being able to control the sets of units, rather than

optimizing for type checking.

Sensor that uses pint values as its return type

import os

from typing import Optional, Any

import pint

ureg = pint.UnitRegistry()

12 In fact, if I hadn’t been writing the code with the idea that I’d soon be adding JSON support, I
would have done so. I often use Pint and the Python REPL or Jupyter as a calculator for lengths,
areas, and electrical values, such as calculating the correct resistor to use in a circuit:

>>> import pint
>>> ureg = pint.UnitRegistry()
>>> Vs = 3.3 * ureg.volt
>>> Vf = 1.85 * ureg.volt
>>> I = 20 * ureg.milliamp
>>> R = (Vs - Vf) / I
>>> print(R.to(ureg.ohm))
72.49999999999999 ohm

Chapter 5 alternative interfaCes

216

class Temperature(Sensor[Optional[Any]]):

 title = "Ambient Temperature"

 def __init__(self, board=None, pin=None):

 self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD", "DHT22")

 self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D4")

 def value(self) -> Optional[Any]:

 try:

 import adafruit_dht

 import board

 sensor_type = getattr(adafruit_dht, self.board)

 pin = getattr(board, self.pin)

 except (ImportError, NotImplementedError, AttributeError):

 # No DHT library results in an ImportError.

 # Running on an unknown platform results in a

 # NotImplementedError when getting the pin

 return None

 try:

 return ureg.Quantity(sensor_type(pin).temperature, ureg.celsius)

 except RuntimeError:

 return None

 @classmethod

 def format(cls, value: Optional[Any]) -> str:

 if value is None:

 return "Unknown"

 else:

 return "{:.3~P} ({:.3~P})".format(value, value.to(ureg.fahrenheit))

 def __str__(self) -> str:

 return self.format(self.value())

As pint does not declare support for type checking, these functions are defined as

returning Any, meaning they cannot be easily type-checked. We also need to add pint

to setup.cfg as an ignored module when it comes to searching for type definitions to

silence the warnings that it cannot be found:

Chapter 5 alternative interfaCes

217

Code to add to setup.cfg

[mypy-pint]

ignore_missing_imports = True

METACLASSES

i mentioned earlier that pint uses metaclasses and on-the-fly type construction. these are

somewhat related techniques: they are both ways of customizing the behavior of classes

themselves, not just their instances. in pint, these methods are used to add an additional hook,

after_init(...), which is automatically called after the __init__(...) function and to

create unlimited numbers of subclasses of some built-in types that reference different class

variables.

some readers of this book will be expecting expansive discussion on the use of metaclasses,

seeing them as the epitome of an advanced python feature. i have decided to omit them as

this book is aimed at explaining features that a professional python programmer would benefit

from being able to employ.

i have never had cause to create a metaclass in all my time as a python developer or to

explicitly use one in a class that i’m writing. i do use them implicitly through base classes

regularly. While only a tiny proportion of python developers ever need to create a metaclass,

most developers interact with metaclasses without ever knowing.

the python standard library module enum and the OrM sQlalchemy are the best examples of

good metaclass use that i know of. Both make extensive use of metaclasses, but the skill of

their respective developers has kept a very intuitive interface, at the expense of the readability

of their own implementations. if you’re doing metaclasses right, the users will never even

know they’re there.

Most advice on metaclasses says that you do not need to use metaclasses unless you know

that you need them. this is somewhat circular, so refer to figure 5-3 for the decision tree i

would use when deciding if i need to use metaclasses.

Chapter 5 alternative interfaCes

218

this is not exhaustive, just my opinion as to when to consider metaclasses. there may be

other situations where they are the appropriate solution, but in general, i would consider

them only for declaratively exposing the structure of user data to a framework. Most other

uses of metaclasses can be expressed more intuitively as standard python. it’s my strong

recommendation to prioritize writing code that is understandable at a glance over clever code.

The first substantive difference between the float and pint-based implementations

comes in the value() function, which takes the floating-point representation of the

temperature and marks it as a Quantity of degrees Celsius. In the same way that

dynamic dispatch allows the addition of integers and strings to behave differently, it

Figure 5-3. Decision tree for deciding whether to use metaclasses

Chapter 5 alternative interfaCes

219

allows the developer to forget about the exact type of temperature units being used and

treat all temperatures the same.

Imagine for a moment that we also had a single temperature sensor that was

connected to a smart home thermostat which could return its temperature only in degrees

Fahrenheit. It’s quite possible that we would want to display the difference between each

of our temperature sensors and this central sensor. If we were using floating-point units,

we would have to either normalize all the temperature sensors to the same unit system at

the time the data is collected or else use external knowledge that some readings are using

a different temperature scale when doing reporting. Pint allows us to seamlessly work with

numbers from different measurement systems without needing explicit conversion.

We can see this used in the format(...) method,, where instead of calling a custom

class method to convert Celsius to Fahrenheit, we use a conversion feature of pint itself.

cls.celsius_to_fahrenheit(value) becomes value.to(ureg.fahrenheit), thereby

splitting the logic into collection and formatting. In the original form, the format method

requires that its value is degrees Celsius; in the latter form, it can defer to the value itself

to know what conversion is required if any.

{:.3~P} FORMAT SPECIFICATION

the "{}".format(value) style formatting in python allows for the type of the value

function to define its own formatting specification. there is no .3~P specification built-in to

python: this is supplied by pint.

the __format__(self, spec) method allows classes to define their own formatting rules.

pint provides L, H, and p formatters for lateX, htMl, and prettyprint, respectively, with an

optional ~ to use abbreviated unit names and the standard float formatting options to specify

the magnitude portion.

any class you write can provide these too, so our sensors could have defined a

__format__(...) method to provide different formatting options if it was relevant.

in general, this feature is only useful for projects like pint that provide complex data

storage classes for the use of other programmers.

Chapter 5 alternative interfaCes

220

All of these advantages come at a price, however. When we try to access the JSON API,

we see a HTTP error 500 page, and in the logs of the web server, we get a traceback ending in

TypeError: Object of type Quantity is not JSON serializable

In our desire to make the value() method more flexible, we’ve broken an implicit

assumption that we made in the flask application: that the result of that value() function

can be JSON serialized. At no point did we write in the documentation of any previous

versions that the value method may only return types that are JSON serializable. There’s

no guarantee that other users of our software haven’t done something similar using the

plugin architecture, so without realizing it, we’ve broken the semantic versioning policy.

We should have created a new pair of methods to convert between the value the

sensor returns and a JSON-serializable representation, making the Sensor class look like

Updated Sensor type to include JSON serialization

class Sensor(Generic[T_value]):

 title: str

 def value(self) -> T_value:

 raise NotImplementedError

 @classmethod

 def format(cls, value: T_value) -> str:

 raise NotImplementedError

 def __str__(self) -> str:

 return self.format(self.value())

 @classmethod

 def to_json_compatible(cls, value: T_value) -> t.Any:

 return json.dumps(value)

 @classmethod

 def from_json_compatible(cls, json_version: t.Any) -> T_value:

 return json.loads(value)

The pair of to_json_compatible(...) and from_json_compatible(...) methods

are responsible for converting a value to a representation that can be serialized and back

again. They are class methods because, like format(...), they operate on values without

Chapter 5 alternative interfaCes

221

needing an active sensor of that type to be available. These methods push the user

toward returning a JSON structure, which fits in well with our API output.

This update to API could be made as part of the standard Sensor class, or a subclass

could be created (such as SerializableSensor13) which allows users to choose to

implement only the older variant of the sensor API if they so choose.

However, at the start of this section, we decided to consider what would happen if

we’d created this API server as a third-party piece of software, with no access to change

the form of the Sensor type. As such, we cannot simply decide to change the Sensor

interface: if we were in this situation in real life, it would be in a package we don’t

control, and other people would be implementing that interface.

 Agreeing on an ad hoc signature with peers
As a developer looking to extend an interface in code you don’t maintain, the first thing

to decide is what functions you feel are missing from the interface as defined by the

originator of the software. As an end-user, you can add whatever functions you like to

your subclasses, but you cannot easily dictate to the other authors of classes that they

should implement the same functions.

When deciding which functions to add to an interface, you should choose functions

that other developers are likely to consider useful. If you pick functions that are both

easy to implement and generally useful, it is much more likely that other class authors

would choose to implement them. If you pick very specific methods, then they might

decide that it’s not worth the effort.

As such, to_json_compatible(...) and from_json_compatible(...), despite being

what we’d pick as the maintainer of the software, might be seen as too specific by other

developers. I think a pair of serialize(...) and deserialize(...) methods would be

more likely to be implemented.

We could write our flask function to iterate over the sensors and use the

serialize(...) method if possible, falling back to the value otherwise. We can assume

that a sensor’s serialize(...) method does not raise any exceptions when passed

valid data, but we know that not all sensors will have this method and json.dumps(...)

will fail with some sensor data, so we also need to fall back through three methods for

serializing the value.

13 Like authorization, the word serialize is traditionally spelled using US English conventions in
APIs, so with a z rather than an s.

Chapter 5 alternative interfaCes

222

First, we get the value from the sensor and pass it to the serialize(...) method. If

this fails with an AttributeError, then there is likely no serialize(...) method, so try

again with json.dumps(...). If this fails with a TypeError, then we cannot serialize this

sensor and should return a placeholder.

An example of how to progressively support a serialize(...) method:

for sensor in get_sensors():

 raw_value = sensor.value()

 try:

 value = {"serialized": sensor.serialize(raw_value)}

 except AttributeError:

 try:

 value = {"serialized": json.dumps(raw_value)}

 except TypeError:

 value = {"error": f"Cannot serialize value {raw_value}"}

 data[sensor.title] = value

This will allow all existing sensors to continue to operate without any code changes so

long as their value is JSON serializable, returning an error if not. Any sensor that implements

a serialize(...) method will have the result of that method returned instead.

This case of two nested try/except statements is somewhat ugly but functional. In

other programming languages, you might implement the same logic by checking for

the existence of a serialize(...) method, rather than trying to call it. In Python, it’s

preferred to try and invoke methods and catch errors than to check if they are present;

however, there are times when checking is the best option.

The preceding example still has a potential failure mode. It’s quite possible that

someone has implemented a serialize() method but no deserialize(...) method,

due to the requirements of some other popular consumer of the sensor API. In this case,

we’d still be better off using the value() method, as we’d have no guarantee of being able

to get the true value back to analyze. In this case, we have to check for the presence of

both methods, rather than just trying to use the one we need right now.

for sensor in get_sensors():

 raw_value = sensor.value()

 if hasattr(sensor, "serialize") and hasattr(sensor, "deserialize"):

 value = {"serialized": sensor.serialize(raw_value)}

Chapter 5 alternative interfaCes

223

 else:

 try:

 value = {"serialized": json.dumps(raw_value)}

 except TypeError:

 value = {"error": f"Cannot serialize value {raw_value}"}

 data[sensor.title] = value

Of course, there are potentially more complex sets of methods and variables that

your code might want to look for to determine if a particular set of features is present

or not. You might be tempted to consolidate this introspection as a function, say

does_sensor_support_serialization(sensor: Sensor[Any]) -> bool, and use that

as the condition instead. This is made even more tempting the more times the code path

diverges between the two cases.

Python has a feature called abstract base classes (or ABCs) that can be used to make

this kind of class introspection feel more natural in a Python context. One type of class

introspection that is regularly used is checking if an object is an instance of a particular

class or its subclasses; ABCs allow you to replace more complex introspection of classes

with isinstance(...) calls.

 Abstract base classes
Abstract base classes are a special type of class; they cannot be instantiated directly, but

they can be used as a parent class for your code. They can also “claim” other classes so

that they are considered to be subclasses, either by having them be explicitly registered

as a virtual subclass or by writing a function that examines a class to decide if it should

be considered a subclass.

ABCs are another Python feature that people often think of as being particularly

advanced because they’ve not had cause to use them before. It makes sense that most

developers won’t have used ABCs, as they are especially useful for cases where regular

object-oriented software engineering practices are not practical. A cohesive, unified

codebase does not generally have cause to use ABCs, but a sprawling application based

on multiple pieces of software may find that ABCs are just the right amount of magic,

allowing for application code that minimizes the impact of technical debt.

The approach that ABCs take is to override the logic of isinstance(...) and

issubclass(...). The normal definition of issubclass(...) in Python is that a

class (A) is a subclass of another (B) if the class definition lists B as a parent or if any

Chapter 5 alternative interfaCes

224

of the classes it lists are themselves a subclass of B. ABCs have two additional checks:

issubclass(A, B) will return True if A is a subclass of B, if B.register(A) was called at

any point before the issubclass check, or if B.__subclasshook__(A) returns True.

Additionally, the more familiar isinstance(...) function works similarly, but

with an instance of a class rather than the class itself. Most Python developers consider

isinstance(...) to be a natural line of code to write in some situations but would balk

at checking for specific sets of methods, preferring instead to use duck typing, even at the

cost of readability.

This is where ABCs are most useful; they allow complex class introspection to be

performed in a way that feels natural to developers casually reading the code and is

highly maintainable to those who are familiar with it.

Note any class inherits from the abc.ABC class14 follows the special class
rules of aBCs, including the ability to customize isinstance(...) behavior,
but strictly speaking, a class is only an abstract base class if it has at least one
abstract method, defined with the @abc.abstractmethod decorator.

It would be useful for us to create an abstract base class for our serialization

behavior, to avoid explicitly having to check for the two relevant methods in our flask

route. SerializableSensor defines the methods we require for serialization and

deserialization as abstract methods.15

class SerializableSensor(ABC):

 @classmethod

 @abstractmethod

 def deserialize(cls, value):

 pass

14 As will any that’s defined as class MyClass(metaclass=abc.ABCMeta), but I don’t think this
approach is as clear. Python uses metaclasses to implement ABCs as it needs to be able to
introspect the methods that have been defined to decide if a class can be instantiated.

15 Abstract methods are the other useful feature of ABCs. They prevent any class that has
ABC in its superclasses from being instantiated. They must be overridden by a subclass or
that class will fail to instantiate. Python developers will often create methods that raise
NotImplementedError to communicate that a method must be overridden, but this approach
makes bugs easier to find by moving the error to when the object is instantiated, rather than
when the method is first used.

Chapter 5 alternative interfaCes

225

 @classmethod

 @abstractmethod

 def serialize(cls, value):

 pass

We can then use that, either by subclassing this ABC or by registering an

implementation. The two approaches are shown in Table 5-2.

16 The registration function, SerializableSensor.register(other_class), takes the class to be
registered as a single argument and returns that same class, meaning it meets the definition of a
class decorator. You can therefore alternatively write this as a @SerializableSensor.register
line directly before the class definition.

Table 5-2. An example of two ways of creating an ExampleSensor that is

considered a subclass of SerializableSensor

Subclassing method

class ExampleSensor(

 Sensor[bool],

 SerializableSensor

):

 def value(self) -> bool:

 return True

 @classmethod

 def format(cls, value: bool

) -> str:

 return "{}".format(value)

 @classmethod

 def serialize(cls, value: bool

) -> str:

 return "1" if value else "0"

 @classmethod

 def deserialize(cls, serialized:

str) -> bool:

 return bool(int(serialized))

Registration method16

class ExampleSensor(Sensor[bool]):

 def value(self) -> bool:

 return True

 @classmethod

 def format(cls, value: bool) -> str:

 return "{}".format(value)

 @classmethod

 def serialize(cls, value: bool

) -> str:

 return "1" if value else "0"

 @classmethod

 def deserialize(cls, serialized:

str) -> bool:

 return bool(int(serialized))

SerializableSensor.register(

ExampleSensor)

Chapter 5 alternative interfaCes

226

There are advantages and disadvantages to each approach. For the subclass method,

the parent class provides helper functions or default implementations of serialize(...)

and deserialize(...). For the registration method, classes that happen to implement

the correct methods can be marked as subclasses without having to modify them. This

is especially useful when those classes are not in code you control, such as classes in a

dependency. You don’t need to pick between using either the subclassing or registration

methods; you can subclass from an ABC and still register other classes as virtual subclasses.

Finally, the last possible method is the subclass hook, where no explicit registration

is required. To achieve this, we add a new method to the SerializableSensor class,

which contains the logic for determining if a class is a SerializableSensor or not. The

__subclasshook__ class method takes a single argument, the class to introspect.

It can return True or False to specify if the passed class is indeed an instance of the

ABC or NotImplemented to defer to the normal Python behavior. The NotImplemented

option is essential, as __subclasshook__ is invoked not just for SerializableSensor but

for any classes that declare it as a superclass. Returning NotImplemented avoids having to

reimplement the default Python logic for those cases.17

 @classmethod

 def __subclasshook__(cls, C):

 if cls is SerializableSensor:

 has_abstract_methods = [hasattr(C, name) for name in {"value",

"serialize", "deserialize"}]

 return all(has_abstract_methods)

 return NotImplemented

ABCs also support type annotations, so the final version of the ABC should include

appropriate annotations to allow for static typing of any class that inherits directly from

the base. We’ll add the value(...) function to the list of abstract methods in the base

class. We can also set up the SerializableSensor base class as generic which must take

a subtype that’s compatible with the subtype of the sensor it’s paired with. This allows us

to ensure at a static typing level that the serialize method supports the same types as

the value(...) function:

17 To demonstrate why this is important, imagine we use SerializableSensor as the base class for
our Temperature sensor. We want isinstance(obj, SerializableSensor) to use the subclass
hook, but we only want isinstance(obj, Temperature) to return true if obj is an instance of
the Temperature sensor, not anything with the required methods to be a SerializableSensor.

Chapter 5 alternative interfaCes

227

from abc import ABC, abstractmethod

import typing as t

T_value = t.TypeVar("T_value")

class SerializableSensor(ABC, t.Generic[T_value]):

 title: str

 @abstractmethod

 def value(self) -> T_value:

 pass

 @classmethod

 @abstractmethod

 def serialize(cls, value: T_value) -> str:

 pass

 @classmethod

 @abstractmethod

 def deserialize(cls, serialized: str) -> T_value:

 pass

 @classmethod

 def __subclasshook__(cls, C: t.Type[t.Any]) -> t.Union[bool,

"NotImplemented"]:

 if cls is SerializableSensor:

 has_abstract_methods = [hasattr(C, name) for name in {"value",

"serialize", "deserialize"}]

 return all(has_abstract_methods)

 return NotImplemented

 Fallback strategies
Using ABCs cleans up the if statement that switches between the Sensor being able to

handle serializing its own value and needing to use the fallback implementation, but it

doesn’t help us with implementing the fallback logic as it stands.

Chapter 5 alternative interfaCes

228

Any of the various serialization methods we could pick between (including JSON)

provide a pair of serialization and deserialization functions, often called dumps(...) and

loads(...). We can provide mixin18 classes for our users to use if they desire.

An example of a JSON fallback mixin class

class JSONSerializedSensor(SerializableSensor[t.Any]):

 @classmethod

 def serialize(cls, value: t.Any) -> str:

 try:

 return json.dumps(value)

 except TypeError:

 return json.dumps(None)

 @classmethod

 def deserialize(cls, serialized: str) -> t.Any:

 return json.loads(serialized)

This class inherits from SerializableSensor, so it follows the special class handling

rules of ABCs. The SerializableSensor class declares that value, serialize, and

deserialize methods are required, but we’ve only defined two of these methods. That

means the JSONSerializedSensor is still considered an abstract base class so it cannot be

instantiated. If you tried to instantiate this class, the following TypeError would be raised:

TypeError: Can't instantiate abstract class JSONSerializedSensor with

abstract methods value

 Adapter pattern

The JSONSerializedSensor superclass provides a way to add the JSON serialization

methods to our own classes, but it doesn’t help if we have other sensors installed, as we

can’t just edit them to use the superclass.

18 A mixin class is a name for a superclass that provides a few related methods for authors of
classes to inherit from. Most of the time that you see a class with multiple superclasses, it’s
because some of them are mixins.

Chapter 5 alternative interfaCes

229

The classic approach to this problem is called the adapter pattern and is one of the

better-known of the famous Gang of Four software engineering patterns. An adapter is

an object that wraps another to provide a different interface. In this case, we can create

an adapter for a given sensor by storing an instance of that sensor as an attribute of

instances of the wrapper:

Example of an adapter from ExampleSensor to SerializableSensor using

JSONSerializedSensor

class SerializableExample(JSONSerializedSensor):

 def __init__(self):

 self.wrapped = ExampleSensor()

 self.title = self.wrapped.title

 def value(self) -> bool:

 return self.wrapped.value()

The serialize(...) and deserialize(...) methods are coming from the

JSONSerializedSensor that we already developed, so this adapter pattern allows us to

use the implementation from the mixin as our fallback strategy. The same would be true

of any other partial implementation of the SerializedSensor protocol, potentially using

different serializers.

Rather than creating a fallback sensor type for each class, we can create them

dynamically. These dynamic wrapped sensors must assume the underlying value type is

Any, as we have no specific guarantee of what the type of sensor we will pass to it.

def get_wrapped_sensor(sensor_class: Sensor[t.Any]) -> SerializableSensor:

 class Fallback(JSONSerializedSensor):

 def __init__(self):

 self.wrapped = sensor_class()

 self.title = self.wrapped.title

 def value(self) -> t.Any:

 return self.wrapped.value()

 return Fallback

Chapter 5 alternative interfaCes

230

The code we use to iterate over the sensors and get their values can now be changed

to instantiate this wrapper if the sensor isn’t serializable:

for sensor in get_sensors():

 raw_value = sensor.value()

 sensor_class = type(sensor)

 if not issubclass(sensor, SerializableSensor):

 sensor_class = get_wrapped_sensor(sensor_class)

 value = {"serialized": sensor_class.serialize(raw_value)}

 data[sensor.title] = value

 Dynamic class generation

This method does not map precisely to a classic design pattern, partially because it is

not possible in compiled languages. This method defines a new class on the fly which

subclasses both the original Sensor class and the serialization mixin, creating a new

class with the behavior of both. This only works reliably if there is no overlap in method

definitions between the two class implementations. Still, it has the advantage that the

derived class can be treated as though it’s a sensor that implements serialization directly,

as the format(...) and __str__() methods are still present, rather than being hidden

by a wrapper.

Many Python developers find this a difficult choice to make, as the adapter pattern is

simpler and more explicit, whereas the dynamic class generation approach relies on the

language’s behavior to resolve methods in a way that is not transparent to the end-user,

but the dynamic class generation approach appears simpler to the casual observer.

Function to merge the JSON serializer implementation into an arbitrary sensor

def get_merged_sensor(sensor_class: Sensor[t.Any]) -> SerializableSensor:

 class Fallback(sensor_class, JSONSerializedSensor):

 pass

 return Fallback

This sensor class can then be used anywhere that sensors are expected, as well as

anywhere that expects Serializable sensors are needed. For example, we could provide a

get_serializable_sensors() method that copies the implementation of get_sensors()

but switches out any nonserializable sensors.

Chapter 5 alternative interfaCes

231

def get_sensors() -> t.Iterable[Sensor[t.Any]]:

 sensors = []

 for sensor_class in pkg_resources.iter_entry_points("apd.sensors.sensors"):

 class_ = sensor_class.load()

 if not issubclass(class_, SerializableSensor):

 class _ = get_merged_sensor(class_)

 sensors.append(t.cast(Sensor[t.Any], class_()))

 return sensors

 Other serialization formats

All of our preceding examples use the JSON protocol, so any class that doesn’t provide

explicit serialization and isn’t compatible with JSON serializable still would not work.

For this, we’d need to use a more generic serializer, such as pickle.

Warning You will often see warnings that pickle should not be used on
untrusted data as it is not safe. this is vital, as crafted pickle variables can
result in arbitrary code execution. if a sensor were somehow compromised or
malicious and returned the serialized value c__builtin__\neval\n(
V__import__("webbrowser").open("https://advancedpython.dev/
pickles")\ntR., then when the api consumer tried to deserialize it, this book’s
website would open on the api consumer’s computer.

I don’t think it’s appropriate to use pickles in this case, as there are a small number of

sensor types and they return relatively simple data. The following discussion is included

because serialization is a common problem, and pickles are often suggested.

In general, it’s better to put in the extra engineering effort to avoid using pickles,

but if you find yourself in a situation where you need them, you should ensure that at a

minimum you use HMAC to authenticate them, as demonstrated in Table 5-3.

Chapter 5 alternative interfaCes

https://advancedpython.dev/pickles
https://advancedpython.dev/pickles

232

Ta
bl

e
5-

3.
 E

xa
m

pl
e

fu
n

ct
io

n
s

fo
r

si
gn

in
g

an
d

ve
ri

fy
in

g
a

pi
ck

le

Si
gn

in
g

a
pi

ck
le

im
po
rt
 h
as
hl
ib

im
po
rt
 h
ma
c

im
po
rt
 p
ic
kl
e

se
cr
et
 =
 b
yt
ea
rr
ay
([

0x
b2
,0
x5
6,
0x
c4
,0
x8
8,
0x
09
,0
xa
0,
0x
8a
,0
x1
e,

0x
28
,0
xe
3,
0x
a3
,0
x2
5,
0x
e9
,0
x2
b,
0x
98
,0
x6
f,

0x
13
,0
x6
0,
0x
fb
,0
x2
6,
0x
06
,0
x9
b,
0x
9d
,0
x6
f,

0x
3a
,0
x0
1,
0x
2c
,0
x3
f,
0x
9d
,0
x9
f,
0x
72
,0
xc
d

])

un
tr
us
te
d_
pi
ck
le
 =
 p
ic
kl
e.
du
mp
s(
2)

di
ge
st
 =
 h
ma
c.
di
ge
st
(

se
cr
et
,

un
tr
us
te
d_
pi
ck
le
,

ha
sh
li
b.
sh
a2
56

) si
gn
ed
_p
ic
kl
e
=
di
ge
st
 +
 b
":
"
+
un
tr
us
te
d_
pi
ck
le

Ve
rif

yi
ng

 a
 s

ig
na

tu
re

im
po
rt
 h
as
hl
ib

im
po
rt
 h
ma
c

im
po
rt
 p
ic
kl
e

se
cr
et
 =
 b
yt
ea
rr
ay
([

0x
b2
,0
x5
6,
0x
c4
,0
x8
8,
0x
09
,0
xa
0,
0x
8a
,0
x1
e,

0x
28
,0
xe
3,
0x
a3
,0
x2
5,
0x
e9
,0
x2
b,
0x
98
,0
x6
f,

0x
13
,0
x6
0,
0x
fb
,0
x2
6,
0x
06
,0
x9
b,
0x
9d
,0
x6
f,

0x
3a
,0
x0
1,
0x
2c
,0
x3
f,
0x
9d
,0
x9
f,
0x
72
,0
xc
d

])

di
ge
st
,
un
tr
us
te
d
=
re
ce
iv
ed
_p
ic
kl
e.
sp
li
t(

b"
:"
,
1

) ex
pe
ct
ed
_d
ig
es
t
=
hm
ac
.d
ig
es
t(

se
cr
et
,

un
tr
us
te
d,

ha
sh
li
b.
sh
a2
56

) if
 n
ot
 h
ma
c.
co
mp
ar
e_
di
ge
st
(d
ig
es
t,
 e
xp
ec
te
d_
di
ge
st
):

ra
is
e
Va
lu
eE
rr
or
("
Ba
d
Si
gn
at
ur
e"
)

el
se
:

va
lu
e
=
pi
ck
le
.l
oa
ds
(u
nt
ru
st
ed
)

Chapter 5 alternative interfaCes

233

This scheme is symmetric; anyone who can verify a pickle can also create a valid

signature for an arbitrary pickle, but it is usually sufficient for closed systems. As it’s

symmetric, it’s very important to keep the secret from becoming publicly known. The

secret is usually stored in a configuration file or environment variable so that it can be

different for each user of the code. More complex signatures using asymmetric keys are

possible but are rarely worth the engineering effort over creating a defined JSON (or

other) schema to deserialize data safely.

 Bringing it all together
In our parallel world where we are attempting to retrofit a WSGI server into the existing

Sensor ecosystem, we now have all the code we need (Listing 5-12). The bulk of the

web server code is the same as it was for our real, integrated Flask application; the only

significant change in the web server code is the addition of an if statement and matching

else clause in the sensor_values() view, adding a total of three lines to the view code.

We have successfully encapsulated the class introspection and fallback logic into the

supporting code, which can be split out into a utilities Python file and left to work its magic.

Listing 5-12. A possible implementation of WSGI server and fallback encoding

in a third-party piece of code

from abc import ABC, abstractmethod

import typing as t

import json

import flask

from apd.sensors.sensors import Sensor

from apd.sensors.cli import get_sensors

from apd.sensors.wsgi import require_api_key, set_up_config

app = flask.Flask(__name__)

T_value = t.TypeVar("T_value")

class SerializableSensor(ABC, t.Generic[T_value]):

 title: str

Chapter 5 alternative interfaCes

234

 @abstractmethod

 def value(self) -> T_value:

 pass

 @classmethod

 @abstractmethod

 def serialize(cls, value: T_value) -> str:

 pass

 @classmethod

 @abstractmethod

 def deserialize(cls, serialized: str) -> T_value:

 pass

 @classmethod

 def __subclasshook__(cls, C: t.Type[t.Any]) -> t.Union[bool,

"NotImplemented"]:

 if cls is SerializableSensor:

 has_abstract_methods = [

 hasattr(C, name) for name in {"value", "serialize", "deserialize"}

]

 return all(has_abstract_methods)

 return NotImplemented

class JSONSerializedSensor(SerializableSensor[t.Any]):

 @classmethod

 def serialize(cls, value: t.Any) -> str:

 try:

 return json.dumps(value)

 except TypeError:

 return json.dumps(None)

 @classmethod

 def deserialize(cls, serialized: str) -> t.Any:

 return json.loads(serialized)

class JSONWrappedSensor(JSONSerializedSensor):

 def __init__(self, sensor: Sensor[t.Any]):

 self.wrapped = sensor

 self.title = sensor.title

Chapter 5 alternative interfaCes

235

 def value(self) -> t.Any:

 return self.wrapped.value()

def get_serializable_sensors() -> t.Iterable[SerializableSensor[t.Any]]:

 sensors = get_sensors()

 found = []

 for sensor in sensors:

 if isinstance(sensor, SerializableSensor):

 found.append(sensor)

 else:

 found.append(JSONWrappedSensor(sensor))

 return found

@app.route("/sensors/")

@require_api_key

def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]:

 headers = {"Content-Security-Policy": "default-src 'none'"}

 data = {}

 for sensor in get_serializable_sensors():

 data[sensor.title] = sensor.serialize(sensor.value())

 return data, 200, headers

if __name__ == "__main__":

 import wsgiref.simple_server

 set_up_config(None, app)

 with wsgiref.simple_server.make_server("", 8000, app) as server:

 server.serve_forever()

 Fixing the serialization problem in our code
The diversion into how we would approach this problem in third-party code aside,

we should also solve this issue in the mainline codebase of apd.sensors. When we

were looking to do this as a third-party tool, we had a strong incentive to pick function

signatures that would be generally useful, so plumped for a specific serialize and

deserialize method, which other consumers might use (for example) for logging to a

Chapter 5 alternative interfaCes

236

file. Now we’re back to our role as the maintainer of the software we have more flexibility

in deciding what the interface should be. We still want the code to be easy to implement,

but we have a much stronger authority to dictate the functions that we think are best.

I very much believe that restricting ourselves to using only JSON API here is

beneficial, as it makes the raw data easier to understand. If our interface had a

serialize(...), then we would have no guarantee that the output would be something

human readable. Therefore, instead of creating serialize(...) and deserialize(...)

functions, I’ll create functions that reduce the value to something that is JSON

serializable and rebuild it from such values.

We can define these on the Sensor base class with whatever default implementation

we want. There’s currently no guarantee that any given sensor is compatible with the

JSON serialization, so the default implementation must be to raise an exception.

Additional methods to add to Sensor base class

 @classmethod

 def to_json_compatible(cls, value: T_value) -> Any:

 raise NotImplementedError

 @classmethod

 def from_json_compatible(cls, json_version: Any) -> T_value:

 raise NotImplementedError

We now need to provide implementations of this pair of methods for each of our

existing sensors. There are three different code paths that need to be updated. The first

is for the majority of sensors that are already JSON compatible. For this, we can create a

new mixin class:

class JSONSensor(Sensor[T_value]):

 @classmethod

 def to_json_compatible(cls, value: T_value) -> t.Any:

 return value

 @classmethod

 def from_json_compatible(cls, json_version: t.Any) -> T_value:

 return cast(JSONT_value, json_version)

Chapter 5 alternative interfaCes

237

TYPING OF JSON VALUES

there is no easy way of representing that something is JsOn compatible in a python type hint

as the definition of JsOn compatible is inherently recursive. a list is JsOn compatible only if

all its elements are, for example. We could try to approximate a definition of JsOn-compatible

type more and more closely by limiting the type of the JsOn to a maximum level of recursion,

such as

from typing import *

JSON_0 = Union[str, int, float, bool, None]

JSON_1 = Union[Dict[str, JSON_0], List[JSON_0], JSON_0]

JSON_2 = Union[Dict[str, JSON_1], List[JSON_1], JSON_1]

JSON_3 = Union[Dict[str, JSON_2], List[JSON_2], JSON_2]

JSON_4 = Union[Dict[str, JSON_3], List[JSON_3], JSON_3]

JSON_5 = Union[Dict[str, JSON_4], List[JSON_4], JSON_4]

JSON_like = JSON_5

the t_value generic reference we used for sensor can be any type, but we would want our

JsOnsensor superclass to only work with JsOn-compatible types, so a different typevar with

a bind parameter would be needed:

JSONT_value = TypeVar(“JSONT_value”, bound=JSON_like)

this exercise in working around the type checker is counterproductive, in my opinion. typing

is there to help developers, not to make them jump through hoops. if something is difficult to

express as a static type hint, then you should make it clear with documentation and comments

instead. You should trust that developers will do the right thing. as such, i will be using Any as

the type hint to represent JsOn-compatible python objects.

Most of the sensors that we’ve written can use JSONSensor transparently; however,

the PythonVersion sensor has a very strange type. It uses a custom class that cannot be

instantiated directly. This implementation detail of Python isn’t important, but we need

to change the sensors slightly in order to be able to convert back from JSON to something

that behaves like the actual value.

Chapter 5 alternative interfaCes

238

from typing import NamedTuple

version_info_type = NamedTuple(

 "version_info_type",

 [

 ("major", int),

 ("minor", int),

 ("micro", int),

 ("releaselevel", str),

 ("serial", int),

],

)

class PythonVersion(JSONSensor[version_info_type]):

 title = "Python Version"

 def value(self) -> version_info_type:

 return version_info_type(*sys.version_info)

 @classmethod

 def format(cls, value: version_info_type) -> str:

 if value.micro == 0 and value.releaselevel == "alpha":

 return "{0.major}.{0.minor}.{0.micro}a{0.serial}".format(value)

 return "{0.major}.{0.minor}".format(value)

This uses a typed named tuple to emulate the real sys.version_info, as otherwise

we wouldn’t be able to implement from_json_compatible(...) to return the exact same

value as value().

Finally, the temperature and solar power sensors both use physical quantities as

their value type, so they will use pint’s unit system for their value and need a custom pair

of JSON methods.

JSON method pair for temperature

class Temperature(Sensor[Optional[Any]]):

 ...

 @classmethod

 def to_json_compatible(cls, value: Optional[Any]) -> Any:

Chapter 5 alternative interfaCes

239

 if value is not None:

 return {"magnitude": value.magnitude, "unit": str(value.units)}

 else:

 return None

 @classmethod

 def from_json_compatible(cls, json_version: Any) -> Optional[Any]:

 if json_version:

 return ureg.Quantity(json_version["magnitude"],

ureg[json_version["unit"]])

 else:

 return None

We’ve gained a fair amount of support code for the sensors while creating this

version of the software; it’s time to move that out of the way of the implementations of

the sensors, to make the codebase easier to navigate.

 Tidying up
The sensors.py file currently has two base classes and some actual sensors. It’s clearer

only to have the sensors listed in this file, so I will move the support code to base.py.

It would also be a good idea to make the JSON API use the same keys as the sensor

entrypoints. This would make it a lot easier to deserialize data, as we could easily look

up the sensor class that defined it. To this end, a new name attribute is added. The full

definition of the Sensor base class is shown as Listing 5-13.

Listing 5-13. Definition of the sensor base class from base.py

import typing as t

T_value = t.TypeVar("T_value")

class Sensor(t.Generic[T_value]):

 name: str

 title: str

 def value(self) -> T_value:

 raise NotImplementedError

Chapter 5 alternative interfaCes

240

 @classmethod

 def format(cls, value: T_value) -> str:

 raise NotImplementedError

 def __str__(self) -> str:

 return self.format(self.value())

 @classmethod

 def to_json_compatible(cls, value: T_value) -> t.Any:

 raise NotImplementedError()

 @classmethod

 def from_json_compatible(cls, json_version: t.Any) -> T_value:

 raise NotImplementedError()

class JSONSensor(Sensor[T_value]):

 @classmethod

 def to_json_compatible(cls, value: T_value) -> t.Any:

 return value

 @classmethod

 def from_json_compatible(cls, json_version: t.Any) -> T_value:

 return t.cast(T_value, json_version)

 Versioning APIs
As part of these changes, we have changed the behavior of the API, although in a

minimal way. The only user-facing difference is that API values are keyed by the sensor

ID now, rather than the human-readable name. We need to create a new user-facing

version of the API, as it behaves differently to past versions.

New API versions are usually made by providing the different API on a slightly

different URL, containing the version number. We could change the API in place, but

anybody that depended on the API would suddenly start seeing a different behavior.

This likely isn’t a problem for personal projects, but APIs that are available to the

public or within a company are likely to have users that you can’t discuss changes with

beforehand.

Chapter 5 alternative interfaCes

241

Tip having the ability to support old api versions doesn’t mean that you are
required to support them. it’s entirely possible that you might have /v/1.0 and
/v/1.1, but later decide to release /v/2.0 which is very different from the
other two. in this case, you might decide to remove the older api versions entirely.
having the version number in the Url does not force you to maintain support for
older versions, but if you do not scope your api endpoints by version, it is tough to
maintain an older version if you later choose to.

When versioning an API, you need to make decisions about how you will handle

bugs. In general, there are two strategies. Either you can leave bugs in place, insisting

that people upgrade to the newest version of the API, or you can fix bugs in unobtrusive

ways. Leaving bugs in place is a more common solution, as fixing them is significantly

more work. Security bugs in old API versions should always be fixed, though.

The changes we’ve made in this chapter were to handle serializing the temperature

and humidity sensors now that we’ve changed them to use pint. The original API

returned these values in degrees Celsius; the new one returns a dictionary that includes

the temperature system.

In the version of the code that accompanies this chapter, I have applied a fix to

prevent any sensor that cannot be JSON serialized from appearing in the v1.0 API

output by catching TypeError and skipping the sensor if needed. This means that

the temperature and humidity sensors will no longer appear there, only in the v2

API. Whether or not to spend the extra time and effort adding a special case for pint

objects in the v1.0 API very much depends on the needs of your users.

To facilitate hosting multiple versions of the API, we’ll move the views to a new file

named for the version of the API and register them against a flask.Blueprint instance

for that API version, instead of directly against the flask.Flask object. Flask blueprints

are groups of related URLs that can be added to an application. Using a blueprint allows

us to write view code that works within a subpath of the main website without having to

modify all the individual URLs to include the API version number:

v10.py

version = flask.Blueprint(__name__, __name__)

@version.route("/sensors/")

@require_api_key

Chapter 5 alternative interfaCes

242

def sensor_values() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]:

 ...

__init__.py

app = flask.Flask(__name__)

app.register_blueprint(v10.version, url_prefix="/v/1.0")

The file structure of the wsgi directory will have a different file for every API version,

which currently is v10.py and v20.py, as well as some support code such as the

authentication functions.

src/apd/sensors/wsgi/

├── __init__.py
├── base.py
├── serve.py
├── v10.py
└── v20.py

Here I’ve given the API a simple version number, but many public APIs use calendar

versioning as their version number. This can be more user-friendly, but it really is a

matter of personal preference.

 Testability
When supporting multiple versions of the API, we will also need to test them all. Even if

you decide that it’s not important for old versions to work correctly, you will still need to

ensure that there are no security problems introduced in the old versions of the API.

I approach this by having a class for each version of the API. This allows for setting

up fixtures to avoid having to have each test specify which API version it is targeting. For

example, we already have a test to check if a missing API key causes a HTTP forbidden

error when accessing the sensors. It’s written as

@pytest.mark.functional

def test_sensor_values_fails_on_missing_api_key(self, api_server):

 response = api_server.get("/sensors/", expect_errors=True)

 assert response.status_code == 403

 assert response.json["error"] == "Supply API key in X-API-Key header"

Chapter 5 alternative interfaCes

243

This test assumes that api_server is a WebTest application that has the API mounted

at the root. This was fine when we were not namespacing API versions, but it would

appear that we’d have to write this test for /v/1.0/sensors and /v/2.0/sensors. Having

a support class for each API version means that we can mount that version’s blueprint

at the root of a Flask app, rather than testing against the composite app that has the

blueprints mounted on different prefixes.

Test class that treats /v/1.0 as the root

from apd.sensors.wsgi import v10

class Testv10API:

 @pytest.fixture

 def subject(self, api_key):

 app = flask.Flask("testapp")

 app.register_blueprint(v10.version)

 set_up_config({"APD_SENSORS_API_KEY": api_key}, to_configure=app)

 return app

 @pytest.fixture

 def api_server(self, subject):

 return TestApp(subject)

The TestV20API class does the same but uses v20.version instead of v10.version,

making the tests in each class see the appropriate API version at the root of their HTTP

namespace. The preceding missing API key test can then be factored out into a mixin

class, along with any other tests that work the same across different versions of the

API. For us, this will be the two tests that handle API authentication.

class CommonTests:

 @pytest.mark.functional

 def test_sensor_values_fails_on_missing_api_key(self, api_server):

 response = api_server.get("/sensors/", expect_errors=True)

 assert response.status_code == 403

 assert response.json["error"] == "Supply API key in X-API-Key header"

Chapter 5 alternative interfaCes

244

 @pytest.mark.functional

 def test_sensor_values_require_correct_api_key(self, api_server):

 response = api_server.get(

 "/sensors/", headers={"X-API-Key": "wrong_key"}, expect_errors=True

)

 assert response.status_code == 403

 assert response.json["error"] == "Supply API key in X-API-Key header"

As the test class name does not start with Test, the pytest runner does not see these

as independent tests, which is good as they rely on a fixture called api_server, which is

not defined. However, when we add CommonTests as a base class of both TestV10API and

TestV20API, these test functions are inherited by both classes. Only test classes that start

with the word Test are examined by pytest, so the CommonTests class is never executed

in isolation. The methods it contains are inherited by the version-specific classes, which

have the appropriate fixtures to support them.

 Summary
We’ve covered a lot in this chapter, introducing web APIs with Flask and covering

how we’d go about extending the Sensor interface to work around the limits of JSON

serialization. The ecosystem of Python web development is vast, and many books dive

into a small aspect of this world alone.

Although we do need a HTTP API to complete our sensor aggregation program, it

isn’t fundamentally a web application. I would encourage anyone interested in learning

about Python on the Web to try out some popular frameworks (such as Django, Pyramid,

and Flask) and learn their strengths and weaknesses. Django is rightly praised as a

good framework for all-round web development, but the minimal style of Flask and

the expressivity of Pyramid make them valuable tools to be aware of when picking a

platform.

We’ve also covered practicalities of extending a class definition, both as the

original author of the system and as a third party using abstract base classes. Finally,

we also covered many common recipes for Python code, such as HMAC for message

authentication and decorators for extending function behaviors.

Chapter 5 alternative interfaCes

245

The Sensor API has been changed in a way that breaks backward compatibility, so

the version number of the package has been updated to 2.0.0, and the documentation

now explains how the API can be accessed. In the next chapter, we will start work on

collating the information in a central source using this new HTTP API.

 Additional resources
The following resources provide some additional information on the topics that we’ve

covered and are worth reading if you have a particular interest in web programming:

The WSGI specification is a Python-specific standard for web

applications. A lot of background information can be found at

http://wsgi.org.

The full documentation for the Flask web framework is at

https://flask.palletsprojects.com/.

I recommend looking at www.djangoproject.com/ and

https://trypyramid.com/ as other Python web frameworks of

particular note.

The Pint library that I used for physical units has examples

and advanced usage information available at https://pint.

readthedocs.io/.

The JWT project (https://jwt.io/) details a more involved way

to use HMAC for authentication and has many examples and

sample code.

Some production-quality WSGI servers are https://gunicorn.

org/, https://modwsgi.readthedocs.io/en/develop/, and

https://pypi.org/project/waitress/.

Information on the WSGI app testing library WebTest is at

https://docs.pylonsproject.org/projects/webtest/.

Chapter 5 alternative interfaCes

http://wsgi.org
https://flask.palletsprojects.com/
http://www.djangoproject.com/
https://trypyramid.com/
https://pint.readthedocs.io/
https://pint.readthedocs.io/
https://jwt.io/
https://gunicorn.org/
https://gunicorn.org/
https://modwsgi.readthedocs.io/en/develop/
https://pypi.org/project/waitress/
https://docs.pylonsproject.org/projects/webtest/

247
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_6

CHAPTER 6

Aggregation process
Now that we have a robust codebase for gathering data from a computer and reporting it

over a HTTP interface, it's time to start logging and analyzing this data. We need to create

a central aggregation process that connects to each of the sensors and pulls the data

down. Such a process would allow us to observe correlations between different sensors

at the same time as well as trends over time.

To begin with, we'll need to create a new Python package. It doesn't make sense for

us to distribute all the code for the aggregation process along with the data collection

code; we expect many more deployments of the sensor than of the aggregation process.

It's rare for programmers to start a new project from nothing and to write all the

boilerplate themselves. Much more common is to use a template, either explicitly or by

copying another project and removing its functionality. It's much easier to get started

from a piece of code that exists but does nothing than it is from an empty directory.

 Cookiecutter
While you can create new projects from a template just by copying the directory,

there are tools that make the process easier. Although copying a template directory

and modifying it seems simple, it often involves renaming files and directories from

“skeleton” or “example” to match the name of the project that you’re creating. Tools like

cookiecutter automate this process by allowing you to create templates that use variables

provided when first creating a project.

https://doi.org/10.1007/978-1-4842-5793-7_6#ESM

248

I recommend using cookiecutter to create new projects. It would be a global

development tool for us, rather than a project-specific tool. We should install it into the

system Python environment,1 as we did with Pipenv.

> pip install --user cookiecutter

There are many preexisting cookiecutter templates; some provide templates for

generic Python packages, others have templates for more complicated things. There

are specialized templates for things as diverse as hybrid Python/rust packages, Python-

based smartphone applications, and Python web applications.

You do not need to install cookiecutter templates; in fact, you cannot. A template

can only be referenced as either a path to a local copy of the template or as a remote

specification for git (as in, what you would usually pass to git clone2). When you specify

a remote template, cookiecutter automatically downloads and uses that template. If

you've already used that template previously, you'll be prompted to replace it with the

freshly downloaded version.

Tip If you have a template that you use regularly, I recommend keeping a local
checkout of it. Don't forget to update it regularly, in case fixes have been applied
in the git repository, but as well as a small speed improvement, this allows you to
generate code when not connected to the Internet.

If you find yourself without a network connection but didn't maintain a local
checkout, cookiecutter may have a cache from a past invocation at
~/.cookiecutter/

1 Cookiecutter does have quite a few dependencies. Of all the tools we’ve installed system-wide so
far, this is the one I’d be most tempted to isolate. You could use pipenv to create an environment
just for cookiecutter and add the bin/ (or, on Windows, Scripts/) directory associated with the
environment (run pipenv --venv to find this) to your system path. You may also need to do this
if your system Python environment is a very old version.

2 There are also helpers for popular Git hosting platforms, such as GitHub.
For example, gh:MatthewWilkes/cookiecutter-simplepackage will reference
the cookiecutter-simplepackage repository on my GitHub account.

Chapter 6 aggregatIon proCess

249

 Creating a new template
We could use these templates as the basis for our aggregation process, but none of them

exactly match the decisions we made in the earlier chapters. Instead, I'll create a new

template that captures this book's recommendations for a minimal Python package.

You can adapt this to match your preferences or create new templates to automate

boilerplate code creation specific to your work.

Note If you want to use the template as I describe here, there’s no need for
you to make your own version. My template can be used with cookiecutter
gh:MatthewWilkes/cookiecutter-simplepackage. this section explains
the process of creating your own custom templates.

We'll create a new git repository to hold the template. The first thing we need to

add is a cookiecutter.json file, shown in Listing 6-1. This file defines the variables

we're going to ask the user for and their defaults. Most of these are simple strings, in

which case the user is prompted to enter a value or press enter to accept the default

value, displayed in parentheses. They can also contain variable substitutions from

earlier entries (which can, in turn, be Python expressions) by surrounding the Python

expression in braces, in which case the result of these substitutions is used as the default.

Finally, they can be a list, in which case the user is presented with a list of options and

asked to pick one, with the first item being the default.

Listing 6-1. cookiecutter.json

{

 "full_name": "Advanced Python Development reader",

 "email": "example@advancedpython.dev",

 "project_name": "Example project",

 "project_slug": "{{ cookiecutter.project_name.lower().replace(' ',

'_').replace('-', '_') }}",

 "project_short_description": "An example project.",

 "version": "1.0.0",

 "open_source_license": ["BSD", "GPL", "Not open source"]

}

Chapter 6 aggregatIon proCess

250

We also need to create a directory that contains the templates we're going to create.

We can also use braces to include user-supplied values in filenames, so this should be

called {{ cookiecutter.project_slug }} to create a directory whose name is the same

as the project_slug value. We could use any value from cookiecutter.json; however,

the project slug is the best choice. This directory will become the root of the new

project’s git repository, so its name should match the expected repository name.

From here, we can create the various files that we want to include in every project of

this type, such as the build files (setup.py, setup.cfg), the documentation (README.md,

CHANGES.md, LICENCE), and the test/ and src/ directories.

There is a complication, however. The template includes a

{{ cookiecutter.project_slug }}/ directory inside src/, which works fine for any

packages that don't contain a . in their slug, but if we were creating apd.sensors, we'd

see a discrepancy between what the cookiecutter generates and what we want (Figure 6-1).

We need this additional level in the directory structure because apd is a namespace

package. When we first created apd.sensors, we decided that apd would be a

namespace, which allows us to create multiple packages within the namespace on the

condition that no code is placed directly in the namespace packages, only the standard

packages they contain.

We need some custom behavior here, above and beyond what is possible with a

template alone.3 We need to recognize where there is a . in a slug and, in that case, split

the slug and create nested directories for each of the parts. Cookiecutter supports this

requirement through the use of a post-generation hook. In the root of the template, we

3 It is possible to achieve this with just a template, but only if the template is specific to the number
of nested namespace packages in use.

Figure 6-1. A comparison of the folder structure we have vs. what we need

Chapter 6 aggregatIon proCess

251

can add a hooks directory with a post_gen_project.py file. Pre-generation hooks, stored

as hooks/pre_gen_project.py, are used to manipulate and validate user input before

generation starts; post-generation hooks, stored as hooks/post_gen_project.py, are

used to manipulate the generated output.

The hooks are Python files which are executed directly at the appropriate stage of

generation. They do not need to provide any importable functions; the code can be at

the module level. Cookiecutter first interprets this file as a template, and any variables

are substituted before it executes the hook code. This behavior allows data to be inserted

using variables directly into the hook’s code (such as in Listing 6-2), rather than the more

usual approach of using an API to retrieve the data.

Listing 6-2. hooks/post_gen_project.py

import os

package_name = "{{ cookiecutter.project_slug }}"

*namespaces, base_name = package_name.split(".")

if namespaces:

 # We need to create the namespace directories and rename the inner directory

 directory = "src"

 # Find the directory the template created: src/example.with.namespaces

 existing_inner_directory = os.path.join("src", package_name)

 # Create directories for namespaces: src/example/with/

 innermost_namespace_directory = os.path.join("src", *namespaces)

 os.mkdir(innermost_namespace_directory)

 # Rename the inner directory to the last component

 # and move it into the namespace directory

 os.rename(

 existing_inner_directory,

 os.path.join(innermost_namespace_directory, base_name)

)

Chapter 6 aggregatIon proCess

252

Note the *namespaces, base_name = package_name.split(".")
line is an example of extended unpacking. It has a similar meaning to *args in
function definitions; the base_name variable contains the last item split from
package_name, and any previous ones are stored as a list called namespaces. If
there are no . characters in package_name, then base_name would be equal to
package_name and namespaces would be an empty list.

Using the cookiecutter template I've created here can be done with the GitHub

helper, as I've stored the code in GitHub. It is also available in the accompanying code for

this chapter. The cookiecutter invocation is as follows, with gh: being the GitHub helper

prefix:

> cookiecutter gh:MatthewWilkes/cookiecutter-simplepackage

Or, you can test invocations with your local, working copy with

> cookiecutter ./cookiecutter-simplepackage

 Creating the aggregation package
We can now use the cookiecutter template to create a package for the aggregation

process, called apd.aggregation. Change to the parent directory of the apd.code

directory, but there’s no need to create a directory for the aggregation process as our

cookiecutter template does this. We invoke the cookiecutter generator and fill in the

details we want and then can initialize a new git repository in that directory with the

generated files added in the first commit.

Console session from generating apd.aggregation

> cookiecutter gh:MatthewWilkes/cookiecutter-simplepackage

full_name [Advanced Python Development reader]: Matthew Wilkes

email [example@advancedpython.dev]: matt@advancedpython.dev

project_name [Example project]: APD Sensor aggregator

project_slug [apd_sensor_aggregator]: apd.aggregation

Chapter 6 aggregatIon proCess

253

project_short_description [An example project.]: A programme that queries

apd.sensor endpoints and aggregates their results.

version [1.0.0]:

Select license:

1 - BSD

2 - MIT

3 - Not open source

Choose from 1, 2, 3 (1, 2, 3) [1]:

> cd apd.aggregation

> git init

Initialized empty Git repository in /apd.aggregation/.git/

> git add .

> git commit -m "Generated from skeleton"

The next step is to start creating utility functions and accompanying tests to

gather the data. As part of this, we must make some decisions about what exactly the

responsibilities of the aggregation process are and what features it provides.

The full list of features we would want from our aggregation process is as follows. We

won’t necessarily build all of these features in the course of this book, but we need to

ensure that we have a design that doesn’t rule any of them out.

• Gather value of a sensor from all endpoints on demand

• Record value of a sensor automatically at a specific time interval

• Recall data of a sensor recorded at a particular point in time for one

or more endpoints

• Recall data of a sensor at a range of times for one or more endpoints

• Find times where sensor values match some condition (such as

within a range, maximum, minimum), either across all time or in a

time range

Chapter 6 aggregatIon proCess

254

• Support all sensor types, without needing modifications to the server

to store their data

• It's fine to require the sensor be installed on the server to analyze

it, but not to retrieve data.

• Must be possible to export and import compatible data, both for data

portability and backup purposes

• Must be possible to delete data by time or endpoint4

 Database types
The first thing we need to do is decide how the data should be stored in this application.

There are lots of databases available, which cover a wide variety of feature sets.

Developers very often choose a particular database according to the current fashion,

rather than a dispassionate analysis of the pros and cons. Figure 6-2 is a decision tree

that encapsulates the broad questions I ask myself when deciding what style of database

to use. This only helps you find a broad category of database, not a particular piece

of software, as the feature sets vary massively. Still, I believe it is helpful to ask these

questions when deciding on a type of database.

4 The export and deletion options are especially important for any deployment where sensors
are colocated with members of the public, such as the use of noise sensors in homes around
Amsterdam to monitor airplane noise in 2004. It’s important that we build our software in a way
that respects the privacy of our users and the public.

Chapter 6 aggregatIon proCess

255

The first question I ask myself is to rule out a few special cases of database

technology. These are valuable technologies, and in their particular niche, they

are excellent, but they are relatively infrequency required. These are append-only

databases – where, once something is written, it can't be (easily) removed or edited.

This kind of database is a perfect match for logs, such as transaction logs or audit logs.

The primary difference between a blockchain and an append-only database is trust;

while both prevent editing or deleting data in the typical case, a standard append-only

database can be edited by manipulating the underlying storage files. A blockchain is

slightly different; it allows a group of people jointly to act as the maintainer. Data can

only be edited or removed if at least 50% of the users agree. Any users that don't agree

can keep the old data and leave the group. At the time of writing, blockchains are the

fashionable database du jour, but they are inappropriate for almost all applications.

Figure 6-2. Decision tree for picking a class of database

Chapter 6 aggregatIon proCess

256

Much more useful are the database types to the left of the diagram. They are the SQL

and NoSQL databases. NoSQL databases were fashionable in the early 2010s. Relational

databases have since adopted some of their features as extensions and additional

data types. The use of SQL or not isn't the critical way of distinguishing between these

database types, but rather if they are schemaless or not. This difference is similar to

Python with and without type hints; a schemaless database allows users to add data of

any arbitrary shape,5 whereas a database that has a defined schema validates data to

ensure it meets the expectations of the database author. A schemaless database might

appear to be more appealing, but it can make querying or migrating data much more

difficult. If there are no guarantees over what columns are present and their types,

it's possible to store data that appears to be correct but presents problems later in

development.

For example, imagine we have a temperature log table which stores the time a

temperature value is logged, the sensor that logged this temperature, and the value.

The value would likely be declared to be a decimal number, but what would happen if a

sensor provided a string like "21.2c" instead of 21.2? In a schema-enforcing database,

this would raise an error, and the data would fail to insert. In a schemaless database, the

insert would succeed but attempts to aggregate the data (such as calculating the mean)

fail if one of these incorrectly formatted entries is present in the retrieved data set. As

with Python's type hinting, this doesn't protect against all errors, just a type of error. A

value of 70.2 would be accepted as it's a valid number, even though a human can tell

that it is a measurement in degrees Fahrenheit rather than Celsius.

The final thing we need to consider is how we're going to be querying the data.

Querying support is the hardest of these three questions to generalize, as there are

significant differences within classes of database. People often describe relational

databases as being better for querying and NoSQL databases as being more reliant on

a natural key, like a path in an object store or a key in a key/value store. However, this is

an oversimplification. For example, SQLite is a relational database, but it has a relatively

minimal set of indexing options compared to alternatives such as PostgreSQL; and

Elasticsearch is a NoSQL database designed for flexibility in indexing and search.

5 When people talk about the shape of data, they mean the structure of the data types. For
example, {“foo”: 2} is the same shape as {“bar”: 99}, but different to [“foo”, 2] and {”foo”:
“2”}.

Chapter 6 aggregatIon proCess

257

 Our example
In our case, we find it very difficult to decide a single type for the value of a sensor,

other than the fact that all values are JSON serializable. We want to be able to access

the internals of this type, for example, the magnitude of a temperature value or the

length of a list of IP addresses. If we were to build this with standard relational database

constructs, we'd struggle to represent these options in a future-proof way. We'd have to

write the database structure with foreknowledge of the different types of value that could

be returned.

A better fit for us is to use a schemaless database, letting the JSON representation of

the sensor returned from the API be the data that's stored. We have a guarantee that we

can restore this data accurately (assuming we have the same version of the sensor code),

and there is no difficulty in finding a way of representing it.

This question has taken us to the lowest of the decision points on our decision tree;

we now need to consider the relationships between items in the database. A single

sensor value is related to other values by virtue of being generated by the same sensor

type, by being retrieved from the same endpoint, as well as by being retrieved at the

same time. That is, sensor values are related through sensor name, endpoint URL,

and creation time. These multiple dimensions of relationship should steer us toward a

database with rich indexing and query support, as it would help us to find related data.

We would also want to look to a database with good querying support as we want to be

able to find records from their values, not just the sensor and time.

These requirements lead us to the relational databases with schemaless support

option. That is, we should strongly consider a database that is relational at its core

but supports types that implement schemaless behavior. A good example of this is

PostgreSQL and its JSONB type. JSONB is used to store data in a JSON format6 and allows

indexes to be created that work on its internal structure.

CREATE TABLE sensor_values(

 id SERIAL PRIMARY KEY,

 sensor_name TEXT NOT NULL,

6 There are two JSON formats, JSON and JSONB. JSONB parses the JSON when data is loaded, but
JSON is slightly more forgiving. If you need to store JSON that contains duplicate keys, meaningful
whitespace, or meaningful ordering of keys, you should use the JSON type rather than JSONB. If
you are not intending to search within the JSON data, then the overhead from using JSONB may
not be worth it.

Chapter 6 aggregatIon proCess

258

 collected_at TIMESTAMP

 data JSONB

)

This format balances some of the advantages of fixed-schema databases, in that it’s

partially fixed. The name and collected_at fields are fixed columns, but the remaining

data field is a schemaless field. In theory, we could store JSON or any other serialization

format as a TEXT column in this table, but using the JSONB field allows us to write

queries and indexes that introspect this value.

 Object-relational mappers
It's entirely possible to write SQL code directly as Python, but it's relatively rare for

people to do this. Databases are complex beasts, and SQL is infamous for being

vulnerable to injection attacks. It's not possible to completely abstract away the

peculiarities of individual databases, but tools do exist that take care of table creation,

column mapping, and SQL generation.

The most popular of these in the Python world is SQLAlchemy, written by Michael

Bayer and others. SQLAlchemy is a very flexible object-relational mapper; it handles

the translation between SQL statements and native Python objects, and it does so in

an extensible way. Another commonly used ORM is the Django ORM, which is less

flexible but offers an interface which requires less knowledge of how databases work. In

general, you'll only be using the Django ORM if you're working on a Django project, and

otherwise, SQLAlchemy is the most appropriate ORM.

Note sQLalchemy does not ship with type hints; however, there is a mypy
plugin called sqlmypy that provides hints for sQLalchemy and teaches mypy to
understand the types implied by column definitions. I would recommend using
this on sQLalchemy-based projects where you are using type checking. the code
accompanying this chapter makes use of this plugin.

To begin with, we need to install SQLAlchemy and a database driver. We need to add

SQLAlchemy and psycopg2 to the install_requires section in setup.cfg and trigger

these dependencies to be reevaluated using pipenv install -e . on the command

line.

Chapter 6 aggregatIon proCess

259

There are two ways of describing a database structure with SQLAlchemy, the classic

and declarative styles. In the classic style, you instantiate Table objects and associate

them with your existing classes. In the declarative style, you use a particular base class

(which brings in a metaclass), then you define the columns directly on the user-facing

class. In most cases, the Python style of the declarative method makes it the natural

choice.

The same table as earlier, in SQLAlchemy declarative style

import sqlalchemy

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.dialects.postgresql import JSONB, TIMESTAMP

Base = declarative_base()

class DataPoint(Base):

 __tablename__ = 'sensor_values'

 id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True)

 sensor_name = sqlalchemy.Column(sqlalchemy.String)

 collected_at = sqlalchemy.Column(TIMESTAMP)

 data = sqlalchemy.Column(JSONB)

You can then write queries using Python code which will automatically create

the appropriate SQL. The create_engine(...) function is used to create a database

connection from a connection string. The setting echo=True can be passed, allowing you

to see the generated SQL. The next step is to use sessionmaker(...) to create a function

that allows you to start a new session and transaction and then finally to create a session

for the database connection, as follows:

>>> engine = sqlalchemy.create_engine("postgresql+psycopg2://apd@localhost/

apd", echo=True)

>>> sm = sessionmaker(engine)

>>> Session = sm()

>>> Session.query(DataPoint).filter(DataPoint.sensor_name ==

"temperature").all()

INFO sqlalchemy.engine.base.Engine SELECT sensor_values.id AS

sensor_values_id, sensor_values.sensor_name AS sensor_values_sensor_name,

sensor_values.collected_at AS sensor_values_collected_at, sensor_values.data

AS sensor_values_data

Chapter 6 aggregatIon proCess

260

FROM sensor_values

WHERE sensor_values.sensor_name = %(sensor_name_1)s

INFO sqlalchemy.engine.base.Engine {'sensor_name_1': 'temperature'}

[]

COLUMN OBJECTS AND DESCRIPTORS

the column objects we've used on our class behave in an unusual way. When we

access a column from the class, such as DataPoint.sensor_name, we get a special

object that represents the column itself. these objects intercept many python operations

and return placeholders that represent the operation. Without this interception,

DataPoint.sensor_name == "temperature" would be evaluated and the filter(...)

function would be equivalent to Session.query(DataPoint).filter(False).all().

DataPoint.sensor_name=="temperature" returns a Binaryexpression object. this

object is opaque, but the sQL template (excluding the constant values) can be previewed with

str(...):

>>> str((DataPoint.sensor_name=="temperature"))

 'sensor_values.sensor_name = :sensor_name_1'

the implied database type of an expression is stored on the type attribute of the result of the

expression. In the case of comparisons, it is always Boolean.

When the same expression is performed on an instance of the DataPoint type, it retains

none of the sQL-specific behaviors; the expression evaluates the actual data of the object as

normal. any instance of a sQLalchemy declarative class works as a normal python object.

as such, developers can use the same expression to represent both a python condition and a

sQL condition.

this is possible because the object referred to by DataPoint.sensor_name is a descriptor.
a descriptor is an object that has some combination of the methods __get__(self,

instance, owner), __set__(self, instance, value), and __delete__(self,

instance).

Chapter 6 aggregatIon proCess

261

Descriptors allow for custom behavior of instance attributes, allowing for arbitrary values to be

returned when the value is accessed on a class or an instance, as well as customizing what

happens when the value is set or deleted.

here is an example of a descriptor that behaves like a normal python value on an instance but

exposes itself on the class:

class ExampleDescriptor:

 def __set_name__(self, instance, name):

 self.name = name

 def __get__(self, instance, owner):

 print(f"{self}.__get__({instance}, {owner})")

 if not instance:

 # We were called on the class available as `owner`

 return self

 else:

 # We were called on the instance called `instance`

 if self.name in instance.__dict__:

 return instance.__dict__[self.name]

 else:

 raise AttributeError(self.name)

 def __set__(self, instance, value):

 print(f"{self}.__set__({instance}, {value})")

 instance.__dict__[self.name] = value

 def __delete__(self, instance):

 print(f"{self}.__delete__({instance}")

 del instance.__dict__[self.name]

class A:

 foo = ExampleDescriptor()

the following console session demonstrates the two code paths of the preceding __get__

method, as well as the set and delete functionality.

>>> A.foo

<ExampleDescriptor object at 0x03A93110>.__get__(None, <class 'A'>)

<ExampleDescriptor object at 0x03A93110>

>>> instance = A()

Chapter 6 aggregatIon proCess

262

>>> instance.foo

<ExampleDescriptor object at 0x03A93110>.__get__(<A object at 0x01664090>,

<class 'A'>)

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File ".\exampledescriptor.py", line 16, in

 __get__raise AttributeError(self.name)

AttributeError: foo

>>> instance.foo = 1

<ExampleDescriptor object at 0x03A93110>.__set__(<A object at 0x01664090>, 1)

>>> instance.foo

<ExampleDescriptor object at 0x03A93110>.__get__(<A object at 0x01664090>,

<class 'A'>)

1

>>> del instance.foo

<ExampleDescriptor object at 0x03A93110>.__delete__(<A object at 0x01664090>)

Most of the time that you need a descriptor, it’s to make an attribute that’s the result of a

computation. this is better expressed with the @property decorator, which constructs a

descriptor behind the scenes. properties are especially useful in the common case where only

the get functionality needs to be customized, but they support custom implementations of

setting and deleting too.

class A:

 @property

 def foo(self):

 return self._foo

 @foo.setter

 def foo(self, value):

 self._foo = value

 @foo.deleter

 def foo(self):

 del self._foo

Chapter 6 aggregatIon proCess

263

some core python features are implemented as descriptors: they're a very powerful way of

hooking into a deep part of the core object logic. Without knowing about them, features like

the @property and @classmethod decorators seem like magic that's specifically looked for

by the interpreter, rather than something you could program yourself.

that said, I have never yet had cause to write a descriptor, although I've used the @property

decorator frequently. If you find yourself copy/pasting your property definitions, you may want

to consider consolidating their code into a single descriptor.

 Versioning the database
There is a function in SQLAlchemy to create all the various tables, indexes, and

constraints that have been defined in this database. This checks the tables and columns

that have been defined and generates the matching database structure for them.

Creating all defined database tables using SQLAlchemy

engine = sqlalchemy.create_engine(

"postgresql+psycopg2://apd@localhost/apd", echo=True)

Base.metadata.create_all(engine)

This function looks great at first, but it’s very limited. You will likely add more tables

or columns in future or at least more indexes when you've done some performance

testing. The create_all(...) function creates all things that do not yet exist, meaning

any tables that are changed but did exist previously are not updated if you re-run

create_all(...). As such, relying on create_all(...) can result in a database that has

all the tables you expect but not all of the columns.

To combat this, people use a SQL migration framework. Alembic is the most

popular one for SQLAlchemy. It works by connecting to an instance of the database

and generating the actions that would be needed to bring the connected database in

sync with the one defined in code. If you're using the Django ORM, there is a built-

in migration framework that instead works by analyzing all the past migrations and

comparing that analyzed state with the current state of the code.

These frameworks allow us to make changes to the database and trust that they will

be propagated to actual deployments, regardless of what versions of the software they've

used in the past. If a user skips a version or three, any migrations between those versions

will also be run.

Chapter 6 aggregatIon proCess

264

To do this, we'll add Alembic to the setup.cfg list of dependencies, then re-run

pipenv install -e . to refresh these dependencies and install Alembic. We then use the

alembic command-line tool to generate the required files to use Alembic in our package.

> pipenv run alembic init src\apd\aggregation\alembic

Creating directory src\apd\aggregation\alembic ... done

Creating directory src\apd\aggregation\alembic\versions ... done

Generating alembic.ini ... done

Generating src\apd\aggregation\alembic\env.py ... done

Generating src\apd\aggregation\alembic\README ... done

Generating src\apd\aggregation\alembic\script.py.mako ... done

Please edit configuration/connection/logging settings in 'alembic.ini'

before proceeding.

The majority of the files are created in an alembic/ directory inside the package. We

need to put the files here so that they're accessible to people who install the package; files

outside of this hierarchy aren't distributed to end-users. The exception is alembic.ini,

which provides the logging and database connection configuration. These are different

for each end-user and so can’t be included as part of the package.

We need to modify the generated alembic.ini file, primarily to change the

database URI to match the connection string we're using. We can leave the value of

script_location=src/apd/aggregation/alembic if we like, as in this development

environment, we're using an editable installation of apd.aggregation, but that path

won’t be valid for end-users, so we should change it to reference an installed package,

and we should include a minimal alembic.ini example in the readme file.

Caution alembic scripts generally only apply to user models (dependencies have
their own configuration and ini files to migrate their models). Users never have a
valid reason to generate new migrations for models included in their dependencies.
Django's orM, on the other hand, processes user models and dependencies at the
same time, so if a maintainer releases a broken version of a package, it's possible
that end-users might inadvertently create new migrations for it when generating their
own migrations. For this reason, it's essential to check that migration files are properly
committed and released. When generating new migrations as an end- user, you should
sanity-check the files that are created are for your code and not a dependency.

Chapter 6 aggregatIon proCess

265

Minimal alembic.ini for end users

[alembic]

script_location = apd.aggregation:alembic

sqlalchemy.url = postgresql+psycopg2://apd@localhost/apd

We also need to customize the generated code inside the package, starting with

the env.py file. This file needs a reference to the metadata object that we looked at

earlier when using the create_all(...) function, so it can determine what the state

of the models is in code. It also contains functions for connecting to the database and

for generating SQL files that represent the migration. These can be edited to allow

customizing database connection options to match our project's needs.

We need to change the target_metadata line to use the metadata of our declarative

Base class that the models use, as follows:

from apd.aggregation.database import Base

target_metadata = Base.metadata

Now we can generate a migration to represent the initial state of the database,7 the

one that creates the datapoints table that we created to back the DataPoint class.

> pipenv run alembic revision --autogenerate -m "Create datapoints table"

The revision command creates a file in the alembic/versions/ directory. The first

part of the name is an opaque identifier which is randomly generated, but the second half

is based on the message given above. The presence of the --autogenerate flag means

that the generated file won't be empty; it contains the migration operations required to

match the current state of the code. The file is based on a template, script.py.mako in

the alembic/ directory. This template is added automatically by Alembic. Although we

can modify it if we want, the default is generally fine. The main reason to change this

would be to modify the comments, perhaps with a checklist of things to check when

generating a migration.

7 We could generate the initial state with the Base.metadata.create_all(engine) command
mentioned at the start of this chapter, but only because the current state is also the initial state. If
we made any changes, then create_all(...) would no longer generate the initial state. Putting
this in an initial migration means that users can always set up the database by upgrading to the
latest version of the database.

Chapter 6 aggregatIon proCess

266

After running black on this file and removing comments containing instructions, it

looks like this:

alembic/versions/6d2eacd5da3f_create_sensor_values_table.py

"""Create datapoints table

Revision ID: 6d2eacd5da3f

Revises: N/A

Create Date: 2019-09-29 13:43:21.242706

"""

from alembic import op

import sqlalchemy as sa

from sqlalchemy.dialects import postgresql

revision identifiers, used by Alembic.

revision = "6d2eacd5da3f"

down_revision = None

branch_labels = None

depends_on = None

def upgrade():

 op.create_table(

 "datapoints",

 sa.Column("id", sa.Integer(), nullable=False),

 sa.Column("sensor_name", sa.String(), nullable=True),

 sa.Column("collected_at", postgresql.TIMESTAMP(), nullable=True),

 sa.Column("data", postgresql.JSONB(astext_type=sa.Text()),

nullable=True),

 sa.PrimaryKeyConstraint("id"),

)

def downgrade():

 op.drop_table("datapoints")

The four module-scope variables are used by Alembic to determine the order

in which migrations should be run. These should not be altered. The bodies of the

upgrade() and downgrade() functions are what we need to check, to make sure that

Chapter 6 aggregatIon proCess

267

they're doing all the changes we expect and only the changes we expect. The most

common change that's needed is if there is an incorrect change detected, such as the

migration altering a column but the target state being equal to the start state. This can

happen if a database backup was incorrectly restored, for example.

A less common (but still regularly seen) problem is that sometimes an alembic migration

includes import statements which introduce code from a dependency or elsewhere in user

code, usually when developers are using a custom column type. In this case, the migration

must be altered as it's important that the migration code is entirely freestanding. Any

constants should also be copied into the migration file, for this same reason.

If a migration imports external code, then its effects may change over time as that

external code changes. Any migrations whose effects aren't wholly deterministic could

lead to real-world databases having inconsistent states, depending on which version of

the dependency code was available at the time of the migration.

EXAMPLE OF A MIGRATION REPEATABILITY ISSUE

For example, consider the following partial migration code for adding a user table to a piece of

software:

from example.database import UserStates

def upgrade():

 op.create_table(

 "user",

 sa.Column("id", sa.Integer(), nullable=False),

 sa.Column("username", sa.String(), nullable=False),

 sa.Column("status", sa.Enum(UserStates), nullable=False),

 ...

 sa.PrimaryKeyConstraint("id"),

)

there is a status field which, as an enum field, can only contain preselected values. If version

1.0.0 of the code defines UserStates = ["valid", "deleted"], then the enum will

be created with those as the valid options. however, version 1.1.0 might add another state,

making UserStates = ["new", "valid", "deleted"] to represent users having to

verify their accounts before they can log in. Version 1.1.0 would also need to add a migration

to add "new" as a valid type to this enum.

Chapter 6 aggregatIon proCess

268

If a user installed version 1.0.0 and ran the migration, then later installed 1.1.0 and re-ran

the migration, then the database would be correct. however, if the user only learned about

the software after 1.1.0 came out and ran both migrations with 1.1.0 installed, then the initial

migration would add all three user states, and the second one would be unable to add a value

that’s already present.

as developers, we’re used to the idea that we shouldn’t duplicate code, as it causes

maintainability problems, but database migrations are an exception. You should duplicate any

code you need in order to ensure that the behavior of the migration doesn’t change over time.

Finally, some changes are ambiguous. If we were to change the name of the

datapoints table we've created here, it would not be clear to Alembic if this were a name

change or the removal of one table and the creation of another that happens to have the

same structure. Alembic always errs on the side of drop and recreate, so if a rename is

intended, but the migration isn't changed, data loss occurs.

Details on the available operations are available in the Alembic documentation,

which provides all the everyday operations you might need. Operation plugins can offer

new operation types, especially database-specific operations.

Tip When you make changes to an upgrade operation, you should also make
the equivalent changes to the downgrade operation. If you don't want to support
downgrading from a particular version, you should raise an exception rather
than leave incorrect autogenerated migration code in place. For nondestructive
migrations, allowing downgrade is very helpful as it allows developers to revert
their database when switching between feature branches.

With this migration generated and committed into source control, we can run the

migrations, which generate this datapoints table for us. Running the migrations is done

with the alembic command line, as follows:

> alembic upgrade head

Chapter 6 aggregatIon proCess

269

 Other useful alembic commands

There are a few subcommands that Alembic users need on a day-to-day basis. These are

listed as follows:

• alembic current

• Shows the version number that the connected database is at.

• alembic heads

• Shows the latest version number in the migration set. If there

is more than one listed version, then the migrations need to be

merged.

• alembic merge heads

• Creates a new migration that depends on all the revisions listed

by alembic heads, ensuring that they are all performed.

• alembic history

• Shows a listing of all migrations known to Alembic.

• alembic stamp <revisionid>

• Replace <revisionid> with the alphanumeric revision identifier

to mark an existing database as being at that version without

running any migrations.

• alembic upgrade <revisionid>

• Replace <revisionid> with the alphanumeric revision identifier

to upgrade to. This can be head8 for the most recent revision.

Alembic follows the revision history, running the upgrade

method of any migrations that have not been performed.

8 Using heads will also upgrade to the most recent revision, but it will follow any branched paths,
rather than requiring they are merged. I recommend not using this functionality and ensuring
that you merge any forked migrations instead.

Chapter 6 aggregatIon proCess

270

• alembic downgrade <revisionid>

• Like upgrade, but the target revision is earlier, and the downgrade

methods are used. In my experience, this works less well across

merge migrations than a straight migration path, and you should

be aware that a downgrade isn't the same as an undo. It cannot

restore data in columns that were dropped.

 Loading data
Now we have the data model defined, and we can begin to load in data from the sensors.

We'll do this over HTTP with the excellent requests library. There is support for making

HTTP requests built-in to Python, but the requests library has a better user interface.

I recommend using requests over the standard library HTTP support in all situations.

You should only use the standard library's HTTP request support in cases where it's not

practical to use dependencies.

The lowest-level building block we need for pulling data from sensors is a function

that, given the API details for an endpoint, makes a HTTP request to the API, parses the

results, and creates DataPoint class instances for each sensor.

Function that adds datapoints from a server

def get_data_points(server: str, api_key: t.Optional[str]) ->

t.Iterable[DataPoint]:

 if not server.endswith("/"):

 server += "/"

 url = server + "v/2.0/sensors/"

 headers = {}

 if api_key:

 headers["X-API-KEY"] = api_key

 try:

 result = requests.get(url, headers=headers)

 except requests.ConnectionError as e:

 raise ValueError(f"Error connecting to {server}")

 now = datetime.datetime.now()

 if result.ok:

Chapter 6 aggregatIon proCess

271

 for value in result.json()["sensors"]:

 yield DataPoint(

 sensor_name=value["id"], collected_at=now, data=value["value"]

)

 else:

 raise ValueError(

 f"Error loading data from {server}: "

 + result.json().get("error", "Unknown")

)

This function connects to the remote server and returns DataPoint objects for each

sensor value present. It can also raise a ValueError representing an error encountered

while attempting to read the data and performs some basic checking of the URL

provided.

YIELD AND RETURN

I just described the get_data_points() function as returning Datapoint objects, but that's

not strictly correct. It uses the yield keyword, rather than return. We briefly saw this in Chapter 5

when writing a WsgI application that returns parts of the response with a delay in between.

the yield statement makes this a generator function. a generator is a lazily evaluated

iterable of values. It can produce zero or more values or even infinitely many. generators only

generate the items that the caller requests, unlike normal functions which calculate the full

return value before the first one is available to the caller.

the easiest way to build a simple generator is with a generator expression, which, if you're

familiar with list, set, and dictionary comprehensions, will look like what you'd imagine a tuple

comprehension to be.

>>> [item for item in range(10)]

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> (item for item in range(10))

<generator object <genexpr> at 0x01B58EB0>

Chapter 6 aggregatIon proCess

272

these generator expressions cannot be indexed like a list, you can only request the next item

from them:

>>> a=(item for item in range(10))

>>> a[0]

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'generator' object is not subscriptable

>>> next(a)

0

>>> next(a)

1

...

>>> next(a)

8

>>> next(a)

9

>>> next(a)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

It is also possible to convert them to lists or tuples using the list(a) syntax (so long as they

don't contain infinitely many items); however, this takes their state into account. If you've

already extracted some or all of the items from the generator, then the result of list(a) will

only contain those remaining.

Generator functions

the preceding examples are generator expressions, but get_data_points() is a generator

function. these use the yield keyword to specify what the next value should be, and then

execution is paused until the user requests a further value. python remembers the function’s

state; when the next item is requested, it is resumed from the point of the yield statement.

this can be very useful, as some functions take a long time to generate each subsequent

value. the alternative is to make a function where you need to specify the number of items

you want to generate, but the generator model allows you to inspect the items as they're

returned before deciding if you want more.

Chapter 6 aggregatIon proCess

273

Consider the following generator function:

def generator() -> t.Iterable[int]:

 print("Stating")

 yield 1

 print("Part way")

 yield 2

 print("Done")

here, print(...) is standing in for more complex code, perhaps connecting to external

services or a complex algorithm. If we coerce this generator to a tuple, the prints all happen

before we get our result:

>>> tuple(generator())

Stating

Part way

Done

(1, 2)

however, if we use the items one by one, we can see that the code between yield

statements is executed between the values being returned:

>>> for num in generator():

... print(num)

...

Stating

1

Part way

2

Done

When to use them

sometimes it can be unclear if it's best to use a generator or a normal function. any function

that just generates data alone can be a generator function or a standard function, but

functions that perform actions on data (such as adding data points to a database) must be

sure to consume the iterator.

Chapter 6 aggregatIon proCess

274

the commonly stated rule of thumb is that such functions should return a value, rather than

yield values, but any pattern that causes the full iterator to be evaluated is fine. another way of

doing this is by looping over all the items:

def add_to_session(session)

 for item in generator:

 session.add(item)

or by converting the generator to a concrete list or tuple type:

def add_to_session(session)

 session.add_all(tuple(generator))

however, if there were a yield statement in the preceding functions, then they would not work as

expected. Both of the preceding functions can be called with add_to_session(generator),

and all items produced by the generator would be added to the session. the following, if called in

the same way, would result in no items being added to the session:

def add_to_session(session)

 for item in generator:

 session.add(item)

 yield item

If in doubt, use a standard function, rather than a generator function. either way, make sure

you test that your function is behaving as expected.

EXERCISE 6-1: PRACTICE WITH GENERATORS

Write a generator function that provides an infinite supply of data points from a single sensor.

You should use yield on DataPoint instances you construct and wait a second between

samplings using the time.sleep(...) function.

once you have written this function, you should loop over its values to see the data come

through in bursts as the sensor is queried. You should also try using the standard library's

filter(function, iterable) function to find only the values of a specific sensor.

an example implementation for this is available in this chapter's accompanying code.

Chapter 6 aggregatIon proCess

275

This function is a great start: it provides something we can iterate over that contains

DataPoint objects, but we need to create a database connection, add them to a session, and

commit that session. To this end, I’ve defined two helper functions (shown in Listing 6-3),

one that, given a database session and server information, gets all the data points

from each server and calls session.add(point) to add them to the current database

transaction. The second is intended as a stand-alone data collection function. It sets

up the session, calls add_data_from_sensors(...), and then commits the session to

the database. I have also created another click-based command-line tool that performs

these actions, allowing the parameters to be passed on the command line.

Listing 6-3. Helper functions in collect.py

def add_data_from_sensors(

 session: Session, servers: t.Tuple[str], api_key: t.Optional[str]

) -> t.Iterable[DataPoint]:

 points: t.List[DataPoint] = []

 for server in servers:

 for point in get_data_points(server, api_key):

 session.add(point)

 points.append(point)

 return points

def standalone(

 db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo:

bool = False

) -> None:

 engine = sqlalchemy.create_engine(db_uri, echo=echo)

 sm = sessionmaker(engine)

 Session = sm()

 add_data_from_sensors(Session, servers, api_key)

 Session.commit()

Click entrypoint in cli.py

@click.command()

@click.argument("server", nargs=-1)

@click.option(

 "--db",

Chapter 6 aggregatIon proCess

276

 metavar="<CONNECTION_STRING>",

 default="postgresql+psycopg2://localhost/apd",

 help="The connection string to a PostgreSQL database",

 envvar="APD_DB_URI",

)

@click.option("--api-key", metavar="<KEY>", envvar="APD_API_KEY")

@click.option(

 "--tolerate-failures",

 "-f",

 help="If provided, failure to retrieve some sensors' data will not "

"abort the collection process",

 is_flag=True,

)

@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode")

def collect_sensor_data(

 db: str, server: t.Tuple[str], api_key: str, tolerate_failures: bool,

verbose: bool

):

 """This loads data from one or more sensors into the specified database.

 Only PostgreSQL databases are supported, as the column definitions use

 multiple pg specific features. The database must already exist and be

 populated with the required tables.

 The --api-key option is used to specify the access token for the sensors

 being queried.

 You may specify any number of servers, the variable should be the full URL

 to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple

 URLs should be separated with a space.

 """

 if tolerate_failures:

 attempts = [(s,) for s in server]

 else:

 attempts = [server]

 success = True

 for attempt in attempts:

Chapter 6 aggregatIon proCess

277

 try:

 standalone(db, attempt, api_key, echo=verbose)

 except ValueError as e:

 click.secho(str(e), err=True, fg="red")

 success = False

 return success

This sample uses some more features of click, including the fact that docstrings on

click commands are exposed to the end-user as help for the command. The help text

adds a lot to the length of the function, but it's less intimidatingly verbose in a code

editor with syntax highlighting. This is exposed when a user uses the --help flag, as

shown in the following:

> pipenv run collect_sensor_data --help

Usage: collect_sensor_data [OPTIONS] [SERVER]...

 This loads data from one or more sensors into the specified database.

 Only PostgreSQL databases are supported, as the column definitions use

 multiple pg specific features. The database must already exist and be

 populated with the required tables.

 The --api-key option is used to specify the access token for the sensors

 being queried.

 You may specify any number of servers, the variable should be the full URL

 to the sensor's HTTP interface, not including the /v/2.0 portion. Multiple

 URLs should be separated with a space.

Options:

 --db <CONNECTION_STRING> The connection string to a PostgreSQL database

 --api-key <KEY>

 -f, --tolerate-failures If provided, failure to retrieve some sensors'

 data will not abort the collection process

 -v, --verbose Enables verbose mode

 --help Show this message and exit.

Chapter 6 aggregatIon proCess

278

Then, we are using @click.argument for the first time. We use this to collect bare

arguments to the function, not options with associated values. The nargs=-1 option to

this argument states that we accept any number of arguments, rather than a specific

number (usually 1). As such, the command could be invoked as collect_sensor_data

http://localhost:8000/ (to collect data from localhost only), as collect_sensor_data

http://one:8000/ http://two:8000/ (to collect data from two servers), or even as

collect_sensor_data (no data would be collected, but the database connection would

be tested implicitly).

The --api-key and --verbose options likely don’t need any explanation, but the

--tolerate-failures option is one that we might not have considered. Without this

option and its support code, we'd run the standalone(...) function with all the sensor

locations, but if one failed, the entire script would fail. This option allows the user to

specify that in cases where there are multiple servers specified, then any that succeed

have their data saved and failing sensors are omitted. The code achieves this by using

this option to decide if it should download data from [("http://one:8000/",

"http://two:8000/")] or [("http://one:8000/",), ("http://two:8000/",)].

The code for this command passes all the servers to standalone(...) in the

normal case, but if --tolerate-failures is added, then there will be one call to

standalone(...) for each of the server URLs. This is very much a convenience feature,

but it's one I would like if I were using this command myself.

Finally, the support functions are relatively simple. The add_data_from_sensors(...)

function wraps the existing get_data_points(...) function and calls session.add(...)

on each data point it returns. It then passes these through to the caller as a return value,

but as a list rather than a generator. As we're looping over the generators, it ensures that

the iterator is fully consumed. Calls to add_data_from_sensors(...) have access to the

DataPoint objects, but they are not obliged to iterate over them to consume a generator.

Caution Developers who enjoy a functional coding style sometimes fall into
a trap here. they may be tempted to replace this function with something like
map(Session.add, items). the map function creates a generator, so this
would need to be consumed to have any effect. Doing so can introduce subtle
bugs, such as code that only works when you have a verbose flag enabled, which
causes the iterable to be consumed by logging statements.

Chapter 6 aggregatIon proCess

279

Do not use map(...) if the function you called on the items has any side
effects, such as registering the objects with a database session. Always use
a loop instead; it's clearer and places no obligations on later code to ensure
the generator is consumed.

 New technologies
We’ve touched lightly on some technologies that are very frequently used. I recommend

taking the time to understand all of the decisions we made in this chapter regarding their

use. To that end, a quick recap of my recommendations is given in the following.

 Databases
Pick a database that matches what you need to do with your data, not what is the current

vogue. Some databases, like PostgreSQL, are a good default choice precisely because

they offer so much flexibility, but flexibility comes at a complexity cost.

Use an ORM and a migration framework if you're using a SQL-based database. In all

but extreme edge cases, they serve you better than writing your own custom SQL. Don't

be fooled into thinking that the ORM would shield you from knowing about databases,

however. It eases the interface, but you'll have a tough time if you try to interact with a

database without understanding its needs.

 Custom attribute behavior
If you need something that acts like a calculated property, that is, something that

behaves like an attribute on an object but actually builds its value from other sources, a

@property is the best way to go. The same is true for one-off wrappers of values, where

data is modified or reformatted. In this case, a property with a setter should be used.

If you are writing a behavior to be used multiple times in your codebase (and

especially if you're building a framework for others to use), a descriptor is usually a

better choice. Anything that you can do with a property can be done with a custom

descriptor, but you should prefer properties as they're easier to understand at a glance. If

you create a behavior, you should be careful to ensure that it does not stray too far from

behavior other developers would expect from Python code.

Chapter 6 aggregatIon proCess

280

 Generators
Generators are appropriate for cases where you want to provide an infinite (or

exceedingly long) stream of values to be looped over. They can be used to reduce

memory consumption if the user of the generator does not need to keep a record of all

previous values. This strength can also be their biggest drawback: code in a generator

function is not guaranteed to execute unless you consume the whole generator.

Do not use generators except for in functions where you need to generate a list of

items which would only be read once, where the generation is expected to be slow, and

where you're not certain that the caller needs to process all of the items.

 Summary
We've done a lot in this chapter: we've created a new package, introduced ORMs and

migration frameworks, and peeked behind the curtain at some deep magic the Python

interpreter uses to determine what happens when you access an attribute of an object.

We also have a working aggregation process that pulls data from each of our sensors and

stores them for later use.

In the next chapter, we'll dive even further into complex uses of the yield

functionality when we look at how asynchronous programming can be achieved in

Python and when it's an appropriate solution to problems.

 Additional resources
I recommend looking into the following resources to learn more about the techniques

we’ve used during this chapter. As always, feel free to read only those which interest you

or are relevant to your work.

Julia Evans’s Become a SELECT star (paid for, samples available at

https://wizardzines.com/zines/sql/) is a charming explanation

of the details of relational databases in a printable format. If you’re

new to relational databases, this is a great place to start.

The PostgreSQL documentation on JSON types has details about

query behavior for extracting information from within a JSON field.

It is at www.postgresql.org/docs/current/datatype-json.html.

Chapter 6 aggregatIon proCess

https://wizardzines.com/zines/sql/
http://www.postgresql.org/docs/current/datatype-json.html

281

The blogpost https://www.citusdata.com/blog/2016/07/14/

choosing-nosql-hstore-json-jsonb/ has some good tips on

how to choose between the two variants of JSON column in

PostgreSQL, as well as the older hstore type that I haven’t covered

in this book.

The Python documentation on descriptors has many examples of

how descriptors are used to implement features of the standard

library: https://docs.python.org/3/howto/descriptor.html.

There is an aggregator of Cookiecutter templates at http://

cookiecutter-templates.sebastianruml.name/.

Chapter 6 aggregatIon proCess

http://www.citusdata.com/blog/2016/07/14/choosing-nosql-hstore-json-jsonb/
http://www.citusdata.com/blog/2016/07/14/choosing-nosql-hstore-json-jsonb/
https://docs.python.org/3/howto/descriptor.html
http://cookiecutter-templates.sebastianruml.name/
http://cookiecutter-templates.sebastianruml.name/

283
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_7

CHAPTER 7

Parallelization and async
A common problem that developers find themselves faced with is that they have an

operation that spends a lot of time waiting for something to happen, as well as other

operations which do not depend on the results of that first operation. It can be frustrating

to wait for the slow operation to complete when there are other things the program could

be doing. This is the fundamental problem that asynchronous programming tries to

solve.

This problem becomes most noticeable during IO operations, such as network

requests. In our aggregation process, we have a loop which issues HTTP requests to

various endpoints, then processes the results. These HTTP requests can take some time

to complete, as they often involve examining external sensors and looking at values over

a few seconds. If each request takes 3 seconds to complete, then checking 100 sensors

would mean waiting for 5 minutes, on top of all the processing time.

The alternative approach is for us to parallelize some aspects of the program. The

most natural functions to parallelize are steps that involve waiting for some external

system. If only the three waiting steps in Figure 7-1 could be parallelized, there would be

significant time savings, as shown in Figure 7-2.

Figure 7-1. Step-by-step process for connecting to three sensor servers and
downloading their data

https://doi.org/10.1007/978-1-4842-5793-7_7#ESM

284

Of course, computers have practical limits on how many network requests can

be outstanding at once. Anyone who has copied files to an external hard drive is

familiar with the idea that some storage media are better equipped to process multiple

sequential accesses than parallel ones. The best fit for parallel programming is when

there is a balance between IO-bound and CPU-bound operations that need to be

performed. If there is an emphasis on CPU-bound, the only speed increases possible are

by committing more resources. On the other hand, if there is too much IO happening,

we may have to limit the number of simultaneous tasks to avoid a backlog of processing

tasks building up.

 Nonblocking IO
The simplest way to write asynchronous functions in Python, and one that has been

possible for a very long time, is to write functions that use nonblocking IO operations.

Nonblocking IO operations are variants of the standard IO operations that return as soon

as an operation starts, rather than the normal behavior of returning when it completes.

Some libraries may use these for low-level operations, like reading from a socket,

but it’s rare for them to be used in more complex settings or by most Python developers.

There are no widely used libraries to allow developers to take advantage of nonblocking

IO for HTTP requests, so I cannot recommend it as a practical solution to the problem

of managing simultaneous connections to web servers. Still, it’s a technique that was

used more in the Python 2 era, and it’s interesting to look at as it helps us understand the

advantages and disadvantages of more modern solutions.

Figure 7-2. Step-by-step process with parallelized waiting, parsing does not
necessarily happen in order

Chapter 7 parallelization and asynC

285

We’ll look at an example implementation here so that we can see the differences in how

the code must be structured to take advantage of this. The implementation relies on the

select.select(...) function of the standard library, which is a wrapper for the select(2)

system call. When given a list of file-like objects (which includes sockets and subprocess calls),

select returns the ones that have data ready for reading1 or blocks until at least one is ready.

select represents the key idea of asynchronous code, the idea that we can wait for

multiple things in parallel, but with a function that handles blocking until some data is

ready. The blocking behavior changes from waiting for each task in turn to waiting for

the first of multiple simultaneous requests. It may seem counterintuitive that the key to a

nonblocking IO process is a function that blocks, but the intention isn’t to remove blocking

entirely, it’s to move the blocking to when there is nothing else we could be doing.

Blocking is not a bad thing; it’s what allows our code to have an easy-to-understand

execution flow. If select(...) did not block when there were no connections ready,

we’d have to introduce a loop to call select(...) repeatedly until a connection is

ready. Code that blocks immediately is easier to understand, as it never has to handle

cases where a variable is a placeholder for a future result that is not yet ready. The select

approach sacrifices some of that naïve clarity in our program flow by deferring the

blocking until a later point, but it allows us to take advantage of parallelized waiting.

Caution the following example functions are very optimistic; they are not
standards-compliant http functions, and they make many assumptions about how
the server behaves. this is intentional; they are here to illustrate an approach, not
as a recommendation for code to be used in the real world. it works well enough
for instructional and comparison purposes, and that’s about it.

An example of a program to make some nonblocking IO HTTP requests is shown

as Listing 7-1. The most striking difference between the HTTP handling of our code

and this sample is the addition of two additional functions – the ones that perform the

HTTP request and response actions. Splitting the logic like this makes this approach

unappealing, but it’s important to remember that there are equivalents to these

functions in the requests package; we’re only seeing them here because we’re looking at

a method for which there is no library to fall back on.

1 It can do other things, like detecting when a file is ready to be written to, but that’s not relevant
for our needs.

Chapter 7 parallelization and asynC

286

Listing 7-1. Optimistic nonblocking HTTP functions – nbioexample.py

import datetime

import io

import json

import select

import socket

import typing as t

import urllib.parse

import h11

def get_http(uri: str, headers: t.Dict[str, str]) -> socket.socket:

 """Given a URI and a set of headers, make a HTTP request and return the

 underlying socket. If there were a production-quality implementation of

 nonblocking HTTP this function would be replaced with the relevant one

 from that library."""

 parsed = urllib.parse.urlparse(uri)

 if parsed.port:

 port = parsed.port

 else:

 port = 80

 headers["Host"] = parsed.netloc

 sock = socket.socket()

 sock.connect((parsed.hostname, port))

 sock.setblocking(False)

 connection = h11.Connection(h11.CLIENT)

 request = h11.Request(method="GET", target=parsed.path,

headers=headers.items())

 sock.send(connection.send(request))

 sock.send(connection.send(h11.EndOfMessage()))

 return sock

def read_from_socket(sock: socket.socket) -> str:

 """ If there were a production-quality implementation of nonblocking HTTP

 this function would be replaced with the relevant one to get the body of

Chapter 7 parallelization and asynC

287

 the response if it was a success or error otherwise. """

 data = sock.recv(1000000)

 connection = h11.Connection(h11.CLIENT)

 connection.receive_data(data)

 response = connection.next_event()

 headers = dict(response.headers)

 body = connection.next_event()

 eom = connection.next_event()

 try:

 if response.status_code == 200:

 return body.data.decode("utf-8")

 else:

 raise ValueError("Bad response")

 finally:

 sock.close()

def show_responses(uris: t.Tuple[str]) -> None:

 sockets = []

 for uri in uris:

 print(f"Making request to {uri}")

 sockets.append(get_http(uri, {}))

 while sockets:

 readable, writable, exceptional = select.select(sockets, [], [])

 print(f"{ len(readable) } socket(s) ready")

 for request in readable:

 print(f"Reading from socket")

 response = read_from_socket(request)

 print(f"Got { len(response) } bytes")

 sockets.remove(request)

if __name__ == "__main__":

 show_responses([

 "http://jsonplaceholder.typicode.com/posts?userId=1",

 "http://jsonplaceholder.typicode.com/posts?userId=5",

 "http://jsonplaceholder.typicode.com/posts?userId=8",

])

Chapter 7 parallelization and asynC

288

The result of running this file with a Python interpreter would be these three URLs

being fetched, then read as their data became available, shown as follows:

> pipenv run python .\nbioexample.py

Making request to http://jsonplaceholder.typicode.com/posts?userId=1

Making request to http://jsonplaceholder.typicode.com/posts?userId=5

Making request to http://jsonplaceholder.typicode.com/posts?userId=8

1 socket(s) ready

Reading from socket

Got 27520 bytes

1 socket(s) ready

Reading from socket

Got 3707 bytes

1 socket(s) ready

Reading from socket

Got 2255 bytes

The get_http(...) function is what creates the socket. It parses the URL that it

has been given and sets up a TCP/IP socket to connect to that server. This does involve

some blocking IO, specifically any DNS lookups and socket setup actions, but these are

relatively short compared to the time waiting for the body, so I have not attempted to

make them nonblocking.

Then, the function sets this socket as nonblocking and uses the h11 library to

generate a HTTP request. It’s entirely possible to generate a HTTP request2 with string

manipulation alone, but this library simplifies our code significantly.

We call the read_from_socket(...) function once there is data available on the

socket. It assumes that there are less than 1000000 bytes of data and that represents a

complete response,3 then uses the h11 library to parse this into objects representing

the headers and the body of the response. We use that to determine if the request was

successful and return either the body of the response or raise a ValueError. The data

is decoded as UTF-8 because that’s what Flask is generating for us on the other end.

It’s essential to decode with the correct character set; this can be done by providing a

header with the character set defined or by having some other guarantee about what the

2 Assuming you’re using HTTP 0.9, 1.0, or 1.1. HTTP 2.0 and higher are binary protocols.
3 This is a terrible assumption and would cause lots of intermittent bugs. To do this for real, we’d
have to build up the response chunk by chunk.

Chapter 7 parallelization and asynC

289

character set is. As we also wrote the server code, we know that we’re using Flask’s

built- in JSON support, which uses Flask’s default encoding, which is UTF-8.

Tip in some situations, you may not know for sure which character encoding is
in use. the chardet library analyzes text to suggest the most likely encoding, but
this is not foolproof. this library, or fallback like try/except blocks with multiple
encodings, is only appropriate when loading data from a source that is not
consistent and does not report its encoding. in the majority of cases, you should be
able to specify the exact encoding, and you must do this to avoid subtle errors.

 Making our code nonblocking
In order to integrate the preceding functions into our codebase, the other

functions in our code require some changes, as shown in Listing 7-2. The existing

get_data_points(...) function would need to be split into connect_to_server(...)

and prepare_datapoints_from_response(...) functions. We thereby expose the socket

object to the add_data_from_sensors(...) function, allowing it to use select instead of

just looping over each server.

Listing 7-2. Additional glue functions

def connect_to_server(server: str, api_key: t.Optional[str]) ->

socket.socket:

 if not server.endswith("/"):

 server += "/"

 url = server + "v/2.0/sensors/"

 headers = {}

 if api_key:

 headers["X-API-KEY"] = api_key

 return get_http(url, headers=headers)

def prepare_datapoints_from_response(response: str) ->

t.Iterator[DataPoint]:

 now = datetime.datetime.now()

 json_result = json.loads(response)

Chapter 7 parallelization and asynC

290

 if "sensors" in json_result:

 for value in json_result["sensors"]:

 yield DataPoint(

 sensor_name=value["id"], collected_at=now,

data=value["value"]

)

 else:

 raise ValueError(

 f"Error loading data from stream: " + json_result.get("error",

"Unknown")

)

def add_data_from_sensors(

 session: Session, servers: t.Tuple[str], api_key: t.Optional[str]

) -> t.Iterable[DataPoint]:

 points: t.List[DataPoint] = []

 sockets = [connect_to_server(server, api_key) for server in servers]

 while sockets:

 readable, writable, exceptional = select.select(sockets, [], [])

 for request in readable:

 # In a production quality implementation there would be

 # handling here for responses that have only partially been

 # received.

 value = read_from_socket(request)

 for point in prepare_datapoints_from_response(value):

 session.add(point)

 points.append(point)

 sockets.remove(request)

 return points

It may sound minor, but this is sufficient reason to decide against using this

method of making HTTP requests in production code. Without a library to simplify

the API here, the cognitive load that is added by using nonblocking sockets is, in my

opinion, excessive. The ideal approach would introduce no changes to the program

Chapter 7 parallelization and asynC

291

flow, but minimizing the changes helps keep code maintainable. The fact that this

implementation leaks the raw sockets into application functions is unacceptable.

Overall, while this approach does reduce waiting time, it requires us to restructure

our code significantly, and it only provides savings in the wait step, not in the parsing

stage. Nonblocking IO is an interesting technique, but it is only appropriate for

exceptional cases and requires significant alterations to program flow as well as

abandoning all common libraries to achieve even the most basic outcomes. I don’t

recommend this approach.

 Multithreading and multiprocessing
A much more common approach is to split the workload into multiple threads or

processes. Threads allow logical subproblems to be processed at the same time. It’s

possible whether they are CPU-bound or IO-bound. In this model, it’s possible for the

parsing of one set of results to happen before the waiting has even started for another,

as the entire retrieval process is split into a new thread. Each of the tasks run in parallel,

but within a thread everything runs sequentially (as shown in Figure 7-3), with functions

blocking as usual.

The code within a thread always executes in order, but when multiple threads

are running at once, there is no guarantee that their execution is synchronized in any

meaningful way. Even worse than that, there’s no guarantee that the execution of code in

different threads is aligned to a statement boundary. When two threads access the same

variable, there’s no guarantee that either of the actions are performed first: they can

overlap. The internal low-level "bytecode" that Python uses to execute user functions are

the building blocks of parallelism in Python, not the statement.

Figure 7-3. Parallel tasks when using threading or multiple processes

Chapter 7 parallelization and asynC

292

 Low-level threads
The lowest-level interface to threads in Python is the threading.Thread object, which

effectively wraps a function call into a new thread. A thread’s actions can be customized

by passing a function as the target= parameter or by subclassing threading.Thread and

defining a run() method, as shown in Table 7-1.

Table 7-1. The two methods of providing the code for a thread to execute

import threading

def helloworld():

 print("Hello world!")

thread = threading.Thread(

 target=helloworld,

 name="helloworld"

)

thread.start()

thread.join()

import threading

class HelloWorldThread(threading.Thread):

 def run(self):

 print("Hello world!")

thread = HelloWorldThread(name="helloworld")

thread.start()

thread.join()

The start() method begins the execution of the thread; the join() method blocks

the execution until that thread has completed. The name parameter is mostly useful for

debugging performance problems, but it’s a good habit always to set a name if you’re

ever creating threads manually.

Threads do not have a return value, so if they need to return a computed value, that can

be tricky. One way of passing a value back is by using a mutable object that it can change in

place or, if using the subclass method, by setting an attribute on the thread object.

An attribute on the thread object is a good approach when there is a single, simple

return type, such as a boolean success value, or the result of a computation. It’s a good fit

for when the thread is doing a discrete piece of work.

A mutable object is the best fit when you have multiple threads, each working on a

part of a common problem, for example, gathering the sensor data from a set of URLs,

with each thread being responsible for one URL. The queue.Queue object is perfect for

this purpose.

Chapter 7 parallelization and asynC

293

EXERCISE 7-1: WRITE A WRAPPER TO RETURN VIA A QUEUE

rather than adjust the function directly, write some code to wrap any arbitrary function and

store its results in a queue instead of directly returning, to allow the function to be run cleanly

as threads. if you get stuck, look back at Chapter 5 and how to write a decorator that takes

arguments.

the function, return_via_queue(...), should be such that the following code works:

from __future__ import annotations

...

def add_data_from_sensors(

 session: Session, servers: t.Tuple[str], api_key: t.Optional[str]

) -> t.Iterable[DataPoint]:

 points: t.List[DataPoint] = []

 q: queue.Queue[t.List[DataPoint]] = queue.Queue()

 wrap = return_via_queue(q)

 threads = [

 threading.Thread(target=wrap(get_data_points), args=(server, api_key))

 for server in servers

]

 for thread in threads:

 # Start all threads

 thread.start()

 for thread in threads:

 # Wait for all threads to finish

 thread.join()

 while not q.empty():

 # So long as there's a return value in the queue, process one

thread's results

 found = q.get_nowait()

 for point in found:

 session.add(point)

 points.append(point)

 return points

Chapter 7 parallelization and asynC

294

you must also adjust the get_data_points(...) function to return a list of DataPoint

objects, rather than an iterator of them, or to do an equivalent conversion in the wrapper

function. this is to ensure that all the data is processed in the thread before it returns its data

to the main thread. as generators don’t produce their values until the values are requested, we

need to ensure that the requesting happens within the thread.

an example implementation of the wrapper method and a simple threaded version of this

program is available in the code samples for this chapter.

Note on __future__ imports

Statements like from __future__ import example are ways of enabling features that

will be part of a future version of python. they must be at the very top of a python file, with no

other statements before them.

in this case, the line q: queue.Queue[t.List[DataPoint]] = queue.Queue() is the

problem. the queue.Queue object in the standard library is not a generic type in python 3.8,

so it cannot accept a type definition of the type of objects it contains. this omission is tracked

as bug 33315 in python, where there is justified reluctance to either add a new typing.Queue

type or to adjust the built-in type.

despite this, mypy treats queue.Queue as a generic type; it’s just the python interpreter that

does not. there are two ways of fixing this, either by using a string-based type hint so that the

python interpreter doesn’t try to evaluate queue.Queue[...] and fail

 q: "queue.Queue[t.List[DataPoint]]" = queue.Queue()

or by using the annotations option from __future__, which enables the type annotation

parsing logic planned for python 4. this logic prevents python from parsing annotations at

runtime and is the approach taken in the preceding sample.

This low level of threading is not at all user-friendly. As we’ve seen in the

preceding exercise, it is possible to write a wrapper code that makes functions work

unchanged in a threaded environment. It would also be possible to write a wrapper

for the threading.Thread object that automatically wraps the function being called

and automatically retrieves the result from an internal queue and returns it to the

programmer seamlessly.

Luckily, we don’t have to write such a feature in production code; there’s a helper

built-in to the Python standard library: concurrent.futures.ThreadPoolExecutor.

Chapter 7 parallelization and asynC

295

The ThreadPoolExecutor manages the number of threads in use, allowing the

programmer to limit the number of threads that execute at once.

The equivalent invocation of a single hello world thread using a ThreadPoolExecutor

would be

from concurrent.futures import ThreadPoolExecutor

def helloworld():

 print("Hello world!")

with ThreadPoolExecutor() as pool:

 pool.submit(helloworld)

Here, we see a context manager that defines the period where the pool of threads is

active. As no max_threads argument is passed to the executor, Python picks an amount of

threads based on the number of CPUs available on the computer running the program.

Once inside this context manager, the program submits function calls to the thread

pool. The pool.submit(...) function can be called any number of times to schedule

additional tasks, the result of which is a Future object representing that task. Futures

will be very familiar to developers who have worked with modern JavaScript; they are

objects that represent a value (or an error) that will be present at some point in the future.

The result() method returns whatever value the function that was submitted returned.

If that function raised an exception, then the same exception will be raised when the

result() method is called.

from concurrent.futures import ThreadPoolExecutor

def calculate():

 return 2**16

with ThreadPoolExecutor() as pool:

 task = pool.submit(calculate)

>>> print(task.result())

65536

Caution if you don’t access the result() method of a future, then any exceptions it
raises are never propagated to the main thread. this can make debugging difficult, so
it’s best to ensure you always access the result, even if you never assign it to a variable.

Chapter 7 parallelization and asynC

296

If result() is called within the with block, execution blocks until the relevant task

has completed. When the with block ends, execution blocks until all scheduled tasks

have completed, so calls to the result method after the with block ends always return

immediately.

 Bytecode
In order to understand some of the limits of threading in Python, we need to look behind

the curtain of how the interpreter loads and runs code. In this section, Python code

may be shown annotated with the underlying bytecode used by the interpreter. This

bytecode is an implementation detail and is stored in .pyc files. It encodes the behavior

of the program at the lowest level. Interpreting a complex language like Python is not a

trivial task, so the Python interpreter caches its interpretation of code as a series of many

simple operations.

When people talk about Python, they generally are talking about CPython, the

implementation of Python in the C programming language. CPython is the reference

implementation, in that it’s intended to be what people refer to when seeing how Python

does things. There are other implementations, the most popular of which is PyPy, an

implementation of Python that is written in a specially designed, Python-like language

rather than C.4 Both CPython and PyPy cache their interpretation of Python code as

Python bytecode.

Two other implementations of Python are worth mentioning: Jython and

IronPython. Both of these also cache their interpretation as bytecode, but crucially they

use a different bytecode. Jython uses the same bytecode format as Java, and IronPython

uses the same bytecode format as .NET. For this chapter, when we talk about bytecode,

we’re talking about Python bytecode, as we’re looking at it in the context of how threads

are implemented in CPython.

Generally speaking, you won’t have to worry about bytecode, but an awareness of

its role is useful for writing multithreaded code. The samples given in the following were

generated using the dis module5 in the standard library. The function dis.dis(func)

4 One reason to use PyPy is that it has a JIT compiler, making some code run faster. Compatibility
with CPython isn’t 100%, mainly due to how compiled extensions are handled, but the
performance of your programs may be very different under PyPy. It might be worth trying it, to
see if your programs work, and if they’re faster or slower.

5 Short for disassemble.

Chapter 7 parallelization and asynC

297

shows the bytecode for a given function, assuming that it’s written in Python, rather than

a C extension. For example, the sorted(...) function is implemented in C and therefore

has no bytecode to show.

To demonstrate this, let’s look at a function with its disassembly (Listing 7-3). The

function has been annotated with the disassembly results from dis.dis(increment),

which shows the line number within the file, the bytecode offset of the instruction within

the function, the instruction name, and any instruction parameters as their raw values

with the Python representation in parentheses.

Listing 7-3. A simple function to increment a global variable

num = 0

def increment():

 global num

 num += 1 # 5 0 LOAD_GLOBAL 0 (num)

 # 2 LOAD_CONST 1 (1)

 # 4 INPLACE_ADD

 # 6 STORE_GLOBAL 0 (num)

 return None # 10 8 LOAD_CONST 0 (None)

 # 10 RETURN_VALUE

The line num += 1 looks like an atomic operation,6 but the bytecode reveals that the

underlying interpreter runs four operations to complete it. We don’t care what these four

instructions are, just the fact that we cannot trust our intuition on what operations are

atomic and which are not.

If we were to run this increment function 100 times in succession, the result stored

to num would be 100, which makes logical sense. If this function were to be executed in

a pair of threads, there would be no guarantee that the final result would be 100. In this

case, the correct result is only found so long as no thread ever executes the LOAD_GLOBAL

bytecode step while another is running the LOAD_CONST, IN_PLACE_ADD, or STORE_GLOBAL

steps. Python does not guarantee this, so the preceding code is not thread-safe.

6 An operation that is done in one step that cannot be split up.

Chapter 7 parallelization and asynC

298

There is overhead to starting a thread, and the computer will be running multiple

processes at the same time. The two threads could happen to run sequentially, despite

having two threads available, or they could both start at the same time, or there could be

an offset between the start times. The way the executions can overlap is represented in

Figure 7-4.

 The GIL

That is somewhat simplified, however. CPython has a feature called the GIL, or Global

Interpreter Lock, which is used to make thread-safety easier.7 This lock means that

only one thread can be executing Python code at once. That’s not enough to solve our

problem, however, because the granularity of the GIL is at the level of bytecode, so

although no two bytecode instructions execute simultaneously, the interpreter can still

switch between each path, causing overlap. As such, Figure 7-5 shows a more accurate

representation of how the threads can overlap.

7 Some implementations of Python, especially those that run on an underlying virtual machine
like Jython, do not implement the GIL as the VM offers the same guarantee. The overall effect is
the same, but the specific details of bytecode and switching are different.

Figure 7-4. Possible arrangements of two threads executing num += 1 at once.
Only the leftmost and rightmost examples produce the correct result

Chapter 7 parallelization and asynC

299

It might appear that the GIL removes the benefit of threading without guaranteeing

the correct result, but it’s not as bad as it immediately appears. We will deal with the

benefits of this shortly, but first, we should address this negating the advantages of

threading. It’s not strictly true that no two bytecode instructions can run at once.

Bytecode instructions are much simpler than lines of Python, allowing the

interpreter to reason about what actions it is taking at any given point. It can, therefore,

allow multiple threads to execute when it’s safe to do so, such as during a network

connection or when waiting for data to be read from a file.

Specifically, not everything the Python interpreter does requires the GIL to be held.

It must be held at the start and end of a bytecode instruction, but it can be released

internally. Waiting for a socket to have data available for reading is one of the things

that can be done without holding the GIL. During a bytecode instruction where an IO

operation is happening, the GIL can be released, and the interpreter can simultaneously

execute any code that does not require the GIL to be held, so long as it’s in a different

thread. Once the IO operation finishes, it must wait to regain the GIL from whichever

thread took it, before execution can continue.

In situations like this, where the code never has to wait for an IO function to

complete, Python interrupts the threads at set intervals to schedule the others fairly. By

default, this is approximately every 0.005 seconds which happens to be a long enough

period that our example works as hoped on my computer. If we manually tell the

interpreter to switch threads more frequently, using the sys.setswitchinterval(...)

function, we start to see failures.

Figure 7-5. Possible arrangements of num += 1 execution with the GIL active.
Only the leftmost and rightmost produce the correct result

Chapter 7 parallelization and asynC

300

Code for testing thread-safety at different switch intervals

if __name__ == "__main__":

 import concurrent.futures

 import sys

 for si in [0.005, 0.0000005, 0.0000000005]:

 sys.setswitchinterval(si)

 results = []

 for attempt in range(100):

 with concurrent.futures.ThreadPoolExecutor(max_workers=2) as pool:

 for i in range(100):

 pool.submit(increment)

 results.append(num)

 num = 0

 correct = [a for a in results if a == 100]

 pct = len(correct) / len(results)

 print(f"{pct:.1%} correct at sys.setswitchinterval({si:.10f})")

On my computer, the result of running this is

100.0% correct at sys.setswitchinterval(0.0050000000)

71.0% correct at sys.setswitchinterval(0.0000005000)

84.0% correct at sys.setswitchinterval(0.0000000005)

The default behavior being 100% correct in my test doesn’t mean that it solves the

problem. 0.005 is a well-chosen interval that results in a lower chance of errors for most

people. The fact that a function happens to work when you test it does not mean that it’s

guaranteed to always work on every machine. The trade-off to introducing threads is that

you gain relatively simple concurrency but without strong guarantees about shared state.

 Locks and deadlocks
By enforcing a rule that bytecode instructions do not overlap, they’re guaranteed to be

atomic. There is no risk of two STORE bytecode instructions for the same value happening

simultaneously, as no two bytecode instructions can run truly simultaneously. It may

be that the implementation of an instruction voluntarily releases the GIL and waits

to reobtain it for sections of its implementation, but that is not the same as any two

Chapter 7 parallelization and asynC

301

arbitrary instructions happening in parallel. This atomicity is used by Python to build

thread-safe types and synchronization tools.

If you need to share state between threads, you must manually protect this state

with locks. Locks are objects that allow you to prevent your code from running at the

same time as other code that it would interfere with. If two concurrent threads both try

to acquire the lock, only one will succeed. Any other threads that try to acquire the lock

will be blocked until the first thread has released it. This is possible because the locks

are implemented in C code, meaning their execution takes place as one bytecode step.

All the work of waiting for a lock to become available and acquiring it is performed in

response to a single bytecode instruction, making it atomic.

Code protected by a lock can still be interrupted, but no conflicting code will be run

during these interruptions. Threads can still be interrupted while they hold a lock. If

the thread that they are interrupted in favor of attempts to take that same lock, it will

fail to do so and will pause execution. In an environment with two threads, this means

execution would pass straight back to the first function. If more than one thread is active,

it may pass to other threads first, but the same inability to take the first thread’s lock

applies.

Increment function with locking

import threading

numlock = threading.Lock()

num = 0

def increment():

 global num

 with numlock:

 num += 1

 return None

In this version of the function, the lock called numlock is used to guard the actions

that read/write the num value. This context manager causes the lock to be acquired

before execution passes to the body and to be released before the first line after the body.

Although we’ve added some overhead here, it is minimal, and it guarantees that the

result of the code is correct, regardless of any user settings or different Python interpreter

versions.

Chapter 7 parallelization and asynC

302

Result of testing with a lock surrounding num += 1

100.0% correct at sys.setswitchinterval(0.0050000000)

100.0% correct at sys.setswitchinterval(0.0000005000)

100.0% correct at sys.setswitchinterval(0.0000000005)

This code results in the correct result being found no matter what the switching

interval is, as the four bytecode instructions that make up num += 1 are guaranteed to be

executed as one block. There is an additional locking bytecode instruction before and

after each block of four, as shown in Figure 7-6.

From the perspective of the two threads being used in the thread pool, the with

numlock: line may block execution, or it may not. Neither thread needs to do anything

special to handle the two cases (acquiring the lock immediately or waiting for a turn),

and therefore this is a relatively minimal change to the control flow.

The difficulty comes in ensuring that required locks are in place and that no

contradictions exist. If a programmer defines two locks and uses them simultaneously,

it’s possible to create a situation where the program becomes deadlocked.

Figure 7-6. Possible arrangements of num += 1 on two threads with explicit
locking shown at the start and end

Chapter 7 parallelization and asynC

303

 Deadlocks

Consider a situation where we are incrementing two numbers in one thread and

decrementing them in another, resulting in the following functions:

num = 0

other = 0

def increment():

 global num

 global other

 num += 1

 other += 1

 return None

def decrement():

 global num

 global other

 other -= 1

 num -= 1

 return None

The program suffers from the same problem that we had previously; if we schedule

these functions in a ThreadPoolExecutor, then the result may be incorrect. We might

think to apply the same locking pattern that fixed this previously, adding an otherlock

lock to complement the numlock lock that we already created, but the potential for

deadlocks lurks in this code. There are three ways we could arrange the locks in these

functions (shown in Table 7-2), one of which can cause deadlocks.

Chapter 7 parallelization and asynC

304

The best option is to ensure that we never hold both locks simultaneously. This

makes them truly independent, so there is no risk of deadlock. In this pattern, threads

never wait to acquire a lock until they’ve already released the previous lock they held.

The middle implementation uses both locks at once. This is less good, as it’s holding

locks for longer than they are needed, but sometimes it’s unavoidable for code to need to

lock two variables. Although both of the preceding functions can be written to use only

one lock at a time, consider the case of a function that exchanges the values:

Table 7-2. Three locking approaches for simultaneously updating two variables

Minimizing locked
code(resistant to deadlocks)

num = 0

other = 0

numlock = \

threading.Lock()

otherlock = \

threading.Lock()

def increment():

 global num

 global other

 with numlock:

 num += 1

 with otherlock:

 other += 1

 return None

def decrement():

 global num

 global other

 with otherlock:

 other -= 1

 with numlock:

 num -= 1

 return None

Using locks in a consistent order
(resistant to deadlocks)

num = 0

other = 0

numlock = threading.Lock()

otherlock = \

threading.Lock()

def increment():

 global num

 global other

 with numlock, otherlock:

 num += 1

 cother += 1

 return None

def decrement():

 global num

 global other

 with numlock, otherlock:

 other -= 1

 num -= 1

 return None

Using locks in an inconsistent
order (causes deadlocks)

num = 0

other = 0

numlock = \

threading.Lock()

otherlock = \

threading.Lock()

def increment():

 global num

 global other

 with numlock, otherlock:

 num += 1

 other += 1

 return None

def decrement():

 global num

 global other

 with otherlock, numlock:

 other -= 1

 num -= 1

 return None

Chapter 7 parallelization and asynC

305

def switch():

 global num

 global other

 with numlock, otherlock:

 num, other = other, num

 return None

This function requires that neither num nor other is being used by another thread

while it’s executing, so it needs to keep both numbers locked. Locks are acquired in the

same order in the increment() and decrement() (and switch()) functions, so each

one tries to acquire numlock before otherlock. If both threads were synchronized in

their execution, they would both try to acquire numlock at the same time and one would

block. No deadlocks would occur.

The final example shows an implementation where the ordering of the locks in

the decrement() function has been inverted. This is very difficult indeed to notice but

has the effect of causing deadlocks. It’s possible for a thread running this third version

of increment() to acquire the numlock lock at the same time that a thread running

decrement acquires the otherlock lock. Now both threads are waiting to acquire the

lock they don’t have, and neither can release their lock until after they’ve acquired the

missing one. This causes the program to hang indefinitely.
There are a few ways to avoid this problem. As this is a logical assertion about the

structure of your code, the natural tool would be to a static checker to ensure that your

code never inverts the order in which locks are acquired. Unfortunately, I do not know of

any existing implementation of this check for Python code.

The most straightforward alternative is to use a single lock to cover both variables rather

than to lock them individually. Although this is superficially attractive, it does not scale well

as the number of objects that need protecting grows. A single lock object would prevent

any work being done to the num variable while another thread works on the other variable.

Sharing locks across independent functions greatly increases the amount of blocking

involved in your code, which can serve to negate the advantages brought by threading.

You might be tempted to abandon the with numlock: method of acquiring a lock

and calling the lock’s acquire() method directly. While this allows you to specify a

timeout and an error handler in case the lock was not acquired within the timeout,

I would not recommend it. The change makes the code’s logic harder to follow with

the introduction of an error handler, and the only appropriate response to detecting a

deadlock in this manner is to raise an exception. This slows down the program because

Chapter 7 parallelization and asynC

306

of the timeouts and doesn’t solve the problem. This approach may be useful when

debugging locally, to allow you to examine the state during a deadlock, but it should not

be considered for production code.

My recommendation would be that you should use all these approaches to preventing

deadlocks. Firstly, you should use the minimum amount of locks necessary to make your

program thread-safe. If you do need multiple locks, you should minimize the time that

they’re held for, releasing them as soon as the shared state has been manipulated. Finally,

you should define an ordering of your locks and always use this ordering when acquiring

locks. The easiest method to do this is always to acquire locks alphabetically. Ensuring a

fixed ordering of locks still requires manual checking of your code, but each use of locks

can be checked against your rule independently rather than against all other uses.

 Avoiding global state
It’s not always possible to avoid global state, but in many situations, it is. Generally

speaking, it’s possible to schedule two functions to run in parallel if neither function

depends on the values of shared variables.8 Imagine that instead of 100 calls to

increment() and 100 calls to decrement(), we were scheduling 100 calls to increment()

and 1 to a function called save_number_to_database(). There is no guarantee how

many times increment() will have completed before save_number_to_database() is

called. The number saved could be anywhere between 0 and 100, which is clearly not

useful. These functions don’t make sense to be run in parallel because they both depend

on the value of a shared variable.

There are a couple of main ways that shared data can interrelate. Shared data can

be used to collate data across multiple threads, or it can be used to pass data between

multiple threads.

 Collating data

Our two increment() and decrement() functions are only simple demonstrations. They

manipulate their shared state by adding or subtracting one, but normally functions run

in parallel would do a more complex manipulation. For example, in apd.aggregation,

the shared state is the set of sensor results we have, and each thread adds more results to

that set.

8 Except for variable types that are designed for thread-safety, such as queues.

Chapter 7 parallelization and asynC

307

With both of these examples, we can split the work of deciding what the

manipulation should be and applying the manipulation. As it’s only the stage where

we apply the manipulation that requires access to shared state, this allows us to do any

calculations or IO operations in parallel. Each thread would then return the result and

then merge the results together at the end, as shown in Listing 7-4.

Listing 7-4. Example of using task result to store intended changes

import concurrent.futures

import threading

def increment():

 return 1

def decrement():

 return -1

def onehundred():

 tasks = []

 with concurrent.futures.ThreadPoolExecutor() as pool:

 for i in range(100):

 tasks.append(pool.submit(increment))

 tasks.append(pool.submit(decrement))

 number = 0

 for task in tasks:

 number += task.result()

 return number

if __name__ == "__main__":

 print(onehundred())

 Passing data

The examples we’ve covered so far all involve the main thread delegating work to

subthreads, but it’s common for new tasks to be discovered during the processing of the

data from earlier tasks. For example, most APIs paginate data, so if we had a thread to

fetch URLs and a thread to parse the responses, we need to be able to pass initial URLs to

the fetch thread from the main thread and also to pass newly discovered URLs from the

parse thread to the fetch thread.

Chapter 7 parallelization and asynC

308

When passing data between two (or more) threads, we need to use queues, either

queue.Queue or the variant queue.LifoQueue. These implement FIFO and LIFO9 queues,

respectively. While we previously used Queue only as a convenient, thread-safe data

holder, now we’ll be using it as intended.

Queues have four primary methods.10 The get() and put() methods are self-

explanatory, except to say that if the queue is empty, then the get() method blocks,

and if the queue has a maximum length set and is full, then the put() method blocks.

In addition, there is a task_done() method, which is used to tell the queue that an item

has been successfully processed, and a join() method, which blocks until all items have

been successfully processed. The join() method is usually called by the thread that

adds the items to the queue, to allow it to wait until all work has been completed.

Because the get() method blocks if the queue is currently empty, it’s not possible to

use this method in nonthreaded code. It does, however, make them perfect for threaded

code where there is a need to wait until the thread producing data has made it available.

Tip it’s not always clear in advance how many items will be stored in a queue. if
get() is called after the last item has been retrieved, then it will block indefinitely.
this can be avoided by providing a timeout parameter to get, in which case it will
block for the given amount of seconds before raising a queue.Empty exception.
a better approach is to send a sentinel value, like none. the code can then detect
this value and know that it no longer needs to retrieve new values.

If we were building a threaded program to get information from the GitHub public

API, we’d need to be able to retrieve URLs and parse their results. It would be nice to be

able to do parsing while URLs are being fetched, so we would split the code between

fetching and parsing functions.

Listing 7-5 shows an example of such a program, where multiple GitHub repos can

have their commits retrieved in parallel. It uses three queues, one for the input to the fetch

thread, one for the output of fetch and input of parse, and one for the output of parse.

9 Last In, First Out and First In, First Out.
10 They also have some methods for introspecting the state of the queue, such as empty(), full(),

and qsize(). It’s possible that the underlying queue will change between checking the state and
the next instruction, though. These methods are only really useful when you have additional
guarantees about the state of the program, so you know the queue won’t be changing.

Chapter 7 parallelization and asynC

309

Listing 7-5. Threaded API client

from concurrent.futures import ThreadPoolExecutor

import queue

import requests

import textwrap

def print_column(text, column):

 wrapped = textwrap.fill(text, 45)

 indent_level = 50 * column

 indented = textwrap.indent(wrapped, " " * indent_level)

 print(indented)

def fetch(urls, responses, parsed):

 while True:

 url = urls.get()

 if url is None:

 print_column("Got instruction to finish", 0)

 return

 print_column(f"Getting {url}", 0)

 response = requests.get(url)

 print_column(f"Storing {response} from {url}", 0)

 responses.put(response)

 urls.task_done()

def parse(urls, responses, parsed):

 # Wait for the initial URLs to be processed

 print_column("Waiting for url fetch thread", 1)

 urls.join()

 while not responses.empty():

 response = responses.get()

 print_column(f"Starting processing of {response}", 1)

 if response.ok:

 data = response.json()

 for commit in data:

 parsed.put(commit)

Chapter 7 parallelization and asynC

310

 links = response.headers["link"].split(",")

 for link in links:

 if "next" in link:

 url = link.split(";")[0].strip("<>")

 print_column(f"Discovered new url: {url}", 1)

 urls.put(url)

 responses.task_done()

 if responses.empty():

 # We have no responses left, so the loop will

 # end. Wait for all queued urls to be fetched

 # before continuing

 print_column("Waiting for url fetch thread", 1)

 urls.join()

 # We reach this point if there are no responses to process

 # after waiting for the fetch thread to catch up. Tell the

 # fetch thread that it can stop now, then exit this thread.

 print_column("Sending instruction to finish", 1)

 urls.put(None)

def get_commit_info(repos):

 urls = queue.Queue()

 responses = queue.Queue()

 parsed = queue.Queue()

 for (username, repo) in repos:

 urls.put(f"https://api.github.com/repos/{username}/{repo}/commits")

 with ThreadPoolExecutor() as pool:

 fetcher = pool.submit(fetch, urls, responses, parsed)

 parser = pool.submit(parse, urls, responses, parsed)

 print(f"{parsed.qsize()} commits found")

if __name__ == "__main__":

 get_commit_info(

 [("MatthewWilkes", "apd.sensors"), ("MatthewWilkes", "apd.aggregation")]

)

Chapter 7 parallelization and asynC

311

Running this code results in a two-column output, consisting of the messages from

each thread. The full output is too long to include here, but a small section is given in the

following as a demonstration:

Getting https://api.github.com/repos/MatthewW

ilkes/apd.aggregation/commits

Storing <Response [200]> from https://api.git

hub.com/repos/MatthewWilkes/apd.aggregation/c

ommits

 Starting processing of

<Response [200]>

 Discovered new url:

https://api.github.com/

 repositories/188280485/

commits?page=2

 Starting processing of

<Response [200]>

Getting https://api.github.com/repositories/1

88280485/commits?page=2

 Discovered new url:

https://api.github.com/

 repositories/222268232/

commits?page=2

By examining the logged messages from each of the threads, we can view how their

work is scheduled in parallel. Firstly, the main thread sets up the necessary queues and

subthreads, then waits for all the threads to finish. As soon as the two subthreads start,

the fetch thread starts working on the URLs passed by the main thread, and the parse

thread quickly pauses while waiting for responses to parse.

The parse thread uses urls.join() when there is no work for it, so whenever it runs out

of work, it waits until the fetch thread has caught up with all the work that it was sent. This is

visible in Figure 7-7, as the parse lines always resume after the fetch lines are complete.

The fetch thread doesn’t use the join() method of any of the queues, it uses get()

to block until there is some work to do. As such, the fetch thread can be seen resuming

while the parse thread is still executing. Finally, the parse thread sends a sentinel value

to the fetch thread to end, and when both exits the thread pool context manager in the

main thread exits and execution returns to the main thread.

Chapter 7 parallelization and asynC

312

 Other synchronization primitives
The synchronization we used with queues in the preceding example is more

complex than the lock behavior we used earlier. In fact, there are a variety of other

synchronization primitives available in the standard library. These allow you to build

more complex thread-safe coordination behaviors.

 Reentrant locks

The Lock object is very handy, but it’s not the only system used for synchronizing code

across threads. Perhaps the most important of the others is the reentrant lock, which is

available as threading.RLock. A reentrant lock is one that can be acquired more than

once, so long as the acquisitions are nested.

Listing 7-6. An example of nested locking using RLocks

from concurrent.futures import ThreadPoolExecutor

import threading

num = 0

numlock = threading.RLock()

def fiddle_with_num():

 global num

 with numlock:

 if num == 4:

 num = -50

def increment():

 global num

 with numlock:

 num += 1

 fiddle_with_num()

Figure 7-7. Diagram of the timing of the three threads in Listing 7-5

Chapter 7 parallelization and asynC

313

if __name__ == "__main__":

 with ThreadPoolExecutor() as pool:

 for i in range(8):

 pool.submit(increment)

 print(num)

The advantage conferred here is that functions that depend on a lock being held can

call others that also depend on the same lock being held, without the second blocking

until the first releases it. That greatly simplifies creating APIs that use locks.

Example output from Listing 7-6

> python .\listing7-06-reentrantlocks.py

-46

 Conditions

Unlike the locks that we’ve used so far, conditions declare that a variable is ready, not

that it is busy. Queues use conditions internally to implement the blocking behavior of

get(), put(...), and join(). Conditions allow for more complex behaviors than a lock

being acquired.

Conditions are a way of telling other threads that it’s time to check for data, which

must be stored independently. Threads that are waiting for data call the condition’s

wait_for(...) function inside a context manager, whereas threads that are supplying

data call the notify() method. There is no rule that a thread can’t do both at different

times; however, if all threads are waiting for data and none are sending, it’s possible to

introduce a deadlock.

For example, when calling the get(...) method of a queue, the code immediately

acquires the queue’s single lock through its internal not_empty condition, then checks

to see if the internal storage of the queue has any data available. If it does, then an

item is returned and the lock is released. Keeping the lock for this time ensures that no

other users can retrieve that item at the same time, so there is no risk of duplication. If,

however, there is no data in the internal storage, then the not_empty.wait() method is

called. This releases the single lock, allowing other threads to manipulate the queue, and

does not reacquire the lock and return until the condition is notified that a new item has

been added.

Chapter 7 parallelization and asynC

314

There is a variant of the notify() method called notify_all(). The standard

notify() method only wakes one thread that’s waiting on the condition, whereas

notify_all() wakes all threads waiting. It’s always safe to use notify_all() in place of

notify(), but notify() saves waking up multiple threads when it’s expected that only

one will be unblocked.

A condition alone is only enough to send a single bit of information: that data has

been made available. To actually retrieve the data, we must store it in some fashion, like

the internal storage of the queue.

The example in Listing 7-7 creates two threads, each pulling a number from a shared

data list and then pushing the number modulo 2 to a shared results list. The code uses

two conditions to achieve this, one to ensure there is data available to be processed and

one to determine when the threads should be shut down.

Listing 7-7. An example program using conditions

from concurrent.futures import ThreadPoolExecutor

import sys

import time

import threading

data = []

results = []

running = True

data_available = threading.Condition()

work_complete = threading.Condition()

def has_data():

 """ Return true if there is data in the data list """

 return bool(data)

def num_complete(n):

 """Return a function that checks if the results list has the length

specified by n"""

 def finished():

 return len(results) >= n

 return finished

Chapter 7 parallelization and asynC

315

def calculate():

 while running:

 with data_available:

 # Acquire the data_available lock and wait for has_data

 print("Waiting for data")

 data_available.wait_for(has_data)

 time.sleep(1)

 i = data.pop()

 with work_complete:

 if i % 2:

 results.append(1)

 else:

 results.append(0)

 # Acquire the work_complete lock and wake listeners

 work_complete.notify_all()

if __name__ == "__main__":

 with ThreadPoolExecutor() as pool:

 # Schedule two worker functions

 workers = [pool.submit(calculate), pool.submit(calculate)]

 for i in range(200):

 with data_available:

 data.append(i)

 # After adding each piece of data wake the data_available lock

 data_available.notify()

 print("200 items submitted")

 with work_complete:

 # Wait for at least 5 items to be complete through the

work_complete lock

 work_complete.wait_for(num_complete(5))

 for worker in workers:

 # Set a shared variable causing the threads to end their work

 running = False

 print("Stopping workers")

 print(f"{len(results)} items processed")

Chapter 7 parallelization and asynC

316

Example output from Listing 7-7

> python .\listing7-07-conditions.py

Waiting for data

Waiting for data

200 items submitted

Waiting for data

Waiting for data

Waiting for data

Stopping workers

Waiting for data

Waiting for data

7 items processed

 Barriers

Barriers are the most conceptually simple synchronization objects in Python. A barrier is

created with a known number of parties. When a thread calls wait(), it blocks until there

are the same number of threads waiting as the number of parties to the barrier. That is,

threading.Barrier(2) blocks the first time wait() is called, but the second call returns

immediately and releases the first blocking call.

Barriers are useful when multiple threads are working on aspects of a single

problem, as they can prevent a backlog of work building up. A barrier allows you to

ensure that a group of threads only run as quickly as the slowest member of the group.

A timeout can be included in the initial creation of the barrier or any wait()

call. If any wait call takes longer than its timeout, then all waiting threads raise a

BrokenBarrierException, as will any subsequent threads that try to wait for that barrier.

The example in Listing 7-8 demonstrates synchronizing a group of five threads that

each wait a random amount of time so that they all continue execution once the last is

ready.

Listing 7-8. Example of using a barrier

from concurrent.futures import ThreadPoolExecutor

import random

import time

import threading

Chapter 7 parallelization and asynC

317

barrier = threading.Barrier(5)

def wait_random():

 thread_id = threading.get_ident()

 to_wait = random.randint(1, 10)

 print(f"Thread {thread_id:5d}: Waiting {to_wait:2d} seconds")

 start_time = time.time()

 time.sleep(to_wait)

 i = barrier.wait()

 end_time = time.time()

 elapsed = end_time - start_time

 print(

 f"Thread {thread_id:5d}: Resumed in position {i} after

{elapsed:3.3f} seconds"

)

if __name__ == "__main__":

 with ThreadPoolExecutor() as pool:

 # Schedule two worker functions

 for i in range(5):

 pool.submit(wait_random)

Example output from Listing 7-8

> python .\listing7-08-barriers.py

Thread 21812: Waiting 8 seconds

Thread 17744: Waiting 2 seconds

Thread 13064: Waiting 4 seconds

Thread 14064: Waiting 6 seconds

Thread 22444: Waiting 4 seconds

Thread 21812: Resumed in position 4 after 8.008 seconds

Thread 17744: Resumed in position 0 after 8.006 seconds

Thread 22444: Resumed in position 2 after 7.999 seconds

Thread 13064: Resumed in position 1 after 8.000 seconds

Thread 14064: Resumed in position 3 after 7.999 seconds

Chapter 7 parallelization and asynC

318

 Event

Events are another simple synchronization method. Any number of threads can call the

wait() method on an event, which blocks until the event is triggered. An event can be

triggered at any time by calling the set() method, which wakes all threads waiting for

the event. Any subsequent calls to the wait() method return immediately.

As with barriers, events are very useful for ensuring that multiple threads stay

synchronized, rather than some racing ahead. Events differ in that they have a single

thread that makes the decision for when the group can continue, so they are a good fit

for programs where a thread is dedicated to managing the others.

The event method can also be reset using the clear() method, so any more future

calls to wait() will block. An event’s current state can be examined with the is_set()

method. The example in Listing 7-9 uses an event to synchronize a group of threads with

one master thread, such that they all wait at least as long as the master, but no longer.

Listing 7-9. Example of using events to set a minimum wait time

from concurrent.futures import ThreadPoolExecutor

import random

import time

import threading

event = threading.Event()

def wait_random(master):

 thread_id = threading.get_ident()

 to_wait = random.randint(1, 10)

 print(f"Thread {thread_id:5d}: Waiting {to_wait:2d} seconds "

f"(Master: {master})")

 start_time = time.time()

 time.sleep(to_wait)

 if master:

 event.set()

 else:

 event.wait()

 end_time = time.time()

 elapsed = end_time - start_time

Chapter 7 parallelization and asynC

319

 print(

 f"Thread {thread_id:5d}: Resumed after {elapsed:3.3f} seconds"

)

if __name__ == "__main__":

 with ThreadPoolExecutor() as pool:

 # Schedule two worker functions

 for i in range(4):

 pool.submit(wait_random, False)

 pool.submit(wait_random, True)

Example console output of Listing 7-9

> python .\listing7-09-events.py

Thread 19624: Waiting 9 seconds (Master: False)

Thread 1036: Waiting 1 seconds (Master: False)

Thread 6372: Waiting 10 seconds (Master: False)

Thread 16992: Waiting 1 seconds (Master: False)

Thread 22100: Waiting 6 seconds (Master: True)

Thread 22100: Resumed after 6.003 seconds

Thread 16992: Resumed after 6.005 seconds

Thread 1036: Resumed after 6.013 seconds

Thread 19624: Resumed after 9.002 seconds

Thread 6372: Resumed after 10.012 seconds

 Semaphore

Finally, semaphores are conceptually more complex but are a very old concept and so

are common to many languages. A semaphore is similar to a lock, but it can be acquired

by multiple threads simultaneously. When a semaphore is created, it must be given a

value. The value is the number of times that it can be acquired simultaneously.

Semaphores are very useful for ensuring that operations that rely on a scarce

resource (such as ones that use a lot of memory or open network connections) are not

run in parallel above a certain threshold. For example, Listing 7-10 demonstrates five

threads that wait a random amount of time, but where only three can wait at one time.

Chapter 7 parallelization and asynC

320

Listing 7-10. Example of using semaphores to ensure only one thread waits at

once

from concurrent.futures import ThreadPoolExecutor

import random

import time

import threading

semaphore = threading.Semaphore(3)

def wait_random():

 thread_id = threading.get_ident()

 to_wait = random.randint(1, 10)

 with semaphore:

 print(f"Thread {thread_id:5d}: Waiting {to_wait:2d} seconds")

 start_time = time.time()

 time.sleep(to_wait)

 end_time = time.time()

 elapsed = end_time - start_time

 print(

 f"Thread {thread_id:5d}: Resumed after {elapsed:3.3f} seconds"

)

if __name__ == "__main__":

 with ThreadPoolExecutor() as pool:

 # Schedule two worker functions

 for i in range(5):

 pool.submit(wait_random)

Example console output of Listing 7-10

> python .\listing7-10-semaphore.py

Thread 10000: Waiting 10 seconds

Thread 24556: Waiting 1 seconds

Thread 15032: Waiting 6 seconds

Thread 24556: Resumed after 1.019 seconds

Thread 11352: Waiting 8 seconds

Thread 15032: Resumed after 6.001 seconds

Chapter 7 parallelization and asynC

321

Thread 6268: Waiting 4 seconds

Thread 11352: Resumed after 8.001 seconds

Thread 10000: Resumed after 10.014 seconds

Thread 6268: Resumed after 4.015 seconds

 ProcessPoolExecutors
Just as we’ve looked at the use of ThreadPoolExecutor to delegate the execution of code

to different threads, which causes us to fall foul of the GIL’s restrictions, we can use the

ProcessPoolExecutor to run code in multiple processes if we’re willing to abandon all

shared state.

When executing code in a process pool, any state that was available at the start

is available to the subprocesses. However, there is no coordination between the two.

Data can only be passed back to the controlling process as the return value of the tasks

submitted to the pool. No changes to global variables are reflected in any way.

Although multiple independent Python processes are not bound by the same

one- at- a-time execution method imposed by the GIL, they also have significant

overheads. For IO-bound tasks (i.e., tasks that spend most of their time waiting and

therefore not holding the GIL), a process pool is generally slower than a thread pool.

On the other hand, tasks that involve large amounts of computation are well suited

to being delegated to a subprocess, especially long-running ones where the overhead of

the setup is lessened compared to the savings of parallel execution.

 Making our code multithreaded
The function that we want to parallelize is get_data_points(...); the functions that

implement the command line and database connections do not significantly change

when dealing with 1 or 500 sensors; there is no particular reason to split its work out into

threads. Keeping this work in the main thread makes it easier to handle errors and report

on progress, so we rewrite the add_data_from_sensors(...) function only.

Implementation of add_data_from_sensors that uses ThreadPoolExecutor

def add_data_from_sensors(

 session: Session, servers: t.Tuple[str], api_key: t.Optional[str]

) -> t.List[DataPoint]:

 threads: t.List[Future] = []

Chapter 7 parallelization and asynC

322

 points: t.List[DataPoint] = []

 with ThreadPoolExecutor() as pool:

 for server in servers:

 points_future = pool.submit(get_data_points, server, api_key)

 threads.append(points_future)

 for points_future in threads:

 points += handle_result(points_future, session)

 return points

def handle_result(execution: Future, session: Session) ->

t.List[DataPoint]:

 points: t.List[DataPoint] = []

 result = execution.result()

 for point in result:

 session.add(point)

 points.append(point)

 return points

As we will submit all our jobs to the ThreadPoolExecutor before the first time that

we call a result() method, they will all be queued up for simultaneous execution in

threads. It’s the result() method and the end of the with block that triggers blocking;

submitting jobs does not cause the program to block, even if you submit more jobs than

can be processed simultaneously.

This method is much less intrusive to the program flow than either the raw threaded

approach or the nonblocking IO approaches, but it does still involve changing the

execution flow to handle the fact that these functions are now working with Future

objects rather than the data directly.

 AsyncIO
AsyncIO is the elephant in the room when talking about Python concurrency, thanks

mainly to the fact that it’s one of the flagship features of Python 3. It is a language

feature that allows for something that works like the nonblocking IO example but with

a somewhat similar API to the ThreadPoolExecutor. The API isn’t precisely the same,

but the underlying concept of submitting tasks and being able to block to wait for their

results is shared between the two.

Chapter 7 parallelization and asynC

323

Asyncio code is cooperatively multitasked. That is, code is never interrupted to allow

another function to execute; the switching only occurs when a function blocks. This

change makes it easier to reason about how code will behave, as there’s no chance of a

simple statement like num += 1 being interrupted.

There are two new keywords that you often see when working with asyncio, the

async and await keywords. The async keyword marks certain control flow blocks

(specifically, def, for, and with) as using the asyncio flow, rather than the standard flow.

The meanings of these blocks are still the same as in standard, synchronous Python, but

the underlying code paths can be quite different.

The equivalent of the ThreadPoolExecutor itself is the event loop. When executing

asynchronous code, an event loop object is responsible for keeping track of all the tasks

to be executed and coordinating passing their return values back to the calling code.

There is a strict separation between code intended to be called from a synchronous

context and an asynchronous one. If you accidentally call async code from synchronous

contexts, you’ll find yourself with coroutine objects rather than the data types you’re

expecting, and if you call synchronous code from an async context, you can inadvertently

introduce blocking IO that causes performance problems.

To enforce this separation, and to allow API authors optionally to support both

synchronous and asynchronous uses of their objects, the async modifier is added to

for and with to specify that you’re using the async-compatible implementation. These

variants cannot be used in a synchronous context or on objects that do not have an

asynchronous implementation (such as tuples or lists, in the case of async for).

 async def
We can define new coroutines in the same way that we define functions. However, the

def keyword becomes async def. These coroutines return values like any other. As such,

we can implement the same behavior from Listing 7-3 in an asyncio method, as shown

in Listing 7-11.

Listing 7-11. Example of concurrent increment and decrement coroutines

import asyncio

async def increment():

 return 1

Chapter 7 parallelization and asynC

324

async def decrement():

 return -1

async def onehundred():

 num = 0

 for i in range(100):

 num += await increment()

 num += await decrement()

 return num

if __name__ == "__main__":

 asyncio.run(onehundred())

This behaves in the same way: two coroutines are run, their values are retrieved,

and the num variable is adjusted according to the result of those functions. The main

difference is that instead of these coroutines being submitted to a thread pool, the

onehundred() async function is passed to the event loop to run, and that function is

responsible for calling the other coroutines that do the work.

When we call a function that is defined as asynchronous, we receive a coroutine

object as the result, rather than having the function execute.

async def hello_world():

 return "hello world"

>>> hello_world()

<coroutine object hello_world at 0x03DEDED0>

The asyncio.run(...) function is the main entrypoint for asynchronous code. It

blocks until the passed function, and all other functions which that function schedules,

are complete. The upshot is that only one coroutine at a time can be initiated by

synchronous code.

 await
The await keyword is the trigger for blocking until an asynchronous function has

completed. However, this only blocks the current asynchronous call stack. You can have

multiple asynchronous functions executing at once, in which case another function is

executed while waiting for the result.

Chapter 7 parallelization and asynC

325

The await keyword is equivalent to the Future.result() method in the

ThreadPoolExecutor example: it transforms an awaitable object into its result. It can

appear wherever an asynchronous function call is used; it’s equally valid to write any of

the three variants of printing the result of a function shown in Figure 7-8.

Once await has been used, the underlying awaitable is consumed. It is not possible

to write

data = get_data()

if await data:

 print(await data)

An awaitable object is an object that implements the __await__() method. This is

an implementation detail; you won’t need to write an __await__() method. Instead,

you will use a variety of different built-in objects that provide it for you. For example, any

coroutines defined using async def have an __await__() method.

Aside from coroutines, the other common awaitable is Task, which can be created

from a coroutine with the asyncio.create_task(...) function. The normal usage is

that one function is called with asyncio.run(...) and that function schedules further

functions with asyncio.create_task(...).

async def example():

 task = asyncio.create_task(hello_world())

 print(task)

 print(hasattr(task, "__await__"))

 return await task

>>> asyncio.run(example())

<Task pending coro=<hello_world() running at <stdin>:1>>

True

'hello world'

Figure 7-8. Three equivalent uses of the await keyword

Chapter 7 parallelization and asynC

326

A task is a coroutine that has been scheduled for parallel execution. When you await

a coroutine, you cause it to be scheduled for execution, then immediately block waiting

for its result. The create_task(...) function allows you to schedule a task before you

need its result. If you have multiple operations to perform, each of which performs some

blocking IO, but you await the coroutines directly, then one won’t be scheduled until

the previous is complete. Scheduling the coroutines as tasks first allows them to run in

parallel, as demonstrated by Table 7-3.

Table 7-3. Comparison of tasks and bare coroutines for parallel waiting

Awaiting coroutines directly

import asyncio

import time

async def slow():

 start = time.time()

 await asyncio.sleep(1)

 await asyncio.sleep(1)

 await asyncio.sleep(1)

 end = time.time()

 print(end - start)

>>> asyncio.run(slow())

3.0392887592315674

Converting to tasks first

import asyncio

import time

async def slow():

 start = time.time()

 first = asyncio.create_task(asyncio.sleep(1))

 second = asyncio.create_task(asyncio.sleep(1))

 third = asyncio.create_task(asyncio.sleep(1))

 await first

 await second

 await third

 end = time.time()

 print(end - start)

>>> asyncio.run(slow())

1.0060641765594482

There are some useful convenience functions to handle scheduling tasks based on

coroutines, most notably asyncio.gather(...). This method takes any number of awaitable

objects, schedules them as tasks, awaits them all, and returns an awaitable of a tuple of their

return values in the same order that their coroutines/tasks were originally given in.

This is very useful for when multiple awaitables should be run in parallel:

async def slow():

 start = time.time()

 await asyncio.gather(

 asyncio.sleep(1),

Chapter 7 parallelization and asynC

327

 asyncio.sleep(1),

 asyncio.sleep(1)

)

 end = time.time()

 print(end - start)

>>> asyncio.run(slow())

1.0132906436920166

 async for
The async for construct allows iterating over an object where the iterator itself is defined

by asynchronous code. It is not correct to use async for on synchronous iterators that

are merely being used in an asynchronous context or that happen to contain awaitables.

None of the common data types we’ve used are asynchronous iterators. If you have

a tuple or a list, then you use the standard for loop, regardless of what they contain or if

they’re being used in synchronous or asynchronous code.

This section contains examples of three different approaches to looping in an

asynchronous function. Type hinting is especially useful here, as the data types here are

subtly different, and it makes it clear which types each function expects.

Listing 7-12 demonstrates an iterable of awaitables. It contains two asynchronous

functions: one coroutine that returns a number11 and one adds up the contents of an

iterable of awaitables. That is, the add_all(...) function expects a standard iterable

of coroutines (or tasks) from number(...). The numbers() function is synchronous; it

returns a standard list containing two invocations of number(...).

Listing 7-12. Looping over a list of awaitables

import asyncio

import typing as t

async def number(num: int) -> int:

 return num

11 This is a contrived example, as there’s no reason to write a function that returns only its own
argument, especially in an asynchronous way, but if we imagine that rather than returning the
input, this is making a call to a web service that returns the data, this is more defensible. This is a
trade-off between a useful function and something that’s more easily understood.

Chapter 7 parallelization and asynC

328

def numbers() -> t.Iterable[t.Awaitable[int]]:

 return [number(2), number(3)]

async def add_all(numbers: t.Iterable[t.Awaitable[int]]) -> int:

 total = 0

 for num in numbers:

 total += await num

 return total

if __name__ == "__main__":

 to_add = numbers()

 result = asyncio.run(add_all(to_add))

 print(result)

In the add_all(...) function, the loop is a standard for loop, as it’s iterating over a

list. The contents of the list are the result of number(2) and number(3), so these two calls

need to be awaited to retrieve their respective results.

Another way of writing this is to invert the relationship between the iterable and the

awaitable. That is, instead of a list of awaitables of ints, pass an awaitable of a list of ints.

Here, numbers() is defined as a coroutine, and it returns a list of integers.

Listing 7-13. Awaiting a list of integers

import asyncio

import typing as t

async def number(num: int) -> int:

 return num

async def numbers() -> t.Iterable[int]:

 return [await number(2), await number(3)]

async def add_all(nums: t.Awaitable[t.Iterable[int]]) -> int:

 total = 0

 for num in await nums:

 total += num

 return total

if __name__ == "__main__":

 to_add = numbers()

Chapter 7 parallelization and asynC

329

 result = asyncio.run(add_all(to_add))

 print(result)

The numbers() coroutine is now responsible for awaiting the individual number(...)

coroutines. We still use a standard for loop, but now instead of awaiting the contents of

the for loop, we await the value we’re looping over.

With both approaches, the first number(...) call is awaited before the second, but

with the first approach, control passes back to the add_all(...) function between the

two. In the second, control is only passed back after all numbers have been awaited

individually and assembled into a list. With the first method, each number(...)

coroutine is processed as it’s needed, but with the second all processing of the

number(...) calls happens before the first value is used.

The third way of approaching this involves using async for. To do this, we convert

the numbers() coroutine from Listing 7-13 to a generator function, resulting in the code in

Listing 7-14. This is the same approach as used in synchronous Python code to avoid high

memory usage, with the same trade-off that the value can only be iterated over once.

Listing 7-14. Asynchronous generator

import asyncio

import typing as t

async def number(num: int) -> int:

 return num

async def numbers() -> t.AsyncIterator[int]:

 yield await number(2)

 yield await number(3)

async def add_all(nums: t.AsyncIterator[int]) -> int:

 total = 0

 async for num in nums:

 total += num

 return total

if __name__ == "__main__":

 to_add = numbers()

 result = asyncio.run(add_all(to_add))

 print(result)

Chapter 7 parallelization and asynC

330

We still need the await keywords in the numbers() method as we want to iterate

over the results of the number(...) method, not over placeholders for the results. Like

the second version, this hides the details of awaiting the individual number(...) calls

from the sum(...) function, instead of trusting the iterator to manage it. However, it also

retains the property of the first that each number(...) call is only evaluated when it’s

needed: they’re not all processed in advance.

For an object to support being iterated over with for, it must implement an

__iter__ method that returns an iterator. An iterator is an object that implements both

an __iter__ method (that returns itself) and a __next__ method for advancing the

iterator. An object that implements __iter__ but not __next__ is not an iterator but an

iterable. Iterables can be iterated over; iterators are also aware of their current state.

Equally, an object that implements an asynchronous method __aiter__ is

an AsyncIterable. If __aiter__ returns self and it also provides an __anext__

asynchronous method, it’s an AsyncIterator.

A single object can implement all four methods to support both synchronous and

asynchronous iterations. This is only relevant if you’re implementing a class that can

behave as an iterable, either synchronous or asynchronous. The easiest way to create an

async iterable is using the yield construct from an async function, and that’s enough for

most use cases.

In all of the preceding examples, we’re using coroutines directly. As the functions

specify they work on typing.Awaitable, we can be sure that the same code would work

if we passed tasks rather than coroutines. The second example, where we are awaiting

a list, is equivalent to using the built-in asyncio.gather(...) function. Both return an

awaitable of an iterable of results. As such, this may be the method that you’ll see most

often, albeit expressed as shown in Listing 7-15.

Listing 7-15. Using gather to process tasks in parallel

import asyncio

import typing as t

async def number(num: int) -> int:

 return num

async def numbers() -> t.Iterable[int]:

 return await asyncio.gather(

Chapter 7 parallelization and asynC

331

 number(2),

 number(3)

)

async def add_all(nums: t.Awaitable[t.Iterable[int]]) -> int:

 total = 0

 for num in await nums:

 total += num

 return total

if __name__ == "__main__":

 to_add = numbers()

 result = asyncio.run(add_all(to_add))

 print(result)

 async with
The with statement also has an async counterpart, async with, which is used to

facilitate the writing of context managers that depend on asynchronous code. It’s quite

common to see this in asynchronous code, as many IO operations involve setup and

teardown phases.

In the same way that async for uses __aiter__ rather than __iter__, asynchronous

context managers define the __aenter__ and __aexit__ methods to replace __enter__

and __exit__. Once again, objects can choose to implement all four to work in both

contexts, if appropriate.

When using synchronous context managers in an asynchronous function, there’s

a potential for blocking IO to happen before the first line and after the last line of the

body. Using async with and a compatible context manager allows for the event loop to

schedule some other asynchronous code during that blocking IO period.

We will cover using and creating context managers in more detail over the next

two chapters, but both are equivalent to try/finally constructions, but standard context

managers use synchronous code in their enter and exit methods, whereas async context

managers use asynchronous code.

Chapter 7 parallelization and asynC

332

 Async locking primitives
Although asynchronous code is less vulnerable to concurrency safety issues than

threads are, it is still possible to write asynchronous code that has concurrency bugs. The

switching model being based on awaiting a result rather than threads being interrupted

prevents most accidental bugs, but it’s no guarantee of correctness.

For example, in Listing 7-16 we have an asyncio version of the increment example

from when we looked at threads. This has an await within the num += line and

introduces an offset() coroutine to return the 1 that will be added to num. This

offset() function also uses asyncio.sleep(0) to block for a fraction of a second, which

simulates the behavior of a blocking IO request.

Listing 7-16. Example of an unsafe asynchronous program

import asyncio

import random

num = 0

async def offset():

 await asyncio.sleep(0)

 return 1

async def increment():

 global num

 num += await offset()

async def onehundred():

 tasks = []

 for i in range(100):

 tasks.append(increment())

 await asyncio.gather(*tasks)

 return num

if __name__ == "__main__":

 print(asyncio.run(onehundred()))

Chapter 7 parallelization and asynC

333

Although this program should print 100, it may print any number as low as 1,

depending on the decisions the event loop makes about scheduling tasks. To prevent

this, we need to either move the await offset() call to not be part of the += construction

or lock the num variable.

AsyncIO provides direct equivalents of Lock, Event, Condition, and Semaphore from

the threading library. These variants use asynchronous versions of the same API, so we

can fix the event function as shown in Listing 7-17.

Listing 7-17. Example of asynchronous locking

import asyncio

import random

num = 0

async def offset():

 await asyncio.sleep(0)

 return 1

async def increment(numlock):

 global num

 async with numlock:

 num += await offset()

async def onehundred():

 tasks = []

 numlock = asyncio.Lock()

 for i in range(100):

 tasks.append(increment(numlock))

 await asyncio.gather(*tasks)

 return num

if __name__ == "__main__":

 print(asyncio.run(onehundred()))

Perhaps the biggest difference between threaded and async versions of

synchronization primitives is that async primitives cannot be defined at the global scope.

More accurately, they can only be instantiated from within a running coroutine as they

must register themselves with the current event loop.

Chapter 7 parallelization and asynC

334

 Working with synchronous libraries
The code we’ve written so far relies on us having an entirely asynchronous stack of

libraries and functions to call from our async code. If we introduce some synchronous

code, then we block all our tasks while executing it. We can demonstrate this using

the time.sleep(...) method to block for a set amount of time. Earlier we used

asyncio.sleep(...) to model a long-running async-aware task; mixing these lets us

look at the performance of such a mixed system:

import asyncio

import time

async def synchronous_task():

 time.sleep(1)

async def slow():

 start = time.time()

 await asyncio.gather(

 asyncio.sleep(1),

 asyncio.sleep(1),

 synchronous_task(),

 asyncio.sleep(1)

)

 end = time.time()

 print(end - start)

>>> asyncio.run(slow())

2.006387243270874

In this case, our three asynchronous tasks all take 1 second and are processed in

parallel. The blocking task also takes 1 second but is processed in series, meaning the

total time taken is 2 seconds. To ensure that all four functions run in parallel, we can

use the loop.run_in_executor(...) function. This allocates a ThreadPoolExecutor (or

another executor of your choice) and runs specified tasks in that context rather than in

the main thread.

import asyncio

import time

Chapter 7 parallelization and asynC

335

async def synchronous_task():

 loop = asyncio.get_running_loop()

 await loop.run_in_executor(None, time.sleep, 1)

async def slow():

 start = time.time()

 await asyncio.gather(

 asyncio.sleep(1),

 asyncio.sleep(1),

 synchronous_task(),

 asyncio.sleep(1)

)

 end = time.time()

 print(end - start)

>>> asyncio.run(slow())

1.0059468746185303

The run_in_executor(...) function works by switching out the problem to one that

is easily made asynchronous. Instead of trying to turn arbitrary Python functions from

synchronous into asynchronous, finding the right places to yield control back to the event

loop, getting woken up at the correct time, and so on, it uses a thread (or a process) to execute

the code. Threads and processes are inherently suitable to asynchronous control by virtue

of being an operating system construct. This reduces the scope of what needs to be made

compatible with the asyncio system to starting a thread and waiting for it to be complete.

 Making our code asynchronous
The first step in making our code work in an asynchronous context is to pick a

function to act as the first in the chain of asynchronous functions. We want to keep the

synchronous and asynchronous code separate, so we need to pick something that’s

high enough in the call stack that all things that need to be asynchronous are (perhaps

indirectly) called by this function.

In our code, the get_data_points(...) function is the only one that we want to run

in an asynchronous context. It is called by add_data_from_sensors(...), which is itself

called by standalone(...), which is called by collect_sensor_data(...) in turn. Any

of these four functions can be the argument to asyncio.run(...).

Chapter 7 parallelization and asynC

336

The collect_sensor_data(...) function is the click entrypoint, so it cannot be an

asynchronous function. The get_data_points(...) function needs to be called multiple

times, so it is a better fit for a coroutine than the main entrypoint into the asynchronous

flow. This leaves standalone(...) and add_data_from_sensors(...).

The standalone(...) function does the setup for the database already;

it is a good place to do the event loop setup too. Therefore, we need to make the

add_data_from_sensors(...) an async function and adjust how it is called from

standalone(...).

def standalone(

 db_uri: str, servers: t.Tuple[str], api_key: t.Optional[str], echo:

bool = False

) -> None:

 engine = create_engine(db_uri, echo=echo)

 sm = sessionmaker(engine)

 Session = sm()

 asyncio.run(add_data_from_sensors(Session, servers, api_key))

 Session.commit()

We now need to change our implementations of the lower-level functions to not

call any blocking synchronous code. Currently, we are making our HTTP calls using the

requests library, which is a blocking, synchronous library.

As an alternative, we’ll switch to the aiohttp module to make our HTTP requests.

Aiohttp is a natively asynchronous HTTP library that supports both client and server

applications. The interface is not as refined as that of requests, but it is quite usable.

The biggest difference in API is that HTTP requests involve many context managers,

as follows:

 async with aiohttp.ClientSession() as http:

 async with http.get(url) as request:

 result = await request.json()

As the name suggests, a ClientSession represents the idea of a session with a

shared cookie state and HTTP header configuration. Within this, requests are made with

asynchronous context managers like get. The result of the context manager is an object

which has methods that can be awaited to retrieve the contents of the response.

The preceding construction, which is admittedly much more verbose than the

equivalent using requests, allows for many places where the execution flow could

Chapter 7 parallelization and asynC

337

be yielded to work around blocking IO. The obvious one is the await line, which

relinquishes control while waiting for the response to be retrieved and parsed as

JSON. Less obvious is the entry and exit of the http.get(...) context manager,

which can set up socket connections, allowing things like DNS resolution not to block

execution. It’s also possible for the execution flow to be yielded when entering and

exiting a ClientSession.

All this is to say that while the preceding construction is more verbose than the

same code using requests, it does allow for transparently setting up and tearing down

of shared resources relating to the HTTP session and is doing so in a way that does not

significantly slow the process.

In our add_data_from_sensors(...) function, we need to handle the fact that this

session object is now required, preferably in a way that shares the client session between

our multiple requests. We also need to keep a record of the request coroutine calls, so we

can schedule them in parallel and retrieve their data.

async def add_data_from_sensors(

 session: Session, servers: t.Tuple[str], api_key: t.Optional[str]

) -> t.List[DataPoint]:

 todo: t.List[t.Awaitable[t.List[DataPoint]]] = []

 points: t.List[DataPoint] = []

 async with aiohttp.ClientSession() as http:

 for server in servers:

 todo.append(get_data_points(server, api_key, http))

 for a in await asyncio.gather(*todo):

 points += await handle_result(a, session)

 return points

In this function, we define two variables, a list of awaitables that each return a list

of DataPoint objects, as well as a list of DataPoint objects that we fill as we process the

awaitables. Then, we set up the ClientSession and iterate over the servers, adding an

invocation of get_data_points(...) for each server. At this stage, these are coroutines

as they are not scheduled as a task. We could await them in turn, but this would have the

effect of making each request happen sequentially. Instead, we use asyncio.gather(...)

to schedule them as tasks and allow us to iterate over the results, which are each a list of

DataPoint objects.

Chapter 7 parallelization and asynC

338

Next, we need to add the data to the database. We’re using SQLAlchemy here, which

is a synchronous library. For production-quality code, we’d need to ensure that there

is no chance of blocking here. The following implementation does not guarantee that

the session.add(...) method can block due to the data being synchronized with the

database session.

A placeholder for handle_result that should not be used in production code

async def handle_result(result: t.List[DataPoint], session: Session) ->

t.List[DataPoint]:

 for point in result:

 session.add(point)

 return result

We will look at methods for dealing with database integration in a parallel execution

context in the next chapter, but this is good enough for a prototype.

Finally, we need to do the actual work of getting the data. The method is greatly

different to the synchronous version, except that it also requires the ClientSession to

be passed in, and some minor changes must be made to accommodate the difference in

HTTP request API.

Implementation of get_data_points using aiohttp

async def get_data_points(server: str, api_key: t.Optional[str], http:

aiohttp.ClientSession) -> t.List[DataPoint]:

 if not server.endswith("/"):

 server += "/"

 url = server + "v/2.0/sensors/"

 headers = {}

 if api_key:

 headers["X-API-KEY"] = api_key

 async with http.get(url) as request:

 result = await request.json()

 ok = request.status == 200

 now = datetime.datetime.now()

 if ok:

 points = []

 for value in result["sensors"]:

Chapter 7 parallelization and asynC

339

 points.append(

 DataPoint(

 sensor_name=value["id"], collected_at=now,

data=value["value"]

)

)

 return points

 else:

 raise ValueError(

 f"Error loading data from {server}: "

 + result.json().get("error", "Unknown")

)

This method makes many different choices when compared to a multithreaded or a

multiprocess model. A multiprocess model allows for true concurrent processing, and a

multithreaded approach can achieve some very minor performance gains thanks to the

less restrictive guarantees about switching, but asynchronous code has a much more

natural interface, in my opinion.

The key disadvantage of the asyncio approach is that the advantages can only be

truly realized with asynchronous libraries. Other libraries can still be used by combining

asyncio and threaded approaches, which is made easy by the good integration between

these two methods, but there is a significant refactoring requirement to converting

existing code to an asynchronous approach and, equally, a significant learning curve in

becoming accustomed to writing asynchronous code in the first place.

 Comparison
There are implementations of all four approaches in the code accompanying this chapter,

so it’s possible for us to run a simple benchmark to compare their speeds. Benchmarking

a proposed optimization in this way is always difficult; it’s hard to get real numbers from

anything but a real-world test, so the following should be taken with a pinch of salt.

These numbers were generated by extracting data from the same sensor multiple

times in a single invocation. Aside from the other load on the machine timing these

invocations, the numbers are unrealistic because they do not involve looking up

connection information for many different targets and because the server returning the

requested data is limited in the number of simultaneous requests that it can service.

Chapter 7 parallelization and asynC

340

As you can see from Figure 7-9, the threaded and asyncio approaches are almost

indistinguishable in terms of time taken. The nonblocking IO method that we rejected

due to its complexity is also comparable. A multiprocess approach is noticeably slower,

but similar to the other three approaches. The standard, synchronous approach behaves

similarly with only one or two sensors to collect data from, but the larger result sets

quickly become pathological, taking an order of magnitude longer than the concurrent

approaches.

The information we should take from this is that this workload is well suited to

parallelization. The fact that asyncio is as much as 20% faster in our benchmark does not

necessarily equate to it being a faster technology, just faster in this particular test. Future

changes to the codebase, as well as different testing conditions, could easily change the

relationship between the technologies.

Figure 7-9. Time taken to load data from 1, 2, 5, 10, 20, or 50 HTTP APIs, using
different parallelization methods

Chapter 7 parallelization and asynC

341

 Making a choice
There are two pernicious falsehoods about asyncio circulating in the Python

community at the time of writing. The first is that asyncio has "won" at concurrency.

The second is that it’s bad and should not be used. It should come as no surprise that

the truth lies somewhere in the middle. Asyncio is brilliant for network clients that are

largely IO- bound but isn’t a panacea.

When deciding between the different approaches, the first question to ask yourself is

if your code is spending most of its time waiting for IO or if it’s spending most of its time

processing data. A task that waits for a short while and then does a lot of calculation is

not a great fit for asyncio as it can parallelize the waiting but not the execution, leaving

a backlog of CPU-bound tasks to perform. Equally, it’s not a natural fit for a thread

pool, as the GIL prevents the various threads running truly in parallel. A multiprocess

deployment has higher overheads but is able to take advantage of true parallelization in

CPU-bound code.

If the task does spend more time waiting than executing code, it’s likely that asyncio

or a thread-based parallelization approach will be the best choice. As a rule of thumb,

I recommend preferring asyncio for applications that call out to servers but do not wait

for network requests themselves, and combinations of process and thread pools for

applications that do accept inbound connections.12 A decision tree representing this is

given as Figure 7-10.

12 With apologies to my friends Nathan and Ramon who maintain the Guillotina project, a
specialist framework for very high-performance REST APIs in Python, who will advocate
strongly for the benefits of asyncio in server code.

Chapter 7 parallelization and asynC

342

This is not a hard rule; there are too many exceptions to list, and you should consider

the details of your application and test your assumptions, but in general, I prefer the

robust and predictable behavior of preemptive multitasking13 for a server application.

Our sensor API endpoints are entirely standard Python, but are run through the

waitress WSGI server. The WSGI server makes the concurrency decision for us, with

waitress-serve instantiating a four-thread thread pool to handle inbound requests.

The collector process involves a large amount of waiting in every invocation and is

entirely client side, so using asyncio to implement its concurrent behaviors is a good fit.

13 Preemptive multitasking is when a central authority can interrupt tasks to give another task
a chance to execute. In this case, the Python GIL enforces this with its switch interval. The
alternative, cooperative multitasking, is the idea that tasks must voluntarily give up control to
their peers. This is the basis of the name coroutine and also the reason that bugs in Windows 3.1
applications could inadvertently freeze the system so easily.

Figure 7-10. Decision tree for parallelization methods in client/server
applications

Chapter 7 parallelization and asynC

343

 Summary
In this chapter, we’ve looked at the two most common types of parallelization, threading

and asyncio, as well as other methods that are less widely used. Concurrency is a difficult

topic, and we’ve not finished covering the things that you can achieve with asyncio, but

we will be leaving threads behind at this point.

Asynchronous programming is a very powerful tool, one that all Python

programmers should be aware of, but the trade-offs of threads and asyncio are very

different, and generally speaking, only one will be useful in any given program.

If you need to write a program that relies on concurrency in Python, I strongly

recommend experimenting with the different approaches to find which matches your

problem best. I also would encourage you to make sure you understand the uses of all

the synchronization primitives we’ve used in this chapter, as appropriate use of locks

can make the difference between a program that’s slow and hard to understand and a

program that’s fast and intuitively written.

 Additional resources
The following links contain some useful background information on topics that I’ve

covered in this chapter, as well as some other, less common approaches:

The HTTP zine by Julia Evans gives a good explanation of the

internals of the HTTP protocol and the differences between

versions: https://wizardzines.com/zines/http/.

Greenlets are a precursor to native coroutines in Python, which

may be of use to people who need to use very old versions of

Python: https://greenlet.readthedocs.io/en/latest/.

Similarly, https://github.com/stackless-dev/stackless/wiki

covers Stackless Python, which is a variant of Python intended to

offer better performance when running many small operations in

parallel. Greenlets are derived from the stackless project.

Just as ThreadPools are backed by threads, ProcessPools are

backed by processes. Information on Python’s lower-level process

management functionality is at https://docs.python.org/3/

library/multiprocessing.html.

Chapter 7 parallelization and asynC

https://wizardzines.com/zines/http/
https://greenlet.readthedocs.io/en/latest/
https://github.com/stackless-dev/stackless/wiki
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html

344

The slides for David Beazley’s excellent presentation

“Understanding the GIL” are available at www.dabeaz.com/GIL/.

Although some minor details have changed in the ten years

since it was written (such as the concept of “ticks”), the overall

description is still very accurate and worth a read.

Information on the PyPy implementation of Python can be found

at www.pypy.org/.

Chapter 7 parallelization and asynC

http://www.dabeaz.com/GIL/
http://www.pypy.org/

345
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_8

CHAPTER 8

Advanced asyncio
Now that we’ve decided that asyncio is an appropriate technology to use for our

aggregation process, we need to ensure that the code we’re working from is

production- quality. So far we’ve omitted any tests in the apd.aggregation codebase; it’s

time to address that problem, as well as the problem of the blocking database integration

that we mentioned in passing in the previous chapter.

 Testing async code
We can use the existing tools we’ve been using to test our async code, but we need to

make some minor adjustments to set up the async environment. One way to do this

would be to modify individual test functions to invoke asyncio.run(...) over a wrapper

function. This ensures that the testing system is entirely synchronous, but for each

individual test, an event loop is set up, a coroutine scheduled, and execution blocked

until it’s complete.

We can achieve this by writing an asynchronous function which contains any async

setup and teardown; then any synchronous setup, teardown, and assertions are added to

the main test function.

def test_get_data_points_fails_with_bad_api_key(self, http_server):

 async def wrapped():

 async with aiohttp.ClientSession() as http:

 return await collect.get_data_points(http_server, "incorrect", http)

 with pytest.raises(

 ValueError,

 match=f"Error loading data from {http_server}: Supply API key in "

f"X-API-Key header",

):

 asyncio.run(wrapped())

https://doi.org/10.1007/978-1-4842-5793-7_8#DOI

346

The preceding example uses a http_server fixture which returns the URL to

an API server, then creates a coroutine that sets up an aiohttp session and calls

get_data_points(...), the method under test. There’s a big sacrifice in clarity involved

here: the code is out of order. The asynchronous code is listed first, followed by the

assertions, and then the synchronous code. Normally, we mix code and assertions

more freely according to the flow of the program. Although we could move some of the

assertion work into the asynchronous part of the test, there would always be additional

code to set up the async environment for the inner function.

An alternative is to use a pytest plugin to handle the wrapping automatically.

pytest-asyncio does this, making it possible to mix standard test methods with test

coroutines. Any coroutine that’s marked as being an asyncio test using the pytest

marking system is executed in an async environment, with all the work of wrapping it

happening transparently in the plugin.

Using a plugin allows for a much clearer execution flow, without any boilerplate

code to bridge the gap between synchronous and asynchronous code, as shown in the

following:

@pytest.mark.asyncio

async def test_get_data_points_fails_with_bad_api_key(self, http_server):

 with pytest.raises(

 ValueError,

 match=f"Error loading data from {http_server}: Supply API key "

f"in X-API-Key header",

):

 async with aiohttp.ClientSession() as http:

 await collect.get_data_points(http_server, "incorrect", http)

Caution We’ve introduced a dependency here, albeit one that only applies when
running tests. We haven’t been listing test dependencies in setup.cfg, choosing
only to include them in the Pipfile as development dependencies. As such, we can
install this dependency with

pipenv install --dev pytest-asyncio

ChAPter 8 AdvAnCed AsynCio

347

this is fine in most cases, but in larger codebases you may need to test
combinations of components and versions rather than having a single Pipfile. it’s
possible to list the test dependencies in setup.cfg, to avoid duplication. to do
this, create a new [options.extras_require] line called “test” and list the
test dependencies there. there is a legacy setuptools feature called tests_require
that you may sometimes see, but i always recommend an extra instead, as it
provides more explicit control over if test dependencies are installed.

 Testing our code
The ability to write asynchronous test functions is a great start, but we also need to set

up some fixtures to give the aggregation code sensor endpoints to interrogate. There are

two approaches to this; we could either provide mock data as part of the aggregation

tests or have the aggregation tests depend on the server code and start a real, albeit

temporary, server.

Neither option is a particularly appealing prospect; they each have significant

downsides. If we write our tests to check against a known HTTP response, then this

would need to update this every time that the underlying API changes. Hopefully, this

won’t happen often, but blobs of opaque JSON are hard for people to reason about when

reading the test code.

Often, tests that manipulate large pieces of data are written by copying the input

data, running the test, and then using the output data to write an assert statement. This

is a somewhat dangerous practice, as it makes the test about ensuring that nothing has

changed, rather than checking that a specific thing is correct.

The alternative, running the back-end server and connecting to that, is more a

realistic approach and avoids raw JSON in tests, but it adds a dependency on the server

code to the tests. Consequently, all tests require a socket connection to be created, as

well as adding overhead in server setup and teardown.

The dilemma is the same problem we faced in Chapter 5, where we had to decide

between testing the command-line interface’s output and the functions of sensors

directly. Once we recognize this, it’s much easier to decide what to do. A functional

test provides a broad basis for checking that things are working as expected, but faster,

specialized tests are more pleasant to develop with. Critically, having both helps us

to differentiate test failures between when there has been a change to the underlying

platform and when the faster tests are modeling the real behavior poorly.

ChAPter 8 AdvAnCed AsynCio

348

As such, I’ll add the same marker to declare these tests as functional tests.

In Chapter 5, we did this with @pytest.mark.functional on individual test methods, as

well as a pytest.ini file that defined the functional marker. As all of our functional tests for

this package are in a module that won’t contain any nonfunctional tests, we can mark the

entire module instead. Classes or modules can have a marker by setting the pytestmark

module variable to reference the marker, as follows:

import pytest

pytestmark = [pytest.mark.functional]

 Test servers and pytest fixtures with teardown

The first thing we need to do for our test setup is to instantiate a test server. The server

needs to be providing a HTTP socket, as we’re testing code that makes HTTP requests.

We need a server that listens on a port that we can specify so that we can avoid port

collisions with other software; we may need more than one of these servers running at

once, to test that data can be aggregated from multiple endpoints.

In our original apd.sensors package, we created a set_up_config(...) function

that took configuration values and an optional app parameter, then applied those config

variables to the app. If app wasn’t supplied, then the default app (which sets up the

various API versions on known URLs) is used.

To create multiple flask apps with different configs, we need to be able to create

flask apps that are functionally equivalent to the default one, which for the purposes

of our tests means they must have the v2.0 API served on /v/2.0. We can create a new

get_independent_flask_app(...) function that does this, by duplicating some of the

code from apd.sensors, as shown in Listing 8-1.

Listing 8-1. Helper functions and a fixture to run a HTTP server

from concurrent.futures import ThreadPoolExecutor

import typing as t

import wsgiref.simple_server

import flask

import pytest

ChAPter 8 AdvAnCed AsynCio

349

from apd.sensors.wsgi import v20

from apd.sensors.wsgi import set_up_config

def get_independent_flask_app(name: str) -> flask.Flask:

 """ Create a new flask app with the v20 API blueprint loaded, so

multiple copies

 of the app can be run in parallel without conflicting configuration """

 app = flask.Flask(name)

 app.register_blueprint(v20.version, url_prefix="/v/2.0")

 return app

def run_server_in_thread(name: str, config: t.Dict[str, t.Any], port: int)

-> t.Iterator[str]:

 # Create a new flask app and load in required code, to prevent config

conflicts

 app = get_independent_flask_app(name)

 flask_app = set_up_config(config, app)

 server = wsgiref.simple_server.make_server("localhost", port, flask_app)

 with ThreadPoolExecutor() as pool:

 pool.submit(server.serve_forever)

 yield f"http://localhost:{port}/"

 server.shutdown()

@pytest.fixture(scope="session")

def http_server() -> t.Iterator[str]:

 yield from run_server_in_thread(

 "standard", {"APD_SENSORS_API_KEY": "testing"}, 12081

)

This function lets us create flask apps that have independent configurations, but

all include the v2.0 API on the correct URL. The run_server_in_thread(...) utility

function is a higher-level one, to create a flask app, configure it, and make it serve

requests.

ChAPter 8 AdvAnCed AsynCio

350

Note there is some disagreement over if it’s worthwhile to add type definitions to
test methods. i find that Pytest’s lack of typing support removes most of the utility,
but it depends a lot on your codebase. if you’ve got good coverage of types, you
may find it worthwhile. Personally, i recommend type-checking utility functions,
adding return type annotations to test methods and fixtures. this is normally enough
to ensure that your test helpers are type-checked when used, but i recommend
being more pragmatic about typing for test methods and i often skip this.

To service requests, we’ll use the wsgiref server from the standard library. We've

previously used its serve_forever() function to handle requests as part of testing the

apd.sensors HTTP server. This does almost exactly what we want, in that it takes a

WSGI application and makes it available over HTTP; but it does so in a blocking way.

Once we call serve_forever(), the server normally runs until the user interrupts it with

<CTRL+c>. This is not what we want for a test fixture, so we need to off-load this to run

concurrently.

A threaded execution model is perfect for this: we can spawn a new thread to handle

the serve_forever() call and interrupt it once we’re done with the server. Unlike

previous fixtures that we’ve written, we don’t just want to create a value and pass it to the

test method, we want to do the setup, pass a value, and then do teardown to clear up the

thread that we’ve created.

Pytest fixtures that do setup and teardown use the yield keyword instead of return,

effectively making the fixture a single-item generator. Anything before the yield

keyword is executed as normal, and the value yielded is what’s given to test functions

as an argument. Anything after the yield is only executed once the fixture is torn down.

By default, fixtures are torn down at the end of each test. We can change the scope to be

"session" to mean that the fixture should only be set up and torn down once per pytest

invocation, rather than after every test.

This construction allows the server.shutdown() call and the cleanup of the thread

pool to happen after the last test that needs http_server has completed.

ChAPter 8 AdvAnCed AsynCio

351

Note the shutdown method is an implementation detail of the WsGiserver
from the standard library, but it’s a critical one. once our test method has finished
executing, we want to shut down the thread serving requests. if we don’t do this,
then the test program will hang waiting for the threads to finish, but the threads
will never terminate in normal operation. the shutdown method manipulates an
internal flag that the wsgiref server checks every 500 milliseconds. if it’s set, the
serve_forever() call returns and therefore causes the thread to exit.

Anything running in a thread must be shut down explicitly before the process can
complete.1 in this case, we’re lucky that the APi was designed with this in mind,
but if you’re working with other APis that don’t offer a shutdown function, you may
have to create your own shared variable and check that in the function that you
submit to the pool. it is not possible to force a thread to stop from the outside; your
threads must be written to cease when no longer needed.

The utility function allows us to create multiple such test servers, differing only by

configuration, and pass their addresses to test methods. We can create as many fixtures

as we like, passing different data to each. For example, a fixture to set up a server that

uses a different API key and will therefore reject requests is given as follows:

@pytest.fixture(scope="session")

def bad_api_key_http_server():

 yield from run_server_in_thread(

 "alternate", {"APD_SENSORS_API_KEY": "penny"}, 12082

)

The final thing to mention here is the yield from construction in the fixtures

themselves. A yield from expression is very useful when building generators. When

given an iterable, it yields over value, then passes execution to the next line. This allows

writing iterators that defer to another iterator as part of a more complex implementation,

1 A thread can be marked as a “daemon” thread using thread_obj.daemon = True before starting
it. This will allow the process to end with the thread still running, but this can cause the thread to
terminate mid-action. It’s usually better to use a sentinel value to allow all threads to shut down
cleanly.

ChAPter 8 AdvAnCed AsynCio

352

for example, one that appends additional items to the start and end of an existing

iterator. It can also be used to chain multiple iterators together, although the

itertools.chain function in the standard library may be clearer for this purpose.2

def additional(base_iterator):

 yield "Start"

 yield from base_iterator

 yield "End"

Pytest treats fixtures that yield their value differently to those that return their

value, so although we don’t want to manipulate the iterator we’re wrapping, we need to

iterate over it and yield the single value so that pytest understands that this fixture has

setup and teardown. Pytest determines this by introspecting the fixture function and

checking if it is a generator function.3 If the wrapper function body were to be return

run_server_in_thread(...), then, although the actual result of calling the function

would be the same, the function itself wouldn’t be considered a generator function. It

would be a function that returns a generator.

Introspecting the function allows for fixtures that intentionally return generators,

such as the following example which returns a generator with a single value. If this

fixture were to be used in a test function, then the function would be given the generator

itself, not its single value.

@pytest.fixture

def single_item_iterator():

 def gen_func():

 yield "An item"

 return gen_func()

 Fixture scoping

By default, all fixtures are scoped at the test level, meaning the fixture code is run once for

every test that depends on them. Our fixtures that create a new HTTP server are scoped

at the session level, meaning they are only run once and the value is shared by all tests.

2 itertools.chain(*iterators) returns a single iterator that contains the items from each, in
turn.

3 This is done with the inspect.isgeneratorfunction(...) function in the standard library.

ChAPter 8 AdvAnCed AsynCio

353

Fixtures can use other fixtures as a way of sharing setup code between multiple

fixtures and tests. For example, in the future, we may have many more required

configuration values as part of the server setup for apd.sensors. In this case, we

wouldn’t want to repeat them all for every HTTP server being set up; we would want to

put the default configuration in a fixture, as shown in Listing 8-2. This way, it can be read

by both HTTP server fixtures and any tests that need the config values.

Listing 8-2. Changes to the fixtures to support a common config fixture

import copy

@pytest.fixture(scope="session")

def config_defaults():

 return {

 "APD_SENSORS_API_KEY": "testing",

 "APD_SOME_VALUE": "example",

 "APD_OTHER_THING": "off"

 }

@pytest.fixture(scope="session")

def http_server(config_defaults) -> t.Iterator[str]:

 config = copy.copy(config_defaults)

 yield from run_server_in_thread("standard", config, 12081)

@pytest.fixture(scope="session")

def bad_api_key_http_server(config_defaults) -> t.Iterator[str]:

 config = copy.copy(config_defaults)

 config["APD_SENSORS_API_KEY"] = "penny"

 yield from run_server_in_thread(

 "alternate", config, 12082

)

This hypothetical config_defaults fixture has scope="session" set because it too

runs at the session scoping level. However, this is a logical consequence of the fact that it

is used by session-scoped fixtures, not a free choice. If the config_defaults fixture had a

narrower scope, then there would be a contradiction. Should it be set up and torn down

according to the narrow scope or after the session-scoped items that depend on it are

torn down?

ChAPter 8 AdvAnCed AsynCio

354

Our example might appear harmless, but if the fixture returns dynamic values, or sets

up some resource, then the behavior needs to be consistent. As such, any attempt to use

a fixture that has a narrower scope than the fixture that’s using it causes pytest to fail with

scope mismatch errors, such as those in the following:

ScopeMismatch: You tried to access the 'function' scoped fixture

'config_defaults' with a 'session' scoped request object, involved factories

tests\test_http_get.py:57: def http_server(config_defaults)

tests\test_http_get.py:49: def config_defaults()

There are several scopes available to developers; these are (from narrowest to

widest) function, class, module, package,4 and session. The default is function, and

any fixture that defines an explicit scope must only depend on fixtures that use scopes

that use that scope or a wider one. For example, any class-scoped fixture can depend on

class, module, package, or session fixtures, but not function-scoped fixtures.

Somewhat confusingly, there is a second type of scoping that applies to fixtures,

their discoverability. This is defined by where in the codebase a fixture is defined. It

determines which functions can use the fixture but has no effect on how invocations of

the fixture are shared between tests.

The HTTP server fixtures we created earlier are specified as being in the session

scope, but they’re defined in a test module, which makes their discoverability equivalent

to module scope. There are three possible discoverability scopes, equivalent to class,

module, and package. Fixtures defined in the conftest.py module are available to all

tests in a codebase; ones defined in a test module are available to all tests in that module;

and ones defined as a method of a test class are available to all tests in that class.

It’s very common for a discovery scope to differ from the defined scope, especially as

the default scope for a fixture is function, which has no equivalent discoverability scope.

If the discoverability is wider than the declared scope, then the fixture could be set up,

used, and torn down multiple times throughout the test process. If it’s the same, then the

fixture will be set up, used, and then torn down immediately afterward. Finally, if a test’s

declared scope is wider than its discoverability, then it won’t be torn down until some

later point in the test run, potentially a long time after it was no longer needed. These

three possibilities are demonstrated in Table 8-1.

4 The package fixture scope is currently experimental and may be removed in a future version of
pytest. The scopes I use most often are (in order) function, session, class, and module. I have not
yet had cause to use the package scope.

ChAPter 8 AdvAnCed AsynCio

355

If multiple fixtures of the same name exist, then the one with the narrowest discovery

scope is used for each test. That is, a fixture defined in conftest.py is available to all

tests, but if a module has a fixture of the same name, then that one is used instead for

tests within the module. The same is true if a class has a fixture of the same name.

Caution this overriding is only about discovery; there is no effect on the lifetime of
the fixture and its teardown behavior. if you have a fixture that sets up and tears down
a resource, like our httP servers, and you override that for a class, then it’s possible
for other versions of the same fixture to have been set up and not yet torn down.5
Any time that you define a fixture where the narrowest override used and the widest
declared scope used are listed in table 8-1 as “delayed teardown, you must ensure
that your fixtures do not try to hold the same resources, such as tCP/iP sockets.

We do have a mismatch in our code: our HTTP server fixture is defined in a test

module but uses the session scope, so it can suffer from delayed teardown. We could

fix this by moving the fixtures to conftest.py or by changing the declared scope to

module. We need to decide if we want our fixture to be coterminous with the test run and

available to any test to use or if we want it to be available only to the test_http_get.py

test module and to be torn down once those tests have been executed.

Table 8-1. The effects of the 15 different combinations of scope

scope=function scope=class scope=module scope=package scope=session

Defined in
a class

Multiple

invocations

one

invocation

delayed

teardown

delayed

teardown

delayed

teardown

Defined in
module

Multiple

invocations

Multiple

invocations

one invocation delayed

teardown

delayed

teardown

Defined in
conftest.py

Multiple

invocations

Multiple

invocations

Multiple

invocations

one invocation delayed

teardown

5 If you want to see this for yourself, you can add print(...) calls to your fixtures and run pytest
with the -s switch, to prevent the capture of stdout. Be aware, however, that pytest doesn’t
guarantee the order that it decides to run tests in, so this is more useful for debugging a problem
than verifying that no problems can occur.

ChAPter 8 AdvAnCed AsynCio

356

As we don’t intend to create an extensive test suite of functional tests that would

require the use of this fixture, I’ll leave it in the test module and reduce the scope to

match.

 Mocking objects for easier unit testing
To write unit tests of our code, we need to find an alternative to starting a server for the

aiohttp library to connect to. If we were using the requests library to make the HTTP

request, we’d likely use the responses testing tool, which patches parts of requests’

internals to allow specific URLs to be overridden.

If our implementation of get_data_points(...) were to be synchronous, we’d

register the URL we wanted to override with responses and ensure that the package was

activated for the test method. Test functions using responses, such as the hypothetical

one shown as follows, don’t suffer from mocking introducing excessive complexity at the

cost of readability.

@responses.activate

def test_get_data_points(self, mut, data) -> None:

 responses.add(responses.GET, 'http://localhost/v/2.0/sensors/',

 json=data, status=200)

 datapoints = mut("http://localhost", "")

 assert len(datapoints) == len(data["sensors"])

 for sensor in data["sensors"]:

 assert sensor["value] in (datapoint.data for datapoint in

datapoints)

 assert sensor["id"] in (datapoint.sensor_name for datapoint in

datapoints)

We want to be able to do something similar for the aiohttp library, but we have

a slight advantage in that our function expects a http client object to be passed to

 get_data_points(...) function. We can write a mock version of the ClientSession

object that acts enough like the real one to allow us to inject fake data, without having to

patch the real implementation like responses does.

For simple objects, we often use the unittest.mock functionality built-in to the

standard library. Mocking allows us to instantiate objects and define what the results of

various operations would be. The object we need has a get(...) method, which returns

ChAPter 8 AdvAnCed AsynCio

357

a context manager. This context manager’s enter method returns a response object,

which has a status attribute and a json() coroutine, which is a relatively complex set of

requirements. Listing 8-3 demonstrates a fixture to build this object using unittest.mock.

Listing 8-3. Using unittest’s mocking to mock a complex object

from unittest.mock import Mock, MagicMock, AsyncMock

import pytest

@pytest.fixture

def data() -> t.Any:

 return {

 "sensors": [

 {

 "human_readable": "3.7",

 "id": "PythonVersion",

 "title": "Python Version",

 "value": [3, 7, 2, "final", 0],

 },

 {

 "human_readable": "Not connected",

 "id": "ACStatus",

 "title": "AC Connected",

 "value": False,

 },

]

 }

@pytest.fixture

def mockclient(data):

 client = MagicMock()

 response = Mock()

 response.json = AsyncMock(return_value=data)

 response.status = 200

 client.get.return_value.__aenter__ = AsyncMock(return_value=response)

 return client

ChAPter 8 AdvAnCed AsynCio

358

This object isn’t very easy to reason about: the code in mockclient is quite dense,

and it relies on understanding the differences between the different types of mock class

available, as well as the implementation of context managers. You cannot tell at a glance

how to use this object from the test fixture.

We could have written this same functionality by creating custom classes that mirror

the functionality of the real classes we want to replace, as shown in Listing 8-4. This

approach results in significantly longer code, so some developers prefer the generic

mocking method mentioned earlier.

Listing 8-4. Manually mocking a complex object

import contextlib

from dataclasses import dataclass

import typing as t

import pytest

@pytest.fixture

def data() -> t.Any:

 return {

 "sensors": [

 {

 "human_readable": "3.7",

 "id": "PythonVersion",

 "title": "Python Version",

 "value": [3, 7, 2, "final", 0],

 },

 {

 "human_readable": "Not connected",

 "id": "ACStatus",

 "title": "AC Connected",

 "value": False,

 },

]

 }

ChAPter 8 AdvAnCed AsynCio

359

@dataclass

class FakeAIOHttpClient:

 data: t.Any

 @contextlib.asynccontextmanager

 async def get(self, url: str, headers: t.Optional[t.Dict[str,

str]]=None) -> FakeAIOHttpResponse:

 yield FakeAIOHttpResponse(json_data=self.data, status=200)

@dataclass

class FakeAIOHttpResponse:

 json_data: t.Any

 status: int

 async def json(self) -> t.Any:

 return self.json_data

@pytest.fixture

def mockclient(data) -> FakeAIOHttpClient:

 return FakeAIOHttpClient(data)

The setup using this method is approximately twice as long, but it’s much easier

to tell at a glance what the objects involved are. The difference between these two

approaches is very much one of personal preference. Personally, I prefer the second

method in most circumstances, as I feel that it has some concrete advantages.

The unittest.mock method creates mocks for all attribute accesses. This can

introduce subtle testing bugs, as code can start to depend on a new attribute and

that will be mocked out by default. For example, if we wrote some code that used if

response.cookies:, then the first method of mocking would always evaluate that to

True in mock sessions, but the second would raise an AttributeError. I usually prefer to

know that my mocks are incomplete through exceptions, rather than incorrect behavior.

Then, the former method is more difficult to use when writing mocks that include

branching logic. They’re a good fit for making assertions on what code path was

followed, but less good for returning different data according to the circumstance. For

example, if we wanted a mock session that could return different data for different URLs,

the changes to the custom objects are relatively clear. The equivalent changes when

using mock objects are much more complex.

ChAPter 8 AdvAnCed AsynCio

360

 Mocks with branching logic

To introduce per-url mocked responses using the Fake* objects, only the

FakeAIOHttpClient class and its invocation in mockclient need to be altered, and those

changes are very much standard Python logic.

@dataclass

class FakeAIOHttpClient:

 responses: t.Dict[str, str]

 @contextlib.asynccontextmanager

 async def get(self, url: str, headers: t.Optional[t.Dict[str,

str]]=None) -> FakeAIOHttpResponse:

 if url in self.responses:

 yield FakeAIOHttpResponse(json_data=self.responses[url],

status=200)

 else:

 yield FakeAIOHttpResponse(json_data=None, status=404)

However, an equivalent change to the unittest-based mock system requires

significantly more support code and for some work to be refactored to be more similar to

our custom mocking approach.

def FakeAIOHTTPClient(response_data):

 client = Mock()

 def find_response(url):

 get_request = MagicMock()

 response = Mock()

 if url in response_data:

 response.json = AsyncMock(return_value=response_data[url])()

 response.status = 200

 else:

 response.json = AsyncMock(return_value=None)()

 response.status = 404

 get_request.__aenter__ = AsyncMock(return_value=response)

 return get_request

 client.get = find_response

 return client

ChAPter 8 AdvAnCed AsynCio

361

@pytest.fixture

def mockclient(data):

 return FakeAIOHTTPClient({

 "http://localhost/v/2.0/sensors/": data

 })

 Data classes

You may have noticed the @dataclass decorator on the preceding classes, as they’re not

something we’ve used yet. Data classes are a Python feature that was introduced in the

3.7 release. They are roughly equivalent to the named tuple feature that was widely used

in older version of Python; they’re a way of defining containers for data that minimizes

the amount of boilerplate required.

Normally, when defining a class to store data, we must define an __init__(...)

method to take arguments (potentially with defaults) which are then set as instance

attributes. Each field name appears three times, once in the argument list and once on

either side of the assignment operation, for example, the following variant of our fake

response object, which just stores two pieces of data:

class FakeAIOHttpResponse:

 def __init__(self, body: str, status: int):

 self.body = body

 self.status = status

This class structure is quite familiar to many Python developers, because we often

need to create ways of storing structured data that uses attribute access to retrieve fields.

The collections.namedtuple(...) function is a way of doing this in a declarative way:

import collections

FakeAIOHttpResponse = collections.namedtuple("FakeAIOHttpResponse",

["body", "status"])

Aside from reducing the need to declare classes that contain nothing but boilerplate

code, this has the advantage of ensuring that a useful text representation of the

object is returned and that comparison operators like == and != behave as expected.

Our original class mentioned earlier doesn’t compare the values on the class, so

FakeAIOHttpResponse("", 200) == FakeAIOHttpResponse("", 200) evaluates as

False with the class version and True with the namedtuple version.

ChAPter 8 AdvAnCed AsynCio

362

A named tuple is a specialized type of tuple; the items can be accessed either

using attribute access with the field name or item access with the index. That is, for an

instance of FakeAIOHttpResponse, x.body == x[0]. Finally, they provide an _asdict()

utility method, which returns a dictionary containing the same data as the named tuple

instance.

The biggest downside of named tuples is that they cannot easily have methods

added to them. It is possible to subclass named tuples and add methods that way, but I

wouldn’t recommend it due to the poor readability involved.

class FakeAIOHttpResponse(collections.namedtuple("", ["body", "status"])):

 async def json(self) -> t.Any:

 return json.loads(self.body)

This is where data classes shine. A class can be made into a dataclass by using the

@dataclasses.dataclass decorator on the class definition. Fields are defined using the

typing syntax, optionally with a default value. The dataclass decorator is responsible for

converting these class variables into custom __init__(...), __repr__(), __eq__(...),

and other methods.

@dataclass

class FakeAIOHttpResponse:

 body: str

 status: int = 200

 async def json(self) -> t.Any:

 return json.loads(self.body)

Tip sometimes you’ll want to add other code to the __init__ method,
beyond just storing values. you can do this with data classes by defining a
__post_init__ method, which will be called after the boilerplate in
__init__ is complete.

ChAPter 8 AdvAnCed AsynCio

363

Although data classes offer many of the same features as named tuples, they

are not entirely compatible with the API that named tuples provide. They do not

implement item access,6 and conversion to both dictionaries and tuples is done with

dataclasses.asdict(...) and dataclasses.astuple(...) functions, rather than

methods on the class itself.

Another advantage of data classes over named tuples, albeit one that we’re not

using here, is that they are mutable. It is possible to change the value of attributes

of a data class object after it has been instantiated. The same is not true of named

tuples. This feature is optional; classes defined with @dataclass(frozen=True) do not

support attributes being changed after instantiation. Making a data class frozen has the

advantage of also it hashable, meaning it can be stored as part of a set or the keys of a

dict.

Caution Although dataclasses that are frozen don’t allow their values to be
replaced, if one of the values is mutable, it’s possible for this field to be changed in
place. i don’t recommend using the frozen=True option if you’re using lists, sets,
or dictionaries (for example) as value types.

There are a few other options that can be passed to the @dataclass decorator:

eq=False suppresses the generation of an equality function so that instances that are

the same values do not compare equal. Alternatively, passing order=True additionally

generates rich comparison fields, where the ordering of the objects is the same as a tuple

of their values, in order.

It is possible to specify per-field metadata for some advanced use cases. For example,

we might want the repr of a response to look like FakeAIOHttpResponse(url='http://

localhost', status=200), that is, adding a URL item and omitting the body from the

repr. We can do this by using a field object, as opposed to the standard method of

writing a custom __repr__() method. A comparison of the two approaches is shown in

Table 8-2.

6 response['body'] would not work.

ChAPter 8 AdvAnCed AsynCio

364

The field(...) method has the advantage of being significantly shorter, albeit

slightly less intuitive. The __repr__() method allows full control, at the expense of

needing to reimplement the default behavior.

There is a situation where the field method is mandatory: to support fields whose

default is a mutable object, such as a list or a dict. This is for the same reason that it’s

recommended not to use mutable objects as the default values for functions, as them

being modified in place can cause data to bleed through across instances.

Field objects accept a default_factory parameter, which is a callable that generates

the default for each instance. This can be a user-specified function or a class constructor

that takes no arguments.

options: t.List[str] = field(default_factory=list)

contextlib

In the same way that we used yield to split the setup and teardown sections of a pytest

fixture, we can use the decorators from contextlib in the standard library to create

context managers without having to implement __enter__() and __exit__(...)

method pairs explicitly.

Table 8-2. Comparison of custom repr behavior with and without the dataclass helper

Using a field(...) to customize the default repr

from dataclasses import

dataclass, field

@dataclass

class FakeAIOHttpResponse:

 url: str

 body: str = field(repr=False)

 status: int = 200

 async def json(self) -> t.Any:

 return json.loads(self.body)

Using a custom __repr__

from dataclasses import dataclass

@dataclass

class FakeAIOHttpResponse:

 url: str

 body: str

 status: int = 200

 def __repr__(self):

 name = type(self).__name__

 url = self.url

 status = self.status

 return f"{name}({url=}, {status=})"

 async def json(self) -> t.Any:

 return json.loads(self.body)

ChAPter 8 AdvAnCed AsynCio

365

The @contextlib.contextmanager decorator is the easiest way to create a context

manager, especially the trivially simple ones we are working with here. The most

common use of a context manager is to create some resource and make sure that

it’s cleaned up correctly afterward. Table 8-3 shows that if we were making a context

manager that behaved the same way as our HTTP server fixture from earlier, the code

would be almost identical.

Table 8-3. Comparison of a pytest fixture with teardown and a context manager

Pytest fixture to create a HTTP server

import pytest

@pytest.fixture(scope="module")

def http_server():

 yield from run_server_in_thread(

 "standard", {

 "APD_SENSORS_API_KEY":

"testing"

 }, 12081

)

Context manager to create a HTTP server

import contextlib

@contextlib.contextmanager

def http_server():

 yield from run_server_in_thread(

 "standard", {

 "APD_SENSORS_API_KEY":

"testing"

 }, 12081

)

More complex context managers, such as ones that need to handle exceptions

happening within the code they wrap, need to treat the yield statement as the one that

potentially raises an exception. The yield statement should therefore usually be within

either a try/finally block or a with block to ensure that any resources are torn down

correctly.

The get(...) method on FakeAIOHttpClient is an asynchronous context manager

rather than a standard context manager. The @contextlib.contextmanager decorator

creates __enter__() and __exit__(...) methods from a generator method; what we need

is a decorator to create __aenter__() and __aexit__(...) coroutines from a generator

coroutine. This is available as the @contextlib.asynccontextmanager decorator.

ChAPter 8 AdvAnCed AsynCio

366

 Test methods

Now that we have fixtures in place to support the faster integration testing of our code,

we can begin writing the actual test functions. Firstly, we can verify the behavior of the

get_data_points(...) method without the overhead of the HTTP server.7 Then we can

add tests for add_data_from_sensors(...) method that defers to get_data_points(...).

Finally, we need tests to ensure that the database portion of the application is working

correctly, which we still need to modify to remove blocking behavior.

The test methods shown in Listing 8-5 use a combination of the techniques we’ve

used so far. The test for get_data_points(...) uses the mockclient made using

custom objects. It is the first in a planned group of tests that all depend on the accurate

behavior of the HTTP library. On the other hand, the add_data_from_sensors tests use

a unittest.mock.Mock() object to mock the database session, as we only need to assert

that certain methods were called when we expected.

The patch_aiohttp() fixture uses a combination of the two approaches, as well as

the setup and teardown functionality of fixtures. The unittest.mock.patch(...) context

manager takes a location of a Python object and replaces it with a mock so long as the

context manager is active. As the add_data_from_sensors(...) method doesn’t take a

ClientSession as an argument, we can’t pass our custom mock to it. This allows us to

graft our custom mock method onto the aiohttp library, to be returned whenever our code

under test creates a ClientSession, just like responses does with the requests library.

Listing 8-5. The various approaches of test methods for apd.aggregation

from unittest.mock import patch, Mock, AsyncMock

import pytest

import apd.aggregation.collect

class TestGetDataPoints:

 @pytest.fixture

 def mut(self):

 return apd.aggregation.collect.get_data_points

7 It’s important to stress that these test functions are meant to complement the functional test
suite, not replace it. Our test runs won’t be faster unless we exclude functional tests.

ChAPter 8 AdvAnCed AsynCio

367

 @pytest.mark.asyncio

 async def test_get_data_points(

 self, mut, mockclient: FakeAIOHttpClient, data

) -> None:

 datapoints = await mut("http://localhost", "", mockclient)

 assert len(datapoints) == len(data["sensors"])

 for sensor in data["sensors"]:

 assert sensor["value"] in (datapoint.data for datapoint in

datapoints)

 assert sensor["id"] in (datapoint.sensor_name for datapoint in

datapoints)

class TestAddDataFromSensors:

 @pytest.fixture

 def mut(self):

 return apd.aggregation.collect.add_data_from_sensors

 @pytest.fixture(autouse=True)

 def patch_aiohttp(self, mockclient):

 # Ensure all tests in this class use the mockclient

 with patch("aiohttp.ClientSession") as ClientSession:

 ClientSession.return_value.__aenter__ = AsyncMock(

return_value=mockclient)

 yield ClientSession

 @pytest.fixture

 def db_session(self):

 return Mock()

 @pytest.mark.asyncio

 async def test_datapoints_are_added_to_the_session(self, mut,

db_session) -> None:

 # The only times data should be added to the session are when

running the MUT

 assert db_session.add.call_count == 0

 datapoints = await mut(db_session, ["http://localhost"], "")

 assert db_session.add.call_count == len(datapoints)

ChAPter 8 AdvAnCed AsynCio

368

The resulting tests are not overly complex and cover the same general functionality

as the functional tests. They provide a base for future tests, with the functional tests

providing a fallback that lets us be confident that our tests have useful assertions. The

integration tests here are all positive, confirming that the normal case works. We do not

yet have any that confirm that unusual or edge cases are handled correctly, but they’re a

good starting point.

 Asynchronous databases
So far, we’ve been using the SQLAlchemy ORM to handle all interactions between the

database and Python code, as it allows many of the peculiarities of databases to be put

aside in favor of normal-looking Python code. Unfortunately, the SQLAlchemy ORM

is not suitable for use in a purely asynchronous environment. SQLAlchemy doesn’t

guarantee that SQL queries only run in response to session.query(...) calls; queries

can also run when accessing attributes on objects, not to mention insert and transaction

management queries. All of these calls can block execution, severely impacting the

performance of an asyncio application.

This doesn’t mean that the SQLAlchemy ORM is slower when running in an

asynchronous context; the blocking is usually minimal and still exists in synchronous

uses of SQLAlchemy. Rather, it means that using the SQLAlchemy ORM in async code

can cause degradation of performance back down to the same level as synchronous

code, negating much of the benefit of using asyncio.

If we are willing to sacrifice the ORM component of SQLAlchemy, and use it only as

a SQL statement generator and interface, the risk of unintentional queries won’t occur.

This is a real loss, the biggest we’ve considered so far in relation to making our code

asynchronous, as the SQLAlchemy ORM is such a well-designed library.

There is no perfect solution to database connectivity at the time of writing; however,

I feel that the statement generation approach is a good compromise. As long as you’re

not writing an asynchronous server application and can tolerate the risk of performance

degradation, you should consider the pragmatic approach of using the ORM and just

making every effort to avoid calling blocking code in the main thread.

ChAPter 8 AdvAnCed AsynCio

369

 Classic SQLAlchemy style
We’ll use the statement generation approach in our example. We can’t continue to use

the declarative_base based class we created previously, as that could inadvertently

trigger SQL queries. Using the “classic” style (i.e., explicit table objects that are not

derived directly from a Python class that they represent) and not configuring up the

ORM to link the table and our Python objects lets us safely use DataPoint objects

without triggering implicit queries. An implementation of our existing table is given in

Listing 8-6.

This approach means that we will not be dealing with our custom objects directly in

the database layer, we’ll be working with tables and will be responsible for translating

between our objects and the SQLAlchemy API. However, we’ve only changed how we’re

representing the database, not the database structure, so we don’t need to create any

migrations for this change.

Listing 8-6. The “classic” style, with independent table and data classes

from dataclasses import dataclass, field

import datetime

import typing as t

import sqlalchemy

from sqlalchemy.dialects.postgresql import JSONB, TIMESTAMP

from sqlalchemy.schema import Table

metadata = sqlalchemy.MetaData()

datapoint_table = Table(

 "sensor_values",

 metadata,

 sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True),

 sqlalchemy.Column("sensor_name", sqlalchemy.String),

 sqlalchemy.Column("collected_at", TIMESTAMP),

 sqlalchemy.Column("data", JSONB),

)

ChAPter 8 AdvAnCed AsynCio

370

@dataclass

class DataPoint:

 sensor_name: str

 data: t.Dict[str, t.Any]

 id: int = None

 collected_at: datetime.datetime = field(

default_factory=datetime.datetime.now)

Before we do anything else, we should update our alembic/env.py script, as that

needs a reference to the metadata object in order to generate migrations. Previously, it

imported Base, then accessed Base.metadata; we must change those lines to use our

new metadata object, apd.aggregation.database.metadata.

We can no longer create database records by instantiating a DataPoint object and

adding it to the session; instead, we make insert calls directly to the datapoint_table

structure.

stmt = datapoint_table.insert().values(

 sensor_name="ACStatus",

 collected_at=datetime.datetime(2020,4,1,12,00,00),

 data=False

)

session.execute(stmt)

The stmt object is an instance of Insert from SQLAlchemy. This object represents

the structure of the SQL statement to be executed; it isn’t a string that is passed directly

to the database. While it is possible to view a string that represents the statement, we

need to specify what kind of database it’s intended for, in order to get accurate results.

That is done internally by SQLAlchemy, through a stmt.compile(dialect=...) method

call based on the connection information. Different databases have slightly different

variations of the SQL standard and ways to specify interpolated values; the compilation

step is what applies database-specific syntax. All of the variants separate the values

being passed from the structure of the SQL as part of the work to prevent SQL injection

vulnerabilities.

ChAPter 8 AdvAnCed AsynCio

371

 Uncompiled

INSERT INTO datapoints (sensor_name, collected_at, data) VALUES

(:sensor_name, :collected_at, :data)

{'sensor_name': 'ACStatus', 'collected_at': datetime.datetime(2020, 4, 1,

12, 0), 'data': False}

 mssql

INSERT INTO datapoints (sensor_name, collected_at, data) VALUES

(:sensor_name, :collected_at, :data)

{'sensor_name': 'ACStatus', 'collected_at': datetime.datetime(2020, 4, 1,

12, 0), 'data': False}

 mysql

INSERT INTO datapoints (sensor_name, collected_at, data) VALUES (%s, %s, %s)

['ACStatus', datetime.datetime(2020, 4, 1, 12, 0), False]

 Postgresql

INSERT INTO datapoints (id, sensor_name, collected_at, data) VALUES (%(id)

s, %(sensor_name)s, %(collected_at)s, %(data)s)

{'id': None, 'sensor_name': 'ACStatus', 'collected_at': datetime.

datetime(2020, 4, 1, 12, 0), 'data': False}

 sqlite

INSERT INTO datapoints (sensor_name, collected_at, data) VALUES (?, ?, ?)

['ACStatus', datetime.datetime(2020, 4, 1, 12, 0), False]

We don’t need to look at these strings for any reason other than curiosity, nor

do we need to compile the insert statement manually. The session we’ve set up

through SQLAlchemy processes an Insert object directly when executing it using

session.execute(stmt).

ChAPter 8 AdvAnCed AsynCio

372

This execute(...) method is what sends the statement to the database and waits for

a response. It is this Python statement that can block, for example, if there is a SQL lock

that needs to be waited for. The session.commit() call can also cause blocking, as this is

where the previous insert commands are finalized. In short, with this approach, we need

to make sure that any calls involving the session always happen in a different thread.

The ability to ignore the details of SQL generation and just call

table.insert().values(...) demonstrates some of the advantages we’re retaining

by using SQLAlchemy, even in this more limited fashion. We can make this slightly

better still, by writing utility functions that convert between the two data types. We

might initially be tempted to use **dataclasses.asdict(...) to generate the body of

the values(...) call, but that would include id=None. We don’t want to set the id to be

None in our SQL insert, we want to omit it from the arguments list so that the database

sets it. To make this easier, we’ll create a function on the data class (Listing 8-7) that calls

asdict(self) but which only includes the id if it’s been explicitly set.

Listing 8-7. Implementation of DataPoint class with a helper method for

database queries

from dataclasses import dataclass, field, asdict

import datetime

import typing as t

@dataclass

class DataPoint:

 sensor_name: str

 data: t.Dict[str, t.Any]

 id: int = None

 collected_at: datetime.datetime = field(

default_factory=datetime.datetime.now)

 def _asdict(self):

 data = asdict(self)

 if data["id"] is None:

 del data["id"]

 return data

ChAPter 8 AdvAnCed AsynCio

373

 Using run_in_executor
We discussed the run_in_executor(...) function briefly in the previous chapter, with

the example of allowing time.sleep(1) to run in parallel with asyncio.sleep(1) rather

than sequentially. That was a rather contrived example, but moving database calls to a

new thread is a perfect fit for this.

Caution the run_in_executor(...) method is not interchangeable with
the with ThreadPoolExecutor() construction we used earlier. Both delegate
work to a thread; the pool executor construction sets up a pool, submits work, and
then waits for all work to finish, whereas the run_in_executor(...) approach
creates a long-running pool and allows you to submit tasks and await their value
from asynchronous code.

Many of the asyncio helper functions that we’ve used so far, such as

asyncio.gather(...), asyncio.create_task(...), and asyncio.Lock(), automatically

detect the current asyncio event loop. The run_in_executor(...) function is a bit

different; it’s only available as a method on the event loop instance. We need to get

the current event loop ourselves with asyncio.get_running_loop() and then use

that to submit functions to be run in an executor. I would recommend submitting one

synchronous task that does all the work you need, rather than submitting individual

tasks for each low-level call and glueing them together with asyncio logic, for example,

creating a handle_result(...) function (Listing 8-8) that generates insert queries for a

group of objects, rather than one function call for each object to be inserted.

Listing 8-8. Database integration function for adding data points

def handle_result(result: t.List[DataPoint], session: Session) ->

t.List[DataPoint]:

 for point in result:

 insert = datapoint_table.insert().values(**point._asdict())

 sql_result = session.execute(insert)

 point.id = sql_result.inserted_primary_key[0]

 return result

ChAPter 8 AdvAnCed AsynCio

374

async def add_data_from_sensors(

 session: Session, servers: t.Tuple[str], api_key: t.Optional[str]

) -> t.List[DataPoint]:

 tasks: t.List[t.Awaitable[t.List[DataPoint]]] = []

 points: t.List[DataPoint] = []

 async with aiohttp.ClientSession() as http:

 tasks = [get_data_points(server, api_key, http) for server in servers]

 for results in await asyncio.gather(*tasks):

 points += results

 loop = asyncio.get_running_loop()

 await loop.run_in_executor(None, handle_result, points, session)

 return points

The arguments to loop.run_in_executor are (executor, callable, *args),

where executor must be either an instance of ThreadPoolExecutor or None (to use the

default executor, creating it if necessary).

Tip if you’re adapting lots of synchronous tasks, i’d recommend managing
the thread pools directly. this will allow you to set their number of workers and
therefore the number of simultaneous tasks they’ll execute. this will also allow you
to more effectively reason about what code can be executing simultaneously, when
deciding what locking needs to be added to make the code thread-safe.

The callable function will be invoked as a task in that executor with the positional

arguments specified in *args. You cannot specify keyword arguments to the callable as

part of this API.

The best way to use a function that requires keyword arguments is by using the

functools.partial(...) function. It transforms one function into another that takes

fewer arguments. If we were to wrap the handle_result(...) function in a partial, as

shown in the following, then the following function calls would be equivalent:

>>> only_points = functools.partial(handle_result, session=Session)

>>> only_session = functools.partial(handle_result, points=points)

>>> no_args = functools.partial(handle_result, points=points,

session=Session)

ChAPter 8 AdvAnCed AsynCio

375

>>> handle_result(points=points, session=Session)

[DataPoint(...), DataPoint(...)]

>>> only_points(points=points)

[DataPoint(...), DataPoint(...)]

>>> only_session(session=Session)

[DataPoint(...), DataPoint(...)]

>>> no_args()

[DataPoint(...), DataPoint(...)]

Aside from APIs like run_in_executor(...) which do not support keyword

arguments, it’s sometimes useful to be able to pass functions around with some of their

arguments set but not others, for example, to remove the need to pass database sessions

or web requests into every function.

DJANGO’S ORM

Many Python developers who work with the Web will work with django at some point in their

career and may wonder what the equivalent process is for interacting with the django orM

from asynchronous code, such as from channels.

My recommendation for django would be to use the orM as normal, but only from

synchronous functions. you can call synchronous functions with the utility method

@channels.db.database_sync_to_async, which can be used as a decorator

on the synchronous functions to make them awaitable. this decorator delegates to

run_in_executor(...) with an explicit thread pool, but also performs some

django-specific database connection management.

from channels.db import database_sync_to_async

@database_sync_to_async

def handle_result(result: t.List[t.Dict[str, t.Any]]) -> t.List[DataPoint]:

 points: t.List[DataPoints] = []

 for data in result:

 point = DataPoint(**data)

 point.save()

 points.append(point)

 return points

ChAPter 8 AdvAnCed AsynCio

376

the preceding code would be an example of how a hypothetical handle_result(...)

might look if it were to be used from the context of a django channel. As django strongly

encourages performing all data-gathering operations in advance, before rendering a response,

this is a suboptimal but workable solution.

 Querying data
It’s a simple matter to query data and receive Python objects when using SQLAlchemy’s

ORM. Still, as we’re only using the query building and execution parts of SQLAlchemy,

this is a little more complex. In ORM-enabled SQLAlchemy, we’d find all DataPoint

entries for the PythonVersion sensor with

db_session.query(DataPoint).filter(DataPoint.sensor_name=="PythonVersion")

But we need to use the table object instead and reference its columns from the c

attribute, as follows:

db_session.query(datapoint_table).filter(

datapoint_table.c.sensor_name=="PythonVersion")

The objects we get back are not DataPoint objects, but SQLAlchemy’s own internal

named tuple implementation called lightweight named tuples. These are returned for

any query where there is no class mapper set up.

These internal named tuples offer an _asdict() method, so the best way of converting

a result object to a DataPoint object is DataPoint(**result._asdict()). Unfortunately,

these objects are generated dynamically and considered an implementation detail of

SQLAlchemy. As such, we can’t use these objects in type definitions for our functions.

Once we’ve added a helper method for converting named tuples to DataClasses, our final

code is the same as Listing 8-9.

Listing 8-9. Final implementation of DataPoint class that supports manual

object mapping to SQLAlchemy

from dataclasses import dataclass, field, asdict

import datetime

import typing as t

ChAPter 8 AdvAnCed AsynCio

377

@dataclass

class DataPoint:

 sensor_name: str

 data: t.Dict[str, t.Any]

 id: int = None

 collected_at: datetime.datetime = field(

default_factory=datetime.datetime.now)

 @classmethod

 def from_sql_result(cls, result):

 return cls(**result._asdict())

 def _asdict(self):

 data = asdict(self)

 if data["id"] is None:

 del data["id"]

 return data

We can now make queries using SQLAlchemy that return our objects but without

the resulting objects having any direct connection to the database that could cause

unexpected queries to be issued.

results = map(

 DataPoint.from_sql_result,

 db_session.query(datapoint_table).filter(

datapoint_table.c.sensor_name=="PythonVersion")

)

We can also use this approach when writing tests, making them almost as clear as the

same code using the ORM style.

 @pytest.mark.asyncio

 async def test_datapoints_can_be_mapped_back_to_DataPoints(

 self, mut, db_session, table, model

) -> None:

 datapoints = await mut(db_session, ["http://localhost"], "")

 db_points = [

ChAPter 8 AdvAnCed AsynCio

378

 model.from_sql_result(result) for result in

db_session.query(table)

]

 assert db_points == datapoints

Tip if you’re using the Pandas data analysis framework, dataFrame objects
provide dedicated methods for loading and storing information from sQLAlchemy
queries. these read_sql(...) and to_sql(...) methods are very useful
when loading large data sets.

 Avoiding complex queries
It’s common to see people build very complex queries in an ORM, such as queries that

involve multiple joins,8 conditions, and subqueries. There are a couple of tricks that we

can use to make for easier-to-understand code that represents complex conditions. For

SQLAlchemy, that is the @hybrid_property feature, whereas for Django the equivalent is

custom lookups and transforms.

In Chapter 6 we looked at how SQLAlchemy changes the behavior of class attributes

in mapped classes so that columns can represent the value of a field or the SQL to

represent the column, depending on whether the attribute access was made on an

instance of the class or the class itself. Hybrid properties allow the same approach to be

extended to your custom logic.

The benefit here is in reorganizing code, so to demonstrate where it can be useful, we

first need a feature requirement that would benefit from refactoring. It’s quite possible

that we’ll want to look at a summary of how common values were on a given day. The

query to show the names of sensors, their distinct values, and how many times the value

was seen for all entries that happened today can be represented in SQLAlchemy as the

very long query:

8 Sometimes even joins involving the same table multiple times, which can result in particularly
confusing code.

ChAPter 8 AdvAnCed AsynCio

379

value_counts = (

 db_session.query(

 datapoint_table.c.sensor_name,

 datapoint_table.c.data,

 sqlalchemy.func.count(datapoint_table.c.id)

)

 .filter(

 sqlalchemy.cast(datapoint_table.c.collected_at, DATE)

 == sqlalchemy.func.current_date()

)

 .group_by(datapoint_table.c.sensor_name, datapoint_table.c.data)

)

There are a couple of problems with this. Firstly, the name and data columns appear

twice, as we want to group by them but we also need to be able to see which result is

connected to which grouping, so they must also appear in the output columns. Secondly,

the filter we’ve got is complex, both to read and to execute. Reading is difficult because

it involves multiple calls to SQLAlchemy functions, rather than simple comparisons.

Execution is difficult because we’re modifying the collected_at attribute with a cast,

which would invalidate any indexes on this column (if we’d set any up yet).

Note i’ve used sqlalchemy.func.current_date() to represent the current
date. Any functions available in the database can be accessed by name through
sqlalchemy.func. this was purely a stylistic choice; it’s no faster or slower
to use datetime.date.today() or anything else that is interpreted by the
database as a date.

ChAPter 8 AdvAnCed AsynCio

380

The easiest way to see how PostgreSQL interprets a query is to open a database shell

and run the query there with EXPLAIN ANALYZE modifiers.9 The output format is rather

complicated, but there are many resources for PostgreSQL that go into depth on how to

read them and optimization methods.

For now, our objective is to create a query that is both easy to read and not

unnecessarily slow. To start with, let’s move the common columns into variables to cut

down on repetition.

headers = datapoint_table.c.sensor_name, datapoint_table.c.data

value_counts = (

 db_session.query(*headers, sqlalchemy.func.count(datapoint_table.c.id))

 .filter(

 sqlalchemy.cast(datapoint_table.c.collected_at, DATE)

 == sqlalchemy.func.current_date()

)

 .group_by(*headers)

)

9 This can be tricky if your query involves lots of parameters. There is a function in the sqlalchemy-
utils package called analyze that will perform the analysis, but it also parses the results rather
than displaying the standard format. The following (rather complex) one-liner, when placed in
your.pdbrc file, will let you run EXPLAIN ANALYZE queries from a pdb prompt:

alias explain_analyze !_compiled=(%1).selectable.compile();_rows=(%2).
execute("EXPLAIN ANALYZE "+ str(_compiled), params=_compiled.params);
print("\n".join(str(_row[0]) for _row in _rows)) and used as follows:

(Pdb) explain_analyze example_query db_session
GroupAggregate (cost=25.61..25.63 rows=1 width=72) (actual time=0.022..0.022
rows=0 loops=1)
 Group Key: sensor_name, data
 -> Sort (cost=25.61..25.62 rows=1 width=68) (actual time=0.022..0.022 rows=0 loops=1)
 Sort Key: data
 Sort Method: quicksort Memory: 25kB
 -> Seq Scan on sensor_values (cost=0.00..25.60 rows=1 width=68)

(actual time=0.018..0.018 rows=0 loops=1)
 Filter: (((sensor_name)::text = 'ACStatus'::text) AND

((collected_at)::date = CURRENT_DATE))
Planning Time: 1.867 ms
Execution Time: 0.063 ms

I’ve included this in the project .pdbrc starting from this chapter, so it will be available to you if you’re
following along with the accompanying code.

ChAPter 8 AdvAnCed AsynCio

381

This leaves the filter section as the bottleneck, both for speed and for readability.

The next step I’d propose is adding some indexes to the underlying table, on the

collected_at and sensor_name fields. We do this by adding index=True to the fields

on the table and generating a new alembic revision, as shown in the following:

datapoint_table = Table(

 "datapoints",

 metadata,

 sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True),

 sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True),

 sqlalchemy.Column("collected_at", TIMESTAMP, index=True),

 sqlalchemy.Column("data", JSONB),

)

> pipenv run alembic revision --autogenerate -m "Add indexes to datapoints"

> pipenv run alembic upgrade head

Unfortunately, this isn’t enough to make a difference to our execution plan, as we’re

manipulating the collected_at column as part of the comparison. This invalidates the

index, as the results of the CAST() function are not one of the operations that can be

cached by the index. It is possible to create a function in your database that returns the

date for a given timestamp and to index on the result of that function, but that approach

wouldn’t make our code any easier to read.

Instead, I would recommend factoring this condition out into an attribute of the class

using @hybrid_property. We could replicate the same condition, but this would only

make the code easier to read, not more efficient to execute. An advantage of factoring

this condition out is that the balance between readability and efficiency changes: we can

afford to have a more efficient but less readable condition if it’s hidden behind a utility

function with a useful name, rather than scattered throughout the codebase.

The @hybrid_property decorator works similarly to the standard @property decorator,

except that it has optional expression=, update_expression=, and comparator= attributes.

An expression is a class method that returns a selectable (i.e., something that represents

a value to SQLAlchemy), such as CAST(datapoint_table.c.collected_at, DATE).

An update_expression is a class method that takes a value and returns a list of 2-tuples

of columns and new values for them, acting as the inverse of expression to allow for

updating the column. These two allow for facades to columns that act the same way as

ChAPter 8 AdvAnCed AsynCio

382

native columns. Hybrid properties are often used for things like full name, to concatenate

first and last names.10 It’s common for only the expression to be implemented, without an

update_expression. In this case, the property is read-only.

The comparator property is a bit different: it can’t be used in combination with

either the expression or update_expression features, but it allows for more complex

cases to be implemented, where both halves of the comparison operator can be

customized before being sent to the database. A common use of this is for lowercasing

email addresses or usernames, to try and make them case insensitive.11

The reason that comparators and expressions are not compatible is that the

expression feature is implemented by using a default comparator called the

ExprComparator, so we can’t provide our own comparator without it overriding the

code that handles expression. As we want to use both features, we can subclass the

ExprComparator to use the ability it has to delegate to the expression but also override

the implementation of the comparator functions.

We can create a @hybrid_property that casts the datetime to a date but also uses a

custom comparator to take advantage of some database-specific optimizations. Postgres

treats dates as being equivalent to a datetime where the time component is midnight.

Rather than ensuring that both sides of the comparison are dates, we can ensure that

the right-hand side is midnight or later on the date specified and before midnight

on the following day. We can achieve this by ensuring that the right-hand side of the

comparison is a date and adding 1 to it to find the following day. This allows us to make

two comparisons using the index to achieve the same result as one comparison that

doesn’t use the index. The updated DataPoint implementation is given in Listing 8-10.

10 This is commonly used, but please don’t do it. Not everyone has both first and last names;
there’s no universal way of splitting a full name into constituent names, and there’s no way
to join constituent names into a full name. See also “Falsehoods Programmers Believe
About Names” (and the related articles, … time, … addresses, … maps, … gender, etc.). It is as
incumbent on us as engineers to point out these flaws as it was for us to point out the flaws with
two digit dates in the 1990s.

11 These comparators will only work when being queried from SQLAlchemy; they do not
change the behavior of unique constraints in the database. You will need to ensure that these
constraints are correct too, such as by specifying them as

Index("unique_username_idx", func.lower(user_table.c.username), unique=True)

ChAPter 8 AdvAnCed AsynCio

383

Listing 8-10. DataPoint table and model, with transparent optimized

comparator for dates

from __future__ import annotations

from dataclasses import dataclass, field, asdict

import datetime

import typing as t

import sqlalchemy

from sqlalchemy.dialects.postgresql import JSONB, DATE, TIMESTAMP

from sqlalchemy.ext.hybrid import ExprComparator, hybrid_property

from sqlalchemy.orm import sessionmaker

from sqlalchemy.schema import Table

metadata = sqlalchemy.MetaData()

datapoint_table = Table(

 "sensor_values",

 metadata,

 sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True),

 sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True),

 sqlalchemy.Column("collected_at", TIMESTAMP, index=True),

 sqlalchemy.Column("data", JSONB),

)

class DateEqualComparator(ExprComparator):

 def __init__(self, fallback_expression, raw_expression):

 # Do not try and find update expression from parent

 super().__init__(None, fallback_expression, None)

 self.raw_expression = raw_expression

 def __eq__(self, other):

 """ Returns True iff on the same day as other """

 other_date = sqlalchemy.cast(other, DATE)

 return sqlalchemy.and_(

 self.raw_expression >= other_date,

 self.raw_expression < other_date + 1,

)

ChAPter 8 AdvAnCed AsynCio

384

 def operate(self, op, *other, **kwargs):

 other = [sqlalchemy.cast(date, DATE) for date in other]

 return op(self.expression, *other, **kwargs)

 def reverse_operate(self, op, other, **kwargs):

 other = [sqlalchemy.cast(date, DATE) for date in other]

 return op(other, self.expression, **kwargs)

@dataclass

class DataPoint:

 sensor_name: str

 data: t.Dict[str, t.Any]

 id: t.Optional[int] = None

 collected_at: datetime.datetime = field(

default_factory=datetime.datetime.now)

 @classmethod

 def from_sql_result(cls, result) -> DataPoint:

 return cls(**result._asdict())

 def _asdict(self) -> t.Dict[str, t.Any]:

 data = asdict(self)

 if data["id"] is None:

 del data["id"]

 return data

 @hybrid_property

 def collected_on_date(self):

 return self.collected_at.date()

 @collected_on_date.comparator

 def collected_on_date(cls):

 return DateEqualComparator(

 cls,

 sqlalchemy.cast(datapoint_table.c.collected_at, DATE),

 datapoint_table.c.collected_at,

)

ChAPter 8 AdvAnCed AsynCio

385

The ExprComparator type takes three arguments to its constructor, the model

class, the expression, and the hybrid property that it’s part of. The class= and

hybrid_property= arguments in __init__(...) are used to implement the update

behavior, but as we don’t need this feature, we’ll simplify the interface and pass None to

these parameters. The expression parameter is the one we want to use for queries and

for any comparisons (unless otherwise stated). In the __init__(...) function, we add

a new parameter for the underlying column so that we can access the raw data in our

custom comparison functions.

The operate(...) and reverse_operate(...) functions are what implement the

various comparisons. They allow for manipulation of parameters on both sides of the

comparison, which we need to ensure that the thing being compared to is CAST() to a

DATE in PostgreSQL. The __eq__(...) method is our custom equality checker, where

we implement a more efficient version of checking if both sides are the same date, as

described earlier.

The effect of all this is that we can seamlessly compare two datetime values and

get the correct result. Both sides are CAST() to DATE unless it’s an equality check (the

one we were trying to optimize), in which case only the argument is CAST() to a DATE,

allowing the column on the left-hand side to make use of indexes. The possible Python

expressions, the SQL or Python they’re translated into, and whether an index can be

used are shown in Table 8-4.

Table 8-4. Summary of effects of each operation on the hybrid property

Python expression Evaluation result Index used

DataPoint.collected_on_

date

CAST(sensor_values.

collected_at AS DATE)

no

DataPoint(...).collected_

on_date

datetime.date(2020, 4, 1) n/A(evaluated in Python)

DataPoint.collected_on_

date == other_date

sensor_values.collected_

at >= CAST(%(param_1)

s AS DATE) AND sensor_

values.collected_at <

CAST(%(param_1)s AS DATE) +

%(param_2)s

yes (collected_at only, not

the right- hand side)

(continued)

ChAPter 8 AdvAnCed AsynCio

386

With this collected_on_date expression and comparator, we can simplify the

query code significantly. Using this as the condition is much easier to understand when

reading the code, and we’ve made sure that efficient SQL is being generated that makes

use of the indexes.

headers = table.c.sensor_name, table.c.data

value_counts = (

 db_session.query(*headers, sqlalchemy.func.count(table.c.id))

 .filter(

 model.collected_on_date == sqlalchemy.func.current_date()

)

 .group_by(*headers)

)

DJANGO’S ORM (REDUX)

django’s orM handles this type of problem differently, but equivalent functionality does exist.

A brief explanation of how to approach this (for people already familiar with django) is given in

this subsection. Check the additional resources at the end of this chapter for more details.

django doesn’t have an equivalent to @hybrid_property or to storing arbitrary sQL

constructions in variables. Code is factored out into reusable components using lookups and

transforms.

Python expression Evaluation result Index used

DataPoint.collected_on_

date < other_date

CAST(sensor_values.

collected_at AS DATE) <

CAST(%(param_1)s AS DATE)

no

DataPoint(...).collected_

on_date == other_date

datetime.date(2020, 4, 1)

== other_date

n/A (evaluated in Python)

DataPoint(...).collected_

on_date < other_date

datetime.date(2020, 4, 1) <

other_date

n/A

(evaluated in Python)

Table 8-4. (continued)

ChAPter 8 AdvAnCed AsynCio

387

these are referenced in queries in a similar way to joins, so if the preceding code were a

django model, we would be able to filter by date collected using

DataPoints.objects.filter(collected_at__date=datetime.date.today())

this uses the built-in date transform on datetime fields, which casts the datetime to a date.

A transformer is defined with a lookup_name attribute to specify the name it’s available

as and an output_field attribute to specify the type it creates. it can have a function

attribute (if it maps directly to a single-argument database function), or it can define a custom

as_sql(...) method.

A lookup works similarly to a transformer, but it cannot be chained and therefore does not

have an output type. it provides a lookup_name attribute and an as_sql(...) method, to

generate the relevant sQL. these can also be accessed by __name, with the lookup named

exact being the default if no other is specified.

Both transformers and lookups need to be registered to be used. they can be registered

against a field type or against another transformer. if they’re registered on a field, they’ll

always be available on any expression that has that type, but if they’re registered against a

transformer, they’ll only be valid if they immediately follow the transformer.We can build a

custom equality check by defining a custom exact lookup on the TruncDate transformer

used in collected_at__date, as shown in Listing 8-11. this would apply whenever we use

datetimefield__date, but not when using native date columns.

Listing 8-11. Implementation of a date comparison in Django’s ORM

from django.db import models

from django.db.models.functions.datetime import TruncDate

@TruncDate.register_lookup

class DateExact(models.Lookup):

 lookup_name = 'exact'

 def as_sql(self, compiler, connection):

 # self.lhs (left-hand-side of the comparison) is always TruncDate, we

want its argument

 underlying_dt = self.lhs.lhs

 # Instead, we want to wrap the rhs with TruncDate

 other_date = TruncDate(self.rhs)

 # Compile both sides

ChAPter 8 AdvAnCed AsynCio

388

 lhs, lhs_params = compiler.compile(underlying_dt)

 rhs, rhs_params = compiler.compile(other_date)

 params = lhs_params + rhs_params + lhs_params + rhs_params

 # Return ((lhs >= rhs) AND (lhs < rhs+1)) - compatible with

postgresql only!

 return '%s >= %s AND %s < (%s + 1)' % (lhs, rhs, lhs, rhs), params

As with the sQLAlchemy version, this allows for an efficient, custom lookup when using

collected_at__date=datetime.date.today(), but falls back to the less efficient

cast behavior for collected_at__date__le==datetime.date.today() and other

comparisons.

 Querying against views

It’s possible that a query that is difficult to represent with the ORM is needed in many

places throughout the codebase. This is slightly more common when using the Django

ORM due to how joins are specified, but it does happen when using SQLAlchemy. A

typical example is when correlating multiple rows within a table, especially by date or

geographical location, rather than a relation to a row in another table. For example, a

database that stores users and travel plans and wants to query what pairs of users are

near to each other on a given date is hard to represent in an ORM.

In such cases, you may find it easier to create database views and make your queries

against them. It won’t change the performance characteristics,12 but does allow for the

complex queries to be treated like a table, significantly simplifying the Python side of the

equation.

SQLAlchemy supports tables derived from views, so we could use the query we

created earlier and transform it into a view, and then map that back into SQLAlchemy as

a table. We could create the view manually in the database console, but I’d recommend

creating a new alembic revision to issue the CREATE VIEW statement, so that it can

be deployed across instances more easily. Create the alembic revision without the

--autogenerate flag, and modify the resulting file, as shown in Listing 8-12.

12 Unless postgresql’s MATERIALIZED VIEW feature, which caches its results until explicitly
refreshed.

ChAPter 8 AdvAnCed AsynCio

389

Listing 8-12. New migration to add a view with raw SQL

"""Add daily summary view

Revision ID: 6962f8455a6d

Revises: 4b2df8a6e1ce

Create Date: 2019-12-03 11:50:24.403402

"""

from alembic import op

revision identifiers, used by Alembic.

revision = "6962f8455a6d"

down_revision = "4b2df8a6e1ce"

branch_labels = None

depends_on = None

def upgrade():

 create_view = """

 CREATE VIEW daily_summary AS

 SELECT

 datapoints.sensor_name AS sensor_name,

 datapoints.data AS data,

 count(datapoints.id) AS count

 FROM datapoints

 WHERE

 datapoints.collected_at >= CAST(CURRENT_DATE AS DATE)

 AND

 datapoints.collected_at < CAST(CURRENT_DATE AS DATE) + 1

 GROUP BY

 datapoints.sensor_name,

 datapoints.data;

 """

 op.execute(create_view)

def downgrade():

 op.execute("""DROP VIEW daily_summary""")

ChAPter 8 AdvAnCed AsynCio

390

We can now create a table object to reference this view, allowing us to generate

queries in SQLAlchemy:

daily_summary_view = Table(

 "daily_summary",

 metadata,

 sqlalchemy.Column("sensor_name", sqlalchemy.String),

 sqlalchemy.Column("data", JSONB),

 sqlalchemy.Column("count", sqlalchemy.Integer),

 info={"is_view": True},

)

The info line allows us to set arbitrary metadata. In this case, the is_view metadata

is used in the env.py file to configure alembic to ignore tables with this marker when

autogenerating revisions. Without this, alembic would try to create matching tables

which would conflict with our views. The env.py file needs to be modified to include the

function given in Listing 8-13, and the two context.configure(...) function calls must

have include_object=include_object added to the arguments.

Listing 8-13. Changes to env.py to enable Table objects to represent views

from logging.config import fileConfig

from sqlalchemy import engine_from_config

from sqlalchemy import pool

from alembic import context

from apd.aggregation.database import metadata as target_metadata

def include_object(object, name, type_, reflected, compare_to):

 if object.info.get("is_view", False):

 return False

 return True

def run_migrations_online():

 connectable = engine_from_config(

 config.get_section(config.config_ini_section),

ChAPter 8 AdvAnCed AsynCio

391

 prefix="sqlalchemy.",

 poolclass=pool.NullPool,

)

 with connectable.connect() as connection:

 context.configure(

 connection=connection,

 target_metadata=target_metadata,

 include_object=include_object,

)

 with context.begin_transaction():

 context.run_migrations()

With the preceding changes, it’s possible to simplify the summary SQL statement

down to db_session.query(daily_summary_view) while executing the same SQL

statements. This change to using views should be carefully considered each time you

use it. It’s usually not clearer to use a view over a SQL statement, but it’s an underused

technique that I recommend you bear in mind for the more complex queries.

 Alternatives
The partial use of SQLAlchemy is what I would recommend for interacting with

SQL databases in an asynchronous context, but it’s far from perfect. There are some

alternative approaches that may be appropriate depending on your use case.

There are some async-native ORMs being developed, such as Tortoise ORM. It is built

to support asyncio from its foundations, so it does not suffer from the same potential

blocking problems that SQLAlchemy suffers from. It is currently a young project, so

while it’s an interesting approach that I will be keeping my eye on, I cannot recommend

it for production code at this time.

Another approach is to drop down to a lower level of database integration using

a tool like asyncpg. This allows for fully asynchronous interaction with the database,

without resorting to off-loading work to threads. The downside is that there is no built-

in SQL generator, so it’s significantly less user-friendly, and you are more likely to make

mistakes. Some simple applications that need particularly fast database connections do

use this approach, but it’s not one that I’d recommend in the general case.

ChAPter 8 AdvAnCed AsynCio

392

Finally, there is the pragmatic approach to the risk of SQLAlchemy causing blocking

queries that I alluded to earlier in this chapter. Sometimes, the best solution is to

accept the risk, because the benefits of using SQLAlchemy more naturally outweigh

the consequences of performance losses. This would be absolutely unacceptable in a

server-side application, where blocking and slowdown can cause severe degradation

of performance for clients, but in a client application where asyncio is being used to

improve performance of code that would otherwise be single-threaded, there’s very little

downside to just using SQLAlchemy with a best-effort approach to running blocking

code in executors.

 Global variables in asynchronous code
Especially in web development, it’s common to find yourself in a situation where you

always need access to a particular object, meaning that all of your functions need to

take this object as a parameter. This is often the request object, which represents the

HTTP request that the server is currently handling. It’s also common for there to be a

configuration object, and in our asynchronous code, we’ve found ourselves adding a

ClientSession object to many of our function signatures, rather than instantiating a new

one for every HTTP request.

All these are examples of places where the idea of global variables is appealing.

Django and Flask both provide a globally scoped way of accessing the configuration

(django.settings and flask.current_app.config), and Flask additionally provides the

request through flask.request.

You often hear people criticize code that uses global variables, saying that it’s

evidence that your application hasn’t been designed properly. I take a more pragmatic

view: objects that are potentially needed by almost every function shouldn’t exist, but

sometimes they do. They should, therefore, be available globally, to prevent them from

polluting the function signatures of the entire system.

Let’s make our ClientSession object one of these globally available items using

Python’s contextvars feature. Context variables are an evolution of the idea of thread-

local variables: variables that are globally scoped but can have different values for

different simultaneous code. A thread-local variable, created through threading.

Local(), allows arbitrary data to be stored and retrieved through attribute access, but

only within one thread. Any other simultaneous threads will not see the data stored by

the other threads; each thread can have its value for that variable.

ChAPter 8 AdvAnCed AsynCio

393

Our code is not threaded; it uses asynchronous function calls to introduce

concurrency, so a thread-local variable would always show the same data to all concurrent

tasks. This is where context variables are useful; they provide the same scoping of values

with arbitrary scopes, rather than limiting the scope to always being the current thread.

Context variables are defined with the contextvars.ContextVar(...) constructor

which takes the name of the variable as an argument.

from contextvars import ContextVar

import aiohttp

http_session_var: ContextVar[aiohttp.ClientSession] = ContextVar("http_session")

The ContextVar object doesn’t store the value directly; it silently delegates to a

context object. You can manually instantiate context objects and execute a function

using that context, but there is no need to do this with asynchronous code.13 Whenever a

coroutine is scheduled as a task, a new context is allocated, with values copied from the

parent task’s context.

Values can be set for a ContextVar using the set(...) method and retrieved with

the get() method. If a piece of code tries to call get() on a context variable that has not

been set in the current context, a LookupError is raised. The necessary modifications are

shown as Table 8-5.

Table 8-5. Changes to get_data_points(...) so the HTTP client is passed as a

context variable rather than a parameter

http = http_session_var.get()

to_get = http.get(url,

headers=headers)

async with to_get as request:

 result = await request.json()

 ok = request.status == 200

async with aiohttp.ClientSession() as http:

 http_session_var.set(http)

 tasks = [

 get_data_points(server, api_key)

 for server in servers

]

13 For synchronous code, a new context can be created and a function invoked that uses that
context with

context = contextvars.copy_context()
context.run(your_callable)

ChAPter 8 AdvAnCed AsynCio

394

It’s also possible to temporarily override the value for a context variable, using the

return value of set(...). This isn’t usually necessary, but if you do need to change a

variable within a coroutine and then change it back again, then this is the preferred pattern:

reset_token = http_session_var.set(mockclient)

try:

 datapoints = await get_data_points("http://localhost", "")

finally:

 http_session_var.reset(reset_token)

EXERCISE 8-1: EXTENDING THE API

this chapter has introduced a lot of new concepts and involves some complex test setup. this

code is complex, but we need to be confident in updating it when a new version is released.

right now, we don’t have any identifier for a sensor beyond its UrL, and that can change

over time as iP addresses are reallocated. We should create a way for a sensor endpoint to

be identified, so we can more easily find data from a single sensor. Add a new v2.1 APi to the

apd.sensors package that provides a new endpoint. this endpoint should be

@version.route("/deployment_id")

def deployment_id() -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]:

 headers = {"Content-Security-Policy": "default-src 'none'"}

 data = {"deployment_id":

flask.current_app.config["APD_SENSORS_DEPLOYMENT_ID"]}

 return data, 200, headers

you will need to modify many parts of the test setup to accommodate this change, including

the fixture code for previous APis. remember, the intention isn’t for the test code of old APis to

never change, just the user-facing APi itself.

once you’ve done this, update the apd.aggregation package to store deployment_id as an

attribute of DataPoint, and use the v2.1 APi to retrieve the deployment id from the endpoint.

this is a significant change, equivalent to a major version bump for the apd.sensors package,

and perhaps the most difficult exercise in this book. it is, however, the kind of change that you

will have to make in real code sooner or later, so it’s good to practice.

the completed versions of both of these changes are in the code that accompanies this chapter.

ChAPter 8 AdvAnCed AsynCio

395

 Summary
We’ve covered a lot of the practicalities of running asynchronous code in this chapter,

especially some of the difficulties you may encounter when working with databases

in an asynchronous context. The most important thing to remember, whether dealing

with SQLAlchemy, the Django ORM, or connections to another database type that

uses synchronous code, is that the run_in_executor pattern is necessary to avoid

blocking behavior drastically reducing performance. There is a balance that needs to

be drawn between the performance benefits and the code readability benefits, though.

This is perhaps the most crucial balance that you should keep in mind when writing

asynchronous code.

We also covered many techniques that are generally useful when writing Python

code, asynchronous or otherwise. Custom data classes and context managers using

contextlib are extremely useful pieces of functionality, which you will have use for

in lots of different contexts. Context variables and efficient ORM queries are both very

useful, but to a lesser degree.

The apd.aggregation package has grown a lot over the course of this chapter, to the

point that it’s of sufficient quality to be usable in production. In the next chapter, we’ll

look at analyzing the data and building useful user interfaces to display reports.

 Additional resources
I recommend the following resources for more information on the topics covered in this

chapter:

For information on implementing custom SQL behavior in

Django’s ORM, see https://docs.djangoproject.com/en/3.0/

ref/models/expressions/.

The full SQLAlchemy documentation on hybrid attributes,

including information on some less commonly used features, is at

https://docs.sqlalchemy.org/en/14/orm/extensions/hybrid.

html.

ChAPter 8 AdvAnCed AsynCio

https://docs.djangoproject.com/en/3.0/ref/models/expressions/
https://docs.djangoproject.com/en/3.0/ref/models/expressions/
https://docs.sqlalchemy.org/en/14/orm/extensions/hybrid.html
https://docs.sqlalchemy.org/en/14/orm/extensions/hybrid.html

396

Django’s documentation on mixing synchronous and

asynchronous code is at https://docs.djangoproject.com/

en/3.0/topics/async/ which includes information on database

operations and helper functions for bridging the gap between

synchronous and asynchronous code in Django apps.

The web app at https://explain.depesz.com/ is a useful tool

to help understand the result of PostgreSQL EXPLAIN ANALYZE

statements, by reformatting them as a table and color-coding

timing information.

https://github.com/getsentry/responses is a useful library for

creating mock HTTP responses when using the requests HTTP

library.

ChAPter 8 AdvAnCed AsynCio

https://docs.djangoproject.com/en/3.0/topics/async/
https://docs.djangoproject.com/en/3.0/topics/async/
https://explain.depesz.com/
https://github.com/getsentry/responses

397
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_9

CHAPTER 9

Viewing the data
We started investigating the types of queries we might be interested in at the end of the

previous chapter, but we’ve not yet written any routines to help us make sense of the

data we’re collecting. In this chapter, we return to Jupyter notebooks, this time as a data

analysis tool rather than a prototyping aid.

IPython and Jupyter seamlessly support both synchronous and asynchronous

function calls. We have a (mostly) free choice between the two types of API. As the rest of

the apd.aggregation package is asynchronous, I recommend that we create some utility

coroutines to extract and analyze data.

 Query functions
A Jupyter notebook would be able to import and use SQLAlchemy functions freely,

but that would require users to understand a lot about the internals of the aggregation

system’s data structures. It would effectively mean that the tables and models that

we’ve created become part of the public API, and any changes to them may mean

incrementing the major version number and documenting changes for end-users.

Instead, let’s create some functions that return DataPoint records for users to

interact with. This way, only the DataPoint objects and the function signatures are part

of the API that we must maintain for people. We can always add more functions later, as

we discover additional requirements.

To begin with, the most important feature that we need is the ability to find data

records, ordered by the time they were collected. This lets users write some analysis

code to analyze the values of the sensors over time. We may also want to filter this by the

sensor type, the deployment identifier, and a date range.

We have to decide what form we want the function to have. Should it return a list or

tuple of objects or an iterator? A tuple would allow us to easily count the number of items

we retrieved and to iterate over the list multiple times. On the other hand, an iterator

https://doi.org/10.1007/978-1-4842-5793-7_9#DOI

398

would allow us to minimize RAM use, which may help us support much larger data

sets, but restricts us to only being able to iterate over the data once. We’ll create iterator

functions, as they allow for more efficient code. The iterators can be converted to tuples

by the calling code, so our users are able to choose to iterate over a tuple if they prefer.

Before we can write this function, we need a way for users to set up a database

connection. As one of our aims is to hide the details of the database from our end-users,

we don’t want to require using a SQLAlchemy function for this. The custom function we

create (Listing 9-1) for connecting to the database can also set up context variables to

represent our connection and avoid the need for an explicit session argument to all of

our search functions.

Listing 9-1. query.py with a context manager to connect to the database

import contextlib

from contextvars import ContextVar

import functools

import typing as t

from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker

from sqlalchemy.orm.session import Session

db_session_var: ContextVar[Session] = ContextVar("db_session")

@contextlib.contextmanager

def with_database(uri: t.Optional[str] = None) -> t.Iterator[Session]:

 """Given a URI, set up a DB connection, and return a Session as a

context manager """

 if uri is None:

 uri = "postgresql+psycopg2://localhost/apd"

 engine = create_engine(uri)

 sm = sessionmaker(engine)

 Session = sm()

 token = db_session_var.set(Session)

 try:

 yield Session

 Session.commit()

Chapter 9 Viewing the data

399

 finally:

 db_session_var.reset(token)

 Session.close()

This function acts as a (synchronous) context manager, setting up a database

connection and an associated session and both returning that session and setting it

as the value of the db_session_var context variable before entering the body of the

associated with block. It also unsets this session, commits any changes, and closes the

session when the context manager exits. This ensures that there are no lingering locks

in the database, that data is persisted, and that if functions that use the db_session_var

variable can only be used inside the body of this context manager.

If we ensure that the environment that we’ve installed the aggregation package

into is registered as a kernel with Jupyter, we can start to experiment with writing utility

functions in a notebook. I’d also recommend installing some helper packages so we can

more easily visualize the results.

> pipenv install ipython matplotlib

> pipenv run ipython kernel install --user --name="apd.aggregation"

We can now start a new Jupyter notebook (Listing 9-2), select the apd.aggregation

kernel and connect to the database, using the new with_database(...) decorator. To

test the connection, we can manually query the database using the resulting session and

our datapoint_table object.

Listing 9-2. Jupyter cell to find number of sensor records

from apd.aggregation.query import with_database

from apd.aggregation.database import datapoint_table

with with_database("postgresql+psycopg2://apd@localhost/apd") as session:

 print(session.query(datapoint_table).count())

We also need to write the function that returns DataPoint objects for the user to

analyze. Eventually, we’ll have to deal with performance issues due to processing large

amounts of data, but the first code you write to solve a problem should not be optimized,

a naïve implementation is both easier to understand and more likely not to suffer from

being too clever. We’ll look at some techniques for optimization in the next chapter.

Chapter 9 Viewing the data

400

PREMATURE OPTIMIZATION

debugging is twice as hard as writing the code in the first place. therefore, if you write the

code as cleverly as possible, you are, by definition, not smart enough to debug it.

—Brian Kernighan

python is not the fastest programming language; it can be tempting to write your code to

minimize the inherent slowness, but i would strongly recommend fighting this urge. i’ve seen

“highly optimized” code that takes an hour to execute, which, when replaced with a naïve

implementation of the same logic, takes two minutes to complete.

it isn’t common, but when you make your code more elaborate, you’re making your job harder

when it comes to improving it.

if you write the simplest version of a method, you can compare it to subsequent versions to

determine if you’re making code faster or just more complex.

The first version of get_data() that we’ll implement is one that returns all the

DataPoint objects in the database, without having to worry about dealing with any

SQLAlchemy objects. We already decided that we would create a generator coroutine,

rather than a function (or coroutine) that returns a list of DataPoint objects, so our initial

implementation is the one in Listing 9-3.

Listing 9-3. Simplest implementation of get_data()

async def get_data() -> t.AsyncIterator[DataPoint]:

 db_session = db_session_var.get()

 loop = asyncio.get_running_loop()

 query = db_session.query(datapoint_table)

 rows = await loop.run_in_executor(None, query.all)

 for row in rows:

 yield DataPoint.from_sql_result(row)

Chapter 9 Viewing the data

401

This function gets the session from the context variable set up by with_database(...),

builds a query object, and then runs that object’s all method using an executor, giving

way to other tasks while the all method runs. Iterating over the query object rather than

calling query.all() would cause database operations to be triggered as the loop runs, so

we must be careful to only set up the query in asynchronous code and delegate the all()

function call to the executor. The result of this is a list of SQLAlchemy’s lightweight result

named tuples in the rows variable, which we can then iterate over yielding the matching

DataPoint object.

As rows variable contains a list of all the result objects, we know that all the data

has been processed by the database and parsed SQLAlchemy in the executor before

execution passes back to our get_data() function. This means that we’re using all the

RAM needed to store the full results set before the first DataPoint object is available to

the end-user. Storing all this data when we don’t know that we need all of it is a little

memory and time inefficient, but elaborate methods to paginate the data in the iterator

would be an example of premature optimization. Don’t change this from the naïve

approach until it becomes a problem.

We always have to deal with the memory and time overheads of retrieving the

SQLAlchemy row objects, but the numbers in Table 9-1 give us an idea of how much

overhead we are adding to the system by converting them to DataPoint classes. A million

rows would involve an extra 152 megabytes of RAM and an additional 1.5 seconds of

processing time. Both of these are well within the capacity of modern computers and

appropriate for infrequent tasks, so they are not of immediate concern.

Chapter 9 Viewing the data

402

However, because we’re creating an iterator, there is no guarantee that our

DataPoint objects will all be resident in memory at once. If the consuming code does not

keep a reference to them, then they can be garbage collected immediately after they’re

used. For example, in Listing 9-4 we use our two new helper functions to count the rows

without any data point objects being resident in memory.

Listing 9-4. Jupyter cell to count data points using our helper context manager

from apd.aggregation.query import with_database, get_data

with with_database("postgresql+psycopg2://apd@localhost/apd") as session:

 count = 0

 async for datapoint in get_data():

 count += 1

 print(count)

Table 9-1. Comparison of RAM usage and instantiation time for the

SQLAlchemy row and our DataPoint class

Object Size1 Time to instantiate2

SQLalchemy result row 80 bytes 0.4 microseconds

datapoint 152 bytes 1.5 microseconds

*Results may vary between Python implementations and processing power available

1 Size is calculated using sys.getsizeof(...). This does not include the size of attributes on an
object, which can be found with sys.getsizeof(obj.__dict__) for simple objects.

2 Estimated using timeit.timeit(...), as follows:

setup = """
import datetime
import uuid
from sqlalchemy.util._collections import lightweight_named_tuple
 result = lightweight_named_tuple("result", ["id", "collected_at", "sensor_name",
"deployment_id", "data",])
data = (1, datetime.datetime.now(), "Example", uuid.uuid4(), None)
"""
timeit.timeit("result(data)", setup)

Chapter 9 Viewing the data

403

Merely counting the data points isn’t an interesting way of analyzing the data. We

can start trying to make sense of the data by plotting values on a scatter plots. Let’s start

with a simple sanity check, plotting the value of the RelativeHumidity sensor against

date (Listing 9-5). This is a good one to start with, as the stored data is a floating-point

number rather than a dictionary-based structure, so we don’t need to parse the values.

The matplotlib library is perhaps the most popular plotting library in Python. Its

plot_date(...) function is a great fit for plotting a series of values against time. It takes

a list of values for the x axis and a corresponding list of values for the y axis, as well

as the style to be used when plotting a point3 and a flag to set which axis contains the

date values. Our get_data(...) function doesn’t return what we need for the x and y

parameters directly, it returns an async iterator of data point objects.

We can convert an async iterable of data point objects to a list of tuples containing

date and value pairs from a single sensor using a list comprehension. At that point, we

have a list of date and value pairs and can use the built-in zip(...)4 function to invert

the grouping to a pair of lists, one for date and the other for value.

Listing 9-5. Relative humidity plotting jupyter cell, with the output chart it

generates

from apd.aggregation.query import with_database, get_data

from matplotlib import pyplot as plt

async def plot():

 points = [

 (dp.collected_at, dp.data)

 async for dp in get_data()

3 The “o” style specifies a circular marker and no line. The string can contain a marker type, a line
style, and a color. *r would plot red stars, - is a line in the default color with no markers, s--m is
magenta squares connected by a dashed line, etc. The additional resource list in this chapter
contains a link to the full specification.

4 zip(*iterables) flips the way that an iterable of iterables is split up. I find it easiest to imagine
this as equivalent to rotating a spreadsheet. If your input iterables are ["Matt", "Leeds"],
["Jesse", "Seattle"], and ["Nejc", "Ljubljana"], you can imagine that as being equivalent
to a spreadsheet where the names are in column A and the cities in column B. In that case,
Matt is row 1, Jesse is row 2, and Nejc is row 3. tuple(zip(*names_and_cities)) reads out
the columns in order, so it would be (('Matt', 'Jesse', 'Nejc'), ('Leeds', 'Seattle',
'Ljubljana')).

Chapter 9 Viewing the data

404

 if dp.sensor_name=="RelativeHumidity"

]

 x, y = zip(*points)

 plt.plot_date(x, y, "o", xdate=True)

with with_database("postgresql+psycopg2://apd@localhost/apd") as session:

 await plot()

plt.show()

 Filtering data
It would be nice to filter the data in the query stage, rather than just discarding all sensor

data that doesn’t meet our criteria when we are iterating through them. Right now, every

piece of data is selected, a result object is created, then a DataPoint object, and only

then are irrelevant entries skipped. To this end, we can add an additional parameter to

the get_data(...) method that determines if a filter on sensor_data will be applied to

the generated query.

async def get_data(sensor_name: t.Optional[str] = None) ->

t.AsyncIterator[DataPoint]:

 db_session = db_session_var.get()

 loop = asyncio.get_running_loop()

 query = db_session.query(datapoint_table)

 if sensor_name:

 query = query.filter(datapoint_table.c.sensor_name == sensor_name)

 query = query.order_by(datapoint_table.c.collected_at)

Chapter 9 Viewing the data

405

This approach saves a lot of overhead, as it means that only the relevant sensor data

points are passed to the end-user, but also it’s a more natural interface. Users expect to

be able to specify what data they want, not to get absolutely all data and manually filter

it. The version of the function in Listing 9-6 takes less than one second to execute with

my sample data set (compared to over 3 seconds for the previous version) but shows the

same chart.

Listing 9-6. Delegating filtering to the get_data function

from apd.aggregation.query import with_database, get_data

from matplotlib import pyplot as plt

async def plot():

 points = [(dp.collected_at, dp.data) async for dp in

get_data(sensor_name="RelativeHumidity")]

 x, y = zip(*points)

 plt.plot_date(x, y, "o", xdate=True)

with with_database("postgresql+psycopg2://apd@localhost/apd") as session:

 await plot()

plt.show()

This plotting function is short and not overly complex; it represents quite a natural

interface for loading data from the database. The downside is that having multiple

deployments mixed in together results in unclear charts, where there are multiple data

points for a given time. Matplotlib supports calling plot_date(...) multiple times with

different logical result sets, which are then displayed using different colors. Our users

can achieve this by creating multiple point lists as they iterate over the results of the

get_data(...) call, as shown in Listing 9-7.

Listing 9-7. Plotting all sensor deployments independently

import collections

from apd.aggregation.query import with_database, get_data

from matplotlib import pyplot as plt

async def plot():

Chapter 9 Viewing the data

406

 legends = collections.defaultdict(list)

 async for dp in get_data(sensor_name="RelativeHumidity"):

 legends[dp.deployment_id].append((dp.collected_at, dp.data))

 for deployment_id, points in legends.items():

 x, y = zip(*points)

 plt.plot_date(x, y, "o", xdate=True)

with with_database("postgresql+psycopg2://apd@localhost/apd") as session:

 await plot()

plt.show()

This one again makes the interface unnatural; it would be more logical for end-users

to iterate over deployments and then iterate over sensor data values, rather than iterate

over all data points and organize them into lists manually. An alternative would be to

create a new function that lists all the deployment ids, then allow get_data(...) to filter

by deployment_id. This would allow us to loop over the individual deployments and

make a new get_data(...) call to get only that deployment’s data. This is demonstrated

in Listing 9-8.

Listing 9-8. Extended data collection functions for deployment_id filtering

async def get_deployment_ids():

 db_session = db_session_var.get()

 loop = asyncio.get_running_loop()

Chapter 9 Viewing the data

407

 query = db_session.query(datapoint_table.c.deployment_id).distinct()

 return [row.deployment_id for row in await loop.run_in_executor(None,

query.all)]

async def get_data(

 sensor_name: t.Optional[str] = None,

 deployment_id: t.Optional[UUID] = None,

) -> t.AsyncIterator[DataPoint]:

 db_session = db_session_var.get()

 loop = asyncio.get_running_loop()

 query = db_session.query(datapoint_table)

 if sensor_name:

 query = query.filter(datapoint_table.c.sensor_name == sensor_name)

 if deployment_id:

 query = query.filter(datapoint_table.c.deployment_id == deployment_id)

 query = query.order_by(

 datapoint_table.c.collected_at,

)

This new function can be used to loop over multiple calls to get_data(...), rather

than the plot function looping and sorting the resulting data points into independent

lists. Listing 9-9 demonstrates a very natural interface to looping over all the

deployments for a single sensor, which behaves identically to the previous version.

Listing 9-9. Plotting all deploymens using the new helper functions

import collections

from apd.aggregation.query import with_database, get_data, get_deployment_ids

from matplotlib import pyplot as plt

async def plot(deployment_id):

 points = []

 async for dp in get_data(sensor_name="RelativeHumidity",

deployment_id=deployment_id):

 points.append((dp.collected_at, dp.data))

Chapter 9 Viewing the data

408

 x, y = zip(*points)

 plt.plot_date(x, y, "o", xdate=True)

with with_database("postgresql+psycopg2://apd@localhost/apd") as session:

 deployment_ids = await get_deployment_ids()

 for deployment in deployment_ids:

 await plot(deployment)

plt.show()

This approach allows the end-user to interrogate each deployment individually, so

only the relevant data for a combination of sensor and deployment is loaded into RAM at

once. It’s a perfectly appropriate API to offer the end-user.

 Multilevel iterators
We previously reworked the interface for filtering by sensor name to do the filtering in

the database to avoid iterating over unnecessary data. Our new deployment id filter isn’t

used to exclude data we don’t need, it’s used to make it easier to loop over each logical

group independently. We don’t need to use a filter here, we’re using one to make the

interface more natural.

If you’ve worked with the itertools module in the standard library much, you

may have used the groupby(...) function. This takes an iterator and a key function

and returns an iterator of iterators, the first being the value of the key function and the

second being a run of values that match the given result of the key function. This is the

same problem we’ve been trying to solve by listing our deployments and then filtering

the database query.

The key function given to groupby(...) is often a simple lambda expression, but

it can be any function, such as one of the functions from the operator module. For

example, operator.attrgetter("deployment_id") is equivalent to lambda obj:

obj.deployment_id, and operator.itemgetter(2) is equivalent to lambda obj: obj[2].

For this example, we’ll define a key function that returns the value of an integer

modulo 3 and a data() generator function that yields a fixed series of numbers,

printing its status as it goes. This allows us to see clearly when the underlying iterator is

advanced.

Chapter 9 Viewing the data

409

import itertools

import typing as t

def mod3(n: int) -> int:

 return n % 3

def data() -> t.Iterable[int]:

 for number in [0, 1, 4, 7, 2, 6, 9]:

 print(f"Yielding {number}")

 yield number

We can loop over the contents of the data() generator and print the value of the

mod3 function, which lets us see that the first group has one item, then there’s a group of

three items, then a group of one, then a group of two.

>>> print([mod3(number) for number in data()])

data() is starting

Yielding 0

Yielding 1

Yielding 4

Yielding 7

Yielding 2

Yielding 6

Yielding 9

data() is complete

[0, 1, 1, 1, 2, 0, 0]

Setting up a groupby does not consume the underlying iterable; each item it

generates is processed as the groupby is iterated over. To work correctly, the groupby

only needs to decide if the current item is in the same group as the previous one or if a

new group has started, it doesn’t analyze the iterable as a whole. Items with the same

value for the key function are only grouped together if they are a contiguous block in the

input iterator, so it’s common to ensure that the underlying iterator is sorted to avoid

splitting groups up.

By creating a groupby over our data with the mod3(...) key function, we can create

a two-level loop, first iterating over the values of the key function, then iterating over the

values from data() that produce that key value.

Chapter 9 Viewing the data

410

>>> for val, group in itertools.groupby(data(), mod3):

... print(f"Starting new group where mod3(x)=={val}")

... for number in group:

... print(f"x=={number} mod3(x)=={mod3(val)}")

... print(f"Group with mod3(x)=={val} is complete")

...

data() is starting

Yielding 0

Starting new group where mod3(x)==0

x==0 mod3(x)==0

Yielding 1

Group with mod3(x)==0 is complete

Starting new group where mod3(x)==1

x==1 mod3(x)==1

Yielding 4

x==4 mod3(x)==1

Yielding 7

x==7 mod3(x)==1

Yielding 2

Group with mod3(x)==1 is complete

Starting new group where mod3(x)==2

x==2 mod3(x)==2

Yielding 6

Group with mod3(x)==2 is complete

Starting new group where mod3(x)==0

x==6 mod3(x)==0

Yielding 9

x==9 mod3(x)==0

data() is complete

Group with mod3(x)==0 is complete

From the output of the print statements, we can see that the groupby only ever pulls

one item at a time, but manages the iterators it provides in such a way that looping over

the values is natural. Whenever the inner loop requests a new item, the groupby function

requests a new item from the underlying iterator and then decides its behavior based

Chapter 9 Viewing the data

411

on that value. If the key function reports the same value as the previous item, it yields

the new value to the inner loop; otherwise, it signals that the inner loop is complete and

holds the value until the next inner loop starts.

The iterators behave just as we’d expect if we had concrete lists of items; there is no

requirement to iterate over the inner loop if we don’t need to. If we don’t iterate over

the inner loop completely before advancing the outer loop, the groupby object will

transparently advance the source iterable as though we had. In the following example,

we skip the group of three where mod3(...)==1, and we can see that the underlying

iterator is advanced three times by the groupby object:

>>> for val, group in itertools.groupby(data(), mod3):

... print(f"Starting new group where mod3(x)=={val}")

... if val == 1:

... # Skip the ones

... print("Skipping group")

... continue

... for number in group:

... print(f"x=={number} mod3(x)=={mod3(val)}")

... print(f"Group with mod3(x)=={val} is complete")

...

data() is starting

Yielding 0

Starting new group where mod3(x)==0

x==0 mod3(x)==0

Yielding 1

Group with mod3(x)==0 is complete

Starting new group where mod3(x)==1

Skipping group

Yielding 4

Yielding 7

Yielding 2

Starting new group where mod3(x)==2

x==2 mod3(x)==2

Yielding 6

Group with mod3(x)==2 is complete

Starting new group where mod3(x)==0

Chapter 9 Viewing the data

412

x==6 mod3(x)==0

Yielding 9

x==9 mod3(x)==0

data() is complete

Group with mod3(x)==0 is complete

The behavior is intuitive when we’re using it, but it can be hard to follow how it’s

implemented. Figure 9-1 shows a pair of flow charts, one for the outer loop and one for

each individual inner loop.

Figure 9-1. Flow chart demonstrating how groupby works

If we had a standard iterator (as opposed to an asynchronous iterator), we could

sort the data by deployment_id and use itertools.groupby(...) to simplify our

code to handle multiple deployments without needing to query for the individual

deployments. Rather than making a new get_data(...) call for each, we could iterate

over the groups and handle the internal iterator in the same way we already do, using list

comprehensions and zip(...).

Chapter 9 Viewing the data

413

Unfortunately, there is no fully asynchronous equivalent of groupby at the time

of writing. While we can write a function that returns an async iterator whose values

are UUID and async iterator of DataPoint pairs, there is no way of grouping these

automatically.

At the risk of writing clever code, we can write an implementation of groupby that

works with asynchronous code ourselves using closures. It would expose multiple

iterators to the end-user that work on the same underlying iterator, in just the same way

as itertools.groupby(...). It would be better to use a library function for this if one

were available.

Each time we find a new value of the key function, we need to return a new generator

function that maintains a reference to the underlying source iterator. This way, when

someone advances an item iterator, it can choose to either yield the data point it receives

or to indicate that it’s the end of the item iterator, as the groupby function does. Equally,

if we advance the outer iterator before an item iterator has been consumed, it needs to

“fast-forward” through the underlying iterator until the start of a new group is found.

The code in Listing 9-10 is a single function that delegates to our get data function

and wraps it in the appropriate groupby logic, as opposed to a generic function that can

adapt any iterator.

Listing 9-10. An implementation of get_data_by_deployment that acts like an

asynchronous groupby

async def get_data_by_deployment(

 *args, **kwargs

) -> t.AsyncIterator[t.Tuple[UUID, t.AsyncIterator[DataPoint]]]:

 """Return an Async Iterator that contains two-item pairs.

 These pairs are a string (deployment_id), and an async iterator that

contains

 the datapoints with that deployment_id.

 Usage example:

 async for deployment_id, datapoints in get_data_by_deployment():

 print(deployment_id)

 async for datapoint in datapoints:

 print(datapoint)

 print()

Chapter 9 Viewing the data

414

 """

 # Get the data, using the arguments to this function as filters

 data = get_data(*args, **kwargs)

 # The two levels of iterator share the item variable, initialise it

with the first item from the iterator. Also set last_deployment_id

 # to None, so the outer iterator knows to start a new group.

 last_deployment_id: t.Optional[UUID] = None

 try:

 item = await data.__anext__()

 except StopAsyncIteration:

 # There were no items in the underlying query, return immediately

 return

 async def subiterator(group_id: UUID) -> t.AsyncIterator[DataPoint]:

 """Using a closure, create an iterator that yields the current

 item, then yields all items from data while the deployment_id matches

 group_id, leaving the first that doesn't match as item in the enclosing

 scope."""

 # item is from the enclosing scope

 nonlocal item

 while item.deployment_id == group_id:

 # yield items from data while they match the group_id this

iterator represents

 yield item

 try:

 # Advance the underlying iterator

 item = await data.__anext__()

 except StopAsyncIteration:

 # The underlying iterator came to an end, so end the

subiterator too

 return

Chapter 9 Viewing the data

415

 while True:

 while item.deployment_id == last_deployment_id:

 # We are trying to advance the outer iterator while the

 # underlying iterator is still part-way through a group.

Speed through the underlying until we hit an item where

 # the deployment_id is different to the last one (or,

 # is not None, in the case of the start of the iterator)

 try:

 item = await data.__anext__()

 except StopAsyncIteration:

 # We hit the end of the underlying iterator: end this

iterator too

 return

 last_deployment_id = item.deployment_id

 # Instantiate a subiterator for this group

 yield last_deployment_id, subiterator(last_deployment_id)

This uses await data.__anext__() to advance the underlying data iterator, rather

than an async for loop, to make the fact that the iterator is consumed in multiple places

more obvious.

An implementation of this generator coroutine is in the code for this chapter. I’d

encourage you to try adding print statements and breakpoints to it, to help understand

the control flow. This code is more complex than most Python code you’ll need to write

(and I’d caution you against introducing this level of complexity into production code;

having it as a self-contained dependency is better), but if you can understand how it

works, you’ll have a thorough grasp on the details of generator functions, asynchronous

iterators, and closures. As asynchronous code is used more in production code, libraries

to offer this kind of complex manipulation of iterators are sure to become available.

 Additional filters
We’ve added get_data(...) filters for sensor_name and deployment_id, but it’s

also useful to choose the range of time that’s being displayed. We can implement this

with two datetime filters which are used to filter on the collected_at field.

Chapter 9 Viewing the data

416

The implementation of get_data(...) that supports this is shown in Listing 9-11,

but because get_data_by_deployment(...) passes all arguments through to

get_data(...) unchanged, we don’t need to modify that function to allow date

windows in our analysis.

Listing 9-11. get_data method with sensor, deployment, and date filters

async def get_data(

 sensor_name: t.Optional[str] = None,

 deployment_id: t.Optional[UUID] = None,

 collected_before: t.Optional[datetime.datetime] = None,

 collected_after: t.Optional[datetime.datetime] = None,

) -> t.AsyncIterator[DataPoint]:

 db_session = db_session_var.get()

 loop = asyncio.get_running_loop()

 query = db_session.query(datapoint_table)

 if sensor_name:

 query = query.filter(datapoint_table.c.sensor_name == sensor_name)

 if deployment_id:

 query = query.filter(datapoint_table.c.deployment_id == deployment_id)

 if collected_before:

 query = query.filter(datapoint_table.c.collected_at <

collected_before)

 if collected_after:

 query = query.filter(datapoint_table.c.collected_at > collected_after)

 query = query.order_by(

 datapoint_table.c.deployment_id,

 datapoint_table.c.sensor_name,

 datapoint_table.c.collected_at,

)

 rows = await loop.run_in_executor(None, query.all)

 for row in rows:

 yield DataPoint.from_sql_result(row)

Chapter 9 Viewing the data

417

 Testing our query functions
The query functions need to be tested, just like any others. Unlike most of the functions

we’ve written so far, the query functions take lots of optional arguments that significantly

change the output of the returned data. Although we don’t need to test a wide range of

values for each filter (we can trust that our database’s query support works correctly), we

need to test that each option works as intended.

We need some setup fixtures to enable us to test functions that depend on a

database being present. While we could mock the database connection out, I wouldn’t

recommend this, as databases are very complex pieces of software and not well suited to

being mocked out.

The most common approach to testing database applications is to create a new,

empty database and allow the tests to control the creation of tables and data. Some

database software, like SQLite, allows for new databases to be created on the fly, but

most require the database to be set up in advance.

Given that we’re assuming there’s an empty database available to us, we need a

fixture to connect to it, a fixture to set up the tables, and a fixture to set up the data.

The connect fixture is very similar to the with_database context manager,5 and the

function to populate the database will include sample data that we can insert using

db_session.execute(datapoint_table.insert().values(...)).

The fixture to set up the database tables is the most difficult one. The easiest

approach is to use metadata.create_all(...), as we did before we had introduced

alembic for database migrations. This works fine for most applications, so it’s the

best choice in general. Our application includes a database view that’s not managed

by SQLAlchemy, but by a custom migration in Alembic. Therefore, we need to use

Alembic’s upgrade functionality to set up our database tables. The relevant fixtures we

need are given as Listing 9-12.

Listing 9-12. Database setup fixtures

import datetime

from uuid import UUID

from apd.aggregation.database import datapoint_table

5 I’d recommend not adding a commit() call, as this will allow changes to the database to be rolled
back between tests.

Chapter 9 Viewing the data

418

from alembic.config import Config

from alembic.script import ScriptDirectory

from alembic.runtime.environment import EnvironmentContext

import pytest

@pytest.fixture

def db_uri():

 return "postgresql+psycopg2://apd@localhost/apd-test"

@pytest.fixture

def db_session(db_uri):

 from sqlalchemy import create_engine

 from sqlalchemy.orm import sessionmaker

 engine = create_engine(db_uri, echo=True)

 sm = sessionmaker(engine)

 Session = sm()

 yield Session

 Session.close()

@pytest.fixture

def migrated_db(db_uri, db_session):

 config = Config()

 config.set_main_option("script_location", "apd.aggregation:alembic")

 config.set_main_option("sqlalchemy.url", db_uri)

 script = ScriptDirectory.from_config(config)

 def upgrade(rev, context):

 return script._upgrade_revs(script.get_current_head(), rev)

 def downgrade(rev, context):

 return script._downgrade_revs(None, rev)

 with EnvironmentContext(config, script, fn=upgrade):

 script.run_env()

 try:

 yield

Chapter 9 Viewing the data

419

 finally:

 # Clear any pending work from the db_session connection

 db_session.rollback()

 with EnvironmentContext(config, script, fn=downgrade):

 script.run_env()

@pytest.fixture

def populated_db(migrated_db, db_session):

 datas = [

 {

 "id": 1,

 "sensor_name": "Test",

 "data": "1",

 "collected_at": datetime.datetime(2020, 4, 1, 12, 0, 1),

 "deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd"),

 },

 # Additional sample data omitted from listing for brevity's sake

]

 for data in datas:

 insert = datapoint_table.insert().values(**data)

 db_session.execute(insert)

This gives us an environment where we can write tests that query a database that

contains only known values, so we can write meaningful assertions.

 Parameterized tests

Pytest has a special piece of functionality for generating multiple tests that do something

very similar: the parameterize mark. If a test function is marked as parameterized, it can

have additional arguments that do not correspond to fixtures, as well as a series of values

for these parameters. The test function will be run multiple times, once for each different

argument value function. We can use this feature to write functions that test various

filtering methods of our functions without lots of duplication, as shown in Listing 9-13.

Chapter 9 Viewing the data

420

Listing 9-13. A parameterized get_data test to verify different filters

class TestGetData:

 @pytest.fixture

 def mut(self):

 return get_data

 @pytest.mark.asyncio

 @pytest.mark.parametrize(

 "filter,num_items_expected",

 [

 ({}, 9),

 ({"sensor_name": "Test"}, 7),

 ({"deployment_id": UUID("b4c68905-b1e4-4875-940e-69e5d27730fd")}, 5),

 ({"collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1),}, 3),

 ({"collected_before": datetime.datetime(2020, 4, 1, 12, 2, 1),}, 4),

 (

 {

 "collected_after": datetime.datetime(2020, 4, 1, 12, 2, 1),

 "collected_before": datetime.datetime(2020, 4, 1, 12, 3, 5),

 },

 2,

),

],

)

 async def test_iterate_over_items(

 self, mut, db_session, populated_db, filter, num_items_expected

):

 db_session_var.set(db_session)

 points = [dp async for dp in mut(**filter)]

 assert len(points) == num_items_expected

Chapter 9 Viewing the data

421

The first time this test is run, it has filter={}, num_items_expected=9 as

parameters. The second run has filter={"sensor_name": "Test"},

num_items_expected=7, and so on. Each of these test functions will run

independently and will be counted as a new passing or failing test, as appropriate.

This will result in six tests being generated, with names like

TestGetData.test_iterate_over_items[filter5-2]. This name is based

on the parameters, with complex parameter values (like filter) being represented

by their name and the zero-based index into the list, and simpler parameters

(like num_items_expected) included directly. Most of the time, you won’t need to care

about the name, but it can be very helpful to identify which variant of a test is failing.

 Displaying multiple sensors
We’ve now got three functions that help us connect to the database and iterate over

DataPoint objects in a sensible order and with optional filtering. So far we’ve been using

the matplotlib.pyplot.plot_dates(...) function to convert pairs of sensor values

and dates to a single chart. This is a helper function that makes it easier to generate a

plot by making various drawing functions available in a global namespace. It is not the

recommended approach when making multiple charts.

We want to be able to loop over each of our sensor types and generate a chart for each.

If we were to use the pyplot API, we would be constrained to using a single plot, with the

highest values skewing the axes to make the lowest impossible to read. Instead, we want

to generate an independent plot for each and show them side by side. For this, we can

use the matplotlib.pyplot.figure(...) and figure.add_subplot(...) functions.

A subplot is an object which behaves broadly like matplotlib.pyplot but representing a

single plot inside a larger grid of plots. For example, figure.add_subplot(3,2,4) would

be the fourth plot in a three-row, two-column grid of plots.

Right now, our plot(...) function assumes that the data it is working with is a

number, which can be passed directly to matplotlib for display on our chart. Many of our

sensors have different data formats though, such as the temperature sensor which has a

dictionary of temperature and the unit being used as its value attribute. These different

values need to be converted to numbers before they can be plotted.

We can refactor our plotting function out to a utility function in apd.aggregation

to vastly simplify our Jupyter notebooks, but we need to ensure that it can be used

with other formats of sensor data. Each plot needs to provide some configuration for

Chapter 9 Viewing the data

422

the sensor to be graphed, a subplot object to draw the plot in, and a mapping from

deployment ids to a user-facing name for populating the plot’s legend. It should also

accept the same filtering arguments as get_data(...), to allow users to constrain their

charts by date or deployment id.

We’ll pass this config data as an instance of a data class, which also contains a

reference to a “clean” function. This clean function is what’s responsible for converting

a DataPoint instance to a pair of values that can be plotted by matplotlib. The clean

function must transform an iterable of DataPoint objects to an iterable of (x, y) pairs

that matplotlib can understand. For RelativeHumidity and RAMAvailable sensors, this

is a simple matter of yielding the date/float tuple, like our code has done so far.

async def clean_passthrough(

 datapoints: t.AsyncIterator[DataPoint],

) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]:

 async for datapoint in datapoints:

 if datapoint.data is None:

 continue

 else:

 yield datapoint.collected_at, datapoint.data

The config data class also needs some string parameters, such as the title of the

chart, the axis labels, and the sensor_name that needs to be passed to get_data(...) in

order to find the data needed for this chart. Once we have the Config class defined, we

can create two config objects that represent the two sensors which use raw floating-point

numbers as their value type and a function to return all registered configs.

Combining the figure functions from matplotlib with our new config system allows

us to write a new plot_sensor(...) function (Listing 9-14) that can generate any

number of charts using only a few simple lines of code in the Jupyter notebook.

Listing 9-14. New config objects and plot function that uses it

@dataclasses.dataclass(frozen=True)

class Config:

 title: str

 sensor_name: str

 clean: t.Callable[[t.AsyncIterator[DataPoint]], t.AsyncIterator[

t.Tuple[datetime.datetime, float]]]

 ylabel: str

Chapter 9 Viewing the data

423

configs = (

 Config(

 sensor_name="RAMAvailable",

 clean=clean_passthrough,

 title="RAM available",

 ylabel="Bytes",

),

 Config(

 sensor_name="RelativeHumidity",

 clean=clean_passthrough,

 title="Relative humidity",

 ylabel="Percent",

),

)

def get_known_configs() -> t.Dict[str, Config]:

 return {config.title: config for config in configs}

async def plot_sensor(config: Config, plot: t.Any, location_names:

t.Dict[UUID,str], **kwargs) -> t.Any:

 locations = []

 async for deployment, query_results in get_data_by_deployment(

sensor_name=config.sensor_name, **kwargs):

 points = [dp async for dp in config['clean'](query_results)]

 if not points:

 continue

 locations.append(deployment)

 x, y = zip(*points)

 plot.set_title(config['title'])

 plot.set_ylabel(config['ylabel'])

 plot.plot_date(x, y, "-", xdate=True)

 plot.legend([location_names.get(l, l) for l in locations])

 return plot

Chapter 9 Viewing the data

424

With these new functions in place, we can modify the Jupyter notebook cell to call

the plot_sensor(...) function instead of writing our own plotting function in Jupyter.

The code that an end-user of apd.aggregation needs to write to connect to the database

and render two charts (shown as Listing 9-15) is significantly shorter, thanks to these

helper functions.

Listing 9-15. Jupyter cell to plot both Humidity and RAM Available, and their output

import asyncio

from matplotlib import pyplot as plt

from apd.aggregation.query import with_database

from apd.aggregation.analysis import get_known_configs, plot_sensor

with with_database("postgresql+psycopg2://apd@localhost/apd") as session:

 coros = []

 figure = plt.figure(figsize = (20, 5), dpi=300)

 configs = get_known_configs()

 to_display = configs["Relative humidity"], configs["RAM available"]

 for i, config in enumerate(to_display, start=1):

 plot = figure.add_subplot(1, 2, i)

 coros.append(plot_sensor(config, plot, {}))

 await asyncio.gather(*coros)

display(figure)

As the Temperature and SolarCumulativeOutput sensors return serialized objects

from the pint package in the format {'unit': 'degC', 'magnitude': 8.4}, we can’t

use these with our existing clean_passthrough() function; we need to create a new one.

The simplest is to assume that the units are always the same and extract the magnitude

Chapter 9 Viewing the data

425

line only. This would chart any temperatures in a different scale incorrectly, as the units

are not being corrected. For now, all of our sensors return values in degrees centigrade,

so this isn’t a serious concern.

async def clean_magnitude(datapoints):

 async for datapoint in datapoints:

 if datapoint.data is None:

 continue

 yield datapoint.collected_at, datapoint.data["magnitude"]

If we use this new cleaner function to add a new config object for temperature, we

see the chart in Figure 9-2. It’s clear from this data we can see that the temperature

sensor is not entirely reliable: the temperature in my office rarely exceeds the melting

point of steel.

 Processing data
An advantage of the approach that we’ve taken is that we can perform relatively arbitrary

transforms on the data that we’re given, allowing us to discard data points that we

consider to be incorrect. It’s often better to discard data when analyzing than during

collection, as bugs in the function to check a data point’s validity won’t cause data loss if

it’s only checked during analysis. We can always delete incorrect data after the fact, but

we can never recollect data that we chose to ignore.

Figure 9-2. Temperature sensor output with obvious errors skewing the data

Chapter 9 Viewing the data

426

One way of fixing this problem with the temperature sensor would be to make the

clean iterator look at a moving window on the underlying data rather than just one

DataPoint at a time. This way, it can use the neighbors of a sensor value to discard

values that are too different.

The collections.deque type is useful for this, as it offers a structure with an optional

maximum size, so we can add each temperature we find to the deque, but when reading

it, we only see the last n entries that were added. A deque can have items added or

removed from either the left or right edges, so it’s essential to be consistent about adding

and popping from the same end when using it as a limited window.

We can begin by filtering out any values that are out of the supported range of the

DHT22 sensors,6 to remove the most egregious incorrect data. This removes many, but

not all, of the incorrect readings. A simple way of filtering out single item peaks is to have

a three-item window and yield the middle item unless it is too different to the average

of the temperatures on either side, as shown in Listing 9-16. We don’t want to remove

all legitimate fluctuations, so our definition of “not too different” must take into account

that a run of readings such as 21c, 22c, 21c are legitimate while excluding runs such as

20c, 60c, 23c.

Listing 9-16. An example implementation of a cleaner function for temperature

async def clean_temperature_fluctuations(

 datapoints: t.AsyncIterator[DataPoint],

) -> t.AsyncIterator[t.Tuple[datetime.datetime, float]]:

 allowed_jitter = 2.5

 allowed_range = (-40, 80)

 window_datapoints: t.Deque[DataPoint] = collections.deque(maxlen=3)

 def datapoint_ok(datapoint: DataPoint) -> bool:

 """Return False if this data point does not contain a valid

temperature"""

 if datapoint.data is None:

 return False

 elif datapoint.data["unit"] != "degC":

6 The temperature sensor is intended as a measure of ambient temperature. If we write a new
sensor type to collect a different type of temperature data, we may need to reconsider this filter.

Chapter 9 Viewing the data

427

 # This point is in a different temperature system. While it

could be converted

 # this cleaner is not yet doing that.

 return False

 elif not allowed_range[0] < datapoint.data["magnitude"] <

allowed_range[1]:

 return False

 return True

 async for datapoint in datapoints:

 if not datapoint_ok(datapoint):

 # If the datapoint is invalid then skip directly to the next item

 continue

 window_datapoints.append(datapoint)

 if len(three_temperatures) == 3:

 # Find the temperatures of the datapoints in the window, then

average

 # the first and last and compare that to the middle point.

 window_temperatures = [dp.data["magnitude"] for dp in

window_datapoints]

 avg_first_last = (window_temperatures[0] +

window_temperatures[2]) / 2

 diff_middle_avg = abs(window_temperatures[1] - avg_first_last)

 if diff_middle_avg > allowed_jitter:

 pass

 else:

 yield window_datapoints[1].collected_at, window_temperatures[1]

 else:

 # The first two items in the iterator can't be compared to both

neighbors

 # so they should be yielded

 yield datapoint.collected_at, datapoint.data["magnitude"]

 # When the iterator ends the final item is not yet in the middle

 # of the window, so the last item must be explicitly yielded

 if datapoint_ok(datapoint):

 yield datapoint.collected_at, datapoint.data["magnitude"]

Chapter 9 Viewing the data

428

This cleaner function produces a much smoother temperature trend, as

demonstrated in Figure 9-3. The cleaner filters out any data points where the temperature

could not be found as well as any severe errors. It is retaining fine detail of temperature

trends; as the window contains the last three data points recorded (even those which were

not excluded from the data set), a sudden change in temperature will start to be reflected

in the output data so long as it persists for at least two consecutive readings.

EXERCISE 9-1: ADD A CLEANER FOR SOLARCUMULATIVEOUTPUT

the SolarCumulativeOutput sensor returns a number of watt-hours, serialized in the

same way as the temperature sensor. if we chart this, we see an upward trending line that

moves in irregular steps. it would be much more useful to see the power generated at a

moment in time rather than the total up until that time.

to achieve this, we need to convert watt-hours to watts, which means dividing the number of

watt-hours by the amount of time between data points.

write a clean_watthours_to_watts(...) iterator coroutine that keeps track of the last time

and watt-hour readings, finds the difference, and then returns watts divided by time elapsed.

For example, the following two date and value pairs should result in a single output entry at

1pm with a value of 5.0.

[

 (datetime.datetime(2020, 4, 1, 12, 0, 0), {"magnitude": 1.0, "unit":

"watt_hour"}),

 (datetime.datetime(2020, 4, 1, 13, 0, 0), {"magnitude": 6.0, "unit":

"watt_hour"})

]

Figure 9-3. Result of the same data with an appropriate cleaner

Chapter 9 Viewing the data

429

the code accompanying this chapter contains a work environment for this exercise, consisting

of a test setup with a series of unit tests for this function but no implementation. there is also

an implementation of the cleaner as part of the final code for this chapter.

With these cleaners and config entries in place for solar power and temperature, we

can draw a 2x2 grid of charts. As the charts are now showing the desired data, it’s a good

time to improve readability by adding in values for deployment names, which are passed

as the final argument to plot_sensor(...) in Listing 9-17.

Listing 9-17. Final Jupyter cell to display 2x2 grid of charts

import asyncio

from uuid import UUID

from matplotlib import pyplot as plt

from apd.aggregation.query import with_database

from apd.aggregation.analysis import get_known_configs, plot_sensor

location_names = {

 UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): "Loft",

 UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): "Living Room",

 UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): "Office",

 UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): "Outside",

}

with with_database("postgresql+psycopg2://apd@localhost/apd") as session:

 coros = []

 figure = plt.figure(figsize = (20, 10), dpi=300)

 configs = get_known_configs().values()

 for i, config in enumerate(configs, start=1):

 plot = figure.add_subplot(2, 2, i)

 coros.append(plot_sensor(config, plot, location_names))

 await asyncio.gather(*coros)

display(figure)

Chapter 9 Viewing the data

430

 Interactivity with Jupyter widgets
So far, our code to generate the charts has no interactivity available to the end-user.

We are currently displaying all data points ever recorded, but it would be handy to

be able to filter to only show a time period without needing to modify the code to

generate the chart.

To do this, we add an optional dependency on ipywidgets, using the extras_require

functionality of setup.cfg, and reinstall the apd.aggregation package in our

environment using pipenv install -e .[jupyter].

You may also need to run the following, to ensure that the system-wide Jupyter

installation has the support functionality for widgets enabled:

> pip install --user widgetsnbextension

> jupyter nbextension enable --py widgetsnbextension

With this installed, we can request that Jupyter create interactive widgets for each

argument and call the function with the user-selected values. Interactivity allows the

person viewing the notebook to choose arbitrary input values without needing to modify

the code for the cell or even understand the code.

Chapter 9 Viewing the data

431

Figure 9-4 shows an example of a function which adds two integers and which has

been connected to Jupyter’s interactivity support. In this case, the two integer arguments

are given a default value of 100 and are rendered as sliders. Users can manipulate these

sliders, and the result of the function is recomputed automatically.

 Multiply nested synchronous and asynchronous code
We can’t pass coroutines to the interactive(...) function as it’s defined to expect

a standard, synchronous function. It's a synchronous function itself, so it’s not even

possible for it to await the result of a coroutine call. Although IPython and Jupyter allow

await constructs in places where they aren’t usually permitted, this is done by wrapping

the cell in a coroutine7 and scheduling it as a task; it is not deep magic that truly marries

synchronous and asynchronous code, it’s a hack for convenience.

Our plotting code involves awaiting the plot_sensor(...) coroutine, so Jupyter

must wrap the cell into a coroutine. Coroutines can only be called by coroutines or

directly on an event loop’s run(...) function, so asynchronous code generally grows

to the point that the entire application is asynchronous. It’s a lot easier to have a group

of functions that are all synchronous or all asynchronous than it is to mix the two

approaches.

Figure 9-4. Interactive view of an addition function

7 Specifically, IPython tries to compile the cell to bytecode and checks for a SyntaxError. If there is
a SyntaxError, it will wrap the code in a coroutine and try again.

Chapter 9 Viewing the data

432

We can’t do that here because we need to provide a function to interactive(...),

over which we have no control of the implementation. The way we get around this

problem is that we must convert the coroutine into a new synchronous method. We

don’t want to rewrite all the code to a synchronous style just to accommodate the

interactive(...) function, so a wrapper function to bridge the gap is a better fit.

The coroutine requires access to an event loop that it can use to schedule tasks and

which is responsible for scheduling it. The existing event loop we have won’t do, as it is

busy executing the coroutine that’s waiting for interactive(...) to return. If you recall,

it’s the await keyword that implements cooperative multitasking in asyncio, so our code

will only ever switch between different tasks when it hits an await expression.

If we are running a coroutine, we can await another coroutine or task, which

allows the event loop to execute other code. Execution won’t return to our code until

the function that was being awaited has completed execution, but other coroutines

can run in the meantime. We can call synchronous code like interactive(...) from

an asynchronous context, but that code can introduce blocking. As this blocking is

not blocking on an await statement, execution cannot be passed to another coroutine

during this period. Calling any synchronous function from an asynchronous function

is equivalent to guaranteeing that a block of code does not contain an await statement,

which guarantees that no other coroutine’s code will be run.

Until now, we have used the asyncio.run(...) function to start a coroutine from

synchronous code and block waiting for its result, but we’re already inside a call to

asyncio.run(main()) so we cannot do this again.8 As the interactive(...) call is

blocking without an await expression, our wrapper will be running in a context where

it’s guaranteed that no coroutine code can run. Although the wrapper function that we

use to convert our asynchronous coroutine to a synchronous function must arrange for

that coroutine to be executed, it cannot rely on the existing event loop to do this.

To make this explicit, imagine a function that takes two functions as arguments, as

shown in Listing 9-18. These functions both return an integer. This function invokes

both of the functions that were passed as arguments, adds the results, and then returns

the sum of those integers. If all the functions involved are synchronous, there are no

problems.

8 asyncio.run(...) is not re-entrant: calls cannot be nested.

Chapter 9 Viewing the data

433

Listing 9-18. Example of calling only synchronous functions from a synchronous

context

import typing as t

def add_number_from_callback(a: t.Callable[[], int], b: t.Callable[[],

int]) -> int:

 return a() + b()

def constant() -> int:

 return 5

print(add_number_from_callback(constant, constant))

We can even call this add_number_from_callback(...) function from an asynchronous

context and get the right result, with the caveat that add_number_from_callback(...)

blocks the entire process, potentially negating the benefits of asynchronous code.

async def main() -> None:

 print(add_number_from_callback(constant, constant))

asyncio.run(main())

Our particular invocation is low risk because we know that there are no IO requests

which could potentially block for a long time. However, we might want to add a new

function that returns a number from a HTTP request. If we already had a coroutine to

get the result of a HTTP request, we might want to use this rather than reimplementing

this as a synchronous function. An example of a coroutine to get the number (in this case

from the random.org random number generator service) is as follows:

import aiohttp

async def async_get_number_from_HTTP_request() -> int:

 uri = "https://www.random.org/integers/?num=1&min=1&max=100&col=1"

"&base=10&format=plain"

 async with aiohttp.ClientSession() as http:

 response = await http.get(uri)

 return int(await response.text())

Chapter 9 Viewing the data

434

As this is a coroutine, we can’t pass it directly to the add_number_from_callback(...)

function. If we were to try, we’d see Python error TypeError: unsupported operand

type(s) for +: 'int' and 'coroutine'.9

You might write a wrapper function for async_get_number_from_HTTP_request to

create a new task that we can wait for, but that would submit the coroutine to the existing

event loop, which we’ve already decided isn’t a possible solution. We would have no

way of awaiting this task, as it’s not valid to use await in a synchronous function, and

it’s not valid to call asyncio.run(...) in a nested fashion. The only way of waiting for

this would be to loop doing nothing until the task is complete, but this loop prevents the

event loop from scheduling the task, resulting in a contradiction.

def get_number_from_HTTP_request() -> int:

 task = asyncio.create_task(async_get_number_from_HTTP_request())

 while not task.done():

 pass

 return task.result()

The main() task constantly loops over the task.done() check, never hitting an await

statement and so never giving way to the async_get_number_from_HTTP_request() task.

This function results in a deadlock.

Tip it’s also possible to create blocking asynchronous code with any long-
running loop that doesn’t contain an explicit await statement or an implicit one
such as async for and async with.

You shouldn’t need to write a loop that checks for another coroutine’s data, as
we’ve done here. You should await that coroutine rather than looping. if you do
ever need a loop with no awaits inside, you can explicitly give the event loop a
chance to switch into other tasks by awaiting a function that does nothing, such as
await asyncio.sleep(0), so long as you’re looping in a coroutine rather than
a synchronous function that a coroutine called.

9 Mypy would word the error as

error: Argument 2 to "add_number_from_callback" has incompatible type "Callable[[],
Coroutine[Any, Any, int]]"; expected "Callable[[], int]"

Chapter 9 Viewing the data

435

We can’t convert the entire call stack to the asynchronous idiom, so the only

remaining way around this problem is to start a second event loop, allowing the two

tasks to run in parallel. We’ve blocked our current event loop, but we can start a second

one to execute the asynchronous HTTP code.

This approach makes it possible to call async code from synchronous contexts,

but all tasks scheduled in the main event loop are still blocked waiting for the HTTP

response. This only solves the problem of deadlocks when mixing synchronous and

asynchronous code; the performance penalty is still in place. You should avoid mixing

synchronous and asynchronous code wherever possible. The resulting code is difficult to

understand, can introduce deadlocks, and negates the performance benefits of asyncio.

A helper function that takes a coroutine and executes it in a new thread, without

involving the currently running event loop, is given as Listing 9-19. This also includes a

coroutine that makes use of this wrapper to pass the HTTP coroutine as though it were a

synchronous function.

Listing 9-19. Wrapper function to start a second event loop and delegate new

async tasks there

def wrap_coroutine(f):

 @functools.wraps(f)

 def run_in_thread(*args, **kwargs):

 loop = asyncio.new_event_loop()

 wrapped = f(*args, **kwargs)

 with ThreadPoolExecutor(max_workers=1) as pool:

 task = pool.submit(loop.run_until_complete, wrapped)

 return task.result()

 return run_in_thread

async def main() -> None:

 print(

 add_number_from_callback(

 constant, wrap_coroutine(async_get_number_from_HTTP_request)

)

)

We can use this same approach to allow our plot_sensor(...) coroutine to be used

in an interactive(...) function call, as shown in Listing 9-20.

Chapter 9 Viewing the data

436

Listing 9-20. Interactive chart filtering example, with output shown

import asyncio

from uuid import UUID

import ipywidgets as widgets

from matplotlib import pyplot as plt

from apd.aggregation.query import with_database

from apd.aggregation.analysis import (get_known_configs, plot_sensor,

wrap_coroutine)

@wrap_coroutine

async def plot(*args, **kwargs):

 location_names = {

 UUID('53998a51-60de-48ae-b71a-5c37cd1455f2'): "Loft",

 UUID('1bc63cda-e223-48bc-93c2-c1f651779d69'): "Living Room",

 UUID('ea0683de-6772-4678-bfe7-6014f54ffc8e'): "Office",

 UUID('5aaa901a-7564-41fb-8eba-50cdd6fe9f80'): "Outside",

 }

 with with_database("postgresql+psycopg2://apd@localhost/apd") as session:

 coros = []

 figure = plt.figure(figsize = (20, 10), dpi=300)

 configs = get_known_configs().values()

 for i, config in enumerate(configs, start=1):

 plot = figure.add_subplot(2, 2, i)

 coros.append(plot_sensor(config, plot, location_names, *args,

**kwargs))

 await asyncio.gather(*coros)

 return figure

start = widgets.DatePicker(

 description='Start date',

)

end = widgets.DatePicker(

 description='End date',

)

Chapter 9 Viewing the data

437

out = widgets.interactive(plot, collected_after=start, collected_before=end)

display(out)

 Tidying up
We now have lots of complex logic in the Jupyter cell. We should move this to some more

general utility functions so that end-users don’t need to deal with the details of how to

plot charts. We don’t want users to have to deal with the details of converting coroutines

to wrapped functions to pass to the interactive system, so we can provide a helper

function for them to use, as in Listing 9-21.

Listing 9-21. Genericized versions of the plot functions

async def plot_multiple_charts(*args: t.Any, **kwargs: t.Any) -> Figure:

 # These parameters are pulled from kwargs to avoid confusing function

 # introspection code in IPython widgets

 location_names = kwargs.pop("location_names", None)

 configs = kwargs.pop("configs", None)

 dimensions = kwargs.pop("dimensions", None)

 db_uri = kwargs.pop("db_uri", "postgresql+psycopg2://apd@localhost/apd")

Chapter 9 Viewing the data

438

 with with_database(db_uri):

 coros = []

 if configs is None:

 # If no configs are supplied, use all known configs

 configs = get_known_configs().values()

 if dimensions is None:

 # If no dimensions are supplied, get the square root of the

number

 # of configs and round it to find a number of columns. This will

 # keep the arrangement approximately square. Find rows by

 # multiplying out rows.

 total_configs = len(configs)

 columns = round(math.sqrt(total_configs))

 rows = math.ceil(total_configs / columns)

 figure = plt.figure(figsize=(10 * columns, 5 * rows), dpi=300)

 for i, config in enumerate(configs, start=1):

 plot = figure.add_subplot(columns, rows, i)

 coros.append(plot_sensor(config, plot, location_names, *args,

**kwargs))

 await asyncio.gather(*coros)

 return figure

def interactable_plot_multiple_charts(

 *args: t.Any, **kwargs: t.Any

) -> t.Callable[..., Figure]:

 with_config = functools.partial(plot_multiple_charts, *args, **kwargs)

 return wrap_coroutine(with_config)

This leaves us with Jupyter code that instantiates the widgets and the location names,

then calls interactable_plot_multiple_charts(...) to generate the function to pass

to the interactive(...) function. The resulting Jupyter cell, which is equivalent to the

previous implementation but significantly shorter, is as follows:

import ipywidgets as widgets

from apd.aggregation.analysis import interactable_plot_multiple_charts

Chapter 9 Viewing the data

439

plot = interactable_plot_multiple_charts(location_names=location_names)

out = widgets.interact(plot, collected_after=start, collected_before=end)

display(out)

 Persistent endpoints
The next logical piece of cleanup we could do is to move the configuration of endpoints to

a new database table. This would allow us to automatically generate the location_names

variable, ensure the colors used on each chart are consistent across invocations, and also

let us update all sensor endpoints without having to pass their URLs each time.

To do this, we’ll create a new database table and data class to represent a deployment

of apd.sensors. We also need command-line utilities to add and edit the deployment

metadata, utility functions to get the data, and tests for all of this.

EXERCISE 9-2: IMPLEMENT STORED DEPLOYMENTS

the changes involved in storing deployments in the database require creating new tables, new

console scripts, migrations, and some work on tests.

implement any or all of the following features, according to what you would find useful:

• deployment object and table that contains id, name, Uri, and api key

• Command-line scripts to add, edit, and list deployments

• tests for the command-line scripts

• Make servers and api_key arguments to collect_sensor_data optional, using

the stored values if omitted

• helper function to get a deployment record by its id

• an additional field for the deployment table for the color that should be used to

plot its data

• Modifications to plot functions to use a deployment’s name and line color

directly from its database record

all of these are included in the same implementation that accompanies this chapter.

Chapter 9 Viewing the data

440

 Charting maps and geographic data
We’ve been focused on xy plots of value against time in this chapter, as it represents the

test data we’ve been retrieving. Sometimes we need to plot data against other axes. The

most common of these is latitude against longitude, so the plot resembles a map.

If we extract the latitude and longitude items from the data set (say, a dictionary

mapping coordinates to a temperature record for places around Great Britain), we can

pass these as the arguments to plot(...) to see them visualized, as shown in Listing 9-22.

Listing 9-22. Plotting lat/lons using matplotlib, and the resulting chart

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

lats = [ll[0] for ll in datapoints.keys()]

lons = [ll[1] for ll in datapoints.keys()]

ax.plot(lons, lats, "o")

plt.show()

The shape of the data is only very approximately like an outline of Great Britain,

which is shown in Figure 9-5. Most people who look at this plot would not recognize it as

such.

Chapter 9 Viewing the data

441

The distortion is because we’ve plotted this according to the equirectangular map

projection, where latitude and longitude are an equally spaced grid that does not take

the shape of the earth into account. There is no one correct map projection; it very much

depends on what the map’s intended use is.

We need the map to look familiar to most people, who will be very familiar with the

outline of whatever country they live in. We want people who look at it to look at the

data, not the unusual projection. The most commonly used projection is the Mercator

projection, which the OpenStreetMap (OSM) project provides implementations for in

many programming languages, including Python.10 The merc_x(...) and merc_y(...)

functions to implement the projection won’t be included in the listings, as they’re rather

complex mathematical functions.

Tip when drawing maps that show areas of hundreds of square kilometers,
it becomes more and more important to use a projection function, but for
small-scale maps, it’s possible to provide a more familiar view using the
ax.set_aspect(...) function. Changing the aspect ratio moves the point
where distortion is at a minimum from the equator to another latitude; it doesn’t
correct for the distortion. For example, ax.set_aspect(1.7) would move the
point of least distortion to 54 degrees latitude, as 1.7 is equal to 1 / cos(54).

Figure 9-5. Outline of Great Britain, the island that comprises England, Wales,
and Scotland

10 https://wiki.openstreetmap.org/wiki/Mercator#Python_implementation

Chapter 9 Viewing the data

https://wiki.openstreetmap.org/wiki/Mercator#Python_implementation

442

With the projection functions available, we can re-run the plotting function and see

that the points match up much more closely with the outline that we expect, as shown

in Figure 9-6. In this case, the labels on the axes no longer show coordinates; they show

meaningless numbers. We should ignore these labels for now.

 New plot types
This only shows us the position of each data point, not the value associated with it. The

plotting functions we’ve used so far all plot two values, the x and y coordinates. While we

could label the plot points with temperatures, or color code with a scale, the resulting

chart isn’t very easy to read. Instead, there are some other plot types in matplotlib that

can help us: specifically tricontourf(...). The tricontour family of plotting functions

take three-dimensional input of (x, y, value) and interpolate between them to create

a plot with areas of color representing a range of values.

While the tricontour functions plot the color areas, we should also plot the points

where the measurements were taken, albeit less prominently (Listing 9-23). This works

the same way as plotting multiple data sets on a chart; we can call the various plot

functions as many times as needed to display all the data; they do not need to be the

same type of plot, so long as the axes are compatible.

Figure 9-6. Map using the merc_x and merc_y projections from OSM

Chapter 9 Viewing the data

443

Listing 9-23. Color contours and scatter on the same plot

fig, ax = plt.subplots()

lats = [ll[0] for ll in datapoints.keys()]

lons = [ll[1] for ll in datapoints.keys()]

temperatures = tuple(datapoints.values())

x = tuple(map(merc_x, lons))

y = tuple(map(merc_y, lats))

ax.tricontourf(x, y, temperatures)

ax.plot(x, y, 'wo', ms=3)

ax.set_aspect(1.0)

plt.show()

Chapter 9 Viewing the data

444

This is understandable once we know what we’re looking at, but we can improve

it further by plotting the coastline of the island of Great Britain on the map. Given the

list of coordinates representing the coastline of Great Britain,11 we can make a final

call to the plot function, this time specifying that we want to draw a line rather than

dots. The final version (Figure 9-7) of our plot is much easier to read, especially if we

enable drawing a legend by calling plt.colorbar(tcf) where tcf is the result of the

ax.tricontourf(...) function call.

Figure 9-7. Plot of temperatures around Great Britain on a typical winter’s day

11 The code used to extract these is as follows. The data is from the www.naturalearthdata.com
data set.

import fiona
path = "ne_10m_admin_0_countries.shp"
shape = fiona.open(path)
countries = tuple(shape)
UK = [country for country in countries if country['properties']['ADMIN'] == "United
Kingdom"][0]
coastlines = UK['geometry']['coordinates']
by_complexity = sorted(coastlines, key=lambda coords: len(coords[0]))
gb_boundary = by_complexity[-1][0]

This was omitted from the Jupyter notebook to reduce the dependencies needed to use it. In practice,
this function would be used rather than literal tuples.

Chapter 9 Viewing the data

http://www.naturalearthdata.com

445

Tip there are lots of giS libraries for python and Matplotlib that make more
complex maps easier. if you’re planning on drawing lots of maps, i’d encourage
you to look at Fiona and Shapely for manipulating points and polygons easily. i
strongly recommend these libraries to anyone working with geographic information
in python; they’re very powerful indeed.

the basemap toolkit for matplotlib offers very flexible map drawing tools, but the
maintainers have decided against distributing it like a standard python package so
i am unable to recommend it as a general solution to map drawing.

 Supporting map type charts in apd.aggregation
We need to make some changes to our config object to support these maps, as they

behave differently to all the other plots we’ve made so far. Previously, we’ve iterated

over deployments and drawn a single plot for each deployment, representing a single

sensor. To draw a map, we’d need to combine two values (coordinate and temperature)

and draw a single plot representing all deployments. It’s possible that our individual

deployments would move around and would provide a coordinate sensor to record

where they were at a given time. A custom cleaner function alone would not be sufficient

to combine the values of multiple datapoints.

 Backward compatibility in data classes

Our Config object contains a sensor_name parameter, which filters the output of the

get_data_by_deployment(...) function call as part of the drawing process. We need

to override this part of the system; we no longer want to pass a single parameter to the

get_data_by_deployment(...) function; we want to be able to replace the entire call

with custom filtering.

The sensor_name= parameter has been made optional and the type changed to an

InitVar. We’ve also added a new get_data parameter, which is an optional callable with

the same shape as get_data_by_deployment(...). InitVars are another useful feature of

data classes, allowing parameters to be specified which are not stored but are available

in a post-creation hook called __post_init__(...). In our case, shown in Listing 9-24,

we can define such a hook to set up the new get_data= variable based on sensor_name=,

maintaining backward compatibility with implementations that only pass a

sensor_name=.

Chapter 9 Viewing the data

446

Listing 9-24. Data class with get_data parameter and backward compatibility

hook

@dataclasses.dataclass

class Config:

 title: str

 clean: t.Callable[[t.AsyncIterator[DataPoint]], t.AsyncIterator[

t.Tuple[datetime.datetime, float]]]

 get_data: t.Optional[

 t.Callable[..., t.AsyncIterator[t.Tuple[UUID,

t.AsyncIterator[DataPoint]]]]

] = None

 ylabel: str

 sensor_name: dataclasses.InitVar[str] = None

 def __post_init__(self, sensor_name=None):

 if self.get_data is None:

 if sensor_name is None:

 raise ValueError("You must specify either get_data or

sensor_name")

 self.get_data = get_one_sensor_by_deployment(sensor_name)

def get_one_sensor_by_deployment(sensor_name):

 return functools.partial(get_data_by_deployment,

sensor_name=sensor_name)

The __post_init__(...) function is called automatically, passing any InitVar

attributes to it. As we are setting get_data in the __post_init__ method, we need to

ensure that the data class is not frozen, as this counts as a modification.

This change allows us to change which data is passed to the clean(...) function,

but that function still expects to return a time and float tuple to be passed into the

plot_date(...) function. We need to change the shape of the clean(...) function.

We will no longer only be using plot_date(...) to draw our points; some types of

chart require contours and points, so we must also add another customization point to

choose how data are plotted. The new draw attribute of the Config class provides this

function.

Chapter 9 Viewing the data

447

To support these new function call signatures, we need to make Config a generic

class, as shown in Listing 9-25. This makes it possible to specify the underlying data

of the Config object (or have the type system infer it from context). The existing data

types are of the type Config[datetime.datetime, float], but our map Config will be

Config[t.Tuple[float, float], float]. That is, some configs plot a float against a

date, others plot a float against a pair of floats.

Listing 9-25. A generic Config type

plot_key = t.TypeVar("plot_key")

plot_value = t.TypeVar("plot_value")

@dataclasses.dataclass

class Config(t.Generic[plot_key, plot_value]):

 title: str

 clean: t.Callable[

 [t.AsyncIterator[DataPoint]], t.AsyncIterator[t.Tuple[plot_key,

plot_value]]

]

 draw: t.Optional[

 t.Callable[

 [t.Any, t.Iterable[plot_key], t.Iterable[plot_value],

t.Optional[str]], None

]

] = None

 get_data: t.Optional[

 t.Callable[..., t.AsyncIterator[t.Tuple[UUID,

t.AsyncIterator[DataPoint]]]]

] = None

 ylabel: t.Optional[str] = None

 sensor_name: dataclasses.InitVar[str] = None

 def __post_init__(self, sensor_name=None):

 if self.draw is None:

 self.draw = draw_date

Chapter 9 Viewing the data

448

 if self.get_data is None:

 if sensor_name is None:

 raise ValueError("You must specify either get_data or

sensor_name")

 self.get_data = get_one_sensor_by_deployment(sensor_name)

The Config class has lots of complex typing information in it now. This does have

real benefits, though: the following code raises a typing error:

Config(

 sensor_name="Temperature",

 clean=clean_temperature_fluctuations,

 title="Ambient temperature",

 ylabel="Degrees C",

 draw=draw_map,

)

It also gives us confidence when we read the code; we know that the argument

and return types of functions as specified match up. As this code involves lots of

manipulating of data structures into iterators of iterators of tuples (etc.), it is easy to get

confused about exactly what’s required. This is a perfect use case for typing hints.

We expect users to be creating custom configuration objects with custom draw and

clean methods. Having reliable typing information lets them find subtle errors much

more quickly.

The config.get_data(...) and config.draw(...) functions we need to handle our

existing two plot types are refactoring of code that we’ve already examined in depth in

this chapter, but they are available to view in the code that accompanies this chapter for

those who are interested in the details.

 Drawing a custom map using the new configs
The changes to Config allow us to define map-based configurations, but our current

data doesn’t include any data that can be drawn as a map because none of our

deployments includes a location sensor. We can use the new config.get_data(...)

option to generate some static data rather than real, aggregated data to demonstrate the

functionality. We can also add the custom coastline line by extending the draw_map(...)

function (Listing 9-26).

Chapter 9 Viewing the data

449

Listing 9-26. Jupyter function to draw a custom map chart along with the

registered charts

def get_literal_data():

 # Get manually entered temperature data, as our particular deployment

 # does not contain data of this shape

 raw_data = {...}

 now = datetime.datetime.now()

 async def points():

 for (coord, temp) in raw_data.items():

 deployment_id = uuid.uuid4()

 yield DataPoint(sensor_name="Location",

deployment_id=deployment_id,

 collected_at=now, data=coord)

 yield DataPoint(sensor_name="Temperature",

deployment_id=deployment_id,

 collected_at=now, data=temp)

 async def deployments(*args, **kwargs):

 yield None, points()

 return deployments

def draw_map_with_gb(plot, x, y, colour):

 # Draw the map and add an explicit coastline

 gb_boundary = [...]

 draw_map(plot, x, y, colour)

 plot.plot(

 [merc_x(coord[0]) for coord in gb_boundary],

 [merc_y(coord[1]) for coord in gb_boundary],

 "k-",

)

country = Config(

 get_data=get_literal_data(),

 clean=get_map_cleaner_for("Temperature"),

 title="Country wide temperature",

Chapter 9 Viewing the data

450

 ylabel="",

 draw=draw_map_with_gb,

)

out = widgets.interactive(interactable_plot_multiple_charts(configs=configs

+ (country,)), collected_after=start, collected_before=end)

Chapter 9 Viewing the data

451

EXERCISE 9-3: ADD A BAR CHART FOR CUMULATIVE SOLAR POWER

we wrote a cleaner for the solar generation data to convert it to momentary power instead

of cumulative power. this makes it much more evident when power is being generated over

time, but it makes understanding the amount generated each day harder.

write a new cleaner that returns cumulative power per day and a new draw function that

displays this as a bar chart.

as always, the code accompanying this chapter includes a starting point and a sample

completed version.

 Summary
In this chapter, we’ve returned to Jupyter for the purpose that people are most familiar

with, rather than purely as a prototyping tool. We’ve also used Matplotlib here, which

many users of Jupyter will have come across already. Together, these two make a

formidable tool for communicating data analysis outcomes.

We’ve written lots of helper functions to make it easy for people to build custom

interfaces in Jupyter to view the data we are aggregating. This has allowed us to define

a public-facing API while allowing us lots of flexibility to change the way things are

implemented. A good API for end-users is vital for retaining users, so it’s worth spending

the time on.

The final version of the accompanying code for this chapter includes all the

functions we’ve built up, many of which contain long blocks of sample data. Some of

these were too long to include in print, so I recommend that you take a look at the code

samples and try them out.

Finally, we’ve looked at some more advanced uses of some technologies we’ve

used already, including using the __post_init__(...) hook of data classes to preserve

backward compatibility when default arguments do not suffice, and more complex

combinations of synchronous and asynchronous code.

Chapter 9 Viewing the data

452

 Additional resources
The following links provide additional background information on the subjects covered

in this chapter:

Details on the formatting options available on matplotlib charts

as well as links to other chart types are available at the matplotlib

documentation, at https://matplotlib.org/3.1.1/api/_as_

gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot.

A testing helper library to manage creating independent

postgresql instances is testing.postgresql, available from

https://github.com/tk0miya/testing.postgresql.

OpenStreetMap’s page on the Mercator projection, including

details of different implementations, is https://wiki.

openstreetmap.org/wiki/Mercator.

The Fiona library, for parsing geographic information files in

Python, is documented at https://fiona.readthedocs.io/en/

latest/README.html.

The Shapely library, for manipulating complex GIS objects in

Python, is available at https://shapely.readthedocs.io/en/

latest/manual.html. I particularly recommend this one; it’s been

useful to me on many occasions.

Chapter 9 Viewing the data

https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://github.com/tk0miya/testing.postgresql
https://wiki.openstreetmap.org/wiki/Mercator
https://wiki.openstreetmap.org/wiki/Mercator
https://fiona.readthedocs.io/en/latest/README.html
https://fiona.readthedocs.io/en/latest/README.html
https://shapely.readthedocs.io/en/latest/manual.html
https://shapely.readthedocs.io/en/latest/manual.html

453
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_10

CHAPTER 10

Speeding things up
There are two main approaches to improving the speed of code: optimizing the code

we’ve written and optimizing the control flow of the program to run less code. People

often focus on optimizing the code rather than the control flow because it’s easier to make

self-contained changes, but the most significant benefits are usually in changing the flow.

 Optimizing a function
The first step to optimizing a function is having a good understanding of it’s performance

before making any changes. The Python standard library has a profile module to assist

with this. Profile introspects code as it runs to build up an idea of the time spent on each

function call. The profiler can detect multiple calls to the same function and monitor any

functions called indirectly. You can then generate a report that shows the function call

chart for an entire run.

We can profile a statement using the profile.run(...) function. This uses the

reference profiler, which is always available, but most people use the optimized profiler at

cProfile.run(...)1. The profiler will exec the string passed as the first argument, generate

profiling information, and then automatically format the profile results into a report.

>>> from apd.aggregation.analysis import interactable_plot_multiple_charts

>>> import cProfile

>>> cProfile.run("interactable_plot_multiple_charts()()", sort="cumulative")

 164 function calls in 2.608 seconds

 Ordered by: cumulative time

1 If you’re using a Python implementation other than CPython (such as PyPy or Jython), this
optimized profiler won’t be available, and you’ll need to use the reference implementation.

https://doi.org/10.1007/978-1-4842-5793-7_10#DOI

454

 ncalls tottime percall cumtime percall filename:lineno(function)

 1 0.001 0.001 2.608 2.608 {built-in method builtins.exec}

 1 0.001 0.001 2.606 2.606 <string>:1(<module>)

 1 0.004 0.004 2.597 2.597 analysis.py:327(run_in_thread)

 9 2.558 0.284 2.558 0.284 {method 'acquire' of

'_thread.lock' objects}

 1 0.000 0.000 2.531 2.531 _base.py:635(__exit__)

...

The table displayed here shows the number of times a function was invoked (ncalls),

the time spent executing that function (tottime), and that total time divided by the

number of calls (percall). It also shows the cumulative time spent executing that function

and all indirectly called functions, both as a total and divided by the number of calls

(cumtime and the second percall). A function having a high cumtime and a low tottime

implies that the function itself could not benefit from optimizing, but the control flow

involving that function may.

Tip Some IDEs and code editors have built-in support for running profilers
and viewing their output. If you’re using an IDE, then this may be a more natural
interface for you. The behavior of the profilers is still the same, however.

When running code in a Jupyter notebook, you can also generate the same report

using the “cell magic” functionality (Figure 10-1). A cell magic is an annotation on a cell

to use a named plugin during execution, in this case a profiler. If you make the first line

of your cell %%prun -s cumulative, then once the cell has completed executing, the

notebook displays a pop-up window containing a profile report for the whole cell.

Caution The “cell magic” approach is not currently compatible with top-level
await support in IPython. If you use the %%prun cell magic, then that cell cannot
await a coroutine.

ChaPTEr 10 SPEEDIng ThIngS uP

455

 Profiling and threads
The preceding examples generate reports that list lots of threading

internal functions rather than our substantive functions. This is because our

interactable_plot_multiple_charts(...)(...) function2 starts a new thread to handle

running the underlying coroutines. The profiler does not reach into the started thread to

start a profiler, so we only see the main thread waiting for the worker thread to finish.

We can fix this by changing the way our code wraps a coroutine into a thread, giving

us the opportunity to insert a profiler inside the child thread. For example, we could add

a debug= flag and then submit a different function to the thread pool if debug=True is

passed, as shown in Listing 10-1.

Listing 10-1. Example of wrap_coroutine to optionally include profiling

_Coroutine_Result = t.TypeVar("_Coroutine_Result")

def wrap_coroutine(

 f: t.Callable[..., t.Coroutine[t.Any, t.Any, _Coroutine_Result]],

debug: bool=False,

) -> t.Callable[..., _Coroutine_Result]:

 """Given a coroutine, return a function that runs that coroutine

 in a new event loop in an isolated thread"""

Figure 10-1. Example of profiling a Jupyter notebook cell

2 This function is called twice because it was written to be used as part of an interactive widget.
interactable_plot_multiple_charts(...) takes setup arguments and returns a function that
can be hooked up to widgets. We call it twice here because we want to set up the function and
call it once with no special arguments, rather than plumb it in to interactive widgets.

ChaPTEr 10 SPEEDIng ThIngS uP

456

 @functools.wraps(f)

 def run_in_thread(*args: t.Any, **kwargs: t.Any) -> _Coroutine_Result:

 loop = asyncio.new_event_loop()

 wrapped = f(*args, **kwargs)

 if debug:

 # Create a new function that runs the loop inside a cProfile

 # session, so it can be profiled transparently

 def fn():

 import cProfile

 return cProfile.runctx(

 "loop.run_until_complete(wrapped)",

 {},

 {"loop": loop, "wrapped": wrapped},

 sort="cumulative",

)

 task_callable = fn

 else:

 # If not debugging just submit the loop run function with the

 # desired coroutine

 task_callable = functools.partial(loop.run_until_complete,

wrapped)

 with ThreadPoolExecutor(max_workers=1) as pool:

 task = pool.submit(task_callable)

 # Mypy can get confused when nesting generic functions, like we do

here

 # The fact that Task is generic means we lose the association with

 # _CoroutineResult. Adding an explicit cast restores this.

 return t.cast(_Coroutine_Result, task.result())

 return run_in_thread

def interactable_plot_multiple_charts(

 *args: t.Any, debug: bool=False, **kwargs: t.Any

ChaPTEr 10 SPEEDIng ThIngS uP

457

) -> t.Callable[..., Figure]:

 with_config = functools.partial(plot_multiple_charts, *args, **kwargs)

 return wrap_coroutine(with_config, debug=debug)

In Listing 10-1, we use the runctx(...) function from the profiler, rather than

the run(...) function. runctx(...) allows passing global and local variables to the

expression we’re profiling.3 The interpreter does not introspect the string representing

the code to run to determine what variables are needed. You must pass them explicitly.

With this change in place, the same code we used to plot all the charts with interactive

elements can also request that profiling information be collected, so users in Jupyter

notebooks can easily debug new chart types theyre adding, as demonstrated in Figure 10-2.

Figure 10-2. Integrated profiling option being used from Jupyter

The profiler running in the child thread still includes some overhead functions at

the top, but we can now see the functions we wanted to profile rather than only thread

management functions. If we only look at the functions relevant to our code, the output

is as follows:

ncalls tottime percall cumtime percall filename:lineno(function)

 20 0.011 0.001 2.607 0.130 analysis.py:282(plot_sensor)

 12 0.028 0.002 2.108 0.176 analysis.py:304(<listcomp>)

 3491 0.061 0.000 1.697 0.000 analysis.py:146(

clean_watthours_to_watts)

 33607 0.078 0.000 0.351 0.000 query.py:114(subiterator)

3 Providing the loop and wrapped variables as explicit local variables also ensures that Python
knows how to create a closure over these variables and make them available to the profiled
expression. If we passed locals=locals(), we wouldn’t see these variables passed down unless
we gave Python a hint that we needed them from the containing scope using nonlocal loop and
nonlocal wrapped statements.

ChaPTEr 10 SPEEDIng ThIngS uP

458

 12 0.000 0.000 0.300 0.025 analysis.py:60(draw_date)

 33603 0.033 0.000 0.255 0.000 query.py:39(get_data)

 3 0.001 0.000 0.254 0.085 analysis.py:361(

plot_multiple_charts)

 16772 0.023 0.000 0.214 0.000 analysis.py:223(clean_passthrough)

 33595 0.089 0.000 0.207 0.000 database.py:77(from_sql_result)

 8459 0.039 0.000 0.170 0.000 analysis.py:175(

clean_temperature_fluctuations)

 24 0.000 0.000 0.140 0.006 query.py:74(get_deployment_by_id)

 2 0.000 0.000 0.080 0.040 query.py:24(with_database)

It appears that the plot_sensor(...) function is called 20 times, the list

comprehension points = [dp async for dp in config.clean(query_results)]

is called 12 times, and the clean_watthours_to_watts(...) function is called 3491

times. The huge number of reported calls for the clean function is due to the way the

profiler interacts with generator functions. Every time that a new item is requested

from the generator, it is classed as a new invocation of the function. Equally, every time

an item is yielded, it is classed as that invocation returning. This approach may seem

more complex than measuring the time from the first invocation until the generator is

exhausted, but it means that the tottime and cumtime totals do not include the time that

the iterator was idle and waiting for other code to request the next item. However, it also

means that the percall numbers represent the time taken to retrieve a single item, not the

time taken for every time the function is called.

Caution Profilers need a function to determine the current time. By default
profile uses time.process_time() and cProfile uses time.perf_counter().
These measure very different things. The process_time() function measures
time the CPu was busy, but perf_counter() measures real-world time. The
real-world time is often called “wall time,” meaning the time as measured by a
clock on a wall.

ChaPTEr 10 SPEEDIng ThIngS uP

459

 Interpreting the profile report
The clean_watthours_to_watts(...) function should draw your eye immediately,

as it’s a relatively low-level function with a very high cumtime. This function is being

used as a support function to draw one of four charts, but it’s responsible for 65% of

the total execution time of plot_sensor(...). This function is where we would start

optimization, but if we compare the tottime and the cumtime, we can see that it only

spends 2% of the total time in this function.

The discrepancy tells us that it’s not the code we’ve directly written in this function

thats introducing the slowdown, it’s the fact that were calling other functions indirectly

as part of our implementation of clean_watthours_to_watts(...). Right now, were

looking at optimizing functions rather than optimizing execution flow. As optimizing

this function requires optimizing the pattern of calling functions out of our control,

well pass by it for now. The second half of this chapter covers strategies for improving

performance by altering control flow, and well return to fix this function there.

Instead, lets concentrate on the items that have a high tottime rather than cumtime,

representing that the time spent is in executing code that we wrote, rather than code

that were using. These numbers are significantly lower than the times we looked at

previously; theyre relatively simple functions and represent a smaller potential benefit,

but that may not always be the case.

 12 0.103 0.009 2.448 0.204 analysis.py:304(<listcomp>)

 33595 0.082 0.000 0.273 0.000 database.py:77(from_sql_result)

 33607 0.067 0.000 0.404 0.000 query.py:114(subiterator)

We see that two functions related to the database interface are potential candidates.

These are each run over 33,000 times and take less than a tenth of a second total time

each, so they are not particularly tempting optimization targets. Still, they’re the highest

in terms of tottime of our code, so they represent the best chance we have to do the

simple, self-contained type of optimization.

The first thing to do is to try changing something about the implementation and

measuring any difference. The existing implementation is very short, containing only a

single line of code. It’s unlikely that we could optimize at all, but lets try.

@classmethod

def from_sql_result(cls, result) -> DataPoint:

 return cls(**result._asdict())

ChaPTEr 10 SPEEDIng ThIngS uP

460

One thing thats not immediately clear in the preceding implementation that may

cause slowdown is that a dictionary of values is generated and mapped dynamically to

keyword arguments.4 An idea to test would be to explicitly pass the arguments, as we

know that they are consistent.

@classmethod

def from_sql_result(cls, result) -> DataPoint:

 if result.id is None:

 return cls(data=result.data, deployment_id=result.deployment_id,

 sensor_name=result.sensor_name,

collected_at=result.collected_at)

 else:

 return cls(id=result.id, data=result.data,

deployment_id=result.deployment_id, sensor_name=result.sensor_name,

 collected_at=result.collected_at)

The most important part of this process is to test our hypothesis. We need to re-run

the code and compare the results. We also need to be aware of the fact that the code may

vary in execution time because of external factors, such as load on the computer, so it’s a

good idea to try running the code a few times to see if the results are stable. Were looking

4 The timeit profiler (explained in the next section) can be used to demonstrate this relationship:

>>> def func(a, b, c, d, e, f, g, h, i, j, k):
... return a+b+c+d+e+f+g+h+i+j+k
...
 >>> timeit.timeit("func(**vals)", "vals={'a':1, 'b':1, 'c':1, 'd':1, 'e':1, 'f':1,

'g':1, 'h':1, 'i':1, 'j':1, 'k':1}", globals={'func':func})
0.7101785999999777
>>> timeit.timeit("func(a=1,b=1,c=1,d=1,e=1,f=1,g=1,h=1,i=1,j=1,k=1)",

globals={'func':func})
0.6051479999999998
>>> timeit.timeit("a(1,1,1,1,1,1,1,1,1,1,1)", globals={'func':func})
0.479350299999993

The difference between these approaches is marginal for trivial functionals and irrelevant for more
complex functions. You should continue to use the one that makes your code clearest; we’re only trying
this in our example as a last resort for performance improvements.

ChaPTEr 10 SPEEDIng ThIngS uP

461

for a significant speedup here, as our change would introduce maintainability issues, so

a trivially small speed boost isnt worth it.

 33595 0.109 0.000 0.147 0.000 database.py:77(from_sql_result)

The result here shows that more time was spent in the from_sql_result() function

than the previous implementation, but the cumulative time has decreased. This result

tells us that the changes we made to from_sql_result() directly caused that function to

take longer, but in doing so we changed the control flow to eliminate the call to _asdict()

and pass values directly which more than made up for the slowdown we introduced.

In other words, this functions implementation has no definite improvement to

performance other than by changing the control flow to avoid code in _asdict().

It also reduces maintainability of the code by requiring us to list the fields in use in

multiple places. As a result, well stick with our original implementation rather than the

“optimized” version.

Tip There is another potential optimization to class creation, setting a __slots__
attribute on the class, like __slots__ = {"sensor_name", "data",
"deployment_id", "id", "collected_at"}. This allows a developer to
guarantee that only specifically named attributes will ever be set on an instance,
which allows the interpreter to add many optimizations. at the time of writing,
there are some incompatibilities between data classes and __slots__ that make
it less easy to use, but if you want to optimize instantiation of your objects, then I
recommend taking a look.

The same is true of the other two: the subiterator() and list comprehension

functions are very minimal; changes to them decrease readability and do not bring

substantial performance improvements.

It’s relatively rare for a small, easily understood function to be a candidate for

significant performance improvement, as poor performance is often correlated with

complexity. If the complexity in your system is due to the composition of simple

functions, then performance improvements come from optimizing control flow. If you

have very long functions that do complex things, then it’s more likely that significant

improvements can come from optimizing functions in isolation.

ChaPTEr 10 SPEEDIng ThIngS uP

462

 Other profilers
The profiler that comes with Python is enough to get useful information in most cases.

Still, as code performance is such an important topic, there are other profilers available

that have unique advantages and disadvantages.

 timeit

The most important alternative profiler to mention is also from the Python standard

library, called timeit. timeit is useful for profiling fast, independent functions. Rather

than monitoring a program in normal operation, timeit runs given code repeatedly and

returns the cumulative time taken.

>>> import timeit

>>> from apd.aggregation.utils import merc_y

>>> timeit.timeit("merc_y(52.2)", globals={"merc_y": merc_y})

1.8951617999996415

When called with the default arguments, as previously shown, the output is the

number of seconds needed to execute the first argument one million times, measured

using the most accurate clock available. Only the first argument (stmt=) is required,

which is a string representation of the code to be executed each time. A second string

argument (setup=) represents setup code that must be executed before the test starts,

and a globals= dictionary allows passing arbitrary items into the namespace of the code

being profiled. This is especially useful for passing in the function under test, rather than

importing it in the setup= code. The optional number= argument allows us to specify

how many times the code should be run, as one million executions is an inappropriate

amount for functions that take more than about 50 microseconds to execute.5

Both the string representing the code to test and the setup= strings can be multiline

strings containing a series of Python statements. Be aware, however, that any definitions

or imports in the first string are run every time, so all setup code should be done in the

second string or passed directly as a global.

5 A function that takes 1 millisecond to execute translates to timeit taking over 15 minutes to
execute with the default parameters.

ChaPTEr 10 SPEEDIng ThIngS uP

463

 line_profiler

A commonly recommended alternative profiler is line_profiler by Robert Kern.6 It

records information on a line-by-line basis rather than a function-by-function basis,

making it very useful for pinpointing where exactly a functions performance issues are

coming from.

Unfortunately, the trade-offs for line_profiler are quite significant. It requires

modification to your Python program to annotate each function you wish to profile,

and while those annotations are in place, the code cannot be run except through the

line_profilers custom environment. Also, at the time of writing, it’s not been possible to

install line_profiler with pip for approximately two years. Although you will find many

people recommending this profiler online, thats partially due to it being available before

other alternatives. I would recommend avoiding this profiler unless absolutely necessary

for debugging a complex function; you may find it costs you more time to set up than you

save in convenience once installed.

 yappi

Another alternative profiler is yappi,7 which provides transparent profiling of Python

code running across multiple threads and in asyncio event loops. Numbers such as the

call count for iterators represent the number of times the iterator is called rather than the

number of items retrieved, and no code modifications are needed to support profiling

multiple threads.

The disadvantage to yappi is that it’s a relatively small project under heavy

development, so you may find it to be less polished than many other Python libraries. I

would recommend yappi for cases where the built-in profiler is insufficient. At the time

of writing, Id still recommend the built-in profiling tools as my first choice, but yappi is a

close second.

The interface to yappi is somewhat different to the built-in profilers that we’ve used

so far, as it doesnt offer an equivalent to the run(...) function call. The yappi profiler

must be enabled and disabled around the code being profiled. There is an equivalent

API for the default profiler, as shown in Table 10-1.

6 https://github.com/rkern/line_profiler
7 https://github.com/sumerc/yappi

ChaPTEr 10 SPEEDIng ThIngS uP

https://github.com/rkern/line_profiler
https://github.com/sumerc/yappi

464

Using yappi in a Jupyter cell gives us the ability to call the functions in the

underlying code without needing to work around threading and asyncio issues.

We could have used yappi to profile our code without making the debug= parameter

change earlier. In the preceding example, if method_to_profile() called

interactable_plot_multiple_charts(...) and widgets.interactive(...),

the resulting profile output would be as follows:

Clock type: CPU

Ordered by: totaltime, desc

name ncall tsub ttot tavg

..futures\thread.py:52 _WorkItem.run 17 0.000000 9.765625 0.574449

..rrent\futures\thread.py:66 _worker 5/1 0.000000 6.734375 1.346875

..38\Lib\threading.py:859 Thread.run 5/1 0.000000 6.734375 1.346875

..ndowsSelectorEventLoop.run_forever 1 0.000000 6.734375 6.734375

..b\asyncio\events.py:79 Handle._run 101 0.000000 6.734375 0.066677

..lectorEventLoop.run_until_complete 1 0.000000 6.734375 6.734375

..WindowsSelectorEventLoop._run_once 56 0.000000 6.734375 0.120257

..gation\analysis.py:282 plot_sensor 4 0.093750 6.500000 1.625000

..egation\analysis.py:304 <listcomp> 12 0.031250 5.515625 0.459635

...

Table 10-1. Comparison of cProfile and yappi profiling

cProfile using enable/disable API

import cProfile

profiler = cProfile.Profile()

profiler.enable()

method_to_profile()

profiler.disable()

profiler.print_stats()

Yappi-based profiling

import yappi

yappi.start()

method_to_profile()

yappi.stop()

yappi.get_func_stats().print_all()

ChaPTEr 10 SPEEDIng ThIngS uP

465

The total times displayed by yappi are significantly higher than those from cProfile in

this example. You should only ever compare the times produced by a profiler to results

generated on the same hardware with the same tools, as performance can vary wildly8

when profilers are enabled.

YAPPI HELPER FUNCTIONS

Yappi supports filtering stats by function and module out of the box. There is also an option

to provide custom filter functions, to determine exactly which code should be displayed

in performance reports. There are some other options available; you should check the

documentation of yappi to find the recommended way to filter output to only show code you’re

interested in.

The code accompanying this chapter has some helper functions to make yappi profiling more

comfortable from a Jupyter context. These are profile_with_yappi, a context manager to

handle activating and deactivating the profiler; jupyter_page_file, a context manager to

help display the profiling data in the same way as the %%prun cell magic, not merged in with

cell output; and yappi_package_matches, a helper that uses the filter_callback=

option to restrict the stats displayed to only show modules within a given Python package. an

example of using these helper functions is shown as Listing 10-2.

Listing 10-2. Jupyter cell for yappi profiling, with part of the Jupyter output shown

from apd.aggregation.analysis import (interactable_plot_multiple_charts,

configs)

from apd.aggregation.utils import (jupyter_page_file, profile_with_yappi,

yappi_package_matches)

import yappi

with profile_with_yappi():

 plot = interactable_plot_multiple_charts()

 plot()

8 I’ve seen real-world Python code that is an order of magnitude faster in a Linux VM on an OSX
host than on the host itself, even running the same release of Python and all dependencies.
Python build, OS version, and profiler can all make a big difference, so you should establish a
baseline whenever you’re doing benchmarking; don’t rely on ones you’ve generated on previous
days.

ChaPTEr 10 SPEEDIng ThIngS uP

466

with jupyter_page_file() as output:

 yappi.get_func_stats(filter_callback=lambda stat:

 yappi_package_matches(stat, ["apd.aggregation"])

).print_all(output)

none of these three helpers are strictly needed, but they provide for a more user-friendly

interface.

 Tracemalloc

The profilers we’ve looked at so far all measure the CPU resources needed to run a piece

of code. The other primary resource available to us is memory. A program that runs

quickly but requires a large amount of RAM would run significantly more slowly on

systems that have less RAM available.

Python has a built-in RAM allocation profiler, called tracemalloc. This module

provides tracemalloc.start() and tracemalloc.stop() functions to enable and

disable to profiler, respectively. A profile result can be requested at any time by using the

tracemalloc.take_snapshot() function. An example of using this on our plotting code

is given as Listing 10-3.

ChaPTEr 10 SPEEDIng ThIngS uP

467

The result of this is a Snapshot object, which has a statistics(...) method to

return a list of individual statistics. The first argument to this function is the key by which

to group results. The most useful two keys to use are "lineno" (for line-by-line profiling)

and "filename" (for whole file profiling). A cumulative= flag allows the user to choose

between including the memory use of indirectly called functions or not. That is, should

each statistic line represent what a line does directly or all the consequences of running

that line?

Listing 10-3. Example script to debug memory usage after plotting the charts

import tracemalloc

from apd.aggregation.analysis import interactable_plot_multiple_charts

tracemalloc.start()

plot = interactable_plot_multiple_charts()()

snapshot = tracemalloc.take_snapshot()

tracemalloc.stop()

for line in snapshot.statistics("lineno", cumulative=True):

 print(line)

The documentation in the standard library provides some helper functions to

provide for better formatting of the output data, especially the code sample for the

display_top(...) function.9

Caution The tracemalloc allocator only shows memory allocations that are still
active at the time that the snapshot is generated. Profiling our program shows that
the SQL parsing uses a lot of raM but won’t show our DataPoint objects, despite
them taking up more raM. Our objects are short-lived, unlike the SQL ones, so
they have already been discarded by the time we generate the snapshot. When
debugging peak memory usage, you must create a snapshot at the peak.

9 https://docs.python.org/3/library/tracemalloc.html#pretty-top

ChaPTEr 10 SPEEDIng ThIngS uP

https://docs.python.org/3/library/tracemalloc.html#pretty-top

468

 New Relic

If youre running a web-based application, then the commercial service New Relic may

provide useful profiling insights.10 It provides a tightly integrated profiling system that

allows you to monitor the control flow from web requests, the functions involved in

servicing them, and interactions with databases and third-party services as part of the

render process.

The trade-offs for New Relic and it’s competitors are substantial. You gain access

to an excellent set of profiling data, but it doesnt fit all application types and costs a

significant amount of money. Besides, the fact that the actions of real users are used to

perform the profiling means that you should consider user privacy before introducing

New Relic to your system. That said, New Relics profiling has provided some of the most

useful performance analyses Ive seen.

 Optimizing control flow
More commonly, it’s not a single function that is the cause of performance problems

within a Python system. As we saw earlier, writing code in a naïve way generally results in

a function that cannot be optimized beyond changing what it’s doing.

In my experience, the most common source of low performance is a function that

calculates more than it needs to. For example, in our first implementations of features to

get collated data, we did not yet have database-side filtering, so we added a loop to filter

the data we want from the data thats not relevant.

Filtering the input data later doesnt just move workaround; it can increase the total

amount of work being done. In this situation, the work done is loading data from the

database, setting up DataPoint records, and extracting the relevant data from those

records. By moving the filtering from the loading step to the extracting step, we set up

DataPoint records for objects that we know we dont care about.

10 Other commercial profiling tools are available.

ChaPTEr 10 SPEEDIng ThIngS uP

469

COMPLEXITY

The time taken by a function is not always directly proportional to the size of the input, but

it’s a good approximation for functions that loop over the data once. Sorting and other more

complex operations behave differently.

The relationship between how long functions take (or how much memory they need) and

their input size is called computational complexity. Most programmers never need to worry

about the exact complexity class of functions, but it’s worth being aware of the broad-strokes

differences when optimizing your code.

You can estimate the relationship between input size and time using the timeit function with

different inputs, but as a rule of thumb, it’s best to avoid nesting loops within loops. nested

loops that always have a very small number of iterations are okay, but looping over user input

within another loop over user input results in the time a function takes increasing rapidly11 as

the amount of user input increases.

The longer a function takes for a given input size, the more important it is to minimize the

amount of extraneous data it processes.

In Figure 10-3, the horizontal axis maps to the time taken and the vertical axis to the

amount of input a stage in the pipeline has to process. The width of a step, and therefore

the time it takes to process, is proportional to the amount of data that it is processing.

These two flows illustrate the amount of work that needs to happen to process a

single sensor, with the top flow having database-level filtering and the bottom having

filtering in Python. In both cases, the total amount of output is the same, but the

intermediate stages have different amounts of data to process and therefore take a

different amount of time.

11 Specifically, this is polynomial complexity, sometimes written as O(nc). The time taken is the
time to execute the loop body, multiplied by each of the lengths of the loop.

ChaPTEr 10 SPEEDIng ThIngS uP

470

There are two places that we discard data: when we are finding only the data for the

sensor in question and when discarding invalid data. By moving the sensor filter to the

database, we reduce the amount of work done in the load step and therefore the amount

of time needed. We are moving the bulk of the filtering, with the more complex filtering for

removing invalid data still happening in the clean step. If we could move this filtering to

the database, it would further decrease the time taken by the load step, albeit not as much.

We already assumed that wed need to filter in the database when we wrote the

functions, partially to improve the usability of the API, but we can test the assumption

that it improves performance by using the yappi profiler and the ability to provide

explicit configurations to our drawing system. We can then directly compare the

time taken to draw a chart with database-backed filtering with Python filtering. The

implementation of the performance analysis for filtering in the database is shown in

Listing 10-4.

Figure 10-3. Diagram of the size of data set for code that filters in the database vs.
filtering during cleaning

ChaPTEr 10 SPEEDIng ThIngS uP

471

Listing 10-4. Jupyter cell to profile a single chart, filtering in SQL

import yappi

from apd.aggregation.analysis import (interactable_plot_multiple_charts,

Config)

from apd.aggregation.analysis import (clean_temperature_fluctuations,

get_one_sensor_by_deployment)

from apd.aggregation.utils import profile_with_yappi

yappi.set_clock_type("wall")

filter_in_db = Config(

 clean=clean_temperature_fluctuations,

 title="Ambient temperature",

 ylabel="Degrees C",

 get_data=get_one_sensor_by_deployment("Temperature"),

)

with profile_with_yappi():

 plot = interactable_plot_multiple_charts(configs=[filter_in_db])

 plot()

yappi.get_func_stats().print_all()

The following statistics are a partial output from the cells output, showing some

of the entries that are most interesting to us. We can see that 10828 data objects were

loaded, that the get_data(...) function took 2.7 seconds, and that 6 database calls were

made totaling 2.4 seconds. The list comprehension on line 304 of analysis.py (points

= [dp async for dp in config.clean(query_results)]) is where the cleaner

function is called. Cleaning the data took 0.287 seconds, but the time in the cleaning

function itself was negligible.

name ncall tsub ttot tavg

..lectorEventLoop.run_until_complete 1 0.000240 3.001717 3.001717

..alysis.py:341 plot_multiple_charts 1 2.843012 2.999702 2.999702

..gation\analysis.py:282 plot_sensor 1 0.000000 2.720996 2.720996

..query.py:86 get_data_by_deployment 1 2.706142 2.706195 2.706195

..d\aggregation\query.py:39 get_data 1 2.569511 2.663460 2.663460

ChaPTEr 10 SPEEDIng ThIngS uP

472

..lchemy\orm\query.py:3197 Query.all 6 0.008771 2.407840 0.401307

..lchemy\orm\loading.py:35 instances 10828 0.005485 1.588923 0.000147

..egation\analysis.py:304 <listcomp> 4 0.000044 0.286975 0.071744

..175 clean_temperature_fluctuations 4 0.000000 0.286888 0.071722

We can re-run the same test but with a new version of this same chart, where all the

filtering happens in Python. Listing 10-5 demonstrates this, by adding a new cleaner

function that does the filtering and using the existing get_data_by_deployment(...)

function as the data source. This represents how we would need to filter data if we hadnt

added a sensor_name= parameter to get_data(...).

Listing 10-5. Jupyter cell to profile drawing the same chart but without any

database filtering

import yappi

from apd.aggregation.analysis import (interactable_plot_multiple_charts,

Config, clean_temperature_fluctuations, get_data_by_deployment)

from apd.aggregation.utils import (jupyter_page_file, profile_with_yappi,

YappiPackageFilter)

async def filter_and_clean_temperature_fluctuations(datapoints):

 filtered = (item async for item in datapoints if

item.sensor_name=="Temperature")

 cleaned = clean_temperature_fluctuations(filtered)

 async for item in cleaned:

 yield item

filter_in_python = Config(

 clean=filter_and_clean_temperature_fluctuations,

 title="Ambient temperature",

 ylabel="Degrees C",

 get_data=get_data_by_deployment,

)

with profile_with_yappi():

 plot = interactable_plot_multiple_charts(configs=[filter_in_python])

 plot()

yappi.get_func_stats().print_all()

ChaPTEr 10 SPEEDIng ThIngS uP

473

In this version, the filtering happens in

filter_and_clean_temperature_fluctuations(...), so we expect this

to take a long time. The additional time taken is partially in the generator

expression in that function, but not entirely. The total time taken by

plot_multiple_charts(...) has increased from 3.0 seconds to 8.0 seconds,

of which 1.3 seconds are the filtering. This shows that by filtering in the database,

we’ve saved 3.7 seconds of overhead, which represents a 21% speedup.

name ncall tsub ttot tavg

..lectorEventLoop.run_until_complete 1 0.000269 7.967136 7.967136

..alysis.py:341 plot_multiple_charts 1 7.637066 7.964143 7.964143

..gation\analysis.py:282 plot_sensor 1 0.000000 6.977470 6.977470

..query.py:86 get_data_by_deployment 1 6.958155 6.958210 6.958210

..d\aggregation\query.py:39 get_data 1 6.285337 6.881415 6.881415

..lchemy\orm\query.py:3197 Query.all 6 0.137161 6.112309 1.018718

..lchemy\orm\loading.py:35 instances 67305 0.065920 3.424629 0.000051

..egation\analysis.py:304 <listcomp> 4 0.000488 1.335928 0.333982

..and_clean_temperature_fluctuations 4 0.000042 1.335361 0.333840

..175 clean_temperature_fluctuations 4 0.000000 1.335306 0.333826

..-input-4-927271627100>:7 <genexpr> 4 0.000029 1.335199 0.333800

 Visualizing profiling data
Complex iterator functions are hard to profile, as seen with

clean_temperature_fluctuations(...) listing it’s tsub time as exactly zero.

It is a complex function that calls other methods, but for it to spend exactly zero time

must be a rounding error. Profiling running code can point you in the right direction,
but you’ll only ever get indicative numbers from this approach. It’s also hard to see

how the 0.287 seconds total time breaks down by constituent functions from this view.

Both the built-in profile module and yappi support exporting their data in pstats

format, a Python-specific profile format that can be passed to visualization tools. Yappi

also supports the callgrind format from the Valgrind profiling tool.

ChaPTEr 10 SPEEDIng ThIngS uP

474

We can save a callgrind profile from yappi using yappi.get_func_stats().save(

"callgrind.filter_in_db", "callgrind") and then load it into a callgrind visualizer

like KCachegrind.12 Figure 10-4 shows an example of displaying the database-filtered

version of this code in QCachegrind, where the area of the blocks corresponds to the

time spent in the corresponding function.

You may be surprised to learn that get_data(...) is not only present in this chart

but is by far the largest single block. The clean_temperature_fluctuations(...)

function doesnt appear to call the get_data(...) function, so it’s not immediately

obvious why this function should account for most of the time taken.

Iterators make reasoning about call flow difficult, as when you pull an item from an

iterable in a loop, it doesnt look like a function call. Under the hood, Python is calling

youriterable.__next__() (or youriterable.__anext__()), which passes execution

back to the underlying function, completing the previous yield. A for loop can, therefore,

cause any number of functions to be called, even if it’s body is empty. The async for

construction makes this a bit clearer, as it is explicitly saying that the underlying code

may await. It wouldnt be possible for the underlying code to await unless control was

Figure 10-4. Call chart for clean_temperature_fluctuations when filtering data in
the database

12 The screenshot is from the Windows port, QCachegrind. As Valgrind is a Linux tool you’ll find a
wider range of utilities if you use Linux.

ChaPTEr 10 SPEEDIng ThIngS uP

475

passing to other code rather than just interacting with a static data structure. When

profiling code that consumes iterables, you will find the underlying data generation

functions called by the functions that use the iterable are present in the output.

CONSUMING ITERABLES AND SINGLE DISPATCH FUNCTIONS

We can write a function that consumes an iterator as soon as possible, which simplifies the

call stack somewhat. Consuming the iterator can reduce performance by preventing tasks

running in parallel and requires that there is enough memory to contain the whole iterable, but

it does greatly simplify the output of profiling tools. Simple functions for consuming an iterable

and an async iterable while retaining the same interface are shown as Listing 10-6.

Listing 10-6. Pair of functions for consuming iterators in place

def consume(input_iterator):

 items = [item for item in input_iterator]

 def inner_iterator():

 for item in items:

 yield item

 return inner_iterator()

async def consume_async(input_iterator):

 items = [item async for item in input_iterator]

 async def inner_iterator():

 for item in items:

 yield item

 return inner_iterator()

This pair of functions takes an iterator (or async iterator) and consumes it as soon as it’s called

(or awaited), returning a new iterator that yields only from that preconsumed source. These

functions are used as follows:

Synchronous

nums = (a for a in range(10))

consumed = consume(nums)

Async

async def async_range(num):

 for a in range(num):

 yield a

ChaPTEr 10 SPEEDIng ThIngS uP

476

nums = async_range(10)

consumed = await consume_async(nums)

We can simplify this using the functools module in the standard library, specifically the

@singledispatch decorator. Back in the second chapter, we looked at Python’s dynamic

dispatch functionality, which allows a function to be looked up by the class to which it’s

attached. We’re doing something similar here; we have a pair of functions that are associated

with an underlying data type, but these data types aren’t classes we’ve written. We have no

control over what functions are attached to them, as the two types are features of the core

language rather than classes we’ve created and can edit.

The @singledispatch decorator marks functions as having multiple implementations

differentiated on by the type of the first argument. rewriting our functions to use this approach

(Listing 10-7) only involves adding decorators to them to join the alternative implementations

to the base one and a type hint to differentiate the variants.

Listing 10-7. Pair of functions for consuming iterators in place with single dipatch

import functools

@functools.singledispatch

def consume(input_iterator):

 items = [item for item in input_iterator]

 def inner_iterator():

 for item in items:

 yield item

 return inner_iterator()

@consume.register

async def consume_async(input_iterator: collections.abc.AsyncIterator):

 items = [item async for item in input_iterator]

 async def inner_iterator():

 for item in items:

 yield item

 return inner_iterator()

These two functions behave in exactly the same way as the previous implementations, except

that the consume(...) function can be used for either type of iterator. It transparently

switches between synchronous and asynchronous implementations based on the type of its

ChaPTEr 10 SPEEDIng ThIngS uP

477

input. If the first argument is an asyncIterator, then the consume_async(...) variant is

used; otherwise the consume(...) variant is used.

nums = (a for a in range(10))

consumed = consume(nums)

nums = async_range(10)

consumed = await consume (nums)

The functions passed to register must have a type definition or a type passed to the

register function itself. We’ve used collections.abc.AsyncIterator rather than

typing.AsyncIterator as the type here, as the type must be runtime checkable.

This means that @singledispatch is limited to dispatching on concrete classes or

abstract base classes.

The typing.AsyncIterator type is a generic type: we can use

typing.AsyncIterator[int] to mean an iterator of ints. This is used by mypy for static

analysis, but isn’t used at runtime. There’s no way that a running Python program can know if

an arbitrary async iterator is a typing.AsyncIterator[int] iterator without consuming

the whole iterator and checking its contents.

collections.abc.AsyncIterator makes no guarantees about the contents of the

iterator, so it is similar to typing.AsyncIterator[typing.Any], but as it is an abstract

base class, it can be checked with isinstance(...) at runtime.

 Caching
Another way that we can improve performance is to cache the results of function calls.

A cached function call keeps a record of past calls and their results, to avoid computing

the same value multiple times. So far, we’ve been plotting temperatures using the

centigrade temperature system, but a few countries have retained the archaic Fahrenheit

system of measurement. It would be nice if we could specify which temperature system

we want to use to display our charts, so users can choose the system with which they are

most familiar.

The work of converting the temperature scale is orthogonal to the task done by the

existing clean_temperature_fluctuations(...) method; we may want to convert

temperatures without cleaning out fluctuations, for example. To achieve this, well create

a new function that takes a cleaner and a temperature system and returns a new cleaner

that calls the underlying one, then does a temperature conversion.

ChaPTEr 10 SPEEDIng ThIngS uP

478

def convert_temperature(magnitude: float, origin_unit: str, target_unit:

str) -> float:

 temp = ureg.Quantity(magnitude, origin_unit)

 return temp.to(target_unit).magnitude

def convert_temperature_system(cleaner, temperature_unit):

 async def converter(datapoints):

 results = cleaner(datapoints)

 async for date, temp_c in results:

 yield date, convert_temperature(temp_c, "degC",

temperature_unit)

 return converter

The preceding function does not have any type hints, as they are very verbose. Both

the cleaner argument and the return value from convert_temperature_system(...)

are of the type t.Callable[[t.AsyncIterator[DataPoint]], t.AsyncIterator[

t.Tuple[datetime.datetime, float]]], which is a ridiculously complex construction

to include twice in a single line of code. These types are used repeatedly in our analysis

functions and, while hard to recognize at a glance, map to easily understood concepts.

These are good candidates for factoring out into variables, the result of which is given as

Listing 10-8.

Listing 10-8. Typed conversion functions

CLEANED_DT_FLOAT = t.AsyncIterator[t.Tuple[datetime.datetime, float]]

CLEANED_COORD_FLOAT = t.AsyncIterator[t.Tuple[t.Tuple[float, float], float]]

DT_FLOAT_CLEANER = t.Callable[[t.AsyncIterator[DataPoint]], CLEANED_DT_FLOAT]

COORD_FLOAT_CLEANER = t.Callable[[t.AsyncIterator[DataPoint]],

CLEANED_COORD_FLOAT]

def convert_temperature(magnitude: float, origin_unit: str, target_unit:

str) -> float:

 temp = ureg.Quantity(magnitude, origin_unit)

 return temp.to(target_unit).magnitude

ChaPTEr 10 SPEEDIng ThIngS uP

479

def convert_temperature_system(

 cleaner: DT_FLOAT_CLEANER, temperature_unit: str,

) -> DT_FLOAT_CLEANER:

 async def converter(datapoints: t.AsyncIterator[DataPoint],) ->

CLEANED_DT_FLOAT:

 results = cleaner(datapoints)

 reveal_type(temperature_unit)

 reveal_type(convert_temperature)

 async for date, temp_c in results:

 yield date, convert_temperature(temp_c, "degC",

temperature_unit)

 return converter

TYPING PROTOCOLS, TYPEVARS AND VARIANCE

We have used t.TypeVar(...) before, to represent a placeholder in a generic type, such

as when we defined the draw(...) function in our config class. We had to use T_key and

T_value type variables there because some functions in the class used a tuple of key and

value and others used a pair of key and value iterables.

That is, when a clean= function is of the type

t.Callable[t.AsyncIterator[DataPoint]],

t.AsyncIterator[t.Tuple[datetime.datetime, float]]

the corresponding draw= function is of the type

t.Callable[[t.Any, t.Iterable[datetime.datetime], t.Iterable[float],

t.Optional[str]], None]

We need to have access to both the datetime and float component types independently to

build both type declarations. Type variables allow us to tell mypy that a type is a placeholder

that will be supplied later; here we need both a T_key and a T_value type variable. We can

also use them to define a pattern for a generic type called Cleaned and two instances of that

type with specific values.

Cleaned = t.AsyncIterator[t.Tuple[T_key, T_value]]

CLEANED_DT_FLOAT = Cleaned[datetime.datetime, float]

CLEANED_COORD_FLOAT = Cleaned[t.Tuple[float, float], float]

ChaPTEr 10 SPEEDIng ThIngS uP

480

If you’re expecting there to be lots of different types of cleaned/cleaner types, then this

approach is a bit clearer than explicitly assigning the full types to every function.

The cleaner functions that return this data are a bit more complicated, as mypy’s ability to

infer the use of generic types in callables has limits. To create complex aliases for callable and

class types (as opposed to data variables), we must use the protocol feature. a protocol is a

class that defines attributes that an underlying object must possess to be considered a match,

very much like a custom abstract base class’s subclasshook, but in a declarative style and for

static typing rather than runtime type checking.

We want to define a callable that takes an AsyncIterator of datapoints and some other

type. The other type here is being represented by the T_cleaned_co type variable, as follows:

T_cleaned_co = t.TypeVar("T_cleaned_co", covariant=True, bound=Cleaned)

class CleanerFunc(Protocol[T_cleaned_co]):

 def __call__(self, datapoints: t.AsyncIterator[DataPoint]) -> T_cleaned_co:

 ...

This CleanerFunc type can then be used to generate the *_CLEANER variables that match

the *_CLEANED variables from earlier. The type used in square brackets for CleanerFunc is

the variant of Cleaned that this particular function provides.

DT_FLOAT_CLEANER = CleanerFunc[CLEANED_DT_FLOAT]

COORD_FLOAT_CLEANER = CleanerFunc[CLEANED_COORD_FLOAT]

The covariant= argument in the TypeVar is a new addition, as is the _co suffix we used

for the variable name. Previously, our type variables have been used to define both function

parameters and function return values. These are invariant types: the type definitions must

match exactly. If we declare a function that expects a Sensor[float] as an argument, we

cannot pass a Sensor[int]. normally, if we were to define a function that expects a float

as an argument, it would be fine to pass an int.

This is because we haven’t given mypy permission to use it’s compatibility checking logic

on the constituent types of the Sensor class. This permission is given with the optional

covariant= and contravariant= parameters to type variables. a covariant type is one

where the normal subtype logic applies, so if the Sensor’s T_value were covariant, then

functions that expect Sensor[float] can accept Sensor[int], in the same way that

functions that expect float can accept int. This makes sense for generic classes that have

functions that provide data to the function they’re passed to.

ChaPTEr 10 SPEEDIng ThIngS uP

481

a contravariant type (usually named with the _contra suffix) is one where the inverse logic

holds. If Sensor’s T_value were contravariant, then functions that expect Sensor[float]

cannot accept Sensor[int], but they must accept things more specific than float, such as

Sensor[complex]. This is useful for generic classes that have functions that consume data

from the function they’re passed to.

We’re defining a protocol that provides data,13 so a covariant type is the natural fit. Sensors

are simultaneously a provider (sensor.value()) and a consumer (sensor.format(...))

of data and so must be invariant.

Mypy detects the appropriate type of variance when checking a protocol and raises an

error if it doesn’t match. as we are defining a function that provides data, we must set

covariant=True to prevent this error from showing.

The bound= parameter specifies a minimum specification that this variable can be inferred to

be. as this is specified to be Cleaned, T_cleaned_co is only valid if it can be inferred to be

a match to Cleaned[Any, Any]. CleanerFunc[int] is not valid, as int is not a subtype

of Cleaned[Any, Any]. The bound= parameter can also be used to create a reference to

the type of an existing variable, in which case it allows the definition of types that follow the

signature of some externally provided function.

Protocols and type variables are powerful features that can allow for much simpler typing,

but they can also make code look confusing if they’re overused. Storing types as variables

in a module is a good middle ground, but you should ensure that all typing boilerplate is well

commented and perhaps even placed in a utility file to avoid overwhelming new contributors

to your code.

With our new conversion code in place, we can create a plot configuration that draws

the temperature chart in degrees Fahrenheit. Listing 10-9 shows how end-users of the

apd.aggregation package can create a new Config object that behaves in the same way as

the existing one but renders it’s values in their preferred temperature scale.

13 Although it consumes DataPoint objects, that’s a fixed type. It’s only the way the TypeVar object
is used that matters.

ChaPTEr 10 SPEEDIng ThIngS uP

482

Listing 10-9. Jupyter cell to generate a single chart showing temperature in

degrees F

import yappi

from apd.aggregation.analysis import (interactable_plot_multiple_charts,

Config)

from apd.aggregation.analysis import (convert_temperature_system,

clean_temperature_fluctuations)

from apd.aggregation.analysis import get_one_sensor_by_deployment

filter_in_db = Config(

 clean=convert_temperature_system(clean_temperature_fluctuations,

"degF"),

 title="Ambient temperature",

 ylabel="Degrees F",

 get_data=get_one_sensor_by_deployment("Temperature"),

)

display(interactable_plot_multiple_charts(configs=[filter_in_db])())

We’ve changed the control flow by adding this function, so we should do another

profiling run to find what changes it made. We wouldnt want temperature conversion to

take a significant amount of time.

..ation\analysis.py:191 datapoint_ok 10818 0.031250 0.031250 0.000003

..on\utils.py:41 convert_temperature 8455 0.078125 6.578125 0.000778

The convert_temperature(...) function itself is invoked 8455 times, although

datapoint_ok(...) is invoked 10818 times. This tells us that by filtering through

datapoint_ok(...) and the cleaning function before converting the temperature, we’ve

avoided 2363 calls to convert_temperature(...) for data we dont need to know about

to draw the current chart. However, the calls we did make still took 6.58 seconds, tripling

the total time taken to draw this chart. This is excessive.

We can optimize this function by reimplementing it to remove the dependency on

pint and therefore reducing the overhead involved. If convert_temperature(...) were

a simple arithmetic function, the time taken would be reduced to 0.02 seconds, at the

expense of a lot of flexibility. This is fine for a simple conversion where both units are

needed; pint excels in situations where the exact conversion isnt known ahead of time.

ChaPTEr 10 SPEEDIng ThIngS uP

483

Alternatively, we can cache the results of the convert_temperature(...) function.

A simple cache can be achieved by creating a dictionary that maps between values

keyed in degrees C and values in the chosen temperature system. The implementation

in Listing 10-10 builds up a dictionary for every invocation of the iterator, preventing the

same items being calculated multiple times.

Listing 10-10. A simple manual cache

def convert_temperature_system(

 cleaner: DT_FLOAT_CLEANER, temperature_unit: str,

) -> DT_FLOAT_CLEANER:

 async def converter(datapoints: t.AsyncIterator[DataPoint],) ->

CLEANED_DT_FLOAT:

 temperatures = {}

 results = cleaner(datapoints)

 async for date, temp_c in results:

 if temp_c in temperatures:

 temp_f = temperatures[temp_c]

 else:

 temp_f = temperatures[temp_c] = convert_temperature(temp_c,

"degC", temperature_unit)

 yield date, temp_f

 return converter

A caches efficiency14 is usually measured by hit rate. If our data set were to be

[21.0, 21.0, 21.0, 21.0], then our hit rate would be 75% (miss, hit, hit, hit).

If it were [1, 2, 3, 4], then the hit rate would drop to zero. The preceding cache

implementation assumes a reasonable hit rate, as it makes no effort to evict unused

values from it’s cache. A cache is always a trade-off between the extra memory used and

time saving it allows. The exact tipping point where it becomes worth it depends on the

size of the data being stored and your individual requirements for memory and time.

A common strategy for evicting data from a cache is that of an LRU (least recently

used) cache. This strategy defines a maximum cache size. If the cache is full, when a new

item is to be added, it replaces the one that has gone the longest without being accessed.

14 That is, the use of a cache, not a type of cache. We can only talk about the efficiency of a cache if
we know the information about the requests being made of it.

ChaPTEr 10 SPEEDIng ThIngS uP

484

The functools module provides an implementation of an LRU cache as a decorator,

which makes it convenient for wrapping our functions. We can also use it to create

cached versions of existing functions by manually wrapping a function in an LRU cache

decorator.

Caution an Lru cache can be used if a function takes only hashable types as
arguments. If a mutable type (such as a dictionary, list, set, or data class without
frozen=True) is passed to a function wrapped in an Lru cache, a TypeError
will be raised.

If we take our original, pint-based convert_temperature(...) function and add

the LRU cache decorator, we can now benchmark the time it takes with a cache in place.

The result of this is that the number of calls made to the function is drastically reduced

but the time taken per invocation remains consistent. The 8455 invocations without the

cache have become 67 invocations, corresponding to a hit rate of 99.2% and reducing the

time overhead in offering this feature from 217% to 1%.

..on\utils.py:40 convert_temperature 67 0.000000 0.031250 0.000466

Its possible to retrieve additional information about the efficiency of an LRU cache

without running a profiler, using the cache_info() method on the decorated function.

This can be useful when debugging a complex system, as you can check which caches

are performing well and which arent.

>>> from apd.aggregation.utils import convert_temperature

>>> convert_temperature.cache_info()

CacheInfo(hits=8455, misses=219, maxsize=128, currsize=128)

Figure 10-5 shows the time taken by all three approaches, on a logarithmic scale

(the horizontal lines represent tenfold increases, not a linear increase). This helps

demonstrate how close the caching and optimized approaches are; for our particular

problem, caching a very expensive function results in performance in the same order of

magnitude as an alternative, less flexible implementation.

ChaPTEr 10 SPEEDIng ThIngS uP

485

Rewriting the function to avoid using pint would still result in performance

improvement, but caching the results provides an improvement of approximately the same

magnitude for a much smaller change, both in terms of lines of code and conceptually.

As always, there is a balancing act at play here. It’s likely that people would

want temperature only in degrees Celsius or degrees Fahrenheit, so a conversion

function that only provides those two is probably good enough. The conversion itself

is straightforward and well understood, so the risk of introducing bugs is minimal.

More complex functions may not be so easy to optimize, which makes caching a more

appealing approach. Alternatively, they may process data that implies a lower hit rate,

making refactoring more appealing.

The benefit of the @lru_cache decorator isnt in the inherent efficiency of the cache

(its a rather bare-bones cache implementation), but in that it’s easy to implement

for Python functions. The implementation of a function decorated with a cache can

be understood by everyone who needs to work with it as they can ignore the cache

and focus on the function body. If youre writing a custom caching layer, for example,

using systems like Redis as the storage rather than a dictionary, you should build

your integration such that it doesnt pollute the decorated code with cache-specific

instructions.

Figure 10-5. Summary of performance of three approaches

ChaPTEr 10 SPEEDIng ThIngS uP

486

 Cached properties

Another caching decorator available in the functools module is

@functools.cached_property. This type of cache is more limited than an LRU cache,

but it fits a use case thats common enough that it warrants inclusion in the Python

standard library. A function decorated with @cached_property acts in the same way as

one decorated with @property, but the underlying function is called only once.

The first time that the program reads the property, it is transparently replaced with

it’s result of the underlying function call.15 So long as the underlying function behaves

predictably and without side effects,16 a @cached_property is indistinguishable from a

regular @property. Like @property, this can only be used as an attribute on a class and

must take the form of a function that takes no arguments except for self.

One place this can be of use is in the implementation of the DHT sensors back in the

apd.sensors package. The value() methods of these two sensors delegate heavily to the

DHT22 class from the Adafruit interface package. In the following method, only a small

fraction of the code is relevant to extracting the value; the rest is setup code:

 def value(self) -> t.Optional[t.Any]:

 try:

 import adafruit_dht

 import board

 # Force using legacy interface

 adafruit_dht._USE_PULSEIO = False

 sensor_type = getattr(adafruit_dht, self.board)

 pin = getattr(board, self.pin)

 except (ImportError, NotImplementedError, AttributeError):

 # No DHT library results in an ImportError.

 # Running on an unknown platform results in a

15 This replacement is thread-safe, so even if multiple threads try to read the property, the function
won’t be called multiple times for a given object.

16 Side effects in a functional programming context are things a function does other than returning
an output variable. If a function manipulates mutable data, such as changing a global variable,
then returning a cached return value also prevents these changes from happening on future
invocations.

ChaPTEr 10 SPEEDIng ThIngS uP

487

 # NotImplementedError when getting the pin

 return None

 try:

 return ureg.Quantity(sensor_type(pin).temperature,

ureg.celsius)

 except (RuntimeError, AttributeError):

 return None

We can change this to factor out the common code for creating the sensor

interface into a base class, which contains a sensor property. The temperature and

humidity sensors can then drop all their interface code and instead rely on the

existence of self.sensor.

class DHTSensor:

 def __init__(self) -> None:

 self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD",

"DHT22")

 self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20")

 @property

 def sensor(self) -> t.Any:

 try:

 import adafruit_dht

 import board

 # Force using legacy interface

 adafruit_dht._USE_PULSEIO = False

 sensor_type = getattr(adafruit_dht, self.board)

 pin = getattr(board, self.pin)

 return sensor_type(pin)

 except (ImportError, NotImplementedError, AttributeError):

 # No DHT library results in an ImportError.

 # Running on an unknown platform results in a

 # NotImplementedError when getting the pin

 return None

ChaPTEr 10 SPEEDIng ThIngS uP

488

class Temperature(Sensor[t.Optional[t.Any]], DHTSensor):

 name = "Temperature"

 title = "Ambient Temperature"

 def value(self) -> t.Optional[t.Any]:

 try:

 return ureg.Quantity(self.sensor.temperature, ureg.celsius)

 except RuntimeError:

 return None

 ...

The @property line in the DHTSensor class can be replaced with @cached_property

to cache the sensor object between invocations. Adding a cache here doesnt impact the

performance of our existing code, as we do not hold long-lived references to sensors and

repeatedly query their value, but any third-party users of the sensor code may find it to

be an advantage.

EXERCISE 10-1: OPTIMIZING CLEAN_WATTHOURS_TO_WATTS

at the start of this chapter, we identified the clean_watthours_to_watts(...) functions

as the most in need of optimization. On my test data set, it was adding multiple seconds to the

execution run.

In the accompanying code to this chapter, there are some extended tests to measure the

behavior of this function and it’s performance. Tests to validate performance are tricky, as they

are usually the slowest tests, so I don’t recommend adding them as a matter of course. If you

do add them, make sure to mark them as such so that you can skip them in your normal test

runs.

Modify the clean_watthours_to_watts(...) function so that the test passes. You will

need to achieve a speedup of approximately 16x for the test to pass. The strategies discussed

in this chapter are sufficient to achieve a speedup of about 100x.

ChaPTEr 10 SPEEDIng ThIngS uP

489

 Summary
The most important lesson to learn from this chapter is that no matter how well you

understand your problem space, you should always measure your performance

improvements, not just assume that they are improvements. There is often a range of

options available to you to improve performance, some of which are more performant

than others. It can be disappointing to think of a clever way of making something faster

only to learn that it doesnt actually help, but it’s still better to know.

The fastest option may require more RAM than can reasonably be assumed to be

available, or it may require the removal of certain features. You must consider these

carefully, as fast code that doesnt do what the user needs is not useful.

The two caching functions in functools are to be aware of for everyday

programming. Use @functools.lru_cache for functions that take arguments and

@functools.cached_property for calculated properties of objects that are needed

in multiple places.

If your typing hints start to look cumbersome, then you should tidy them up. You can

assign types to variables and represent them with classes like TypedDict and Protocol,

especially when you need to define more complex structured types. Remember that

these are not for runtime type checking and consider moving them to a typing utility

module for clearer code. This reorganization has been applied in the sample code for

this chapter.

 Additional resources
The following links go into more depth on the topics covered in this section:

If youre interested in the logic of the different variances used

in typing, Id recommend reading up on the Liskov Substitution

Principle. The Wikipedia page at https://en.wikipedia.org/

wiki/Liskov_substitution_principle is a good starting place,

especially for links to computer science course materials on the

subject.

More details on how mypy handles protocols and some advanced

uses, such as allowing limited runtime checking of protocol

types, are found at https://mypy.readthedocs.io/en/stable/

protocols.html.

ChaPTEr 10 SPEEDIng ThIngS uP

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://mypy.readthedocs.io/en/stable/protocols.html
https://mypy.readthedocs.io/en/stable/protocols.html

490

Beaker (https://beaker.readthedocs.io/en/latest/) is

a caching library for Python that supports various back-end

storages. It’s especially aimed at web applications, but can be used

in any type of program. It’s useful for situations where you need

multiple types of cache for different data.

The two third-party profiles we’ve used in this chapter are

https://github.com/rkern/line_profiler and

https://github.com/sumerc/yappi.

Documentation on how to customize the timer used with the

built-in profiling tools is available in the standard librarys docs at

https://docs.python.org/3/library/profile.html#using-a-

custom-timer.

ChaPTEr 10 SPEEDIng ThIngS uP

https://beaker.readthedocs.io/en/latest/
https://github.com/rkern/line_profiler
https://github.com/sumerc/yappi
https://docs.python.org/3/library/profile.html#using-a-custom-timer
https://docs.python.org/3/library/profile.html#using-a-custom-timer

491
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_11

CHAPTER 11

Fault tolerance
It’s natural for developers to write code from an optimistic standpoint. We write code

that doesn’t work, and then we adjust it repeatedly until it gives us the result we want.

Hopefully, we also write tests that allow us to verify that the code still works in the future

and tests to check that we are handling any edge cases that we’ve become aware of

correctly. We can never write tests to cover problems we haven’t thought of yet, so being

disciplined with how code is divided and handles the small problems it encounters is the

best strategy we have for writing software that behaves as we expect.

 Error handling
We’ve caught exceptions in the accompanying code to this book since the very

beginning. Some have been exceptions that we know can be raised by code that we’re

using (e.g., the DHT interface code raising RuntimeError if it couldn’t connect to the

sensor). Others are exceptions implied by incorrect use of objects (such as KeyError

in the solar generation sensor if we try to get a piece of data from the inverter that isn’t

present in the output).

We’ve also raised NotImplementedError as part of our Sensor base class to express

that a method must be overridden by sensor developers and various RuntimeErrors and

ValueErrors as part of the error handling for the command-line interface.

Programming languages usually follow either the “look before you leap” or “it’s

easier to ask forgiveness than permission” philosophies of error handling. A look before

you leap philosophy means that you should use conditionals to determine if something

is possible and leave exceptions to represent unexpected cases. The asking forgiveness

philosophy means you should write code that expects the most common case and

supplement this with exception handlers for the edge cases that you’re aware of.

Python is very much in the latter camp; it’s considered proper style when writing

Python code to rely on exception handlers for control flow in many circumstances.

https://doi.org/10.1007/978-1-4842-5793-7_11#ESM

492

 Getting items from a container
One of the most common expressions we write in Python is getting an entry from a

container type, such as a value from a dictionary or an item from a list. These both use

variable[other] constructions. If other does not happen to point to a valid item in

variable, then an exception is raised. Otherwise, the associated value is returned.

Although these actions use the same square bracket construction, both the underlying

data types and the meaning of the variables are very different. When we write a function

that uses this feature, we need to be aware of how different the possible outcomes are.

You will sometimes see dictionaries referred to as a mapping, but the terms are not

interchangeable. A dictionary is an example of a mapping, which is the name for any object

that maps keys to values and provides certain methods. If variable is a mapping (such as a

dictionary), then other should be a hashable type: one where hash(other) is defined.

On the other hand, if variable is a list or tuple, then item access for sequences is the one

that’s used. In this case, other should be an integer that represents the index in the container

that we’re looking for. The reason we can’t use the square bracket syntax for getting an

item from a generator but we can use it for a list is because a generator isn’t a sequence. All

sequences (and, indeed, all mappings) are iterables, but not all iterables are sequences.

 Abstract base classes

The definitions of mapping, sequence, and hashable are the corresponding Mapping,

Sequence, and Hashable classes in the collections.abc module. Both Mapping and

Sequence are subclasses of Collection. An object is a Collection if it implements the

__len__(), __iter__(), and __contains__(...) magic methods. That is, if an object has

a defined length, can be iterated over, and can be queried to see if a value is in the result

of iterating over the object, then it is a collection.

Although the collections.abc.Sized, collections.abc.Iterable,

collections.abc.Container,1 and collections.abc.Collection objects

are all abstract base classes that provide a subclass hook (meaning that any

objects that implement the required methods are considered subclasses of the

abstract base classes), Mapping and Sequence implementations are not detected

automatically. Implementations of mapping or sequence must register against

the appropriate base class.

1 These are the three classes that correspond to the three methods that must be present for an
object to be a collection.

Chapter 11 Fault toleranCe

493

Both mappings and sequences implement a __getitem__(...) method but with

very different meanings. A Sequence is an object where variable[0] returns the first

item in the underlying collection, whereas a Mapping is an object where variable[0]

returns the value attached, the key 0.

The two different semantics of the __getitem__(...) method raise different

exceptions when something goes wrong. The sequence version raises an IndexError

when code tries to retrieve an item beyond the end of a sequence (such as variable[0]

on an empty sequence). Conversely, KeyError is raised when code uses item access on a

mapping that doesn’t contain a value associated with that key.

Code that calls either type of __getitem__(...) causes a TypeError to be raised when

the corresponding key is not of an appropriate type. For example, variable[1.2] on a

sequence or variable[{}] on a mapping both raise TypeError. The Python interpreter

also raises a TypeError when the variable being indexed has no __getitem__(...)

method – for example, None[0].

You should expect the line variable[other] potentially to raise any of these three

different exceptions. By knowing more about the underlying data type of the variables,

we can exclude a TypeError and either IndexError or KeyError, but only by knowing

more about the actual data can we be sure that no exception is raised.

For many simple tasks (such as the function in Table 11-1 that wraps __getitem__(...)

to return a default value in the case where the requested item isn’t available2), the

“forgiveness” style is significantly more straightforward. It’s not inherently simpler;

it’s entirely possible to write code that has confusing control flow by nesting many

try/except blocks, but it usually simplifies code. Perhaps more importantly, it’s the

style that people expect from a Python program.

2 Mappings provide some of this with their variable.get(key, default) method, but this can
still raise a TypeError, and there is no built-in equivalent for Sequences.

Chapter 11 Fault toleranCe

494

Table 11-1. Verbose implementations of a get with default function in both styles

Look before you leap

from collections.abc import Sequence,

Mapping

from collections.abc import Hashable

def get_item(variable, key,

default=None):

 if isinstance(variable, Sequence):

 if isinstance(key, int):

 if (0 <= key <

len(variable)):

 return variable[key]

 else:

 # key is too big

 return default

 else:

 # Key isn't an int

 return default

 elif isinstance(variable, Mapping):

 if isinstance(key, Hashable):

 if key in variable:

 return variable[key]

 else:

 # key is not known

 return default

 else:

 # Key isn't hashable

 return default

 else:

 # variable isn't a known type

 return default

Ask forgiveness

def get_item(variable, key,

default=None):

 try:

 return variable[key]

 except TypeError:

 # variable has no get item

method

 # or key isn't a valid type

 return default

 except KeyError:

 # Variable is a mapping but

 # doesn't contain key

 return default

 except IndexError:

 # Variable is a sequence

 # shorter than key

 return default

Chapter 11 Fault toleranCe

495

The problem comes in deciding where to catch exceptions and where to let them

bubble up to calling code. The key difference in the two implementations mentioned

earlier is that the left-hand side has two code paths for success and four for failure,

whereas the one on the right has one for success and three for failure. If we want to

customize the behavior for a specific condition, that’s easier on the left than on the right,

but only because the control flow on the left is more complex than the code on the right.

This complexity is also evident in the performance of this function, as shown

in Figure 11-1; while some operations are about the same performance with either

implementation, the exception handler route is sometimes much faster. In my experience,

it’s usually easier to avoid overly clever code when using the ask forgiveness method.

Imagine we want our get_item(...) function to raise a TypeError if the value of

the variable= parameter is an object that doesn’t support item access, but we still want

the unknown key code paths to result in a default being returned. This corresponds

to customizing the bottom condition on the left, but only one of the two sources of

TypeError on the right. We can add a conditional to the TypeError exception handler

to determine which code path caused the problem. To compensate for this increase in

complexity, we can also coalesce the KeyError and IndexError exception handlers into

one block, as they represent the same behavior, as shown in Listing 11-1.

Figure 11-1. Performance chart of the two implementations in each different
case

Chapter 11 Fault toleranCe

496

Listing 11-1. A get with default function that raises on noncontainer arguments

def get_item(variable, key, default=None):

 try:

 return variable[key]

 except (KeyError, IndexError):

 # Key is invalid for variable, the error raised depends on the type

of variable

 return default

 except TypeError:

 if hasattr(variable, "__getitem__"):

 return default

 else:

 raise

Tip Inside an exception handler, you can use raise without an explicit exception
to reraise the same error currently being handled.

 Exception types

Exceptions are classes with their own class hierarchy. All exceptions inherit from

BaseException, but only those that also inherit from Exception are intended for

developers to use.3 When we catch exceptions, we need to specify which type of

exception we want to catch. An except block that doesn’t specify an exception type

to catch is called a bare except and catches all exceptions, even the internal ones. As

KeyboardInterrupt is one of these internal exceptions, a bare try/except has the effect

of suppressing the user’s ability to use <CTRL+c> to stop a program.

Tip It’s always better to catch multiple exception types rather than an overly
broad superclass. You can specify many exception types in one block or use
multiple except blocks to achieve this.

3 The built-in exceptions that do not fit into this category are GeneratorExit, KeyboardInterrupt,
and SystemExit.

Chapter 11 Fault toleranCe

497

The class hierarchy for exceptions is relatively shallow, but some superclasses are

worth bearing in mind. The most useful is LookupError, which is a superclass of both

KeyError and IndexError. LookupError specifically refers to cases where a requested

key isn’t present, so it’s not overly broad. This allows us to simplify our get_item(...)

function slightly, by replacing except (KeyError, IndexError) with except

LookupError.

TypeError and ValueError

We often have to raise our own exceptions, rather than just reraising existing ones from

lower down the call stack. In this case, we need to ensure that we pick an appropriate

exception type and a useful message. TypeError and ValueError are good exception

types to default to if it’s unclear which exception class is the best fit.

A TypeError is appropriate at any time where the value passed to a function is of the

wrong type, and a ValueError is appropriate when the value passed is of the correct type

but is inappropriate in some way other than the cases covered by LookupErrors.

The four exceptions TypeError, ValueError, KeyError, and IndexError together

represent most of the logical types of exception that you’ll come across. If you need to

raise an exception in your own code, the chances are that one of these is a good fit.

RuntimeError and SystemExit

There are also exception classes for nonspecific problematic behavior where the

accompanying message is a description of the problem. RuntimeError is a last resort

exception class, to cover errors that don’t match any other category, but that might need

to be caught by calling functions. SystemExit is raised internally by the sys.exit(...)

function call to signal that the program should end.4 In both cases, the argument given is

critical, as it’s the only information on what the problem is.

Generally speaking, except SystemExit: blocks are only appropriate as a way of

customizing how to display a final error message to the end-user. It may make sense for

code to catch RuntimeErrors and proceed with normal operation, but this depends heavily

on the way the underlying code is structured and the meaning of the RuntimeError. It’s

usually better to create a new exception class than to rely on RuntimeError.

4 SystemExit is also used for ending a program early, even if there have been no actual problems.
It’s usual to do this with sys.exit(0) rather than raising a SystemExit exception, though.

Chapter 11 Fault toleranCe

498

AssertionError

AssertionErrors are raised automatically by the interpreter when an assert statement

fails. You often experience these when writing tests as it’s in tests that most assert

statements are written. It’s entirely possible to add assert statements to arbitrary Python

code, but it’s vanishingly rare for developers to do this.

Python does not guarantee that it raises an AssertionError for any failed assert

statement, so you can’t rely on an assert statement for normal error handling. One

possible use for assert statements in nontest code is to add assertions to cover your

assumptions about things that must always be true. For example, you might use assert

lines to verify some relationship between the arguments to a function that can’t be

expressed as a static typing declaration, or that an argument list is sorted correctly.

Again, this is not a replacement for proper error handling in your functions, but having

asserts can help to track down obscure errors.

The benefit to using assert statements is in the fact that they don’t always raise an

error. If you run your program with python -O or the PYTHONOPTIMIZE=1 environment

variable, then the assert statements are ignored, allowing for potentially expensive sanity

checks to be disabled except during debugging sessions.

It’s incorrect to add assert statements to your code to implement checks that

are necessary for the correct functioning of the program, precisely because there’s no

guarantee that they’ll be run. This kind of check should be implemented with an if

statement guarding a raise. You should only ever use assert for checks that you believe

should always be true, but where you’d like to know if you were wrong.

 Custom exceptions
Whenever you are working with a new third-party library, there are usually a variety of

custom exceptions exposed to you. Pint offers UndefinedUnitError for cases where a

unit isn’t listed in pint’s database and DimensionalityError for conversions that are not

possible, for example. UndefinedUnitError is a type of AttributeError to match the

ureg.watt method of accessing a unit. DimensionalityError is a subclass of TypeError,

implying that the developers of the library want developers to think of quantities of

different units as though they were different types.

Click has a series of exceptions for handling the parsing of command-line

options which are not relevant to our code; requests provide specific exceptions in the

requests.exception module (such as ConnectTimeout, ReadTimeout, InvalidSchema,

Chapter 11 Fault toleranCe

499

InvalidURL, etc.) that developers can catch to handle specific error cases, or through

parent classes such as requests.exception.Timeout for all timeout errors, or even

IOError as it is the base class of all requests-specific exceptions.

It’s not always clear what type of exception third-party code raises; the intentions

of the developer and how they see their code are a substantial influence. The only way

to know which exceptions you’re supposed to catch from third-party code is to read the

documentation5 and trust that it is accurate.

 Creating new exception types

When you’re writing library code that defines new exception types, you should put

yourself in the shoes of your future users. Make sure that there is sufficient variety to

communicate precisely which error has occurred but arrange them in such a way that

they form a cohesive whole, both with the default exception types and each other.

Like all API design, the most important success criterion is that your end-users find it

intuitive.

Our apd.sensors package uses None as a signaling value for when a sensor’s value

cannot be determined. Sensors can fail to return a value for a range of reasons: there

could be a temporary error in retrieving the value (such as a connection error in the solar

output sensor) or a permanent error (such as the AC status sensor on a machine that

doesn’t have a battery charging circuit).

A sensor failing to return a data point isn’t a LookupError of either type: the code

did find the sensor, it’s just not working correctly. It’s not a TypeError or a ValueError,

as no argument is either the wrong type or an unacceptable value. The closest match of

the built-in exception types is RuntimeError, our exception type of last resort. To avoid

raising RuntimeError directly, we can define some exception subclasses and rework our

code to raise these exceptions rather than returning None as a sentinel object.

Listing 11-2 demonstrates new exceptions we can add to the apd.sensors package,

including a base class for all apd.sensors exceptions, a more specific one for problems

with data collection, and two subclasses for types of data collection problem. These

classes allow users of the code to identify specific problems in their sensor code or to

look for broad classes of sensor-related failures.

5 And often, unfortunately, the code is the documentation.

Chapter 11 Fault toleranCe

500

Listing 11-2. New exceptions for apd.sensors, stored as exceptions.py

class APDSensorsError(Exception):

 """An exception base class for all exceptions raised by the

 sensor data collection system."""

class DataCollectionError(APDSensorsError, RuntimeError):

 """An error that represents the inability of a Sensor instance

 to retrieve a value"""

class IntermittentSensorFailureError(DataCollectionError):

 """A DataCollectionError that is expected to resolve itself

 in short order"""

class PersistentSensorFailureError(DataCollectionError):

 """A DataCollectionError that is unlikely to resolve itself

 if retried."""

These four exceptions allow end-users to catch errors intuitively. Wrapping

sensor.value() with a try/except that catches any of RuntimeError, APDSensorsError,

or DataCollectionError would all catch the failures. The fact that there is an

IntermittentSensorFailureError also allows downstream code to identify that

particular case and to retry the read, such as the example function in Listing 11-3.

Listing 11-3. Example function to retry a sensor read if there’s an intermittent

problem

from apd.sensors.base import Sensor, T_value

from apd.sensors.exceptions import IntermittentSensorFailureError

def get_value_with_retries(sensor: Sensor[T_value], retries: int=3) -> T_value:

 for i in range(retries):

 try:

 return sensor.value()

 except IntermittentSensorFailureError as err:

 if i == (retries - 1):

 # This is the last retry, reraise the underlying error

 raise

 else:

 continue

Chapter 11 Fault toleranCe

501

 # It shouldn't be possible to get here, but it's better to

 # fall through with an appropriate exception rather than a

 # None

 raise IntermittentSensorFailureError(f"Could not find a value "

f"after {retries} retries")

We can then use these errors in place of return None in the various sensors.

This allows us to remove the t.Optional[...] constructions in the type of various

sensors. Changing this type does mean that previously JSON-encoded sensor values

are no longer valid, as None is no longer a valid sensor value for this sensor. Any code

that calls sensor.from_json_compatible(...) or sensor.format(...) may raise an

exception. When writing code that stores sensor values and then restores them later,

it’s important to ensure that any errors are caught, and the data point is discarded.

If we wanted to ensure compatibility for future changes, we could write migration

functions and store version numbers with the sensor data.

 Additional metadata

We are already raising RuntimeError in the CLI interface to communicate an error

message. This code path is another good use for a custom exception; we can create

an exception in Listing 11-4 that is not of a commonly suppressed type6 and stores

additional metadata, such as the required exit status code.

Listing 11-4. A new exception type with additional metadata

@dataclasses.dataclass(frozen=True)

class UserFacingCLIError(APDSensorsError, SystemExit):

 """A fatal error for the CLI"""

 message: str

 return_code: int

 def __str__(self):

 return f"[{self.return_code}] {self.message}"

6 Just inheriting directly from Exception would work well here, too. We keep APDSensorsError
primarily for aesthetic reasons, as it’s unlikely that this code would be called by a consumer that
would want to silence any and all APD Sensor errors, but it does make it possible. The meaning
of SystemExit matches closely, so that has also been included, but I want to store additional
metadata that SystemExit doesn’t provide.

Chapter 11 Fault toleranCe

502

It’s usual to instantiate an exception with a single argument: a human-readable

explanation of the exception. This approach isn’t the only format for exceptions; for

example, the OSError exception type has arguments for numeric error identifiers as well

as the human-readable string.

Note While most built-in exceptions accept an arbitrary number of arguments,
I'd recommend against using this to store metadata about an exception. a custom
exception type with well-defined parameters is always clearer than a convention
for how a tuple's arguments are interpreted.

Exception types are Python classes so we can use any of our standard techniques to

store additional information as part of an exception. I would recommend a data class, as

we do with any Python class that primarily stores data. We can then extract this metadata

during the handling of the exception, allowing us to consolidate the return code and the

human-readable message for a failure into one object. Here, we’re explicitly adding two

items of metadata. The custom UserFacingCLIError.__str__() method is needed because

casting an Exception to a string must return only the user-facing representation of the error,

whereas the default implementation for dataclasses displays a tuple of all the arguments.

We can then use this exception to show a message to the user and to return the

correct exit code to the operating system.

if develop:

 try:

 sensors = [get_sensor_by_path(develop)]

 except UserFacingCLIError as error:

 click.secho(error.message, fg="red", bold=True)

 sys.exit(error.return_code)

 Tracebacks involving multiple exceptions
When we raise an exception from Python code which we don’t subsequently catch, the

interpreter prints a traceback. Tracebacks provide the end-user with information about

what exception was raised and exactly what part of the code triggered it. The following

is an example traceback obtained by deliberately introducing a bug into the IP address

sensor:

Chapter 11 Fault toleranCe

503

Traceback (most recent call last):

 File "...\Scripts\sensors-script.py", line 11, in <module>

 load_entry_point('apd.sensors', 'console_scripts', 'sensors')()

 File "...\site-packages\click\core.py", line 764, in __call__

 return self.main(*args, **kwargs)

 File "...\site-packages\click\core.py", line 717, in main

 rv = self.invoke(ctx)

 File "...\site-packages\click\core.py", line 956, in invoke

 return ctx.invoke(self.callback, **ctx.params)

 File "...\site-packages\click\core.py", line 555, in invoke

 return callback(*args, **kwargs)

 File "...\src\apd\sensors\cli.py", line 72, in show_sensors

 click.echo(str(sensor))

 File "...\src\apd\sensors\base.py", line 31, in __str__

 return self.format(self.value())

 File "...\src\apd\sensors\sensors.py", line 41, in value

 addresses = socket.getaddrinfo("hostname", None)

 File "...\Lib\socket.py", line 748, in getaddrinfo

 for res in _socket.getaddrinfo(host, port, family, type, proto, flags):

socket.gaierror: [Errno 11001] getaddrinfo failed

Each pair of File and code lines in the traceback represents a function in the

call stack. The bottom one is the line that raised the exception, with each pair above

providing context as to in which part of the software the error occurred. In this case, the

exception was raised in the standard library’s socket.py, although it’s not immediately

obvious why. If we go back up one level, we see a call from code that we control into the

standard library. If you assume that the libraries you’re using are free from bugs (which

is generally a fair assumption), then it’s likely that the lowest stack entry that points to

code we control is the culprit. It’s not always this line, sometimes higher parts of the

stack are responsible (e.g., due to setting a variable incorrectly), but this is usually the

best place to begin debugging.

In this case, we can see from the stack trace that we have passed a string literal

containing “hostname”, but the first argument to getaddrinfo(...) should be an actual

hostname. In this case, the error was caused by accidentally wrapping the variable name

in quotation marks rather than passing the variable, something a linter may have caught.

Chapter 11 Fault toleranCe

504

An exception is usually one of the first things Python developers see (both in their

careers and when solving a particular problem), so tracebacks are quite familiar to most

developers; however, there are some minor variations on tracebacks that are much less

commonly seen but very useful.

 Exception in except or finally block

The first alternative form represents raising an exception while handling another

exception. Usually, the only raise statement in an exception handler is a bare raise

to reraise the caught exception, usually after introspecting the state of the system to

determine if the exception should be suppressed. However, the introspection code itself

could contain an error that causes an unhandled exception. It’s also possible that code in

a finally: block could cause an exception to be raised.

The error that was caused when we passed "hostname" rather than hostname

exposed an error case that we aren’t currently handling. If we pass a hostname that

cannot be resolved through the DNS system, then an exception is raised. If we wanted

to handle this case differently to other potential OSErrors raised here, we’d need to

introspect the exception in the handler.

OSErrors provide an errno= attribute to get a numeric code to identify the

particular problem, rather than subclasses for each possible error. When catching the

exception, if we erroneously check for an err_no= attribute rather than errno=, then an

AttributeError is raised. Both the original OSError exception and the AttributeError

are useful information to pass to the end-user, so both tracebacks are provided.

The incorrect conditional code is given as follows:

41. try:

42. addresses = socket.getaddrinfo("hostname", None)

43. except OSError as err:

44. if err.err_no == 11001:

45. raise

The result is that two exceptions are shown, stacked, as follows:

Traceback (most recent call last):

 File "...\src\apd\sensors\sensors.py", line 42, in value

 addresses = socket.getaddrinfo("hostname", None)

 File "...\Lib\socket.py", line 748, in getaddrinfo

Chapter 11 Fault toleranCe

505

 for res in _socket.getaddrinfo(host, port, family, type, proto, flags):

socket.gaierror: [Errno 11001] getaddrinfo failed

During handling of the preceding exception, another exception occurred:

Traceback (most recent call last):

 File "...\Scripts\sensors-script.py", line 11, in <module>

 load_entry_point('apd.sensors', 'console_scripts', 'sensors')()

 File "...\site-packages\click\core.py", line 764, in __call__

 return self.main(*args, **kwargs)

 File "...\site-packages\click\core.py", line 717, in main

 rv = self.invoke(ctx)

 File "...\site-packages\click\core.py", line 956, in invoke

 return ctx.invoke(self.callback, **ctx.params)

 File "...\site-packages\click\core.py", line 555, in invoke

 return callback(*args, **kwargs)

 File "...\src\apd\sensors\cli.py", line 72, in show_sensors

 click.echo(str(sensor))

 File "...\src\apd\sensors\base.py", line 31, in __str__

 return self.format(self.value())

 File "...\src\apd\sensors\sensors.py", line 44, in value

 if err.err_no == 11001:

AttributeError: 'gaierror' object has no attribute 'err_no'

The first exception to be displayed is the first one that occurred: the lower-level

exception that we were handling when we triggered the second exception. The

traceback is much shorter because all lines of traceback that are common with the

second exception are omitted. The topmost of the context lines in the first traceback

(sensors.py, line 42) points to the try block of a try/except construction. There

must be a single line in the second traceback that points to a line in an except block

corresponding with the try. In this case, it’s sensors.py, line 44. All lines above that one

also apply as context to the first traceback.

The first and second tracebacks are separated with a line saying “During handling

of the above exception, another exception occurred:”. This makes it clear that the

second exception happened inside a try block that contained the code which triggered

the first exception. The interpreter prints the full traceback for the second exception in

the same format as any normal exception traceback.

Chapter 11 Fault toleranCe

506

Any number of tracebacks can be shown as part of this format, although it’s rare for

there to be more than 2. This is only because it’s considered good style to minimize the

amount of code in an except or finally block, so it’s not unheard of to see more.

 raise from

Sometimes we want to replace an exception that we’ve caught with another one,

such as replacing an ImportError for adafruit_dht in our temperature sensor with a

PersistentSensorFailureError, indicating that the sensor can’t provide a value and

that it’s not expected to change in short order. This is especially useful when we have

defined new exception types for a library, as it lets us simplify the possible exceptions a

function can raise.

If we write a try/except construction that directly raises the new

PersistentSensorFailureError, then any traceback would separate the two saying that

our exception was raised while handling the import error, as we saw earlier. This isn’t an

accurate description of the situation, as we’re not really handling the exception from a

user perspective. Python provides for a raise ... from ... construction here to mark

an exception as being a replacement for another.

We should update the sensor property from the DHT sensor base class to use this

approach, as shown in Listing 11-5.

Listing 11-5. New version of DHT base class

import os

import typing as t

from .exceptions import PersistentSensorFailureError

class DHTSensor:

 def __init__(self) -> None:

 self.board = os.environ.get("APD_SENSORS_TEMPERATURE_BOARD",

"DHT22")

 self.pin = os.environ.get("APD_SENSORS_TEMPERATURE_PIN", "D20")

 @property

 def sensor(self) -> t.Any:

Chapter 11 Fault toleranCe

507

 try:

 import adafruit_dht

 import board

 sensor_type = getattr(adafruit_dht, self.board)

 pin = getattr(board, self.pin)

 return sensor_type(pin)

 except (ImportError, NotImplementedError, AttributeError) as err:

 # No DHT library results in an ImportError.

 # Running on an unknown platform results in a

 # NotImplementedError when getting the pin.

 # An unknown sensor type causes an AttributeError

 raise PersistentSensorFailureError(

"Unable to initialise sensor interface") from err

This results in precisely the same formatting of output as without the from err

clause, but with a different separator line. Rather than saying the second exception

occurred while handling the first, the two tracebacks are separated by “The above

exception was the direct cause of the following exception:”.

As a special case to the preceding example, using raise PersistentSensorFail

ureError("Unable to initialise sensor interface") from None would result in

the original ImportError being completely suppressed. In this case, only our exception

would be shown to the end-user, and it would contain the full context in the traceback

lines.

 Testing for exception handling
We have some tests that involve exceptions in the CLI tests. Specifically, we try calling

the get_sensor_by_path(...) function with various invalid sensor paths and assert that

RuntimeError is raised. Pytest’s raises(...) context manager is used for asserting that

we expect a block of code to raise a certain exception. It takes two arguments: the type

of the exception and an optional match= parameter to define a regex filter on the string

representation of the error.

with pytest.raises(RuntimeError, match="Could not import module"):

 subject("apd.nonsense.sensor:FakeSensor")

Chapter 11 Fault toleranCe

508

The context manager catches RuntimeError and checks if the string

representation matches the match= parameter.7 If any other exception is raised,

including different RuntimeErrors which do not match the string, then the context

manager reraises them as normal. If no matching exception has been raised by the

time the with pytest.raises(...): block ends, then the context manager raises an

AssertionError, meaning that the test fails.

This approach lets us test that code raises the exceptions we expect, so we can

be confident that our functions raise exceptions in situations where we know the

data to be bad. This is only half the battle; the other side to exceptions in testing is

to inject exceptions in places where they might be raised and test that the calling

code behaves correctly. For example, we might want to test that a sensor that raises

IntermittentSensorFailureError(...) does not cause the whole data collection run

to fail.

 New behaviors

We’ve decided that Sensor’s value() function should return either an object of the type

specified in the generic Sensor[type] declaration or should raise DataCollectionError.

We haven’t defined what the CLI or API should do if a sensor fails. There’s little point

testing the exception behavior before we know what behavior we want.

We’ll start with the CLI. When there’s an error, I want to show the error string in the

command-line interface and continue with the rest of the sensor lookups. It would also

be very useful to have an optional flag to show the whole exception traceback, to help

developers debug precisely why a sensor isn’t working. The code to implement this is in

Listing 11-6.

Listing 11-6. Updated command-line entrypoint with exception handling

@click.command(help="Displays the values of the sensors")

@click.option(

 "--develop", required=False, metavar="path",

help="Load a sensor by Python path"

)

7 The match parameter can be either a regex string or a compiled regex pattern. To match a string
literal that means something different as a regex, use re.escape(string_literal).

Chapter 11 Fault toleranCe

509

@click.option(

 "--verbose", is_flag=True, help="Show additional info"

)

def show_sensors(develop: str, verbose: bool) -> int:

 sensors: t.Iterable[Sensor[t.Any]]

 if develop:

 try:

 sensors = [get_sensor_by_path(develop)]

 except UserFacingCLIError as error:

 if verbose:

 tb = traceback.format_exception(type(error), error,

error.__traceback__)

 click.echo("".join(tb))

 click.secho(error.message, fg="red", bold=True)

 return error.return_code

 else:

 sensors = get_sensors()

 for sensor in sensors:

 click.secho(sensor.title, bold=True)

 try:

 click.echo(str(sensor))

 except DataCollectionError as error:

 if verbose:

 tb = traceback.format_exception(type(error), error,

error.__traceback__)

 click.echo("".join(tb))

 continue

 click.echo(error)

 click.echo("")

 return 0

Chapter 11 Fault toleranCe

510

Note the code we’ve written to format the entire exception is rather clunky. the
traceback.format_exception(...) function has maintained its signature
since the python 1 era,8 albeit with a few additions. three arguments are required,
but they can all be extracted from the exception object itself. the traceback object
can be replaced by none to indicate that only the exception information should be
formatted, not the whole traceback.

We should also modify the behavior of the API. To maintain backward compatibility,

we should make the API substitute a None for any DataCollectionError in existing

API versions. It’s possible (although perhaps unlikely) that some user would have

written code that monitors how often errors occur by looking for None values in the

API response. Going forward, we’d want to create a new version of the API that handles

errors intelligently, so API users get useful information about failures.

To test this new behavior, we need to create a testing Sensor subclass (Listing 11-7)

that raises specific exceptions so that we can verify that the surrounding code behaves

appropriately. This lets us reliably trigger sensor errors in our tests.

Listing 11-7. Definition of FailingSensor test sensor

from apd.sensors.base import JSONSensor

from apd.sensors.exceptions import IntermittentSensorFailureError

class FailingSensor(JSONSensor[bool]):

 title = "Sensor which fails"

 name = "FailingSensor"

8 In Python 1.x exceptions were not objects that took a message as an argument. They were
raised as raise ValueError, “Value is out of range” (for example). The traceback had to
be extracted from the sys.exc_traceback global variable. To format an exception, you’d need
its type, its string representation, and the traceback. The type and string representation were
merged in Python 2, but it wasn’t until Python 3 that exception objects started holding their own
traceback information.

Chapter 11 Fault toleranCe

511

 def __init__(self, n: int=3, exception_type:

Exception=IntermittentSensorFailureError):

 self.n = n

 self.exception_type = exception_type

 def value(self) -> bool:

 self.n -= 1

 if self.n:

 raise self.exception_type(f"Failing {self.n} more times")

 else:

 return True

 @classmethod

 def format(cls, value: bool) -> str:

 raise "Yes" if value else "No"

In Listing 11-8, we will test the v1.0 API server but with the get_sensors(...)

method mocked out to return the FailingSensor and PythonVersion sensors.

Listing 11-8. Test to verify the 1.0 API remains compatible

 @pytest.mark.functional

 def test_erroring_sensor_shows_None(self, api_server, api_key):

 from .test_utils import FailingSensor

 with mock.patch("apd.sensors.cli.get_sensors") as get_sensors:

 # Ensure the failing sensor is first, to test that subsequent

 # sensors are still processed

 get_sensors.return_value = [FailingSensor(10), PythonVersion()]

 value = api_server.get("/sensors/",

headers={"X-API-Key": api_key}).json

 assert value['Sensor which fails'] == None

 assert "Python Version" in value.keys()

Chapter 11 Fault toleranCe

512

 Advanced mocking with unittest.Mock

As we saw in Chapter 8, an alternative approach for creating mock objects is to use the

mock support in the standard library’s unittest package. Previously, we created raw Mock

objects, but they can also be created with an optional spec= parameter. This causes them

only to emulate the attributes of the object passed, rather than returning a new mock

for any arbitrary attribute access. This approach is helpful, as any code that attempts to

detect the presence of attributes on an object would behave the same when passed a

mock as if a real object had been passed.

This makes the mock objects much closer to the real things being tested and fixes

a whole class of testing bugs. If you’re using isinstance(...) conditions, especially

when combined with the use of abstract base classes that implement subclass hooks,

then Mock objects that don’t use a spec= parameter can cause the wrong code path to be

taken, as in the example console session in the following:

>>> import collections.abc

>>> import unittest.mock

>>> from apd.sensors.base import Sensor

>>> unspecced = unittest.mock.MagicMock()

>>> isinstance(unspecced, Sensor)

False

>>> isinstance(unspecced, collections.abc.Container)

True

>>> specced = unittest.mock.MagicMock(spec=Sensor)

>>> isinstance(specced, Sensor)

True

>>> isinstance(specced, collections.abc.Container)

False

We can use this mock object to create mock sensors that trigger exceptions or return

specific values. A slight problem with this approach is that none of the real Sensor base

class code is involved, so we can’t rely on our mock objects having helper methods

provided by the base class. We need to customize the behavior of the whole user-facing

API (such as the __str__() method) rather than only implementing the functions we

need to customize, as we did with our first FailingSensor implementation, as in

Listing 11-9.

Chapter 11 Fault toleranCe

513

Listing 11-9. An alternative way to create a FailingSensor object

from apd.sensors.base import Sensor

from apd.sensors.exceptions import IntermittentSensorFailureError

FailingSensor = mock.MagicMock(spec=Sensor)

FailingSensor.title = "Sensor which fails"

FailingSensor.name = "FailingSensor"

FailingSensor.value.side_effect = IntermittentSensorFailureError(

"Failing sensor")

FailingSensor.__str__.side_effect = IntermittentSensorFailureError(

"Failing sensor")

The title and name attributes need to be set as there are no title and name

attributes on the Sensor base class, only type declarations that imply that they are

available on subclasses. If we didn’t set them here, then any attempt to access them

would result in an AttributeError.

We’ve previously used the return_value attribute on a Mock object to define what

value should be returned if an object is called: FailingSensor.__str__.return_value =

"Yes" would configure the mock such that str(FailingSensor) == "Yes". We can’t use

this approach to raise an exception, though.

The side_effect attribute can contain an exception to be raised, an iterable of items

to be returned from multiple invocations or a function that is called to determine the

result. Setting the side effect to be an iterable is a convenient way to specify changing

behavior. For example, with the following side-effect configuration, the first time

str(FailingSensor) is used, it raises an IntermittentSensorFailureError telling the

user that two more failures are expected. If str(FailingSensor) is repeatedly called,

it works through the list raising the next two IntermittentSensorFailureErrors, then

returning "Yes" on the fourth try.

FailingSensor.__str__.side_effect = [

 IntermittentSensorFailureError("Failing 2 more times"),

 IntermittentSensorFailureError("Failing 1 more times"),

 IntermittentSensorFailureError("Failing 0 more times"),

 "Yes"

]

Chapter 11 Fault toleranCe

514

Unfortunately, any further invocations result in a StopIteration error, as the

side_effect method of specifying return values has a one-to-one mapping of list items

to results of invocations. It’s possible to use functions from the itertools module9 to

create an infinitely long iterable, allowing arbitrarily many calls to str(FailingSensor).

FailingSensor.__str__.side_effect = itertools.chain(

 [

 IntermittentSensorFailureError("Failing 2 more times"),

 IntermittentSensorFailureError("Failing 1 more times"),

 IntermittentSensorFailureError("Failing 0 more times"),

],

 itertools.cycle(["Yes"])

)

This example uses the itertools.cycle(...) function to create an infinitely long

iterable that repeats the items from the iterable it was given as an argument, as well as

the , which appends arbitrary iterables together. The result of which is an iterable that

can be used as a side effect to raise exceptions three times, then consistently return

"Yes".

 Warnings
Warnings are implemented in a similar way to exceptions but behave very differently.

Although developers sometimes talk about raising warnings, warnings aren’t used with

the raise keyword10 but are triggered with the warnings.warn(...) function. The most

common warning that developers come across is DeprecationWarning. You may well

have seen some while running the example code for this book. This is inevitable, as the

underlying libraries may deprecate features at any time or may themselves be using a

deprecated feature to maintain support for older versions of code.

9 We looked at itertools.groupby(...) previously, but the whole itertools module is worth
learning about. It’s one of my favorite modules in the standard library, as it provides helper
functions for many of the common tasks involving generators.

10 However, as they are part of the BaseException type hierarchy, it is technically possible to raise a
warning with the raise keyword, but this is only there to support some internal implementation
details of the warning framework. Warnings should never be raised directly; it’s not meaningful
and is very confusing.

Chapter 11 Fault toleranCe

515

For example, for a short time during the writing of this book, the aiohttp module

triggered a deprecation warning when run in Python 3.8, warning that it uses an older

signature for asyncio.shield(...)11.

 ...\lib\site-packages\aiohttp\connector.py:944: DeprecationWarning: The

loop argument is deprecated since Python 3.8, and scheduled for removal

in Python 3.10.

 hosts = await asyncio.shield(self._resolve_host(

A DeprecationWarning is intended to tell developers that a pattern they are using is

no longer considered best practice. It should be clear about what’s wrong (in this case,

the loop= argument shouldn’t be passed), and it should give a clear timeframe for when

the problem must be fixed (before upgrading to Python 3.10).

In this case, it’s the Python standard library raising the deprecation warning, and the

intended audience is the developer of aiohttp. As users of aiohttp, we’re not the intended

audience, and we shouldn’t be concerned about seeing deprecation warnings, so long

as the timeframe they specify isn’t about to end. In this particular case, the aiohttp

developers fixed this deprecation warning within 2 weeks of Python 3.8 being released.

The specific code from aiohttp’s connector.py that triggered the problem is on line

944, as specified in the warning message. If we look at that code, we can see the code that

triggered the exception.

944. hosts = await asyncio.shield(self._resolve_host(

945. host,

946. port,

947. traces=traces), loop=self._loop)

The code in the Python standard library that implements the warning is as follows:

 if loop is not None:

 warnings.warn("The loop argument is deprecated since Python 3.8, "

 "and scheduled for removal in Python 3.10.",

 DeprecationWarning, stacklevel=2)

11 A function to prevent an asyncio task from being canceled if the calling task is canceled. In this
case, it’s used to allow DNS lookups to be shared between requests, as the lookup would need to
be done even if the request that triggered it first was canceled.

Chapter 11 Fault toleranCe

516

The warn(...) function can either take a string and a type of warning as the first

two arguments or a warning instance as the first argument. If only a string is passed

with no warning type, it is assumed to be a UserWarning. The stacklevel= argument

corresponds to how many rows from the bottom of a traceback the relevant code is. It’s

really important to get this right, as a warning should always implicate the user’s code,

not the code that’s detecting the problem and raising the warning.

The default is stacklevel=1, which shows the source of the deprecation warning

as the warnings.warn(...) call. Here, stacklevel=2 causes the context displayed to

be the line of code that called the function that warnings.warn(...) is in. Similarly,

stacklevel=3 would be one function further removed.

We made a change to our Config object in the apd.aggregation package when

we added support for map-based images. We effectively deprecated the sensor_name=

parameter in favor of a differently specified get_data= parameter, but we didn’t expose this

to the user. This is a good candidate for a DeprecationWarning, as shown in Listing 11-10.

Listing 11-10. Updated Config data class that issues a deprecation warning for

sensor_name

@dataclasses.dataclass

class Config(t.Generic[T_key, T_value]):

 title: str

 clean: CleanerFunc[Cleaned[T_key, T_value]]

 draw: t.Optional[

 t.Callable[

 [t.Any, t.Iterable[T_key], t.Iterable[T_value],

t.Optional[str]], None

]

] = None

 get_data: t.Optional[

 t.Callable[..., t.AsyncIterator[t.Tuple[UUID,

t.AsyncIterator[DataPoint]]]]

] = None

 ylabel: t.Optional[str] = None

 sensor_name: dataclasses.InitVar[str] = None

Chapter 11 Fault toleranCe

517

 def __post_init__(self, sensor_name: t.Optional[str] = None) -> None:

 if self.draw is None:

 self.draw = draw_date # type: ignore

 if sensor_name is not None:

 warnings.warn(

 DeprecationWarning(

 f"The sensor_name parameter is deprecated. Please pass "

 f"get_data=get_one_sensor_by_deployment('{sensor_name}') "

 f"to ensure the same behaviour. The sensor_name=

f"parameter "

 f"will be removed in apd.aggregation 3.0."

),

 stacklevel=3,

)

 if self.get_data is None:

 self.get_data = get_one_sensor_by_deployment(sensor_name)

 if self.get_data is None:

 raise ValueError("You must specify a get_data function")

Note the stacklevel= parameter here is 3, not 2. We want this warning to
be shown when a user instantiates a Config object. the @dataclass decorator
generates an __init__(...) function which calls __post_init__(...). a
stacklevel of 2 would show the deprecation warning as being associated with the
generated __init__(...) function rather than the calling code. If you're not
sure, try raising an exception and looking at the stack trace.

The resulting warning shows where the incorrect code was (analysis.py, line 287), has

exact instructions for what to fix, and includes a deadline for fixing it. It also shows the line

in question, which in this case is the first line of a multiline Config(...) constructor call.

...\src\apd\aggregation\analysis.py:287: DeprecationWarning:

The sensor_name parameter is deprecated. Please pass

get_data=get_one_sensor_by_deployment('Temperature') to ensure

the same behaviour. The sensor_name= parameter will be removed

in apd.aggregation 3.0.

 Config(

Chapter 11 Fault toleranCe

518

 Warning filters
It’s possible to define new warning types to complement the built-in ones, but this is

less useful than subclassing exceptions. The main reason to create new warning types

is to allow end-users to make better use of warning filters. A warning filter changes the

behavior of warnings away from the default, to make them more or less prominent.

Changing the filter can be used to control more accurately the set of warnings that

are shown to end-users. If you’re maintaining a tool that depends on a library which

causes multiple deprecation warnings, then suppressing the warnings for end-users

improves their confidence in the tool.12

warnings.simplefilter("ignore", DeprecationWarning)

Conversely, you could increase the severity of warnings to be exceptions to help you

to debug what precisely their cause is. The action "error" for the warning filter causes any

warnings to be treated as exceptions. That is, a full traceback is displayed, and execution

stops once the code encounters its first warning.13 Using the post-mortem debugger in

combination with this option is an effective way of investigating the reason for warnings.

warnings.simplefilter("error", DeprecationWarning)

Tip When running python code directly as python script.py, you can set the
default warning behavior with the -W command-line option, as python -Werror
script.py. Setting the PYTHONWARNINGS environment variable has the same
effect, but it works for python-based executables that aren't invoked through the
interpreter directly, such as our sensors command-line tool.

If a downstream component hasn’t defined custom warnings (and most do not),

you can also filter warnings by file, line number,14 message, or any mixture of these.

This flexibility allows you to suppress specific warnings that you’re aware of without

suppressing any others that you may not know about.

12 Just don’t forget to fix any problems before the deprecation warning expires, as if the tool stops
working that will have a much more significant impact on users’ confidence in it.

13 This is the reason that warnings are a type of exception, so they can be raised by this filter action.
14 Be aware that the filename and line number may change if a new version of the library is

released.

Chapter 11 Fault toleranCe

519

import re, warnings

warnings.filterwarnings(

 "ignore",

 message=re.escape("The sensor_name parameter is deprecated"),

 category=DeprecationWarning,

 module=re.escape("apd.aggregation.analysis"),

 lineno=275

)

Finally, you can modify a warning filter temporarily and restore the old ones

automatically. This can be useful if a single function raises lots of different warnings that

you’d like to suppress, but without hiding them when triggered through different code paths.

import warnings

with warnings.catch_warnings():

 warnings.simplefilter("ignore")

 function_that_warns_a_lot()

The same context manager is useful in testing if you want to assert that a warning was

raised in your code. This is useful if you want to be confident that warnings are shown

in certain complex situations, but it’s usually not necessary. The catch_warnings(...)

function takes an optional record=True argument which allows access to a record of all

warnings raised within the body of the context manager. You should make sure that the

warning filter is not ignoring any warnings, as only warnings that are shown to the end-user

are recorded. Listing 11-11 shows an example test that makes use of this functionality.

Listing 11-11. A test to ensure a warning is raised

def test_deprecation_warning_raised_by_config_with_no_getdata():

 with warnings.catch_warnings(record=True) as captured_warnings:

 warnings.simplefilter("always", DeprecationWarning)

 config = analysis.Config(

 sensor_name="Temperature",

 clean=analysis.clean_passthrough,

 title="Temperaure",

 ylabel="Deg C"

)

Chapter 11 Fault toleranCe

520

 assert len(captured_warnings) == 1

 deprecation_warning = captured_warnings[0]

 assert deprecation_warning.filename == __file__

 assert deprecation_warning.category == DeprecationWarning

 assert str(deprecation_warning.message) == (

 "The sensor_name parameter is deprecated. Please pass "

 "get_data=get_one_sensor_by_deployment('Temperature') "

 "to ensure the same behaviour. The sensor_name= parameter "

 "will be removed in apd.aggregation 3.0."

)

 Logging
Applications of all types use logging extensively. It helps end-users debug problems

and allows for more detailed bug reports, which in turn saves time trying to reproduce

problems. Logging is used in much the same way as print(...) for debugging, but it has

some significant advantages for large applications and libraries.

The most significant advantage of logging over print(...) debugging is that the

logging framework associates every log entry with a severity. Users can choose a log level

to control how much logging information is recorded, so they can choose to generate

debug logs only when needed (for example).

Tip If you’re writing logging statements that help with debugging, provide
an easy way for end-users to get the logs to you. pipenv does this well with a
--support flag, which prints all relevant data in markdown format for pasting
into a Github issue. Consider adding a similar option, to set a low log level and
output formatted version and configuration data along with the log file as part of
your interface design. Just don't automatically collate logs from users' systems
without their express permission, though, as that may be an invasion of their
privacy.

Chapter 11 Fault toleranCe

521

The default levels of logging are debug, info, warning, error, and critical.15

We can log a message using the matching functions in the logging module, such as

logging.warning(...), to log a message at the warning level to the root logger.

>>> logging.warning("This is a warning")

WARNING:root:This is a warning

By default, Python discards debug and info log messages, only messages

at the warning level and above are logged to the terminal with the format

LEVEL:logger:message. The threshold at which the logger changes from discarding

the messages to displaying them is that logger’s level. The format used for display

is set up the first time you use the root logger and can be adjusted by calling the

logging.basicConfig(...) function with a new formatter.16 This also allows you to

change the filter threshold level for the root logger, such as setting it to debug in the

following example:

logging.basicConfig(format="{asctime}: {levelname} - {message}", style="{",

level=logging.DEBUG)

Python has had many string formatting syntaxes over the years; to use the modern

style, pass style="{" as another argument. You may see logging configuration in older

programs use a different format, but the available keys are still the same. These keys are

listed in the standard library’s documentation under LogRecord attributes, but the most

useful ones are

 1. asctime – Formatted date/time

 2. levelname – Name for the log level

 3. pathname – Path to the file that raised the log message

 4. funcName – Name of the function that raised the log message

 5. message – The string that was logged

15 New levels can be created with logging.addLevelName(level, levelName), where level
is an integer that’s compared to the logging.DEBUG, logging.INFO, and other integer constants
for sorting. To log to this level, you must use logging.log(level, message) rather than
logging.info(message) style convenience functions.

16 It’s best to do this before any log messages have been generated. If there is already a logging
config in place, then the function will not do anything unless the force=True parameter has
been passed. Before Python 3.8 the force= parameter was not available.

Chapter 11 Fault toleranCe

522

 Nested loggers
It’s common for a nested hierarchy of loggers to be used in a program. A logger can be

retrieved with the logging.getLogger(name) function call, where name is the name of

the logger to be retrieved.

When a logger is retrieved, the name is compared to existing loggers split by .

characters. If there is an existing logger with a name that’s a prefix of the new one, then it

will become the parent. That is:

>>> import logging

>>> root_logger = logging.getLogger()

>>> apd_logger = logging.getLogger("apd")

>>> apd_aggregation_logger = logging.getLogger("apd.aggregation")

>>> print(apd_aggregation_logger)

<Logger apd.aggregation (WARNING)>

>>> print(apd_aggregation_logger.parent)

<Logger apd (WARNING)>

>>> print(apd_logger.parent)

<RootLogger root (WARNING)>

Caution had apd_aggregation_logger been created before apd_logger,
then both would have the root logger as their parent. the easiest way to ensure
this behaves correctly is to add logger = logging.getLogger(__name__)
lines to all modules. this ensures that your logger structure will be the same as the
structure of your code, making it easier to reason about. Make sure also to include
it in any __init__.py if you want to be sure that all the parent loggers are set up
correctly.

Chapter 11 Fault toleranCe

523

These loggers can each be used to log messages, with the logger that was used

displayed as part of the log message (if the logger name is included in the formatter). Any

messages a logger receives are also passed to its parent.17 It’s this behavior that allows us

to configure the format of all loggers by configuring the root logger.

>>> apd_aggregation_logger.warning("a warning")

WARNING:apd.aggregation:a warning

>>> apd_logger.warning("a warning")

WARNING:apd:a warning

>>> root_logger.warning("a warning")

WARNING:root:a warning

Individual loggers can have a new level set, which propagates to all their children

(unless they have their own level set). This allows configuring logging on a per-package

basis by setting the level of named loggers.

>>> apd_logger.setLevel(logging.DEBUG)

>>> apd_aggregation_logger.debug("debugging")

DEBUG:apd.aggregation:debugging

>>> apd_logger.debug("debugging")

DEBUG:apd:debugging

>>> root_logger.debug("debugging")

(no output)

 Custom actions
Up to now, we’ve been treating loggers as a glorified print statement, but they’re much

more flexible than that. When we log a string, the logging framework internally creates

a LogRecord object, then that is passed to a handler that formats it and outputs onto the

standard error stream.

17 Unless the logger has the logger.propagate=False attribute set, in which case they are not. If
you ever see duplicate log entries, there’s a good chance you’ve configured a logger with custom
output (as demonstrated later in this section), but have neglected to disable log propagation for
that logger.

Chapter 11 Fault toleranCe

524

Loggers can also have custom handlers that record the information logged in some

other way. The most commonly used handler is the StreamHandler, which formats log

messages (potentially using custom formatters) and displays them in the terminal. We can

use this to define that a custom log format is used for logging in the apd.aggregation

package, but the default format is used for all other logging, for example.

 Extra metadata

We can add application-specific aspects to the formatter using the extra dictionary of the

log methods. The downside of this is that all log messages that follow that format must

provide a value for the extra keys if they are part of the log format. If you set a custom

format on the root logger that requires a specific extra piece of data, it would cause all

logging calls not under your direct control to raise a KeyError. This is a good reason to

only apply a custom formatter to your own loggers, and not the root logger.

In order to do this, we need to customize a single logger with a new formatter. We

can’t use the logging.basicConfig(...) function as that only manipulates the root

logger; we need to provide a new function that sets up the handlers as we want them to

be. Listing 11-12 has an example of this function.

Listing 11-12. Helper function to configure a logger with a specific formatter

import logging

def set_logger_format(logger, format_str):

 """Set up a new stderr handler for the given logger

 and configure the formatter with the provided string

 """

 logger.propagate = False

 formatter = logging.Formatter(format_str, None, "{")

 std_err_handler = logging.StreamHandler(None)

 std_err_handler.setFormatter(formatter)

 logger.handlers.clear()

 logger.addHandler(std_err_handler)

 return logger

Chapter 11 Fault toleranCe

525

logger = set_logger_format(

 logging.getLogger(__name__),

 format_str="{asctime}: {levelname} - {message}",

)

Any additional fields that we add in the set_logger_format(...) call must also be

provided in every logging call, as an extra= dictionary, as follows:

>>> logger = set_logger_format(

... logging.getLogger(__name__),

... format_str="[{sensorname}/{levelname}] - {message}",

...)

>>> logger.warn("hi", extra={"sensorname": "Temperature"})

[Temperature/WARNING] – hi

We can work around this limitation by manipulating log records before they are

formatted. There are a few different ways we can inject variables into a log record:

customizing the factory, adding an adapter, or adding a filter. Injecting the data automatically

also allows for a more convenient interface when logging from our own code, as we no

longer have to explicitly pass all the data our formatter might want as keyword arguments.

Logging adapter

A logging adapter is a piece of code that wraps a logger to allow for customization of

any of its behaviors. It provides a process function that can be used to mutate both the

message and arguments to the underlying log functionality and can be created as shown

in Listing 11-13.

Listing 11-13. A log adapter that provides defaults for some additional keywords

import copy

import logging

class ExtraDefaultAdapter(logging.LoggerAdapter):

 def process(self, msg, kwargs):

 extra = copy.copy(self.extra)

 extra.update(kwargs.pop("extra", {}))

 kwargs["extra"] = extra

 return msg, kwargs

Chapter 11 Fault toleranCe

526

def set_logger_format(logger, format_str):

 """Set up a new stderr handler for the given logger

 and configure the formatter with the provided string

 """

 logger.propagate = False

 formatter = logging.Formatter(format_str, None, "{")

 std_err_handler = logging.StreamHandler(None)

 std_err_handler.setFormatter(formatter)

 logger.handlers.clear()

 logger.addHandler(std_err_handler)

 return logger

Using this adapter allows us to omit the extra dictionary unless we have data that we

wish to add to this log message, allowing us to leave it out when it’s not relevant. This

also makes it much easier to add new items to the format string, as we don’t need to

change every logging function call to match.

>>> logger = set_logger_format(

... logging.getLogger(__name__),

... format_str=" [{sensorname}/{levelname}] - {message}",

...)

>>> logger = ExtraDefaultAdapter(logger, {"sensorname": "none"})

>>> logger.warn("hi")

[none/WARNING] - hi

>>> logger.warn("hi", extra={"sensorname": "Temperature"})

[Temperature/WARNING] - hi

The downside of this approach is that we need to wrap every logger with the

adapter. It is a good fit for automatically populating additional data in a single module,

but it doesn’t help us to provide a default across multiple loggers because there is no

guarantee that all code using the logger will also use the adapter (in fact, for the root

logger, it’s all but guaranteed that there will be code that uses logging that isn’t aware of

our custom adapter).

We can add whatever logic we want to the adapter itself. Instead of providing an

explicit default for the sensorname, we could extract this from a context variable, for

Chapter 11 Fault toleranCe

527

example. Adapters fit best for situations where only a single logger requires a custom

piece of metadata. If you’ve defined a custom formatter for a logger that only you are

logging to, then it’s quite possible to ensure that all logging calls go through the adapter.

LogRecord factory

Another approach is to customize the creation of the internal log record objects

themselves. Customizing the factory allows for arbitrary data to be stored on all

LogRecords without the code that’s logging being aware of any difference. This allows

for custom metadata to be used in the format for loggers that third-party code uses,

such as the root logger. Making this format common to all loggers means that there is no

comingling of different log formats, which may be a significant advantage for users. The

downside is that attributes set here cannot be passed in an extra dictionary.18

In the previous example, we had lots of flexibility with how we passed the additional

data to the logging system. When overriding the LogRecord factory, we have little choice

but to use a context variable to pass the additional data in. This limits the ways in which

this method can be used, as we cannot simply pass the value we want as an argument.

Listing 11-14 shows example code for customizing the record factory to include the

value from a sensorname_var context variable in all records.

Listing 11-14. Customizing a LogRecord factory to add contextual information

and include in all logs

from contextvars import ContextVar

import functools

import logging

sensorname_var = ContextVar("sensorname", default="none")

def add_sensorname_record_factory(existing_factory, *args, **kwargs):

 record = existing_factory(*args, **kwargs)

 record.sensorname = sensorname_var.get()

 return record

18 The code that merges the extra dictionary in explicitly checks for collisions and raises a
KeyError if found.

Chapter 11 Fault toleranCe

528

def add_record_factory_wrapper(fn):

 old_factory = logging.getLogRecordFactory()

 wrapped = functools.partial(fn, old_factory)

 logging.setLogRecordFactory(wrapped)

add_record_factory_wrapper(add_sensorname_record_factory)

logging.basicConfig(

 format="[{sensorname}/{levelname}] - {message}", style="{",

level=logging.INFO

)

This approach is quite different to the previous approaches in that it changes the

logging configuration at a global level. The adapter example involved changes to each

module to wrap the logger in the appropriate adapter, and each module can have its

own adapted logger. Only one record factory can be active at a time. Although we can

override it multiple times to provide additional data, all the overrides must be written in

such a way so as not to conflict with each other. This approach can be used as follows:

>>> logger = logging.getLogger(__name__)

>>> logger.warning("hi")

[none/WARNING] – hi

>>> token = sensorname_var.set("Temperature")

>>> logging.warning("hi")

[Temperature/WARNING] - hi

>>> sensorname_var.reset(token)

Logging filters

In my opinion, logging filters provide a good middle ground between these two

approaches. The name filter may make this approach a bit counterintuitive, as filters are

intended to be used to discard log records dynamically, but it’s also the most flexible way

to mutate log records.

You can associate a logging filter with a logger, which causes it to be called for every

log message that logger processes, but you can also register it against a handler. It’s

handlers that control the formatting, so associating a filter with a handler ensures that

the custom format and the default value filter are closely associated. Whenever that

handler is used, you know that the filter is also active.

Chapter 11 Fault toleranCe

529

This approach means that the default sensor name is only populated as part of the

formatting process. The additional information can still be passed as part of the extra

dictionary, as is normal, and it is available to all logging handlers when explicitly passed.

Listing 11-15 shows an updated setup function that optionally associates a filter with the

handler.

Listing 11-15. Using a handler filter to add a default sensorname

import logging

class AddSensorNameDefault(logging.Filter):

 def filter(self, record):

 if not hasattr(record, "sensorname"):

 record.sensorname = "none"

 return True

def set_logger_format(logger, format_str, filters=None):

 """Set up a new stderr handler for the given logger

 and configure the formatter with the provided string

 """

 logger.propagate = False

 formatter = logging.Formatter(format_str, None, "{")

 std_err_handler = logging.StreamHandler(None)

 std_err_handler.setFormatter(formatter)

 logger.handlers.clear()

 logger.addHandler(std_err_handler)

 if filters is not None:

 for filter in filters:

 std_err_handler.addFilter(filter)

 return logger

Chapter 11 Fault toleranCe

530

Setting up this logger is very similar to the adapter pattern, but with an important

difference. The set_logger_format(...) call only needs to be made once. Any

subsequent calls to logging.getLogger(...) return a correctly configured logger, without

needing every user of the logger to configure the filter. The initial use is done as follows:

logger = set_logger_format(

 logging.getLogger(),

 "[{sensorname}/{levelname}] - {message}",

 filters=[AddSensorNameDefault(),]

)

>>> logger.warning("hi")

[none/WARNING] - hi

>>> logger.warning("hi", extra={"sensorname": "Temperature"})

[Temperature/WARNING] - hi

 Logging configuration
The downside to the preceding code is that, in order to change the formatter or add a

filter, we’ve had to do quite a lot of setting up for the logging system. For all applications

other than simple, self-contained tools, end-users likely want to configure their own

handlers or log formatters. This is especially true of libraries used in larger applications.

As such, it’s quite rare to configure logging with Python code in real-world

applications. Normally, logging configuration is provided through a configuration

system of some sort, such as the [logging] configuration section of the alembic.ini

file that configures the migration system. The logging.config.fileConfig(...) helper

function can be used to load logging configuration from a file, and a small amount of

glue code (Listing 11-16) can be used to make any filters we’ve added available for end-

users to take advantage of in ini-style log configuration (Listing 11-17).

Listing 11-16. Glue code to provide a handler that has a filter added by default

import logging

class AddSensorNameDefault(logging.Filter):

 def filter(self, record):

 if not hasattr(record, "sensorname"):

 record.sensorname = "none"

 return True

Chapter 11 Fault toleranCe

531

class SensorNameStreamHandler(logging.StreamHandler):

 def __init__(self, *args, **kwargs):

 super().__init__()

 self.addFilter(AddSensorNameDefault())

Listing 11-17. A sample logging configuration file that uses a filter to provide

default values for the formatter

[loggers]

keys=root

[handlers]

keys=stderr_with_sensorname

[formatters]

keys=sensorname

[logger_root]

level=INFO

handlers=stderr_with_sensorname

[handler_stderr_with_sensorname]

class=apd.aggregation.utils.SensorNameStreamHandler

formatter = sensorname

[formatter_sensorname]

format = {asctime}: [{sensorname}/{levelname}] - {message}

style = {

Caution the logging configuration file format allows for some logic to be
embedded to make the setup of complex configurations easier. this makes it
possible for arbitrary code to be run from the configuration file. It's rare for this to
be a problem, but if you have tools that are run by system administrators, then only
administrators should be able to edit the logging configuration.

Chapter 11 Fault toleranCe

532

 Other handlers
There are other useful handlers apart from the StreamHandler that we’ve been using so

far. The most common is FileHandler which outputs logging information to a named

file. Setting this as a handler on the root logger is used to build persistent log files.

More complex handlers, such as TimedRotatingFileHandler, SysLogHandler, and

HTTPHandler, are less commonly used but very powerful. These allow for the logs to

be integrated into any manner of existing log management solutions. There are even

commercial log management systems that integrate in the same way, such as Sentry with

its custom EventHandler class.

 Audit logs

Having custom loggers and handlers allows for writing audit logging systems that record

user actions in a complex system. An audit log is a log which is intended to provide

information about certain important actions that users have performed. It’s not used for

debugging, but for verifying that the system is not being abused.

To achieve this, you would usually get a new logger by name with

logging.getLogger("audit") and configure this to be an audit logger.

Unlike most loggers, most audit logs aren’t named to match a Python module.

Generally, audit loggers use special log handlers, such as handlers to append audit

logging events to a system log or sending by email. I’d recommend also outputting

audit log entries to the same output streams place as other log items. Having audit

log entries comingled with debugging information adds high-level context that can

be very useful when debugging problems.

Log handlers can be associated with multiple loggers, so custom log files can be

configured to contain the output of multiple loggers by defining a handler for each file

and associating it with each individual logger that should feed into that file. You can

also use the nested structure of loggers to create log files for logical components of an

application.

Log handlers are implemented with a Python class that provides an emit(record)

function, so it’s possible to write custom handlers to perform any application- specific

audit logging actions that may be appropriate. In practice, there are handler

implementations available for most common requirements.

Chapter 11 Fault toleranCe

533

 Designing around problems
The preceding strategies allow us to communicate problems encountered within

components of our program (using exceptions) and the end-users (using warnings and

logging). They make it significantly easier for us to understand what problems our users

are experiencing (when they’re reported). However, most problems go unreported, and

we can never think of every possible edge case ahead of time.

A crucial part of writing reliable software is to design processes that automatically

compensate for problems encountered as part of its normal running. For us, any

problem in communicating with a sensor results in a gap in the historical sensor data we

are collecting.

There are two possible causes for such a failure. Either the sensor server is working

correctly, and the aggregation process (or network) has failed, or the aggregation process

(and network) is working correctly, and the sensor has failed.

 Scheduling sensor lookups
The problem of the aggregator or network failing is the easiest to solve. Rather than the

aggregation process pulling live data from sensors, we can modify the sensors to collect

and store data periodically. It can then provide this collected data over an API. This

allows the aggregation process to detect when data was collected but not downloaded

and to correct the problem by downloading all the data since the last successful sync.

Achieving this involves significant changes to both the aggregation process and

the sensors themselves. Not only do the servers involved need to trigger a sensor data

collection at specific times, but it needs to be able to store the data and expose the set of

stored data over the API.

We’ll need to create a database integration in the same way that we did for the

aggregation process. We also need a new command-line option to store data and add

a set of dependencies for alembic and sqlalchemy to make sure we can store data to a

database. These need to be optional dependencies: not all users of the apd.sensors

package are necessarily using the aggregator, and it would be excessive to require users

to install a full database system if they only need the command-line tool for checking

current state. The optional dependency section of setup.cfg will look as shown in the

following once this new feature has been added.

Chapter 11 Fault toleranCe

534

Note Some requirements are only relevant if we have both webapp and
scheduled extras installed, as we'll use them to implement the database lookup
later. We can create another extra for these, but that does make it harder for users
to understand. You may prefer to add these dependencies to one or the other of
the other extra definitions instead. as we’re using a third extra, we'll have to bear
in mind that not all dependencies may be available when writing code. nothing is
stopping a user from installing the extra for these additional dependencies without
the two extras that it builds on.

[options.extras_require]

webapp = flask

scheduled =

 sqlalchemy

 alembic

storedapi =

 flask-sqlalchemy

 python-dateutil

We then need to ensure that our local development environment is marked as

needing this new set of optional dependencies using pipenv install. Just like the

aggregation process, we need to create a database table definition (Listing 11-18),

connect the metadata object to the alembic configuration, and generate an initial

alembic migration.

Listing 11-18. Database table for caching sensor values locally

from __future__ import annotations

import datetime

import typing as t

import sqlalchemy

from sqlalchemy.schema import Table

from sqlalchemy.orm.session import Session

Chapter 11 Fault toleranCe

535

from apd.sensors.base import Sensor

metadata = sqlalchemy.MetaData()

sensor_values = Table(

 "recorded_values",

 metadata,

 sqlalchemy.Column("id", sqlalchemy.Integer, primary_key=True),

 sqlalchemy.Column("sensor_name", sqlalchemy.String, index=True),

 sqlalchemy.Column("collected_at", sqlalchemy.TIMESTAMP, index=True),

 sqlalchemy.Column("data", sqlalchemy.JSON),

)

def store_sensor_data(sensor: Sensor[t.Any], data: t.Any, db_session:

Session) -> None:

 now = datetime.datetime.now()

 record = sensor_values.insert().values(

 sensor_name=sensor.name, data=sensor.to_json_compatible(data),

collected_at=now

)

 db_session.execute(record)

The changes in Listing 11-19 add a command-line option for specifying which

database should be connected to and a flag to mark that data should be saved to a local

database rather than just output for the user’s information. With this in place, our users

can set up a scheduled task to call our script and save the data according to a schedule.

Listing 11-19. Updated command-line script to add saving of data

@click.command(help="Displays the values of the sensors")

@click.option(

 "--develop", required=False, metavar="path",

help="Load a sensor by Python path"

)

@click.option("--verbose", is_flag=True, help="Show additional info")

@click.option("--save", is_flag=True,

help="Store collected data to a database")

Chapter 11 Fault toleranCe

536

@click.option(

 "--db",

 metavar="<CONNECTION_STRING>",

 default="sqlite:///sensor_data.sqlite",

 help="The connection string to a database",

 envvar="APD_SENSORS_DB_URI",

)

def show_sensors(develop: str, verbose: bool, save: bool, db: str) -> None:

 sensors: t.Iterable[Sensor[t.Any]]

 if develop:

 try:

 sensors = [get_sensor_by_path(develop)]

 except UserFacingCLIError as error:

 if verbose:

 tb = traceback.format_exception(type(error), error,

error.__traceback__)

 click.echo("".join(tb))

 click.secho(error.message, fg="red", bold=True)

 sys.exit(error.return_code)

 else:

 sensors = get_sensors()

 db_session = None

 if save:

 from sqlalchemy import create_engine

 from sqlalchemy.orm import sessionmaker

 engine = create_engine(db)

 sm = sessionmaker(engine)

 db_session = sm()

 for sensor in sensors:

 click.secho(sensor.title, bold=True)

 try:

 value = sensor.value()

 except DataCollectionError as error:

 if verbose:

Chapter 11 Fault toleranCe

537

 tb = traceback.format_exception(type(error), error,

error.__traceback__)

 click.echo("".join(tb))

 continue

 click.echo(error)

 else:

 click.echo(sensor.format(value))

 if save and db_session is not None:

 store_sensor_data(sensor, value, db_session)

 db_session.commit()

 click.echo("")

 sys.exit(ReturnCodes.OK)

This is sufficient for ensuring that no data would be lost if there were to be a network

or aggregation failure; however, it isn’t enough to integrate the missing data once the

error condition ends.

 APIs and filtering

We need to update our API to make it possible to extract any data that was recorded

in the past. At the same time, we can update the API to split out failed sensors into an

independent list of errors, supplementing the exception handling we added earlier in

this chapter.

Complex APIs often offer the ability for users to specify which data they need,

allowing the API implementation to be more efficient by only calculating information

that the end-user needs. More commonly, APIs offer some form of filtering option to

reduce the amount of data that’s passed on.

We need a new API endpoint that exposes the data that’s been gathered so that

the aggregation process can synchronize it to its database. The implementation of this

endpoint is shown in Listing 11-20.

Listing 11-20. New historical values endpoint for the v3.0 API

@version.route("/historical")

@version.route("/historical/<start>")

@version.route("/historical/<start>/<end>")

@require_api_key

Chapter 11 Fault toleranCe

538

def historical_values(

 start: str = None, end: str = None

) -> t.Tuple[t.Dict[str, t.Any], int, t.Dict[str, str]]:

 try:

 import dateutil.parser

 from sqlalchemy import create_engine

 from sqlalchemy.orm import sessionmaker

 from apd.sensors.database import sensor_values

 from apd.sensors.wsgi import db

 except ImportError:

 return {"error": "Historical data support is not installed"}, 501, {}

 db_session = db.session

 headers = {"Content-Security-Policy": "default-src 'none'"}

 query = db_session.query(sensor_values)

 if start:

 query = query.filter(

 sensor_values.c.collected_at >= dateutil.parser.parse(start)

)

 if end:

 query = query.filter(

 sensor_values.c.collected_at <= dateutil.parser.parse(end)

)

 known_sensors = {sensor.name: sensor for sensor in cli.get_sensors()}

 sensors = []

 for data in query:

 if data.sensor_name not in known_sensors:

 continue

 sensor = known_sensors[data.sensor_name]

 sensor_data = {

 "id": sensor.name,

 "title": sensor.title,

 "value": data.data,

 "human_readable": sensor.format(

sensor.from_json_compatible(data.data)),

Chapter 11 Fault toleranCe

539

 "collected_at": data.collected_at.isoformat(),

 }

 sensors.append(sensor_data)

 data = {"sensors": sensors}

 return data, 200, headers

The handlers to import this information into the aggregation process are very similar

to the normal sensor collection, as the data is in the same format. The process could be

implemented by adding a new command-line tool to synchronize any missing data in a

timeframe or by detecting a long time since the last successful data collection and using

the /historical endpoint instead of the normal one.

EXERCISE 11-1: SUPPORTING HISTORICAL DATA COLLECTION

this change doesn’t directly help us with situations where the server running the sensor fails.

It's not possible to recover from this for the sensor types that we have, but that is a property of

our specific sensors rather than an immutable fact. other sensors may be able to find a value

at a point in time. For example, a sensor that reports on server status may be able to extract

past state from existing system logs.

Consider what changes would need to be made to the codebase to support sensors that can

report their value at points in the past. Consider how the existing classes could be modified

to provide this extra functionality in a way that would be backward compatible with existing

sensors.

as always, there is an example of how this could be achieved in the code accompanying this

chapter. however, this won't be merged into the master branch of the code as it's too far away

from the requirements for collating the kind of data that we're storing currently.

 Summary
When writing libraries that you expect other developers to use, include custom

exceptions and raise warnings when relevant; it’s a more effective way to communicate

with your audience than a README.txt file. In particular, plan any deprecations and

ensure that warnings are shown when the old features are used.

Chapter 11 Fault toleranCe

540

Custom exception types allow downstream developers to write handlers for specific

error conditions, just as the custom exceptions in the libraries you use allow you to catch

errors in your dependencies.

Even if you’re not writing a library for others to use, the logging framework allows

for your users to configure what debugging information they’d like to store and how

they’d like it to be handled. If you don’t provide logging statements or you log them with

print(...) alone, they are more likely to be discarded rather than passed back to you as

a bug report.

While these features help with debugging and writing code to handle failures, the

most important aspect of writing code that is robust against error cases is to design

failover into the process itself.

Whatever combination of tactics you decide to use, make sure you test that your code

is behaving correctly. Automated tests can and should verify that your code behaves in

an acceptable way when things go wrong, not just when things work as expected.

 Additional resources
The following links provide extra context on the subjects covered in this chapter:

As mentioned previously, the Python standard library’s itertools

module is one of the most underused. It’s worth reading over the

documentation at https://docs.python.org/3.8/library/

itertools.html to learn the various tools it offers.

Also in the standard documentation, https://docs.python.

org/3.8/library/collections.abc.html is a useful reference

for what methods are required to implement the various types of

Python data container.

The integration I’m using for flask and SQLAlchemy is documented

at https://flask-sqlalchemy.palletsprojects.com/en/2.x/.

Details on the ini file format for logging configuration is at

 https://docs.python.org/3.8/library/logging.config.

html#logging-config-fileformat.

Chapter 11 Fault toleranCe

https://docs.python.org/3.8/library/itertools.html
https://docs.python.org/3.8/library/itertools.html
https://docs.python.org/3.8/library/collections.abc.html
https://docs.python.org/3.8/library/collections.abc.html
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://docs.python.org/3.8/library/logging.config.html#logging-config-fileformat
https://docs.python.org/3.8/library/logging.config.html#logging-config-fileformat

541
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_12

CHAPTER 12

Callbacks and data
analysis
Throughout the last 11 chapters, we’ve written a pair of utilities to collect data from

various sources and aggregate it together. We’ve designed systems for displaying the

aggregated data, recovering from error conditions, and enabling end-users to customize

every step of the process for their own needs. However, the only way to interact with this

data is to view it on a screen. There is no functionality available for actively analyzing the

data as it comes in and reacting accordingly.

In this final chapter, we’ll add a new concept to the aggregation process, allowing us

to build both triggers that detect certain conditions in the input data and actions to run

when those conditions are detected. Some potentially useful ones are threshold points

for data (such as temperature above 18°C, solar panel output above 0.5 kW, or RAM

available under 500MB). Alternatively, there are correlations between two sensors, such

as the temperature on one sensor differing from the temperature of another by more

than a threshold, or correlations across time, such as the solar power being significantly

more or less than the previous day.

 Generator data flow
All the analysis code we’ve written so far is passive; it is interposed between a data

source and a consumer and modifies the data as the consumer pulls it through. These

functions are all variations on a for loop; they iterate over the source data and may yield

output. Generators are an excellent way of refactoring loops where both the input and

output are iterables.

https://doi.org/10.1007/978-1-4842-5793-7_12#ESM

542

The same code can be expressed in a few different ways, as a comprehension,

a loop that modifies a shared variable, or as a generator function. For example,

our clean_passthrough(...) function to get values from DataPoint objects is a

generator function, as shown in Listing 12-1.

Listing 12-1. The passthrough cleaner generator function

async def clean_passthrough(

 datapoints: t.AsyncIterator[DataPoint],

) -> CLEANED_DT_FLOAT:

 async for datapoint in datapoints:

 if datapoint.data is None:

 continue

 else:

 yield datapoint.collected_at, datapoint.data

We can use this to convert an async iterator of data points to a list of

date and value pairs by using values = [value async for value in

clean_passthrough(datapoints)].

The same logic could be expressed directly as a list comprehension or as a loop that

manipulates a list object. These are shown as the two implementations in Table 12-1.

The critical difference is that by using a generator function, we can refer to the logic

of the loop by the name of the function. With comprehensions and standard loops, we

always define the logic in terms of the data we’re working on. It’s this property that made

Table 12-1. Comprehension and loop implementations of the same logic

cleaned = [

 (datapoint.collected_at,

datapoint.data)

 async for datapoint in datapoints

 if datapoint.data

]

results = []

async for datapoint in datapoints:

 if datapoint.data is None:

 continue

 else:

 results.append(

 datapoint.collected_at,

datapoint.data

)

Chapter 12 CallbaCks and data analysis

543

generator functions the best choice for us, as we need to pass a reference to the logic to

the constructor of the Config object without having yet extracted any data.

In any case, the more complex cleaner functions we’ve written could not have been

expressed as a comprehension. They need variables to keep track of state and to perform

different operations conditionally. Any comprehension can be rewritten as a generator

function,1 but not all generator functions can be rewritten as comprehensions. If you

have a comprehension that’s becoming overly complex, you should consider refactoring

it into a for loop or as a generator function.

 Generators that consume their own output
The generator functions we’ve looked at so far have emulated a for loop. They have a

source of data as an argument and can be iterated over. A generator function implements

the logic of a loop, and a function calls it with the source data it wants to be processed.

This looks like Listing 12-2, which shows a simple generator function for summing some

numbers.

Listing 12-2. Generator to sum numbers

import typing as t

def sum_ints(source: t.Iterable[int]) -> t.Iterator[int]:

 """Yields a running total from the underlying iterator"""

 total = 0

 for num in source:

 total += num

 yield total

def numbers() -> t.Iterator[int]:

 yield 1

 yield 1

 yield 1

1 However, you may need to convert the data type using a second comprehension of the right type,
as we did to convert an async iterator to a list with a list comprehension.

Chapter 12 CallbaCks and data analysis

544

def test():

 sums = sum_ints(numbers())

 assert [a for a in sums] == [1, 2, 3]

In this example, the numbers() function is used to provide an iterator of integers,

and the sum_ints(...) function takes any iterable of integers and adds them up.

Although the test() function is responsible for calling both functions and connecting

them together, it iterates over the output of sum_ints(...) only. It’s sum_ints(...) that

iterates over the output of numbers(), not test(). In this way, the data flows from the

numbers() function to the sum_ints(...) function to the test() function, as shown in

Figure 12-1.

Although we can pass any arbitrary iterable to a function to iterate over, there are

times where we want more explicit control over what the next piece of data to process

should be. One of the hardest things to express with this pattern of consuming generator

is priming a generator with an initial value, then feeding its own output back in as input

(Figure 12-2).

Any time we want to have a generator that processes its own output, we’d have to

code it to do so, rather than using an input iterator as the data source, as shown in Listing

12-3. This prevents it from being used in any way apart from on its own output.

Figure 12-1. The data flow behavior of a chain of iterators

Figure 12-2. An iterator that processes its own output, with an initial value

Chapter 12 CallbaCks and data analysis

545

Listing 12-3. A variant that has only a single start value, then processes its output

import itertools

import typing as t

def sum_ints(start: int) -> t.Iterator[int]:

 """Yields a running total with a given start value"""

 total = start

 while True:

 yield total

 total += total

def test():

 sums = sum_ints(1)

 # Limit an infinite iterator to the first 3 items

 # itertools.islice(iterable, [start,] stop, [step])

 sums = itertools.islice(sums, 3)

 assert [a for a in sums] == [1, 2, 4]

There are real use cases for wanting to write functions that can work either on an

input stream or on their own output. Any function that returns data in the same output

format as its input can be written like this, but functions that iteratively improve their

input are a good fit.

For example, if we have a function that reduces the size of an image by rescaling it

to be 50% of its input size, we could write a generator function that, given an iterable of

images, returns an iterator of resized images. Alternatively, if we could use that same

generator on its own output, we could provide an input image and get a generator of

progressively smaller versions of that same initial image.

The new function we’ve defined can no longer be used to add an arbitrary iterable

of integers like we originally wanted. One way we can make the sum_ints(...) function

work both on its own output and with arbitrary iterables is to define a new iterator that

uses a closure to share state between the code that’s consuming the generator and its

function.

Chapter 12 CallbaCks and data analysis

546

We can create a function that returns two iterators, one that delegates to the

sum_ints(...) iterator and stashes a copy of the latest value and another iterator to be

used as the input to sum_ints(...) that uses the shared value from the first function.2

The data flow for this wrapper function is shown in Figure 12-3.

Listing 12-4 demonstrates one way of writing this wrapper function.

The get_wrap_feedback_pair(...) function provides the two generators,

which are used in the test() method to create a version of sum_ints(...) with

a known initial value that passes its own output back as input.

Listing 12-4. Helper function to feed a generator’s output back as input

import itertools

import typing as t

def sum_ints(source: t.Iterable[int]) -> t.Iterator[int]:

 """Yields a running total from the underlying iterator"""

 total = 0

 for num in source:

 total += num

 yield total

def get_wrap_feedback_pair(initial=None): # get_w_f_p(...) above

 """Return a pair of external and internal wrap functions"""

 shared_state = initial

Figure 12-3. Data flow using a wrapper function to generate an iterator that
works on its own output

2 We did something similar with the get_data_by_deployment(...) iterator, which uses shared
state to define a generator that impacts another. It’s by far the most complex example of an
iterator in this book.

Chapter 12 CallbaCks and data analysis

547

 # Note, feedback() and wrap(...) functions assume that

 # they are always in sync

 def feedback():

 while True:

 """Yield the last value of the wrapped iterator"""

 yield shared_state

 def wrap(wrapped):

 """Iterate over an iterable and stash each value"""

 nonlocal shared_state

 for item in wrapped:

 shared_state = item

 yield item

 return feedback, wrap

def test():

 feedback, wrap = get_wrap_feedback_pair(1)

 # Sum the iterable (1, ...) where ... is the results

 # of that iterable, stored with the wrap method

 sums = wrap(sum_ints(feedback()))

 # Limit to 3 items

 sums = itertools.islice(sums, 3)

 assert [a for a in sums] == [1, 2, 4]

Now the sum_ints(...) function represents the logic being applied on each step

of the loop, and get_wrap_feedback_pair(...) encodes the relationship between

the output of the generator and the next value it should process. If we wanted to, for

example, make a database query based on the results of the output and use that to supply

the next value, we’d need to design a new variant of get_wrap_feedback_pair(...) that

encodes the new relationship between input and output.

This approach gets us closer to being able to control the data flow in an iterator

dynamically from the calling function, but it’s still limited. It works perfectly well if we

only ever want one relationship, but as the code is self-contained, the calling function

(test(), in our case) can’t influence the behavior. It relies on the wrapper function to

implement the appropriate logic.

Chapter 12 CallbaCks and data analysis

548

 Enhanced generators
An alternative is to change the behavior of the generator to use the “enhanced generator”

syntax.3 This allows data to be sent into a running generator every time it yields an item.

It’s still rather limited, as you cannot send more data than is yielded, but it does allow for

a more expressive way of customizing behavior.

So far we’ve been treating yield like an alternative to a return statement, but a yield

expression resolves to a value that can be stored in a variable, as received = yield

to_send. Under normal operation, the received value is always None, but it’s possible to

change this by advancing the generator using the send(...) method. This pattern allows

for generator functions that loop over data explicitly provided by their caller each time

they’re advanced.

ENHANCED ASYNCHRONOUS GENERATORS

the same model of execution is available to iterators implemented in native coroutines,

using the asend(...) coroutine on the asynchronous generator object. this behaves in

the same way as the send(...) method, except that it must be awaited. this is needed as

asynchronous iterators can block when yielding a new object, and both asend(...) and

send(...) calls are special cases of requesting a new object.

the asend(...) result may not be awaited unless the underlying generator is at a yield

statement. there is no synchronization involved in this call, so multiple calls cannot safely

be scheduled in parallel. you must always await the result of one asend(...) call before

making another to the same generator. as such, it’s rare to schedule this as a task.

there is no asynchronous variant of the next(...) method for advancing a generator by one.

although you can manually use await gen.__anext__(), i’d recommend using await

gen.asend(None) to advance an asynchronous iterator outside of a loop.

Listing 12-5 shows an example of the integer summing function that receives its data

from yield statement return values rather than an input iterable.

3 This name is taken from the Python Enhancement Proposal that added it, PEP342. Technically
speaking, this software engineering pattern is a coroutine, which the title of PEP342 makes clear.
This is an enhancement to Python from 2005, long before true coroutines using async def were
introduced. I’ll be calling these enhanced generators or referring to sending data to a generator,
to avoid confusion between these and asynchronous functions.

Chapter 12 CallbaCks and data analysis

549

Listing 12-5. Sending data to an in-progress generator

import typing as t

def sum_ints() -> t.Generator[int, int, None]:

 """Yields a running total from the underlying iterator"""

 total = 0

 num = yield total

 while True:

 total += num

 num = yield total

def test():

 # Sum the iterable (1, ...) where ... is the results

 # of that iterable, stored with the wrap method

 sums = sum_ints()

 next(sums) # We can only send to yield lines, so advance to the first

 last = 1

 result = []

 for n in range(3):

 last = sums.send(last)

 result.append(last)

 assert result == [1, 2, 4]

test()

Note the type definition of the generator has changed from t.Iterable[int]
to t.Generator[int, int, None]. the former is equivalent to t.Generator[int,
none, none], meaning it yields ints, but it expects to be sent None and returns
None as its final value.

The control flow, as shown in Figure 12-4, is much simpler in this case. Rather than

data flowing only in one direction, or in loops through intermediate functions, the two

functions pass data between themselves freely.

Chapter 12 CallbaCks and data analysis

550

Enhanced generator functions encode the body of a loop, just like standard

generators, but they are closer to the behavior of a while loop than a for loop.

Rather than looping over some input data, it’s looping with a condition and receiving

intermediate values as it progresses.

This approach works well for situations where there is a stateful function that needs

instructions from an outside source, such as image manipulation. An image editing

enhanced generator could take an initial image as its input, then commands such as

“resize”, “rotate”, “crop”, and so on. The commands could be hard-coded; they could

come from user input or from analyzing the last version it output.

 Using classes

Enhanced generators can use the value they receive from the yield statement as the next

piece of data to process or as an instruction to change what they’re doing, or they can

use a mixture of the two.

Code that’s invoked multiple times with a variety of instructions and which shares

state between invocations is commonly implemented as a class. In this case, the instance

is responsible for storing the state, and the user of the class calls different methods to

signal what code path is required.

Any code that uses this approach looks more natural than the enhanced generator

syntax. For example, Listing 12-6 shows the same mean calculation behavior expressed

as a class.

Listing 12-6. Class-based approach for long-running sets of asynchronous code

class MeanFinder:

 def __init__(self):

 self.running_total = 0

 self.num_items = 0

Figure 12-4. Control flow using the enhanced generator method

Chapter 12 CallbaCks and data analysis

551

 def add_item(self, num: float):

 self.running_total += num

 self.num_items += 1

 @property

 def mean(self):

 return self.running_total / self.num_items

def test():

 # Recursive mean from initial data

 mean = MeanFinder()

 to_add = 1

 for n in range(3):

 mean.add_item(to_add)

 to_add = mean.mean

 assert mean.mean == 1.0

 # Mean of a concrete data list

 mean = MeanFinder()

 for to_add in [1, 2, 3]:

 mean.add_item(to_add)

 assert mean.mean == 2.0

This approach is a particularly good fit for situations where you want to share code

between multiple similar functions, as the class can be subclassed and individual

methods overridden by each implementation. However, developers expect classes to be

less stateful than enhanced generators. It’s normal to call methods on an object knowing

in advance how many arguments are needed and of what type. An enhanced generator

allows developers to write programs where the receiving function decides what data to

ask for from the calling function. This can be a good fit where the generator represents

an algorithm for collating multiple pieces of data and keeping intermediate results.4

4 For example, a program that arranges images into collages might be implemented as a class
that has methods for supplying images and getting the arranged result out, or it might be
implemented as an enhanced generator where whenever an image is added, a new result is
returned.

Chapter 12 CallbaCks and data analysis

552

 Using an enhanced generator to wrap an iterable

As our enhanced generator changed the control flow to expect new items as the result of

yield, we cannot use an enhanced generator in place of a standard generator. This method

can be used to create functions that work collaboratively with their calling function to

process data, but it’s no longer usable as a simple wrapper around another iterable.

To get around this problem, we can write a wrapper function that converts the

signature of an enhanced generator to that of a standard generator function. We can

then use the enhanced generator in situations where we need to control the behavior

interactively, and the wrapped one for when we have an input iterable, as demonstrated

in Listing 12-7.

Listing 12-7. An enhanced generator that can be used as a standard generator

import typing as t

input_type = t.TypeVar("input_type")

output_type = t.TypeVar("output_type")

def wrap_enhanced_generator(

 input_generator: t.Callable[[], t.Generator[output_type, input_type,

None]]

) -> t.Callable[[t.Iterable[input_type]], t.Iterator[output_type]]:

 underlying = input_generator()

 next(underlying) # Advance the underlying generator to the first yield

 def inner(data: t.Iterable[input_type]) -> t.Iterator[output_type]:

 for item in data:

 yield underlying.send(item)

 return inner

def sum_ints() -> t.Generator[int, int, None]:

 """Yields a running total from the underlying iterator"""

 total = 0

 num = yield total

 while True:

 total += num

 num = yield total

Chapter 12 CallbaCks and data analysis

553

def numbers() -> t.Iterator[int]:

 yield 1

 yield 1

 yield 1

def test() -> None:

 # Start with 1, feed output back in, limit to 3 items

 recursive_sum = sum_ints()

 next(recursive_sum)

 result = []

 last = 1

 for i in range(3):

 last = recursive_sum.send(last)

 result.append(last)

 assert result == [1, 2, 4]

 # Add 3 items from a standard iterable

 simple_sum = wrap_enhanced_generator(sum_ints)

 result_iter = simple_sum(numbers())

 assert [a for a in result_iter] == [1, 2, 3]

This approach lets us define an enhanced generator function to define the logic of

a single step in a process and then use that logic either as a wrapper around an iterator

or to process its own output. The data flow used when looping over an input iterable is

shown in Figure 12-5.

Figure 12-5. Control flow of the wrapped enhanced generator

Chapter 12 CallbaCks and data analysis

554

 Refactoring functions with excessive return values

Any enhanced generator can also be written as a series of functions, so long as all the

required intermediate values are passed with each invocation. Functions that all require

an argument are effectively sharing state, just in a more explicit way than usual.

Complex program structures do not fit this idiom well, so I wouldn’t recommend

rewriting an enhanced generator to use coroutines. If you see a set of functions in a

loop, where the return values from one are immediately passed to another function call

without being used, it might be a good candidate for refactoring.

Listing 12-8 demonstrates a pair of functions to calculate the mean of a series of

numbers. The mean_ints_split_initial() function provides some initial values which

the calling function passes to mean_ints_split(...) along with a new number to add.

The mean_ints_split(...) function takes three arguments and returns two values, but

the calling function only cares about one argument and one value.

Listing 12-8. Code to find the average of some numbers expressed as bare

functions

import typing as t

def mean_ints_split_initial() -> t.Tuple[float, int]:

 return 0.0, 0

def mean_ints_split(

 to_add: float, current_mean: float, num_items: int

) -> t.Tuple[float, int]:

 running_total = current_mean * num_items

 running_total += to_add

 num_items += 1

 current_mean = running_total / num_items

 return current_mean, num_items

def test():

 # Recursive mean from initial data

 to_add, current_mean, num_items = mean_ints_split_initial()

 for n in range(3):

 current_mean, num_items = mean_ints_split(to_add, current_mean,

num_items)

Chapter 12 CallbaCks and data analysis

555

 to_add = current_mean

 assert current_mean == 1.0

 assert num_items == 3

 # Mean of concrete data list

 current_mean = num_items = 0

 for to_add in [1, 2, 3]:

 current_mean, num_items = mean_ints_split(to_add, current_mean,

num_items)

 assert current_mean == 2.0

 assert num_items == 3

The num_items value being passed around here is only relevant to the

implementation of mean_ints_split(...); it’s not useful to the calling function. The API

would be more straightforward if developers could instantiate a new mean calculation

and then pass numbers in and access the revised mean, without needing to pass the

additional context data each time. This is another good use of an enhanced generator,

the code for which is shown as Listing 12-9.

Listing 12-9. Simplified mean calculation using an enhanced generator

import typing as t

def mean_ints() -> t.Generator[t.Optional[float], float, None]:

 running_total = 0.0

 num_items = 0

 to_add = yield None

 while True:

 running_total += to_add

 num_items += 1

 to_add = yield running_total / num_items

def test():

 # Recursive mean from initial data

 mean = mean_ints()

 next(mean)

 to_add = 1

Chapter 12 CallbaCks and data analysis

556

 for n in range(3):

 current_mean = mean.send(to_add)

 to_add = current_mean

 assert current_mean == 1.0

 # Mean of a concrete data list

 # wrap_enhanced_generator would also work here

 mean = mean_ints()

 next(mean)

 for to_add in [1, 2, 3]:

 current_mean = mean.send(to_add)

 assert current_mean == 2.0

If you find yourself with a coroutine that is called multiple times and each time it is

passed the results of the previous invocation, then it is a good match for an enhanced

generator.

 Queues
All of the approaches we’ve looked at so far assume that there is no need to push data to

the iterator from multiple sources. As mentioned earlier, generators raise exceptions if

another thread or task tries to send data before it’s ready, which requires sophisticated

use of locking to prevent. Equally, we cannot send data to a generator unless we also

extract a piece of data. If multiple functions are trying to send data, then they must

necessarily also be extracting data and would need to coordinate to ensure that the

correct function gets any data intended for its use.

A better approach is to use a Queue object. We looked at these during the section

on threading as a solution for passing work to a thread, but the asyncio module offers a

Queue implementation that works in a similar way for asynchronous Python. Specifically,

any methods that can block the thread in a standard queue are awaitable with asyncio

queues. Listing 12-10 demonstrates an implementation of the sum_ints(...) function

that uses a queue.

Chapter 12 CallbaCks and data analysis

557

Listing 12-10. Sending work to a coroutine with a queue

import asyncio

import itertools

import typing as t

async def sum_ints(data: asyncio.Queue) -> t.AsyncIterator[int]:

 """Yields a running total a queue, until a None is found"""

 total = 0

 while True:

 num = await data.get()

 if num is None:

 data.task_done()

 break

 total += num

 data.task_done()

 yield total

def numbers() -> t.Iterator[int]:

 yield 1

 yield 1

 yield 1

async def test():

 # Start with 1, feed output back in, limit to 3 items

 data = asyncio.Queue()

 sums = sum_ints(data)

 # Send the initial value

 await data.put(1)

 result = []

 async for last in sums:

 if len(result) == 3:

 # Stop the summer at 3 items

 await data.put(None)

 else:

 # Send the last value retrieved back

 await data.put(last)

Chapter 12 CallbaCks and data analysis

558

 result.append(last)

 assert result == [1, 2, 4]

 # Add 3 items from a standard iterable

 data = asyncio.Queue()

 sums = sum_ints(data)

 for number in numbers():

 await data.put(number)

 await data.put(None)

 result = [value async for value in sums]

 assert result == [1, 2, 3]

This queue approach is very similar to the approach with a pair of wrapper functions,

as can be seen if we compare Figures 12-3 and 12-6. The main difference is that the

values being added to the queue are determined entirely by the containing test()

function.

A queue is purely a conduit for the data; it has no application-specific logic for where

the data should come from. As with thread-based use of queues, I recommend using a

sentinel value5 to tell the coroutine when to end, as this makes it easier to clean up the

iterators.

Figure 12-6. Execution flow when using Queues

5 We’ve been using None as our sentinel value, but if None is a valid value that the coroutine might
expect from the queue, then we’d need to pick another. A common choice is to create a module-level
instance of object, like END_OF_QUEUE_SENTINEL = object(). This can then be compared using

if value is END_OF_QUEUE_SENTINEL:
break

Chapter 12 CallbaCks and data analysis

559

 Choosing a control flow
I rarely use the enhanced generator approach, as there are usually ways of solving the

problem with more commonly used Python control structures, like classes and queues.

I find this clearer, but enhanced generators are very much worth knowing about, in case

you have a problem that fits them particularly well.

The decision tree diagram in Figure 12-7 illustrates my process for deciding what

structure to use. Unlike some of the other decision trees in this book, much of this choice

comes down to aesthetics and readability. The chart will help you find the natural fit,

but it’s quite possible that you might make a different decision because you think it will

improve maintainability.

Figure 12-7. Decision tree for different control flows

Chapter 12 CallbaCks and data analysis

560

 Structure for our actions
We need to pick a method of passing data for our triggers and actions. Actions don’t

have data available in advance but have it passed by a single calling function. We will

implement them as classes with a method to process a particular point.

Triggers are more difficult to design. They may well need to store state between

datapoint checks. We expect to be loading data from a database, so we could create an

async iterator that does a database query and yields the results, making more database

queries whenever the end of the iterator is reached until more data is available. In this

case, we would have the data available in advance, as we would have an iterator object

that we trust to include all the necessary data. As such, we’d choose to implement

triggers as an iterator wrapping another.

However, there is another potentially useful source of data: actions. For example,

we might have a trigger object that compares “energy generated” and “energy used”

DataPoints to produce an “energy purchased” value. We wouldn’t want to add this value

to the database, as it’s just the difference of two other data points rather than a measured

value, but we might want to create alerts if it’s either too high or unusually high.

We could write PowerUsedTooHigh and PowerUsedHigherThanUsual triggers, but

these would be very specific and share a lot of the same code. It would be better to

be able to write a DifferenceBetweenSensors trigger as well as ValueTooHigh and

ValueHigherThanUsual helpers. This would allow users to compose logic with any pair

of sensors, but we’d need a way of sending the output of DifferenceBetweenSensors to

both the ValueTooHigh and ValueHigherThanUsual stacks.

If data points can come from the database or the behavior of actions, then we cannot

consider the source of data to be available in advance and must take the right-hand path

at the first question of the decision tree. The source of data is the function that passes the

collated data to the trigger, which means we should follow the left-hand path. As such,

triggers will be implemented as classes.

Finally, we want to allow users to compose triggers and actions together into

pipelines. Like the triggers, these objects don’t have their data available in advance,

but unlike triggers, they receive data from multiple places. It’s this functionality that’s

responsible for receiving the data from the database as well as the data from the actions,

so this will be Queue based.

Chapter 12 CallbaCks and data analysis

561

In summary, our analysis code has Actions, Triggers, and DataProcessors. Actions

and Triggers are both passed data from a single location, so they are both implemented

as classes. DataProcessors can receive data from multiple sources and are responsible

for passing it on to triggers and actions, so they use a Queue to receive data.

 Analysis coroutines
To allow users to compose actions and triggers on the fly, we provide a DataProcessor

class which represents a configured pipeline (Listing 12-11). This class is responsible

for setting up the input queue for all data for this process and provides a simpler API for

starting the various required tasks.

Listing 12-11. A class to represent a configured trigger and action pair

@dataclasses.dataclass

class DataProcessor:

 name: str

 action: Action

 trigger: Trigger[t.Any]

 def __post_init__(self):

 self._input: t.Optional[asyncio.Queue[DataPoint]] = None

 self._sub_tasks: t.Set = set()

 async def start(self) -> None:

 self._input = asyncio.Queue()

 self._task = asyncio.create_task(self.process(),

name=f"{self.name}_process")

 await asyncio.gather(self.action.start(), self.trigger.start())

 @property

 def input(self) -> asyncio.Queue[DataPoint]:

 if self._input is None:

 raise RuntimeError(f"{self}.start() was not awaited")

 if self._task.done():

 raise RuntimeError("Processing has stopped") from (

self._task.exception())

 return self._input

Chapter 12 CallbaCks and data analysis

562

 async def idle(self) -> None:

 await self.input.join()

 async def end(self) -> None:

 self._task.cancel()

 async def push(self, obj: DataPoint) -> None:

 return await self.input.put(obj)

 async def process(self) -> None:

 while True:

 data = await self.input.get()

 try:

 processed = await self.trigger.handle(data)

 except ValueError:

 continue

 else:

 action_taken = await self.action.handle(processed)

 finally:

 self.input.task_done()

The idle() method delegates to the join() method of the queue, which blocks until

task_done() has been called the same number of times as get() was awaited. Therefore,

await processor.idle() blocks until no items are waiting to be processed. This method

is especially useful for writing test code, as it allows us to ensure that the processor has

finished processing before we start to assert that the expected actions were taken.

Adding a queue between the raw data source and the triggers and actions allows

us to guarantee that data is always processed in order and that failures do not stall the

ability for other tasks to ingest data. We can only feed data into a group of triggers as

quickly as the slowest one can process them unless we allow them to build up a backlog

of data to process.

The problem with allowing a backlog to build up is that we could find ourselves

using more and more memory to store the tasks for the slower tasks. The idle() method

could be useful here, as it would allow us to block the ingesting coroutine periodically,

so backlogs can only build up temporarily and must be cleared out before more data can

be ingested. Alternatively, we could define a maximum length for the input queue, which

would temporarily halt ingestion whenever a single sensor’s backlog got too long.

Chapter 12 CallbaCks and data analysis

563

With the data processor in place, we can also define the base classes for the trigger

and action components to match its behavior, as shown in Listing 12-12.

Listing 12-12. Base classes for the Trigger and Action components

import typing as t

from ..typing import T_value

from ..database import DataPoint

from ..exceptions import NoDataForTrigger

class Trigger(t.Generic[T_value]):

 name: str

 async def start(self) -> None:

 """ Coroutine to do any initial setup """

 return

 async def match(self, datapoint: DataPoint) -> bool:

 """ Return True if the datapoint is of interest to this

 trigger.

 This is an optional method, called by the default implementation

 of handle(...)."""

 raise NotImplementedError

 async def extract(self, datapoint: DataPoint) -> T_value:

 """ Return the value that this datapoint implies for this trigger,

 or raise NoDataForTrigger if no value is appropriate.

 Can also raise IncompatibleTriggerError if the value is not

readable.

 This is an optional method, called by the default implementation

 of handle(...).

 """

 raise NotImplementedError

 async def handle(self, datapoint: DataPoint) -> t.Optional[DataPoint]:

 """Given a data point, optionally return a datapoint that

 represents the value of this trigger. Will delegate to the

 match(...) and extract(...) functions."""

Chapter 12 CallbaCks and data analysis

564

 if not await self.match(datapoint):

 # This data point isn't relevant

 return None

 try:

 value = await self.extract (datapoint)

 except NoDataForTrigger:

 # There was no value for this point

 return None

 return DataPoint(

 sensor_name=self.name,

 data=value,

 deployment_id=datapoint.deployment_id,

 collected_at=datapoint.collected_at,

)

class Action:

 async def start(self) -> None:

 return

 async def handle(self, datapoint: DataPoint):

 raise NotImplementedError

These two objects have a start() coroutine to allow for initial startup actions and

a handle(...) method that takes a DataPoint object and processes it. In the case of

a Trigger, the handle(…) method checks if the passed data point is relevant to the

trigger, and if so, it returns a new data point, with the data specified by the extract(...)

method. For an Action, the handle(...) coroutine returns a boolean representing if

an action was taken. It also has side effects specific to the handler, such as database

accesses.

A good first trigger to create is one that compares the value of a DataPoint to a

threshold value, shown in Listing 12-13. This can be used to find temperatures that are

too high, for example. As the ValueThresholdTrigger class is a rather complex class

that takes many arguments, the data class functionality is useful to ensure that it has

appropriate standard methods, such as __init__(...).

Chapter 12 CallbaCks and data analysis

565

Listing 12-13. A trigger to check for a value having a certain relationship to a

prespecified value

import dataclasses

import typing as t

import uuid

from ..database import DataPoint

from ..exceptions import IncompatibleTriggerError

from .base import Trigger

@dataclasses.dataclass(frozen=True)

class ValueThresholdTrigger(Trigger[bool]):

 name: str

 threshold: float

 comparator: t.Callable[[float, float], bool]

 sensor_name: str

 deployment_id: t.Optional[uuid.UUID] = dataclasses.field(default=None)

 async def match(self, datapoint: DataPoint) -> bool:

 if datapoint.sensor_name != self.sensor_name:

 return False

 elif (self.deployment_id and

datapoint.deployment_id != self.deployment_id):

 return False

 return True

 async def extract(self, datapoint: DataPoint) -> bool:

 if datapoint.data is None:

 raise IncompatibleTriggerError("Datapoint does not contain data")

 elif isinstance(datapoint.data, float):

 value = datapoint.data

 elif (isinstance(datapoint.data, dict) and

"magnitude" in datapoint.data):

 value = datapoint.data["magnitude"]

 else:

 raise IncompatibleTriggerError("Unrecognised data format")

 return self.comparator(value, self.threshold) # type: ignore

Chapter 12 CallbaCks and data analysis

566

The two arguments that control checking against the threshold are the comparator=

and threshold= arguments. The threshold is a floating-point number, and comparator=

is a function that takes two floating-point numbers and returns a boolean.

An example of a valid comparator would be lambda x, y: x > y, but there are

some built-in versions of standard comparisons in the operator module.6 Setting

comparator=operator.gt is maybe a bit more explicit, and I prefer it. You should use

whatever style feels more natural to you.

We also need at least one basic Action implementation, the simplest useful one

being an action that calls a webhook to notify external services that the temperature is

too high. An implementation for this is shown in Listing 12-14.

Listing 12-14. An action that calls a webhook, using the format expected by the

IFTTT service

@dataclasses.dataclass

class WebhookAction(Action):

 """An action that runs a webhook"""

 uri: str

 async def start(self) -> None:

 return

 async def handle(self, datapoint: DataPoint) -> bool:

 async with aiohttp.ClientSession() as http:

 async with http.post(

 self.uri,

 json={

 "value1": datapoint.sensor_name,

 "value2": str(datapoint.data),

 "value3": datapoint.deployment_id.hex,

 },

) as request:

6 Lambda functions are unnamed functions that contain only a return expression. They’re useful
for writing trivial functions, especially trivial closures, but it can be tempting to overuse them. A
concrete advantage of operator.gt is that tracebacks will display it as <built-in function gt>
rather than <function <lambda> at 0x00DD0858>.

Chapter 12 CallbaCks and data analysis

567

 logger.info(

 f"Made webhook request for {datapoint} with status "

f"{request.status}"

)

 return request.status == 200

Another useful action is one that logs any data points that it is sent. While this isn’t

very helpful for production, it’s invaluable as a way to debug our pipelines. This lets us

see what the tool is doing in the terminal; the code to implement it is in Listing 12-15.

Listing 12-15. Action handler that logs to the standard error stream

class LoggingAction(Action):

 """An action that stores any generated data points back to the DB"""

 async def start(self) -> None:

 return

 async def handle(self, datapoint: DataPoint) -> bool:

 logger.warn(datapoint)

 return True

The code that accompanies this chapter includes some additional trigger and

actions, and the released version of apd.aggregation may include yet more by the time

you read this.

 Ingesting data
We want to run many concurrent sets of triggers and actions, so we’ll use a long-running

coroutine to act as a controller for multiple subtasks. This coroutine manages setting up

the triggers and actions and hands data off to each subtask.

The behavior of long-running coroutines is quite different to that of long-running

threads, especially in how they terminate. When we looked at long-running threads, we

needed to create a way to instruct the thread that there was no more data for it to process

and that it should end. This was also true of enhanced iterators, and we used the same

pattern with queue-based coroutines and functions, where sending a sentinel value was

the only way of stopping the processing task.

Chapter 12 CallbaCks and data analysis

568

Coroutines scheduled as tasks make this easier, as they have a cancel() method.

The cancel() method allows developers to stop a task without adding a method to ask it

to stop itself. This is especially useful for system designs where coroutines run for a long

time, as it allows us to cleanly shut down parts of the program that are no longer needed.

Any tasks that a coroutine has started are also canceled unless they were wrapped with

asyncio.shield(...) when first created. It’s also possible to write a coroutine that shuts

down from a requested cancellation cleanly, using a try/finally block. Cancellation works

by raising a CancelledError exception within the coroutine’s code, which can be caught,

and finalization code run before ending.

There are now handlers for an initial set of behaviors, but we need a way to push

data into this process. We already have a function to load data from a database and

asynchronously iterate over it; we can supplement this by placing it in an infinite loop

that searches for any additional data once the first iteration has been consumed, as

shown in Listing 12-16.

Listing 12-16. A version of get_data(...) that may block for new data while

iterating

import asyncio

from apd.aggregation.query import db_session_var, get_data

async def get_data_ongoing(*args, **kwargs):

 last_id = 0

 db_session = db_session_var.get()

 while True:

 # Run a timer for 300 seconds concurrently with our work

 minimum_loop_timer = asyncio.create_task(asyncio.sleep(300))

 async for datapoint in get_data(*args, **kwargs):

 if datapoint.id > last_id:

 # This is the newest datapoint we have handled so far

 last_id = datapoint.id

 yield datapoint

 # Next time, find only data points later than the latest we've

seen

 kwargs["inserted_after_record_id"] = last_id

Chapter 12 CallbaCks and data analysis

569

 # Commit the DB to store any work that was done in this loop and

 # ensure that any isolation level issues do not prevent loading more

 # data

 db_session.commit()

 # Wait for that timer to complete. If our loop took over 5 minutes

 # this will complete immediately, otherwise it will block

 await minimum_loop_timer

Tip this uses asyncio.sleep(...) to ensure a minimum time between loop
iterations. if we were to await asyncio.sleep(300) directly at the end of the loop,
there would always be at least 300 seconds between iterations, but it could
be significantly more. delegating this to a task at the start of the loop and then
awaiting the completion of the task means that our 300-second wait is running in
parallel to the productive work performed in the loop body. the same effect can be
obtained through arithmetic on the current time to calculate the delay needed for
each loop iteration, but this is much clearer.

The implementation here has a static delay between each database query. It isn’t the

most efficient method as it introduces a fixed period between data checks, so it can take

up to 5 minutes for new data to become available. We can decrease the time between

iterations, but this means correspondingly more load on the database server. This

approach is called short polling, as it makes a short request on a regular basis to check

for more data. Long polling is more efficient, as it involves making a request that doesn’t

complete until there is data available, but it requires that the back-end and interface

library support it. Short polling is the most compatible approach, so it is a good default

in the absence of evidence that it’s too inefficient.

Chapter 12 CallbaCks and data analysis

570

POSTGRES PUBSUB

if we’re using a database that offers pubsub,7 we could avoid polling entirely and rewrite this

to listen for a notification topic being sent by the data aggregation process.

the postgresQl pubsub functionality is enabled with the listen and nOtiFy commands.

sQlalchemy does not tightly integrate this functionality, but the underlying connection libraries

support it so we can take advantage if it’s useful to us.

We’d first modify the Cli to send a notification after adding new data if the connected

database is postgresQl:

 if "postgresql" in db_uri:

 # On Postgres sent a pubsub notification, in case other processes are

 # waiting for this data

 Session.execute("NOTIFY apd_aggregation;")

next, we’d create an alternative implementation of get_data_ongoing(...) that looks for

notifications. this function must call Session.execute("LISTEN apd_aggregation;")

to ensure that the connection is receiving notifications on the relevant topic.

as we’re not using a fully asynchronous postgresQl library, we can’t just await a notification,

so we must create a shim function that is awaitable and handles reading notifications from the

database connection.

async def wait_for_notify(loop, raw_connection):

 waiting = True

 while waiting:

 # The database connection isn't asynchronous, poll in a new thread

 # to make sure we've received any notifications

 await loop.run_in_executor(None, raw_connection.poll)

 while raw_connection.notifies:

 # End the loop after clearing out all pending

 # notifications

 waiting = False

 raw_connection.notifies.pop()

7 Publish/subscribe. This feature allows a connection to request to be given messages on a given
“topic” and other connections to send messages.

Chapter 12 CallbaCks and data analysis

571

 if waiting:

 # If we had no notifications wait 15 seconds then

 # re-check

 await asyncio.sleep(15)

this still requires actively checking the database state, but the poll() function does not make

a database query so it is a much more lightweight solution. the reduction in database load

makes it more efficient to reduce the time between checks, down to seconds from minutes.

 Running the analysis process
The final component to complete this feature is to write a new command-line utility to

run the processing. This utility is responsible for setting up the database connection,

loading the user’s configuration, and connecting the handlers they’ve defined to the feed

of information from the database, then starting the long-running coroutine.

Listing 12-17 shows a new click command that takes a path to a python-based

configuration file and a database connection string and executes all the data processors

in that file.

Listing 12-17. Command-line tool to run the management pipeline

import asyncio

import importlib.util

import logging

import typing as t

import click

from .actions.runner import DataProcessor

from .actions.source import get_data_ongoing

from .query import with_database

logger = logging.getLogger(__name__)

def load_handler_config(path: str) -> t.List[DataProcessor]:

 # Create a module called user_config backed by the file specified, and

load it

 # This uses Python's import internals to fake a module in a known

location

Chapter 12 CallbaCks and data analysis

572

 # Based on an StackOverflow answer by Sebastian Rittau and sample code

 # from Brett Cannon

 module_spec = importlib.util.spec_from_file_location("user_config", path)

 module = importlib.util.module_from_spec(module_spec)

 module_spec.loader.exec_module(module)

 return module.handlers

@click.command()

@click.argument("config", nargs=1)

@click.option(

 "--db",

 metavar="<CONNECTION_STRING>",

 default="postgresql+psycopg2://localhost/apd",

 help="The connection string to a PostgreSQL database",

 envvar="APD_DB_URI",

)

@click.option("-v", "--verbose", is_flag=True, help="Enables verbose mode")

def run_actions(config: str, db: str, verbose: bool) -> t.Optional[int]:

 """This runs the long-running action processors defined in a config file.

 The configuration file specified should be a Python file that defines a

 list of DataProcessor objects called processors.n

 """

 logging.basicConfig(level=logging.DEBUG if verbose else logging.WARN)

 async def main_loop():

 with with_database(db):

 logger.info("Loading configuration")

 handlers = load_handler_config(config)

 logger.info(f"Configured {len(handlers)} handlers")

 starters = [handler.start() for handler in handlers]

 await asyncio.gather(*starters)

 logger.info(f"Ingesting data")

 data = get_data_ongoing()

 async for datapoint in data:

Chapter 12 CallbaCks and data analysis

573

 for handler in handlers:

 await handler.push(datapoint)

 asyncio.run(main_loop())

 return True

The configuration file we’re using here is a Python file, loaded explicitly by the

load_handler_config(...) function. The configuration for this tool involves composing

different Python classes, lambda functions, and other callables, so it’s not suitable for

nontechnical end-users to edit directly. We could have created a config file format that

offers these options, but for now, at least, a Python-based configuration is sufficient. An

example of this config file is shown in Listing 12-18.

Listing 12-18. A config file that uses a variety of actions and handlers from the

accompanying code

import operator

from apd.aggregation.actions.action import (

 OnlyOnChangeActionWrapper,

 LoggingAction,

)

from apd.aggregation.actions.runner import DataProcessor

from apd.aggregation.actions.trigger import ValueThresholdTrigger

handlers = [

 DataProcessor(

 name="TemperatureBelow18",

 action=OnlyOnChangeActionWrapper(LoggingAction()),

 trigger=ValueThresholdTrigger(

 name="TemperatureBelow18",

 threshold=18,

 comparator=operator.lt,

 sensor_name="Temperature",

),

)

]

Chapter 12 CallbaCks and data analysis

574

 Process status
A long-running process can be difficult to monitor. The most common way of showing

users the status of such a process is by showing a progress bar, but this only works

so long as we know the amount of data to be processed in advance. Our system is

specifically designed to run indefinitely, waiting for new data. Even when no data is

waiting to be processed, we are not 100% complete as we can reasonably expect more

data to arrive soon.

A more appropriate approach would be to gather statistics about the work that’s

being done and display them to the user. We can keep track of the total number of

data points read by each data processor and the total that were successfully handled

by its action, as well as a rolling average of the time taken. These three items allow us

to generate useful statistics (Listing 12-19) that gives the end-user a good idea of how

efficient each handler is.

Listing 12-19. A data processor that generates statistics as it’s used

@dataclasses.dataclass

class DataProcessor:

 name: str

 action: Action

 trigger: Trigger[t.Any]

 def __post_init__(self):

 self._input: t.Optional[asyncio.Queue[DataPoint]] = None

 self._sub_tasks: t.Set = set()

 self.last_times = collections.deque(maxlen=10)

 self.total_in = 0

 self.total_out = 0

 async def process(self) -> None:

 while True:

 data = await self.input.get()

 start = time.time()

 self.total_in += 1

Chapter 12 CallbaCks and data analysis

575

 try:

 processed = await self.trigger.handle(data)

 except ValueError:

 continue

 else:

 action_taken = await self.action.handle(processed)

 if action_taken:

 elapsed = time.time() - start

 self.total_out += 1

 self.last_times.append(elapsed)

 finally:

 self.input.task_done()

 def stats(self) -> str:

 if self.last_times:

 avr_time = sum(self.last_times) / len(self.last_times)

 elif self.total_in:

 avr_time = 0

 else:

 return "Not yet started"

 return (

 f"{avr_time:0.3f} seconds per item. {self.total_in} in, "

 f"{self.total_out} out, {self.input.qsize()} waiting."

)

The standard way of determining when to display statistics on UNIX-like systems

is to register a signal handler that returns the information. Signals are how processes

are informed about various operating system events, for example, when a user presses

<CTRL+c>. Not all platforms support the same set of signals, so it’s usual for different

signals to be used on different operating systems.

For operating systems that provide a signal to request statistics (called SIGINFO), we

should ensure that the program reacts appropriately. To achieve this, we update the CLI

tool with a function to iterate over the data processors and output their statistics to the

user, as shown in Listing 12-20.

Chapter 12 CallbaCks and data analysis

576

Listing 12-20. Example of a statistics signal handler

import signal

def stats_signal_handler(sig, frame, data_processors=None):

 for data_processor in data_processors:

 click.echo(

 click.style(data_processor.name, bold=True, fg="red") + " " +

data_processor.stats()

)

 return

signal_handler = functools.partial(stats_signal_handler,

data_processors=handlers)

signal.signal(signal.SIGINFO, signal_handler)

A signal handler is registered against a signal using the signal.signal(...)

function, which takes a signal number and a handler. The handler must be a function

that takes two arguments: the signal that is being handled and the frame that was

executing at the time the signal was received.

Note the signal value is an integer, but if you run print(signal.SIGINT) (for
example), you’ll see Signals.SIGINT. this is because it’s implemented with an
Enum object. We used IntEnum to create the return code structure in Chapter 4,
so this is quite familiar. there are a few variants of Enum available; the most
interesting is Flag. this further extends Enum by allowing bitwise combinations of
items, such as Constants.ONE | Constants.TWO.

The SIGINFO signal is only available on operating systems based on the BSD Unix

operating system, such as FreeBSD and macOS.8 It is raised by pressing <CTRL+t> when

viewing the program output. This handler intercepts any use of <CTRL+t> on a compatible

operating system and triggers displaying the statistics. On Linux systems, where SIGINFO

is not available, it’s common to use SIGUSR1, which can be sent using the kill command:

kill -SIGUSR1 pid

8 Other BSD-inspired operating systems are available.

Chapter 12 CallbaCks and data analysis

577

This signal is a lot less useful as it’s not possible to generate with a key combination,

but it is a standard so we should support it too. Windows offers no signals intended to

request a status update, so we coopt the <CTRL+c> handler9 instead. The new behavior

of <CTRL+c> is to print the stats the first time it is pressed, and then the second press

in quick succession causes the program to end. We’ll achieve this by creating a signal

handler that unsets itself and schedules a task to reattach the handler a short time later

(Listing 12-21).

Listing 12-21. Signal handler functions to show statistics

def stats_signal_handler(sig, frame, original_sigint_handler=None,

data_processors=None):

 for data_processor in data_processors:

 click.echo(

 click.style(data_processor.name, bold=True, fg="red") + " " +

data_processor.stats()

)

 if sig == signal.SIGINT:

 click.secho("Press Ctrl+C again to end the process", bold=True)

 handler = signal.getsignal(signal.SIGINT)

 signal.signal(signal.SIGINT, original_sigint_handler)

 asyncio.get_running_loop().call_later(5,

install_ctrl_c_signal_handler, handler)

 return

def install_ctrl_c_signal_handler(signal_handler):

 click.secho("Press Ctrl+C to view statistics", bold=True)

 signal.signal(signal.SIGINT, signal_handler)

def install_signal_handlers(running_data_processors):

 original_sigint_handler = signal.getsignal(signal.SIGINT)

 signal_handler = functools.partial(

 stats_signal_handler,

9 Jupyter also coopts the <CTRL+c> handler, to give information on the number of kernels running
and prevent accidental termination, so this is not unprecedented.

Chapter 12 CallbaCks and data analysis

578

 data_processors=running_data_processors,

 original_sigint_handler=original_sigint_handler,

)

 for signal_name in "SIGINFO", "SIGUSR1", "SIGINT":

 try:

 signal.signal(signal.Signals[signal_name], signal_handler)

 except KeyError:

 pass

This uses the loop.call_later(...) method of the current event loop to restore the

signal handler. This method schedules a new task that waits a given amount of time, then

calls a function. The function being called is not a coroutine to be awaited but a standard

function, so it must not be used for anything that could block.

The intention of this method, along with loop.call_soon(...), is to allow for

callbacks to be scheduled by asynchronous code without first having to wrap them in a

coroutine and then scheduling it as a task.

Caution signal handlers registered with signal.signal(...)run immediately
after the signal is received, interrupting any concurrent asyncio processes.
it’s important that any handlers minimize their interaction with the rest of the program,
as it could cause undefined behavior. there’s a loop.add_signal_handler(...)
function that has the same signature as signal.signal(...) but guarantees
that the signal handler is called once when it’s safe to do so. not all event loop
implementations support this: this method does not work on Microsoft Windows,
for example. if you need Windows compatibility, you must ensure that your signal
handlers don’t interfere with your async tasks.

 Callbacks
This approach of defining functions and passing them to other functions is something

we’ve used already as part of the chart configuration objects. For the analysis program,

we’re using Handler and Action objects, which maintain state and have multiple callable

methods. On the other hand, we defined clean(...), get_data(...), and draw(...)

functions, rather than custom classes for the three functions.

Chapter 12 CallbaCks and data analysis

579

We could have created, for example, a Cleaner object that has a single clean(...)

method rather than passing a function. There’s no particular advantage to using a

function instead of a class, so long as only one callable is needed.

A very common use case for passing functions is to implement callbacks. A callback

is a function used to hook into an event in an intermediate function. The three functions

we passed to our chart configuration are core to the functionality of the charting and are

not callbacks.

A true callback function has no effect on the function that’s running, only external

side effects. For example, the plot_sensor(...) method checks for the case where a

particular deployment has no points for a given sensor and skips adding that sensor to

the legend if it’s empty. We might imagine wanting to hook into this to tell the user when

this case occurs, as it might be confusing to have a different number of deployments

visible when filtering a view. The function that is called when that happens would be an

example of a callback function.

We could implement this by adding a log_skipped callback function to the signature

of this method, which is passed a message to be shown to the user. The message would

be added as follows:

if log_skipped:

 log_skipped(f"No points for {name} in {config.title} chart")

The function could then have any number of different callables passed as

log_skipped= to customize how the user is to be notified. For example, it could be

printed to the screen, it could be made into a log message, or it could be appended to a

list for display elsewhere.

plot_sensor(config, plot, location_names, *args, log_skipped=print, **kwargs)

plot_sensor(config, plot, location_names, *args, log_skipped=logger.info,

**kwargs)

messages = []

plot_sensor(config, plot, location_names, *args,

log_skipped=messages.append, **kwargs)

This isn’t to say that callbacks implement unimportant functions, but they are never

the core functionality of the function that’s triggering them. Resetting our signal handlers

after a delay is a core functionality of the application, but it’s incidental to the work of the

event loop, so it is also considered a callback.

Chapter 12 CallbaCks and data analysis

580

Another example of a callback being part of the core functionality is our

process(...) method. We’ve not scheduled actions in parallel so that we can ensure

that they happen in order, but if we had scheduled actions as tasks, then we’d have

moved on to the next loop iteration before that task finished. This would have made it

impossible to record the time it took to complete each action.

Listing 12-22 shows a way of handling this by adding a callback to a task that is run

on completion. It doesn’t matter when the task is awaited; the callback runs very soon

after the task completes.

Listing 12-22. Example of using a callback to record the time taken for a task

 def action_complete(self, start, task):

 action_taken = task.result()

 if action_taken:

 elapsed = time.time() - start

 self.total_out += 1

 self.last_times.append(elapsed)

 self.input.task_done()

 async def process(self) -> None:

 while True:

 data = await self.input.get()

 start = time.time()

 self.total_in += 1

 try:

 processed = await self.trigger.handle(data)

 except ValueError:

 self.input.task_done()

 continue

 else:

 result = asyncio.create_task(self.action.handle(processed))

 result.add_done_callback(functools.partial(

self.action_complete, start))

It’s also possible to implement this without add_done_callback(...), by wrapping

the handle(...) coroutine in another that gathers the relevant statistics, but this is very

much a matter of style. Most of the things that can be achieved with asyncio callbacks

Chapter 12 CallbaCks and data analysis

581

can be rewritten more clearly by wrapping coroutines. It’s rare for a task callback to be

the best approach in anything other than low-level integrations of blocking code with the

asyncio framework, but it can be useful on occasion.

We won’t be applying either of these changes: we don’t want to lose any guarantee

that actions are processed in date order, as it could be confusing for end-users to get out

of order notifications.

 Extending the actions available
The actions and triggers we have available are a reasonable basis for demonstration,

but they’re not enough to meet real-world user needs. Although we could release the

software as is, by going further and building some things that we expect real users to

need, it’s much easier for us to find pain points in the implementation.

EXERCISE 12-1: A TRIGGER THAT SUBTRACTS TWO SENSOR VALUES

earlier in this chapter, we said that it would be useful to compare two deployments of the

same sensor. For example, if the humidity of the upstairs of a house is significantly higher

than the humidity downstairs, it suggests that the shower has recently been used. this isn’t

something that can be detected just by thresholding the upstairs sensor without false positives

being very likely.

Write a new handler that compares two deployments of the same sensor and returns the

difference between the two values. there is a branch point in the code for this chapter that

provides a good starting point, with an updated get_data(...) method that does not sort

data inappropriately for this task.

Once we have a trigger that calculates the difference between two sensors, we can

create the functionality to allow Actions to pass the output of a trigger back to the set

of all DataProcessors to be reanalyzed. In this way, we’re merging the two approaches

to data handling from the start of the chapter, and we are processing an iterable of data

queried from the database, but also occasionally the output of the process itself. We can

use another Queue object to represent ephemeral data points that we want to pass back

to the handlers. The get_data_ongoing(...) function (Listing 12-23) would also pull

data from this queue, not just the database.

Chapter 12 CallbaCks and data analysis

582

Listing 12-23. Updated version of get_data that includes data points from a

context variable

import asyncio

from contextvars import ContextVar

from apd.aggregation.query import db_session_var, get_data

refeed_queue_var = ContextVar("refeed_queue")

async def queue_as_iterator(queue):

 while not queue.empty():

 yield queue.get_nowait()

async def get_data_ongoing(*args, historical=False, **kwargs):

 last_id = 0

 if not historical:

 kwargs["inserted_after_record_id"] = last_id = (

await get_newest_ record_id())

 db_session = db_session_var.get()

 refeed_queue = refeed_queue_var.get()

 while True:

 # Run a timer for 300 seconds concurrently with our work

 minimum_loop_timer = asyncio.create_task(asyncio.sleep(300))

 import datetime

 async for datapoint in get_data(*args,

inserted_after_record_id=last_id, order=False, **kwargs):

 if datapoint.id > last_id:

 # This is the newest datapoint we have handled so far

 last_id = datapoint.id

 yield datapoint

 while not refeed_queue.empty():

 # Process any datapoints gathered through the refeed queue

 async for datapoint in queue_as_iterator(refeed_queue):

 yield datapoint

Chapter 12 CallbaCks and data analysis

583

 # Commit the DB to store any work that was done in this loop and

 # ensure that any isolation level issues do not prevent loading more

 # data

 db_session.commit()

 # Wait for that timer to complete. If our loop took over 5 minutes

 # this will complete immediately, otherwise it will block

 await minimum_loop_timer

The code in Listing 12-23 assumes that there is a queue in the context variable

and pulls items from that queue so long as some are available. This processes all the

DataPoints from a database query and then all the generated points before making the

next query. Listing 12-24 shows the action needed to add items to this queue.

Listing 12-24. The relevant refeed action

from .source import refeed_queue_var

class RefeedAction(Action):

 """An action that puts data points into a special queue to be consumed

 by the analysis programme"""

 async def start(self) -> None:

 return

 async def handle(self, datapoint: DataPoint) -> bool:

 refeed_queue = refeed_queue_var.get()

 if refeed_queue is None:

 logger.error("Refeed queue has not been initialised")

 return False

 else:

 await refeed_queue.put(datapoint)

 return True

The refeed_queue_var variable is not set in either of these code paths. This is

because the individual handlers and get_data_ongoing(...) functions are running in

different contexts, so they cannot set the context variable globally. The iterator is running

in the context of the main_loop() in the command-line tool, but each handler has its

own individual context due to being started as a task running in parallel.

Chapter 12 CallbaCks and data analysis

584

We need to set up the context variable before the handlers are branched off as new

tasks so that they maintain a reference to the same task. We’ll add it to the main_loop()

function itself. While it would be possible to write this code using a global variable rather

than a context variable, it would make testing and potential multithreading in the future

more difficult.

 Summary
In this chapter, we’ve applied many of the techniques we covered in past chapters to

extend the functionality of the aggregation program greatly. A lot of the power of Python

comes from being able to use a relatively small amount of features to achieve different

results.

The most important feature for enabling this, in my opinion, is the ability to write

code that takes an implementation of logic as an argument, either as a class, a function,

or a generator function. This is perfect for the kind of work we’ve done in the analysis

section of this book, as it allows us to create data pipelines and supply application-

specific logic where needed.

 Additional resources
There are a few more links I’d like to share, covering additional reading on this chapter’s

topics, listed as follows:

More documentation on how Python handles signals can be

found in the standard library’s documentation, at https://docs.

python.org/3/library/signal.html. This is especially useful

information for writing cross-platform applications, as Microsoft

Windows behaves quite differently.

Details on how PostgreSQL’s pub/sub handling works are

at www.postgresql.org/docs/12/sql-listen.html and

 www.postgresql.org/docs/12/sql-notify.html.

I’m using IFTTT’s webhook support as a place to send

notifications to. Details on this service are at https://ifttt.com/

and https://ifttt.com/maker_webhooks.

Chapter 12 CallbaCks and data analysis

https://docs.python.org/3/library/signal.html
https://docs.python.org/3/library/signal.html
https://www.postgresql.org/docs/12/sql-listen.html
https://www.postgresql.org/docs/12/sql-notify.html
https://ifttt.com/
https://ifttt.com/maker_webhooks

585

In addition, there are a couple of links I’d like to share in general, not specific to this

chapter:

The Python Software Foundation’s list of upcoming events at

www.python.org/events/.

The Advent of Code project (https://adventofcode.com/)

releases 25 puzzles intended to be solved by coding every

December. I find these to be very well written and a great

way of trying out new techniques or languages. I’d encourage

you to try some of the techniques this book covers with those

puzzles, especially if you don’t have a chance in your day-to-day

programming work.

 Epilogue
This long-running process is the final feature for the example code of this book. With

it, we have a system that has a lightweight component that can be deployed to multiple

servers, which optionally can record data over time and serve it over a HTTP interface,

but alone is a useful debugging tool. We have a central aggregation process that

maintains a list of known HTTP endpoints to query, a Jupyter notebook that draws charts

of the aggregated data, and an analysis process that processes incoming data to add

synthesized data to the shared database or trigger external actions.

At the start of this book, I listed some examples of real-world applications where this

type of application can be useful. The obvious one is the smart home example that I’ve

focused on, where our work allows us to chart energy usage and temperature over time.

The trigger system can be used to detect when one room’s temperature and humidity

is closer to the outside temperature than the others, indicating a window has been left

open, and we can use actions to push notifications to mobile devices using a webhook.

An urban sensor network, such as the one used in Amsterdam for monitoring

airplane noise, can have sound levels plotted on a map at any given time, and a custom

trigger could be written to detect moving sources of noise, for correlating with known

flight data.

For server monitoring, we can draw charts of RAM and disk usage and send

notifications to Slack when a server drops below a threshold on any of its monitored

items. The notification action is especially useful for deployments like the arcade, where

Chapter 12 CallbaCks and data analysis

https://www.python.org/events/
https://adventofcode.com/

586

nontechnical staff can be alerted about an alarm condition on a specific machine and a

report generated after the fact by maintenance staff.

The code for this project will continue to evolve over time. Both the website

(https://advancedpython.dev) and this book’s section on the Apress website offer the

source code for this book on a chapter-by-chapter basis. Any contributions to the current

version of the software are welcome.

As well as building a piece of legitimately useful software, we’ve explored a

large portion of the Python standard library on the way while focusing on tools and

techniques that are not commonly used in example software. We’ve used cookiecutter

and Pipenv to create projects and set up build environment and Jupyter to prototype

software and to build one-off dashboards and analysis scripts, and we’ve built a web

service.

We wrote a synchronous piece of code for the satellite processes and an

asynchronous tool for the aggregation software. Both used SQLAlchemy and Alembic for

database connectivity and pytest for testing, covering using both from synchronous and

asynchronous contexts.

The example code extensively uses relatively new language features, such as context

variables, data classes, and typing, to make our code more expressive, and we’ve

explored the appropriate places to use features like asyncio, iterators, and concurrency.

Some of these techniques may be very familiar to you; others may have been entirely

foreign. Python’s ecosystem is broad with lots of smaller communities working to create

exciting new tools. Only by engaging with all these communities would you be aware

of what they’re developing. It’s much easier to stay up to date by joining your local

Python community. There are Python conferences in countries all over the world and

user groups in many cities. There are also chat rooms, forums, and question and answer

boards where all parts of the community interact.

I once heard someone boast they could probably learn Python in 24 hours. I couldn’t

disagree more. I’ve been learning Python for 16 years now and feel that I still have much

left to learn. Python is a well-designed language and therefore quite intuitive; a beginner

can certainly write a simple program in 24 hours, and an experienced programmer can

write correspondingly more complex programs in a short period. However, learning

enough to be productive isn’t the same as having learned everything.

Chapter 12 CallbaCks and data analysis

https://advancedpython.dev

587

Thousands of people work on Python’s ecosystem to improve it over time, by

contributing bug reports, documentation, libraries, and core code. Everyday Python

programming is subtly different; although it’s not likely to impact your day-to-day work,

there’s a chance that today was the day that somebody released a tool that makes your

job easier. You won’t know unless you look.

Learning from your peers is one of the most rewarding parts of open source software;

I hope this book has helped you, and I hope to meet you and learn from you at a Python

event sometime soon.

Chapter 12 CallbaCks and data analysis

589
© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7

Index

A
Abstract base classes, 223

@abc.abstractmethod decorator, 224
__subclasshook__(...) method, 224
vs. typing module types, 477
virtual subclasses, 223

Actions, 560
analysis process, 571, 572
config file, 573, 575
DataProcessor class, 561
extending, 581
IFTTT service, 566
ingesting data, 567, 571
logs, 567
trigger, 563, 564

Adafruit, 42, 486
Adapter pattern, 229
__aenter__() method, 331, 365
__aexit__(...) method, 331, 365
Aggregation process, 533
aiohttp library, 336
__aiter__() method, 330
Alembic, 264

ambiguous changes, 268
creating a new revision, 265
current version, 269
downgrading, 268, 270
irreversible, migrations, 270
listing migrations, 269
merging, migrations, 269

migration metadata, 266
running migrations, 268, 269
setting up a new project, 264
using constants in migrations, 267

__anext__() method, 330
apd.aggregation package, 397, 516, 524

clean functions (see clean functions)
database, 254
get_data_by_deployment(...)

function, 413, 416
get_data(...) function, 415
plot_sensor(...) function, 458
plotting data, 429
plotting functions, 421
query functions, 417

apd.sensors package, 106
APDSensorsError, 500
DataCollectionError, 500
directory structure, 108
extending, 149
IntermittentSensorFailureError, 500
making releases, 141
sensors script, 32, 36, 130, 147, 148,

153, 155, 156, 535
UserFacingCLIError, 502

apd.sunnyboy_solar package, 148,
155, 173

API design, 190
authentication, 190
versioning, 240, 241, 243

https://doi.org/10.1007/978-1-4842-5793-7#ESM

590

AssertionError, 71, 498
Assert statement, 498
Async code

pytest plugin, 346
setup.cfg, 346

Asynchronous databases
complex queries (see Complex

queries, ORM)
SQLAlchemy ORM (see SQLAlchemy

ORM)
Asynchronous test functions

aggregation code sensor endpoints, 347
HTTP response, 347
test server (see Test servers)

AsyncIO code, 322
async def, 323
async for, 327, 329, 330
async lock, 332
async with, 331
benchmarking, 340
comparison of tasks and

coroutines, 326
concurrent code safety, 333
concurrent execution, 326
event loop, 333
force coroutine switch, 332
has lost, 341
has won, 341
HTTP client, 336
limitations, 339
loop argument, 515
synchronization, 332, 333
synchronous libraries, 334, 335
synchronous vs. asynchronous, 323, 334
testing, 345

asyncio module, 324
Condition class, 333
create_task(...) function, 325, 326

Event class, 333
gather(...) function, 326, 330
get_running_loop(), 373
Lock class, 333
loop.add_signal_handler(...) method,

578 (see also Signal module)
loop.call_later(...) method, 578
ython decorators.call_soon(...)

method, 578
loop.run_in_executor(...)

function, 334, 335, 373
run(...) function, 324, 345
Semaphore class, 333
sleep(...) function, 326, 332

Audit log, 532
Automatic type inference, 159, 160
__await__() method, 325
Awaitables, 325

cancel() method, 568
implementation details, 325
tasks, 325

await keyword, 324

B
black, 94

applying to existing codebase, 94
installing, 94
purpose, 93

Blocking, 285, 322
breakpoint() function, 48

debugging threads, 11
builtins, 2

breakpoint() function, 10
changing the debugger, 11
using, 10

dir(...) function, 170
filter(...) function, 2

Index

591

getattr(...) function, 158
help(...) function, 2
map(...) function, 278
open(...) function, 116
print(...) function, 6, 35, 37
sorted(...) function, 202, 297
vars(...) function, 170

bytecode, 296
disassembling, 296
example, 297
.pyc files, 296
simultaneous execution, 298

C
__call__(...) method, 204
CHANGES.md file

apd.sensors package, 136
semantic versioning, 138

Classic SQLAlchemy style
run_in_executor(...) function, 374
stmt objects, 370

@classmethod decorator, 62, 263
clean functions, 422

clean_magnitude(...) function, 425
clean_passthrough(...) function, 422,

424, 542
clean_temperature_fluctuations(...)

function, 474, 477
clean_watthours_to_watts(...)

function, 458, 459, 488
purpose, 422
specifying in config, 423

Click, 153
argument types, 153, 162, 163, 278

creating custom, 163
latitude/longitude example, 162

autocomplete, 163, 165, 182

customisation, 165
enabling, 165

@confirmation_option(...)
decorator, 167

echo(...) function, 35
file handling, 162
flags, 278
group, 155
@help_option(...) decorator, 166
metavar parameter, 154
option, 156
@password_option(...) decorator, 167
secho(...) function, 37, 161
@version_option(...) decorator, 166

Closures, 197, 198
minimal example, 197
using classes instead, 204

collections.abc module, 477
AsyncIterator class, 477
Collection class, 492
Container class, 492
Iterable class, 492
Mapping class, 492
Sequence class, 492
Sized class, 492

collections module, 361, 426
deque class, 426
namedtuple(...) function, 361 (see also

Dynamic class generation)
Command-line interface, 29

argparse module, 34
argv, 30, 33
bold text, 37
click, 34–37

command(...) decorator, 35
secho(...), 36

exit codes, 161
flags, 31, 33, 153

Index

592

ifmain, 29
__name__ attribute, 30
signal handlers, 575
subcommands, 153

Command-line tool, 539, 571
Complex queries, ORM

against views, 388–391
alembic revision, 381
ExprComparator type, 382, 385
filter section, 381
@hybrid_property decorator, 381
hybrid property, 385
indexes, 386
transparent optimized comparator, 383
update_expression, 382, 384

Config class, 448
changes to support maps, 445

(see also Maps)
created by end users, 481
draw(...) function, 448
get_data(...) function, 448
SolarCumulativeOutput config, 155

(see also apd.sunnyboy_solar
package)

typing, 447
configparser, 174, 178
Configuration files, 174
console_scripts, 129

Declarative approach, 130 (see also
setup.cfg)

__contains__(...) method, 492
contextlib module, 364

@asynccontextmanager decorator, 365
@contextmanager decorator, 364, 365
FakeAIOHttpClient, 365

Context managers, 295
Context variable, 582, 583

contextvars module
context.run(...) function, 393
ContextVar class, 393
copy_context() function, 393

Control flows, 559
Cookiecutter, 247

aggregation process, 252–254
alembic documentation, 268
apd.sensors, 250
install templates, 248
preexisting templates, 248
pre/post-generation hooks, 251
project creation, 248
templates creation, 249, 250

Coroutines, 324
defining, 323

CPython, 296
Custom classes, 361

data classes, 361 (see also dataclasses
module)

custom initializers, 362
defining fields, 362
dictionary conversion, 363
equality, 363
field configuration, 363
immutability, 363
mutable defaults, 364
ordering, 363
uses, 361

for mocking, 361 (see also mocking)
named tuple, 238, 361, 362
named tuple, adding methods to, 362
__slots__, 461

Custom index server
dependency metadata, 121
integrity, 124, 125
warehouse, 120

Custom map chart, 449, 450

Command-line interface (cont.)

Index

593

D
Data classes

backwards compatibility of
constructors, 446

custom repr behavior,
comparison, 364

dataclass decorator, 362
hashable, 363

dataclasses module, 361
@dataclass decorator, 361, 362
field class, 363
__post_init__(...) method, 362

DataPoint objects, 337, 397
DataProcessor class, 561
datetime.date.today() function, 379
datetimes, 215
db_session_var context variable, 399
Debugging, 8, 400
Decision tree, 218

authorization, 191
databases, 255
generator control flow, 559
metaclasses, 218
parallelization, 342

Decorators, 196
with arguments, 202, 204
class-based, 204
generic decorators, 205
Minimal example, 200
typed, 206

Delayed teardown, 355
Dependencies, 18

conditional dependencies, 42, 111–113
development dependencies, 19
optional dependencies, 193
pinning versions (see Version pin)
specifying, 110

Descriptors, 260
alembic.ini file, 264
create_all(...) function, 263, 265
env.py, 265
migration framework, 263

deserialize(...) functions, 235
Design patterns, 229
DHT base class, 506
Discoverability, 354
dis module, 296
Distribution, 105

C extensions, avoiding, 148
converting to wheel, 126
cryptographic signing, 125
hash, 123
Immutability, 125
releasing, 141
source distribution, 110, 142
src layout, 106

Django, 105, 190, 258, 375, 386, 387
Documentation, 130
draw(...) function, 479
Duck typing, 51
Dynamic class generation, 230
Dynamic dispatch, 51

single dispatch, 476
URL-based dispatch for the web, 195

E
Elasticsearch, 256
Enhanced generator, 548

classes as an alternative, 551
converting to an iterator, 552
iterable, 552
refactoring functions, 554, 555
return value of yield statement, 548
sending data, 549

Index

594

standard, 553
using classes, 551

__enter__() method, 364
entry_points, 129, 171

find all groups, 171
list group contents, 172
resolving references, 173
use, 170

enum module, 161
Flag class, 576
implementing a bitmask, 576
IntEnum class, 161

.env files, 179
Environment variables, 178

Microsoft Windows, 182
PYTHONOPTIMIZE environment

variable, 498
PYTHONWARNINGS environment

variable, 518
reading, 178
setting with pipenv, 179

__eq__(...) method, 362, 385
Error handling, 491

abstract base classes, 493
custom exceptions, 498, 499, 501, 502
exceptions, 496
implementations, 495
IndexError, 497
items from container, 492
KeyboardInterrupt, 496
KeyError, 497
LookupError, 497
RuntimeError, 497
SystemExit, 497
testing, 507

behavior, 508–511
mock objects, 513, 514

unittest package, 512
tracebacks, 502, 503

block, 504–506
raise, 506, 507

TypeError/ValueError, 497
Ethics, 382, 520
__exit__(...) method, 364
Extended tuple unpacking, 252

F
File modes, 114
Filtering data

deployment_id, 406
get_data(...) method, 404, 405
helper functions, 407, 408
sensor deployments, 405

Fixture scoping
conftest.py module, 354
delayed, 355
effects, 355
HTTP server, 354
test_http_get.py test module, 355

FizzBuzz, 3
flake8, 93

exclude checks, 95
Flask, 192, 288

accessing request data, 205
API server, minimal example, 194
@app.route(...) decorator, 194, 195, 210
blueprints, 241, 243
blueprints, functional testing, 348
setting response status and headers,

205
flit, 119, 145
__format__(...) method, 219
Fraction, 53
f-strings, 6, 159, 164, 201, 261, 317

Enhanced generator (cont.)

Index

595

Functional tests, 64, 243, 347
functools module, 202, 484

@cached_property decorator, 486, 489
cmp_to_key(...) function, 202
@lru_cache decorator, 484, 485, 489
@singledispatch decorator, 476

__future__ imports, 294
annotations, 294
syntax rules, 294

G
Generator function, 271–274

advancing manually, 415, 548
chaining, 544
complex example, 413
enhanced generators, 550
execution flow, 408, 410
as loop bodies, 541, 542
processing own output, 546
send(...) method (see Enhanced

generator)
get_data(...) function, 403, 471
get_data_by_deployment(...) function,

445, 472
get_data_ongoing(...) functions, 581, 583
get_data_points(...) function, 356
__getitem__(...) method, 92
get_sensor_by_path(...) function, 507
get_sensors(..) function, 176, 511
GIL, 298

atomic operations, 297
avoiding with multiprocessing, 321
implementation details, 344
purpose, 298

git, 98
add--patch, 98
bisect, 153

git config command, 179
.gitignore file, 24
Global keyword, 305
Global variables

argument, 393
ClientSession object, 392
contextvars feature, 392
get() method, 393
parameter, 392
pattern, 394
pragmatic view, 392
thread-local variable, 393

Greenlets, 343
gunicorn, 245

H
handle(...) method, 564
hashlib, 232
h11 library, 288
HMAC, 209, 231, 245
HTTP requests, 270, 283, 285, 336, 343, 348

I
idle() method, 562
ifmain, 57, 307
Import-time side effects, 201
Index server, 119

catastrophic hardware
failure, 123

commercial environments, 120
pypiserver (see pypiserver)
static indexes, 121
warehouse, 120

Information security, 158
getattr(...) traversal, 158
Untrusted pickles, 231

Index

596

ini, 174
__init__(...) method, 62, 177, 204, 217, 361,

362
__init__.py, 106
Install-time code execution, 126
Integration testing

add_data_points(...) method, 366
custom mock method, 366
unittest.mock.Mock() object, 366

interactable_plot_multiple_charts(...)(...)
function, 455

IronPython, 296
isinstance(...) function, 223, 224
issubclass(...) function, 223
iterable, async, 330
iterables, 330
iterator, async, 330
Iterators, 271, 330

consuming, 273, 278, 475, 476
infinitely long, 274

__iter__() method, 330
itertools.cycle(...) function, 514
itertools module, 352, 408

chain(...) function, 352
groupby(...) function, 408, 412

J, K
join() method, 562
jq, 123, 187
JSON, 215

dumps(...) function, 228
loads(...) function, 228
PostgreSQL fields, 257
Type hints, 237

JSONSerializedSensor, 228
Jupyter, 11, 48

console, 12, 41 (see also REPL)

displaying widgets, 11
installation, 12
IPython, 13
kernels on remote computers, 38
kernel specification, 38
nbconvert, 27, 44
notebook server, 12–15, 42

keyboard shortcuts, 24
merging cells, 23
Using pdb, 14

Notebook server, 19
other programming languages, 11

Jupyter widgets
addition function, 431
asyncio.run(...) function, 432
calling synchronous functions, 433
event loop, 435
helper function, 435
HTTP request, 433
interactive chart filtering, 436, 437
optional dependency, 430
plot functions, 437–439
plot_sensor(...) coroutine, 431, 432
task.done(), 434
wrapper functions, 434

JWT, 245
Jython, 296

L
lambda functions, 408
Late binding, 51
Latin-1 encoding, 114
__len__() method, 492
line_profiler, 463
Linting

definition, 92
Pull requests, 99

Index

597

load_handler_config(...) function, 573
Logging, 520

adapter, 525, 526
audit, 532
configuration, 530
custom actions, 523
filters, 528–530
handlers, 532
individual, 523
LogRecord attributes, 521
metadata, 524
nested hierarchy, 522
record objects, 527, 528

logging.basicConfig(...)
function, 521, 524

Logging filters, 528–530
LogRecord factory, 527
LRU cache, 483, 484

M
Multiple sensors, config objects/plot

function, 424
main_loop() function, 584
Maps, 440

contours on maps, 443
equirectangular projection, 441
GIS libraries, 445
mercator projection, 442
OpenStreetMap project, 441
plotting, 440, 444

Markdown format, 131–133
matplotlib, 403

aspect ratio, setting, 441
colorbars, 444
contour lines, 442
figures, 421
multiple series, 405

plot_date(...) function, 403, 421
plotting maps (see Maps)
pyplot, 407, 421
scatter plot, 403
subplots, 421

Metaclasses, 217
Mocking, 347, 356, 358–360, 513
mocking isinstance(...) checks, 512
module, 104

running as a script, 109 (see also Script)
Module scope, 354
modwsgi, 245
Multilevel iterators

flow charts, 412
get_data_by_deployment, 414

Multiprocessing, 291, 339
benchmarking, 340
process pools

(see ProcessPoolExecutor)
Multithreading, 291

avoid global state, 306
collating data, 307

benchmarking, 340
bytecode, 296, 297
deadlocks, 302–305
GIL, 299
HTTP spider example, 311
lowest-level, 292, 296
low level threads, 292
shared state, 304, 307, 308
stopping threads, 351
synchronization, 312

barriers, 316, 317
conditions, 313, 314, 316
events, 318, 319
locks, 301
reentrant lock, 312
semaphores, 319, 320

Index

598

in tests, 350
thread locks, 302
thread pools (see ThreadPoolExecutor)
thread safety, 297, 299, 300

mypy, 78
debugging types, 87
ignore_missing_imports, 79
reveal_type(...) pseudofunction, 87, 208
--strict, 92
stubgen, 92
Unsupported operand types, 80

N
__name__ variable, 30
__next__() method, 330
Nonblocking IO operations, 284, 285,

287, 340
nonlocal keyword, 199
NoSQL databases, 256

O
-O command-line flag, 498
operator module, 408

attrgetter(...) function, 408
itemgetter(...) function, 408

Optimizing a function
interpreting profile report, 459–461
Jupyter notebook cell, 455
line_profiler, 463
New Relic, 468
profiling and threads, 455, 457, 458
SQL queries, 380
timeit, 462
tracemalloc, 466, 467
yappi, 463–466

Optimizing control flow
caching, 477–479, 485, 486, 489
DataPoint records, 468
filtering database, 471–473
minimizing data to process, 425
single sensor process, 469

os module, 178
environ, 178, 211
mkdir(...) function, 251
path.join(...) function, 251
rename(...) function, 251

P
Package, 104

applying metadata
changes, 130

dependencies, 347
extras_require, 193
installing scripts, 103, 129
metadata, 103, 131
namespace packages, 105
offline installation, 123
private forks, 124
version number, 116
wheel, 104

Parallelization, 284, 339, 341
pdb, 7, 10

break, 8
breakpoints, conditional, 9
continue, 8
debug, 8
import pdb; pdb.set_trace()

(see breakpoint() function)
next, 8
pdb++, 8
post-mortem debugging, 9
step, 8

AsyncIO code (cont.)

Index

599

PEP8, 93
Avoiding PEP8 commits, 96
style guide, 93

PEP342, 548
PEP420, 144
PEP427, (see Wheels)
PEP440, 137
PEP503, 120
PEP508, 144
PEP508, 42
PEP517, 118, 144
PEP518, 118, 144
PEP561, 101
Persistent endpoints, 439
Pickle, 231

advantages, 231
Cryptographic signing, 232

Pint, 215
Custom string formatting, 219
example usage, 215
Quantity class, 216
to(...) function, 216
type checking, 216
UnitRegistry() class, 215
usage, 216

pip
install, 12
sudo, 125

Pipenv, 18, 48
criticism, 18
editable installations, 106
environment variables, 179
limitations, conditional

dependencies, 110
Lock file, 24, 43, 123
for production deployments, 180
python_version, 43
reproducible builds, 110

Pipfile.lock file, 24, 43
PiWheels, 39, 128
pkg_resources module, 171
Plugin architectures, 147

alternative approaches, 181
autodetection, 167, 168
configuration, 167, 168, 175
error handling, 157

Poetry, 119, 144
PostgreSQL pubsub functionality, 570
pre-commit, 96

enabling, 97
skipping, 98

printf debugging, 6, 273
process(...) method, 580
Processing data

cleaner functions, 426, 428
cleaner functions, 427
Jupyter cell, 429
temperature sensor, 426

ProcessPoolExecutor, 321, 322
process_time() function, 458
Profiling, 453

callgrind, 473
cProfile.run(...) function, 453
IDEs, 454
profile.run(...) function, 453
report, 454
visualizing speed, 474
yappi, 474

@property decorator, 262, 486
(see also Descriptors)

Prototyping
approaches, 1
comparison, 16
development flow, 1
interpreter, 1
post-mortem debugging, 10

Index

600

Python script, 6, 7
REPL, 2–4, 6
using Jupyter notebooks, 149

psutil, 24
cpu_percent(...) function, 25
cpu_stats() function, 24
sensors_battery() function, 28
virtual_memory() function, 28

.pyc files, 296
PyCharm, 8

breakpoints, 8
.pyi files, 90, 188
PyPI, 119 (see also Index server)

long_description, 131
long_description_content_type, 131
test server, 141

~/.pypirc file, 143
pypiserver, 120

authentication, 121
configuring, 121, 122
hosting on Raspberry Pi, 121

pyproject.toml, 118, 119
PyPy, 296, 344
pytest, 55

approx(...), 57
filtering by mark, 72
fixtures, 68, 346, 350, 353
fixtures that return generators, 352
http server fixture, 348
layering fixtures, 353
mark decorator, 72, 346, 348
marking classes and modules, 348
pipenv run pytest, 63
pytest-asyncio, 346
pytestmark, 348
raises(...), 57

ScopeMismatch error, 354
@skipif(...) decorator, 150
tear down code, 350

Pytest fixtures, setup/teardown, 352
Python decorators

helper function, 197
utility function, 196

Q
Query functions

async iterable, 403
database connection, 398
DataPoint objects, 399
db_session_var context variable, 399
function signatures, 397
get_data() function, 400, 401
get_data(...) filters, 416
helper context manager, 402
Jupyter notebook, 397
list/tuple, 397
premature optimization, 401
query.all(), 401
RAM usage vs. instantiation time, 402
sensor records, 399
sensor type, 397
utility functions, 399
version number, 397

Queue object, 556
coroutine, 557
execution flow, 558

queue module, 292
Empty exception, 308
LifoQueue class, 308
Queue class, 292, 308

detecting the end of a queue, 308
get() method, 308

Prototyping (cont.)

Index

601

join() method, 308
put() method, 308
task_done() method, 308
underlying synchronisation

implementation, 313

R
raise statement, 496, 506
Raspberry Pi, 39

ARM processors, 42
connection, Jupyter, 44
DHT22 sensor, 44
Jupyter remote access, 38
library, 42
precompiled wheels (see PiWheels)

README file, 136
encoding, 113, 114
garbled character, 115
mode, 113

README.md file, 135
re.escape(...) function, 519
Relational databases, 257, 258, 371
Remote kernels, 44

specification, 40
remote-pdb, 11
REPL

adding logic, 3
indent parsing rules, 4, 5
interpreter, 4
multiline constructs, 3, 6
viewing help, 2

__repr__() method, 362, 363
Requests, 270
requirements.txt, 128
Return value, 271
RuntimeError, 158

S
Schemaless databases, 256
Script, 104

dependencies, 109
invoking, 129

select.select(...) function, 285
Sensor base class, 236

example, 60
format(...) method, 85, 219
JSONSensor variant, 236
JSONSerializedSensor variant, 228
name attribute, 239
SerializableSensor variant, 224
serialization, 221, 236
typing, 83
value() method, 85, 486

sensor_name parameter, 445
Sensor plugin

allowing third party, 167
command option

canned options, 166, 167
click.option line, 156
Click’s parsing system, 163, 164
--develop, 157
error handling, 159, 161
off-loading parsing, argument

types, 162, 163
subcommands, 153–156

Pipfile, 180, 181
Sensors, 533, 535

API implementation, 537
command-line tool, 539

Sensors plugin, third party
apd.sensors vs. similar programs, 179
configuration-based system, 169
configuration files, 174–176, 178

Index

602

detects sensors, using fixed
names, 169, 170

entrypoints, 170, 172, 173
SerializableSensor, 228
Serialization problem, JSON values, 237
serialize(...) method, 221, 222
Set literals, 211
Setting up, new project

complex function, 22
cpu_percent function, 26
installing dependencies, 24
IPv4/IPv6 addresses, 22
Jupyter, 20
pipenv directory, 20
psutils module, 24

setup.cfg, 95, 172
calender versioning, 138
check command, 142
configuring, 143
dist directory, 142
flake8 section, 95
format, 137
installing, 142
migrating from setup.py, 117
package metadata, 110
PyPI, 119
semantic versioning, 137
uploading, 141

set_up_config(...) function, 214
setup.py, 103, 108, 118

excessive code, 110, 113
install_requires, 109
setup(...) function, 108

Setuptools, 144
extras_require, 347
install_requires, 138

loading metadata from
README files, 113

tests_require, 347
side_effect method, 514
Signal module, 576

SIGINFO constant, 575
SIGINT constant, 576
signal(...) function, 576
Signals enumeration, 576
SIGUSR1 constant, 576

site-packages, 129
__slots__, 461
Software, third party

ad hoc signature, 221, 222
adapter pattern, 228, 229
SerializableSensor, 225, 226

SolarCumulativeOutput sensor, 428
SQLAlchemy, 258

best practices, 378
BinaryExpression, 260
@cached_property decorator, 488
classic style (see Classic

SQLAlchemy style)
Column objects, 260
create_engine(...) function, 259
database functions, 379
declarative style, 259, 369
Enum field, 267
@hybrid_property decorator, 378, 382
insert statements, 370
migration framework, 263
ORM, 369
session.commit() method, 372
session.execute(...) method, 371
statement compilation phase, 370, 371
statement generation, 369
table definition, manual, 369

Sensors plugin, third party (cont.)

Index

603

type hints, 258
use in asynchronous code, 338
using Alembic, 370

SQLAlchemy functions, 379, 397
SQLAlchemy ORM

alternative approaches, 391
asyncio code, 368
query data, 376, 377
statement generator, 368

Stackless Python, 343
stand-alone data collection function, 275
@staticmethod decorator, 60–62
Statistics signal handler, 576
Storing deployments, 439
String formatting, 219

customising, 219
__str__() method, 62, 63, 66, 82
subprocess, 149

check_output(...) function, 149
Sunk cost fallacy, 58
sys module, 158

argv variable, 31
exit(...) function, 158, 161, 497
path variable, 18 (see also Virtual

environments)
setswitchinterval(...) function, 299
version_info variable, 21

systemd, 122

T
Technologies

attribute behavior, 279
database, 279
generators, 280

Temperature conversion functions, 52, 55,
219, 484

Temperature sensor, 177

Terminology, 104
Testability, 59, 66, 67, 210, 242, 243, 347
Test coverage, 73

annotate report, 76
branch coverage, 74, 75
.coveragerc file, 73
HTML report, 74

Test-driven development, 57
Testing

assertions, 56
Exception is raised, 57
Floating point precision, 57
List containment, 56
Value is None, 56
Values are equal, 56
Values are unequal, 56

conversion function, 56
database applications, 417
database setup fixtures, 417–419
optional arguments, 417
overtesting, 77
parameterized tests, 420, 421
Pull requests, 99
Pytest, 55
Subject Under Test, 68
tautological tests, 65

testing.TypeVar, 85
Test servers, helper functions/fixture, 349
Threading module, 292

Barrier class, 316
BrokenBarrierException, 316
wait() method, 316

Condition class, 313
get(...) method, 313
notify_all() method, 314
notify() method, 314

Event class, 318
clear() method, 318

Index

604

is_set() method, 318
set() method, 318
wait() method, 318

get_ident() function, 318
Lock() class, 301

acquire() method, 305
context manager, 301

RLock class, 312
Semaphore class, 319
Thread class, 292

join() method, 292
name, 292
return values, 292
start() method, 292

ThreadPoolExecutor, 294, 373
Futures, 295
hello world, 295
max_threads, 295
pool.submit(...) function, 295
result() method, 295
using with asyncio, 334

timeit, 462
time module, 318

sleep(...) function, 318
time() function, 318

T_key/T_value type variables, 479, 481
TLS certificates, 214
TOML, 174
Tracebacks, 158, 502
Tracemalloc, 466
twine, 142

configure, 143
upload command, 142

Type checking, 77
contravariant types, 480
covariant types, 480
debugging/overuse typing, 87, 88

generic types, 85–87
isinstance(...) checks, 477 (see also

isinstance(...) function)
Problems with .pyi files, 92
typing.Any, 86, 88

ignoring modules, 216
import typing as t, 82
over-specifying types, 237
overtyping, 89
partial equivalence of int, float and

bool, 86
runtime checkability, 477 (see also

Abstract base classes)
stub only packages, 101
of test methods, 350
type hint files (see .pyi files)
typeshed, 100

TypeError, 53
Typing module, 188

Any type, 83
AsyncIterator type, 477
Awaitable type, 328, 330
Generator type, 549
Iterable type, 549
List type, 81
NamedTuple type, 238
Optional type, 80
Sequence type, 81
Tuple type, 81
TYPE_CHECKING flag, 188
TypeVar class, 480
Union type, 80

U
Unittest, 56, 57

AsyncMock class, 357
MagicMock class, 357

Event class (cont.)

Index

605

main(), 57
Mock class, 512
TestCase, 57

Unit testing
aiohttp library, 356
branching logic, mocks, 360
ClientSession object, 356
generic mocking method, 359
mocking, 357
responses, 356

Uploading version
configuring twine, 144
PyPI, 141
source distribution, 142

UTF-8 encoding, 114, 288

V
Variable scopes, 199
vars(custom_sensors) function, 170
Version numbers, 137

Alpha, Beta and Release Candidate, 137
when to increment, 156

Version pin, 18
approach, 141
“compatible with” pins, 140
loose pinning, 139
strict pinning, 140

virtualenv, see Virtual environments
Virtual environments, 18, 106,

see also Pipenv
Adding to Jupyter, 19
argparse, 32, 33
including system packages, 18

W, X
Waitress, 213, 214
Warning filters, 518

Warnings, 514
catch_warnings(...) context manager, 519
DeprecationWarning, 516
filtering specific warnings, 518
suppressing, 518
treat as error, 518
warnings.warn(...) function, 514

-W command-line flag, 518
Web frameworks, 183
Web microservices

authentication framework, 192
decorators (see Python decorators)
flask, 192–194

WebTest, 189
Wheels, 126

from existing distributions, 126
generating, 142
invention of, 103
-manylinux, 126

WSGI, 184
application factory, 214
definition, 184
functional tests, 189
Hello World, 184
iterable responses, 185
running servers in tests, 347
start_response(...) function, 184
using generators, 185
wsgi.py file, 214
wsgiref.simple_server, 184, 351

Y, Z
YAML, 174
yappi, 463
Yappi helper functions, 465
yield from statement, 351
yield statement, 273, 365, 548

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Prototyping and environments
	Prototyping in Python
	Prototyping with the REPL
	Prototyping with a Python script
	Prototyping with scripts and pdb
	Post-mortem debugging
	The breakpoint function

	Prototyping with Jupyter
	Notebooks

	Prototyping in this chapter

	Environment setup
	Setting up a new project
	Prototyping our scripts
	Installing dependencies

	Exporting to a .py file
	Building a command-line interface
	The sys module and argv
	argparse
	click

	Pushing the boundaries
	Remote kernels
	Developing code that cannot be run locally

	The completed script
	Summary
	Additional resources

	Chapter 2: Testing, checking, linting
	Testing
	When to write tests
	Creating formatting functions for improved testability
	pytest
	Unit, integration, and functional testing
	Pytest fixtures
	Categorizing test functions

	Coverage

	Type checking
	Installing mypy
	Adding type hints
	Subclasses and inheritance
	Generic types
	Debugging and overuse of typing
	When to use typing and when to avoid it
	Keeping type hints separate from code

	Linting
	Installing flake8 and black
	Fixing existing code
	Running automatically
	Running on pull requests

	Summary
	Additional resources

	Chapter 3: Packaging scripts
	Terminology
	Directory structure
	Setup scripts and metadata
	Dependencies
	Declarative configurations
	Things to avoid in setup.py
	Conditional dependencies
	Readme in metadata
	Version numbers

	Using setup.cfg

	Custom index servers
	Setting up pypiserver
	Durability
	Confidentiality
	Integrity
	Wheel formats and executing code on installation
	Creating wheels from existing distributions

	Installing the console script using entrypoints
	README, DEVELOP, and CHANGES
	Markdown format
	reStructured text format
	README
	CHANGES.md and versioning
	Semantic versioning
	Calendar versioning

	Upstream dependency version pins
	Loose pins
	Strict pins
	Which pinning scheme to use

	Uploading a version
	Configuring twine

	Summary
	Additional resources

	Chapter 4: From script to framework
	Writing a sensor plugin
	Developing the plugin

	Adding a new command option
	Subcommands
	Command options
	Error handling
	Off-loading parsing to Click with argument types
	Custom click argument types
	Canned options

	Allowing third-party sensor plugins
	Plugin detection using fixed names
	Plugin detection using entrypoints
	Configuration files
	Environment variables
	Approach for apd.sensors vs. similar programs

	Summary
	Additional resources

	Chapter 5: Alternative interfaces
	Web microservices
	WSGI
	API design
	Authentication

	Flask
	Python decorators
	Closures
	Modifying variables in parent scopes

	Basic decorators
	Decorators with arguments
	Decorator-based security

	Testing the view function
	Deployment

	Extending software as a third party
	Agreeing on an ad hoc signature with peers
	Abstract base classes
	Fallback strategies
	Adapter pattern
	Dynamic class generation
	Other serialization formats

	Bringing it all together

	Fixing the serialization problem in our code
	Tidying up

	Versioning APIs
	Testability

	Summary
	Additional resources

	Chapter 6: Aggregation process
	Cookiecutter
	Creating a new template

	Creating the aggregation package
	Database types
	Our example
	Object-relational mappers
	Versioning the database
	Other useful alembic commands

	Loading data

	New technologies
	Databases
	Custom attribute behavior
	Generators

	Summary
	Additional resources

	Chapter 7: Parallelization and async
	Nonblocking IO
	Making our code nonblocking

	Multithreading and multiprocessing
	Low-level threads
	Bytecode
	The GIL

	Locks and deadlocks
	Deadlocks

	Avoiding global state
	Collating data
	Passing data

	Other synchronization primitives
	Reentrant locks
	Conditions
	Barriers
	Event
	Semaphore

	ProcessPoolExecutors
	Making our code multithreaded

	AsyncIO
	async def
	await
	async for
	async with
	Async locking primitives
	Working with synchronous libraries
	Making our code asynchronous

	Comparison
	Making a choice
	Summary
	Additional resources

	Chapter 8: Advanced asyncio
	Testing async code
	Testing our code
	Test servers and pytest fixtures with teardown
	Fixture scoping

	Mocking objects for easier unit testing
	Mocks with branching logic
	Data classes
	contextlib

	Test methods

	Asynchronous databases
	Classic SQLAlchemy style
	Uncompiled
	mssql
	mysql
	Postgresql
	sqlite

	Using run_in_executor
	Querying data
	Avoiding complex queries
	Querying against views

	Alternatives

	Global variables in asynchronous code
	Summary
	Additional resources

	Chapter 9: Viewing the data
	Query functions
	Filtering data
	Multilevel iterators
	Additional filters
	Testing our query functions
	Parameterized tests

	Displaying multiple sensors
	Processing data
	Interactivity with Jupyter widgets
	Multiply nested synchronous and asynchronous code
	Tidying up

	Persistent endpoints
	Charting maps and geographic data
	New plot types
	Supporting map type charts in apd.aggregation
	Backward compatibility in data classes

	Drawing a custom map using the new configs

	Summary
	Additional resources

	Chapter 10: Speeding things up
	Optimizing a function
	Profiling and threads
	Interpreting the profile report
	Other profilers
	timeit
	line_profiler
	yappi
	Tracemalloc
	New Relic

	Optimizing control flow
	Visualizing profiling data
	Caching
	Cached properties

	Summary
	Additional resources

	Chapter 11: Fault tolerance
	Error handling
	Getting items from a container
	Abstract base classes
	Exception types
	TypeError and ValueError
	RuntimeError and SystemExit
	AssertionError

	Custom exceptions
	Creating new exception types
	Additional metadata

	Tracebacks involving multiple exceptions
	Exception in except or finally block
	raise from

	Testing for exception handling
	New behaviors
	Advanced mocking with unittest.Mock

	Warnings
	Warning filters

	Logging
	Nested loggers
	Custom actions
	Extra metadata
	Logging adapter
	LogRecord factory
	Logging filters

	Logging configuration
	Other handlers
	Audit logs

	Designing around problems
	Scheduling sensor lookups
	APIs and filtering

	Summary
	Additional resources

	Chapter 12: Callbacks and data analysis
	Generator data flow
	Generators that consume their own output
	Enhanced generators
	Using classes
	Using an enhanced generator to wrap an iterable
	Refactoring functions with excessive return values

	Queues
	Choosing a control flow

	Structure for our actions
	Analysis coroutines
	Ingesting data
	Running the analysis process

	Process status
	Callbacks

	Extending the actions available
	Summary
	Additional resources
	Epilogue

	Index

