
M A N N I N G

Peter Elger
Eóin Shanaghy

Serverless machine learning with AWS

AI as a Service
Serverless machine learning with AWS

ii

AI as a Service
SERVERLESS MACHINE LEARNING WITH AWS

PETER ELGER
EÓIN SHANAGHY

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Lesley Trites
20 Baldwin Road Technical development editor: Al Krinker
PO Box 761 Review editor: Ivan Martinović
Shelter Island, NY 11964 Production editor: Deirdre S. Hiam

Copy editor: Ben Berg
Proofreader: Melody Dolab

Technical proofreader: Guillaume Alleon
Typesetter and cover designer: Marija Tudor

ISBN 9781617296154
Printed in the United States of America

www.manning.com

 For my parents, Noel and Kay—Eóin

 For my daughters Isobel and Katie, my parents Jacky and Julian,

and my brother Jonathon—Peter

vi

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the authors xxii
about the cover illustration xxiii

PART 1 FIRST STEPS ... 1

1 A tale of two technologies 3
1.1 Cloud landscape 5
1.2 What is Serverless? 7
1.3 The need for speed 8

The early days 8 ■ The Unix philosophy 9 ■ Object orientation
and patterns 10 ■ Java, J2EE, .NET, 11 ■ XML and
SOAXML (Extensible Markup Language) SOA (service-oriented
architecture) 12 ■ Web speed 12 ■ Cloud computing 13
Microservices (rediscovery) 13 ■ Cloud native services 14
The trend: speed 15

1.4 What is AI? 18
History of AI 18 ■ Real world AI 19 ■ AI services 22
AI and machine learning 23 ■ Deep learning 24
AI challenges 27
vii

CONTENTSviii
1.5 The democratization of compute power and artificial
intelligence 27

1.6 Canonical AI as a Service architecture 27
Web application 28 ■ Realtime services 28 ■ Batch
services 29 ■ Communication services 29 ■ Utility
services 29 ■ AI services 29 ■ Data services 29
Operational support 29 ■ Development support 30
Off-platform 30

1.7 Realization on Amazon Web Services 30

2 Building a serverless image recognition system, part 1 33
2.1 Our first system 34
2.2 Architecture 34

Web application 36 ■ Synchronous services 37 ■ Asynchronous
services 38 ■ Communication services 39 ■ AI services 41
Data services 41 ■ Development support and operational
support 41

2.3 Getting ready 41
DNS domain and SSL/TLS certificate 42 ■ Setup checklist 44
Get the code 44 ■ Setting up cloud resources 44

2.4 Implementing the asynchronous services 47
Crawler service 47

3 Building a serverless image recognition system, part 2 57
3.1 Deploying the asynchronous services 58

Analysis service 58

3.2 Implementing the synchronous services 62
UI service 62 ■ Front end service 67

3.3 Running the system 71
3.4 Removing the system 74

PART 2 TOOLS OF THE TRADE 77

4 Building and securing a web application the serverless way 79
4.1 The to-do list 80
4.2 Architecture 80

Web application 82 ■ Synchronous services 83 ■ Asynchronous
services 84 ■ Communication fabric 85 ■ Utility services 85

CONTENTS ix
AI services 85 ■ Data services 86 ■ Development support
and operational support 86

4.3 Getting ready 86
Getting the code 86

4.4 Step 1: The basic application 87
Resources 89 ■ To-do service 90 ■ Front end 94
Deploying step 1 99

4.5 Step 2: Securing with Cognito 101
Getting the code 103 ■ User service 104 ■ To-do service 107
Front-end service 107 ■ Deploying step 2 109

5 Adding AI interfaces to a web application 115
5.1 Step 3: Adding a speech-to-text interface 116

Getting the code 117 ■ Note service 117 ■ Front-end
updates 118 ■ Deploying step 3 121 ■ Testing step 3 121

5.2 Step 4: Adding text-to-speech 122
Getting the code 123 ■ Schedule service 123 ■ Front-end
updates 126 ■ Deploying step 4 127 ■ Testing step 4 127

5.3 Step 5: Adding a conversational chatbot interface 128
Getting the code 129 ■ Creating the bot 129 ■ Front-end
updates 132 ■ Deploying step 5 134 ■ Testing step 5 134

5.4 Removing the system 135

6 How to be effective with AI as a Service 137
6.1 Addressing the new challenges of Serverless 138

Benefits and challenges of Serverless 138 ■ A production-grade
serverless template 139

6.2 Establishing a project structure 142
The source repository—monorepo or polyrepo 142 ■ Project folder
structure 143 ■ Get the code 143

6.3 Continuous deployment 144
Continuous deployment design 144 ■ Implementing continuous
deployment with AWS services 146

6.4 Observability and monitoring 148
6.5 Logs 150

Writing structured logs 152 ■ Inspecting log output 153
Searching logs using CloudWatch Logs Insights 156

CONTENTSx
6.6 Monitoring service and application metrics 158
Service metrics 158 ■ Application metrics 159 ■ Using metrics
to create alarms 163

6.7 Using traces to make sense of distributed
applications 164
Enabling X-Ray tracing 165 ■ Exploring traces and
maps 167 ■ Advanced tracing with annotations and
custom metrics 168

7 Applying AI to existing platforms 170
7.1 Integration patterns for serverless AI 171

Pattern 1: Synchronous API 174 ■ Pattern 2: Asynchronous
API 175 ■ Pattern 3: VPN Stream In 176 ■ Pattern 4 VPN:
Fully connected streaming 177 ■ Which pattern? 178

7.2 Improving identity verification with Textract 179
Get the code 180 ■ Text Analysis API 180 ■ Client code 182
Deploy the API 183 ■ Test the API 184 ■ Remove the API 185

7.3 An AI-enabled data processing pipeline with Kinesis 185
Get the code 187 ■ Deploying the API 188

7.4 On-the-fly translation with Translate 189
7.5 Testing the pipeline 192
7.6 Sentiment analysis with Comprehend 193
7.7 Training a custom document classifier 196

Create a training bucket 197 ■ Upload training data 197
Create an IAM role 198 ■ Run training 198

7.8 Using the custom classifier 199
7.9 Testing the pipeline end to end 201

7.10 Removing the pipeline 202
7.11 Benefits of automation 202

PART 3 BRINGING IT ALL TOGETHER 205

8 Gathering data at scale for real-world AI 207
8.1 Scenario: Finding events and speakers 208

Identifying data required 209 ■ Sources of data 211
Preparing data for training 211

8.2 Gathering data from the web 212

CONTENTS xi
8.3 Introduction to web crawling 212
Typical web crawler process 213 ■ Web crawler architecture 214
Serverless web crawler architecture 217

8.4 Implementing an item store 219
Getting the code 219 ■ The item store bucket 219
Deploying the item store 219

8.5 Creating a frontier to store and manage URLs 220
Getting the code 220 ■ The frontier URL database 220
Creating the frontier API 222 ■ Deploying and testing the
frontier 224

8.6 Building the fetcher to retrieve and parse web pages 224
Configuring and controlling a headless browser 225
Capturing page output 226 ■ Fetching multiple pages 227
Deploying and testing the fetcher 228

8.7 Determining the crawl space in a strategy service 229
8.8 Orchestrating the crawler with a scheduler 231

Grabbing the code 232 ■ Using Step Functions 232
Deploying and testing the scheduler 234

9 Extracting value from large data sets with AI 238
9.1 Using AI to extract significant information

from web pages 239
Understanding the problem 239 ■ Extending the
architecture 240

9.2 Understanding Comprehend’s entity recognition
APIs 241

9.3 Preparing data for information extraction 244
Getting the code 244 ■ Creating an S3 event notification 244
Implementing the preparation handler 245 ■ Adding resilience
with a dead letter queue (DLQ) 246 ■ Creating the DLQ and retry
handler 247 ■ Deploying and testing the preparation service 249

9.4 Managing throughput with text batches 252
Getting the code 252 ■ Retrieving batches of text for
extraction 252

9.5 Asynchronous named entity abstraction 253
Get the code 253 ■ Starting an entity recognition job 254

9.6 Checking entity recognition progress 255
9.7 Deploying and testing batch entity recognition 256

CONTENTSxii
9.8 Persisting recognition results 257
9.9 Tying it all together 258

Orchestrating entity extraction 259 ■ End-to-end data extraction
testing 261 ■ Viewing conference data extraction results 262

9.10 Wrapping up 263

appendix A AWS account setup and configuration 265

appendix B Data requirements for AWS managed AI services 275

appendix C Data sources for AI applications 277

appendix D Setting up a DNS domain and certificate 279

appendix E Serverless Framework under the hood 285

index 291

foreword
For the past two decades, AI has played an increasingly significant role in our lives. It
has done so quietly behind the scenes, as AI technologies have been employed by
companies around the world to improve search results, product recommendations,
and advertising, and even to assist healthcare workers to provide a better diagnosis.
AI technologies are all around us, and soon, we’ll all travel in cars that drive
themselves!

 With this rise in prominence came a rise in demand for relevant skills. Engineers
with expertise in machine learning or deep learning are often hoovered up by the big
tech companies at huge salaries. Meanwhile, every application on the surface of the
earth wants to use AI to improve its user experience. But the ability to hire the rele-
vant skillsets and acquire the necessary volume of data to train these AI models
remains a significant barrier to entry.

 Fortunately, cloud providers are offering more and more AI services that remove
the need for you to steep yourself in the art of collecting and cleaning up data and
training AI models. AWS, for instance, lets you use the same technologies that power
product recommendations for Amazon.com through Amazon Personalize, or the
speech recognition technology that powers Alexa with Amazon Transcribe. Other
cloud providers (GCP, Azure, IBM, and so on) also offer similar services, and it will be
through these services that we will see AI-powered features in everyday applications.
And as these services become better and more accessible, there will be less need for
people to train their own AI models, except for more specialised workloads.

 It’s great to finally see a book that focuses on leveraging these AI services rather
than the nitty-gritty details of training AI models. This book explains the important
concepts in AI and machine learning in layman’s terms, and describes them for
xiii

FOREWORDxiv
exactly what they are, without all the hype and hyperbole that often accompany
AI-related conversations. And the beauty of this book is that it is way more than “how
to use these AI services from AWS,” but also how to build applications the serverless
way. It covers everything from project organization, to continuous deployment, all the
way to effective logging strategies and how to monitor your application using both ser-
vice and application metrics. The later chapters of the book are also a treasure trove
of integration patterns and real-world examples of how to sprinkle some AI magic into
an existing application.

 Serverless is a state of mind, a way of thinking about software development that
puts the needs of the business and its customers at the forefront, and aims to create
maximum business value with minimum effort by leveraging as many managed ser-
vices as possible. This way of thinking leads to increased developer productivity and
feature velocity, and often results in more scalable, resilient, and secure applications
by building on the shoulders of giants such as AWS.

 Serverless is not the future of how we build businesses around software; it’s the
present and now, and it’s here to stay. This book will help you get started with Server-
less development and show you how to integrate AI services into a Serverless applica-
tion to enhance its user experience. Talk about hitting two birds with one stone!

 YAN CUI

 AWS SERVERLESS HERO

 INDEPENDENT CONSULTANT

preface
The fourth industrial revolution is upon us! The coming decade will likely see huge
advances in areas such as gene editing, quantum computing, and, of course, artificial
intelligence (AI). Most of us already interact with AI technology on a daily basis. This
doesn’t just mean self-driving cars or automated lawn mowers. AI is far more pervasive
than these obvious examples. Consider the product recommendation that Amazon
just made when you visited their site, the online chat conversation you just had with
your airline to re-book a flight, or the text that your bank just sent you warning of a
possibly fraudulent transaction on your account. All of these examples are driven by
AI and machine learning technology.

 Increasingly, developers will be required to add “smart” AI-enabled features and
interfaces to the products and platforms that they build. Early adopters of AI and
machine learning have been doing this for some time, of course; however, this
required a large investment in research and development, typically requiring a team
of data scientists to train, test, deploy, and operate custom AI models. This picture is
changing rapidly due to the powerful force of commoditization.

 In his 2010 bestselling book, The Big Switch, Nicholas Carr compared cloud com-
puting to electricity, predicting that eventually we would consume computing
resources as a utility. Though we are not quite at the point of true utility computing, it
is becoming clearer that this consumption model is fast becoming a reality.

 You can see this in the explosive growth in the range and capability of cloud-native
services. Commoditization of the cloud stack has given rise to the serverless comput-
ing paradigm. It is our belief that serverless computing will become the de facto stan-
dard architecture for building software platforms and products in the future.

 In conjunction with the commoditization of the wider application stack, AI is also
rapidly becoming a commodity. Witness the number of AI services that are available
xv

PREFACExvi
from the major cloud providers in areas such as image recognition, natural language
processing, and chatbot interfaces. These AI services grow in number and capability
month by month.

 At our company, fourTheorem, we use these technologies on a daily basis to help
our clients extend and improve their existing systems through the application of AI
services. We help our clients to adopt serverless architectures and tools to accelerate
their platform development efforts, and we use our experience to help restructure
legacy systems so that they can run more efficiently on cloud.

 It is the rapid growth and commoditization of these two technologies, Serverless
and AI services, along with our experience of applying them to real-world projects,
that led us to write this book. We wanted to provide an engineer’s guide to help you
succeed with AI as a Service, and we wish you luck as you begin to master this brave
new world of software development!

acknowledgments
Ask any technical book author ,and they will tell you that completing a book takes a
lot of time and effort. It also requires the fantastic support of others. We are incredibly
grateful for the many people who made completing this book possible.

 First we would like to thank our families for their support, understanding, and
patience while we worked to complete the book. Eóin would like to thank his amazing
wife, Keelin, for her unending patience, moral support, and indispensable technical
reviews. He would also like to thank Aoife and Cormac for being the best children in
the world. Peter would like to thank his daughters, Isobel and Katie, just for being
awesome.

 Eóin and Peter would like to thank fourTheorem co-founder Fiona McKenna for
her belief in this book, and her constant support and expertise in so many areas. We
could not have done it without you.

 Starting a project like this is the hardest part, and we are grateful for the people
who helped in the beginning. Johannes Ahlmann contributed ideas, writing, and dis-
cussion that helped to shape what this book became. James Dadd and Robert Paulus
provided invaluable support and feedback.

 We would also like to thank the awesome team at Manning for making this book
possible. In particular, we want to thank Lesley Trites, our development editor, for her
patience and support. We would also like to thank Palak Mathur and Al Krinker, our
technical development editors, for their review and feedback. Thank you to our proj-
ect editor, Deirdre Hiam; Ben Berg, our copyeditor; Melody Dolab, our proofreader,
and Ivan Martinović, our reviewing editor.

 We would like to thank Yan Cui for writing the foreword to this book. Yan is an out-
standing architect and champion of all things serverless, and we are grateful for his
endorsement.
xvii

ACKNOWLEDGMENTSxviii
 A big thanks to all of the reviewers for their feedback and suggestions for improve-
ment to the text and examples: Alain Couniot, Alex Gascon, Andrew Hamor, Dwight
Barry, Earl B. Bingham, Eros Pedrini, Greg Andress, Guillaume Alleon, Leemay Nass-
ery, Manu Sareena, Maria Gemini, Matt Welke, Michael Jensen, Mykhaylo Rubezhan-
skyy, Nirupam Sharma, Philippe Vialatte, Polina Keselman, Rob Pacheco, Roger M.
Meli, Sowmya Vajjala, Yvon Vieville,

 A special thanks to Guillaume Alleon, technical proofreader, for his careful review
and testing of the code examples.

 Finally we wish to acknowledge the broader open source community, of which we
are proud to participate in. We truly do stand on the shoulders of giants!

about this book
AI as a Service was written as an engineer’s guide to building AI-enabled platforms and
services. The aim of the book is to get you up and running, and able to produce
results quickly, without getting stuck in the weeds. AI and machine learning are big
topics, and there is an awful lot to learn if you wish to master these disciplines. It is not
our intent to discourage anyone from doing this, however if you need to get results
quickly, this book will help you get up to speed.

 The book examines two growing and increasingly important technologies: server-
less computing and artificial intelligence. We examine these from a developer’s per-
spective to provide a practical, hands-on guide.

 All of the major cloud vendors are engaged in a race to provide relevant AI ser-
vices, such as

 Image recognition
 Speech-to-text, text-to-speech
 Chatbots
 Language translation
 Natural language processing
 Recommendations

This list will only expand over time!
 The good news is that you do not need to be an AI or machine learning expert to

use these offerings. This book will guide you in applying these services in your day-to-
day work as a developer.

 In tandem with the grown of AI services, it is now possible to build and deploy appli-
cations with a minimum of operational overhead using the serverless approach. Our
xix

ABOUT THIS BOOKxx
belief is that within the next few years, the tools, techniques, and architectures
described in this book will become part of the standard toolkit for enterprise platform
development. This book will bring you up to speed quickly, and help you build new sys-
tems using serverless architectures and to apply AI services to your existing platforms.

Who should read this book

AI as a Service was written for full stack and back-end developers who are tasked with
implementing AI-enhanced platforms and services. The book will also be of value to
solution architects and product owners looking to understand how their systems can
be augmented and improved with AI. DevOps professionals will gain valuable insights
into the “serverless way” of building and deploying systems.

How this book is organized: a roadmap

This book is broken down into three sections covering nine chapters.
 Part 1 provides some background and examines a simple serverless AI system:

 Chapter 1 discusses the rise of serverless computing over the last few years,
explaining why Serverless represents true utility cloud computing. Following
this, it provides a brief overview of AI in order to bring readers with no experi-
ence with the topic up to speed.

 Chapters 2 and 3 rapidly construct a serverless AI system that uses off-the-shelf
image recognition technology. Readers can deploy and experiment with this
system to explore how image recognition can be used.

Part 2 goes much deeper into the individual tools and techniques that developers
need to know to become effective with serverless and off-the-shelf AI:

 Chapter 4 examines how to build and deploy a simple serverless web applica-
tion and then, perhaps more importantly, how to secure the application the
serverless way.

 Chapter 5 explores how we can add AI-driven interfaces to a serverless web
application, including speech-to-text, text-to-speech, and a conversational chat-
bot interface.

 Chapter 6 provides some specific advice on how to be an effective developer
with this new technology set, including project structure, CI/CD, and observ-
ability—things that most developers getting to grips with this technology will
need in their tool chest.

 Chapter 7 looks in detail at how serverless AI can be applied to existing or legacy
platforms. Here we provide advice on the generic patterns that can be applied,
and also look at some point solutions to illustrate application of these patterns.

Part 3 looks at how we can bring together what you’ve learned from the first two parts
in the context of a full-scale AI-driven system:

 Chapter 8 examines gathering data at scale, using the example of a serverless
web crawler.

ABOUT THIS BOOK xxi
 Chapter 9 looks at how we can extract value from large data sets using AI as a
Service, using the data collected from the serverless web crawler.

Readers should review the material in chapter 1 to get a basic grounding of the sub-
ject matter, and pay close attention to the content in chapter 2, where we describe
how to set up a development environment. The book is best read in order, as each
chapter builds on the examples and learning from the previous one.

About the code

This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts. Source code for the examples
in this book is available for download from the publisher’s website.

 All of the source code for this book is available at this repository: https://
github.com/fourTheorem/ai-as-a-service.

liveBook discussion forum

Purchase of AI as a Service includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://livebook.manning.com/#!/book/ai-as-a-service/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://github.com/fourTheorem/ai-as-a-service
https://github.com/fourTheorem/ai-as-a-service
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/book/ai-as-a-service/discussion

about the authors
PETER ELGER is a co-founder and CEO of fourTheorem. Peter started
his career at the JET Joint Undertaking in the UK, where he spent
seven years building acquisition, control, and data analytics systems for
nuclear fusion research. He has held technical leadership roles across
a broad base of the software industry in both the research and com-
mercial sectors, including software disaster recovery, telecommunica-
tions, and social media. Prior to founding fourTheorem, Peter was
co-founder and CTO of two companies: Stitcher Ads, a social advertis-

ing platform; and nearForm, a Node.js consultancy. Peter’s current focus is on deliver-
ing business value to his clients through the application of cutting edge serverless
technology, cloud architectures, and machine learning. His experience covers every-
thing from architecting large-scale distributed software systems to leading the interna-
tional teams that implement them. Peter holds degrees in physics and computer
science.

EÓIN SHANAGHY was fortunate enough to have been able to start pro-
gramming on a Sinclair ZX Spectrum in the mid-1980s. It was the first
piece of electronics he didn’t try to disassemble. These days, he tries
to take software systems apart instead. Eóin is the CTO and
co-founder of fourTheorem, a technology consulting firm and AWS
Partner. He is an architect and developer with experience in building
and scaling systems for both startups and large enterprises. Eóin has
worked in many different technology eras, from Java-based distributed

systems back in 2000 to full-stack polyglot container and serverless applications in
recent years. Eóin holds a B.A. in computer science from Trinity College, Dublin.
xxii

about the cover illustration
The figure on the cover of AI as a Service is captioned “Homme de la Forêt Noire,” or
“The man from the Black Forest.” The illustration is taken from a collection of dress
costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810),
titled Costumes civils actuels de tous les peuples connus, published in France in 1788. Each
illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-
Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. In the streets or in the countryside, it was easy to identify where
they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

xxiii

ABOUT THE COVER ILLUSTRATIONxxiv

Part 1

First steps

In part I we provide the ground work to get you up to speed on AI as a Ser-
vice. In chapter 1 we look at the development and history of artificial intelli-
gence and serverless computing. We review the current state of the art, and we
categorize the available services on AWS into a standard architectural structure.
In chapters 2 and 3 we dive right in and build a serverless image recognition sys-
tem as our first AI as a Service platform.

2 CHAPTER

A tale of two technologies
Welcome to our book! In these pages we are going to explore two exploding tech-
nologies: serverless computing and artificial intelligence. We will do this from an engi-
neering perspective. When we say an engineering perspective, we mean that this
book will provide you with a practical hands-on guide to get you up and running
with AI as a Service, without getting bogged down in a lot of theory.

 We imagine that like most people, you have heard of these topics and will be
wondering why we’ve combined both of these seemingly disparate subjects into a
single book. As we will see throughout the following chapters, the combination of
these technologies has the potential to become the de facto standard for enterprise

This chapter covers
 Cloud landscape

 What is Serverless?

 What is artificial intelligence?

 The democratizing power of Moore’s Law

 A canonical AI as a Service architecture

 Canonical architecture on Amazon Web Services
3

4 CHAPTER 1 A tale of two technologies
and business-to-consumer platform development. It is a combination that will provide
software developers—and by implication the businesses they work for—with enor-
mous power to augment and improve existing systems and to rapidly develop and
deploy new AI-enabled platforms.

 The world is becoming increasingly digital—you may have heard of the phrase
“digital transformation.” This generally refers to the process of transforming existing
manual business processes that are currently run using spreadsheets, local databases,
or even no software at all into platforms running on the cloud. Serverless provides us
with a tool chain to accelerate digital transformation, and increasingly AI forms a core
part of these transformations, replacing all or part of these human-driven business
processes with computers.

 Software developers will increasingly be required to implement these platforms;
most of us who are involved in the software industry will need to become skilled at
designing, developing, and maintaining these types of systems if we aren’t already.

 Are you currently thinking, “I don’t know anything about AI! Do I need to become
an AI expert, because that sounds really difficult?” Don’t panic! You don’t need to
become a data scientist or a machine learning expert in order to build serverless AI
systems. As we will see throughout this book, most of the hard work has already been
done for you in the form of “off-the-shelf” cloud AI services. Our job as software pro-
fessionals is to engineer solutions using these components.

 Let’s consider a simple example to illustrate the concept. Imagine a chain of
hotels. There are a lot of processes that must occur in order for the company running
the hotels to be successful and operate at a profit. Take, for example, the problem of
deciding what the room rate should be on a certain day. If this is priced too high, no
one will book, and if it is priced too low, the company will lose out on revenue.
Humans operating this process rely on their experience to set the room rates, and will
take into account factors such as the local competition, time of year, the expected
weather, and any events of interest that may be occurring in the locality. Once decided
upon, these rates will be advertised but will constantly change as the local conditions
change and rooms are booked up.

 This process is a great fit for an AI as a Service platform, as it is a problem in opti-
mization. Using cloud-native services, we can imagine rapidly developing services to
ingest and store the appropriate data, either through API access or scraping web sites
with information on local events. We can use off-the-shelf AI models to interpret the
scraped data, and we could cross-train an existing neural network to compute the
optimal room rate for us. Rates could be automatically published through another
service. This could be achieved today with a very limited knowledge of AI, purely
through connecting cloud-native AI and data services.

 If your primary interest is developing simple web sites, or low-level communication
protocols, AI as a Service is not going to be of interest. However, for the vast majority
of software professionals, AI as a Service will be something that will have a major
impact on your professional life, and soon!

5Cloud landscape
1.1 Cloud landscape
Anyone involved in the software industry will have at least a basic understanding of cloud
computing. Cloud computing began as a mechanism to run virtual servers on someone
else’s hardware—what is commonly know as Infrastructure as a Service (IaaS). It has since
evolved into a much richer suite of on-demand services that can cater to a wide variety
of compute loads. There are three major players at present: Amazon, Google, and
Microsoft. Amazon Web Services (AWS) has been and continues to be the dominant
provider of cloud infrastructure, delivering a bewildering array of offerings.

 As of March 2020, the three major platforms provide a very similar range of ser-
vices. Table 1.1 lists the number of available services from Amazon, Google, and
Microsoft under a set of common categories as listed on their product pages.1

That’s a lot of services to try to understand, each of which comes with its own specific
API. How can we best make sense of all of this and be effective engineers, given that
we can never understand the entire landscape in detail? This landscape is also in a
constant state of flux as new services are added and updated.

 Our goal should be to understand the architectural principles and how we can
compose systems from these services to achieve a specific business goal. We should
aim to keep a mental inventory of the types of services that are available and to deep
dive on a subset so that we can quickly assimilate and utilize a new service as needed,
depending on the result that we want to achieve.

Table 1.1 Cloud service counts, March 2020

Service type AWS Google Azure

AI and Machine Learning 24 20 42

Compute 10 7 20

Containers 4 8 10

Developer 12 16 11

Database 12 6 12

Storage 10 6 17

IoT 12 2 22

Network 11 11 20

Security 18 28 10

Other 85 119 115

Total 198 223 279

1 Sources: https://aws.amazon.com/products/, https://cloud.google.com/products/, and https://azure
.microsoft.com/en-us/services/.

https://aws.amazon.com/products/
https://cloud.google.com/products/
https://azure.microsoft.com/en-us/services/
https://azure.microsoft.com/en-us/services/

6 CHAPTER 1 A tale of two technologies
Figure 1.1 outlines a mental frame of reference for thinking about AI as a Service
platforms.

 The model is built on understanding four pillars:

 Architecture—What are the effective architectural patterns for adopting server-
less computing?

 Development—What are the best development tools, frameworks, and tech-
niques?

 AI—What are the available machine learning and data processing services, and
how can they best be applied to solve business problems?

 Operations—How do we effectively put these services into production and man-
age their operation?

In this book, we will explore the application of each of the AI subtopics through build-
ing an example software system that incorporates machine learning services such as
chatbots and speech-to-text. We will explore frameworks and tools for effective

Development

AI

Operations

Architecture

- Microservice
- SPA
- Protocols
- Messaging
- Queueing
- Event-driven
- DRY
- SRP
- Data models

- Frameworks
- Tooling
- Debugging
- Environment
- Technologies
- Cloud services
- APIs

- CI/CD
- Logging
- Monitoring
- Performance
- Analytics
- Databases
- Security

- Image recognition
- Speech to text
- Text to speech
- NLP
- Chatbots
- Data science
- Deep learning

Serverless AI

Figure 1.1 Effective AI as a Service engineering

7What is Serverless?
serverless development, and provide help and advice on how to effectively debug in
the serverless environment. Later in the book, we will discover how to apply AI tools
and techniques to platform operations and how to secure a serverless platform.

 We will also see how our existing experience of software architecture transfers to
the serverless domain, and develop a canonical architecture for AI as a Service plat-
forms that will help us to place each of the available cloud services into context. We
will use this architecture throughout the book a reference model for the example sys-
tems that we will develop.

 For the rest of this chapter, we will explore the development of Serverless and AI
and provide an abridged history of each topic. This important background context
will help us understand how we arrived where we are today as an industry and how the
seemingly complex fields of AI and cloud computing evolved. Most of the theory is in
this chapter; from chapter 2 onward we will get right into the code!

1.2 What is Serverless?
Given that there is no official definition of the term Serverless, we offer the following as
a working solution.

 Serverless computing is a form of cloud utility computing where the cloud provider dynami-
cally manages the underlying resources for the user of the service. It provides a level of abstraction
over the underlying infrastructure, removing the burden of management from the end user.

 Serverless software is a form of cloud software which avoids the explicit creation
and management of infrastructure; for example, servers or containers. These tradi-
tional computing resources are replaced by functions managed and run by the cloud
provider. This is known as Functions-as-a-Service (FaaS). Serverless applications also
avoid creating heavy, dedicated resources such as databases, file storage, or message
queues. Instead, they rely on managed services offered by cloud providers which scale
automatically to handle vast workloads. The pricing model for serverless applications
is also significant. Instead of paying for resources regardless of whether they are in use
or idle, the cloud provider typically charges when functions are called and managed
services are consumed. This can enable large cost savings and ensure that infrastruc-
ture costs grow in line with use.

 The principles of serverless computing can be summarized as follows:

 Servers and containers are replaced by cloud functions, executed on demand.
 Managed services and third-party APIs are preferred over custom-built

resources.
 Architectures are primarily event-driven and distributed.
 Developers focus on building the core product, not low-level infrastructure.

The term Serverless is a bit of a misnomer, because, of course, there is always a server
involved somewhere in the chain! The point is that with Serverless we, as users of the
technology, no longer have to care about the underlying infrastructure. The cloud
vendor, through FaaS and other managed services, provides a level of abstraction over
the underlying infrastructure.

8 CHAPTER 1 A tale of two technologies
 The history of computing has in one sense been all about creating levels of abstrac-
tion. Early users had to be concerned with physical disk sectors and registers until the
abstraction of the operating system was created. Languages have evolved from a low
level such as assembly language, to dynamic modern dialects such as Python, through
the creation of a series of increasingly sophisticated abstractions. So it is with Serverless.

 Anyone engaged in the craft of software development, be it as a developer, DevOps
specialist, manager, or senior technologist, understands that the rate of change in our
industry is unlike any other. Imagine for a moment, if you will, other professions, such
as doctors, dentists, lawyers, or civil engineers, having to update their knowledge base
at the frenetic rate that the software industry does. If you’re finding it difficult to
imagine, we agree with you!

 This both a boon and a curse. Many of us enjoy working with the latest and greatest
technology stacks, yet we often suffer from a paradox of choice in that there are per-
haps too many languages, platforms, and technologies to choose from.

Many who have been in the industry for a while become justifiably skeptical of the lat-
est technology trend or framework. However, it is our belief that Serverless and the
current wave of AI represent a true paradigm shift, and not just a short-term trend.

 To understand what Serverless really means, we first need to understand how the
industry got to where it is today, and to do that, we need to explore the key driver
behind the industry: speed!

1.3 The need for speed
The history and development of the computer industry is a fascinating topic, and
many worthy books have been written on the subject. While we could not do the topic
full justice here, it is important to understand some key historical trends and the
forces behind them. This will help us to see that Serverless is, in fact, the next logical
step in this history.

1.3.1 The early days

The history of computing can be traced back to ancient times, with devices such as the
abacus. Historians identify the first known computer algorithm as that implemented by
Ada Lovelace in the 19th century for Charles Babbage. The early development of com-
puting was concerned with single-purpose, unwieldy systems, designed to accomplish a

The paradox of choice
The Paradox of Choice: Why More is Less is a book by psychologist Barry Schwartz, in
which he develops the thesis that more choice in fact leads to consumer anxiety. He
argues that a successful product should limit the amount of choice into a few distinct
categories. It is a similar situation with programming languages, frameworks, and
platforms, in that we literally have too many options to choose from!

9The need for speed
single goal. The modern software era only really started with the development of the
first multitasking operating system, MULTICS, in 1964, followed thereafter by the
development of the Unix operating system.

1.3.2 The Unix philosophy

The Unix operating system was created at Bell Labs in the 1970s by Ken Thompson and
Dennis Ritchie. The original AT&T version spawned many derivative works; the most
famous, perhaps, is the Linux kernel and associated distributions. For those of you with
an interest in the history of computing, figure 1.2 depicts the main branches of the
Unix family tree. As you can see, the original system spawned many successful deriva-
tives, including Linux, Mac OS X, and the BSD family of operating systems.

Figure 1.2 Unix family tree. Source: http://mng.bz/6AGR.

Perhaps of greater importance than the operating system is the philosophy that devel-
oped around the original Unix culture, which can be summarized as

 Write programs that do one thing and do it well.
 Write programs to work together.
 Write programs to handle text streams, because that is a universal interface.

http://mng.bz/6AGR

10 CHAPTER 1 A tale of two technologies
TIP For a full explanation of this topic, see The Unix Programming Environment
by Brian Kernigan and Rob Pike (Prentice-Hall, 1983).

This approach to system design first introduced the concept of modularity to software
development. We should note at this point that these principles may be applied irre-
spective of the underlying operating system or language. It is perfectly valid to apply
the Unix philosophy in a Windows programming environment using C#, for instance.

 The key point to understand here is that of the Single Responsibility Principle—
write programs or modules with a single focus.

1.3.3 Object orientation and patterns

This original clean and modular approach was in large part forgotten by the industry
in favor of the object-oriented paradigm. During the late 1980s and early 1990s, lan-
guages such as C++ gained increasing popularity. Driven by the software pattern move-
ment, the promise of object orientation was that code could be reused at the object
level through mechanisms such as inheritance and polymorphism. It turned out that
this vision was never realized, as ironically stated in the famous Banana, Monkey, Jun-
gle problem.

Single focus
To illustrate the concept of a single focus for a program, consider the following Unix
command-line tools:

 ls knows how to list files in a directory.
 find searches for files in a directory tree.
 grep knows how to search for strings within text.
 wc knows how to count lines or words in text.
 netstat lists open network connections.
 sort> sorts numerically or alphabetically.
 head returns the top n lines from its input.

Each of these tools in and of themselves are fairly simple, but we can combine them
together to accomplish more complex tasks. For example, the following code gives a
count of the number of listening TCP sockets on a system:

$ netstat -an | grep -i listen | grep -i tcp | wc -l

This example displays the five largest files in a directory tree:

find . -type f -exec ls -s {} \; | sort -n -r | head -5

The philosophy of doing one thing well is a powerful force for good in software. It
allows us to write smaller units of code that are easier to reason about and easier to
get right than large interconnected monoliths.

11The need for speed
During this period, before the web, systems tended to be developed and built as
monoliths, and it was not atypical for large systems to have over a million lines of code
comprising a single executable.

1.3.4 Java, J2EE, .NET,

The trend of object orientation continued through the 1990s into the 2000s, with lan-
guages like Java and C# gaining prominence. However, the nature of these systems
started to shift away from desktop delivery to more-distributed, network-aware applica-
tions. This period saw the rise of the application server model, and was characterized
by large monolithic code bases, massive relational databases with plenty of stored pro-
cedures, and CORBA/COM for distributed communication and interoperability.
Deployment was typically every three to six months, and required weeks of planning
and an outage period.

Banana, Monkey, Jungle
The Banana, Monkey, Jungle problem refers to the problem of reuse in real-world
object-oriented code bases. It can be stated as “I wanted a banana, but when I
reached for it, I got a monkey as well holding onto the banana. Not only that, but the
monkey was holding onto a tree so I got the whole jungle as well.”

The following snippet illustrates the problem:

public class Banana {
public Monkey Owner {get;}

}

public class Monkey {
public Jungle Habitat {get;}

}

public class Jungle {
}

In order to use the Banana class, I first need to provide a Monkey instance to it. In
order to use the Monkey class, I need to provide it with an instance of Jungle, and so
on. This coupling is a real problem in most object-oriented code bases that the
authors have come across.

CORBA and COM
The Common Object Request Broker Architecture is a legacy binary communication
protocol that was very much in vogue in the early 2000s. The Common Object Model
(COM) was a Microsoft-specific alternative to CORBA. Both technologies are now
thankfully mostly replaced with RESTful APIs.

12 CHAPTER 1 A tale of two technologies
Figure 1.3 Enterprise software development circa 2000 (or Ploughing with Oxen, George
H. Harvey, 1881). Source: http://mng.bz/oRVD.

On reflection, early 21st century development could be compared to the early days of
agriculture. Of its time, it was revolutionary. By comparison to what came later, it was
slow, unwieldy, inflexible, and labor-intensive.

1.3.5 XML and SOAXML (Extensible Markup Language)
SOA (service-oriented architecture)

From here, the industry moved to adopt XML (Extensible Markup Language) as a means
to configure and communicate everything, peaking with the emergence of SOAP and
a drive toward the so-called service-oriented architecture (SOA). This was driven by an
appetite for decoupling and interoperability, and underpinned by a dawning under-
standing of the benefits of open standards.

1.3.6 Web speed

In parallel with the changes in enterprise software development, fueled by the dot-
com boom (and subsequent crash), the Software as a Service (SaaS) model began to
gain traction. The industry was shifting toward the web as the primary application
delivery mechanism, initially for external customer-facing use, but increasingly for
internal enterprise delivery. This period saw an increasing need for rapid delivery of
software, including initial deployments as well as feature additions which could now

SOAP
The Simple Object Access Protocol is an XML-based text protocol touted as a superior
alternative to CORBA and COM. Due to its text-based nature, SOAP had better cross-
platform interoperability characteristics than CORBA or COM; however, it was still heavy-
weight and cumbersome to use compared with modern JSON-based RESTful APIs.

http://mng.bz/oRVD

13The need for speed
be deployed onto a server with instant effect. At this time, the predominant SaaS host-
ing model was to deploy to on-premise servers or machines co-located in a data center.

 Thus the industry had two major problems. First, there was the need to predict
ahead of time the required capacity so that enough capital expenditure could be allo-
cated to purchase the required hardware to deal with the expected load. Secondly,
large, monolithic, object-oriented code bases did not really lend themselves to the
web-speed development model.

 It was clear that the heavyweight, closed enterprise model was not a good fit for web-
speed delivery. This led to an increasing adoption of open standards-based approaches,
and to the increased use of open source technologies. This movement was led by orga-
nizations such as FSF (Free Software Foundation), Apache, and GNU/Linux.

 The shift toward open source caused a crucial, irreversible change in the way
enterprise software architectures were defined. Best practices, standards, and tools
were once dictated by the interests of enterprise leaders like Sun Microsystems, Ora-
cle, and Microsoft. Open source empowered hobbyists, startups, and academics to
innovate quickly, and to share and iterate with unprecedented frequency. Where the
industry once waited for the big players to agree on complex standards documenta-
tion, the model shifted to utilize the combined power and agility of the community to
demonstrate working, pragmatic solutions that not only worked right away, but contin-
uously improved at a blistering pace.

1.3.7 Cloud computing

Cloud computing first came to prominence in 2006 when Amazon launched their
Elastic Compute Cloud product, now known as Amazon EC2. This was followed in
2008 by Google’s App Engine, and in 2010 by Microsoft Azure. To say that cloud com-
puting has fundamentally changed the software industry would be an understatement.
In 2017, Amazon Web Services (AWS) reported revenues of 17.46 billion USD.

 The availability of on-demand compute power made it affordable and fast for indi-
viduals and cash-strapped startups to build truly innovative projects and have a dispro-
portionate impact on the industry. Critically, the industry started looking to the most
innovative end users of software tooling for leadership, not the enterprise software
vendors. For the enterprise, the rise of cloud computing caused several seismic shifts.
Key among these were

 Shift of cost models from large up-front capital expenditure to lower ongoing
operational expenditure.

 Elastic scaling—Resources could now be used and paid for on demand.
 DevOps and infrastructure as code—As cloud APIs matured, tooling was devel-

oped to capture the entire deployment stack as code.

1.3.8 Microservices (rediscovery)

The widespread adoption of open source combined with the shift to operational
expenditure and elastic scaling led to a rediscovery of the Unix philosophy when it
came to enterprise platform development, and helped to drive the adoption of the

14 CHAPTER 1 A tale of two technologies
so-called microservice architecture. While there is no agreed-upon formal definition
for a microservice, most practitioners in the industry would agree with the following
characterization:

 Microservices are small, fine-grained, and perform a single function.
 The organization culture must embrace automation of testing and deployment.

This eases the burden on management and operations, and allows for different
development teams to work on independently deployable units of code.

 The culture and design principles must embrace failure and faults, similar to
anti-fragile systems.

 Each service is elastic, resilient, composable, minimal, and complete.
 The services can be individually and horizontally scaled.

The ideas behind microservices are nothing new. Distributed systems have existed
since the 1970s. Erlang was doing microservices in the 1980s, and everything since,
from CORBA to SOA, tried to achieve the goal of distributed, networked components.
The enablers for the mass adoption of microservices were cloud, containers, and
community:

 Cloud infrastructure like AWS gave us the ability to quickly and cheaply deploy
and destroy secure clusters of machines with high availability.

 Containers (Docker) gave us the ability to build, package, and deploy immutable
units containing software at a microservice unit of scale. Previously, it wasn’t fea-
sible or comprehensible to deploy a few hundred lines of code as a single unit!

 Community offerings gave us the tooling to manage the new form of complexity
that emerges when you start dealing with numerous, small units of deployment.
This includes orchestration in the form of Kubernetes, monitoring in the form
of ELK (Elasticsearch, Logstash, and Kibana) or Zipkin, as well as the massive range
of tooling, such as the work open sourced by the Netflix engineering team.

The microservice model is a great fit for modern cloud infrastructures because each
component can be scaled individually. Moreover, each component can also be
deployed individually. This enables much more rapid development cycles and, indeed,
led to the development of what has since been termed continuous deployment, where
code committed by a developer moves immediately to production with no human inter-
vention, provided, of course, that it passes a series of stringent automated tests.

 For a full treatment of microservices, we can recommend The Tao of Microservices by
Richard Rodger, also published by Manning.

1.3.9 Cloud native services

Services such as Amazon’s EC2 are typically referred to as Infrastructure as a Service or
IaaS. While this is a powerful concept, it still places the burden of operations and man-
agement on the end user of the service. Most systems will require some form of database
and other pieces of infrastructure to operate. If we build a system on top of IaaS, then
we would need to install and maintain a cluster of database servers and deal with issues
like backup, geographical redundancy, and scaling the cluster to handle the requisite

15The need for speed
load. We can avoid all of this overhead by instead using cloud native services. Under this
model, the cloud provider handles the management and operation of our database for
us; we simply tell the system what to do through configuration or the use of an API.

 To provide a more concrete example, let’s look at Amazon’s DynamoDB service.
This is a fully managed high-scale key value store. To use DynamoDB, we need only go
to the DynamoDB setup page on the AWS console, enter a few pieces of configuration
information, and we have a table ready to read and write to in less than 60 seconds.
Contrast this with the setup that would be required to install our own key value store
on EC2 instances, which would require hours of setup and continued maintenance.

 One of the most exciting developments in cloud services is the ability to run man-
aged code units on the cloud without caring about the underlying server. This is usu-
ally referred to as Function as a Service or FaaS. On AWS, FaaS is implemented using the
Lambda service, whereas Google’s offering is called Cloud Functions.

1.3.10 The trend: speed

If we pull on all of these threads, it becomes apparent that with a few missteps, the
main driving force is the need for speed. After all, time is money! By this, we mean
that there is an increasing need to get code into production as quickly as possible, and
to be able to manage and scale it quickly. This has driven the adoption of microser-
vices and cloud native services, because these technologies provide a path to rapid
development and deployment of functionality.

 In tandem with the changing technology landscape, there has been an evolution
in the methodologies that the industry has applied to the development of software.
These trends are summarised in figure 1.4.

Figure 1.4 Changes in iteration times and code volumes. Courtesy of Clarke, Paul. 2017. Computer
science lecture notes. Dublin City University and Lero, the Irish Software Research Center.

16 CHAPTER 1 A tale of two technologies
As illustrated, iteration times have been rapidly decreasing. In the 1980s and early
1990s, using waterfall-based methodologies, what could be called an iteration would
be the length of the entire project—perhaps a year or more for most projects. As we
moved into the mid 1990s, iteration times dropped with the adoption of early agile-
like approaches such as the Rational Unified Process (RUP). With the advent of agile
methodologies like Extreme Programming (XP) around the 2000s, iteration times
dropped to two to three weeks in duration, and now some more-hyper agile practices
use iteration times of around a week.

 Software concomitant release cycles—the time between releases of production—
have been decreasing, from more than a year in the 1980s and 1990s to today’s far more
rapid release schedules. Indeed, the highest performing organizations using continu-
ous deployment techniques can release software to production many times a day.

 The ability to release at this frenetic pace has been enabled by another trend:
namely, the decreasing unit of scale. The volume of code per deployment unit has
been decreasing. In the 1980s and 1990s, large, monolithic code bases were the order
of the day. Due to the coupled nature of these code bases, testing and deployment was
a difficult and time-consuming process. With the advent of service-oriented architec-
ture in the late 1990s and early 2000s, the deployment unit decreased in size. This was
followed by a much more significant drop as microservices were adopted.

 Figure 1.5 illustrates how the decreasing unit of scale and accelerated deployment
cycles have been accompanied by increasing levels of abstraction away from the
underlying hardware.

 The industry has in large part moved away from installing and running physical
hardware, through virtual servers to container-based deployment. The current state
of the art is typically to deploy small services built as containers to some kind of

2005 2010 2015 2020

OS OS Cloud managed Cloud managed

Hardware Virtual servers Cloud managed Cloud managed

Runtime Runtime Containers Cloud managed

Application
server

Application
server Runtime Cloud managed

Application Application Microservices Code (function)

Client Client Client Client

Figure 1.5 Unit of scale change

17The need for speed
orchestration platform such as Kubernetes. Services will typically then consume either
IaaS-configured databases or cloud-native data services. However, it seems clear that if
the trend of increased deployment speed and reduced unit of scale is to continue—
and the economic incentive would indicate that this is a desirable goal—then the next
logical step in this progression is to move to fully serverless systems.

 Figure 1.6 illustrates the path and technology milestones that have led the industry
to the development of Serverless.

Figure 1.6 A history of computing concepts leading to serverless computing. E. van Eyk et al, “Serverless is More:
From PaaS to Present Cloud Computing.” IEEE Internet Computing 22, no. 5 (Sept/Oct. 2018): 8-17, doi: 10.1109/
MIC.2018.053681358.

18 CHAPTER 1 A tale of two technologies
In summary, the need for rapid development and deployment of software has led to a
decreasing unit of scale. The next logical step in this progression is the adoption of
fully serverless architectures.

1.4 What is AI?
Artificial intelligence (AI) is a term that has grown to encompass a range of techniques
and algorithmic approaches in computer science. To many people, it can often con-
jure up images of out-of-control killer robots, mainly due to the dystopian futures por-
trayed in the Matrix and Terminator movies!

 A more sober and sensible definition of the term might be this:
 Artificial Intelligence refers to the capacity of a computer to exhibit learning and decision

making capabilities, as seen in humans and other animal species.

1.4.1 History of AI

Why the sudden interest in AI? How come AI and machine learning are increasingly
in demand? The development of AI is a fascinating topic that could fill several books
by itself, and full treatment is certainly outside the scope of this book.

 Humans have always been fascinated with creating artificial replicas of themselves,
but it was not until the 17th century that philosophers such as Leibniz and Descartes
began to explore the notion that human thought could be described in a systematic,
mathematical manner, and therefore could perhaps be amenable to replication by
nonhuman machines.

 From these first philosophical forays, it took until the early 20th century for think-
ers such as Russel and Boole to develop a more formal definition of these ideas. These
developments, coupled with the brilliant work of mathematician Kurt Godel, led to
the foundational work of Alan Turing. Turing’s key insight was that any mathematical
problem that could be formally defined within the limits of Godel’s incompleteness
theorem could, in theory, be solved by a computing device, the so-called Turing
Machine.

 The groundbreaking work of Turing and Flowers, developing the Bombe and
Colossus systems at Bletchley Park in the UK, eventually led to the now famous Dart-
mouth Collage conference in the summer of 1956, which is generally recognized as
the formal founding of the discipline of AI.

It’s just code
Though some of the capabilities exhibited by modern AI systems can often appear
miraculous, we should always bear in mind that at the end of the day it’s just code.
For example, an algorithm that can recognize images may be a very powerful tool, but
at the base level it is just an interconnected set of very simple units. The “learning”
process that occurs in an AI algorithm is really a very simple matter of tuning numer-
ical values based on training data. It is the emergent behavior of these numerical val-
ues en masse that produces remarkable results.

19What is AI?
 There was much early optimism, leading to some wildly optimistic predictions such as

 H.A. Simon and A. Newell, 1958: “Within ten years, a digital computer will be
the world’s chess champion.”

 H.A. Simon, 1965: “Machines will be capable, within twenty years, of doing any
work a man can do.”

 M. Minsky, 1967: “Within a generation … the problem of creating artificial
intelligence will substantially be solved.”

Progress in the field through the early years of the 1970s did not match these expecta-
tions. As time passed with no substantial progress, funding sources dried up and
research in the field slowed. This period is known as the first AI winter.

 The 1980s witnessed the rise of expert systems: rule-based problem-solving languages
like Prolog gained traction and much interest from the business community. History
repeated itself, and toward the end of the 1980s it became clear that the early promise
of expert systems was not going to be realized. This fact, coupled with the rise of com-
modity PC hardware, meant that companies would no longer invest in the expensive
custom hardware required for these systems, and the second AI winter began.

 In the background, researchers had made strides in advancing the field of neural
network development, both in network architecture and improved training algo-
rithms such as back propagation. The field was lacking one key ingredient: computa-
tional power.

 Throughout the 1990s and early 2000s, Moore’s law (the exponential growth in
compute power) continued apace. This growth in power allowed researchers to build
increasingly more complex neural networks and to shorten the training cycles, provid-
ing a boost to the field and the ability to innovate at a much more rapid pace. Begin-
ning with IMB’s Deep Blue beating Gary Kasparov in 1997, AI has been expanding
into many areas and has been rapidly commoditizing, meaning that the technology is
now available for use in many business contexts at low cost, without requiring a team
of expert researchers.

1.4.2 Real world AI

Since the 1950s, efforts have been made to create machines that can exhibit the capa-
bilities of humans, that can take an objective and figure out a way to fulfil it. The last
few years have seen the emergence of real-world AI solutions that are being used every
day. Whether you are watching the latest TV drama, listening to music, shopping
online, or getting the latest news updates, there’s a high probability that you are using
technology that is driven by the latest advances in AI. Let’s take a look at some of the
areas where artificial intelligence technology has had a major impact.

RETAIL AND E-COMMERCE

In online retail and physical retail stores, AI is applied in recommending products
that shoppers are most likely to buy. In the early days of e-commerce, we saw simple
examples of recommenders (“People who bought this also bought….”). These days,
many retailers are monitoring user browsing behavior in great detail, and using this

20 CHAPTER 1 A tale of two technologies
data with real-time AI algorithms to prominently place products that are more likely
to be bought.

ENTERTAINMENT

The significant rise of online movies, TV, and music consumption has given providers
a huge volume of consumption data. This data is being used by all the major providers
to drive consumption further. Netflix has stated that 80% of subscriber choices come
from the platform’s recommendation algorithm. Spotify is another example of a
streaming platform that learns from user behavior and suggests further music recom-
mendations.2

NEWS AND MEDIA

The use of AI in social media and online news has been much publicised. Facebook
and Twitter both use AI extensively to select posts to appear in users' timelines. About
two-thirds of U.S. adults get news from social media sites, so AI is having a significant
impact on the news we see (source: http://www.journalism.org/2018/09/10/news-
use-across-social-media-platforms-2018/).

ADVERTISING

Advertising is an area that has been massively impacted by AI. AI is used for matching
ads to users based on online behaviour and preferences. The process of advertisers
bidding for consumer attention across mobile and web is real-time and automated by
AI. Google and Facebook, both with large AI research divisions, use AI extensively in
this process. In 2017, Facebook and Google accounted for 90% of new advertising
business (source: https://www.marketingaiinstitute.com/blog/ai-in-advertising-what-
you-need-to-know).

CUSTOMER CONTACT

The ways in which consumers interact with businesses are changing as the online
world evolves. Many people are used to automated telephone answering systems that
guide us through options by selecting numbers on a keypad, or using voice recogni-
tion of questionable accuracy. Customer support operations are now using a variety of
advances to reduce costs and improve customer experience. One example is to use
sentiment analysis to detect tone and prioritise the importance of some interactions.
Another example is the use of chatbots to answer common queries without any staff
being required.

 Voice recognition and voice synthesis are also extremely useful in these scenarios as
the capability of those systems improves. The 2018 Google Duplex demo was a fantastic
example of how good these capabilities have become (http://mng.bz/v9Oa). Every day
more people are using Alexa, Siri, or Google Assistant as an interface to the online
world, getting information, organising their lives, and making purchases.

2 Sources: http://mng.bz/4BvQ and http://mng.bz/Qxg4.

http://mng.bz/4BvQ
http://mng.bz/Qxg4
http://www.journalism.org/2018/09/10/news-use-across-social-media-platforms-2018/
http://www.journalism.org/2018/09/10/news-use-across-social-media-platforms-2018/
https://www.marketingaiinstitute.com/blog/ai-in-advertising-what-you-need-to-know
https://www.marketingaiinstitute.com/blog/ai-in-advertising-what-you-need-to-know
http://mng.bz/v9Oa

21What is AI?
DATA AND SECURITY

Businesses, consumers, and regulators are becoming increasingly aware of the impor-
tance of data privacy and security. This is seen in the regulations forming around how
data is stored, retained, and processed. Additionally, security breaches are an increasing
cause for concern. AI has a role to play in addressing both sides. Document processing,
classification, and identification of personal data is already possible and implemented
in services such as Amazon Macie. In the area of threat and breach detection, AI is being
used to both prevent and alert. Amazon GuardDuty is a good example of this.

 Apart from information security, AI is finding many real-world applications in the
field of physical security. The recent major improvements in image processing and
facial recognition are being applied for urban, building, and airport security. AI can
also be applied effectively for the detection of physical threats from objects such as
explosives, firearms, and other weapons.

FINANCE

Often, data in financial applications is time-series data. Think of a data set containing
the number of sales of a product per day in a given year. Time-series data of this
nature is amenable to predictive AI models. These models can be used for forecasting
and resource planning.

HEALTH CARE

Development of AI in health care has largely been concerned with diagnostic tools, and
particularly image interpretation in the fields of radiology and microbiology. A recent
survey of deep learning research in this field demonstrates the explosion of interest in
the area and dramatic improvements in performance in recent years. While some works
already claim to outperform medical experts, AI is more typically expected to be used
as an assistant in detection and measurement of subtle abnormalities.3

 In many parts of the developing world, there is a shortage of medical expertise,
which makes the application of AI even more valuable. For example, detection of tuber-
culosis is being carried out by automated interpretation of chest x-ray images using AI.

Figure 1.7 AI assists in the diagnosis of tuberculosis using mobile x-ray units in the developing world.
(Reproduced with permission courtesy of Delft Imaging Systems.)

3 Sources: (1) Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, Clara I. Sánchez. “A survey
on deep learning in medical image analysis.” Medical Image Analysis, Volume 42, 2017, Pages 60-88. (2) and
(3) work by Esteva et al. (2017) and Gulshan et al. (2016) in the fields of dermatology and ophthalmology.

22 CHAPTER 1 A tale of two technologies
1.4.3 AI services

Table 1.3 shows some common applications of artificial intelligence, and AWS (and
other cloud providers) offer services built on pre-trained models for many of these
use cases.

We will use most of these services in later chapters, so they will become very familiar to
you, but we’ll summarize each service here for reference:

 AWS Translate is a neural machine translation service. This means that it uses
deep learning models to deliver more accurate and more natural-sounding
translation than traditional statistical and rule-based translation algorithms.

 AWS Textract automatically extracts text and data from scanned documents
using a combination of optical character recognition (OCR) and text classifica-
tion models.

 AWS Comprehend is a natural language processing (NLP) service that uses
machine learning to find insights and relationships in text.

Table 1.2 AI applications and services

Application Use Service

Natural language processing Machine translation AWS Translate

Document analysis AWS Textract

Key phrases AWS Comprehend

Sentiment analysis

Topic modelling

Document classification

Entity extraction

Conversational interfaces Chatbots AWS Lex

Speech Speech-to-text AWS Transcribe

Text-to-speech AWS Polly

Machine vision Object, scene, and activity
detection

AWS Rekognition

Facial recognition

Facial analysis

Text in images

Others Time series forecasting AWS Forecast

Real-time personalization and
recommendation

AWS Personalize

23What is AI?
 AWS Lex is a service for building conversational interfaces voice and text, also
known as chatbots. It accomplishes this by using deep learning models for natu-
ral language understanding (NLU) and automatic speech recognition (ASR).

 AWS Transcribe uses deep learning models to convert speech to text from audio
files.

 AWS Polly turns text into lifelike speech using advanced deep learning models.
 AWS Rekognition is an image recognition services that uses deep learning models

to identify objects, people, text, scenes, and activities in images and videos, as
well as detect any inappropriate content.

 AWS Forecast is based on the same technology used at Amazon.com. It uses
machine learning to combine time series data with additional variables to build
forecasts.

 AWS Personalize provides personalized product and content recommendations.
It’s based on the recommendation technology used on Amazon.com.

1.4.4 AI and machine learning

Much of the focus and progress in AI in the past 10 years has been made in the area of
machine learning, which is the “study of computer algorithms that improve automatically
through experience” (Tom Mitchell, Machine Learning, McGraw Hill, 1991). There is
some debate as to the specific meanings of AI and machine learning, and their subtle
difference. In this book, when we talk about AI applications in software systems, we
are talking about machine learning.

 The practice of machine learning typically involves a training phase, followed by a
test phase. Regardless of the algorithm, the machine learning algorithm is trained on
a set of data. This could be a set of images in the case of an image recognition algo-
rithm, or a set of structured records in the case of a financial prediction model. The
algorithm’s purpose is to make judgments about the test data based on features it has
“learned” from the training data.

 Machine learning can be divided into these categories, as illustrated in figure 1.8.

Figure 1.8 Types of machine learning (Source: Analytics Vidhya)

Machine learning

Supervised Unsupervised Reinforcement

Task-driven
(Regression / classification)

Data-driven
(Clustering)

Algorithm learns to
react to an environment

24 CHAPTER 1 A tale of two technologies
NOTE Features are an important concept in machine learning. In order to rec-
ognize a cat in an image, you might look for features such as triangular ears,
whiskers, and a tail. Selecting the right set of features is critical to effective
performance of the algorithm.

In traditional machine learning algorithms, features are created by hand. In neural
networks, features are selected automatically by the network.

 Machine learning can be divided into these categories:

 Supervised learning
 Unsupervised learning
 Reinforcement learning

SUPERVISED LEARNING

Supervised learning is when the algorithm is provided with a set of labeled training data.
Take, for example, a set of documents labelled with their classification. These labels
might represent the topic of each document. By training a given algorithm with this
data set, you would expect the algorithm to predict the topic of unlabeled test docu-
ments. This can be very effective with sufficient, well-labeled training data. The draw-
back, of course, is that it can be difficult to find or create such labelled training data in
sufficient volume.

UNSUPERVISED LEARNING

Unsupervised machine learning tries to extract relevant patterns in data without access to
any annotated training data (labels). Examples of unsupervised algorithms would be
clustering, dimensionality reduction, and anomaly detection. We can use unsuper-
vised learning when we want to extract patterns from a data set without specific expec-
tations as to the outcome. The unsupervised approach has a clear advantage, as it
doesn’t require labelled data. On the other hand, the results can be difficult for
humans to interpret, and the learned patterns may be different from what is desired.

REINFORCEMENT LEARNING

Reinforcement learning learns from direct experience. It is provided with an environ-
ment and a reward function, and aims to maximize its reward. We allow the algorithm
to take actions and observe the outcomes from those actions. Then we try to calculate
a reward function of how desirable the outcome was. The most likely applications for
reinforcement learning at this time are synthetic computer-simulated environments
that allow for millions or billions of exploratory interactions in a short period of time.

1.4.5 Deep learning

Deep learning is based on artificial neural networks (ANNs), which were first studied in the
1950s. Artificial neural networks are organized as connected layers of nodes, or percep-
trons. The input is provided as a set of numbers in the input layer,and the result is usu-
ally provided as numbers in the output layer. Layers between input and output are
called “hidden” layers. The objective of ANNs is to iteratively learn weights for each

25What is AI?
perceptron so as to produce an approximation of the desired result in the output
layer. The word “deep” refers to the fact that there are many layers in the network (at
least 7-8 but probably hundreds). A deep learning network is illustrated in figure 1.9.

 The concept of modelling the human brain with neural networks has been around
since the dawn of AI research. However, the raw compute power was just not available
for these approaches to realise their potential. As more powerful processing became
available during the late 2000s and early 2010s, neural networks and deep learning
began to become the predominant approach to AI. Progress in deep learning was fur-
ther aided by advances in the algorithms as well as the availability of large volumes of
training data coming from the internet. The task of labelling training data is often
solved by crowdsourcing (e.g. Amazon Mechanical Turk).

Figure 1.9 Deep neural network layers

Input Hidden Output

26 CHAPTER 1 A tale of two technologies
Figure 1.10 attempts to categorize the preceding summary of machine learning tools
and techniques into a single diagram. Though a detailed description of all of the
nuances in this space is beyond the scope of this chapter, figure 1.10 should provide a
basic reference frame when discussing machine learning at a high level.

Figure 1.10 AI and machine learning algorithms and applications. Deep reinforcement learning: an overview. Yuxi
Li. https://arxiv.org/abs/1701.07274.

Alpha Go
One key event that demonstrated the massive progress in deep learning was the tri-
umph of Alpha Go over the best human Go masters. Alpha Go was initially developed
by UK-based company DeepMind Technologies. The company was acquired by Google
in 2014.

The key thing to understand about this is that the network had to “learn” Go. This is
significantly different from the approach that Deep Blue was able to take in beating
Gary Kasparov. This is due to the number of possible game states. In Chess, there
are approximately 1045 game states, whereas in Go there are approximately 10170.
Because of this, it is possible to use a combination of game knowledge and algorith-
mic ML techniques to essentially program Deep Blue to be expert at Chess. However,
when we consider that the number of atoms in the observable universe is estimated
to be 1080, we get an understanding of the complexity of the game of Go and the
impossibility of attempting to use an expert systems-like approach. Instead, Alpha Go
used a deep neural network that was trained in the game of Go by observing millions
of games.

Deep
reinforcement

learning

Reinforcement
learning

Supervised
learning

Unsupervised
learning

Deep
learning

Machine
learning

Artificial
intelligence

Artificial neural networks
Association rule learning
Bayesian networks
Clustering
Decision tree learning
Genetic algorithms
Inductive logic programming
Reinforcement learning
Representation learning
Rule-based machine learning
Similarity and metric learning
Sparse dictionary learning
Support vector machines

Problem solving
Search
Constraint satisfaction

Knowledge, reasoning,
and planning
Logic agents
First-order logic
Planning and acting
Knowledge representation
Probabilistic reasoning
Decision making

Learning
Learning from examples
Knowledge in learning
Learning probabilistic models
Reinforcement learning

Communication, perceiving, and acting
Natural language processing
Perception
Robotics

https://arxiv.org/abs/1701.07274

27Canonical AI as a Service architecture
1.4.6 AI challenges

At present, AI is dominated by supervised learning, which requires data for training.
One of the challenges is having labeled data representing all scenarios to be learned
by the network. Development of unsupervised models is a hot topic of research for
this reason. For many users who wish to leverage AI, it is often impossible to obtain
sufficient data. Training with a limited data set often leaves algorithms with biases,
leading to incorrect judgments on data which is not similar to the training set.

 There are also challenges in the area of law and ethics when AI is employed. If a
machine learning algorithm makes an undesirable judgment, it is difficult to know
what party is liable. If a bank makes a decision that an individual is not entitled to a
mortgage, it might be unclear why that decision has been made and who can be held
accountable.

1.5 The democratization of compute power
and artificial intelligence
It is interesting to observe the democratizing power that Moore’s Law has had over
the decades. Consider that there are still programmers working today who remember
submitting programs for execution on punch cards! During the era of the mainframe
and minicomputer, access to computer time was a scare resource granted to only the
privileged few. Now, of course, most of us carry more compute power in our pockets in
the form of a smartphone than those early systems had.

 Cloud computing has had a similar effect. Back in the dot-com era, specialist hard-
ware engineers were required to construct racks of servers in co-located facilities.
Today we can script up the equivalent of an entire data center and tear it down just as
easily—if we have sufficient funds available, that is!

 So it is with AI. Previously, in order to build a system with say, speech recognition,
we would need to use highly specialist bespoke hardware and software, or even per-
form research into the topic ourselves. Today we need only plug into one of the cloud
native speech recognition services and we can add a speech interface to our platform.

1.6 Canonical AI as a Service architecture
When approaching any new topic as broad as AI as a Service, it is important to build a
picture of how the pieces fit together. Figure 1.11 is a high-level view of the typical
structure of a serverless AI platform: an architectural frame of reference. We will refer
back to this canonical architecture throughout the book as a common reference men-
tal model.

 The key points to realize about this architecture are

 It can be implemented entirely with cloud native services—no physical or vir-
tual machines are required, and no containers.

 It can be realized on multiple cloud platforms provided by the major vendors.

Let’s review each of the elements of this architecture in turn.

28 CHAPTER 1 A tale of two technologies

Figure 1.11 Canonical AI as a Service platform architecture

1.6.1 Web application

A typical platform will deliver functionality through a web application layer, that is to
say using the HTTP(S) protocol. This layer is usually comprised of a number of ele-
ments, including

 Static assets such as images, style sheets, and client-side JavaScript
 Some form of content-delivery network or page cache
 RESTful API
 GraphQL interface
 User registration login/logout
 Mobile API
 Application firewall

This layer acts as a gateway to the main platform for client requests.

1.6.2 Realtime services

These services are typically consumed by the Web Application layer in order to return
an immediate response to a client request. These services represent a common glue
layer between all parts of the platform. For example, one service may be responsible

Web application
- Browser libraries
- Static assets
- CDN
- API Gateway

Synchronous services

External data sources

AI services

Communication services

Data services

- FaaS

Asynchronous servicesDevelopment support Operational support
- Logging
- Reporting
- Platform analytics

- Event bus
- Service discovery

- Event processing
- Long running tasks
- Traditional analytics

AI support

- Cloud scripts
- CI/CD server

- Jupiter notebooks
- Model development

- Relational databases
- NoSQL databases
- Cloud fle storage

- Chatbots
- Intelligent analytics
- NLP
- Image recognition
- Speech to text

Internal data sources

- ERP
- CRM
- HR

Off platform Utility services

- Single sign on
- Confguration

29Canonical AI as a Service architecture
for fetching an image and passing it to an AI service for analysis, and then returning
the results to the client.

1.6.3 Batch services

Typically these services are for longer-running, asynchronous tasks and will include
things like ETL (Extract Transform Load) processes, long-running data loads, and tradi-
tional analytics. The batch services will typically use well-known analytical engines such
as Hadoop or Spark, consumed as cloud native services rather than self-managed.

1.6.4 Communication services

Most platforms will require some form of asynchronous communication, typically
implemented on top of some form of message-passing infrastructure or event bus.
Within this communication fabric, we also expect to find things like service registra-
tion and discovery.

1.6.5 Utility services

Utility services include security services such as single sign-on and federated identities,
and also network and configuration management services such as VPC (Virtual Private
Cloud) and certificate handling.

1.6.6 AI services

This forms the intelligent core of the serverless AI platform, and can comprise a range
of AI services depending on the focus of the platform. For example, here you may
find chatbot implementations, natural language processing, or image recognition
models and services. In many cases these services are wired into the platform using
pre-canned off-the-shelf cloud-native AI services; in other cases, some cross-training of
models may be required before deployment into the platform.

1.6.7 Data services

Underpinning our serverless AI stack are the data services. These will typically use a
mixture of relational databases, NoSQL databases, cloud file storage, and anything in
between. As with the other areas of the system, the data tier is implemented through
consumption of cloud-native data services rather than self-installed and managed
instances.

1.6.8 Operational support

This grouping holds the management tools required for successful operation of the
platform such as logging, log analysis, message tracing alerting, and so on. As with the
other parts of the system, the operational support services may be implemented with-
out the need to install and manage infrastructure. It is interesting to note that these
operational support services may themselves use AI services in order to help with alert-
ing and anomaly detection. We cover this in more detail in later chapters.

30 CHAPTER 1 A tale of two technologies
1.6.9 Development support

This grouping is concerned with the deployment of the platform, and will hold the
scripts needed to create the cloud fabric for the other service groupings. It will also
provide support for continuous integration/continuous delivery pipelines for each of
the other service groups, and for end-to-end testing of the platform.

1.6.10 Off-platform

We have included an off-platform grouping of elements. These may or may not be
present, depending on the platform operational model.

AI SUPPORT

This includes data-science-type investigations, bespoke model training, and investiga-
tion. We will see later that the process of training a machine learning system is very dif-
ferent from that of using it operationally. For many use cases, training is not required.

INTERNAL DATA SOURCES

Enterprise platforms will typically have touch points to internal or legacy systems. This
could include CRM (customer relationship management) and ERP (enterprise
resource planning) type systems or connections to legacy internal APIs.

EXTERNAL DATA SOURCES

Most platforms do not live in isolation and may consume data and services from third-
party APIs; these act as external data sources to our serverless AI platform.

1.7 Realization on Amazon Web Services
In order to make this more concrete, figure 1.12 depicts how the canonical architec-
ture might map onto Amazon Web Services.

 This is, of course, not an exhaustive list of all of the available cloud native services
on the AWS platform; however, it does illustrate how these services may be grouped
together into a coherent architectural structure.

Why AWS?
Throughout this book, we will be providing code and examples against the AWS plat-
form. We have chosen to do this for two reasons:

 AWS is by far the market leader in the cloud computing space in terms of mar-
ket penetration. At time of writing, AWS commands a 48% share. This means
that the examples in the book will be familiar to a broader base of readers.

 AWS is the leader in terms of innovation. We recently compared the release
dates of services across a number of categories, between AWS and other
cloud providers. We found that on average AWS released services 2.5 years
ahead of the competition. This also implies that the AWS service offerings
are more mature and complete.

Additionally, of course, it would make for a lot of work to build the example systems
on three difference clouds!

31Realization on Amazon Web Services
The key points to take away from this mapping exercise are

 At no point in this system are we required to install and manage a server. This
removes a large amount of operational overhead with regard to management,
scaling, capacity planning, and so on.

 All of the creation and deployment of these services is controlled through a set
of deployment scripts which can be version-controlled and managed as code
assets.

 Our AI services can be consumed off the shelf; in other words, a machine learn-
ing expert is not required to construct the system.

We hope that this first chapter has provided you with enough background informa-
tion on industry trends to convince you that AI as a Service and Serverless in general
will become the de facto standard for platform development over the coming years.

Web application

Clients

Synchronous services

External data sources

AI services

Communication services

Data services

Asynchronous servicesDevelopment support Operational support

AI support

Internal data sources

- ERP
- CRM
- HR

Off platform

Notebooks TensorFlow

Utility services

WAFCloudFront API Gateway

Recognition SageMaker Polly Lex

…

DynamoDB Aurora S3

…

CloudWatch CloudTrails

…

KMS Cognito

…

Lambda Kinesis

…

Lambda Glue
…

Route 53 Kafka
…

CloudFormation CodePipeline

…

…

Figure 1.12 AI as a Service platform realized on AWS

32 CHAPTER 1 A tale of two technologies
 For the rest of this book, we will focus on practical recipes and examples to enable
you to move right to the cutting edge of serverless AI development. We will cover
building a range of AI-enabled systems of increasing complexity, all the time referring
back to our canonical architecture that we developed in this chapter.

 We would stress that while we will use AWS throughout this book, the architec-
tures, principles, and practices are readily transferable to other clouds. Both Azure
and GCP provide parallel offerings that can be composed in a similar manner to the
AWS examples in this book.

 Next up, we are going to dive right into building your first AI as a Service system!

1.8 Summary
 The unit of scale has been reducing in size. The next logical progression is

function-as-a-service or FaaS.
 Serverless largely removes the need for management of complex IT infrastruc-

ture.
 Service scaling is handled by the cloud provider, removing the need for capacity

planning or complex auto-scaling setups.
 Serverless allows businesses to focus more on developing platform features, and

less on infrastructure and operations.
 There will be an increasing need for AI services as data volumes and complexity

increase, both for business and technical analytics.
 Cloud-native AI services are democratizing access to AI technology, which can

now be used by non AI experts. The range of available offerings will only grow
over the coming cycles.

 All of these forces enable an engineering-driven approach to building serverless
platforms and the consumption of AI as a service.

Building a serverless image
recognition system, part 1
In this chapter and in chapter 3 we will focus on building our first AI-enabled
serverless system. By the end, you will have configured and deployed to the cloud a
small system that is capable of reading and recognizing images from a web page
and displaying the results for review. This may sound like an awful lot of work for a
single chapter and indeed, before the advent of Serverless and off-the-shelf AI, the
progress that we will make in this chapter would have taken a small team of engi-
neers many person-months to complete. As Isaac Newton stated, we stand on the
shoulders of giants! In this chapter we will stand on the shoulders of countless soft-
ware engineers and AI experts to rapidly assemble our “hello world” system.

 If you are new to AWS and serverless technology, there is an awful lot to take in
over the course of these two chapters. Our aim is go slowly and to provide a lot of

This chapter covers
 Building a simple AI as a Service system

 Setting up the cloud environment

 Setting up a local development environment

 Implementing a simple asynchronous service

 Deploying to the cloud
33

34 CHAPTER 2 Building a serverless image recognition system, part 1
detail in order to bring everyone up to speed. We will take a “paint by numbers”
approach, so if you follow the code and deployment instructions carefully, you should
be just fine.

 As you progress through these pages, no doubt several questions will pop into your
head, such as “How do I debug this?” or “How should I unit test this?” Rest assured
that we will provide more detail in subsequent chapters; for now, grab some coffee
and buckle up!

2.1 Our first system
Our first serverless AI system will use Amazon Rekognition to analyze the images on a
web page. From an analysis of these images, the system will generate a word cloud and
provide a list of tags for each image. We will develop the system as a number of discrete,
decoupled services. A screenshot of the finished user interface is shown in figure 2.1.

Figure 2.1 Finished UI

In this case, we pointed our system to a web page that contains images of cats. The
image recognition AI has correctly identified the cats and allowed us to construct a
word cloud and a histogram of the detected label frequency from this analysis. The
system then shows us each image that was analyzed, along with the results of the analy-
sis and a confidence level for each tag.

2.2 Architecture
Before we dive into implementation, let’s take a look at the architecture for this sim-
ple system to see how it maps to the canonical architecture that we developed in chap-
ter 1, and how the services collaborate to delver this functionality. Figure 2.2 depicts
the overall structure of the system.

35Architecture
Figure 2.2 System architecture. The system is composed of custom services built using AWS Lambda and API
Gateway. SQS is used for message communication. The managed services used here are S3 and Rekognition.

External web site

Crawl

Operational
support

Data services

Off platform

Rekognition

S3 bucket

Logs

Browser
1. Load web

application 2. Call API

Web application

Deploy

Synchronous
services

Asynchronous
services

Development
support

Communication services

AI services

3. Post async
requests
to queue

/url/analyze /url/list /image/list crawler-
service

analysis-
service

Work queues

Serverless
Framework

S3
frontend

API
Gateway

4. Pull async
requests
from queue

7. Analyze
images with
Rekognition

5. Distribute
work to
services

6. Store images
in S3

36 CHAPTER 2 Building a serverless image recognition system, part 1
The system architecture shows the layers of the system:

 Starting with the front end, served from S3 (Simple Storage Service), APIs are
invoked through the API Gateway.

 The asynchronous Lambda functions are triggered by SQS (Simple Queue Ser-
vice) messages.

 The synchronous Lambda functions are triggered by events coming from the
API Gateway.

 AWS Rekognition is a fully managed AI image analysis service.

2.2.1 Web application

The front end of the system is a single-page application comprising HTML, CSS, and
some simple JavaScript to render the UI, as highlighted in figure 2.3. You will see this
figure repeated throughout the chapter as we walk through the building blocks of our
system.

Figure 2.3 Web application

Web application

Browser

Synchronous
services

Asynchronous
services

Communication services

AI services

Data services

analysis-servicecrawler-serviceurl/analyze url/list Image/list

API
Gateway

Frontend
S3

Work queue

Rekognition

S3 bucket

37Architecture
The front end is deployed into an S3 bucket. Also in this tier, we are using API Gate-
way to provide a route into the synchronous services that provide data for the front
end to render.

2.2.2 Synchronous services

There are three synchronous services implemented as Lambda functions, as shown in
figure 2.4.

These services are available as RESTful endpoints accessed through the API gateway:

 POST /url/analyze—This endpoint takes a URL in the body and submits it
to an SQS queue for analysis.

 GET /url/list—Used by the front end to fetch the list of URLs that have
been processed by the system.

 GET /image/list—Returns the set of images and analysis results that have
been processed for a given URL.

Web application

Browser

Synchronous
services

Asynchronous
services

Communication services

AI services

Data services

analysis-servicecrawler-serviceurl/analyze url/list Image/list

API
Gateway

Frontend
S3

Work queue

Rekognition

S3 bucket
Figure 2.4
Synchronous services

38 CHAPTER 2 Building a serverless image recognition system, part 1
To trigger the analysis, the user of our system inputs a URL into the input field at the
top of the UI and clicks the Analysis button. This will make a POST request to /url/
analyze, which will result in a JSON message post to an SQS queue of the form:

{body: {action: "download", msg: {url: "http://ai-as-a-service.s3-website-eu-
west-1.amazonaws.com"}}}

2.2.3 Asynchronous services

The asynchronous services form the main processing engine of the system. There are
two main services, highlighted in figure 2.5.

The crawler service extracts images from an HTML page. The analysis service provides
an interface to AWS Rekognition, submitting images for analysis and collating the
results.

Web application

Browser

Synchronous
services

Asynchronous
services

Communication services

AI services

Data services

analysis-servicecrawler-serviceurl/analyze url/list Image/list

API
Gateway

Frontend
S3

Work queue

Rekognition

S3 bucket
Figure 2.5
Asynchronous services

39Architecture
 On receipt of a “download” message, the crawler service will fetch the HTML from
the provided URL. The crawler will then parse this HTML and extract the source attri-
butes for each of the inline image tags in the page. The crawler will then download each
image and store it in an S3 bucket. Once all of the images have been downloaded, the
crawler will post an analyze message to the analysis SQS queue of the form:

{body: {action: "analyze", msg: {domain: "ai-as-a-service.s3-website-eu-west-
1.amazonaws.com"}}}

This message will be picked up by the analysis service, which will call out to the image
recognition AI for each downloaded image, collect the results, and write them into
the bucket for later display by the front end.

2.2.4 Communication services

Internally, the system uses the Simple Queue Service (SQS) as a message pipeline, as
shown in figure 2.6.

Web application

Browser

Synchronous
services

Asynchronous
services

Communication services

AI services

Data services

analysis-servicecrawler-serviceurl/analyze url/list Image/list

API
Gateway

Frontend
S3

Work queue

Rekognition

S3 bucket
Figure 2.6 Communication
and data services

40 CHAPTER 2 Building a serverless image recognition system, part 1
As we will see throughout this book, this messaging approach is a powerful pattern
that allows us to add services to and remove them from our system with little or no
perturbation to the system as a whole. It also forces us to keep our services decoupled
and provides a clean model to individually scale services.

 For this system, we are using SQS as our primary communication mechanism, but
we use the term communication services to encompass any infrastructural technology
that can be used to facilitate communication between consumers and services. Typi-
cally this will require some form of service discovery and one or more communication
protocols. Figure 2.7 depicts an isolated view of the communication services for our
system.

Figure 2.7 Communication services

The communication services shown are Route 53 DNS (Domain Name System) for
service discovery and HTTP and SQS as the communication protocols. Typically we
will use the JSON data format to encode messages between parties. This is indepen-
dent of the underlying communication protocol.

{
 ID: ‘1234’,
 type: ‘abc’,
 payload: {…}
}

{
ID: ‘1235’,
type: ‘abc’,
payload: {…}
}

…

HTTP
{
ID: ‘1234’,
type: ‘abc’,
payload: {…}

}

Discovery

Consumer

1. Consumer discovers
service

Service

Service

Service

SQS

Service

Service

Service

Route 53

3. Services post JSON messages
to queue to invoke async services

2. Consumer invokes service
with JSON message payload

4. Async services invoked
through queue messages

41Getting ready
2.2.5 AI services

This system uses only a single AI service, Amazon Rekognition. This AI service provides
a number of different image recognition modes including object and scene detection,
facial recognition, facial analysis, celebrity recognition, and text detection in images.
For this first system, we are using the default object and scene detection API.

2.2.6 Data services

In the Data Services tier, we are using only the Simple Storage Service (S3). This is suf-
ficient for our needs in this initial platform; we will explore other data services in sub-
sequent chapters.

2.2.7 Development support and operational support

We are using the serverless framework as our main development-support system. All
logging data is collected using CloudWatch. We will discuss each of these in more
detail in the following sections.

2.3 Getting ready
Now that we have seen the end goal, let’s dive in and put the system together. You will
need an active AWS account. If you don’t already have an AWS account, you will need
to create one. If you are new to AWS, then please refer to appendix A, which has
instructions to get you set up.

 For those of you familiar with AWS, we suggest that you create a separate sub-account
to keep the examples in this book clear of any other systems you may be running.

Messaging technology
Messaging systems, queuing, and related technology are a large topic and we won’t
cover them in detail in this book. However you should be aware of the concepts if you
aren’t already. In brief, messaging systems typically support either of two models—
point to point or publish/subscribe:

 Point to point—Under this model, a message that is placed into a queue is
delivered to one consumer and one consumer only.

 Publish/subscribe—Under this model, all consumers that have registered an
interest in a message type receive the message.

Queue systems also differ in how consumers are informed of a new message.
Broadly, this can happen in one of three ways:

 Push—The queue system will push the message to the consumer(s).
 Poll—The consumers will poll the queue for messages.
 Long poll—the consumes will poll for an extended period of time.

In this chapter, SQS will push messages to our consuming Lambda function.

For a primer on this subject we recommend Enterprise Integration Patterns by Gregor
Hohpe and Bobby Woolf (Addison-Wesley Professional, 2003).

42 CHAPTER 2 Building a serverless image recognition system, part 1
 Appendix A also contains instructions for creating API keys and configuring
command-line and API access, so we suggest that even experienced AWS developers
review this material to ensure a correct development environment.

TIP All example code has been tested in the eu-west-1 region; we suggest
that you also use this region for deployment of code.

WARNING Using AWS costs money! Please ensure that any cloud infrastruc-
ture is destroyed once you are finished with it. We have provided scripts to
help with resource removal at the end of each chapter.

2.3.1 DNS domain and SSL/TLS certificate

The example in this chapter and others throughout the book require that a DNS
domain and associated certificate be in place. These can be set up easily on AWS, and
full instructions on how to do this are provided in appendix D. Before attempting to
run the examples, please ensure that you have set up your AWS environment as per
the instructions provided in appendix D.

NODE.JS
We use Node.js as our main development platform in this book. If you haven’t
installed it already, you need to.

At the time of writing, the current LTS (long term supported) versions of Node.js are
10.x and 12.x. Binary installers are available from https://nodejs.org/. Download and
install the appropriate binary for your development machine.

NOTE The latest supported version of Node.js on AWS where we will be build-
ing this system is 12.x. For consistency, it’s best to choose the latest 12.x LTS
release in your local development environment.

Once the installer has run, check that all is well by opening a console window and
checking the Node.js and NPM versions using these commands:

$ node -v
$ npm -v

Why Node.js?
We selected Node.js as our development platform for this book because of the ubiq-
uity of JavaScript, which is available in every major web browser as well as server-side
with the Node.js platform. Additionally, JavaScript is available as an implementation
language for all of the major FaaS offerings, all of which makes it the natural choice.

Don’t worry if you haven’t used Node.js before. If you know even a small amount of
JavaScript, you’ll be just fine. We can highly recommend the tutorial series at Node
School if you want to brush up on Node (and even JavaScript). Head over to https://
nodeschool.io/ to get started.

https://nodeschool.io/
https://nodeschool.io/
https://nodejs.org/

43Getting ready
THE SERVERLESS FRAMEWORK

Next, we will need to install the Serverless Framework. This provides a layer of abstrac-
tion and configuration above the base AWS API, and helps us to more easily create
and consume cloud services. We will make extensive use of the Serverless Framework
throughout this book, so it should become familiar. We install Serverless using NPM.
Open a console window and run

$ npm install -g serverless

Check that Serverless installed successfully by running

$ serverless -v

NOTE If you’re curious to know more about Serverless, we have provided an
in-depth look at how the framework operates in appendix E.

TIP Chapter 6 covers some advanced serverless topics and provides a produc-
tion grade template for your projects.

NPM
NPM is the package management system for Node.js. For each of our example sys-
tems, we will use NPM to manage dependent software units called node modules. If
you are unfamiliar with NPM, we can recommend the NPM tutorial at Node School:
https://nodeschool.io/#workshopper-list.

NPM global installs
Running npm install with the -g flag tells NPM to install a module globally. This
makes the module available on the path so that it can be executed as a system
command.

The Serverless Framework
There are several frameworks available to help support serverless development. The
leading framework at the time of writing is the Serverless Framework, which is imple-
mented in Node.js. Under the hood, the framework uses the Node.js AWS API to
accomplish its work, and for AWS it leans heavily on CloudFormation. In this chapter
we will just use the framework without going into detail about how it works. For now
the key point to understand is that the framework allows us to define infrastructure
and Lambda functions as code, which means that we can manage our operational
resources in a similar manner to how we manage the rest of the source code for our
system.

https://nodeschool.io/#workshopper-list

44 CHAPTER 2 Building a serverless image recognition system, part 1
2.3.2 Setup checklist

Before we proceed with the code. Please review this checklist to ensure that everything
is in place:

 Appendix A
– AWS account created
– AWS command line installed
– AWS access keys created
– Development shell configured with access keys and verified

 Appendix D
– Route 53 domain registered
– SSL/TLS Certificate created

 This chapter
– Node.js installed
– Serverless Framework installed

If all of the this is in place, we are good to go!

WARNING Please ensure that all of the items in this checklist are completed;
otherwise you may encounter issues when trying to run the example code. In
particular, please ensure that both the environment variables AWS_REGION
and AWS_DEFAULT_REGION are set and point to the same AWS region, as
described in appendix A.

2.3.3 Get the code

Now that we have a basic setup done, we can proceed to grab the code for the system.
The source code for this chapter is available in this repository: https://github.com/
fourTheorem/ai-as-a-service in the chapter2-3 subdirectory. To get started, go
ahead and clone this repository:

$ git clone https://github.com/fourTheorem/ai-as-a-service.git

The code maps to the architecture as you might expect. There is a top-level directory
for each defined service, as shown in the following listing.

analysis-service
crawler-service
frontend-service
resources
ui-service

2.3.4 Setting up cloud resources

In addition to our services folders, we also have a top-level directory called resources.
Our system relies on a number of cloud resources, and before we can deploy any of

Listing 2.1 Repository structure

https://github.com/fourTheorem/ai-as-a-service
https://github.com/fourTheorem/ai-as-a-service

45Getting ready
the service elements, we need these resources to be in place. For the case of our sim-
ple system, we will need an SQS queue for asynchronous communication and an S3
bucket to hold downloaded images. We will deploy these using a dedicated Serverless
Framework configuration file. Let’s take a look at how this is done. cd into the
chapter2-3/resources resources directory and take a look at the server-
less.yml file, shown in the next listing.

service: resources
frameworkVersion: ">=1.30.0"

custom:
bucket: ${env:CHAPTER2_BUCKET}

crawlerqueue: Chap2CrawlerQueue
analysisqueue: Chap2AnalysisQueue
region: ${env:AWS_DEFAULT_REGION, 'eu-west-1'}
accountid: ${env:AWS_ACCOUNT_ID}

provider:
name: aws

runtime: nodejs12.x
stage: dev
region: ${env:AWS_DEFAULT_REGION, 'eu-west-1'}

resources:
Resources:

WebAppS3Bucket:
Type: AWS::S3::Bucket

Properties:
BucketName: ${self:custom.bucket}
AccessControl: PublicRead
WebsiteConfiguration:
IndexDocument: index.html
ErrorDocument: index.html

WebAppS3BucketPolicy:
Type: AWS::S3::BucketPolicy

Properties:
Bucket:
Ref: WebAppS3Bucket

PolicyDocument:
Statement:

- Sid: PublicReadGetObject
Effect: Allow
Principal: "*"
Action:

- s3:GetObject
Resource: arn:aws:s3:::${self:custom.bucket}/*

Chap2CrawlerQueue:
Type: "AWS::SQS::Queue"

Properties:
QueueName: "${self:custom.crawlerqueue}"

Chap2AnalysisQueue:
Type: "AWS::SQS::Queue"
Properties:

QueueName: "${self:custom.analysisqueue}"

Listing 2.2 Serverless configuration for resources

Service
name

Custom
definitions

Provider-
specific

Bucket
definition

Bucket
policy

Queue
definitions

46 CHAPTER 2 Building a serverless image recognition system, part 1
TIP Serverless uses the YAML file format for its configuration. YAML stands
for YAML Ain’t Markup Language ; you can find more information on YAML at
this site: http://yaml.org/.

Don’t worry if this looks overwhelming at first. We will be using the Serverless Frame-
work throughout this book, so these configuration files will become very familiar. Let’s
take a look at the overall structure of this file.

TIP Full documentation for the Serverless Framework and its configuration
can be found at the project’s main site: https://serverless.com/framework/
docs/.

The Serverless configuration is broken down into several top-level sections. The key
ones to understand are

 custom—Defines attributes to be used elsewhere in the configuration.
 provider—Defines provider-specific configuration to the framework. In this

example we are using AWS as the provider; however, the framework supports
multiple cloud platforms

 functions—Defines function endpoints that the service implements. In this
example we don’t have any functions to define, so this section is not present in
this example.

 resources—Defines supporting resources on the cloud platform. In this exam-
ple we are defining two SQS queues and an S3 bucket. When we deploy this con-
figuration, the Serverless Framework will create the queues and bucket for us.

NOTE There are many other tools that can be used to deploy cloud resources,
such as AWS CloudFormation or Hashicorp’s Terraform, both of which are
great tools for managing infrastructure as code. We would recommend inves-
tigating these if you have an infrastructure-intensive project. For this book we
will be using the Serverless Framework almost exclusively. We also note that
the Serverless Framework uses CloudFormation on AWS under the hood; we
cover this in more detail in appendix E.

Before we can go ahead and deploy our resources, we need to decide on a bucket
name. The AWS bucket name space is global, so you should pick a name that is avail-
able and add an additional environment variable, CHAPTER2_BUCKET, to your shell in
the same way that we set up the AWS environment variables:

export CHAPTER2_BUCKET=<YOUR BUCKET NAME>

Replace <YOUR BUCKET NAME> with a unique name of your choosing. Now we are all
set, so let’s go ahead and deploy our resources. From a command shell in the
chapter2-3/resources directory, run

$ serverless deploy

http://yaml.org/
https://serverless.com/framework/docs/
https://serverless.com/framework/docs/

47Implementing the asynchronous services
Serverless will go ahead and deploy our resources, and you should see output similar
to the following listing.

Serverless: Packaging service...
Serverless: Creating Stack...
Serverless: Checking Stack create progress...
.....
Serverless: Stack create finished...
Serverless: Uploading CloudFormation file to S3...
Serverless: Uploading artifacts...
Serverless: Validating template...
Serverless: Updating Stack...
Serverless: Checking Stack update progress...
..............
Serverless: Stack update finished...
Service Information
service: resources
stage: dev
region: eu-west-1
stack: resources-dev
api keys:

None
endpoints:

None
functions:

None

Serverless has created an S3 bucket and an SQS queues for us. Now that we have our
supporting infrastructure, we can move on to the actual implementation!

2.4 Implementing the asynchronous services
With our basic setup done, we can proceed to write our first services. In this section
we will put together the crawler and analysis asynchronous services and test them in
isolation.

2.4.1 Crawler service

First up, let’s take a look at the crawler-service code. Figure 2.8 illustrates the pro-
cess flow inside this service.

 The crawler-service is invoked when a message is placed on the crawler
queue. The message contains a target URL for the service to crawl. Once invoked, the
crawler fetches the HTML page at the specified URL, and parses out the image tags.
Then, for each image in turn, it downloads the image into an S3 folder. Finally, once
all of the images have been downloaded, it posts an analyze message to the analy-
sis queue, including the domain name of the analyzed URL for further processing.

Listing 2.3 Serverless deploy output

48 CHAPTER 2 Building a serverless image recognition system, part 1
Figure 2.8 Crawler service

The code for the crawler service is located at chapter2-3/crawler-service. cd
into this directory and you should see the files listed here:

handler.js
images.js
package.json
serverless.yml

To get an understanding of the resources used by this service and the overall struc-
ture, we should first look at the file serverless.yml, which contains the configura-
tion shown in the next listing.

service: crawler-service
frameworkVersion: ">=1.30.0"
custom:

bucket: ${env:CHAPTER2_BUCKET}
crawlerqueue: Chap2CrawlerQueue
analysisqueue: Chap2AnalysisQueue

Listing 2.4 serverless.yml for the crawler service

Web application

Browser

Synchronous
services

Asynchronous
services

crawler-service analysis-service External web page

SQS
queue

Send ‘analyze’ message

Create folder

URL

Distributor

Crawler service

Fetch page HTML

Store page images

S3
bucket

Communication services

AI services

Data services

url/analyze url/list Image/list

API
Gateway

Frontend
S3

Work queue

Rekognition

S3 bucket

2. Fetch images from
 web page1. Crawler triggered

 by queue

3. Store images in S3 4. Post message to
 trigger analysis

ccc r-servicecrawlewler-servicecrawler-servicecrawler-servic

ous

S3 bucket
name

SQS queue
name

49Implementing the asynchronous services
region: ${env:AWS_DEFAULT_REGION, 'eu-west-1'}
accountid: ${env:AWS_ACCOUNT_ID}

provider:
name: aws
runtime: nodejs12.x
stage: dev
region: ${env:AWS_DEFAULT_REGION, 'eu-west-1'}
iamRoleStatements:

- Effect: Allow
Action:

- s3:PutObject
Resource: "arn:aws:s3:::${self:custom.bucket}/*"

- Effect: Allow
Action:

- sqs:ListQueues
Resource: "arn:aws:sqs:${self:provider.region}:*:*"

- Effect: Allow
Action:

- sqs:ReceiveMessage
- sqs:DeleteMessage
- sqs:GetQueueUrl

Resource: "arn:aws:sqs:*:*:${self:custom.crawlerqueue}"
- Effect: Allow

Action:
- sqs:SendMessage
- sqs:DeleteMessage
- sqs:GetQueueUrl

Resource: "arn:aws:sqs:*:*:${self:custom.analysisqueue}"

functions:
crawlImages:

handler: handler.crawlImages
environment:

BUCKET: ${self:custom.bucket}
ANALYSIS_QUEUE: ${self:custom.analysisqueue}
REGION: ${self:custom.region}
ACCOUNTID: ${self:custom.accountid}

events:
- sqs:

arn: "arn:aws:sqs:${self:provider.region}:${env:AWS_ACCOUNT_ID} \
:${self:custom.crawlerqueue}"

The effect of this configuration is to define and deploy our crawler service function to
AWS, and allow it to be triggered by the crawler SQS queue that we deployed through
the resource’s configuration. The key sections are

 custom—Define attributes to be used elsewhere in the configuration.
 provider—The provider section in this configuration sets up the AWS permis-

sions to allow the service to access the SQS queues, and also to give it permis-
sion to write to our S3 bucket.

 functions—This section defines the service Lambda. The handler setting ref-
erences the implementation, which we will look at shortly. The events entry

Account ID from
local environment

S3 permissions

Allow receipt from
crawler queue

Allow posts to the
analysis queue

Define the handler
function entry point

Function triggered
by crawler queue

50 CHAPTER 2 Building a serverless image recognition system, part 1
connects the function to our previously deployed SQS crawler queue. Finally,
the environment block defines the environment variables that will be available
to our function.

NOTE The permissions defined in the iamRoleStatements block maps
directly to the AWS Identity and Access Management (IAM) model. Full doc-
umentation on this can be found on AWS at https://aws.amazon.com/iam.

Unlike the previous serverless.yml file for our resources, this file does not define
any resources. That is because we chose to define our resources outside of the scope
of this service. In general, a good rule of thumb to adopt is that global or shared
resources should be deployed in a common resource stack; resources that are used by
a single service should be deployed with that specific service.

TIP Resource sections in Serverless YAML files define resources that will be
created on deployment. Other services depending on this resource must be
deployed after the resource has been created. We find that it is best to put
global resources in a separate configuration.

Let’s now take a look at the main implementation file for the crawler, which is in han-
dler.js. At the top of the file we include a number of modules, as shown in the fol-
lowing listing.

const request = require('request') 1((CO3-1))
const urlParser = require('url')
const AWS = require('aws-sdk')
const s3 = new AWS.S3()
const sqs = new AWS.SQS({region: process.env.REGION})
const images = require('./images')()

The main entry point to this service is crawlImages. This function takes three
parameters: event, context, and cb. The code for this is shown next.

module.exports.crawlImages = function (event, context, cb) {
asnc.eachSeries(event.Records, (record, asnCb) => {

let { body } = record

try {
body = JSON.parse(body)

Listing 2.5 Crawler handler.js required modules

Listing 2.6 Crawler service entry point

request is a node module that
implements a fully featured HTTP client. url is a core node

module that understands
how to parse URLs.

Include the AWS SDK node
module. In this case, we
instantiate an S3 and an SQS
object in order to interface
with our S3 bucket and
queue respectively../images refers to our own

module in the file images.js.

Loop over
messages

https://aws.amazon.com/iam

51Implementing the asynchronous services
} catch (exp) {
return asnCb('message parse error: ' + record)

}

if (body.action === 'download' && body.msg && body.msg.url) {
const udomain = createUniqueDomain(body.msg.url)
crawl(udomain, body.msg.url, context).then(result => {

queueAnalysis(udomain, body.msg.url, context).
then(result => {
asnCb(null, result)

})
})

} else {
asnCb('malformed message')

}
}, (err) => {

if (err) { console.log(err) }
cb()

})
}

The function takes three parameters as follows:

1 event—Supplies information about the current event that is being processed.
In this case, the event object holds an array of records taken from the SQS queue.

2 context—Used by AWS to supply contextual information for the call, such as
the amount of available memory, execution time, and the client call context.

3 cb—Callback function. This should be called by the handler with a result once
processing is complete.

Finally, for the crawler service, let’s take a brief look at the file package.json shown
in the next listing. This file provides a set of Node module dependencies.

{
"name": "crawler-service",
"version": "1.0.0",
"description": "",
"main": "handler.js",

Callbacks and asynchronous I/O
Callback functions are a staple of JavaScript, allowing code to execute asynchro-
nously and return a result through execution of a passed-in callback parameter. Call-
backs are a natural syntactic fit for asynchronous I/O (as opposed to synchronous
I/O), which is one of the reasons for the success of the Node.js platform. If you need
to brush up on JavaScript functions and callbacks, we can recommend the Node
School “Javascripting” tutorial which can be found at https://nodeschool.io/.

Listing 2.7 Crawler service package.json

Crawl the URL
for images.

Send message to SQS
to trigger analysis

Sets the module
version number

https://nodeschool.io/

52 CHAPTER 2 Building a serverless image recognition system, part 1
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"

},
"author": "",
"license": "ISC",
"dependencies": {

"async": "^3.2.0",
"aws-sdk": "^2.286.2",
"htmlparser2": "^3.9.2",
"request": "^2.87.0",
"shortid": "^2.2.15",
"uuid": "^3.3.2"

}
}

This entry point function is pretty simple. It just calls the crawl function to download
images from the URL provided in the event object, and once the crawl is complete, it
queues a message to SQS indicating that the downloaded images are ready for analysis.

 The main crawl function is shown in the following listing.

function crawl (url, context) {
const domain = urlParser.parse(url).hostname

return new Promise(resolve => {
request(url, (err, response, body) => {

if (err || response.statusCode !== 200) {
return resolve({statusCode: 500, body: err})

}
images.parseImageUrls(body, url).then(urls => {

images.fetchImages(urls, domain).then(results =>
writeStatus(url, domain, results).then(result => {

resolve({statusCode: 200, body: JSON.stringify(result)})
})

})
})

})
})

}

package.json
Though the format of the package.json file is relatively straightforward, there are
a few nuances, such as semantic version support and scripts. It would be beyond the
scope of this book to describe the full details here. In-depth coverage of this topic is
provided by NPM at https://docs.npmjs.com/files/package.json.

Listing 2.8 crawl function

Sets the aws-sdk
module version

The domain part is extracted
from the requested URL.

The request module is used to
fetch the HTML for the given URL.

The parsed HTML content is handed off
to the parseImageUrls function, which
returns a list of images for download.

The list of images is passed into the
fetchImages function, which downloads

each image to the nominated bucket.

Finally, the function writes a status file to
the bucket for downstream services to
consume before resolving the promise.

https://docs.npmjs.com/files/package.json

53Implementing the asynchronous services

The queueAnalysis function, shown in the next listing, uses the AWS SQS interface
to post a message to the analysis queue, which will later be picked up by the analysis
service.

function queueAnalysis (url, context) {
let domain = urlParser.parse(url).hostname
let accountId = process.env.ACCOUNTID
if (!accountId) {

accountId = context.invokedFunctionArn.split(':')[4]
}
let queueUrl = `https://sqs.${process.env.REGION}.amazonaws.com/

${accountId}/
${process.env.ANALYSIS_QUEUE}`

let params = {
MessageBody: JSON.stringify({action: 'analyze', msg: {domain: domain}}),
QueueUrl: queueUrl

}

return new Promise(resolve => {
sqs.sendMessage(params, (err, data) => {
...
})

})
}

Now that we understand the code for the crawler, let’s deploy the service. First we will
need to install the supporting node modules. To do this, cd into the crawler-
service directory and run

$ npm install

Promises and fat arrow
If you are a little out of practice with JavaScript, you might be wondering what the con-
struct .then(result => {… means. The fat arrow operator is a replacement for
the function keyword (with a slight twist). For pragmatic purposes you can think of
the following as equivalent:

result => { console.log(result) }

function (result) { console.log(result) }

The .then construct defines a handler function to be called on resolution of a prom-
ise. Promises provide an alternative mechanism to callbacks for asynchronous I/O.
Many folks prefer to use promises as opposed to callbacks, as it helps to keep code
cleaner and avoid what is colloquially known as “Callback Hell.” If you are unfamiliar
with promises, full details can be found at https://www.promisejs.org/.

Listing 2.9 queueAnalysis function

Build the SQS
endpoint URL.

Construct the
message body.

Post the
message to SQS.

https://www.promisejs.org/

54 CHAPTER 2 Building a serverless image recognition system, part 1
We can now deploy our service by running the Serverless Framework’s deploy
command:

$ serverless deploy

Once this command has completed, we can check that all is well by inspecting the
AWS Lambda console, which should look similar to figure 2.9.

Figure 2.9 Crawler service Lambda

Before we move on to the analysis function, let’s test out the crawler by sending a mes-
sage to SQS. Open the AWS console, go to the SQS service page, and select the
Chap2CrawlerQueue in the appropriate region. Then select Send Message from the
Queue Action drop-down.

Figure 2.10 Send SQS message

55Implementing the asynchronous services
Paste the JSON shown here into the message window and click Send Message:

{
"action": "download",
"msg": {

"url": "http://ai-as-a-service.s3-website-eu-west-1.amazonaws.com"
}

}

NOTE We have created a simple static website using S3 for testing purposes
that has some example images at the URL in the test message, but you can use
a different URL if you prefer—for example, the results of a Google image
search.

The message will be appended to the SQS queue and picked up by the crawler service.
We can take a look at the crawler logs to confirm that this indeed happened. Open
up the AWS console and then open up CloudWatch. Click on the Logs menu item
on the left side and then select the crawler service, listed as crawler-service
-dev-crawlimages, to inspect the logs. You should see output similar to that shown
in figure 2.11.

Figure 2.11 CloudWatch logs for crawler

Finally let’s check that our images were downloaded correctly. Open up the AWS con-
sole and go to the S3 service. Select your bucket. You should see a folder named
ai-as-a-service.s3-website-eu-west-1.amazonaws.com. Click into this to
view the downloaded images, as shown in figure 2.12.

56 CHAPTER 2 Building a serverless image recognition system, part 1
Figure 2.12 Downloaded images

In the next chapter we will turn our attention to the analysis service and complete the
deployment of the asynchronous services, before deploying the rest of the system. For
now take a well-earned break and congratulate yourself on your hard work so far!

Summary
 AWS provides a growing range of cloud native services that we can leverage. In

this chapter we used S3, Route53, Lambda, and SQS.
 AWS provides a web-based console that we can use to set up an account and

configure API access keys
 The Serverless Framework is used to deploy cloud infrastructure, including an S3

bucket, SQS queue, and Route53 DNS records. A serverless.yml file allows us
to define and deploy our infrastructure in a predictable and logical way.

 An SQS queue connects to a crawler Lambda function.
 The crawler service is a Lambda function that downloads images and places

them in an S3 bucket.

WARNING Chapter 3 continues to build on this system, and we provide
instructions on how to remove the deployed resources at the end of chapter
3. If you are not planning on working on chapter 3 for some time, please
ensure that you fully remove all cloud resources deployed in this chapter in
order to avoid additional charges!

Building a serverless image
recognition system, part 2
In this chapter we will continue building our serverless image recognition system
that we started in chapter 2. We will add our image recognition service that will call
AWS Rekognition to do the hard work for us. Once this is done, we will build a simple
front end for our system that will allow us to test our image recognition capabilities.

 If you haven’t worked through chapter 2, you should go back and do so now
before proceeding with this chapter, as we will be building directly on top of the
work that we started there. If you’re good with the content from chapter 2, we can
dive right in where we left off and deploy the analysis service.

This chapter covers
 Building a simple AI as a Service system

 Consuming an AI image recognition service

 Implementing synchronous and asynchronous
services

 Deploying a UI

 Deploying to the cloud
57

58 CHAPTER 3 Building a serverless image recognition system, part 2
3.1 Deploying the asynchronous services
In chapter 2 we set up our development environment and deployed the crawler ser-
vice. In this chapter we will continue with the deployment of the rest of the system,
starting with the analysis service.

3.1.1 Analysis service

Let’s take a look at the analysis-service. In a similar manner to the crawler-
service, this service is triggered by a message from the Analysis SQS queue once
there are images available for analysis in our S3 bucket. An outline of the logic for this
service is depicted in figure 3.1.

Figure 3.1 Analysis service

In essence the analysis-service forms a bridge between the downloaded images
and the Amazon Rekognition service. Each image downloaded by the crawler-
service is fed into Rekognition, and a set of labels is returned. Each label is a word
describing the object recognized by the model in the image and a confidence level (a
number between 0 and 100, where 100 is full confidence in the image label).

Web application

Browser

Synchronous
services

Asynchronous
services

crawler-service analysis-service
Rekognition

Build word cloud

Read image URL

Domain
Trigger

Analysis service

Invoke Rekognition

Store results

S3
bucket

Communication services

AI services

Data services

url/analyze url/list Image/list

API
Gateway

Frontend
S3

Work queue

Rekognition

S3 bucket

nananalysysis-is servinalysis-servicalysis-serv

1. Analysis triggered
 by queue

3. Feed images
 to Rekognition
 for analysis

2. Loop over
 images in S3
 bucket

4. Store results
 in JSON
 file in S3

59Deploying the asynchronous services
 Following this analysis, the service processes the returned data to create a set of word
counts that can be fed into a word cloud generator. The idea behind this is to try to visu-
ally determine a common thread between the images available at the given URL.

 Let’s take a look at the code in the analysis-service, starting with the server-
less.yml configuration to see how this is achieved. This is shown in the next listing.

service: analysis-service
custom:

bucket: ${env:CHAPTER2_BUCKET}
...

provider:
...
iamRoleStatements:

- Effect: "Allow"
Action:

- "rekognition:*"
Resource: "*"

...

functions:
analyzeImages:

handler: handler.analyzeImages
...

We should note at this point that the serverless.yml configuration file for this ser-
vice is very similar to the previous ones. The main difference is that it allows access
from this Lambda function to the Rekognition API. Let’s see how this interface works.
The file handler.js in the analysis-service code implements this interface.

 The following listing shows the require statements for the analysis-service.

const AWS = require('aws-sdk')
const s3 = new AWS.S3()
const rek = new AWS.Rekognition()

The next listing shows how the Rekognition object is used in the function analyze-
ImageLabels

function analyzeImageLabels (imageBucketKey) {
const params = {

Image: {
S3Object: {

Bucket: process.env.BUCKET,
Name: imageBucketKey

Listing 3.1 Analysis service serverless.yml

Listing 3.2 Analysis service require

Listing 3.3 Using the Rekognition API

Allow access to the
Rekognition API.

Define main
entry point

The AWS SDK module
is loaded.

The S3 interface is created
for dealing with buckets
and their objects.

The Rekognition
interface is created.

The Rekognition call
parameters are created.

60 CHAPTER 3 Building a serverless image recognition system, part 2
}
},
MaxLabels: 10,
MinConfidence: 80

}
return new Promise((resolve, reject) => {

rek.detectLabels(params, (err, data) => {
if (err) {

return resolve({image: imageBucketKey, labels: [], err: err})
}
return resolve({image: imageBucketKey,

labels: data.Labels})
})

})
}

This simple function achieves an awful lot! It triggers an image recognition AI service
to run against an image file stored in an S3 bucket, and then returns a set of results for
further processing. All of this in a rather small amount of code!

 It should be noted that we can do a lot more with Rekognition; however, for the
purposes of this code, we are just using the default settings. We will explore this in
more detail in later chapters.

TIP Rekognition works on video as well as still images, and can be used to
detect a range of features within images, such as smiling or frowning faces,
text in images, and well-known people. Can you think of applications that
would benefit your end users? For example, we have recently used it for
address and zip code detection in images.

The final listing for the analysis-service shows the function wordCloudList.
This computes the number of occurrences of a word across all of the detected labels.

function wordCloudList (labels) {
let counts = {}
let wcList = []

labels.forEach(set => {
set.labels.forEach(lab => {

if (!counts[lab.Name]) {
counts[lab.Name] = 1

} else {
counts[lab.Name] = counts[lab.Name] + 1

}
})

})

Object.keys(counts).forEach(key => {
wcList.push([key, counts[key]])

})
return wcList

}

Listing 3.4 wordCloudList computation

Rekognition’s detectLabel
API is invoked.

The promise resolves
with the results.

The function accepts an
array of label objects.

The label set in each label object is
iterated to count label occurrences.

The map of counts is converted to an
array of word-count pairs
represented as two-element arrays.

61Deploying the asynchronous services
Let’s go ahead and deploy the analysis service using the Serverless Framework:

$ cd analysis-service
$ npm install
$ serverless deploy

Once the deployment has completed successfully, we can re-run our system by queu-
ing up a test message into SQS through the AWS console. Go ahead and do this, send-
ing the same JSON message as before:

{
"action": "download",
"msg": {

"url": "http://ai-as-a-service.s3-website-eu-west-1.amazonaws.com"
}

}

This will cause the crawler service to run. Once complete, the crawler will post a mes-
sage asking for an analysis of the downloaded images into the analysis SQS queue,
which will trigger the analysis service. The net result will be a set of tags added to our
status.json file in S3. If you go ahead and open this file, you should see something
similar to the following listing.

{
"url": "http://ai-as-a-service.s3-website-eu-west-1.amazonaws.com",
"stat": "analyzed",
"downloadResults": [

{
"url": "http://ai-as-a-service.s3-website-eu-west-1.amazonaws.com/

cat1.png",
"stat": "ok"

},
...

],
"analysisResults": [

{
"image": "ai-as-a-service.s3-website-eu-west-1.amazonaws.com/cat1.png",
"labels": [

{
"Name": "Cat",
"Confidence": 99.03962707519531

}
]
...

],
"wordCloudList": [

["Cat", 3],
["Dog", 3],
....

]
}

Listing 3.5 wordCloudList computation results

Image download results

Image analysis
results

Word cloud
computation

62 CHAPTER 3 Building a serverless image recognition system, part 2
For a more complete system, we might consider storing this information in a database
or key/value store; however, for this first demonstration, S3 works just fine. This status
file is used to drive the front end and UI services, and it is to these that we will now
turn our attention.

3.2 Implementing the synchronous services
In this system, the synchronous services are comprised of the UI service and a front
end. The front end renders and executes entirely in the browser, while the UI services
execute as three Lambda functions.

3.2.1 UI service

Figure 3.2 outlines the operation of the UI service.

Figure 3.2 UI service

Synchronous
services

Web application

Browser

Asynchronous
services

Communication services

AI services

Data services

analysis-servicecrawler-service

API
Gateway

API
Gateway Frontend

S3

S3
bucket

S3
bucket

Work queue

Work
queue

Rekognition

S3 bucket

ui-service

url/list image/list url/analyze

1. Front end calls
 the API

url/analyze url/list Image/liste urlrl/li/ stze Iurl/li t Image/list

3. API triggers async
processes by posting
messages to SQS

2. API reads data and
 URLs from S3

63Implementing the synchronous services
As illustrated, the UI service exposes three end points:

 url/list lists all URLs that have been submitted for analysis.
 image/list lists all images that have been analyzed for a specific URL.
 url/analyze submits a URL for analysis.

The Serverless Framework allows us to define multiple Lambda functions in a single
configuration file, and we have used this in the configuration of the UI service. Let’s
take a look at the serverless.yml file for the UI service, shown in the next listing.

service: ui-service
frameworkVersion: ">=1.30.0"
plugins:

- serverless-domain-manager
custom:

bucket: ${env:CHAPTER2_BUCKET}
queue: Chap2Queue
region: ${env:AWS_DEFAULT_REGION, 'eu-west-1'}
domain: ${env:CHAPTER2_DOMAIN}
accountid: ${env:AWS_ACCOUNT_ID}
customDomain:

domainName: 'chapter2api.${self:custom.domain}'
stage: dev
basePath: api
certificateName: '*.${self:custom.domain}'
createRoute53Record: true
endpointType: regional

provider:
name: aws
runtime: nodejs12.x
region: ${env:AWS_DEFAULT_REGION, 'eu-west-1'}
iamRoleStatements:
...

functions:
analyzeUrl:

handler: handler.analyzeUrl
environment:
...

events:
- http:

path: url/analyze
method: post

listUrls:
handler: handler.listUrls
...

listImages:
handler: handler.listImages

....

Listing 3.6 UI service serverless.yml

Domain
plugin

Custom domain
settings

Role
permissions

Analyze URL
Lambda HTTP POST

List URLs
lambda

List images
lambda

64 CHAPTER 3 Building a serverless image recognition system, part 2

3
This configuration introduces a few new elements over and above the previous config-
uration files. First we are using a custom plugin—serverless-domain-manager.
We are using this to help us set up a custom domain for our service. If you recall, at
the start of chapter 2, we set up a domain in Route53 and created a wild card certifi-
cate. In a moment, we will use this domain for our UI service.

 The permissions section in the configuration should look familiar at this point.
The functions section is a little different, in that there are three entries. Note that
each entry is similar, in that it is tied to an HTTP event. This tells Serverless to tie the
function to API Gateway and make the function available through the given route.
The custom domain entry is used to create a DNS entry for the service, and to connect
this to API Gateway. We’ll deploy this service in a moment, but first let’s take a look at
the implementation, which is in the file handler.js.

 In what should now be a familiar pattern, we require the AWS SDK and then create
the required objects for the service to consume, which in this case are S3 and SQS.
This is shown in the following listing.

const urlParser = require('url')
const AWS = require('aws-sdk')
const s3 = new AWS.S3()
const sqs = new AWS.SQS({region: process.env.REGION})

The service defines three entry points which will be deployed as three separate
Lambda functions. The listUrl function is provided in the next listing.

module.exports.listUrls = (event, context, cb) => {
const params = {

Bucket: process.env.BUCKET,
Delimiter: '/',
MaxKeys: 1000

}

s3.listObjectsV2(params, (err, data) => {
let promises = []
if (err) { return respond(500, {stat: 'error', details: err}, cb) }

data.CommonPrefixes.forEach(prefix => {
promises.push(readStatus(prefix.Prefix))

})
Promise.all(promises).then(values => {

let result = []
values.forEach(value => {

Listing 3.7 UI service require

Listing 3.8 listUrls function

The url node module is
loaded for URL parsing.

The AWS SDK is loaded with the S
and SQS interfaces instantiated.

Entry
point

List S3
objects

65Implementing the synchronous services
result.push({url: value.url, stat: value.stat})
})
respond(200,

{stat: 'ok', details: result}, cb)
})

})
}

Note that the entry point to this function is exactly the same as for all of our other ser-
vices, even though in this case the function will be executed through API Gateway as a
HTTP GET request. The function is quite simple in that it merely lists the set of fold-
ers at the top level in our S3 bucket and returns the list as a JSON array.

 Our listImages function is simpler still, in that it reads the file status.json
from S3 and returns the contents for display, so we won’t cover it in much detail here.
Let’s instead take a look at the analyzeUrl function in the following code.

module.exports.analyzeUrl = (event, context, cb) => {
let accountId = process.env.ACCOUNTID
if (!accountId) {

accountId = context.invokedFunctionArn.split(':')[4]
}
const queueUrl = `https://sqs.${process.env.REGION}.amazonaws.com/

${accountId}/
${process.env.QUEUE}`

const body = JSON.parse(event.body)

const params = {
MessageBody: JSON.stringify({action: 'download', msg: body}),
QueueUrl: queueUrl

}

sqs.sendMessage(params, (err, data) => {
if (err) { return respond(500, {stat: 'error', details: err}, cb) }

respond(200,
{stat: 'ok', details: {queue: queueUrl, msgId: data.MessageId}}, cb)

})
}

Again, this function is fairly straightforward. It takes a URL as the event body and
posts this URL as part of the message payload to our SQS queue for the crawler service
to handle.

Listing 3.9 analyzeUrl

Respond with
URL list

Build
queue URL

Send
SQS Message

66 CHAPTER 3 Building a serverless image recognition system, part 2
Now that we understand the UI service code, let’s go ahead and deploy it. First we will
need to create the custom domain entry. The serverless.yml file uses an environ-
ment variable CHAPTER2_DOMAIN as the base domain for the ui-service deploy-
ment. If you haven’t set this variable yet, you should do so now by adding the contents
of the following listing to your shell startup script.

export CHAPTER2_DOMAIN=<MY CUSTOM DOMAIN>

Replace <MY CUSTOM DOMAIN> with the domain that you created at the start of the
chapter.

 Next we will need to install the supporting node modules. To do this, cd into the
ui-service directory and install these dependencies:

$ npm install

This will install all of the dependencies in package.json locally, including the
serverless-domain-manager. To create our custom domain, run

$ serverless create_domain

This command will cause the domain manager plugin to create the domain in
Route53. For example, if your custom domain name were example.com, then this
would create an A record for chapter2api.example.com, as specified in the
customDomain section of serverless.yml. This section is shown in the next listing.

Single responsibility principle
The single responsibility principle or SRP is a powerful idea that helps us to keep our
code decoupled and well maintained. As you can hopefully see, all of the code so far
adheres to the SRP. We like to think of the SRP as something that applies at several
levels:

 At the architectural level, each service should have a single purpose.
 At the implementation level, each function should have a single purpose.
 At the “line of code” level, each line should do one thing only.

What do we mean by the “line of code” level? Well, the following code does multiple
things on one line, in that it gets a value for bar and tests it against foo:

if (foo !== (bar = getBarValue())) {

A much clearer implementation would be to split the code into two lines, so that each
line does one thing only:

bar = getBarValue()
if (foo !== bar) {

Listing 3.10 Setting the environment variable for the base domain

67Implementing the synchronous services

custom:
bucket: ${env:CHAPTER2_BUCKET}
queue: Chap2Queue
region: ${env:AWS_DEFAULT_REGION, 'eu-west-1'}
domain: ${env:CHAPTER2_DOMAIN}
accountid: ${env:AWS_ACCOUNT_ID}
customDomain:

domainName: 'chapter2api.${self:custom.domain}'
stage: dev
basePath: api
certificateName: '*.${self:custom.domain}'
createRoute53Record: true
endpointType: regional

Note that you will need the APIGatewayAdministrator privilege for this to suc-
ceed. If you created a fresh AWS account, then this should be enabled by default.
Finally we will need to deploy the service in the usual manner:

$ serverless deploy

This will deploy our UI endpoints as Lambda functions, configure API Gateway to call
these functions, and tie our custom domain into API Gateway. The net result is that
our functions are now available to call over HTTP as https://chapter2api.<YOUR
CUSTOM DOMAIN>/api/url/list. To test this out, open a web browser and point it to
that URL. You should see the following output:

{"stat":"ok","details":[{"url":"http://ai-as-a-service.s3-website-eu-west-
1.amazonaws.com","stat":"analyzed"}]}

That’s because we have so far submitted a single URL for download and analysis, and
the UI service is returning a list of one element.

3.2.2 Front end service

The final part of our system is the front end service. This is a little different from the
rest of the system in that it is purely a front end component and executes entirely in
the user’s browser. Figure 3.3 outlines the structure of the front end service.

 We will deploy this service as a set of static files to S3. Let’s take a look at the code
first. cd into the frontend-service directory. You should see the structure shown
in the next listing.

 app
 code.js
 index.html
 templates.js
 wordcloud2.js

Listing 3.11 serverless.yml custom section for ui-service

Listing 3.12 Front end structure

Custom domain
environment variable

Full domain
name

Certificate
reference

https://chapter2api.<YOUR CUSTOM DOMAIN>/api/url/list
https://chapter2api.<YOUR CUSTOM DOMAIN>/api/url/list

68 CHAPTER 3 Building a serverless image recognition system, part 2
Figure 3.3 Front end

In this case we don’t require a serverless.yml configuration, as we are just going to
deploy our front end to an S3 bucket. The code for the front end is contained in the
app directory, which holds the HTML and JavaScript for our application. Our applica-
tion in this case is an example of what is known as a single-page application (SPA). There
are many frameworks that help with the construction of large-scale SPA applications
such as Angular, React, or Vue. For our simple application, we are just using jQuery, as

Browser

Frontend
S3

Static
assets

Browser

Web application

Asynchronous
services

Communication services

AI services

Data services

analysis-servicecrawler-service

API
Gateway

Frontend
S3

Work queue

Rekognition

S3 bucket

url/analyze url/list Image/list

FroFrontend
S3S3

onion

Synchronous
services

69Implementing the synchronous services
this provides a simple lowest common denominator, and our application is simple
enough not to require the support of a front end framework.

NOTE For this example system, we will be using S3 directly to serve up our
application. To operate at scale, it is common practice to use an S3 bucket as
the origin for Amazon’s CloudFront CDN (content delivery network).

The code that implements the front end is fairly simple, consisting of a single HTML
page and some JavaScript. Let’s take a quick look at the index page, shown in the fol-
lowing listing.

<html>
<head>

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/
bootstrap/4.1.3/css/bootstrap.min.css">

<script src="https://code.jquery.com/jquery-3.3.1.min.js"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/

bootstrap.min.js"></script>
<script src="/templates.js"></script>
<script src="/code.js"></script>
<script src="/wordcloud2.js"></script>

</head>
<body>

<div class="navbar navbar-expand-lg navbar-light bg-light">

...
</div>

<div id="content"></div>

</body>
</html>

Single-page application
The single-page application architecture is characterized by dynamically rewriting con-
tent into a single page, rather than reloading a web page in order to render new con-
tent. This approach has become increasingly popular and is used in most modern
web applications. Indeed, it is the rise of this application model that has in part driven
the development of many of the front end JavaScript frameworks that you may have
come across, such as Angular, React, Vue, and so on.

If you are unfamiliar with this approach, we recommend this e-book as a way to brush
up on this topic: https://github.com/mixu/singlepageappbook.

Listing 3.13 Front end index.html

CDN libraries

Application
code

Define
navigation bar

Main
content area

https://github.com/mixu/singlepageappbook

70 CHAPTER 3 Building a serverless image recognition system, part 2
In the head section of the page, we load in some standard libraries such as jQuery and
Bootstrap from a shared CDN. This is just a convenience. For a production web appli-
cation, we would normally redistribute these libraries ourselves in order to ensure
their integrity. The main markup in this page then defines a simple navigation bar,
before declaring a content area which will be populated by the application code, the
bulk of which is in the file code.js.

We have removed some of the detail from the code in the next listing for the sake of
clarity. The full code is available in the Git repository.

const BUCKET_ROOT = '<YOUR BUCKET URL>'
const API_ROOT = 'https://chapter2api.<YOUR CUSTOM DOMAIN>/api/'

function renderUrlList () {
$.getJSON(API_ROOT + 'url/list', function (body) {

...
})

}

function renderUrlDetail (url) {
let list = ''
let output = ''
let wclist = []

$.getJSON(API_ROOT + 'image/list?url=' + url, function (data) {
...

})
}

$(function () {
renderUrlList()

$('#submit-url-button').on('click', function (e) {
e.preventDefault()
$.ajax({url: API_ROOT + 'url/analyze',

type: 'post',
data: JSON.stringify({url: $('#target-url').val()}),

jQuery, Bootstrap, and CDN
If you are unfamiliar with front end JavaScript development, you may be wondering
about the links to Bootstrap and jQuery in the HTML file. As a convenience to their
users, these projects both provide hosted, minified versions of major releases of
their libraries on fast content-delivery networks for inclusion by external applications.

Listing 3.14 Main JavaScript for front-end application

Define the bucket
URL root.

Define the
UI API root.

Fetch and
render URLs.

Fetch and
render images.

Send a URL
for analysis.

71Running the system
dataType: 'json',
contentType: 'application/json',
success: (data, stat) => {
}

})
})

})

The code uses standard jQuery functions to make AJAX requests to the UI service that
we just deployed. It renders the list of URLs that have been analyzed on page load,
and the list of images that have been analyzed for a particular URL. Finally, it allows
the user to submit a new URL for analysis. Before we deploy the front end, you should
edit the file code.js and replace the following lines:

 const BUCKET_ROOT = '<YOUR BUCKET URL>' should be replaced with the
URL for your specific bucket; for example, https://s3-eu-west-1.amazonaws.com
/mybucket.

 const API_ROOT = 'https://chapter2api.<YOUR CUSTOM DOMAIN>/api/'
should be replaced with your specific custom domain.

Now that’s done, so we can go ahead and deploy the front end. To do this, we are
going to use the AWS command line that we set up at the start of the chapter. Run the
following commands:

$ cd frontend-service
$ aws s3 sync app/ s3://$CHAPTER2_BUCKET

NOTE For this example we are deploying our front end into the same
bucket as our scraped data. We don’t advise that you do this for a produc-
tion system!

We have now built and deployed a full serverless AI system; in the next section we’ll
give it a spin!

3.3 Running the system
Now that we have fully deployed our system, it’s time to give it a try. To do this, open a
web browser and point it to https://<YOURBUCKETNAME>.s3.amazonaws.com/
index.html. The index page should load and display a single URL that has been ana-
lyzed during our test deployments, as illustrated in figure 3.4.

Figure 3.4 Default landing page with one URL

https://s3-eu-west-1.amazonaws.com/mybucket
https://s3-eu-west-1.amazonaws.com/mybucket
https://<YOURBUCKETNAME>.s3.amazonaws.com/index.html
https://<YOURBUCKETNAME>.s3.amazonaws.com/index.html

72 CHAPTER 3 Building a serverless image recognition system, part 2
Let’s see how our image analysis system gets on with some other images. Given that
the internet runs on cat pictures, point your browser to Google and search for “cat
pictures”—then click on the Images tab. It should look something like figure 3.5.

Figure 3.5 Cat pictures on Google Images

Copy the URL from the address bar, go back to the landing page, and paste it into the
target URL field. Then click the Analyze button. After a few seconds, refresh the page:
you should see an entry in the list for www.google.com with a status of analyzed, as
illustrated in figure 3.6.

Figure 3.6 Landing page with Google Images analysis

Click the link to the newly analyzed data set, and the system will display a list of images
that were analyzed by Rekognition, and also a word cloud that we generated on our
front end. This is shown in figure 3.7.

73Running the system
Figure 3.7 Landing page with Google Images analysis

The system has been fairly successful in recognizing our feline images; however, in
some cases it failed entirely. Each image that was successfully processed will have an
associated tag list. Each tag has two components: a word and a score out of 100. This
number is the confidence level, and is a measure of how accurate a match the AI
thinks the word is to the image. It is interesting to look at the images that failed recog-
nition; for example, in figure 3.8. It is probably unsurprising that no accurate determi-
nation could be made on the image of the cat stretched out on its back!

Figure 3.8 Landing page with
Google Images analysis

74 CHAPTER 3 Building a serverless image recognition system, part 2
Congratulations! You have now deployed and operated your first serverless AI system!
 We covered an awful lot of ground in this chapter, from a standing start to a fully

working serverless AI system that can recognize images from arbitrary web pages. While
this has been a bit of a whirlwind tour, we hope that it serves to illustrate that complex
AI functionality is now available to developers with no specialized knowledge.

 Bear in mind that we only scratched the surface of what Rekognition and image
recognition technology in general can do. Hopefully you are currently thinking of
ways to use this functionality in your own work. Some use cases that we have come
across include

 Extracting name and zip code information from images
 Verifying that uploaded profile pictures are of valid human faces
 Helping blind or partially sighted people by describing objects in the current

field of view
 Google reverse image search, which allows one to search for visually similar

images
 Identification of wine by type, price, and value through taking a picture of the

label on a bottle

The possibilities are endless, and we are certain to see new businesses spring up
around this technology.

 Hopefully you will agree that we were able to achieve a lot of functionality with
comparatively little code, allowing the cloud infrastructure to do the heavy lifting for
us. We should also note that this image recognition system could be constructed with
no specialized knowledge of neural networks or deep learning. We will expand upon
this engineering approach to AI throughout the rest of this book.

3.4 Removing the system
Once you are done with testing the system, it should be removed entirely in order to
avoid incurring additional charges. This can be achieved very simply by using the
Serverless remove command. There is a script, remove.sh, in the chapter2-3 code
directory that does the removal for you. This will remove the front end from S3 and
tear down all of the associated resources. To use it, run

$ cd chapter2-3
$ bash remove.sh

If you would like to redeploy the system at any time, there is an associated script called
deploy.sh in the same folder. This will redeploy the entire system for you by auto-
mating the steps that we worked through in this chapter.

Summary
 An analysis service consumes an image recognition AI service. We use the AWS

Rekognition detectLabels API to detect labelled objects in each image.

75Summary
 A simple API was created to interact with our analysis system. We use API Gate-
way to provide an external endpoint for the serverless services.

 A front end single-page application can be deployed as part of a serverless
application. Our single-page application is copied to a publicly accessible S3
bucket.

 All infrastructure for this system is defined as code; at no point did we need to
use the AWS web console to deploy our application.

 Deployment and removal can be fully automated through a script that triggers
the Serverless Framework.

WARNING Please ensure that you fully remove all cloud resources deployed in
this chapter in order to avoid additional charges!

76 CHAPTER 3 Building a serverless image recognition system, part 2

Part 2

Tools of the trade

In chapter 4 we will create an entirely serverless to-do list application, which
we will secure using AWS Cognito. We will proceed to add AI-driven interfaces to
this application in chapter 5, such as speech-to-text and an interactive chatbot.

 In chapter 6 we will look in more detail at the key tools and techniques that
you will need to master in order to be effective with AI as a Service. These
include how to create build and deployment pipelines, how to build observabil-
ity into our systems, and how to effectively monitor and debug the systems that
we build.

 Building systems from scratch is relatively easy. Most of us in the real world
are tasked with maintaining and extending preexisting platforms, so we close
out this part in chapter 7 by looking at how to apply what we have learned to
existing systems.

78 CHAPTER

Building and securing a web
application the serverless way
In this chapter we will build upon the lessons of chapters 2 and 3 to build our sec-
ond, more capable serverless AI system. Most programming texts use the canonical
to-do list application as a teaching example. This book is no different in that
regard. However, this is certainly not your grandparents' to-do list: this is the to-do
list on steroids! The to-do list application that we will build in this chapter will start
out simple enough as a familiar CRUD (Create, Read, Update, Delete) type appli-
cation utilizing a cloud native database. After securing the application with a login
and logout screen, we will add natural language speech interfaces to record and
transcribe text, and to have the system tell us our daily schedule from our to-do list.
Finally, we will add a conversational interface to the system, allowing us to interact
entirely through natural speech and not the keyboard.

This chapter covers
 Creating a serverless to-do list

 Using DynamoDB, a serverless database

 Implementing login the serverless way
79

80 CHAPTER 4 Building and securing a web application the serverless way
 In this chapter we will build the serverless to-do list. We will add the AI features in
chapter 5, and as we will see, these can be built very rapidly by harnessing cloud AI ser-
vices to do the heavy lifting.

4.1 The to-do list
Our next-generation to-do list will consume a number of AI services. As before, this
will follow our canonical architectural pattern for serverless AI systems that we devel-
oped in chapter 1 and used in chapters 2 and 3. The finished product is shown in
figure 4.1.

Figure 4.1 The end goal

In this image, the user is midway through creating a new to-do item through a conver-
sation with our to-do chatbot.

4.2 Architecture
Before we get into assembling the system, let’s look at the architecture and take a
moment to understand how it maps back to our canonical serverless AI architecture
that we developed in chapter 1. Figure 4.2 depicts the overall structure of the system.

 The system architecture shows a clear separation between services. Every service
has a single responsibility with a well-defined interface:

 Web application—Static content for the client application is served from an S3
bucket. An API Gateway provides an API that triggers event handlers in our syn-
chronous and asynchronous services. Our web application client uses the AWS
Amplify client SDK to handle the complexity of authentication.

 Synchronous and asynchronous services—These custom services are AWS Lambda
functions that handle our API requests and perform the main business logic of
our application.

81Architecture
Figure 4.2 System architecture. The system is composed of custom services and managed services. Using
many managed services provided by AWS allows us to quickly build and deploy scalable, production-grade
applications.

Web application

Browser

Deploy

Synchronous
services

Asynchronous
services

Development support

Operational
support

Communications

AI services

Data services

Utility services

Amplify

Note API uses
Transcribe to
convert speech
to text.

schedule

API
Gateway

Frontend
S3

todo note

S3 bucket

Polly LexTranscribe

DynamoDB

Route 53

CloudFormation

Load web
application

Call API

Logs

AI services for
speech to text,
text to speech,
and chat interface

S3 holds audio
files for speech
to text and text to
speech translation.

Schedule API uses
Polly to convert
text to speech.

CRUD API using
DynamoDB

Cognito

82 CHAPTER 4 Building and securing a web application the serverless way
 Communication fabric—AWS Route53 is used for DNS configuration so our ser-
vices can be accessed using a custom domain name.

 Utility services—AWS Cognito is used for authentication and authorization.
 AI services—We use three managed AWS AI services: Transcribe, Polly, and Lex.
 Data services—DynamoDB is used as a powerful and scalable database. S3 is used

for file storage.

As we work through the system, we will describe each section in more detail and
explain how it is built and deployed.

4.2.1 Web application

The structure of the application is shown in figure 4.3 with the web application section
highlighted.

Web application

Browser

Synchronous
services

Asynchronous
services

Communications

AI services

Data services

Utility services

Amplify

schedule

API
Gateway

Frontend
S3

todo note

S3 bucket

Polly LexTranscribe

DynamoDB

Route 53 Cognito

Figure 4.3
Web application

83Architecture
The structure shown will be familiar from our system in chapters 2 and 3. The front
end of the system is a single-page application comprising HTML, CSS, and JavaScript
to render the UI, deployed into an S3 bucket. We will repeat this image throughout
the chapter, highlighting the relevant section as we build the complete application. As
before, we are using API Gateway to provide a route into the services.

 For our to-do application, we are using an additional library on the front end; AWS
Amplify. Amplify is a JavaScript client library that provides secure access to nominated
AWS services. In our case we are using it to provide a client interface to Cognito for
login and logout, and also to access speech-to-text data stored in S3.

4.2.2 Synchronous services

Figure 4.4 shows our application architecture again, this time with the synchronous ser-
vices section highlighted.

Web application

Browser

Synchronous
services

Asynchronous
services

Communications

AI services

Data services

Utility services

Amplify

schedule

API
Gateway

Frontend
S3

todo note

S3 bucket

Polly LexTranscribe

DynamoDB

Route 53 Cognito

Figure 4.4
Synchronous services

84 CHAPTER 4 Building and securing a web application the serverless way
There is one main synchronous service shown. This is the to-do service, which
exposes routes for a simple CRUD interface as follows:

 POST /todo/—Create a new item.
 GET /todo/{id}—Read a specific item.
 PUT /todo/{id}—Update item.
 DELETE /todo/{id}—Delete an item.
 GET /todo—List all items.

4.2.3 Asynchronous services

The asynchronous services section of our application architecture is highlighted in
figure 4.5.

Web application

Browser

Synchronous
services

Asynchronous
services

Communications

AI services

Data services

Utility services

Amplify

schedule

API
Gateway

Frontend
S3

todo note

S3 bucket

Polly LexTranscribe

DynamoDB

Route 53 Cognito

Figure 4.5
Asynchronous services

85Architecture
There are two asynchronous services which are concerned with speech-to-text and
text-to-speech translation. These services are as follows.

NOTE SERVICE

Provides an interface to convert a voice recorded note into text:

 POST /note—Kick off a new asynchronous note transcription job.
 GET /note/{id}—Poll for information on the asynchronous transcription.

SCHEDULE SERVICE

Provides an interface to create a schedule and then convert it into a voice recording:

 POST /schedule—Start a new asynchronous schedule job.
 GET /schedule/{id}—Poll for information on the schedule.

4.2.4 Communication fabric

We have chosen to build our
to-do list using a poll-based
mechanism for simplicity,
and have opted not to use
any queue. We are primarily
using HTTP and DNS as our
communication fabric tech-
nologies.

4.2.5 Utility services

We are using Amazon Cog-
nito as a mechanism for user
login and authentication.
User management is a
“solved problem” and one
that we don’t want to build
ourselves for each platform
that we develop. For this sys-
tem we use Cognito to do the
heavy lifting for us.

4.2.6 AI services

The next highlighted sec-
tions of our architecture,
shown in figure 4.6, cover the
AI and data storage services
we use in this system

Figure 4.6 AI and data services

Web application

Browser

Synchronous
services

Asynchronous
services

Communications

AI services

Data services

Utility services

Amplify

schedule

API
Gateway

Frontend
S3

todo note

S3 bucket

Polly LexTranscribe

DynamoDB

Route 53 Cognito

86 CHAPTER 4 Building and securing a web application the serverless way
This image shows that we are using several AI services:

 Transcribe is used to provide speech-to-text conversion and reads its input from
S3.

 Polly converts text into speech and writes its output audio files to S3.
 Lex is used to create interactive chatbots. We will use the Lex Web UI system to

plug directly into our front-end application.

4.2.7 Data services

In the data services tier, we are using the Simple Storage Service (S3) and DynamoDB.
DynamoDB is a highly scalable cloud native NoSQL database, and we are using it to
store our to-do items.

4.2.8 Development support and operational support

As before, we are using the Serverless Framework as our main development support
system. All logging data is collected using CloudWatch.

4.3 Getting ready
Now that we have seen the end goal, let’s dive in and put the system together. As a pre-
requisite for this chapter, you will need to have the following:

 AWS account
 AWS command line installed and configured
 Node.js installed
 Serverless Framework installed

Instructions on how to set up Node.js and the Serverless Framework are provided in
chapters 2 and 3. Setup instructions for AWS are provided in appendix A. If you
haven’t done so already, you will need to follow these instructions before proceeding
with the code in this chapter.

WARNING Using AWS costs money! Please ensure that any cloud infrastruc-
ture is destroyed once you are finished with it. We will provide tear down
instructions at the end of each chapter to help with this.

4.3.1 Getting the code

The source code for this chapter is available in the repository https://github.com/
fourTheorem/ai-as-a-service in the code/chapter4 directory. If you haven’t done so
already, you can go ahead and clone the repository:

$ git clone https://github.com/fourTheorem/ai-as-a-service.git

The code for this system is broken down into a number of simple steps, as we will be
building the system up piece by piece. In this chapter we build the basic application
and then add the AI features in chapter 5. If you look in the chapter4 and chapter5
directories, you will find the following breakdown:

https://github.com/fourTheorem/ai-as-a-service
https://github.com/fourTheorem/ai-as-a-service

87Step 1: The basic application
 chapter4/step-1-basic-todo
 chapter4/step-2-cognito-login
 chapter5/step-3-note-service
 chapter5/step-4-schedule-service
 chapter5/step-5-chat-interface

We will be working through these directories in order. Each logical step will add addi-
tional functionality to our to-do list application. Let’s get going with the first step, our
basic to-do application.

4.4 Step 1: The basic application
Our basic to-do application should feel fairly familiar to most programmers, who will
at some time or another have encountered the canonical to-do application. Figure 4.7
depicts the application running after deployment.

Figure 4.7 Basic to-do list

The complete application shows a list of to-dos, along with a form for adding a new
to-do.

Why another to-do application?
In putting the content for this book together, we did indeed question if the world
needed yet another to-do application. However on reflection we decided that it would
be valuable for the following reasons:

 A to-do application needs to cover all of the basic CRUD operations.
 It is a familiar starting point for most programmers.
 Most to-do applications stop at the CRUD part; our aim is to explore how to

secure and then expand the application with AI services.

88 CHAPTER 4 Building and securing a web application the serverless way
At this starting point, the system is composed of a small set of components, as illus-
trated in figure 4.8.

Figure 4.8 Step 1 architecture

As you can see, our system is fairly simple at this point. It uses a single API Gateway
deployment, some simple Lambda functions, a DynamoDB table, and some front end
code served out of S3. The source code for this first step is in the directory

Web application

Browser

Synchronous
services

Asynchronous
services

Communications

AI services

Data services

Utility services

API
Gateway

Frontend
S3

todo

S3 bucketDynamoDB

Route 53

89Step 1: The basic application
chapter4/step-1-basic-todo and has the structure shown in the next listing,
which lists only the key files for the sake of clarity.

 frontend
 package.json
 serverless.yml
 webpack.config.js
 resources
 package.json
 serverless.yml
 todo-service

 dynamodb.yml
 handler.js
 package.json
 serverless.yml

Let’s look at each of these components in turn.

4.4.1 Resources

As with our previous application, we define a set of global cloud resources in our
resources directory. It is important to note that we only configure global resources
here. Configuration for cloud resources that are specific to an individual service
should be kept with that service. For example, the to-do service “owns” the to-do
DynamoDB table; therefore this resource is configured as part of the to-do service
definition.

TIP As a rule of thumb, keep service-specific resource definitions with the
service code. Only globally accessed resources should be configured outside
of a service directory.

Our serverless.yml file for resources defines an S3 bucket for the front end, sets
permissions, and enables CORS. After working through chapters 2 and 3, the format
and structure of this serverless.yml should be very familiar, so we won’t cover it
here, except to note that we are using a new plugin in this configuration: server-
less-dotenv-plugin. This reads in environment variables from a .env file, which
contains system-specific variables such as our bucket name. We will edit this file later
in this section when we deploy the system.

Listing 4.1 Code structure

CORS
CORS stands for cross-origin resource sharing. It is a security mechanism that allows
a web page to request resources from a different domain than the one from which
the original web page was loaded. Using CORS, a web server may selectively allow or
deny requests from different originating domains. A full explanation of CORS can be
found here: https://en.wikipedia.org/wiki/Cross-origin_resource_sharing.

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

90 CHAPTER 4 Building and securing a web application the serverless way
In our system the only shared resource is the data bucket. This will be used by services
in later sections.

4.4.2 To-do service

For the first step, we have implemented only the basic to-do CRUD service and a min-
imal front end. The to-do service uses DynamoDB, Amazon’s cloud-native NoSQL
database. Figure 4.9 illustrates the individual routes that make up the to-do service,
each of which performs a corresponding read or write operation.

Figure 4.9 To-do service

The expanded section of the image shows the POST, PUT, and DELETE routes for
adding, updating, and deleting to-do records. There are two GET routes shown: one
for retrieving all to-dos, and one for retrieving a single to-do using its ID.

Browser

Synchronous
services

Web application

Asynchronous
services

Communications

AI services

Data services

Utility services

API
Gateway

API Gateway

Frontend
S3

S3 bucketDynamoDB

DynamoDB DynamoDB DynamoDB DynamoDB DynamoDB
Route 53

todo-service

POST
/todo

GET
/todo/{id}

PUT
/todo/{id}

DELETE
/todo/{id}

GET
/todo

todotodtodot

2. Handler functions
manipulate items in
DynamoDB.

1. Call API to manipulate items

91Step 1: The basic application
The main section of the serverless.yml file, shown in the following listing, config-
ures the AWS provider and defines the API Gateway routes and their associated
Lambda function event handlers.

provider:
name: aws
runtime: nodejs12.x
stage: ${opt:stage, 'dev'}
region: ${env:AWS_DEFAULT_REGION, 'eu-west-1'}
environment:

TODO_TABLE: '${self:service}-${self:provider.stage}'
iamRoleStatements:

- Effect: Allow
Action:

- dynamodb:DescribeTable
- dynamodb:Query
- dynamodb:Scan
- dynamodb:GetItem
- dynamodb:PutItem
- dynamodb:UpdateItem
- dynamodb:DeleteItem

Resource: "arn:aws:dynamodb:${self:custom.region}:${self:custom.account
id}:*"

functions:
create:

handler: handler.create
events:

- http:
method: POST
path: todo
cors: true

...

resources:
- ${file(./dynamodb.yml)}

CRUD
If you’re not familiar with the term, CRUD stands for Create, Read, Update, Delete.
Sometimes you will hear the term “CRUD-based application.” This term just means
an application that performs these standard operations on some data store. Typically
CRUD applications are implemented using a RESTful HTTP interface. This means that
the following HTTP verb and routes are used:

 POST /widget—Post data to create and store a new widget.
 GET /widget/{id}—Read back the data for widget with the supplied ID.
 PUT /widget/{id}—Update the widget with the supplied ID.
 DELETE /widget/{id}—Delete the widget with the supplied ID.
 GET /widget—Get a list of all widgets.

Listing 4.2 serverless.yml configuration for the to-do service

Define environment
variable for DynamoDB

IAM access role for
Lambda functions to
access DynamoDB

CRUD routes
and handlers

Include
resources

92 CHAPTER 4 Building and securing a web application the serverless way
Though this configuration file is a little larger than our previous examples, the struc-
ture is very much the same as for the ui-service in chapters 2 and 3, in that we

 Configure access to DynamoDB for our handler functions
 Define routes and handler functions

We use an environment definition in the provider section to supply our handler code
with the DynamoDB table name:

environment:
TODO_TABLE: '${self:service}-${self:provider.stage}'

This is important because we do not want to hard-code the table name into our han-
dler functions, as this would be a violation of the DRY principle.

TIP DRY stands for “don’t repeat yourself.” In the context of a software sys-
tem, it means that we should strive to only have a single definition or source
of truth for each piece of information in a system.

To make the serverless definition more manageable, we have chosen to place our
DynamoDB table definition in a separate file and include it in our main server-
less.yml file:

resources:
- ${file(./dynamodb.yml)}

This can help to keep our configurations shorter and more readable. We will be using
this pattern throughout the remaining chapters. Our included file, shown in the next
listing, configures DynamoDB resources for the system.

Resources:
TodosDynamoDbTable:

Type: 'AWS::DynamoDB::Table'
DeletionPolicy: Retain
Properties:

AttributeDefinitions:
- AttributeName: id
AttributeType: S

KeySchema:
- AttributeName: id
KeyType: HASH

ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

TableName: '${self:service}-${self:provider.stage}'

This is a very simple configuration, defining a single id key on the DynamoDB table.

Listing 4.3 Serverless DynamoDB configuration

We specify that the table should not be deleted
when the CloudFormation stack is removed. This
can help to avoid accidental data loss. The
CloudFormation stack is the set of resources
created or updated when we run serverless deploy.

For this table, we specify one key attribute,
an ID of type S (string). This attribute is a
partition key, so values must be unique.

The capacity units for throughput are set to the
lowest possible values. This will restrict the number
of reads and writes that can occur but, for this
application, will ensure costs are kept to a minimum.

93Step 1: The basic application
 If we now look at the handler code for the to-do service, it should become clear
how the system uses DynamoDB to store data. The code is in the file handler.js,
shown in the following listing.

const uuid = require('uuid')
const AWS = require('aws-sdk')
const dynamoDb = new AWS.DynamoDB.DocumentClient()
const TABLE_NAME = {

TableName: process.env.TODO_TABLE
}

function respond (err, body, cb) {
...

}

module.exports.create = (event, context, cb) => {
const data = JSON.parse(event.body)
removeEmpty(data)

data.id = uuid.v1()
data.modifiedTime = new Date().getTime()

const params = { ...TABLE_NAME, Item: data }
dynamoDb.put(params, (err, data) => {

respond(err, {data: data}, cb)
})

}

The handler implementation should also feel familiar if you worked through chapters
2 and 3. The pattern here is to include the AWS SDK and then create an interface into
the specific service that we want to access, in this case DynamoDB. The rest of the
code then uses this resource to perform operations against the service and returns a
result to the caller of the service. In listing 4.4, we have shown the create endpoint.
This maps to our POST /to-do route. Clients of this code will include to-do informa-
tion in the POST request as JSON-formatted data. In this case, the JSON used is of the
form shown in the following listing.

{
dueDate: '2018/11/20',
action: 'Shopping',
stat: 'open',
note: 'Do not forget cookies'

}

The create method adds in a timestamp and an id field before writing the to-do to
the database. The rest of the methods in handler.js implement the other CRUD
operations against the database.

Listing 4.4 Requires and creates handler for to-do service

Listing 4.5 Example JSON content for the to-do POST

Require
AWS SDK

Create DynamoDB
client

Use table name
environment variable

Respond
boilerplate

Create
handler

Create to-do
in database

94 CHAPTER 4 Building and securing a web application the serverless way
4.4.3 Front end

Our front-end application for this first step is also fairly straightforward, and is illus-
trated in figure 4.10.

Figure 4.10 Front end

The front-end application is built and stored in S3. When a browser loads the
index.html page, the code and other assets, such as stylesheets and images, are also
loaded. Internally the front-end application is built using JQuery. As this application
will do a little more than the example in chapters 2 and 3, we have introduced some
structure into the code, which is illustrated in figure 4.10 and will be described shortly.

Web application

Asynchronous
services

Communications

AI services

Data services

Utility services

API
Gateway

Frontend
S3

S3 bucketDynamoDB

todo

FroFroFrontetendnFrontend
S3

rontend

Synchronous
services

todo todo view

HTML
DOM

Templates

Index

Browser

Load API Gateway

Frontend S3 todo

1. Load the frontend
from S3

3. TODO ‘View’
updates DOM

2. TODO ‘Controller’
fetches data

4. TODO ‘Controller’
calls API to update
items

Browser

Route 53

95Step 1: The basic application
 The code is in the frontend directory and has the structure shown in the next
listing.

 assets
 src
 index.html
 index.js
 templates.js
 todo-view.js
 todo.js
 webpack.config.js
 package.json
 serverless.yml

The root page for the application is src/index.html, shown in the following listing.
This provides some of the initial DOM (Document Object Model) structure and loads
in the main application code.

<html>
<head>

<title>Chapter 4</title>
</head>
<body>

<script src='main.js'></script>

<nav class="navbar navbar-expand-lg navbar-light bg-light">
.
.
.

</nav>

<div id="content">
</div>

<div id="footer">
<div id="error"></div>

</div>

</body>
</html>

The main code for the application lives in the src directory. This is composed of the
following:

 index.js—Application entry point
 todo.js—To-do “model” and “controller” code
 todo-view.js—To-do DOM manipulation
 templates.js—Common rendering templates

Listing 4.6 Front-end directory structure

Listing 4.7 index.html

Load application
code

Navigation bar
code omitted

Main application
content area

96 CHAPTER 4 Building and securing a web application the serverless way
Our index.js file, shown in the next listing, simply loads in the required resources.

import $ from 'jquery'
import 'bootstrap/dist/css/bootstrap.min.css'
import 'webpack-jquery-ui/css'
import {todo} from './todo'

$(function () {
todo.activate()

})

The main work is carried out in our to-do module, shown in the following listing.

import $ from 'jquery'
import {view} from './todo-view'

const todo = {activate}
export {todo}

const API_ROOT = `https://chapter4api.${process.env.CHAPTER4_DOMAIN}/api/
todo/`

function create (cb) {
$.ajax(API_ROOT, {
...
})

}

function list (cb)
$.get(API_ROOT, function (body) {
...
})

}

function activate () {
list(() => {

bindList()
bindEdit()

})
$('#content').bind('DOMSubtreeModified', () => {

bindList()
bindEdit()

})
}

We have omitted some of the code from listing 4.9 for clarity. Most readers will be
familiar with the Model View Controller (MVC) pattern. Our to-do module can be
thought of as acting as the model and controller for to-dos in our front-end applica-
tion, with our view functionality handled in todo-view.js.

Listing 4.8 index.js

Listing 4.9 todo.js

Load jquery
and styles

Load
to-do code

Activate to-do once
page has loaded

Import
to-do view

Export activate
function

Create
to-do

List
to-dos

Call list
on load

97Step 1: The basic application
 We are building a URL for the to-do API using an environment variable:

API_ROOT = `https://chapter4api.${process.env.CHAPTER4_DOMAIN}/api/todo/`

We will set the CHAPTER4_DOMAIN variable later in this section when we deploy the
front end.

Our display functionality is handled in todo-view.js and templates.js. We leave
it as a exercise for the reader to look through these files, which are essentially doing
some very simple DOM manipulation to render the to-do list.

 In the root of our frontend directory we have three control files: package.json,
webpack.config.js, and serverless.yml. These files allow us to install and man-
age JavaScript dependencies, build a version of the front end for deployment, and cre-
ate the S3 bucket to deploy the build to.

 The serverless.yml for the front end is very similar to that in our resources
directory, so we won’t cover it in detail here. It simply defines an S3 bucket with the
appropriate permissions to serve up our front end publicly.

 We covered the structure of package.json in chapters 2 and 3, so this should be
familiar. We should note that webpack itself is managed as a development depen-
dency in package.json. We also define a build task under the scripts block, which
runs webpack in order to build the application for deployment.

Why no framework?
Readers who are familiar with front-end development may be wondering why we aren’t
using some kind of front-end framework such as React, Vue, or Angular. The answer
is that although we understand that there are a number of popular frameworks avail-
able, they take time to learn. Our aim in this book is to teach AI as a Service and not
front-end frameworks, so we have opted to use a lowest common denominator
approach of JQuery combined with Webpack. In this way we hope to reduce the cog-
nitive learning load.

Webpack
Webpack is a static module bundler for modern JavaScript applications. Webpack pro-
cesses JavaScript, CSS, and other source files to create a compact output JavaScript
file that can be included in a web application. Webpack works by building a dependency
graph rather than working on a file-by-file basis. This has several benefits:

 The dependency graph means that only the resources we need are included
in the output.

 The resultant output is much more efficient, as only a single minified Java-
Script file is downloaded by the web application.

 Our workflow is now clean and efficient, as we can use the npm module sys-
tem for dependency management.

98 CHAPTER 4 Building and securing a web application the serverless way
Our webpack configuration is listed in the following listing.

const Dotenv = require('dotenv-webpack')
const path = require('path')

module.exports = {
entry: {

main: './src/index.js'
},

devtool: 'eval-source-map',
devServer: {
contentBase: './dist',
port: 9080

},
output: {

filename: '[name].js',
path: path.resolve(__dirname, 'dist'),
publicPath: 'dist/'

},
mode: 'development',
module:

rules: [{
...
}]

},
plugins: [

new Dotenv({
path: path.resolve(__dirname, '..', '.env'),
systemvars: false,
silent: false

})
]

}

Our webpack configuration will build all dependencies from src/index.js into the
dist folder for us. This includes all of our source code and related modules, includ-
ing JQuery. We can then simply deploy the dist directory to S3 to have a functional
application.

 In a similar manner to the serverless-dotenv-plugin, we use the dotenv-
webpack plugin here. This allows us to use a single environment configuration file
across all code areas, helping to keep our system DRY.

(continued)

 Webpack will also manage other static assets such as CSS, images, and so
on as part of the dependency graph.

Full documentation on Webpack is available here: https://webpack.js.org/.

Listing 4.10 webpack.config.js

Define dependency
graph entry point

Enable source
maps for debugging

Define
output map

Development
mode

CSS and image
modules

.env file
plugin

https://webpack.js.org/

99Step 1: The basic application

.

4.4.4 Deploying step 1

Now that we understand the to-do system, let’s go ahead and deploy it to AWS. If you
haven’t already set up an account, you will need to go to appendix A to get set up.

SET ENVIRONMENT VARIABLES

You may recall from reviewing the code that the front-end project created an S3
bucket to hold our web application and that it used an environment variable,
CHAPTER4_BUCKET. You will need to decide on a name for your bucket that is globally
unique. Remember also that we are using a custom domain for our to-do API through
the environment variable CHAPTER4_DOMAIN.

 Following the setup in appendix A, you should have the following environment
variables defined in your shell:

 AWS_ACCOUNT_ID

 AWS_DEFAULT_REGION

 AWS_ACCESS_KEY_ID

 AWS_SECRET_ACCESS_KEY

These are global variables and that you should keep in just one place on your system.
To deploy our to-do application, we need to provide the system-specific variables. To
do this, we will use a .env file. Using any text editor, create a file called .env and
place it in the chapter4/step1-basic-todo directory. The file should contain the
contents shown in the following listing.

environment definiton for Chapter 4
TARGET_REGION=eu-west-1
CHAPTER4_BUCKET=<your bucket name>
CHAPTER4_DATA_BUCKET=<your data bucket name>
CHAPTER4_DOMAIN=<your development domain>

Substitute your chosen names for CHAPTER4_BUCKET, CHAPTER4_DATA_BUCKET, and
CHAPTER4_DOMAIN. Refer back to chapters 2 and 3 for full instructions on setting up
a domain.

DEPLOY RESOURCES

First, we will deploy our resources project. To do this, cd into the resources direc-
tory and run

$ npm install
$ serverless deploy

This will create our S3 data bucket for later use. We can confirm creation of the
bucket by using the AWS web console.

Listing 4.11 Environment variables for step 1

We specify the region
eu-west-1 for all examples.

Specify the globally unique
bucket names you have chosen

The value for CHAPTER4_DOMAIN can
be exactly as used for our chapter 2
and 3 deployment, and should refer to
a domain created with AWS Route53.

100 CHAPTER 4 Building and securing a web application the serverless way
DEPLOY TODO-SERVICE

Next we will deploy the to-do service. cd into the todo-service directory and install
dependencies by running

$ npm install

Before deploying, we will need to create a custom domain for our application. Our
configuration for this in serverless.yml is shown in the next listing.

custom:
region: ${env:AWS_DEFAULT_REGION, 'eu-west-1'}
accountid: ${env:AWS_ACCOUNT_ID}
domain: ${env:CHAPTER4_DOMAIN}
customDomain:

domainName: 'chapter4api.${self:custom.domain}'
stage: ${self:provider.stage}
basePath: api
certificateName: '*.${self:custom.domain}'
createRoute53Record: true
endpointType: regional

serverless-offline:
port: 3000

Our domain name for this section will be composed of our setting for
CHAPTER4_DOMAIN and with a subdomain of chapter4api. That is, if we were using
example.com for our variable CHAPTER4_DOMAIN, then the full custom domain for
this chapter would be chapter4api.example.com.

 Let’s go ahead and create this domain

$ serverless create_domain

We can now deploy our to-do API by running

$ serverless deploy

DEPLOY THE FRONT END

Finally, in this section, we need to deploy our front end. First, to install dependencies,
cd into the frontend directory and run

$ npm install

Next we need to create the bucket for our application by running

$ serverless deploy

We can now build the front end with Webpack through our npm scripts section:

$ source ../.env
$ npm run build

Listing 4.12 Custom domain configuration in serverless.yml

This defines the
parent domain.

The subdomain is
composed of the
prefix chapter4api
and the parent
domain.

A wildcard
certificate
is specified.

101Step 2: Securing with Cognito
This will create a file main.js in our dist directory, along with an assets directory
containing some additional images. To deploy the front end we will use the AWS com-
mand line as we did in chapters 2 and 3:

$ cd frontend
$ source ../.env
$ aws s3 sync dist/ s3://$CHAPTER4_BUCKET

This will push the contents of the dist directory into our chapter 4 bucket that we
just created. Note that we need to source the contents of our environment file into
the shell to provide the CHAPTER4_BUCKET environment variable.

TEST IT
If all of the preceding steps went well, we should now have a fully functioning system
deployed to AWS. To test this out, open this URL in a browser

https://<CHAPTER4_BUCKET>.s3-eu-west-1.amazonaws.com/index.html

replacing <CHAPTER4_BUCKET> with your specific bucket name. You should be able
to create and update to-do items through the front end in your browser.

We now have a working to-do system. There’s just one minor problem. The system is
publicly accessible, meaning that any random person on the internet can read and
modify my to-do list. This is clearly not a desirable characteristic for our system, so
we’d better address it quickly. Thankfully, we can use a cloud native service to handle
the work here for us. In the next section we will secure our to-do list with Cognito.

4.5 Step 2: Securing with Cognito
User management is one of those deceptively simple problems, in that it seems like it
should be easy, but usually turns out to be really hard! Many programmers have suf-
fered long into the night rolling their own user authentication and management sys-
tems under the naive assumption that “it can’t be that hard.”

 Fortunately, user login and management is a solved problem, so we never have to
write this type of code again. We can just use a cloud native service to do the work for
us. There are several options available, but for this system we will be using AWS Cog-
nito. Cognito provides a full authentication service for us, including

 Password complexity policy
 Integration with web and mobile applications

Why serve from the bucket?
Some readers may be wondering why are we serving up content directly from the S3
bucket. Why are we not using a CDN such as CloudFront? The answer is that for a
teaching system like this, CloudFront is overkill. We agree that for a full production
system, the S3 bucket should be used as the origin server for a CDN; however, in
development mode, CDN caching and updating will just get in the way.

102 CHAPTER 4 Building and securing a web application the serverless way
 Multiple login strategies
 User management
 Password complexity rules
 Single sign on
 Social login via Facebook, Google, Amazon, and so on
 Security best practices and defense for the latest known security vulnerabilities

This is an awful lot of functionality for a small development effort. So, let’s apply Cog-
nito to our to-do system and secure it from the bad guys!

 Figure 4.11 illustrates the system with Cognito authentication added.

Figure 4.11 Step 2 architecture

Browser

login

Request
Authorization: token

Browser

Amplify
token

Validate token

API Gateway

todo Lambdas

Cognito

Cognito

Synchronous
services

Web application

Asynchronous
services

Communications

AI services

Data services

Utility services

API
Gateway

Frontend
S3

CogogCC nitn oCognito

3. Token is attached to the API request
in the Authorization header

5. Once validated, the request
proceeds as before.

4. Gateway validates
the token against
Cognito

2. User logs in
and a token
is returned

1. Browser redirects
to Cognto login page

S3 bucketDynamoDB

todo

Route 53

103Step 2: Securing with Cognito
We have added the AWS Amplify library to the front end. Amplify is a JavaScript
library that provides authenticated access to various AWS services. For now, we will be
using it just for authentication and access control. The token provided on successful
login is passed to API calls to the API Gateway which, in turn, are handled by the AWS
Lambda handler functions.

As illustrated in figure 4.11, we hand off the job of login to Cognito. Once a user has
authenticated, they are allocated a session token, which is managed by the Amplify
library. We then add an authentication step into our API Gateway setup, requiring that
the user supply a valid JSON Web Token (JWT) before we allow the request to pro-
ceed. Any requests without a valid web token are rejected at this layer.

4.5.1 Getting the code

The code for this step is in the directory chapter4/step-2-cognito-login and
contains the code from step 1 along with the updates for Cognito. We will walk
through the updates in turn first, and then deploy the changes to secure our system.

AWS Amplify
Amplify started life as a JavaScript library providing client-side access to AWS APIs.
The library supports desktop browsers, as well as iOS and Android devices. A recent
addition to the library is the Amplify CLI, which aims to provide a tool chain similar to
the Serverless Framework that we have been using. At the time of writing, the Amplify
tool chain is less mature than the Serverless Framework and lacks the plugin ecosys-
tem support. However, this is definitely one to watch.

Full documentation on Amplify can be found here: https://aws-amplify.github.io/
docs/js/start.

JSON Web Tokens
JSON Web Token (JWT) is an (RFC 7519) standard defining a method for securely
transmitting claims as a JSON object. A JWT is comprised of three parts:

<header>.<payload>.<signature>

 header—Identifies the hash algorithm used by the token.
 payload—Contains a set of claims. A typical claim would be a user ID.
 signature—Is a one-way hash of the header, payload, and a secret using the

algorithm defined in the header.

Typically a JWT will be issued by an authentication server on login and then used by
a client to securely access resources. JWTs are typically short-lived and expire after
a predefined time, forcing the client to periodically re-authenticate to generate a fresh
token.

Detailed information on JWTs can be found here: https://en.wikipedia.org/wiki/
JSON_Web_Token.

https://aws-amplify.github.io/docs/js/start
https://aws-amplify.github.io/docs/js/start
https://en.wikipedia.org/wiki/JSON_Web_Token
https://en.wikipedia.org/wiki/JSON_Web_Token

104 CHAPTER 4 Building and securing a web application the serverless way
4.5.2 User service

First up, there is a new service directory, user-service. This folder just contains the
Serverless configuration for Cognito. There are three files:

 identity-pool.yml
 user-pool.yml
 serverless.yml

Our serverless.yml is short and you should be familiar with most of the boiler-
plate entries at this point. It imports the other two files, which contain Cognito
resources. user-pool.yml, shown in the next listing, configures our Cognito user
pool. A user pool is exactly what it sounds like, a pool of users.

Resources:
CognitoUserPool:

Type: AWS::Cognito::UserPool
Properties:

UserPoolName: ${self:service}${self:provider.stage}userpool
UsernameAttributes:

- email
AutoVerifiedAttributes:

- email
EmailVerificationSubject: 'Your verification code'
EmailVerificationMessage: 'Your verification code is {####}.'
Schema:

- Name: email
AttributeDataType: String
Mutable: true
Required: true

AdminCreateUserConfig:
InviteMessageTemplate:
EmailMessage: 'Your username is {username} and\

temporary password is {####}.'
EmailSubject: 'Your temporary password'

UnusedAccountValidityDays: 2
AllowAdminCreateUserOnly: true

CognitoUserPoolClient:
Type: AWS::Cognito::UserPoolClient
Properties:

ClientName: ${self:service}${self:provider.stage}userpoolclient
GenerateSecret: false
UserPoolId:

Ref: CognitoUserPool

Cognito provides a huge range of options. We are going to keep things simple and
configure it just for email and password login. The code in listing 4.13 creates a user
pool and also a user-pool client. A user pool client provides an integration bridge
between a user pool and external applications. Cognito supports multiple user-pool
clients against a single user pool.

Listing 4.13 Cognito user-pool configuration

User
pool

Client
integration

105Step 2: Securing with Cognito
 To use Cognito for authorized access to AWS resources, we are going to also need an
identity pool. This is configured in identity-pool.yml, shown in the next listing.

Resources:
CognitoIdentityPool:

Type: AWS::Cognito::IdentityPool
Properties:

IdentityPoolName: ${self:service}${self:provider.stage}identitypool
AllowUnauthenticatedIdentities: false
CognitoIdentityProviders:

- ClientId:
Ref: CognitoUserPoolClient

ProviderName:
Fn::GetAtt: ["CognitoUserPool", "ProviderName"]

CognitoIdentityPoolRoles:
Type: AWS::Cognito::IdentityPoolRoleAttachment
Properties:

IdentityPoolId:
Ref: CognitoIdentityPool

Roles:
authenticated:
Fn::GetAtt: [CognitoAuthRole, Arn]

In listing 4.14, we connected the identity pool to our user pool and also to a role,
CognitoAuthRole. The role is also defined in identity-pool.yml. The key part to
understand about this role is contained in the policy statement, shown in the next listing.

Statement:
- Effect: 'Allow'

Action:
- 'cognito-sync:*'
- 'cognito-identity:*'
- 'S3:*'
- 'transcribe:*'
- 'polly:*'
- 'lex:*'

Resource: '*'
- Effect: 'Allow'

Action:
- 'execute-api:Invoke'

Resource:

This policy will be associated with all authenticated users and says that users with this
role can

 Access S3
 Call the Transcribe service

Listing 4.14 Cognito identity-pool configuration

Listing 4.15 Identity-pool policy statements

Define
identity pool

Connect to
user pool

Attach policy to
identity pool

The policy grants all actions for Cognito,
S3, Transcribe, Polly, and Lex.

The policy grants access to
invoke our API Gateway routes.

106 CHAPTER 4 Building and securing a web application the serverless way
 Call the Polly service
 Use the Lex service
 Execute API Gateway functions

Access to any other services will be denied for this role.

TIMEOUT!
OK, if you think all of this talk of user pools and identity pools is a little confusing, we
agree! It can be overwhelming at first, so let’s take some time to explain. The key con-
cept to understand is the difference between authentication and authorization.

 Authentication is the “who.” In other words, can I prove that I am who I say I am?
Usually this is done by proving that I know a secret piece of information—a password.
A user pool deals with authentication.

 Authorization is the “what.” Given that I have proved who I am, what resources am I
allowed to access? Typically this is achieved through some type of permissions model.
For example, in a file system there are user- and group-level access controls that imple-
ment a basic permissions model. The AWS policy that we just created is a permissions
model for our logged-in user. An identity pool deals with authorization.

 Identity pools are also referred to as federated identities. This is because an identity
pool can have multiple sources of identity. This is illustrated in figure 4.12.

Figure 4.12 User and identity pools

User pool

.

.

.

Identity pool

AWS resources

Facebook

Twitter

Google

107Step 2: Securing with Cognito
As illustrated, a user pool can be thought of as one source of validated identities.
Other sources include Facebook, Google, Twitter, and so on. An identity pool can be
configured to use multiple sources of identity. For each validated identity, the identity
pool allows us to configure a policy for authorized access to our AWS resources.

 For this system, we will just use a Cognito user pool as our source of authenticated
users; we won’t enable social logins.

4.5.3 To-do service

Now that we have a source of authenticated users, we need to update our service to
ensure that we have locked it down against unauthorized access. This is very simple to
implement, and requires a small update to our serverless.yml for our to-do ser-
vice, shown in the following listing.

custom:
poolArn: ${env:CHAPTER4_POOL_ARN}

functions:
create:

handler: handler.create
events:

- http:
method: POST
path: todo
cors: true
authorizer:

arn: '${self:custom.poolArn}'
list:

handler: handler.list
events:

- http:
method: GET
path: todo
cors: true
authorizer:

arn: '${self:custom.poolArn}'

We simply declare an authorizer against each endpoint that we wish to secure. We will
also need to update our environment to include the user pool identifier
CHAPTER4_POOL_ARN.

4.5.4 Front-end service

The final set of changes to our front end provides login, logout, and token manage-
ment. We have added AWS Amplify to our front-end package.json as a dependency.
Amplify requires that we supply it with some configuration parameters. This is done in
index.js, shown in the next listing.

Listing 4.16 Changes to to-do serverless.yml

Include user
pool ARN

Declare
authorizer

Declare
authorizer

108 CHAPTER 4 Building and securing a web application the serverless way

const oauth = {
domain: process.env.CHAPTER4_COGNITO_DOMAIN,
scope: ['email'],
redirectSignIn: `https://s3-${process.env.TARGET_REGION}.amazonaws.com/

${process.env.CHAPTER4_BUCKET}/index.html`,
redirectSignOut: `https://s3-${process.env.TARGET_REGION}.amazonaws.com/

${process.env.CHAPTER4_BUCKET}/index.html`,
responseType: 'token'

}

Amplify.configure({
Auth: {

region: process.env.TARGET_REGION,
userPoolId: process.env.CHAPTER4_POOL_ID,
userPoolWebClientId: process.env.CHAPTER4_POOL_CLIENT_ID,
identityPoolId: process.env.CHAPTER4_IDPOOL,
mandatorySignIn: false,
oauth: oauth

}
})

Our configuration is broken into two separate parts. First, we configure OAuth by pro-
viding a domain name and redirect URLs. These must match our Cognito configura-
tion, which we will set up shortly when we deploy these changes. Second, we configure
Amplify with our pool identifiers; we will grab these IDs during deployment and adjust
our environment file accordingly in the next section.

 The login implementation is handled by auth.js and auth-view.js. The code
for auth.js is shown in the following listing.

...
function bindLinks () {

...
$('#login').on('click', e => {

const config = Auth.configure()
const { domain, redirectSignIn, responseType } = config.oauth
const clientId = config.userPoolWebClientId
const url = 'https://' + domain

+ '/login?redirect_uri='
+ redirectSignIn
+ '&response_type='
+ responseType
+ '&client_id='
+ clientId

window.location.assign(url)
})

}

function activate () {

Listing 4.17 Amplify configuration in index.js

Listing 4.18 auth.js

Configure
OAuth flow.

Configure
Amplify.

Redirect to Cognito
login page

109Step 2: Securing with Cognito
return new Promise((resolve, reject) => {
Auth.currentAuthenticatedUser()

.then(user => {
view.renderLink(true)
bindLinks()
resolve(user)

})
.catch(() => {

view.renderLink(false)
bindLinks()
resolve(null)

})
})

}

auth.js hands off most of the work to Amplify. In the activate function, it checks
to see if the user is already logged in, and then calls the view to render either a login or
logout link. It also provides a login handler that redirects to the Cognito login page.

 Finally, in the front end, we need to update our calls to the to-do API to include our
authorization token; otherwise, we will be denied access. This is shown in listing 4.19.

function create (cb) {
auth.session().then(session => {

$.ajax(API_ROOT, {
data: JSON.stringify(gather()),
contentType: 'application/json',
type: 'POST',
headers: {

Authorization: session.idToken.jwtToken
},
success: function (body) {
...
}

})
}).catch(err => view.renderError(err))

}

We have updated each of the functions in to-do.js to include an Authorization
header, which is used to pass the JWT obtained from Cognito to our API.

4.5.5 Deploying step 2

Now that we understand Cognito, let’s get the changes deployed and our application
secured.

DEPLOYING COGNITO POOLS

First, cd into step-2-cognito-login/user-service and deploy the pools by run-
ning

$ serverless deploy

Listing 4.19 Updated create method

Check if
logged in

Render
logout link

Else render
login link

Get the
session.

Supply JWT through an
Authorization header

110 CHAPTER 4 Building and securing a web application the serverless way
This will create a user and identity pool. We will need to supply some additional con-
figuration through the AWS console. Open up a browser, log in to the AWS console,
and go to the Cognito section. Select the option to Manage User Pools and select the
pool chapter4usersdevuserpool. We need to provide a domain name to our user
pool. Select the Domain Name option from the App Integration section, and provide
a new domain name as illustrated in figure 4.13.

Figure 4.13 User and identity pools

For our user pool, we have used the domain name chapter4devfth. You can use any
unique domain name that is available.

 Next we need to configure our OAuth flows. Select the option App Client Settings
and provide settings as illustrated in figure 4.14.

Figure 4.14 OAuth flow configuration

111Step 2: Securing with Cognito

For the login and logout callback URLs, you should provide the URL to your front-
end bucket using the custom domain that we created in step 1. These should be pro-
vided in this form: https://s3-eu-west-1.amazonaws.com/<YOUR BUCKET NAME>/
index.html.

Finally, for the user pool we will need to create an account to log in with. To do this,
select Users and Groups and click on the Create User button. Here, you can use your
email address as the username and pick a temporary password. Enter your email
address in the email field too. There is no need to enter a phone number, so deselect
Mark Phone Number as Verified. The default selection for all other fields can be kept.

UPDATING THE ENVIRONMENT

Now that we have configured our pools, we need to update our .env file. cd into the
chapter4/step-2-cognito-login directory and edit the file .env to match the
following listing.

environment definition for Chapter 4
TARGET_REGION=eu-west-1
CHAPTER4_BUCKET=<your bucket name>
CHAPTER4_DATA_BUCKET=<Your data bucket name>
CHAPTER4_DOMAIN=<your development domain>
CHAPTER4_COGNITO_BASE_DOMAIN=<your cognito domain>
CHAPTER4_COGNITO_DOMAIN=<your cognito domain>.auth.eu-west-

1.amazoncognito.com
CHAPTER4_POOL_ARN=<your user pool ARN>
CHAPTER4_POOL_ID=<your user pool ID>
CHAPTER4_POOL_CLIENT_ID=<your app integration client ID>
CHAPTER4_IDPOOL=<your identity pool ID>

You can find these IDs in the Cognito section of the AWS Management Console. The
user-pool ID is located in the user-pool view, shown in figure 4.15.

Figure 4.15 User pool ID and ARN

OAuth
OAuth is a standard protocol for authentication and authorization which is widely
implemented. A full discussion of the OAuth 2.0 protocol would require an entire book
of its own. In fact, we would refer readers who are interested in this to the Manning
publication, OAuth 2 in Action, by Justin Richer and Antonio Sanso (https://www.man-
ning.com/books/oauth-2-in-action).

More details on the OAuth 2.0 protocol can be found here: https://oauth.net/2/.

Listing 4.20 Updated .env file

The first block of environment variables
is retained from listing 4.11.

The new environment variables reference the
AWS Cognito resources we have created.

https://www.manning.com/books/oauth-2-in-action
https://www.manning.com/books/oauth-2-in-action
https://oauth.net/2/
https://s3-eu-west-1.amazonaws.com/<YOUR BUCKET NAME>/index.html
https://s3-eu-west-1.amazonaws.com/<YOUR BUCKET NAME>/index.html

112 CHAPTER 4 Building and securing a web application the serverless way
The client ID can be located in the App client settings section of the Cognito user-pools
view. This is shown in figure 4.16.

Figure 4.16 Pool client ID

The identity-pool ID can be located in the Federated Identities view. Simply select the iden-
tity pool that has been created and select Edit Identity Pool at the top right. The edit
view is shown in figure 4.17. From here, you can view and copy the identity-pool ID.

Figure 4.17 Identity-pool ID

Note that you may see a warning stating that no unauthenticated role has been speci-
fied. This can be ignored, as all users must be authenticated for our application.

 Once you have located the required values in the AWS Console, populate the .env
file with the relevant values.

UPDATING THE TO-DO API
Now that we have updated our environment, we can deploy the changes to our to-do
service. cd into the step-2-cognito-login/todo-service directory and run

$ npm install
$ serverless deploy

This will push a new version of the API, which will include our Cognito authorizer.

113Summary
UPDATING THE FRONT END

Now that our API is safely secured, we need to update our front end to allow access.
To do this, cd into the step-2-cognito-login/frontend directory and run

$ source ../.env
$ npm install
$ npm run build
$ aws s3 sync dist/ s3://$CHAPTER4_BUCKET

This will build a new version of our application, including the authentication code,
and deploy it to our bucket. If you point a browser at our application, you should see a
blank page and a Login link at the top of the page. Click this link to bring up a Cog-
nito login dialog. Once logged in, the application should function as before.

 Though it takes a little effort to set up Cognito, the benefits far outweigh the costs.
Let’s review what you get with this service:

 User registration
 Secure JWT login
 Integration into the AWS IAM security model
 Password reset
 Federated identities both enterprise and social (such as Facebook, Google,

Twitter…)
 Password policy control

Those of you who have had to deal with these issues before will appreciate the large
overhead that can come with implementing these features, even when using a third-
party library. The key reason for using Cognito is that the responsibility for much of the
work of keeping user accounts secure can be offloaded onto this service. Of course, we
still have to be mindful of the security of our applications; however, it is comforting to
know that the Cognito service is being actively managed and updated for us.

 We covered a lot of ground to get our secured serverless application up and run-
ning. The important point to note about this is that we were able to rapidly deploy our
application in a secure manner with very little work. In the next chapter we will add
some AI services to our to-do list.

Summary
 An end-to-end serverless platform, from client to database, can be defined in

code and deployed using the Serverless Framework.
 A DynamoDB table can be created as part of the resources section of the

serverless.yml file.
 The AWS SDK is used in our Lambda functions to pass data from events to our

database read and write invocations.
 Authentication and authorization are configured with AWS Cognito. We config-

ure a user pool, identity pool, and custom domain along with a policy to protect
specific resources.

114 CHAPTER 4 Building and securing a web application the serverless way
 AWS Amplify is used with Cognito to create a login interface with Cognito.
Amplify is an easy-to-use client SDK from AWS that integrates with Cognito to
enable powerful security features.

 API Gateway CRUD routes can be created to trigger Lambda functions. API
Gateway routes are created through the events we define in the server-
less.yml, linked to the associated Lambda function or handler.

WARNING Chapter 5 continues to build on this system and we provide
instructions on how to remove the deployed resources at the end of chapter
5. If you are not planning on working on chapter 5 for some time, please
ensure that you fully remove all cloud resources deployed in this chapter in
order to avoid additional charges!

Adding AI interfaces
to a web application
In this chapter we will build upon the to-do list application from chapter 4, adding
off-the-shelf AI capability to the system. We will add natural language speech inter-
faces to record and transcribe text and to have the system tell us our daily schedule
from our to-do list. Finally, we will add a conversational interface to the system,
allowing us to interact entirely through a natural language interface. As we will see,
this can be built very rapidly by harnessing cloud AI services to do the heavy lifting.

 If you haven’t worked through chapter 4, you should go back and do so now
before proceeding with this chapter, as we will be building directly on top of the
to-do list application that we deployed at the end of that chapter. If you’re good
with the content from chapter 4, we can dive right in and add our note service. We
will pick up where we left off, starting with step 3.

This chapter covers
 Speaking a note with Transcribe

 Reading back a schedule with Polly

 Adding a chatbot interface with Lex
115

116 CHAPTER 5 Adding AI interfaces to a web application
5.1 Step 3: Adding a speech-to-text interface
Now that we have a basic serverless application deployed and secured, it’s time to add
in some AI features. In this section we are going to add a speech-to-text interface to
allow us to dictate a note into the system rather than typing. We will use AWS Tran-
scribe to do this. As we will see, adding in speech-to-text is actually not too hard for
such an advanced feature.

 Figure 5.1 shows how this feature will be implemented.

Figure 5.1 Step 3 architecture. The AWS Transcribe service is invoked from the note service. The front-end
application uses Amplify to upload the file processed by Transcribe to S3.

Browser

Amplify

Web application

Synchronous
services

Communications

AI services

Data services

Utility services

API
Gateway

API Gateway

Frontend
S3

todo todo

Note service

S3 bucket

S3 bucket

Transcribe

DynamoDB

Transcribe

Route 53 Cognito

Browser

AmplifyAudio

2. Front end uploads
the audio to S3 using
Amplify library

tododotodo

Asynchronous
services

1. Front end records
spoken audio file

4. Note service is polled
and data returned once
transcription is complete

3. Transcribe
converts
audio to text

117Step 3: Adding a speech-to-text interface
The system will use the browser to capture spoken audio and save it to S3 using the
Amplify library. Once the audio file is uploaded, the note service is called. This will
kick off a Transcribe job to convert the audio to text. The client will poll the note ser-
vice periodically to determine when the conversion has been completed. Finally, the
front end will populate the note field with the converted text.

5.1.1 Getting the code

The code for this step is in the directory chapter5/step-3-note-service. This
directory contains all of the code from step 2, along with our audio transcription
changes. As before, we will walk through the updates in turn first, and then deploy the
changes.

5.1.2 Note service

Our note service follows what should by now be a familiar pattern: the code is in the
note-service directory and contains a serverless.yml configuration file along
with the implementation. Most of this is boilerplate: the main difference is that we
configure the service to have access to an S3 data bucket and also access to the Tran-
scribe service. This is in the iamRoleStatements section of our configuration,
shown in the following listing.

provider:
...
iamRoleStatements:

- Effect: Allow
Action:

- s3:PutObject
- s3:GetObject

Resource: "arn:aws:s3:::${self:custom.dataBucket}/*"
- Effect: Allow

Action:
- transcribe:*

Resource: "*"

The note service defines two routes: POST /note and GET /note/{id} to create and
fetch a note respectively. As with the to-do CRUD routes, we are using our Cognito
pool to lock down access to our note APIs, and we are using the same custom domain
structure, just with a different base path of noteapi. Our handler code uses the AWS
SDK to create transcription jobs, shown in the next listing.

const AWS = require('aws-sdk')
var trans = new AWS.TranscribeService()

module.exports.transcribe = (event, context, cb) => {
const body = JSON.parse(event.body)

Listing 5.1 Role statements for note service

Listing 5.2 Note service handler

Data bucket
for audio files

Allow this service to
access transcribe.

Create the transcription
service object.

118 CHAPTER 5 Adding AI interfaces to a web application
const params = {
LanguageCode: body.noteLang,
Media: { MediaFileUri: body.noteUri },
MediaFormat: body.noteFormat,
TranscriptionJobName: body.noteName,
MediaSampleRateHertz: body.noteSampleRate,
Settings: {

ChannelIdentification: false,
MaxSpeakerLabels: 4,
ShowSpeakerLabels: true

}
}

trans.startTranscriptionJob(params, (err, data) => {
respond(err, data, cb)

})
}

As you can see from the listing, the code is fairly simple in that it just calls a single API
to kick the job off, passing in a link to our audio file. The code responds back to the
client with a transcription job ID, which is used in the poll function. Check the code
in detail to see the implementation of poll, which uses the getTranscriptionJob
API to check the status of our running job.

5.1.3 Front-end updates

To provide the transcription functionality, we made a few updates to the front end.
First, we have added some configuration to the Amplify library in index.js. This is
shown in the next listing.

Amplify.configure({
Auth: {

region: process.env.TARGET_REGION,
userPoolId: process.env.CHAPTER4_POOL_ID,
userPoolWebClientId: process.env.CHAPTER4_POOL_CLIENT_ID,
identityPoolId: process.env.CHAPTER4_IDPOOL,
mandatorySignIn: false,
oauth: oauth

},
Storage: {

bucket: process.env.CHAPTER4_DATA_BUCKET,
region: process.env.TARGET_REGION,
identityPoolId: process.env.CHAPTER4_IDPOOL,
level: 'public'

}
})

This configuration tells Amplify to use our data bucket that we set up in step 1.
Because we have already configured Amplify with our Cognito settings, we can access
this bucket from the client once we are logged in.

Listing 5.3 Updated Amplify configuration

Start an asynchronous
transcription job.

Configure the S3 bucket used by
the Amplify storage interface.

119Step 3: Adding a speech-to-text interface
 We have added some code for audio handling in the directory frontend/src/
audio. This uses the browser Media Stream Recording API to record audio into a buf-
fer. We’ll treat this code as a black box for the purpose of this book.

NOTE More information on the Media Stream Recording API can be found
here: http://mng.bz/X0AE.

The main note handling code is in note.js and note-view.js. The view code adds
two buttons to the UI: one to start recording and one to stop recording. These map to
the functions startRecord and stopRecord in note.js. The stopRecord func-
tion is shown in the following listing.

import {Storage} from 'aws-amplify'
...
function stopRecord () {

const noteId = uuid()

view.renderNote('Thinking')
ac.stopRecording()
ac.exportWAV((blob, recordedSampleRate) => {

Storage.put(noteId + '.wav', blob)
.then(result => {

submitNote(noteId, recordedSampleRate)
})
.catch(err => {

console.log(err)
})

ac.close()
})

}

stopRecord uses the Storage object from Amplify to write a WAV (Wave Audio file
format) file directly to S3. It then calls the submitNote function, which calls our note
service API /noteapi/note to kick off the transcription job. The submitNote code
is shown in the next listing.

const API_ROOT = `https://chapter4api.${process.env.CHAPTER4_DOMAIN}
/noteapi/note/`
...
function submitNote (noteId, recordedSampleRate) {

const body = {
noteLang: 'en-US',
noteUri: DATA_BUCKET_ROOT + noteId + '.wav',
noteFormat: 'wav',
noteName: noteId,
noteSampleRate: recordedSampleRate

Listing 5.4 stopRecord function

Listing 5.5 submitNote function

Export recorded
buffer to WAV format

Save WAV file to
S3 using Amplify

Submit the WAV
file for processing.

http://mng.bz/X0AE

120 CHAPTER 5 Adding AI interfaces to a web application
}

auth.session().then(session => {
$.ajax(API_ROOT, {

data: JSON.stringify(body),
contentType: 'application/json',
type: 'POST',
headers: {

Authorization: session.idToken.jwtToken
},
success: function (body) {

if (body.stat === 'ok') {
pollNote(noteId)

} else {
$('#error').html(body.err)

}
}

})
}).catch(err => view.renderError(err))

}

Our poll function calls the note service on the back end to check the transcription job
progress. The poll function code is shown in the following listing.

function pollNote (noteId) {
let count = 0
itv = setInterval(() => {

auth.session().then(session => {
$.ajax(API_ROOT + noteId, {

type: 'GET',
headers: {
Authorization: session.idToken.jwtToken

},
success: function (body) {
if (body.transcribeStatus === 'COMPLETED') {

clearInterval(itv)
view.renderNote(body.results.transcripts[0].transcript)

} else if (body.transcribeStatus === 'FAILED') {
clearInterval(itv)
view.renderNote('FAILED')

} else {
count++
...

}
}

})
}).catch(err => view.renderError(err))

}, 3000)
}

Listing 5.6 note.js pollNote function

Call the
note service.

Enter
polling

Obtain the authenticated
session with Cognito.

Invoke the API to
check the note status.

If the transcription is
complete, render the

transcribed note.

121Step 3: Adding a speech-to-text interface
Once the job is complete, the resulting text will be rendered into the note input field
on the page.

5.1.4 Deploying step 3

Let’s deploy our note functionality. First we will need to set up our environment. To
do this simply copy your .env file from step-2-cognito-login to step-3-note-
service.

 Next we will deploy our new note service. cd into the step-3-note-service/
note-service directory and run

$ npm install
$ serverless deploy

This will create our note service endpoint in API Gateway and install our two Lambda
functions. Next, deploy updates to the front end. cd in to the step-3-note-
service/frontend directory and run

$ source ../.env
$ npm install
$ npm run build
$ aws s3 sync dist/ s3://$CHAPTER4_BUCKET

5.1.5 Testing step 3

Let’s try out our new speech-to-text functionality. Open up the to-do application in a
browser and log in as before. Hit the button to create a new to-do, and put in an
action and a date. You should see two additional buttons as shown in figure 5.2: a
Record button and a Stop button.

Polling
Polling is generally an inefficient way to handle events, and certainly does not scale
up well. Our use of polling here does expose a drawback with AWS Lambda, in that
functions are generally expected to execute for a short period of time. This makes
them unsuitable for applications that may require a long-lived connection. A better
way to receive an update when a job has completed would be to establish a web
socket connection and then push an update down to the browser. This is much more
efficient and will scale well.

There are several better options that could be used here instead of polling, such as

 Using AWS API Gateway with WebSockets—http://mng.bz/yr2e.
 Using a third-party service such as Fanout—https://fanout.io/.

The best approach to use would, of course, depend on the specific system. Descrip-
tion of these methods is outside the scope of this book, which is why we have used
a simple poll-based approach for our note service.

http://mng.bz/yr2e
https://fanout.io/

122 CHAPTER 5 Adding AI interfaces to a web application
Figure 5.2 Record note

Hit the Record button and start talking! Once you’ve finished, hit the Stop button. A
few seconds later, you should see that the note you just dictated is rendered as text
into the note field, allowing you to go ahead and save the new to-do, complete with
transcribed note.

 The time to transcribe audio to text is variable, depending on the current global
number of transcription jobs in progress. At worst, it may take up to 20 to 30 seconds
for the transcription to complete. While a note on a to-do is a way to demonstrate
AWS Transcribe, bear in mind that the API we are using is optimized for batch pro-
cessing and can transcribe large audio files with multiple speakers—for example, a
board meeting or an interview. We will introduce a faster conversational interface in
step 5 later in the chapter. However, we should point out that in a recent update to the
service, AWS Transcribe now supports real-time processing as well as batch mode.

5.2 Step 4: Adding text-to-speech
The next AI feature that we are going to add to our to-do list is the reverse of the note
service. Our schedule service will build a daily schedule from our to-do list and then
read it out to us. We will be using AWS Polly to achieve this. Polly is the AWS speech-to-
text service. We can plug this into our system in a similar manner to our note service,
through the use of an API. Figure 5.3 depicts the architectural structure for the sched-
ule service.

 When a user of our system requests a schedule, a call is made to our schedule ser-
vice that creates a schedule as text and then submits it to Amazon Polly. Polly inter-
prets the text and converts it to audio. The audio file is written to our S3 data bucket,
and once available, we play this back to our user. Again, we would note that this is a
small amount of work for an advanced feature!

123Step 4: Adding text-to-speech
Figure 5.3 Record note

5.2.1 Getting the code

The code for this step is in the directory chapter5/step-4-schedule-service.
This directory contains all of the code from step 3 along with our schedule service. As
before, we will walk through the updates in turn and then deploy the changes.

5.2.2 Schedule service

Our schedule service is similar to the note service, in that it provides two API end-
points using the same domain manager structure as before:

Web application

Synchronous
services

Communications

AI services

Data services

Utility services

API
Gateway

API Gateway

Frontend
S3

todo todo todo

schedule service

S3 bucket

S3 bucket

Transcribe

DynamoDB

Polly

Route 53 Cognito

Browser

Amplify Audio

2. Schedule
service builds
SSML file

todododdoootodo

Asynchronous
services

4. Front end retrieves
the audio file and
plays it back

3. Polly synthesises
audio file and
saves to S3

1. Front end calls
schedule service

Browser

Amplify

124 CHAPTER 5 Adding AI interfaces to a web application
 /schedule/day—Creates a schedule for today and submits a text-to-speech
job to Polly

 /schedule/poll—Checks on the status of the job and returns a reference to
the audio file once completed

This structure is reflected in the serverless.yml configuration, which should be
very familiar at this stage. The implementation for these two endpoints, day and
poll, is in handler.js. First, let’s look at the buildSchedule function used by the
day handler. This is shown in the following listing.

const dynamoDb = new AWS.DynamoDB.DocumentClient()
const polly = new AWS.Polly()
const s3 = new AWS.S3()
const TABLE_NAME = { TableName: process.env.TODO_TABLE }
...
function buildSchedule (date, speakDate, cb) {

let speech = '<s>Your schedule for ' + speakDate + '</s>'
let added = false
const params = TABLE_NAME

dynamoDb.scan(params, (err, data) => {
data.Items.forEach((item) => {

if (item.dueDate === date) {
added = true
speech += '<s>' + item.action + '</s>'
speech += '<s>' + item.note + '</s>'

}
})
if (!added) {

speech += '<s>You have no scheduled actions</s>'
}
const ssml = `<speak><p>${speech}</p></speak>`
cb(err, {ssml: ssml})

})
}

We have seen how the buildSchedule function reads to-do items for a given day and
creates SSML. This is used by the day handler in the schedule service. The code for
this handler is shown in the next listing.

module.exports.day = (event, context, cb) => {
let date = moment().format('MM/DD/YYYY')
let speakDate = moment().format('dddd, MMMM Do YYYY')
buildSchedule(date, speakDate, (err, schedule) => {

if (err) { return respond(err, null, cb) }

Listing 5.7 buildSchedule function in the schedule service day handler

Listing 5.8 day handler for the schedule service

Create the SDK
Polly object.

Get the to-do table
from environment

Define the function to
build an SSML schedule.

Read schedule items from
DynamoDB and create SSML
for items that are due.

125Step 4: Adding text-to-speech
const params = {
OutputFormat: 'mp3',
SampleRate: '8000',
Text: schedule.ssml,
LanguageCode: 'en-GB',
TextType: 'ssml',
VoiceId: 'Joanna',
OutputS3BucketName: process.env.CHAPTER4_DATA_BUCKET,
OutputS3KeyPrefix: 'schedule'

}

polly.startSpeechSynthesisTask(params, (err, data) => {
...
respond(err, result, cb)

})
})

}

The buildSchedule function created a block of SSML to pass to Polly, which will
convert this into an output mp3 file. Our day function sets up a parameter block that
specifies the output format, and the S3 bucket that Polly should place its output into.
The code in the next listing shows the poll handler.

module.exports.poll = (event, context, cb) => {
polly.getSpeechSynthesisTask({TaskId: event.pathParameters.id},

(err, data) => {
// Create result object from data
...
respond(err, result, cb)

})
}

The poll-handler code shows the Lambda function invoking the Polly service to
retrieve the speech synthesis task. This is provided in the API response.

Listing 5.9 poll handler for the schedule service

SSML
Speech Synthesis Markup Language (SSML) is an XML dialect used for text-to-speech
tasks. Whereas Polly can handle plain text, SSML can be used to provide additional
context to speech synthesis tasks. For example, the following SSML uses the whis-
per effect:

<speak>
I want to tell you a secret.
<amazon:effect name="whispered">I am not a real human.</amazon:effect>.
Can you believe it?

</speak>

More detail on SSML can be found here: http://mng.bz/MoW8.

Configure the voice and output
bucket parameters for Polly.

Start the
Polly speech
synthesis task.

Check the status
of the task.

Provide the task
status to the API caller.

http://mng.bz/MoW8

126 CHAPTER 5 Adding AI interfaces to a web application
Once our speech-to-text task had been initiated, we use the poll handler to check on
the status. This calls polly.getSpeechSynthesisTask to determine the status of
the task. Once our task is complete, we use s3.getSignedUrl to generate a tempo-
rary URL to access the resulting mp3 file.

5.2.3 Front-end updates

To access our schedule service, we place a “schedule” button in the applications navi-
gation bar, as illustrated in figure 5.4

Figure 5.4 Updated UI

This is connected to a front end handler in the file frontend/src/schedule.js,
shown in the following listing.

import $ from 'jquery'
import {view} from './schedule-view'
...
const API_ROOT = `https://chapter4api.${process.env.CHAPTER4_DOMAIN}
/schedule/day/`
let itv
let auth

function playSchedule (url) {
let audio = document.createElement('audio')
audio.src = url
audio.play()

}

function pollSchedule (taskId) {
itv = setInterval(() => {

...
$.ajax(API_ROOT + taskId, {

...
playSchedule(body.signedUrl)
...

Listing 5.10 schedule.js

Play the
schedule file.

Poll for
schedule
status.

Pass the signed
URL to the player.

127Step 4: Adding text-to-speech
}, 3000)
}

function buildSchedule (date) {
const body = { date: date }

auth.session().then(session => {
$.ajax(API_ROOT, {

...
pollSchedule(body.taskId)
...

})
}).catch(err => view.renderError(err))

}

Using a temporary signed URL from S3 allows the front-end code to use a standard
audio element to play the schedule without compromising the security of our data
bucket.

5.2.4 Deploying step 4

Deployment of this step should be very familiar by now. First, we need to copy our
environment across from the previous step. Copy the file step-3-note-service/
.env to step-4-schedule-service.

 Next, deploy the schedule service by executing the following commands:

$ cd step-4-schedule-service/schedule-service
$ npm install
$ serverless deploy

Finally, deploy the front end updates as before:

$ cd step-4-schedule-service/frontend
$ source ../.env
$ npm install
$ npm run build
$ aws s3 sync dist/ s3://$CHAPTER4_BUCKET

5.2.5 Testing step 4

Let’s now get our to-do list to read out our schedule for the day. Open the application
in a browser, log in, and then create some to-do entries for today’s date. Once you
have entered one or two items, click the schedule button. This will trigger the sched-
ule service to build and send our schedule to Polly. After a few seconds, the applica-
tion will read out our schedule for us!

 We now have a to-do system that we can talk to, and that can talk back to us. Our
to-dos are stored in a database, and the system is secured through a username and
password. All of this without ever needing to boot up a server or get into the details of
text/speech conversion!

 In our final update to the to-do system, we will add a more conversational interface
to the system by building a chatbot.

Start the
schedule job.

128 CHAPTER 5 Adding AI interfaces to a web application
5.3 Step 5: Adding a conversational chatbot interface
In our final update to the to-do application, we will implement a chatbot. The chatbot
will allow us to interact with the system via a text-based interface or through speech.
We will use Amazon Lex to build our bot. Lex uses the same AI technology as Amazon
Alexa. This means that we can use Lex to create a more natural human interface to
our system. For example, we can ask our application to schedule a to-do for “tomor-
row” or “next Wednesday.” While this is a natural way for a human to express dates, it
is actually very complex for a computer to understand these ambiguous commands.
Of course, by using Lex, we get all of this for free. Figure 5.5 illustrates how our chat-
bot integrates into our system.

Figure 5.5 Updated UI

Web application

Synchronous
services

Communications

AI services

Data services

Utility services

API Gateway

note

schedule service

Transcribe Polly

Cognito

Browser

AmplifyAsynchronous
services

Lex

Lex

LexexLex

1. Frontend uses Amplify library
to interface with chatbot

2. Resultant command
is sent to TODO API
for execution

API
Gateway

Frontend
S3

todo

S3 bucketDynamoDB

Route 53

Browser

Amplify

129Step 5: Adding a conversational chatbot interface
Users can supply commands either through a chat window or by speaking. These com-
mands are sent to our chatbot which is hosted by Lex, and a response is returned. At
the end of the conversation, the bot will have gathered all of the information required
to create or update a to-do item. The front end will then take this information and
post it to the to-do API as before.

 It’s important to note at this point that we do not have to change our underlying
to-do API in order to add a conversational interface to it. This can be layered on top
with minimal disruption to existing code.

5.3.1 Getting the code

The code for this step is in the directory chapter5/step-5-chat-bot. This directory
contains all of the code from step 4 along with code to interface with our chatbot.

5.3.2 Creating the bot

We have created a command-line script to create our todo bot. The code for this is in
the directory chapter5/step-5-chat-bot/bot. The file create.sh uses the AWS
command line to set up the bot, as shown in the following listing.

#!/bin/bash
ROLE_EXISTS=`aws iam get-role \
--role-name AWSServiceRoleForLexBots \
| jq '.Role.RoleName == "AWSServiceRoleForLexBots"'`

if [! $ROLE_EXISTS]
then

aws iam create-service-linked-role --aws-service-name lex.amazonaws.com
fi

aws lex-models put-intent \
--name=CreateTodo \
--cli-input-json=file://create-todo-intent.json

aws lex-models put-intent \
--name=MarkDone \
--cli-input-json=file://mark-done-intent.json

aws lex-models create-intent-version --name=CreateTodo
aws lex-models create-intent-version --name=MarkDone

aws lex-models put-bot --name=todo \
--locale=en-US --no-child-directed \
--cli-input-json=file://todo-bot.json

NOTE The create.sh script uses the jq command, which is a command-line
utility for handling JSON data. If this is not on your development environ-
ment, you will need to install it using your system’s package manager.

Listing 5.11 Chatbot creation script

Create service
role if needed

Define the
CreateTodo intent.

Define the
MarkDone intent.

Define
the bot.

130 CHAPTER 5 Adding AI interfaces to a web application
This script uses some JSON files to define the characteristics of our chatbot. Go ahead
and run the create.sh script. It will take several seconds for our bot to be created;
we can check on progress by running the command

$ aws lex-models get-bot --name=todo --version-or-alias="\$LATEST"

Once the output from this command contains the output "status": "READY", our
bot is good to go. Open the AWS console in a web browser and select Lex from the list
of services. Click on the link to the todo bot.

NOTE You may initially see an error message when first creating the bot of
the form: The role with name AWSServiceRoleForLexBots cannot be
found. This is because Lex creates this service role the first time that a bot is
created in an account.

Figure 5.6 Updated UI

Your console should look like figure 5.6. This might look a little complex to begin
with, but the configuration is really quite straightforward once we understand three
key concepts: intents, utterances, and slots.

INTENTS

An intent is a goal that we want to achieve; for example, “order pizza” or “book
appointment.” Think of an intent as an overall task for the bot, for which it will need
to gather additional data to fulfill. A bot can have multiple intents, but usually these
are related to some central concept. For example, a pizza-ordering bot might have the
intents “order pizza,” “check delivery time,” “cancel order,” “update order,” and so on.

131Step 5: Adding a conversational chatbot interface
 In the case of the todo bot, we have two intents: CreateTodo and MarkDone.

UTTERANCES

An utterance is a phrase that is used to identify an intent. For our CreateTodo intent,
we have defined the utterances Create to-do and New to-do. It is important to
understand that an utterance is not a set of key words that must be provided exactly.
Lex uses several AI techniques to match an utterance to an intent. For example, our
create intent could be identified by any of the following:

 “Initialize to-do”
 “Get a to-do”
 “I’d like a new to-do, please”
 “Make me a to-do”

An utterance provides sample language to Lex, not keywords that need exact match-
ing.

SLOTS

A slot can be thought of as an output variable from a Lex conversation. Lex will use the
conversation to elicit slot information. For our CreateTodo intent, we have defined
two slots: dueDate and action. We have used built-in slot types of AMAZON.DATE and
AMAZON.EventType for these slots. In most cases, the built-in slot types provide
enough context; however, it is possible to define custom slot types as required by the bot.

 Lex will use the slot type as a means to
help understand the response. For exam-
ple, when Lex prompts us for a date, it can
handle most reasonable responses such as

 Tomorrow
 Thursday
 Next Wednesday
 Christmas day
 Labour day 2019
 A month from today

This allows for a flexible conversational
interface via text or speech

TRYING IT OUT

Let’s test out our bot! Click the Build but-
ton on the top right and wait for the build
to complete. Then select the Test Chatbot
link to bring up a message panel on the
right side, and try creating some to-dos. Fig-
ure 5.7 shows a sample session.

 In addition to typing commands to the
bot, you can also use the microphone button Figure 5.7 Updated UI

132 CHAPTER 5 Adding AI interfaces to a web application
to speak voice commands to the bot and have it reply with audio. The key point to
notice is that Lex has extracted structured information from a loosely structured con-
versation. We can then use the extracted, structured data in our code.

5.3.3 Front-end updates

Now that we have a working bot, it’s time to integrate it into our application. Code for
the updated front end is in the directory chapter5/step-5-chat-bot/frontend.
The main bot integration is in src/bot.js. First, let’s look at the activate function
shown in the following listing.

import $ from 'jquery'
import * as LexRuntime from 'aws-sdk/clients/lexruntime'
import moment from 'moment'
import view from 'bot-view'

const bot = {activate}
export {bot}

let ac
let auth
let todo
let lexruntime
let lexUserId = 'chatbot-demo' + Date.now()
let sessionAttributes = {}
let recording = false

...

function activate (authObj, todoObj) {
auth = authObj
todo = todoObj
auth.credentials().then(creds => {

lexruntime = new LexRuntime({region: process.env.TARGET_REGION,
credentials: creds})

$('#chat-input').keypress(function (e) {
if (e.which === 13) {

pushChat()
e.preventDefault()
return false

}
})
bindRecord()

})
}

LexRuntime is the AWS SDK service interface for dealing with the Lex chatbot ser-
vice. It has two methods for sending user input to Lex. One method, postContent,
supports audio and text streams. The simpler method, postText, supports sending

Listing 5.12 bot.js activate function

Import
Lex API

Configure Lex
with region and

credentials

Get typed
input.

Invoke pushChat
with the entered text.

133Step 5: Adding a conversational chatbot interface
user input as text only. In this application, we will use postText. The next listing
shows the code for passing the entered text captured in the front end to Lex.

function pushChat () {
var chatInput = document.getElementById('chat-input')

if (chatInput && chatInput.value && chatInput.value.trim().length > 0) {
var input = chatInput.value.trim()
chatInput.value = '...'
chatInput.locked = true

var params = {
botAlias: '$LATEST',
botName: 'todo',
inputText: input,
userId: lexUserId,
sessionAttributes: sessionAttributes

}

view.showRequest(input)
lexruntime.postText(params, function (err, data) {

if (err) {
console.log(err, err.stack)
view.showError('Error: ' + err.message + ' (see console for details)

')
}
if (data) {

sessionAttributes = data.sessionAttributes
if (data.dialogState === 'ReadyForFulfillment') {
todo.createTodo({

id: '',
note: '',
dueDate: moment(data.slots.dueDate).format('MM/DD/YYYY'),
action: data.slots.action,
stat: 'open'

}, function () {})
}
view.showResponse(data)

}
chatInput.value = ''
chatInput.locked = false

})
}
return false

}

bot.js, along with some display functions in bot-view.js, implements a simple
text-messaging interface to our bot through the API postText. This sends our user’s
text input to Lex and elicits a response. Lex will set the response data dialogState
to ReadyForFulfillment once our two slots, dueDate and action, have been

Listing 5.13 bot.js pushChat function

Configure
parameters

Send text
to bot

Create
new to-do

134 CHAPTER 5 Adding AI interfaces to a web application
populated. At this point, we can then read the slot data from the Lex response, create
a JSON structure for our to-do item, and post it to our to-do API.

 There is also a function pushVoice that we have wired into the browser audio sys-
tem. This works in a similar manner to the pushChat function, except that it will push
audio to the bot. In the case that we push audio (i.e. a spoken command) to the bot, it
will respond with text as before, but will also include an audio response in the field
audioStream that is attached to the response data object. The function play-
Response takes this audio stream and simply plays it back, allowing us to have a voice-
activated conversation with the bot.

5.3.4 Deploying step 5

As we have already deployed our bot, we only need to update the front end. As before,
copy the .env file from step 4 into the step 5 directory and run the commands in the
following listing to deploy a new version.

$ cd step-5-chat-bot/frontend
$ source ../.env
$ npm install
$ npm run build)
$ aws s3 sync dist/ s3://$CHAPTER4_BUCKET

The updated front end has now been deployed.

5.3.5 Testing step 5

Open up a browser and load up the latest changes. After logging in, you should see
the chatbot interface on the right side of the page, as in figure 5.8.

Figure 5.8 Updated UI

Listing 5.14 Deploy commands to update the front end

Install
dependencies Create a production build

of the front-end static assets.

Copy the static site
to the S3 bucket.

135Summary
You should now be able to go ahead and interact with the bot in the context of the
to-do application. Once the conversation is complete, a new to-do item will be created
in the to-do list!

 Though we wrote a bunch of code to achieve this, the code was fairly simple to
implement. Most of the time we were really just calling external APIs, a job that is
familiar to most working programmers. By calling these APIs, we were able to add
advanced AI functionality to our to-do list without needing to understand any of the
science of natural language processing or speech-to-text translation.

 Voice and chatbot interfaces are becoming increasingly common, particularly with
mobile applications. Some great use cases that we have come across recently include

 Web-integrated first line customer support and sales inquiries
 Personal assistants for meeting schedules
 Travel assistance to help with booking flights and hotels
 Personal shopping assistants for e-commerce sites
 Healthcare and motivational bots to promote lifestyle changes

Hopefully this chapter will have inspired you to apply this technology to your own
work!

5.4 Removing the system
Once you are done with testing the system, it should be removed entirely in order to
avoid incurring additional charges. This can be done manually with the serverless
remove command. We have also provided a script to remove all of the deployed
resources in chapters 4 and 5 in the chapter5/step-5-chat-bot directory. There
is also a separate remove.sh script in the bot subdirectory. To use these scripts, exe-
cute the following commands:

$ cd chapter5/step-5-chat-bot
$ bash ./remove.sh
$ cd bot
$ bash ./remove.sh

If you would like to redeploy the system at any time, there is an associated script called
deploy.sh in the same folder. This will redeploy the entire system for you by auto-
mating the steps that we worked through in chapter 4 and this chapter.

Summary
 AWS Transcribe is used to convert speech to text. Transcribe allows us to specify

a file, a file format, and language parameters, and start a transcription job.
 Use AWS Amplify to upload data to an S3 bucket. We can save audio captured

from the browser to a WAV file by using the Amplify Storage interface.
 Speech Synthesis Markup Language (SSML) is used to define conversational

speech.

136 CHAPTER 5 Adding AI interfaces to a web application
 AWS Polly converts text to speech.
 AWS Lex is used to create powerful chatbots.
 Lex utterances, intents, and slots are the components used to construct Lex

chatbots.

WARNING Please ensure that you fully remove all cloud resources deployed in
this chapter in order to avoid additional charges!

How to be effective with
AI as a Service
So far, we have built some very compelling AI-based serverless applications. With
very little code, these systems have an extraordinary amount of capability. You
might have observed, however, that our serverless AI applications have many mov-
ing parts. We have adhered to the single responsibility principle, ensuring that
each application is composed of many small units, each with a dedicated purpose.
This chapter is about effective AI as a Service. By this, we mean that we move beyond
simple application prototypes to production-grade applications that are capable of
serving real users. For this, we need to think not just about how to get the basics
working, but also about when things might stop working.

This chapter covers
 Structuring a serverless project for rapid and effective

development

 Building a serverless continuous deployment pipeline

 Achieving observability with centralized, structured logs

 Monitoring serverless project metrics in production

 Understanding application behavior through distributed
tracing
137

138 CHAPTER 6 How to be effective with AI as a Service
 We have been clear about the advantages of small units of code and off-the-shelf,
managed services. Let’s take a step back and think about the pros and cons of this
approach from the perspective of architects and developers moving from more tradi-
tional software development.

 We will outline how the primary challenges relate to structuring, monitoring, and
deploying your application in ways that ensure you continue to deliver quickly without
compromising on quality and reliability. This includes having a clear project layout, a
working continuous delivery pipeline, and the ability to quickly gain insight into the
application’s behavior when things go wrong.

 This chapter will present practical solutions for overcoming each challenge and
help you to establish effective serverless development practices.

6.1 Addressing the new challenges of Serverless
Given our success with deploying great serverless AI applications so far in this book,
it’s easy to be deceived and think it will always be smooth sailing! As with any way of
developing software, there are drawbacks and pitfalls to be aware of. Often, you don’t
encounter these until you have built and brought systems into production. To help
you foresee potential issues and solve problems in advance, we will list the benefits
and challenges of serverless development. Then, we will present a template project
that you can use as a basis for your own private projects. The aim is to save you the
time and frustration that might be spent stumbling over these issues as they arise.

6.1.1 Benefits and challenges of Serverless

Table 6.1 lists the primary benefits and challenges of developing serverless applica-
tions using managed AI services.

Table 6.1 The benefits and challenges of Serverless

Benefits Challenges

On-demand computing allows you to get started and
scale quickly with no infrastructure to manage.

You rely on the cloud vendor’s environment to
accurately run your code.

Smaller units of deployment allow you to adhere to a
single-responsibility principle. These units are fast
to develop and relatively easy to maintain, since
they have a clear purpose and interface. The teams
maintaining such components do not have to con-
sider the subtle details of the rest of the system.

There is a significant learning curve to becoming
truly serverless. It takes time to understand
effective serverless architecture, learn the avail-
able managed services, and establish an effec-
tive project structure.

Managed services for computation, communication,
storage, and machine learning give you a huge leap
in capability with minimal design and programming
effort. At the same time, you are relieved of the
maintenance and infrastructure burden you would
have if you had to build this capability in your own
organization.

The distributed and fragmented nature of a
serverless-microservice architecture makes it
harder to visualize or reason about the behavior
of the system as a whole.

139Addressing the new challenges of Serverless
These challenges and benefits are presented to give a clear and honest picture of the
reality of serverless software in production. Now that you are aware of the pitfalls as
well as the potential gains, we are ready to discuss how to avoid the pitfalls and maxi-
mise the effectiveness of your projects. We will do this with the help of a reference
project that comes with many solutions to these problems out of the box.

6.1.2 A production-grade serverless template

The authors of this book have spent plenty of time building serverless applications
and experiencing all the benefits and challenges. As a result, we have built up a set of
best practices. We decided to put all of those practices into a template that we can use
to start new serverless projects extremely rapidly. We also made the decision to open
source this project and make it available to anyone building production-grade server-
less applications. It is intended as a learning resource, and allows us to gather ideas
and feedback from a much wider community.

 The project, called SLIC Starter, is free to use and open to contributions. SLIC
stands for Serverless, Lean, Intelligent, and Continuous. You can find it on GitHub at
https://github.com/fourTheorem/slic-starter. Creating production-ready serverless
applications from scratch can be daunting. There are many choices and decisions to

In serverless systems, you pay only for what you
use, eliminating waste and allowing you to scale
in line with business success.

Though serverless reduces the number of sys-
tems you need to consider in your security
responsibility, it is quite different from a tradi-
tional approach. For instance, a malicious attack
gaining access to an AWS Lambda execution
environment using an over-privileged IAM policy
might allow the attacker to access your resources
and data as well as consume potentially unlim-
ited AWS resources, like more Lambda execu-
tions, EC2 instances, or databases. It could incur
a significant bill from your cloud vendor.

A serverless approach allows you to select multiple
managed database services, ensuring the right tool
for any job. This “polyglot persistence” is quite dif-
ferent from past experiences of trying to pick one
database for the majority of cases, resulting
in a heavy maintenance burden and a poor fit for
some data access requirements.

Dealing with multiple databases can be a chal-
lenge when your team is required to have the
skills and understanding to use them correctly.
Though it is easy to get started with something
like DynamoDB, managing changes and ensuring
optimal performance is a new skill that must be
acquired through study and experience.

Serverless projects are cheap to create, so they can
be recreated many times for different environments.

Dynamically-created cloud resources are typically
given generated names. Allowing services to be
discovered by other components is something
that must be addressed to ensure the right bal-
ance of loose coupling, service availability, and
ease of deployment.

Table 6.1 The benefits and challenges of Serverless

Benefits Challenges

https://github.com/fourTheorem/slic-starter

140 CHAPTER 6 How to be effective with AI as a Service
be made. SLIC Starter is intended to answer 80% of those questions so we can start
building meaningful business functionality as quickly as possible. The areas where
decisions need to be made are shown in figure 6.1.

Figure 6.1 Aspects of a serverless project requiring decision-making. SLIC Starter
aims to provide a template for each of these topics so adopters are freed up and get
to production faster.

SLIC Starter is a template that can be applied to any application within any industry. It
comes with a sample application for managing checklists. The application, called SLIC
Lists, is deliberately simple, but has enough requirements to allow us to apply many
serverless best practices. Once you have become familiar with SLIC Starter, you can
replace the SLIC Lists application with the features for your own application. The
sample SLIC Lists application has the following capabilities:

 Users can sign up and log in.
 Users can create, edit, and delete checklists.
 Users can create entries in the checklist and mark them as done.
 Any checklist can be shared with another user by providing their email address.

The recipient must accept the invitation and log in or create an account to view
and edit the list.

 When a user creates a checklist, they are sent a “welcome email” to notify them
that they have created the list.

The components of our system are shown in figure 6.2. The primary components or
services shown are as follows:

 The checklist service is responsible for storing and retrieving lists and their
entries. It is backed by a database and provides a public API to authorized users.

User
accounts

Data
access

SecurityCI/CDArchitecture
Project

structure

Local
developmentMonitoringLogging

Service
discovery

HTTPS
certificatesDomains

E2E Ul
testing

Integration
testing

EventsFront end

141Addressing the new challenges of Serverless
Figure 6.2 SLIC Starter services for the SLIC Lists application. The application is composed of five back-
end services. There is also a front-end component as well as additional services to deal with certificates
and domains.

 The email service is responsible for sending emails. Emails are passed to this ser-
vice through an inbound queue.

 The user service manages users and accounts. It also provides an internal API for
access to user data.

 The welcome service sends welcome notification messages to users when they cre-
ate a checklist.

 The sharing service handles invitations to share lists with new collaborators.
 The front end handles the front-end web application build, deployment, and dis-

tribution. It is linked by configuration to the public, back-end services.

In addition, we have supporting services for certificate deployment and creating a
public-facing API domain.

 What this application does is unlikely to be relevant to your application, but how
this application is built should be very relevant. Figure 6.1 already illustrated the foun-
dational considerations that you will eventually need to consider as you build a
mature, production-grade software application. The checklist application provides a
template for each of these considerations, and acts as a learning resource, helping you

Email
services

User
services

Welcome
services

Checklist
services

Sharing
services

Event bus

Email
queue

Front end

Checklists

142 CHAPTER 6 How to be effective with AI as a Service
to address the challenges without taking too much time to stop and perform research
into all possible solutions. The first consideration we start with is how you structure
the project codebase and repository.

6.2 Establishing a project structure
It’s a good idea to establish clear practices for project and source repository structure
before the project scales quickly. If you don’t do this, it becomes confusing for team
members to make changes and add new features, particularly when new team mem-
bers join a project. There are many options here, but we want to optimize for rapid,
efficient development in a collaborative environment where many developers are
working together to build, deploy, and run new features and modifications.

6.2.1 The source repository—monorepo or polyrepo

The way you organise your teams' code seems like a trivial topic. But as we have discov-
ered after many projects, simple decisions on how this is done have a big impact on
how quickly you can make changes and get them released, and how well developers
can communicate and collaborate. A big part of this is whether you go for polyrepo or
monorepo. A polyrepo is when multiple source control repositories are used for each
service, component, or module within an application. In a microservices project with
multiple front ends (web, mobile, and so on), this can result in hundreds or thou-
sands of repositories. A monorepo is when all services and front end codebases are kept
in a single repository.

 Google, Facebook, and Twitter are well known for using a monorepo at ridicu-
lously large scale. Of course, it’s never a good idea to go with an approach just because
Google/Facebook/Twitter said so. Instead, as with everything, measure how this
impacts you and make the decision that works well for your organization. Figure 6.3
illustrates the difference between the two approaches.

Figure 6.3 Monorepo versus polyrepo. A monorepo includes multiple services,
supporting libraries, and Infrastructure as Code (IaC) in one repository.
A polyrepo favours a separate repository for each individual component.

143Establishing a project structure
The polyrepo approach has certain benefits. For example, each module can be sepa-
rately versioned and can have fine-grained access control. However, in our experi-
ence, too much time is spent managing the coordination across multiple repositories.
The overhead can quickly get out of hand as you add more services, libraries, and
dependencies. Often, polyrepos must be managed with custom tooling to manage
cross-repository dependencies. A new developer should be able to start working on
your product as quickly as possible. Avoid unnecessary ceremony and any learning
curve that is unique to your team or company.

 With a monorepo, when a bug fix or feature affects multiple modules/microser-
vices, all changes are made in the same repository. There is just one branch on a sin-
gle repository. No more tracking across multiple repositories. Each feature gets a
single pull request. There is no risk that the feature is going to be partially merged.

 By sticking with a single repository, your external tests (end-to-end or API tests)
also belong with the code under test. The same goes for Infrastructure as Code. Any
changes required in your infrastructure are captured together with the application
code. If you have common code, utilities, and libraries that are consumed by your
microservices, keeping them in the same repository makes it quite easy to share.

6.2.2 Project folder structure

The SLIC Starter repository follows the monorepo approach. The application is laid
out in a similar way to many of the applications we have already described in this
book. Each service has its own folder containing a serverless.yml. The project
folder structure in the SLIC Starter monorepo repository is shown in the next listing.

 certs/ Hosted zone and HTTPS Certificates (ACM)
 api-service/ API Gateway custom domain
 checklist-service/ API Gateway for checklists, DynamoDB
 welcome-service/ Event handler to send emails on checklist creation
 sharing-service/ API Gateway list sharing invitations
 email-service/ SQS, SES for email sending
 user-service/ Internal API Gateway and Cognito for user accounts
 frontend/ S3, CloudFront, ACM for front-end distribution
 cicd/ Dynamic pipelines and cross account roles
 e2e-tests/ End-to-end tests using TestCafe
 integration-tests/ API tests

6.2.3 Get the code

To explore this repository with its project structure and to prepare for the rest of this
chapter, fetch the code from the SLIC Starter GitHub repository. If you want to build
and deploy the application automatically later in the chapter, you will need this code
to be in a repository you control. To achieve this, fork the SLIC Starter repository
(https://github.com/fourTheorem/slic-starter) before cloning it:

$ git clone https://github.com/<your_user_or_organization>/slic-starter.git

Listing 6.1 SLIC Starter project structure

https://github.com/fourTheorem/slic-starter

144 CHAPTER 6 How to be effective with AI as a Service
You should now have a solid understanding of what it means to have an effective project
structure. You also have access to a template project that exemplifies this structure. Our
next consideration deals with automating deployment of the project components.

6.3 Continuous deployment
So far, all of our serverless applications have been deployed manually. We have relied
on the Serverless Framework’s serverless deploy command to deploy each service
into a specific target environment. This is fine for early development and prototyping,
especially when our applications are small. But when real users depend on our appli-
cations and feature development is expected to be frequent and rapid, manual
deployment is far too slow and error-prone.

 Can you imagine manual deployment of your application when it is composed of
hundreds of independently-deployable components? Real-world serverless applica-
tions are, by their nature, complex distributed systems. You can’t and shouldn’t rely
on having a clear mental model of how they all fit together. Instead, you rely on the
power of automation for deployment and testing.

 Effective serverless applications require continuous deployment. Continuous deploy-
ment means that changes in our source code repository are automatically delivered to
target production environments. When continuous deployment is triggered, any com-
ponents affected by a code change are built and tested. There is also a system in place
for integration testing our changed components as part of the entire system. A proper
continuous deployment solution gives us confidence to make changes quickly. The
principles of continuous deployment are equally valid for the deployment of data sets
and machine learning models.

 Let’s look at the design of a serverless continuous deployment system from a high
level.

6.3.1 Continuous deployment design

We have already discussed how our approach for serverless applications favors source
code stored in a monorepo. This has an impact on how the continuous deployment
process is triggered. If each module or service were stored in its own individual repos-
itory, changes to that repository could trigger that service’s build. The challenge
would then become how to coordinate builds across multiple repositories. For the
monorepo approach, we want to avoid building everything when a small number of
commits have been made, affecting one or two modules. Take a look at the high-level
continuous deployment flow illustrated in figure 6.4.

 The phases of the deployment pipeline are as follows:

1 A change-detection job determines which modules are affected by source code
commits.

2 The pipeline then triggers parallel builds of each module. These build jobs will
also run unit tests for the relevant modules.

145Continuous deployment
Figure 6.4 Our monorepo approach requires us to detect which modules have changed before triggering
parallel build and unit test jobs for each affected module. Once that is successful, modules are deployed
to a staging environment where integration tests can be run. Successful test execution triggers a
deployment to production.

3 When all builds are successful, the modules are deployed to the staging envi-
ronment. The staging environment is a replica of the production environment,
not exposed to real users.

4 We run a set of automated, end-to-end tests that give confidence that the new
changes do not break basic features in the system under predictable test

Deploy
module

to
production

Deploy
module

to
production

Run E2E/
integration

tests

Deploy
module to

staging

Deploy
module to

staging

Build
module and

run unit
tests

Build
module and

run unit
tests

Detect
changed
modules

Source
code

monorepo

6. Once all tests have passed,
the changed modules are
deployed to the production
environment.

5. API and Ul-based
automated tests are
executed against the
full staging environment.

4. The serverless package
is deployed to the
staging (test)
environment. This could
be in the same AWS
account or a decicated
staging account.

1. Commits to the application repository
trigger a change detection script. This
prevents a rebuild of every module each time.

3. The module build
includes installation
of tools and module
dependencies. After
that, unit tests are
executed. If any test
fails, the pipeline is
terminated.

2. For every module
which has changed, a
build and deployment
pipeline is triggered.
These module pipelines
run in parallel.

146 CHAPTER 6 How to be effective with AI as a Service
conditions. Of course, breaking changes under less-predictable production
conditions are always possible, and you should prepare for that.

5 If all tests are successful, the new modules are deployed to production.

In our pipeline, we assume two target environments—a staging environment for test-
ing new changes before they go live, and a production environment for our end users.
The staging environment is entirely optional. In fact, it is ideal to get changes into
production as soon as possible and have effective measures in place to mitigate the
risk. Such measures include the ability to roll back quickly, deployment patterns like
blue/green or canary,1 and good observability practices. Observability is covered later
in this chapter.

 Now that we have an understanding of the continuous deployment flow, let’s
examine how we can implement it using managed cloud build services that are them-
selves serverless!

6.3.2 Implementing continuous deployment with AWS services

There are many great options for hosting your continuous build and deployment
environment. These include everything from the immortal Jenkins, to SaaS offerings
such as CircleCI (https://circleci.com) and GitHub Actions (https://github.com/
features/actions). The choice depends on what is most efficient for you and your
team. For this chapter, we will use AWS build services in keeping with the theme of
picking cloud-managed services. The neat advantage of this approach is that we will
be using the same Infrastructure-as-Code approach as our application itself. The con-
tinuous deployment pipeline will be built using CloudFormation and reside in the
same monorepo as the other services in SLIC Starter.

MULTI-ACCOUNT AND SINGLE-ACCOUNT DEPLOYMENT

SLIC Starter supports multi-account deployment out of the box. This allows us to use
separate AWS accounts for our staging and production environments, affording us
increased isolation and security. We can also use a separate “tooling” account where
the continuous deployment pipeline and artifacts will reside. This approach takes
time to set up, and creating multiple accounts may not be feasible for many users. For
these reasons, a single-account deployment is also possible. This is the option we will
present in this chapter.

BUILDING THE CONTINUOUS DEPLOYMENT PIPELINE

The AWS services we will use for the pipeline are AWS CodeBuild and AWS CodePipe-
line. CodeBuild allows us to perform build steps like install, compile, and test. A build
artifact is usually produced as its output. CodePipeline allows us to combine multiple
actions together into stages. Actions can include source fetching, CodeBuild

1 For more on these and other deployment strategies, see “Six Strategies for Application Deployment,” an arti-
cle by Etienne Tremel, 21 November 2017, thenewstack.io, https://thenewstack.io/deployment-strategies/.

https://thenewstack.io/deployment-strategies/
https://circleci.com
https://github.com/features/actions
https://github.com/features/actions

147Continuous deployment
executions, deployment, and manual approval steps. Actions can be run in sequence or
in parallel.

 On each commit or merge to the master branch of our repository, we will build
and deploy affected modules in parallel. To accomplish this, we will create a separate
pipeline per module. These pipelines will be executed and monitored by a single,
overall orchestrator pipeline. This can all be seen in figure 6.5.

Figure 6.5 The canonical serverless CI/CD architecture is part of SLIC Starter. It uses a CodePipeline pipeline for
each module. The execution of these pipelines in parallel is coordinated by an orchestrator pipeline. The build,
deployment, and test phases are implemented as CodeBuild projects.

Run service
pipelines:

Production

Approve?

Service
artifacts

Package for
target env

Install
dependencies

Pipeline
Artifacts

CodeBuild

Monorepo
Commit / PR Merge

Service
Pipeline

Deploy [services]

Detect
changed
services

Service
Pipeline

Pipeline per service per environment

STAGING

CICD

PRODUCTION

Unit tests

Deploy to
target env

Yes

Run E2E
tests

Run service
pipelines:
Staging

Orchestrator
pipeline

148 CHAPTER 6 How to be effective with AI as a Service
Since we are using AWS services for the build pipeline, we will deploy using CloudFor-
mation stacks, just as with our serverless applications. So far, we have used the Server-
less Framework to construct these stacks. For the deployment stacks, we will use the
AWS Cloud Development Kit (CDK) instead.

 CDK provides a programmatic way to construct CloudFormation templates. There
are pros and cons to using standard programming languages for Infrastructure as
Code. We prefer it, as it mirrors how we build the application itself but, for many peo-
ple, infrastructure is better defined using a configuration language like JSON or
YAML. In this case, it allows us to dynamically create projects and pipelines rather
than rely on a static configuration. As we add new modules to the application, CDK
will generate new resources automatically. CDK supports JavaScript, Python, Java, and
TypeScript. We are using TypeScript, a superset of JavaScript that gives us type safety.
Type safety is a powerful aid when creating resources with complex configuration syn-
tax. It allows us to leverage auto-completion and get immediate documentation hints.
Detailed coverage of CDK and TypeScript are beyond the scope of this book. If you
are interested in exploring how the pipelines are built, explore the CDK TypeScript
code in the cicd folder. We will jump straight in and deploy our CI/CD pipelines!

 The latest documentation on deploying and running the CI/CD pipeline is in the
QUICK_START.md document in the SLIC Starter repository. Once you have run all of
the steps, your pipeline is ready. Every commit to the repository will trigger the source
CodeBuild project and result in execution of the orchestrator pipeline. Figure 6.6
shows how this pipeline looks in the AWS CodePipeline Console.

 Here, we can clearly see the steps of the pipeline that have run. The current execu-
tion is in the “Approval” stage. This is a special stage that requires the user to review
and click Approve in order to advance the pipeline. This gives us the chance to check
and cancel any production deployment. The execution shown has successfully
deployed to staging, and our test jobs have completed successfully. In the SLIC Starter,
automated API integration tests and user interface end-to-end (E2E) tests are run in
parallel against the public API and front end.

 Once our system has been deployed to production, we need to understand what’s
going on there. When things go wrong, we need to be able to troubleshoot and answer
many questions about the state of the application. This brings us to observability, argu-
ably the most important part of an effective production serverless deployment!

6.4 Observability and monitoring
At the start of this chapter, one of the challenges we described was the fragmented
nature of serverless systems. This is a common problem with distributed systems com-
posed of many small parts. It can lead to a lack of understanding of the running behav-
ior of the system, making it difficult to solve problems and make changes. The problem
has become better-understood as microservice architecture is more widely adopted.
With serverless applications utilizing third-party managed services, the problem is
especially prevalent. These managed services are, to some degree, black boxes.

149Observability and monitoring

Figure 6.6 The canonical serverless CI/CD architecture is part of SLIC Starter. It uses a CodePipeline
pipeline for each module. The execution of these pipelines in parallel is coordinated by an orchestrator
pipeline. The build, deployment, and test phases are implemented as CodeBuild projects.

150 CHAPTER 6 How to be effective with AI as a Service
How much we can understand them depends on the interfaces those services provide
to report their status. The degree to which systems report their status is called
observability. This term is increasingly being used instead of the traditional term,
monitoring.

There are many approaches to achieving observability. For our checklist application,
we are going to look at what we want to observe and how to achieve that using AWS-
managed services. We will look at four practical areas of observability:

 Structured, centralized logging
 Service and application metrics
 Alarms to alert us when abnormal or erroneous conditions occur
 Traces to give us visibility into the flow of messages throughout the system

6.5 Logs
Logs can be collected from many AWS services. With AWS CloudTrail, it’s even possi-
ble to collect logs pertaining to resource changes made through the AWS SDK or
Management Console. Here, we will focus on our application logs, those created by
our Lambda functions. Our goal is to create log entries for meaningful events in our
application, including information logs, warnings, and errors. Current trends lead us

Monitoring versus observability
Monitoring typically refers to the use of tools to inspect known metrics of a system.
Monitoring should allow you to detect when problems happen and to infer some
knowledge of the system. If a system does not emit the right outputs, the effect of
monitoring is limited.

Observability,a a term from control theory, is the property of a system that allows you
to understand what’s going on inside by looking at its outputs. The goal of observabil-
ity is to be able to understand any given problem by inspecting its outputs. For exam-
ple, if we have to change a system and redeploy it in order to understand what’s going
on, the system is lacking in observability.

One way to think about the difference between these two terms is that monitoring
allows you to detect when known problems occur, and observability aims to provide
understanding when unknown problems occur.

As an example, let us suppose that your application has a well-tested, working sign-
up feature. One day, users complain that they are unable to complete sign-ups. By
looking at a visual map of the system, you determine that errors in the sign-up module
result from failures in sending sign-up confirmation emails. By looking further into the
errors in the email service, you notice that an email sending limit has been reached,
preventing the emails from being sent. The visual map of dependencies between
modules and errors led you to the email service logs, which gives the root cause
details. These observability features helped to resolve an unexpected problem.

a Introduction to Observability, honeycomb.io, http://mng.bz/aw4X.

http://mng.bz/aw4X

151Logs
to a structured logging approach, and with good reason. Unstructured, plain text logs
can be difficult to search through. They are also difficult for log analysis tools to parse.
Structured, JSON-based logs can be parsed, filtered, and searched easily. Structured
logs can be considered operational data for your application.

 In a traditional, non-serverless environment, logs were often collected in files or
using a log agent. With Lambda, those aren’t really options, so the approach becomes
much simpler. Any console output (to standard output or standard error) from our
Lambda functions appears as logging output. AWS Lambda automatically collects this
output and stores it in CloudWatch logs. These logs are stored in a log group named
according to the Lambda function name. For example, if our Lambda function is
called checklist-service-dev-get, its logs will be collected in a CloudWatch log
group named /aws/lambda/checklist-service-dev-get.

There are many third-party options for storing centralized logs, including the popular
combination of Elasticsearch, Logstash, and Kibana, commonly referred to as the ELK
Stack. An ELK solution is tried and tested and very powerful in its ability to execute
complex queries and generate visualizations of log data. For simplicity, and also
because it is an adequate solution for many applications, we will retain logs in Cloud-
Watch and use CloudWatch Logs Insights to view and query them. Setting it up
requires a lot less work than an Elasticsearch-based solution. First, let’s deal with how
we generate structured logs.

CloudWatch log concepts
CloudWatch logs are organized into log groups. A log group is a grouping of related
logs, typically relating to a specific service. Within each log group is a set of log
streams. A stream is a set of logs from the same source. For Lambda functions, each
provisioned container has a single log stream. A log stream is made up of a series
of log events. A log event is simply a record logged to the stream and associated with
a timestamp.

Logs can be stored in CloudWatch logs for inspection using the APIs or the AWS Man-
agement Console. Log groups can be configured with a retention period to govern how
long they are persisted. By default, logs are kept forever. This is usually not the right
choice, since log storage in CloudWatch is significantly more expensive than archiving
or deleting them.

Logs can be forwarded to other services using a subscription filter. One subscription
filter may be set per log group, allowing a filter pattern and destination to be set. The
filter pattern can be optionally used to extract only messages that match a string. The
destination can be any of the following:

 A Lambda function.
 A Kinesis data stream.
 A Kinesis Data Firehose delivery stream. A delivery stream can be used to

collect logs in S3, Elasticsearch, or Splunk.

152 CHAPTER 6 How to be effective with AI as a Service

gs.

g

6.5.1 Writing structured logs

When choosing how to write logs, the goals should be to make it as easy as possible for
developers and to minimize the performance impact on the application. In Node.js
applications, the Pino logger (https://getpino.io) fits the bill perfectly. Other options
include Bunyan (https://www.npmjs.com/package/bunyan) and Winston (https://
www.npmjs.com/package/winston). We use Pino since it is specifically designed for
high performance and minimum overhead. To install it in your serverless modules,
add it as a dependency as follows:

npm install pino --save

It’s also worth installing pino-pretty, a companion module that takes structured log
output from Pino and makes it human-readable. This is ideal when viewing logs on
the command line:

npm install pino-pretty -g

To generate structured logs in our code, we create a new Pino logger and invoke a log-
ging function for the desired log level—any of trace, debug, info, warning, error,
or fatal. The following listing demonstrates how the Pino logger is used to generate
structured logs.

const pino = require('pino')
const log = pino({ name: 'pino-logging-example' })

log.info({ a: 1, b: 2 }, 'Hello world')
const err = new Error('Something failed')
log.error({ err })

The JSON logs for the first log record look like this:

{"level":30,"time":1575753091452,"pid":88157,"hostname":"eoinmac","name":"pin
o-logging-example","a":1,"b":2,"msg":"Hello world","v":1}

The error log is difficult to read as JSON. If we pipe the output to pino-pretty, the
result is easier to understand. This is shown in the next listing.

[1575753551571] INFO (pino-logging-example/90677 on eoinmac): Hello world
a: 1
b: 2

Listing 6.2 Pino log messages with contextual, structured data

Listing 6.3 Structured JSON logs are made human-readable using pino-pretty

A logger is created with a specific
name to identify the source of lo

An information message is logged alon
with some data. The data is passed as
an object in the first argument.

An error is logged using the property err. This is
a special property that results in the error being
serialized as an object. The object includes the
error type and the stack trace as a string.

https://getpino.io
https://www.npmjs.com/package/bunyan
https://www.npmjs.com/package/winston
https://www.npmjs.com/package/winston

153Logs
[1575753551572] ERROR (pino-logging-example/90677 on eoinmac):
err: {

"type": "Error",
"message": "Something failed",
"stack":

Error: Something failed
at Object.<anonymous> (/Users/eoin/code/chapter5/

 pino-logging-example/index.js:9:13)
at Module._compile (internal/modules/cjs/loader.js:689:30)
at Object.Module._extensions..js (internal/modules/cjs/

 loader.js:700:10)
at Module.load (internal/modules/cjs/loader.js:599:32)
at tryModuleLoad (internal/modules/cjs/loader.js:538:12)
at Function.Module._load (internal/modules/cjs/loader.js:530:3)
at Function.Module.runMain (internal/modules/cjs/

 loader.js:742:12)
at startup (internal/bootstrap/node.js:283:19)
at bootstrapNodeJSCore (internal/bootstrap/node.js:743:3)

}

6.5.2 Inspecting log output

We can trigger some log output by using the SLIC Starter application. Go to the URL
of the deployed SLIC Lists front end. If you followed the Quick Start guide for SLIC
Starter, you should have this at hand. In this example, we will use the staging environ-
ment for the continuously-deployed open source repository, https://stg.sliclists.com.

 You will need to sign up and create an account. From there, you can log in and cre-
ate a checklist. You are first presented with a login screen, as shown in figure 6.7. Fol-
low the link on that screen to sign up and create your account before logging in.

Figure 6.7 When you launch SLIC Lists for the first time, you can sign up to create an
account and log in.

https://stg.sliclists.com

154 CHAPTER 6 How to be effective with AI as a Service
Once you have logged in, you can create a list, as shown in figure 6.8.

Finally, you can add some entries to the checklist. This is shown in figure 6.9.

Once you have created the checklist records, you can inspect the logs. Note that SLIC
Starter produces more logs than you would typically expect in a system like this. In par-
ticular, information is logged at INFO level that you would reasonably expect in DEBUG-
level logs. The cost of CloudWatch logs is a real consideration here. In a real production
system, you should consider reducing the log output, redacting any personally-identi-
fiable user information, and implementing sampling2 for debug logs.

2 “You need to sample debug logs in production,” Yan Cui, 28 April 2018, https://hackernoon.com/you-need-
to-sample-debug-logs-in-production-171d44087749.

Figure 6.8 SLIC Lists allows you to create and
manage checklists. Here, we create a checklist
by entering a title and, optionally, a description.
In the serverless backend, this creates a
DynamoDB item. It also triggers an event-driven
workflow, resulting in a welcome message being
sent by email to the list creator.

Figure 6.9 Here, we add some items to the
checklist. This step adds entries to the checklist
item we just created. If you are interested in how
this is achieved with DynamoDB data modelling,
check out services/checklists/
entries/entries.js in the checklist-
service folder.

https://hackernoon.com/you-need-to-sample-debug-logs-in-production-171d44087749
https://hackernoon.com/you-need-to-sample-debug-logs-in-production-171d44087749

155Logs
 Our first way to inspect the CloudWatch logs is with the Serverless Framework CLI.
Here, we’ll use serverless logs to see the latest logs for the create function. The
output is again piped to pino-pretty for readability:

cd checklist-service
serverless logs -f create --stage <STAGE> | pino-pretty

STAGE is one of dev, stg or prod

The log output showing the INFO-level logs can be seen in the next listing.

[1576318523847] INFO (checklist-service/7 on 169.254.50.213): Result received
result: {

"entId": "4dc54f8e-e28b-4de2-9456-f30caef781e4",
"title": "Entry 2"

}
END RequestId: fa02f8b1-2a42-46a8-83b4-a8834483fa0a
REPORT RequestId: fa02f8b1-2a42-46a8-83b4-a8834483fa0a Duration: 74.44 ms

Billed Duration: 100 ms Memory Size: 1024 MB
Max Memory Used: 160 MB

START RequestId: 0e56603b-50f1-4581-b208-18139e85d597 Version: $LATEST
[1576318524826] INFO

(checklist-service/7 on 169.254.50.213): Result received
result: {

"entId": "279f106f-469d-4e2d-9443-6896bc70a2d5",
"title": "Entry 4"

}
END RequestId: 0e56603b-50f1-4581-b208-18139e85d597
REPORT RequestId: 0e56603b-50f1-4581-b208-18139e85d597 Duration: 25.08 ms

Billed Duration: 100 ms Memory Size: 1024 MB
Max Memory Used: 160 MB

In addition to the structured JSON logs, formatted for readability by pino-pretty,
we see the log entries generated by the Lambda container itself. These include the
START, END, and REPORT records. The REPORT record prints useful records concern-
ing the memory used and the function duration. Both are important when it comes to
optimizing the memory configuration for performance and cost.

CHOOSING THE OPTIMAL LAMBDA MEMORY CONFIGURATION Lambda functions
are billed per request and per GB-second. As with many services, there is a
free tier—1 million requests and 400,000 GB-seconds per month at the time
of writing. This means you can do quite a lot of computation before you are
charged at all. Once you have used up the free tier in a production applica-
tion, choosing the correct size for each function is important in terms of cost
and performance.

When you configure a Lambda function, you can choose how much memory
is allocated to it. Doubling the memory will double the cost per second of exe-
cution. However, allocating more memory also increases the vCPU allocation
to the function linearly.

Listing 6.4 serverless logs fetches log events and prints them to the console

156 CHAPTER 6 How to be effective with AI as a Service
Suppose you have a function that takes 212ms to execute in a Lambda func-
tion with 960MB of memory, but 190ms to execute in a function with 1024MB
of memory. The GB-second pricing of the higher memory configuration will
be about 6% higher but, since executions are billed in 100ms units, the lower
memory configuration will use 50% more units (3 instead of 2). Counterintu-
itively, the higher memory configuration will be significantly cheaper and
deliver better performance.

Similarly, if you have a function that typically executes in 10ms and latency is
not that critical, you might be better off using a lower memory configuration
with decreased CPU allocation and letting it execute in a time closer to 100ms.

6.5.3 Searching logs using CloudWatch Logs Insights

We have seen how to inspect logs for a single function on the command line. It’s also
possible to view individual log streams in the AWS Management Console. This is useful
during development, but less so when you have many functions deployed and frequently
executed in a production system. For that, you need large-scale, centralized logging
capable of searching terabytes of log data. CloudWatch Logs Insights is a convenient ser-
vice for this job, and it requires no setup in advance. It can be found under the Insights
section of the CloudWatch service in the AWS Management Console. Figure 6.10 shows
a query for logs relating to checklists with the phrase “Kick-off” in the title.

Figure 6.10 CloudWatch Logs Insights allows you to run complex queries across multiple log groups.

Fields from
structured logs
are automatically
detected and
can be included
in the query.

Select a date/
time period.

Advanced queries can be specified.
Here, we search by service name
and string match. Results are sorted.

Selecting items in
Query help will
provide inline
documentation and
example usages.

Choose log groups
to be included in
the search here.

Results are
shown and can
be expanded to
inspect each
structured
property.

157Logs
The query shown here is a simple example. The query syntax supports many functions
and operations. You can perform arithmetic and statistical operations as well as
extract fields, sort, and filter. Figure 6.11 shows how we can use statistical functions to
analyze the memory usage and duration of the Lambda by extracting data from the
REPORT logs for each execution.

Figure 6.11 Statistical and arithmetic operations can be used with Lambda REPORT logs to analyze
whether functions are configured with the optimal memory amount for cost and performance. Here, we
show memory usage and compare the maximum memory used to the provisioned memory capacity. We
also show the 95, 98, and 99.9 percentiles for function duration to get a sense of performance.

In the example shown, we have provisioned much more memory than is required.
This might justify reducing the memory size for the container to 256MB. Since the
function being analyzed simply invokes a DynamoDB write operation, it is more I/O-
bound than CPU-bound. As a result, reducing its memory and CPU allocation is
unlikely to have a significant impact on the duration of executions.

The memory usage
statistics are presented
in the results section.

The summary line shows how much data
was scanned. This impacts the query cost.

Multiple percentiles
can be calculated.

Aggregation functions derive
statistics on memory usage.REPORT logs generated by

AWS Lambda are filtered.

158 CHAPTER 6 How to be effective with AI as a Service
 You should now have a good understanding of how centralized, structured logs
together with CloudWatch Logs Insights can be used to add observability to your
application. Next, we’ll look at metrics you can observe and create to gain further
knowledge of your application’s behavior.

6.6 Monitoring service and application metrics
As part of the goal of achieving observability, we want to be able to create and view met-
rics. Metrics can be service-specific, like the number of concurrently-executing Lambda
functions. They can also be application-specific, like the number of entries in a check-
list. AWS provides a metrics repository called CloudWatch Metrics. This service collects
individual metrics and allows you to view aggregations on them. Note that it is not pos-
sible to view individual metric data points once they have been collected. Instead, you
can request statistics for a given period, such as the sum of a count metric per minute.

 By default, the minimum period for CloudWatch Metrics is one minute. It is possi-
ble to add high-resolution custom metrics with a resolution of one second. After three
hours of retention, high-resolution metrics are aggregated to one-minute intervals.

6.6.1 Service metrics

Many AWS services publish metrics by default for most services. Whether you are
using CloudWatch Metrics or another metrics solution, it is important to be aware of
what metrics are published and which ones you should monitor. Table 6.2 lists just
some of the metrics for a sample of AWS services. We have chosen examples that are
particularly relevant to the AI applications built in chapters 2-5.

Table 6.2 AWS services publish CloudWatch Metrics that can be monitored to gain insight into system
behavior. It is really important to understand and observe the metrics relevant to services you are using.

Service Example metrics

Lexa

a See Monitoring Amazon Lex with Amazon CloudWatch, http://mng.bz/emRq.

MissedUtteranceCount, RuntimePollyErrors

Textractb

b See CloudWatch Metrics for Amazon Textract, http://mng.bz/pzEw.

UserErrorCount, ResponseTime

Rekognitionc

c See CloudWatch Metrics for Rekognition, http://mng.bz/OvAa.

DetectedFaceCount, DetectedLabelCount

Pollyd

d See Integrating CloudWatch with Amazon Polly, http://mng.bz/YxOa.

RequestCharacters, ResponseLatency

DynamoDBe

e See DynamoDB Metrics and Dimensions, http://mng.bz/Gd2J.

ReturnedBytes, ConsumedWriteCapacityUnits

Lambdaf

f See AWS Lambda Metrics, http://mng.bz/zrgA.

Invocations, Errors, IteratorAge, ConcurrentExecutions

http://mng.bz/emRq
http://mng.bz/pzEw
http://mng.bz/zrgA
http://mng.bz/Gd2J
http://mng.bz/YxOa
http://mng.bz/OvAa

159Monitoring service and application metrics
Thorough coverage of all metrics for the services we have used is beyond the scope of
this book. We recommend that you explore the CloudWatch Metrics section of the
AWS Management Console with the applications you have built so far while reading
the book. A comprehensive list of services and their metrics can be found in the AWS
documentation.3

6.6.2 Application metrics

CloudWatch Metrics can be used as a repository for custom application metrics in
addition to the built-in metrics published by AWS services. In this section, we’ll
explore what it takes to add a metric. Let’s revisit the checklist application in the SLIC
Starter project. We might want to gather application-specific metrics that inform us
how the product is developed further. Let’s suppose we are thinking about developing
an Alexa skill for the application. An Alexa skill is a serverless application in AWS that
allows users to interact with a service using a smart speaker device. This would be a
very similar endeavor to the Lex-driven to-do chatbot from chapter 5! In order to
design this skill, our User Experience department wants to gather statistics on how
users are currently using SLIC Lists. Specifically, we want to understand the following:

 How many entries are users putting into checklists?
 How many words are in a typical checklist entry?

With CloudWatch Metrics, there are two ways we could add these metrics:

 Using the AWS SDK and a call to the putMetricData API4

 Using logs specially formatted according to the Embedded Metric Format

Using the putMetricData API has a disadvantage. Making an SDK call like this will
result in an underlying HTTP request. This adds unwanted latency to our code. We
will instead use the Embedded Metric Format log. This method requires us to create a
specially formatted log message that has all the details of the metric we want to pro-
duce. Since we are using CloudWatch logs, CloudWatch will automatically detect,
parse, and convert this log message into a CloudWatch metric. The overhead of writ-
ing this log message will have a negligible impact on the performance of our code. In
addition, the raw metrics will be available for as long as we retain the logs.

 Let’s take a look at how we produce these metric logs and what the result looks
like. An outline of the log message format is shown in the following listing.

{
"_aws": {

"Timestamp": 1576354561802,

3 AWS Services That Publish CloudWatch Metrics, http://mng.bz/0Z5v.
4 AWS JavaScript SDK, putMetricData, https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Cloud-

Watch.html#putMetricData-property.

Listing 6.5 The structure of Embedded Metric Format logs

The _aws property defines
the metadata for our metrics.

http://mng.bz/0Z5v
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricData-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricData-property

160 CHAPTER 6 How to be effective with AI as a Service

"CloudWatchMetrics": [
{

"Namespace": "namespace"
"Dimensions": [["stagej"]]
"Metrics": [
{

"Name": "Duration",
"Unit": "Milliseconds"5

}
],
...

}
]

},
"stage": "prod",
"Duration": 1

}

These JSON structured log messages are automatically recognized by CloudWatch
and result in CloudWatch Metrics being created with minimal performance overhead.
It is possible to create this JSON structure and log it to CloudWatch logs in our
Lambda function code using console.log. Another way is to use the aws-embed-
ded-metrics Node.js module.6 This module gives us a number of functions for log-
ging metrics. In this case, we’ll use the createMetricsLogger function. We are
going to add the metric logging code in checklist-service/services/check-
lists/entries/entries.js. See the following listing for the relevant extract from
the addEntry function.

const metrics = createMetricsLogger()
metrics.putMetric('NumEntries', Object.keys(entries).length, Unit.Count)
metrics.putMetric('EntryWords', title.trim().split(/s/).length, Unit.Count)
await metrics.flush()

To generate some metrics, we need to invoke this function with varying inputs. The
SLIC Starter end-to-end integration tests include a test that creates a checklist with an

5 Supported units for CloudWatch Metrics are covered in MetricDatum, http://mng.bz/9Azr.
6 aws-embedded-metrics on GitHub, https://github.com/awslabs/aws-embedded-metrics-node.

Listing 6.6 Structured logging compliant with the Embedded Metric Format

A namespace for the metric is the
grouping under which this metric falls.

Each metric can be given up to ten
dimensions. A dimension is a name-
value pair that categorizes the metric.

A single metric is defined here, giving it a name
and its unit. There is a defined list of supported
metric units in the AWS documentation.5

The value for dimensions named
in the metadata is given here.

The value for metrics named in
the metadata is provided here.

createMetricsLogger creates a logger that we
can call explicitly. The aws-embedded-metrics

module also provides a wrapper or “decorator”
function that avoids the explicit flush call.

The number of
entries in the

checklist is recorded
as a count metric.

The number of words in the
checklist entry is recorded.

We flush the metrics to
ensure they are written
to the console output.

https://github.com/awslabs/aws-embedded-metrics-node
http://mng.bz/9Azr

161Monitoring service and application metrics
entry count and word counts according to a realistic distribution. We can run this test
a number of times to get some reasonable metrics in CloudWatch.

 There are some setup steps in SLIC Starter’s integration tests. Check out the
README.md file in the integration-tests folder. Once you have prepared the tests
and verified that you can run them once, we can proceed to running a batch of inte-
gration tests to simulate some load:

cd integration-tests
./load.sh

The load.sh script runs a random number of integration test executions in parallel,
and repeats that process until it has been done 100 times. Now, we can proceed to the
CloudWatch Metrics section of the AWS Management Console to visualize statistics on
the checklist entries that were created.

 When you select CloudWatch Metrics in the console, the view should look some-
thing like figure 6.12.

Figure 6.12 Browsing to the CloudWatch Metrics view in the AWS Management Console allows you to
select from custom namespaces and namespaces for AWS services.

From here, select the aws-embedded-metrics namespace. This brings you to a table where
you can see the sets of dimensions within the selected namespace. This is shown in fig-
ure 6.13.

162 CHAPTER 6 How to be effective with AI as a Service
Figure 6.13 Once a namespace is selected, the next step is to choose the dimension sets.

Click through the only option to reveal the viewable metrics. Select the two metrics
from the addEntry function, as shown in figure 6.14.

Figure 6.14 The CloudWatch Metrics console presents all metrics within the selected namespace
and dimensions. Clicking the checkbox next to each one adds the metric to the graph displayed.

163Monitoring service and application metrics
We now want to customize the presentation of these metrics. First, let’s add to the
default average statistic. This can be done by switching to the Graphed Metrics tab.
Select the Duplicate icon next to each metric. Do this twice for both the NumEntries
and EntryWords metrics. This will create copies of the average metric. Change one
copy of each to use the Maximum and p95 statistics. Lastly, change the graph type
from Line to Number. The resulting view should look like figure 6.15.

Figure 6.15 Switching to the Graphed Metrics tab allows you to customize and copy metrics.
Here, we select new statistics for the same two metrics. Switching the graph from Line to
Number also gives us a plain and simple view of the statistics we need.

Using the Number visualization instead of Line is more useful in this case, as the change
in values over time as viewed on a line graph is not interesting for these metrics. We have
ended up with some simple numbers that can help our User Experience team design
an Alexa skill! We know that most entries have fewer than five words, with the average
being two words. The average list has around 8 entries and 95% have 16.6 or fewer.

6.6.3 Using metrics to create alarms

At this point, you have seen the value of understanding and monitoring AWS service
metrics and custom application metrics. When you have unexplained system behavior,
this knowledge should help you to start revealing some of the unknowns. It’s not a
great idea, however, to wait until something goes wrong to start digging for answers.
It’s preferable to think about what the normal system behavior is and to create alarms
for when the system behavior deviates from this norm. An alarm is a notification to sys-
tem operators when a specified condition is reached. Typically, we would set up alarms
for deviations such as the following:

1 A metric that counts the number of errors within an AWS service, and is trig-
gered when the value is greater than a given number. For example, we might

164 CHAPTER 6 How to be effective with AI as a Service
like to be alerted when the number of Lambda invocations across all our func-
tions exceeds 10 in a five-minute period.

2 The level of service to our end users is reaching an unacceptable level. An
example of this is when the 99th percentile for the API Gateway Latency metric
for a critical API endpoint exceeds 500ms.

3 Business metrics are really valuable for creating alarms. It is often easier to cre-
ate thresholds relating to interactions from an end-user perspective. For exam-
ple, in our SLIC Starter application, we might know that it’s typical for between
50 and 60 checklists to be created every hour. If the number falls wildly outside
this threshold, we can receive an alarm and investigate. This might be just a spu-
rious change in activity, or indicative of some underlying technical problem we
might not have otherwise detected.

In the context of AWS, alerts like these are possible using CloudWatch Alarms. Alarms
are always based on CloudWatch Metrics. It is possible to define the period and statistic
used (e.g., the average latency over 5 minutes). The threshold for the alarm can be based
on a numeric value or based on anomaly detection using standard deviation bands. The
alerting mechanism for CloudWatch Alarms is through SNS Topics. SNS (or Simple Noti-
fication Service) is a Pub/Sub for sending events. SNS allows alerts to be delivered via
email, SMS or webhook, or to another service, including SQS and Lambda.

 A comprehensive example of creating alarms is beyond the scope of this chapter.
It is worthwhile to use the AWS Management Console to experiment and create
some alarms. Once you are familiar with the configuration options for CloudWatch
Alarms, you can proceed to create them as resources in the serverless.yml file for
your application. The following resources also allow us to create alarms with less
configuration:

 The Serverless Application Repository provides hosted CloudFormation stacks that
can be included as nested applications within your own application. Other
organizations have published stacks that simplify the process of creating a rea-
sonable set of alarms for serverless applications. One example is the SAR-cloud-
watch-alarms-macro application.7 It creates alarms for common errors in AWS
Lambda, API Gateway, AWS Step Functions, and SQS.

 Plugins for the Serverless Framework such as the AWS Alerts Plugin (http://
mng.bz/jVre) make the process of creating alarms easier.

6.7 Using traces to make sense of distributed applications
At the start of the chapter, we said that one of the challenges in serverless develop-
ment is the distributed and fragmented nature of systems. This aspect makes it harder
to visualize or reason about the behavior of the system as a whole. The practices of
centralized logging, metrics, and alarms can help with that. Distributed tracing is an

7 SAR-cloudwatch-alarms-macro from Lumigo, http://mng.bz/WqeW.

http://mng.bz/jVre
http://mng.bz/jVre
http://mng.bz/WqeW

165Using traces to make sense of distributed applications
additional tool that makes understanding the flow of data through a serverless system
possible. Within the AWS ecosystem, distributed tracing is provided by X-Ray and
CloudWatch ServiceLens. X-Ray is the underlying tracing service, and ServiceLens is
the area of the CloudWatch console that provides tracing visualization integrated with
logs and metrics. There are commercial alternatives such as Datadog, Lumigo, and
Epsagon. Though these are certainly worth exploring, we will use the managed AWS
services, as they are sufficient to demonstrate and learn the concepts of observability
and tracing.

6.7.1 Enabling X-Ray tracing

The purpose of distributed tracing is to both monitor and profile performance of
requests as they propagate through many services in a system. The best way to illus-
trate this is with a visual example. Consider the scenario of creating a checklist in the
SLIC Starter application. From the point when a user clicks the Save button in the
front end, the sequence shown in figure 6.16 occurs.

Figure 6.16 A typical request to a serverless system results in multiple messages across many services.

1 The request goes through API Gateway to a Lambda in the checklist service.
2 This Lambda calls DynamoDB.
3 The Lambda publishes a “list created” event to Amazon EventBridge.
4 The event is picked up by the welcome service.
5 The welcome service calls the user service API to look up the checklist owner’s

email address.
6 The welcome service puts an SQS message on the email service’s queue.

Checklist service User service

Lambda LambdaGateway +
AWS_IAM

Simple Email
Service (SES)

Email
service

Welcome
service

Lambda
SQS Queue

Event bus

Amazon
EventBridge

AWS
Lambda

Rule

7

6

5

4

3

21

Cognito
User Pool

DynamoDBAPI
Gateway

166 CHAPTER 6 How to be effective with AI as a Service
7 The email service accepts incoming SQS messages and send an email using the
Simple Email Service (SES).

This is a relatively simple distributed workflow, but it’s already easy to see how this
chain-reaction of events can be difficult to comprehend for developers. Imagine what
it’s like in a system with hundreds or thousands of services! By capturing traces for the
entire flow, we can view the sequence and timings in ServiceLens. Part of this
sequence is shown in figure 6.17.

Figure 6.17 CloudWatch ServiceLens shows individual traces with times for each segment.

The trace in the figure shows the segments of the distributed request, including their
timings. Note that this picture relates to a single request. With X-Ray, traces are sam-
pled. By default, one request per second is sampled, and 5% of requests thereafter.
This is configurable through rules in the X-Ray console.

 X-Ray works by generating trace IDs and propagating these from one service to
another as the request is fulfilled. In order to enable this behavior, developers can use
the AWS X-Ray SDK to add automatic tracing instrumentation of AWS SDK calls. The
effect of this is that tracing headers containing trace and segment identifiers are
added to requests. Request data, including timings, are also sent by the X-Ray SDK to
a daemon that collects tracing samples. The following code shows how we initialize
the X-Ray SDK in our Node.js Lambda function code:

const awsXray = require('aws-xray-sdk')
const AWS = awsXray.captureAWS(require('aws-sdk'))

This snippet, taken from slic-tools/aws.js in SLIC Starter, loads the X-Ray SDK
before loading the standard AWS SDK. The X-Ray SDK’s captureAWS function is

167Using traces to make sense of distributed applications
invoked to intercept all SDK requests and create new segments as part of the trace.8

The other change required to enable X-Ray traces is to turn them on in API Gateway
and Lambda configuration. When using the Serverless Framework, this involves an
addition to the serverless.ymlprovider section, shown in the following code:

tracing:
apiGateway: true
lambda: true

This is done for all services in SLIC Starter, so you already have everything required to
view distributed tracing results.

6.7.2 Exploring traces and maps

In addition to the individual trace timeline we already saw, the X-Ray console and the
newer CloudWatch ServiceLens console have the capability to show a full map of your
services. This is an extremely powerful visualization tool. An example of the SLIC
Starter service map is shown in figure 6.18.

Figure 6.18 A map showing the request propagation between services can be shown
in CloudWatch ServiceLens. Although this diagram shows so many services that it becomes
hard to read, you have the option to zoom in and filter out when using the AWS Console.

8 See Tracing AWS SDK Calls with the X-Ray SDK for Node.js, http://mng.bz/8GyD.

http://mng.bz/8GyD

168 CHAPTER 6 How to be effective with AI as a Service
All visualisations, including maps and traces, show any errors captured. The map view
shows an error percentage per node. Selecting any node in the map will show the
request rate, latency, and number of errors. Figure 6.19 shows a selection of the ser-
vice map for the deleteEntry function in the checklist service with a 50% error rate.

Figure 6.19 Choosing View Connections for any selected node in the service map filters the view to
show connected services only. Here, we see error incidents that can be investigated further by using the
correlating request IDs in CloudWatch Logs.

We can choose to select View Traces or View Logs to diagnose further. View Logs takes
us to CloudWatch Logs Insights for this request and time.

6.7.3 Advanced tracing with annotations and custom metrics

We are not able to cover all the use cases for X-Ray and ServiceLens. There are, how-
ever, a few features that are worth mentioning, as they are particularly useful when try-
ing to find answers for real production scenarios at scale:

 Annotations are indexed key-value pairs that you can assign to trace segments
using the X-Ray SDK. These are indexed by X-Ray, so you can filter on them in
the X-Ray console.9 It’s also possible to add custom metadata to trace segments.
These are not indexed but can be viewed in the console.

 The X-Ray Analytics console and the AWS SDK support the creation of groups,
defined by a filter expression. The filter expression can include the custom
annotations created in your code using the X-Ray SDK.

 When groups are defined, X-Ray will create custom metrics and publish them
to CloudWatch Metrics. These include latency, error, and throttling rates.

We recommend taking some time to experiment with the features of X-Ray through
the AWS Management Console. This will help you to create the right annotations,
metadata, and groups for your own serverless applications.

9 Add Annotations and Metadata to Segments with the X-Ray SDK for Node.js, http://mng.bz/EEeR.

http://mng.bz/EEeR

169Summary
Summary
 CodePipeline and CodeBuild can be used to create a serverless continuous

deployment pipeline.
 The monorepo approach is an effective strategy for structuring a scalable

serverless application.
 There are challenges with distributed serverless application architectures that

can be addressed using observability best practices.
 Centralized logging can be implemented using structured JSON logs and AWS

CloudWatch logs.
 CloudWatch Logs Insights is used to view and drill down into logs.
 Service metrics can be viewed using CloudWatch.
 It is possible to create application-specific custom metrics.
 Distributed tracing using X-Ray and ServiceLens allows us to make sense of a

highly-distributed serverless system.

In the next chapter, we will continue to look at real-world AI as a Service, focusing on
integration into existing systems built on vastly different technologies.

WARNING Please ensure that you fully remove all cloud resources deployed in
this chapter in order to avoid additional charges!

Applying AI to
existing platforms
In chapters 2–5 we created systems from scratch and applied AI services from the
start. Of course, the real world is not always this clean and simple. Almost all of us
have to deal with legacy systems and technical debt. In this chapter we are going to
examine some strategies for applying AI services to existing systems. We will start by
looking at some architectural patterns for this, and from there we will develop
some specific examples drawn from real world experience.

This chapter covers
 Integration patterns for serverless AI

 Improving identity verification with Textract

 An AI-enabled data processing pipeline with Kinesis

 On-the-fly translation with Translate

 Sentiment analysis with Comprehend

 Training a custom document classifier with
Comprehend
170

171Integration patterns for serverless AI
7.1 Integration patterns for serverless AI
There is no escaping the fact that real world enterprise computing is “messy.” For a
medium to large enterprise, the technology estate is typically large, sprawling, and has
often grown organically over time.

 An organization’s compute infrastructure can be broken down along domain lines
such as finance, HR, marketing, line-of-business systems, and so on. Each of these
domains may be composed of many systems from various vendors, along with home-
grown software, and will usually mix legacy with more modern Software as a Service
(SaaS) delivered applications.

 Concomitant to this, the various systems are typically operated in a hybrid model
mixing on-premise, co-location, and cloud-based deployment. Furthermore, each of
these operational elements must typically integrate with other systems both in and
outside of the domain. These integrations can be by way of batch ETL jobs, point-to-
point connections, or through some form of enterprise service bus (ESB)

Figure 7.1 illustrates a typical mid-size organization’s technology estate. In this exam-
ple, separate domains are connected together through a central bus. Within each
domain, there are separate ETL and batch processes connecting systems together.

 Needless to say, a description of all of this complexity is outside the scope of this
book. The question we will concern ourselves with is how we can adopt and leverage
serverless AI in this environment. Fortunately there are some simple patterns that we
can follow to achieve our goals, but first let’s simplify the problem.

ETL, point-to-point, and ESB
Enterprise system integration is a large topic which we won’t cover here, except to
note that there are a number of ways in which systems can be connected together.
For example, a company may need to export records from its HR database to match
up with an expense tracking system. Extract, transform, and load (ETL) refers to the
process of exporting records from one database (typically in CSV format), transform-
ing, and then loading into another database.

Another method of connecting systems is to use a point-to-point integration. For
example, some code can be created to call the API of one system and push data to
another system’s API. This does, of course, depend on the provision of a suitable
API. Over time, the use of ETL and point-to-point integration can accumulate into a
very complex and difficult-to-manage system.

An enterprise service bus (ESB) is an attempt to manage this complexity by providing
a central system over which these connections can take place. The ESB approach
suffers from its own particular pathologies, and has often caused as many problems
as it has solved.

172 CHAPTER 7 Applying AI to existing platforms

IT
 s

er
vi

ce
s

su
b

sy
st

em

E
xt

er
n

al
 in

te
g

ra
ti

o
n

s

A
p

p
lic

at
io

n
A

P
I

P
ro

vi
si

o
n

er

Im
p

o
rt

er
Im

p
o

rt
er

S
u

b
sy

st
em

S
u

b
sy

st
em

S
u

b
sy

st
em

W
eb

 a
p

p
W

eb
 A

P
I

A
P

I

V
en

d
o

r
sy

st
em

C
S

V
C

S
V

C
S

V

E
T

L

W
eb

 a
p

p

..

S
C

V

S
u

b
sy

st
em

S
u

b
sy

st
em

S
u

b
sy

st
em

S
u

b
sy

st
em

S
u

b
sy

st
em

D
at

a
ex

tr
ac

t

S
to

re
d

 p
ro

c

D
at

a
ex

tr
ac

t

S
ys

te
m

 c
o

re

C
o

re
 e

xt
er

n
al

 in
te

g
ra

ti
o

n
s

D
at

ab
as

e

D
at

ab
as

e

D
at

a
ex

tr
ac

t

D
at

a
ex

tr
ac

t

S
to

re
d

 p
ro

c

S
to

re
d

 p
ro

c

C
o

re

d
at

ab
as

e
R

ep
lic

at
e

ApplicationApplicationApplication

E
xt

er
n

al
 in

te
g

ra
ti

o
n

s

.. ..

P
ro

vi
si

o
n

er

Id
en

ti
ty

 s
u

b
sy

st
em

E
xt

er
n

al
 in

te
g

ra
ti

o
n

s
F

in
an

ce
 e

xt
er

n
al

 in
te

g
ra

ti
o

n
s

F
in

an
ce

 a
n

d
 H

R
 s

u
b

sy
st

em

A
p

p
lic

at
io

n

F
in

an
ce

 d
at

a H
R

 S
yn

c

S
er

vi
ce

 B
u

s

Im
p

o
rt

Im
p

o
rt

V
en

d
o

r
ap

p
lic

at
io

n

W
eb

 a
p

p

S
u

b
sy

st
em

S
u

b
sy

st
em
Figure 7.1 Typical enterprise
technology estate, broken down by
logical domain. This image is intended
to illustrate the complex nature of a
typical technology estate. The detail
of the architecture is not important.

173Integration patterns for serverless AI
We will use figure 7.2 to represent our “enterprise estate” in the following discussion,
to allow us to treat the rest of our infrastructure as a black box. In the next section we
will examine four common patterns for connecting AI services. We will then build
some concrete examples to show how AI services can be used to augment or replace
existing business flows within an enterprise.

 For example, if part of a company’s business workflow requires proof of identity via
a utility bill or passport, that can be provided as an AI-enabled service, reducing the
manual workload.

 Another example is that of forecasting. Many organizations need to plan ahead to
predict their required levels of inventory or staff over a given period of time. AI services
could be integrated into this process to build more sophisticated and accurate models,
saving the company money or opportunity costs.

Figure 7.2 Simplified enterprise representation

HR Finance

Back office

174 CHAPTER 7 Applying AI to existing platforms
We will examine four approaches:

 Synchronous API
 Asynchronous API
 VPN Stream In
 VPN Fully connected streaming

Bear in mind that these approaches simply represent ways of getting the appropriate
data into the required location to enable us to execute AI services to achieve a busi-
ness goal.

7.1.1 Pattern 1: Synchronous API

The first and simplest approach is to create a small system, much like we did in the
first few chapters, in isolation from the rest of the enterprise. Functionality is exposed
through a secured API and accessed over the public internet. If a higher lever of secu-
rity is required, a VPN connection can be established, through which the API can be
called. This simple pattern is illustrated in figure 7.3.

Figure 7.3 Integration Pattern 1: Synchronous API

Integration
subsystem

Bridge

API Code AI Data

175Integration patterns for serverless AI
In order to consume the service, a small piece of bridging code must be created to call
the API and consume the results of the service. This pattern is appropriate when
results can be obtained quickly and the API is called in a request/response manner.

7.1.2 Pattern 2: Asynchronous API

Our second pattern is very similar, in that we expose functionality through an API;
however, in this case the API acts asynchronously. This pattern, which is appropriate
for longer-running AI services, is illustrated in figure 7.4.

Figure 7.4 Integration Pattern 2: Asynchronous API

Under this “fire and forget” model, the bridge code calls the API but does not receive
results immediately, apart from status information. An example of this might be a

Integration
subsystem

External API
External API

External API

Poll

API Code AI Data

Client

Bridge

176 CHAPTER 7 Applying AI to existing platforms
document classification system that processes a large volume of text. The outputs of
the system can potentially be consumed by the wider enterprise in a number of ways:

 By constructing a web application that users can interact with to see results
 By the system messaging the results through email or other channels
 By the system calling an external API to forward details of any analysis
 By the bridge code polling the API for results

7.1.3 Pattern 3: VPN Stream In

A third approach is to connect the estate to cloud services through a VPN. Once a
secure connection is established, the bridge code can interact more directly with
cloud services. For example, rather than using an API Gateway to access the system,
the bridge code could stream data directly into a Kinesis pipeline.

 Results can be accessed in a number of ways: though an API, via outbound messag-
ing, through a web GUI, or via an output stream. This is illustrated in figure 7.5.

Figure 7.5 Integration Pattern 3: Stream In

Integration
subsystem

Bridge
VPN

External API
External API

External API

API Code AI Data

Client

177Integration patterns for serverless AI
7.1.4 Pattern 4 VPN: Fully connected streaming

Our final pattern involves a much deeper connection between the estate and cloud AI
services. Under this model, we establish a VPN connection as before, and use it to
stream data in both directions. Though there are several streaming technologies avail-
able, we have had good results using Apache Kafka. This is illustrated in figure 7.6

Figure 7.6 Integration Pattern 4: Full Streaming

VPN
A virtual private network (VPN) can be used to provide a secure network connection
between devices or networks. VPNs typically use the IPSec protocol suite to provide
authentication, authorization, and secure encrypted communications. Using IPSec
lets you use insecure protocols, such as those used for file sharing between remote
nodes.

A VPN can be used to provide secure access into a corporate network for remote
workers, or to securely connect a corporate network into the cloud. Though there are
a number of ways to set up and configure a VPN, we would recommend a serverless
approach using the AWS VPN service.

Integration
subsystem

Bridge

VPN

External API
External API

External API

API Code AI Data

Client

Kafka Kafka

178 CHAPTER 7 Applying AI to existing platforms
This approach involves operating a Kafka cluster on both ends of the VPN, and repli-
cating data between the clusters. Within the cloud environment, services consume
data by pulling from the appropriate Kafka topics and place results back onto a differ-
ent topic for consumption by the wider enterprise.

A full discussion of the merits of this approach and Kafka in general is outside the
scope of this book. If you are not familiar with Kafka, we recommend that you take a
look at the Manning book Kafka in Action by Dylan Scott to get up to speed.

7.1.5 Which pattern?

As with all architectural decisions, which approach to take really depends on the use
case. Our guiding principle is to keep things as simple as possible. If a simple API inte-
gration will achieve your goal, then go with that. If over time the external API set
begins to grow, then consider changing the integration model to a streaming solution
to avoid the proliferation of APIs. The key point is to keep the integration to AI ser-
vices under constant review and be prepared to refactor as needs dictate.

 Table 7.1 summarizes the context and when each pattern should be applied.

In this chapter we will build two example systems:

 Pattern 1: Synchronous API approach
 Pattern 2: Asynchronous API

Kafka
Apache Kafka is an open source, distributed streaming platform. Kafka was originally
developed at LinkedIn, and later donated to the Apache Foundation. Though there are
other streaming technologies available, Kafka’s design is unique in that it is imple-
mented as a distributed commit log.

Kafka is increasingly being adopted in high-throughput data streaming scenarios by
companies such as Netflix and Uber. It is, of course, possible to install, run, and man-
age your own Kafka cluster; however, we would recommend that you take the server-
less approach and adopt a system such as AWS Managed Streaming for Kafka (MSK).

Table 7.1 Applicability of AI as Service legacy integration patterns

Pattern Context Example

1: Synchronous API Single service, fast response Text extraction from document

2: Asynchronous API Single service, longer running Document transcription

3: VPN Stream In Multiple services, results for
human consumption

Sentiment analysis pipeline

4: VPN Fully Connected Multiple services, results for
machine consumption

Batch translation of documents

179Improving identity verification with Textract
Though we won’t look at the streaming approach in detail, bear in mind that both of
our example systems could also be connected to an enterprise through this method by
replacing the API layer with an appropriate technology such as Apache Kafka.

7.2 Improving identity verification with Textract
For our first example, we will extend an existing platform by creating a small, self-
contained API that can be called directly. Let’s imagine that an organization needs to
validate identities. Most of us have had to go through this process at one time or
another; for example, when applying for a mortgage or car loan.

 This typically requires a scan of several pieces of documentation in order to prove
your identity and address to the lender. Though a human will need to see these scans,
extracting the information from them and manually entering the information into
the lender’s system is time-consuming and error-prone. This is something that we can
now achieve through the application of AI.

 Our small, self-contained service is illustrated in figure 7.7. It uses AWS Textract to
grab the details from a scanned-in document. For this example, we will be using a
passport, but other identifying documents would work just as well, such as utility bills
or bank statements.

Figure 7.7 Document recognition API

Integration
subsystem

Client

API

Gateway

Signed URL

Text analysis Textract

S3 Image
bucket

Code AI Data

3. Use Textract to get passport
number and name

2. Upload document
to bucket

1. Get pre-signed URL
for upload

180 CHAPTER 7 Applying AI to existing platforms
Our API has two parts. First we will need to upload a scanned image to S3. The sim-
plest way to do this is by using a pre-signed S3 URL, and our API provides a function
to generate one of these and return it to the client. Once we have our image in S3, we
will use a Lambda function to call Textract, which will analyze our scanned-in image,
returning the data in a text format. Our API will return this data to the client for fur-
ther processing.

7.2.1 Get the code

The code for the API is in the directory chapter7/text-analysis. This contains
two directories: text-analysis-api, which has the code for our API service, and
client, which has some code to exercise the API. We will walk through the system
before deploying and testing with some sample data.

7.2.2 Text Analysis API

Our API codebase consists of a serverless.yml configuration file, package.json
for our node module dependencies, and handler.js containing the logic for the
API. The serverless.yml is fairly standard, defining two Lambda functions:
upload and analyze, which are accessible through API Gateway. It also defines an S3
bucket for the API, and sets up IAM permissions for the analysis service, as shown in
the following listing.

iamRoleStatements:
- Effect: Allow

Action:
- s3:GetObject
- s3:PutObject
- s3:ListBucket

Resource: "arn:aws:s3:::${self:custom.imagebucket}/*"
- Effect: Allow

Action:
- textract:AnalyzeDocument

Resource: "*"

Personally identifiable information
It goes without saying that any personally identifiable information must be handled
with the utmost care. Whenever a system must deal with user-supplied information,
particularly identification documents, it must comply with all of the statutory legal
requirements for the territory in which the information is gathered.

In the European Union, this means that the system must comply with the General
Data Protection Regulation (GDPR). As developers and system architects, we need to
be aware of these regulations and ensure compliance.

Listing 7.1 Textract permissions

Enable bucket access
to Lambda

Enable Textract
permissions

181Improving identity verification with Textract
Bucket permissions are required for our Lambda functions to generate a valid pre-
signed URL, in addition to enabling access for Textract to the uploaded documents.

 The next listing shows the call to the S3 API to generate a pre-signed URL. The
URL along with the bucket key is returned to the client, which performs a PUT request
to upload the document in question.

const params = {
Bucket: process.env.CHAPTER7_IMAGE_BUCKET,
Key: key,
Expires: 300

}
s3.getSignedUrl('putObject', params, function (err, url) {

respond(err, {key: key, url: url}, cb)
})

The pre-signed URL is restricted to a specific action for that given key and file only—
in this case, a PUT request. Note also that we have set an expiry time of 300 seconds on
the URL. This means that if the file transfer is not initiated within five minutes, the
signed URL will become invalid, and no transfer will be possible without generating a
fresh URL.

 Once the document is uploaded to the bucket, we can initiate the call to Textract
to perform the analysis. The next listing shows how this is done in handler.js.

const params = {
Document: {

S3Object: {
Bucket: process.env.CHAPTER7_IMAGE_BUCKET,
Name: data.imageKey

}
},
FeatureTypes: ['TABLES', 'FORMS']

}

txt.analyzeDocument(params, (err, data) => {
respond(err, data, cb)

})

Textract can perform two types of analysis, TABLES and FORMS. The TABLES analysis
type tells Textract to preserve tabular information in its analysis, whereas the FORMS
type requests that Textract extract information as key-value pairs if possible. Both anal-
ysis types can be preformed in the same call if required.

Listing 7.2 Get signed URL

Listing 7.3 Calling Textract

Set expiry time
of five minutes

Point to uploaded
document

Set feature
types

Call
Textract

182 CHAPTER 7 Applying AI to existing platforms
 On completion of the analysis, Textract
returns a block of JSON containing the
results. The result structure is illustrated in
figure 7.8.
 The structure should be fairly self-
explanatory, in that it consists of a root
PAGE element that links to child LINE ele-
ments, each of which links to a number of
child WORD elements. Each WORD and LINE
element has an associated confidence
interval: a number between 0 and 100
indicating how accurate Textract thinks
the analysis was for each element. Each
LINE and WORD element also has a Geome-
try section; this contains coordinate
information on the bounding box around
the element. This can be useful for appli-
cations where some additional human ver-
ification is required. For example, a UI
could display the scanned-in documents
with an overlaid bounding box in order to
confirm that the extracted text matches
the expected document area.

7.2.3 Client code

Code to exercise the API is in the client
directory. The main API calling code is in
client.js. There are three functions:
getSignedUrl, uploadImage, and ana-
lyze. These functions map one-to-one
with the API, as already described.
 The following listing shows the ana-
lyze function.

function analyze (key, cb) {
req({

method: 'POST',
url: env.CHAPTER7_ANALYZE_URL,
body: JSON.stringify({imageKey: key})

}, (err, res, body) => {

Listing 7.4 Calling the API

{
Blocks: [
 {
 BlockType: 'PAGE'
 Id:
 Relationships: [{
 Type: CHILD
 Ids: [
 …
]
 }]
},
{
BlockType: 'LINE'
Confidence: 99.8,
Geometry: {
 BoundingBox: {
 Width: 0.09791304916143417,
 Height: 0.025393398478627205,
 Left: 0.12474661320447922,
 Top: 0.036540355533361435
 }
}
Id:
 Relationships: [{
 Type: CHILD
 Ids: [
 …
]
 }]
},
{
BlockType:: 'WORD'
Confidence: 96.2
Geometry: {
…
}
Id:
 Relationships: [{
 Type: CHILD
 Ids: [
 …
]
 }]
 }
]}

Links to

Links to

Figure 7.8 Textract output JSON

Make POST request
to the API

183Improving identity verification with Textract
if (err || res.statusCode !== 200) {
return cb({statusCode: res.statusCode,
err: err,
body: body.toString()})

}
cb(null, JSON.parse(body))

})
}

The code uses the request module to execute a POST request to the analyze API,
which returns the Textract results block to the client.

7.2.4 Deploy the API

Before we deploy the API, we need to configure some environment variables. Both the
API and the client read their configuration from an .env file in the chapter7/
text-analysis directory. Open up your favorite editor and create this file with the
contents, as shown in the next listing.

TARGET_REGION=eu-west-1
CHAPTER7_IMAGE_BUCKET=<your bucket name>

Replace <your bucket name> with a globally unique bucket name of your choice.
 To deploy the API, we need to use the Serverless Framework as before. Open a

command shell, cd to the chapter7/text-analysis/text-analysis-api direc-
tory, and run

$ npm install
$ serverless deploy

This will create the document image bucket, set up API Gateway, and deploy our two
Lambda functions. Once deployed, Serverless will output the Gateway URLs to our
two functions, which will look similar to the output illustrated in the next listing.

endpoints:
GET - https://63tat1jze6.execute-api.eu-west-1.amazonaws.com/dev/upload
POST - https://63tat1jze6.execute-api.eu-west-1.amazonaws.com/dev/analyze
functions:
upload: c7textanalysis-dev-upload
analyze: c7textanalysis-dev-analyze

We will use these URLs to call our text analysis API.

Listing 7.5 .env file for Textract example

Listing 7.6 Endpoint URLs

Return
results

Upload URL

Analyze URL

184 CHAPTER 7 Applying AI to existing platforms
7.2.5 Test the API

Now that we have deployed our API,
it’s time to test it with some real data.
The service that we have just deployed
is able to read and identify text fields in
documents such as utility bills or pass-
ports. We have provided some sample
passport images in the data sub direc-
tory, one of which is shown in figure
7.9. These are, of course, composed
from dummy data.
 To test the API, we first need to
update our .env file. Open the file in a

text editor and add the two URLs and bucket name, as shown in the next listing, using
your specific names.

TARGET_REGION=eu-west-1
CHAPTER7_IMAGE_BUCKET=<your bucket name>
CHAPTER7_ANALYZE_URL=<your analyze url>
CHAPTER7_GETUPLOAD_URL=<your upload url>

Next, cd into the chapter7/text-analysis/client directory. There are some
sample images in the data sub directory. Code to exercise the client is in index.js.
To run the code, open a command shell and execute

$ npm install
$ node index.js

The client code will use the API to upload an example document to the image bucket,
and then call our analyze API. The analyze API will call Textract to analyze the
image and return the results back to our client. Finally, the client code will parse
through the output JSON structure and pick out a few key fields, displaying them to
the console. You should see output similar to the following listing.

{
"passportNumber": "340020013 (confidence: 99.8329086303711)",
"surname": "TRAVELER (confidence: 75.3625717163086)",
"givenNames": "HAPPY (confidence: 96.09229278564453)",
"nationality": "UNITED STATES OF AMERICA (confidence: 82.67759704589844)",
"dob": "01 Jan 1980 (confidence: 88.6818618774414)",
"placeOfBirth": "WASHINGTON D.C. U.S.A. (confidence: 84.47944641113281)",
"dateOfIssue": "06 May 2099 (confidence: 88.30438995361328)",
"dateOfExpiration": "05 May 2019 (confidence: 88.60911560058594)"

}

Listing 7.7 Environment file

Listing 7.8 Client output

Figure 7.9 Sample passport

Replace with the
analyze URL Replace with the

upload URL

185An AI-enabled data processing pipeline with Kinesis
It is important to note that Textract is applying multiple techniques in order to extract
this information for us. First it performs an optical character recognition (OCR) analysis to
recognize the text in the image. As part of this analysis, it retains the coordinate infor-
mation for the recognized characters, grouping them into blocks and lines. It then
uses the coordinate information to associate form fields as name-value pairs.

 To be accurate, we need to supply Textract with good-quality images: the better the
quality, the better the result we will get from the analysis. You can test this by creating
or downloading your own low-quality images and passing these to the API. You should
find that Textract will struggle to identify the same fields in a low-quality image.

 Listing 7.8 shows the fields that Textract has identified, and also a confidence level.
Most AI services will return some associated confidence level, and it is up to us, as con-
sumers of the service, to figure out how we should deal with this number. For exam-
ple, if our use case is highly sensitive to errors, then perhaps it is correct to only accept
a 99% or better confidence level. Results with lower levels should be sent off for
human verification or correction. Many business use cases, however, can tolerate
lower accuracy. This judgment is very domain-specific, and should involve both busi-
ness and technical stakeholders.

 Think about the business processes at your own organization: are there areas that
could be automated by this type of analysis? Do you need to collect and input informa-
tion from documents supplied by your customers? Perhaps you could improve that
process by adapting this example to your own needs.

7.2.6 Remove the API

Before moving on to the next section, we need to remove the API to avoid any addi-
tional charges. To do this, cd into the chapter7/text-analysis/text-analysis
-api directory and run

$ source ../.env && aws s3 rm s3://${CHAPTER7_IMAGE_BUCKET} --recursive
$ serverless remove

This will remove all of the uploaded images from the bucket and tear down the stack.

7.3 An AI-enabled data processing pipeline with Kinesis
For our second example, we will build a data processing pipeline. This pipeline will be
exposed through an asynchronous API, and will serve as our pattern 2 example. In
building this example, we will explore a number of new services and technologies in
detail, including Kinesis, Translate, and Comprehend:

 Kinesis is Amazon’s real-time streaming service, which is used to create data-
and video-processing pipelines.

 Translate is Amazon’s machine-driven language translation service.
 Comprehend is Amazon’s natural language processing (NLP) service, which

can be used to perform tasks like sentiment analysis or keyword detection.

Consider the domain of retail and e-commerce. A large retail outlet might have multi-
ple product departments such as “outdoor,” “automotive,” “pets,” and so on. Customer

186 CHAPTER 7 Applying AI to existing platforms
service is an important part of the retail trade. In particular, responding quickly and
effectively to customer complaints is important, as it can transform a disgruntled cus-
tomer into a brand advocate if done correctly. The problem is that customers have
many channels on which to complain, including website product reviews, email, Twit-
ter, Facebook, Instagram, blog posts, and so forth.

 Not only are there many channels on which product feedback can be placed,
global retailers have to handle feedback in multiple languages as well. Though
humans are needed to deal with the customers, detecting the negative feedback
across all of these channels and geographic territories is something that is amenable
to an AI-driven solution.

 Our example system will be an AI-enabled pipeline that can be used to filter feed-
back from multiple channels in multiple languages. The aim of our pipeline is to alert
the appropriate department when a piece of negative feedback is detected about one
of their products.

 This AI-enabled pipeline augments and extends the retailer’s digital capability,
while not interfering directly with line-of-business systems.

 Our pipeline is depicted in figure 7.10. At the start of the pipe, raw data is sent to a
collection API; this can be inbound from multiple feeds, such as a Twitter feed, Face-
book comments, inbound emails, and other social channels. The API feeds the raw
text into a Kinesis stream.

Figure 7.10 Processing pipeline

+ve

-ve
API

Gateway
Lambda

Email

Web form

Facebook

Twitter

Kinesis
stream

Lambda

End

Kinesis
stream

Kinesis
stream

Classify

Detect
sentiment

TranslateDetect
language

Lambda Data
bucket

3. Determine
the sentiment. 5. Use a custom classier to determine

the appropriate department to
route the complaint to.

1. Customer feedback through
various channels

4. If the sentiment is
negative, forward for
classification.

6. Collect the output on
a per-department basis.

2. Determine the language
and translate if needed.

187An AI-enabled data processing pipeline with Kinesis
AWS provides two key streaming technologies: Managed Streaming for Kafka (MSK)
and Kinesis. Of these, Kinesis is the simplest to use, so we will focus on it for this sys-
tem. Data in the stream triggers a downstream Lambda, which uses Comprehend to
determine the language of the inbound text. If the language is not English, then the
Lambda runs on-the-fly translation with AWS Translate before posting it down the
pipe. The next downstream Lambda runs sentiment analysis against the translated
text using Comprehend. If a positive sentiment is detected, then no further process-
ing is carried out for the message. However, should the sentiment be strongly nega-
tive, the text is sent to a customer classifier built using AWS Comprehend. This
analyzes the text and attempts to determine the product department pertaining to the
message. Once a department has been identified, the message can be dispatched to
the appropriate team to allow them to address the negative comment. In this case, we
will output results to an S3 bucket.

 By using a combination of AI services in this way, a pipeline such as this can pro-
vide enormous cost savings for an enterprise, because the filtering and categorization
of feedback is performed automatically without requiring a team of people.

7.3.1 Get the code

The code for our pipeline is in the book repository in the directory chapter7/pipe-
line. This contains the following sub directories that map to each stage in the process:

 pipeline-api—Contains the API Gateway setup for the system
 translate—Contains the language detection and translation service
 sentiment—Contains the sentiment analysis code
 training—Contains utility scripts to help train a custom classifier

Kinesis vs. Kafka
Until recently, one of the reasons for choosing Kinesis over Kafka was that Kafka
required installation, setup, and management on EC2 instances. With the release of
AWS Managed Streaming for Kafka (MSK), this situation has changed. Though a full
discussion on the merits of Kafka is outside the scope of this book, we would note that
the technology is highly scalable and versatile. We suggest that you investigate Kafka
in more depth if you are building a system that requires a lot of streaming at scale.

Even taking MSK into account, it is still true that Kinesis is more fully integrated into
the AWS stack and is simpler to get up and running quickly, so we will use it for the
purposes of our example system. Kinesis can be used in several ways:

 Kinesis Video Streams—For video and audio content
 Kinesis Data Streams—For general data streaming
 Kinesis Data Firehose—Supports streaming of Kinesis data to targets such

as S3, Redshift, or Elasticsearch
 Kinesis Analytics—Supports real-time stream processing with SQL

In this chapter, we are using Kinesis Data Streams to build our pipeline.

188 CHAPTER 7 Applying AI to existing platforms
 classify—Contains the code that triggers our custom classifier
 driver—Contains code to exercise the pipeline

As with the preceding examples, we will briefly describe the code for each service
before deploying. Once all of our units have been deployed, we will test our pipeline
end to end. Let’s get started with the simple first step, deploying the API.

7.3.2 Deploying the API

The code for the API is in the directory chapter7/pipeline/pipeline-api and
consists of a serverless.yml file along with a simple API. The Serverless configura-
tion defines a single ingest method, which pushes data posted to the API into Kine-
sis. The Kinesis stream is also defined in the Serverless configuration, which is shown
in the following listing.

resources:
Resources:

KinesisStream:
Type: AWS::Kinesis::Stream
Properties:

Name: ${env:CHAPTER7_PIPELINE_TRANSLATE_STREAM}
ShardCount: ${env:CHAPTER7_PIPELINE_SHARD_COUNT}

The code for the API is very simple in that it just forwards inbound data to the Kinesis
stream. The API accepts inbound JSON POST requests and expects the format shown
in the next listing.

{
originalText: ...
source: 'twitter' | 'facebook'...
originator: '@pelger'

}

Before deploying the API, we need to set up our environment. We have provided a
template .env file in the chapter7/pipeline directory called default-environ-
ment.env. Make a copy of this file in the chapter7/pipeline directory with the
filename .env. The file should have the contents outlined in the next listing.

TARGET_REGION=eu-west-1
CHAPTER7_PIPELINE_SHARD_COUNT=1
CHAPTER7_PIPELINE_TRANSLATE_STREAM=c7ptransstream
CHAPTER7_PIPELINE_SENTIMENT_STREAM=c7psentstream

Listing 7.9 serverless.yml Kinesis definition

Listing 7.10 JSON data format for pipeline API

Listing 7.11 Environment file for Pipeline

Define Kinesis
stream

The original
text The source of

the feedback The ID of the
feedback originator

Kinesis shard
count Name of Kinesis

translation stream

Name of Kinesis
sentiment stream

189On-the-fly translation with Translate
CHAPTER7_PIPELINE_CLASSIFY_STREAM=c7pclassifystream
CHAPTER7_PIPELINE_TRANSLATE_STREAM_ARN=...
CHAPTER7_PIPELINE_SENTIMENT_STREAM_ARN=...
CHAPTER7_PIPELINE_CLASSIFY_STREAM_ARN=...
CHAPTER7_CLASSIFIER_NAME=chap7classifier
CHAPTER7_CLASSIFIER_ARN=...
...

Next we can go ahead and deploy the API by opening a command shell in the
chapter7/pipeline/pipeline-api directory and executing

$ npm install
$ serverless deploy

This will create our first Kinesis stream, and also our ingestion API. Figure 7.11 illus-
trates the state of our pipeline after deployment of the API. The highlighted section
represents what has been deployed so far.

Figure 7.11 Pipeline after API deployment

On deployment, the framework will output the URL for our API. Before proceeding
to the next stage, add this into the .env file as shown in the following listing, substi-
tuting your specific value.

CHAPTER7_PIPELINE_API=<your API url>

7.4 On-the-fly translation with Translate
The first stage in our pipeline after ingestion is to detect the language and translate to
English if needed. These tasks are handled by our translation service, the code for which
is in the directory chapter8/pipeline/translate. The Serverless configuration

Listing 7.12 Additional entries in .env file following API deployment

Name of Kinesis
classify stream

+ve

-ve
API

Gateway

Deployed

Lambda

Driver

Kinesis
stream

Kinesis
stream

Lambda

End

Kinesis
stream

Classify

Detect
sentiment

TranslateDetect
language

Lambda Data
bucket

190 CHAPTER 7 Applying AI to existing platforms
is fairly standard, except that the main handler function is triggered by the Kinesis
stream that we defined in our API deployment. This is shown in the following listing.

functions:
translate:

handler: handler.translate
events:

- stream:
type: kinesis
arn: ${env:CHAPTER7_PIPELINE_TRANSLATE_STREAM_ARN}
batchSize: 100
startingPosition: LATEST
enabled: true
async: true

The configuration defines a second Kinesis stream that our Sentiment service will con-
nect to, and also sets up the appropriate permissions to post to the stream and call the
required translation services. This is shown in the following listing.

- Effect: Allow
Action:

- comprehend:DetectDominantLanguage
- translate:TranslateText
- kinesis:PutRecord
- kinesis:PutRecords

Resource: "*"

The code for our translation service in handler.js is triggered with data from the
Kinesis stream defined by our API. This is as a block of Base64-encoded records in the
event parameter to our handler function. The next listing shows how our service con-
sumes these records.

module.exports.translate = function (event, context, cb) {
let out = []
asnc.eachSeries(event.Records, (record, asnCb) => {

const payload = new Buffer(record.kinesis.data,
'base64').toString('utf8')

let message
try {

message = JSON.parse(payload)
} catch (exp) {

...
})

Listing 7.13 Handler triggered by Kinesis

Listing 7.14 Handler IAM permissions

Listing 7.15 Translation service

Connect to
the stream.

Comprehend
permissions

Translate
permissionsKinesis

permissions

Loop over
each record.

Decode
the record.

Convert
to object

191On-the-fly translation with Translate
Our service uses Comprehend and Translate in combination. Comprehend is used to
detect the language in our message, and Translate is used to convert to English if the
detected language requires it. The next listing shows the relevant calls from the
source code.

...
let params = {

Text: message.originalText
}
comp.detectDominantLanguage(params, (err, data) => {
...

params = {
SourceLanguageCode: data.Languages[0].LanguageCode,
TargetLanguageCode: 'en',
Text: message.originalText

}
trans.translateText(params, (err, data) => {
...

Once the service has translated the text, if required, it posts an updated message into
the second Kinesis stream. This will later be picked up by our sentiment detection ser-
vice, which we will deploy shortly.

 To deploy the translation service, open a command shell in the chapter7/pipe-
line/translate directory and run

$ npm install
$ serverless deploy

This will create the second stage in our pipeline. Figure 7.12 illustrates the state of our
pipeline after the latest deployment.

Figure 7.12 Pipeline after API deployment

Listing 7.16 Detect language and translate

Detect
language

Translate
to English

API
Gateway

Deployed

Lambda

Driver

Kinesis
stream

Kinesis
stream

Lambda

Detect
sentiment

TranslateDetect
language

+ve

-ve

End

Kinesis
stream

Classify

Lambda Data
bucket

192 CHAPTER 7 Applying AI to existing platforms
We’re halfway through the deployment of our pipeline. In the next section, we will
check that everything is working so far.

7.5 Testing the pipeline
Now that we have part of our pipeline deployed, let’s put some data through it to
check that it’s working correctly. To do this, we are going to take advantage of a free
open source public data set. Let’s grab some of this data now and use it to test our
pipeline.

 First cd into chapter7/pipeline/testdata directory. This contains a script
that will download and unpack some test data, which you can run using

$ bash ./download.sh

We are using a subset of the Amazon product review data held at http://snap.stanford
.edu/data/amazon/productGraph/. Specifically we are using data in the automotive,
beauty, office, and pet categories. Once the script has completed, you will have four
JSON files in the directory testdata/data. Each file contains a number of reviews,
with review text and an overall score. You can open up the files in a text editor and
take a look through them to get a feel for the data.

 There is another script in the testdata directory called preproc.sh. This takes
the downloaded review data and processes it into a format for training and testing our
custom classifier. We will look at the classifier in the next section, but for now let’s pro-
cess our data by running this script:

$ cd pipeline/testdata
$ bash preproc.sh

This will create a number of additional files in the data directory. For each down-
loaded file, it creates a new JSON file with the structure shown in the next listing.

{
train: [...],
test: {

all: [...],
neg: [...],
pos: [...]

}
}

What the script has done is to split the input data into two sets, one for training and
one for testing, with the bulk of the records in the training set. Within the test set, we
have used the overall field in the original data to determine if this review data is
positive or negative. This will allow us to test our sentiment filter later on. The script
has also created a CSV (comma separated value) file, data/final/training.csv.
We will use this file in the next section to train our classifier.

Listing 7.17 Amazon reviews data format

Training
data

Negative
test data

Positive
test data

http://snap.stanford.edu/data/amazon/productGraph/
http://snap.stanford.edu/data/amazon/productGraph/

193Sentiment analysis with Comprehend
 Now that we have our data downloaded and prepared, we can check that our pipeline
is functioning correctly so far. There is a test utility for this in the directory pipeline/
driver. This has two small Node.js programs: driver.js, which calls our API with
test data, and streamReader.js, which reads data from a nominated Kinesis stream
so that we can see what data exists in that stream. We won’t go into the code here.

 Let’s first post some data to our API. Open a command shell in pipeline/
driver, install dependencies, and then run the driver:

$ npm install
$ node driver.js office pos
$ node driver.js office neg
$ node driver.js beauty neg

This will call the API with three random reviews: two from the office products data set,
and one from the beauty data set. The driver also allows us to specify whether the data
should be positive or negative. Next let’s check that the data is indeed in our Kinesis
streams. First run

$ node streamReader.js translate

This will read data back from our translate stream and display it on the console. The
stream reader code polls Kinesis every second to display the latest data. To stop the
reader, press Ctrl-C. Next, repeat this exercise for the sentiment stream:

$ node streamReader.js sentiment

You should see the same data displayed to the console, with some additional fields
that were added by the translation service.

7.6 Sentiment analysis with Comprehend
Now that we have tested our pipeline, it’s time to implement the next stage, which is
detecting the sentiment of the inbound text. The code for this is in the directory
pipeline/sentiment and uses AWS Comprehend to determine the sentiment. The
Serverless configuration is very similar to the previous services, so we won’t cover it
here, except to note that the configuration creates an S3 bucket to collect the nega-
tive review data for further processing.

Sentiment analysis
Sentiment analysis is a complex process involving the use of natural language pro-
cessing (NLP), text analysis, and computational linguistics. It is a difficult task for
computers to perform, because at the root it involves the detection, to some extent,
of emotions expressed in text form. Consider the following sentence that might be
written by a reviewer about a hotel that they just stayed in:

We hated leaving the hotel and felt sad to get home.

While this is in fact expressing a positive sentiment about the hotel, all of the words
in this sentence are negative if taken in isolation. With the application of deep learning

194 CHAPTER 7 Applying AI to existing platforms
The code for the service is in handler.js, and is illustrated in the next listing.

{
module.exports.detect = function (event, context, cb) {

asnc.eachSeries(event.Records, (record, asnCb) => {
const payload = new Buffer(record.kinesis.data,

'base64').toString('utf8')
let message = JSON.parse(payload)
...
let params = {

LanguageCode: 'en',
Text: message.text

}
comp.detectSentiment(params, (err, data) => {

...

if (data.Sentiment === 'NEGATIVE' ||
data.Sentiment === 'NEUTRAL' ||
data.Sentiment === 'MIXED') {

writeNegativeSentiment(outMsg, (err, data) => {
asnCb(err)

})
} else {

if (data.SentimentScore.Positive < 0.85) {
writeNegativeSentiment(outMsg, (err, data) => {
...

}
})

...
}

After unpacking the message, the code calls Comprehend to detect the message senti-
ment. Any negative messages are written to an S3 bucket for onward processing. Posi-
tive messages are dropped. However, you could do further computation at this point;
for example, monitoring the ratio of positive to negative sentiment and alerting on
anomalous conditions.

 As with all AI services, it is important to interpret the returned confidence level
appropriately for the business problem. In this case, we have decided to err on the
side of caution. This means

(continued)
techniques, sentiment analysis is becoming more and more accurate. However
sometimes a human is still required to make a judgement call.

By using AWS Comprehend, we don’t have to be concerned about all of this complex-
ity; we merely need to process the results and call a human in when the API can’t
make an accurate determination.

Listing 7.18 Sentiment analysis handler

Unpack the message
from Kinesis.

Detect
sentiment

Write negative, neutral,
or mixed message to S3

Even if positive,
write depending on
confidence level

195Sentiment analysis with Comprehend
 Any overall negative, neutral, or mixed messages are treated as negative senti-
ments and sent on for classification.

 Any overall positive messages with a confidence level of more than 85% are dis-
carded.

 Any overall positive message with a confidence level of less than 85% are
treated as negative and sent on for classification.

Remember that in this scenario, once classified, messages that aren’t discarded will be
sent to a human for processing. We could easily change these rules to suit our business
process—for example, by discarding the neutral and positive messages regardless of
confidence level if we were less concerned about picking up all complaints, and only
wanted to focus on strongly negative results. The point is to understand that our
results come with an associated confidence level and to interpret this accordingly.

 Let’s now deploy the sentiment analysis service. cd into the pipeline/senti-
ment directory and run the following commands:

$ npm install
$ serverless deploy

Once the service is deployed, we can retest our pipeline by running the driver again to
post some positive and negative messages, as shown in the next listing.

$ cd pipeline/driver
$ node driver.js office pos
$ node driver.js beauty pos

$ node driver.js beauty neg
$ node driver.js auto neg

To check that our pipeline is working correctly, run the streamReader utility in the
driver directory, this time telling it to read from the classify stream:

$ node streamReader.js classify

This will read data back from our classifier stream and display it on the console. The
stream-reader code polls Kinesis every second to display the latest data. To stop the
reader, hit Ctrl-C. You should see the message output, along with some additional data
from the sentiment analysis. Note that strongly positive messages will be discarded, so
not all of the messages sent by the driver will make it to the classifier stream.

 Following this deployment, the current state of our pipeline is shown in figure
7.13.

TIP Though we are using translation and sentiment analysis services as part
of a data pipeline, these can, of course, be used in isolation. Perhaps you can
think of instances in your current work or organization where you could
apply these services.

Listing 7.19 Amazon reviews data format

Send positive
message

Send negative
message

196 CHAPTER 7 Applying AI to existing platforms
Figure 7.13 Pipeline after sentiment service deployment

7.7 Training a custom document classifier
For the final stage in our pipeline, we are going to use a custom classifier. From the
inbound message text, our classifier will be able to determine which department the
message is pertaining to: Automotive, Beauty, Office, or Pets. Training a classifier from
scratch is a complex task that normally requires some level of in-depth knowledge of
machine learning. Thankfully AWS Comprehend makes the job much easier. Figure
7.14 illustrates the training process.

Figure 7.14 Process for training a custom classifier with Comprehend

API
Gateway

Deployed

Lambda

Driver

Kinesis
stream

Kinesis
stream

Lambda

Detect
sentiment

TranslateDetect
language

+ve

-ve

End

Kinesis
stream

Classify

Lambda Data
bucket

Training
bucket

Open data
Stanford.edu

Amazon product graph

…
{
"reviewerID": "A3ESWJPAVRPWB4,"
"reviewerName": "E. Hernandez,"
"helpful": [0, 0],
"reviewText": "…,"
"overall": 5.0,
"summary": "…,"
"unixReviewTime": 1341360000,
"reviewTime": "07 4, 2012"
}
… Train Endpoint

BeautyAuto Offce Pet

Download

<LABEL>, <TEXT>

AUTO, …
AUTO, …
BEAUTY, …
PET, …
OFFICE, …

JSONL - 450,000 records

95%

5%

Testing set

Training set

CSV - 425,000 records ~ 2 hours

197Training a custom document classifier
All of the code to train our custom classifier is in the directory pipeline/training.
To train our classifier, we need to do the following:

 Create a data bucket.
 Upload training data to the bucket.
 Create an IAM role for the classifier.
 Run the training data to create a classifier.
 Create an endpoint to make the classifier available.

7.7.1 Create a training bucket

Before we create our training bucket, we need to update our .env file. Open this in a
text editor as before, and add the line indicated in the next listing, substituting your
own unique bucket name.

CHAPTER7_PIPELINE_TRAINING_BUCKET=<your training bucket name>

To create the bucket, cd into the directory pipeline/training and run the follow-
ing:

$ cd pipeline/training
$ npm install
$ cd resources
$ serverless deploy

7.7.2 Upload training data

As you’ll recall from the previous section where we tested our pipeline, our data pro-
cessing script created a CSV file for training. We now need to upload this to our train-
ing bucket. cd into the directory pipeline/testdata and run

$ source ../.env && aws s3 sync ./data/final s3://
${CHAPTER7_PIPELINE_TRAINING_BUCKET}

Document classification models
Document classification is the problem of assigning one or more classes or types to
a document. In this context, a document can range from a large manuscript to a sin-
gle sentence. This is typically performed using one of two approaches:

 Unsupervised classification—Clusters documents into types based on textual
analysis

 Supervised classification—Provides labeled data to a training process to build
a model that is customized for our needs

In this chapter we are using supervised classification to train a model. By using Com-
prehend, we don’t need to get into the details of the training process; we just need
to supply a labeled data set for Comprehend to train on.

Listing 7.20 Environment file for pipeline

198 CHAPTER 7 Applying AI to existing platforms
This will push the training data set to S3. Note that the training file is around 200MB,
so this may take a while to upload depending on your outbound connection speed.

 The training data file is just a csv file containing a set of labels and associated text,
as shown in the next listing.

<LABEL>, <TEXT>

In our case the label is one of AUTO, BEAUTY, OFFICE, or PET. Comprehend will use
this file to build a custom classifier using the text data to train the model and match it
to the appropriate label.

7.7.3 Create an IAM role

Next we have to create an Identity and Access Management (IAM) role for the classi-
fier. This will restrict the AWS cloud services that the classifier can access. To create
the role, cd into the directory pipeline/training and run

$ bash ./configure-iam.sh

This will create the role and write the newly created role ARN to the console. Add the
role ARN to the .env file, as shown in the following listing.

CHAPTER7_DATA_ACCESS_ARN=<your ARN>

NOTE AWS Identity and Access Management (IAM) capabilities are pervasive
throughout AWS. AWS IAM defines roles and access permissions across the
platform. A full description is outside the scope of this book, but you can find
the full AWS IAM documentation here: http://mng.bz/NnAd.

7.7.4 Run training

We’re now ready to start training the classifier. The code to do this is in pipeline/
training/train-classifier.js. This code simply calls Comprehend’s create-
DocumentClassifier API, passing in the data access role, classifier name, and a link
to the training bucket. This is shown in the next listing.

const params = {
DataAccessRoleArn: process.env.CHAPTER7_DATA_ACCESS_ARN,

DocumentClassifierName: process.env.CHAPTER7_CLASSIFIER_NAME,
InputDataConfig: {

S3Uri: `s3://${process.env.CHAPTER7_PIPELINE_TRAINING_BUCKET}`
},

Listing 7.21 Training data file structure

Listing 7.22 Update pipeline environment with role ARN

Listing 7.23 Training the classifier

Set training
parameters.

http://mng.bz/NnAd

199Using the custom classifier
LanguageCode: 'en'
}

comp.createDocumentClassifier(params, (err, data) => {
...

To start training, cd into the directory pipeline/training and run

$ bash ./train.sh

It should be noted at this point that the training process may take a while to complete,
usually over an hour, so now might be a good time to take a break! You can check on
the status of the training process by running the script status.sh in the same direc-
tory. This will output a status of TRAINED once the classifier is ready to use.

7.8 Using the custom classifier
Now that we have trained our classifier, we can complete the last stage in the pipeline:
deploying a classification service to call our newly trained custom classifier. Recall that
we have already determined the language of the message, translated to English if
required, and filtered to include only negative messages in the processing bucket.
Now we need to determine which department these messages are related to by run-
ning our newly trained classifier.

 To make the classifier available, we need to create an endpoint. Do this by running
the script endpoint.sh in the pipeline/training directory:

$ cd pipeline/training
$ bash ./endpoint.sh

WARNING Once the endpoint for the classifier is created, you will be charged
per hour that it is available, so please ensure that you delete all resources for
this chapter once you’re done!

Before we deploy our classification service, we need to update the .env file to provide
the name of our output bucket. Open this in a text editor and edit the line indicated
in the next listing, substituting your own unique bucket name.

CHAPTER7_PIPELINE_PROCESSING_BUCKET=<your processing bucket name>

The code for out classification service is in the pipeline/classify directory. This
holds the serverless.yml and handler.js files for the service. The following list-
ing shows how the classifier is executed from the main handler function in the service.

...
let params = {

EndpointArn: process.env.CHAPTER7_ENDPOINT_ARN,

Listing 7.24 Pipeline processing bucket

Listing 7.25 Invoking the custom classifier endpoint

Start
training.

Add the endpoint ARN
to the parameters.

200 CHAPTER 7 Applying AI to existing platforms
Text: message.text
}
comp.classifyDocument(params, (err, data) => {

if (err) { return asnCb(err) }
let clas = determineClass(data)
writeToBucket(clas, message, (err) => {

if (err) { return asnCb(err) }
asnCb()

})
})
...

While we have trained our own custom classifier, the consumption pattern is similar to
the other services that we have encountered previously, so the code should seem
familiar. The function determineClass that is called in listing 7.25 is shown in the
following listing.

function determineClass (result) {
let clas = classes.UNCLASSIFIED
let max = 0
let ptr

result.Classes.forEach(cl => {
if (cl.Score > max) {

max = cl.Score
ptr = cl

}
})
if (ptr.Score > 0.95) {

clas = classes[ptr.Name]
}
return clas

}

The function returns the classification class with the highest score, given that the
score is greater than 95%. Otherwise it will return a result of UNCLASSIFIED. It is
important to note that like the other services we have encountered, interpretation of
the confidence level is domain-specific. In this case, we have opted for a high degree
of accuracy (greater than 95%). Unclassified results will need to be processed by a
human rather than sent directly to a department.

 To deploy the classification service, cd into the pipeline/classify directory
and run

$ npm install
$ serverless deploy

We have now fully deployed our pipeline! For the final step in this chapter, let’s test it
end to end.

Listing 7.26 Interpreting the custom classification results

Invoke the classifier
through the endpoint.

Process
the results.

Write the message
to the output bucket.

Find the classification
with the highest score.

Only accept scores
greater that 95%.

201Testing the pipeline end to end
7.9 Testing the pipeline end to end
To test our full pipeline, let’s first push some data into it. We can do this by using the
test driver as before. cd into the directory pipeline/driver, and push in some data
by running

$ node driver.js [DEPT] [POS | NEG]

Do this several times, substituting random department names: auto, beauty,
office, or pet. Also, randomly use both positive and negative values. The messages
should flow through the pipeline, and negative messages will end up in the processing
bucket under one of five possible paths: auto, beauty, office, pet, or unclassified. We
have provided a script to help check the results. cd into the pipeline/driver direc-
tory and run

$ node results.js view

This will fetch the output results from the bucket and print them to the console. You
should see output similar to the following:

beauty
I'm not sure where all these glowing reviews are coming from...
NEGATIVE
{

Positive: 0.0028411017265170813,
Negative: 0.9969773292541504,
Neutral: 0.00017945743456948549,
Mixed: 0.0000021325695342966355

}

office
I bought this all in one HP Officejet for my son and his wife...
NEGATIVE
{

Positive: 0.4422852396965027,
Negative: 0.5425800085067749,
Neutral: 0.015050739049911499,
Mixed: 0.00008391317533096299

}

unclassified
didnt like it i prob will keep it and later throw it out...
NEGATIVE
{

Positive: 0.00009981004404835403,
Negative: 0.9993864297866821,
Neutral: 0.0005127472686581314,
Mixed: 9.545062766846968e-7

}

Remember that only the negative messages will be in the results bucket; positive values
should have been discarded by the sentiment filter. Take some time to review the

202 CHAPTER 7 Applying AI to existing platforms
results. Some messages will be unclassified, meaning that the confidence level of the
classification step was below 95%.

 A next logical step in the process would be to send alert emails, based on the pipe-
line output, to the appropriate department. This could easily be done using Amazon’s
SES (Simple Email Service) service, and we leave this as an exercise for the reader to
complete!

 As a further exercise, you could write a script to push a larger volume of data into
the pipeline and see how the system behaves. You could also try making up your own
comments or “tweets” and send them into the pipeline to determine how accurate the
system is when presented with different data items.

7.10 Removing the pipeline
Once you have finished with the pipeline, it’s important to remove it in order to avoid
incurring additional costs from AWS. To do this, we have provided some scripts that
will remove all of the elements of the pipeline in the directory chapter7/pipeline.
cd into this directory and run

$ bash ./remove-endpoint.sh
$ bash ./check-endpoint.sh

This will remove the endpoint, which may take a few minutes to complete. You can
re-run the check-endpoint.sh script; this will show a status of DELETING against
our endpoint. Once the script no longer lists our endpoint, you can proceed to
remove the rest of the system by running

$ bash ./remove.sh

This will remove the custom classifier and all of the other resources deployed in this
section. Be sure to check that all of the resources were indeed removed by the script!

7.11 Benefits of automation
Let’s take a moment to think through how this type of processing could benefit an
organization. As of April 2019, Amazon.com has a product catalog with hundreds of
millions of listings. Let’s consider a smaller retailer that lists, say, 500,000 items across
a number of different departments. Let’s assume that customers provide feedback on
the following five channels:

 Twitter
 Facebook
 Site reviews
 Email
 Other

Let’s also assume that on an average day, 2% of the products will receive some atten-
tion on each of these channels. That means that on a daily basis, the company has

203Summary
around 50,000 items of feedback to review and process. On an annual basis, that
equates to 18,250,000 individual pieces of feedback.

 Given that it would take a human an average of, say, two minutes to process each
piece of feedback, an individual could process only 240 of these in a standard eight-
hour work day. This means that a team of over 200 people would be needed to manu-
ally process all of the feedback items.

 Our AI-enabled pipeline can handle this load easily, 24 hours a day, 365 days a year,
dramatically reducing costs and drudgery.

 Hopefully this chapter has inspired you to investigate further how you can apply AI
as a Service to tackle problems like these in your own day-to-day work.

Summary
 There are various architectural patterns for applying AI as a Service to existing

systems:
– Synchronous API
– Asynchronous API
– Stream In
– Fully Connected Streaming

 Key text fields can be extracted from a document using AWS Textract. We dem-
onstrated an example in the specific case of extracting information from a pass-
port scan.

 Using the example of an existing e-commerce/retail platform, we can build an
AI-enabled data processing pipeline using Kinesis and Lambda.

 AWS Translate can be used to translate languages on the fly.
 Using product review data from Amazon, it is possible to build a sentiment anal-

ysis service.
 A document classifier is built using Comprehend by splitting Amazon review

data into a training and test set.
 Combining all of these techniques into a data processing pipeline results in a

system that translates, filters, and classifies data. This is an example of how to
combine several AI services to achieve a business goal.

WARNING Please ensure that you fully remove all cloud resources deployed in
this chapter in order to avoid additional charges!

204 CHAPTER 7 Applying AI to existing platforms

Part 3

Bringing it all together

In chapter 8 we build a serverless web crawler and examine some of the chal-
lenges associated with data collection. In chapter 9 we use AI as a Service to ana-
lyze data scraped with our serverless crawler, and examine how to efficiently
orchestrate and control our analysis jobs. If you have mastered all of the content
so far, then this content will be challenging but hopefully rewarding and enlight-
ening.

 Once you have mastered this final part, you will be up to speed with the cur-
rent state of the art and ready to apply the tools, services, and techniques in your
own work. Good luck!

206 CHAPTER

Gathering data
at scale for real-world AI
In chapter 7, we dealt with the application of natural language processing (NLP)
techniques to product reviews. We showed how sentiment analysis and classification
of text can be achieved with AWS Comprehend using streaming data in a serverless
architecture. In this chapter, we are concerned with data gathering.

This chapter covers
 Selecting sources of data for AI applications

 Building a serverless web crawler to find sources for
large-scale data

 Extracting data from websites using AWS Lambda

 Understanding compliance, legal aspects, and
politeness considerations for large-scale data gathering

 Using CloudWatch Events as a bus for event-driven
serverless systems

 Performing service orchestration using AWS Step
Functions
207

208 CHAPTER 8 Gathering data at scale for real-world AI
 According to some estimates, data scientists spend 50-80% of their time collecting
and preparing data.1 2 Many data scientists and machine learning practitioners will say
that finding good quality data and preparing it correctly are the biggest challenges
faced when performing analytics and machine learning tasks. It is clear that the value
of applying machine learning is only as good as the quality of the data that is fed into
the algorithm. Before we jump straight into developing any AI solution, there are a
few key questions to be answered concerning the data that will be used:

 What data is required and in what format?
 What sources of data are available?
 How will the data be cleansed?

A good understanding of data gathering concepts is key to a functional machine
learning application. Once you have learned to source and adapt data to your applica-
tion’s needs, your chances of producing the desired results are greatly increased!

8.1 Scenario: Finding events and speakers
Let’s consider a problem that a lot of software developers have—finding relevant con-
ferences to attend. Imagine that we wanted to build a system to solve this problem.
Users will be able to search for conferences on topics of interest, and see who’s speak-
ing at the conference, what the location is, and when it takes place. We can also imag-
ine extending this to recommend conferences to users who have searched for or
“liked” other events.3

Figure 8.1 Our data gathering application will crawl conference websites and extract event and speaker
information.

1 Gil Press, “Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says,”
Forbes, March 23, 2016, https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-
consuming-least-enjoyable-data-science-task-survey-says.

2 Steve Lohr, “For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights,” New York Times, August 17,
2014, https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-
work.html.

3 This is an interesting challenge for the reader. The AWS Personalize service (available in Developer Preview
at the time of writing) is a managed machine learning recommendation service that should be suitable for
this application.

User

Event
web site

URL

Title

Date

Location

Name

Bio

Speaker
profiles

Event details

Extract
conference data

Navigate site to
find pages

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html

209Scenario: Finding events and speakers
The first challenge in building such a system is in collecting and cataloging the data
on conference events. There is no existing, complete, structured source of such data.
We can find websites for relevant events using an internet search engine, but then
comes the problem of finding and extracting the event location, dates, and speaker
and topic information. This is a perfect opportunity to apply web crawling and scrap-
ing! Let’s summarize our requirements with figure 8.1.

8.1.1 Identifying data required

The first step in identifying your data is to start with the problem you are solving. If
you have a clear picture of what you are going to achieve, work back from there, and
determine what data is required and what attributes it should have. The kind of data
required is significantly impacted by two factors:

 Are training and validation necessary?
 If so, will your data have to be labelled?

Throughout this book, we have been using managed AI services. A major advantage of
this approach is that it often eliminates the need for training. Services that do not
require you to train with your own data come with pre-trained models that are ready
for use with your test data set. In other cases, you might need a training step.

TRAINING, VALIDATION, AND TEST DATA In the development of machine
learning models, a data set is typically divided into three sets, as shown in
figure 8.3.

Figure 8.2 Training, validation, and test data during model development and test

A larger proportion of the data, the training set, is used to train the algo-
rithm. The validation set (or development set) is used to select the algorithm
and measure its performance. Finally, the test set is an independent set used
to check how well the algorithm generalizes with data not used in training.

Model development

Final test
Validation

Test data
Validation

data

Machine learning model

Training data

210 CHAPTER 8 Gathering data at scale for real-world AI
You might remember the topic of supervised and unsupervised learning from
chapter 1. It is important to understand which approach you are using because super-
vised learning will require data to be annotated with labels.

 In chapter 1, we presented a table of managed AWS AI services. This table is
extended in appendix A, showing the data requirements and training support for
each service. You can use this as a reference in planning your AI-enabled application.

 If you are not using managed AI services, but instead selecting an algorithm and
training a custom model, the effort required for gathering and preparing data is
large. There are many considerations to getting data that will produce accurate results
that work well within the domain of test data.

A few rules can be applied to choosing good data:

 Data should have representations of all scenarios that may be encountered “in
the wild” (like huskies on backgrounds other than snow!).

 For classification, you should have sufficient, and preferably roughly equal, rep-
resentations of all classes.

 For labelling, consider whether the labels can be assigned without ambiguity, or
how to deal with it if not. You might have cases where the label to assign is not
clear (“Is that a husky or a dog?”).

Selecting representative data
When selecting data to train a machine learning model, it is critical to ensure that the
data is representative of data in the wild. Problems occur when your data makes
assumptions that result in a prejudiced outcome. Selection of good training data is
important to reduce overfitting. Overfitting occurs when a model is too specific to a
training data set and is not able to generalize.

A team of researches at the University of Washington illustrated the issue of selection
bias by training a machine learning model to detect whether a picture contained a wolf
or a husky dog. By deliberately choosing wolf pictures with snow in the background
and husky dog pictures with grass in the background, they trained an algorithm that
was actually only effective at detecting grass vs. snow. When they presented the
result to a set of test subjects, people still reported that they trusted the algorithm’s
ability to detect huskies and wolves!a

We also know that training with data from systems that are the output of human
biases can result in the algorithms inheriting existing harmful societal biases. This
was infamously shown when Microsoft’s “Tay” Twitter bot was shut down after it
started generating racist, hateful tweets.b

a Ribeiro, Singh and Guestrin, “'`Why Should I Trust You?’ Explaining the Predictions of Any Classifier,” Uni-
versity of Washington, August 9, 2016, https://arxiv.org/pdf/1602.04938.pdf.

b Ashley Rodriguez, “Microsoft’s AI millennial chatbot became a racist jerk after less than a day on Twitter,”
Quarts, March 24, 2016, http://mng.bz/BED2.

http://mng.bz/BED2
https://arxiv.org/pdf/1602.04938.pdf

211Scenario: Finding events and speakers
 Regularly inspect a reasonably-sized random selection of your data manually to
verify that there is nothing unexpected occurring. It is worth taking some time
for this, because bad data will never produce good results!

In this book, we are largely concerned with using pre-trained, managed services. For a
more in-depth understanding of machine learning training optimization, data wran-
gling, and feature engineering, we recommend Real-World Machine Learning by Brink,
Richards, and Fetherolf from Manning Publications, 2017.

8.1.2 Sources of data

One of the key points discussed in chapter 1 was how recent successes in the field of AI
have been made possible by the availability of vast volumes of data. The internet itself
is a public source of data, and by using the internet in our daily lives, we are constantly
contributing to the growing volumes of incredibly detailed data. Big technology com-
panies (Google, Facebook, Amazon) have had great success in AI. A large factor in this
is their access to data and expertise in data gathering.4 For everyone else, there are
many ways of sourcing data for AI applications. Appendix C contains a list of public data
sets and other data sources that may be a great fit for your application.

8.1.3 Preparing data for training

Once you have gathered data for training, there is still plenty of work to be done:

 Deal with missing data. You might need to remove records, interpolate or extrap-
olate data, or use some other means of avoiding problems with missing fields. In
other cases, it is better to leave missing fields empty, as this can be an important
input into the algorithm. For more on this topic, take a look at chapter 1,
“Exploring Data,” of Exploring Data Science by John Mount and Nina Zumel.5

 Get the data in the right format. This could mean applying a consistent format
for date or currency values. In image recognition, it might mean cropping,
resizing, and changing color formats. Many pre-trained networks are trained on
224x224 RGB data, so if you want to analyse very high-resolution data (where
too much information will be lost if images are resized), then these networks
may not be suitable without modification.

We have briefly covered some of the data sources available to machine learning engi-
neers. It should be clear that the internet has been a major source of large-scale data
volumes. Much internet data is not available via an API or in structured files, but is
published on websites intended to be consumed with a web browser. Gathering data
from this valuable trove requires crawling, scraping, and extraction. This is the topic
we will cover next.

4 Tom Simonite, “AI and ‘Enormous Data’ Could Make Tech Giants Harder to Topple,” Wired, 13 July 2017,
http://mng.bz/dwPw.

5 Exploring Data Science, John Mount and Nina Zumel, Manning Publications, 2016, https://www.manning.com/
books/exploring-data-science.

http://mng.bz/dwPw
https://www.manning.com/books/exploring-data-science
https://www.manning.com/books/exploring-data-science

212 CHAPTER 8 Gathering data at scale for real-world AI
8.2 Gathering data from the web
The remainder of this chapter will look in more detail at gathering data from web-
sites. Though some data may be available in pre-packaged, structured formats, accessi-
ble as either flat files or through an API, this is not the case with web pages.

 Web pages are an unstructured source of information such as product data, news
articles, and financial data. Finding the right web pages, retrieving them, and extract-
ing relevant information are non-trivial. The processes required to do this are known
as web crawling and web scraping :

 Web crawling is the process of fetching web content and navigating to linked
pages according to a specific strategy.

 Web scraping follows the crawling process to extract specific data from content
that has been fetched.

Figure 8.4 shows how the two processes combine to produce meaningful, structured
data.

Figure 8.3 Web page crawling and scraping process overview. In this chapter, we are
concerned with the crawler part of this picture and the pages it produces as output.

Recall our conference speaker information-gathering scenario from the start of the
chapter. Our first step in creating a solution for this scenario will be to build a server-
less web crawling system.

8.3 Introduction to web crawling
The crawler for our scenario will be a generic crawler. Generic crawlers can crawl any
site with an unknown structure. Site-specific crawlers are usually created for large
sites, with specific selectors for findings links and content. An example of a site-
specific crawler could be one written to crawl particular products from amazon.com,
or auctions from ebay.com.

 Examples of well-known crawlers include

 Search engines such as Google, Bing, Yandex, or Baidu
 GDELT Project (https://www.gdeltproject.org), an open database of human

society and global events

Extracted
data

Scraper

PagesCrawler

Seed
URL

User

https://www.gdeltproject.org

213Introduction to web crawling
 OpenCorporates (https://opencorporates.com), the largest open database of
companies in the world

 Internet Archive (https://archive.org), a digital library of internet sites and
other cultural artifacts in digital form

 CommonCrawl (https://commoncrawl.org/), an open repository of web crawl
data

One challenge for web crawling is the sheer number of web pages to visit and analyze.
When we are performing the crawling task, we may need arbitrarily large compute
resources. Once the crawling process is complete, our compute resource requirement
drops. This scalable, bursty compute requirement is an ideal fit for on-demand, cloud
computing, and Serverless!

8.3.1 Typical web crawler process

To understand how a web crawler might work, consider how a web browser allows a
user to navigate a web page manually:

1 The user enters a web page URL into a web browser.
2 The browser fetches the page’s first HTML file.
3 The HTML file is parsed by the browser to find other required content such as

CSS, JavaScript, and images.
4 Links are rendered. When the user clicks on a link, the process is repeated for a

new URL.

The following listing shows the HTML source for a very simple example web page.

<!DOCTYPE html>
<html>

<body>
Google
About
About

<p>I am a text paragraph</p>

<script src="/script.js"></script>
</body>

</html>

We have shown the structure of a very basic page. In reality, a single HTML page can
contain hundreds of hyperlinks, both internal and external. The set of pages required
to be crawled for a given application is known as the crawl space. Let’s talk about the
architecture of a typical web crawler and how it is structured to deal with various sizes
of crawl space.

Listing 8.1 Example web page HTML source

External
link Absolute

internal link

Relative
internal link

Image
resource

Paragraph
text

JavaScript
source

https://opencorporates.com
https://archive.org
https://commoncrawl.org/

214 CHAPTER 8 Gathering data at scale for real-world AI
8.3.2 Web crawler architecture

A typical web crawler architecture is illustrated in figure 8.4. Let’s get an understand-
ing of each component of the architecture and how it relates to our conference web-
site scenario before describing how this might be realized with a serverless approach.

Figure 8.4 Components of a web crawler. There are distinct responsibilities for each
component that can guide us in our software architecture.

 The frontier maintains a database of URLs to be crawled. This is initially popu-
lated with the conference websites. From there, URLs of individual pages on
the site are added here.

 The fetcher takes a URL and retrieves the corresponding document.
 The parser takes the fetched document, parses it, and extracts required informa-

tion from it. We will not be looking for specific speaker details or anything
conference-specific at this point.

 The strategy worker or generator is one of the most crucial components of a web
crawler, since it determines the crawl space. URLs generated by the strategy
worker are fed back into the frontier. The strategy worker decides
– Which links should be followed
– The priority of links to be crawled
– The crawl depth
– When to revisit/recrawl pages if required

 The item store is where the extracted documents or data are stored.
 The scheduler takes a set of URLs, initially the seed URLs, and schedules the

fetcher to download resources. The scheduler is responsible for ensuring that the
crawler behaves politely toward web servers, that no duplicate URLs are
fetched, and that URLs are normalized.

Strategy worker

URL fetched
status

Seed
URL URLsFrontier

Fetch requests

Fetcher

Fetched
assets

HTML Parser

Item store

Links

Scheduler

New URLs

Frontier URL
storage

215Introduction to web crawling
For our web crawler, we are dealing with conferences. Since these constitute a minor-
ity of all web pages, there is no need to crawl the entire web for such sites. Instead, we
will provide the crawler with a “seed” URL.

 On the conference sites themselves, we will crawl local hyperlinks. We will not fol-
low hyperlinks to external domains. Our goal is to find the pages that contain the
required data, such as speaker information and dates. We are not interested in crawl-
ing the entire conference site, and for this reason we will also use a depth limit to stop
crawling after reaching a given depth in the link graph. The crawl depth is the num-
ber of links that have been followed from the seed URL. A depth limit stops the pro-
cess from going beyond a specified depth.

BASIC CRAWLERS VERSUS RENDERING CRAWLERS

Basic crawlers will fetch only HTML pages and will not evaluate JavaScript. This leads
to a much simpler and faster crawl process. However, this may result in us excluding
valuable data.

 It is now very common to have web pages that are rendered dynamically in the
browser by JavaScript. Single-page applications (SPAs) using frameworks like React or
Vue.js are examples of this. Some sites use server-side rendering with these frame-
works, and others perform pre-rendering to return fully-rendered HTML to search
engine crawlers as a search engine optimization (SEO) technique. We cannot rely on
these being universally employed. For these reasons, we are opting to employ full ren-
dering of web pages, including JavaScript evaluation.

Is crawling really amenable to serverless architecture?
If at this point you’re wondering whether serverless architecture really is a valid
choice for the implementation of a web crawler, you have a good point! Web crawlers,
operating at scale, require fast, efficient storage; caching; and plenty of compute
power for multiple, resource-intensive page rendering processes. Serverless applica-
tions, on the other hand, are typically characterized by short-term, event-driven com-
putation and the absence of fast, local disk storage.

So, is the system in this chapter worthy of production use, or are we embarking on a
wild experiment to see how far we can push our cloud-native ideology?! There are def-
inite advantages to using a more traditional “farm” of servers such as Amazon Elastic
Compute Cloud (EC2) instances. If your crawling needs require a constantly-running
workload at large volumes, you might be better off choosing a traditional approach.

We must remember the hidden cost of maintaining and running this infrastructure,
the operating system, and any underlying frameworks. Also, our crawling scenario is
for on-demand extraction of data regarding specific conference websites. This
“bursty” behavior is suitable to an elastic, utility computing paradigm. A serverless
implementation may not be optimal from a caching perspective, but for our scenario,
that does not have a major impact. We are more than happy with this approach, given
that we are paying $0 while the system is not running and we don’t have to worry
about operating system patches, maintenance, or container orchestration and ser-
vice discovery.

216 CHAPTER 8 Gathering data at scale for real-world AI
 There are a number of options for rendering web pages when there is no user or
screen available:

 Splash (https://scrapinghub.com/splash), a browser designed for web scraping
applications.

 Headless Chrome (http://mng.bz/r2By) with the Puppeteer API. This simply
runs the popular Chrome browser and allows us to control it programatically.

 Headless Firefox (http://mng.bz/V8qG) with Selenium (https://www.seleni-
umhq.org). This option is a Firefox-based alternative to Puppeteer.

For our solution, we are going to use headless Chrome. We have chosen this option
because there are readily available Serverless Framework plugins for use with AWS
Lambda.

Legal and compliance considerations for web crawling
The legality of web crawling can be a contentious area. On one hand, the site owner
is making content publicly available. On the other hand, heavy-handed crawling can
have an adverse impact on the site’s availability and server load. Needless to say,
the following does not represent legal advice. Here are just a few best practices that
are regarded as polite behavior:

 Identify your crawler using the User-Agent string. Provide a way for site
owners to contact you, e.g. AIaaSBookCrawler/1.0; +https://
aiasaservicebook.com).

 Respect a site’s robots.txt. This file allows site owners to say what pages
you may and may not crawl.a

 Use a site’s API, if available, instead of web scraping.
 Limit the number of requests per second per domain.
 Cease crawling a site immediately if requested by the site owner.
 Only crawl publicly accessible content. Never use login credentials.
 Use caching to reduce load on the target server. Don’t refetch the same page

repeatedly in a short amount of time.
 Material gathered from websites generally falls under copyright and intellec-

tual property legislation. Make sure that you respect this.

In particular, we need to make sure that we limit the concurrency per domain/IP
address, or that we choose a reasonable delay between requests. These require-
ments will be a consideration in our serverless crawler architecture.

At the time of writing, the AWS Acceptable Use Policy prevents “Monitoring or crawling
of a System that impairs or disrupts the System being monitored or crawled”
(https://aws.amazon.com/aup/).

Note also that some websites implement mechanisms to prevent web scraping. This
can be done by detecting IP address or user agent. Solutions like CloudFlare (https://
www.cloudflare.com/products/bot-management/) or Google reCaptcha (https://
developers.google.com/recaptcha/docs/invisible) use more elaborate approaches.

a For more about robots.txt, see http://www.robotstxt.org.

http://www.robotstxt.org
https://aws.amazon.com/aup/
https://www.cloudflare.com/products/bot-management/
https://www.cloudflare.com/products/bot-management/
http://mng.bz/r2By
http://mng.bz/V8qG
https://scrapinghub.com/splash
https://www.seleniumhq.org
https://www.seleniumhq.org
https://developers.google.com/recaptcha/docs/invisible
https://developers.google.com/recaptcha/docs/invisible

217Introduction to web crawling
8.3.3 Serverless web crawler architecture

Let’s take a first look at how we will map our system to the canonical architecture
developed in chapter 1. Figure 8.5 provides us with a breakdown of the system’s layers
and how services collaborate to deliver the solution.

Figure 8.5 Serverless web crawler system architecture. The system is composed of custom
services implemented using AWS Lambda and AWS Step Functions. SQS and the CloudWatch
Events service are used for asynchronous communication. Internal API Gateways are used
for synchronous communication. S3 and DynamoDB are used for data storage.

Synchronous services Asynchronous services

Frontier:
List

Frontier:
Create seed

IAM

Strategy:
Handle

discovered
URLs

Systems
manager

parameter store

Amazon API
Gateway

SQSCloudWatch
events

event bus

DynamoDB Simple storage
service (S3)

Communication services

Data services

Scheduler:
Step function

Frontier:
Bulk insert

Fetcher:
Fetch URLs

Utility services

Frontier:
Update

218 CHAPTER 8 Gathering data at scale for real-world AI
The system architecture shows the layers of the system across all services. Note that, in
this system, we have no front-end web application:

 Synchronous tasks in the frontier and fetch services are implemented using
AWS Lambda. For the first time, we introduce AWS Step Functions to imple-
ment the scheduler. It will be responsible for orchestrating the fetcher based on
data in the frontier.

 The strategy service is asynchronous and reacts to events on the event bus indi-
cating that new URLs have been discovered.

 Synchronous communication between internal services in our system is han-
dled with API Gateway. We have chosen CloudWatch Events and SQS for asyn-
chronous communication.

 Shared parameters are published to Systems Manager Parameter Store. IAM is
used to manage privileges between services.

 DynamoDB is used for frontier URL storage. An S3 bucket is used as our item store.

TIP If you want to learn more about web scraping, look at chapter 6, “Intelli-
gent Web Crawling,” of Collective Intelligence in Action by Satnam Alag.6

Build or buy? Evaluating third-party managed services
There’s a certain irony in writing a book that espouses the virtues of managed ser-
vices, emphasizes the importance of focusing on your core business logic, and also
dedicates a chapter to building a web crawler from scratch.

Our crawler is quite simple and also domain-specific. This is some justification for
writing our own implementation. However, we know from experience that simple sys-
tems grow in complexity over time. Therefore, implementing your own anything should
be your last resort. Here are two rules of thumb for modern application development:

 Minimize the amount of code you write! The majority of code you write should
concern unique business logic. Where possible, avoid writing code for any
part of your system that is mundane and implemented in many other software
systems, frequently called undifferentiated heavy lifting.a

 Use cloud managed services. While you can follow rule 1 by using libraries,
frameworks, and components, these can have their own maintenance bur-
den, and you still have to maintain the infrastructure they run on. Integrating
with cloud managed services relieves you of this significant burden.

Such services can be found outside the realm of your chosen cloud provider. Even if
Amazon Web Services has no off-the-shelf web crawling and scraping services, look
beyond AWS and evaluate the third-party offerings. This is a worthwhile exercise
for any service you are thinking of building. For example, if you want to implement a
search feature in your application, you might evaluate a fully-managed Elasticsearch

6 Collective Intelligence in Action, Satnam Alag, Manning Publications, 2019, http://mng.bz/xrJX.

http://mng.bz/xrJX

219Implementing an item store
8.4 Implementing an item store
We will start our walkthrough of the crawler implementation with the simplest service
of all, the item store. As part of our conference-site crawling process, the item store
will store a copy of each page crawled on each conference website. First, grab the code
so you can explore in more detail.

8.4.1 Getting the code

The code for the item store is in the directory chapter8-9/item-store. Similar to
our previous examples, this directory contains a serverless.yml file declaring our
APIs, functions, and other resources. We will explain the contents as we go, before
deploying and testing the item store.

8.4.2 The item store bucket

Taking a look at serverless.yml in the item store, we see an S3 Bucket and not
much else! We are implementing the simplest possible store.

 Other services may write directly to our bucket or list objects and fetch objects
using the AWS SDK S3 API. All that is required is that they have the correct permis-
sions in their IAM roles and policies.

8.4.3 Deploying the item store

Deploying the item store is straightforward. Given that we are deploying an S3 bucket,
we will define its globally-unique name in a .env file within the chapter8-9 directory:

ITEM_STORE_BUCKET=<your bucket name>

No further configuration is required. The default region is eu-west-1. If you want to
specify a different region, provide it using the --region argument to the server-
less deploy command:

npm install
serverless deploy

service such as Elastic (https://www.elastic.co) or a managed search and discovery
API like Algolia (https://www.algolia.com/).

If you are interested in evaluating third-party web scraping services, take a look at the
following:a

 Grepsr (https://www.grepsr.com)
 Import.io (https://www.import.io)
 ScrapingHub ScrapyCloud (https://scrapinghub.com/scrapy-cloud)

a The origin of the term undifferentiated heavy lifting is unclear. However, Jeff Bezos, CEO of Amazon, men-
tioned it in a speech at Web 2.0 Summit in 2006. He said, “There is a huge amount of undifferentiated
heavy lifting, which we call ‘muck,’ in between an idea and a successful product. We believe creating new
products today is 70% muck and 30% new idea execution. We want to reverse that ratio.” (Source: Dave
Kellogg, Web 2.0 Summit: Jeff Bezos, November 8, 2006, http://mng.bz/Az2x.

http://mng.bz/Az2x
https://www.elastic.co
https://www.algolia.com/
https://www.grepsr.com
https://www.import.io
https://scrapinghub.com/scrapy-cloud

220 CHAPTER 8 Gathering data at scale for real-world AI
That’s it! The item store is deployed and ready. Let’s move on to the next service in
our crawler application.

8.5 Creating a frontier to store and manage URLs
Our frontier will store all seed URLs for conference sites and newly-discovered URLs
found during the crawl process. We are using DynamoDB for storage. Our goal here is
to leverage DynamoDB’s API for inserting and querying, with a minimal layer of
abstraction on top.

8.5.1 Getting the code

The code for the frontier service is in the directory chapter8-9/frontier-
service. This directory contains a serverless.yml file declaring our APIs, func-
tions, and other resources. We will explain the contents as we go, before deploying
and testing the frontier service.

8.5.2 The frontier URL database

The frontier URL database stores all URLs that are intended to be fetched, have been
fetched, or failed to have been fetched. The service is required to have an interface
supporting the following actions:

 Insert a seed URL.
 Update the status of a URL to PENDING, FETCHED, or FAILED.
 Insert a batch of newly-discovered URLs (links) that have been deemed eligible

for fetching.
 Get a set of URLs for a given seed URL, filtered by a status parameter and a

maximum record limit.

The data model for our frontier database is illustrated by the example in table 8.1.

Our “primary key” in this instance is a combination of the seed and the URL. The seed
attribute is the partition key or hash, whereas the url attribute is the sort key or range. This
ensures we don’t insert duplicates into the database.

Table 8.1 Frontier URL database example

Seed URL Status Depth

http://microxchg.io http://microxchg.io FETCHED 0

http://microxchg.io http://microxchg.io/2019/
index.html

FETCHED 1

http://microxchg.io http://microxchg.io/2019/all-
speakers.html

PENDING 2

https://
www.predictconference.com

https://
www.predictconference.com

PENDING 0

221Creating a frontier to store and manage URLs
 In addition to our table key, we will define a secondary index. This allows us to
quickly search based on seed URL and status.

 We can see from the sample data in table 8.1 that the full URL is included in the
url field, not just the relative path. This allows us to support external URLs linked
from the seed in the future, and saves us the inconvenience of having to reconstruct
URLs when we go to fetch the content.

 The DynamoDB table resource definition for the frontier table can be found in the
service’s serverless.yml file, and is shown in the following listing.

frontierTable:
Type: AWS::DynamoDB::Table
Properties:

TableName: ${self:provider.environment.FRONTIER_TABLE}
AttributeDefinitions:
- AttributeName: seed

AttributeType: S
- AttributeName: url

AttributeType: S
- AttributeName: status

AttributeType: S
KeySchema:

- AttributeName: seed
KeyType: HASH

- AttributeName: url
KeyType: RANGE

LocalSecondaryIndexes:
- IndexName: ${self:provider.environment.FRONTIER_TABLE}Status

KeySchema:
- AttributeName: seed

KeyType: HASH
- AttributeName: status

KeyType: RANGE
Projection:

ProjectionType: ALL
ProvisionedThroughput:

ReadCapacityUnits: 5
WriteCapacityUnits: 5

Listing 8.2 Frontier DynamoDB table definition

Serverless databases
We have already presented a few examples of working with DynamoDB. DynamoDB
is a NoSQL database, suitable for unstructured document storage. It is possible, and
sometimes very desirable, to model relational data in DynamoDB.ab In general,
DynamoDB is more suitable when you have a clear picture of how the data will be
accessed, and can design keys and indices to accommodate the access patterns.
Relational databases are more suitable when you are storing structured data, but

The table name is
defined as frontier.

The table’s key is comprised
of the seed and url attributes.

A secondary index, frontierStatus, is
defined to allow queries to be run

using the seed and status attributes.

In this case, we choose provisioned
throughput with five read and write
capacity units. Alternatively, we could
specify BillingMode: PAY_PER_REQUEST
to deal with unpredictable loads.

222 CHAPTER 8 Gathering data at scale for real-world AI
8.5.3 Creating the frontier API

We have described the DynamoDB table that is central to the frontier service. We
need a way to get URLs for conference sites into the system. Let’s now take a look at
the API Gateway and Lambda functions that allow external services to interact with
the frontier in order to achieve this.

 The APIs supported by the frontier service are shown in table 8.2.

The definition for each API can be found in the serverless.yml configuration for
frontier-service. This configuration also defines a Systems Manager Parameter
Store variable for the service’s API. We are not using DNS for the API, so it cannot be
discovered by other services using a known name. Instead, the API Gateway’s gener-
ated URL is registered in Parameter Store to be found by services with the correct
IAM permissions.

(continued)
want to support arbitrary access patterns in the future. This is what Structured Query
Language (SQL), the interface supported by an RDBMS, is very good at.ab

Relational databases are optimized for a lower number of long-running connections
from servers. As a result, a large number of short-lived connections from Lambda
functions can result in poor performance. As an alternative to the serverful RDBMS,
Amazon Aurora Serverless is a serverless relational database solution that avoids
the need to provision instances. It supports auto-scaling and on-demand access,
allowing you to pay per second of usage. It is also possible to run queries against
Aurora Serverless with the Data API using the AWS SDK in a Lambda function (http://
mng.bz/ZrZA). This solution avoids the problem of creating short-lived database con-
nections.

a Amazon has an example of relational model in DynamoDB on their blog: http://mng.bz/RMGv.
b Many advanced DynamoDB topics, including relational modeling, are covered in Rick Houlihan’s AWS

re:Invent 2018 talk, “Amazon DynamoDB Deep Dive: Advanced Design Patterns for DynamoDB
(DAT401),” https://www.youtube.com/watch?v=HaEPXoXVf2k.

Table 8.2 Frontier service APIs

Path Method Lambda Function Description

frontier-url/{seed}/{url} POST create Adds a URL for a seed

frontier-url/{seed} POST create Adds a new seed

frontier-url/{seed}/{url} PATCH update Updates the status of a URL

frontier-url PUT bulkInsert Creates a batch of URLs

frontier-url/{seed} GET list Lists URLs for a seed by status, up
to a specified maximum number of
records

http://mng.bz/RMGv
https://www.youtube.com/watch?v=HaEPXoXVf2k
http://mng.bz/ZrZA
http://mng.bz/ZrZA

223Creating a frontier to store and manage URLs

a

th
 For simplicity, all of our Lambda code is implemented in handler.js. It includes
the logic to create and execute the DynamoDB SDK calls. If you take a look at this
code, you’ll recognize much of it as being similar to our handlers from chapters 4 and
5. One significant difference is that we have introduced a library called Middy to allevi-
ate much of the boilerplate. Middy is a middleware library that allows you to intercept
calls to a Lambda before and after they are invoked, in order to perform common
actions (https://middy.js.org). A middleware is simply a set of functions that hook into
the lifecycle of your event handler. You can use any of Middy’s built-in middlewares or
any third-party middleware, or write your own.

 For our frontier handlers, we set up the Middy middleware as shown in the next
listing.

const middy = require('middy')
...

const { cors, jsonBodyParser, validator, httpEventNormalizer,
httpErrorHandler } = require('middy/middlewares')

const loggerMiddleware = require('lambda-logger-middleware')
const { autoProxyResponse } = require('middy-autoproxyresponse')
...

function middyExport(exports) {
Object.keys(exports).forEach(key => {

module.exports[key] = middy(exports[key])
.use(loggerMiddleware({ logger: log }))7

.use(httpEventNormalizer())

.use(jsonBodyParser())

.use(validator({ inputSchema: exports[key].schema }))

.use(cors())

.use(autoProxyResponse())8

.use(httpErrorHandler())
})

}

middyExport({
bulkInsert,
create,
list,
update

})

Listing 8.3 Frontier handler middleware initialization

7 https://github.com/eoinsha/lambda-logger-middleware.
8 https://www.npmjs.com/package/middy-autoproxyresponse.

Middy wraps the plain
Lambda handler.

lambda-logger-middleware
logs requests and responses in

a development environment.7

We use it with the Pino logger,
introduced in chapter 6.

httpEventNormalizer adds
default empty objects for

queryStringParameters
and pathParameters.

jsonBodyParser
automatically
parses the
body and
provides
an object.

validator validates the input
body and parameters against

a JSON schema we define.

cors
utomatically

adds CORS
headers to

e response.

middy-autoproxy
response converts

simple JSON
object responses
to Lambda Proxy
HTTP responses.8

httpErrorHandler handles errors that contain the properties
statusCode and message, creating a matching HTTP response.

https://github.com/eoinsha/lambda-logger-middleware
https://middy.js.org
https://www.npmjs.com/package/middy-autoproxyresponse

224 CHAPTER 8 Gathering data at scale for real-world AI
This middleware configuration can easily be replicated across all our services to avoid
common, repetitive Lambda boilerplate.

8.5.4 Deploying and testing the frontier

The frontier service is configured with the serverless-offline and serverless-
dynamodb-local plugins, as outlined in chapter 6. As a result, we can run the API
and Lambda functions with a DynamoDB environment locally. To get this up and run-
ning, we must install the DynamoDB database:

npm install
serverless dynamodb install
npm start

The npm start command kicks off the script to run our offline frontier service. By
default, the API runs on localhost port 4000. You can test the API from the com-
mand line using cURL:

Create a new seed URL
curl -X POST http://localhost:4000/frontier-url/dummy-seed

List all pending URLs for a given seed
curl http://localhost:4000/frontier-url/dummy-seed?status=PENDING

Once you are satisfied that everything is working as expected locally, deploy the fron-
tier to your AWS account:

sls deploy

You can use the AWS command line or the Management Console to inspect the
DynamoDB table and index that have been created. Then move on to the service
where all the real work happens—the fetcher!

8.6 Building the fetcher to retrieve and parse web pages
Now that we have a frontier service that can respond to requests for batches of URLs
to be fetched, we are ready to implement our fetcher. The code for this service is in
the chapter8-9/fetch-service directory. Figure 8.6 shows the physical architec-
ture of the fetcher implementation and the order of steps it performs as it retrieves
conference website pages.

 This service accepts fetch requests for a batch of URLs. The page retrieval, render-
ing, and parsing steps are executed for each URL in series.

NOTE We haven’t defined any Lambda triggers for the fetch handler. Rather
than using an API Gateway or an asynchronous event, we are going to allow
this handler to be invoked directly using the AWS Lambda SDK. This is a spe-
cial case because our fetcher implementation results in a long-running
Lambda, fetching multiple pages. An API Gateway would time out in 30 sec-
onds maximum. An event-based trigger is unsuitable, as we want to have syn-
chronous invocation from the scheduler.

225Building the fetcher to retrieve and parse web pages

s.yml
er
oked.
8.6.1 Configuring and controlling a headless browser

The configuration of the service (serverless.yml) includes a new plugin, server-
less-plugin-chrome (https://github.com/adieuadieu/serverless-chrome), as
shown in the following listing.

service: fetch-service

plugins:
...

- serverless-plugin-chrome
...
custom:

chrome:
flags:

- --window-size=1280,1696
- --hide-scrollbars

...

This plugin automatically installs the Google Chrome web browser in headless mode
(i.e., with no user interface) when the Lambda function is loaded. We can then con-
trol the browser programatically using the chrome-remote-interface module
(https://github.com/cyrus-and/chrome-remote-interface).

Listing 8.4 The fetch service serverless.yml loads and configures the Chrome plugin

Frontier API

Systems
manager

Item store
S3 bucket

Fetch
handler

URL
discovered

event

CloudWatch
events

6. Publish extracted links
to Event Bus

1. The Frontier API URL is
retrieved from Parameter Store 2. Load requested page

in browser

3. Extract HTML, links,
and Screenshot

4. Upload assets to item store
5. Update URL status

in Frontier:
FETCHED or
FAILED

Title
https://conference.example.com

Figure 8.6 The fetcher implementation integrates with the parameter store, the frontier API, an
embedded headless web browser, the item store, and the event bus.

The plugin is specified in the serverles
plugins section. It results in the brows
being opened before the handler is inv

Browser command-line arguments are
provided. To create a useful screenshot, we
provide a resolution and hide any scrollbars.

https://github.com/adieuadieu/serverless-chrome
https://github.com/cyrus-and/chrome-remote-interface

226 CHAPTER 8 Gathering data at scale for real-world AI

s
8.6.2 Capturing page output

Our primary goal is to gather the HTML and links. The links will be processed by the
strategy worker to determine whether or not they should be fetched. We capture a
screenshot of the page so that we have the option to develop a front-end application
with a better visualization of the fetched content.

 In figure 8.5 we showed a parser component in the crawler architecture. In our
implementation, the parser is implemented as part of the fetcher. This is both a sim-
plification and an optimization. In our fetcher, we already incurred the overhead of
loading a web browser and having it parse and render the page. It is a very simple step
to use the browser’s DOM API to query the page and extract links.

 All of the browser interaction and extraction code is encapsulated in a Node.js
module, browser.js. An extract is shown in the following listing.

return initBrowser().then(page =>
page.goto(url, { waitUntil: 'domcontentloaded' }).then(() =>

Promise.all([
page.evaluate(`

JSON.stringify(Object.values([...document.querySelectorAll("a")]
.filter(a => a.href.startsWith('http'))
.map(a => ({ text: a.text.trim(), href: a.href }))
.reduce(function(acc, link) {

const href = link.href.replace(/#.*$/, '')
if (!acc[href]) {

acc[href] = link
}
return acc

}, {})))
`),

page.evaluate('document.documentElement.outerHTML'),
page.evaluate(`

function documentText(document) {
if (!document || !document.body) {

return ''
}
return document.body.innerText + '\\n' +

[...document.querySelectorAll('iframe')].map(iframe => documentText(ifram
e.contentDocument)).join('\\n')

}
documentText(document)
`),

page.screenshot()
]).then(([linksJson, html, text, screenshotData]) => ({

links: JSON.parse(linksJson).reduce(
(acc, val) =>

acc.find(entry => entry.href === val.href) ? acc : [...acc, val],
[]

Listing 8.5 Browser module load function

Load the correct URL and wait
for the document to be loaded.

Query the page’s Document
Object Model (DOM) to

extract links using JavaScript.

Capture the page’
generated HTML.

Grab the text from the page and
any '<iframe>'s within.

Create a screenshot
image of the page.

227Building the fetcher to retrieve and parse web pages
),
html,
text,
screenshotData

}))
)

)
}

When the browser module’s load function is invoked with a URL, it performs the
following actions.

8.6.3 Fetching multiple pages

The fetch service’s Lambda handler accepts multiple URLs. The idea is to allow our
Lambda function to load and process as many pages as feasible. We optimize these
invocations so that all URLs sent to a fetch invocation are from the same seed URL.
This increases the likelihood that they have similar content and can benefit from
caching performed in the browser. URLs are fetched in sequence by our Lambda
function. This behavior could easily be altered, adding support for parallel fetchers to
optimize the process even further.

 All links found on a page are published to our system’s event bus. This allows any
other service subscribing to these events to react asynchronously. For our event bus,
we are using CloudWatch Events. The fetch service publishes discovered links in
batches of up to 10 (the CloudWatch limit), shown in the next listing.

const cwEvents = new AWS.CloudWatchEvents({...})
...
function dispatchUrlDiscoveredEvents(item, links) {

if (links.length > 0) {
if (links.length > 10) {

return dispatchUrlDiscoveredEvents(item, links.splice(0, 10))
then(() => dispatchUrlDiscoveredEvents(item, links))

}

const eventEntries = links.map(link => ({
Detail: JSON.stringify({ item, link }),
Source: 'fetch-service',
DetailType: 'url.discovered'

}))

return cwEvents.putEvents({ Entries: eventEntries })
promise().then(() => {})

}
return Promise.resolve()

}

Listing 8.6 Generating CloudWatch events for discovered URLs

We can only send 10 events at a
time using the CloudWatch

Events API, so we extract 10 and
then process the rest recursively.

The Detail property is the
JSON payload of the event.

We identify
the origin of

the event.

The event type is used to match events on
the receiving event in a CloudWatch rule.

The event batch is sent
using the CloudWatch

Events API in the AWS SDK.

228 CHAPTER 8 Gathering data at scale for real-world AI
For each successful page fetch, the Frontier URL Update API is invoked to mark the
URL as FETCHED. Any failed page loads result in the URL being marked as FAILED.

8.6.4 Deploying and testing the fetcher

To deploy the fetcher to AWS, test locally. First, we install module dependencies:

npm install

Next, we use a serverless local invocation. Our local invocation will attempt to copy
content to our item store S3 bucket. It will also publish events to CloudWatch events
relating to links discovered in the page that is fetched. As a result, ensure your AWS
credentials are configured either using the AWS_ environment variables or using an
AWS profile. Run the invoke local command, passing the test event provided with
the Fetch service code:

source ../.env
serverless invoke local -f fetch --path test-events/load-request.json

You should see Google Chrome run and load a web page (https://fourtheorem.com).
On some platforms, the invocation may not exit even after it has completed, and may
have to be killed manually. When the invocation is complete, you can navigate to the
S3 bucket for the item store in the AWS Management Console. There you will find a
single folder containing an HTML file and a screenshot. Download them and see the
results of your excellent work so far! We are now ready to deploy to AWS:

serverless deploy

CloudWatch Events as an event bus
In chapter 2, we described messaging technology and the distinction between queue
systems and pub/sub systems. For our “URL Discovered” messages, we would like
a pub/sub model. This allows multiple subscribers to respond to such events, and
does not make any assumptions about what they do. The approach aids us in our
mission to reduce coupling between services.

In AWS, we have a few pub/sub options:

 Simple Notification Service (SNS)
 Kinesis Streams, used in chapter 7
 Managed Streaming for Kafka (MSK) for users already using Kafka
 DynamoDB Streams, a system that publishes changes to DynamoDB data,

built on top of Kinesis Streams
 CloudWatch Events, a simple service requiring almost no setup

CloudWatch Events has the advantage of requiring little setup. We don’t need to
declare any topic or configure shards. We can just send events using the AWS SDK.
Any service wishing to react to these events needs to create a CloudWatch rule to
match incoming events and trigger the target. Examples of possible targets include
SQS, Kinesis, and of course, Lambda.

https://fourtheorem.com

229Determining the crawl space in a strategy service
8.7 Determining the crawl space in a strategy service
The process of determining a crawl space in any web crawler is specific to the domain
and application. In our scenario, we are making a number of assumptions that will
simplify our crawl strategy:

 The crawler follows local links only.
 The crawl strategy for each seed is independent. We don’t require any handling

of duplicate content across links found by crawling different seeds.
 Our crawl strategy obeys a crawl depth limit.

Let’s explore the crawler service implementation. You can find the code in
chapter8-9/strategy-service. The diagram in figure 8.7 presents the physical
structure of this service.

Figure 8.7 The strategy service implementation is tied to CloudWatch Events via SQS. It also integrates
with the parameter store and the frontier API.

You can see that this service is quite simple. It handles a batch of events as shown in
listing 8.7. An extract from the handler.js can be found in chapter8-9/strat-
egy-service.

Amazon Simple
queue service

Frontier API Strategy
handler

CloudWatch
events

Amazon
CloudWatch

rule

Systems
manager

4. Each URL is evaluated
against the crawl strategy.

3. URL discovered events are sent
to Lambda in batches.

2. CloudWatch rule forwards
events to Strategy SQS queue

1. The Frontier API URL is retrieved
from Parameter Store

5. A Frontier bulk insert is
performed for URLs compliant
with the strategy.

230 CHAPTER 8 Gathering data at scale for real-world AI

t
.

const items = event.Records.map(({ body }) => {
const { item, link } = JSON.parse(body)
return {

seed: item.seed,
referrer: item.url,
url: link.href,
label: link.text,
depth: item.depth + 1

}
}).filter(newItem => {

if (newItem.depth > MAX_DEPTH) {
log.debug(`Rejecting ${newItem.url} with depth (${newItem.depth})

 beyond limit`)
} else if (!shouldFollow(newItem.seed, newItem.url)) {

log.debug(`Rejecting ${newItem.url}
 from a different domain to seed ${newItem.seed}`)

} else {
return true

}
return false

})
log.debug({ items }, 'Sending new URLs to Frontier')
return items.length > 0

? signedAxios({method: 'PUT', url: frontierUrl, data: items})9

.then(() => ({}))

.catch(err => {
const { data, status, headers } = err.response || {}
if (status) {

log.error({ data, status, headers }, 'Error found')
}
throw err

})
: Promise.resolve({})

The events we have just processed were sent by the fetch service using the Cloud-
Watch Events API. To understand how they are received by the strategy service, refer
to figure 8.7 and the serverless.yml extract from strategy-service, shown in
listing 8.8.

Resources:
strategyQueue:

Type: AWS::SQS::Queue
Properties:
QueueName: ${self:custom.strategyQueueName}

Listing 8.7 Page crawl strategy

9 https://github.com/axios/axios.

Listing 8.8 CloudWatch events received by strategy service via SQS

Each record in the event is parsed
to extract the link and the page
where it was discovered.

A Frontier record for the new page is created.
It contains the referring page’s URL, the link
text label, and the incremented crawl depth.

Items that exceed the maximum
crawl depth are excluded.

Items from a differen
domain are excluded

The Frontier’s Bulk Insert API is
called with eligible items using

the Axios HTTP library.9

We define a SQS queue. This is the trigger for
the handleDiscoveredUrls Lambda handler.

https://github.com/axios/axios

231Orchestrating the crawler with a scheduler
strategyQueuePolicy:
Type: AWS::SQS::QueuePolicy
Properties:

Queues:
- !Ref strategyQueue

PolicyDocument:
Version: '2012-10-17'
Statement:

- Effect: Allow
Action:

- sqs:SendMessage
Principal:

Service: events.amazonaws.com
Resource: !GetAtt strategyQueue.Arn

discoveredUrlRule:
Type: AWS::Events::Rule
Properties:

EventPattern:
detail-type:

- url.discovered
Name: ${self:provider.stage}-url-discovered-rule
Targets:
- Arn: !GetAtt strategyQueue.Arn

Id: ${self:provider.stage}-url-discovered-strategy-queue-target
InputPath: '$.detail'

Let’s deploy the strategy service straight to AWS:

npm install
serverless deploy

We are now ready to build the final part of the crawler.

8.8 Orchestrating the crawler with a scheduler
The last component of the web crawler, the scheduler, is where the process of crawling
a site starts and is tracked until the end. Designing this kind of process with a server-
less mindset is challenging for anyone used to larger, monolithic architectures. In par-
ticular, for any given site, we need to enforce the following requirements:

 A maximum number of concurrent fetches per site must be enforced.
 The process must wait a specified amount of time before proceeding to per-

form the next batch of fetches.

These requirements are related to flow control. It would be possible to achieve flow con-
trol using a purely event-driven approach. However, in order to make an effort to clus-
ter requests to the same site within the same Lambda function, the architecture would
already be reasonably complex and difficult to reason about.

 Before we address the challenge of flow control, make sure you have the code for
this service ready to explore.

The SQS queue is given a
resource policy granting
the CloudWatch Events
service permission to send
messages to the queue.

A CloudWatch rule is defined to
match events of a given pattern.

The rule matches events with
DetailType: url-discovered.

The SQS queue is specified
as the target for the rule.

The body of the messages sent to
the target is the message payload.

232 CHAPTER 8 Gathering data at scale for real-world AI
8.8.1 Grabbing the code

The scheduler service code can be found in chapter8-9/scheduler-service. In
the serverless.yml, you will find a new plugin, serverless-step-functions.
This introduces a new AWS service that will help us to orchestrate the crawling process.

8.8.2 Using Step Functions

Our scheduler will implement flow control and orchestration of the process using an
AWS Step Function. Step Functions have the following capabilities:

 They can run for up to one year.
 Step Functions integrate to many AWS services, including Lambda.
 Support is provided for wait steps, conditional logic, parallel task execution,

failures, and retries.

Step Functions are defined in JSON using a specific syntax called Amazon States Lan-
guage (ASL). The serverless-step-function plugin allows us to define ASL for
our function in the serverless configuration file under the stepFunctions section.
We are using YAML in our Serverless Framework configuration. This format is con-
verted to JSON before the resources are created as part of the underlying Cloud-
Formation stack. Figure 8.8 illustrates the flow of the scheduler Step Function.

 We have already learned how the other component services are built. We covered
the APIs and event handling they use to interact with the rest of the system. The end-
to-end crawl process, as managed by the scheduler, has also been shown. In particular,
the Wait and Check Batch Count steps in the process show how control flow is eas-
ily managed with a Step Function. The ASL code listing for the Step Function state
machine is shown in listing 8.9.

StartAt: Seed URL
States:

Seed URL:
Type: Task
Resource: !GetAtt PutSeedLambdaFunction.Arn
Next: Get URL Batch
InputPath: '$'
ResultPath: '$.seedResult'
OutputPath: '$'

Get URL Batch:
Type: Task
Resource: !GetAtt GetBatchLambdaFunction.Arn
Next: Check Batch Count
InputPath: '$'
ResultPath: '$.getBatchResult'
OutputPath: '$'

Check Batch Count:
Type: Choice

Listing 8.9 The ASL for the scheduler service state machine

The state machine invokes
the putSeed Lambda to
start the crawl process.

A batch of URLs is retrieved using
the getBatch Lambda function.

The number of URLs in the batch is checked in a
Choice state. This is an example of how simple flow
control is implemented in a Step Function. If the count
is zero, the state machine terminates with the Done
state. Otherwise, it advances to the Fetch state.

233Orchestrating the crawler with a scheduler
Scheduler service

Frontier API

Fetch batchDone

Put seed
URL

Get URL
batch

Yes

Batch
count > 0?

No

Wait

Fetch

Fetch service

Get batch

Put seed

Systems
managerScheduler step function

User

2. The seed URL is added using the
Frontier API, invoked using a
Lambda function.

4. The Step Function
checks the number
of URLs retrieved.
If the number is 0,
the process
terminates.

5. The Fetch Service’s
‘Fetch’ Lambda
is invoked
synchronously with
the URL batch.

6. The Step Function waits for a
configurable period before looping
back to the ‘Get URL Batch’ step.

1. A crawl request begins with a
Step Function execution
for a seed URL.

3. A batch of
PENDING URLs
for the seed are
fetched from the
Frontier using
the ‘Get Batch’
Lambda.

Figure 8.8 The scheduler is implemented as an AWS Step Function. It makes synchronous invocations
to Lambdas defined within the scheduler service, as well as the fetch Lambda in the fetch service.

234 CHAPTER 8 Gathering data at scale for real-world AI
Listing 8.9 (continued)

Choices:
- Not:

Variable: $.getBatchResult.count
NumericEquals: 0

Next: Fetch
Default: Done

Fetch:
Type: Task
Resource: ${ssm:/${self:provider.stage}/fetch/lambda-arn}
InputPath: $.getBatchResult.items
ResultPath: $.fetchResult
Next: Wait

Wait:
Type: Wait
Seconds: 30
Next: Get URL Batch

Done:
Type: Pass
End: true

8.8.3 Deploying and testing the scheduler

Once we have deployed the scheduler, you should be able to initiate a crawl process
for any given seed URL. Let’s begin!

npm install
serverless deploy

We now have all services in place to run a crawl. A crawl process is initiated by starting
a Step Function execution. This can be done using the AWS command line. First, we
use the list-state-machines command to find the ARN of the CrawlScheduler
Step Function:

aws stepfunctions list-state-machines --output text

An example of the output returned follows:

STATEMACHINES 1561365296.434 CrawlScheduler arn:aws:states:eu-west-
1:123456789123:stateMachine:CrawlScheduler

Next, we start a State Machine execution by providing the ARN and passing JSON
containing the seed URL:

aws stepfunctions start-execution \
--state-machine-arn arn:aws:states:eu-west-

1:1234567890123:stateMachine:CrawlScheduler \
--input '{"url": "https://fourtheorem.com"}'

As an alternative to using the CLI, we can start a Step Function execution in the AWS
Management Console. Navigate to the Step Functions service in your browser and
select the CrawlScheduler service. You should see something similar to the screen
in figure 8.9.

The fetch service’s Lambda,
discovered using the parameter
store, is invoked with the batch

of URLs from the frontier.

Once the fetch is complete, the state machine
waits 30 seconds to ensure polite crawling
behavior. The state machine then loops back to
the Get URL Batch state to process more pages.

235Orchestrating the crawler with a scheduler

Figure 8.9 The Step Function view in the AWS Management Console allows you to start a new execution and view
the progress of existing executions. You can also inspect or edit the ASL JSON from here.

Select Start Execution. From here, you can enter the JSON object to be passed to the
start state. In our case, the JSON object requires one property—the URL of the site to
be crawled. This is shown in figure 8.10.

 Once the execution has started, the console will take you to the execution view.
From here, you can see a very useful visualization of the progress of the Step Function

Figure 8.10 A crawl process can be started by providing the site URL in the Start Execution option on the Step
Functions console.

236 CHAPTER 8 Gathering data at scale for real-world AI
execution, shown in figure 8.11. By clicking on any state, you can see the input data,
output data, and any error.

 When the Step Function execution is complete, take a look at the contents of the
item store S3 bucket. You should find a nice collection of files relating the most
important pages linked from the seed URL. An example of one page’s contents is
shown in figure 8.12.

Figure 8.12 The item store can be browsed from the S3 Console. This allows us to inspect the generated HTML
and visually check the page’s screenshot.

Figure 8.11 The visual workflow in the Step Functions console allows users to
monitor the progress of an execution.

237Summary
This type of data, gathered from many conference websites, will form the basis for
intelligent data extraction in chapter 9. However, before you move on, take some time
to navigate the components of the crawler in the AWS Console. Start with the Step
Function, following each phase in order. Look at the CloudWatch logs for the fetch
service, the strategy service, and the frontier. The flow of data and events should
match the diagrams in figure 8.9, and this exercise should help to cement everything
we have described in the chapter.

 In the next chapter, we will dive into extracting specific information from textual
data using named entity recognition.

Summary
 The type of AI algorithm or managed service dictates what data is required for

AI applications.
 If you don’t have the right data already, look at finding publicly available data

sources or generating your own datasets.
 Web crawlers and scrapers find and extract data from websites.
 DynamoDB secondary indexes can be used to perform additional queries.
 It is possible to architect and build a serverless application for web crawling,

particularly for specific small sets of sites.
 Event-driven serverless systems can use CloudWatch events (or EventBridge) as

an event bus.
 Processes requiring control flow can be orchestrated using AWS Step Functions.

WARNING Chapter 9 continues to build on this system and we provide
instructions on how to remove the deployed resources at the end of Chapter
9. If you are not planning on working on Chapter 9 for some time, please
ensure that you fully remove all cloud resources deployed in this chapter in
order to avoid additional charges!

Extracting value from
large data sets with AI
Chapter 8 dealt with the challenge of gathering unstructured data from websites
for use in machine learning analysis. This chapter builds on the serverless web
crawler from chapter 8. This time, we are concerned with using machine learning
to extract meaningful insights from the data we gathered. If you didn’t work
through chapter 8, you should go back and do so now before proceeding with this
chapter, as we will be building directly on top of the web crawler. If you are already
comfortable with that content, we can dive right in and add the information extrac-
tion parts.

This chapter covers
 Using Amazon Comprehend for named entity

recognition (NER)

 Understanding Comprehend’s modes of operations
(asynchronous, batch, and synchronous)

 Using asynchronous Comprehend services

 Triggering Lambda functions using S3 notifications

 Handling errors in Lambdas using a dead-letter queue

 Processing results from Comprehend
238

239Using AI to extract significant information from web pages
9.1 Using AI to extract significant information
from web pages
Let’s remind ourselves of the grand vision for our chapter 8 scenario—finding rele-
vant developer conferences to attend. We want to facilitate a system that allows people
to search for conferences and speakers of interest to them. In chapter 8’s web crawler,
we built a system that solved the first part of this scenario—gathering data on confer-
ences.

 However, we don’t want users to have to manually search through all of the
unstructured website text we have gathered. Instead, we want to present them with
conferences, the event locations and dates and a list of people who may be speaking at
these conferences.

 Extracting this meaningful data from unstructured text is a non-trivial problem—
at least, it was before the recent advancement of managed AI services.

 Let’s revisit the requirements overview diagram for our scenario from chapter 8.
This time, we are highlighting the relevant parts for this chapter.

Figure 9.1 This chapter deals with extraction of event and speaker information from the data we already
gathered.

9.1.1 Understanding the problem

The challenge of extracting important information from unstructured text is known
as named entity recognition (NER). A named entity can be a person, location, or organiza-
tion. It can also refer to dates and numerical quantities. NER is a challenging problem
and the subject of much research. It is certainly not a completely solved problem.
Since its results cannot be guaranteed to be 100% accurate, we must take this into
consideration. Human result-checking may be required, depending on the applica-
tion. For example, suppose you have a system that is required to detect locations in a
body of text. Now suppose one of the sentences in the text mentions the Apollo 11
command module, “Columbia.” NER might identity this as a location instead part of a

User

Event
website

URL

Navigate site to
find pages

Title

Date

Location

Name

Bio

Speaker
profiles

Event details

Extract
conference data

240 CHAPTER 9 Extracting value from large data sets with AI
spacecraft! Every named entity recognition system will give a likelihood score for each
recognition result, and this value never reaches 100%.

 For our conference event information extraction scenario, we are aiming to
extract the names of people, locations, and dates from website data. This will then be
stored and made accessible to users.

9.1.2 Extending the architecture

We are about to design and deploy a serverless system to extract the required informa-
tion from conference web pages. Let’s take a look at the architecture components for
this chapter, using the categories outlined in the canonical serverless architecture
from chapter 1. This is shown in figure 9.2.

 There is less variety of services and communication channels than with previous
chapters. From an AWS service point of view, this chapter will be relatively simple. The

Synchronous services Asynchronous services

Prepare Handle entity
results

IAMSystems manager
parameter store

Simple storage
service (S3)

Amazon
comprehend

AI servicesData services

Entity extraction
step function

Utility services

Get text
batch

Check active
jobs

Start batch
processing

Figure 9.2 Serverless entity extraction system architecture. The system is composed of
synchronous Lambda functions orchestrated using a step function. Data is stored in the item store
S3 bucket introduced in chapter 8. Bucket notifications from S3 trigger our asynchronous services.

241Understanding Comprehend’s entity recognition APIs
new aspects being introduced include Amazon Comprehend features and S3 event
notifications as a trigger for data processing.

9.2 Understanding Comprehend’s entity recognition APIs
Amazon Comprehend has more than one supported interface for entity recognition.
Before we go into further detail on how data flows through the system, let’s take some
time to understand how Comprehend works and what impacts that may have on our
architecture.

 The three entity recognition interfaces in Amazon Comprehend are outlined in
table 9.1

For full details on Comprehend limits, see the Amazon Comprehend Guidelines and
Limits documentation.1

 For our purposes, we wish to analyze documents larger than 5,000 characters, so
we must choose the asynchronous mode of operation. This mode requires us to use
two APIs: StartEntititesDetectionJob to initiate analysis, and DescribeEntitiesDetectionJob if we
wish to poll the status of the job.

 Comprehend returns entity recognition results as an array. Each array element
contains the following properties:

 Type—The entity type that has been recognized: PERSON, LOCATION, ORGANI-
ZATION, COMMERCIAL_ITEM, EVENT, DATE, QUANTITY, TITLE, or OTHER.

 Score—The confidence score in the analysis result. This is a value between 0
and 1.

 Text—The text of the entity that has been recognized.
 BeginOffset—The begin offset of the entity within the text.
 EndOffset—The end offset of the entity within the text.

Table 9.1 Amazon Comprehend modes of operation

API Description Limits

On-demand entity
recognition

A single piece of text is analyzed.
Results are returned synchronously.

Up to 5,000 characters only.

Batch entity recognition Multiple pieces of text are analyzed.
Results are returned synchronously.

Up to 25 documents, each up to
5,000 characters only.

Asynchronous entity
recognition

Multiple large pieces of text are ana-
lyzed. Text is read from S3 and results
are written to S3 asynchronously.

Only one request per second,
100 KB per document, 5 GB max
for all documents.

1 Amazon Comprehend Guidelines and Limits, http://mng.bz/2WAa.

http://mng.bz/2WAa

242 CHAPTER 9 Extracting value from large data sets with AI
To get a feel for how Comprehend works, let’s run a once-off test using the AWS Com-
mand Line Interface. Using the shell is a useful way to familiarize yourself with any
new AWS service.

TIP Chapter 2 and appendix A introduced the AWS CLI. In addition to the
normal AWS CLI, Amazon has released an interactive version called AWS Shell
(https://github.com/awslabs/aws-shell). It supports interactive help and
command auto-completion. If you use the AWS CLI to learn and explore new
services, it’s worth looking at AWS Shell.

We are going to analyze some sample text available in the code repository under
chapter8-9/sample-text/apollo.txt. The paragraph of text is taken from the
Apollo 11 page on Wikipedia.2 The sample text is shown in the next listing.

Apollo 11 was the spaceflight that first landed humans on the Moon.
Commander Neil Armstrong and lunar module pilot Buzz Aldrin formed the
American crew that landed the Apollo Lunar Module Eagle on July 20, 1969,
at 20:17 UTC. Armstrong became the first person to step onto the lunar
surface six hours and 39 minutes later on July 21 at 02:56 UTC; Aldrin
joined him 19 minutes later. They spent about two and a quarter hours
together outside the spacecraft, and they collected 47.5 pounds (21.5 kg)
of lunar material to bring back to Earth. Command module pilot Michael
Collins flew the command module Columbia alone in lunar orbit while they
were on the Moon's surface. Armstrong and Aldrin spent 21 hours 31 minutes
on the lunar surface at a site they named Tranquility Base before lifting
off to rejoin Columbia in lunar orbit.

We can run on-demand entity recognition using the CLI using the following
commands:

export INPUT_TEXT=`cat apollo.txt`

aws comprehend detect-entities --language-code=en --
text $INPUT_TEXT > results.json

The output of this command, saved to results.json, gives an indication of how
Comprehend provides analysis results for entity recognition tasks. Table 9.2 shows
some of the results obtained for this command in tabular format.

Listing 9.1 Sample text for entity recognition: apollo.txt

2 Apollo 11, Wikipedia, reproduced under the Creative Commons Attribution-ShareAlike License, https://
en.wikipedia.org/wiki/Apollo_11.

Table 9.2 Comprehend entity recognition sample results

Type Text Score BeginOffset EndOffset

ORGANIZATION Apollo 11 0.49757930636405900 0 9

LOCATION Moon 0.9277622103691100 62 66

https://github.com/awslabs/aws-shell
https://en.wikipedia.org/wiki/Apollo_11
https://en.wikipedia.org/wiki/Apollo_11

243Understanding Comprehend’s entity recognition APIs
It’s clear that very accurate results can be obtained from Comprehend entity recogni-
tion with very little effort.

 In order to get these kinds of results for every web page crawled from conference
sites, we will use the asynchronous entity recognition API. This means we will have to
handle the following characteristics of this API:

 Entity recognition jobs on Comprehend take longer to run in asynchronous
mode. Each job may take from 5 to 10 minutes. This is much longer than syn-
chronous jobs, but the trade-off is that asynchronous jobs can process much
larger documents.

 To avoid hitting API throttling limits, we will avoid more than one request per
second, and submit multiple web pages to each job.

 The asynchronous API in Amazon Comprehend writes results to a configured S3
bucket. We will process results by using notification triggers on the S3 bucket.

The web crawler from chapter 8 wrote a text file (page.txt) for each web page to an
S3 bucket. In order to start entity recognition, we will make a copy of this in a separate
staging folder in S3. This way, we can check the contents of the staging folder for new
text files to be processed. When processing has started, we will delete the file from the
staging area. The original file (page.txt) will remain in place in the sites folder
permanently, so it is available for further processing if required later.

 Let’s go ahead and implement the simple service that will create a copy of the text
file in the staging area.

PERSON Neil Armstrong 0.9994082450866700 78 92

PERSON Buzz Aldrin 0.9906044602394100 116 127

OTHER American 0.6279735565185550 139 147

ORGANIZATION Apollo 0.23635128140449500 169 175

COMMERCIAL_ITEM Lunar Module
Eagle

0.7624998688697820 176 194

DATE "July 20, 1969" 0.9936476945877080 198 211

QUANTITY first person 0.8917713761329650 248 260

QUANTITY about two and a
quarter hours

0.9333438873291020 395 424

QUANTITY 21.5 kg 0.995818555355072 490 497

LOCATION Earth 0.9848601222038270 534 539

PERSON Michael Collins 0.9996771812438970 562 577

LOCATION Columbia 0.9617793560028080 602 610

Table 9.2 Comprehend entity recognition sample results

Type Text Score BeginOffset EndOffset

244 CHAPTER 9 Extracting value from large data sets with AI
9.3 Preparing data for information extraction
The staging area that contains files ready to be processed will be a directory in the
item store S3 bucket called incoming-texts. We will use S3 notification triggers to
react to new page.txt files arriving in the bucket from the web crawler. Each file will
then be copied to incoming-texts/.

9.3.1 Getting the code

The code for the preparation service is in the directory chapter8-9/preparation-
service. This directory contains a serverless.yml. We will explain the contents as
we go before deploying and testing the preparation service.

9.3.2 Creating an S3 event notification

The preparation service is largely composed of one simple function with an event noti-
fication. Let’s explore serverless.yml in detail to see how this works. The next list-
ing shows an extract of this file, where we encounter our first S3 bucket event
notification.

service: preparation-service
frameworkVersion: '>=1.47.0'3

plugins:
- serverless-prune-plugin4

- serverless-pseudo-parameters567

- serverless-dotenv-plugin8

...

provider:
...
iamRoleStatements:

- Effect: Allow
Action:

- s3:GetObject
- s3:PutObject
- s3:ListBucket

Listing 9.2 Preparation service serverless.yml file extract

3 Serverless Framework, Using Existing Buckets, http://mng.bz/1g7q.
4 Serverless Prune Plugin, https://github.com/claygregory/serverless-prune-plugin.
5 The Sub Function and CloudFormation variables, http://mng.bz/P18R.
6 Serverless Framework Variables, http://mng.bz/Jx8Z.
7 Serverless Pseudo Parameters Plugin, http://mng.bz/wpE5.
8 Serverless Dotenv Plugin, http://mng.bz/qNBx.

To use S3 existing buckets as event triggers, you
must be using Serverless Framework 1.47.0 or

later.3 This line enforces that requirement.
A new version of every Lambda
function is created every time we
deploy. The serverless-prune-plugin
takes care of removing old versions of
Lambda functions as they accumulate.4

We want to use CloudFormation Sub
function with pseudo parameters such as
${AWS::AccountId} in our configuration,5
but this syntax conflicts with the
Serverless Framework’s variable syntax.6
serverless-pseudo-parameters7 solves this
by allowing us to use a simpler syntax
(#{AWS::AccountId}) instead.

Just as in previous chapters,
we use serverless-dotenv-

plugin8 to load environment
variables from the .env file.

We give our function permissions to read
to and write from the item store bucket.

https://github.com/claygregory/serverless-prune-plugin
http://mng.bz/wpE5
http://mng.bz/1g7q
http://mng.bz/Jx8Z
http://mng.bz/qNBx
http://mng.bz/P18R

245Preparing data for information extraction
Resource:
- arn:aws:s3:::${env:ITEM_STORE_BUCKET}/*

...
functions:

prepare:
handler: handler.prepare
events:

- s3:
bucket: ${env:ITEM_STORE_BUCKET}
event: s3:ObjectCreated:*
rules:

- suffix: page.txt
existing: true

We have just declared the function, its resources, and triggers for the preparation han-
dler. We can now move on to the implementation of this function.

9.3.3 Implementing the preparation handler

The goal of the preparation service’s handler module is to perform any processing
required in order for the text to be ready for entity recognition. In our case, this is
simply a case of putting the text in the right folder with the right filename for process-
ing. The preparation service’s handler module is shown in the following listing.

CloudFormation and S3 notification triggers
CloudFormation is a fantastic way to define Infrastructure as Code in a way that sup-
ports logically grouped resources and rollback in the event of any failure. One disad-
vantage, however, is that CloudFormation is not as flexible as the AWS SDK for
creating all resource types.

One example of this is with bucket notifications. Using CloudFormation, notifications
can only be added when the bucket resource is created.a We would prefer to be able
to add notifications to existing buckets for any service in our system.

The Serverless Framework provides a great workaround for this problem. By using an
s3 event type with the property existing: true, the framework uses the AWS SDK
under the hood to add a new notification to an existing bucket. This is achieved using
CloudFormation custom resources, a useful workaround when official CloudFormation
support falls short of your needs. For more information on custom resources, see the
AWS documentation.b

a CloudFormation AWS::S3::NotificationConfiguration, http://mng.bz/7GeQ.
b AWS CloudFormation Templates Custom Resources, http://mng.bz/mNm8.

The S3 event handling function is
defined in handler.js. The function
name is exported as prepare.

The Lambda trigger is defined as an
S3 notification. The notifications will
match any object (file) created in
the bucket with the suffix page.txt.

This ensures that the Serverless Framework
will not attempt to create the bucket.
Instead it will create a notification trigger
on the existing item store bucket.

http://mng.bz/7GeQ
http://mng.bz/mNm8

246 CHAPTER 9 Extracting value from large data sets with AI

...
const s3 = new AWS.S3({ endpoint: process.env.S3_ENDPOINT_URL })

function prepare(event) {
const record = event.Records[0]
const bucketName = record.s3.bucket.name
const key = decodeURIComponent(record.s3.object.key)
const object = { Bucket: bucketName, Key: key }
...
return s3

.getObject(object)

.promise()

.then(({ Body: body }) => body)

.then(body => body.toString())

.then(text => {
const textObjectKey = `incoming-texts/

${key.substring(KEY_PREFIX.length).replace(/page.txt$/
, 'pending.txt')}`
...
return s3

.putObject({ Body: text, Bucket: bucketName, Key: textObjectKey })

.promise()
})

}

9.3.4 Adding resilience with a dead letter queue (DLQ)

Before we deploy the preparation services, let’s deal with the issue of resilience and
retries. If our event handler fails to process the event, we risk the event being lost.
Lambda will retry our function twice.9 If our function does not successfully handle the
event during any of these invocation attempts, there will be no further automatic
retries.

 Luckily, we can configure a dead-letter queue (DLQ) for any Lambda function.
This is where unprocessed events go after automatic retries have failed. Once they are
in the DLQ, it is up to us to decide how to reprocess them.

 A DLQ may be an SQS queue or SNS topic. SNS (Simple Notification Service) is
used for pub/sub messaging, a topic covered in chapter 2. SQS (Simple Queue Service)
is used for point-to-point messaging. We are going to use an SQS queue for our DLQ,
since we only need one consumer. The DLQ interaction is illustrated in figure 9.3.

 This is how we will handle unprocessed messages:

 We set an SQS queue as the DLQ for the prepare Lambda function.
 Unprocessed messages are sent to our queue after all retry attempts have failed.
 We can inspect the SQS queue in the AWS Console intermittently. In a produc-

tion scenario, we would ideally set up a CloudWatch alarm to alert us when the

Listing 9.3 Preparation service handler.js extract

9 Lambda Asynchronous Invocation, http://mng.bz/5pN7.

Every S3 notification event is
an array of length 1.

Object keys are
URL-encoded
when they arrive
in S3 events.

The key for the staging area copy is
created by replacing the prefix and the
filename from the incoming key string.

The S3 object’s contents
are written to the target key.

http://mng.bz/5pN7

247Preparing data for information extraction
number of messages in this queue exceeds zero. To keep it simple, we are not
going to create a CloudWatch alarm in this chapter.10

 We will create a second Lambda function whose sole purpose is to retrieve mes-
sages from the DLQ and pass them back to the original prepare Lambda func-
tion. This can be invoked manually when we notice unprocessed messages and
have taken steps to remedy the underlying problem.

9.3.5 Creating the DLQ and retry handler

In chapters 2 and 3, we used an SQS queue to trigger a Lambda function. In the case
of the DLQ, we don’t want our retry Lambda to be automatically triggered. Since we
will manually invoke the retry Lambda, the retry handler must manually read mes-
sages from the SQS queue. Let’s take a look at the additions to serverless.yml.
The following listing shows the relevant extracts. You can find the complete configura-
tion file in chapter8-9/preparation-service.

custom:
...
dlqQueueName: ${self:provider.stage}PreparationDlq
...

provider:
...
iamRoleStatements:
...

- Effect: Allow
Action:

- sqs:GetQueueUrl

10 For details on creating a CloudWatch Alarm based on the SQS queue message count, see http://mng.bz/
6AjR.

Listing 9.4 Preparation service serverless.yml DLQ extract

Retry attempt

DLQ handler

Failed
messages

Prepare
function

Dead letter
queue

Manual
inspection

AWS
management

console

Text files

Item store
bucket

Figure 9.3 A DLQ facilitates inspection and reprocessing of events that have caused a Lambda
execution failure.

The DLQ queue name
is different for each
deployed stage to avoid
naming conflicts.

The Lambda requires four permissions to
read and process the messages in the DLQ

http://mng.bz/6AjR
http://mng.bz/6AjR

248 CHAPTER 9 Extracting value from large data sets with AI

.

- sqs:DeleteMessage
- sqs:SendMessage
- sqs:ReceiveMessage

Resource:
- !GetAtt preparationDlq.Arn

functions:
prepare:

...
onError: !GetAtt preparationDlq.Arn

...
retryDlq:

handler: dlq-handler.retry
environment:

DLQ_QUEUE_NAME: ${self:custom.dlqQueueName}
...
resources:

Resources:
preparationDlq:

Type: AWS::SQS::Queue
Properties:

QueueName: ${self:custom.dlqQueueName}
MessageRetentionPeriod:

The Lambda handler is implemented in the retry function in dlq-handler.js.
When invoked, its goal is to perform the following sequence of actions:

1 Retrieve a batch of messages from the DLQ.
2 For each message, extract the original event from the message.
3 Invoke the prepare function by loading the handler module and calling

prepare directly with the event, and wait for a success or failure response.
4 If the event has succeeded, delete the message from the DLQ.
5 Proceed to process the next message until all messages in the batch have been

processed.

DLQ handling is a common pattern that we wish to apply to multiple Lambda func-
tions, so we have extracted it into a separate, open source NPM module, lambda-
dlq-retry.11 The use of this module makes the retry implementation simpler. Let’s
take a look at dlq-handler.js, shown in the following listing.

const lambdaDlqRetry = require('lambda-dlq-retry')
const handler = require('./handler')
const log = require('./log')

11 lambda-dlq-retry is available at https://github.com/eoinsha/lambda-dlq-retry.

Listing 9.5 Preparation service DLQ handler

onError is used to set the DLQ
of the prepare Lambda function
to the SQS queue ARN.

The retry Lambda function is
configured without any event triggers
The DLQ queue is configured
using an environment variable.

We set the message retention period for
the DLQ to one day. This should be
reasonably long so undelivered messages
can be manually recovered. The maximum
message retention value is 14 days.

The lambda-dlq-retry
module is imported.

The module containing the prepare function
for the preparation service is required.

https://github.com/eoinsha/lambda-dlq-retry

249Preparing data for information extraction
module.exports = {
retry: lambdaDlqRetry({ handler: handler.prepare, log })

}

It’s worth mentioning that lambda-dlq-retry processes messages in batches of up
to 10. This can be configured by setting an alternative value in the environment vari-
able, DLQ_RETRY_MAX_MESSAGES.

9.3.6 Deploying and testing the preparation service

We have created four Lambda functions so far in this chapter. It’s worthwhile review-
ing these before we deploy and run them so we can start gaining a clear understand-
ing of how they work together. Figure 9.4 revisits our service architecture from the
beginning of the chapter. The sections we have covered already are highlighted.

Figure 9.4 So far, we have implemented Lambda functions for text preparation, getting a
batch of text files, starting entity recognition, and checking recognition progress.

We export a DLQ retry handler, created for us by the lambda-dlq-retry
module using the specified handler. You may pass a logger instance. If debug

logging is turned on, this will produce log entries relating to DLQ retries.

Synchronous services Asynchronous services

Prepare Handle entity
results

IAMSystems manager
parameter store

Simple storage
service (S3)

Amazon
comprehend

AI servicesData services

Entity extraction
step function

Utility services

Get text
batch

Check active
jobs

Start batch
processing

250 CHAPTER 9 Extracting value from large data sets with AI
Before we deploy the preparation service, make sure you have set up .env in the
chapter8-9 directory as outlined in chapter 8. This contains the item store bucket
name environment variable. Once that’s done, we can proceed with the usual steps to
build and deploy!

npm install
sls deploy

To test our function, we can manually upload a file to the item store bucket with the
suffix page.txt. We can then check to see if it is copied to the incoming-texts
staging area. We can use the sample text we already have from our simple Compre-
hend test:

source ../.env
aws s3 cp ../sample-text/apollo.txt \

s3://${ITEM_STORE_BUCKET}/sites/test/page.txt

To check the logs for the prepare function, we can use the Serverless logs com-
mand. This will take CloudWatch logs for the function and print them on the console.
Because we used the pino module for logging in chapter 8, we can format them
nicely for readable output by piping the output to the pino-pretty module:

npm install -g pino-pretty

sls logs -f prepare | pino-pretty

You should see some output similar to that shown in the following listing.

START RequestId: 259082aa-27ec-421f-9caf-9f89042aceef Version: $LATEST
[1566803687880] INFO (preparation-service/

1 on 169.254.238.253): Getting S3 Object
object: {

"Bucket": "item-store-bucket",
"Key": "sites/test/page.txt"

}
[1566803687922] INFO (preparation-service/

1 on 169.254.238.253): Uploading extracted text
bucketName: "item-store-bucket"
key: "sites/test/page.txt"
textObjectKey: "incoming-texts/test/pending.txt"

You can then check the S3 bucket for the contents of the file in the staging area:

aws s3 ls s3://${ITEM_STORE_BUCKET}/incoming-texts/test/pending.txt

Lastly, we are going to test the DLQ retry functionality. There’s no point in having a
process to handle recovery from a failure if it has not been tested and verified to work!
To simulate an error, we are going to withdraw read permissions to the S3 bucket.

Listing 9.6 Preparation service log output

251Preparing data for information extraction
Comment out the GetObject permission from the Lambda IAM role policy in
serverless.yml as follows:

...
- Effect: Allow

Action:
- s3:GetObject

- s3:PutObject
...

Deploy the updated preparation service with the modified IAM role:

sls deploy

We can run the same test again using a different S3 key (path):

aws s3 cp ../sample-text/apollo.txt s3://${ITEM_STORE_BUCKET}/sites/test2/
page.txt

This time, we should observe an error in the prepare function logs:

START RequestId: dfb09e2a-5db5-4510-8992-7908d1ac5f13 Version: $LATEST
...
[1566805278499] INFO (preparation-service/

1 on 169.254.13.17): Getting S3 Object
object: {

"Bucket": "item-store-bucket",
"Key": "sites/test2/page.txt"

}
[1566805278552] ERROR (preparation-service/1 on 169.254.13.17): Error in handler

err: {
"type": "Error",
"message": "Access Denied",

You’ll see this error two more times: once after one minute, and again after two addi-
tional minutes. This is because AWS Lambda is automatically retrying. After the three
attempts have failed, you should see the message arriving in the DLQ.

 We will use the AWS Console to inspect errors before attempting redelivery:

1 Browse to the SQS console and select the preparation service DLQ from the
queue list. You will notice that the message count is set to 1.

2 Right-click on the queue in the list and select the View/Delete Messages option.
Select Start Polling for Messages, and then select Stop Now once our undeliv-
ered S3 event message has come into view.

3 To see the full message, select More Details. We now see the full text of the S3
event that resulted in an error in the prepare Lambda function.

4 This is valuable information for troubleshooting the original message. By select-
ing the second tab, Message Attributes, we can also see the error message along
with the request ID. This ID matches the Lambda function invocation, and can
be used to correlate the error back to the logs in CloudWatch. You may notice
that the “error code” is shown here to be 200. This value can be ignored, as it is
always set to 200 for DLQ messages.

252 CHAPTER 9 Extracting value from large data sets with AI
Next, test redelivery by restoring the correct permissions in serverless.yml. Uncom-
ment the s3:GetObject line and redeploy with sls deploy. We can choose to trigger
the retry Lambda through the AWS Console, the AWS CLI, or using the Serverless
Framework invoke commands. The following command uses the AWS CLI:

aws lambda invoke --function-name preparation-service-dev-retryDlq /tmp/dlq-
retry-output

If you run this and inspect the output in /tmp/dlq-retry-output, you should see a
simple JSON object ({"count": 1}). This means that one message has been pro-
cessed and delivered! We can inspect the output of the retry Lambda as we did before,
using the sls logs command:

sls logs -f retryDlq | pino-pretty

This will show that the S3 event has been successfully processed this time.

9.4 Managing throughput with text batches
Now we have a separate staging area, along with a preparation service to populate it
with text from conference web pages as files are created by the web crawler. We have
also decided to use the asynchronous Comprehend API and process text in batches.
Our next step is to create a simple Lambda to retrieve a batch of text files to be pro-
cessed.

9.4.1 Getting the code

The getTextBatch function can be found in the extraction-servicehandler
module. The extraction service includes the rest of the functionality for this chapter,
as it deals with extraction and reporting of extraction results:

cd ../extraction-service

9.4.2 Retrieving batches of text for extraction

The source code for getTextBatch is shown in the next listing. This function uses
the S3 listObjectsV2 API to read files in the staging area up to a specified limit.

const MAX_BATCH_SIZE = 25
const INCOMING_TEXTS_PREFIX = 'incoming-texts/'
...

function getTextBatch() {
...
return s3

.listObjectsV2({
Bucket: itemStoreBucketName,
Prefix: INCOMING_TEXTS_PREFIX,

Listing 9.7 The getTextBatch function

Read up to 25 keys from the
staging area (incoming-texts).

253Asynchronous named entity abstraction
MaxKeys: MAX_BATCH_SIZE
})
.promise()
.then(({ Contents: items }) =>

items.map(item => item.Key.substring(INCOMING_TEXTS_PREFIX.length))
)
.then(paths => {

log.info({ paths }, 'Text batch')
return {

paths,
count: paths.length

}
})

}

We will wait to deploy the extraction service in full, so let’s test this using the sls
invoke local command. Bear in mind that although we are executing the function
locally, it is calling out to S3. As a result, your AWS_ environment variables should be
set here to ensure you are authorized to execute these SDK calls.

 We run the function locally as follows:

sls invoke local -f getTextBatch

You should see some output similar to the following listing.

{
"paths": [

"test/pending.txt",
"test2/pending.txt"

],
"count": 2

}

9.5 Asynchronous named entity abstraction
We already have a means to get a batch of text from conference web pages. Let’s now
build a function to take a set of text files and initiate entity recognition. Remember
that we are using asynchronous entity recognition in Comprehend. With this method,
input files are stored in S3. We can poll Comprehend to check the status of the recog-
nition job, and results are written to a specified path in an S3 bucket.

9.5.1 Get the code

The code for the extraction service is in the directory chapter8-9/extraction-
service. Our startBatchProcessing and checkActiveJobs functions can be
found in handler.js.

Listing 9.8 Sample output from getTextBatch

Modify file names to remove
the incoming-texts/ prefix

from the batch results.

The batch of transformed file
names is returned along with a
count indicating the batch size.

254 CHAPTER 9 Extracting value from large data sets with AI

Co
t

9.5.2 Starting an entity recognition job

The AWS SDK for Comprehend provides us with the startEntitiesDetectionJob
function.12 It requires us to specify an input path for all text files in S3 to be processed.
We want to ensure that no text files are omitted from processing. To achieve this, we
will copy files to be processed to a batch directory, and only delete the source files
once the startEntitiesDetectionJob call has succeeded.

 This can be seen in the startBatchProcessing Lambda function in the extrac-
tion service’s handler.js, shown in the next listing.

function startBatchProcessing(event) {
const { paths } = event
const batchId = new Date().toISOString().replace(/[^0-9]/g, '')

return (
Promise.all(

paths
.map(path => ({
Bucket: itemStoreBucketName,
CopySource: encodeURIComponent(

`${itemStoreBucketName}/${INCOMING_TEXTS_PREFIX}${path}`
),
Key: `${BATCHES_PREFIX}${batchId}/${path}`

}))
.map(copyParams => s3.copyObject(copyParams).promise())

)
// Start Processing
.then(() => startEntityRecognition(batchId))
// Delete the original files so they won't be reprocessed
.then(() =>

Promise.all(
paths.map(path =>

s3
.deleteObject({

Bucket: itemStoreBucketName,
Key: `${INCOMING_TEXTS_PREFIX}${path}`

})
.promise()

)
)

)
.then(() => log.info({ paths }, 'Batch process started'))
.then(() => ({ batchId }))

)
}

12 startEntitiesDetectionJob, AWS SDK for Javascript, http://mng.bz/oRND.

Listing 9.9 Extraction service handler startBatchProcessing function

The event is passed an array of paths. The
paths are relative to the incoming_texts
prefix. This set of paths makes up the batch.

We generate a batch ID
based on the current time.

This is used to create the
batch directory in S3.

All files in the batch are copied to the
batch directory before processing.

The S3 copyObject
API requires the

pySource property
o be URL-encoded.

We pass the batch ID to our
startEntityRecognition function so all files

in the batch can be analyzed together.

When the batch recognition has started,
we proceed to deleting all input paths in
the incoming_texts directory.

http://mng.bz/oRND

255Checking entity recognition progress

We can now see how, by copying files into a batch directory, we ensure that each file in
incoming_texts will be processed. Any error in starting the batch recognition job
will leave the file in incoming_texts so it can be reprocessed using a subsequent
batch.

 We just saw a reference to the startEntityRecognition function. This is the
function responsible for creating the parameters for Comprehend’s startEntities-
DetectionJob API. Listing 9.10 shows the code for this function.

function startEntityRecognition(batchId) {
return comprehend

.startEntitiesDetectionJob({
JobName: batchId,
DataAccessRoleArn: dataAccessRoleArn,
InputDataConfig: {

InputFormat: 'ONE_DOC_PER_FILE',
S3Uri: `s3://${itemStoreBucketName}/${BATCHES_PREFIX}${batchId}/`

},
LanguageCode: 'en',
OutputDataConfig: {

S3Uri: `s3://${itemStoreBucketName}/
${ENTITY_RESULTS_PREFIX}${batchId}`
}

})
.promise()
.then(comprehendResponse =>

log.info({ batchId, comprehendResponse }, 'Entity detection started')
)

}

The startBatchProcessing function is the core of the functionality in this chapter.
It passes the extracted text through to AWS Comprehend, the managed AI service
that performs the extraction of significant data.

9.6 Checking entity recognition progress
Before we try out our entity recognition job processing, we will take a look at check-
ActiveJobs. This is a simple Lambda function that will use the Comprehend API to
report on the status of jobs that are in progress. For manual progress checking, you can
also take a look at the Comprehend section of the AWS Management Console. When
we know how many jobs are in progress, we can know when to start more jobs and con-
trol the number of concurrent Comprehend job executions. The code for check-
ActiveJobs is shown in the next listing.

Listing 9.10 Extraction service startBatchProcessing Lambda function

For ease of manual troubleshooting, we use
the generated batch ID as the job name.

The job requires an IAM role with
permissions to read and write to the S3
bucket. The role definition can be found
in extraction-service/serverless.yml.

We need to tell Comprehend that
each file in the S3 folder represents
a single document. The other
option is ONE_DOC_PER_LINE.

The path to the files in the
batch is the path where our
files have just been copied.

Comprehend results are
written to an output folder
designated by the batch ID.

256 CHAPTER 9 Extracting value from large data sets with AI

function checkActiveJobs() {
return comprehend

.listEntitiesDetectionJobs({
Filter: { JobStatus: 'IN_PROGRESS' },
MaxResults: MAX_COMPREHEND_JOB_COUNT

})
.promise()
.then(({ EntitiesDetectionJobPropertiesList: jobList }) => {

log.debug({ jobList }, 'Entity detection job list retrieved ')
return {

count: jobList.length,
jobs: jobList.map(
({ JobId: jobId, JobName: jobName, SubmitTime: submitTime }) => ({

jobId,
jobName,
submitTime

})
)

}
})

}

We now have three Lambda functions that can be used together to perform entity rec-
ognition for batches of files:

1 getTextBatch to select a limited number of files for processing.
2 startBatchProcessing to start execution of entity recognition for a batch of

files.
3 checkActiveJobs to report on the number of recognition jobs in progress.

This will come in handy later when we tie all of our entity extraction logic
together.

We have tested getTextBatch already using sls invoke local. Next, we will deploy
the extraction service and start processing on a batch of sample text files, to see how
these functions fit together in practice.

9.7 Deploying and testing batch entity recognition
To test our function, we are going to first deploy the extraction service. This is done in
the same way as all our other Serverless Framework deployments:

cd extraction-service
npm install
sls deploy

We can now use the Serverless Framework CLI to invoke our remote function. We
will pass the startBatchProcessing Lambda function a simple JSON-encoded
array of paths. For this example, we will use the two files already present in our

Listing 9.11 Extraction service checkActiveJobs Lambda function

The listEntitiesDetectionJobs API is invoked,
filtering on in-progress jobs. To limit the number
potentially returned, we cap the number of results
to a maximum. We have chosen 10 for this value.

The results are transformed to give us an
output containing the total number of

in-progress jobs (not exceeding our maximum job
count value of 10) and a summary of each job.

257Persisting recognition results
incoming-texts S3 directory. These files contain the Apollo 11 sample text. Later,
we will be performing entity recognition on real conference web page data!

sls invoke -f startBatchProcessing --data \
"{\"paths\":[\"test/pending.txt\", \"test2/pending.txt\"]}"

If the execution is successful, you should see something like the following output—a
JSON object containing the batch ID:

{
"batchId": "20190829113049287"

}

Next, we will run checkActiveJobs to report on the number of active Comprehend
jobs.

{
"count": 1,
"jobs": [

{
"jobId": "acf2faa221ee1ce52c3881e4991f9fce",
"jobName": "20190829113049287",
"submitTime": "2019-08-29T11:30:49.517Z"

}
]

}

After 5–10 minutes, running checkActiveJobs again will report zero in-progress
jobs. At this point, you can inspect the output of the job.

 The extraction-service directory contains a shell script that may be used to
conveniently find, extract, and output the results of a batch job. To run it, execute the
following command:

./scripts/get-batch_results.sh <BATCH_ID>

The <BATCH_ID> placeholder can be replaced with the batch ID value you saw when
startBatchProcessing was executed. Running this script will print JSON repre-
senting Comprehend entity recognition results for each sample text. In our example
so far, both files in the batch have the same sample text about Apollo 11.

9.8 Persisting recognition results
We have seen how to manually run entity extraction functions from the command line
and verify the NER output. For our end-to-end application for conference site crawl-
ing and analysis, we want to persist our entity extraction results. This way, we can use
an API to serve extracted names for people, locations, and dates for our conference-
seeking audience!

Listing 9.12 checkActiveJobs output

The total number
of jobs in progress

The job ID is generated
by Comprehend.

The job name matches the
batch ID we generated.

258 CHAPTER 9 Extracting value from large data sets with AI
 Entity result processing will be driven by the arrival of Comprehend results in the
output folder that we configured when we started the entity recognition job. Just as
with the preparation service, we’ll use an S3 bucket notification. You will find the con-
figuration of the processEntityResults function in the serverless.yml for the
extraction service. The relevant section is reproduced in the next listing.

processEntityResults:
handler: handler.processEntityResults
events:

- s3:
bucket: ${env:ITEM_STORE_BUCKET}
event: s3:ObjectCreated:*
rules:

- prefix: entity-results/
- suffix: /output.tar.gz

existing: true

When results arrive, we’ll use our notified Lambda function to extract results and per-
sist them in the frontier service. Because the frontier service maintains state for all
URLs, it’s convenient to store the results along with the crawling/extraction state.
Let’s break down all the required steps:

1 The S3 notification triggers the processEntityResults function.
2 The object is fetched from S3 as a stream.
3 The stream is unzipped and extracted.
4 Each JSON line in the output is parsed.
5 The structure of each Comprehend result entry is transformed to a more acces-

sible data structure. The results are grouped by entity type (PERSON, LOCA-
TION, and so on).

6 The seed and URL for the web page are derived from the path (key) of the S3
object.

7 The transformed recognition results are sent to the frontier service.

The Lambda function and associated internal functions (handleEntityResult-
Lines, storeEntityResults) can be found in the extraction service’s handler.js
module.

9.9 Tying it all together
The last task in our conference site crawling and recognition application is to tie all of
the functionality together so all sites are automatically analyzed as the crawler makes
new page data available.

 Just as we did in chapter 8, we are going to employ AWS Step Functions for this job.

Listing 9.13 serverless.yml extract for processEntityResults

The notification configuration is in the
same bucket as the preparation
service S3 bucket notification. This
time, the key suffix/prefix is different.

All Comprehend results are persisted
to entity-results, as we specified in
the call to startEntitiesDetectionJob.

Comprehend writes other, temporary
files. We are only interested in the final

results, stored in output.tar.gz.

259Tying it all together
9.9.1 Orchestrating entity extraction

Figure 9.5 shows the control logic implemented in the step function and how it relates
to the Lambda functions we have built.

Figure 9.5 The logical steps in the extraction service are orchestrated using an AWS step function. This
ensures we have control over how many machine learning jobs are executed concurrently. It is also
extensible to support advanced error recovery scenarios.

Start

Entity extraction step function

checkActiveJobs

getTextBatch

startBatchProcessing

No

Yes

Yes

No

Check
comprehend

job count

Start
recognition

batch

Wait 30sBatch
size > 0

Get text
batch

At job
limit?

Comprehend

S3 Item store

Frontier API

Extraction service

processEntityResults

6. Comprehend entity
recognition results are
parsed and persisted
to the relevant record
in the Frontier.

2. To control the
throughput, the
count is checked
against an allowed
maximum number
of concurrent jobs.

1. The extraction
Ioop begins
by checking
the number
of recognition
jobs in progress.

3. If the limit has been
reached, we wait for
30 seconds before
checking again.

5. A new Comprehend
entity recognition job
is started with the
batch of text files.

4. If the limit has not
been reached, we
fetch a batch of
incoming text paths
from S3.

260 CHAPTER 9 Extracting value from large data sets with AI
Our conference data extraction process is a continuous loop that checks for newly
crawled page text, and starts asynchronous entity recognition according to a config-
ured limit of concurrent jobs. As we have seen, the result processing is a separate,
asynchronous process, driven by the arrival of Comprehend results in the S3 bucket.

 Figure 9.5 is a slight simplification of the step function. Step functions don’t actu-
ally support continuously executing events; the maximum execution time is one year.
It is also mandatory to have a reachable End state in the function. In order to deal
with this, we have added some additional logic to the step function. We will terminate
execution of the function after 100 iterations. This is a safety measure to avoid forget-
ting about a long-running job, potentially resulting in surprising AWS costs! The fol-
lowing listing shows a condensed view of the step function YAML. The full version is
contained in the extraction service’s serverless.yml.

StartAt: Initialize
States:

Initialize:
Type: Pass
Result:

iterations: 100
ResultPath: $.iterator
Next: Iterator

Iterator:
Type: Task
Resource: !GetAtt IteratorLambdaFunction.Arn
ResultPath: $.iterator
Next: ShouldFinish

ShouldFinish:
Type: Choice
Choices:

- Variable: $.iterator.iterations
NumericEquals: 0
Next: Done

Default: Check Comprehend
Check Comprehend:

Type: Task
Resource: !GetAtt CheckActiveJobsLambdaFunction.Arn
...

Check Job Limit:
Type: Choice
Choices:

- Variable: $.activeJobsResult.count
NumericGreaterThanEquals: 10
Next: Wait

Default: Get Text Batch
Get Text Batch:

Type: Task
Resource: !GetAtt GetTextBatchLambdaFunction.Arn
...

Listing 9.14 Condensed entity extraction step-function configuration

The start state initializes
the iteration count to 100.

The Iteration task is the start point
for the loop. It invokes a Lambda
function to decrement the count.

Check the number of iterations. When the loop has been
performed 100 times, the state machine terminates.

Now that we’ve run the checkActiveJobs function, we
can compare the number of active jobs to the limit (10).

261Tying it all together
Check Batch Size:
Type: Choice
Choices:

- Variable: $.textBatchResult.count
NumericEquals: 0
Next: Wait

Default: Start Batch Processing
Start Batch Processing:

Type: Task
Resource: !GetAtt StartBatchProcessingLambdaFunction.Arn
...

Wait:
Type: Wait
Seconds: 30
Next: Iterator

Done:
Type: Pass
End: true

The simple iterator function is provided in the handler.js module contained in
extraction-service.

9.9.2 End-to-end data extraction testing

We have completed building our final serverless AI application! You have covered a
great deal of serverless architecture, learned many incredibly powerful AI services,
and built some pretty amazing AI-enabled systems. Congratulations on reaching this
milestone! It’s time to reward yourself by running our end-to-end conference data
crawling and extraction application in full. Let’s kick off the web crawler with the URL
of a conference website. Then, sit back and observe our automated extraction logic
kick into action, as the details of conferences and speakers detected using AI start to
appear.

 Just as we did at the end of chapter 8, we will start the web crawler with a seed URL.
This time, we’ll pick a real conference website!

aws stepfunctions start-execution \
--state-machine-arn arn:aws:states:eu-west-

1:1234567890123:stateMachine:CrawlScheduler \
--input '{"url": "https://dt-x.io"}'

We will also start the entity extraction step function in the same way. This command
requires no JSON input:

aws stepfunctions start-execution \
--state-machine-arn arn:aws:states:eu-west-

1:1234567890123:stateMachine:EntityExtraction

In both cases, you will have to replace the step function ARN with the correct values
for your deployment. Recall from chapter 8 that the AWS CLI command required to
retrieve these is

aws stepfunctions list-state-machines --output text

Retrieve the batch of incoming texts. If there are
no texts available, we wait. If there is at least
one item, we start an entity recognition job.

The wait period of 30 seconds is one variable that controls the
throughput of data. We could also increase the maximum
batch size and the number of concurrent Comprehend jobs.

262 CHAPTER 9 Extracting value from large data sets with AI
Once the state machines are running, you can view them in the AWS Console Step
Functions section, and monitor their progress by clicking on the states as transitions
occur. Figure 9.6 shows the progress for the entity extraction state machine.

Figure 9.6 Monitoring the progress of the entity extraction state machine

9.9.3 Viewing conference data extraction results

Building a front-end UI for the application is beyond the scope of this chapter, so a
handy script for inspecting results is available in scripts/get_extracted
_entities.js. By running this script, a DynamoDB query will be executed to find
extracted entities for a given seed URL in the frontier table. These results are then
aggregated to generate a CSV file summarizing the number of appearances, and an
average score for each entity found using the machine learning process. The script is
executed as follows:

scripts/get_extracted_entities.js https://dt-x.io

The script uses the AWS SDK, so AWS credentials must be configured in the shell. The
script will print the name of the CSV file generated. For this example, it will be
https-dt-x-io.csv. Open the CSV using an application such as Excel to inspect
the outcome. Figure 9.7 shows our results for this conference website.

263Wrapping up

Figure 9.7 Monitoring the progress of the entity extraction state machine

We have filtered to show only PERSON entities in this case. The results include every
person mentioned across all pages of the crawled site! This conference has some great
speakers, including both authors of this book!

 Feel free to try other conference sites to test the limits of our conference crawler
and extractor. As always, bear in mind your usage costs with AWS. Comprehend costs
can be expensive as volumes grow,13 though a free tier is available. If in doubt, stop
any running step function state machines, and remove the deployed application as
soon as you are done testing. The chapter8-9 code directory includes a clean.sh
script to help you with this!

9.10 Wrapping up
You have made it to the end of the last chapter. Congratulations on sticking with it
and getting this far! In this book, we have built

 An image recognition system with object detection
 A voice-driven task management app
 A chatbot

13 Amazon Comprehend Costs, https://aws.amazon.com/comprehend/pricing/.

https://aws.amazon.com/comprehend/pricing/

264 CHAPTER 9 Extracting value from large data sets with AI
 An automated identity document scanner
 An AI integration for e-commerce systems, to determine the sentiment behind

customer product reviews, categorize them using a custom classifier, and for-
ward them to the correct department

 An event web site crawler that uses entity recognition to find information on
conferences, including speaker profiles and event location

We have also covered a lot of ideas, tools, techniques, and architectural practices.
Though Serverless and AI are fast-evolving topics, these foundational principles are
designed to endure as you build amazing AI-enabled serverless systems.

 We are grateful that you have devoted your time to AI as a Service. To learn more,
check out the fourTheorem blog (https://fourtheorem.com/blog) where you will
find more articles on AI, serverless architecture, and more.

 For all our updates on these topics, follow us on Twitter and LinkedIn:

 Peter Elger—@pelger—linkedin.com/in/peterelger
 Eóin Shanaghy - @eoins - linkedin.com/in/eoins

Summary
 Event-driven computing is achieved using S3 notifications and AWS Lambda.
 A dead-letter queue captures undelivered messages. It can be implemented

with AWS Lambda and SQS to prevent data loss.
 Named entity recognition is the process of automatically identifying entities

such as names, places, and dates in text.
 Amazon Comprehend has multiple modes of operation that can be selected

depending on the quantity of text being analyzed.
 Comprehend can be used to perform asynchronous batch entity recognition.
 Step functions can be used to control the concurrency and throughput of asyn-

chronous AI analysis jobs.
 The machine learning analysis data produced by Comprehend can be extracted

and transformed according to the application’s business requirements.

WARNING Please ensure that you fully remove all cloud resources deployed in
this chapter in order to avoid additional charges!

https://fourtheorem.com/blog

appendix A
AWS account setup and

configuration

This appendix is for readers unfamiliar with Amazon Web Services. It explains how
to get set up on AWS and how to configure your environment for the examples in
the book.

A.1 Set up an AWS account
Before you can start using AWS, you need to create an account. Your account is a
basket for all your cloud resources. You can attach multiple users to an account if
multiple people need access to it; by default, your account will have one root user.
To create an account, you need the following:

 A telephone number to validate your identity
 A credit card to pay your bills

The sign-up process consists of five steps:

1 Provide your login credentials.
2 Provide your contact information.
3 Provide your payment details.
4 Verify your identity.
5 Choose your support plan.

Point your favorite web browser to https://aws.amazon.com, and click the Create a
Free Account button.

A.1.1 Providing your login credentials

Creating an AWS account starts with defining a unique AWS account name, as
shown in figure A.1. The AWS account name has to be globally unique among all
AWS customers. Beside the account name, you have to specify an email address and
265

https://aws.amazon.com

266 APPENDIX A AWS account setup and configuration
a password used to authenticate the root user of your AWS account. We advise you to
choose a strong password to prevent misuse of your account. Use a password consist-
ing of at least 20 characters. Protecting your AWS account from unwanted access is
crucial to avoid data breaches, data loss, or unwanted resource usage on your behalf.
It is also worthwhile to spend some time investigating how to use multi-factor authen-
tication (MFA) with your account.

Figure A.1 Creating an AWS account: signup page

The next step, as shown in figure A.2, is
adding your contact information. Fill in
all the required fields, and continue.

Figure A.2 Creating an AWS account:
providing your contact information

267Set up an AWS account
A.1.2 Providing your payment details

Next, the screen shown in figure A.3 asks for your payment information. Provide your
credit card information. There’s an option to change the currency setting from USD
to AUD, CAD, CHF, DKK, EUR, GBP, HKD, JPY, NOK, NZD, SEK, or ZAR later if that’s
more convenient for you. If you choose this option, the amount in USD is converted
into your local currency at the end of the month.

A.1.3 Verifying your identity

The next step is to verify your
identity. Figure A.4 shows the
first step of the process. After
you complete the first part of
the form, you’ll receive a call
from AWS. A robot voice will
ask for your PIN. The four-digit
PIN is displayed on the website,
and you have to enter it using
your telephone. After your
identity has been verified, you
are ready to continue with the
last step.

Figure A.4 Creating an AWS
account: verifying your identity

Figure A.3 Creating an AWS account:
providing your payment details

268 APPENDIX A AWS account setup and configuration
A.1.4 Choosing your support plan

The last step is to choose a support plan; see figure A.5. In this case, select the Basic
plan, which is free. If you later create an AWS account for your business, we recom-
mend the Business support plan. You can even switch support plans later. You may
have to wait a few minutes until your account is ready. Click Sign In to the Console, as
shown in figure A.6, to sign into your AWS account for the first time!

Figure A.5 Creating an AWS account: choosing your support plan

Figure A.6 Creating an AWS account: you have successfully created an AWS account.

269Signing in
A.2 Signing in
You now have an AWS account and are
ready to sign in to the AWS Manage-
ment Console. The Management Con-
sole is a web-based tool you can use to
inspect and control AWS resources; it
makes most of the functionality of the
AWS API available to you. Figure A.7
shows the sign-in form at https://
console.aws.amazon.com. Enter your
email address, click Next, and then
enter your password to sign in.

Figure A.7 Creating an AWS account:
signing in to the console

After you have signed in successfully, you are forwarded to the start page of the Con-
sole, as shown in figure A.8.

Figure A.8 AWS Console

https://console.aws.amazon.com
https://console.aws.amazon.com

270 APPENDIX A AWS account setup and configuration
A.3 Best practice
In the previous sections we have covered setting up an AWS root account. If you
intend to use this account for experimentation only, this will suffice; however, be
aware that for production workloads, using the root account is discouraged. A full
treatment of this topic is outside the scope of this book, but we strongly encourage
you to use AWS account best practices, such as setting up IAM users, groups, and roles
as outlined in this AWS article: http://mng.bz/nzQd. We also recommend the AWS
security blog as a great resource for keeping up to date with AWS-related security top-
ics: https://aws.amazon.com/blogs/security/.

A.4 AWS Command Line Interface
When you need to create, edit, or inspect AWS cloud resources, you have a number of
options:

 Manually, using the AWS Console in a web browser.
 Programatically, using the AWS SDK for your programming language of choice.

Many languages are supported, including JavaScript and Python.
 Using third-party tools such as the Serverless Framework. These tools typically

use the AWS SDK under the hood.
 Using the AWS Command Line Interface (CLI).

Throughout this book, we will use the Serverless Framework where possible. In some
cases, we will execute commands with the AWS CLI. We aim to avoid using the AWS
Console. The AWS Console is more than adequate for experimentation and for famil-
iarizing yourself with AWS products. It’s also the easiest to use. However, as your
knowledge of AWS progresses, it’s definitely worth understanding the AWS CLI and
SDK. You should aim to use programmatic options for the following reasons:

 Your code (including CLI commands) provides a record of changes you have
made.

 You can place your code under version control (for example, Git) and manage
changes effectively.

 Actions can be redone quickly, without having to perform many manual steps.
 Human errors that are common with point-and-click interfaces are less likely.

Let’s set up the AWS CLI so you have everything ready to run CLI commands when
required.

 The installation method will depend on your platform. For Windows-based instal-
lation, simply download the 64-bit (https://s3.amazonaws.com/aws-cli/AWSCLI64PY3
.msi) or 32-bit (https://s3.amazonaws.com/aws-cli/AWSCLI32PY3.msi) installer.

https://s3.amazonaws.com/aws-cli/AWSCLI32PY3.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64PY3.msi
https://s3.amazonaws.com/aws-cli/AWSCLI64PY3.msi
http://mng.bz/nzQd
https://aws.amazon.com/blogs/security/

271AWS Command Line Interface
A.4.1 Installing the AWS CLI on Linux

Most Linux package managers offer a quick installation option for the AWS CLI. For
Ubuntu or Debian-based systems, use apt:

sudo apt install awscli

For distributions that use yum, like CentOS and Fedora, enter this command:

sudo yum install awscli

A.4.2 Installing the AWS CLI on MacOS

For MacOS users with Homebrew, the simplest installation method is to use Home-
brew:

brew install awscli

A.4.3 Installing the AWS CLI on other platforms

If your system differs from the options already described, you can try an alternative
method, such as using pip to install the AWS CLI with Python. For details, refer to the
AWS CLI installation documentation (http://mng.bz/X0gE).

A.4.4 Configuring the local AWS environment

To access AWS services from a local development system, we need to create an API
access key pair and make it available to our development shell. To do this, first log
back into your AWS account, and then select My Security Credentials from the AWS
user menu, as illustrated in figure A.9.

Figure A.9 AWS security credentials menu

http://mng.bz/X0gE

272 APPENDIX A AWS account setup and configuration
Next, select your user name from the AWS user list, and then select Create Access Key
from the user summary screen, as illustrated in figure A.10.

Figure A.10 AWS user summary screen

AWS will create an API access key pair. To use these keys, go ahead and download the
CSV file, as shown in figure A.11.

Figure A.11 AWS keys created dialog

273AWS Command Line Interface
Store this CSV file somewhere secure for later reference. The CSV file contains two
identifiers: the access key ID and a secret access key. The contents should look similar
to the following listing.

Access key ID,Secret access key
ABCDEFGHIJKLMNOPQRST,123456789abcdefghijklmnopqrstuvwxyz1234a

To use these keys for access, we need to add them to our development shell. For
UNIX-like systems, this can be achieved by adding the environment variables to your
shell configuration. For example, Bash shell users can add these to their
.bash_profile file, as shown in the next listing.

export AWS_ACCOUNT_ID=<your aws account ID>
export AWS_ACCESS_KEY_ID=<your access key ID>
export AWS_SECRET_ACCESS_KEY=<your secret access key>
export AWS_DEFAULT_REGION=eu-west-1
export AWS_REGION=eu-west-1

NOTE We have set both the AWS_REGION and AWS_DEFAULT_REGION environ-
ment variables. This is due to an unfortunate mismatch between the Java-
Script SDK and the CLI. The AWS CLI uses AWS_DEFAULT_REGION, whereas
the SDK uses AWS_REGION. We expect this to be corrected in future releases,
but for now, the simple fix is to set both variables to the same region.

Windows users will need to set these environment variables using the system configu-
ration dialog in the Control Panel. Note that in order for these environment variables
to take effect, you will need to restart your development shell.

Listing A.1 AWS credentials CSV file

Listing A.2 bash_profile entries for AWS credentials

Managing your keys
There are various other ways to configure AWS API access through the use of config-
uration files. For convenience, we have used environment variables for local develop-
ment.

You should exercise caution in managing access keys to ensure that they are not
inadvertently exposed. For example, adding access keys to a public Git repository is
a very bad idea!

Note that we are suggesting the use of environment variables for AWS API keys in a
local development environment only. We do not recommend that you do this in a pro-
duction environment. There are services available to help with key management,
such as AWS Key Management Service (KMS). A full treatment of this topic is outside
the scope of this book.

274 APPENDIX A AWS account setup and configuration
A.4.5 Checking the setup

To confirm that the setup is good, run the following commands:

$ aws --version
$ aws s3 ls s3://

Both should complete with no errors. If this is not the case, then please review all of
the preceding steps in this appendix.

appendix B
Data requirements
for AWS managed

AI services

Chapter 1 presented a table of AWS managed AI services. This appendix expands on
this table to show the data requirements for each service. This is presented in table
B.1. It also indicates whether training is supported in each service. You can use this
guide, along with everything you learned about data gathering in chapter 7, to
ensure you have the correct data and have performed adequate data preparation.

Table B.1 Data requirements for AI services

Application Service Data required Training support

Machine
translation

AWS Translate Text in the source
language

Translate does not support or require
custom training. You can, however,
define custom terminology that is spe-
cific to your domain.

Document
analysis

AWS Textract High quality images
of documents

No training is required.

Key phrases AWS Comprehend Text No training is required.

Sentiment
analysis

AWS Comprehend Text No training is required.

Topic modeling AWS Comprehend Text No training is required.

Document
classification

AWS Comprehend Text with classifica-
tion labels

Training is required. We covered
custom classifiers in chapter 6.
275

276 APPENDIX B Data requirements for AWS managed AI services
As you can see, the majority of services do not require a training phase. For these
cases, the data gathering and learning process is greatly simplified. Whether training
or using pre-trained models, AWS has clear specifications on the kind of data required
and the format it should be in.

Table B.1 Data requirements for AI services (continued)

Application Service Data required Training support

Entity extraction AWS Comprehend Text. For custom
entity training,
labelled entities
are required.

Standard entities (names, dates, and loca-
tions) can be extracted without training. It
is also possible to train AWS Comprehend
with custom entities by providing a set of
text with entity labels.

Chatbots AWS Lex Text utterances Training is not required. AWS Lex builds
models based on sample utterances and
configured slots. This was covered in
chapter 4.

Speech-to-text AWS Transcribe Audio files or
streaming audio

No training is required, but it is possible to
add custom vocabularies and pronuncia-
tions to refine results.

Text-to-speech AWS Polly Text, optionally
annotated using
SSML

No training is required. AWS Polly was cov-
ered in chapter 4.

Object, scene,
and activity
detection

AWS Rekognition Image or video No training is required.

Facial recognition AWS Rekognition Image or video No training is required, but custom faces
can be added.

Facial analysis AWS Rekognition Image or video No training is required.

Text in images AWS Rekognition Image No training is required.

Time series fore-
casting

AWS Forecast Time series data
and item meta-
data

Training is required. AWS Forecast trains
models based on historical data and meta-
data you provide.

Real-time person-
alization and
recommendation

AWS Personalize Item catalog and
user data

Training is required. AWS Personalize can
train a model and choose an optimal algo-
rithm based on the data provided.

appendix C
Data sources

for AI applications

Chapter 7 gives an overview of the importance of good data gathering and prepara-
tion in building AI-enabled applications. This appendix lists some of the data
sources that you may utilize to ensure you have the right data for AI success.

C.1 Public data sets
1 The Registry of Open Data on AWS (https://registry.opendata.aws) includes,

among others data sets, petabytes of Common Crawl data (http://common-
crawl.org/the-data).

2 Public APIs, such as the Twitter API, provide large volumes of data. We saw in
chapter 6 how social media posts can be used to perform classification and
sentiment analysis.

3 Google has a search engine for public data sets (https://tool-
box.google.com/datasetsearch) and a list of public data sets (https://
ai.google/tools/datasets/).

4 Kaggle has a directory of thousands of data sets (https://www.kaggle.com/
datasets).

5 Many government data sources are now available. An example of this is the
United States open government data on https://data.gov.

6 If you are a dog person who felt there was too much cat content in chapter 2,
you will be comforted by the 20,000 dog images available in the Stanford
Dogs Data set (http://vision.stanford.edu/aditya86/ImageNetDogs/)!

TIP Many public data sets are subject to licenses. Do your homework and
understand the legal implications of using data sets in your work.
277

http://vision.stanford.edu/aditya86/ImageNetDogs/
https://data.gov
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://ai.google/tools/datasets/
https://ai.google/tools/datasets/
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch
http://commoncrawl.org/the-data
http://commoncrawl.org/the-data
https://registry.opendata.aws

278 APPENDIX C Data sources for AI applications
C.2 Software analytics and logs
Beyond public, prepackaged data, there are many means of collecting data for your
machine learning applications. Existing software systems have analytics and log data
which can be prepared and optimised for machine learning algorithms:

 Analytics platforms that collect data on end-user interaction from web and
mobile applications are a valuable source of raw data on user behavior and
interactions. Google Analytics is one example of this.

 Web server and back end application logs or audit logs may also be a compre-
hensive source of interactions with and within a system.

C.3 Human data gathering
Where data is not readily available and needs to be either collected or transformed at
scale, there are a number of ways to crowdsource this job:

 Data gathering companies provide services to collect (via surveys or other
means) or transform data.

 There are API-driven crowdsourcing services. Amazon Mechanical Turk
(MTurk) is a well-known example (https://www.mturk.com/).

 Many of us have performed countless Captcha checks as a means of verifying
that we are not robots! This service actually provides two benefits. Services like
reCAPTCHA also serve as a means of gathering labelled training data for image
recognition algorithms.1

C.4 Device data
Depending on your application, it may be possible to gather telemetry from existing
systems, either using software monitoring tools or hardware sensors:

 Sensors are no longer limited to industrial automation devices. IoT (internet of
things) devices are becoming prevalent in many environments and generate
potentially vast data sets.

 Still-image or video cameras can be used to gather image data for training and
analysis. As an example of this, think of the scale of image capture required for
Google StreetView and again, how reCAPTCHA is used as a means to label
these images at scale.

1 James O’Malley, “Captcha if you can: how you’ve been training AI for years without realising it.” TechRadar
12 January 2018, https://www.techradar.com/news/captcha-if-you-can-how-youve-been-training-ai-for-years-
without-realising-it.

https://www.techradar.com/news/captcha-if-you-can-how-youve-been-training-ai-for-years-without-realising-it
https://www.techradar.com/news/captcha-if-you-can-how-youve-been-training-ai-for-years-without-realising-it
https://www.mturk.com/

appendix D
Setting up a DNS

domain and certificate

Several of the systems presented in this book require a common AWS setup that
needs to be done via the AWS Management console, rather than programmatically.
This is because some manual verification is required. Please ensure that you have
completed the following setup before running the example systems.

D.1 Setting up a domain
When you create dynamic HTTP endpoints for AWS resources like S3 buckets and
API Gateway, AWS will generate a URL for these endpoints. You can use these gen-
erated names when you are not building a production application. It quickly
becomes frustrating, however. Every time you remove and destroy these resources,
the URLs may change. They are also long and difficult to remember. To avoid these
problems, we are going to register a domain. The process is made easy by using the
Route 53 service in AWS. Alternatively, if you already have a domain and wish to use
it, or you wish to use a subdomain of an already registered domain, consult the
Route 53 documentation (http://mng.bz/Mox8).

D.1.1 Registering a domain name

We are going to walk through the process of registering a new domain from scratch
using Route 53.

 If you don’t yet have any domain-related resources on this AWS account, click-
ing the Route 53 link in the Networking section of the main AWS Console (assum-
ing the All Services control is already expanded) takes you to an introductory
screen. If you’ve already created resources, you’re instead sent to the Route 53
dashboard.
279

http://mng.bz/Mox8

280 APPENDIX D Setting up a DNS domain and certificate
Figure D.1 Amazon Route 53 introduction page showing the service’s four distinct elements

Figure D.1 shows the Route 53 introduction page. As you can see, Route 53 is built to
deliver four distinct but closely related services: domain registration (Amazon is a
domain name registrar); DNS management, which is the tool you’ll use to direct traffic
to your domain; traffic management, to handle traffic redirection; and availability moni-
toring, to confirm that your target resources are performing the way they’re supposed
to. We are only going to concern ourselves with domain registration and DNS man-
agement.

 Click the Get Started Now button beneath Domain Registration, and then click
Register Domain. Type the main part of the name—for example, acme-corporation if
you wish to register acme-corporation.com. A drop-down menu displays domains includ-
ing .com, .org, .net, and so on, with their annual registration cost. Select one, and
click Check. Route 54 will search online records to see if that combination is currently
available. When you find a domain name that fits your needs, add it to your cart, and
go through the checkout process to submit payment for your first year’s registration
fee. Domain registrations usually cost between $10 and $15 US per year and aren’t
included in Free Tier usage. In a short time, your new domain will appear in the
Route 53 dashboard. It may take a while before your domain registration is complete.
At that point, you are ready to proceed to configuring your domain and using it for
your newly developed serverless AI application!

NOTE There’s nothing forcing you to use Route 53 for your domain registra-
tion. In fact, you may find that other providers offer cheaper alternatives. You
can use Route 53’s other features even for domains registered through other
companies.

281Settting up a certificate
D.1.2 Configuring your hosted zone

Your domain is now registered, but you haven’t told it what to do with incoming
requests. Route 53 will automatically create a Hosted Zone for your registered domain.
Click Hosted Zones in the Route 53 section of the Console and follow the link to the
new hosted zone. You will find yourself on a page with two pre-created record sets:

 Start of authority (SOA)—Identifies your domain’s basic DNS configuration infor-
mation.

 NS—Lists authoritative name servers that can be queried about your domain
host. These are the public services that provide answers to domain-name trans-
lation requests.

NOTE Record set—A set of data records that defines a particular aspect of
domain behavior.

Don’t mess with either of these record sets. They’re not enough on their own to make
your new domain name fully available. Later on, we will use the Serverless Framework
to automatically add a new record that will tell anyone using your domain name serv-
ers (by pointing their browsers to your domain) to request the IP address used by our
application.

D.2 Settting up a certificate
Web security is an extensive topic and well beyond the scope of this book. We still want
to be sure that we use HTTPS for all web traffic. The days of using plain HTTP are long
gone, and it’s good to consider security best practices early on. In order to make it easy
to manage certificate generation and renewal, we will use AWS Certificate Manager.

D.2.1 Provisioning a new certificate

In the AWS Console, click the link to Certificate Manager in the Networking section.
This will bring you to the Certificate Manager dashboard, shown in figure D.2.

Figure D.2 The
Certificate Manager
introduction page

282 APPENDIX D Setting up a DNS domain and certificate
Select Get Started under the Provision Certificates section, and choose the Request a
Public Certificate option. The Request a Certificate page, shown in figure D.3, allows us
to specify the domains for our certificate. We are going to request a wildcard certificate
to use with all subdomains of our registered domains. For example, if we registered
stuff.org, the wildcard certificate protects api.stuff.org and www.stuff.org.

 Add *.stuff.org (the wildcard domain name) and stuff.org. Then, click
Next to select the validation method. This will present a page similar to figure D.3.

 The AWS Console will request validation for the domains you have added to
ensure you are the owner, as shown in figure D.4.

Figure D.3 Selecting domain names to protect with a certificate

Figure D.4 Choosing a validation method for your certificate

283Settting up a certificate
Choose DNS Validation and confirm this selection. Since we registered the domain
with Route 53, we have the option to automatically create the special validation DNS
entries in the hosted zone. Expand the section for each domain, shown in figure D.5.

Figure D.5 Creating validation DNS records with Route 53

Click Create Record in Route 53. Confirm this step for each domain before selecting
Continue.

 You may need to wait up to 30 minutes before your domain has been validated and
your certificate provisioning has completed. Once this is done, the Certificate Man-
ager will show your certificate status as Verified, as shown in figure D.6.

284 APPENDIX D Setting up a DNS domain and certificate

Figure D.6 A verified certificate shown in the Certificate Manager section of the AWS Console

This is excellent work! You have a registered domain and have created an associated
SSL/TLS certificate to ensure traffic is encrypted. You will use this domain later to
access your newly deployed application.

appendix E
Serverless Framework

under the hood

In this appendix we will look in more detail at serverless technology on AWS, and in
particular at the Serverless Framework, which is used for many of the example sys-
tems in this book.

 As alluded to in chapter 1, the term serverless doesn’t mean a system without
servers; it means that we can construct systems without the need to concern our-
selves with the underlying server infrastructure. By using serverless technologies,
we are able to move up a level of abstraction and focus more on our application
logic and less on the technical “heavy lifting.”

 A key concept underpinning serverless is Infrastructure as Code (IaC). IaC
allows us to treat the entire infrastructure for a system as source code. This means
that we can store it in a revision control system such as Git, and apply software
development best practices to its creation and maintenance.

 All of the major cloud providers support some mechanism for IaC. On AWS, the
service that supports IaC is called CloudFormation.

 CloudFormation can be configured by creating a template file in either JSON
or YAML format. Though it is possible to write templates directly using a text edi-
tor, this can quickly become unwieldy for systems of an appreciable size, as the tem-
plates are quite verbose. A number of tools are available to help developers work
with CloudFormation, such as SAM, the AWS CDK, and the Serverless Framework.
There are also other tools such as HashiCorp’s Terraform that target multiple
clouds, which we won’t cover here.

 Though the Serverless Framework can be used to deploy any AWS resources, it
is oriented toward managing and deploying serverless web applications. Typically
this means API Gateway, Lambda functions, and database resources such as
285

286 APPENDIX E Serverless Framework under the hood
DynamoDB tables. The Serverless configuration file can be thought of as a lightweight
domain-specific language (DSL) that describes these types of applications.

 Figure E.1 depicts how the Serverless Framework cooperates with CloudFormation.

Figure E.1 CloudFormation workflow

On deployment, the Serverless configuration file (serverless.yml) is “compiled” into a
CloudFormation template. A deployment bucket is created, and code artifacts for
each of the defined Lambda functions are uploaded. Hashes are computed for each
of the Lambda functions and included in the template. Serverless then calls the
CloudFormation UpdateStack method to delegate the deployment work to Cloud-
Formation. CloudFormation then proceeds to query the existing infrastructure.
Where differences are found—for example, if a new API Gateway route has been
defined—CloudFormation will make the required infrastructure updates to align the
deployment with the new compiled template.

E.1 Walkthrough
Let’s take a simple Serverless configuration file and walk through the deployment pro-
cess in detail. First create a new empty directory called hello. cd into this directory
and create a file serverless.yml. Add the code shown in the next listing to this file.

Compile

CloudFormation template

CloudFormation

Stack

Deployed system

Compare

Provision

Deployment
bucket

Upload
function
code

287Walkthrough

service: hello-service

provider:
name: aws
runtime: nodejs10.x
stage: dev
region: eu-west-1

functions:
hello:

handler: handler.hello
events:

- http:
path: say/hello
method: get

Next create a file handler.js in the same directory and add the code in the following
listing to it.

'use strict'

module.exports.hello = async event => {
return {

statusCode: 200,
body: JSON.stringify({

message: 'Hello!',
input: event

},
null, 2)

}
}

Let’s now deploy this handler into AWS. You will need to set up an AWS account and
also configure your command line before deployment. If you haven’t already done
this, please refer to appendix A, which walks through the setup process.

 To deploy this simple application, run

$ serverless deploy

Let’s take a look at the artifacts that were created during the deployment process.
When deploying this application, the framework created a local working directory
named .serverless in the application directory. If you look in this directory, you
should see the files listed in the next listing.

cloudformation-template-create-stack.json
cloudformation-template-update-stack.json
hello-service.zip
serverless-state.json

Listing E.1 Simple serverless.yml

Listing E.2 Simple handler function

Listing E.3 Serverless working directory

288 APPENDIX E Serverless Framework under the hood
These files serve the following purposes:

 cloudformation-template-create-stack.json is used to create an S3
deployment bucket for code artifacts, if one doesn’t exist already.

 cloudformation-template-update-stack.json contains the compiled
CloudFormation template to deploy.

 hello-service.zip holds the code bundle for our Lambda function.
 serverless-state.json holds a local copy of the current deployed state.

Log in to the AWS web console to see exactly what was deployed by the framework.
First go to S3 and search for a bucket containing the string 'hello'; you should find
a bucket named something like hello-service-dev-serverlessdeployment-
bucket-zpeochtywl7m. This is the deployment bucket that the framework used to
push code to AWS. If you look inside this bucket, you will see a structure similar to the
following listing.

serverless
hello-service

dev
<timestamp>

compiled-cloudformation-template.json
hello-service.zip

<timestamp> is replaced with the time when you ran the deployment. As updates are
made to the service, the framework will push the updated templates and code to this
bucket for deployment.

 Next, use the AWS console to navigate to the API Gateway and Lambda web con-
soles. Click on the Services link in the top right, and search for lambda and then api
gateway, as illustrated in figure E.2.

Figure E.2 Searching for services in the AWS web console.

Listing E.4 Serverless deployment bucket

289Walkthrough
On the Lambda and Api Gateway consoles, you will see the deployed instances of the
service, as shown in figures E.3 and E.4.

Figure E.3 Deployed Lambda function

Figure E.4 Deployed API Gateway

Finally if you open the CloudFormation web console, you will see the deployed tem-
plate for the service. This should look similar to figure E.5.

 Understanding the deployment process for the framework can help to diagnose
issues when things go wrong. The key thing to bear in mind is that serverless
deploy delegates deployment to CloudFormation UpdateStack, and that we can use
the AWS Console to look at the stack update history and current state if issues occur.

290 APPENDIX E Serverless Framework under the hood
Figure E.5 Deployed CloudFormation stack

E.2 Cleanup
Once you have finished with the example stack, be sure to remove it by running

$ serverless remove

Make sure that the framework has removed all of the related artifacts described here.

index
A

action slot 131, 134
activate function 109, 132
addEntry function 162
AI (artificial intelligence) 18–27

challenges of 27
data sources

device data 278
human data gathering 278
public data sets 277
software analytics and logs 278

deep learning 24–26
democratization of computer power and 27
history of 18–19
machine learning and 23–24

reinforcement learning 24
supervised learning 24
unsupervised learning 24

real world applications of 19–21
advertising 20
customer contact 20
data and security 21
entertainment 20
finance 21
health care 21
news and media 20
retail and e-commerce 19–20

services 22–23
AI as a Service 137–169

applying to existing platforms 170–203
benefits of automation 202–203
Comprehend and sentiment analysis

193–195

integration patterns 171–179
Kinesis and AI-enabled data processing

pipeline 185–189
removing pipeline 202
testing pipeline 192–193
testing pipeline end-to-end 201–202
Textract and identity verification 179–185
training custom document classifiers

196–199
Translate and on-the-fly translation

189–192
benefits of serverless 138–139
canonical architecture 27–30

AI services 29
batch services 29
communication services 29
data services 29
development support 30
off-platform 30
operational support 29
realtime services 28–29
utility services 29
web application 28

challenges of serverless 138–142
continuous deployment 144–148

design for 144–146
implementing with AWS services 146–148

logs 150–158
inspecting output 153–156
searching 156–158
writing structured 152

mapped onto AWS 30–32
291

INDEX292
AI as a Service (continued)
monitoring service and application

metrics 158–164
application metrics 159–163
service metrics 158–159
using metrics to create alarms 163–164

observability and monitoring 148–150
production-grade serverless template

139–142
project structure 142–144

code 143–144
folder structure 143
source repository 142–143

traces 164–168
annotations and custom metrics 168
enabling X-Ray tracing 165–167
maps and 167–168

AI services 29, 82
serverless image recognition system 41
to-do list web application 85–86

AI support 30
alarms 150, 163–164
Amazon States Language (ASL) 232
AMAZON.DATE slot type 131
AMAZON.EventType slot type 131
analysis queue 47
analysis service, serverless image recognition

system 58–62
analyze function 47, 180, 182, 184
analyzeImageLabels function 59
analyzeUrl function 65
annotations 168
ANNs (artificial neural networks) 24
api gateway 288
APIGatewayAdministrator privilege 67
App client settings section, Cognito 112
app directory 68
apt 271
artificial neural networks (ANNs) 24
ASL (Amazon States Language) 232
ASR (automatic speech recognition) 23
assets directory 101
asynchronous services

serverless image recognition system 38–39
deploying 58–62
implementing 47–56

to-do list web application 84–85
audioStream field 134
auth-view.js 108
auth.js 108–109

authentication 106
authorization 106
Authorization header 109
automatic speech recognition (ASR) 23
availability monitoring 280
AWS (Amazon Web Services) 5, 13

account setup 265–268
choosing support plan 268
providing login credentials 265–266
providing payment details 267
verifying identity 267

best practice 270
canonical AI as a Service architecture

mapped onto 30–32
Command Line Interface 270–274

checking setup 274
configuring local environment 271–273
installing on Linux 271
installing on MacOS 271
installing on other platforms 271

data requirements for AWS managed ai
services 275–276

implementing continuous deployment
with 146–148

implementing with AWS services 146–148
signing in 269

AWS Comprehend 275
AWS Forecast 23, 276
/aws/lambda/checklist-service-dev-get 151
AWS Lex 23, 86, 276
AWS Personalize 23, 276
AWS Polly 23, 86, 276
AWS Rekognition 23, 276
AWS Shell 242
AWS Textract 22
AWS Textract, 275
AWS Transcribe 23, 86, 276
AWS Translate 22, 275
AWS_ environment variables 253
AWS_ACCESS_KEY_ID variable 99
AWS_ACCOUNT_ID 99
AWS_DEFAULT_REGION variable 44, 99, 273
AWS_REGION variable 44, 273
AWS_SECRET_ACCESS_KEY variable 99
aws-embedded-metrics 160–161
AWSServiceRoleForLexBots 130

B

.bash_profile file 273
batch services 29

INDEX 293
BeginOffset property 241
bot sub-directory 135
bot-view.js 133
bot.js 133
browser module 227
browser.js file 226
buildSchedule function 124–125

C

canonical AI as a Service architecture 27–30
AI services 29
batch services 29
communication services 29
data services 29
development support 30
off-platform 30
operational support 29
realtime services 28–29
utility services 29
web application 28

captureAWS function 166
cb parameter 50–51
CDK (Cloud Development Kit) 148
chat bots 23
Check Batch Count step 232
check-endpoint.sh file 202
checkActiveJobs function 253, 255–257
checklist service 140
checklist-service-dev-get function 151
checklist-service/services/checklists/entries/

entries.js 160
chrome-remote-interface module 225
cicd folder 148
clean.sh file 263
CLI (Command Line Interface) 270–274

checking setup 274
configuring local environment 271–273
installing on Linux 271
installing on MacOS 271
installing on other platforms 271

client directory 182
client.js file 182
cloud computing 5–7, 13
Cloud Development Kit (CDK) 148
Cloud Functions, Google 15
cloud native services 14–15
CloudFormation custom resources 245
cloudformation-template-create-stack.json

file 288

cloudformation-template-update-stack.json
file 288

CloudWatch Logs Insights 156–158
code.js file 70–71
Cognito, securing to-do list web application

with 101–113
authentication vs. authorization 106–107
code 103
deployment 109–113
front-end service 107–109
to-do service 107
user service 104–107

CognitoAuthRole 105
COM (Common Object Model) 11
COMMERCIAL_ITEM type 243
Common Object Request Broker Architecture

(CORBA) 11
communication fabric 85
communication services 29, 39–41
Comprehend

entity recognition APIs 241–243
sentiment analysis 193–195

conference data example
data gathering at scale 207–237

crawl space 229–231
fetcher 224–228
from web 212
frontier 220–224
item store 219–220
scenario 208–211
scheduler 231–237
web crawling 212–219

information extraction 238–264
asynchronous named entity abstraction

253–255
Comprehend entity recognition APIs

241–243
end-to-end data testing 261–262
entity recognition 255–257
extending architecture 240–241
orchestrating entity extraction 259–261
overview of problem 239–240
persisting recognition results 257–258
preparing data for 244–252
text batches 252–253
viewing results 262–263

console.log 160
context parameter 50–51
continuous deployment 14, 144–148

design for 144–146

INDEX294
continuous deployment (continued)
implementing with AWS services 146–148

building pipeline 146–148
multi-account and single-account

deployment 146
conversational chat bot interface 128–135

bot 129–132
intents 130–131
slots 131
utterances 131

code 129
deployment 134
front end updates 132–134
testing 134–135

CORBA (Common Object Request Broker
Architecture) 11

crawl function 52
crawl space 213–214, 229–231
crawler-service directory 47, 53, 58
crawler-service-dev-crawlimages 55
crawlImages function 50
CrawlScheduler service 234
CrawlScheduler Step Function 234
create endpoint 93
create function 155
Create, Read, Update, Delete (CRUD) 79, 91
create.sh file 129–130
createDocumentClassifier API 198
createMetricsLogger function 160
CreateTodo intent 131
CRM (customer relationship management) 30
cross-origin resource sharing (CORS) 89
CRUD (Create, Read, Update, Delete) 79, 91
cURL command 224
custom section, Serverless configuration 46, 49
customDomain 66
customer relationship management (CRM) 30

D

data directory 192
data gathering at scale 207–237

crawl space 229–231
fetcher 224–228

capturing page output 226
deploying and testing 228
fetching multiple pages 227–228
headless browser 225

from web 212
frontier 220–224

code 220
creating API 222–224
deploying and testing 224
URL database 220–222

item store 219–220
bucket 219
code 219
deploying 219–220

scenario 208–211
data sources 211
identifying data required 209–211
preparing data for training 211

scheduler 231–237
code 232
deploying and testing 234–237
Step Functions 232–234

web crawling 212–219
architecture 214–219
typical process 213

data processing pipeline, AI-enabled 185–189
code 187–188
deploying API 188–189

data services 29
serverless image recognition system 41
to-do list web application 86

data sources
device data 278
human data gathering 278
public data sets 277
software analytics and logs 278

data sub directory 184
data/final/training.csv 193
DATE type 243
day handler 124
dead-letter queue (DLQ) 246–249
debug function 152
DEBUG-level logs 154
default-environment.env 188
DELETE /todo/{id} 84
DELETE /widget/{id} 91
deleteEntry function 168
DELETING status 202
deploy.sh file 74, 135
depth limit 215
DescribeEntitiesDetectionJob API 241
determineClass function 200
development support 30

serverless image recognition system 41
to-do list web application 86

dialogState 133

INDEX 295
dist directory 98, 101
DLQ (dead-letter queue) 246
DLQ_RETRY_MAX_MESSAGES variable 249
dlq-handler.js file 248
DNS domains and certificates

provisioning new certificates 281–284
serverless image recognition system 42–43
setting up certificates 281–284
setting up domains 279–281

configuring hosted zone 281
registering domain names 279–280

DNS management 280
document classifiers, training 196–199

creating IAM role 198
creating training bucket 197
running training 198–199
uploading training data 197–198
using custom classifier 199–200

DOM (Document Object Model) 95, 226
domain registration 280
domain-specific language (DSL) 286
don’t repeat yourself (DRY) 92
dotenv-webpack plugin 98
driver directory 195
driver.js 193
DRY (don’t repeat yourself) 92
DSL (domain-specific language) 286
dueDate slot 131, 133

E

E2E (end-to-end) tests 148
EC2 (Elastic Compute Cloud) 13, 215
ELK (Elasticsearch, Logstash, and Kibana) 14,

151
email service, SLIC Lists application 141
END record 155
End state 260
end-to-end (E2E) tests 148
EndOffset property 241
endpoint.sh file 199
enterprise resource planning (ERP) 30
enterprise service bus (ESB) 171
entity abstraction 253–255

code 253
starting entity recognition jobs 254–255

entity recognition
checking progress 255–256
deploying and testing 256–257
starting jobs 254–255

.env file 99, 111–112, 121, 183, 189, 198
ERP (enterprise resource planning) 30
error function 152
ESB (enterprise service bus) 171
ETL (Extract Transform Load) 29, 171
eu-west-1 region 42
event parameter 50–51
existing: true property 245
expert systems 19
Extensible Markup Language (XML) 12
external data sources 30
Extract Transform Load (ETL) 29, 171
extraction-service directory 257, 261
extraction-service handler module 252
Extreme Programming (XP) 16

F

FaaS (Functions-as-a-Service) 7, 15
FAILED status 220, 228
fatal function 152
features 24
federated identities 106, 112
fetch 224, 227
FETCHED status 220, 228
fetcher 214, 224–228

capturing page output 226
deploying and testing 228
fetching multiple pages 227–228
headless browser 225

find command-line tool 10
first AI winter 19
flow control 231
FORMS analysis 181
front-end service

serverless image recognition system 67–71
SLIC Lists application 141
to-do list web application 107–109

frontend directory 100
frontend-service directory 67
frontend/src/audio directory 119
frontend/src/schedule.js file 126
frontier 214, 220–224

code 220
creating API 222–224
deploying and testing 224
URL database 220–222

frontier table 221
frontier-service 222
function keyword 53

INDEX296
functions section, Serverless configuration 46,
49

Functions-as-a-Service (FaaS) 7, 15

G

-g flag 43
GDPR (General Data Protection

Regulation) 180
Geometry section 182
GET /image/list 37
GET /note/{id} 85
GET /schedule/{id} 85
GET /todo 84
GET /todo/{id} 84
GET /url/list 37
GET /widget 91
GET /widget/{id} 91
GetObject permission 251–252
getSignedUrl function 182
getTextBatch function 252, 256
getTranscriptionJob API 118
grep command-line tool 10
groups 168

H

handleEntityResultLines function 258
handler module 245, 248
handler.js file 50, 59, 64, 93, 124, 181, 190, 194,

199, 223, 229, 261, 287
head command-line tool 10
head section 70
headless mode 225
hello-service.zip file 288
hello. cd directory 286
history of computing 8–18

cloud computing 13
cloud native services 14–15
early days 8–9
Java, J2EE, .NET, 11–12
microservices 13–14
object orientation and patterns 10–11
speed as overarching trend 15–18
Unix philosophy 9–10
web speed 12–13
XML and SOA 12

Hosted Zone 281
HTTP event 64
https-dt-x-io.csv 262

I

IaaS (Infrastructure as a Service) 5, 14
IaC (Infrastructure as Code) 285
IAM (Identity and Access Management) 50
iamRoleStatements 50, 117
id field 93
id key 92
Identity and Access Management (IAM) 50
identity verification 179–185

client code 182–183
code 180
deploying API 183
removing API 185
testing API 184–185
Text Analysis API 180–182

identity-pool.yml file 104–105
image recognition system

architecture 34–41
AI services 41
asynchronous services 38–39
communication services 39–41
data services 41
development support and operational

support 41
synchronous services 37–38
web application 36–37

asynchronous services
deploying 58–62
implementing 47–56

cloud resources 44–47
code 44
DNS domain and SSL/TLS certificate

42–43
Node.js 42–43
Serverless Framework 43

overview 34
removing system 74
running system 71–74
setup checklist 44
synchronous services 62–71

front-end service 67–71
UI service 62–67

image/list 63
incoming_texts 255
incoming-texts bucket 244, 250
incoming-texts directory 257
index.html page 94
index.js file 96, 107, 118
info function 152
INFO level 154

INDEX 297
information extraction 238–264
asynchronous named entity abstraction

253–255
code 253
starting entity recognition jobs 254–255

Comprehend entity recognition APIs
241–243

end-to-end data testing 261–262
entity recognition

checking progress 255–256
deploying and testing 256–257

extending architecture 240–241
orchestrating entity extraction 259–261
overview of problem 239–240
persisting recognition results 257–258
preparing data for 244–252

code 244
dead letter queue 246–249
deploying and testing 249–252
implementing preparation handler

245–246
retry handler 247–249
S3 event notification 244–245

text batches 252–253
code 252
retrieving for extraction 252–253

viewing results 262–263
Infrastructure as a Service (IaaS) 5
Infrastructure as Code (IaC) 285
ingest method 188
integration patterns 171–179

asynchronous API 175–176
fully connected streaming 177–178
selecting 178–179
synchronous API 174–175
VPN stream in 176–177

integration-tests folder 161
internal data sources 30
invoke commands 252
invoke local command 228
IoT (internet of things) 278
item store 214

bucket 219
code 219
deploying 219–220

J

J2EE 11–12
Java 11–12

jq command 129
JWT (JSON Web Token) 103

K

Kinesis 185–189
code 187–188
deploying API 188–189

KMS (Key Management Service) 273

L

Lambda service 15
Lambda web consule 288
lambda-dlq-retry 249
lambda-dlq-retry module 248
LexRuntime 132
LINE element 182
list-state-machines command 234
listImages function 65
listObjectsV2 API 252
listUrl function 64
load function 227
load.sh file 161
localhost 224
LOCATION type 242
log groups 151
log streams 151
logs 150–158

inspecting output 153–156
searching 156–158
writing structured 152

logs command 250
long poll 41
ls command-line tool 10
LTS (long term supported) 42

M

machine learning and 23–24
reinforcement learning 24
supervised learning 24
unsupervised learning 24

main.js file 101
Managed Streaming for Kafka (MSK) 178, 187,

228
MarkDone intent 131
master branch 147
Mechanical Turk (MTurk), Amazon 278
metrics

advanced tracing with custom 168

INDEX298
metrics (continued)
application metrics 159–163
service metrics 158–159
using to create alarms 163–164

MFA (multi-factor authentication) 266
microservices 13–14
Middy library 223
Model View Controller (MVC) 96
monitoring 148–150, 158–164

application metrics 159–163
service metrics 158–159
using metrics to create alarms 163–164

monorepos 142–143
MSK (Managed Streaming for Kafka) 178, 187,

228
MTurk (Mechanical Turk), Amazon 278
multi-factor authentication (MFA) 266
MVC (Model View Controller) 96

N

named entity 239
NER (named entity recognition) 239
.NET 11–12
netstat command-line tool 10
NLP (natural language processing) 22, 185,

193, 207
NLU (natural language understanding) 23
node modules 43
Node.js 42–43
note service

speech-to-text interface 117–118
to-do list web application 85

note-service directory 117
note-view.js 119
note.js 119
noteapi 117
/noteapi/note 119
npm install command 43
npm start command 224
NS record set 281

O

object-oriented paradigm 10–11
observability 148–150
OCR (optical character recognition) 185
ONE_DOC_PER_LINE option 255
operational support 29

serverless image recognition system 41
to-do list web application 86

ORGANIZATION type 242
OTHER type 243
overall field 192
overfitting 210

P

package.json file 51–52, 66, 97, 107, 180
PAGE element 182
page.txt file 243, 250
parser component 214, 226
partition key 220
PENDING status 220
perceptrons 24
PERSON type 243
pino module 250
pino-pretty module 152, 155, 250
pipeline/classify directory 199–200
pipeline/driver directory 193
pipeline/sentiment directory 193, 195
pipeline/testdata directory 197
pipeline/training directory 197–199
pipeline/training/train-classifier.js 198
playResponse function 134
point to point model 41
poll function 41, 118, 124, 126
polly.getSpeechSynthesisTask 126
polyrepos 142–143
POST /note 85
POST /schedule 85
POST /to-do 93
POST /todo/ 84
POST /url/analyze 37
POST /widget 91
POST request 183
POST requests 188
postContent method 132
postText method 132–133
preparation handler 245–246
prepare function 246, 251
preproc.sh 192
processEntityResults function 258
provider section, Serverless configuration 46,

49
publish/subscribe model 41
push 41
pushChat function 134
pushVoice function 134
PUT /todo/{id} 84
PUT /widget/{id} 91

INDEX 299
PUT request 181
putMetricData API 159

Q

QUANTITY type 243
queueAnalysis function 53
QUICK_START.md document 148

R

range 220
Rational Unified Process (RUP) 16
README.md file 161
ReadyForFulfillment 133
realtime services 28–29
record set 281
remove.sh file 74, 135
rendering crawlers 215–216
REPORT logs 157
REPORT record 155
request module 183
resources directory 89, 99
resources section, Serverless configuration 46
results.json 242
retention period, log groups 151
retry function 248
retry handler 247–249
robots.txt file 216
RUP (Rational Unified Process) 16

S

S3 (Simple Storage Service) 36, 41, 86
S3 event notification 244–245
s3 event type 245
s3.getSignedUrl 126
SaaS (Software as a Service) 12
SAR-cloudwatch-alarms-macro application 164
/schedule/day 124
/schedule/poll 124
schedule service

text-to-speech feature 123–126
to-do list web application 85

scheduler 214, 231–237
code 232
deploying and testing 234–237
Step Functions 232–234

Score property 241
scripts/get_extracted_entities.js 262
secondary index 221

seed attribute 220
selection bias 210
sentiment analysis 193–195
SEO (search engine optimization) 215
serverful RDBMS 222
Serverless Application Repository 164
serverless computing 3, 7–8

benefits of 138–139
challenges of 138–142
production-grade serverless template

139–142
serverless deploy command 144, 219, 289
.serverless directory 287
Serverless Framework

deployment process 286–289
removing 290
serverless image recognition system 43

serverless logs 155
serverless-domain-manager 66
—serverless-domain-manager plugin 64
serverless-dotenv-plugin 89, 98
serverless-dynamodb-local plugin 224
serverless-offline plugin 224
serverless-plugin-chrome 225
serverless-state.json file 288
serverless-step-function plugin 232
serverless-step-functions 232
serverless.yml file 45, 48, 50, 59, 63, 66, 89,

91–92, 97, 100, 104, 107, 117, 124, 143, 164,
180, 188, 199, 219–222, 225, 230, 244, 247,
251, 258, 286

serverless.yml provider section 167
service-oriented architecture (SOA) 12
SES (Simple Email Service) 166, 202
sharing service, SLIC Lists application 141
Simple Email Service (SES) 166, 202
Simple Notification Service (SNS) 164, 228,

246
Simple Object Access Protocol (SOAP) 12
Simple Queue Service (SQS) 36, 39
Simple Storage Service (S3) 36, 41, 86
single responsibility principle (SRP) 66
single-page applications (SPAs) 68, 215
SLIC Lists application 140, 159
SLIC Starter project 139
slic-tools/aws.js 166
sls deploy 252
sls invoke local command 253, 256
SNS (Simple Notification Service) 164, 228,

246

INDEX300
SOA (service-oriented architecture) 12
SOA (start of authority) 281
SOAP (Simple Object Access Protocol) 12
Software as a Service (SaaS) 12
software patterns 10–11
sort command-line tool 10
sort key 220
SPAs (single-page applications) 68, 215
Speech Synthesis Markup Language

(SSML) 125
speech-to-text interface 116–122

code 117
deployment 121
front end updates 118–121
note service 117–118
testing 121–122

SQL (Structured Query Language) 222
SQS (Simple Queue Service) 36, 39
src directory 95
src/bot.js 132
src/index.html 95
src/index.js 98
SRP (single responsibility principle) 66
SSL/TLS certificate 42–43
SSML (Speech Synthesis Markup

Language) 125
standard error 151
standard output 151
Start Execution option 235
start of authority (SOA) 281
START record 155
startBatchProcessing function 253–257
startEntitiesDetectionJob API 254–255
startEntitiesDetectionJob function 254
StartEntititesDetectionJob API 241
startEntityRecognition function 255
startRecord function 119
status.json file 65
status.sh 199
Step Functions 232–234
step-2-cognito-login/frontend directory 113
stepFunctions section 232
stopRecord function 119
Storage object 119
storeEntityResults function 258
strategy worker+ or _generator 214
strategy-service 230
streamReader utility 195
streamReader.js 193
Structured Query Language (SQL) 222

submitNote function 119
subscription filter 151
supervised classification 197
synchronous services 80

serverless image recognition system 37–38,
62–71

to-do list web application 83–84

T

TABLES analysis 181
templates.js 97
testdata/data directory 192
text batches 252–253

code 252
retrieving for extraction 252–253

Text property 241
text-analysis-api 180
text-to-speech feature 122–127

code 123
deployment 127
front end updates 126–127
schedule service 123–126
testing 127

Textract 179–185
client code 182–183
code 180
deploying API 183
removing API 185
testing API 184–185
Text Analysis API 180–182

.then construct 53
<timestamp> 288
timestamp 93
/tmp/dlq-retry-output 252
to-do list web application 79–136

architecture 80–86
AI services 85–86
asynchronous services 84–85
communication fabric 85
data services 86
development support and operational

support 86
synchronous services 83–84
utility services 85
web application 82–83

basic application 87–101
deployment 99–101
environment variables 99
front end 94–98, 100–101

INDEX 301
resources 89–90, 99
testing 101
to-do service 90–93, 100

code 86–87
conversational chat bot interface 128–135

bot 129–132
code 129
deployment 134
front end updates 132–134
testing 134–135

overview 80
removing system 135
securing with Cognito 101–113

authentication vs. authorization 106–107
code 103
Cognito pools 109–111
deployment 109–113
front-end service 107–109
to-do service 107
updating environment 111–112
updating front end 113
updating to-do API 112
user service 104–107

setup checklist 86–87
speech-to-text interface 116–122

code 117
deployment 121
front end updates 118–121
note service 117–118
testing 121–122

text-to-speech feature 122–127
code 123
deployment 127
front end updates 126–127
schedule service 123–126
testing 127

to-do service 89–90, 93, 100, 107
to-do.js 109
todo bot 129, 131
todo-service directory 100
todo-view.js 97
trace function 152
traces 150, 164–168

advanced tracing with annotations and cus-
tom metrics 168

enabling X-Ray tracing 165–167
maps and 167–168

traffic management 280
TRAINED status 199
Translate 189–192
Type property 241

U

UI service 62–67
ui-service 66, 92
ui-service directory 66
UNCLASSIFIED status 200
undifferentiated heavy lifting 219
Unix 9–10
unsupervised classification 197
UpdateStack method 286, 289
upload function 180
uploadImage function 182
/url/analyze 38
url attribute 220–221
url field 221
url/analyze 63
url/list 63
user service 104–107
user service, SLIC Lists application 141
User-Agent string 216
user-pool.yml file 104
user-service directory 104
utility services 29, 82, 85

V

Verified certificate status 283
VPC (Virtual Private Cloud) 29
VPN (virtual private network) 177

W

Wait step 232
warning function 152
wc command-line tool 10
Web application 80
web application 28

serverless image recognition system 36–37
to-do list web application 82–83

web crawling 212–219
architecture 214–216

basic crawlers vs. rendering crawlers
215–216

serverless architecture 217–219
crawl space 229–231
fetcher 224–228

capturing page output 226
deploying and testing 228
fetching multiple pages 227–228
headless browser 225

frontier 220–224

INDEX302
web crawling (continued)
code 220
creating API 222–224
deploying and testing 224
URL database 220–222

item store 219–220
bucket 219
code 219
deploying 219–220

scheduler 231–237
code 232
deploying and testing 234–237
Step Functions 232–234

serverless image recognition system 47–56
typical process 213

web scraping 212

webpack 97
webpack.config.js file 97
welcome service, SLIC Lists application 141
WORD element 182
wordCloudList function 60

X

X-Ray tracing 165–167
XML (Extensible Markup Language) 12
XP (Extreme Programming) 16

Y

YAML (YAML Ain’t Markup Language) 46
yum 271

Elger ● Shanaghy

ISBN: 978-1-61729-615-4

C
loud-based AI services can automate a variety of labor-
intensive business tasks in areas such as customer
service, data analysis, and fi nancial reporting. The secret

is taking advantage of pre-built tools like Amazon Rekogni-
tion for image analysis or AWS Comprehend for natural
language processing. That way, there’s no need to build
expensive custom software.

AI as a Service is a fast-paced guide to harnessing the power
of cloud-based solutions. You’ll learn to build real-world
apps—such as chatbots and text-to-speech services—by
stitching together cloud components. Work your way from
small projects to large data-intensive applications.

What’s Inside
● Apply cloud AI services to existing platforms
● Design and build scalable data pipelines
● Debug and troubleshoot AI services
● Start fast with serverless templates

For software developers familiar with cloud basics.

Peter Elger and Eóin Shanaghy are founders and CEO/CTO
of fourTheorem, a software solutions company providing
expertise on architecture, DevOps, and machine learning.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/ai-as-a-service

$49.99 / Can $65.99 [INCLUDING eBOOK]

AI as a Service

ARTIFICIAL INTELLIGENCE/CLOUD/SERVERLESS

M A N N I N G

“A practical approach to
real-life AI smartly based
on a serverless approach.

 Enlightening!”
—Alain Couniot

Sopra Steria Benelux

“An excellent introduction
to cloud-based AI services.”—Rob Pacheco

Vision Government Solutions

“A great way to learn more
about AI that would be
incredibly helpful at any

company. Absolutely
 recommended!”—Alex Gascon, CoverWallet

“A must for anyone who
wants to swiftly transition from

academic machine learning
to production-ready machine
learning using the cloud.”—Nirupam Sharma, Engine Group

See first page

	AI as a Service
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1 First steps
	1 A tale of two technologies
	1.1 Cloud landscape
	1.2 What is Serverless?
	1.3 The need for speed
	1.3.1 The early days
	1.3.2 The Unix philosophy
	1.3.3 Object orientation and patterns
	1.3.4 Java, J2EE, .NET,
	1.3.5 XML and SOAXML (Extensible Markup Language) SOA (service-oriented architecture)
	1.3.6 Web speed
	1.3.7 Cloud computing
	1.3.8 Microservices (rediscovery)
	1.3.9 Cloud native services
	1.3.10 The trend: speed

	1.4 What is AI?
	1.4.1 History of AI
	1.4.2 Real world AI
	1.4.3 AI services
	1.4.4 AI and machine learning
	1.4.5 Deep learning
	1.4.6 AI challenges

	1.5 The democratization of compute power and artificial intelligence
	1.6 Canonical AI as a Service architecture
	1.6.1 Web application
	1.6.2 Realtime services
	1.6.3 Batch services
	1.6.4 Communication services
	1.6.5 Utility services
	1.6.6 AI services
	1.6.7 Data services
	1.6.8 Operational support
	1.6.9 Development support
	1.6.10 Off-platform

	1.7 Realization on Amazon Web Services
	1.8 Summary

	2 Building a serverless image recognition system, part 1
	2.1 Our first system
	2.2 Architecture
	2.2.1 Web application
	2.2.2 Synchronous services
	2.2.3 Asynchronous services
	2.2.4 Communication services
	2.2.5 AI services
	2.2.6 Data services
	2.2.7 Development support and operational support

	2.3 Getting ready
	2.3.1 DNS domain and SSL/TLS certificate
	2.3.2 Setup checklist
	2.3.3 Get the code
	2.3.4 Setting up cloud resources

	2.4 Implementing the asynchronous services
	2.4.1 Crawler service

	Summary

	3 Building a serverless image recognition system, part 2
	3.1 Deploying the asynchronous services
	3.1.1 Analysis service

	3.2 Implementing the synchronous services
	3.2.1 UI service
	3.2.2 Front end service

	3.3 Running the system
	3.4 Removing the system
	Summary

	Part 2 Tools of the trade
	4 Building and securing a web application the serverless way
	4.1 The to-do list
	4.2 Architecture
	4.2.1 Web application
	4.2.2 Synchronous services
	4.2.3 Asynchronous services
	4.2.4 Communication fabric
	4.2.5 Utility services
	4.2.6 AI services
	4.2.7 Data services
	4.2.8 Development support and operational support

	4.3 Getting ready
	4.3.1 Getting the code

	4.4 Step 1: The basic application
	4.4.1 Resources
	4.4.2 To-do service
	4.4.3 Front end
	4.4.4 Deploying step 1

	4.5 Step 2: Securing with Cognito
	4.5.1 Getting the code
	4.5.2 User service
	4.5.3 To-do service
	4.5.4 Front-end service
	4.5.5 Deploying step 2

	Summary

	5 Adding AI interfaces to a web application
	5.1 Step 3: Adding a speech-to-text interface
	5.1.1 Getting the code
	5.1.2 Note service
	5.1.3 Front-end updates
	5.1.4 Deploying step 3
	5.1.5 Testing step 3

	5.2 Step 4: Adding text-to-speech
	5.2.1 Getting the code
	5.2.2 Schedule service
	5.2.3 Front-end updates
	5.2.4 Deploying step 4
	5.2.5 Testing step 4

	5.3 Step 5: Adding a conversational chatbot interface
	5.3.1 Getting the code
	5.3.2 Creating the bot
	5.3.3 Front-end updates
	5.3.4 Deploying step 5
	5.3.5 Testing step 5

	5.4 Removing the system
	Summary

	6 How to be effective with AI as a Service
	6.1 Addressing the new challenges of Serverless
	6.1.1 Benefits and challenges of Serverless
	6.1.2 A production-grade serverless template

	6.2 Establishing a project structure
	6.2.1 The source repository—monorepo or polyrepo
	6.2.2 Project folder structure
	6.2.3 Get the code

	6.3 Continuous deployment
	6.3.1 Continuous deployment design
	6.3.2 Implementing continuous deployment with AWS services

	6.4 Observability and monitoring
	6.5 Logs
	6.5.1 Writing structured logs
	6.5.2 Inspecting log output
	6.5.3 Searching logs using CloudWatch Logs Insights

	6.6 Monitoring service and application metrics
	6.6.1 Service metrics
	6.6.2 Application metrics
	6.6.3 Using metrics to create alarms

	6.7 Using traces to make sense of distributed applications
	6.7.1 Enabling X-Ray tracing
	6.7.2 Exploring traces and maps
	6.7.3 Advanced tracing with annotations and custom metrics

	Summary

	7 Applying AI to existing platforms
	7.1 Integration patterns for serverless AI
	7.1.1 Pattern 1: Synchronous API
	7.1.2 Pattern 2: Asynchronous API
	7.1.3 Pattern 3: VPN Stream In
	7.1.4 Pattern 4 VPN: Fully connected streaming
	7.1.5 Which pattern?

	7.2 Improving identity verification with Textract
	7.2.1 Get the code
	7.2.2 Text Analysis API
	7.2.3 Client code
	7.2.4 Deploy the API
	7.2.5 Test the API
	7.2.6 Remove the API

	7.3 An AI-enabled data processing pipeline with Kinesis
	7.3.1 Get the code
	7.3.2 Deploying the API

	7.4 On-the-fly translation with Translate
	7.5 Testing the pipeline
	7.6 Sentiment analysis with Comprehend
	7.7 Training a custom document classifier
	7.7.1 Create a training bucket
	7.7.2 Upload training data
	7.7.3 Create an IAM role
	7.7.4 Run training

	7.8 Using the custom classifier
	7.9 Testing the pipeline end to end
	7.10 Removing the pipeline
	7.11 Benefits of automation
	Summary

	Part 3 Bringing it all together
	8 Gathering data at scale for real-world AI
	8.1 Scenario: Finding events and speakers
	8.1.1 Identifying data required
	8.1.2 Sources of data
	8.1.3 Preparing data for training

	8.2 Gathering data from the web
	8.3 Introduction to web crawling
	8.3.1 Typical web crawler process
	8.3.2 Web crawler architecture
	8.3.3 Serverless web crawler architecture

	8.4 Implementing an item store
	8.4.1 Getting the code
	8.4.2 The item store bucket
	8.4.3 Deploying the item store

	8.5 Creating a frontier to store and manage URLs
	8.5.1 Getting the code
	8.5.2 The frontier URL database
	8.5.3 Creating the frontier API
	8.5.4 Deploying and testing the frontier

	8.6 Building the fetcher to retrieve and parse web pages
	8.6.1 Configuring and controlling a headless browser
	8.6.2 Capturing page output
	8.6.3 Fetching multiple pages
	8.6.4 Deploying and testing the fetcher

	8.7 Determining the crawl space in a strategy service
	8.8 Orchestrating the crawler with a scheduler
	8.8.1 Grabbing the code
	8.8.2 Using Step Functions
	8.8.3 Deploying and testing the scheduler

	Summary

	9 Extracting value from large data sets with AI
	9.1 Using AI to extract significant information from web pages
	9.1.1 Understanding the problem
	9.1.2 Extending the architecture

	9.2 Understanding Comprehend’s entity recognition APIs
	9.3 Preparing data for information extraction
	9.3.1 Getting the code
	9.3.2 Creating an S3 event notification
	9.3.3 Implementing the preparation handler
	9.3.4 Adding resilience with a dead letter queue (DLQ)
	9.3.5 Creating the DLQ and retry handler
	9.3.6 Deploying and testing the preparation service

	9.4 Managing throughput with text batches
	9.4.1 Getting the code
	9.4.2 Retrieving batches of text for extraction

	9.5 Asynchronous named entity abstraction
	9.5.1 Get the code
	9.5.2 Starting an entity recognition job

	9.6 Checking entity recognition progress
	9.7 Deploying and testing batch entity recognition
	9.8 Persisting recognition results
	9.9 Tying it all together
	9.9.1 Orchestrating entity extraction
	9.9.2 End-to-end data extraction testing
	9.9.3 Viewing conference data extraction results

	9.10 Wrapping up
	Summary

	appendix A AWS account setup and configuration
	A.1 Set up an AWS account
	A.1.1 Providing your login credentials
	A.1.2 Providing your payment details
	A.1.3 Verifying your identity
	A.1.4 Choosing your support plan

	A.2 Signing in
	A.3 Best practice
	A.4 AWS Command Line Interface
	A.4.1 Installing the AWS CLI on Linux
	A.4.2 Installing the AWS CLI on MacOS
	A.4.3 Installing the AWS CLI on other platforms
	A.4.4 Configuring the local AWS environment
	A.4.5 Checking the setup

	appendix B Data requirements for AWS managed AI services
	appendix C Data sources for AI applications
	C.1 Public data sets
	C.2 Software analytics and logs
	C.3 Human data gathering
	C.4 Device data

	appendix D Setting up a DNS domain and certificate
	D.1 Setting up a domain
	D.1.1 Registering a domain name
	D.1.2 Configuring your hosted zone

	D.2 Settting up a certificate
	D.2.1 Provisioning a new certificate

	appendix E Serverless Framework under the hood
	E.1 Walkthrough
	E.2 Cleanup

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	AI as a Service-back

