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Preface

Will alpha eventually go to zero for every imaginable investment strategy? More funda‐
mentally, is the day approaching when, thanks to so many smart people and smarter
computers, financial markets really do become perfect, and we can just sit back, relax,
and assume that all assets are priced correctly?

—Robert Shiller (2015)

Artificial intelligence (AI) rose to become a key technology in the 2010s and is
assumed to be the dominating technology in the 2020s. Spurred by technological
innovations, algorithmic breakthroughs, availability of big data, and ever-increasing
compute power, many industries are undergoing fundamental changes driven by AI.

While media and public attention mostly focus on breakthroughs in areas such as
gaming and self-driving cars, AI has also become a major technological force in the
financial industry. However, it is safe to say that AI in finance is still at a nascent stage
—as compared, for example, to industries such as web search or social media.

This book sets out to cover a number of important aspects related to AI in finance. AI
in finance is already a vast topic, and a single book needs to focus on selected aspects.
Therefore, this book covers the basics first (see Part I and Part II). It then zooms in on
discovering statistical inefficiencies in financial markets by the use of AI and, more
specifically, neural networks (see Part III). Such inefficiencies—embodied by AI algo‐
rithms that successfully predict future market movements—are a prerequisite for the
exploitation of economic inefficiencies through algorithmic trading (see Part IV).
Being able to systematically exploit statistical and economic inefficiencies would
prove contradictory to one of the established theories and cornerstones in finance:
the efficient market hypothesis (EMH). The design of a successful trading bot can be
considered the holy grail in finance to which AI might lead the way. This book con‐
cludes by discussing consequences of AI for the financial industry and the possibility
of a financial singularity (see Part V). There is also a technical appendix that shows
how to build neural networks from scratch based on plain Python code and provides
additional examples for their application (see Part VI).
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1 See the Arcade Learning Environment.

The problem of applying AI to finance is not too dissimilar to the problem of apply‐
ing AI to other fields. Some major breakthroughs in AI in the 2010s were made possi‐
ble by the application of reinforcement learning (RL) to playing arcade games, such
as those from Atari published in the 1980s (see Mnih et al. 2013), and to board
games, such as chess or Go (see Silver et al. 2016). Lessons learned from applying RL
in gaming contexts, among other areas, are today applied to such challenging prob‐
lems as designing and building autonomous vehicles or improving medical diagnos‐
tics. Table P-1 compares the application of AI and RL in different domains.

Table P-1. Comparison of AI in different domains

Domain Agent Goal Approach Reward Obstacle Risks
Arcade games AI agent

(software)
Maximizing
game score

RL in virtual
gaming
environment

Points and
scores

Planning and
delayed rewards

None

Autonomous
driving

Self-driving
car (software
+ car)

Safely driving
from location A
to B

RL in virtual
(gaming)
environment, real-
world test drives

Punishment
for mistakes

Transition from
virtual to
physical world

Damaging
property,
harming
people

Financial
trading

Trading bot
(software)

Maximizing
long-term
performance

RL in virtual trading
environment

Financial
returns

Efficient markets
and competition

Financial
losses

The beauty of training AI agents to play arcade games lies in the availability of a per‐
fect virtual learning environment1 and the absence of any kind of risk. With autono‐
mous vehicles, the major problem arises when transitioning from virtual learning
environments—for example, a computer game such as Grand Theft Auto—to the
physical world with a self-driving car navigating real streets populated by other cars
and people. This leads to serious risks such as a car causing accidents or harming
people.

For a trading bot, RL can also be completely virtual, that is, in a simulated financial
market environment. The major risks that arise from malfunctioning trading bots are
financial losses and, on an aggregated level, potential systematic risks due to herding
by trading bots. Overall, however, the financial domain seems like an ideal place to
train, test, and deploy AI algorithms.

Given the rapid developments in the field, it should even be possible for an interested
and ambitious student, equipped with a notebook and internet access, to successfully
apply AI in a financial trading context. Beyond the hardware and software improve‐
ments over recent years, this is due primarily to the rise of online brokers that supply

x | Preface

https://oreil.ly/bGgZs


historical and real-time financial data and that allow the execution of financial trades
via programmatic APIs.

The book is structured in the following six parts.

Part I
The first part discusses central notions and algorithms of AI in general, such as
supervised learning and neural networks (see Chapter 1). It also discusses the
concept of superintelligence, which relates to an AI agent that possesses human-
level intelligence and, in some domains, superhuman-level intelligence (see
Chapter 2). Not every researcher in AI believes that superintelligence is possible
in the foreseeable future. However, the discussion of this idea provides a valuable
framework for discussing AI in general and AI for finance in particular.

Part II
The second part consists of four chapters and is about traditional, normative
finance theory (see Chapter 3) and how the field is transformed by data-driven
finance (see Chapter 4) and machine learning (ML) (see Chapter 5). Taken
together, data-driven finance and ML give rise to a model-free, AI-first approach
to finance, as discussed in Chapter 6.

Part III
The third part is about discovering statistical inefficiencies in financial markets
by applying deep learning, neural networks, and reinforcement learning. The
part covers dense neural networks (DNNs, see Chapter 7), recurrent neural net‐
works (RNNs, see Chapter 8), and algorithms from reinforcement learning (RL,
see Chapter 9) that in turn often rely on DNNs to represent and approximate the
optimal policy of the AI agent.

Part IV
The fourth part discusses how to exploit statistical inefficiencies through algo‐
rithmic trading. Topics are vectorized backtesting (see Chapter 10), event-based
backtesting and risk management (see Chapter 11), and execution and deploy‐
ment of AI-powered algorithmic trading strategies (see Chapter 12).

Part V
The fifth part is about the consequences that arise from AI-based competition in
the financial industry (see Chapter 13). It also discusses the possibility of a finan‐
cial singularity, a point in time at which AI agents would dominate all aspects of
finance as we know it. The discussion in this context focuses on artificial finan‐
cial intelligences as trading bots that consistently generate trading profits above
any human or institutional benchmark (see Chapter 14).
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Part VI
The Appendix contains Python code for interactive neural network training (see
Appendix A), classes for simple and shallow neural networks that are imple‐
mented from scratch based on plain Python code (see Appendix B), and an
example of how to use convolutional neural networks (CNNs) for financial time
series prediction (see Appendix C).

Author’s Note
The application of AI to financial trading is still a nascent field, although at the time
of writing there are a number of other books available that cover this topic to some
extent. Many of these publications, however, fail to show what it means to economi‐
cally exploit statistical inefficiencies.

Some hedge funds already claim to exclusively rely on machine learning to manage
their investors’ capital. A prominent example is The Voleon Group, a hedge fund that
reported more than $6 billion in assets under management at the end of 2019 (see Lee
and Karsh 2020). The difficulty of relying on machine learning to outsmart the finan‐
cial markets is reflected in the fund’s performance of 7% for 2019, a year during
which the S&P 500 stock index rose by almost 30%.

This book is based on years of practical experience in developing, backtesting, and
deploying AI-powered algorithmic trading strategies. The approaches and examples
presented are mostly based on my own research since the field is, by nature, not only
nascent, but also rather secretive. The exposition and the style throughout this book
are relentlessly practical, and in many instances the concrete examples are lacking
proper theoretical support and/or comprehensive empirical evidence. This book even
presents some applications and examples that might be vehemently criticized by
experts in finance and/or machine learning.

For example, some experts in machine and deep learning, such as François Chollet
(2017), outright doubt that prediction in financial markets is possible. Certain experts
in finance, such as Robert Shiller (2015), doubt that there will ever be something like
a financial singularity. Others active at the intersection of the two domains, such as
Marcos López de Prado (2018), argue that the use of machine learning for financial
trading and investing requires an industrial-scale effort with large teams and huge
budgets.

This book does not try to provide a balanced view of or a comprehensive set of refer‐
ences for all the topics covered. The presentation is driven by the personal opinions
and experiences of the author, as well as by practical considerations when providing
concrete examples and Python code. Many of the examples are also chosen and
tweaked to drive home certain points or to show encouraging results. Therefore, it
can certainly be argued that results from many examples presented in the book suffer
from data snooping and overfitting (for a discussion of these topics, see Hilpisch
2020, ch. 4).
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The major goal of this book is to empower the reader to use the code examples in the
book as a framework to explore the exciting space of AI applied to financial trading.
To achieve this goal, the book relies throughout on a number of simplifying assump‐
tions and primarily on financial time series data and features derived directly from such
data. In practical applications, a restriction to financial time series data is of course
not necessary—a great variety of other types of data and data sources could be used as
well. This book’s approach to deriving features implicitly assumes that financial time
series and features derived from them show patterns that, at least to some extent, per‐
sist over time and that can be used to predict the direction of future price movements.

Against this background, all examples and code presented in this book are technical
and illustrative in nature and do not represent any recommendation or investment
advice.

For those who want to deploy approaches and algorithmic trading strategies presen‐
ted in this book, my book Python for Algorithmic Trading: From Idea to Cloud Deploy‐
ment (O’Reilly) provides more process-oriented and technical details. The two books
complement each other in many respects. For readers who are just getting started
with Python for finance or who are seeking a refresher and reference manual, my
book Python for Finance: Mastering Data-Driven Finance (O’Reilly) covers a compre‐
hensive set of important topics and fundamental skills in Python as applied to the
financial domain.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates important information.

This element indicates a warning or caution.
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Using Code Examples
You can access and execute the code that accompanies the book on the Quant Plat‐
form at https://aiif.pqp.io, for which only a free registration is required.

If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example, this book may be attrib‐
uted as: “Artificial Intelligence in Finance by Yves Hilpisch (O’Reilly). Copyright 2021
Yves Hilpisch, 978-1-492-05543-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/ai-in-finance.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART I

Machine Intelligence

Today’s algorithmic trading programs are relatively simple and make only limited use
of AI. This is sure to change.

—Murray Shanahan (2015)

This part is about artificial intelligence (AI) in general: artificial in the sense that the
intelligence is not displayed by a biological organism but rather by a machine, and
intelligence as defined by AI researcher Max Tegmark as the “ability to accomplish
complex goals.” This part introduces central notions and algorithms from the AI field,
gives examples of major recent breakthroughs, and discusses aspects of superintelli‐
gence. It consists of two chapters:

• Chapter 1 introduces general notions, ideas, and definitions from the field of AI.
It also provides several Python examples of how different algorithms can be
applied in practice.

• Chapter 2 discusses concepts and topics related to artificial general intelligence
(AGI) and superintelligence (SI). These types of intelligence relate to AI agents
that have reached at least human-level intelligence in all domains and super-
human intelligence in certain domains.





CHAPTER 1

Artificial Intelligence

This is the first time that a computer program has defeated a human professional
player in the full-sized game of Go, a feat previously thought to be at least a decade
away.

—David Silver et al. (2016)

This chapter introduces general notions, ideas, and definitions from the field of artifi‐
cial intelligence (AI) for the purposes of this book. It also provides worked-out exam‐
ples for different types of major learning algorithms. In particular, “Algorithms” on
page 3 takes a broad perspective and categorizes types of data, types of learning, and
types of problems typically encountered in an AI context. This chapter also presents
examples for unsupervised and reinforcement learning. “Neural Networks” on page 9
jumps right into the world of neural networks, which not only are central to what fol‐
lows in later chapters of the book but also have proven to be among the most power‐
ful algorithms AI has to offer nowadays. “Importance of Data” on page 22 discusses
the importance of data volume and variety in the context of AI.

Algorithms
This section introduces basic notions from the field of AI relevant to this book. It dis‐
cusses the different types of data, learning, problems, and approaches that can be sub‐
sumed under the general term AI. Alpaydin (2016) provides an informal introduction
to and overview of many of the topics covered only briefly in this section, along with
many examples.
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Types of Data
Data in general has two major components:

Features
Features data (or input data) is data that is given as input to an algorithm. In a
financial context, this might be, for example, the income and the savings of a
potential debtor.

Labels
Labels data (or output data) is data that is given as the relevant output to be
learned, for example, by a supervised learning algorithm. In a financial context,
this might be the creditworthiness of a potential debtor.

Types of Learning
There are three major types of learning algorithms:

Supervised learning (SL)
These are algorithms that learn from a given sample data set of features (input)
and labels (output) values. The next section presents examples for such algo‐
rithms, like ordinary least-squares (OLS) regression and neural networks. The
purpose of supervised learning is to learn the relationship between the input and
output values. In finance, such algorithms might be trained to predict whether a
potential debtor is creditworthy or not. For the purposes of this book, these are
the most important types of algorithms.

Unsupervised learning (UL)
These are algorithms that learn from a given sample data set of features (input)
values only, often with the goal of finding structure in the data. They are sup‐
posed to learn about the input data set, given, for example, some guiding param‐
eters. Clustering algorithms fall into that category. In a financial context, such
algorithms might cluster stocks into certain groups.

Reinforcement learning (RL)
These are algorithms that learn from trial and error by receiving a reward for tak‐
ing an action. They update an optimal action policy according to what rewards
and punishments they receive. Such algorithms are, for example, used for envi‐
ronments where actions need to be taken continuously and rewards are received
immediately, such as in a computer game.

Because supervised learning is addressed in the subsequent section in some detail,
brief examples will illustrate unsupervised learning and reinforcement learning.
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1 For details, see sklearn.cluster.KMeans and VanderPlas (2017, ch. 5).

Unsupervised Learning
Simply speaking, a k-means clustering algorithm sorts n observations into k clusters.
Each observation belongs to the cluster to which its mean (center) is nearest. The fol‐
lowing Python code generates sample data for which the features data is clustered.
Figure 1-1 visualizes the clustered sample data and also shows that the scikit-learn
KMeans algorithm used here has identified the clusters perfectly. The coloring of the
dots is based on what the algorithm has learned.1

In [1]: import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        np.set_printoptions(precision=4, suppress=True)

In [2]: from sklearn.cluster import KMeans
        from sklearn.datasets import make_blobs

In [3]: x, y = make_blobs(n_samples=100, centers=4,
                          random_state=500, cluster_std=1.25)  

In [4]: model = KMeans(n_clusters=4, random_state=0)  

In [5]: model.fit(x)  
Out[5]: KMeans(n_clusters=4, random_state=0)

In [6]: y_ = model.predict(x)  

In [7]: y_  
Out[7]: array([3, 3, 1, 2, 1, 1, 3, 2, 1, 2, 2, 3, 2, 0, 0, 3, 2, 0, 2, 0, 0, 3,
               1, 2, 1, 1, 0, 0, 1, 3, 2, 1, 1, 0, 1, 3, 1, 3, 2, 2, 2, 1, 0, 0,
               3, 1, 2, 0, 2, 0, 3, 0, 1, 0, 1, 3, 1, 2, 0, 3, 1, 0, 3, 2, 3, 0,
               1, 1, 1, 2, 3, 1, 2, 0, 2, 3, 2, 0, 2, 2, 1, 3, 1, 3, 2, 2, 3, 2,
               0, 0, 0, 3, 3, 3, 3, 0, 3, 1, 0, 0], dtype=int32)

In [8]: plt.figure(figsize=(10, 6))
        plt.scatter(x[:, 0], x[:, 1], c=y_,  cmap='coolwarm');

A sample data set is created with clustered features data.

A KMeans model object is instantiated, fixing the number of clusters.

The model is fitted to the features data.
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The predictions are generated given the fitted model.

The predictions are numbers from 0 to 3, each representing one cluster.

Figure 1-1. Unsupervised learning of clusters

Once an algorithm such as KMeans is trained, it can, for instance, predict the cluster
for a new (not yet seen) combination of features values. Assume that such an algo‐
rithm is trained on features data that describes potential and real debtors of a bank. It
might learn about the creditworthiness of potential debtors by generating two clus‐
ters. New potential debtors can then be sorted into a certain cluster: “creditworthy”
versus “not creditworthy.”

Reinforcement learning
The following example is based on a coin tossing game that is played with a coin that
lands 80% of the time on heads and 20% of the time on tails. The coin tossing game is
heavily biased to emphasize the benefits of learning as compared to an uninformed
baseline algorithm. The baseline algorithm, which bets randomly and equally distrib‐
utes on heads and tails, achieves a total reward of around 50, on average, per epoch of
100 bets played:

In [9]: ssp = [1, 1, 1, 1, 0]  

In [10]: asp = [1, 0]  

In [11]: def epoch():
             tr = 0
             for _ in range(100):
                 a = np.random.choice(asp)  
                 s = np.random.choice(ssp)  
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                 if a == s:
                     tr += 1  
             return tr

In [12]: rl = np.array([epoch() for _ in range(15)])  
         rl
Out[12]: array([53, 55, 50, 48, 46, 41, 51, 49, 50, 52, 46, 47, 43, 51, 52])

In [13]: rl.mean()  
Out[13]: 48.93333333333333

The state space (1 = heads, 0 = tails).

The action space (1 = bet on heads, 0 = bet on tails).

An action is randomly chosen from the action space.

A state is randomly chosen from the state space.

The total reward tr is increased by one if the bet is correct.

The game is played for a number of epochs; each epoch is 100 bets.

The average total reward of the epochs played is calculated.

Reinforcement learning tries to learn from what is observed after an action is taken,
usually based on a reward. To keep things simple, the following learning algorithm
only keeps track of the states that are observed in each round insofar as they are
appended to the action space list object. In this way, the algorithm learns the bias in
the game, though maybe not perfectly. By randomly sampling from the updated
action space, the bias is reflected because naturally the bet will more often be heads.
Over time, heads is chosen, on average, around 80% of the time. The average total
reward of around 65 reflects the improvement of the learning algorithm as compared
to the uninformed baseline algorithm:

In [14]: ssp = [1, 1, 1, 1, 0]

In [15]: def epoch():
             tr = 0
             asp = [0, 1]  
             for _ in range(100):
                 a = np.random.choice(asp)
                 s = np.random.choice(ssp)
                 if a == s:
                     tr += 1
                 asp.append(s)  
             return tr
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In [16]: rl = np.array([epoch() for _ in range(15)])
         rl
Out[16]: array([64, 65, 77, 65, 54, 64, 71, 64, 57, 62, 69, 63, 61, 66, 75])

In [17]: rl.mean()
Out[17]: 65.13333333333334

Resets the action space before starting (over)

Adds the observed state to the action space

Types of Tasks
Depending on the type of labels data and the problem at hand, two types of tasks to
be learned are important:

Estimation
Estimation (or approximation, regression) refers to the cases in which the labels
data is real-valued (continuous); that is, it is technically represented as floating
point numbers.

Classification
Classification refers to the cases in which the labels data consists of a finite num‐
ber of classes or categories that are typically represented by discrete values (posi‐
tive natural numbers), which in turn are represented technically as integers.

The following section provides examples for both types of tasks.

Types of Approaches
Some more definitions might be in order before finishing this section. This book fol‐
lows the common differentiation between the following three major terms:

Artificial intelligence (AI)
AI encompasses all types of learning (algorithms), as defined before, and some
more (for example, expert systems).

Machine learning (ML)
ML is the discipline of learning relationships and other information about given
data sets based on an algorithm and a measure of success; a measure of success
might, for example, be the mean-squared error (MSE) given labels values and
output values to be estimated and the predicted values from the algorithm. ML is
a sub-set of AI.
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2 For details, see VanderPlas (2017, ch. 5).

Deep learning (DL)
DL encompasses all algorithms based on neural networks. The term deep is usu‐
ally only used when the neural network has more than one hidden layer. DL is a
sub-set of machine learning and so is therefore also a sub-set of AI.

DL has proven useful for a number of broad problem areas. It is suited for estimation
and classification tasks, as well as for RL. In many cases, DL-based approaches
perform better than alternative algorithms, such as logistic regression or kernel-based
ones, like support vector machines.2 That is why this book mainly focuses on DL. DL
approaches used include dense neural networks (DNNs), recurrent neural networks
(RNNs), and convolutional neural networks (CNNs). More details appear in later
chapters, particularly in Part III.

Neural Networks
The previous sections provide a broader overview of algorithms in AI. This section
shows how neural networks fit in. A simple example will illustrate what characterizes
neural networks in comparison to traditional statistical methods, such as ordinary
least-squares (OLS) regression. The example starts with mathematics and then uses
linear regression for estimation (or function approximation) and finally applies neu‐
ral networks to accomplish the estimation. The approach taken here is a supervised
learning approach where the task is to estimate labels data based on features data.
This section also illustrates the use of neural networks in the context of classification
problems.

OLS Regression
Assume that a mathematical function is given as follows:

f :ℝ ℝ, y = 2x2 − 1
3x3

Such a function transforms an input value x to an output value y. Or it transforms a
series of input values x1, x2, ..., xN into a series of output values y1, y2, ..., yN. The fol‐
lowing Python code implements the mathematical function as a Python function and
creates a number of input and output values. Figure 1-2 plots the output values
against the input values:

In [18]: def f(x):
             return 2 * x ** 2 - x ** 3 / 3  
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In [19]: x = np.linspace(-2, 4, 25)  
         x  
Out[19]: array([-2.  , -1.75, -1.5 , -1.25, -1.  , -0.75, -0.5 , -0.25,  0.  ,
                 0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ,  2.25,
                 2.5 ,  2.75,  3.  ,  3.25,  3.5 ,  3.75,  4.  ])

In [20]: y = f(x)  
         y  
Out[20]: array([10.6667,  7.9115,  5.625 ,  3.776 ,  2.3333,  1.2656,  0.5417,
                 0.1302,  0.    ,  0.1198,  0.4583,  0.9844,  1.6667,  2.474 ,
                 3.375 ,  4.3385,  5.3333,  6.3281,  7.2917,  8.1927,  9.    ,
                 9.6823, 10.2083, 10.5469, 10.6667])

In [21]: plt.figure(figsize=(10, 6))
         plt.plot(x, y, 'ro');

The mathematical function as a Python function

The input values

The output values

Figure 1-2. Output values against input values

Whereas in the mathematical example the function comes first, the input data sec‐
ond, and the output data third, the sequence is different in statistical learning. Assume
that the previous input values and output values are given. They represent the sample
(data). The problem in statistical regression is to find a function that approximates the
functional relationship between the input values (also called the independent values)
and the output values (also called the dependent values) as well as possible.
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Assume simple OLS linear regression. In this case, the functional relationship
between the input and output values is assumed to be linear, and the problem is to
find optimal parameters α and β for the following linear equation:

f :ℝ ℝ, y = α + βx

For given input values x1, x2, ..., xN and output values y1, y2, ..., yN, optimal in this case
means that they minimize the mean squared error (MSE) between the real output
values and the approximated output values:

min
α, β

1
N ∑

n

N
yn − f xn

2

For the case of simple linear regression, the solution α*, β*  is known in closed form,
as shown in the following equation. Bars on the variables indicate sample mean val‐
ues:

β* = Cov x, y
Var x

α* = y − βx

The following Python code calculates the optimal parameter values, linearly estimates
(approximates) the output values, and plots the linear regression line alongside the
sample data (see Figure 1-3). The linear regression approach does not work too well
here in approximating the functional relationship. This is confirmed by the relatively
high MSE value:

In [22]: beta = np.cov(x, y, ddof=0)[0, 1] / np.var(x)  
         beta  
Out[22]: 1.0541666666666667

In [23]: alpha = y.mean() - beta * x.mean()  
         alpha  
Out[23]: 3.8625000000000003

In [24]: y_ = alpha + beta * x  

In [25]: MSE = ((y - y_) ** 2).mean()  
         MSE  
Out[25]: 10.721953125

In [26]: plt.figure(figsize=(10, 6))
         plt.plot(x, y, 'ro', label='sample data')
         plt.plot(x, y_, lw=3.0, label='linear regression')
         plt.legend();
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Calculation of optimal β

Calculation of optimal α

Calculation of estimated output values

Calculation of the MSE given the approximation

Figure 1-3. Sample data and linear regression line

How can the MSE value be improved (decreased)—maybe even to 0, that is, to a “per‐
fect estimation?” Of course, OLS regression is not constrained to a simple linear rela‐
tionship. In addition to the constant and linear terms, higher order monomials, for
instance, can be easily added as basis functions. To this end, compare the regression
results shown in Figure 1-4 and the following code that creates the figure. The
improvements that come from using quadratic and cubic monomials as basis func‐
tions are obvious and also are numerically confirmed by the calculated MSE values.
For basis functions up to and including the cubic monomial, the estimation is perfect,
and the functional relationship is perfectly recovered:

In [27]: plt.figure(figsize=(10, 6))
         plt.plot(x, y, 'ro', label='sample data')
         for deg in [1, 2, 3]:
             reg = np.polyfit(x, y, deg=deg)  
             y_ = np.polyval(reg, x)  
             MSE = ((y - y_) ** 2).mean()  
             print(f'deg={deg} | MSE={MSE:.5f}')
             plt.plot(x, np.polyval(reg, x), label=f'deg={deg}')
         plt.legend();
         deg=1 | MSE=10.72195
         deg=2 | MSE=2.31258
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         deg=3 | MSE=0.00000

In [28]: reg  
Out[28]: array([-0.3333,  2.    ,  0.    , -0.    ])

Regression step

Approximation step

MSE calculation

Optimal (“perfect”) parameter values

Figure 1-4. Sample data and OLS regression lines

Exploiting the knowledge of the form of the mathematical function to be approxima‐
ted and accordingly adding more basis functions to the regression leads to a “perfect
approximation.” That is, the OLS regression recovers the exact factors of the quad‐
ratic and cubic part, respectively, of the original function.

Estimation with Neural Networks
However, not all relationships are of this kind. This is where, for instance, neural net‐
works can help. Without going into the details, neural networks can approximate a
wide range of functional relationships. Knowledge of the form of the relationship is
generally not required.
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3 For details, see sklearn.neural_network.MLPRegressor. For more background, see Goodfellow et al. (2016,
ch. 6).

Scikit-learn

The following Python code uses the MLPRegressor class of scikit-learn, which
implements a DNN for estimation. DNNs are sometimes also called multi-layer per‐
ceptron (MLP).3 The results are not perfect, as Figure 1-5 and the MSE illustrate.
However, they are quite good already for the simple configuration used:

In [29]: from sklearn.neural_network import MLPRegressor

In [30]: model = MLPRegressor(hidden_layer_sizes=3 * [256],
                              learning_rate_init=0.03,
                              max_iter=5000)  

In [31]: model.fit(x.reshape(-1, 1), y)  
Out[31]: MLPRegressor(hidden_layer_sizes=[256, 256, 256], learning_rate_init=0.03,
                      max_iter=5000)

In [32]: y_ = model.predict(x.reshape(-1, 1))  

In [33]: MSE = ((y - y_) ** 2).mean()
         MSE
Out[33]: 0.021662355744355866

In [34]: plt.figure(figsize=(10, 6))
         plt.plot(x, y, 'ro', label='sample data')
         plt.plot(x, y_, lw=3.0, label='dnn estimation')
         plt.legend();

Instantiates the MLPRegressor object

Implements the fitting or learning step

Implements the prediction step

Just having a look at the results in Figure 1-4 and Figure 1-5, one might assume that
the methods and approaches are not too dissimilar after all. However, there is a fun‐
damental difference worth highlighting. Although the OLS regression approach, as
shown explicitly for the simple linear regression, is based on the calculation of certain
well-specified quantities and parameters, the neural network approach relies on incre‐
mental learning. This in turn means that a set of parameters, the weights within the
neural network, are first initialized randomly and then adjusted gradually given the
differences between the neural network output and the sample output values. This
approach lets you retrain (update) a neural network incrementally.
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4 For details, see Chollet (2017, ch. 3).

Figure 1-5. Sample data and neural network–based estimations

Keras

The next example uses a sequential model with the Keras deep learning package.4 The
model is fitted, or trained, for 100 epochs. The procedure is repeated for five rounds.
After every such round, the approximation by the neural network is updated and
plotted. Figure 1-6 shows how the approximation gradually improves with every
round. This is also reflected in the decreasing MSE values. The end result is not per‐
fect, but again, it is quite good given the simplicity of the model:

In [35]: import tensorflow as tf
         tf.random.set_seed(100)

In [36]: from keras.layers import Dense
         from keras.models import Sequential
         Using TensorFlow backend.

In [37]: model = Sequential()  
         model.add(Dense(256, activation='relu', input_dim=1)) 
         model.add(Dense(1, activation='linear'))  
         model.compile(loss='mse', optimizer='rmsprop')  

In [38]: ((y - y_) ** 2).mean()
Out[38]: 0.021662355744355866

In [39]: plt.figure(figsize=(10, 6))
         plt.plot(x, y, 'ro', label='sample data')
         for _ in range(1, 6):
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5 For details on activation functions with Keras, see https://keras.io/activations.

             model.fit(x, y, epochs=100, verbose=False)  
             y_ =  model.predict(x)  
             MSE = ((y - y_.flatten()) ** 2).mean()  
             print(f'round={_} | MSE={MSE:.5f}')
             plt.plot(x, y_, '--', label=f'round={_}')  
         plt.legend();
         round=1 | MSE=3.09714
         round=2 | MSE=0.75603
         round=3 | MSE=0.22814
         round=4 | MSE=0.11861
         round=5 | MSE=0.09029

Instantiates the Sequential model object

Adds a densely connected hidden layer with rectified linear unit (ReLU)
activation5

Adds the output layer with linear activation

Compiles the model for usage

Trains the neural network for a fixed number of epochs

Implements the approximation step

Calculates the current MSE

Plots the current approximation results

Roughly speaking, one can say that the neural network does almost as well in the esti‐
mation as the OLS regression, which delivers a perfect result. Therefore, why use neu‐
ral networks at all? A more comprehensive answer might need to come later in this
book, but a somewhat different example might give some hint.

Consider instead the previous sample data set, as generated from a well-defined
mathematical function, now a random sample data set, for which both features and
labels are randomly chosen. Of course, this example is for illustration and does not
allow for a deep interpretation.
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Figure 1-6. Sample data and estimations after multiple training rounds

The following code generates the random sample data set and creates the OLS regres‐
sion estimation based on a varying number of monomial basis functions. Figure 1-7
visualizes the results. Even for the highest number of monomials in the example, the
estimation results are still not too good. The MSE value is accordingly relatively high:

In [40]: np.random.seed(0)
         x = np.linspace(-1, 1)
         y = np.random.random(len(x)) * 2 - 1

In [41]: plt.figure(figsize=(10, 6))
         plt.plot(x, y, 'ro', label='sample data')
         for deg in [1, 5, 9, 11, 13, 15]:
             reg = np.polyfit(x, y, deg=deg)
             y_ = np.polyval(reg, x)
             MSE = ((y - y_) ** 2).mean()
             print(f'deg={deg:2d} | MSE={MSE:.5f}')
             plt.plot(x, np.polyval(reg, x), label=f'deg={deg}')
         plt.legend();
         deg= 1 | MSE=0.28153
         deg= 5 | MSE=0.27331
         deg= 9 | MSE=0.25442
         deg=11 | MSE=0.23458
         deg=13 | MSE=0.22989
         deg=15 | MSE=0.21672

The results for the OLS regression are not too surprising. OLS regression in this case
assumes that the approximation can be achieved through an appropriate combination
of a finite number of basis functions. Since the sample data set has been generated
randomly, the OLS regression does not perform well in this case.

Neural Networks | 17



Figure 1-7. Random sample data and OLS regression lines

What about neural networks? The application is as straightforward as before and
yields estimations as shown in Figure 1-8. While the end result is not perfect, it is
obvious that the neural network performs better than the OLS regression in estimat‐
ing the random label values from the random features values. Given its architecture,
however, the neural network has almost 200,000 trainable parameters (weights),
which offers relatively high flexibility, particularly when compared to the OLS regres‐
sion, for which a maximum of 15 + 1 parameters are used:

In [42]: model = Sequential()
         model.add(Dense(256, activation='relu', input_dim=1))
         for _ in range(3):
             model.add(Dense(256, activation='relu'))  
         model.add(Dense(1, activation='linear'))
         model.compile(loss='mse', optimizer='rmsprop')

In [43]: model.summary()  
         Model: "sequential_2"
         _________________________________________________________________
         Layer (type)                 Output Shape              Param #
         =================================================================
         dense_3 (Dense)              (None, 256)               512
         _________________________________________________________________
         dense_4 (Dense)              (None, 256)               65792
         _________________________________________________________________
         dense_5 (Dense)              (None, 256)               65792
         _________________________________________________________________
         dense_6 (Dense)              (None, 256)               65792
         _________________________________________________________________
         dense_7 (Dense)              (None, 1)                 257
         =================================================================
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         Total params: 198,145
         Trainable params: 198,145
         Non-trainable params: 0
         _________________________________________________________________

In [44]: %%time
         plt.figure(figsize=(10, 6))
         plt.plot(x, y, 'ro', label='sample data')
         for _ in range(1, 8):
             model.fit(x, y, epochs=500, verbose=False)
             y_ =  model.predict(x)
             MSE = ((y - y_.flatten()) ** 2).mean()
             print(f'round={_} | MSE={MSE:.5f}')
             plt.plot(x, y_, '--', label=f'round={_}')
         plt.legend();
         round=1 | MSE=0.13560
         round=2 | MSE=0.08337
         round=3 | MSE=0.06281
         round=4 | MSE=0.04419
         round=5 | MSE=0.03329
         round=6 | MSE=0.07676
         round=7 | MSE=0.00431
         CPU times: user 30.4 s, sys: 4.7 s, total: 35.1 s
         Wall time: 13.6 s

Multiple hidden layers are added.

Network architecture and number of trainable parameters are shown.

Figure 1-8. Random sample data and neural network estimations
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Classification with Neural Networks
Another benefit of neural networks is that they can be easily used for classification
tasks as well. Consider the following Python code that implements a classification
using a neural network based on Keras. The binary features data and labels data are
generated randomly. The major adjustment to be made modeling-wise is to change
the activation function from the output layer to sigmoid from linear. More details
on this appear in later chapters. The classification is not perfect. However, it reaches
a high level of accuracy. How the accuracy, expressed as the relationship between
correct results to all label values, changes with the number of training epochs is
shown in Figure 1-9. The accuracy starts out low and then improves step-wise,
though not necessarily with every step:

In [45]: f = 5
         n = 10

In [46]: np.random.seed(100)

In [47]: x = np.random.randint(0, 2, (n, f))  
         x  
Out[47]: array([[0, 0, 1, 1, 1],
                [1, 0, 0, 0, 0],
                [0, 1, 0, 0, 0],
                [0, 1, 0, 0, 1],
                [0, 1, 0, 0, 0],
                [1, 1, 1, 0, 0],
                [1, 0, 0, 1, 1],
                [1, 1, 1, 0, 0],
                [1, 1, 1, 1, 1],
                [1, 1, 1, 0, 1]])

In [48]: y = np.random.randint(0, 2, n)  
         y  
Out[48]: array([1, 1, 0, 0, 1, 1, 0, 1, 0, 1])

In [49]: model = Sequential()
         model.add(Dense(256, activation='relu', input_dim=f))
         model.add(Dense(1, activation='sigmoid'))  
         model.compile(loss='binary_crossentropy', optimizer='rmsprop',
                      metrics=['acc'])  

In [50]: model.fit(x, y, epochs=50, verbose=False)
Out[50]: <keras.callbacks.callbacks.History at 0x7fde09dd1cd0>

In [51]: y_ = np.where(model.predict(x).flatten() > 0.5, 1, 0)
         y_
Out[51]: array([1, 1, 0, 0, 0, 1, 0, 1, 0, 1], dtype=int32)
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6 The loss function calculates the prediction error of the neural network (or other ML algorithms). Binary cross
entropy is an appropriate loss function for binary classification problems, while the mean squared error (MSE)
is, for example, appropriate for estimation problems. For details on loss functions with Keras, see https://
keras.io/losses.

In [52]: y == y_  
Out[52]: array([ True,  True,  True,  True, False,  True,  True,  True,  True,
                 True])

In [53]: res = pd.DataFrame(model.history.history)  

In [54]: res.plot(figsize=(10, 6));  

Creates random features data

Creates random labels data

Defines the activation function for the output layer as sigmoid

Defines the loss function to be binary_crossentropy6

Compares the predicted values with the labels data

Plots the loss function and accuracy values for every training step

Figure 1-9. Classification accuracy and loss against number of epochs
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7 See, for example, Kratsios (2019).

The examples in this section illustrate some fundamental characteristics of neural
networks as compared to OLS regression:

Problem-agnostic
The neural network approach is agnostic when it comes to estimating and classi‐
fying label values, given a set of feature values. Statistical methods, such as OLS
regression, might perform well for a smaller set of problems, but not too well or
not at all for others.

Incremental learning
The optimal weights within a neural network, given a target measure of success,
are learned incrementally based on a random initialization and incremental
improvements. These incremental improvements are achieved by considering the
differences between the predicted values and the sample label values and back‐
propagating weights updates through the neural network.

Universal approximation
There are strong mathematical theorems showing that neural networks (even
with one hidden layer only) can approximate almost any function.7

These characteristics might justify why this book puts neural networks at the core
with regard to the algorithms used. Chapter 2 discusses more good reasons.

Neural Networks

Neural networks are good at learning relationships between input
and output data. They can be applied to a number of problem
types, such as estimation in the presence of complex relationships
or classification, for which traditional statistical methods are not
well suited.

Importance of Data
The example at the end of the previous section shows that neural networks are capa‐
ble of solving classification problems quite well. The neural network with one hidden
layer reaches a high degree of accuracy on the given data set, or in-sample. However,
what about the predictive power of a neural network? This hinges significantly on the
volume and variety of the data available to train the neural network. Another numeri‐
cal example, based on larger data sets, will illustrate this point.
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Small Data Set
Consider a random sample data set similar to the one used before in the classification
example, but with more features and more samples. Most algorithms used in AI are
about pattern recognition. In the following Python code, the number of binary fea‐
tures defines the number of possible patterns about which the algorithm can learn
something. Given that the labels data is also binary, the algorithm tries to learn
whether a 0 or 1 is more likely given a certain pattern, say [0, 0, 1, 1, 1, 1, 0,
0, 0, 0]. Because all numbers are randomly chosen with equal probability, there is
not that much to learn beyond the fact that the labels 0 and 1 are equally likely no
matter what (random) pattern is observed. Therefore, a baseline prediction algorithm
should be accurate about 50% of the time, no matter what (random) pattern it is
presented with:

In [55]: f = 10
         n = 250

In [56]: np.random.seed(100)

In [57]: x = np.random.randint(0, 2, (n, f))  
         x[:4]  
Out[57]: array([[0, 0, 1, 1, 1, 1, 0, 0, 0, 0],
                [0, 1, 0, 0, 0, 0, 1, 0, 0, 1],
                [0, 1, 0, 0, 0, 1, 1, 1, 0, 0],
                [1, 0, 0, 1, 1, 1, 1, 1, 0, 0]])

In [58]: y = np.random.randint(0, 2, n)  
         y[:4]  
Out[58]: array([0, 1, 0, 0])

In [59]: 2 ** f  
Out[59]: 1024

Features data

Labels data

Number of patterns

In order to proceed, the raw data is put into a pandas DataFrame object, which simpli‐
fies certain operations and analyses:

In [60]: fcols = [f'f{_}' for _ in range(f)]  
         fcols  
Out[60]: ['f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9']

In [61]: data = pd.DataFrame(x, columns=fcols)  
         data['l'] = y  
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In [62]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 250 entries, 0 to 249
         Data columns (total 11 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   f0      250 non-null    int64
          1   f1      250 non-null    int64
          2   f2      250 non-null    int64
          3   f3      250 non-null    int64
          4   f4      250 non-null    int64
          5   f5      250 non-null    int64
          6   f6      250 non-null    int64
          7   f7      250 non-null    int64
          8   f8      250 non-null    int64
          9   f9      250 non-null    int64
          10  l       250 non-null    int64
         dtypes: int64(11)
         memory usage: 21.6 KB

Defines column names for the features data

Puts the features data into a DataFrame object

Puts the labels data into the same DataFrame object

Shows the meta information for the data set

Two major problems can be identified given the results from executing the following
Python code. First, not all patterns are in the sample data set. Second, the sample size
is much too small per observed pattern. Even without digging deeper, it is clear
that no classification algorithm can really learn about all the possible patterns in a
meaningful way:

In [63]: grouped = data.groupby(list(data.columns))  

In [64]: freq = grouped['l'].size().unstack(fill_value=0)  

In [65]: freq['sum'] = freq[0] + freq[1]  

In [66]: freq.head(10)  
Out[66]: l                              0  1  sum
         f0 f1 f2 f3 f4 f5 f6 f7 f8 f9
         0  0  0  0  0  0  0  1  1  1   0  1    1
                           1  0  1  0   1  1    2
                                    1   0  1    1
                        1  0  0  0  0   1  0    1
                                    1   0  1    1
                              1  1  1   0  1    1
                           1  0  0  0   0  1    1
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8 For details, see sklearn.neural_network.MLPClassifier.

                                 1  0   0  1    1
                     1  0  0  0  1  1   1  0    1
                           1  1  0  0   1  0    1

In [67]: freq['sum'].describe().astype(int)  
Out[67]: count    227
         mean       1
         std        0
         min        1
         25%        1
         50%        1
         75%        1
         max        2
         Name: sum, dtype: int64

Groups the data along all columns

Unstacks the grouped data for the labels column

Adds up the frequency for a 0 and a 1

Shows the frequencies for a 0 and a 1 given a certain pattern

Provides statistics for the sum of the frequencies

The following Python code uses the MLPClassifier model from scikit-learn.8 The
model is trained on the whole data set. What about the ability of a neural network
to learn about the relationships within a given data set? The ability is pretty high, as
the in-sample accuracy score shows. It is in fact close to 100%, a result driven to a
large extent by the relatively high neural network capacity given the relatively small
data set:

In [68]: from sklearn.neural_network import MLPClassifier
         from sklearn.metrics import accuracy_score

In [69]: model = MLPClassifier(hidden_layer_sizes=[128, 128, 128],
                               max_iter=1000, random_state=100)

In [70]: model.fit(data[fcols], data['l'])
Out[70]: MLPClassifier(hidden_layer_sizes=[128, 128, 128], max_iter=1000,
                       random_state=100)

In [71]: accuracy_score(data['l'], model.predict(data[fcols]))
Out[71]: 0.952
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But what about the predictive power of a trained neural network? To this end, the
given data set can be split into a training and a test data sub-set. The model is trained
on the training data sub-set only and then tested with regard to its predictive power
on the test data set. As before, the accuracy of the trained neural network is pretty
high in-sample (that is, on the training data set). However, it is more than 10 percent‐
age points worse than an uninformed baseline algorithm on the test data set:

In [72]: split = int(len(data) * 0.7)  

In [73]: train = data[:split]  
         test = data[split:]  

In [74]: model.fit(train[fcols], train['l'])  
Out[74]: MLPClassifier(hidden_layer_sizes=[128, 128, 128], max_iter=1000,
                       random_state=100)

In [75]: accuracy_score(train['l'], model.predict(train[fcols]))  
Out[75]: 0.9714285714285714

In [76]: accuracy_score(test['l'], model.predict(test[fcols]))  
Out[76]: 0.38666666666666666

Splits the data into train and test data sub-sets

Trains the model on the training data set only

Reports the accuracy in-sample (training data set)

Reports the accuracy out-of-sample (test data set)

Roughly speaking, the neural network, trained on a small data set only, learns wrong
relationships due to the identified two major problem areas. The problems are not
really relevant in the context of learning relationships in-sample. To the contrary, the
smaller a data set is, the more easily in-sample relationships can be learned in general.
However, the problem areas are highly relevant when using the trained neural net‐
work to generate predictions out-of-sample.

Larger Data Set
Fortunately, there is often a clear way out of this problematic situation: a larger data
set. Faced with real-world problems, this theoretical insight might be equally correct.
From a practical point of view, though, such larger data sets are not always available,
nor can they often be generated so easily. However, in the context of the example of
this section, a larger data set is indeed easily created.

The following Python code increases the number of samples in the initial sample data
set significantly. The result is that the prediction accuracy of the trained neural
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network increases by more than 10 percentage points, to a level of about 50%, which
is to be expected given the nature of the labels data. It is now in line with an unin‐
formed baseline algorithm:

In [77]: factor = 50

In [78]: big = pd.DataFrame(np.random.randint(0, 2, (factor * n, f)),
                            columns=fcols)

In [79]: big['l'] = np.random.randint(0, 2, factor * n)

In [80]: train = big[:split]
         test = big[split:]

In [81]: model.fit(train[fcols], train['l'])
Out[81]: MLPClassifier(hidden_layer_sizes=[128, 128, 128], max_iter=1000,
                       random_state=100)

In [82]: accuracy_score(train['l'], model.predict(train[fcols]))  
Out[82]: 0.9657142857142857

In [83]: accuracy_score(test['l'], model.predict(test[fcols]))  
Out[83]: 0.5043407707910751

Prediction accuracy in-sample (training data set)

Prediction accuracy out-of-sample (test data set)

A quick analysis of the available data, as shown next, explains the increase in the pre‐
diction accuracy. First, all possible patterns are now represented in the data set. Sec‐
ond, all patterns have an average frequency of above 10 in the data set. In other
words, the neural network sees basically all the patterns multiple times. This allows the
neural network to “learn” that both labels 0 and 1 are equally likely for all possible
patterns. Of course, it is a rather involved way of learning this, but it is a good illus‐
tration of the fact that a relatively small data set might often be too small in the context
of neural networks:

In [84]: grouped = big.groupby(list(data.columns))

In [85]: freq = grouped['l'].size().unstack(fill_value=0)

In [86]: freq['sum'] = freq[0] + freq[1]  

In [87]: freq.head(6)
Out[87]: l                               0  1  sum
         f0 f1 f2 f3 f4 f5 f6 f7 f8 f9
         0  0  0  0  0  0  0  0  0  0   10  9   19
                                    1    5  4    9
                                 1  0    2  5    7
                                    1    6  6   12
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                              1  0  0    9  8   17
                                    1    7  4   11

In [88]: freq['sum'].describe().astype(int)  
Out[88]: count    1024
         mean       12
         std         3
         min         2
         25%        10
         50%        12
         75%        15
         max        26
         Name: sum, dtype: int64

Adds the frequency for the 0 and 1 values

Shows summary statistics for the sum values

Volume and Variety

In the context of neural networks that perform prediction tasks, the
volume and variety of the available data used to train the neural
network are decisive for its prediction performance. The numeri‐
cal, hypothetical examples in this section show that the same neural
network trained on a relatively small and not-as-varied data set
underperforms its counterpart trained on a relatively large and var‐
ied data set by more than 10 percentage points. This difference can
be considered huge given that AI practitioners and companies
often fight for improvements as small as a tenth of a percentage
point.

Big Data
What is the difference between a larger data set and a big data set? The term big data
has been used for more than a decade now to mean a number of things. For the pur‐
poses of this book, one might say that a big data set is large enough—in terms of vol‐
ume, variety, and also maybe velocity—for an AI algorithm to be trained properly
such that the algorithm performs better at a prediction task as compared to a baseline
algorithm.

The larger data set used before is still small in practical terms. However, it is large
enough to accomplish the specified goal. The required volume and variety of the data
set are mainly driven by the structure and characteristics of the features and labels
data.

In this context, assume that a retail bank implements a neural network–based classifi‐
cation approach for credit scoring. Given in-house data, the responsible data scientist
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9 Nor would current compute technology allow one to model and train a neural network based on such a data
set if it would be available. In this context, the next chapter discusses the importance of hardware for AI.

designs 25 categorical features, every one of which can take on 8 different values. The
resulting number of patterns is astronomically large:

In [89]: 8 ** 25
Out[89]: 37778931862957161709568

It is clear that no single data set can provide a neural network with exposure to every
single one of these patterns.9 Fortunately, in practice this is not necessary for the neu‐
ral network to learn about the creditworthiness based on data for regular, defaulting,
and/or rejected debtors. It is also not necessary in general to generate “good” predic‐
tions with regard to the creditworthiness of every potential debtor.

This is due to a number of reasons. To name only a few, first, not every pattern will be
relevant in practice—some patterns might simply not exist, might be impossible, and
so forth. Second, not all features might be equally important, reducing the number of
relevant features and thereby the number of possible patterns. Third, a value of 4 or 5
for feature number 7, say, might not make a difference at all, further reducing the
number of relevant patterns.

Conclusions
For this book, artificial intelligence, or AI, encompasses methods, techniques, algo‐
rithms, and so on that are able to learn relationships, rules, probabilities, and more
from data. The focus lies on supervised learning algorithms, such as those for estima‐
tion and classification. With regard to algorithms, neural networks and deep learning
approaches are at the core.

The central theme of this book is the application of neural networks to one of the
core problems in finance: the prediction of future market movements. More specifi‐
cally, the problem might be to predict the direction of movement for a stock index or
the exchange rate for a currency pair. The prediction of the future market direction
(that is, whether a target level or price goes up or down) is a problem that can be
easily cast into a classification setting.

Before diving deeper into the core theme itself, the next chapter first discusses
selected topics related to what is called superintelligence and technological singularity.
That discussion will provide useful background for the chapters that follow, which
focus on finance and the application of AI to the financial domain.
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CHAPTER 2

Superintelligence

The fact that there are many paths that lead to superintelligence should increase our
confidence that we will eventually get there. If one path turns out to be blocked, we can
still progress.

—Nick Bostrom (2014)

There are multiple definitions for the term technological singularity. Its use dates back
at least to the article by Vinge (1993), which the author provocatively begins like this:

Within thirty years, we will have the technological means to create superhuman intelli‐
gence. Shortly after, the human era will be ended.

For the purposes of this chapter and book, technological singularity refers to a point in
time at which certain machines achieve superhuman intelligence, or superintelligence
—this is mostly in line with the original idea of Vinge (1993). The idea and concept
was further popularized by the widely read and cited book by Kurzweil (2005). Barrat
(2013) has a wealth of historical and anecdotal information around the topic. Shana‐
han (2015) provides an informal introduction and overview of its central aspects. The
expression technological singularity itself has its origin in the concept of a singularity
in physics. It refers to the center of a black hole, where mass is highly concentrated,
gravitation becomes infinite, and traditional laws of physics break down. The begin‐
ning of the universe, the so-called Big Bang, is also referred to as a singularity.

Although the general ideas and concepts of the technological singularity and of
superintelligence might not have an obvious and direct relationship to AI applied to
finance, a better understanding of their background, related problems, and potential
consequences is beneficial. The insights gained in the general framework are impor‐
tant in a narrower context as well, such as for AI in finance. Those insights also help
guide the discussion about how AI might reshape the financial industry in the near
and long term.
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1 For background and historical information, see http://bit.ly/aiif_atari.

“Success Stories” on page 32 takes a look at a selection of recent success stories in the
field of AI. Among others, it covers how the company DeepMind solved the problem
of playing Atari 2600 games with neural networks. It also tells the story of how the
same company solved the problem of playing the game of Go at above-human-expert
level. The story of chess and computer programs is also recounted in that section.
“Importance of Hardware” on page 42 discusses the importance of hardware in the
context of these recent success stories. “Forms of Intelligence” on page 44 introduces
different forms of intelligence, such as artificial narrow intelligence (ANI), artificial
general intelligence (AGI), and superintelligence (SI). “Paths to Superintelligence” on
page 45 is about potential paths to superintelligence, such as whole brain emulation
(WBE), while “Intelligence Explosion” on page 50 is about what researchers call intel‐
ligence explosion. “Goals and Control” on page 50 provides a discussion of aspects
related to the so-called control problem in the context of superintelligence. Finally,
“Potential Outcomes” on page 54 briefly looks at potential future outcomes and
scenarios once superintelligence has been achieved.

Success Stories
Many ideas and algorithms in AI date back a few decades already. Over these decades
there have been longer periods of hope on the one hand and despair on the other
hand. Bostrom (2014, ch. 1) provides a review of these periods.

In 2020, one can say for sure that AI is in the middle of a period of hope, if not excite‐
ment. One reason for this is recent successes in applying AI to domains and problems
that even a few years ago seemed immune to AI dominance for decades to come. The
list of such success stories is long and growing rapidly. Therefore, this section focuses
on three such stories only. Gerrish (2018) provides a broader selection and more
detailed accounts of the single cases.

Atari
This sub-section first tells the success story of how DeepMind mastered playing Atari
2600 games with reinforcement learning and neural networks, and then illustrates the
basic approach that led to its success based on a concrete code example.

The story
The first success story is about playing Atari 2600 games on a superhuman level.1 The
Atari 2600 Video Computer System (VCS) was released in 1977 and was one of the
first widespread game-playing consoles in the 1980s. Selected popular games from
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2 For details, refer to Mnih et al. (2013).
3 Among other factors, this is made possible by the availability of the Arcade Learning Environment (ALE) that

allows researchers to train AI agents for Atari 2600 games via a standardized API.

that period, such as Space Invaders, Asteroids, or Missile Command, count as classics
and are still played decades later by retro games enthusiasts.

DeepMind published a paper (Mnih et al. 2013) in which its team detailed results
from applying reinforcement learning to the problem of playing Atari 2600 games by
an AI algorithm, or a so-called AI agent. The algorithm is a variant of Q-learning
applied to a convolutional neural network.2 The algorithm is trained on high-
dimensional visual input (raw pixels) only, without any guidance by or input from a
human. The original project focused on seven Atari 2600 games, and for three of
them—Pong, Enduro, and Breakout—the DeepMind team reported above-human
expert performance of the AI agent.

From an AI point of view, it is remarkable not only that the DeepMind team achieved
such a result, but also how it achieved it. First, the team only used a single neural net‐
work to learn and play all seven games. Second, no human guidance or humanly
labeled data was provided, just the interactive learning experience based on visual
input properly transformed into features data.3 Third, the approach used is reinforce‐
ment learning, which relies on observation of the relationships between actions and
outcomes (rewards) only—basically the same way a human player learns to play such
a game.

One of the Atari 2600 games, for which the DeepMind AI agent achieved above-
human expert performance, is Breakout. In this game, the goal is to destroy lines of
bricks at the top of the screen by using a paddle at the bottom of the screen from
which a ball bounces back and moves straight across the screen. Whenever the ball
hits a brick, the brick is destroyed and the ball bounces back. The ball also bounces
back from the left, right, and top walls. The player loses a life in this game whenever
the ball reaches the bottom of the screen without being hit by the paddle.

The action space has three elements, all related to the paddle: staying at current posi‐
tion, moving left, and moving right. The state space is represented by frames of the
game screen of size 210 x 160 pixels with a 128-color palette. The reward is repre‐
sented by the game score, which the DeepMind algorithm is programmed to maxi‐
mize. With regard to the action policy, the algorithm learns which action is best to
take, given a certain game state, to maximize the game score (total reward).

An example
There is not enough room in this chapter to explore in detail the approach taken by
DeepMind for Breakout and the other Atari 2600 games. However, the OpenAI Gym
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4 Chapter 9 revisits this example in more detail.
5 More specifically, an AI agent is considered successful if it reaches an average total reward of 195 or more

over 100 consecutive games.

environment (see https://gym.openai.com) allows for the illustration of a similar, but
simpler, neural network approach for a similar, but again simpler, game.

The Python code in this section works with the CartPole environment of the OpenAI
Gym (see http://bit.ly/aiif_cartpole).4 In this environment, a cart needs to be moved to
the right or left to balance an upright pole on top of the paddle. Therefore, the action
space is similar to the Breakout action space. The state space consists of four physical
data points: cart position, cart velocity, pole angle, and pole angular velocity (see
Figure 2-1). If, after having taken an action, the pole is still in balance, the agent gets a
reward of 1. If the pole is out of balance, the game ends. The agent is considered suc‐
cessful if it reaches a total reward of 200.5

Figure 2-1. Graphical representation of the CartPole environment

The following code first instantiates a CartPole environment object, and then
inspects the action and state spaces, takes a random action, and captures the results.
The AI agent moves on toward the next round when the done variable is False:

In [1]: import gym
        import numpy as np
        import pandas as pd
        np.random.seed(100)

In [2]: env = gym.make('CartPole-v0')  

In [3]: env.seed(100)  
Out[3]: [100]

In [4]: action_size = env.action_space.n  
        action_size  
Out[4]: 2

In [5]: [env.action_space.sample() for _ in range(10)]  
Out[5]: [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]

In [6]: state_size = env.observation_space.shape[0]  
        state_size  
Out[6]: 4
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In [7]: state = env.reset()  
        state  # [cart position, cart velocity, pole angle, pole angular velocity]
Out[7]: array([-0.01628537,  0.02379786, -0.0391981 , -0.01476447])

In [8]: state, reward, done, _ = env.step(env.action_space.sample())  
        state, reward, done, _  
Out[8]: (array([-0.01580941, -0.17074066, -0.03949338,  0.26529786]), 1.0, False, {})

Instantiates the environment object

Fixes the random number seed for the environment

Shows the size of the action space

Takes some random actions and collects them

Shows the size of the state space

Resets (initializes) the environment and captures the state

Takes a random action and steps the environment forward to the next state

The next step is to play the game based on random actions to generate a large enough
data set. However, to increase the quality of the data set, only data that results from
games with a total reward of 110 or more is collected. To this end, a few thousand
games are played to collect enough data for the training of a neural network:

In [9]: %%time
        data = pd.DataFrame()
        state = env.reset()
        length = []
        for run in range(25000):
            done = False
            prev_state = env.reset()
            treward = 1
            results = []
            while not done:
                action = env.action_space.sample()
                state, reward, done, _ = env.step(action)
                results.append({'s1': prev_state[0], 's2': prev_state[1],
                                's3': prev_state[2], 's4': prev_state[3],
                                'a': action, 'r': reward})
                treward += reward if not done else 0
                prev_state = state
            if treward >= 110:  
                data = data.append(pd.DataFrame(results))  
                length.append(treward)  
        CPU times: user 9.84 s, sys: 48.7 ms, total: 9.89 s
        Wall time: 9.89 s
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In [10]: np.array(length).mean()  
Out[10]: 119.75

In [11]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 479 entries, 0 to 143
         Data columns (total 6 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   s1      479 non-null    float64
          1   s2      479 non-null    float64
          2   s3      479 non-null    float64
          3   s4      479 non-null    float64
          4   a       479 non-null    int64
          5   r       479 non-null    float64
         dtypes: float64(5), int64(1)
         memory usage: 26.2 KB

In [12]: data.tail()  
Out[12]:            s1        s2        s3        s4  a    r
         139  0.639509  0.992699 -0.112029 -1.548863  0  1.0
         140  0.659363  0.799086 -0.143006 -1.293131  0  1.0
         141  0.675345  0.606042 -0.168869 -1.048421  0  1.0
         142  0.687466  0.413513 -0.189837 -0.813148  1  1.0
         143  0.695736  0.610658 -0.206100 -1.159030  0  1.0

Only if the total reward of the random agent is at least 100…

…is the data is collected…

…and the total reward recorded.

The average total reward of all random games included in the data set.

A look at the collected data in the DataFrame object.

Equipped with the data, a neural network can be trained as follows. Set up a neural
network for classification. Train it with the columns representing the state data as fea‐
tures and the column with the taken actions as labels data. Given that the data set
only includes actions that have been successful for the given state, the neural network
learns about what action to take (label) given the state (features):

In [13]: from pylab import plt
         plt.style.use('seaborn')
         %matplotlib inline

In [14]: import tensorflow as tf
         tf.random.set_seed(100)

In [15]: from keras.layers import Dense
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         from keras.models import Sequential
         Using TensorFlow backend.

In [16]: model = Sequential()  
         model.add(Dense(64, activation='relu',
                         input_dim=env.observation_space.shape[0]))  
         model.add(Dense(1, activation='sigmoid'))  
         model.compile(loss='binary_crossentropy',
                       optimizer='adam',
                       metrics=['acc'])  

In [17]: %%time
         model.fit(data[['s1', 's2', 's3', 's4']], data['a'],
                   epochs=25, verbose=False, validation_split=0.2)  
         CPU times: user 1.02 s, sys: 166 ms, total: 1.18 s
         Wall time: 797 ms

Out[17]: <keras.callbacks.callbacks.History at 0x7ffa53685190>

In [18]: res = pd.DataFrame(model.history.history)  
         res.tail(3)  
Out[18]:     val_loss  val_acc      loss       acc
         22  0.660300  0.59375  0.646965  0.626632
         23  0.660828  0.59375  0.646794  0.621410
         24  0.659114  0.59375  0.645908  0.626632

A neural network with one hidden layer only is used.

The model is trained on the previously collected data.

The metrics per training step are shown for the final few steps.

The trained neural network, or AI agent, can then play the CartPole game given
its learned best actions for any state it is presented with. The AI agent achieves the
maximum total reward of 200 for each of the 100 games played. This is based on a
relatively small data set in combination with a relatively simple neural network:

In [20]: def epoch():
             done = False
             state = env.reset()
             treward = 1
             while not done:
                 action = np.where(model.predict(np.atleast_2d(state))[0][0] > \
                          0.5, 1, 0)  
                 state, reward, done, _ = env.step(action)  
                 treward += reward if not done else 0
             return treward

In [21]: res = np.array([epoch() for _ in range(100)])
         res 
Out[21]: array([200., 200., 200., 200., 200., 200., 200., 200., 200., 200., 200.,
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                200., 200., 200., 200., 200., 200., 200., 200., 200., 200., 200.,
                200., 200., 200., 200., 200., 200., 200., 200., 200., 200., 200.,
                200., 200., 200., 200., 200., 200., 200., 200., 200., 200., 200.,
                200., 200., 200., 200., 200., 200., 200., 200., 200., 200., 200.,
                200., 200., 200., 200., 200., 200., 200., 200., 200., 200., 200.,
                200., 200., 200., 200., 200., 200., 200., 200., 200., 200., 200.,
                200., 200., 200., 200., 200., 200., 200., 200., 200., 200., 200.,
                200., 200., 200., 200., 200., 200., 200., 200., 200., 200., 200.,
                200.])

In [22]: res.mean()  
Out[22]: 200.0

Chooses an action given the state and the trained model

Moves the environment one step forward based on the learned action

Plays a number of games and records the total reward for each game

Calculates the average total reward for all games

The Arcade Learning Environment (ALE) works similarly to OpenAI Gym. It allows
one to programmatically interact with emulated Atari 2600 games, take actions, col‐
lect the results from a taken action, and so on. The task of learning to play Breakout,
for example, is of course more involved, if only because the state space is much larger.
The basic approach, however, is similar to the one taken here, with several algorith‐
mic refinements.

Go
The board game Go is more than 2,000 years old. It has long been considered a cre‐
ation of beauty and art—because it is simple in principle but nevertheless highly com‐
plex—and was expected to withstand the advance of game-playing AI agents for
decades to come. The strength of a Go player is measured in dans, in line with gradu‐
ation systems for many martial arts systems. For example, Lee Sedol, who was the Go
world champion for years, holds the 9th dan. In 2014, Bostrom postulated:

Go-playing programs have been improving at a rate of about 1 dan/year in recent
years. If this rate of improvement continues, they might beat the human world cham‐
pion in about a decade.

Again, it was a team at DeepMind that was able to achieve breakthroughs for AI
agents playing Go with its AlphaGo algorithm (see the AlphaGo page on DeepMind’s
website). In Silver et al. (2016), the researchers describe the situation as follows:

The game of Go has long been viewed as the most challenging of classic games for arti‐
ficial intelligence owing to its enormous search space and the difficulty of evaluating
board positions and moves.
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The members of the team used a combination of a neural network with a Monte
Carlo tree search algorithm, which they briefly sketch in their paper. Recounting their
early successes from 2015, the team points out in the introduction:

[O]ur program AlphaGo achieved a 99.8% winning rate against other Go programs,
and defeated the human European Go champion [Fan Hui] by 5 games to 0. This is the
first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

It is remarkable that this milestone was achieved just one year after a leading AI
researcher, Nick Bostrom, predicted that it might take another decade to reach that
level. Many observers remarked, however, that the beating European Go champion of
that time, Fan Hui, cannot really be considered a benchmark since the world Go elite
play on a much higher level. The DeepMind team took on the challenge and organ‐
ized in March 2016 a best-of-five-games competition against the then 18-time world
Go champion Lee Sedol—for sure a proper benchmark for elite-level human Go play‐
ing. (A wealth of background information is provided on the AlphaGo Korea web
page, and there is even a movie available about the event.) To this end, the DeepMind
team further improved the AlphaGo Fan version to the AlphaGo Lee iteration.

The story of the competition and AlphaGo Lee is well documented and has drawn
attention all over the world. DeepMind writes on its web page:

AlphaGo’s 4-1 victory in Seoul, South Korea, on March 2016 was watched by over 200
million people worldwide. This landmark achievement was a decade ahead of its time.
The game earned AlphaGo a 9 dan professional ranking, the highest certification. This
was the first time a computer Go player had ever received the accolade.

Up until that point, AlphaGo used, among other resources, training data sets based
on millions of human expert games for its supervised learning. The team’s next itera‐
tion, AlphaGo Zero, skipped that approach completely and relied instead on rein‐
forcement learning and self-play only, putting together different generations of
trained, neural network–based AI agents to compete against each other. Silver et al.’s
article (2017b) provides details of AlphaGo Zero. In the abstract, the researchers
summarize:

AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s
own move selections and also the winner of AlphaGo’s games. This neural network
improves the strength of the tree search, resulting in higher quality move selection and
stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo
Zero achieved superhuman performance, winning 100–0 against the previously pub‐
lished, champion-defeating AlphaGo.

It is remarkable that a neural network trained not too dissimilarly to the CartPole
example from the previous section (that is, based on self-play) can crack a game as
complex as Go, whose possible board positions outnumber the atoms of the universe.
It is also remarkable that the Go wisdom collected over centuries by human players is
simply not necessary to achieve this milestone.
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6 See http://bit.ly/aiif_1k_chess for an electronic reprint of the original article published in the February 1983
issue of Your Computer and scans of the original code.

7 See http://bit.ly/aiif_bootchess for more background.

The DeepMind team did not stop there. AlphaZero was intended to be a general
game-playing AI agent that was supposed to be able to learn different complex board
games, such as Go, chess, and shogi. With regard to AlphaZero, the team summarizes
in Silver (2017a):

In this paper, we generalise this approach into a single AlphaZero algorithm that can
achieve, tabula rasa, superhuman performance in many challenging domains. Starting
from random play, and given no domain knowledge except the game rules, AlphaZero
achieved within 24 hours a superhuman level of play in the games of chess and shogi
(Japanese chess) as well as Go, and convincingly defeated a world-champion program
in each case.

Again, a remarkable milestone was reached by DeepMind in 2017: a game-playing AI
agent that, after less than 24 hours of self-playing and training, achieved above-
human-expert levels in three intensely studied board games with centuries-long
histories in each case.

Chess
Chess is, of course, one of the most popular board games in the world. Chess-playing
computer programs have been around since the very early days of computing, and in
particular, home computing. For example, an almost complete chess engine called ZX
Chess, which only consisted of about 672 bytes of machine code, was introduced in
1983 for the ZX-81 Spectrum home computer.6 Although an incomplete implementa‐
tion that lacked certain rules like castling, it was a great achievement at the time and
is still fascinating for computer chess fans today. The record of ZX Chess as the small‐
est chess program stood for 32 years and was broken only by BootChess in 2015, at
487 bytes.7

It can almost be considered software engineering genius to write a computer program
with such a small code base that can play a board game that has more possible per‐
mutations of a game than the universe has atoms. While not being as complex with
regard to the pure numbers as Go, chess can be considered one of the most challeng‐
ing board games, as players take decades to reach grandmaster level.

In the mid-1980s, expert-level computer chess programs were still far away, even on
better hardware with many fewer constraints than the basic home computer ZX-81
Spectrum. No wonder then that leading chess players at that time felt confident when
playing against computers. For example, Garry Kasparov (2017) recalls an event in
1985 during which he played 32 simultaneous games as follows:
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It was a pleasant day in Hamburg in June 6, 1985….Each of my opponents, all thirty-
two of them, was a computer…it didn’t come as much of a surprise…when I achieved a
perfect 32-0 score.

It took computer chess developers and the hardware experts from International Busi‐
ness Machines Corporation (IBM) 12 years until a computer called Deep Blue was
able to beat Kasparov, then the human world chess champion. In his book, published
20 years after his historic loss against Deep Blue, he writes:

Twelve years later I was in New York City fighting for my chess life. Against just one
machine, a $10 million IBM supercomputer nicknamed “Deep Blue.”

Kasparov played a total of six games against Deep Blue. The computer won with 3.5
points to Kasparov’s 2.5; whereby a full point is awarded for a win and half a point to
each player for a draw. While Deep Blue lost the first game, it would win two of the
remaining five, with three games ending in a draw by mutual agreement. It has been
pointed out that Deep Blue should not be considered a form of AI since it mainly
relied on a huge hardware cluster. This hardware cluster with 30 nodes and 480
special-purpose chess chips—designed by IBM specifically for this event—could ana‐
lyze some 200 million positions per second. In that sense, Deep Blue mainly relied on
brute force techniques rather than modern AI algorithms such as neural networks.

Since 1997, both hardware and software have seen tremendous advancements. Kas‐
parov sums it up as follows when he refers in his book to chess applications on
modern smartphones:

Jump forward another 20 years to today, to 2017, and you can download any number
of free chess apps for your phone that rival any human grandmaster.

The hardware requirements to beat a human grandmaster have fallen from $10 mil‐
lion to about $100 (that is, by a factor of 100,000). However, chess applications for
regular computers and smartphones still rely on the collected wisdom of decades of
computer chess. They embody a large number of human-designed rules and strate‐
gies for the game, rely on a large database for openings, and then benefit from the
increased compute power and memory of modern devices for their mostly brute
force–based evaluation of millions of chess positions.

This is where AlphaZero comes in. The approach of AlphaZero to mastering
the game of chess is exclusively based on reinforcement learning with self-play of
different versions of the AI agent competing against each other. The DeepMind team
contrasts the traditional approach to computer chess with AlphaZero as follows (see
AlphaZero research paper):

Traditional chess engines, including the world computer chess champion Stock‐
fish and IBM’s ground-breaking Deep Blue, rely on thousands of rules and heuristics
handcrafted by strong human players that try to account for every eventuality in a
game….AlphaZero takes a totally different approach, replacing these hand-crafted
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8 For more on this, see: https://oreil.ly/im174.

rules with a deep neural network and general purpose algorithms that know nothing
about the game beyond the basic rules.

Given this tabula rasa approach of AlphaZero, its performance after a few hours of
self-play-based training is exceptional when compared to the leading traditional
chess-playing computer programs. AlphaZero only needs nine hours or less of train‐
ing to master chess on a level that surpasses every human player and every other
computer chess program, including the Stockfish engine, which at one time domina‐
ted computer chess. In a 2016 test series comprising 1,000 games, AlphaZero beat
Stockfish by winning 155 games (mostly while playing white), losing just six games,
and drawing the rest.

While IBM’s Deep Blue was able to analyze 200 million positions per second, modern
chess engines, such as Stockfish, on many-core commodity hardware, can analyze
some 60 million positions per second. At the same time, AlphaZero only analyzes
about 60,000 positions per second. Despite analyzing 1,000 times fewer positions per
second, it nevertheless is able to beat Stockfish. One might be inclined to think that
AlphaZero indeed shows some form of intelligence that sheer brute force cannot
compensate for. Given that human grandmasters can maybe analyze a few hundred
positions per second based on experience, patterns, and intuition, AlphaZero might
inhabit a sweet spot between expert human chess player and traditional chess engine
based on a brute-force approach, aided by handcrafted rules and stored chess knowl‐
edge. One could speculate that AlphaZero acquires something similar to human pat‐
tern recognition, foresight, and intuition combined with higher computational speeds
due to its comparatively better hardware for that purpose.

Importance of Hardware
AI researchers and practitioners have made tremendous progress over the past dec‐
ade with regard to AI algorithms. Reinforcement learning, generally combined with
neural networks for action policy representation, has proven useful and superior in
many different areas, as the previous section illustrates.

However, without advances on the hardware side, the recent AI achievements would
not have been possible. Again, the story of DeepMind and its effort to master the
game of Go with reinforcement learning (RL) provides some valuable insights.
Table 2-1 provides an overview of the hardware usage and power consumption for
the major AlphaGo versions from 2015 onwards.8 Not only has the strength of
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9 In the table, GPU stands for graphical processing unit. TPU stands for tensor processing unit, which is a com‐
puter chip specifically designed to process so-called tensors and operations on tensors more efficiently. More
on tensors, which are the basic building blocks of neural networks and deep learning, appears later in the
book and in Chollet (2017, ch. 2). TDP stands for thermal design power (see http://bit.ly/aiif_tdp).

10 CPU stands for central processing unit, the general purpose processors found in any standard desktop or
notebook computer.

11 For a description of the GDDR6 GPU memory standard from 2018, refer to http://bit.ly/aiif_gddr6.

AlphaGo increased steadily, but both the hardware requirements and the associated
power consumption have also come down dramatically.9

Table 2-1. DeepMind hardware for AlphaGo

Version Year Elo ratinga Hardware Power consumption [TDP]
AlphaGo Fan 2015 >3,000 176 GPUs >40,000

AlphaGo Lee 2016 >3,500 48 TPUs 10,000+

AlphaGo Master 2016 >4,500 4 TPUs <2,000

AlphaGo Zero 2017 >5,000 4 TPUs <2,000
a For the Elo ratings of the world’s best human Go players, see https://www.goratings.org/en.

The first major hardware push in AI came from GPUs. Although developed originally
to generate fast high-resolution graphics for computer games, modern GPUs can be
used for many other purposes as well. One of these other purposes involves linear
algebra (for example, in the form of matrix multiplication), a mathematical discipline
of paramount importance for AI in general and neural networks in particular.

As of mid-2020, one of the fastest consumer CPUs on the market is the Intel i9 pro‐
cessor in its latest iteration (with 8 cores and a maximum of 16 parallel threads).10 It
reaches, depending on the benchmark task at hand, speeds of about 1 TFLOPS or
slightly above (that is, one trillion floating point operations per second).

At the same time, one of the fastest consumer GPUs on the market has been the
Nvidia GTX 2080 Ti. It has 4,352 CUDA cores, Nvidia’s version of GPU cores. This
allows for a high degree of parallelism (for example, in the context of linear algebra
operations). This GPU reaches a speed of up to 15 TFLOPS, which is about 15 times
faster than the fastest consumer CPU from Intel. GPUs have been faster than CPUs
for quite a while. However, one major limiting factor usually has been the relatively
small and specialized memory of GPUs. This has been notably mitigated with newer
GPU models, such as the GTX 2080 Ti, which has up to 11 GB of fast GDDR6 mem‐
ory and high bus speeds to transfer data to and from the GPU.11

In mid-2020, the retail price for such a GPU was about $1,400, which is orders of
magnitude cheaper than comparably powerful hardware a decade ago. This develop‐
ment has made AI research, for example, more affordable for individual academic
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researchers with relatively small budgets compared to those of companies such as
DeepMind.

Another hardware trend is spurring further developments and adoption of AI
approaches and algorithms: GPUs and TPUs in the cloud. Cloud providers such as
Scaleway offer cloud instances that can be rented by the hour and that have powerful
GPUs available (see Scaleway GPU instances). Others such as Google have developed
TPUs, chips dedicated explicitly to AI, that, similar to GPUs, make linear algebra
operations more efficient (see Google TPUs).

All in all, from the point of view of AI, hardware has improved tremendously over
the last few years. In summary, three aspects are worth highlighting:

Performance
GPUs and TPUs provide hardware with heavily parallel architectures that are
well suited to AI algorithms and neural networks.

Costs
The costs per TFLOPS compute power have come down significantly, allowing
for smaller AI-related budgets or rather more compute power for the same
budget.

Power
Power consumption has come down as well. The same AI-related tasks require
less power while usually also executing much faster.

Forms of Intelligence
Is AlphaGo Zero intelligent? It’s hard to tell without a specific definition of intelli‐
gence. AI researcher Max Tegmark (2017) defines intelligence concisely as the “ability
to accomplish complex goals.”

This definition is general enough to encompass more specific definitions. AlphaZero
is intelligent given that definition since it is able to accomplish a complex goal,
namely to win games of Go or chess against human players or other AI agents. Of
course, human beings, and animals in general, are consequently considered intelli‐
gent as well.

For the purposes of this book, the following more specific definitions seem appropri‐
ate and precise enough.

Artificial narrow intelligence (ANI)
This specifies an AI agent that exceeds human-expert-level capabilities and skills
in a narrow field. AlphaZero can be considered an ANI in the fields of Go, chess,
and shogi. An algorithmic stock-trading AI agent that realizes a net return of
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consistently 100% per year (per anno) on the invested capital could be consid‐
ered an ANI.

Artificial general intelligence (AGI)
This specifies an AI agent that reaches human-level intelligence in any field, such
as chess, mathematics, text composition, or finance, and might exceed human-
level intelligence in some other domains.

Superintelligence (SI)
This specifies an intellect or AI agent that exceeds human-level intelligence in
any respect.

An ANI has the ability to reach a complex goal in a narrow field on a level higher
than any human. An AGI is equally as good as any human being in achieving com‐
plex goals in a wide variety of fields. Finally, a superintelligence is significantly better
than any human being, or even a collective of human beings, at achieving complex
goals in almost any conceivable field.

The preceding definition of superintelligence is in line with the one provided by Bos‐
trom in his book titled Superintelligence (2014):

We can tentatively define a superintelligence as any intellect that greatly exceeds the cog‐
nitive performance of humans in virtually all domains of interest.

As defined earlier, the technological singularity is the point in time from which a
superintelligence exists. However, which paths might lead to superintelligence? This
is the topic of the next section.

Paths to Superintelligence
Researchers and practitioners alike have debated for years whether it is possible to
create a superintelligence. Estimates for the materialization of the technological sin‐
gularity range from a few years to decades, to centuries, to never. No matter whether
one believes in the feasibility of a superintelligence or not, the discussion of potential
paths to achieve it is a fruitful one.

First, the following is a somewhat longer quote from Bostrom (2014, ch. 2), which
sets out some general considerations that probably are valid for any potential path to
superintelligence:

We can, however, discern some general features of the kind of system that would be
required. It now seems clear that a capacity to learn would be an integral feature of the
core design of a system intended to attain general intelligence, not something to be
tacked on later as an extension or an afterthought. The same holds for the ability to
deal effectively with uncertainty and probabilistic information. Some faculty for
extracting useful concepts from sensory data and internal states, and for leveraging
acquired concepts into flexible combinatorial representations for use in logical and
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intuitive reasoning, also likely belong among the core design features in a modern AI
intended to attain general intelligence.

These general features are reminiscent of the approach and capabilities of AlphaZero,
although terms like intuitive might need to be defined to apply to an AI agent. But
how to practically implement these general features? Bostrom (2014, ch. 2) discusses
five possible paths, explored in the following sub-sections.

Networks and Organizations
The first path to a superintelligent intellect is via networks and organizations involv‐
ing a possibly large number of human beings, coordinated in such a way that their
individual intelligences are amplified and working synchronously. Teams, comprising
people with different skills, are a simple example of such a network or organization.
One example mentioned often in this context is the team of leading experts that the
United States government assembled for the Manhattan Project to build nuclear
weapons as a means to decisively end World War II.

This path seems to have natural limits since the individual capabilities and capacities
of a single human being are relatively fixed. Evolution also has shown that human
beings have difficulty coordinating within networks and organizations of more than
150 individuals. Large corporations often form much smaller teams, departments, or
groups than that.

On the other hand, networks of computers and machines, such as the internet, tend
to work mostly seamlessly, even with millions of compute nodes. Such networks are
today at least capable of organizing humankind’s knowledge and other data (sounds,
pictures, videos, and so on). And, of course, AI algorithms already help humans navi‐
gate all this knowledge and data. However, it is doubtful whether a superintelligence
might arise “spontaneously,” say, from the internet. A dedicated effort seems required
from today’s perspective.

Biological Enhancements
A lot of effort is spent these days on improving the cognitive and physical perfor‐
mance of individual human beings. From more natural approaches, such as better
training and learning methods, to those involving substances, such as supplements or
smart and even psychedelic drugs, to those involving special tools, humankind today
tries more than ever to systematically and scientifically improve the cognitive and
physical performance of individuals. Harari (2015) describes this effort as the quest of
homo sapiens to create a new and better version of itself, homo deus.

However, this approach again faces the obstacle that human hardware is basically
fixed. It has evolved over hundreds of thousands of years and will probably continue
to do so for the foreseeable future. But this will happen at a rather slow pace and over
many generations only. It will also happen only to a very small extent, since natural
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selection for human beings plays a reduced role nowadays, and natural selection is
what gives evolution its power for improvement. Domingos (2015, ch. 5) discusses
central aspects of progress through evolution.

In this context, it is helpful to think in terms of the versions of life as outlined in
Tegmark (2017, ch. 1):

• Life 1.0 (biological): Life-forms with basically fixed hardware (biological bodies)
and software (genes). Both are slowly evolved simultaneously through evolution.
Examples are bacteria or insects.

• Life 2.0 (cultural): Life-forms with basically fixed and slowly evolving hardware
but mostly designed and learned software (genes plus language, knowledge,
skills, etc.). An example is human beings.

• Life 3.0 (technological): Life-forms with designed and adjustable hardware and
fully learned and evolved software. An example would be a superintelligence cre‐
ated with computer hardware, software, and AI algorithms.

With technological life embodied in a machine superintelligence, the limitations of
the available hardware would more or less completely vanish. Therefore, paths to
superintelligence other than networks or biological enhancements might prove more
promising for the time being.

Brain-Machine Hybrids
The hybrid approach to improving human performance in any field is omnipresent in
our lives and symbolized by the use of diverse hardware and software tools by
humans. Humankind has used tools since its beginning. Today, billions of people
carry a smartphone with Google Maps on it, allowing for easy navigation even
through areas and cities they have never been to before. This is a luxury our ancestors
did not have, so they needed to acquire navigation skills based on objects seen in the
sky or use much less sophisticated tools, such as a compass.

In the context of chess, for example, it is not the case that humans stopped playing
once computers, such as Deep Blue, were proven to be superior. To the contrary,
improvements in the performance of computer chess programs have made them
indispensable tools for every grandmaster to systematically improve their game. The
human grandmaster and the fast-calculating chess engine form a human-machine
team that, everything else equal, performs better than a human alone. There are even
chess tournaments during which humans play against each other while making use of
a computer to come up with the next move.

Similarly, one can imagine directly connecting the human brain to a machine via
appropriate interfaces such that the brain could communicate properly with the
machine, exchanging data and initiating certain computational, analysis, or learning
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12 In January 2019, an American science fiction thriller called Replicas, starring Keanu Reeves, was released in
the US. The main theme of the movie, which proved to be a commercial failure, is the mapping of the human
brain and the transfer of the mapping to machines or even other human bodies grown through cloning and
replication. The movie touches on a centuries-old human desire to transcend the human body and to become
immortal, at least with regard to mind and soul. Even if WBE might not lead to superintelligence, it might
theoretically be a basis for achieving this kind of immortality.

tasks. What sounds like science fiction is an active field of research. Musk, ElonFor
example, Elon Musk is the founder behind a startup called Neuralink, which focuses
on neurotech, as the field often is called.

All in all, the brain-machine hybrid seems practically feasible and likely to surpass
human intelligence significantly. However, whether it will lead to superintelligence is
not obvious.

Whole Brain Emulation
Another suggested path to superintelligence is to first emulate the human brain com‐
pletely and then improve it. The idea here is to map a whole human brain by modern
brain scanning along with biological and medical analysis methods to exactly repli‐
cate its structure in the form of neurons, synapses, and so on through software. The
software is to be run on appropriate hardware. Domingos (2015, ch. 4) gives back‐
ground information about the human brain and what characterizes it with regard to
learning. Kurzweil (2012) offers a book-length treatment of this topic, providing
detailed background information and sketching out ways to achieve whole brain
emulation (WBE, sometimes also called uploading).12

On a less ambitious level, neural networks do exactly what WBE tries to achieve.
Neural networks, as the name suggests, are inspired by the brain, and because they
have already proven so useful and successful in many different areas, one might be
inclined to conclude that WBE could indeed be considered a viable path to superin‐
telligence. However, the necessary technology to map out the complete human brain
is so far only partially available. Even if the mapping out is successful, it is not clear
whether the software version would be able to do the same things that a human brain
is capable of.

However, if WBE is successful, then the human brain software could, for example, be
run on more powerful and faster hardware than the human body, potentially leading
to superintelligence. The software could also be easily replicated then, and a large
number of emulated brains could be put together in a coordinated way, also poten‐
tially leading to superintelligence. The human brain software could also be enhanced
in ways that humans are incapable of due to biological limitations.
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Artificial Intelligence
Last, but not least, AI itself as understood in the context of this book might lead to
superintelligence: algorithms, such as neural networks, run on standard or specialized
hardware and are trained on available or self-created data. There are a number of
good reasons why most researchers and practitioners consider this path to be the
most likely one, if superintelligence is achievable at all.

The first major reason is that historically humans have been successful in engineering
often by ignoring what nature and evolution have come up with to solve a certain
problem. Consider airplanes. Their design makes use of the modern understanding
of physics, aerodynamics, thermodynamics, and so on instead of trying to mimic how
birds or insects fly. Or consider a calculator. When engineers built the first calcula‐
tors, they did not analyze how the human brain performs calculations, nor did they
even try to replicate the biological approach. They rather relied on mathematical
algorithms that they implemented on technical hardware. In both cases, the more
important aspect is the functionality or capability itself (flying, calculating). The more
efficiently it can be provided, the better. There is no need to mimic nature.

The second major reason is that the number of AI’s success stories seems ever
increasing. For example, the application of neural networks to domains that only a
few years ago seemed immune to AI superiority has proven to be a fruitful path to
ANIs in many fields. The example of AlphaGo morphing into AlphaZero, mastering
multiple board games in a short amount of time, is one that gives hope that the gener‐
alization can be pushed much further.

The third major reason is that a superintelligence probably only appears (“singular‐
ity”) after many ANIs and maybe even some AGIs have been observed. Since there is
no doubt about the power of AI in specific fields and domains, researchers and busi‐
nesses alike will continue to focus on improving AI algorithms and hardware. For
example, large hedge funds will push their efforts to generate alpha—a measure for
the outperformance of a fund compared to a market benchmark—with AI methods
and agents. Many of them have large dedicated teams working on such efforts. These
global efforts across different industries might then together yield the required
advancements for a superintelligence.
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Artificial Intelligence

Of all the possible paths to superintelligence, AI seems to be the
most promising one. Recent successes in the field based on rein‐
forcement learning and neural networks have led to another AI
spring, after a number of AI winters. Many even now believe that a
superintelligence might not be as far away as we thought even a few
years ago. The field currently is characterized by much faster
advancements than originally predicted by experts only a short
while ago.

Intelligence Explosion
The quote from Vinge (1993) mentioned earlier not only depicts a dangerous sce‐
nario for humankind after the technological singularity, but also predicts that the
dangerous scenario will materialize shortly afterwards. Why so quickly?

If there is one superintelligence, then engineers or the superintelligence itself can cre‐
ate another superintelligence, maybe even a better one, since a superintelligence
would have superior engineering know-how and skills compared to the creators of
the initial one. The replication of the superintelligence would not be constrained by
the duration of biological processes that have evolved over millions of years. It would
only be constrained by the technical assembling processes for new hardware, which a
superintelligence could improve upon itself and in a significant manner. Software is
quickly and easily copied to new hardware. Resources might constrain the replication
as well. The superintelligence might come up with better or even new ways to mine
and produce the required resources.

These and similar arguments support the idea that once the technological singularity
is reached, there will be an explosion in intelligence. This might happen similarly to
the Big Bang, which started as a (physical) singularity and from which the known
universe emerged as from an explosion.

With regard to specific fields and ANIs, similar arguments might apply. Suppose an
algorithmic trading AI agent is much more successful and consistent performance-
wise than other traders and hedge funds in the markets. Such an AI agent would
accumulate ever more funds, both from gains of trade and by attracting outside
money. This in turn would increase the available budget to improve upon the hard‐
ware, the algorithms, the learning methods, and so forth by, for example, paying
above-market salaries and incentives to the brightest minds in AI applied to finance.

Goals and Control
In a normal AI context, say, when an AI agent is supposed to master the simple Cart
Pole game depicted in Figure 2-1 or a more complex game such as chess or Go, the
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goal is in general well defined: “reach at least a reward of 200,” “win the chess game
through checkmate,” and so on. But what about the goal(s) of a superintelligence?

Superintelligence and Goals
For a superintelligence that has superhuman capabilities, the goal might not be as
simple and stable as in the preceding examples. For one, a superintelligence might
come up with a new goal for itself that it considers more appropriate than its origi‐
nally formulated and programmed goal. After all, it has the capabilities to do so in the
same way its engineering team could. In general, it would be able to reprogram itself
in any respect. Many science fiction novels and movies let us believe that such a
change in the main goal is in general to the worse for humankind, which is what
Vinge (1993) assumes as well.

Even if one assumes that the main goal of a superintelligence can be programmed and
embedded in a nonchangeable way or that a superintelligence might simply stick to
its original goal, problems might arise. Independent of the main goal, Bostrom (2014,
ch. 7) argues, every superintelligence has five instrumental sub-goals:

Self-preservation
A long enough survival of the superintelligence is necessary to achieve its main
goal. To this end, the superintelligence might implement different measures,
some of them maybe harmful to humans, to ensure its survival.

Goal-content integrity
This refers to the idea that a superintelligence will try to preserve its current
main goal because this increases the probability that its future self will achieve
this very goal. Therefore, present and future main goals are likely to be the same.
Consider a chess-playing AI agent that starts with the goal of winning a chess
game. It might change its goal to avoiding the capturing of its queen at any cost.
This might prevent it from winning the game in the end, and such a change in
goals would therefore be inconsistent.

Cognitive enhancement
No matter the main goal of the superintelligence, cognitive enhancements will in
general prove beneficial. It might therefore strive to increase its capabilities as fast
and as far as possible if this seems to serve its main goal. Cognitive enhancement
is therefore a major instrumental goal.

Technological perfection
Another instrumental goal is technological perfection. In the sense of Life 3.0, a
superintelligence would not be confined to its current hardware nor to the state
of its software. It could rather strive to exist on better hardware that it might
design and produce, and to make use of improved software that it has coded.
This would in general serve its main goal and probably allow for its faster ach‐
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ievement. In the financial industry, for example, high frequency trading (HFT) is
a field that is characterized by a race to technological superiority.

Resource acquisition
For almost any main goal, more resources in general increase both the probabil‐
ity of achieving the goal and the speed at which it can be achieved. This holds
particularly true when there is a competitive situation implicit in the goal. Con‐
sider an AI agent with the goal of mining as many Bitcoins as possible as fast as
possible. The more resources in the form of hardware, energy, and so on the AI
agent has available, the better it will be for achieving its goal. In such a situation,
it might even come up with illegal practices to acquire (steal) resources from oth‐
ers in the cryptocurrency markets.

On the surface, instrumental goals might not seem to pose a threat. After all, they
ensure that the main goal of an AI agent is achieved. However, as the widely cited
example of Bostrom (2014) shows, issues might easily arise. Bostrom argues that, for
example, a superintelligence with the goal of maximizing the production of paper
clips might pose a serious threat to humankind. To see this, consider the preceding
instrumental goals in the context of such an AI agent.

First, it would try to protect itself by all means, even with weaponry used against its
own creators. Second, even though its own cognitive reasoning capabilities might
suggest that its main goal is not really sensible, it might stick to it over time to maxi‐
mize its chances of achieving it. Third, cognitive enhancements for sure are valuable
in achieving its goal. Therefore, it would try every measure, probably many of them
at the expense and to the harm of human beings, to improve its capabilities. Fourth,
the better its technology, both for itself as well as for producing paper clips, the better
it is for its main goal. It would therefore acquire all existing technology through buy‐
ing or stealing, for instance, and build new ones that help with its goal. Finally, the
more resources it has available, the more paper clips it can produce—up to the point
where it builds space exploration and mining technology when resources on earth are
exhausted. In the extreme, such a superintelligence might then exhaust the resources
in the solar system, the galaxy, and even the whole universe.

Instrumental Goals

It is to be assumed that any form of superintelligence will have
instrumental goals that are independent of its main goal. This
might lead to a number of unintended consequences, such as the
insatiable quest to acquire ever more resources with any means that
seem promising.

The example illustrates two important points with regard to goals for AI agents. First,
it might not be possible to formulate complex goals for an AI agent in a way that fully
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and clearly reflects the intentions of those formulating the goal. For example, a noble
goal such as “Preserve and protect the human species” might lead to the killing of
three-quarters of it to ensure a higher likelihood of survival of the remaining quarter.
The superintelligence decides, after billions of simulations for the future on planet
earth and for the human species, that this measure leads to the highest probability of
achieving its main goal. Second, a seemingly well-intended and harmlessly formula‐
ted goal might lead to unintended consequences due to the instrumental goals. In the
paper clip example, one problem with the goal is the phrase “as many as possible.” An
easy fix here would be to specify the number to, say, one million. But even this might
only be a partial fix because instrumental goals, such as self-preservation, might
become primary ones.

Superintelligence and Control
If bad or even catastrophic consequences are possible after the technological singular‐
ity, it is of paramount importance to devise measures that can at least potentially
control a superintelligence.

The first set of measures is related to the proper formulation and design of the main
goal. The previous section discusses this aspect to some extent. Bostrom (2014, ch. 9)
provides more details under the topic motivation selection methods.

The second set of measures is related to controlling the capabilities of a superintelli‐
gence. Bostrom (2014, ch. 9) sketches four basic approaches.

Boxing
This is an approach that separates a superintelligence in emergence from the out‐
side world. For example, the AI agent might not be connected to the internet. It
might also lack any sensory capabilities. Human interaction can also be excluded.
Given this approach to control the capabilities, a large set of interesting goals
might not be achievable at all. Consider an algorithmically trading AI agent that
is supposed to achieve the ANI level. Without being connected to the outside
world, such as to stock trading platforms, the AI agent has no chance of achiev‐
ing its goal.

Incentives
An AI agent might be programmed to maximize its reward function for purpose‐
fully designed (electronic) rewards that reward desired behavior and punish
undesired behavior. Although this indirect approach gives more freedom in the
goal design, it suffers to a large extent from problems similar to those of formu‐
lating the goal directly.

Stunting
This approach refers to deliberately limiting the capabilities of an AI agent, say,
with respect to hardware, computing speed, or memory. However, this is a deli‐
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cate task. Too much stunting and a superintelligence will never emerge. Too little
stunting and the ensuing intelligence explosion will render the measure obsolete.

Tripwires
This refers to measures that should help in identifying any suspicious or unwan‐
ted behavior early on such that targeted countermeasures can be initiated. This
approach, however, suffers the problem of an alarm system alerting the police of
a burglary. The police might take 10 minutes to appear on the scene although the
burglars left the scene 5 minutes before. Even surveillance camera footage might
not help in figuring out who the burglars are.

Capability Control

All in all, it seems questionable whether a superintelligence can be
properly and systematically controlled when it has reached that
level. After all, its superpowers can at least in principle be used to
overcome any human-designed control mechanism.

Potential Outcomes
Besides the early prophecy of Vinge (1993) that the emergence of a superintelligence
will imply doomsday for humankind, what potential outcomes and scenarios are
conceivable?

More and more AI researchers and practitioners warn about potential threats that
uncontrolled AI might bring. Before the emergence of superintelligence, AI can lead
to discrimination, social imbalances, financial risks, and so on. (A prominent AI
critic in this context is Elon Musk, founder of Tesla, SpaceX, and the aforementioned
Neuralink, among others.) Therefore, AI ethics and governance are intensively deba‐
ted topics among researchers and practitioners. To simplify things, one can say that
this group fears an AI-induced dystopia. Others, like Ray Kurzweil (2005, 2012),
emphasize that AI might be the only way to utopia.

The problem in this context is that even a relatively low probability for a dystopian
outcome is enough to be worried. As the previous section illustrates, appropriate con‐
trol mechanisms might not be available given the state of the art. Against this back‐
ground, it is no wonder that at the time of this writing, the first international accord
on AI development has been signed by 42 countries.
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As Murgia and Shrikanth (2019) report in the Financial Times:

In a historic step last week, 42 countries came together to support a global governance
framework for one of the most powerful emerging technologies of our times—artificial
intelligence.
The accord, signed by OECD countries such as the US, UK and Japan, as well as
non-members, comes at a moment of reckoning for governments, which have only
recently begun to grapple with the ethical and practical consequences of applying AI
in industry….[T]he rapid development of AI in recent years by companies such as
Google, Amazon, Baidu, Tencent and ByteDance has far outrun regulation in the area,
exposing major challenges including biased AI decisions, outright fakery and misinfor‐
mation, and the dangers of automated military weapons.

Utopia Versus Dystopia

Even strong proponents of a utopian future based on advance‐
ments in AI must agree that a dystopian future after a technological
singularity cannot be fully excluded. Since the consequences might
be catastrophic, dystopian outcomes must play a role in broader
discussions about AI and superintelligence.

What about the number of superintelligences and the situation after the technological
singularity? Three basic scenarios seem possible.

Singleton
A single superintelligence emerges and gains such power that no other can sur‐
vive or even emerge. For example, Google dominates the search market and has
reached almost a monopoly position in the field. A superintelligence might
quickly reach comparable positions in many relevant fields and industries soon
after its emergence.

Multipolar
Multiple superintelligences emerge about the same time and co-exist for a longer
period. The hedge fund industry, for instance, has a few large players that can be
considered an oligopoly given their combined market share. Multiple superintel‐
ligences could similarly co-exist, at least for a certain time, according to a divide-
and-conquer agreement between them.

Atomic
A very large number of superintelligences emerge shortly after the technological
singularity. Economically, this scenario resembles a market with perfect competi‐
tion. Technologically, the evolution of chess provides an analogy for this
scenario. While IBM in 1997 built a single machine to dominate both the com‐
puter and human chess worlds, chess applications on every smartphone today
outperform every human chess player. In 2018, there were already more than
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three billion smartphones in use. In this context, it is noteworthy that a recent
hardware trend for smartphones is to add dedicated AI chips in addition to the
regular CPUs, steadily increasing the capabilities of these small devices.

This section does not argue for one or another potential outcome after the technolog‐
ical singularity: dystopia, utopia, singleton, multipolar, or atomic. It rather provides a
basic framework to think about the potential impact of superintelligences or powerful
ANIs in their respective fields.

Conclusions
Recent success stories such as those of DeepMind and AlphaZero have led to a new
AI spring, with new and stronger-than-ever hopes that a superintelligence might be
achievable. Currently, AI has come up with ANIs that far surpass human expert levels
in different domains. Whether AGIs and superintelligences are even possible is still
debated. However, it at least can not be excluded that by one path or another—recent
experience points toward AI—it can indeed be achieved. Once the technological sin‐
gularity has happened, it can also not be excluded that a superintelligence might have
unintended, negative, or even catastrophic consequences for humankind. Therefore,
appropriate goal and incentive design as well as appropriate control mechanisms
might be of paramount importance to keep the emerging, ever more powerful AI
agents under control, even long before the technological singularity is in sight. Once
the singularity is reached, an intelligence explosion might take the control over a
superintelligence quickly out of the hands of its own creators and sponsors.

AI, machine learning, neural networks, superintelligence, and technological singular‐
ity are topics that are or will be important for any area of human life. Already today,
many fields of research, many industries, and many areas of human existence are
undergoing fundamental changes due to AI, machine learning, and deep learning.
The same holds true for finance and the financial industry, for which the influence of
AI might not be as high yet due to a somewhat slower adoption. But as with other
fields, AI will change finance and the way players in financial markets operate funda‐
mentally and for good, as later chapters argue.
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PART II

Finance and Machine Learning

If there is one industry that would greatly benefit from the genuine adoption of artifi‐
cial intelligence, it is investment management.

—Angelo Calvello (2020)

This part consists of four chapters. It covers topics central to the understanding of
why data-driven finance, artificial intelligence, and machine learning will have a last‐
ing impact on financial theory and practice.

• Chapter 3 sets the stage with important and popular financial theories and mod‐
els that have been considered cornerstones of finance for decades. It covers,
among others, mean-variance portfolio (MVP) theory and the capital asset pric‐
ing model (CAPM).

• Chapter 4 discusses how the programmatic availability of ever more historical
and real-time financial data has reshaped finance from a theory-driven to a data-
driven discipline.

• Chapter 5 is about machine learning as a general approach, abstracting from
specific algorithms to a large extent.

• Chapter 6 discusses on a general level how the emergence of data-driven finance
in combination with artificial intelligence and machine learning leads to a para‐
digm shift in finance.





CHAPTER 3

Normative Finance

The CAPM is based on many unrealistic assumptions. For example, the assumption
that investors care only about the mean and variance of one-period portfolio returns is
extreme.

—Eugene Fama and Kenneth French (2004)

[S]ciences that involve human beings rather than elementary particles have proven
more resistant to elegant mathematics.

—Alon Halevy et al. (2009)

This chapter reviews major normative financial theories and models. Simply speaking
and for the purposes of this book, a normative theory is one that is based on assump‐
tions (mathematically, axioms) and derives insights, results, and more from the set of
relevant assumptions. On the other hand, a positive theory is one that is based on
observation, experiments, data, relationships, and the like and describes phenomena
given the insights gained from the available information and the derived results.
Rubinstein (2006) provides a detailed historical account of the origins of the theories
and models presented in this chapter.

“Uncertainty and Risk” on page 62 introduces central notions from financial model‐
ing, such as uncertainty, risk, traded assets, and so on. “Expected Utility Theory” on
page 66 discusses the major economic paradigm for decision making under uncer‐
tainty: expected utility theory (EUT). In its modern form, EUT dates back to von Neu‐
mann and Morgenstern (1944). “Mean-Variance Portfolio Theory” on page 72
introduces the mean-variance portfolio (MVP) theory according to Markowitz
(1952). “Capital Asset Pricing Model” on page 82 analyzes the capital asset pricing
model (CAPM) according to Sharpe (1964) and Lintner (1965). “Arbitrage Pricing
Theory” on page 90 sketches the arbitrage pricing theory (APT) according to Ross
(1971, 1976).
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1 See Jacod and Protter (2004) for an introductory text on probability theory.
2 In a dynamic economy, uncertainty would gradually resolve over time, say, on each day between today and

one year later.

This chapter’s purpose is to set the stage for the rest of the book in the form of central
normative financial theories. This is important because generations of economists,
financial analysts, asset managers, traders, bankers, accountants, and others have
been trained in these theories. In that sense, it is safe to say that finance as both a
theoretical and practical discipline has been shaped by these theories to a large extent.

Uncertainty and Risk
At its core, financial theory deals with investment, trading, and valuation in the pres‐
ence of uncertainty and risk. This section introduces on a somewhat formal level
central notions related to these topics. The focus is on fundamental concepts from
probability theory that build the backbone of quantitative finance.1

Definitions
Assume an economy for which activity is only observed at two points in time: today,
t = 0, and one year later, t = 1. The financial theories discussed later in this chapter
are to a large extent based on such a static economy.2

At t = 0, there is no uncertainty whatsoever. At t = 1, the economy can take on a
finite number S of possible states ω ∈ Ω = ω1, ω2, ..., ωS . Ω is called the state space,
and it holds Ω = S for its cardinality.

An algebra ℱ  in Ω is a family of sets with the following:

1. Ω ∈ ℱ

2. � ∈ ℱ �c ∈ ℱ

3. �1,�2, . . . ,�I ∈ ℱ ∪i = 1
I �i ∈ ℱ

�c denotes the complement of a set �. The power set ℘ Ω  is the largest algebra,
while the set ℱ = ∅, Ω  is the smallest algebra in Ω. An algebra is a model for
observable events in an economy. In this context, a single state of the economy ω ∈ Ω
can be interpreted as an atomic event.

A probability assigns a real number 0 ≤ pω ≡ P ω ≤ 1 to a state ω ∈ Ω or a real
number 0 ≤ P � ≤ 1 to an event � ∈ ℱ . If the probabilities for all states are known,
it holds P � = ∑ω ∈ � pω.
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A probability measure P:ℱ 0, 1  is characterized by the following:

1. ∀� ∈ ℱ :P � ≥ 0

2. P ∪i = 1
I �i = ∑i = 1

I �i for disjoint sets �i ∈ ℱ

3. P Ω = 1

Together the three elements Ω,ℱ , P  form a probability space. A probability space is
the formal representation for uncertainty in the model economy. If the probability
measure P is fixed, the economy is said to be under risk. If it is known to all agents in
the economy, the economy is said to have symmetric information.

Given a probability space Ω,ℱ , P , a random variable is a function
S:Ω ℝ+, ω S ω  that is ℱ −measurable. This implies that for each
� ∈ a, b :a, b ∈ ℝ, a < b  one has the following:

S−1 � ≡ ω ∈ Ω:S ω ∈ � ∈ ℱ

If ℱ ≡ ℘ Ω , the expectation of a random variable is defined by the following:

�
P S = ∑

ω ∈ Ω
P ω · S ω

Otherwise, it is defined by:

�
P S = ∑

� ∈ ℱ
P � · S �

In general, it is assumed that a financial economy is perfect. This means, among other
things, that there are no transaction costs, available assets have fixed prices and are
available in infinite quantities, everything happens at the speed of light, and agents
have complete, symmetric information.

Numerical Example
Assume now a simple static economy under risk Ω,ℱ , P  for which the following
holds:

1. Ω ≡ u, d
2. ℱ ≡ ℘ Ω

3. P ≡ P u = 1
2 , P d = 1

2
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3 For details with regard to risk-neutral valuation and valuation by arbitrage, refer to Hilpisch (2015, ch. 4).

Traded assets
In the economy, two assets are traded. The first is a risky asset, the stock, with a cer‐
tain price today of S0 = 10 and an uncertain payoff tomorrow in the form of the
random variable:

S1 =
S1

u = 20 if ω = u

S1
d = 5 if ω = d

The second is a risk-less asset, the bond, with a certain price today of B0 = 10 and a
certain payoff tomorrow of the following:

B1 =
B1

u = 11 if ω = u

B1
d = 11 if ω = d

Formally, the model economy can then be written as ℳ 2 = Ω,ℱ , P ,� , where �
represents the tradable assets in the form of the price vector M0 = S0, B0

T today and
the market payoff matrix tomorrow of the following:

M1 =
S1

u B1
u

S1
d B1

d

Arbitrage pricing
In such an economy, one can, for example, address the problem of deriving the fair
value of a European call option on the stock with a strike price of K = 14.5. The
arbitrage-free value of the European call option C0 is derived by replicating the
option’s payoff C1 through a portfolio ϕ of the stock and the bond. The price of the
replicating portfolio must also be the price of the European call option. Otherwise,
(infinite) arbitrage profits would be possible. In Python, making use of such a replica‐
tion argument, this is easily accomplished:3

In [1]: import numpy as np

In [2]: S0 = 10  
        B0 = 10  
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In [3]: S1 = np.array((20, 5))  
        B1 = np.array((11, 11))  

In [4]: M0 = np.array((S0, B0)) 
        M0  
Out[4]: array([10, 10])

In [5]: M1 = np.array((S1, B1)).T  
        M1  
Out[5]: array([[20, 11],
               [ 5, 11]])

In [6]: K = 14.5  

In [7]: C1 = np.maximum(S1 - K, 0) 
        C1  
Out[7]: array([5.5, 0. ])

In [8]: phi = np.linalg.solve(M1, C1)  
        phi  
Out[8]: array([ 0.36666667, -0.16666667])

In [9]: np.allclose(C1, np.dot(M1, phi))  
Out[9]: True

In [10]: C0 = np.dot(M0, phi)  
         C0  
Out[10]: 2.0

The prices of the stock and bond today.

The uncertain payoff of the stock and bond tomorrow.

The market price vector.

The market payoff matrix.

The strike price of the option.

The uncertain payoff of the option.

The replication portfolio ϕ.

A check whether its payoff is the same as the option’s payoff.

The price of the replication portfolio is the arbitrage-free price of the option.
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4 Again, refer to Hilpisch (2015, ch. 4) and the references given there.
5 For more background and details, see Eichberger and Harper (1997, ch. 1) or Varian (2010, ch. 12).

Arbitrage Pricing

Arbitrage pricing theory, as illustrated in the preceding example,
can be considered one of the strongest financial theories with some
of the most robust mathematical results, such as the fundamental
theorem of asset pricing (FTAP).4 Among other reasons, this is due
to the fact that prices of options, for example, can be derived from
other observable market parameters, say, the share price of the
stock on which the option is written. Arbitrage pricing in that
sense does not take care of how to come up with a fair share price
in the first place, but simply takes it as an input. Therefore, arbi‐
trage pricing works already with few and mild assumptions, such as
absence of arbitrage, which cannot be said of many other financial
theories. Note that not even the probability measure is used to
derive the arbitrage price.

Expected Utility Theory
Expected utility theory (EUT) is a cornerstone of financial theory. Since its formula‐
tion in the 1940s, it has been one of the central paradigms for modeling decision
making under uncertainty.5 Basically every introductory textbook about financial
theory and the theory of investments provides an account of EUT. One of the reasons
is that other central results in finance can be derived from the EUT paradigm.

Assumptions and Results
EUT is an axiomatic theory, dating back to the seminal work of von Neumann and
Morgenstern (1944). Axiomatic here means that major results of the theory can be
deduced from a small number of axioms only. For a survey of axiomatic utility
theory, different variants, and applications, see Fishburn (1968).

Axioms and normative theory
On Wolfram MathWorld, you find the following definition for axiom: “An axiom is a
proposition regarded as self-evidently true without proof.”

EUT is generally based on a small set of major axioms with regard to the preferences
of an agent when faced with choice under uncertainty. Although the definition of
axiom suggests otherwise, not all of the axioms are regarded as “self-evidently true
without proof ” by all economists.
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Von Neumann and Morgenstern (1944, p. 25) comment on the choice of axioms:

A choice of axioms is not a purely objective task. It is usually expected to achieve some
definite aim—some specific theorem or theorems are to be derivable from the axioms
—and to this extent the problem is exact and objective. But beyond this there are
always other important desiderata of a less exact nature: The axioms should not be too
numerous, their system is to be as simple and transparent as possible, and each axiom
should have an immediate intuitive meaning by which its appropriateness may be
judged directly.

In that sense, a set of axioms constitutes a normative theory of (the parts of) the world
to be modeled by the theory. The set of axioms collects the minimum set of assump‐
tions that should be satisfied a priori and not through some formal proof or similar.
Before listing a set of axioms that leads to EUT, here are some words about the
preferences of an agent themselves, formally ⪰, when presented with choice under
uncertainty.

Preferences of an agent
Assume an agent with preferences ⪰ is faced with the problem of investing in the two
traded assets of the model economy ℳ 2. For example, the agent might have the
option to choose between portfolio ϕA leading to a future payoff A = ϕA · M1 or port‐
folio ϕB leading to a future payoff B = ϕB · M1. The agent’s preferences ⪰ are assumed
to be defined over the future payoffs and not over the portfolios. If the agent
(strongly) prefers payoff A over B, one writes A ≻ B and A ≺ B in the other case. If
the agent is indifferent to the two payoffs, one writes A ∼ B. Given these descriptions,
one possible set of axioms leading to EUT is as follows:

Completeness
The agent can rank all payoffs relative to one another. One of the following must
hold true: A ≻ B, A ≺ B, or A ∼ B.

Transitivity
If there is a third portfolio ϕC with future payoff C = ϕC · M1, it follows from
A ≻ B and B ≻ C that A ≻ C.

Continuity
If A ≻ B ≻ C, then there exists a number α ∈ 0, 1  such that B ∼ αA + 1 − α C.

Independence
From A ∼ B it follows that αA + 1 − α C ∼ αB + 1 − α C. Similarly, from
A ≻ B it follows that αA + 1 − α C ≻ αB + 1 − α C.

Dominance
If C1 = α1A + 1 − α1 C and C2 = α2A + 1 − α2 C, it follows from A ≻ C and
C1 ≻ C2 that α1 > α2.
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6 One speaks in general of ordinal numbers. House numbers in streets are a good example for ordinal numbers.

Utility functions
A utility function is a way to represent the preferences ⪰ of an agent in a mathemati‐
cal and numerical way in that such a function assigns a numerical value to a certain
payoff. In this context, the absolute value is not relevant. It is rather the ordering that
the values induce that is of interest.6 Assume that � represents all possible payoffs
over which the agent can express her preferences. A utility function U is then defined
as follows:

U :� ℝ+, x U x

If U represents the preferences ⪰ of an agent, then the following relationships hold
true:

A ≻ B U A > U B (strongly prefers)
A ⪰ B U A ≥ U B (weakly prefers)
A ≺ B U A < U B (strongly does not prefer)
A ⪯ B U A ≤ U B (weakly does not prefer)
A ∼ B U A = U B (is indifferent)

A utility function U is only determined up to a positive linear transformation. There‐
fore, if U represents the preferences ⪰, then V = a + bU with a, b > 0 does so as well.
Regarding utility functions, von Neumann and Morgenstern (1944, p. 25) summarize
as follows: “So we see: If such a numerical valuation of utilities exists at all, then it is
determined up to a linear transformation. I.e. then utility is a number up to a linear
transformation.”

Expected utility functions
Von Neumann and Morgenstern (1944) show that if the preferences of an agent ⪰
satisfy the preceding five axioms, then there exists an expected utility function of the
form:

U :� ℝ+, x �
P u x = ∑

ω

Ω
P ω u x ω

Here, u:ℝ ℝ, x u x  is a monotonically increasing, state-independent function,
often called Bernoulli utility, such as u x = ln x , u x = x, or u x = x2.
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In words, the expected utility function U first applies a function u to the payoff x ω
in a certain state and then uses the probabilities for a given state to occur P ω  to
weigh the single utilities. In the special case of linear Bernoulli utility u x = x, the
expected utility is simply the expected value of the state-dependent payoff,
U x = �P x .

Risk aversion
In finance, the concept of risk aversion is important. The most commonly used meas‐
ure of risk aversion is the Arrow-Pratt measure of absolute risk aversion (ARA), which
dates back to Pratt (1964). Assume that an agent’s state-independent Bernoulli utility
function is u x . Then the Arrow-Pratt measure of ARA is defined by the following:

ARA x = − u′′ x
u′ x , x ≥ 0

The following three cases can be distinguished according to this measure:

ARA x = − u′′ x
u′ x

> 0 risk‐averse
= 0 risk‐neutral
< 0 risk‐loving

In financial theories and models, risk aversion and risk neutrality in general are
assumed to be appropriate cases. In gambling, risk-loving agents probably can be
found as well.

Consider the three Bernoulli functions previously mentioned: u x = ln x , u x = x,
or u x = x2. It is easily verified that they model risk-averse, risk-neutral, and risk-
loving agents, respectively. Consider, for example, u x = x2:

− u′′ x
u′ x = − 2

2x < 0, x > 0 risk‐loving

Numerical Example
The application of EUT is easily illustrated in Python. Assume the example model
economy from the previous section ℳ 2. Assume that an agent with preferences ⪰
decides according to the EUT between different future payoffs. The Bernoulli utility
of the agent is given by u x = x. In the example, payoff A1 resulting from portfolio
ϕA is preferred over the payoff D1 resulting from portfolio ϕD.
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The following code illustrates this application:

In [11]: def u(x):
             return np.sqrt(x)  

In [12]: phi_A = np.array((0.75, 0.25))  
         phi_D = np.array((0.25, 0.75))  

In [13]: np.dot(M0, phi_A) == np.dot(M0, phi_D)  
Out[13]: True

In [14]: A1 = np.dot(M1, phi_A)  
         A1  
Out[14]: array([17.75,  6.5 ])

In [15]: D1 = np.dot(M1, phi_D)  
         D1  
Out[15]: array([13.25,  9.5 ])

In [16]: P = np.array((0.5, 0.5))  

In [17]: def EUT(x):
             return np.dot(P, u(x))  

In [18]: EUT(A1)  
Out[18]: 3.381292321692286

In [19]: EUT(D1)  
Out[19]: 3.3611309730623735

The risk-averse Bernoulli utility function

Two portfolios with different weights

Shows that the cost to set up each portfolio is the same

The uncertain payoff of one portfolio…

…and the other one

The probability measure

The expected utility function

The utility values for the two uncertain payoffs

A typical problem in this context is to derive an optimal portfolio (that is, one that
maximizes the expected utility) given a fixed budget of the agent w > 0. The following
Python code models this problem and solves it exactly. Of its available budget, the
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7 For details, see http://bit.ly/aiif_minimize.

agent puts roughly 60% in the risky asset and roughly 40% in the risk-less asset. The
results are mainly driven by the particular form of the Bernoulli utility function:

In [20]: from scipy.optimize import minimize

In [21]: w = 10  

In [22]: cons = {'type': 'eq', 'fun': lambda phi: np.dot(M0, phi) - w}  

In [23]: def EUT_(phi):
             x = np.dot(M1, phi)  
             return EUT(x)  

In [24]: opt = minimize(lambda phi: -EUT_(phi),  
                        x0=phi_A,  
                        constraints=cons)  

In [25]: opt  
Out[25]:      fun: -3.385015999493397
              jac: array([-1.69249132, -1.69253424])
          message: 'Optimization terminated successfully.'
             nfev: 16
              nit: 4
             njev: 4
           status: 0
          success: True
                x: array([0.61122474, 0.38877526])

In [26]: EUT_(opt['x'])  
Out[26]: 3.385015999493397

The fixed budget of the agent

The budget constraint for use with minimize7

The expected utility function defined over portfolios

Minimizing -EUT_(phi) maximizes EUT_(phi)

The initial guess for the optimization

The budget constraint applied

The optimal results, including the optimal portfolio under x

The optimal (highest) expected utility given the budget of w = 10
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Mean-Variance Portfolio Theory
Mean-variance portfolio (MVP) theory, according to Markowitz (1952), is another
cornerstone in financial theory. It is one of the first theories of investment under
uncertainty that focused on statistical measures only for the construction of stock
investment portfolios. MVP completely abstracts from, say, fundamentals of a
company that might drive its stock performance or assumptions about the future
competitiveness of a company that might be important for the growth prospects of a
company. Basically, the only input data that counts is the time series of share prices
and statistics derived therefrom, such as the (historical) annualized mean return and
the (historical) annualized variance of the returns.

Assumptions and Results
The central assumption of MVP, according to Markowitz (1952), is that investors only
care about expected returns and the variance of these returns:

We next consider the rule that the investor does (or should) consider expected return a
desirable thing and variance of return an undesirable thing. This rule has many sound
points, both as a maxim for, and hypothesis about, investment behavior.
The portfolio with maximum expected return is not necessarily the one with minimum
variance. There is a rate at which the investor can gain expected return by taking on
variance, or reduce variance by giving up expected return.

This approach to investors’ preferences is quite different to the approach that defines
an agent’s preferences and utility function over payoffs directly. MVP rather assumes
that an agent’s preferences and utility function can be defined over the first and sec‐
ond moment of the returns an investment portfolio is expected to yield.

Implicitly Assumed Normal Distribution

In general, MVP theory, focusing on one period portfolio risk and
return only, is not compatible with standard EUT. One way of
resolving this issue is to assume that returns of risky assets are nor‐
mally distributed such that the first and second moments are suffi‐
cient to describe the full distribution of an asset’s returns. This is
something almost never observed in real financial data, as the next
chapter illustrates. The other way is to assume a particular quad‐
ratic Bernoulli utility function, as shown in the next section.

Portfolio statistics

Assume a static economy ℳN = Ω,ℱ , P ,� , for which the set of tradable assets �
consists of N risky assets, A1, A2, ..., AN. With A0

n being the fixed price of asset n today
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8 These assumptions are not really necessary. Short sales, for instance, might be allowed without altering the
analysis significantly.

and A1
n being its payoff in one year, the (simple) net returns vector rn of asset n is

defined by the following:

rn =
A1

n

A0
n − 1

For all future states having the same probability to unfold, the expected return of asset
n is given by:

μn = 1
Ω ∑

ω

Ω
rn ω

Accordingly, the vector of expected returns is given by the following:

μ =

μ1

μ2

⋮

μN

A portfolio (vector) ϕ = ϕ1, ϕ2, ..., ϕN T, with ϕn ≥ 0 and ∑n
N ϕn = 1, assigns weights to

each asset in the portfolio.8

The expected return of the portfolio is then given by the dot product of the portfolio
weights vector and the vector of expected returns:

μphi = ϕ · μ

Now define the covariance between assets n and m by the following:

σmn = ∑
ω

Ω
rm ω − μm rn ω − μn
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The covariance matrix then is given by:

Σ =

σ11 σ12 ... σ1n

σ21 σ22 ... σ2n

⋮ ⋮ ⋱ ⋮

σn1 σn2 ... σnn

The expected variance of the portfolio is then in turn given by the double dot product:

φphi = ϕT · Σ · ϕ

The expected volatility of the portfolio accordingly is the following:

σphi = φphi

Sharpe ratio
Sharpe (1966) introduces a measure to judge the risk-adjusted performance of
mutual funds and other portfolios, or even single risky assets. In its simplest form, it
relates the (expected, realized) return of a portfolio to its (expected, realized) volatil‐
ity. Formally, the Sharpe ratio therefore can be defined by the following:

πphi = μphi

σphi

If r represents the risk-less short rate, the risk premium or excess return of a portfolio
phi over a risk-free alternative is defined by μphi − r. In another version of the Sharpe
ratio, this risk premium is the numerator:

πphi = μphi − r
σphi

If the risk-less short rate is relatively low, the two versions do not yield too different
numerical results if the same risk-less short rate is applied. In particular, when rank‐
ing different portfolios according to the Sharpe ratio, the two versions should gener‐
ate the same ranking order, everything else equal.
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Numerical Example
Getting back to the static model economy ℳ 2, the basic notions of MVP can again be
easily illustrated by the use of Python.

Portfolio statistics
First, here is the derivation of the portfolio expected return:

In [27]: rS = S1 / S0 - 1  
         rS  
Out[27]: array([ 1. , -0.5])

In [28]: rB = B1 / B0 - 1  
         rB  
Out[28]: array([0.1, 0.1])

In [29]: def mu(rX):
             return np.dot(P, rX)  

In [30]: mu(rS)  
Out[30]: 0.25

In [31]: mu(rB)  
Out[31]: 0.10000000000000009

In [32]: rM = M1 / M0 - 1  
         rM  
Out[32]: array([[ 1. ,  0.1],
                [-0.5,  0.1]])

In [33]: mu(rM)  
Out[33]: array([0.25, 0.1 ])

Return vector of the risky asset

Return vector of the risk-less asset

Expected return function

Expected returns of the traded assets

Return matrix for the traded assets

Expected return vector
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Second, the variance and volatility, as well as the covariance matrix:

In [34]: def var(rX):
             return ((rX - mu(rX)) ** 2).mean()  

In [35]: var(rS)
Out[35]: 0.5625

In [36]: var(rB)
Out[36]: 0.0

In [37]: def sigma(rX):
             return np.sqrt(var(rX))  

In [38]: sigma(rS)
Out[38]: 0.75

In [39]: sigma(rB)
Out[39]: 0.0

In [40]: np.cov(rM.T, aweights=P, ddof=0)  
Out[40]: array([[0.5625, 0.    ],
                [0.    , 0.    ]])

The variance function

The volatility function

The covariance matrix

Third, the portfolio expected return, portfolio expected variance, and portfolio expected
volatility, illustrated for an equally weighted portfolio:

In [41]: phi = np.array((0.5, 0.5))

In [42]: def mu_phi(phi):
             return np.dot(phi, mu(rM))  

In [43]: mu_phi(phi)
Out[43]: 0.17500000000000004

In [44]: def var_phi(phi):
             cv = np.cov(rM.T, aweights=P, ddof=0)
             return np.dot(phi, np.dot(cv, phi))  

In [45]: var_phi(phi)
Out[45]: 0.140625

In [46]: def sigma_phi(phi):
             return var_phi(phi) ** 0.5  
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In [47]: sigma_phi(phi)
Out[47]: 0.375

The portfolio expected return

The portfolio expected variance

The portfolio expected volatility

Investment opportunity set
Based on a Monte Carlo simulation for the portfolio weights ϕ, one can visualize the
investment opportunity set in the volatility-return space (Figure 3-1, generated by the
following code snippet).

Figure 3-1. Simulated expected portfolio volatility and return (one risky asset)

Because there is only one risky asset and one risk-less asset, the opportunity set is a
straight line:

In [48]: from pylab import plt, mpl
         plt.style.use('seaborn')
         mpl.rcParams['savefig.dpi'] = 300
         mpl.rcParams['font.family'] = 'serif'

In [49]: phi_mcs = np.random.random((2, 200))  

In [50]: phi_mcs = (phi_mcs / phi_mcs.sum(axis=0)).T  

In [51]: mcs = np.array([(sigma_phi(phi), mu_phi(phi))
                         for phi in phi_mcs])  
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In [52]: plt.figure(figsize=(10, 6))
         plt.plot(mcs[:, 0], mcs[:, 1], 'ro')
         plt.xlabel('expected volatility')
         plt.ylabel('expected return');

Random portfolio compositions, normalized to 1

Expected portfolio volatility and return for the random compositions

Consider now the case of a static three-state economy ℳ 3 for which Ω = u, m, d
holds. The three states are equally likely, P = 1

3 , 1
3 , 1

3 . The set of tradable assets con‐
sists of two risky assets S and T with a fixed price of S0 = T0 = 10 and uncertain pay‐
offs, respectively, of the following:

S1 =
20
10
5

and

T1 =
1

12
13

Based on these assumptions, the following Python code repeats the Monte Carlo sim‐
ulation and visualizes the results in Figure 3-2. With two risky assets, the well-known
MVP “bullet” becomes visible.

In [53]: P = np.ones(3) / 3  
         P  
Out[53]: array([0.33333333, 0.33333333, 0.33333333])

In [54]: S1 = np.array((20, 10, 5))

In [55]: T0 = 10
         T1 = np.array((1, 12, 13))

In [56]: M0 = np.array((S0, T0))
         M0
Out[56]: array([10, 10])

In [57]: M1 = np.array((S1, T1)).T
         M1
Out[57]: array([[20,  1],
                [10, 12],
                [ 5, 13]])
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In [58]: rM = M1 / M0 - 1
         rM
Out[58]: array([[ 1. , -0.9],
                [ 0. ,  0.2],
                [-0.5,  0.3]])

In [59]: mcs = np.array([(sigma_phi(phi), mu_phi(phi))
                         for phi in phi_mcs])

In [60]: plt.figure(figsize=(10, 6))
         plt.plot(mcs[:, 0], mcs[:, 1], 'ro')
         plt.xlabel('expected volatility')
         plt.ylabel('expected return');

New probability measure for three states

Figure 3-2. Simulated expected portfolio volatility and return (two risky assets)

Minimum volatility and maximum Sharpe ratio
Next, the derivation of the minimum volatility (minimum variance) and maximum
Sharpe ratio portfolios. Figure 3-3 shows the location of the two portfolios in the risk-
return space.

Although the risky asset T has a negative expected return, it has a significant weight
in the maximum Sharpe ratio portfolio. This is due to diversification effects that
lower the portfolio risk more than the expected return of the portfolio is reduced:

In [61]: cons = {'type': 'eq', 'fun': lambda phi: np.sum(phi) - 1}

In [62]: bnds = ((0, 1), (0, 1))
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In [63]: min_var = minimize(sigma_phi, (0.5, 0.5),
                            constraints=cons, bounds=bnds)  

In [64]: min_var
Out[64]:      fun: 0.07481322946910632
              jac: array([0.07426564, 0.07528945])
          message: 'Optimization terminated successfully.'
             nfev: 17
              nit: 4
             njev: 4
           status: 0
          success: True
                x: array([0.46511697, 0.53488303])

In [65]: def sharpe(phi):
             return mu_phi(phi) / sigma_phi(phi)  

In [66]: max_sharpe = minimize(lambda phi: -sharpe(phi), (0.5, 0.5),
                        constraints=cons, bounds=bnds)  

In [67]: max_sharpe
Out[67]:      fun: -0.2721654098971811
              jac: array([ 0.00012054, -0.00024174])
          message: 'Optimization terminated successfully.'
             nfev: 38
              nit: 9
             njev: 9
           status: 0
          success: True
                x: array([0.66731116, 0.33268884])

In [68]: plt.figure(figsize=(10, 6))
         plt.plot(mcs[:, 0], mcs[:, 1], 'ro', ms=5)
         plt.plot(sigma_phi(min_var['x']), mu_phi(min_var['x']),
                  '^', ms=12.5, label='minimum volatility')
         plt.plot(sigma_phi(max_sharpe['x']), mu_phi(max_sharpe['x']),
                  'v', ms=12.5, label='maximum Sharpe ratio')
         plt.xlabel('expected volatility')
         plt.ylabel('expected return')
         plt.legend();

Minimizes the expected portfolio volatility

Defines the Sharpe ratio function, assuming a short rate of 0

Maximizes the Sharpe ratio by minimizing its negative value
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Figure 3-3. Minimum volatility and maximum Sharpe ratio portfolios

Efficient frontier
An efficient portfolio is one that has a maximum expected return (risk) given its
expected risk (return). In Figure 3-3, all those portfolios that have a lower expected
return than the minimum risk portfolio are inefficient. The following code derives the
efficient portfolios in risk-return space and plots them as seen in Figure 3-4. The set
of all efficient portfolios is called the efficient frontier, and agents will only choose a
portfolio that lies on the efficient frontier:

In [69]: cons = [{'type': 'eq', 'fun': lambda phi: np.sum(phi) - 1},
                {'type': 'eq', 'fun': lambda phi: mu_phi(phi) - target}]  

In [70]: bnds = ((0, 1), (0, 1))

In [71]: targets = np.linspace(mu_phi(min_var['x']), 0.16)  

In [72]: frontier = []
         for target in targets:
             phi_eff = minimize(sigma_phi, (0.5, 0.5),
                                constraints=cons, bounds=bnds)['x']  
             frontier.append((sigma_phi(phi_eff), mu_phi(phi_eff)))
         frontier = np.array(frontier)

In [73]: plt.figure(figsize=(10, 6))
         plt.plot(frontier[:, 0], frontier[:, 1], 'mo', ms=5,
                  label='efficient frontier')
         plt.plot(sigma_phi(min_var['x']), mu_phi(min_var['x']),
                  '^', ms=12.5, label='minimum volatility')
         plt.plot(sigma_phi(max_sharpe['x']), mu_phi(max_sharpe['x']),
                  'v', ms=12.5, label='maximum Sharpe ratio')
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         plt.xlabel('expected volatility')
         plt.ylabel('expected return')
         plt.legend();

The new constraint fixes a target level for the expected return.

Generates the set of target expected returns.

Derives the minimum volatility portfolio given a target expected return.

Figure 3-4. Efficient frontier

Capital Asset Pricing Model
The capital asset pricing model (CAPM) is one of the most widely documented and
applied models in finance. At its core, it relates in linear fashion the expected return
for a single stock to the expected return of the market portfolio, usually approximated
by a broad stock index such as the S&P 500. The model dates back to the pioneering
work of Sharpe (1964) and Lintner (1965). Jones (2012, ch. 9) describes the CAPM in
relation to MVP as follows:

Capital market theory is a positive theory in that it hypothesizes how investors do
behave rather than how investors should behave, as in the case of modern portfolio
theory (MVP). It is reasonable to view capital market theory as an extension of portfo‐
lio theory, but it is important to understand that MVP is not based on the validity, or
lack thereof, of capital market theory.
The specific equilibrium model of interest to many investors is known as the capital
asset pricing model, typically referred to as the CAPM. It allows us to assess the rele‐
vant risk of an individual security as well as to assess the relationship between risk and
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9 For further details, see Jones (2012, ch. 9).

the returns expected from investing. The CAPM is attractive as an equilibrium model
because of its simplicity and its implications.

Assumptions and Results
Assume the static model economy from the previous section ℳN = Ω,ℱ , P ,�
with N traded assets and all simplifying assumptions. In the CAPM, agents are
assumed to invest according to MVP, caring only about the risk and return statistics
of risky assets over one period.

In a capital market equilibrium, all available assets are held by all agents and the mar‐
kets clear. Since agents are assumed to be identical in that they use MVP to form their
efficient portfolios, this implies that all agents must hold the same efficient portfolio
(in terms of composition) since the set of tradable assets is the same for every agent.
In other words, the market portfolio (set of tradable assets) must lie on the efficient
frontier. If this were not the case, the market could not be in equilibrium.

What is the mechanism to obtain a capital market equilibrium? Today’s prices of the
tradable assets are the mechanism to make sure that markets clear. If agents do not
demand enough of a tradable asset, its price needs to decrease. If demand is higher
than supply, its price needs to increase. If prices are set correctly, demand and supply
are equal for every tradable asset. While MVP takes the prices of tradable assets as
given, the CAPM is a theory and model about what the equilibrium price of an asset
should be, given its risk-return characteristics.

The CAPM assumes the existence of (at least) one risk-free asset in which every agent
can invest any amount and which earns the risk-free rate of r. Every agent will there‐
fore hold a combination of the market portfolio and the risk-free asset in equilibrium,
something known as the two fund separation theorem.9 The set of all such portfolios is
called the capital market line (CML). Figure 3-5 shows the CML schematically. Port‐
folios to the right of the market portfolio are only achievable if agents are allowed to
sell the risk-free asset short and to borrow money that way:

In [74]: plt.figure(figsize=(10, 6))
         plt.plot((0, 0.3), (0.01, 0.22), label='capital market line')
         plt.plot(0, 0.01, 'o', ms=9, label='risk-less asset')
         plt.plot(0.2, 0.15, '^', ms=9, label='market portfolio')
         plt.annotate('$(0, \\bar{r})$', (0, 0.01), (-0.01, 0.02))
         plt.annotate('$(\sigma_M, \mu_M)$', (0.2, 0.15), (0.19, 0.16))
         plt.xlabel('expected volatility')
         plt.ylabel('expected return')
         plt.legend();
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Figure 3-5. Capital market line (CML)

If σM, μM are the expected volatility and return of the market portfolio, the capital
market line relating the expected portfolio return μ to the expected volatility σ is
defined by the following:

μ = r +
μM − r

σM
σ

The following expression is called the market price of risk:

μM − r
σM

It expresses how much more expected return in equilibrium is needed for an agent to
bear one unit more of risk.

The CAPM then relates the expected return of any tradable risky asset n = 1, 2, ..., N
to the expected return of the market portfolio as follows:

μn = r + βn μM − r
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Here, βn is defined by the covariance of the market portfolio with the risky asset n
divided by the variance of the market portfolio itself:

βn =
σM, n

σM
2

When βn = 0, the expected return according to the CAPM formula is the risk-free
rate. The higher βn is, the higher the expected return for the risky asset will be. βn
measures risk that is nondiversifiable. This type of risk is also called market risk or
systemic risk. According to the CAPM, this is the only risk for which an agent should
be rewarded with a higher expected return.

Numerical Example
Assume the static model economy with three possible future states from before
ℳ 3 = Ω,ℱ , P ,�  with the opportunity to borrow and lend at a risk-free rate of r =
0.0025. The two risky assets S, T are available in quantities of 0.8 and 0.2, respectively.

Capital market line
Figure 3-6 shows the efficient frontier, the market portfolio, the risk-less asset, and
the resulting capital market line in risk-return space:

In [75]: phi_M = np.array((0.8, 0.2))

In [76]: mu_M = mu_phi(phi_M)
         mu_M
Out[76]: 0.10666666666666666

In [77]: sigma_M = sigma_phi(phi_M)
         sigma_M
Out[77]: 0.39474323581566567

In [78]: r = 0.0025

In [79]: plt.figure(figsize=(10, 6))
         plt.plot(frontier[:, 0], frontier[:, 1], 'm.', ms=5,
                  label='efficient frontier')
         plt.plot(0, r, 'o', ms=9, label='risk-less asset')
         plt.plot(sigma_M, mu_M, '^', ms=9, label='market portfolio')
         plt.plot((0, 0.6), (r, r + ((mu_M - r) / sigma_M) * 0.6),
                  'r', label='capital market line', lw=2.0)
         plt.annotate('$(0, \\bar{r})$', (0, r), (-0.015, r + 0.01))
         plt.annotate('$(\sigma_M, \mu_M)$', (sigma_M, mu_M),
                      (sigma_M - 0.025, mu_M + 0.01))
         plt.xlabel('expected volatility')
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         plt.ylabel('expected return')
         plt.legend();

Figure 3-6. Capital market line with two risky assets

Optimal portfolio
Assume an agent with an expected utility function defined over future payoffs as
follows:

U :� ℝ+, x �
P u x = �P x − b

2x2

Here, b > 0. After some transformations, the expected utility function can then be
expressed over risk-return combinations:

U :ℝ+ ×ℝ+ ℝ, σ, μ μ − b
2 σ2 + μ2
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Specific Quadratic Utility Function

Although the MVP theory and the CAPM both assume that invest‐
ors only care about one period portfolio risk and return, this
assumption is in general only consistent with the EUT when a spe‐
cific form of the Bernoulli utility function is given: the quadratic
utility. This type of Bernoulli function is almost exclusively men‐
tioned and used in the context of MVP theory. Beyond that, its par‐
ticular form and characteristics are usually considered
inappropriate. Neither the assumption of normally distributed
asset returns nor the quadratic utility function seems to be an “ele‐
gant” way of reconciling the inconsistency between EUT on the
one hand and MVP theory and the CAPM on the other hand.

What portfolio combination would the agent choose on the CML? A straightforward
utility maximization, implemented in Python, yields the answer. To this end, fix the
parameter b = 1:

In [80]: def U(p):
             mu, sigma = p
             return mu - 1 / 2 * (sigma ** 2 + mu ** 2)  

In [81]: cons = {'type': 'eq',
                 'fun': lambda p: p[0] - (r + (mu_M - r) / sigma_M * p[1])}  

In [82]: opt = minimize(lambda p: -U(p), (0.1, 0.3), constraints=cons)

In [83]: opt
Out[83]:      fun: -0.034885186826739426
              jac: array([-0.93256102,  0.24608851])
          message: 'Optimization terminated successfully.'
             nfev: 8
              nit: 2
             njev: 2
           status: 0
          success: True
                x: array([0.06743897, 0.2460885 ])

The utility function in risk-return space

The condition that the portfolio be on the CML

Indifference curves
A visual analysis can illustrate the optimal decision making of the agent. Fixing a util‐
ity level for the agent, one can plot indifference curves in risk-return space. An opti‐
mal portfolio is found when an indifference curve is tangent to the CML. Any other
indifference curve (not touching the CML or cutting the CML twice) cannot identify
an optimal portfolio.
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First, here is some symbolic Python code that transforms the utility function in risk-
return space into a functional relationship between μ and σ for a fixed utility level v
and a fixed parameter value b. Figure 3-7 shows two indifference curves. Every σ, μ
combination on such an indifference curve yields the same utility; the agent is indif‐
ferent between such portfolios:

In [84]: from sympy import *
         init_printing(use_unicode=False, use_latex=False)

In [85]: mu, sigma, b, v = symbols('mu sigma b v')  

In [86]: sol = solve('mu - b / 2 * (sigma ** 2 + mu ** 2) - v', mu)  

In [87]: sol  
Out[87]:         _________________________     _________________________
                /    2      2                 /    2      2
          1 - \/  - b *sigma  - 2*b*v + 1   \/  - b *sigma  - 2*b*v + 1  + 1
         [--------------------------------, --------------------------------]
                         b                                 b

In [88]: u1 = sol[0].subs({'b': 1, 'v': 0.1})  
         u1
Out[88]:        ______________
               /            2
         1 - \/  0.8 - sigma

In [89]: u2 = sol[0].subs({'b': 1, 'v': 0.125})  
         u2
Out[89]:        _______________
               /             2
         1 - \/  0.75 - sigma

In [90]: f1 = lambdify(sigma, u1)  
         f2 = lambdify(sigma, u2)  

In [91]: sigma_ = np.linspace(0.0, 0.5)  
         u1_ = f1(sigma_)  
         u2_ = f2(sigma_)  

In [92]: plt.figure(figsize=(10, 6))
         plt.plot(sigma_, u1_, label='$v=0.1$')
         plt.plot(sigma_, u2_, '--', label='$v=0.125$')
         plt.xlabel('expected volatility')
         plt.ylabel('expected return')
         plt.legend();

Defines SymPy symbols

Solves the utility function for μ
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Substitutes numerical values for b, v

Generates callable functions from the resulting equations

Specifies values for σ over which to evaluate the functions

Evaluates the callable functions for the two different utility levels

Figure 3-7. Indifference curves in risk-return space

In a next step, the indifference curves need to be combined with the CML to find out
visually what the optimal portfolio choice of the agent is. Making use of the previous
numerical optimization results, Figure 3-8 shows the optimal portfolio—the point at
which the indifference curve is tangent to the CML. Figure 3-8 shows that the agent
indeed chooses a mixture of the market portfolio and the risk-less asset:

In [93]: u = sol[0].subs({'b': 1, 'v': -opt['fun']})  
         u
Out[93]:        ____________________________
               /                          2
         1 - \/  0.930229626346521 - sigma

In [94]: f = lambdify(sigma, u)

In [95]: u_ = f(sigma_)  

In [96]: plt.figure(figsize=(10, 6))
         plt.plot(0, r, 'o', ms=9, label='risk-less asset')
         plt.plot(sigma_M, mu_M, '^', ms=9, label='market portfolio')
         plt.plot(opt['x'][1], opt['x'][0], 'v', ms=9, label='optimal portfolio')
         plt.plot((0, 0.5), (r, r + (mu_M - r) / sigma_M * 0.5),
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                  label='capital market line', lw=2.0)
         plt.plot(sigma_, u_, '--', label='$v={}$'.format(-round(opt['fun'], 3)))
         plt.xlabel('expected volatility')
         plt.ylabel('expected return')
         plt.legend();

Defines the indifference curve for the optimal utility level

Derives numerical values to plot the indifference curve

Figure 3-8. Optimal portfolio on the CML

The topics presented in this sub-section are usually discussed under capital market
theory (CMT). The CAPM is part of that theory and shall be illustrated by the use of
real financial time series data in the next chapter.

Arbitrage Pricing Theory
Early on, shortcomings of the CAPM were observed and then addressed in the
finance literature. One of the major generalizations of the CAPM is the arbitrage
pricing theory (APT) as proposed in Ross (1971) and Ross (1976). Ross (1976) intro‐
duces his paper as follows:

The purpose of this paper is to examine rigorously the arbitrage model of capital asset
pricing developed in Ross (1971). The arbitrage model was proposed as an alternative
to the mean variance capital asset pricing model, introduced by Sharpe, Lintner, and
Treynor, that has become the major analytic tool for explaining phenomena observed
in capital markets for risky assets.
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10 See Bender et al. (2013) for more background information about factors used in practice.

Assumptions and Results
The APT is a generalization of the CAPM to multiple risk factors. In that sense, APT
does not assume that the market portfolio is the only relevant risk factor; there are
rather multiple types of risk that together are assumed to drive the performance
(expected returns) of a stock. Such risk factors might include size, volatility, value,
and momentum.10 Beyond this major difference, the model relies on similar assump‐
tions, such as that markets are perfect, that (unlimited) borrowing and lending are
possible at the same constant rate, and so on.

In its original dynamic version, as found in Ross (1976), the APT takes on the
following form:

yt = a + B f t + �t

Here, yt is the vector of M observed variables—say, the expected returns of M differ‐
ent stocks—at time t:

yt =

yt
1

yt
2

⋮

yt
M

a is the vector of M constant terms:

a =

a1

a2

⋮

aM
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f t is the vector of F factors at time t:

f t =

f t
1

f t
2

⋮

f t
F

B is the M × F matrix of the so-called factor loadings:

B =

b11 b12 ... b1F

b21 b22 ... b2F

⋮ ⋮ ⋱ ⋮

bM1 bM2 ... bMF

Finally, �t is the vector of M sufficiently independent residual terms:

�t =

�t
1

�t
2

⋮

�t
M

Jones (2012, ch. 9) describes the difference between the CAPM and the APT as
follows:

Similar to the CAPM, or any other asset pricing model, APT posits a relationship
between expected return and risk. It does so, however, using different assumptions and
procedures. Very importantly, APT is not critically dependent on an underlying mar‐
ket portfolio as is the CAPM, which predicts that only market risk influences expected
returns. Instead, APT recognizes that several types of risk may affect security returns.

Both the CAPM and the APT relate the output variables with the relevant input fac‐
tors in linear fashion. From an econometric point of view, both models are imple‐
mented based on linear ordinary least-squares (OLS) regression. While the CAPM
can be implemented based on univariate linear OLS regression, the APT requires
multivariate OLS regression.
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Numerical Example
The following numerical example casts the APT in a static model, although the for‐
mulation given previously is a dynamic one. Assume the static model economy with
three possible future states from the previous section, ℳ 3 = Ω,ℱ , P ,� . Assume
that the two risky assets are now the relevant risk factors in the economy and intro‐
duce a third asset V with the following future payoff:

V1 =
12
15
7

Although two linearly independent vectors, such as S1, T1, cannot form a basis of ℝ3,
they can nevertheless be used for an OLS regression to approximate the payoff V1.
The following Python code implements the OLS regression:

In [97]: M1
Out[97]: array([[20,  1],
                [10, 12],
                [ 5, 13]])

In [98]: M0
Out[98]: array([10, 10])

In [99]: V1 = np.array((12, 15, 7))

In [100]: reg = np.linalg.lstsq(M1, V1, rcond=-1)[0]  
          reg  
Out[100]: array([0.6141665 , 0.50030531])

In [101]: np.dot(M1, reg)
Out[101]: array([12.78363525, 12.14532872,  9.57480155])

In [102]: np.dot(M1, reg) - V1  
Out[102]: array([ 0.78363525, -2.85467128,  2.57480155])

In [103]: V0 = np.dot(M0, reg)  
          V0  
Out[103]: 11.144718094850402

The optimal regression parameters can be interpreted as factor loadings.

The two factors are not enough to explain the payoff V1; the replication is imper‐
fect, and the residual values are nonzero.
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11 Of course, the payoff V1 might lie (incidentally) in the span of the two factor payoff vectors S1, T1.

The factor loadings can be used to estimate an arbitrage-free price V0 for the
risky asset V.

Obviously, the two factors are not enough to fully “explain” the payoff V1. This is not
too surprising given standard results from linear algebra.11 What about adding a third
risk factor U to the model economy? Assume that the third risk factor U is defined by
U0 = 10 and the following:

U1 =
12
5

11

Now, the three risk factors together can explain (replicate) the payoff V1 fully
(exactly):

In [104]: U0 = 10
          U1 = np.array((12, 5, 11))

In [105]: M0_ = np.array((S0, T0, U0))  

In [106]: M1_ = np.concatenate((M1.T, np.array([U1,]))).T  

In [107]: M1_  
Out[107]: array([[20,  1, 12],
                 [10, 12,  5],
                 [ 5, 13, 11]])

In [108]: np.linalg.matrix_rank(M1_)  
Out[108]: 3

In [109]: reg = np.linalg.lstsq(M1_, V1, rcond=-1)[0]
          reg
Out[109]: array([ 0.9575179 ,  0.72553699, -0.65632458])

In [110]: np.allclose(np.dot(M1_, reg), V1)  
Out[110]: True

In [111]: V0_ = np.dot(M0_, reg)
          V0_  
Out[111]: 10.267303102625307

Augmented market price vector.

Augmented market payoff matrix with full rank.
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Exact replication of V1. Residual values are zero.

Unique arbitrage-free price for the risky asset V.

The example here resembles the one presented in “Uncertainty and Risk” on page 62
in that enough risk factors (tradable assets) can be used to derive an arbitrage-free
price for a traded asset. APT does not necessarily require that perfect replication is
possible; its very model formulation contains residual values. However, if perfect rep‐
lication is possible, then the residual terms are zero, as in the previous example with
three risk factors.

Conclusions
Some of the early theories and models from the 1940s through the 1970s, in particu‐
lar those presented in this chapter, are still central topics of finance textbooks and are
still used in financial practice. One reason for this is that many of those mostly
normative theories and models have a strong intellectual appeal to students, academ‐
ics, and practitioners alike. They somehow “simply seem to make sense.” Using
Python, numerical examples for the models presented are easily created, analyzed,
and visualized.

Despite theories and models such as MVP and CAPM being intellectually appealing,
easy to implement, and mathematically elegant, it is surprising that they are still so
popular today, for a few reasons. First, the popular theories and models presented in
this chapter have hardly any meaningful empirical support. Second, some of the theo‐
ries and models are even theoretically inconsistent with each other in a number of
ways. Third, there has been continuous progress on the theoretical and modeling
fronts of finance, such that alternative theories and models are available. Fourth,
modern computational and empirical finance can rely on almost unlimited data sour‐
ces and almost unlimited computational power, making concise, parsimonious, and
elegant mathematical models and results less and less relevant.

The next chapter analyzes some of the theories and models introduced in this chapter
on the basis of real financial data. While in the early years of quantitative finance,
data was a scarce resource, today even students have access to a wealth of financial
data and open source tools that allow the comprehensive analysis of financial theories
and models based on real-world data. Empirical finance has always been an impor‐
tant sister discipline to theoretical finance. However, financial theory has usually
driven empirical finance to a large extent. The new area of data-driven finance might
lead to a lasting shift in the relative importance of theory as compared to data in
finance.
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CHAPTER 4

Data-Driven Finance

If artificial intelligence is the new electricity, big data is the oil that powers the
generators.

—Kai-Fu Lee (2018)

Nowadays, analysts sift through non-traditional information such as satellite imagery
and credit card data, or use artificial intelligence techniques such as machine learning
and natural language processing to glean fresh insights from traditional sources such
as economic data and earnings-call transcripts.

—Robin Wigglesworth (2019)

This chapter discusses central aspects of data-driven finance. For the purposes of this
book, data-driven finance is understood to be a financial context (theory, model,
application, and so on) that is primarily driven by and based on insights gained from
data.

“Scientific Method” on page 100 discusses the scientific method, which is about gen‐
erally accepted principles that should guide scientific effort. “Financial Econometrics
and Regression” on page 101 is about financial econometrics and related topics.
“Data Availability” on page 104 sheds light on which types of (financial) data are
available today and in what quality and quantity via programmatic APIs. “Normative
Theories Revisited” on page 117 revisits the normative theories of Chapter 3 and ana‐
lyzes them based on real financial time series data. Also based on real financial data,
“Debunking Central Assumptions” on page 143 debunks two of the most commonly
found assumptions in financial models and theories: normality of returns and linear
relationships.
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Scientific Method
The scientific method refers to a set of generally accepted principles that should guide
any scientific project. Wikipedia defines the scientific method as follows:

The scientific method is an empirical method of acquiring knowledge that has charac‐
terized the development of science since at least the 17th century. It involves careful
observation, applying rigorous skepticism about what is observed, given that cognitive
assumptions can distort how one interprets the observation. It involves formulating
hypotheses, via induction, based on such observations; experimental and
measurement-based testing of deductions drawn from the hypotheses; and refinement
(or elimination) of the hypotheses based on the experimental findings. These are
principles of the scientific method, as distinguished from a definitive series of steps
applicable to all scientific enterprises.

Given this definition, normative finance, as discussed in Chapter 3, is in stark
contrast to the scientific method. Normative financial theories mostly rely on
assumptions and axioms in combination with deduction as the major analytical
method to arrive at their central results.

• Expected utility theory (EUT) assumes that agents have the same utility function
no matter what state of the world unfolds and that they maximize expected utility
under conditions of uncertainty.

• Mean-variance portfolio (MVP) theory describes how investors should invest
under conditions of uncertainty assuming that only the expected return and the
expected volatility of a portfolio over one period count.

• The capital asset pricing model (CAPM) assumes that only the nondiversifiable
market risk explains the expected return and the expected volatility of a stock
over one period.

• Arbitrage pricing theory (APT) assumes that a number of identifiable risk factors
explains the expected return and the expected volatility of a stock over time;
admittedly, compared to the other theories, the formulation of APT is rather
broad and allows for wide-ranging interpretations.

What characterizes the aforementioned normative financial theories is that they were
originally derived under certain assumptions and axioms using “pen and paper” only,
without any recourse to real-world data or observations. From a historical point of
view, many of these theories were rigorously tested against real-world data only long
after their publication dates. This can be explained primarily with better data availa‐
bility and increased computational capabilities over time. After all, data and compu‐
tation are the main ingredients for the application of statistical methods in practice. 
The discipline at the intersection of mathematics, statistics, and finance that applies
such methods to financial market data is typically called financial econometrics, the
topic of the next section.
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Financial Econometrics and Regression
Adapting the definition provided by Investopedia for econometrics, one can define
financial econometrics as follows:

[Financial] econometrics is the quantitative application of statistical and mathematical
models using [financial] data to develop financial theories or test existing hypotheses
in finance and to forecast future trends from historical data. It subjects real-world
[financial] data to statistical trials and then compares and contrasts the results against
the [financial] theory or theories being tested.

Alexander (2008b) provides a thorough and broad introduction to the field of finan‐
cial econometrics. The second chapter of the book covers single- and multifactor
models, such as the CAPM and APT. Alexander (2008b) is part of a series of four
books called Market Risk Analysis. The first in the series, Alexander (2008a), covers
theoretical background concepts, topics, and methods, such as MVP theory and the
CAPM themselves. The book by Campbell (2018) is another comprehensive resource
for financial theory and related econometric research.

One of the major tools in financial econometrics is regression, in both its univariate
and multivariate forms. Regression is also a central tool in statistical learning in gen‐
eral. What is the difference between traditional mathematics and statistical learning?
Although there is no general answer to this question (after all, statistics is a sub-field
of mathematics), a simple example should emphasize a major difference relevant to
the context of this book.

First is the standard mathematical way. Assume a mathematical function is given as
follows:

f :ℝ ℝ+, x 2 + 1
2x

Given multiple values of xi, i = 1, 2, ..., n, one can derive function values for f  by
applying the above definition:

yi = f xi , i = 1, 2, ..., n

The following Python code illustrates this based on a simple numerical example:

In [1]: import numpy as np

In [2]: def f(x):
            return 2 + 1 / 2 * x

In [3]: x = np.arange(-4, 5)
        x
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Out[3]: array([-4, -3, -2, -1,  0,  1,  2,  3,  4])

In [4]: y = f(x)
        y
Out[4]: array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ])

Second is the approach taken in statistical learning. Whereas in the preceding exam‐
ple, the function comes first and then the data is derived, this sequence is reversed in
statistical learning. Here, the data is generally given and a functional relationship is to
be found. In this context, x is often called the independent variable and y the depen‐
dent variable. Consequently, consider the following data:

xi, yi , i = 1, 2, ..., n

The problem is to find, for example, parameters α, β such that:

f xi ≡ α + βxi = y i ≈ yi, i = 1, 2, ..., n

Another way of writing this is by including residual values �i, i = 1, 2, ..., n:

α + βxi + �i = yi, i = 1, 2, ..., n

In the context of ordinary least-squares (OLS) regression, α, β are chosen to minimize
the mean-squared error between the approximated values y i and the real values yi.
The minimization problem, then, is as follows:

min
α, β

1
n ∑

i

n
y i − yi

2

In the case of simple OLS regression, as described previously, the optimal solutions are
known in closed form and are as follows:

β = Cov x, y
Var(x)

α = y − βx

Here, Cov  stands for the covariance, Var  for the variance, and x, y for the mean
values of x, y.

Returning to the preceding numerical example, these insights can be used to derive
optimal parameters α, β and, in this particular case, to recover the original definition
of f x :
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1 See, for example, Kopf (2015).

In [5]: x
Out[5]: array([-4, -3, -2, -1,  0,  1,  2,  3,  4])

In [6]: y
Out[6]: array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. ])

In [7]: beta = np.cov(x, y, ddof=0)[0, 1] / x.var()  
        beta  
Out[7]: 0.49999999999999994

In [8]: alpha = y.mean() - beta * x.mean()  
        alpha  
Out[8]: 2.0

In [9]: y_ = alpha + beta * x  

In [10]: np.allclose(y_, y)  
Out[10]: True

β as derived from the covariance matrix and the variance

α as derived from β and the mean values

Estimated values y i, i = 1, 2, ..., n, given α, β

Checks whether y i, yi values are numerically equal

The preceding example and those in Chapter 1 illustrate that the application of OLS
regression to a given data set is in general straightforward. There are more reasons
why OLS regression has become one of the central tools in econometrics and finan‐
cial econometrics. Among them are the following:

Centuries old
The least-squares approach, particularly in combination with regression, has
been used for more than 200 years.1

Simplicity
The mathematics behind OLS regression is easy to understand and easy to imple‐
ment in programming.

Scalability
There is basically no limit regarding the data size to which OLS regression can be
applied.

Financial Econometrics and Regression | 103



Flexibility
OLS regression can be applied to a wide range of problems and data sets.

Speed
OLS regression is fast to evaluate, even on larger data sets.

Availability
Efficient implementations in Python and many other programming languages
are readily available.

However, as easy and straightforward as the application of OLS regression might be
in general, the method rests on a number of assumptions—most of them related to
the residuals—that are not always satisfied in practice.

Linearity
The model is linear in its parameters, with regard to both the coefficients and the
residuals.

Independence
Independent variables are not perfectly (to a high degree) correlated with each
other (no multicollinearity).

Zero mean
The mean value of the residuals is (close to) zero.

No correlation
Residuals are not (strongly) correlated with the independent variables.

Homoscedasticity
The standard deviation of the residuals is (almost) constant.

No autocorrelation
The residuals are not (strongly) correlated with each other.

In practice, it is in general quite simple to test for the validity of the assumptions
given a specific data set.

Data Availability
Financial econometrics is driven by statistical methods, such as regression, and the
availability of financial data. From the 1950s to the 1990s, and even into the early
2000s, theoretical and empirical financial research was mainly driven by relatively
small data sets compared to today’s standards, and was mostly comprised of
end-of-day (EOD) data. Data availability is something that has changed dramatically
over the last decade or so, with more and more types of financial and other data avail‐
able in ever increasing granularity, quantity, and velocity.
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2 This data service is only available via a paid subscription.

Programmatic APIs
With regard to data-driven finance, what is important is not only what data is avail‐
able but also how it can be accessed and processed. For quite a while now, finance
professionals have relied on data terminals from companies such as Refinitiv (see
Eikon Terminal) or Bloomberg (see Bloomberg Terminal), to mention just two of the
leading providers. Newspapers, magazines, financial reports, and the like have long
been replaced by such terminals as the primary source for financial information.
However, the sheer volume and variety of data provided by such terminals cannot be
consumed systematically by a single user or even large groups of finance professio‐
nals. Therefore, the major breakthrough in data-driven finance is to be seen in the
programmatic availability of data via application programming interfaces (APIs) that
allow the usage of computer code to select, retrieve, and process arbitrary data sets.

The remainder of this section is devoted to the illustration of such APIs by which
even academics and retail investors can retrieve a wealth of different data sets. Before
such examples are provided, Table 4-1 offers an overview of categories of data that are
in general relevant in a financial context, as well as typical examples. In the table,
structured data refers to numerical data types that often come in tabular structures,
while unstructured data refers to data in the form of standard text that often has no
structure beyond headers or paragraphs, for example. Alternative data refers to data
types that are typically not considered financial data.

Table 4-1. Relevant types of financial data

Time Structured data Unstructured data Alternative data
Historical Prices, fundamentals News, texts Web, social media, satellites

Streaming Prices, volumes News, filings Web, social media, satellites, Internet of Things

Structured Historical Data
First, structured historical data types will be retrieved programmatically. To this end,
the following Python code uses the Eikon Data API.2

To access data via the Eikon Data API, a local application, such as Refinitiv Work‐
space, must be running and the API access must be configured on the Python level:

In [11]: import eikon as ek
         import configparser

In [12]: c = configparser.ConfigParser()
         c.read('../aiif.cfg')
         ek.set_app_key(c['eikon']['app_id'])
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3 RIC stands for Reuters Instrument Code.

         2020-08-04 10:30:18,059 P[14938] [MainThread 4521459136] Error on handshake
          port 9000 : ReadTimeout(ReadTimeout())

If these requirements are met, historical structured data can be retrieved via a single
function call. For example, the following Python code retrieves EOD data for a set of
symbols and a specified time interval:

In [14]: symbols = ['AAPL.O', 'MSFT.O', 'NFLX.O', 'AMZN.O']  

In [15]: data = ek.get_timeseries(symbols,
                                  fields='CLOSE',
                                  start_date='2019-07-01',
                                  end_date='2020-07-01')  

In [16]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 254 entries, 2019-07-01 to 2020-07-01
         Data columns (total 4 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   AAPL.O  254 non-null    float64
          1   MSFT.O  254 non-null    float64
          2   NFLX.O  254 non-null    float64
          3   AMZN.O  254 non-null    float64
         dtypes: float64(4)
         memory usage: 9.9 KB

In [17]: data.tail()  
Out[17]: CLOSE       AAPL.O  MSFT.O  NFLX.O   AMZN.O
         Date
         2020-06-25  364.84  200.34  465.91  2754.58
         2020-06-26  353.63  196.33  443.40  2692.87
         2020-06-29  361.78  198.44  447.24  2680.38
         2020-06-30  364.80  203.51  455.04  2758.82
         2020-07-01  364.11  204.70  485.64  2878.70

Defines a list of RICs (symbols) to retrieve data for3

Retrieves EOD Close prices for the list of RICs

Shows the meta information for the returned DataFrame object

Shows the final rows of the DataFrame object
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Similarly, one-minute bars with OHLC fields can be retrieved with appropriate adjust‐
ments of the parameters:

In [18]: data = ek.get_timeseries('AMZN.O',
                                  fields='*',
                                  start_date='2020-08-03',
                                  end_date='2020-08-04',
                                  interval='minute')  

In [19]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 911 entries, 2020-08-03 08:01:00 to 2020-08-04 00:00:00
         Data columns (total 6 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   HIGH    911 non-null    float64
          1   LOW     911 non-null    float64
          2   OPEN    911 non-null    float64
          3   CLOSE   911 non-null    float64
          4   COUNT   911 non-null    float64
          5   VOLUME  911 non-null    float64
         dtypes: float64(6)
         memory usage: 49.8 KB

In [20]: data.head()
Out[20]: AMZN.O                  HIGH      LOW     OPEN    CLOSE  COUNT  VOLUME
         Date
         2020-08-03 08:01:00  3190.00  3176.03  3176.03  3178.17   18.0   383.0
         2020-08-03 08:02:00  3183.02  3176.03  3180.00  3177.01   15.0   513.0
         2020-08-03 08:03:00  3179.91  3177.05  3179.91  3177.05    5.0    14.0
         2020-08-03 08:04:00  3184.00  3179.91  3179.91  3184.00    8.0   102.0
         2020-08-03 08:05:00  3184.91  3182.91  3183.30  3184.00   12.0   403.0

Retrieves one-minute bars with all available fields for a single RIC
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One can retrieve more than structured financial time series data from the Eikon Data
API. Fundamental data can also be retrieved for a number of RICs and a number of
different data fields at the same time, as the following Python code illustrates:

In [21]: data_grid, err = ek.get_data(['AAPL.O', 'IBM', 'GOOG.O', 'AMZN.O'],
                                      ['TR.TotalReturnYTD', 'TR.WACCBeta',
                                       'YRHIGH', 'YRLOW',
                                       'TR.Ebitda', 'TR.GrossProfit'])  

In [22]: data_grid
Out[22]:   Instrument  YTD Total Return      Beta   YRHIGH      YRLOW        EBITDA  \
         0     AAPL.O         49.141271  1.221249   425.66   192.5800  7.647700e+10
         1        IBM         -5.019570  1.208156   158.75    90.5600  1.898600e+10
         2     GOOG.O         10.278829  1.067084  1586.99  1013.5361  4.757900e+10
         3     AMZN.O         68.406897  1.338106  3344.29  1626.0318  3.025600e+10

            Gross Profit
         0   98392000000
         1   36488000000
         2   89961000000
         3  114986000000

Retrieves data for multiple RICs and multiple data fields

Programmatic Data Availability

Basically all structured financial data is available nowadays in pro‐
grammatic fashion. Financial time series data, in this context, is the
paramount example. However, other structured data types such as
fundamental data are available in the same way, simplifying the
work of quantitative analysts, traders, portfolio managers, and the
like significantly.

Structured Streaming Data
Many applications in finance require real-time structured data, such as in algorithmic
trading or market risk management. The following Python code makes use of the API
of the Oanda Trading Platform and streams in real time a number of time stamps, bid
quotes, and ask quotes for the Bitcoin price in USD:

In [23]: import tpqoa

In [24]: oa = tpqoa.tpqoa('../aiif.cfg')  

In [25]: oa.stream_data('BTC_USD', stop=5)  
         2020-08-04T08:30:38.621075583Z 11298.8 11334.8
         2020-08-04T08:30:50.485678488Z 11298.3 11334.3
         2020-08-04T08:30:50.801666847Z 11297.3 11333.3
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         2020-08-04T08:30:51.326269990Z 11296.0 11332.0
         2020-08-04T08:30:54.423973431Z 11296.6 11332.6

Connects to the Oanda API

Streams a fixed number of ticks for a given symbol

Printing out the streamed data fields is, of course, only for illustration. Certain finan‐
cial applications might require sophisticated processing of the retrieved data and the
generation of signals or statistics, for instance. Particularly during weekdays and trad‐
ing hours, the number of price ticks streamed for financial instruments increases
steadily, demanding powerful data processing capabilities on the end of financial
institutions that need to process such data in real time or at least in near-real time
(“near time”).

The significance of this observation becomes clear when looking at Apple Inc. stock
prices. One can calculate that there are roughly 252 · 40 = 10, 080 EOD closing quotes
for the Apple stock over a period of 40 years. (Apple Inc. went public on December
12, 1980.) The following code retrieves tick data for the Apple stock price for one
hour only. The retrieved data set, which might not even be complete for the given
time interval, has 50,000 data rows, or five times as many tick quotes as the EOD
quotes accumulated over 40 years of trading:

In [26]: data = ek.get_timeseries('AAPL.O',
                                  fields='*',
                                  start_date='2020-08-03 15:00:00',
                                  end_date='2020-08-03 16:00:00',
                                  interval='tick')  

In [27]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 50000 entries, 2020-08-03 15:26:24.889000 to 2020-08-03
          15:59:59.762000
         Data columns (total 2 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   VALUE   49953 non-null  float64
          1   VOLUME  50000 non-null  float64
         dtypes: float64(2)
         memory usage: 1.1 MB

In [28]: data.head()
Out[28]: AAPL.O                    VALUE  VOLUME
         Date
         2020-08-03 15:26:24.889  439.06   175.0
         2020-08-03 15:26:24.889  439.08     3.0
         2020-08-03 15:26:24.890  439.08   100.0
         2020-08-03 15:26:24.890  439.08     5.0
         2020-08-03 15:26:24.899  439.10    35.0
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Retrieves tick data for the Apple stock price

EOD Versus Tick Data

Most of the financial theories still applied today have their origin in
when EOD data was basically the only type of financial data avail‐
able. Today, financial institutions, and even retail traders and
investors, are confronted with never-ending streams of real-time
data. The example of Apple stock illustrates that for a single stock
during one trading hour, there might be four times as many ticks
coming in as the amount of EOD data accumulated over a period
of 40 years. This not only challenges actors in financial markets,
but also puts into question whether existing financial theories can
be applied to such an environment at all.

Unstructured Historical Data
Many important data sources in finance provide unstructured data only, such as
financial news or company filings. Undoubtedly, machines are much better and faster
than humans at crunching large amounts of structured, numerical data. However,
recent advances in natural language processing (NLP) make machines better and
faster at processing financial news too, for example. In 2020, data service providers
ingest roughly 1.5 million news articles on a daily basis. It is clear that this vast
amount of text-based data cannot be processed properly by human beings.

Fortunately, unstructured data is also to a large extent available these days via pro‐
grammatic APIs. The following Python code retrieves a number of news articles from
the Eikon Data API related to the company Tesla, Inc. and its production. One article
is selected and shown in full:

In [29]: news = ek.get_news_headlines('R:TSLA.O PRODUCTION',
                                  date_from='2020-06-01',
                                  date_to='2020-08-01',
                                  count=7
                                 )  

In [30]: news
Out[30]:                                           versionCreated  \
         2020-07-29 11:02:31.276 2020-07-29 11:02:31.276000+00:00
         2020-07-28 00:59:48.000        2020-07-28 00:59:48+00:00
         2020-07-23 21:20:36.090 2020-07-23 21:20:36.090000+00:00
         2020-07-23 08:22:17.000        2020-07-23 08:22:17+00:00
         2020-07-23 07:08:48.000        2020-07-23 07:46:56+00:00
         2020-07-23 00:55:54.000        2020-07-23 00:55:54+00:00
         2020-07-22 21:35:42.640 2020-07-22 22:13:26.597000+00:00

                                                                          text  \
         2020-07-29 11:02:31.276  Tesla Launches Hiring Spree in China as It Pre...
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         2020-07-28 00:59:48.000    Tesla hiring in Shanghai as production ramps up
         2020-07-23 21:20:36.090     Tesla speeds up Model 3 production in Shanghai
         2020-07-23 08:22:17.000  UPDATE 1-'Please mine more nickel,' Musk urges...
         2020-07-23 07:08:48.000  'Please mine more nickel,' Musk urges as Tesla...
         2020-07-23 00:55:54.000  USA-Tesla choisit le Texas pour la production ...
         2020-07-22 21:35:42.640  TESLA INC - THE REAL LIMITATION ON TESLA GROWT...

                                                                       storyId  \
         2020-07-29 11:02:31.276  urn:newsml:reuters.com:20200729:nCXG3W8s9X:1
         2020-07-28 00:59:48.000  urn:newsml:reuters.com:20200728:nL3N2EY3PG:8
         2020-07-23 21:20:36.090  urn:newsml:reuters.com:20200723:nNRAcf1v8f:1
         2020-07-23 08:22:17.000  urn:newsml:reuters.com:20200723:nL3N2EU1P9:1
         2020-07-23 07:08:48.000  urn:newsml:reuters.com:20200723:nL3N2EU0HH:1
         2020-07-23 00:55:54.000  urn:newsml:reuters.com:20200723:nL5N2EU03M:1
         2020-07-22 21:35:42.640  urn:newsml:reuters.com:20200722:nFWN2ET120:2

                                 sourceCode
         2020-07-29 11:02:31.276  NS:CAIXIN
         2020-07-28 00:59:48.000    NS:RTRS
         2020-07-23 21:20:36.090  NS:SOUTHC
         2020-07-23 08:22:17.000    NS:RTRS
         2020-07-23 07:08:48.000    NS:RTRS
         2020-07-23 00:55:54.000    NS:RTRS
         2020-07-22 21:35:42.640    NS:RTRS

In [31]: storyId = news['storyId'][1]  

In [32]: from IPython.display import HTML

In [33]: HTML(ek.get_news_story(storyId)[:1148])  
Out[33]: <IPython.core.display.HTML object>

Jan 06, 2020

Tesla, Inc.TSLA registered record production and deliveries of 104,891 and
112,000 vehicles, respectively, in the fourth quarter of 2019.

Notably, the company's Model S/X and Model 3 reported record production and
deliveries in the fourth quarter. The Model S/X division recorded production
and delivery volume of 17,933 and 19,450 vehicles, respectively. The Model 3
division registered production of 86,958 vehicles, while 92,550 vehicles were
delivered.

In 2019, Tesla delivered 367,500 vehicles, reflecting an increase of 50%, year
over year, and nearly in line with the company's full-year guidance of 360,000
vehicles.

Retrieves metadata for a number of news articles that fall in the parameter range

Selects one storyId for which to retrieve the full text

Retrieves the full text for the selected article and shows it
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Unstructured Streaming Data
In the same way that historical unstructured data is retrieved, programmatic APIs can
be used to stream unstructured news data, for example, in real time or at least near
time. One such API is available for DNA: the Data, News, Analytics platform from
Dow Jones. Figure 4-1 shows the screenshot of a web application that streams “Com‐
modity and Financial News” articles and processes these with NLP techniques in real
time.

Figure 4-1. News-streaming application based on DNA (Dow Jones)

The news-streaming application has the following main features:

Full text
The full text of each article is available by clicking on the article header.

Keyword summary
A keyword summary is created and printed on the screen.
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Sentiment analysis
Sentiment scores are calculated and visualized as colored arrows. Details become
visible through a click on the arrows.

Word cloud
A word cloud summary bitmap is created, shown as a thumbnail and visible after
a click on the thumbnail (see Figure 4-2).

Figure 4-2. Word cloud bitmap shown in news-streaming application

Alternative Data
Nowadays, financial institutions, and in particular hedge funds, systematically mine a
number of alternative data sources to gain an edge in trading and investing. A recent
article by Bloomberg lists, among others, the following alternative data sources:

• Web-scraped data
• Crowd-sourced data
• Credit cards and point-of-sales (POS) systems
• Social media sentiment
• Search trends
• Web traffic
• Supply chain data
• Energy production data
• Consumer profiles
• Satellite imagery/geospacial data
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• App installs
• Ocean vessel tracking
• Wearables, drones, Internet of Things (IoT) sensors

In the following, the usage of alternative data is illustrated by two examples. The first
retrieves and processes Apple Inc. press releases in the form of HTML pages. The
following Python code makes use of a set of helper functions as shown in “Python
Code” on page 156. In the code, a list of URLs is defined, each representing an HTML
page with a press release from Apple Inc. The raw HTML code is then retrieved for
each press release. Then the raw code is cleaned up, and an excerpt for one press
release is printed:

In [34]: import nlp  
         import requests

In [35]: sources = [
             'https://nr.apple.com/dE0b1T5G3u',  # iPad Pro
             'https://nr.apple.com/dE4c7T6g1K',  # MacBook Air
             'https://nr.apple.com/dE4q4r8A2A',  # Mac Mini
         ]  

In [36]: html = [requests.get(url).text for url in sources]  

In [37]: data = [nlp.clean_up_text(t) for t in html]  

In [38]: data[0][536:1001]  
Out[38]: ' display, powerful a12x bionic chip and face id introducing the new ipad pro
          with all-screen design and next-generation performance. new york apple today
          introduced the new ipad pro with all-screen design and next-generation
          performance, marking the biggest change to ipad ever. the all-new design
          pushes 11-inch and 12.9-inch liquid retina displays to the edges of ipad pro
          and integrates face id to securely unlock ipad with just a glance.1 the a12x
          bionic chip w'

Imports the NLP helper functions

Defines the URLs for the three press releases

Retrieves the raw HTML codes for the three press releases

Cleans up the raw HTML codes (for example, HTML tags are removed)

Prints an excerpt from one press release

Of course, defining alternative data as broadly as is done in this section implies that
there is a limitless amount of data that one can retrieve and process for financial pur‐
poses. At its core, this is the business of search engines such as the one from Google
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LLC. In a financial context, it would be of paramount importance to specify exactly
what unstructured alternative data sources to tap into.

The second example is about the retrieval of data from the social network Twitter,
Inc. To this end, Twitter provides API access to tweets on its platform, provided one
has set up a Twitter account appropriately. The following Python code connects to the
Twitter API and retrieves and prints the five most recent tweets from my home time‐
line and user timeline, respectively:

In [39]: from twitter import Twitter, OAuth

In [40]: t = Twitter(auth=OAuth(c['twitter']['access_token'],
                                c['twitter']['access_secret_token'],
                                c['twitter']['api_key'],
                                c['twitter']['api_secret_key']),
                     retry=True)  

In [41]: l = t.statuses.home_timeline(count=5)  

In [42]: for e in l:
             print(e['text'])  
         The Bank of England is effectively subsidizing polluting industries in its
          pandemic rescue program, a think tank sa… https://t.co/Fq5jl2CIcp
         Cool shared task: mining scientific contributions (by @SeeTedTalk @SoerenAuer
          and Jennifer D'Souza)
         https://t.co/dm56DMUrWm
         Twelve people were hospitalized in Wyoming on Monday after a hot air balloon
          crash, officials said.

         Three hot air… https://t.co/EaNBBRXVar
         President Trump directed controversial Pentagon pick into new role with
          similar duties after nomination failed https://t.co/ZyXpPcJkcQ
         Company announcement: Revolut launches Open Banking for its 400,000 Italian...
          https://t.co/OfvbgwbeJW #fintech

In [43]: l = t.statuses.user_timeline(screen_name='dyjh', count=5)  

In [44]: for e in l:
             print(e['text'])  
         #Python for #AlgoTrading (focus on the process) &amp; #AI in #Finance (focus
          on prediction methods) will complement eac… https://t.co/P1s8fXCp42
         Currently putting finishing touches on #AI in #Finance (@OReillyMedia). Book
          going into production shortly. https://t.co/JsOSA3sfBL
         Chinatown Is Coming Back, One Noodle at a Time https://t.co/In5kXNeVc5
         Alt data industry balloons as hedge funds strive for Covid edge via @FT |
         "We remain of the view that alternative d… https://t.co/9HtUOjoEdz
         @Wolf_Of_BTC Just follow me on Twitter (or LinkedIn). Then you will notice for
          sure when it is out.
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Connects to the Twitter API

Retrieves and prints five (most recent) tweets from home timeline

Retrieves and prints five (most recent) tweets from user timeline

The Twitter API allows also for searches, based on which most recent tweets can be
retrieved and processed:

In [45]: d = t.search.tweets(q='#Python', count=7)  

In [46]: for e in d['statuses']:
             print(e['text'])  
         RT @KirkDBorne: #AI is Reshaping Programming — Tips on How to Stay on Top:
          https://t.co/CFNu1i352C
         ——
         Courses:
         1: #MachineLearning — Jupyte…
         RT @reuvenmlerner: Today, a #Python student's code didn't print:

         x = 5
         if x == 5:
             print: ('yes!')

         There was a typo, namely : after pr…
         RT @GavLaaaaaaaa: Javascript Does Not Need a StringBuilder
          https://t.co/aS7NzHLO65 #programming #softwareengineering #bigdata
          #datascience…
         RT @CodeFlawCo: It is necessary to publish regular updates on Twitter
          #programmer #coder #developer #technology RT @pak_aims: Learning to C…
         RT @GavLaaaaaaaa: Javascript Does Not Need a StringBuilder
          https://t.co/aS7NzHLO65 #programming #softwareengineering #bigdata
          #datascience…

Searches for tweets with hashtag “Python” and prints the five most recent ones

One can also collect a larger number of tweets from a Twitter user and create a sum‐
mary in the form of a word cloud (see Figure 4-3). The following Python code again
makes use of the NLP helper functions as shown in “Python Code” on page 156:

In [47]: l = t.statuses.user_timeline(screen_name='elonmusk', count=50)  

In [48]: tl = [e['text'] for e in l]  

In [49]: tl[:5]  
Out[49]: ['@flcnhvy @Lindw0rm @cleantechnica True',
          '@Lindw0rm @cleantechnica Highly likely down the road',
          '@cleantechnica True fact',
         '@NASASpaceflight Scrubbed for the day. A Raptor turbopump spin start valve
          didn’t open, triggering an automatic abo… https://t.co/QDdlNXFgJg',
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          '@Erdayastronaut I’m in the Boca control room. Hop attempt in ~33 minutes.']

In [50]: wc = nlp.generate_word_cloud(' '.join(tl), 35,
                     name='../../images/ch04/musk_twitter_wc.png'
                     )  

Retrieves the 50 most recent tweets for the user elonmusk

Collects the texts in a list object

Shows excerpts for the final five tweets

Generates a word cloud summary and shows it

Figure 4-3. Word cloud as summary for larger number of tweets

Once a financial practitioner defines the “relevant financial data” to go beyond struc‐
tured financial time series data, the data sources seem limitless in terms of volume,
variety, and velocity. The way the tweets are retrieved from the Twitter API is almost
in near time since the most recent tweets are accessed in the examples. These and
similar API-based data sources therefore provide a never-ending stream of alternative
data for which, as previously pointed out, it is important to specify exactly what one is
looking for. Otherwise, any financial data science effort might easily drown in too
much data and/or too noisy data.

Normative Theories Revisited
Chapter 3 introduces normative financial theories such as the MVP theory or the
CAPM. For quite a long time, students and academics learning and studying such
theories were more or less constrained to the theory itself. With all the available
financial data, as discussed and illustrated in the previous section, in combination
with powerful open source software for data analysis—such as Python, NumPy, pan
das, and so on—it has become pretty easy and straightforward to put financial theo‐
ries to real-world tests. It does not require small teams and larger studies anymore to
do so. A typical notebook, internet access, and a standard Python environment suf‐
fice. This is what this section is about. However, before diving into data-driven
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finance, the following sub-section discusses briefly some famous paradoxes in the
context of EUT and how corporations model and predict the behavior of individuals
in practice.

Expected Utility and Reality
In economics, risk describes a situation in which possible future states and probabili‐
ties for those states to unfold are known in advance to the decision maker. This is the
standard assumption in finance and the context of EUT. On the other hand, ambigu‐
ity describes situations in economics in which probabilities, or even possible future
states, are not known in advance to a decision maker. Uncertainty subsumes the two
different decision-making situations.

There is a long tradition of analyzing the concrete decision-making behavior of indi‐
viduals (“agents”) under uncertainty. Innumerable studies and experiments have been
conducted to observe and analyze how agents behave when faced with uncertainty as
compared to what theories such as EUT predict. For centuries, paradoxa have played
an important role in decision-making theory and research.

One such paradox, the St. Petersburg paradox, gave rise to the invention of utility
functions and EUT in the first place. Daniel Bernoulli presented the paradox—and a
solution to it—in 1738. The paradox is based on the following coin tossing game G.
An agent is faced with a game during which a (perfect) coin is tossed potentially
infinitely many times. If after the first toss heads prevails, the agent receives a payoff
of 1 (currency unit). As long as heads is observed, the coin is tossed again. Otherwise
the game ends. If heads prevails a second time, the agent receives an additional payoff
of 2. If it does a third time, the additional payoff is 4. For the fourth time it is 8, and
so on. This is a situation of risk since all possible future states, as well as their associ‐
ated probabilities, are known in advance.

The expected payoff of this game is infinite. This can be seen from the following
infinite sum of which every element is strictly positive:

� G = 1
2 · 1 + 1

4 · 2 + 1
8 · 4 + 1

16 · 8 + ... = ∑
k = 1

∞ 1
2k 2k − 1 = ∑

k = 1

∞ 1
2 = ∞

However, faced with such a game, a decision maker in general would be willing to pay
a finite sum only to play the game. A major reason for this is the fact that relatively
large payoffs only happen with a relatively small probability. Consider the potential
payoff W = 511:

W = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 = 511
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The probability of winning such a payoff is pretty low. To be exact, it is only
P x = W = 1

512 = 0.001953125. The probability for such a payoff or a smaller one, on
the other hand, is pretty high:

P x ≤ W = ∑
k = 1

9 1
2k = 0 . 998046875

In other words, in 998 out of 1,000 games the payoff is 511 or smaller. Therefore, an
agent would probably not wager much more than 511 to play this game. The way out
of this paradox is the introduction of a utility function with positive but decreasing
marginal utility. In the context of the St. Petersburg paradox, this means that there is
a function u:ℝ+ ℝ that assigns to every positive payoff x a real value u x . Positive
but decreasing marginal utility then formally translates into the following:

∂u
∂x > 0

∂2u
∂x2 < 0

As seen in Chapter 3, one such candidate function is u x = ln x  with:

∂u
∂x = 1

x

∂2u
∂x2 = − 1

x2

The expected utility then is finite, as the calculation of the following infinite sum
illustrates:

� u G = ∑
k = 1

∞ 1
2k u 2k − 1 = ∑

k = 1

∞ ln 2k − 1

2k = ∑
k = 1

∞ k − 1
2k · ln 2 = ln 2 < ∞

The expected utility of ln 2  = 0.693147 is obviously a pretty small number in com‐
parison to the expected payoff of infinity. Bernoulli utility functions and EUT resolve
the St. Petersburg paradox.

Other paradoxa, such as the Allais paradox published in Allais (1953), address the
EUT itself. This paradox is based on an experiment with four different games that test
subjects should rank. Table 4-2 shows the four games A, B, A′, B′ . The ranking is to
be done for the two pairs A, B  and A′, B′ . The independence axiom postulates that
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the first row in the table should not have any influence on the ordering of A′, B′
since the payoff is the same for both games.

Table 4-2. Games in Allais paradox

Probability Game A Game B Game A’ Game B’
0.66 2,400 2,400 0 0

0.33 2,500 2,400 2,500 2,400

0.01 0 2,400 0 2,400

In experiments, the majority of decision makers rank the games as follows: B ≻ A
and A′ ≻ B′. The ranking B ≻ A leads to the following inequalities, where
u1 ≡ u 2400 , u2 ≡ u 2500 , u3 ≡ u 0 :

u1 > 0 . 66 · u1 + 0 . 33 · u2 + 0 . 01 · u3

0 . 34 · u1 > 0 . 33 · u2 + 0 . 01 · u3

The ranking A′ ≻ B′ in turn leads to the following inequalities:

0 . 33 · u2 + 0 . 01 · u3 > 0 . 33 · u1 + 0 . 01 · u1

0 . 34 · u1 < 0 . 33 · u2 + 0 . 01 · u3

These inequalities obviously contradict each other and lead to the Allais paradox.
One possible explanation is that decision makers in general value certainty higher
than the typical models, such as EUT, predict. Most people would probably rather
choose to receive $1 million with certainty than play a game in which they can win
$100 million with a probability of 5%, although there are a number of suitable utility
functions available that under EUT would have the decision maker choose the game
instead of the certain amount.

Another explanation lies in framing decisions and the psychology of decision makers.
It is well known that more people would accept a surgery if it has a “95% chance of
success” than a “5% chance of death.” Simply changing the wording might lead to
behavior that is inconsistent with decision-making theories such as EUT.

Another famous paradox addressing shortcomings of EUT in its subjective form,
according to Savage (1954, 1972), is the Ellsberg paradox, which dates back to the
seminal paper by Ellsberg (1961). It addresses the importance of ambiguity in many
real-world decision situations. A standard setting for this paradox comprises two dif‐
ferent urns, both of which contain exactly 100 balls. For urn 1, it is known that it con‐
tains exactly 50 black and 50 red balls. For urn 2, it is only known that it contains
black and red balls but not in which proportion.
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Test subjects can choose among the following game options:

• Game 1: red 1, black 1, or indifferent
• Game 2: red 2, black 2, or indifferent
• Game 3: red 1, red 2, or indifferent
• Game 4: black 1, black 2, or indifferent

Here, “red 1,” for example, means that a red ball is drawn from urn 1. Typically, a test
subject would answer as follows:

• Game 1: indifferent
• Game 2: indifferent
• Game 3: red 1
• Game 4: black 1

This set of decisions—which is not the only one to be observed but is a common one
—exemplifies what is called ambiguity aversion. Since the probabilities for black and
red balls, respectively, are not known for urn 2, decision makers prefer a situation of
risk instead of ambiguity.

The two paradoxa of Allais and Ellsberg show that real test subjects quite often
behave contrary to what well-established decision theories in economics predict. In
other words, human beings as decision makers can in general not be compared to
machines that carefully collect data and then crunch the numbers to make a decision
under uncertainty, be it in the form of risk or ambiguity. Human behavior is more
complex than most, if not all, theories currently suggest. How difficult and complex it
can be to explain human behavior is clear after reading, for example, the 800-page
book Behave by Sapolsky (2018). It covers multiple facets of this topic, ranging from
biochemical processes to genetics, human evolution, tribes, language, religion, and
more, in an integrative manner.

If standard economic decision paradigms such as EUT do not explain real-world
decision making too well, what alternatives are available? Economic experiments that
build the basis for the Allais and Ellsberg paradoxa are a good starting point in learn‐
ing how decision makers behave in specific, controlled situations. Such experiments
and their sometimes surprising and paradoxical results have indeed motivated a great
number of researchers to come up with alternative theories and models that resolve
the paradoxa. The book The Experiment in the History of Economics by Fontaine and
Leonard (2005) is about the historical role of experiments in economics. There is, for
example, a whole string of literature that addresses issues arising from the Ellsberg
paradox. This literature deals with, among other topics, nonadditive probabilities,
Choquet integrals, and decision heuristics such as maximizing the minimum payoff
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(“max-min”) or minimizing the maximum loss (“min-max”). These alternative
approaches have proven superior to EUT, at least in certain decision-making scenar‐
ios. But they are far from being mainstream in finance.

What, after all, has proven to be useful in practice? Not too surprisingly, the answer
lies in data and machine learning algorithms. The internet, with its billions of users,
generates a treasure trove of data describing real-world human behavior, or what is
sometimes called revealed preferences. The big data generated on the web has a scale
that is multiple orders of magnitude larger than what single experiments can gener‐
ate. Companies such as Amazon, Facebook, Google, and Twitter are able to make bil‐
lions of dollars by recording user behavior (that is, their revealed preferences) and
capitalizing on the insights generated by ML algorithms trained on this data.

The default ML approach taken in this context is supervised learning. The algorithms
themselves are in general theory- and model-free; variants of neural networks are
often applied. Therefore, when companies today predict the behavior of their users or
customers, more often than not a model-free ML algorithm is deployed. Traditional
decision theories like EUT or one of its successors generally do not play a role at all.
This makes it somewhat surprising that such theories still, at the beginning of the
2020s, are a cornerstone of most economic and financial theories applied in practice.
And this is not even to mention the large number of financial textbooks that cover
traditional decision theories in detail. If one of the most fundamental building blocks
of financial theory seems to lack meaningful empirical support or practical benefits,
what about the financial models that build on top of it? More on this appears in sub‐
sequent sections and chapters.

Data-Driven Predictions of Behavior

Standard economic decision theories are intellectually appealing to
many, even to those who, faced with a concrete decision under
uncertainty, would behave in contrast to the theories’ predictions.
On the other hand, big data and model-free, supervised learning
approaches prove useful and successful in practice for predicting
user and customer behavior. In a financial context, this might
imply that one should not really worry about why and how finan‐
cial agents decide the way they decide. One should rather focus on
their indirectly revealed preferences based on features data (new
information) that describes the state of a financial market and
labels data (outcomes) that reflects the impact of the decisions
made by financial agents. This leads to a data-driven instead of a
theory- or model-driven view of decision making in financial mar‐
kets. Financial agents become data-processing organisms that can
be much better modeled, for example, by complex neural networks
than, say, a simple utility function in combination with an assumed
probability distribution.
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Mean-Variance Portfolio Theory
Assume a data-driven investor wants to apply MVP theory to invest in a portfolio of
technology stocks and wants to add a gold-related exchange-traded fund (ETF) for
diversification. Probably, the investor would access relevant historical price data via
an API to a trading platform or a data provider. To make the following analysis repro‐
ducible, it relies on a CSV data file stored in a remote location. The following Python
code retrieves the data file, selects a number of symbols given the investor’s goal, and
calculates log returns from the price time series data. Figure 4-4 compares the nor‐
malized price time series for the selected symbols:

In [51]: import numpy as np
         import pandas as pd
         from pylab import plt, mpl
         from scipy.optimize import minimize
         plt.style.use('seaborn')
         mpl.rcParams['savefig.dpi'] = 300
         mpl.rcParams['font.family'] = 'serif'
         np.set_printoptions(precision=5, suppress=True,
                            formatter={'float': lambda x: f'{x:6.3f}'})

In [52]: url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'  

In [53]: raw = pd.read_csv(url, index_col=0, parse_dates=True).dropna()  

In [54]: raw.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
         Data columns (total 12 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   AAPL.O  2516 non-null   float64
          1   MSFT.O  2516 non-null   float64
          2   INTC.O  2516 non-null   float64
          3   AMZN.O  2516 non-null   float64
          4   GS.N    2516 non-null   float64
          5   SPY     2516 non-null   float64
          6   .SPX    2516 non-null   float64
          7   .VIX    2516 non-null   float64
          8   EUR=    2516 non-null   float64
          9   XAU=    2516 non-null   float64
          10  GDX     2516 non-null   float64
          11  GLD     2516 non-null   float64
         dtypes: float64(12)
         memory usage: 255.5 KB

In [55]: symbols = ['AAPL.O', 'MSFT.O', 'INTC.O', 'AMZN.O', 'GLD']  

In [56]: rets = np.log(raw[symbols] / raw[symbols].shift(1)).dropna()  

In [57]: (raw[symbols] / raw[symbols].iloc[0]).plot(figsize=(10, 6));  
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Retrieves historical EOD data from a remote location

Specifies the symbols (RICs) to be invested in

Calculates the log returns for all time series

Plots the normalized financial time series for the selected symbols

Figure 4-4. Normalized financial time series data

The data-driven investor wants to first set a baseline for performance as given by an
equally weighted portfolio over the whole period of the available data. To this end, the
following Python code defines functions to calculate the portfolio return, the portfo‐
lio volatility, and the portfolio Sharpe ratio given a set of weights for the selected sym‐
bols:

In [58]: weights = len(rets.columns) * [1 / len(rets.columns)]  

In [59]: def port_return(rets, weights):
             return np.dot(rets.mean(), weights) * 252  

In [60]: port_return(rets, weights)  
Out[60]: 0.15694764653018106

In [61]: def port_volatility(rets, weights):
             return np.dot(weights, np.dot(rets.cov() * 252 , weights)) ** 0.5  

In [62]: port_volatility(rets, weights)  
Out[62]: 0.16106507848480675

In [63]: def port_sharpe(rets, weights):
             return port_return(rets, weights) / port_volatility(rets, weights)  
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In [64]: port_sharpe(rets, weights)  
Out[64]: 0.97443622172255

Equally weighted portfolio

Portfolio return

Portfolio volatility

Portfolio Sharpe ratio (with zero short rate)

The investor also wants to analyze which combinations of portfolio risk and return—
and consequently Sharpe ratio—are roughly possible by applying Monte Carlo simu‐
lation to randomize the portfolio weights. Short sales are excluded, and the portfolio
weights are assumed to add up to 100%. The following Python code implements the
simulation and visualizes the results (see Figure 4-5):

In [65]: w = np.random.random((1000, len(symbols)))  
         w = (w.T / w.sum(axis=1)).T  

In [66]: w[:5]  
Out[66]: array([[ 0.184,  0.157,  0.227,  0.353,  0.079],
                [ 0.207,  0.282,  0.258,  0.023,  0.230],
                [ 0.313,  0.284,  0.051,  0.340,  0.012],
                [ 0.238,  0.181,  0.145,  0.191,  0.245],
                [ 0.246,  0.256,  0.315,  0.181,  0.002]])

In [67]: pvr = [(port_volatility(rets[symbols], weights),
                 port_return(rets[symbols], weights))
                for weights in w]  
         pvr = np.array(pvr)  

In [68]: psr = pvr[:, 1] / pvr[:, 0]  

In [69]: plt.figure(figsize=(10, 6))
         fig = plt.scatter(pvr[:, 0], pvr[:, 1],
                           c=psr, cmap='coolwarm')
         cb = plt.colorbar(fig)
         cb.set_label('Sharpe ratio')
         plt.xlabel('expected volatility')
         plt.ylabel('expected return')
         plt.title(' | '.join(symbols));

Simulates portfolio weights adding up to 100%

Derives the resulting portfolio volatilities and returns

Calculates the resulting Sharpe ratios
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Figure 4-5. Simulated portfolio volatilities, returns, and Sharpe ratios

The data-driven investor now wants to backtest the performance of a portfolio that
was set up at the beginning of 2011. The optimal portfolio composition was derived
from the financial time series data available from 2010. At the beginning of 2012, the
portfolio composition was adjusted given the available data from 2011, and so on. To
this end, the following Python code derives the portfolio weights for every relevant
year that maximizes the Sharpe ratio:

In [70]: bnds = len(symbols) * [(0, 1),]  
         bnds  
Out[70]: [(0, 1), (0, 1), (0, 1), (0, 1), (0, 1)]

In [71]: cons = {'type': 'eq', 'fun': lambda weights: weights.sum() - 1}  

In [72]: opt_weights = {}
         for year in range(2010, 2019):
             rets_ = rets[symbols].loc[f'{year}-01-01':f'{year}-12-31']  
             ow = minimize(lambda weights: -port_sharpe(rets_, weights),
                           len(symbols) * [1 / len(symbols)],
                           bounds=bnds,
                           constraints=cons)['x']  
             opt_weights[year] = ow  

In [73]: opt_weights  
Out[73]: {2010: array([ 0.366,  0.000,  0.000,  0.056,  0.578]),
          2011: array([ 0.543,  0.000,  0.077,  0.000,  0.380]),
          2012: array([ 0.324,  0.000,  0.000,  0.471,  0.205]),
          2013: array([ 0.012,  0.305,  0.219,  0.464,  0.000]),
          2014: array([ 0.452,  0.115,  0.419,  0.000,  0.015]),
          2015: array([ 0.000,  0.000,  0.000,  1.000,  0.000]),
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          2016: array([ 0.150,  0.260,  0.000,  0.058,  0.533]),
          2017: array([ 0.231,  0.203,  0.031,  0.109,  0.426]),
          2018: array([ 0.000,  0.295,  0.000,  0.705,  0.000])}

Specifies the bounds for the single asset weights

Specifies that all weights need to add up to 100%

Selects the relevant data set for the given year

Derives the portfolio weights that maximize the Sharpe ratio

Stores these weights in a dict object

The optimal portfolio compositions as derived for the relevant years illustrate that
MVP theory in its original form quite often leads to (relative) extreme situations in
the sense that one or more assets are not included at all or that even a single asset
makes up 100% of the portfolio. Of course, this can be actively avoided by setting, for
example, a minimum weight for every asset considered. The results also indicate that
this approach leads to significant rebalancings in the portfolio, driven by the previous
year’s realized statistics and correlations.

To complete the backtest, the following code compares the expected portfolio statis‐
tics (from the optimal composition of the previous year applied to the previous year’s
data) with the realized portfolio statistics for the current year (from the optimal com‐
position from the previous year applied to the current year’s data):

In [74]: res = pd.DataFrame()
         for year in range(2010, 2019):
             rets_ = rets[symbols].loc[f'{year}-01-01':f'{year}-12-31']
             epv = port_volatility(rets_, opt_weights[year])  
             epr = port_return(rets_, opt_weights[year])  
             esr = epr / epv  
             rets_ = rets[symbols].loc[f'{year + 1}-01-01':f'{year + 1}-12-31']
             rpv = port_volatility(rets_, opt_weights[year]) 
             rpr = port_return(rets_, opt_weights[year])  
             rsr = rpr / rpv  
             res = res.append(pd.DataFrame({'epv': epv, 'epr': epr, 'esr': esr,
                                            'rpv': rpv, 'rpr': rpr, 'rsr': rsr},
                                           index=[year + 1]))

In [75]: res
Out[75]:            epv       epr       esr       rpv       rpr       rsr
         2011  0.157440  0.303003  1.924564  0.160622  0.133836  0.833235
         2012  0.173279  0.169321  0.977156  0.182292  0.161375  0.885256
         2013  0.202460  0.278459  1.375378  0.168714  0.166897  0.989228
         2014  0.181544  0.368961  2.032353  0.197798  0.026830  0.135645
         2015  0.160340  0.309486  1.930190  0.211368 -0.024560 -0.116194
         2016  0.326730  0.778330  2.382179  0.296565  0.103870  0.350242
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         2017  0.106148  0.090933  0.856663  0.079521  0.230630  2.900235
         2018  0.086548  0.260702  3.012226  0.157337  0.038234  0.243004
         2019  0.323796  0.228008  0.704174  0.207672  0.275819  1.328147

In [76]: res.mean()
Out[76]: epv    0.190920
         epr    0.309689
         esr    1.688320
         rpv    0.184654
         rpr    0.123659
         rsr    0.838755
         dtype: float64

Expected portfolio statistics

Realized portfolio statistics

Figure 4-6 compares the expected and realized portfolio volatilities for the single
years. MVP theory does quite a good job in predicting the portfolio volatility. This is
also supported by a relatively high correlation between the two time series:

In [77]: res[['epv', 'rpv']].corr()
Out[77]:           epv       rpv
         epv  1.000000  0.765733
         rpv  0.765733  1.000000

In [78]: res[['epv', 'rpv']].plot(kind='bar', figsize=(10, 6),
                 title='Expected vs. Realized Portfolio Volatility');

Figure 4-6. Expected versus realized portfolio volatilities
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However, the conclusions are the opposite when comparing the expected with the
realized portfolio returns (see Figure 4-7). MVP theory obviously fails in predicting
the portfolio returns, as is confirmed by the negative correlation between the two
time series:

In [79]: res[['epr', 'rpr']].corr()
Out[79]:           epr       rpr
         epr  1.000000 -0.350437
         rpr -0.350437  1.000000

In [80]: res[['epr', 'rpr']].plot(kind='bar', figsize=(10, 6),
                 title='Expected vs. Realized Portfolio Return');

Figure 4-7. Expected versus realized portfolio returns

Similar, or even worse, conclusions need to be drawn with regard to the Sharpe ratio
(see Figure 4-8). For the data-driven investor who aims at maximizing the Sharpe
ratio of the portfolio, the theory’s predictions are generally significantly off from the
realized values. The correlation between the two time series is even lower than for the
returns:

In [81]: res[['esr', 'rsr']].corr()
Out[81]:           esr       rsr
         esr  1.000000 -0.698607
         rsr -0.698607  1.000000

In [82]: res[['esr', 'rsr']].plot(kind='bar', figsize=(10, 6),
                 title='Expected vs. Realized Sharpe Ratio');
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Figure 4-8. Expected versus realized portfolio Sharpe ratios

Predictive Power of MVP Theory

MVP theory applied to real-world data reveals its practical short‐
comings. Without additional constraints, optimal portfolio compo‐
sitions and rebalancings can be extreme. The predictive power with
regard to portfolio return and Sharpe ratio is pretty bad in the
numerical example, whereas the predictive power with regard to
portfolio risk seems acceptable. However, investors generally are
interested in risk-adjusted performance measures, such as the
Sharpe ratio, and this is the statistic for which MVP theory fails
worst in the example.

Capital Asset Pricing Model
A similar approach can be applied to put the CAPM to a real-world test. Assume that
the data-driven technology investor from before wants to apply the CAPM to derive
expected returns for the four technology stocks from before. The following Python
code first derives the beta for every stock for a given year, and then calculates the
expected return for the stock in the next year, given its beta and the performance of
the market portfolio. The market portfolio is approximated by the S&P 500 stock
index:

In [83]: r = 0.005  

In [84]: market = '.SPX'  

In [85]: rets = np.log(raw / raw.shift(1)).dropna()

130 | Chapter 4: Data-Driven Finance



In [86]: res = pd.DataFrame()

In [87]: for sym in rets.columns[:4]:
             print('\n' + sym)
             print(54 * '=')
             for year in range(2010, 2019):
                 rets_ = rets.loc[f'{year}-01-01':f'{year}-12-31']
                 muM = rets_[market].mean() * 252
                 cov = rets_.cov().loc[sym, market]  
                 var = rets_[market].var()  
                 beta = cov / var  
                 rets_ = rets.loc[f'{year + 1}-01-01':f'{year + 1}-12-31']
                 muM = rets_[market].mean() * 252
                 mu_capm = r + beta * (muM - r)  
                 mu_real = rets_[sym].mean() * 252  
                 res = res.append(pd.DataFrame({'symbol': sym,
                                                'mu_capm': mu_capm,
                                                'mu_real': mu_real},
                                               index=[year + 1]),
                                 sort=True)  
                 print('{} | beta: {:.3f} | mu_capm: {:6.3f} | mu_real: {:6.3f}'
                       .format(year + 1, beta, mu_capm, mu_real))  

Specifies the risk-less short rate

Defines the market portfolio

Derives the beta of the stock

Calculates the expected return given previous year’s beta and current year market
portfolio performance

Calculates the realized performance of the stock for the current year

Collects and prints all results

The preceding code provides the following output:

         AAPL.O
         ======================================================
         2011 | beta: 1.052 | mu_capm: -0.000 | mu_real:  0.228
         2012 | beta: 0.764 | mu_capm:  0.098 | mu_real:  0.275
         2013 | beta: 1.266 | mu_capm:  0.327 | mu_real:  0.053
         2014 | beta: 0.630 | mu_capm:  0.070 | mu_real:  0.320
         2015 | beta: 0.833 | mu_capm: -0.005 | mu_real: -0.047
         2016 | beta: 1.144 | mu_capm:  0.103 | mu_real:  0.096
         2017 | beta: 1.009 | mu_capm:  0.180 | mu_real:  0.381
         2018 | beta: 1.379 | mu_capm: -0.091 | mu_real: -0.071
         2019 | beta: 1.252 | mu_capm:  0.316 | mu_real:  0.621
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         MSFT.O
         ======================================================
         2011 | beta: 0.890 | mu_capm:  0.001 | mu_real: -0.072
         2012 | beta: 0.816 | mu_capm:  0.104 | mu_real:  0.029
         2013 | beta: 1.109 | mu_capm:  0.287 | mu_real:  0.337
         2014 | beta: 0.876 | mu_capm:  0.095 | mu_real:  0.216
         2015 | beta: 0.955 | mu_capm: -0.007 | mu_real:  0.178
         2016 | beta: 1.249 | mu_capm:  0.113 | mu_real:  0.113
         2017 | beta: 1.224 | mu_capm:  0.217 | mu_real:  0.321
         2018 | beta: 1.303 | mu_capm: -0.086 | mu_real:  0.172
         2019 | beta: 1.442 | mu_capm:  0.364 | mu_real:  0.440

         INTC.O
         ======================================================
         2011 | beta: 1.081 | mu_capm: -0.000 | mu_real:  0.142
         2012 | beta: 0.842 | mu_capm:  0.108 | mu_real: -0.163
         2013 | beta: 1.081 | mu_capm:  0.280 | mu_real:  0.230
         2014 | beta: 0.883 | mu_capm:  0.096 | mu_real:  0.335
         2015 | beta: 1.055 | mu_capm: -0.008 | mu_real: -0.052
         2016 | beta: 1.009 | mu_capm:  0.092 | mu_real:  0.051
         2017 | beta: 1.261 | mu_capm:  0.223 | mu_real:  0.242
         2018 | beta: 1.163 | mu_capm: -0.076 | mu_real:  0.017
         2019 | beta: 1.376 | mu_capm:  0.347 | mu_real:  0.243

         AMZN.O
         ======================================================
         2011 | beta: 1.102 | mu_capm: -0.001 | mu_real: -0.039
         2012 | beta: 0.958 | mu_capm:  0.122 | mu_real:  0.374
         2013 | beta: 1.116 | mu_capm:  0.289 | mu_real:  0.464
         2014 | beta: 1.262 | mu_capm:  0.135 | mu_real: -0.251
         2015 | beta: 1.473 | mu_capm: -0.013 | mu_real:  0.778
         2016 | beta: 1.122 | mu_capm:  0.102 | mu_real:  0.104
         2017 | beta: 1.118 | mu_capm:  0.199 | mu_real:  0.446
         2018 | beta: 1.300 | mu_capm: -0.086 | mu_real:  0.251
         2019 | beta: 1.619 | mu_capm:  0.408 | mu_real:  0.207

Figure 4-9 compares the predicted (expected) return for a single stock, given the beta
from the previous year and market portfolio performance of the current year, with
the realized return of the stock for the current year. Obviously, the CAPM in its origi‐
nal form does not prove really useful in predicting a stock’s performance based on
beta only:

In [88]: sym = 'AMZN.O'

In [89]: res[res['symbol'] == sym].corr()
Out[89]:           mu_capm   mu_real
         mu_capm  1.000000 -0.004826
         mu_real -0.004826  1.000000

In [90]: res[res['symbol'] == sym].plot(kind='bar',
                         figsize=(10, 6), title=sym);
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Figure 4-9. CAPM-predicted versus realized stock returns for a single stock

Figure 4-10 compares the averages of the CAPM-predicted stock returns with the
averages of the realized returns. Also here, the CAPM does not do a good job.

What is easy to see is that the CAPM predictions do not vary that much on average
for the stocks analyzed; they are between 12.2% and 14.4%. However, the realized
average returns of the stocks show a high variability; these are between 9.4% and
29.2%. Market portfolio performance and beta alone obviously cannot account for
the observed returns of the (technology) stocks:

In [91]: grouped = res.groupby('symbol').mean()
         grouped
Out[91]:          mu_capm   mu_real
         symbol
         AAPL.O  0.110855  0.206158
         AMZN.O  0.128223  0.259395
         INTC.O  0.117929  0.116180
         MSFT.O  0.120844  0.192655

In [92]: grouped.plot(kind='bar', figsize=(10, 6), title='Average Values');
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Figure 4-10. Average CAPM-predicted versus average realized stock returns for multiple
stocks

Predictive Power of the CAPM

The predictive power of the CAPM with regard to the future per‐
formance of stocks, relative to the market portfolio, is pretty low or
even nonexistent for certain stocks. One of the reasons is probably
the fact that the CAPM rests on the same central assumptions as
MVP theory, namely that investors care about only the (expected)
return and (expected) volatility of a portfolio and/or stock. From a
modeling point of view, one can ask whether the single risk factor
is enough to explain variability in stock returns or whether there
might be a nonlinear relationship between a stock’s return and the
market portfolio performance.

Arbitrage Pricing Theory
The predictive power of the CAPM seems quite limited given the results from the
previous numerical example. A valid question is whether the market portfolio perfor‐
mance alone is enough to explain variability in stock returns. The answer of the APT
is no—there can be more (even many more) factors that together explain variability
in stock returns. “Arbitrage Pricing Theory” on page 90 formally describes the frame‐
work of APT that also relies on a linear relationship between the factors and a stock’s
return.
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The data-driven investor recognizes that the CAPM is not sufficient to reliably pre‐
dict a stock’s performance relative to the market portfolio performance. Therefore,
the investor decides to add to the market portfolio three additional factors that might
drive a stock’s performance:

• Market volatility (as represented by the VIX index, .VIX)
• Exchange rates (as represented by the EUR/USD rate, EUR=)
• Commodity prices (as represented by the gold price, XAU=)

The following Python code implements a simple APT approach by using the four
factors in combination with multivariate regression to explain a stock’s future perfor‐
mance in relation to the factors:

In [93]: factors = ['.SPX', '.VIX', 'EUR=', 'XAU=']  

In [94]: res = pd.DataFrame()

In [95]: np.set_printoptions(formatter={'float': lambda x: f'{x:5.2f}'})

In [96]: for sym in rets.columns[:4]:
             print('\n' + sym)
             print(71 * '=')
             for year in range(2010, 2019):
                 rets_ = rets.loc[f'{year}-01-01':f'{year}-12-31']
                 reg = np.linalg.lstsq(rets_[factors],
                                       rets_[sym], rcond=-1)[0]  
                 rets_ = rets.loc[f'{year + 1}-01-01':f'{year + 1}-12-31']
                 mu_apt = np.dot(rets_[factors].mean() * 252, reg)  
                 mu_real =  rets_[sym].mean() * 252  
                 res = res.append(pd.DataFrame({'symbol': sym,
                                 'mu_apt': mu_apt, 'mu_real': mu_real},
                                  index=[year + 1]))
                 print('{} | fl: {} | mu_apt: {:6.3f} | mu_real: {:6.3f}'
                       .format(year + 1, reg.round(2), mu_apt, mu_real))

The four factors

The multivariate regression

The APT-predicted return of the stock

The realized return of the stock

The preceding code provides the following output:

         AAPL.O
         =======================================================================
         2011 | fl: [ 0.91 -0.04 -0.35  0.12] | mu_apt:  0.011 | mu_real:  0.228
         2012 | fl: [ 0.76 -0.02 -0.24  0.05] | mu_apt:  0.099 | mu_real:  0.275
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         2013 | fl: [ 1.67  0.04 -0.56  0.10] | mu_apt:  0.366 | mu_real:  0.053
         2014 | fl: [ 0.53 -0.00  0.02  0.16] | mu_apt:  0.050 | mu_real:  0.320
         2015 | fl: [ 1.07  0.02  0.25  0.01] | mu_apt: -0.038 | mu_real: -0.047
         2016 | fl: [ 1.21  0.01 -0.14 -0.02] | mu_apt:  0.110 | mu_real:  0.096
         2017 | fl: [ 1.10  0.01 -0.15 -0.02] | mu_apt:  0.170 | mu_real:  0.381
         2018 | fl: [ 1.06 -0.03 -0.15  0.12] | mu_apt: -0.088 | mu_real: -0.071
         2019 | fl: [ 1.37  0.01 -0.20  0.13] | mu_apt:  0.364 | mu_real:  0.621

         MSFT.O
         =======================================================================
         2011 | fl: [ 0.98  0.01  0.02 -0.11] | mu_apt: -0.008 | mu_real: -0.072
         2012 | fl: [ 0.82  0.00 -0.03 -0.01] | mu_apt:  0.103 | mu_real:  0.029
         2013 | fl: [ 1.14  0.00 -0.07 -0.01] | mu_apt:  0.294 | mu_real:  0.337
         2014 | fl: [ 1.28  0.05  0.04  0.07] | mu_apt:  0.149 | mu_real:  0.216
         2015 | fl: [ 1.20  0.03  0.05  0.01] | mu_apt: -0.016 | mu_real:  0.178
         2016 | fl: [ 1.44  0.03 -0.17 -0.02] | mu_apt:  0.127 | mu_real:  0.113
         2017 | fl: [ 1.33  0.01 -0.14  0.00] | mu_apt:  0.216 | mu_real:  0.321
         2018 | fl: [ 1.10 -0.02 -0.14  0.22] | mu_apt: -0.087 | mu_real:  0.172
         2019 | fl: [ 1.51  0.01 -0.16 -0.02] | mu_apt:  0.378 | mu_real:  0.440

         INTC.O
         =======================================================================
         2011 | fl: [ 1.17  0.01  0.05 -0.13] | mu_apt: -0.010 | mu_real:  0.142
         2012 | fl: [ 1.03  0.04  0.01  0.03] | mu_apt:  0.122 | mu_real: -0.163
         2013 | fl: [ 1.06 -0.01 -0.10  0.01] | mu_apt:  0.267 | mu_real:  0.230
         2014 | fl: [ 0.96  0.02  0.36 -0.02] | mu_apt:  0.063 | mu_real:  0.335
         2015 | fl: [ 0.93 -0.01 -0.09  0.02] | mu_apt:  0.001 | mu_real: -0.052
         2016 | fl: [ 1.02  0.00 -0.05  0.06] | mu_apt:  0.099 | mu_real:  0.051
         2017 | fl: [ 1.41  0.02 -0.18  0.03] | mu_apt:  0.226 | mu_real:  0.242
         2018 | fl: [ 1.12 -0.01 -0.11  0.17] | mu_apt: -0.076 | mu_real:  0.017
         2019 | fl: [ 1.50  0.01 -0.34  0.30] | mu_apt:  0.431 | mu_real:  0.243

         AMZN.O
         =======================================================================
         2011 | fl: [ 1.02 -0.03 -0.18 -0.14] | mu_apt: -0.016 | mu_real: -0.039
         2012 | fl: [ 0.98 -0.01 -0.17 -0.09] | mu_apt:  0.117 | mu_real:  0.374
         2013 | fl: [ 1.07 -0.00  0.09  0.00] | mu_apt:  0.282 | mu_real:  0.464
         2014 | fl: [ 1.54  0.03  0.01 -0.08] | mu_apt:  0.176 | mu_real: -0.251
         2015 | fl: [ 1.26 -0.02  0.45 -0.11] | mu_apt: -0.044 | mu_real:  0.778
         2016 | fl: [ 1.06 -0.00 -0.15 -0.04] | mu_apt:  0.099 | mu_real:  0.104
         2017 | fl: [ 0.94 -0.02  0.12 -0.03] | mu_apt:  0.185 | mu_real:  0.446
         2018 | fl: [ 0.90 -0.04 -0.25  0.28] | mu_apt: -0.085 | mu_real:  0.251
         2019 | fl: [ 1.99  0.05 -0.37  0.12] | mu_apt:  0.506 | mu_real:  0.207

Figure 4-11 compares the APT-predicted returns for a stock and its realized stock
returns over time. Compared to the single-factor CAPM, there seems to be hardly
any improvement:

In [97]: sym = 'AMZN.O'

In [98]: res[res['symbol'] == sym].corr()
Out[98]:            mu_apt   mu_real
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         mu_apt   1.000000 -0.098281
         mu_real -0.098281  1.000000

In [99]: res[res['symbol'] == sym].plot(kind='bar',
                         figsize=(10, 6), title=sym);

Figure 4-11. APT-predicted versus realized stock returns for a stock

The same picture arises in Figure 4-12, produced by the following snippet, which
compares the averages for multiple stocks. Because there is hardly any variation in the
average APT predictions, there are large average differences to the realized returns:

In [100]: grouped = res.groupby('symbol').mean()
          grouped
Out[100]:           mu_apt   mu_real
          symbol
          AAPL.O  0.116116  0.206158
          AMZN.O  0.135528  0.259395
          INTC.O  0.124811  0.116180
          MSFT.O  0.128441  0.192655

In [101]: grouped.plot(kind='bar', figsize=(10, 6), title='Average Values');

Of course, the selection of the risk factors is of paramount importance in this context.
The data-driven investor decides to find out what risk factors are typically considered
relevant ones for stocks. After studying the paper by Bender et al. (2013), the investor
replaces the original risk factors with a new set. In particular, the investor chooses the
set as presented in Table 4-3.
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Figure 4-12. Average APT-predicted versus average realized stock returns for multiple
stocks

Table 4-3. Risk factors for APT

Factor Description RIC

Market MSCI World Gross Return Daily USD (PUS = Price Return) .dMIWO00000GUS

Size MSCI World Equal Weight Price Net Index EOD .dMIWO0000ENUS

Volatility MSCI World Minimum Volatility Net Return .dMIWO0000YNUS

Value MSCI World Value Weighted Gross (NUS for Net) .dMIWO000PkGUS

Risk MSCI World Risk Weighted Gross USD EOD .dMIWO000PlGUS

Growth MSCI World Quality Net Return USD .MIWO0000vNUS

Momentum MSCI World Momentum Gross Index USD EOD .dMIWO0000NGUS

The following Python code retrieves a respective data set from a remote location and
visualizes the normalized time series data (see Figure 4-13). Already a brief look
reveals that the time series seem to be highly positively correlated:

In [102]: factors = pd.read_csv('http://hilpisch.com/aiif_eikon_eod_factors.csv',
                                index_col=0, parse_dates=True) 

In [103]: (factors / factors.iloc[0]).plot(figsize=(10, 6));  

Retrieves factors time series data

Normalizes and plots the data
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Figure 4-13. Normalized factors time series data

This impression is confirmed by the following calculation and the resulting correla‐
tion matrix for the factor returns. All correlation factors are about 0.75 or higher:

In [104]: start = '2017-01-01'  
          end = '2020-01-01'  

In [105]: retsd = rets.loc[start:end].copy()  
          retsd.dropna(inplace=True)  

In [106]: retsf = np.log(factors / factors.shift(1))  
          retsf = retsf.loc[start:end]  
          retsf.dropna(inplace=True)  
          retsf = retsf.loc[retsd.index].dropna()  

In [107]: retsf.corr()  
Out[107]:               market      size  volatility     value      risk    growth  \
          market      1.000000  0.935867    0.845010  0.964124  0.947150  0.959038
          size        0.935867  1.000000    0.791767  0.965739  0.983238  0.835477
          volatility  0.845010  0.791767    1.000000  0.778294  0.865467  0.818280
          value       0.964124  0.965739    0.778294  1.000000  0.958359  0.864222
          risk        0.947150  0.983238    0.865467  0.958359  1.000000  0.858546
          growth      0.959038  0.835477    0.818280  0.864222  0.858546  1.000000
          momentum    0.928705  0.796420    0.819585  0.818796  0.825563  0.952956

                      momentum
          market      0.928705
          size        0.796420
          volatility  0.819585
          value       0.818796
          risk        0.825563
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          growth      0.952956
          momentum    1.000000

Defines start and end dates for data selection

Selects the relevant returns data sub-set

Calculates and processes the log returns for the factors

Shows the correlation matrix for the factors

The following Python code derives factor loadings for the original stocks but with the
new factors. They are derived from the first half of the data set and applied to predict
the stock return for the second half given the performance of the single factors. The
realized return is also calculated. Both time series are compared in Figure 4-14. As to
be expected given the high correlation of the factors, the explanatory power of the
APT approach is not much higher compared to the CAPM:

In [108]: res = pd.DataFrame()

In [109]: np.set_printoptions(formatter={'float': lambda x: f'{x:5.2f}'})

In [110]: split = int(len(retsf) * 0.5)
          for sym in rets.columns[:4]:
              print('\n' + sym)
              print(74 * '=')
              retsf_, retsd_ = retsf.iloc[:split], retsd.iloc[:split]
              reg = np.linalg.lstsq(retsf_, retsd_[sym], rcond=-1)[0]
              retsf_, retsd_ = retsf.iloc[split:], retsd.iloc[split:]
              mu_apt = np.dot(retsf_.mean() * 252, reg)
              mu_real =  retsd_[sym].mean() * 252
              res = res.append(pd.DataFrame({'mu_apt': mu_apt,
                              'mu_real': mu_real}, index=[sym,]),
                              sort=True)
              print('fl: {} | apt: {:.3f} | real: {:.3f}'
                    .format(reg.round(1), mu_apt, mu_real))

          AAPL.O
          ==========================================================================
          fl: [ 2.30  2.80 -0.70 -1.40 -4.20  2.00 -0.20] | apt: 0.115 | real: 0.301

          MSFT.O
          ==========================================================================
          fl: [ 1.50  0.00  0.10 -1.30 -1.40  0.80  1.00] | apt: 0.181 | real: 0.304

          INTC.O
          ==========================================================================
          fl: [-3.10  1.60  0.40  1.30 -2.60  2.50  1.10] | apt: 0.186 | real: 0.118
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          AMZN.O
          ==========================================================================
          fl: [ 9.10  3.30 -1.00 -7.10 -3.10 -1.80  1.20] | apt: 0.019 | real: 0.050

In [111]: res.plot(kind='bar', figsize=(10, 6));

Figure 4-14. APT-predicted returns based on typical factors compared to realized
returns

The data-driven investor is not willing to dismiss the APT completely. Therefore, an
additional test might shed some more light on the explanatory power of APT. To this
end, the factor loadings are used to test whether APT can explain movements of the
stock price over time (correctly). And indeed, although APT does not predict the
absolute performance correctly (it is off by 10+ percentage points), it predicts the
direction of the stock price movement correctly in the majority of cases (see
Figure 4-15). The correlation between the predicted and realized returns is also pretty
high at around 85%. However, the analysis uses realized factor returns to generate the
APT predictions—something, of course, not available in practice a day before the rel‐
evant trading day:

In [112]: sym
Out[112]: 'AMZN.O'

In [113]: rets_sym = np.dot(retsf_, reg)  

In [114]: rets_sym = pd.DataFrame(rets_sym,
                                  columns=[sym + '_apt'],
                                  index=retsf_.index)  

In [115]: rets_sym[sym + '_real'] = retsd_[sym]  
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In [116]: rets_sym.mean() * 252  
Out[116]: AMZN.O_apt     0.019401
          AMZN.O_real    0.050344
          dtype: float64

In [117]: rets_sym.std() * 252 ** 0.5  
Out[117]: AMZN.O_apt     0.270995
          AMZN.O_real    0.307653
          dtype: float64

In [118]: rets_sym.corr()  
Out[118]:              AMZN.O_apt  AMZN.O_real
          AMZN.O_apt     1.000000     0.832218
          AMZN.O_real    0.832218     1.000000

In [119]: rets_sym.cumsum().apply(np.exp).plot(figsize=(10, 6));

Predicts the daily stock price returns given the realized factor returns

Stores the results in a DataFrame object and adds column and index data

Adds the realized stock price returns to the DataFrame object

Calculates the annualized returns

Calculates the annualized volatility

Calculates the correlation factor

Figure 4-15. APT-predicted performance and real performance over time (gross)
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4 Numbers generated by the random number generator of NumPy are pseudorandom numbers, although they are
referenced throughout the book as random numbers.

How accurately does APT predict the direction of the stock price movement given
the realized factor returns? The following Python code shows that the accuracy score
is a bit better than 75%:

In [120]: rets_sym['same'] = (np.sign(rets_sym[sym + '_apt']) ==
                              np.sign(rets_sym[sym + '_real']))

In [121]: rets_sym['same'].value_counts()
Out[121]: True     288
          False     89
          Name: same, dtype: int64

In [122]: rets_sym['same'].value_counts()[True] / len(rets_sym)
Out[122]: 0.7639257294429708

Debunking Central Assumptions
The previous section provides a number of numerical, real-world examples showing
how popular normative financial theories might fail in practice. This section argues
that one of the major reasons is that central assumptions of these popular financial
theories are invalid; that is, they simply do not describe the reality of financial
markets. The two assumptions analyzed are normally distributed returns and linear
relationships.

Normally Distributed Returns
As a matter of fact, only a normal distribution is completely specified through its first
(expectation) and second moment (standard deviation).

Sample data sets
For illustration, consider a randomly generated set of standard normally distributed
numbers as generated by the following Python code.4 Figure 4-16 shows the typical
bell shape of the resulting histogram:

In [1]: import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        np.random.seed(100)
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'

In [2]: N = 10000
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In [3]: snrn = np.random.standard_normal(N)  
        snrn -= snrn.mean()  
        snrn /= snrn.std()  

In [4]: round(snrn.mean(), 4)  
Out[4]: -0.0

In [5]: round(snrn.std(), 4)  
Out[5]: 1.0

In [6]: plt.figure(figsize=(10, 6))
        plt.hist(snrn, bins=35);

Draws standard normally distributed random numbers

Corrects the first moment (expectation) to 0.0

Corrects the second moment (standard deviation) to 1.0

Figure 4-16. Standard normally distributed random numbers

Now consider a set of random numbers that share the same first and second moment
values but have a completely different distribution than Figure 4-17 illustrates.
Although the moments are the same, this distribution only consists of three discrete
values:

In [7]: numbers = np.ones(N) * 1.5  
        split = int(0.25 * N)  
        numbers[split:3 * split] = -1  
        numbers[3 * split:4 * split] = 0  

In [8]: numbers -= numbers.mean()  
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        numbers /= numbers.std()  

In [9]: round(numbers.mean(), 4)  
Out[9]: 0.0

In [10]: round(numbers.std(), 4)  
Out[10]: 1.0

In [11]: plt.figure(figsize=(10, 6))
         plt.hist(numbers, bins=35);

A set of numbers with three discrete values only

Corrects the first moment (expectation) to 0.0

Corrects the second moment (standard deviation) to 1.0

Figure 4-17. Distribution with first and second moment of 0.0 and 1.0, respectively

First and Second Moment

The first and second moment of a probability distribution only
describe a normal distribution completely. There are infinitely
many other distributions that might share the first two moments
with a normal distribution while being completely different.

In preparation for a test of real financial returns, consider the following Python func‐
tions that allow one to visualize data as a histogram and to add a probability density
function (PDF) of a normal distribution with the first two moments of the data:

In [12]: import math
         import scipy.stats as scs
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         import statsmodels.api as sm

In [13]: def dN(x, mu, sigma):
             ''' Probability density function of a normal random variable x.
             '''
             z = (x - mu) / sigma
             pdf = np.exp(-0.5 * z ** 2) / math.sqrt(2 * math.pi * sigma ** 2)
             return pdf

In [14]: def return_histogram(rets, title=''):
             ''' Plots a histogram of the returns.
             '''
             plt.figure(figsize=(10, 6))
             x = np.linspace(min(rets), max(rets), 100)
             plt.hist(np.array(rets), bins=50,
                      density=True, label='frequency')  
             y = dN(x, np.mean(rets), np.std(rets))  
             plt.plot(x, y, linewidth=2, label='PDF')  
             plt.xlabel('log returns')
             plt.ylabel('frequency/probability')
             plt.title(title)
             plt.legend()

Plots the histogram of the data

Plots the PDF of the corresponding normal distribution

Figure 4-18 shows how well the histogram approximates the PDF for the standard
normally distributed random numbers:

In [15]: return_histogram(snrn)

Figure 4-18. Histogram and PDF for standard normally distributed numbers
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By contrast, Figure 4-19 illustrates that the PDF of the normal distribution has noth‐
ing to do with the data shown as a histogram:

In [16]: return_histogram(numbers)

Figure 4-19. Histogram and normal PDF for discrete numbers

Another way of comparing a normal distribution to data is the Quantile-Quantile (Q-
Q) plot. As Figure 4-20 shows, for normally distributed numbers, the numbers them‐
selves lie (mostly) on a straight line in the Q-Q plane:

In [17]: def return_qqplot(rets, title=''):
             ''' Generates a Q-Q plot of the returns.
             '''
             fig = sm.qqplot(rets, line='s', alpha=0.5)
             fig.set_size_inches(10, 6)
             plt.title(title)
             plt.xlabel('theoretical quantiles')
             plt.ylabel('sample quantiles')

In [18]: return_qqplot(snrn)
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Figure 4-20. Q-Q plot for standard normally distributed numbers

Again, the Q-Q plot as shown in Figure 4-21 for the discrete numbers looks com‐
pletely different to the one in Figure 4-20:

In [19]: return_qqplot(numbers)

Figure 4-21. Q-Q plot for discrete numbers

Finally, one can also use statistical tests to check whether a set of numbers is normally
distributed or not.
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The following Python function implements three tests:

• Test for normal skew.
• Test for normal kurtosis.
• Test for normal skew and kurtosis combined.

A p-value below 0.05 is generally considered to be a counter-indicator for normality;
that is, the hypothesis that the numbers are normally distributed is rejected. In that
sense, as in the preceding figures, the p-values for the two data sets speak for
themselves:

In [20]: def print_statistics(rets):
             print('RETURN SAMPLE STATISTICS')
             print('---------------------------------------------')
             print('Skew of Sample Log Returns {:9.6f}'.format(
                         scs.skew(rets)))
             print('Skew Normal Test p-value   {:9.6f}'.format(
                         scs.skewtest(rets)[1]))
             print('---------------------------------------------')
             print('Kurt of Sample Log Returns {:9.6f}'.format(
                         scs.kurtosis(rets)))
             print('Kurt Normal Test p-value   {:9.6f}'.format(
                         scs.kurtosistest(rets)[1]))
             print('---------------------------------------------')
             print('Normal Test p-value        {:9.6f}'.format(
                         scs.normaltest(rets)[1]))
             print('---------------------------------------------')

In [21]: print_statistics(snrn)
         RETURN SAMPLE STATISTICS
         ---------------------------------------------
         Skew of Sample Log Returns  0.016793
         Skew Normal Test p-value    0.492685
         ---------------------------------------------
         Kurt of Sample Log Returns -0.024540
         Kurt Normal Test p-value    0.637637
         ---------------------------------------------
         Normal Test p-value         0.707334
         ---------------------------------------------

In [22]: print_statistics(numbers)
         RETURN SAMPLE STATISTICS
         ---------------------------------------------
         Skew of Sample Log Returns  0.689254
         Skew Normal Test p-value    0.000000
         ---------------------------------------------
         Kurt of Sample Log Returns -1.141902
         Kurt Normal Test p-value    0.000000
         ---------------------------------------------
         Normal Test p-value         0.000000
         ---------------------------------------------
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Real financial returns
The following Python code retrieves EOD data from a remote source, as done earlier
in the chapter, and calculates the log returns for all financial time series contained in
the data set. Figure 4-22 shows that the log returns of the S&P 500 stock index repre‐
sented as a histogram show a much higher peak and fatter tails when compared to the
normal PDF with the sample expectation and standard deviation. These two insights
are stylized facts because they can be consistently observed for different financial
instruments:

In [23]: raw = pd.read_csv('http://hilpisch.com/aiif_eikon_eod_data.csv',
                           index_col=0, parse_dates=True).dropna()

In [24]: rets = np.log(raw / raw.shift(1)).dropna()

In [25]: symbol = '.SPX'

In [26]: return_histogram(rets[symbol].values, symbol)

Figure 4-22. Frequency distribution and normal PDF for S&P 500 log returns

Similar insights can be gained when considering the Q-Q plot for the S&P 500 log
returns in Figure 4-23. In particular, the Q-Q plot visualizes the fat tails pretty well
(points below the straight line to the left and above the straight line to the right):

In [27]: return_qqplot(rets[symbol].values, symbol)
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Figure 4-23. Q-Q for S&P 500 log returns

The Python code that follows conducts the statistical tests regarding the normality of
the real financial returns for a selection of the financial time series from the data set.
Real financial returns regularly fail such tests. Therefore, it is safe to conclude that the
normality assumption about financial returns hardly, if at all, describes financial
reality:

In [28]: symbols = ['.SPX', 'AMZN.O', 'EUR=', 'GLD']

In [29]: for sym in symbols:
             print('\n{}'.format(sym))
             print(45 * '=')
             print_statistics(rets[sym].values)

         .SPX
         =============================================
         RETURN SAMPLE STATISTICS
         ---------------------------------------------
         Skew of Sample Log Returns -0.497160
         Skew Normal Test p-value    0.000000
         ---------------------------------------------
         Kurt of Sample Log Returns  4.598167
         Kurt Normal Test p-value    0.000000
         ---------------------------------------------
         Normal Test p-value         0.000000
         ---------------------------------------------

         AMZN.O
         =============================================
         RETURN SAMPLE STATISTICS

Debunking Central Assumptions | 151



         ---------------------------------------------
         Skew of Sample Log Returns  0.135268
         Skew Normal Test p-value    0.005689
         ---------------------------------------------
         Kurt of Sample Log Returns  7.344837
         Kurt Normal Test p-value    0.000000
         ---------------------------------------------
         Normal Test p-value         0.000000
         ---------------------------------------------

         EUR=
         =============================================
         RETURN SAMPLE STATISTICS
         ---------------------------------------------
         Skew of Sample Log Returns -0.053959
         Skew Normal Test p-value    0.268203
         ---------------------------------------------
         Kurt of Sample Log Returns  1.780899
         Kurt Normal Test p-value    0.000000
         ---------------------------------------------
         Normal Test p-value         0.000000
         ---------------------------------------------

         GLD
         =============================================
         RETURN SAMPLE STATISTICS
         ---------------------------------------------
         Skew of Sample Log Returns -0.581025
         Skew Normal Test p-value    0.000000
         ---------------------------------------------
         Kurt of Sample Log Returns  5.899701
         Kurt Normal Test p-value    0.000000
         ---------------------------------------------
         Normal Test p-value         0.000000
         ---------------------------------------------

Normality Assumption

Although the normality assumption is a good approximation for
many real-world phenomena, such as in physics, it is not appropri‐
ate and can even be dangerous when it comes to financial returns.
Almost no financial return sample data set passes statistical nor‐
mality tests. Beyond the fact that it has proven useful in other
domains, a major reason why this assumption is found in so many
financial models is that it leads to elegant and relatively simple
mathematical models, calculations, and proofs.
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Linear Relationships
Similar to the “omnipresence” of the normality assumption in financial models and
theories, linear relationships between variables seem to be another widespread bench‐
mark. This sub-section considers an important one, namely the assumed linear rela‐
tionship in the CAPM between the beta of a stock and its expected (realized) return.
Generally speaking, the higher the beta is, the higher the expected return given a pos‐
itive market performance will be—in a fixed proportional way as given by the beta
value itself.

Recall the calculation of the betas, the CAPM expected returns, and the realized
returns for a selection of technology stocks from the previous section, which is
repeated in the following Python code for convenience. This time, the beta values are
added to the results’ DataFrame object as well.

In [30]: r = 0.005

In [31]: market = '.SPX'

In [32]: res = pd.DataFrame()

In [33]: for sym in rets.columns[:4]:
             for year in range(2010, 2019):
                 rets_ = rets.loc[f'{year}-01-01':f'{year}-12-31']
                 muM = rets_[market].mean() * 252
                 cov = rets_.cov().loc[sym, market]
                 var = rets_[market].var()
                 beta = cov / var
                 rets_ = rets.loc[f'{year + 1}-01-01':f'{year + 1}-12-31']
                 muM = rets_[market].mean() * 252
                 mu_capm = r + beta * (muM - r)
                 mu_real = rets_[sym].mean() * 252
                 res = res.append(pd.DataFrame({'symbol': sym,
                                                'beta': beta,
                                                'mu_capm': mu_capm,
                                                'mu_real': mu_real},
                                               index=[year + 1]),
                                 sort=True)

The following analysis calculates the R2 score for a linear regression for which the
beta is the independent variable and the expected CAPM return, given the market
portfolio performance, is the dependent variable. R2 refers to the coefficient of deter‐
mination and measures how well a model performs compared to a baseline predictor
in the form of a simple mean value. The linear regression can only explain around
10% of the variability in the expected CAPM return, a pretty low value, which is also
confirmed through Figure 4-24:

In [34]: from sklearn.metrics import r2_score
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In [35]: reg = np.polyfit(res['beta'], res['mu_capm'], deg=1)
         res['mu_capm_ols'] = np.polyval(reg, res['beta'])

In [36]: r2_score(res['mu_capm'], res['mu_capm_ols'])
Out[36]: 0.09272355783573516

In [37]: res.plot(kind='scatter', x='beta', y='mu_capm', figsize=(10, 6))
         x = np.linspace(res['beta'].min(), res['beta'].max())
         plt.plot(x, np.polyval(reg, x), 'g--', label='regression')
         plt.legend();

Figure 4-24. Expected CAPM return versus beta (including linear regression)

For the realized return, the explanatory power of the linear regression is even lower,
with about 4.5% (see Figure 4-25). The linear regressions recover the positive rela‐
tionship between beta and stock returns—“the higher the beta, the higher the return
given the (positive) market portfolio performance”—as indicated by the positive
slope of the regression lines. However, they only explain a small part of the observed
overall variability in the stock returns:

In [38]: reg = np.polyfit(res['beta'], res['mu_real'], deg=1)
         res['mu_real_ols'] = np.polyval(reg, res['beta'])

In [39]: r2_score(res['mu_real'], res['mu_real_ols'])
Out[39]: 0.04466919444752959

In [40]: res.plot(kind='scatter', x='beta', y='mu_real', figsize=(10, 6))
         x = np.linspace(res['beta'].min(), res['beta'].max())
         plt.plot(x, np.polyval(reg, x), 'g--', label='regression')
         plt.legend();
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Figure 4-25. Expected CAPM return versus beta (including linear regression)

Linear Relationships

As with the normality assumptions, linear relationships can often
be observed in the physical world. However, in finance there are
hardly any cases in which variables depend on each other in a
clearly linear way. From a modeling point of view, linear relation‐
ships lead, as does the normality assumption, to elegant and rela‐
tively simple mathematical models, calculations, and proofs. In
addition, the standard tool in financial econometrics, OLS regres‐
sion, is well suited to dealing with linear relationships in data.
These are major reasons why normality and linearity are often
deliberately chosen as convenient building blocks of financial
models and theories.

Conclusions
Science has been driven for centuries by the rigorous generation and analysis of data.
However, finance used to be characterized by normative theories based on simplified
mathematical models of the financial markets, relying on assumptions such as nor‐
mality of returns and linear relationships. The almost universal and comprehensive
availability of (financial) data has led to a shift in focus from a theory-first approach
to data-driven finance. Several examples based on real financial data illustrate that
many popular financial models and theories cannot survive a confrontation with
financial market realities. Although elegant, they might be too simplistic to capture
the complexities, changing nature, and nonlinearities of financial markets.
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Python Code
The following Python file contains a number of helper functions to simplify certain
tasks in NLP:

#
# NLP Helper Functions
#
# Artificial Intelligence in Finance
# (c) Dr Yves J Hilpisch
# The Python Quants GmbH
#
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import re
import nltk
import string
import pandas as pd
from pylab import plt
from wordcloud import WordCloud
from nltk.corpus import stopwords
from nltk.corpus import wordnet as wn
from lxml.html.clean import Cleaner
from sklearn.feature_extraction.text import TfidfVectorizer
plt.style.use('seaborn')

cleaner = Cleaner(style=True, links=True, allow_tags=[''],
                  remove_unknown_tags=False)

stop_words = stopwords.words('english')
stop_words.extend(['new', 'old', 'pro', 'open', 'menu', 'close'])

def remove_non_ascii(s):
    ''' Removes all non-ascii characters.
    '''
    return ''.join(i for i in s if ord(i) < 128)

def clean_up_html(t):
    t = cleaner.clean_html(t)
    t = re.sub('[\n\t\r]', ' ', t)
    t = re.sub(' +', ' ', t)
    t = re.sub('<.*?>', '', t)
    t = remove_non_ascii(t)
    return t

def clean_up_text(t, numbers=False, punctuation=False):
    ''' Cleans up a text, e.g. HTML document,
        from HTML tags and also cleans up the
        text body.
    '''
    try:
        t = clean_up_html(t)
    except:
        pass
    t = t.lower()
    t = re.sub(r"what's", "what is ", t)
    t = t.replace('(ap)', '')
    t = re.sub(r"\'ve", " have ", t)
    t = re.sub(r"can't", "cannot ", t)
    t = re.sub(r"n't", " not ", t)
    t = re.sub(r"i'm", "i am ", t)
    t = re.sub(r"\'s", "", t)
    t = re.sub(r"\'re", " are ", t)
    t = re.sub(r"\'d", " would ", t)
    t = re.sub(r"\'ll", " will ", t)
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    t = re.sub(r'\s+', ' ', t)
    t = re.sub(r"\\", "", t)
    t = re.sub(r"\'", "", t)
    t = re.sub(r"\"", "", t)
    if numbers:
        t = re.sub('[^a-zA-Z ?!]+', '', t)
    if punctuation:
        t = re.sub(r'\W+', ' ', t)
    t = remove_non_ascii(t)
    t = t.strip()
    return t

def nltk_lemma(word):
    ''' If one exists, returns the lemma of a word.
        I.e. the base or dictionary version of it.
    '''
    lemma = wn.morphy(word)
    if lemma is None:
        return word
    else:
        return lemma

def tokenize(text, min_char=3, lemma=True, stop=True,
             numbers=False):
    ''' Tokenizes a text and implements some
        transformations.
    '''
    tokens = nltk.word_tokenize(text)
    tokens = [t for t in tokens if len(t) >= min_char]
    if numbers:
        tokens = [t for t in tokens if t[0].lower()
                  in string.ascii_lowercase]
    if stop:
        tokens = [t for t in tokens if t not in stop_words]
    if lemma:
        tokens = [nltk_lemma(t) for t in tokens]
    return tokens

def generate_word_cloud(text, no, name=None, show=True):
    ''' Generates a word cloud bitmap given a
        text document (string).
        It uses the Term Frequency (TF) and
        Inverse Document Frequency (IDF)
        vectorization approach to derive the
        importance of a word -- represented
        by the size of the word in the word cloud.

    Parameters
    ==========
    text: str
        text as the basis
    no: int
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        number of words to be included
    name: str
        path to save the image
    show: bool
        whether to show the generated image or not
    '''
    tokens = tokenize(text)
    vec = TfidfVectorizer(min_df=2,
                      analyzer='word',
                      ngram_range=(1, 2),
                      stop_words='english'
                     )
    vec.fit_transform(tokens)
    wc = pd.DataFrame({'words': vec.get_feature_names(),
                       'tfidf': vec.idf_})
    words = ' '.join(wc.sort_values('tfidf', ascending=True)['words'].head(no))
    wordcloud = WordCloud(max_font_size=110,
                      background_color='white',
                      width=1024, height=768,
                      margin=10, max_words=150).generate(words)
    if show:
        plt.figure(figsize=(10, 10))
        plt.imshow(wordcloud, interpolation='bilinear')
        plt.axis('off')
        plt.show()
    if name is not None:
        wordcloud.to_file(name)

def generate_key_words(text, no):
    try:
        tokens = tokenize(text)
        vec = TfidfVectorizer(min_df=2,
                      analyzer='word',
                      ngram_range=(1, 2),
                      stop_words='english'
                     )

        vec.fit_transform(tokens)
        wc = pd.DataFrame({'words': vec.get_feature_names(),
                       'tfidf': vec.idf_})
        words = wc.sort_values('tfidf', ascending=False)['words'].values
        words = [ a for a in words if not a.isnumeric()][:no]
    except:
        words = list()
    return words
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CHAPTER 5

Machine Learning

Dataism says that the universe consists of data flows, and the value of any phenom‐
enon or entity is determined by its contribution to data processing….Dataism thereby
collapses the barrier between animals [humans] and machines, and expects electronic
algorithms to eventually decipher and outperform biochemical algorithms.

—Yuval Noah Harari (2015)

Machine learning is the scientific method on steroids. It follows the same process of
generating, testing, and discarding or refining hypotheses. But while a scientist may
spend his or her whole life coming up with and testing a few hundred hypotheses, a
machine learning system can do the same in a second. Machine learning automates
discovery. It’s no surprise, then, that it’s revolutionizing science as much as it’s revolu‐
tionizing business.

—Pedro Domingos (2015)

This chapter is about machine learning as a process. Although it uses specific algo‐
rithms and specific data for illustration, the notions and approaches discussed in this
chapter are general in nature. The goal is to present the most important elements of
machine learning in a single place and in an easy-to-understand and easy-to-visualize
manner. The approach of this chapter is practical and illustrative in nature, omitting
most technical details throughout. In that sense, the chapter provides a kind of blue‐
print for later, more realistic machine learning applications.

“Learning” on page 162 briefly discusses the very notion of a machine that learns.
“Data” on page 162 imports and preprocesses the sample data used in later sections.
The sample data is based on a time series for the EUR/USD exchange rate. “Success”
on page 165 implements OLS regression and neural network estimation
given the sample data and uses the mean-squared error as the measure of success.
“Capacity” on page 169 discusses the role of the model capacity in making
models more successful in the context of estimation problems. “Evaluation” on page
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172 explains the role that model evaluation, typically based on a validation data sub-
set, plays in the machine-learning process. “Bias and Variance” on page 178 discusses
the notions of high bias and high variance models and their typical characteristics in
the context of estimation problems. “Cross-Validation” on page 180 illustrates the
concept of cross-validation to avoid, among other things, overfitting due to a too-
large model capacity.

VanderPlas (2017, ch. 5) discusses topics similar to the ones covered in this chapter,
making use primarily of the scikit-learn Python package. Chollet (2017, ch. 4) also
provides an overview similar to the one provided here, but primarily makes use of the
Keras deep learning package. Goodfellow et al. (2016, ch. 5) give a more technical
and mathematical overview of machine learning and related important concepts.

Learning
On a formal, more abstract level, learning by an algorithm or computer program can
be defined as in Mitchell (1997):

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.

There is a class of tasks that are to be performed (for example, estimation or classifica‐
tion). Then there is a performance measure, such as the mean-squared error (MSE) or
the accuracy ratio. Then there is learning as measured by the improvement in perfor‐
mance given the experience of the algorithm with the task. The class of tasks at hand
is described in general based on the given data set, which includes the features data
and the labels data in the case of supervised learning, or only the features data in the
case of unsupervised learning.

Learning Task Versus Task to Learn

In the definition of learning through an algorithm or computer
program, it is important to note the difference between the task of
learning and the tasks to be learned. Learning means to learn how
to (best) execute a certain task, such as estimation or classification.

Data
This section introduces the sample data set to be used in the sections to follow. The
sample data is created based on a real financial time series for the EUR/USD
exchange rate. First, the data is imported from a CSV file, and then the data is resam‐
pled to monthly data and stored in a Series object:

In [1]: import numpy as np
        import pandas as pd
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        from pylab import plt, mpl
        np.random.seed(100)
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'

In [2]: url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'  

In [3]: raw = pd.read_csv(url, index_col=0, parse_dates=True)['EUR=']  

In [4]: raw.head()
Out[4]: Date
        2010-01-01    1.4323
        2010-01-04    1.4411
        2010-01-05    1.4368
        2010-01-06    1.4412
        2010-01-07    1.4318
        Name: EUR=, dtype: float64

In [5]: raw.tail()
Out[5]: Date
        2019-12-26    1.1096
        2019-12-27    1.1175
        2019-12-30    1.1197
        2019-12-31    1.1210
        2020-01-01    1.1210
        Name: EUR=, dtype: float64

In [6]: l = raw.resample('1M').last()  

In [7]: l.plot(figsize=(10, 6), title='EUR/USD monthly');

Imports the financial time series data

Resamples the data to monthly time intervals

Figure 5-1 shows the financial time series.
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Figure 5-1. EUR/USD exchange rate as time series (monthly)

To have a single feature only, the following Python code creates a synthetic feature
vector. This allows for simple visualizations in two dimensions. The synthetic feature
(independent variable), of course, does not have any explanatory power for the
EUR/USD exchange rate (labels data, dependent variable). In what follows, it is also
abstracted from the fact that the labels data is sequential and temporal in nature. The
sample data set is treated in this chapter as a general data set composed of a one-
dimensional features vector and a one-dimensional labels vector. Figure 5-2 visualizes
the sample data set that implies an estimation problem is the task at hand:

In [8]: l = l.values  
        l -= l.mean()  

In [9]: f = np.linspace(-2, 2, len(l))  

In [10]: plt.figure(figsize=(10, 6))
         plt.plot(f, l, 'ro')
         plt.title('Sample Data Set')
         plt.xlabel('features')
         plt.ylabel('labels');

Transforms the labels data to an ndarray object

Subtracts the mean value from the data element-wise

Creates a synthetic feature as an ndarray object
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Figure 5-2. Sample data set

Success
The measure of success for estimation problems in general is the MSE, as used in
Chapter 1. Based on the MSE, success is judged given the labels data as the relevant
benchmark and the predicted values of an algorithm after having been exposed to the
data set or parts of it. As in Chapter 1, two algorithms are considered in this and the
following sections: OLS regression and neural networks.

First is OLS regression. The application is straightforward, as the following Python
code illustrates. The regression result is shown in Figure 5-3 for a regression includ‐
ing monomials up to the fifth order. The resulting MSE is also calculated:

In [11]: def MSE(l, p):
             return np.mean((l - p) ** 2)  

In [12]: reg = np.polyfit(f, l, deg=5)  
         reg  
Out[12]: array([-0.01910626, -0.0147182 ,  0.10990388,  0.06007211, -0.20833598,
                -0.03275423])

In [13]: p = np.polyval(reg, f)  

In [14]: MSE(l, p)  
Out[14]: 0.0034166422957371025

In [15]: plt.figure(figsize=(10, 6))
         plt.plot(f, l, 'ro', label='sample data')
         plt.plot(f, p, '--', label='regression')
         plt.legend();
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The function MSE calculates the mean-squared error.

The fitting of the OLS regression model up to and including fifth-order mono‐
mials.

The prediction by the OLS regression model given the optimal parameters.

The MSE value given the prediction values.

Figure 5-3. Sample data and cubic regression line

OLS regression is generally solved analytically. Therefore, no iterated learning takes
place. However, one can simulate a learning procedure by gradually exposing the
algorithm to more data. The following Python code implements OLS regression and
prediction, starting with a few samples only and gradually increasing the number to
finally reach the complete length of the data set. The regression step is implemented
based on the smaller sub-sets, whereas the prediction steps are implemented based on
the whole features data in each case. In general, the MSE drops significantly when
increasing the training data set:

In [16]: for i in range(10, len(f) + 1, 20):
             reg = np.polyfit(f[:i], l[:i], deg=3)  
             p = np.polyval(reg, f)  
             mse = MSE(l, p)  
             print(f'{i:3d} | MSE={mse}')
          10 | MSE=248628.10681642237
          30 | MSE=731.9382249304651
          50 | MSE=12.236088505004465
          70 | MSE=0.7410590619743301
          90 | MSE=0.0057430617304093275
         110 | MSE=0.006492800939555582
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Regression step based on data sub-set

Prediction step based on the complete data set

Resulting MSE value

Second is the neural network. The application to the sample data is again straightfor‐
ward and similar to the case in Chapter 1. Figure 5-4 shows how the neural network
approximates the sample data:

In [17]: import tensorflow as tf
         tf.random.set_seed(100)

In [18]: from keras.layers import Dense
         from keras.models import Sequential
         Using TensorFlow backend.

In [19]: model = Sequential()
         model.add(Dense(256, activation='relu', input_dim=1))  
         model.add(Dense(1, activation='linear')) 
         model.compile(loss='mse', optimizer='rmsprop')

In [20]: model.summary()
         Model: "sequential_1"
         _________________________________________________________________
         Layer (type)                 Output Shape              Param #
         =================================================================
         dense_1 (Dense)              (None, 256)               512
         _________________________________________________________________
         dense_2 (Dense)              (None, 1)                 257
         =================================================================
         Total params: 769
         Trainable params: 769
         Non-trainable params: 0
         _________________________________________________________________

In [21]: %time model.fit(f, l, epochs=1500, verbose=False)  
         CPU times: user 5.89 s, sys: 761 ms, total: 6.66 s
         Wall time: 4.43 s

Out[21]: <keras.callbacks.callbacks.History at 0x7fc05d599d90>

In [22]: p = model.predict(f).flatten()  

In [23]: MSE(l, p)  
Out[23]: 0.0020217512014360102

In [24]: plt.figure(figsize=(10, 6))
         plt.plot(f, l, 'ro', label='sample data')
         plt.plot(f, p, '--', label='DNN approximation')
         plt.legend();
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The neural network is a shallow network with a single hidden layer.

The fitting step with a relatively high number of epochs.

The prediction step that also flattens the ndarray object.

The resulting MSE value for the DNN prediction.

Figure 5-4. Sample data and neural network approximation

With the Keras package, the MSE values are stored after every learning step.
Figure 5-5 shows how the MSE value (“loss”) decreases on average (as far as one can
tell from the plot) with the increasing number of epochs over which the neural net‐
work is trained:

In [25]: import pandas as pd

In [26]: res = pd.DataFrame(model.history.history)

In [27]: res.tail()
Out[27]:           loss
         1495  0.001547
         1496  0.001520
         1497  0.001456
         1498  0.001356
         1499  0.001325

In [28]: res.iloc[100:].plot(figsize=(10, 6))
         plt.ylabel('MSE')
         plt.xlabel('epochs');
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Figure 5-5. MSE values against number of training epochs

Capacity
The capacity of a model or algorithm defines what types of functions or relationships
the model or algorithm can basically learn. In the case of OLS regression based on
monomials only, there is only one parameter that defines the capacity of the model:
the degree of the highest monomial to be used. If this degree parameter is set to
deg=3, the OLS regression model can learn functional relationships of constant, lin‐
ear, quadratic, or cubic type. The higher the parameter deg is, the higher the capacity
of the OLS regression model will be.

The following Python code starts at deg=1 and increases the degree in increments of
two. The MSE values monotonically decrease with the increasing degree parameter.
Figure 5-6 shows the regression lines for all degrees considered:

In [29]: reg = {}
         for d in range(1, 12, 2):
             reg[d] = np.polyfit(f, l, deg=d)  
             p = np.polyval(reg[d], f)
             mse = MSE(l, p)
             print(f'{d:2d} | MSE={mse}')
          1 | MSE=0.005322474034260403
          3 | MSE=0.004353110724143185
          5 | MSE=0.0034166422957371025
          7 | MSE=0.0027389501772354025
          9 | MSE=0.001411961626330845
         11 | MSE=0.0012651237868752322

In [30]: plt.figure(figsize=(10, 6))
         plt.plot(f, l, 'ro', label='sample data')
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         for d in reg:
             p = np.polyval(reg[d], f)
             plt.plot(f, p, '--', label=f'deg={d}')
         plt.legend();

Regression step for different values for deg

Figure 5-6. Regression lines for different highest degrees

The capacity of a neural network depends on a number of hyperparameters. Among
them are, in general, the following:

• Number of hidden layers
• Number of hidden units for each hidden layer

Together, these two hyperparameters define the number of trainable parameters
(weights) in the neural network. The neural network model in the previous section
has a relatively low number of trainable parameters. Adding, for example, just one
more layer of the same size increases the number of trainable parameters signifi‐
cantly. Although the number of training epochs may need to be increased, the MSE
value decreases significantly for the neural network with the higher capacity, and the
fit also seems much better visually, as Figure 5-7 shows:

In [31]: def create_dnn_model(hl=1, hu=256):
             ''' Function to create Keras DNN model.

             Parameters
             ==========
             hl: int
                 number of hidden layers
             hu: int

170 | Chapter 5: Machine Learning



                 number of hidden units (per layer)
             '''
             model = Sequential()
             for _ in range(hl):
                 model.add(Dense(hu, activation='relu', input_dim=1))  
             model.add(Dense(1, activation='linear'))
             model.compile(loss='mse', optimizer='rmsprop')
             return model

In [32]: model = create_dnn_model(3)  

In [33]: model.summary()  
         Model: "sequential_2"
         _________________________________________________________________
         Layer (type)                 Output Shape              Param #
         =================================================================
         dense_3 (Dense)              (None, 256)               512
         _________________________________________________________________
         dense_4 (Dense)              (None, 256)               65792
         _________________________________________________________________
         dense_5 (Dense)              (None, 256)               65792
         _________________________________________________________________
         dense_6 (Dense)              (None, 1)                 257
         =================================================================
         Total params: 132,353
         Trainable params: 132,353
         Non-trainable params: 0
         _________________________________________________________________

In [34]: %time model.fit(f, l, epochs=2500, verbose=False)
         CPU times: user 34.9 s, sys: 5.91 s, total: 40.8 s
         Wall time: 15.5 s

Out[34]: <keras.callbacks.callbacks.History at 0x7fc03fc18890>

In [35]: p = model.predict(f).flatten()

In [36]: MSE(l, p)
Out[36]: 0.00046612284916401614

In [37]: plt.figure(figsize=(10, 6))
         plt.plot(f, l, 'ro', label='sample data')
         plt.plot(f, p, '--', label='DNN approximation')
         plt.legend();

Adds potentially many layers to the neural network

A deep neural network with three hidden layers

The summary shows the increased number of trainable parameters (increased
capacity)
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Figure 5-7. Sample data and DNN approximation (higher capacity)

Evaluation
In the previous sections, the analysis focuses on the performance of estimation algo‐
rithms on the sample data set as a whole. As a general rule, the capacity of the model
or algorithm directly influences its performance when training and evaluating it on
the same data set. However, this is the “simple and easy case” in ML. The more com‐
plex and interesting case is when a trained model or algorithm shall be used for a
generalization on data that the model or algorithm has not seen before. Such a gener‐
alization can, for example, be the prediction (estimation) of a future stock price, given
the history of stock prices, or the classification of potential debtors as “creditworthy”
or “not creditworthy,” given the data from existing debtors.

Although the term prediction is often used freely in the context of estimations, given
the features data set used for training, a real prediction probably entails predicting
something not known up front and never seen before. Again, the prediction of a
future stock price is a good example for a real prediction in a temporal sense.

In general, a given data set is divided into sub-sets that each have different purposes:

Training data set
This is the sub-set used for the training of the algorithm.

Validation data set
This is the sub-set used for validating the performance of the algorithm during
training—and this data set is different from the training data set.
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1 Often, the rule of thumb mentioned in this context is “60%, 20%, 20%” for the split of a given data set into
training, validation, and testing data sub-sets.

Test data set
This is the sub-set on which the trained algorithm is only tested after the training
is finished.

Insights that are gained by applying a (currently) trained algorithm on the validation
data set might reflect on the training itself (for example, by adjusting the hyperpara‐
meters of a model). On the other hand, the idea is that insights from testing the
trained algorithm on the test data set shall not be reflected in the training itself or the
hyperparameters.

The following Python code chooses, somewhat arbitrarily, 25% of the sample data for
testing; the model or algorithm will not see this data before the training (learning) is
finished. Similarly, 25% of the sample data is reserved for validation; this data is used
to monitor performance during the training step and possibly during many learning
iterations. The remaining 50% is used for the training (learning) itself.1 Given the
sample data set, it makes sense to apply shuffling techniques to populate all sample
data sub-sets randomly:

In [38]: te = int(0.25 * len(f))  
         va = int(0.25 * len(f))  

In [39]: np.random.seed(100)
         ind = np.arange(len(f))  
         np.random.shuffle(ind)  

In [40]: ind_te = np.sort(ind[:te])  
         ind_va = np.sort(ind[te:te + va])  
         ind_tr = np.sort(ind[te + va:])  

In [41]: f_te = f[ind_te]  
         f_va = f[ind_va]  
         f_tr = f[ind_tr]  

In [42]: l_te = l[ind_te]  
         l_va = l[ind_va]  
         l_tr = l[ind_tr]  

Number of test data set samples

Number of validation data set samples

Randomized index for complete data set

Resulting sorted indexes for the data sub-sets
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Resulting features data sub-sets

Resulting labels data sub-sets

Randomized Sampling

The randomized population of training, validation, and test data
sets is a common and useful technique for data sets that are neither
sequence-like nor temporal in nature. However, when one is deal‐
ing, say, with a financial time series, shuffling the data is generally
to be avoided because it breaks up temporal structures and sneaks
foresight bias into the process by using, for example, later samples
for training and implementing the testing on earlier samples.

Based on the training and validation data sub-sets, the following Python code imple‐
ments a regression for different deg parameter values and calculates the MSE values
for the predictions on both data sub-sets. Although the MSE values on the training
data set decrease monotonically, the MSE values on the validation data set often reach
a minimum for a certain parameter value and then increase again. This phenomenon
indicates what is called overfitting. Figure 5-8 shows the regression fits for the differ‐
ent values of deg and compares the fits for both the training data and validation data
sets:

In [43]: reg = {}
         mse = {}
         for d in range(1, 22, 4):
             reg[d] = np.polyfit(f_tr, l_tr, deg=d)
             p = np.polyval(reg[d], f_tr)
             mse_tr = MSE(l_tr, p)  
             p = np.polyval(reg[d], f_va)
             mse_va = MSE(l_va, p)  
             mse[d] = (mse_tr, mse_va)
             print(f'{d:2d} | MSE_tr={mse_tr:7.5f} | MSE_va={mse_va:7.5f}')
          1 | MSE_tr=0.00574 | MSE_va=0.00492
          5 | MSE_tr=0.00375 | MSE_va=0.00273
          9 | MSE_tr=0.00132 | MSE_va=0.00243
         13 | MSE_tr=0.00094 | MSE_va=0.00183
         17 | MSE_tr=0.00060 | MSE_va=0.00153
         21 | MSE_tr=0.00046 | MSE_va=0.00837

In [44]: fig, ax = plt.subplots(2, 1, figsize=(10, 8), sharex=True)
         ax[0].plot(f_tr, l_tr, 'ro', label='training data')
         ax[1].plot(f_va, l_va, 'go', label='validation data')
         for d in reg:
             p = np.polyval(reg[d], f_tr)
             ax[0].plot(f_tr, p, '--', label=f'deg={d} (tr)')
             p = np.polyval(reg[d], f_va)
             plt.plot(f_va, p, '--', label=f'deg={d} (va)')
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         ax[0].legend()
         ax[1].legend();

MSE value for the training data set

MSE value for the validation data set

Figure 5-8. Training and validation data including regression fits

With Keras and the neural network model, the validation data set performance can
be monitored for every single learning step. One can also use callback functions to
stop the model training early when no further improvements, say, in the performance
on the training data set, are observed. The following Python code makes use of such a
callback function. Figure 5-9 shows the predictions of the neural network for the
training and validation data sets:

In [45]: from keras.callbacks import EarlyStopping

In [46]: model = create_dnn_model(2, 256)

In [47]: callbacks = [EarlyStopping(monitor='loss',  
                                    patience=100,  
                                   restore_best_weights=True)]  

In [48]: %%time
         model.fit(f_tr, l_tr, epochs=3000, verbose=False,
                   validation_data=(f_va, l_va),  
                   callbacks=callbacks)  
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         CPU times: user 8.07 s, sys: 1.33 s, total: 9.4 s
         Wall time: 4.81 s

Out[48]: <keras.callbacks.callbacks.History at 0x7fc0438b47d0>

In [49]: fig, ax = plt.subplots(2, 1, sharex=True, figsize=(10, 8))
         ax[0].plot(f_tr, l_tr, 'ro', label='training data')
         p = model.predict(f_tr)
         ax[0].plot(f_tr, p, '--', label=f'DNN (tr)')
         ax[0].legend()
         ax[1].plot(f_va, l_va, 'go', label='validation data')
         p = model.predict(f_va)
         ax[1].plot(f_va, p, '--', label=f'DNN (va)')
         ax[1].legend();

Learning is stopped based on training data MSE value.

It is only stopped after a certain number of epochs that do not show an
improvement.

The best weights are restored when the learning is stopped.

The validation data sub-sets are specified.

The callback function is passed to the fit() method.

Figure 5-9. Training and validation data including DNN predictions
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Keras allows analysis of the change in the MSE values on both data sets for every sin‐
gle epoch the model has been trained in. Figure 5-10 shows that the MSE values
decrease with the increasing number of training epochs, although only on average
and not monotonically:

In [50]: res = pd.DataFrame(model.history.history)

In [51]: res.tail()
Out[51]:       val_loss      loss
         1375  0.000854  0.000544
         1376  0.000685  0.000473
         1377  0.001326  0.000942
         1378  0.001026  0.000867
         1379  0.000710  0.000500

In [52]: res.iloc[35::25].plot(figsize=(10, 6))
         plt.ylabel('MSE')
         plt.xlabel('epochs');

Figure 5-10. MSE values for DNN model on the training and validation data sets

In the case of OLS regression, one would probably choose a high—but not too high—
value for the degree parameter, such as deg=9. The parameterization of the neural
network model automatically gives the best model configuration at the end of the
training. Figure 5-10 compares the predictions of both models to each other and to
the test data set. Given the nature of the sample data, the somewhat better test data set
performance of the neural network should not come as a surprise:

In [53]: p_ols = np.polyval(reg[5], f_te)
         p_dnn = model.predict(f_te).flatten()

In [54]: MSE(l_te, p_ols)
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Out[54]: 0.0038960346771028356

In [55]: MSE(l_te, p_dnn)
Out[55]: 0.000705705678438721

In [56]: plt.figure(figsize=(10, 6))
         plt.plot(f_te, l_te, 'ro', label='test data')
         plt.plot(f_te, p_ols, '--', label='OLS prediction')
         plt.plot(f_te, p_dnn, '-.', label='DNN prediction');
         plt.legend();

Figure 5-11. Test data and predictions from OLS regression and the DNN model

Bias and Variance
A major problem in ML in general and when applying ML algorithms to financial
data in particular is the problem of overfitting. A model is overfitting its training data
when the performance is worse on the validation and test data than on the training
data. An example using OLS regression can illustrate the problem both visually and
numerically.

The following Python code uses smaller sub-sets for both training and validation and
implements a linear regression, as well as one of higher order. The linear regression
fit, as shown in Figure 5-12, has a high bias on the training data set; absolute differ‐
ences between predictions and labels data are relatively high. The higher-order fit
shows a high variance. It hits all training data points exactly, but the fit itself varies
significantly to achieve the perfect fit:

In [57]: f_tr = f[:20:2]  
         l_tr = l[:20:2]  

In [58]: f_va = f[1:20:2]  
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         l_va = l[1:20:2]  

In [59]: reg_b = np.polyfit(f_tr, l_tr, deg=1)  

In [60]: reg_v = np.polyfit(f_tr, l_tr, deg=9, full=True)[0]  

In [61]: f_ = np.linspace(f_tr.min(), f_va.max(), 75)  

In [62]: plt.figure(figsize=(10, 6))
         plt.plot(f_tr, l_tr, 'ro', label='training data')
         plt.plot(f_va, l_va, 'go', label='validation data')
         plt.plot(f_, np.polyval(reg_b, f_), '--', label='high bias')
         plt.plot(f_, np.polyval(reg_v, f_), '--', label='high variance')
         plt.ylim(-0.2)
         plt.legend(loc=2);

Smaller features data sub-set

Smaller labels data sub-set

High bias OLS regression (linear)

High variance OLS regression (higher order)

Enlarged features data set for plotting

Figure 5-12. High bias and high variance OLS regression fits

Figure 5-12 shows that a high bias fit performs worse in the example than a high var‐
iance fit on the training data. But the high variance fit, which is overfitting here to a
large extent, performs much worse on the validation data. This can be illustrated by
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comparing performance measures for all cases. The following Python code calculates
not only the MSE values, but also the R2 values:

In [63]: from sklearn.metrics import r2_score

In [64]: def evaluate(reg, f, l):
             p = np.polyval(reg, f)
             bias = np.abs(l - p).mean()  
             var = p.var()  
             msg = f'MSE={MSE(l, p):.4f} | R2={r2_score(l, p):9.4f} | '
             msg += f'bias={bias:.4f} | var={var:.4f}'
             print(msg)

In [65]: evaluate(reg_b, f_tr, l_tr)  
         MSE=0.0026 | R2=   0.3484 | bias=0.0423 | var=0.0014

In [66]: evaluate(reg_b, f_va, l_va)  
         MSE=0.0032 | R2=   0.4498 | bias=0.0460 | var=0.0014

In [67]: evaluate(reg_v, f_tr, l_tr)  
         MSE=0.0000 | R2=   1.0000 | bias=0.0000 | var=0.0040

In [68]: evaluate(reg_v, f_va, l_va)  
         MSE=0.8752 | R2=-149.2658 | bias=0.3565 | var=0.7539

Model bias as mean absolute differences

Model variance as variance of model predictions

Performance of high bias model on training data

Performance of high bias model on validation data

Performance of high variance model on training data

Performance of high variance model on validation data

The results show that performance of the high bias model is roughly comparable on
both the training and validation data sets. By contrast, the performance of the high
variance model is perfect on the training data and pretty bad on the validation data.

Cross-Validation
A standard approach to avoid overfitting is cross-validation, during which multiple
training and validation data populations are tested. The scikit-learn package pro‐
vides functionality to implement cross-validation in a standardized way. The function
cross_val_score can be applied to any scikit-learn model object.
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The following code implements the OLS regression approach on the complete sample
data set, using a polynomial OLS regression model from scikit-learn. The five-fold
cross-validation is implemented for different degrees for the highest polynomial. The
cross-validation scores become, on average, worse the higher the highest degree is in
the regression. Particularly bad results are observed when the first 20% of the data is
used for validation (data on the left-hand side in Figure 5-3) or the final 20% of the
data is used (data on the right-hand side in Figure 5-3). Similarly, the best validation
scores are observed for the middle 20% of the sample data set:

In [69]: from sklearn.model_selection import cross_val_score
         from sklearn.preprocessing import PolynomialFeatures
         from sklearn.linear_model import LinearRegression
         from sklearn.pipeline import make_pipeline

In [70]: def PolynomialRegression(degree=None, **kwargs):
             return make_pipeline(PolynomialFeatures(degree),
                                 LinearRegression(**kwargs))  

In [71]: np.set_printoptions(suppress=True,
                 formatter={'float': lambda x: f'{x:12.2f}'})  

In [72]: print('\nCross-validation scores')
         print(74 * '=')
         for deg in range(0, 10, 1):
             model = PolynomialRegression(deg)
             cvs = cross_val_score(model, f.reshape(-1, 1), l, cv=5)  
             print(f'deg={deg} | ' + str(cvs.round(2)))

         Cross-validation scores
         ==========================================================================
         deg=0 | [       -6.07        -7.34        -0.09        -6.32        -8.69]
         deg=1 | [       -0.28        -1.40         0.16        -1.66        -4.62]
         deg=2 | [       -3.48        -2.45         0.19        -1.57       -12.94]
         deg=3 | [       -0.00        -1.24         0.32        -0.48       -43.62]
         deg=4 | [     -222.81        -2.88         0.37        -0.32      -496.61]
         deg=5 | [     -143.67        -5.85         0.49         0.12     -1241.04]
         deg=6 | [    -4038.96       -14.71         0.49        -0.33      -317.32]
         deg=7 | [    -9937.83       -13.98         0.64         0.22    -18725.61]
         deg=8 | [    -3514.36       -11.22        -0.15        -6.29   -298744.18]
         deg=9 | [    -7454.15        -0.91         0.15        -0.41    -13580.75]

Creates a polynomial regression model class

Adjusts the default printing settings for numpy

Implements the five-fold cross-validation

Keras provides wrapper classes to use Keras model objects with scikit-learn func‐
tionality, such as the cross_val_score function. The following example uses the
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KerasRegressor class to wrap the neural network models and to apply the cross-
validation to them. The cross-validation scores are better throughout for the two net‐
works tested when compared to the OLS regression cross-validation scores. The
neural network capacity does not play too large a role in this example:

In [73]: np.random.seed(100)
         tf.random.set_seed(100)
         from keras.wrappers.scikit_learn import KerasRegressor

In [74]: model = KerasRegressor(build_fn=create_dnn_model,
                               verbose=False, epochs=1000,
                               hl=1, hu=36)  

In [75]: %time cross_val_score(model, f, l, cv=5)  
         CPU times: user 18.6 s, sys: 2.17 s, total: 20.8 s
         Wall time: 14.6 s

Out[75]: array([       -0.02,        -0.01,        -0.00,        -0.00,
                       -0.01])

In [76]: model = KerasRegressor(build_fn=create_dnn_model,
                               verbose=False, epochs=1000,
                               hl=3, hu=256)  

In [77]: %time cross_val_score(model, f, l, cv=5)  
         CPU times: user 1min 5s, sys: 11.6 s, total: 1min 16s
         Wall time: 30.1 s

Out[77]: array([       -0.08,        -0.00,        -0.00,        -0.00,
                       -0.05])

Wrapper class for neural network with low capacity

Cross-validation for neural network with low capacity

Wrapper class for neural network with high capacity

Cross-validation for neural network with high capacity

Avoiding Overfitting

Overfitting—when a model performs much better on a training
data set than on the validation and test data sets—is to be avoided
in ML in general and in finance in particular. Proper evaluation
procedures and analyses, such as cross-validation, help in prevent‐
ing overfitting and in finding, for example, an adequate model
capacity.
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Conclusions
This chapter presents a blueprint for a machine learning process. The main elements
presented are as follows:

Learning
What exactly is meant by machine learning?

Data
What raw data and what (preprocessed) features and labels data is to be used?

Success
Given the problem as defined indirectly by the data (estimation, classification,
etc.), what is the appropriate measure of success?

Capacity
Which role does the model capacity play, and what might be an adequate capacity
given the problem at hand?

Evaluation
How shall the model performance be evaluated given the purpose of the trained
model?

Bias and variance
Which models are better suited for the problem at hand: those with rather high
bias or rather high variance?

Cross-validation
For non-sequence-like data sets, how does the model perform when cross-
validated on different configurations for the training and validation data sub-sets
used?

This blueprint is applied loosely in subsequent chapters to a number of real-world
financial use cases. For more background information and details about machine
learning as a process, refer to the references listed at the end of this chapter.
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CHAPTER 6

AI-First Finance

A computation takes information and transforms it, implementing what mathemati‐
cians call a function….If you’re in possession of a function that inputs all the world’s
financial data and outputs the best stocks to buy, you’ll soon be extremely rich.

—Max Tegmark (2017)

This chapter sets out to combine data-driven finance with the machine learning
approach from the previous chapter. It only represents the beginning of this endeavor
in that, for the first time, neural networks are used to discover statistical inefficien‐
cies. “Efficient Markets” on page 186 discusses the efficient market hypothesis and
uses OLS regression to illustrate it based on financial time series data. “Market Pre‐
diction Based on Returns Data” on page 192 for the first time applies neural net‐
works, alongside OLS regression, to predict the future direction of a financial
instrument’s price (“market direction”). The analysis relies on returns data only.
“Market Prediction with More Features” on page 199 adds more features to the mix,
such as typical financial indicators. In this context, first results indicate that statistical
inefficiencies might indeed be present. This is confirmed in “Market Prediction Intra‐
day” on page 204, which works with intraday data as compared to end-of-day data.
Finally, “Conclusions” on page 205 discusses the effectiveness of big data in combina‐
tion with AI in certain domains and argues that AI-first, theory-free finance might
represent a way out of the theory fallacies in traditional finance.
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1 For the purposes of this chapter and the book, the two hypotheses are treated as equal, although the RWH is
somewhat stronger than the EMH. See, for instance, Copeland et al. (2005, ch. 10).

Efficient Markets
One of the hypotheses with the strongest empirical support is the efficient market
hypothesis (EMH). It is also called the random walk hypothesis (RWH).1 Simply speak‐
ing, the hypothesis says that the prices of financial instruments at a certain point in
time reflect all available information at this point in time. If the EMH holds true, a
discussion about whether the price of a stock is too high or too low would be point‐
less. The price of a stock, given the EMH, is at all times exactly on its appropriate
level given the available information.

Lots of effort has been put into refining and formalizing the idea of efficient markets
since the formulation and first discussions of the EMH in the 1960s. The definitions
as presented in Jensen (1978) are still used today. Jensen defines an efficient market as
follows:

A market is efficient with respect to an information set θt if it is impossible to make
economic profits by trading on the basis of information set θt. By economic profits, we
mean the risk adjusted returns net of all costs.

In this context, Jensen distinguishes three forms of market efficiency:

Weak form of EMH
In this case, the information set θt only encompasses the past price and return
history of the market.

Semi-strong form of EMH
In this case, the information set θt is taken to be all publicly available informa‐
tion, including not only the past price and return history but also financial
reports, news articles, weather data, and so on.

Strong form of EMH
This case is given when the information set θt includes all information available
to anyone (that is, even private information).

No matter which form is assumed, the implications of the EMH are far reaching. In
his pioneering article on the EMH, Fama (1965) concludes the following:

For many years, economists, statisticians, and teachers of finance have been interested
in developing and testing models of stock price behavior. One important model that
has evolved from this research is the theory of random walks. This theory casts serious
doubt on many other methods for describing and predicting stock price behavior—
methods that have considerable popularity outside the academic world. For example,
we shall see later that, if the random-walk theory is an accurate description of reality,
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2 See also Hilpisch (2018, ch. 15).

then the various “technical” or “chartist” procedures for predicting stock prices are
completely without value.

In other words, if the EMH holds true, then any kind of research or data analysis for
the purposes of achieving above-market returns should be useless in practice. On the
other hand, a multitrillion-dollar asset management industry has evolved that prom‐
ises such above-market returns due to rigorous research and the active management
of capital. In particular, the hedge fund industry is based on promises to deliver alpha
—that is, returns that are above-market and even independent, at least to a large
extent, of the market returns. How hard it is to live up to such a promise is shown by
the data from a recent study by Preqin. The study reports a drop in the Preqin All-
Strategies Hedge Fund index of –3.42% for the year 2018. Close to 40% of all hedge
funds covered by the study experienced losses of 5% or greater for that year.

If a stock price (or the price of any other financial instrument) follows a standard
random walk, then the returns are normally distributed with zero mean. The stock
price goes up with 50% probability and down with 50% probability. In such a context,
the best predictor of tomorrow’s stock price, in a least-squares sense, is today’s stock
price. This is due to the Markov property of random walks, namely that the distribu‐
tion of the future stock prices is independent of the history of the price process; it
only depends on the current price level. Therefore, in the context of a random walk,
the analysis of the historical prices (or returns) is useless for predicting future prices.

Against this background, a semiformal test for efficient markets can be implemented
as follows.2 Take a financial time series, lag the price data multiple times, and use the
lagged price data as features data for an OLS regression that uses the current price
level as the labels data. This is similar in spirit to charting techniques that rely on his‐
torical price formations to predict future prices.

The following Python code implements such an analysis based on lagged price data
for a number of financial instruments—both tradable ones and nontradable ones.
First, import the data and its visualization (see Figure 6-1):

In [1]: import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        pd.set_option('precision', 4)
        np.set_printoptions(suppress=True, precision=4)

In [2]: url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'  

In [3]: data = pd.read_csv(url, index_col=0, parse_dates=True).dropna()  
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In [4]: (data / data.iloc[0]).plot(figsize=(10, 6), cmap='coolwarm');  

Reads the data into a DataFrame object

Plots the normalized time series data

Figure 6-1. Normalized time series data (end-of-day)

Second, the price data for all financial time series is lagged and stored in DataFrame
objects:

In [5]: lags = 7  

In [6]: def add_lags(data, ric, lags):
            cols = []
            df = pd.DataFrame(data[ric])
            for lag in range(1, lags + 1):
                col = 'lag_{}'.format(lag)  
                df[col] = df[ric].shift(lag)  
                cols.append(col)  
            df.dropna(inplace=True)  
            return df, cols

In [7]: dfs = {}
        for sym in data.columns:
            df, cols = add_lags(data, sym, lags)  
            dfs[sym] = df  

In [8]: dfs[sym].head(7)  
Out[8]:                GLD   lag_1   lag_2   lag_3   lag_4   lag_5   lag_6   lag_7
        Date
        2010-01-13  111.54  110.49  112.85  111.37  110.82  111.51  109.70  109.80
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        2010-01-14  112.03  111.54  110.49  112.85  111.37  110.82  111.51  109.70
        2010-01-15  110.86  112.03  111.54  110.49  112.85  111.37  110.82  111.51
        2010-01-19  111.52  110.86  112.03  111.54  110.49  112.85  111.37  110.82
        2010-01-20  108.94  111.52  110.86  112.03  111.54  110.49  112.85  111.37
        2010-01-21  107.37  108.94  111.52  110.86  112.03  111.54  110.49  112.85
        2010-01-22  107.17  107.37  108.94  111.52  110.86  112.03  111.54  110.49

The number of lags (in trading days)

Creates a column name

Lags the price data

Adds the column name to a list object

Deletes all incomplete data rows

Creates the lagged data for every financial time series

Stores the results in a dict object

Shows a sample of the lagged price data

Third, with the data prepared, the OLS regression analysis is straightforward to con‐
duct. Figure 6-2 shows the average optimal regression results. Without a doubt, the
price data that is lagged by only one day has the highest explanatory power. Its weight
is close to 1, supporting the idea that the best predictor for tomorrow’s price of a
financial instrument is its price today. This also holds true for the single regression
results obtained per financial time series:

In [9]: regs = {}
        for sym in data.columns:
            df = dfs[sym]  
            reg = np.linalg.lstsq(df[cols], df[sym], rcond=-1)[0]  
            regs[sym] = reg  

In [10]: rega = np.stack(tuple(regs.values()))  

In [11]: regd = pd.DataFrame(rega, columns=cols, index=data.columns)  

In [12]: regd  
Out[12]:          lag_1   lag_2   lag_3   lag_4   lag_5   lag_6   lag_7
         AAPL.O  1.0106 -0.0592  0.0258  0.0535 -0.0172  0.0060 -0.0184
         MSFT.O  0.8928  0.0112  0.1175 -0.0832 -0.0258  0.0567  0.0323
         INTC.O  0.9519  0.0579  0.0490 -0.0772 -0.0373  0.0449  0.0112
         AMZN.O  0.9799 -0.0134  0.0206  0.0007  0.0525 -0.0452  0.0056
         GS.N    0.9806  0.0342 -0.0172  0.0042 -0.0387  0.0585 -0.0215
         SPY     0.9692  0.0067  0.0228 -0.0244 -0.0237  0.0379  0.0121
         .SPX    0.9672  0.0106  0.0219 -0.0252 -0.0318  0.0515  0.0063
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         .VIX    0.8823  0.0591 -0.0289  0.0284 -0.0256  0.0511  0.0306
         EUR=    0.9859  0.0239 -0.0484  0.0508 -0.0217  0.0149 -0.0055
         XAU=    0.9864  0.0069  0.0166 -0.0215  0.0044  0.0198 -0.0125
         GDX     0.9765  0.0096 -0.0039  0.0223 -0.0364  0.0379 -0.0065
         GLD     0.9766  0.0246  0.0060 -0.0142 -0.0047  0.0223 -0.0106

In [13]: regd.mean().plot(kind='bar', figsize=(10, 6));  

Gets the data for the current time series

Implements the regression analysis

Stores the optimal regression parameters in a dict object

Combines the optimal results into a single ndarray object

Puts the results into a DataFrame object and shows them

Visualizes the average optimal regression parameters (weights) for every lag

Figure 6-2. Average optimal regression parameters for the lagged prices

Given this semiformal analysis, there seems to be strong supporting evidence for the
EMH in its weak form, at least. It is noteworthy that the OLS regression analysis as
implemented here violates several assumptions. Among those is that the features are
assumed to be noncorrelated among each other, whereas they should ideally be highly
correlated with the labels data. However, the lagged price data leads to highly correla‐
ted features. The following Python code presents the correlation data, which shows a
close-to-perfect correlation between all features. This explains why only one feature
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3 For details on stationarity in financial time series, see Tsay (2005, sec. 2.1). Tsay points out: “The foundation of
time series analysis is stationarity.”

(“lag 1”) is enough to accomplish the approximation and prediction based on the
OLS regression approach. Adding more, highly correlated features does not yield any
improvements. Another fundamental assumption violated is the stationarity of the
time series data, which the following code also tests for:3

In [14]: dfs[sym].corr()  
Out[14]:           GLD   lag_1   lag_2   lag_3   lag_4   lag_5   lag_6   lag_7
         GLD    1.0000  0.9972  0.9946  0.9920  0.9893  0.9867  0.9841  0.9815
         lag_1  0.9972  1.0000  0.9972  0.9946  0.9920  0.9893  0.9867  0.9842
         lag_2  0.9946  0.9972  1.0000  0.9972  0.9946  0.9920  0.9893  0.9867
         lag_3  0.9920  0.9946  0.9972  1.0000  0.9972  0.9946  0.9920  0.9893
         lag_4  0.9893  0.9920  0.9946  0.9972  1.0000  0.9972  0.9946  0.9920
         lag_5  0.9867  0.9893  0.9920  0.9946  0.9972  1.0000  0.9972  0.9946
         lag_6  0.9841  0.9867  0.9893  0.9920  0.9946  0.9972  1.0000  0.9972
         lag_7  0.9815  0.9842  0.9867  0.9893  0.9920  0.9946  0.9972  1.0000

In [15]: from statsmodels.tsa.stattools import adfuller  

In [16]: adfuller(data[sym].dropna())  
Out[16]: (-1.9488969577009954,
          0.3094193074034718,
          0,
          2515,
          {'1%': -3.4329527780962255,
           '5%': -2.8626898965523724,
           '10%': -2.567382133955709},
          8446.683102944744)

Shows the correlations between the lagged time series

Tests for stationarity using the Augmented Dickey-Fuller test

In summary, if the EMH holds true, active or algorithmic portfolio management or
trading would not make economic sense. Simply investing in a stock or an efficient
portfolio in the MVP sense, say, and passively holding the investment over a long
period would yield without any effort at least the same, if not superior, returns.
According to the CAPM and the MVP, the higher the risk the investor is willing to
bear, the higher the expected return should be. In fact, as Copeland et al. (2005, ch.
10) point out, the CAPM and the EMH form a joint hypothesis about financial
markets: if the EMH is rejected, then the CAPM must be rejected as well, since its
derivation assumes the EMH to hold true.
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Market Prediction Based on Returns Data
As Chapter 2 shows, ML and, in particular, DL algorithms have generated break‐
throughs in recent years in fields that have proven resistant over pretty long periods
of time to standard statistical or mathematical methods. What about the financial
markets? Might ML and DL algorithms be capable of discovering inefficiencies where
traditional financial econometrics methods, such as OLS regression, fail? Of course,
there are no simple and concise answers to these questions yet.

However, some concrete examples might shed light on possible answers. To this end,
the same data as in the previous section is used to derive log returns from the price
data. The idea is to compare the performance of OLS regression to the performance
of neural networks in predicting the next day’s direction of movement for the differ‐
ent time series. The goal at this stage is to discover statistical inefficiencies as com‐
pared to economic inefficiencies. Statistical inefficiencies are given when a model is
able to predict the direction of the future price movement with a certain edge (say,
the prediction is correct in 55% or 60% of the cases). Economic inefficiencies would
only be given if the statistical inefficiencies can be exploited profitably through a
trading strategy that takes into account, for example, transaction costs.

The first step in the analysis is to create data sets with lagged log returns data. The
normalized lagged log returns data is also tested for stationarity (given), and the fea‐
tures are tested for correlation (not correlated). Since the following analyses rely on
time-series-related data only, they are dealing with weak form market efficiency:

In [17]: rets = np.log(data / data.shift(1))  

In [18]: rets.dropna(inplace=True)

In [19]: dfs = {}
         for sym in data:
             df, cols = add_lags(rets, sym, lags)  
             mu, std = df[cols].mean(), df[cols].std()  
             df[cols] = (df[cols] - mu) / std  
             dfs[sym] = df

In [20]: dfs[sym].head()  
Out[20]:                GLD   lag_1   lag_2   lag_3   lag_4   lag_5   lag_6   lag_7
         Date
         2010-01-14  0.0044  0.9570 -2.1692  1.3386  0.4959 -0.6434  1.6613 -0.1028
         2010-01-15 -0.0105  0.4379  0.9571 -2.1689  1.3388  0.4966 -0.6436  1.6614
         2010-01-19  0.0059 -1.0842  0.4385  0.9562 -2.1690  1.3395  0.4958 -0.6435
         2010-01-20 -0.0234  0.5967 -1.0823  0.4378  0.9564 -2.1686  1.3383  0.4958
         2010-01-21 -0.0145 -2.4045  0.5971 -1.0825  0.4379  0.9571 -2.1680  1.3384

In [21]: adfuller(dfs[sym]['lag_1'])  
Out[21]: (-51.568251505825536,
          0.0,
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4 Another term for the approach is z-score normalization.

          0,
          2507,
          {'1%': -3.4329610922579095,
           '5%': -2.8626935681060375,
           '10%': -2.567384088736619},
          7017.165474260225)

In [22]: dfs[sym].corr()  
Out[22]:           GLD   lag_1   lag_2       lag_3   lag_4       lag_5   lag_6   lag_7
         GLD    1.0000 -0.0297  0.0003  1.2635e-02 -0.0026 -5.9392e-03  0.0099 -0.0013
         lag_1 -0.0297  1.0000 -0.0305  8.1418e-04  0.0128 -2.8765e-03 -0.0053  0.0098
         lag_2  0.0003 -0.0305  1.0000 -3.1617e-02  0.0003  1.3234e-02 -0.0043 -0.0052
         lag_3  0.0126  0.0008 -0.0316  1.0000e+00 -0.0313 -6.8542e-06  0.0141 -0.0044
         lag_4 -0.0026  0.0128  0.0003 -3.1329e-02  1.0000 -3.1761e-02  0.0002  0.0141
         lag_5 -0.0059 -0.0029  0.0132 -6.8542e-06 -0.0318  1.0000e+00 -0.0323  0.0002
         lag_6  0.0099 -0.0053 -0.0043  1.4115e-02  0.0002 -3.2289e-02  1.0000 -0.0324
         lag_7 -0.0013  0.0098 -0.0052 -4.3869e-03  0.0141  2.1707e-04 -0.0324  1.0000

Derives the log returns from the price data

Lags the log returns data

Applies Gaussian normalization to the features data4

Shows a sample of the lagged returns data

Tests for stationarity of the time series data

Shows the correlation data for the features

First, the OLS regression is implemented and the predictions resulting from the
regression are generated. The analysis is implemented on the complete data set. It
shall show how well the algorithms perform in-sample. The accuracy with which OLS
regression predicts the next day’s direction of movement is slightly, or even a few per‐
centage points, above 50% with one exception:

In [23]: from sklearn.metrics import accuracy_score

In [24]: %%time
         for sym in data:
             df = dfs[sym]
             reg = np.linalg.lstsq(df[cols], df[sym], rcond=-1)[0]  
             pred = np.dot(df[cols], reg)  
             acc = accuracy_score(np.sign(df[sym]), np.sign(pred))  
             print(f'OLS | {sym:10s} | acc={acc:.4f}')
         OLS | AAPL.O     | acc=0.5056
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         OLS | MSFT.O     | acc=0.5088
         OLS | INTC.O     | acc=0.5040
         OLS | AMZN.O     | acc=0.5048
         OLS | GS.N       | acc=0.5080
         OLS | SPY        | acc=0.5080
         OLS | .SPX       | acc=0.5167
         OLS | .VIX       | acc=0.5291
         OLS | EUR=       | acc=0.4984
         OLS | XAU=       | acc=0.5207
         OLS | GDX        | acc=0.5307
         OLS | GLD        | acc=0.5072
         CPU times: user 201 ms, sys: 65.8 ms, total: 267 ms
         Wall time: 60.8 ms

The regression step

The prediction step

The accuracy of the prediction

Second, the same analysis is done again but this time with a neural network from
scikit-learn as the model for learning and predicting. The prediction accuracy in-
sample is significantly above 50% throughout and above 60% in a few cases:

In [25]: from sklearn.neural_network import MLPRegressor

In [26]: %%time
         for sym in data.columns:
             df = dfs[sym]
             model = MLPRegressor(hidden_layer_sizes=[512],
                                  random_state=100,
                                  max_iter=1000,
                                  early_stopping=True,
                                  validation_fraction=0.15,
                                  shuffle=False)  
             model.fit(df[cols], df[sym])  
             pred = model.predict(df[cols])  
             acc = accuracy_score(np.sign(df[sym]), np.sign(pred))  
             print(f'MLP | {sym:10s} | acc={acc:.4f}')
         MLP | AAPL.O     | acc=0.6005
         MLP | MSFT.O     | acc=0.5853
         MLP | INTC.O     | acc=0.5766
         MLP | AMZN.O     | acc=0.5510
         MLP | GS.N       | acc=0.6527
         MLP | SPY        | acc=0.5419
         MLP | .SPX       | acc=0.5399
         MLP | .VIX       | acc=0.6579
         MLP | EUR=       | acc=0.5642
         MLP | XAU=       | acc=0.5522
         MLP | GDX        | acc=0.6029
         MLP | GLD        | acc=0.5259
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         CPU times: user 1min 37s, sys: 6.74 s, total: 1min 44s
         Wall time: 14 s

Model instantiation

Model fitting

Prediction step

Accuracy calculation

Third, the same analysis again but with a neural network from the Keras package.
The accuracy results are similar to those from the MLPRegressor, but with a higher
average accuracy:

In [27]: import tensorflow as tf
         from keras.layers import Dense
         from keras.models import Sequential
         Using TensorFlow backend.

In [28]: np.random.seed(100)
         tf.random.set_seed(100)

In [29]: def create_model(problem='regression'):  
             model = Sequential()
             model.add(Dense(512, input_dim=len(cols),
                             activation='relu'))
             if problem == 'regression':
                 model.add(Dense(1, activation='linear'))
                 model.compile(loss='mse', optimizer='adam')
             else:
                 model.add(Dense(1, activation='sigmoid'))
                 model.compile(loss='binary_crossentropy', optimizer='adam')
             return model

In [30]: %%time
         for sym in data.columns[:]:
             df = dfs[sym]
             model = create_model()  
             model.fit(df[cols], df[sym], epochs=25, verbose=False)  
             pred = model.predict(df[cols])  
             acc = accuracy_score(np.sign(df[sym]), np.sign(pred))  
             print(f'DNN | {sym:10s} | acc={acc:.4f}')
         DNN | AAPL.O     | acc=0.6292
         DNN | MSFT.O     | acc=0.5981
         DNN | INTC.O     | acc=0.6073
         DNN | AMZN.O     | acc=0.5781
         DNN | GS.N       | acc=0.6196
         DNN | SPY        | acc=0.5829
         DNN | .SPX       | acc=0.6077
         DNN | .VIX       | acc=0.6392
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         DNN | EUR=       | acc=0.5845
         DNN | XAU=       | acc=0.5881
         DNN | GDX        | acc=0.5829
         DNN | GLD        | acc=0.5666
         CPU times: user 34.3 s, sys: 5.34 s, total: 39.6 s
         Wall time: 23.1 s

Model creation function

Model instantiation

Model fitting

Prediction step

Accuracy calculation

This simple example shows that neural networks can outperform OLS regression sig‐
nificantly in-sample in predicting the next day’s direction of price movements. How‐
ever, how does the picture change when testing for the out-of-sample performance of
the two model types?

To this end, the analyses are repeated, but the training (fitting) step is implemented
on the first 80% of the data while the performance is tested on the remaining 20%.
OLS regression is implemented first. Out-of-sample OLS regression shows similar
accuracy levels as in-sample—around 50%:

In [31]: split = int(len(dfs[sym]) * 0.8)

In [32]: %%time
         for sym in data.columns:
             df = dfs[sym]
             train = df.iloc[:split]  
             reg = np.linalg.lstsq(train[cols], train[sym], rcond=-1)[0]
             test = df.iloc[split:]  
             pred = np.dot(test[cols], reg)
             acc = accuracy_score(np.sign(test[sym]), np.sign(pred))
             print(f'OLS | {sym:10s} | acc={acc:.4f}')
         OLS | AAPL.O     | acc=0.5219
         OLS | MSFT.O     | acc=0.4960
         OLS | INTC.O     | acc=0.5418
         OLS | AMZN.O     | acc=0.4841
         OLS | GS.N       | acc=0.4980
         OLS | SPY        | acc=0.5020
         OLS | .SPX       | acc=0.5120
         OLS | .VIX       | acc=0.5458
         OLS | EUR=       | acc=0.4482
         OLS | XAU=       | acc=0.5299
         OLS | GDX        | acc=0.5159
         OLS | GLD        | acc=0.5100
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         CPU times: user 200 ms, sys: 60.6 ms, total: 261 ms
         Wall time: 61.7 ms

Creates the training data sub-set

Creates the test data sub-set

The performance of the MLPRegressor model is out-of-sample much worse when
compared to the in-sample numbers and similar to the OLS regression results:

In [34]: %%time
         for sym in data.columns:
             df = dfs[sym]
             train = df.iloc[:split]
             model = MLPRegressor(hidden_layer_sizes=[512],
                                  random_state=100,
                                  max_iter=1000,
                                  early_stopping=True,
                                  validation_fraction=0.15,
                                  shuffle=False)
             model.fit(train[cols], train[sym])
             test = df.iloc[split:]
             pred = model.predict(test[cols])
             acc = accuracy_score(np.sign(test[sym]), np.sign(pred))
             print(f'MLP | {sym:10s} | acc={acc:.4f}')
         MLP | AAPL.O     | acc=0.4920
         MLP | MSFT.O     | acc=0.5279
         MLP | INTC.O     | acc=0.5279
         MLP | AMZN.O     | acc=0.4641
         MLP | GS.N       | acc=0.5040
         MLP | SPY        | acc=0.5259
         MLP | .SPX       | acc=0.5478
         MLP | .VIX       | acc=0.5279
         MLP | EUR=       | acc=0.4980
         MLP | XAU=       | acc=0.5239
         MLP | GDX        | acc=0.4880
         MLP | GLD        | acc=0.5000
         CPU times: user 1min 39s, sys: 4.98 s, total: 1min 44s
         Wall time: 13.7 s

The same holds true for the Sequential model from Keras for which the out-of-
sample numbers also show accuracy values between a few percentage points above
and below the 50% threshold:

In [35]: %%time
         for sym in data.columns:
             df = dfs[sym]
             train = df.iloc[:split]
             model = create_model()
             model.fit(train[cols], train[sym], epochs=50, verbose=False)
             test = df.iloc[split:]
             pred = model.predict(test[cols])
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             acc = accuracy_score(np.sign(test[sym]), np.sign(pred))
             print(f'DNN | {sym:10s} | acc={acc:.4f}')
         DNN | AAPL.O     | acc=0.5179
         DNN | MSFT.O     | acc=0.5598
         DNN | INTC.O     | acc=0.4821
         DNN | AMZN.O     | acc=0.4920
         DNN | GS.N       | acc=0.5179
         DNN | SPY        | acc=0.4861
         DNN | .SPX       | acc=0.5100
         DNN | .VIX       | acc=0.5378
         DNN | EUR=       | acc=0.4661
         DNN | XAU=       | acc=0.4602
         DNN | GDX        | acc=0.4841
         DNN | GLD        | acc=0.5378
         CPU times: user 50.4 s, sys: 7.52 s, total: 57.9 s
         Wall time: 32.9 s

Weak Form Market Efficiency

Although the labeling as weak form market efficiency might suggest
otherwise, it is the hardest form in the sense that only time-series-
related data can be used to identify statistical inefficiencies. With
the semi-strong form, any other source of publicly available data
could be added to improve prediction accuracy.

Based on the approaches chosen in this section, markets seem to be at least efficient
in the weak form. Just analyzing historical return patterns based on OLS regression or
neural networks might not be enough to discover statistical inefficiencies.

There are two major elements of the approach chosen in this section that can be
adjusted in the hope of improving prediction results:

Features
In addition to vanilla price-and-returns data, other features can be added to the
data, such as technical indicators (for example, simple moving averages, or SMAs
for short). The hope is, in the technical chartist’s tradition, that such indicators
improve the prediction accuracy.

Bar length
Instead of working with end-of-day data, intraday data might allow for higher
prediction accuracies. Here, the hope is that one is more likely to discover statis‐
tical inefficiencies during the day as compared to at end of day, when all market
participants in general pay the highest attention to making their final trades—by
taking into account all available information.

The following two sections address these elements.
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Market Prediction with More Features
In trading, there is a long tradition of using technical indicators to generate, based on
observed patterns, buy or sell signals. Such technical indicators, basically of any kind,
can also be used as features for the training of neural networks.

The following Python code uses an SMA, rolling minimum and maximum values,
momentum, and rolling volatility as features:

In [36]: url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'

In [37]: data = pd.read_csv(url, index_col=0, parse_dates=True).dropna()

In [38]: def add_lags(data, ric, lags, window=50):
             cols = []
             df = pd.DataFrame(data[ric])
             df.dropna(inplace=True)
             df['r'] = np.log(df / df.shift())
             df['sma'] = df[ric].rolling(window).mean()  
             df['min'] = df[ric].rolling(window).min()  
             df['max'] = df[ric].rolling(window).max()  
             df['mom'] = df['r'].rolling(window).mean()  
             df['vol'] = df['r'].rolling(window).std()  
             df.dropna(inplace=True)
             df['d'] = np.where(df['r'] > 0, 1, 0)  
             features = [ric, 'r', 'd', 'sma', 'min', 'max', 'mom', 'vol']
             for f in features:
                 for lag in range(1, lags + 1):
                     col = f'{f}_lag_{lag}'
                     df[col] = df[f].shift(lag)
                     cols.append(col)
             df.dropna(inplace=True)
             return df, cols

In [39]: lags = 5

In [40]: dfs = {}
         for ric in data:
             df, cols = add_lags(data, ric, lags)
             dfs[ric] = df.dropna(), cols

Simple moving average (SMA)

Rolling minimum

Rolling maximum

Momentum as average of log returns

Rolling volatility

Market Prediction with More Features | 199



Direction as binary feature

Technical Indicators as Features

As the preceding examples show, basically any traditional technical
indicator used for investing or intraday trading can be used as a
feature to train ML algorithms. In that sense, AI and ML do not
necessarily render such indicators obsolete, rather they can indeed
enrich the ML-driven derivation of trading strategies.

In-sample, the performance of the MLPClassifier model is now much better
when taking into account the new features and normalizing them for training. The
Sequential model of Keras reaches accuracies of around 70% for the number of
epochs trained. From experience, these can be easily increased by increasing the
number of epochs and/or the capacity of the neural network:

In [41]: from sklearn.neural_network import MLPClassifier

In [42]: %%time
         for ric in data:
             model = MLPClassifier(hidden_layer_sizes=[512],
                                   random_state=100,
                                   max_iter=1000,
                                   early_stopping=True,
                                   validation_fraction=0.15,
                                   shuffle=False)
             df, cols = dfs[ric]
             df[cols] = (df[cols] - df[cols].mean()) / df[cols].std()  
             model.fit(df[cols], df['d'])
             pred = model.predict(df[cols])
             acc = accuracy_score(df['d'], pred)
             print(f'IN-SAMPLE | {ric:7s} | acc={acc:.4f}')
         IN-SAMPLE | AAPL.O  | acc=0.5510
         IN-SAMPLE | MSFT.O  | acc=0.5376
         IN-SAMPLE | INTC.O  | acc=0.5607
         IN-SAMPLE | AMZN.O  | acc=0.5559
         IN-SAMPLE | GS.N    | acc=0.5794
         IN-SAMPLE | SPY     | acc=0.5729
         IN-SAMPLE | .SPX    | acc=0.5941
         IN-SAMPLE | .VIX    | acc=0.6940
         IN-SAMPLE | EUR=    | acc=0.5766
         IN-SAMPLE | XAU=    | acc=0.5672
         IN-SAMPLE | GDX     | acc=0.5847
         IN-SAMPLE | GLD     | acc=0.5567
         CPU times: user 1min 1s, sys: 4.5 s, total: 1min 6s
         Wall time: 9.05 s

In [43]: %%time
         for ric in data:
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             model = create_model('classification')
             df, cols = dfs[ric]
             df[cols] = (df[cols] - df[cols].mean()) / df[cols].std()  
             model.fit(df[cols], df['d'], epochs=50, verbose=False)
             pred = np.where(model.predict(df[cols]) > 0.5, 1, 0)
             acc = accuracy_score(df['d'], pred)
             print(f'IN-SAMPLE | {ric:7s} | acc={acc:.4f}')
         IN-SAMPLE | AAPL.O  | acc=0.7156
         IN-SAMPLE | MSFT.O  | acc=0.7156
         IN-SAMPLE | INTC.O  | acc=0.7046
         IN-SAMPLE | AMZN.O  | acc=0.6640
         IN-SAMPLE | GS.N    | acc=0.6855
         IN-SAMPLE | SPY     | acc=0.6696
         IN-SAMPLE | .SPX    | acc=0.6579
         IN-SAMPLE | .VIX    | acc=0.7489
         IN-SAMPLE | EUR=    | acc=0.6737
         IN-SAMPLE | XAU=    | acc=0.7143
         IN-SAMPLE | GDX     | acc=0.6826
         IN-SAMPLE | GLD     | acc=0.7078
         CPU times: user 1min 5s, sys: 7.06 s, total: 1min 12s
         Wall time: 44.3 s

Normalizes the features data

Are these improvements to be transferred to the out-of-sample prediction accuracies?
The following Python code repeats the analysis, this time with the training and test
split as used before. Unfortunately, the picture is mixed at best. The numbers do not
represent real improvements when compared to the approach, relying only on lagged
returns data as features. For selected instruments, there seems to be an edge of a few
percentage points in the prediction accuracy compared to the 50% benchmark. For
others, however, the accuracy is still below 50%—as illustrated for the MLPClassifier
model:

In [44]: def train_test_model(model):
             for ric in data:
                 df, cols = dfs[ric]
                 split = int(len(df) * 0.85)
                 train = df.iloc[:split].copy()
                 mu, std = train[cols].mean(), train[cols].std()  
                 train[cols] = (train[cols] - mu) / std
                 model.fit(train[cols], train['d'])
                 test = df.iloc[split:].copy()
                 test[cols] = (test[cols] - mu) / std
                 pred = model.predict(test[cols])
                 acc = accuracy_score(test['d'], pred)
                 print(f'OUT-OF-SAMPLE | {ric:7s} | acc={acc:.4f}')

In [45]: model_mlp = MLPClassifier(hidden_layer_sizes=[512],
                                   random_state=100,
                                   max_iter=1000,
                                   early_stopping=True,
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                                   validation_fraction=0.15,
                                   shuffle=False)

In [46]: %time train_test_model(model_mlp)
         OUT-OF-SAMPLE | AAPL.O  | acc=0.4432
         OUT-OF-SAMPLE | MSFT.O  | acc=0.4595
         OUT-OF-SAMPLE | INTC.O  | acc=0.5000
         OUT-OF-SAMPLE | AMZN.O  | acc=0.5270
         OUT-OF-SAMPLE | GS.N    | acc=0.4838
         OUT-OF-SAMPLE | SPY     | acc=0.4811
         OUT-OF-SAMPLE | .SPX    | acc=0.5027
         OUT-OF-SAMPLE | .VIX    | acc=0.5676
         OUT-OF-SAMPLE | EUR=    | acc=0.4649
         OUT-OF-SAMPLE | XAU=    | acc=0.5514
         OUT-OF-SAMPLE | GDX     | acc=0.5162
         OUT-OF-SAMPLE | GLD     | acc=0.4946
         CPU times: user 44.9 s, sys: 2.64 s, total: 47.5 s
         Wall time: 6.37 s

Training data set statistics are used for normalization.

The good in-sample performance and the not-so-good out-of-sample performance
suggest that overfitting of the neural network might play a crucial role. One approach
to avoid overfitting is to use ensemble methods that combine multiple trained models
of the same type to come up with a more robust meta model and better out-of-sample
predictions. One such method is called bagging. scikit-learn has an implementa‐
tion of this approach in the form of the BaggingClassifier class. Using multiple
estimators allows for training every one of them without exposing them to the com‐
plete training data set or all features. This should help in avoiding overfitting.

The following Python code implements a bagging approach based on a number of
base estimators of the same type (MLPClassifier). The prediction accuracies are now
consistently above 50%. Some accuracy values are above 55%, which can be consid‐
ered pretty high in this context. Overall, bagging seems to avoid, at least to some
extent, overfitting and seems to improve the predictions noticeably:

In [47]: from sklearn.ensemble import BaggingClassifier

In [48]: base_estimator = MLPClassifier(hidden_layer_sizes=[256],
                                   random_state=100,
                                   max_iter=1000,
                                   early_stopping=True,
                                   validation_fraction=0.15,
                                   shuffle=False)  

In [49]: model_bag = BaggingClassifier(base_estimator=base_estimator,  
                                   n_estimators=35,  
                                   max_samples=0.25,  
                                   max_features=0.5,  
                                   bootstrap=False,  
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                                   bootstrap_features=True,  
                                   n_jobs=8,  
                                   random_state=100
                                  )

In [50]: %time train_test_model(model_bag)
         OUT-OF-SAMPLE | AAPL.O  | acc=0.5243
         OUT-OF-SAMPLE | MSFT.O  | acc=0.5703
         OUT-OF-SAMPLE | INTC.O  | acc=0.5027
         OUT-OF-SAMPLE | AMZN.O  | acc=0.5270
         OUT-OF-SAMPLE | GS.N    | acc=0.5243
         OUT-OF-SAMPLE | SPY     | acc=0.5595
         OUT-OF-SAMPLE | .SPX    | acc=0.5514
         OUT-OF-SAMPLE | .VIX    | acc=0.5649
         OUT-OF-SAMPLE | EUR=    | acc=0.5108
         OUT-OF-SAMPLE | XAU=    | acc=0.5378
         OUT-OF-SAMPLE | GDX     | acc=0.5162
         OUT-OF-SAMPLE | GLD     | acc=0.5432
         CPU times: user 2.55 s, sys: 494 ms, total: 3.05 s
         Wall time: 11.1 s

The base estimator

The number of estimators used

Maximum percentage of training data used per estimator

Maximum number of features used per estimator

Whether to bootstrap (reuse) data

Whether to bootstrap (reuse) features

Number of parallel jobs

End-of-Day Market Efficiency

The efficient market hypothesis dates back to the 1960s and 1970s,
periods during which end-of-day data was basically the only avail‐
able time series data. Back in those days (and still today), it could
be assumed that market players paid particularly close attention to
their positions and trades the closer the end of the trading session
came. This might be more true for stocks, say, and a bit less so for
currencies, which are traded in principle around the clock.
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Market Prediction Intraday
This chapter has not produced conclusive evidence, but the analyses implemented so
far point more in the direction that markets are weakly efficient on an end-of-day
basis. What about intraday markets? Are there more consistent statistical inefficien‐
cies to be spotted? To work toward an answer of this question, another data set is nec‐
essary. The following Python code uses a data set that is composed of the same
instruments as in the end-of-day data set, but now contains hourly closing prices.
Since trading hours might differ from instrument to instrument, the data set is
incomplete. This is no problem, though, since the analyses are implemented time
series by time series.

The technical implementation for the hourly data is essentially the same as before,
relying on the same code as the end-of-day analysis:

In [51]: url = 'http://hilpisch.com/aiif_eikon_id_data.csv'

In [52]: data = pd.read_csv(url, index_col=0, parse_dates=True)

In [53]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 5529 entries, 2019-03-01 00:00:00 to 2020-01-01 00:00:00
         Data columns (total 12 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   AAPL.O  3384 non-null   float64
          1   MSFT.O  3378 non-null   float64
          2   INTC.O  3275 non-null   float64
          3   AMZN.O  3381 non-null   float64
          4   GS.N    1686 non-null   float64
          5   SPY     3388 non-null   float64
          6   .SPX    1802 non-null   float64
          7   .VIX    2959 non-null   float64
          8   EUR=    5429 non-null   float64
          9   XAU=    5149 non-null   float64
          10  GDX     3173 non-null   float64
          11  GLD     3351 non-null   float64
         dtypes: float64(12)
         memory usage: 561.5 KB

In [54]: lags = 5

In [55]: dfs = {}
         for ric in data:
             df, cols = add_lags(data, ric, lags)
             dfs[ric] = df, cols

The prediction accuracies intraday are again distributed around 50% with a relatively
wide spread for the single neural network. On the positive side, some accuracy values
are above 55%. The bagging meta model shows a more consistent out-of-sample
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performance, though, with many of the observed accuracy values a few percentage
points above the 50% benchmark:

In [56]: %time train_test_model(model_mlp)
         OUT-OF-SAMPLE | AAPL.O  | acc=0.5420
         OUT-OF-SAMPLE | MSFT.O  | acc=0.4930
         OUT-OF-SAMPLE | INTC.O  | acc=0.5549
         OUT-OF-SAMPLE | AMZN.O  | acc=0.4709
         OUT-OF-SAMPLE | GS.N    | acc=0.5184
         OUT-OF-SAMPLE | SPY     | acc=0.4860
         OUT-OF-SAMPLE | .SPX    | acc=0.5019
         OUT-OF-SAMPLE | .VIX    | acc=0.4885
         OUT-OF-SAMPLE | EUR=    | acc=0.5130
         OUT-OF-SAMPLE | XAU=    | acc=0.4824
         OUT-OF-SAMPLE | GDX     | acc=0.4765
         OUT-OF-SAMPLE | GLD     | acc=0.5455
         CPU times: user 1min 4s, sys: 5.05 s, total: 1min 9s
         Wall time: 9.56 s

In [57]: %time train_test_model(model_bag)
         OUT-OF-SAMPLE | AAPL.O  | acc=0.5660
         OUT-OF-SAMPLE | MSFT.O  | acc=0.5431
         OUT-OF-SAMPLE | INTC.O  | acc=0.5072
         OUT-OF-SAMPLE | AMZN.O  | acc=0.5110
         OUT-OF-SAMPLE | GS.N    | acc=0.5020
         OUT-OF-SAMPLE | SPY     | acc=0.5120
         OUT-OF-SAMPLE | .SPX    | acc=0.4677
         OUT-OF-SAMPLE | .VIX    | acc=0.5092
         OUT-OF-SAMPLE | EUR=    | acc=0.5242
         OUT-OF-SAMPLE | XAU=    | acc=0.5255
         OUT-OF-SAMPLE | GDX     | acc=0.5085
         OUT-OF-SAMPLE | GLD     | acc=0.5374
         CPU times: user 2.64 s, sys: 439 ms, total: 3.08 s
         Wall time: 12.4 s

Intraday Market Efficiency

Even if markets are weakly efficient on an end-of-day basis, they can
nevertheless be weakly inefficient intraday. Such statistical ineffi‐
ciencies might result from temporary imbalances, buy or sell pres‐
sures, market overreactions, technically driven buy or sell orders,
and so on. The central question is whether such statistical ineffi‐
ciencies, once discovered, can be exploited profitably via specific
trading strategies.

Conclusions
In their widely cited article “The Unreasonable Effectiveness of Data,” Halevy et al.
(2009) point out that economists suffer from what they call physics envy. By that, they
mean the inability to explain human behavior in the same mathematically elegant
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5 There are, of course, more simple financial aspects that allow the modeling by a simple formula. An example
might be the derivation of a continuous discount factor D for a period of two years T = 2 if the relevant log
return is r = 0.01. It is given by D r, T = exp − rT = exp -0.01 · 2 = 0.9802. AI or ML cannot offer any
benefits here.

way that physicists are able to describe even complex real-world phenomena. One
such example is Albert Einstein’s probably best-known formula E = mc2, which equa‐
tes energy with the mass of an object times the speed of light squared.

In economics and finance, researchers for decades have tried to emulate the physical
approach in deriving and proving simple, elegant equations to explain economic and
financial phenomena. But as Chapter 3 and Chapter 4 together show, many of the
most elegant financial theories have hardly any supporting evidence in the real finan‐
cial world in which the simplifying assumptions, such as normal distributions and
linear relationships, do not hold.

As Halevy et al. (2009) explain in their article, there might be domains, such as natu‐
ral languages and the rules they follow, that defy the derivation and formulation of
concise, elegant theories. Researchers might simply need to rely on complex theories
and models that are driven by data. For language in particular, the World Wide Web
represents a treasure trove of big data. And big data seems to be required to train ML
and DL algorithms on certain tasks, such as natural language processing or transla‐
tion on a human level.

After all, finance might be a discipline that has more in common with natural lan‐
guage than with physics. Maybe there are, after all, no simple, elegant formulas that
describe important financial phenomena, such as the daily change in a currency rate
or the price of a stock.5 Maybe the truth might be found only in the big data
that nowadays is available in programmatic fashion to financial researchers and
academics alike.

This chapter presents the beginning of the quest to uncover the truth, to discover the
holy grail of finance: proving that markets are not that efficient after all. The relatively
simple neural network approaches of this chapter only rely on time-series-related fea‐
tures for the training. The labels are simple and straightforward: whether the market
(financial instrument’s price) goes up or down. The goal is to discover statistical inef‐
ficiencies in predicting the future market direction. This in turn represents the first
step in exploiting such inefficiencies economically through an implementable trading
strategy.

Agrawal et al. (2018) explain in detail, with many examples, that predictions them‐
selves are only one side of the coin. Decision and implementation rules that specify in
detail how a certain prediction is dealt with are equally important. The same holds
true in an algorithmic trading context: the signal (prediction) is only the beginning.
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The hard part is to optimally execute an appropriate trade, to monitor active trades,
to implement appropriate risk measures—such as stop loss and take profit orders—
and so on.

In its quest for statistical inefficiencies, this chapter relies on data and neural net‐
works only. There is no theory involved, and there are no assumptions about how
market participants might behave, or similar reasonings. The major modeling effort
is done with regard to preparing the features, which of course represent what the
modeler considers important. One implicit assumption in the approach taken is that
statistical inefficiencies can be discovered based on time-series-related data only. This
is to say that markets are not even weakly efficient—the most difficult form of the
three to disprove.

Relying on financial data only and applying general ML and DL algorithms and mod‐
els to it are what this book considers AI-first finance. No theories needed, no model‐
ing of human behavior, no assumptions about distributions or the nature of
relationships—just data and algorithms. In that sense, AI-first finance could also be
labeled theory-free or model-free finance.
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PART III

Statistical Inefficiencies

“There are patterns in the market,” Simons told a colleague. “I know we can find
them.”1

—Gregory Zuckerman (2019)

The major goal of this part is to apply neural networks and reinforcement learning to
discover statistical inefficiencies in financial markets (data). A statistical inefficiency,
for the purposes of this book, is found when a predictor (a model or algorithm in gen‐
eral or a neural network in particular) predicts markets significantly better than a
random predictor assigning equal probability to upwards and downwards move‐
ments. In an algorithmic trading context, to have such a predictor available is a pre‐
requisite for the generation of alpha or above-market returns.

This part consists of three chapters that provide more background, details, and exam‐
ples related to dense neural networks (DNNs), recurrent neural networks (RNNs),
and reinforcement learning (RL):

• Chapter 7 covers DNNs in some more detail and applies them to the problem of
predicting the direction of financial market movements. Historical data is used to
generate lagged features data and to generate binary labels data. Such data sets
are then used to train DNNs via supervised learning. The focus lies on identify‐
ing statistical inefficiencies in financial markets. In some of the examples, the
DNN achieves an out-of-sample prediction accuracy of more than 60%.



• Chapter 8 is about RNNs, which are designed to accommodate the specific
nature of sequential data, such as textual data or time series data. The idea is to
add some form of memory to the network that carries previous (historical) infor‐
mation through the network (layers). The approach taken in this chapter is close
to the one in Chapter 7, with the same goal of discovering statistical inefficiencies
in the financial market data. As numerical examples illustrate, RNNs also can
reach prediction accuracies out-of-sample of more than 60%.

• Chapter 9 discusses RL as one of the major success stories in AI. The chapter dis‐
cusses different RL agents applied to both a simulated physical environment from
the OpenAI Gym and financial market environments as developed in the chapter.
The algorithm of choice in RL often is Q-learning, which is discussed in detail
and applied to train a trading bot. The trading bot shows respectable out-of-
sample financial performance, which is generally an even more important yard‐
stick than prediction accuracy alone. In that sense, the chapter builds a natural
bridge to Part IV, which is concerned with exploiting statistical inefficiencies
economically.

Although they are quite an important type of a neural network, convolutional neural
networks (CNNs) are not discussed in detail in this part. Appendix C illustrates the
application of CNNs in a concise way. In many cases, CNNs can also be applied to the
problems that DNNs and RNNs are applied to in this part of the book.

The approach in this part is a practical one, leaving out many important details with
regard to the algorithms and techniques applied. This seems justified since there are a
number of good resources in book form and otherwise available that can be consulted
for technical details and background information. The chapters to follow provide ref‐
erences to a select few, generally comprehensive, resources when appropriate.



1 See Chollet (2017) for more details and background information on the Keras package. See Goodfellow et al.
(2016) for a comprehensive treatment of neural networks and related methods.

CHAPTER 7

Dense Neural Networks

[I]f you’re trying to predict the movements of a stock on the stock market given its
recent price history, you’re unlikely to succeed, because price history doesn’t contain
much predictive information.

—François Chollet (2017)

This chapter is about important aspects of dense neural networks. Previous chapters
have already made use of this type of neural network. In particular, the
MLPClassifier and MLPRegressor models from scikit-learn and the Sequential
model from Keras for classification and estimation are dense neural networks
(DNNs). This chapter exclusively focuses on Keras since it gives more freedom and
flexibility in modeling DNNs.1

“The Data” on page 212 introduces the foreign exchange (FX) data set that the other
sections in this chapter use. “Baseline Prediction” on page 214 generates a baseline,
in-sample prediction on the new data set. Normalization of training and test data is
introduced in “Normalization” on page 218. As means to avoid overfitting, “Dropout”
on page 220 and “Regularization” on page 222 discuss dropout and regularization as
popular methods. Bagging, as another method to avoid overfitting and already used
in Chapter 6, is revisited in “Bagging” on page 225. Finally, “Optimizers” on page 227
compares the performance of different optimizers that can be used with Keras DNN
models.

Although the introductory quote for the chapter might give little reason for hope, the
main goal for this chapter—as well as for Part III as a whole—is to discover statistical
inefficiencies in financial markets (time series) by applying neural networks. The
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numerical results presented in this chapter, such as prediction accuracies of 60% and
more in certain cases, indicate that at least some hope is justified.

The Data
Chapter 6 discovers hints for statistical inefficiencies for, among other time series, the
intraday price series of the EUR/USD currency pair. This chapter and the following
ones focus on foreign exchange (FX) as an asset class and specifically on the
EUR/USD currency pair. Among other reasons, economically exploiting statistical
inefficiencies for FX is in general not as involved as for other asset classes, such as for
volatility products like the VIX volatility index. Free and comprehensive data availa‐
bility is also often given for FX. The following data set is from the Refinitiv Eikon
Data API. The data set has been retrieved via the API. The data set contains open,
high, low, and close values. Figure 7-1 visualizes the closing prices:

In [1]: import os
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        pd.set_option('precision', 4)
        np.set_printoptions(suppress=True, precision=4)
        os.environ['PYTHONHASHSEED'] = '0'

In [2]: url = 'http://hilpisch.com/aiif_eikon_id_eur_usd.csv'  

In [3]: symbol = 'EUR_USD'

In [4]: raw = pd.read_csv(url, index_col=0, parse_dates=True)  

In [5]: raw.head()
Out[5]:                        HIGH     LOW    OPEN   CLOSE
        Date
        2019-10-01 00:00:00  1.0899  1.0897  1.0897  1.0899
        2019-10-01 00:01:00  1.0899  1.0896  1.0899  1.0898
        2019-10-01 00:02:00  1.0898  1.0896  1.0898  1.0896
        2019-10-01 00:03:00  1.0898  1.0896  1.0897  1.0898
        2019-10-01 00:04:00  1.0898  1.0896  1.0897  1.0898

In [6]: raw.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 96526 entries, 2019-10-01 00:00:00 to 2019-12-31 23:06:00
        Data columns (total 4 columns):
         #   Column  Non-Null Count  Dtype
        ---  ------  --------------  -----
         0   HIGH    96526 non-null  float64
         1   LOW     96526 non-null  float64
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         2   OPEN    96526 non-null  float64
         3   CLOSE   96526 non-null  float64
        dtypes: float64(4)
        memory usage: 3.7 MB

In [7]: data = pd.DataFrame(raw['CLOSE'].loc[:])  
        data.columns = [symbol]  

In [8]: data = data.resample('1h', label='right').last().ffill()  

In [9]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 2208 entries, 2019-10-01 01:00:00 to 2020-01-01 00:00:00
        Freq: H
        Data columns (total 1 columns):
         #   Column   Non-Null Count  Dtype
        ---  ------   --------------  -----
         0   EUR_USD  2208 non-null   float64
        dtypes: float64(1)
        memory usage: 34.5 KB

In [10]: data.plot(figsize=(10, 6));  

Reads the data into a DataFrame object

Selects, resamples, and plots the closing prices

Figure 7-1. Mid-closing prices for EUR/USD (intraday)
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2 See this blog post, which discusses solutions to class imbalance with Keras.

Baseline Prediction
Based on the new data set, the prediction approach from Chapter 6 is repeated. First
is the creation of the lagged features:

In [11]: lags = 5

In [12]: def add_lags(data, symbol, lags, window=20):  
             cols = []
             df = data.copy()
             df.dropna(inplace=True)
             df['r'] = np.log(df / df.shift())
             df['sma'] = df[symbol].rolling(window).mean()
             df['min'] = df[symbol].rolling(window).min()
             df['max'] = df[symbol].rolling(window).max()
             df['mom'] = df['r'].rolling(window).mean()
             df['vol'] = df['r'].rolling(window).std()
             df.dropna(inplace=True)
             df['d'] = np.where(df['r'] > 0, 1, 0)
             features = [symbol, 'r', 'd', 'sma', 'min', 'max', 'mom', 'vol']
             for f in features:
                 for lag in range(1, lags + 1):
                     col = f'{f}_lag_{lag}'
                     df[col] = df[f].shift(lag)
                     cols.append(col)
             df.dropna(inplace=True)
             return df, cols

In [13]: data, cols = add_lags(data, symbol, lags)

Slightly adjusted function from Chapter 6

Second, a look at the labels data. A major problem in classification that can arise
depending on the data set available is class imbalance. This means, in the context of
binary labels, that the frequency of one particular class compared to the other class
might be higher. This might lead to situations in which the neural network simply
predicts the class with the higher frequency since this already can lead to low loss and
high accuracy values. Applying appropriate weights, one can make sure that both
classes gain equal importance during the DNN training step:2

In [14]: len(data)
Out[14]: 2183

In [15]: c = data['d'].value_counts()  
         c  
Out[15]: 0    1445
         1     738
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         Name: d, dtype: int64

In [16]: def cw(df):  
             c0, c1 = np.bincount(df['d'])
             w0 = (1 / c0) * (len(df)) / 2
             w1 = (1 / c1) * (len(df)) / 2
             return {0: w0, 1: w1}

In [17]: class_weight = cw(data)  

In [18]: class_weight  
Out[18]: {0: 0.755363321799308, 1: 1.4789972899728998}

In [19]: class_weight[0] * c[0]  
Out[19]: 1091.5

In [20]: class_weight[1] * c[1]  
Out[20]: 1091.5

Shows the frequency of the two classes

Calculates appropriate weights to reach an equal weighting

With the calculated weights, both classes gain equal weight

Third is the creation of the DNN model with Keras and the training of the model on
the complete data set. The baseline performance in-sample is around 60%:

In [21]: import random
         import tensorflow as tf
         from keras.layers import Dense
         from keras.models import Sequential
         from keras.optimizers import Adam
         from sklearn.metrics import accuracy_score
         Using TensorFlow backend.

In [22]: def set_seeds(seed=100):
             random.seed(seed)  
             np.random.seed(seed)  
             tf.random.set_seed(seed)  

In [23]: optimizer = Adam(lr=0.001)  

In [24]: def create_model(hl=1, hu=128, optimizer=optimizer):
             model = Sequential()
             model.add(Dense(hu, input_dim=len(cols),
                             activation='relu'))  
             for _ in range(hl):
                 model.add(Dense(hu, activation='relu'))  
             model.add(Dense(1, activation='sigmoid'))  
             model.compile(loss='binary_crossentropy',  
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                           optimizer=optimizer,  
                           metrics=['accuracy'])  
             return model

In [25]: set_seeds()
         model = create_model(hl=1, hu=128)

In [26]: %%time
         model.fit(data[cols], data['d'], epochs=50,
                   verbose=False, class_weight=cw(data))
         CPU times: user 6.44 s, sys: 939 ms, total: 7.38 s
         Wall time: 4.07 s

Out[26]: <keras.callbacks.callbacks.History at 0x7fbfc2ee6690>

In [27]: model.evaluate(data[cols], data['d'])
         2183/2183 [==============================] - 0s 24us/step

Out[27]: [0.582192026280068, 0.6087952256202698]

In [28]: data['p'] = np.where(model.predict(data[cols]) > 0.5, 1, 0)

In [29]: data['p'].value_counts()
Out[29]: 1    1340
         0     843
         Name: p, dtype: int64

Python random number seed

NumPy random number seed

TensorFlow random number seed

Default optimizer (see https://oreil.ly/atpu8)

First layer

Additional layers

Output layer

Loss function (see https://oreil.ly/cVGVf)

Optimizer to be used

Additional metrics to be collected
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The same holds true for the performance of the model out-of-sample. It is still well
above 60%. This can be considered already quite good:

In [30]: split = int(len(data) * 0.8)  

In [31]: train = data.iloc[:split].copy()  

In [32]: test = data.iloc[split:].copy()  

In [33]: set_seeds()
         model = create_model(hl=1, hu=128)

In [34]: %%time
         model.fit(train[cols], train['d'],
                   epochs=50, verbose=False,
                   validation_split=0.2, shuffle=False,
                   class_weight=cw(train))
         CPU times: user 4.72 s, sys: 686 ms, total: 5.41 s
         Wall time: 3.14 s

Out[34]: <keras.callbacks.callbacks.History at 0x7fbfc3231250>

In [35]: model.evaluate(train[cols], train['d'])  
         1746/1746 [==============================] - 0s 13us/step

Out[35]: [0.612861613500842, 0.5853379368782043]

In [36]: model.evaluate(test[cols], test['d'])  
         437/437 [==============================] - 0s 16us/step

Out[36]: [0.5946959675858714, 0.6247139573097229]

In [37]: test['p'] = np.where(model.predict(test[cols]) > 0.5, 1, 0)

In [38]: test['p'].value_counts()
Out[38]: 1    291
         0    146
         Name: p, dtype: int64

Splits the whole data set…

…into the training data set…

…and the test data set.

Evaluates the in-sample performance.

Evaluates the out-of-sample performance.
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Figure 7-2 shows how the accuracy on the training and validation data sub-sets
changes over the training epochs:

In [39]: res = pd.DataFrame(model.history.history)

In [40]: res[['accuracy', 'val_accuracy']].plot(figsize=(10, 6), style='--');

Figure 7-2. Training and validation accuracy values

The analysis in this section sets the stage for the more elaborate use of DNNs with
Keras. It presents a baseline market prediction approach. The following sections add
different elements that are primarily supposed to improve the out-of-sample model
performance and to avoid overfitting of the model to the training data.

Normalization
The baseline prediction in “Baseline Prediction” on page 214 takes the lagged features
as they are. In Chapter 6, the features data is normalized by subtracting the mean of
the training data for every feature and dividing it by the standard deviation of the
training data. This normalization technique is called Gaussian normalization and
proves often, if not always, to be an important aspect when training a neural network.
As the following Python code and its results illustrate, the in-sample performance
increases significantly when working with normalized features data. The out-of-
sample performance also slightly increases. However, there is no guarantee that the
out-of-sample performance increases through features normalization:

In [41]: mu, std = train.mean(), train.std()  

In [42]: train_ = (train - mu) / std  

In [43]: set_seeds()
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         model = create_model(hl=2, hu=128)

In [44]: %%time
         model.fit(train_[cols], train['d'],
                   epochs=50, verbose=False,
                   validation_split=0.2, shuffle=False,
                   class_weight=cw(train))
         CPU times: user 5.81 s, sys: 879 ms, total: 6.69 s
         Wall time: 3.53 s

Out[44]: <keras.callbacks.callbacks.History at 0x7fbfa51353d0>

In [45]: model.evaluate(train_[cols], train['d'])  
         1746/1746 [==============================] - 0s 14us/step

Out[45]: [0.4253406366728084, 0.887170672416687]

In [46]: test_ = (test - mu) / std  

In [47]: model.evaluate(test_[cols], test['d'])  
         437/437 [==============================] - 0s 24us/step

Out[47]: [1.1377735263422917, 0.681922197341919]

In [48]: test['p'] = np.where(model.predict(test_[cols]) > 0.5, 1, 0)

In [49]: test['p'].value_counts()
Out[49]: 0    281
         1    156
         Name: p, dtype: int64

Calculates the mean and standard deviation for all training features

Normalizes the training data set based on Gaussian normalization

Evaluates the in-sample performance

Normalizes the test data set based on Gaussian normalization

Evaluates the out-of-sample performance

A major problem that often arises is overfitting. It is impressively visualized in
Figure 7-3, which shows a steadily improving training accuracy while the validation
accuracy decreases slowly:

In [50]: res = pd.DataFrame(model.history.history)

In [51]: res[['accuracy', 'val_accuracy']].plot(figsize=(10, 6), style='--');

Normalization | 219



Figure 7-3. Training and validation accuracy values (normalized features data)

Three candidate methods to avoid overfitting are dropout, regularization, and bagging.
The following sections discuss these methods. The impact of the chosen optimizer is
also discussed later in this chapter.

Dropout
The idea of dropout is that neural networks should not use all hidden units during the
training stage. The analogy to the human brain is that a human being regularly for‐
gets information that was previously learned. This, so to say, keeps the human brain
“open minded.” Ideally, a neural network should behave similarly: the connections in
the DNN should not become too strong in order to avoid overfitting to the training
data.

Technically, a Keras model has additional layers between the hidden layers that man‐
age the dropout. The major parameter is the rate with which the hidden units of a
layer get dropped. These drops in general happen in randomized fashion. This can be
avoided by fixing the seed parameter. While the in-sample performance decreases,
the out-of-sample performance slightly decreases as well. However, the difference
between the two performance measures is smaller, which is in general a desirable
situation:

In [52]: from keras.layers import Dropout

In [53]: def create_model(hl=1, hu=128, dropout=True, rate=0.3,
                          optimizer=optimizer):
             model = Sequential()
             model.add(Dense(hu, input_dim=len(cols),
                             activation='relu'))
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             if dropout:
                 model.add(Dropout(rate, seed=100))  
             for _ in range(hl):
                 model.add(Dense(hu, activation='relu'))
                 if dropout:
                     model.add(Dropout(rate, seed=100))  
             model.add(Dense(1, activation='sigmoid'))
             model.compile(loss='binary_crossentropy', optimizer=optimizer,
                          metrics=['accuracy'])
             return model

In [54]: set_seeds()
         model = create_model(hl=1, hu=128, rate=0.3)

In [55]: %%time
         model.fit(train_[cols], train['d'],
                   epochs=50, verbose=False,
                   validation_split=0.15, shuffle=False,
                   class_weight=cw(train))
         CPU times: user 5.46 s, sys: 758 ms, total: 6.21 s
         Wall time: 3.53 s

Out[55]: <keras.callbacks.callbacks.History at 0x7fbfa6386550>

In [56]: model.evaluate(train_[cols], train['d'])
         1746/1746 [==============================] - 0s 20us/step

Out[56]: [0.4423361133190911, 0.7840778827667236]

In [57]: model.evaluate(test_[cols], test['d'])
         437/437 [==============================] - 0s 34us/step

Out[57]: [0.5875822428434883, 0.6430205702781677]

Adds dropout after each layer

As Figure 7-4 illustrates, the training accuracy and validation accuracy now do not
drift apart as fast as before:

In [58]: res = pd.DataFrame(model.history.history)

In [59]: res[['accuracy', 'val_accuracy']].plot(figsize=(10, 6), style='--');
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Figure 7-4. Training and validation accuracy values (with dropout)

Intentional Forgetting

Dropout in the Sequential model of Keras emulates what all
human beings experience: forgetting previously memorized infor‐
mation. This is accomplished by deactivating certain hidden units
of a hidden layer during training. In effect, this often avoids, to a
larger extent, overfitting a neural network to the training data.

Regularization
Another means to avoid overfitting is regularization. With regularization, large
weights in the neural network get penalized in the calculation of the loss (function).
This avoids the situation where certain connections in the DNN become too strong
and dominant. Regularization can be introduced in a Keras DNN through a parame‐
ter in the Dense layers. Depending on the regularization parameter chosen, training
and test accuracy can be kept quite close together. Two regularizers are in general
used, one based on the linear norm, l1, and one based on the Euclidean norm, l2.
The following Python code adds regularization to the model creation function:

In [60]: from keras.regularizers import l1, l2

In [61]: def create_model(hl=1, hu=128, dropout=False, rate=0.3,
                          regularize=False, reg=l1(0.0005),
                          optimizer=optimizer, input_dim=len(cols)):
             if not regularize:
                 reg = None
             model = Sequential()
             model.add(Dense(hu, input_dim=input_dim,
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                             activity_regularizer=reg,  
                             activation='relu'))
             if dropout:
                 model.add(Dropout(rate, seed=100))
             for _ in range(hl):
                 model.add(Dense(hu, activation='relu',
                                 activity_regularizer=reg))  
                 if dropout:
                     model.add(Dropout(rate, seed=100))
             model.add(Dense(1, activation='sigmoid'))
             model.compile(loss='binary_crossentropy', optimizer=optimizer,
                          metrics=['accuracy'])
             return model

In [62]: set_seeds()
         model = create_model(hl=1, hu=128, regularize=True)

In [63]: %%time
         model.fit(train_[cols], train['d'],
                   epochs=50, verbose=False,
                   validation_split=0.2, shuffle=False,
                   class_weight=cw(train))
         CPU times: user 5.49 s, sys: 1.05 s, total: 6.54 s
         Wall time: 3.15 s

Out[63]: <keras.callbacks.callbacks.History at 0x7fbfa6b8e110>

In [64]: model.evaluate(train_[cols], train['d'])
         1746/1746 [==============================] - 0s 15us/step

Out[64]: [0.5307255412568205, 0.7691867351531982]

In [65]: model.evaluate(test_[cols], test['d'])
         437/437 [==============================] - 0s 22us/step

Out[65]: [0.8428352184644826, 0.6590389013290405]

Regularization is added to each layer.

Figure 7-5 shows the training and validation accuracy under regularization. The two
performance measures are much closer together than previously seen:

In [66]: res = pd.DataFrame(model.history.history)

In [67]: res[['accuracy', 'val_accuracy']].plot(figsize=(10, 6), style='--');
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Figure 7-5. Training and validation accuracy values (with regularization)

Of course, dropout and regularization can be used together. The idea is that the two
measures combined even better avoid overfitting and bring the in-sample and out-of-
sample accuracy values closer together. And indeed the difference between the two
measures is lowest in this case:

In [68]: set_seeds()
         model = create_model(hl=2, hu=128,
                              dropout=True, rate=0.3,  
                              regularize=True, reg=l2(0.001),  
                             )

In [69]: %%time
         model.fit(train_[cols], train['d'],
                   epochs=50, verbose=False,
                   validation_split=0.2, shuffle=False,
                   class_weight=cw(train))
         CPU times: user 7.06 s, sys: 958 ms, total: 8.01 s
         Wall time: 4.28 s

Out[69]: <keras.callbacks.callbacks.History at 0x7fbfa701cb50>

In [70]: model.evaluate(train_[cols], train['d'])
         1746/1746 [==============================] - 0s 18us/step

Out[70]: [0.5007762827004764, 0.7691867351531982]

In [71]: model.evaluate(test_[cols], test['d'])
         437/437 [==============================] - 0s 23us/step

Out[71]: [0.6191965124699835, 0.6864988803863525]
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Dropout is added to the model creation.

Regularization is added to the model creation.

Figure 7-6 shows the training and validation accuracy when combining dropout with
regularization. The difference between training and validation data accuracy over the
training epochs is some four percentage points only on average:

In [72]: res = pd.DataFrame(model.history.history)

In [73]: res[['accuracy', 'val_accuracy']].plot(figsize=(10, 6), style='--');

Figure 7-6. Training and validation accuracy values (with dropout and regularization)

Penalizing Large Weights

Regularization avoids overfitting by penalizing large weights in a
neural network. Single weights cannot get that large enough to
dominate a neural network. The penalties keep weights on a com‐
parable level.

Bagging
The bagging method to avoid overfitting is already used in Chapter 6, although only
for the scikit-learn MLPRegressor model. There is also a wrapper for a Keras DNN
classification model to expose it in scikit-learn fashion, namely the KerasClassi
fier class. The following Python code combines the Keras DNN modeling based on
the wrapper with the BaggingClassifier from scikit-learn. The in-sample and
out-of-sample performance measures are relatively high, around 70%. However, the
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result is driven by the class imbalance, as addressed previously, and as reflected here
in the high frequency of the 0 predictions:

In [75]: from sklearn.ensemble import BaggingClassifier
         from keras.wrappers.scikit_learn import KerasClassifier

In [76]: max_features = 0.75

In [77]: set_seeds()
         base_estimator = KerasClassifier(build_fn=create_model,
                                 verbose=False, epochs=20, hl=1, hu=128,
                                 dropout=True, regularize=False,
                                 input_dim=int(len(cols) * max_features))  

In [78]: model_bag = BaggingClassifier(base_estimator=base_estimator,
                                   n_estimators=15,
                                   max_samples=0.75,
                                   max_features=max_features,
                                   bootstrap=True,
                                   bootstrap_features=True,
                                   n_jobs=1,
                                   random_state=100,
                                  )  

In [79]: %time model_bag.fit(train_[cols], train['d'])
         CPU times: user 40 s, sys: 5.23 s, total: 45.3 s
         Wall time: 26.3 s

Out[79]: BaggingClassifier(base_estimator=<keras.wrappers.scikit_learn.KerasClassifier
          object at 0x7fbfa7cc7b90>,
         bootstrap_features=True, max_features=0.75, max_samples=0.75,
                           n_estimators=15, n_jobs=1, random_state=100)

In [80]: model_bag.score(train_[cols], train['d'])
Out[80]: 0.720504009163803

In [81]: model_bag.score(test_[cols], test['d'])
Out[81]: 0.6704805491990846

In [82]: test['p'] = model_bag.predict(test_[cols])

In [83]: test['p'].value_counts()
Out[83]: 0    408
         1     29
         Name: p, dtype: int64

The base estimator, here a Keras Sequential model, is instantiated.

The BaggingClassifier model is instantiated for a number of equal base
estimators.
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Distributing Learning

Bagging, in a sense, distributes learning among a number of neural
networks (or other models) in that each neural network, for exam‐
ple, only sees certain parts of the training data set and only a selec‐
tion of the features. This avoids the risk that a single neural
network overfits the complete training data set. The prediction is
based on all selectively trained neural networks together.

Optimizers
The Keras package offers a selection of optimizers that can be used in combination
with the Sequential model (see https://oreil.ly/atpu8). Different optimizers might
show different performances, with regard to both the time the training takes and the
prediction accuracy. The following Python code uses different optimizers and bench‐
marks their performance. In all cases, the default parametrization of Keras is used.
The out-of-sample performance does not vary that much. However, the in-sample
performance, given the different optimizers, varies by a wide margin:

In [84]: import time

In [85]: optimizers = ['sgd', 'rmsprop', 'adagrad', 'adadelta',
                       'adam', 'adamax', 'nadam']

In [86]: %%time
         for optimizer in optimizers:
             set_seeds()
             model = create_model(hl=1, hu=128,
                              dropout=True, rate=0.3,
                              regularize=False, reg=l2(0.001),
                              optimizer=optimizer
                             )  
             t0 = time.time()
             model.fit(train_[cols], train['d'],
                       epochs=50, verbose=False,
                       validation_split=0.2, shuffle=False,
                       class_weight=cw(train))  
             t1 = time.time()
             t = t1 - t0
             acc_tr = model.evaluate(train_[cols], train['d'], verbose=False)[1]  
             acc_te = model.evaluate(test_[cols], test['d'], verbose=False)[1]  
             out = f'{optimizer:10s} | time[s]: {t:.4f} | in-sample={acc_tr:.4f}'
             out += f' | out-of-sample={acc_te:.4f}'
             print(out)
         sgd        | time[s]: 2.8092 | in-sample=0.6363 | out-of-sample=0.6568
         rmsprop    | time[s]: 2.9480 | in-sample=0.7600 | out-of-sample=0.6613
         adagrad    | time[s]: 2.8472 | in-sample=0.6747 | out-of-sample=0.6499
         adadelta   | time[s]: 3.2068 | in-sample=0.7279 | out-of-sample=0.6522
         adam       | time[s]: 3.2364 | in-sample=0.7365 | out-of-sample=0.6545
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         adamax     | time[s]: 3.2465 | in-sample=0.6982 | out-of-sample=0.6476
         nadam      | time[s]: 4.1275 | in-sample=0.7944 | out-of-sample=0.6590
         CPU times: user 35.9 s, sys: 4.55 s, total: 40.4 s
         Wall time: 23.1 s

Instantiates the DNN model for the given optimizer

Fits the model with the given optimizer

Evaluates the in-sample performance

Evaluates the out-of-sample performance

Conclusions
This chapter dives deeper into the world of DNNs and uses Keras as the primary
package. Keras offers a high degree of flexibility in composing DNNs. The results in
this chapter are promising in that both in-sample and out-of-sample performance—
with regard to the prediction accuracy—are consistently 60% and higher. However,
prediction accuracy is just one side of the coin. An appropriate trading strategy must
be available and implementable to economically profit from the predictions, or
“signals.” This topic of paramount importance in the context of algorithmic trading is
discussed in detail in Part IV. The next two chapters first illustrate the use of different
neural networks (recurrent and convolutional neural networks) and learning techni‐
ques (reinforcement learning).

References
Keras is a powerful and comprehensive package for deep learning with TensforFlow
as its primary backend. The project is also evolving fast. Make sure to stay up to date
via the main project page. The major resources about Keras in book form are the fol‐
lowing:

Chollet, Francois. 2017. Deep Learning with Python. Shelter Island: Manning.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cam‐

bridge: MIT Press. http://deeplearningbook.org.
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1 For technical details of RNNs, refer to Goodfellow et al. (2016, ch. 10). For the practical implementation, refer
to Chollet (2017, ch. 6).

CHAPTER 8

Recurrent Neural Networks

History never repeats itself, but it rhymes.
—Mark Twain (probably)

My life seemed to be a series of events and accidents. Yet when I look back, I see a pat‐
tern.

—Bernoît Mandelbrot

This chapter is about recurrent neural networks (RNNs). This type of network is
specifically designed to learn about sequential data, such as text or time series data.
The discussion in this chapter takes, as before, a practical approach and relies mainly
on worked-out Python examples, making use of Keras.1

“First Example” on page 230 and “Second Example” on page 234 introduce RNNs on
the basis of two simple examples with sample numerical data. The application of
RNNs to predict sequential data is illustrated. “Financial Price Series” on page 237
then works with financial price series data and applies the RNN approach to predict
such a series directly via estimation. “Financial Return Series” on page 240 then
works with returns data to predict the future direction of the price of a financial
instrument also via an estimation approach. “Financial Features” on page 242 adds
financial features to the mix—in addition to price and return data—to predict the
market direction. Three different approaches are illustrated in this section: prediction
via a shallow RNN for both estimation and classification, as well as prediction via a
deep RNN for classification.
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The chapter shows that the application of RNNs to financial time series data can ach‐
ieve a prediction accuracy of well above 60% out-of-sample in the context of direc‐
tional market predictions. However, the results obtained cannot fully keep up with
those seen in Chapter 7. This might come as a surprise, since RNNs are meant to
work well with financial time series data, which is the primary focus of this book.

First Example
To illustrate the training and usage of RNNs, consider a simple example based on a
sequence of integers. First, some imports and configurations:

In [1]: import os
        import random
        import numpy as np
        import pandas as pd
        import tensorflow as tf
        from pprint import pprint
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        pd.set_option('precision', 4)
        np.set_printoptions(suppress=True, precision=4)
        os.environ['PYTHONHASHSEED'] = '0'

In [2]: def set_seeds(seed=100):  
            random.seed(seed)
            np.random.seed(seed)
            tf.random.set_seed(seed)
        set_seeds()  

Function to set all seed values

Second is the simple data set that is transformed into an appropriate shape:

In [3]: a = np.arange(100)  
        a
Out[3]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
               17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
               34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
               51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
               68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
               85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])

In [4]: a = a.reshape((len(a), -1))  

In [5]: a.shape  
Out[5]: (100, 1)

In [6]: a[:5]  
Out[6]: array([[0],
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               [1],
               [2],
               [3],
               [4]])

Sample data

Reshaping to two dimensions

Using the TimeseriesGenerator, the raw data can be transformed into an object
suited for the training of an RNN. The idea is to use a certain number of lags of the
original data to train the model to predict the next value in the sequence. For exam‐
ple, 0, 1, 2 are the three lagged values (features) used to predict the value 3 (label).
In the same way, 1, 2, 3 are used to predict 4:

In [7]: from keras.preprocessing.sequence import TimeseriesGenerator
        Using TensorFlow backend.

In [8]: lags = 3

In [9]: g = TimeseriesGenerator(a, a, length=lags, batch_size=5)  

In [10]: pprint(list(g)[0])  
         (array([[[0],
                 [1],
                 [2]],

                [[1],
                 [2],
                 [3]],

                [[2],
                 [3],
                 [4]],

                [[3],
                 [4],
                 [5]],

                [[4],
                 [5],
                 [6]]]),
          array([[3],
                [4],
                [5],
                [6],
                [7]]))

TimeseriesGenerator creates batches of lagged sequential data.
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The creation of the RNN model is similar to DNNs. The following Python code uses a
single hidden layer of type SimpleRNN (Chollet 2017, ch. 6; also see Keras recurrent
layers). Even with relatively few hidden units, the number of trainable parameters is
quite large. The .fit_generator() method takes as input generator objects such as
those created with TimeseriesGenerator:

In [11]: from keras.models import Sequential
         from keras.layers import SimpleRNN, LSTM, Dense

In [12]: model = Sequential()
         model.add(SimpleRNN(100, activation='relu',
                             input_shape=(lags, 1)))  
         model.add(Dense(1, activation='linear'))
         model.compile(optimizer='adagrad', loss='mse',
                       metrics=['mae'])

In [13]: model.summary()  
         Model: "sequential_1"
         _________________________________________________________________
         Layer (type)                 Output Shape              Param #
         =================================================================
         simple_rnn_1 (SimpleRNN)     (None, 100)               10200
         _________________________________________________________________
         dense_1 (Dense)              (None, 1)                 101
         =================================================================
         Total params: 10,301
         Trainable params: 10,301
         Non-trainable params: 0
         _________________________________________________________________

In [14]: %%time
         model.fit_generator(g, epochs=1000, steps_per_epoch=5,
                             verbose=False)  
         CPU times: user 17.4 s, sys: 3.9 s, total: 21.3 s
         Wall time: 30.8 s

Out[14]: <keras.callbacks.callbacks.History at 0x7f7f079058d0>

The single hidden layer is of type SimpleRNN.

The summary of the shallow RNN.

The fitting of the RNN based on the generator object.
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The performance metrics might show relatively erratic behavior when training RNNs
(see Figure 8-1):

In [15]: res = pd.DataFrame(model.history.history)

In [16]: res.tail(3)
Out[16]:        loss     mae
         997  0.0001  0.0109
         998  0.0007  0.0211
         999  0.0001  0.0101

In [17]: res.iloc[10:].plot(figsize=(10, 6), style=['--', '--']);

Figure 8-1. Performance metrics during RNN training

Having a trained RNN available, the following Python code generates in-sample and
out-of-sample predictions:

In [18]: x = np.array([21, 22, 23]).reshape((1, lags, 1))
         y = model.predict(x, verbose=False)  
         int(round(y[0, 0]))
Out[18]: 24

In [19]: x = np.array([87, 88, 89]).reshape((1, lags, 1))
         y = model.predict(x, verbose=False)  
         int(round(y[0, 0]))
Out[19]: 90

In [20]: x = np.array([187, 188, 189]).reshape((1, lags, 1))
         y = model.predict(x, verbose=False)  
         int(round(y[0, 0]))
Out[20]: 190

In [21]: x = np.array([1187, 1188, 1189]).reshape((1, lags, 1))

First Example | 233



         y = model.predict(x, verbose=False)  
         int(round(y[0, 0]))
Out[21]: 1194

In-sample prediction

Out-of-sample prediction

Far-out-of-sample prediction

Even for far-out-of-sample predictions, the results are good in general in this simple
case. However, the problem at hand could, for example, be perfectly solved by the
application of OLS regression. Therefore, the effort involved for the training of an
RNN for such a problem is quite high given the performance of the RNN.

Second Example
The first example illustrates the training of an RNN for a simple problem that is easy
to solve not only by OLS regression but also by a human being inspecting the data.
The second example is a bit more challenging. The input data is transformed by a
quadratic term and a trigonometric term, as well as by adding white noise to it.
Figure 8-2 shows the resulting sequence for the interval − 2π, 2π]:

In [22]: def transform(x):
             y = 0.05 * x ** 2 + 0.2 * x + np.sin(x) + 5  
             y += np.random.standard_normal(len(x)) * 0.2  
             return y

In [23]: x = np.linspace(-2 * np.pi, 2 * np.pi, 500)
         a = transform(x)

In [24]: plt.figure(figsize=(10, 6))
         plt.plot(x, a);

Deterministic transformation

Stochastic transformation
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Figure 8-2. Sample sequence data

As before, the raw data is reshaped, TimeseriesGenerator is applied, and the RNN
with a single hidden layer is trained:

In [25]: a = a.reshape((len(a), -1))

In [26]: a[:5]
Out[26]: array([[5.6736],
                [5.68  ],
                [5.3127],
                [5.645 ],
                [5.7118]])

In [27]: lags = 5

In [28]: g = TimeseriesGenerator(a, a, length=lags, batch_size=5)

In [29]: model = Sequential()
         model.add(SimpleRNN(500, activation='relu', input_shape=(lags, 1)))
         model.add(Dense(1, activation='linear'))
         model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

In [30]: model.summary()
         Model: "sequential_2"
         _________________________________________________________________
         Layer (type)                 Output Shape              Param #
         =================================================================
         simple_rnn_2 (SimpleRNN)     (None, 500)               251000
         _________________________________________________________________
         dense_2 (Dense)              (None, 1)                 501
         =================================================================
         Total params: 251,501
         Trainable params: 251,501
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         Non-trainable params: 0
         _________________________________________________________________

In [31]: %%time
         model.fit_generator(g, epochs=500,
                             steps_per_epoch=10,
                             verbose=False)
         CPU times: user 1min 6s, sys: 14.6 s, total: 1min 20s
         Wall time: 23.1 s

Out[31]: <keras.callbacks.callbacks.History at 0x7f7f09c11810>

The following Python code predicts sequence values for the interval − 6π, 6π]. This
interval is three times the size of the training interval and contains out-of-sample pre‐
dictions both on the left-hand side and on the right-hand side of the training interval.
Figure 8-3 shows that the model performs quite well, even out-of-sample:

In [32]: x = np.linspace(-6 * np.pi, 6 * np.pi, 1000)  
         d = transform(x)

In [33]: g_ = TimeseriesGenerator(d, d, length=lags, batch_size=len(d))  

In [34]: f = list(g_)[0][0].reshape((len(d) - lags, lags, 1))  

In [35]: y = model.predict(f, verbose=False)  

In [36]: plt.figure(figsize=(10, 6))
         plt.plot(x[lags:], d[lags:], label='data', alpha=0.75)
         plt.plot(x[lags:], y, 'r.', label='pred', ms=3)
         plt.axvline(-2 * np.pi, c='g', ls='--')
         plt.axvline(2 * np.pi, c='g', ls='--')
         plt.text(-15, 22, 'out-of-sample')
         plt.text(-2, 22, 'in-sample')
         plt.text(10, 22, 'out-of-sample')
         plt.legend();

Enlarges the sample data set

In-sample and out-of-sample prediction

Simplicity of Examples

The first two examples are deliberately chosen to be simple. Both
problems posed in the examples can be solved more efficiently with
OLS regression, for example, by allowing for trigonometric basis
functions in the second example. However, the training of RNNs
for nontrivial sequence data, such as financial time series data, is
basically the same. In such a context, OLS regression, for instance,
can in general not keep up with the capabilities of RNNs.
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Figure 8-3. In-sample and out-of-sample predictions of the RNN

Financial Price Series
As a first application of RNNs to financial time series data, consider intraday
EUR/USD quotes. With the approach introduced in the previous two sections, the
training of the RNN on the financial time series is straightforward. First, the data is
imported and resampled. The data is also normalized and transformed into the
appropriate ndarray object:

In [37]: url = 'http://hilpisch.com/aiif_eikon_id_eur_usd.csv'

In [38]: symbol = 'EUR_USD'

In [39]: raw = pd.read_csv(url, index_col=0, parse_dates=True)

In [40]: def generate_data():
             data = pd.DataFrame(raw['CLOSE'])  
             data.columns = [symbol]  
             data = data.resample('30min', label='right').last().ffill()  
             return data

In [41]: data = generate_data()

In [42]: data = (data - data.mean()) / data.std()  

In [43]: p = data[symbol].values  

In [44]: p = p.reshape((len(p), -1))  
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Selects a single column

Renames the column

Resamples the data

Applies Gaussian normalization

Reshapes the data set to two dimensions

Second, the RNN is trained based on the generator object. The function
create_rnn_model() allows the creation of an RNN with a SimpleRNN or an LSTM
(long short-term memory) layer (Chollet 2017, ch. 6; also see Keras recurrent layers).

In [45]: lags = 5

In [46]: g = TimeseriesGenerator(p, p, length=lags, batch_size=5)

In [47]: def create_rnn_model(hu=100, lags=lags, layer='SimpleRNN',
                                    features=1, algorithm='estimation'):
             model = Sequential()
             if layer is 'SimpleRNN':
                 model.add(SimpleRNN(hu, activation='relu',
                                     input_shape=(lags, features)))  
             else:
                 model.add(LSTM(hu, activation='relu',
                                input_shape=(lags, features)))  
             if algorithm == 'estimation':
                 model.add(Dense(1, activation='linear'))  
                 model.compile(optimizer='adam', loss='mse', metrics=['mae'])
             else:
                 model.add(Dense(1, activation='sigmoid'))  
                 model.compile(optimizer='adam', loss='mse', metrics=['accuracy'])
             return model

In [48]: model = create_rnn_model()

In [49]: %%time
         model.fit_generator(g, epochs=500, steps_per_epoch=10,
                             verbose=False)
         CPU times: user 20.8 s, sys: 4.66 s, total: 25.5 s
         Wall time: 11.2 s

Out[49]: <keras.callbacks.callbacks.History at 0x7f7ef6716590>

Adds a SimpleRNN layer or LSTM layer

Adds an output layer for estimation or classification
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Third, the in-sample prediction is generated. As Figure 8-4 illustrates, the RNN is
capable of capturing the structure of the normalized financial time series data. Based
on this visualization, the prediction accuracy seems quite good:

In [50]: y = model.predict(g, verbose=False)

In [51]: data['pred'] = np.nan
         data['pred'].iloc[lags:] = y.flatten()

In [52]: data[[symbol, 'pred']].plot(
                     figsize=(10, 6), style=['b', 'r-.'],
                     alpha=0.75);

Figure 8-4. In-sample prediction for financial price series by the RNN (whole data set)

However, the visualization suggests a result that does not hold up upon closer inspec‐
tion. Figure 8-5 zooms in and only shows 50 data points from the original data set
and of the prediction. It becomes clear that the prediction values from the RNN are
basically just the most previous lag, shifted by one time interval. Visually speaking,
the prediction line is the financial time series itself, moved one time interval to the
right:

In [53]: data[[symbol, 'pred']].iloc[50:100].plot(
                     figsize=(10, 6), style=['b', 'r-.'],
                     alpha=0.75);
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Figure 8-5. In-sample prediction for financial price series by the RNN (data sub-set)

RNNs and Efficient Markets

The results for the prediction of a financial price series based on an
RNN are in line with the OLS regression approach used in Chap‐
ter 6 to illustrate the EMH. There, it is illustrated that, in a least-
squares sense, today’s price is the best predictor for tomorrow’s
price. The application of an RNN to price data does not yield any
other insight.

Financial Return Series
As previous analyses have shown, it might be easier to predict returns instead of pri‐
ces. Therefore, the following Python code repeats the preceding analysis based on log
returns:

In [54]: data = generate_data()

In [55]: data['r'] = np.log(data / data.shift(1))

In [56]: data.dropna(inplace=True)

In [57]: data = (data - data.mean()) / data.std()

In [58]: r = data['r'].values

In [59]: r = r.reshape((len(r), -1))

In [60]: g = TimeseriesGenerator(r, r, length=lags, batch_size=5)
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In [61]: model = create_rnn_model()

In [62]: %%time
         model.fit_generator(g, epochs=500, steps_per_epoch=10,
                             verbose=False)
         CPU times: user 20.4 s, sys: 4.2 s, total: 24.6 s
         Wall time: 11.3 s

Out[62]: <keras.callbacks.callbacks.History at 0x7f7ef47a8dd0>

As Figure 8-6 shows, the RNN’s predictions are not too good in absolute terms. How‐
ever, they seem to get the market direction (sign of the return) somehow right:

In [63]: y = model.predict(g, verbose=False)

In [64]: data['pred'] = np.nan
         data['pred'].iloc[lags:] = y.flatten()
         data.dropna(inplace=True)

In [65]: data[['r', 'pred']].iloc[50:100].plot(
                     figsize=(10, 6), style=['b', 'r-.'],
                     alpha=0.75);
         plt.axhline(0, c='grey', ls='--')

Figure 8-6. In-sample prediction for financial return series by the RNN (data sub-set)

While Figure 8-6 only provides an indication, the relatively high accuracy score sup‐
ports the assumption that the RNN might perform better on a return than on a price
series:

In [66]: from sklearn.metrics import accuracy_score
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In [67]: accuracy_score(np.sign(data['r']), np.sign(data['pred']))
Out[67]: 0.6806532093445226

However, to get a realistic picture, a train-test split is in order. The accuracy score
out-of-sample is not as high as the one seen for the whole data set in-sample, but it is
still high for the problem at hand:

In [68]: split = int(len(r) * 0.8)  

In [69]: train = r[:split]  

In [70]: test = r[split:]  

In [71]: g = TimeseriesGenerator(train, train, length=lags, batch_size=5)  

In [72]: set_seeds()
         model = create_rnn_model(hu=100)

In [73]: %%time
         model.fit_generator(g, epochs=100, steps_per_epoch=10, verbose=False)  
         CPU times: user 5.67 s, sys: 1.09 s, total: 6.75 s
         Wall time: 2.95 s

Out[73]: <keras.callbacks.callbacks.History at 0x7f7ef5482dd0>

In [74]: g_ = TimeseriesGenerator(test, test, length=lags, batch_size=5)  

In [75]: y = model.predict(g_)  

In [76]: accuracy_score(np.sign(test[lags:]), np.sign(y))  
Out[76]: 0.6708428246013668

Splits the data into train and test data sub-sets

Fits the model on the training data

Tests the model on the testing data

Financial Features
The application of RNNs is not restricted to the raw price or return data. Additional
features can also be included to improve the prediction of the RNN. The following
Python code adds typical financial features to the data set:

In [77]: data = generate_data()

In [78]: data['r'] = np.log(data / data.shift(1))

In [79]: window = 20
         data['mom'] = data['r'].rolling(window).mean()  
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         data['vol'] = data['r'].rolling(window).std()  

In [80]: data.dropna(inplace=True)

Adds a time series momentum feature

Adds a rolling volatility feature

Estimation
The out-of-sample accuracy, maybe somewhat surprisingly, drops significantly in the
estimation case. In other words, there is no improvement observed from adding
financial features in this particular case:

In [81]: split = int(len(data) * 0.8)

In [82]: train = data.iloc[:split].copy()

In [83]: mu, std = train.mean(), train.std()  

In [84]: train = (train - mu) / std  

In [85]: test = data.iloc[split:].copy()

In [86]: test = (test - mu) / std  

In [87]: g = TimeseriesGenerator(train.values, train['r'].values,
                                 length=lags, batch_size=5)  

In [88]: set_seeds()
         model = create_rnn_model(hu=100, features=len(data.columns),
                                  layer='SimpleRNN')

In [89]: %%time
         model.fit_generator(g, epochs=100, steps_per_epoch=10,
                             verbose=False)  
         CPU times: user 5.24 s, sys: 1.08 s, total: 6.32 s
         Wall time: 2.73 s

Out[89]: <keras.callbacks.callbacks.History at 0x7f7ef313c950>

In [90]: g_ = TimeseriesGenerator(test.values, test['r'].values,
                                  length=lags, batch_size=5)  

In [91]: y = model.predict(g_).flatten()  

In [92]: accuracy_score(np.sign(test['r'].iloc[lags:]), np.sign(y))  
Out[92]: 0.37299771167048057
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Calculates the first and second moment of the training data

Applies Gaussian normalization to the training data

Applies Gaussian normalization to the testing data—based on the statistics from
the training data

Fits the model on the training data

Tests the model on the testing data

Classification
The analyses so far use a Keras RNN model for estimation to predict the future direc‐
tion of the price of the financial instrument. The problem at hand is probably better
cast directly into a classification setting. The following Python code works with
binary labels data and predicts the direction of the price movement directly. It also
works this time with an LSTM layer. The out-of-sample accuracy is quite high even
for a relatively small number of hidden units and only a few training epochs. The
approach again takes class imbalance into account by adjusting the class weights
appropriately. The prediction accuracy is quite high in this case with around 65%:

In [93]: set_seeds()
         model = create_rnn_model(hu=50,
                     features=len(data.columns),
                     layer='LSTM',
                     algorithm='classification')  

In [94]: train_y = np.where(train['r'] > 0, 1, 0)  

In [95]: np.bincount(train_y)  
Out[95]: array([2374, 1142])

In [96]: def cw(a):
             c0, c1 = np.bincount(a)
             w0 = (1 / c0) * (len(a)) / 2
             w1 = (1 / c1) * (len(a)) / 2
             return {0: w0, 1: w1}

In [97]: g = TimeseriesGenerator(train.values, train_y,
                                 length=lags, batch_size=5)

In [98]: %%time
         model.fit_generator(g, epochs=5, steps_per_epoch=10,
                             verbose=False, class_weight=cw(train_y))
         CPU times: user 1.25 s, sys: 159 ms, total: 1.41 s
         Wall time: 947 ms
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Out[98]: <keras.callbacks.callbacks.History at 0x7f7ef43baf90>

In [99]: test_y = np.where(test['r'] > 0, 1, 0)  

In [100]: g_ = TimeseriesGenerator(test.values, test_y,
                                   length=lags, batch_size=5)

In [101]: y = np.where(model.predict(g_, batch_size=None) > 0.5, 1, 0).flatten()

In [102]: np.bincount(y)
Out[102]: array([492, 382])

In [103]: accuracy_score(test_y[lags:], y)
Out[103]: 0.6498855835240275

RNN model for classification

Binary training labels

Class frequency for training labels

Binary testing labels

Deep RNNs
Finally, consider deep RNNs, which are RNNs with multiple hidden layers. They are
as easily created as deep DNNs. The only requirement is that for the nonfinal hidden
layers, the parameter return_sequences is set to True. The following Python func‐
tion to create a deep RNN also allows for the addition of Dropout layers to potentially
avoid overfitting. The prediction accuracy is comparable to the one seen in the previ‐
ous sub-section:

In [104]: from keras.layers import Dropout

In [105]: def create_deep_rnn_model(hl=2, hu=100, layer='SimpleRNN',
                                    optimizer='rmsprop', features=1,
                                    dropout=False, rate=0.3, seed=100):
              if hl <= 2: hl = 2  
              if layer == 'SimpleRNN':
                  layer = SimpleRNN
              else:
                  layer = LSTM
              model = Sequential()
              model.add(layer(hu, input_shape=(lags, features),
                               return_sequences=True,
                              ))  
              if dropout:
                  model.add(Dropout(rate, seed=seed))  
              for _ in range(2, hl):
                  model.add(layer(hu, return_sequences=True))
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                  if dropout:
                      model.add(Dropout(rate, seed=seed))  
              model.add(layer(hu))  
              model.add(Dense(1, activation='sigmoid'))  
              model.compile(optimizer=optimizer,
                            loss='binary_crossentropy',
                            metrics=['accuracy'])
              return model

In [106]: set_seeds()
          model = create_deep_rnn_model(
                      hl=2, hu=50, layer='SimpleRNN',
                      features=len(data.columns),
                      dropout=True, rate=0.3)  

In [107]: %%time
          model.fit_generator(g, epochs=200, steps_per_epoch=10,
                              verbose=False, class_weight=cw(train_y))
          CPU times: user 14.2 s, sys: 2.85 s, total: 17.1 s
          Wall time: 7.09 s

Out[107]: <keras.callbacks.callbacks.History at 0x7f7ef6428790>

In [108]: y = np.where(model.predict(g_, batch_size=None) > 0.5, 1, 0).flatten()

In [109]: np.bincount(y)
Out[109]: array([550, 324])

In [110]: accuracy_score(test_y[lags:], y)
Out[110]: 0.6430205949656751

A minimum of two hidden layers is ensured.

The first hidden layer.

The Dropout layers.

The final hidden layer.

The model is built for classification.

Conclusions
This chapter introduces RNNs with Keras and illustrates the application of such neu‐
ral networks to financial time series data. On the Python level, working with RNNs is
not too different from working with DNNs. One major difference is that the training
and test data must necessarily be presented in a sequential form to the respective
methods. However, this is made easy by the application of the TimeseriesGenerator
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function, which transforms sequential data into a generator object that Keras RNNs
can work with.

The examples in this chapter work with both financial price series and financial
return series. In addition, financial features, such as time series momentum, can also
be added easily. The functions presented for model creation allow, among other
things, for one to use SimpleRNN or LSTM layers as well as different optimizers. They
also allow one to model estimation and classification problems in the context of shal‐
low and deep neural networks.

The out-of-sample prediction accuracy, when predicting market direction, is rela‐
tively high for the classification examples—but it’s not that high and can even be quite
low for the estimation examples.
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1 See Deep Reinforcement Learning.

CHAPTER 9

Reinforcement Learning

Like a human, our agents learn for themselves to achieve successful strategies that lead
to the greatest long-term rewards. This paradigm of learning by trial-and-error, solely
from rewards or punishments, is known as reinforcement learning.1

—DeepMind (2016)

The learning algorithms applied in Chapters 7 and 8 fall into the category of super‐
vised learning. These methods require that there is a data set available with features
and labels that allows the algorithms to learn relationships between the features and
labels to succeed at estimation or classification tasks. As the simple example in Chap‐
ter 1 illustrates, reinforcement learning (RL) works differently. To begin with, there is
no need for a comprehensive data set of features and labels to be given up front. The
data is rather generated by the learning agent while interacting with the environment
of interest. This chapter covers RL in some detail and introduces fundamental
notions, as well as one of the most popular algorithms used in the field: Q-learning
(QL). Neural networks are not replaced by RL algorithms; they generally play an
important role in this context as well.

“Fundamental Notions” on page 250 explains fundamental notions in RL, such as
environments, states, and agents. “OpenAI Gym” on page 251 introduces the OpenAI
Gym suite of RL environments of which the CartPole environment is used as an
example. In this environment, which Chapter 2 introduces and discusses briefly,
agents must learn how to balance a pole on a cart by moving the cart to the left or to
the right. “Monte Carlo Agent” on page 255 shows how to solve the CartPole prob‐
lem by the use of dimensionality reduction and Monte Carlo simulation. Standard
supervised learning algorithms such as DNNs are in general not suited to solve
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problems such as the CartPole one since they lack a notion of delayed reward. This
problem is illustrated in “Neural Network Agent” on page 257. “DQL Agent” on page
260 discusses a QL agent that explicitly takes into account delayed rewards and is able
to solve the CartPole problem. The same agent is applied in “Simple Finance Gym”
on page 264 to a simple financial market environment. Although the agent does not
perform too well in this setting, the example shows that QL agents can also learn to
trade and to become what is often called a trading bot. To improve the learning of QL
agents, “Better Finance Gym” on page 268 presents an improved financial market
environment that, among other benefits, allows the use of more than one type of fea‐
ture to describe the state of the environment. Based on this improved environment,
“FQL Agent” on page 271 introduces and applies an improved financial QL agent that
performs better as a trading bot.

Fundamental Notions
This section gives a brief overview of the fundamental notions in RL. Among them
are the following:

Environment
The environment defines the problem at hand. This can be a computer game to
be played or a financial market to be traded in.

State
A state subsumes all relevant parameters that describe the current state of the
environment. In a computer game, this might be the whole screen with all its
pixels. In a financial market, this might include current and historical price levels
or financial indicators such as moving averages, macroeconomic variables,
and so on.

Agent
The term agent subsumes all elements of the RL algorithm that interacts with the
environment and that learns from these interactions. In a gaming context, the
agent might represent a player playing the game. In a financial context, the agent
could represent a trader placing bets on rising or falling markets.

Action
An agent can choose one action from a (limited) set of allowed actions. In a com‐
puter game, movements to the left or right might be allowed actions, whereas in a
financial market, going long or short could be admissible actions.

Step
Given an action of an agent, the state of the environment is updated. One such
update is generally called a step. The concept of a step is general enough to
encompass both heterogeneous and homogeneous time intervals between two
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steps. While in computer games, real-time interaction with the game environ‐
ment is simulated by rather short, homogeneous time intervals (“game clock”), a
trading bot interacting with a financial market environment could take actions at
longer, heterogeneous time intervals, for instance.

Reward
Depending on the action an agent chooses, a reward (or penalty) is awarded. For
a computer game, points are a typical reward. In a financial context, profit (or
loss) is a standard reward (or penalty).

Target
The target specifies what the agent tries to maximize. In a computer game, this in
general is the score reached by the agent. For a financial trading bot, this might
be the accumulated trading profit.

Policy
The policy defines which action an agent takes given a certain state of the envi‐
ronment. Given a certain state of a computer game, represented by all the pixels
that make up the current scene, the policy might specify that the agent chooses
“move right” as the action. A trading bot that observes three price increases in a
row might decide, according to its policy, to short the market.

Episode
An episode is a set of steps from the initial state of the environment until success
is achieved or failure is observed. In a game, this is from the start of the game
until a win or loss. In the financial world, for example, this is from the beginning
of the year to the end of the year or to bankruptcy.

Sutton and Barto (2018) provide a detailed introduction to the RL field. The book
discusses the preceding notions in detail and illustrates them on the basis of a multi‐
tude of concrete examples. The following sections again choose a practical,
implementation-oriented approach to RL. The examples discussed illustrate all of the
preceding notions on the basis of Python code.

OpenAI Gym
In most of the success stories as presented in Chapter 2, RL plays a dominant role.
This has spurred widespread interest in RL as an algorithm. OpenAI is an organiza‐
tion that strives to facilitate research in AI in general and in RL in particular. OpenAI
has developed and open sourced a suite of environments, called OpenAI Gym, that
allows the training of RL agents via a standardized API.

Among the many environments, there is the CartPole environment (or game) that
simulates a classical RL problem. A pole is standing upright on a cart, and the goal is
to learn a policy to balance the pole on the cart by moving the cart either to the right
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or to the left. The state of the environment is given by four parameters, describing the
following physical measurements: cart position, cart velocity, pole angle, and pole
velocity (at tip). Figure 9-1 shows a visualization of the environment.

Figure 9-1. CartPole environment of OpenAI Gym

Consider the following Python code that instantiates an environment object for
CartPole and inspects the observation space. The observation space is a model for the
state of the environment:

In [1]: import os
        import math
        import random
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        np.set_printoptions(precision=4, suppress=True)
        os.environ['PYTHONHASHSEED'] = '0'
In [2]: import gym

In [3]: env = gym.make('CartPole-v0')  

In [4]: env.seed(100)  
        env.action_space.seed(100)  
Out[4]: [100]

In [5]: env.observation_space  
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Out[5]: Box(4,)

In [6]: env.observation_space.low.astype(np.float16)  
Out[6]: array([-4.8  ,   -inf, -0.419,   -inf], dtype=float16)

In [7]: env.observation_space.high.astype(np.float16)  
Out[7]: array([4.8  ,   inf, 0.419,   inf], dtype=float16)

In [8]: state = env.reset()  

In [9]: state  
Out[9]: array([-0.0163,  0.0238, -0.0392, -0.0148])

The environment object, with fixed seed values

The observation space with minimal and maximal values

Reset of the environment

Initial state: cart position, cart velocity, pole angle, pole angular velocity

In the following environment, the allowed actions are described by the action space.
In this case there are two, and they are represented by 0 (push cart to the left) and 1
(push cart to the right):

In [10]: env.action_space  
Out[10]: Discrete(2)

In [11]: env.action_space.n  
Out[11]: 2

In [12]: env.action_space.sample()  
Out[12]: 1

In [13]: env.action_space.sample()   
Out[13]: 0

In [14]: a = env.action_space.sample()  
         a  
Out[14]: 1

In [15]: state, reward, done, info = env.step(a)  
         state, reward, done, info  
Out[15]: (array([-0.0158,  0.2195, -0.0395, -0.3196]), 1.0, False, {})

The action space

Random actions sampled from the action space

Step forward based on random action
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New state of the environment, reward, success/failure, additional information

As long as done=False, the agent is still in the game and can choose another action.
Success is achieved when the agent reaches a total of 200 steps in a row or a total
reward of 200 (reward of 1.0 per step). A failure is observed when the pole on the cart
reaches a certain angle that would lead to the pole falling from the cart. In that case,
done=True is returned.

A simple agent is one that follows a completely random policy: no matter what state is
observed, the agent chooses a random action. This is what the following code imple‐
ments. The number of steps the agent can go only depends in such a case on how
lucky it is. No learning in the form of updating the policy is taking place:

In [16]: env.reset()
         for e in range(1, 200):
             a = env.action_space.sample()  
             state, reward, done, info = env.step(a) 
             print(f'step={e:2d} | state={state} | action={a} | reward={reward}')
             if done and (e + 1) < 200:  
                 print('*** FAILED ***')  
                 break
         step= 1 | state=[-0.0423  0.1982  0.0256 -0.2476] | action=1 | reward=1.0
         step= 2 | state=[-0.0383  0.0028  0.0206  0.0531] | action=0 | reward=1.0
         step= 3 | state=[-0.0383  0.1976  0.0217 -0.2331] | action=1 | reward=1.0
         step= 4 | state=[-0.0343  0.0022  0.017   0.0664] | action=0 | reward=1.0
         step= 5 | state=[-0.0343  0.197   0.0184 -0.2209] | action=1 | reward=1.0
         step= 6 | state=[-0.0304  0.0016  0.0139  0.0775] | action=0 | reward=1.0
         step= 7 | state=[-0.0303  0.1966  0.0155 -0.2107] | action=1 | reward=1.0
         step= 8 | state=[-0.0264  0.0012  0.0113  0.0868] | action=0 | reward=1.0
         step= 9 | state=[-0.0264  0.1962  0.013  -0.2023] | action=1 | reward=1.0
         step=10 | state=[-0.0224  0.3911  0.009  -0.4908] | action=1 | reward=1.0
         step=11 | state=[-0.0146  0.5861 -0.0009 -0.7807] | action=1 | reward=1.0
         step=12 | state=[-0.0029  0.7812 -0.0165 -1.0736] | action=1 | reward=1.0
         step=13 | state=[ 0.0127  0.9766 -0.0379 -1.3714] | action=1 | reward=1.0
         step=14 | state=[ 0.0323  1.1722 -0.0654 -1.6758] | action=1 | reward=1.0
         step=15 | state=[ 0.0557  0.9779 -0.0989 -1.4041] | action=0 | reward=1.0
         step=16 | state=[ 0.0753  0.7841 -0.127  -1.1439] | action=0 | reward=1.0
         step=17 | state=[ 0.0909  0.5908 -0.1498 -0.8936] | action=0 | reward=1.0
         step=18 | state=[ 0.1028  0.7876 -0.1677 -1.2294] | action=1 | reward=1.0
         step=19 | state=[ 0.1185  0.9845 -0.1923 -1.5696] | action=1 | reward=1.0
         step=20 | state=[ 0.1382  0.7921 -0.2237 -1.3425] | action=0 | reward=1.0
         *** FAILED ***

In [17]: done
Out[17]: True
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2 See, for example, this blog post.

Random action policy

Stepping forward one step

Failure if less than 200 steps

Data Through Interaction

Whereas in supervised learning the training, validation, and test
data sets are assumed to exist before the training begins, in RL the
agent generates its data itself by interacting with the environment.
In many contexts, such as in games, this is a huge simplification.
Consider the game of chess: instead of loading thousands of histor‐
ical human-played chess games into a computer, an RL agent can
generate thousands or millions of games itself by playing against
another chess engine or another version of itself, for instance.

Monte Carlo Agent
The CartPole problem does not necessarily require a full-fledged RL approach nor
some neural network to be solved. This section presents a simple solution to the
problem based on Monte Carlo simulation. To this end, a specific policy is defined
that makes use of dimensionality reduction. In that case, the four parameters defining
a state of the environment are collapsed, via a linear combination, into a single real-
valued parameter.2 The following Python code implements this idea:

In [18]: np.random.seed(100)  

In [19]: weights = np.random.random(4) * 2 - 1  

In [20]: weights  
Out[20]: array([ 0.0868, -0.4433, -0.151 ,  0.6896])

In [21]: state = env.reset()  

In [22]: state  
Out[22]: array([-0.0347, -0.0103,  0.047 , -0.0315])

In [23]: s = np.dot(state, weights)  
         s  
Out[23]: -0.02725361929630797

Random weights for fixed seed value
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Initial state of the environment

Dot product of state and weights

The policy is then defined based on the sign of the single state parameter s:

In [24]: if s < 0:
             a = 0
         else:
             a = 1

In [25]: a
Out[25]: 0

This policy can then be used to play an episode of the CartPole game. Given the ran‐
dom nature of the weights applied, the results are in general not better than those of
the random action policy of the previous section:

In [26]: def run_episode(env, weights):
             state = env.reset()
             treward = 0
             for _ in range(200):
                 s = np.dot(state, weights)
                 a = 0 if s < 0 else 1
                 state, reward, done, info = env.step(a)
                 treward += reward
                 if done:
                     break
             return treward

In [27]: run_episode(env, weights)
Out[27]: 41.0

Therefore, Monte Carlo simulation is applied to test a large number of different
weights. The following code simulates a large number of weights, checks them for
success or failure, and then chooses the weights that yield success:

In [28]: def set_seeds(seed=100):
             random.seed(seed)
             np.random.seed(seed)
             env.seed(seed)

In [29]: set_seeds()
         num_episodes = 1000

In [30]: besttreward = 0
         for e in range(1, num_episodes + 1):
             weights = np.random.rand(4) * 2 - 1  
             treward = run_episode(env, weights)  
             if treward > besttreward:  
                 besttreward = treward  
                 bestweights = weights  
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                 if treward == 200:
                     print(f'SUCCESS | episode={e}')
                     break
                 print(f'UPDATE  | episode={e}')
         UPDATE  | episode=1
         UPDATE  | episode=2
         SUCCESS | episode=13

In [31]: weights
Out[31]: array([-0.4282,  0.7048,  0.95  ,  0.7697])

Random weights.

Total reward for these weights.

Improvement observed?

Replace best total reward.

Replace best weights.

The CartPole problem is considered solved by an agent if the average total reward
over 100 consecutive episodes is 195 or higher. As the following code demonstrates,
this is indeed the case for the Monte Carlo agent:

In [32]: res = []
         for _ in range(100):
             treward = run_episode(env, weights)
             res.append(treward)
         res[:10]
Out[32]: [200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0]

In [33]: sum(res) / len(res)
Out[33]: 200.0

This is, of course, a strong benchmark that other, more sophisticated approaches are
up against.

Neural Network Agent
The CartPole game can be cast into a classification setting as well. The state of an
environment consists of four feature values. The correct action given the feature val‐
ues is the label. By interacting with the environment, a neural network agent can col‐
lect a data set consisting of combinations of feature values and labels. Given this
incrementally growing data set, a neural network can be trained to learn the correct
action given a state of the environment. The neural network represents the policy in
this case. The agent updates the policy based on new experiences.
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First, some imports:

In [34]: import tensorflow as tf
         from keras.layers import Dense, Dropout
         from keras.models import Sequential
         from keras.optimizers import Adam, RMSprop
         from sklearn.metrics import accuracy_score
         Using TensorFlow backend.

In [35]: def set_seeds(seed=100):
             random.seed(seed)
             np.random.seed(seed)
             tf.random.set_seed(seed)
             env.seed(seed)
             env.action_space.seed(100)

Second is the NNAgent class that combines the major elements of the agent: the neural
network model for the policy, choosing an action given the policy, updating the policy
(training the neural network), and the learning process itself over a number of
episodes. The agent uses both exploration and exploitation to choose an action. Explo‐
ration refers to a random action, independent of the current policy. Exploitation
refers to an action as derived from the current policy. The idea is that some degree of
exploration ensures a richer experience and thereby improved learning for the agent:

In [36]: class NNAgent:
             def __init__(self):
                 self.max = 0  
                 self.scores = list()
                 self.memory = list()
                 self.model = self._build_model()

             def _build_model(self):  
                 model = Sequential()
                 model.add(Dense(24, input_dim=4,
                                 activation='relu'))
                 model.add(Dense(1, activation='sigmoid'))
                 model.compile(loss='binary_crossentropy',
                               optimizer=RMSprop(lr=0.001))
                 return model

             def act(self, state):  
                 if random.random() <= 0.5:
                     return env.action_space.sample()
                 action = np.where(self.model.predict(
                     state, batch_size=None)[0, 0] > 0.5, 1, 0)
                 return action

             def train_model(self, state, action):  
                 self.model.fit(state, np.array([action,]),
                                epochs=1, verbose=False)

             def learn(self, episodes):  
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                 for e in range(1, episodes + 1):
                     state = env.reset()
                     for _ in range(201):
                         state = np.reshape(state, [1, 4])
                         action = self.act(state)
                         next_state, reward, done, info = env.step(action)
                         if done:
                             score = _ + 1
                             self.scores.append(score)
                             self.max = max(score, self.max)  
                             print('episode: {:4d}/{} | score: {:3d} | max: {:3d}'
                                   .format(e, episodes, score, self.max), end='\r')
                             break
                         self.memory.append((state, action))
                         self.train_model(state, action)  
                         state = next_state

The maximum total reward

The DNN classification model for the policy

The method to choose an action (exploration and exploitation)

The method to update the policy (train the neural network)

The method to learn from interacting with the environment

The neural network agent does not solve the problem for the configuration shown.
The maximum total reward of 200 is not achieved even once:

In [37]: set_seeds(100)
         agent = NNAgent()

In [38]: episodes = 500

In [39]: agent.learn(episodes)
         episode:  500/500 | score:  11 | max:  44
In [40]: sum(agent.scores) / len(agent.scores)  
Out[40]: 13.682

Average total reward over all episodes

Something seems to be missing with this approach. One major missing element is the
idea of looking beyond the current state and action to be chosen. The approach
implemented does not, by any means, take into account that success is only achieved
when the agent survives 200 consecutive steps. Simply speaking, the agent avoids tak‐
ing the wrong action but does not learn to win the game.

Analyzing the collected history of states (features) and actions (labels) reveals that the
neural network reaches an accuracy of around 75%.
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However, this does not translate into a winning policy as seen before:

In [41]: f = np.array([m[0][0] for m in agent.memory])  
         f  
Out[41]: array([[-0.0163,  0.0238, -0.0392, -0.0148],
                [-0.0158,  0.2195, -0.0395, -0.3196],
                [-0.0114,  0.0249, -0.0459, -0.0396],
                ...,
                [ 0.0603,  0.9682, -0.0852, -1.4595],
                [ 0.0797,  1.1642, -0.1144, -1.7776],
                [ 0.103 ,  1.3604, -0.15  , -2.1035]])

In [42]: l = np.array([m[1] for m in agent.memory])  
         l  
Out[42]: array([1, 0, 1, ..., 1, 1, 1])

In [43]: accuracy_score(np.where(agent.model.predict(f) > 0.5, 1, 0), l)
Out[43]: 0.7525626872733008

Features (states) from all episodes

Labels (actions) from all episodes

DQL Agent
Q-learning (QL) is an algorithm that takes into account delayed rewards in addition
to immediate rewards from an action. The algorithm is due to Watkins (1989) and
Watkins and Dayan (1992) and is explained in detail in Sutton and Barto (2018, ch.
6). QL addresses the problem of looking beyond the immediate next reward as
encountered with the neural network agent.

The algorithm works roughly as follows. There is an action-value policy Q, which
assigns a value to every combination of a state and an action. The higher the value is,
the better the action from the point of view of the agent will be. If the agent uses the
policy Q to choose an action, it selects the action with the highest value.

How is the value of an action derived? The value of an action is composed of its direct
reward and the discounted value of the optimal action in the next state. The following
is the formal expression:

Q St, At = Rt + 1 + γ max
a

Q St + 1, a

Here, St is the state at step (time) t, At is the action taken at state St, Rt + 1 is the direct
reward of action At, 0 < γ < 1 is a discount factor, and maxa Q St + 1, a  is the maxi‐
mum delayed reward given the optimal action from the current policy Q.
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3 The implementation is similar to the one found in this blog post.

In a simple environment, with only a limited number of possible states, Q can, for
example, be represented by a table, listing for every state-action combination the cor‐
responding value. However, in more interesting or complex settings, such as the
CartPole environment, the number of states is too large for Q to be written out com‐
prehensively. Therefore, Q is in general understood to be a function.

This is where neural networks come into play. In realistic settings and environments,
a closed-form solution for the function Q might not exist or might be too hard to
derive, say, based on dynamic programming. Therefore, QL algorithms generally tar‐
get approximations only. Neural networks, with their universal approximation capa‐
bilities, are a natural choice to accomplish the approximation of Q.

Another critical element of QL is replay. The QL agent replays a number of experien‐
ces (state-action combinations) to update the policy function Q regularly. This can
improve the learning considerably. Furthermore, the QL agent presented in the fol‐
lowing—DQLAgent—also alternates between exploration and exploitation during the
learning. The alternation is done in a systematic way in that the agent starts with
exploration only—in the beginning it could not have learned anything—and slowly
but steadily decreases the exploration rate � until it reaches a minimum level:3

In [44]: from collections import deque
         from keras.optimizers import Adam, RMSprop

In [45]: class DQLAgent:
             def __init__(self, gamma=0.95, hu=24, opt=Adam,
                    lr=0.001, finish=False):
                 self.finish = finish
                 self.epsilon = 1.0  
                 self.epsilon_min = 0.01  
                 self.epsilon_decay = 0.995  
                 self.gamma = gamma  
                 self.batch_size = 32  
                 self.max_treward = 0
                 self.averages = list()
                 self.memory = deque(maxlen=2000)  
                 self.osn = env.observation_space.shape[0]
                 self.model = self._build_model(hu, opt, lr)

             def _build_model(self, hu, opt, lr):
                 model = Sequential()
                 model.add(Dense(hu, input_dim=self.osn,
                                 activation='relu'))
                 model.add(Dense(hu, activation='relu'))
                 model.add(Dense(env.action_space.n, activation='linear'))
                 model.compile(loss='mse', optimizer=opt(lr=lr))
                 return model
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             def act(self, state):
                 if random.random() <= self.epsilon:
                     return env.action_space.sample()
                 action = self.model.predict(state)[0]
                 return np.argmax(action)

             def replay(self):
                 batch = random.sample(self.memory, self.batch_size)  
                 for state, action, reward, next_state, done in batch:
                     if not done:
                         reward += self.gamma * np.amax(
                             self.model.predict(next_state)[0])  
                     target = self.model.predict(state)
                     target[0, action] = reward
                     self.model.fit(state, target, epochs=1,
                                    verbose=False)  
                 if self.epsilon > self.epsilon_min:
                     self.epsilon *= self.epsilon_decay  

             def learn(self, episodes):
                 trewards = []
                 for e in range(1, episodes + 1):
                     state = env.reset()
                     state = np.reshape(state, [1, self.osn])
                     for _ in range(5000):
                         action = self.act(state)
                         next_state, reward, done, info = env.step(action)
                         next_state = np.reshape(next_state,
                                                 [1, self.osn])
                         self.memory.append([state, action, reward,
                                              next_state, done])  
                         state = next_state
                         if done:
                             treward = _ + 1
                             trewards.append(treward)
                             av = sum(trewards[-25:]) / 25
                             self.averages.append(av)
                             self.max_treward = max(self.max_treward, treward)
                             templ = 'episode: {:4d}/{} | treward: {:4d} | '
                             templ += 'av: {:6.1f} | max: {:4d}'
                             print(templ.format(e, episodes, treward, av,
                                                self.max_treward), end='\r')
                             break
                     if av > 195 and self.finish:
                         break
                     if len(self.memory) > self.batch_size:
                         self.replay()  
             def test(self, episodes):
                 trewards = []
                 for e in range(1, episodes + 1):
                     state = env.reset()
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                     for _ in range(5001):
                         state = np.reshape(state, [1, self.osn])
                         action = np.argmax(self.model.predict(state)[0])
                         next_state, reward, done, info = env.step(action)
                         state = next_state
                         if done:
                             treward = _ + 1
                             trewards.append(treward)
                             print('episode: {:4d}/{} | treward: {:4d}'
                                   .format(e, episodes, treward), end='\r')
                             break
                 return trewards

Initial exploration rate

Minimum exploration rate

Decay rate for exploration rate

Discount factor for delayed reward

Batch size for replay

deque collection for limited history

Random selection of history batch for replay

Q value for state-action pair

Update of the neural network for the new action-value pairs

Update of the exploration rate

Storing the new data

Replay to update the policy based on past experiences

How does the QL agent perform? As the code that follows shows, it reaches a winning
state for CartPole of a total reward of 200. Figure 9-2 shows the moving average of
scores and how it increases over time, although not monotonically. To the contrary,
the performance of the agent can significantly decrease at times, as Figure 9-2 shows.
Among other things, the exploration that is taking place throughout leads to random
actions that might not necessarily lead to good results in terms of total rewards but
may lead to beneficial experiences for updating the policy network:

In [46]: episodes = 1000

In [47]: set_seeds(100)
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         agent = DQLAgent(finish=True)

In [48]: agent.learn(episodes)
         episode:  400/1000 | treward:  200 | av:  195.4 | max:  200
In [49]: plt.figure(figsize=(10, 6))
         x = range(len(agent.averages))
         y = np.polyval(np.polyfit(x, agent.averages, deg=3), x)
         plt.plot(agent.averages, label='moving average')
         plt.plot(x, y, 'r--', label='trend')
         plt.xlabel('episodes')
         plt.ylabel('total reward')
         plt.legend();

Figure 9-2. Average total rewards of DQLAgent for CartPole

Does the QL agent solve the CartPole problem? In this particular case, it does, given
the definition of success by OpenAI Gym:

In [50]: trewards = agent.test(100)
         episode:  100/100 | treward:  200
In [51]: sum(trewards) / len(trewards)
Out[51]: 200.0

Simple Finance Gym
To transfer the QL approach to the financial domain, this section provides a class that
mimics an OpenAI Gym environment, but for a financial market as represented by
financial time series data. The idea is that, similar to the CartPole environment, four
historical prices represent the state of the financial market. An agent can decide,
when presented with the state, whether to go long or to go short. In that case, the two
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environments are comparable since a state is given by four parameters and an agent
can take two different actions.

To mimic the OpenAI Gym API, two helper classes are needed—one for the observa‐
tion space, and one for the action space:

In [52]: class observation_space:
             def __init__(self, n):
                 self.shape = (n,)

In [53]: class action_space:
             def __init__(self, n):
                 self.n = n
             def seed(self, seed):
                 pass
             def sample(self):
                 return random.randint(0, self.n - 1)

The following Python code defines the Finance class. It retrieves end-of-day histori‐
cal prices for a number of symbols. The major methods of the class are .reset()
and .step(). The .step() method checks whether the right action has been taken,
defines the reward accordingly, and checks for success or failure. A success is
achieved when the agent is able to correctly trade through the whole data set. This
can, of course, be defined differently (say, a success is achieved when the agent trades
successfully for 1,000 steps). A failure is defined as an accuracy ratio of less than 50%
(total rewards divided by total number of steps). However, this is only checked for
after a certain number of steps to avoid the high initial variance of this metric:

In [54]: class Finance:
             url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'
             def __init__(self, symbol, features):
                 self.symbol = symbol
                 self.features = features
                 self.observation_space = observation_space(4)
                 self.osn = self.observation_space.shape[0]
                 self.action_space = action_space(2)
                 self.min_accuracy = 0.475  
                 self._get_data()
                 self._prepare_data()
             def _get_data(self):
                 self.raw = pd.read_csv(self.url, index_col=0,
                                        parse_dates=True).dropna()
             def _prepare_data(self):
                 self.data = pd.DataFrame(self.raw[self.symbol])
                 self.data['r'] = np.log(self.data / self.data.shift(1))
                 self.data.dropna(inplace=True)
                 self.data = (self.data - self.data.mean()) / self.data.std()
                 self.data['d'] = np.where(self.data['r'] > 0, 1, 0)
             def _get_state(self):
                 return self.data[self.features].iloc[
                     self.bar - self.osn:self.bar].values  
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             def seed(self, seed=None):
                 pass
             def reset(self):  
                 self.treward = 0
                 self.accuracy = 0
                 self.bar = self.osn
                 state = self.data[self.features].iloc[
                     self.bar - self.osn:self.bar]
                 return state.values
             def step(self, action):
                 correct = action == self.data['d'].iloc[self.bar]  
                 reward = 1 if correct else 0  
                 self.treward += reward  
                 self.bar += 1  
                 self.accuracy = self.treward / (self.bar - self.osn)  
                 if self.bar >= len(self.data):  
                     done = True
                 elif reward == 1:  
                     done = False
                 elif (self.accuracy < self.min_accuracy and
                       self.bar > self.osn + 10):  
                     done = True
                 else:  
                     done = False
                 state = self._get_state()
                 info = {}
                 return state, reward, done, info

Defines the minimum accuracy required.

Selects the data defining the state of the financial market.

Resets the environment to its initial values.

Checks whether the agent has chosen the right action (successful trade).

Defines the reward the agent receives.

Adds the reward to the total reward.

Moves the environment one step forward.

Calculates the accuracy of successful actions (trades) given all steps (trades).

If the agent reaches the end of the data set, success is achieved.

If the agent takes the right action, it can move on.
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If, after some initial steps, the accuracy drops under the minimum level, the epi‐
sode ends (failure).

For the remaining cases, the agent can move on.

Instances of the Finance class behave like an environment of the OpenAI Gym.
In particular, in this base case, the instance behaves exactly like the CartPole
environment:

In [55]: env = Finance('EUR=', 'EUR=')  

In [56]: env.reset()
Out[56]: array([1.819 , 1.8579, 1.7749, 1.8579])

In [57]: a = env.action_space.sample()
         a
Out[57]: 0

In [58]: env.step(a)
Out[58]: (array([1.8579, 1.7749, 1.8579, 1.947 ]), 0, False, {})

Specifies which symbol and which type of feature (symbol or log return) to be
used to define the data representing the state

Can the DQLAgent, as developed for the CartPole game, learn to trade in a financial
market? Yes, it can, as the following code illustrates. However, although the agent
improves its trading skill (on average) over the training episodes, the results are not
too impressive (see Figure 9-3):

In [59]: set_seeds(100)
         agent = DQLAgent(gamma=0.5, opt=RMSprop)

In [60]: episodes = 1000

In [61]: agent.learn(episodes)
         episode: 1000/1000 | treward: 2511 | av: 1012.7 | max: 2511
In [62]: agent.test(3)
         episode:    3/3 | treward: 2511
Out[62]: [2511, 2511, 2511]

In [63]: plt.figure(figsize=(10, 6))
         x = range(len(agent.averages))
         y = np.polyval(np.polyfit(x, agent.averages, deg=3), x)
         plt.plot(agent.averages, label='moving average')
         plt.plot(x, y, 'r--', label='regression')
         plt.xlabel('episodes')
         plt.ylabel('total reward')
         plt.legend();

Simple Finance Gym | 267



Figure 9-3. Average total rewards of DQLAgent for Finance

General RL Agents

This section provides a class for a financial market environment
that mimics the API of an OpenAI Gym environment. It also
applies, without any changes to the agent itself, the QL agent to the
new financial market environment. Although the performance of
the agent in this new environment might not be impressive, it illus‐
trates that the approach of RL, as introduced in this chapter, is
rather general. RL agents can in general learn from different envi‐
ronments they interact with. This explains to some extent why
AlphaZero from DeepMind is able to master not only the game of
Go but also chess and shogi, as discussed in Chapter 2.

Better Finance Gym
The idea in the previous section is to develop a simple class that allows RL within a
financial market setting. The major goal in that section is to replicate the API of an
OpenAI Gym environment. However, there is no need to restrict such an environ‐
ment to a single type of feature to describe the state of the financial market nor to use
only four lags. This section introduces an improved Finance class that allows for
multiple features, a flexible number of lags, and specific start and end points for the
base data set used. This, among other things, allows the use of one part of the data set
for learning and another one for validation or testing. The Python code presented in
the following also allows the use of leverage. This might be helpful when intraday
data is considered with relatively small absolute returns:
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In [64]: class Finance:
             url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'
             def __init__(self, symbol, features, window, lags,
                          leverage=1, min_performance=0.85,
                          start=0, end=None, mu=None, std=None):
                 self.symbol = symbol
                 self.features = features  
                 self.n_features = len(features)
                 self.window = window
                 self.lags = lags  
                 self.leverage = leverage  
                 self.min_performance = min_performance  
                 self.start = start
                 self.end = end
                 self.mu = mu
                 self.std = std
                 self.observation_space = observation_space(self.lags)
                 self.action_space = action_space(2)
                 self._get_data()
                 self._prepare_data()
             def _get_data(self):
                 self.raw = pd.read_csv(self.url, index_col=0,
                                        parse_dates=True).dropna()
             def _prepare_data(self):
                 self.data = pd.DataFrame(self.raw[self.symbol])
                 self.data = self.data.iloc[self.start:]
                 self.data['r'] = np.log(self.data / self.data.shift(1))
                 self.data.dropna(inplace=True)
                 self.data['s'] = self.data[self.symbol].rolling(
                                                       self.window).mean()   
                 self.data['m'] = self.data['r'].rolling(self.window).mean()  
                 self.data['v'] = self.data['r'].rolling(self.window).std()  
                 self.data.dropna(inplace=True)
                 if self.mu is None:
                     self.mu = self.data.mean()  
                     self.std = self.data.std()  
                 self.data_ = (self.data - self.mu) / self.std  
                 self.data_['d'] = np.where(self.data['r'] > 0, 1, 0)
                 self.data_['d'] = self.data_['d'].astype(int)
                 if self.end is not None:
                     self.data = self.data.iloc[:self.end - self.start]
                     self.data_ = self.data_.iloc[:self.end - self.start]
             def _get_state(self):
                 return self.data_[self.features].iloc[self.bar -
                                         self.lags:self.bar]
             def seed(self, seed):
                 random.seed(seed)
                 np.random.seed(seed)
             def reset(self):
                 self.treward = 0
                 self.accuracy = 0
                 self.performance = 1
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                 self.bar = self.lags
                 state = self.data_[self.features].iloc[self.bar-
                                 self.lags:self.bar]
                 return state.values
             def step(self, action):
                 correct = action == self.data_['d'].iloc[self.bar]
                 ret = self.data['r'].iloc[self.bar] * self.leverage  
                 reward_1 = 1 if correct else 0
                 reward_2 = abs(ret) if correct else -abs(ret)  
                 factor = 1 if correct else -1
                 self.treward += reward_1
                 self.bar += 1
                 self.accuracy = self.treward / (self.bar - self.lags)
                 self.performance *= math.exp(reward_2)  
                 if self.bar >= len(self.data):
                     done = True
                 elif reward_1 == 1:
                     done = False
                 elif (self.performance < self.min_performance and
                       self.bar > self.lags + 5):
                     done = True
                 else:
                     done = False
                 state = self._get_state()
                 info = {}
                 return state.values, reward_1 + reward_2 * 5, done, info

The features to define the state

The number of lags to be used

The minimum gross performance required

Additional financial features (simple moving average, momentum, rolling
volatility)

Gaussian normalization of the data

The leveraged return for the step

The return-based reward for the step

The gross performance after the step

The new Finance class gives more flexibility for the modeling of the financial market
environment. The following code shows an example for two features and five lags:

In [65]: env = Finance('EUR=', ['EUR=', 'r'], 10, 5)

In [66]: a = env.action_space.sample()
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         a
Out[66]: 0

In [67]: env.reset()
Out[67]: array([[ 1.7721, -1.0214],
                [ 1.5973, -2.4432],
                [ 1.5876, -0.1208],
                [ 1.6292,  0.6083],
                [ 1.6408,  0.1807]])

In [68]: env.step(a)
Out[68]: (array([[ 1.5973, -2.4432],
                 [ 1.5876, -0.1208],
                 [ 1.6292,  0.6083],
                 [ 1.6408,  0.1807],
                 [ 1.5725, -0.9502]]),
          1.0272827803740798,
          False,
          {})

Different Types of Environments and Data
It is important to notice that there is a fundamental difference between the CartPole
environment and the two versions of the Finance environment. In the CartPole envi‐
ronment, no data is available up front. Only an initial state is chosen with some
degree of randomness. Given this state and the action taken by an agent, determinis‐
tic transformations are applied to generate new states (data). This is possible since a
physical system is simulated that follows physical laws.

The Finance environment, on the other hand, starts with real, historical market data
and only presents the available data to the agent in similar fashion as the CartPole
environment (that is, step by step and state by state). In this case, the action of the
agent does not really influence the environment; the environment instead evolves
deterministically, and the agent learns how to behave optimally—trade profitably—in
that environment.

In that sense, the Finance environment is more comparable, say, to the problem of
finding the fastest way through a labyrinth. In such a case, the data representing the
labyrinth is given up front and the agent is only presented with the relevant sub-set of
the data (the current state) as it moves around the labyrinth.

FQL Agent
Relying on the new Finance environment, this section improves on the simple DQL
agent to improve the performance in the financial market context. The FQLAgent
class is able to handle multiple features and a flexible number of lags. It also
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distinguishes the learning environment (learn_env) from the validation environment
(valid_env). This allows one to gain a more realistic picture of the out-of-sample
performance of the agent during training. The basic structure of the class and the
RL/QL learning approach is the same for both the DQLAgent class and the
FQLAgent class:

In [69]: class FQLAgent:
             def __init__(self, hidden_units, learning_rate, learn_env, valid_env):
                 self.learn_env = learn_env
                 self.valid_env = valid_env
                 self.epsilon = 1.0
                 self.epsilon_min = 0.1
                 self.epsilon_decay = 0.98
                 self.learning_rate = learning_rate
                 self.gamma = 0.95
                 self.batch_size = 128
                 self.max_treward = 0
                 self.trewards = list()
                 self.averages = list()
                 self.performances = list()
                 self.aperformances = list()
                 self.vperformances = list()
                 self.memory = deque(maxlen=2000)
                 self.model = self._build_model(hidden_units, learning_rate)

             def _build_model(self, hu, lr):
                 model = Sequential()
                 model.add(Dense(hu, input_shape=(
                     self.learn_env.lags, self.learn_env.n_features),
                                 activation='relu'))
                 model.add(Dropout(0.3, seed=100))
                 model.add(Dense(hu, activation='relu'))
                 model.add(Dropout(0.3, seed=100))
                 model.add(Dense(2, activation='linear'))
                 model.compile(
                     loss='mse',
                     optimizer=RMSprop(lr=lr)
                 )
                 return model

             def act(self, state):
                 if random.random() <= self.epsilon:
                     return self.learn_env.action_space.sample()
                 action = self.model.predict(state)[0, 0]
                 return np.argmax(action)

             def replay(self):
                 batch = random.sample(self.memory, self.batch_size)
                 for state, action, reward, next_state, done in batch:
                     if not done:
                         reward += self.gamma * np.amax(
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                             self.model.predict(next_state)[0, 0])
                     target = self.model.predict(state)
                     target[0, 0, action] = reward
                     self.model.fit(state, target, epochs=1,
                                    verbose=False)
                 if self.epsilon > self.epsilon_min:
                     self.epsilon *= self.epsilon_decay

             def learn(self, episodes):
                 for e in range(1, episodes + 1):
                     state = self.learn_env.reset()
                     state = np.reshape(state, [1, self.learn_env.lags,
                                                self.learn_env.n_features])
                     for _ in range(10000):
                         action = self.act(state)
                         next_state, reward, done, info = \
                                         self.learn_env.step(action)
                         next_state = np.reshape(next_state,
                                         [1, self.learn_env.lags,
                                          self.learn_env.n_features])
                         self.memory.append([state, action, reward,
                                              next_state, done])
                         state = next_state
                         if done:
                             treward = _ + 1
                             self.trewards.append(treward)
                             av = sum(self.trewards[-25:]) / 25
                             perf = self.learn_env.performance
                             self.averages.append(av)
                             self.performances.append(perf)
                             self.aperformances.append(
                                 sum(self.performances[-25:]) / 25)
                             self.max_treward = max(self.max_treward, treward)
                             templ = 'episode: {:2d}/{} | treward: {:4d} | '
                             templ += 'perf: {:5.3f} | av: {:5.1f} | max: {:4d}'
                             print(templ.format(e, episodes, treward, perf,
                                           av, self.max_treward), end='\r')
                             break
                     self.validate(e, episodes)
                     if len(self.memory) > self.batch_size:
                         self.replay()
             def validate(self, e, episodes):
                 state = self.valid_env.reset()
                 state = np.reshape(state, [1, self.valid_env.lags,
                                            self.valid_env.n_features])
                 for _ in range(10000):
                     action = np.argmax(self.model.predict(state)[0, 0])
                     next_state, reward, done, info = self.valid_env.step(action)
                     state = np.reshape(next_state, [1, self.valid_env.lags,
                                            self.valid_env.n_features])
                     if done:
                         treward = _ + 1
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                         perf = self.valid_env.performance
                         self.vperformances.append(perf)
                         if e % 20 == 0:
                             templ = 71 * '='
                             templ += '\nepisode: {:2d}/{} | VALIDATION | '
                             templ += 'treward: {:4d} | perf: {:5.3f} | '
                             templ += 'eps: {:.2f}\n'
                             templ += 71 * '='
                             print(templ.format(e, episodes, treward,
                                                perf, self.epsilon))
                         break

The following Python code shows that the performance of the FQLAgent is substan‐
tially better than that of the simple DQLAgent that solves the CartPole problem. This
trading bot seems to learn about trading rather consistently through interacting with
the financial market environment (see Figure 9-4):

In [70]: symbol = 'EUR='
         features = [symbol, 'r', 's', 'm', 'v']

In [71]: a = 0
         b = 2000
         c = 500

In [72]: learn_env = Finance(symbol, features, window=10, lags=6,
                          leverage=1, min_performance=0.85,
                          start=a, end=a + b, mu=None, std=None)

In [73]: learn_env.data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2000 entries, 2010-01-19 to 2017-12-26
         Data columns (total 5 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   EUR=    2000 non-null   float64
          1   r       2000 non-null   float64
          2   s       2000 non-null   float64
          3   m       2000 non-null   float64
          4   v       2000 non-null   float64
         dtypes: float64(5)
         memory usage: 93.8 KB

In [74]: valid_env = Finance(symbol, features, window=learn_env.window,
                          lags=learn_env.lags, leverage=learn_env.leverage,
                          min_performance=learn_env.min_performance,
                          start=a + b, end=a + b + c,
                          mu=learn_env.mu, std=learn_env.std)

In [75]: valid_env.data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 500 entries, 2017-12-27 to 2019-12-20
         Data columns (total 5 columns):
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          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   EUR=    500 non-null    float64
          1   r       500 non-null    float64
          2   s       500 non-null    float64
          3   m       500 non-null    float64
          4   v       500 non-null    float64
         dtypes: float64(5)
         memory usage: 23.4 KB

In [76]: set_seeds(100)
         agent = FQLAgent(24, 0.0001, learn_env, valid_env)

In [77]: episodes = 61

In [78]: agent.learn(episodes)
         =======================================================================
         episode: 20/61 | VALIDATION | treward:  494 | perf: 1.169 | eps: 0.68
         =======================================================================
         =======================================================================
         episode: 40/61 | VALIDATION | treward:  494 | perf: 1.111 | eps: 0.45
         =======================================================================
         =======================================================================
         episode: 60/61 | VALIDATION | treward:  494 | perf: 1.089 | eps: 0.30
         =======================================================================
         episode: 61/61 | treward: 1994 | perf: 1.268 | av: 1615.1 | max: 1994
In [79]: agent.epsilon
Out[79]: 0.291602079838278

In [80]: plt.figure(figsize=(10, 6))
         x = range(1, len(agent.averages) + 1)
         y = np.polyval(np.polyfit(x, agent.averages, deg=3), x)
         plt.plot(agent.averages, label='moving average')
         plt.plot(x, y, 'r--', label='regression')
         plt.xlabel('episodes')
         plt.ylabel('total reward')
         plt.legend();
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Figure 9-4. Average total rewards of FQLAgent for Finance

An interesting picture also arises for the training and validation performances, as
shown in Figure 9-5. The training performance shows a high variance, which is due,
for example, to the exploration that is going on in addition to the exploitation of the
currently optimal policy. In comparison, the validation performance has a much
lower variance because it only relies on the exploitation of the currently optimal
policy:

In [81]: plt.figure(figsize=(10, 6))
         x = range(1, len(agent.performances) + 1)
         y = np.polyval(np.polyfit(x, agent.performances, deg=3), x)
         y_ = np.polyval(np.polyfit(x, agent.vperformances, deg=3), x)
         plt.plot(agent.performances[:], label='training')
         plt.plot(agent.vperformances[:], label='validation')
         plt.plot(x, y, 'r--', label='regression (train)')
         plt.plot(x, y_, 'r-.', label='regression (valid)')
         plt.xlabel('episodes')
         plt.ylabel('gross performance')
         plt.legend();
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Figure 9-5. Training and validation performance of the FQLAgent per episode

Conclusions
This chapter discusses reinforcement learning as one of the most successful algorithm
classes that AI has to offer. Most of the advances and success stories discussed in
Chapter 2 have their origin in improvements in the field of RL. In this context, neural
networks are not rendered useless. To the contrary, they play an important role in
approximating the optimal action policy, usually in the form of a policy Q that, given
a certain state, assigns each action a value. The higher the value is, the better the
action will be, taking into account both immediate and delayed rewards.

The inclusion of delayed rewards, of course, is relevant in many important contexts.
In a gaming context, with multiple actions available in general, it is optimal to choose
the one that promises the highest total reward—and probably not just the highest
immediate reward. The final total score is what is to be maximized. The same holds
true in a financial context. The long-term performance is in general the appropriate
goal for trading and investing, not a quick short-term profit that might come at an
increased risk of going bankrupt.

The examples in this chapter also demonstrate that the RL approach is rather flexible
and general in that it can be applied to different settings equally well. The DQL agent
that solves the CartPole problem can also learn how to trade in a financial market,
although not too well. Based on improvements of the Finance environment and the
FQL agent, the FQL trading bot shows a respectable performance both in-sample (on
the training data) and out-of-sample (on the validation data).
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PART IV

Algorithmic Trading

Success means making profits and avoiding losses.
—Martin Zweig

Part III is concerned with the discovery of statistical inefficiencies in financial mar‐
kets by the use of deep learning and reinforcement learning techniques. This part, by
contrast, is concerned with identifying and exploiting economic inefficiencies for
which statistical inefficiencies are a prerequisite in general. The tool of choice for
exploiting economic inefficiencies is algorithmic trading, that is, the automated execu‐
tion of trading strategies based on predictions generated by a trading bot.

Table IV-1 compares in a simplified manner the problem of training and deploying a
trading bot with the one of building and deploying a self-driving car.

Table IV-1. Self-driving cars compared to trading bots

Step Self-Driving Car Trading Bot
Training Training AI in virtual and recorded environments Training AI with simulated and real historical data

Risk
management

Adding rules to avoid collisions, crashes, and so
on

Adding rules to avoid large losses, to take profits
early, and so on

Deployment Combining AI with car hardware, deploying the
car on the street, and monitoring

Combining AI with trading platform, deploying the
trading bot for real trading, and monitoring

This part consists of three chapters that are structured along the three steps, as illus‐
trated in Table IV-1, to exploit economic inefficiencies through a trading bot—start‐
ing with the vectorized backtesting of trading strategies, covering the analysis of risk



management measures through event-based backtesting, and discussing technical
details in the context of strategy execution and deployment:

• Chapter 10 is about the vectorized backtesting of algorithmic trading strategies,
such as those based on a DNN for market prediction. This approach is both effi‐
cient and insightful with regard to a first judgment of the economic potential of a
trading strategy. It also allows one to assess the impact of transaction costs on
economic performance.

• Chapter 11 covers central aspects of managing the risk of algorithmic trading
strategies, such as the use of stop loss orders or take profit orders. In addition to
vectorized backtesting, this chapter introduces event-based backtesting as a more
flexible approach to judge the economic potential of a trading strategy.

• Chapter 12 is primarily about the execution of trading strategies. Topics are the
retrieval of historical data, the training of a trading bot based on this data, the
streaming of real-time data, and the placement of orders. It introduces Oanda
and its API as a trading platform well suited to algorithmic trading. It also covers
fundamental aspects of deploying AI-powered algorithmic trading strategies in
automatic fashion.

Algorithmic Trading Strategies

Algorithmic trading is a vast field and encompasses different types
of trading strategies. Some, for example, try to minimize the mar‐
ket impact during the execution of large orders (liquidity
algorithms). Others try to replicate the payoff of derivatives instru‐
ments as closely as possible (dynamic hedging/replication). These
examples illustrate that not all algorithmic trading strategies have
the goal of exploiting economic inefficiencies. For the purposes of
this book, the focus on algorithmic trading strategies that result
from predictions made by a trading bot (for example, in the form
of a DNN agent or an RL agent) seems appropriate and useful.
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CHAPTER 10

Vectorized Backtesting

Tesla’s chief executive and serial technology entrepreneur, Elon Musk, has said his
company’s cars will be able to be summoned and drive autonomously across the US to
pick up their owners within the next two years.

—Samuel Gibbs (2016)

Big money is made in the stock market by being on the right side of the major moves.
—Martin Zweig

The term vectorized backtesting refers to a technical approach to backtesting algorith‐
mic trading strategies, such as those based on a dense neural network (DNN) for
market prediction. The books by Hilpisch (2018, ch. 15; 2020, ch. 4) cover vectorized
backtesting based on a number of concrete examples. Vectorized in this context refers
to a programming paradigm that relies heavily or even exclusively on vectorized code
(that is, code without any looping on the Python level). Vectorization of code is good
practice with such packages such as Numpy or pandas in general and has been used
intensively in previous chapters as well. The benefits of vectorized code are more
concise and easy-to-read code, as well as faster execution in many important scenar‐
ios. On the other hand, it might not be as flexible in backtesting trading strategies as,
for example, event-based backtesting, which is introduced and used in Chapter 11.

Having a good AI-powered predictor available that beats a simple baseline predictor
is important but is generally not enough to generate alpha (that is, above-market
returns, possibly adjusted for risk). For example, it is also important for a prediction-
based trading strategy to predict the large market movements correctly and not just
the majority of the (potentially pretty small) market movements. Vectorized backtest‐
ing is an easy and fast way of figuring out the economic potential of a trading
strategy.
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Compared to autonomous vehicles (AVs), vectorized backtesting is like testing the AI
of AVs in virtual environments just to see how it performs “in general” in a risk-free
environment. However, for the AI of an AV it is not only important to perform well
on average, but it is also of paramount importance to see how it masters critical or
even extreme situations. Such an AI is supposed to cause “zero casualties” on average,
not 0.1 or 0.5. For a financial AI, it is similarly—even if not equally—important to get
the large market movements correct. Whereas this chapter focuses on the pure per‐
formance of financial AI agents (trading bots), Chapter 11 goes deeper into risk
assessment and the backtesting of standard risk measures.

“Backtesting an SMA-Based Strategy” on page 282 introduces vectorized backtesting
based on a simple example using simple moving averages as technical indicators and
end-of-day (EOD) data. This allows for insightful visualizations and an easier under‐
standing of the approach when getting started. “Backtesting a Daily DNN-Based
Strategy” on page 289 trains a DNN based on EOD data and backtests the resulting
prediction-based strategy for its economic performance. “Backtesting an Intraday
DNN-Based Strategy” on page 295 then does the same with intraday data. In all
examples, proportional transaction costs are included in the form of assumed bid-ask
spreads.

Backtesting an SMA-Based Strategy
This section introduces vectorized backtesting based on a classical trading strategy
that uses simple moving averages (SMAs) as technical indicators. The following code
realizes the necessary imports and configurations and retrieves EOD data for the
EUR/USD currency pair:

In [1]: import os
        import math
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        pd.set_option('mode.chained_assignment', None)
        pd.set_option('display.float_format', '{:.4f}'.format)
        np.set_printoptions(suppress=True, precision=4)
        os.environ['PYTHONHASHSEED'] = '0'

In [2]: url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'  

In [3]: symbol = 'EUR='  

In [4]: data = pd.DataFrame(pd.read_csv(url, index_col=0,
                                        parse_dates=True).dropna()[symbol])  
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In [5]: data.info()  
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
        Data columns (total 1 columns):
         #   Column  Non-Null Count  Dtype
        ---  ------  --------------  -----
         0   EUR=    2516 non-null   float64
        dtypes: float64(1)
        memory usage: 39.3 KB

Retrieves EOD data for EUR/USD

The idea of the strategy is the following. Calculate a shorter SMA1, say for 42 days,
and a longer SMA2, say for 258 days. Whenever SMA1 is above SMA2, go long on the
financial instrument. Whenever SMA1 is below SMA2, go short on the financial instru‐
ment. Because the example is based on EUR/USD, going long or short is easily
accomplished.

The following Python code calculates in vectorized fashion the SMA values and visu‐
alizes the resulting time series alongside the original time series (see Figure 10-1):

In [6]: data['SMA1'] = data[symbol].rolling(42).mean()  

In [7]: data['SMA2'] = data[symbol].rolling(258).mean()  

In [8]: data.plot(figsize=(10, 6));  

Calculates the shorter SMA1

Calculates the longer SMA2

Visualizes the three time series

Equipped with the SMA time series data, the resulting positions can, again in vector‐
ized fashion, be derived. Note the shift of the resulting position time series by one day
to avoid foresight bias in the data. This shift is necessary since the calculation of the
SMAs includes the closing values from the same day. Therefore, the position derived
from the SMA values from one day needs to be applied to the next day for the whole
time series.
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Figure 10-1. Time series data for EUR/USD and SMAs

Figure 10-2 visualizes the resulting positions as an overlay to the other time series:

In [9]: data.dropna(inplace=True)  

In [10]: data['p'] = np.where(data['SMA1'] > data['SMA2'], 1, -1)  

In [11]: data['p'] = data['p'].shift(1)  

In [12]: data.dropna(inplace=True)  

In [13]: data.plot(figsize=(10, 6), secondary_y='p');  

Deletes rows containing NaN values

Derives the position values based on same-day SMA values

Shifts the position values by one day to avoid foresight bias

Visualizes the position values as derived from the SMAs
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Figure 10-2. Time series data for EUR/USD, SMAs, and resulting positions

One crucial step is missing: the combination of the positions with the returns of the
financial instrument. Since positions are conveniently represented by a +1 for a long
position and a -1 for a short position, this step boils down to multiplying two col‐
umns of the DataFrame object—in vectorized fashion again. The SMA-based trading
strategy outperforms the passive benchmark investment by a considerable margin, as
Figure 10-3 illustrates:

In [14]: data['r'] = np.log(data[symbol] / data[symbol].shift(1))  

In [15]: data.dropna(inplace=True)

In [16]: data['s'] = data['p'] * data['r']  

In [17]: data[['r', 's']].sum().apply(np.exp)  
Out[17]: r   0.8640
         s   1.3773
         dtype: float64

In [18]: data[['r', 's']].sum().apply(np.exp) - 1  
Out[18]: r   -0.1360
         s    0.3773
         dtype: float64

In [19]: data[['r', 's']].cumsum().apply(np.exp).plot(figsize=(10, 6));  

Calculates the log returns

Calculates the strategy returns

Calculates the gross performances
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Calculates the net performances

Visualizes the gross performances over time

Figure 10-3. Gross performance of passive benchmark investment and SMA strategy

So far, the performance figures are not considering transaction costs. These are, of
course, a crucial element when judging the economic potential of a trading strategy.
In the current setup, proportional transaction costs can be easily included in the cal‐
culations. The idea is to determine when a trade takes place and to reduce the perfor‐
mance of the trading strategy by a certain value to account for the relevant bid-ask
spread. As the following calculations show, and as is obvious from Figure 10-2, the
trading strategy does not change positions too often. Therefore, in order to have
some meaningful effects of transaction costs, they are assumed to be quite a bit
higher than typically seen for EUR/USD. The net effect of subtracting transaction
costs is a few percentage points under the given assumptions (see Figure 10-4):

In [20]: sum(data['p'].diff() != 0) + 2  
Out[20]: 10

In [21]: pc = 0.005  

In [22]: data['s_'] = np.where(data['p'].diff() != 0,
                               data['s'] - pc, data['s'])  

In [23]: data['s_'].iloc[0] -= pc  

In [24]: data['s_'].iloc[-1] -= pc  

In [25]: data[['r', 's', 's_']][data['p'].diff() != 0]  
Out[25]:                  r       s      s_
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         Date
         2011-01-12  0.0123  0.0123  0.0023
         2011-10-10  0.0198 -0.0198 -0.0248
         2012-11-07 -0.0034 -0.0034 -0.0084
         2014-07-24 -0.0001  0.0001 -0.0049
         2016-03-16  0.0102  0.0102  0.0052
         2016-11-10 -0.0018  0.0018 -0.0032
         2017-06-05 -0.0025 -0.0025 -0.0075
         2018-06-15  0.0035 -0.0035 -0.0085

In [26]: data[['r', 's', 's_']].sum().apply(np.exp)
Out[26]: r    0.8640
         s    1.3773
         s_   1.3102
         dtype: float64

In [27]: data[['r', 's', 's_']].sum().apply(np.exp) - 1
Out[27]: r    -0.1360
         s     0.3773
         s_    0.3102
         dtype: float64

In [28]: data[['r', 's', 's_']].cumsum().apply(np.exp).plot(figsize=(10, 6));

Calculates the number of trades, including entry and exit trade

Fixes the proportional transaction costs (deliberately set quite high)

Adjusts the strategy performance for the transaction costs

Adjusts the strategy performance for the entry trade

Adjusts the strategy performance for the exit trade

Shows the adjusted performance values for the regular trades
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Figure 10-4. Gross performance of the SMA strategy before and after transaction costs

What about the resulting risk of the trading strategy? For a trading strategy that is
based on directional predictions and that takes long or short positions only, the risk,
expressed as the volatility (standard deviation of the log returns), is exactly the same
as for the passive benchmark investment:

In [29]: data[['r', 's', 's_']].std()  
Out[29]: r    0.0054
         s    0.0054
         s_   0.0054
         dtype: float64

In [30]: data[['r', 's', 's_']].std() * math.sqrt(252)  
Out[30]: r    0.0853
         s    0.0853
         s_   0.0855
         dtype: float64

Daily volatility

Annualized volatility

Vectorized Backtesting

Vectorized backtesting is a powerful and efficient approach to
backtesting the “pure” performance of a prediction-based trading
strategy. It can also accommodate proportional transaction costs,
for instance. However, it is not well suited to including typical risk
management measures, such as (trailing) stop loss orders or take
profit orders. This is addressed in Chapter 11.
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Backtesting a Daily DNN-Based Strategy
The previous section lays out the blueprint for vectorized backtesting on the basis of a
simple, easy-to-visualize trading strategy. The same blueprint can be applied, for
example, to DNN-based trading strategies with minimal technical adjustments. The
following trains a Keras DNN model, as discussed in Chapter 7. The data that is used
is the same as in the previous example. However, as in Chapter 7, different features
and lags thereof need to be added to the DataFrame object:

In [31]: data = pd.DataFrame(pd.read_csv(url, index_col=0,
                                         parse_dates=True).dropna()[symbol])

In [32]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
         Data columns (total 1 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   EUR=    2516 non-null   float64
         dtypes: float64(1)
         memory usage: 39.3 KB

In [33]: lags = 5

In [34]: def add_lags(data, symbol, lags, window=20):
             cols = []
             df = data.copy()
             df.dropna(inplace=True)
             df['r'] = np.log(df / df.shift(1))
             df['sma'] = df[symbol].rolling(window).mean()
             df['min'] = df[symbol].rolling(window).min()
             df['max'] = df[symbol].rolling(window).max()
             df['mom'] = df['r'].rolling(window).mean()
             df['vol'] = df['r'].rolling(window).std()
             df.dropna(inplace=True)
             df['d'] = np.where(df['r'] > 0, 1, 0)
             features = [symbol, 'r', 'd', 'sma', 'min', 'max', 'mom', 'vol']
             for f in features:
                 for lag in range(1, lags + 1):
                     col = f'{f}_lag_{lag}'
                     df[col] = df[f].shift(lag)
                     cols.append(col)
             df.dropna(inplace=True)
             return df, cols

In [35]: data, cols = add_lags(data, symbol, lags, window=20)
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The following Python code accomplishes additional imports and defines the
set_seeds() and create_model() functions:

In [36]: import random
         import tensorflow as tf
         from keras.layers import Dense, Dropout
         from keras.models import Sequential
         from keras.regularizers import l1
         from keras.optimizers import Adam
         from sklearn.metrics import accuracy_score
         Using TensorFlow backend.

In [37]: def set_seeds(seed=100):
             random.seed(seed)
             np.random.seed(seed)
             tf.random.set_seed(seed)
         set_seeds()

In [38]: optimizer = Adam(learning_rate=0.0001)

In [39]: def create_model(hl=2, hu=128, dropout=False, rate=0.3,
                         regularize=False, reg=l1(0.0005),
                         optimizer=optimizer, input_dim=len(cols)):
             if not regularize:
                 reg = None
             model = Sequential()
             model.add(Dense(hu, input_dim=input_dim,
                          activity_regularizer=reg,
                          activation='relu'))
             if dropout:
                 model.add(Dropout(rate, seed=100))
             for _ in range(hl):
                 model.add(Dense(hu, activation='relu',
                              activity_regularizer=reg))
                 if dropout:
                     model.add(Dropout(rate, seed=100))
             model.add(Dense(1, activation='sigmoid'))
             model.compile(loss='binary_crossentropy',
                           optimizer=optimizer,
                           metrics=['accuracy'])
             return model

Based on a sequential train-test split of the historical data, the following Python code
first trains the DNN model based on normalized features data:

In [40]: split = '2018-01-01'  

In [41]: train = data.loc[:split].copy()  

In [42]: np.bincount(train['d'])  
Out[42]: array([ 982, 1006])
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In [43]: mu, std = train.mean(), train.std()  

In [44]: train_ = (train - mu) / std  

In [45]: set_seeds()
         model = create_model(hl=2, hu=64)  

In [46]: %%time
         model.fit(train_[cols], train['d'],
                 epochs=20, verbose=False,
                 validation_split=0.2, shuffle=False)  
         CPU times: user 2.93 s, sys: 574 ms, total: 3.5 s
         Wall time: 1.93 s

Out[46]: <keras.callbacks.callbacks.History at 0x7fc9392f38d0>

In [47]: model.evaluate(train_[cols], train['d'])  
         1988/1988 [==============================] - 0s 17us/step

Out[47]: [0.6745863538872549, 0.5925553441047668]

Splits the data into training and test data

Shows the frequency of the labels classes

Normalizes the training features data

Creates the DNN model

Trains the DNN model on the training data

Evaluates the performance of the model on the training data

So far, this basically repeats the core approach of Chapter 7. Vectorized backtesting
can now be applied to judge the economic performance of the DNN-based trading
strategy in-sample based on the model’s predictions (see Figure 10-5). In this context,
an upward prediction is naturally interpreted as a long position and a downward pre‐
diction as a short position:

In [48]: train['p'] = np.where(model.predict(train_[cols]) > 0.5, 1, 0)  

In [49]: train['p'] = np.where(train['p'] == 1, 1, -1)  

In [50]: train['p'].value_counts()  
Out[50]: -1    1098
          1     890
         Name: p, dtype: int64

In [51]: train['s'] = train['p'] * train['r']  
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In [52]: train[['r', 's']].sum().apply(np.exp)  
Out[52]: r   0.8787
         s   5.0766
         dtype: float64

In [53]: train[['r', 's']].sum().apply(np.exp)  - 1  
Out[53]: r   -0.1213
         s    4.0766
         dtype: float64

In [54]: train[['r', 's']].cumsum().apply(np.exp).plot(figsize=(10, 6));  

Generates the binary predictions

Translates the predictions into position values

Shows the number of long and short positions

Calculates the strategy performance values

Calculates the gross and net performances (in-sample)

Visualizes the gross performances over time (in-sample)

Figure 10-5. Gross performance of the passive benchmark investment and the daily DNN
strategy (in-sample)
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Next is the same sequence of calculations for the test data set. Whereas the
out-performance in-sample is significant, the numbers out-of-sample are not as
impressive but are still convincing (see Figure 10-6):

In [55]: test = data.loc[split:].copy()  

In [56]: test_ = (test - mu) / std  

In [57]: model.evaluate(test_[cols], test['d'])  
         503/503 [==============================] - 0s 17us/step

Out[57]: [0.6933823573897421, 0.5407554507255554]

In [58]: test['p'] = np.where(model.predict(test_[cols]) > 0.5, 1, -1)

In [59]: test['p'].value_counts()
Out[59]: -1    406
          1     97
         Name: p, dtype: int64

In [60]: test['s'] = test['p'] * test['r']

In [61]: test[['r', 's']].sum().apply(np.exp)
Out[61]: r   0.9345
         s   1.2431
         dtype: float64

In [62]: test[['r', 's']].sum().apply(np.exp) - 1
Out[62]: r   -0.0655
         s    0.2431
         dtype: float64

In [63]: test[['r', 's']].cumsum().apply(np.exp).plot(figsize=(10, 6));

Generates the test data sub-set

Normalizes the test data

Evaluates the model performance on the test data

The DNN-based trading strategy leads to a larger number of trades as compared to
the SMA-based strategy. This makes the inclusion of transaction costs an even more
important aspect when judging the economic performance.
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1 This, for example, is a typical spread that Oanda offers retail traders.

Figure 10-6. Gross performance of the passive benchmark investment and the daily DNN
strategy (out-of-sample)

The following code assumes now realistic bid-ask spreads for EUR/USD on the level
of 1.2 pips (that is, 0.00012 in terms of currency units).1 To simplify the calculations,
an average value for the proportional transaction costs pc is calculated based on the
average closing price for EUR/USD (see Figure 10-7):

In [64]: sum(test['p'].diff() != 0)
Out[64]: 147

In [65]: spread = 0.00012  
         pc = spread / data[symbol].mean()  
         print(f'{pc:.6f}')
         0.000098

In [66]: test['s_'] = np.where(test['p'].diff() != 0,
                               test['s'] - pc, test['s'])

In [67]: test['s_'].iloc[0] -= pc

In [68]: test['s_'].iloc[-1] -= pc

In [69]: test[['r', 's', 's_']].sum().apply(np.exp)
Out[69]: r    0.9345
         s    1.2431
         s_   1.2252
         dtype: float64
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In [70]: test[['r', 's', 's_']].sum().apply(np.exp) - 1
Out[70]: r    -0.0655
         s     0.2431
         s_    0.2252
         dtype: float64

In [71]: test[['r', 's', 's_']].cumsum().apply(np.exp).plot(figsize=(10, 6));

Fixes the average bid-ask spread

Calculates the average proportional transaction costs

Figure 10-7. Gross performance of the daily DNN strategy before and after transaction
costs (out-of-sample)

The DNN-based trading strategy seems promising both before and after typical
transaction costs. However, would a similar strategy be economically viable intraday
as well, when even more trades are observed? The next section analyzes a DNN-based
intraday strategy.

Backtesting an Intraday DNN-Based Strategy
To train and backtest a DNN model on intraday data, another data set is required:

In [72]: url = 'http://hilpisch.com/aiif_eikon_id_eur_usd.csv'  

In [73]: symbol = 'EUR='  

In [74]: data = pd.DataFrame(pd.read_csv(url, index_col=0,
                             parse_dates=True).dropna()['CLOSE'])  
         data.columns = [symbol]

Backtesting an Intraday DNN-Based Strategy | 295



In [75]: data = data.resample('5min', label='right').last().ffill()  

In [76]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 26486 entries, 2019-10-01 00:05:00 to 2019-12-31 23:10:00
         Freq: 5T
         Data columns (total 1 columns):
          #   Column  Non-Null Count  Dtype
         ---  ------  --------------  -----
          0   EUR=    26486 non-null  float64
         dtypes: float64(1)
         memory usage: 413.8 KB

In [77]: lags = 5

In [78]: data, cols = add_lags(data, symbol, lags, window=20)

Retrieves intraday data for EUR/USD and picks the closing prices

Resamples the data to five-minute bars

The procedure of the previous section can now be repeated with the new data set.
First, train the DNN model:

In [79]: split = int(len(data) * 0.85)

In [80]: train = data.iloc[:split].copy()

In [81]: np.bincount(train['d'])
Out[81]: array([16284,  6207])

In [82]: def cw(df):
             c0, c1 = np.bincount(df['d'])
             w0 = (1 / c0) * (len(df)) / 2
             w1 = (1 / c1) * (len(df)) / 2
             return {0: w0, 1: w1}

In [83]: mu, std = train.mean(), train.std()

In [84]: train_ = (train - mu) / std

In [85]: set_seeds()
         model = create_model(hl=1, hu=128,
                              reg=True, dropout=False)

In [86]: %%time
         model.fit(train_[cols], train['d'],
                   epochs=40, verbose=False,
                   validation_split=0.2, shuffle=False,
                   class_weight=cw(train))
         CPU times: user 40.6 s, sys: 5.49 s, total: 46 s
         Wall time: 25.2 s
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Out[86]: <keras.callbacks.callbacks.History at 0x7fc91a6b2a90>

In [87]: model.evaluate(train_[cols], train['d'])
         22491/22491 [==============================] - 0s 13us/step

Out[87]: [0.5218664327576152, 0.6729803085327148]

In-sample, the performance looks promising, as illustrated in Figure 10-8:

In [88]: train['p'] = np.where(model.predict(train_[cols]) > 0.5, 1, -1)

In [89]: train['p'].value_counts()
Out[89]: -1    11519
          1    10972
         Name: p, dtype: int64

In [90]: train['s'] = train['p'] * train['r']

In [91]: train[['r', 's']].sum().apply(np.exp)
Out[91]: r   1.0223
         s   1.6665
         dtype: float64

In [92]: train[['r', 's']].sum().apply(np.exp) - 1
Out[92]: r   0.0223
         s   0.6665
         dtype: float64

In [93]: train[['r', 's']].cumsum().apply(np.exp).plot(figsize=(10, 6));

Figure 10-8. Gross performance of the passive benchmark investment and the DNN
intraday strategy (in-sample)
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Out-of-sample, the performance also looks promising before transaction costs. The
strategy seems to systematically outperform the passive benchmark investment (see
Figure 10-9):

In [94]: test = data.iloc[split:].copy()

In [95]: test_ = (test - mu) / std

In [96]: model.evaluate(test_[cols], test['d'])
         3970/3970 [==============================] - 0s 19us/step

Out[96]: [0.5226116042706168, 0.668513834476471]

In [97]: test['p'] = np.where(model.predict(test_[cols]) > 0.5, 1, -1)

In [98]: test['p'].value_counts()
Out[98]: -1    2273
          1    1697
         Name: p, dtype: int64

In [99]: test['s'] = test['p'] * test['r']

In [100]: test[['r', 's']].sum().apply(np.exp)
Out[100]: r   1.0071
          s   1.0658
          dtype: float64

In [101]: test[['r', 's']].sum().apply(np.exp) - 1
Out[101]: r   0.0071
          s   0.0658
          dtype: float64

In [102]: test[['r', 's']].cumsum().apply(np.exp).plot(figsize=(10, 6));

The final litmus test with regard to pure economic performance comes when adding
transaction costs. The strategy leads to hundreds of trades over a relatively short
period of time. As the following analysis suggests, based on standard retail bid-ask
spreads, the DNN-based strategy is not viable.
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Figure 10-9. Gross performance of the passive benchmark investment and the DNN
intraday strategy (out-of-sample)

Reducing the spread to a level that professional, high-volume traders might achieve,
the strategy still does not break even but rather loses a large proportion of the profits
to the transaction costs (see Figure 10-10):

In [103]: sum(test['p'].diff() != 0)
Out[103]: 1303

In [104]: spread = 0.00012  
          pc_1 = spread / test[symbol]  

In [105]: spread = 0.00006  
          pc_2 = spread / test[symbol]  

In [106]: test['s_1'] = np.where(test['p'].diff() != 0,
                                 test['s'] - pc_1, test['s'])  

In [107]: test['s_1'].iloc[0] -= pc_1.iloc[0]  
          test['s_1'].iloc[-1] -= pc_1.iloc[0]  

In [108]: test['s_2'] = np.where(test['p'].diff() != 0,
                                 test['s'] - pc_2, test['s'])  

In [109]: test['s_2'].iloc[0] -= pc_2.iloc[0]  
          test['s_2'].iloc[-1] -= pc_2.iloc[0]  

In [110]: test[['r', 's', 's_1', 's_2']].sum().apply(np.exp)
Out[110]: r     1.0071
          s     1.0658
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          s_1   0.9259
          s_2   0.9934
          dtype: float64

In [111]: test[['r', 's', 's_1', 's_2']].sum().apply(np.exp) - 1
Out[111]: r      0.0071
          s      0.0658
          s_1   -0.0741
          s_2   -0.0066
          dtype: float64

In [112]: test[['r', 's', 's_1', 's_2']].cumsum().apply(
              np.exp).plot(figsize=(10, 6), style=['-', '-', '--', '--']);

Assumes bid-ask spread on retail level

Assumes bid-ask spread on professional level

Figure 10-10. Gross performance of the DNN intraday strategy before and after higher/
lower transaction costs (out-of-sample)
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Intraday Trading

Intraday algorithmic trading in the form discussed in this chapter
often seems appealing from a statistical point of view. Both
in-sample and out-of-sample, the DNN model reaches a high accu‐
racy when predicting the market direction. Excluding transaction
costs, this also translates both in-sample and out-of-sample into a
significant outperformance of the DNN-based strategy when com‐
pared to the passive benchmark investment. However, adding
transaction costs to the mix reduces the performance of the DNN-
based strategy considerably, making it unviable for typical retail
bid-ask spreads and not really attractive for lower, high-volume
bid-ask spreads.

Conclusions
Vectorized backtesting proves to be an efficient and valuable approach for backtesting
the performance of AI-powered algorithmic trading strategies. This chapter first
explains the basic idea behind the approach based on a simple example using two
SMAs to derive signals. This allows for a simple visualization of the strategy and
resulting positions. It then proceeds by backtesting a DNN-based trading strategy, as
discussed in detail in Chapter 7, in combination with EOD data. Both before and
after transaction costs, the statistical inefficiencies as discovered in Chapter 7 translate
into economic inefficiencies, which means profitable trading strategies. When using
the same vectorized backtesting approaches with intraday data, the DNN strategy also
shows a significant outperformance both in- and out-of-sample when compared
to the passive benchmark investment—at least before transaction costs. Adding trans‐
action costs to the backtesting illustrates that these must be pretty low, on a level
often not even achieved by big professional traders, to render the trading strategy
economically viable.
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CHAPTER 11

Risk Management

A significant barrier to deploying autonomous vehicles (AVs) on a massive scale is
safety assurance.

—Majid Khonji et al. (2019)

Having better prediction raises the value of judgment. After all, it doesn’t help to know
the likelihood of rain if you don’t know how much you like staying dry or how much
you hate carrying an umbrella.

—Ajay Agrawal et al. (2018)

Vectorized backtesting in general enables one to judge the economic potential of a
prediction-based algorithmic trading strategy on an as-is basis (that is, in its pure
form). Most AI agents applied in practice have more components than just the
prediction model. For example, the AI of autonomous vehicles (AVs) comes not
standalone but rather with a large number of rules and heuristics that restrict what
actions the AI takes or can take. In the context of AVs, this primarily relates to man‐
aging risks, such as those resulting from collisions or crashes.

In a financial context, AI agents or trading bots are also not deployed as-is in general.
Rather, there are a number of standard risk measures that are typically used, such as
(trailing) stop loss orders or take profit orders. The reasoning is clear. When placing
directional bets in financial markets, too-large losses are to be avoided. Similarly,
when a certain profit level is reached, the success is to be protected by early close
outs. How such risk measures are handled is a matter, more often than not, of human
judgment, supported probably by a formal analysis of relevant data and statistics. 
Conceptually, this is a major point discussed in the book by Agrawal et al. (2018): AI
provides improved predictions, but human judgment still plays a role in setting deci‐
sion rules and action boundaries.
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This chapter has a threefold purpose. First, it backtests in both vectorized and event-
based fashion algorithmic trading strategies that result from a trained deep
Q-learning agent. Henceforth, such agents are called trading bots. Second, it assesses
risks related to the financial instrument on which the strategies are implemented.
And third, it backtests typical risk measures, such as stop loss orders, using the event-
based approach introduced in this chapter. The major benefit of event-based
backtesting when compared to vectorized backtesting is a higher degree of flexibility
in modeling and analyzing decision rules and risk management measures. In other
words, it allows one to zoom in on details that are pushed toward the background
when working with vectorized programming approaches.

“Trading Bot” on page 304 introduces and trains the trading bot based on the finan‐
cial Q-learning agent from Chapter 9. “Vectorized Backtesting” on page 308 uses vec‐
torized backtesting from Chapter 10 to judge the (pure) economic performance of the
trading bot. Event-based backtesting is introduced in “Event-Based Backtesting” on
page 311. First, a base class is discussed. Second, based on the base class, the backtest‐
ing of the trading bot is implemented and conducted. In this context, also see Hil‐
pisch (2020, ch. 6). “Assessing Risk” on page 318 analyzes selected statistical measures
important for setting risk management rules, such as maximum drawdown and aver‐
age true range (ATR). “Backtesting Risk Measures” on page 322 then backtests the
impact of major risk measures on the performance of the trading bot.

Trading Bot
This section presents a trading bot based on the financial Q-learning agent, FQLAgent,
from Chapter 9. This is the trading bot that is analyzed in subsequent sections. As
usual, our imports come first:

In [1]: import os
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        pd.set_option('mode.chained_assignment', None)
        pd.set_option('display.float_format', '{:.4f}'.format)
        np.set_printoptions(suppress=True, precision=4)
        os.environ['PYTHONHASHSEED'] = '0'

“Finance Environment” on page 333 presents a Python module with the Finance
class used in the following. “Trading Bot” on page 304 provides the Python module
with the TradingBot class and some helper functions for plotting training and valida‐
tion results. Both classes are pretty close to the ones introduced in Chapter 9, which is
why they are used here without further explanations.
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The following code trains the trading bot on historical end-of-day (EOD) data,
including a sub-set of the data used for validation. Figure 11-1 shows average total
rewards as achieved for the different training episodes:

In [2]: import finance
        import tradingbot
        Using TensorFlow backend.

In [3]: symbol = 'EUR='
        features = [symbol, 'r', 's', 'm', 'v']

In [4]: a = 0
        b = 1750
        c = 250

In [5]: learn_env = finance.Finance(symbol, features, window=20, lags=3,
                         leverage=1, min_performance=0.9, min_accuracy=0.475,
                         start=a, end=a + b, mu=None, std=None)

In [6]: learn_env.data.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 1750 entries, 2010-02-02 to 2017-01-12
        Data columns (total 6 columns):
         #   Column  Non-Null Count  Dtype
        ---  ------  --------------  -----
         0   EUR=    1750 non-null   float64
         1   r       1750 non-null   float64
         2   s       1750 non-null   float64
         3   m       1750 non-null   float64
         4   v       1750 non-null   float64
         5   d       1750 non-null   int64
        dtypes: float64(5), int64(1)
        memory usage: 95.7 KB

In [7]: valid_env = finance.Finance(symbol, features=learn_env.features,
                                    window=learn_env.window,
                                    lags=learn_env.lags,
                                    leverage=learn_env.leverage,
                                    min_performance=0.0, min_accuracy=0.0,
                                    start=a + b, end=a + b + c,
                                    mu=learn_env.mu, std=learn_env.std)

In [8]: valid_env.data.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 250 entries, 2017-01-13 to 2018-01-10
        Data columns (total 6 columns):
         #   Column  Non-Null Count  Dtype
        ---  ------  --------------  -----
         0   EUR=    250 non-null    float64
         1   r       250 non-null    float64
         2   s       250 non-null    float64
         3   m       250 non-null    float64
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         4   v       250 non-null    float64
         5   d       250 non-null    int64
        dtypes: float64(5), int64(1)
        memory usage: 13.7 KB

In [9]: tradingbot.set_seeds(100)
        agent = tradingbot.TradingBot(24, 0.001, learn_env, valid_env)

In [10]: episodes = 61

In [11]: %time agent.learn(episodes)
         =======================================================================
         episode: 10/61 | VALIDATION | treward:  247 | perf: 0.936 | eps: 0.95
         =======================================================================
         =======================================================================
         episode: 20/61 | VALIDATION | treward:  247 | perf: 0.897 | eps: 0.86
         =======================================================================
         =======================================================================
         episode: 30/61 | VALIDATION | treward:  247 | perf: 1.035 | eps: 0.78
         =======================================================================
         =======================================================================
         episode: 40/61 | VALIDATION | treward:  247 | perf: 0.935 | eps: 0.70
         =======================================================================
         =======================================================================
         episode: 50/61 | VALIDATION | treward:  247 | perf: 0.890 | eps: 0.64
         =======================================================================
         =======================================================================
         episode: 60/61 | VALIDATION | treward:  247 | perf: 0.998 | eps: 0.58
         =======================================================================
         episode: 61/61 | treward:   17 | perf: 0.979 | av: 475.1 | max: 1747
         CPU times: user 51.4 s, sys: 2.53 s, total: 53.9 s
         Wall time: 47 s

In [12]: tradingbot.plot_treward(agent)
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Figure 11-1. Average total reward per training episode

Figure 11-2 compares the gross performance of the trading bot on the training data—
exhibiting quite some variance due to alternating between exploitation and explora‐
tion—with the one on the validation data set making use of exploitation only:

In [13]: tradingbot.plot_performance(agent)

Figure 11-2. Gross performance on training and validation data set

This trained trading bot is used for backtesting in the following sections.
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Vectorized Backtesting
Vectorized backtesting cannot directly be applied to the trading bot. Chapter 10 uses
dense neural networks (DNNs) to illustrate the approach. In this context, the data
with the features and labels sub-sets is prepared first and then fed to the DNN to
generate all predictions at once. In a reinforcement learning (RL) context, data is gen‐
erated and collected by interacting with the environment action by action and step by
step.

To this end, the following Python code defines the backtest function, which takes as
input a TradingBot instance and a Finance instance. It generates in the original Data
Frame objects of the Finance environment columns with the positions the trading bot
takes and the resulting strategy performance:

In [14]: def reshape(s):
             return np.reshape(s, [1, learn_env.lags,
                                   learn_env.n_features])  

In [15]: def backtest(agent, env):
             env.min_accuracy = 0.0
             env.min_performance = 0.0
             done = False
             env.data['p'] = 0  
             state = env.reset()
             while not done:
                 action = np.argmax(
                     agent.model.predict(reshape(state))[0, 0])  
                 position = 1 if action == 1 else -1  
                 env.data.loc[:, 'p'].iloc[env.bar] = position  
                 state, reward, done, info = env.step(action)
             env.data['s'] = env.data['p'] * env.data['r'] * learn_env.leverage  

Reshapes a single feature-label combination

Generates a column for the position values

Derives the optimal action (prediction) given the trained DNN

Derives the resulting position (+1 for long/upwards, –1 for short/downwards)…

…and stores in the corresponding column at the appropriate index position

Calculates the strategy log returns given the position values

Equipped with the backtest function, vectorized backtesting boils down to a few
lines of Python code as in Chapter 10.
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Figure 11-3 compares the passive benchmark investment’s gross performance with
the strategy gross performance:

In [16]: env = agent.learn_env  

In [17]: backtest(agent, env)  

In [18]: env.data['p'].iloc[env.lags:].value_counts()  
Out[18]:  1    961
         -1    786
         Name: p, dtype: int64

In [19]: env.data[['r', 's']].iloc[env.lags:].sum().apply(np.exp)  
Out[19]: r   0.7725
         s   1.5155
         dtype: float64

In [20]: env.data[['r', 's']].iloc[env.lags:].sum().apply(np.exp) - 1  
Out[20]: r   -0.2275
         s    0.5155
         dtype: float64

In [21]: env.data[['r', 's']].iloc[env.lags:].cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6));

Specifies the relevant environment

Generates the additional data required

Counts the number of long and short positions

Calculates the gross performances for the passive benchmark investment (r) and
the strategy (s)…

…as well as the corresponding net performances
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Figure 11-3. Gross performance of the passive benchmark investment and the trading
bot (in-sample)

To get a more realistic picture of the performance of the trading bot, the following
Python code creates a test environment with data that the trading bot has not
yet seen. Figure 11-4 shows how the trading bot fares compared to the passive
benchmark investment:

In [22]: test_env = finance.Finance(symbol, features=learn_env.features,
                                    window=learn_env.window,
                                    lags=learn_env.lags,
                                    leverage=learn_env.leverage,
                                    min_performance=0.0, min_accuracy=0.0,
                                    start=a + b + c, end=None,
                                    mu=learn_env.mu, std=learn_env.std)

In [23]: env = test_env

In [24]: backtest(agent, env)

In [25]: env.data['p'].iloc[env.lags:].value_counts()
Out[25]: -1    437
          1     56
         Name: p, dtype: int64

In [26]: env.data[['r', 's']].iloc[env.lags:].sum().apply(np.exp)
Out[26]: r   0.9144
         s   1.0992
         dtype: float64

In [27]: env.data[['r', 's']].iloc[env.lags:].sum().apply(np.exp) - 1
Out[27]: r   -0.0856
         s    0.0992
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         dtype: float64

In [28]: env.data[['r', 's']].iloc[env.lags:].cumsum(
                     ).apply(np.exp).plot(figsize=(10, 6));

Figure 11-4. Gross performance of the passive benchmark investment and the trading
bot (out-of-sample)

The out-of-sample performance without any risk measures implemented seems
already promising. However, to be able to properly judge the real performance of a
trading strategy, risk measures should be included. This is where event-based back‐
testing comes into play.

Event-Based Backtesting
Given the results of the previous section, the out-of-sample performance without any
risk measures seems already promising. However, to be able to properly analyze risk
measures, such as trailing stop loss orders, event-based backtesting is required. This
section introduces this alternative approach to judging the performance of algorith‐
mic trading strategies.

“Backtesting Base Class” on page 339 presents the BacktestingBase class that can be
flexibly used to test different types of directional trading strategies. The code has
detailed comments on the important lines. This base class provides the following
methods:

get_date_price()

For a given bar (index value for the DataFrame object containing the financial
data), it returns the relevant date and price.
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print_balance()

For a given bar, it prints the current (cash) balance of the trading bot.

calculate_net_wealth()

For a given price, it returns the net wealth composed of the current (cash) bal‐
ance and the instrument position.

print_net_wealth()

For a given bar, it prints the net wealth of the trading bot.

place_buy_order(), place_sell_order()
For a given bar and a given number of units or a given amount, these methods
place buy or sell orders and adjust relevant quantities accordingly (for example,
accounting for transaction costs).

close_out()

At a given bar, this method closes open positions and calculates and reports per‐
formance statistics.

The following Python code illustrates how an instance of the BacktestingBase class
functions based on some simple steps:

In [29]: import backtesting as bt

In [30]: bb = bt.BacktestingBase(env=agent.learn_env, model=agent.model,
                                 amount=10000, ptc=0.0001, ftc=1.0,
                                 verbose=True)  

In [31]: bb.initial_amount  
Out[31]: 10000

In [32]: bar = 100  

In [33]: bb.get_date_price(bar)  
Out[33]: ('2010-06-25', 1.2374)

In [34]: bb.env.get_state(bar)  
Out[34]:               EUR=       r       s       m      v
         Date
         2010-06-22 -0.0242 -0.5622 -0.0916 -0.2022 1.5316
         2010-06-23  0.0176  0.6940 -0.0939 -0.0915 1.5563
         2010-06-24  0.0354  0.3034 -0.0865  0.6391 1.0890

In [35]: bb.place_buy_order(bar, amount=5000)  
         2010-06-25 | buy 4040 units for 1.2374
         2010-06-25 | current balance = 4999.40

In [36]: bb.print_net_wealth(2 * bar)  
         2010-11-16 | net wealth = 10450.17
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In [37]: bb.place_sell_order(2 * bar, units=1000)  
         2010-11-16 | sell 1000 units for 1.3492
         2010-11-16 | current balance = 6347.47

In [38]: bb.close_out(3 * bar)  
         ==================================================
         2011-04-11 | *** CLOSING OUT ***
         2011-04-11 | sell 3040 units for 1.4434
         2011-04-11 | current balance = 10733.97
         2011-04-11 | net performance [%] = 7.3397
         2011-04-11 | number of trades [#] = 3
         ==================================================

Instantiates a BacktestingBase object

Looks up the initial_amount attribute value

Fixes a bar value

Retrieves the date and price values for the bar

Retrieves the state of the Finance environment for the bar

Places a buy order using the amount parameter

Prints the net wealth at a later point (2 * bar)

Places a sell order at that later point using the units parameter

Closes out the remaining long position even later (3 * bar)

Inheriting from the BacktestingBase class, the TBBacktester class implements the
event-based backtesting for the trading bot:

In [39]: class TBBacktester(bt.BacktestingBase):
             def _reshape(self, state):
                 ''' Helper method to reshape state objects.
                 '''
                 return np.reshape(state, [1, self.env.lags, self.env.n_features])
             def backtest_strategy(self):
                 ''' Event-based backtesting of the trading bot's performance.
                 '''
                 self.units = 0
                 self.position = 0
                 self.trades = 0
                 self.current_balance = self.initial_amount
                 self.net_wealths = list()
                 for bar in range(self.env.lags, len(self.env.data)):
                     date, price = self.get_date_price(bar)
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                     if self.trades == 0:
                         print(50 * '=')
                         print(f'{date} | *** START BACKTEST ***')
                         self.print_balance(bar)
                         print(50 * '=')
                     state = self.env.get_state(bar)  
                     action = np.argmax(self.model.predict(
                                 self._reshape(state.values))[0, 0])  
                     position = 1 if action == 1 else -1  
                     if self.position in [0, -1] and position == 1:  
                         if self.verbose:
                             print(50 * '-')
                             print(f'{date} | *** GOING LONG ***')
                         if self.position == -1:
                             self.place_buy_order(bar - 1, units=-self.units)
                         self.place_buy_order(bar - 1,
                                              amount=self.current_balance)
                         if self.verbose:
                             self.print_net_wealth(bar)
                         self.position = 1
                     elif self.position in [0, 1] and position == -1:  
                         if self.verbose:
                             print(50 * '-')
                             print(f'{date} | *** GOING SHORT ***')
                         if self.position == 1:
                             self.place_sell_order(bar - 1, units=self.units)
                         self.place_sell_order(bar - 1,
                                               amount=self.current_balance)
                         if self.verbose:
                             self.print_net_wealth(bar)
                         self.position = -1
                     self.net_wealths.append((date,
                                              self.calculate_net_wealth(price)))  
                 self.net_wealths = pd.DataFrame(self.net_wealths,
                                                 columns=['date', 'net_wealth'])  
                 self.net_wealths.set_index('date', inplace=True)  
                 self.net_wealths.index = pd.DatetimeIndex(
                                                 self.net_wealths.index)  
                 self.close_out(bar)

Retrieves the state of the Finance environment

Generates the optimal action (prediction) given the state and the model object

Derives the optimal position (long/short) given the optimal action (prediction)

Enters a long position if the conditions are met

Enters a short position if the conditions are met
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Collects the net wealth values over time and transforms them into a DataFrame
object

The application of the TBBacktester class is straightforward, given that the Finance
and TradingBot instances are already available. The following code backtests the
trading bot first on the learning environment data—without and with transaction
costs. Figure 11-5 compares the two cases visually over time:

In [40]: env = learn_env

In [41]: tb = TBBacktester(env, agent.model, 10000,
                           0.0, 0, verbose=False)  

In [42]: tb.backtest_strategy()  
         ==================================================
         2010-02-05 | *** START BACKTEST ***
         2010-02-05 | current balance = 10000.00
         ==================================================
         ==================================================
         2017-01-12 | *** CLOSING OUT ***
         2017-01-12 | current balance = 14601.85
         2017-01-12 | net performance [%] = 46.0185
         2017-01-12 | number of trades [#] = 828
         ==================================================

In [43]: tb_ = TBBacktester(env, agent.model, 10000,
                            0.00012, 0.0, verbose=False)

In [44]: tb_.backtest_strategy()  
         ==================================================
         2010-02-05 | *** START BACKTEST ***
         2010-02-05 | current balance = 10000.00
         ==================================================
         ==================================================
         2017-01-12 | *** CLOSING OUT ***
         2017-01-12 | current balance = 13222.08
         2017-01-12 | net performance [%] = 32.2208
         2017-01-12 | number of trades [#] = 828
         ==================================================

In [45]: ax = tb.net_wealths.plot(figsize=(10, 6))
         tb_.net_wealths.columns = ['net_wealth (after tc)']
         tb_.net_wealths.plot(ax=ax);

Event-based backtest in-sample without transaction costs

Event-based backtest in-sample with transaction costs
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Figure 11-5. Gross performance of the trading bot before and after transaction costs
(in-sample)

Figure 11-6 compares the gross performances of the trading bot for the test environ‐
ment data over time—again, before and after transaction costs:

In [46]: env = test_env

In [47]: tb = TBBacktester(env, agent.model, 10000,
                           0.0, 0, verbose=False)  

In [48]: tb.backtest_strategy()  
         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 10936.79
         2019-12-31 | net performance [%] = 9.3679
         2019-12-31 | number of trades [#] = 186
         ==================================================

In [49]: tb_ = TBBacktester(env, agent.model, 10000,
                            0.00012, 0.0, verbose=False)

In [50]: tb_.backtest_strategy()  
         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 10695.72

316 | Chapter 11: Risk Management



         2019-12-31 | net performance [%] = 6.9572
         2019-12-31 | number of trades [#] = 186
         ==================================================

In [51]: ax = tb.net_wealths.plot(figsize=(10, 6))
         tb_.net_wealths.columns = ['net_wealth (after tc)']
         tb_.net_wealths.plot(ax=ax);

Event-based backtest out-of-sample without transaction costs

Event-based backtest out-of-sample with transaction costs

Figure 11-6. Gross performance of the trading bot before and after transaction costs
(out-of-sample)

How does the performance before transaction costs from the event-based backtesting
compare to the performance from the vectorized backtesting? Figure 11-7 shows the
normalized net wealth compared to the gross performance over time. Due to the dif‐
ferent technical approaches, the two time series are not exactly the same but are
pretty similar. The performance difference can be mainly explained by the fact that
the event-based backtesting assumes the same amount for every position taken. Vec‐
torized backtesting takes compound effects into account, leading to a slightly higher
reported performance:

In [52]: ax = (tb.net_wealths / tb.net_wealths.iloc[0]).plot(figsize=(10, 6))
         tp = env.data[['r', 's']].iloc[env.lags:].cumsum().apply(np.exp)
         (tp / tp.iloc[0]).plot(ax=ax);
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Figure 11-7. Gross performance of the passive benchmark investment and the trading
bot (vectorized and event-based backtesting)

Performance Differences

The performance numbers from the vectorized and the event-
based backtesting are close but not exactly the same. In the first
case, it is assumed that financial instruments are perfectly divisible.
Compounding is also done continuously. In the latter case, only full
units of the financial instrument are accepted for trading, which is
closer to reality. The net wealth calculations are based on price dif‐
ferences. The event-based code as it is used does not, for example,
check whether the current balance is large enough to cover a cer‐
tain trade by cash. This is for sure a simplifying assumption, and
buying on margin, for instance, may not always be possible. Code
adjustments in this regard are easily added to the BacktestingBase
class.

Assessing Risk
The implementation of risk measures requires the understanding of the risks
involved in trading the chosen financial instrument. Therefore, to properly set
parameters for risk measures, such as stop loss orders, an assessment of the risk of the
underlying instrument is important. There are many approaches available to measure
the risk of a financial instrument. There are, for example, nondirected risk measures,
such as volatility or average true range (ATR). There are also directed measures, such
as maximum drawdown or value-at-risk (VaR).
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1 For more details on the ATR measure, see ATR (1) Investopedia or ATR (2) Investopedia.

A common practice when setting target levels for stop loss (SL), trailing stop loss
(TSL), or take profit orders (TP) is to relate such levels to ATR values.1 The following
Python code calculates the ATR in absolute and relative terms for the financial instru‐
ment on which the trading bot is trained and backtested (that is, the EUR/USD
exchange rate). The calculations rely on the data from the learning environment and
use a typical window length of 14 days (bars). Figure 11-8 shows the calculated
values, which vary significantly over time:

In [53]: data = pd.DataFrame(learn_env.data[symbol])  

In [54]: data.head()  
Out[54]:              EUR=
         Date
         2010-02-02 1.3961
         2010-02-03 1.3898
         2010-02-04 1.3734
         2010-02-05 1.3662
         2010-02-08 1.3652

In [55]: window = 14  

In [56]: data['min'] = data[symbol].rolling(window).min()  

In [57]: data['max'] = data[symbol].rolling(window).max()  

In [58]: data['mami'] = data['max'] - data['min']  

In [59]: data['mac'] = abs(data['max'] - data[symbol].shift(1))  

In [60]: data['mic'] = abs(data['min'] - data[symbol].shift(1))  

In [61]: data['atr'] = np.maximum(data['mami'], data['mac'])  

In [62]: data['atr'] = np.maximum(data['atr'], data['mic'])  

In [63]: data['atr%'] = data['atr'] / data[symbol]  

In [64]: data[['atr', 'atr%']].plot(subplots=True, figsize=(10, 6));

The instrument price column from the original DataFrame object

The window length to be used for the calculations

The rolling minimum

The rolling maximum
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The difference between rolling maximum and minimum

The absolute difference between rolling maximum and previous day’s price

The absolute difference between rolling minimum and previous day’s price

The maximum of the max-min difference and the max-price difference

The maximum between the previous maximum and the min-price difference
(= ATR)

The ATR value in percent from the absolute ATR value and the price

Figure 11-8. Average true range (ATR) in absolute (price) and relative (%) terms

The code that follows displays the final values for ATR in absolute and relative terms.
A typical rule would be to set, for example, the SL level at the entry price minus x
times ATR. Depending on the risk appetite of the trader or investor, x might be
smaller than 1 or larger. This is where human judgment or formal risk policies come
into play. If x = 1, then the SL level is set at about 2% below the entry level:

In [65]: data[['atr', 'atr%']].tail()
Out[65]:               atr   atr%
         Date
         2017-01-06 0.0218 0.0207
         2017-01-09 0.0218 0.0206
         2017-01-10 0.0218 0.0207
         2017-01-11 0.0199 0.0188
         2017-01-12 0.0206 0.0194
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However, leverage plays an important role in this context. If a leverage of, say, 10 is
used, which is actually quite low for foreign exchange trading, then the ATR numbers
need to be multiplied by the leverage. As a consequence, for an assumed ATR factor
of 1, the same SL level from before now is to be set at about 20% instead of just 2%.
Or, when taking the median value of the ATR from the whole data set, it is set to be at
about 25%:

In [66]: leverage = 10

In [67]: data[['atr', 'atr%']].tail() * leverage
Out[67]:               atr   atr%
         Date
         2017-01-06 0.2180 0.2070
         2017-01-09 0.2180 0.2062
         2017-01-10 0.2180 0.2066
         2017-01-11 0.1990 0.1881
         2017-01-12 0.2060 0.1942

In [68]: data[['atr', 'atr%']].median() * leverage
Out[68]: atr    0.3180
         atr%   0.2481
         dtype: float64

The basic idea behind relating SL or TP levels to ATR is that one should avoid setting
them either too low or too high. Consider a 10 times leveraged position for which the
ATR is 20%. Setting an SL level of only 3% or 5% might reduce the financial risk for
the position, but it introduces the risk of a stop out that happens too early and that is
due to typical movements in the financial instrument. Such “typical movements”
within certain ranges are often called noise. The SL order should protect, in general,
from unfavorable market movements that are larger than typical price movements
(noise).

The same holds true for a take profit level. If it is set too high, say at three times the
ATR level, decent profits might not be secured and positions might remain open for
too long until they give up previous profits. Even if formal analyses and mathematical
formulas can be used in this context, the setting of such target levels involves, as they
say, more art than science. In a financial context, there is quite a degree of freedom
for setting such target levels, and human judgment can come to the rescue. In other
contexts, such as for AVs, this is different, as no human judgment is needed to
instruct the AI to avoid any collisions with human beings.
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NonNormality and NonLinearity

A margin stop out closes a trading position in cases when the mar‐
gin, or the invested equity, is used up. Assume a leveraged trading
position with a margin stop out in place. For a leverage of 10, for
example, the margin is 10% equity. An unfavorable move of 10% or
larger in the traded instrument eats up all the equity and triggers
the close out of the position—a loss of 100% of the equity. A favora‐
ble move of the underlying of, say, 25% leads to a return on equity
of 150%. Even if returns of the traded instrument are normally
distributed, leverage and margin stop outs lead to nonnormally
distributed returns and asymmetric, nonlinear relationships
between the traded instrument and the trading position.

Backtesting Risk Measures
Having an idea of the ATR of a financial instrument is often a good start for the
implementation of risk measures. To be able to properly backtest the effect of the typ‐
ical risk management orders, some adjustments to the BacktestingBase class are
helpful. The following Python code presents a new base class—BacktestBaseRM,
which inherits from BacktestingBase—that helps in tracking the entry price of the
previous trade as well as the maximum and minimum prices since that trade. These
values are used to calculate the relevant performance measures during the event-
based backtesting to which SL, TSL, and TP orders relate:

#
# Event-Based Backtesting
# --Base Class (2)
#
# (c) Dr. Yves J. Hilpisch
#
from backtesting import *

class BacktestingBaseRM(BacktestingBase):

    def set_prices(self, price):
        ''' Sets prices for tracking of performance.
            To test for e.g. trailing stop loss hit.
        '''
        self.entry_price = price  
        self.min_price = price  
        self.max_price = price  

    def place_buy_order(self, bar, amount=None, units=None, gprice=None):
        ''' Places a buy order for a given bar and for
            a given amount or number of units.
        '''
        date, price = self.get_date_price(bar)
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        if gprice is not None:
            price = gprice
        if units is None:
            units = int(amount / price)
        self.current_balance -= (1 + self.ptc) * units * price + self.ftc
        self.units += units
        self.trades += 1
        self.set_prices(price)  
        if self.verbose:
            print(f'{date} | buy {units} units for {price:.4f}')
            self.print_balance(bar)

    def place_sell_order(self, bar, amount=None, units=None, gprice=None):
        ''' Places a sell order for a given bar and for
            a given amount or number of units.
        '''
        date, price = self.get_date_price(bar)
        if gprice is not None:
            price = gprice
        if units is None:
            units = int(amount / price)
        self.current_balance += (1 - self.ptc) * units * price - self.ftc
        self.units -= units
        self.trades += 1
        self.set_prices(price)  
        if self.verbose:
            print(f'{date} | sell {units} units for {price:.4f}')
            self.print_balance(bar)

Sets the entry price for the most recent trade

Sets the initial minimum price since the most ecent trade

Sets the initial maximum price since the most recent trade

Sets the relevant prices after a trade is executed

Based on this new base class, “Backtesting Class” on page 342 presents a new back‐
testing class, TBBacktesterRM, that allows the inclusion of SL, TSL, and TP orders.
The relevant code parts are discussed in the following sub-sections. The parametriza‐
tion of the backtesting examples orients itself roughly on an ATR level of about 2%, as
calculated in the previous section.
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2 A guaranteed stop loss order might only be available in certain jurisdictions for certain groups of broker cli‐
ents, such as retail investors/traders.

EUT and Risk Measures

EUT, MVP, and the CAPM (see Chapters 3 and 4) assume that
financial agents know about the future distribution of the returns
of a financial instrument. MPT and the CAPM assume further‐
more that returns are normally distributed and that there is, for
example, a linear relationship between the market portfolio’s
returns and the returns of a traded financial instrument. The use of
SL, TSL, and TP orders leads—similar and in addition to leverage
in combination with margin stop out—to a “guaranteed nonnor‐
mal” distribution and to highly asymmetric, nonlinear payoffs of a
trading position in relation to the traded instrument.

Stop Loss
The first risk measure is the SL order. It fixes a certain price level or, more often, a
fixed percent value that triggers the closing of a position. For example, if the entry
price for an unleveraged position is 100 and the SL level is set to 5%, then a long posi‐
tion is closed out at 95 while a short position is closed out at 105.

The following Python code is the relevant part of the TBBacktesterRM class that han‐
dles an SL order. For the SL order, the class allows one to specify whether the price
level for the order is guaranteed or not.2 Working with guaranteed SL price levels
might lead to too-optimistic performance results:

# stop loss order
if sl is not None and self.position != 0:  
    rc = (price - self.entry_price) / self.entry_price  
    if self.position == 1 and rc < -self.sl:  
        print(50 * '-')
        if guarantee:
            price = self.entry_price * (1 - self.sl)
            print(f'*** STOP LOSS (LONG  | {-self.sl:.4f}) ***')
        else:
            print(f'*** STOP LOSS (LONG  | {rc:.4f}) ***')
        self.place_sell_order(bar, units=self.units, gprice=price)  
        self.wait = wait  
        self.position = 0   
    elif self.position == -1 and rc > self.sl:  
        print(50 * '-')
        if guarantee:
            price = self.entry_price * (1 + self.sl)
            print(f'*** STOP LOSS (SHORT | -{self.sl:.4f}) ***')
        else:
            print(f'*** STOP LOSS (SHORT | -{rc:.4f}) ***')
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        self.place_buy_order(bar, units=-self.units, gprice=price)  
        self.wait = wait  
        self.position = 0  

Checks whether an SL is defined and whether the position is not neutral

Calculates the performance based on the entry price for the last trade

Checks whether an SL event is given for a long position

Closes the long position, at either the current price or the guaranteed price level

Sets the number of bars to wait before the next trade happens to wait

Sets the position to neutral

Checks whether an SL event is given for a short position

Closes the short position, at either the current price or the guaranteed price level

The following Python code backtests the trading strategy of the trading bot without
and with an SL order. For the given parametrization, the SL order has a negative
impact on the strategy performance:

In [69]: import tbbacktesterrm as tbbrm

In [70]: env = test_env

In [71]: tb = tbbrm.TBBacktesterRM(env, agent.model, 10000,
                                   0.0, 0, verbose=False)  

In [72]: tb.backtest_strategy(sl=None, tsl=None, tp=None, wait=5)  
         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 10936.79
         2019-12-31 | net performance [%] = 9.3679
         2019-12-31 | number of trades [#] = 186
         ==================================================

In [73]: tb.backtest_strategy(sl=0.0175, tsl=None, tp=None,
                              wait=5, guarantee=False)  
         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         --------------------------------------------------
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         *** STOP LOSS (SHORT | -0.0203) ***
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 10717.32
         2019-12-31 | net performance [%] = 7.1732
         2019-12-31 | number of trades [#] = 188
         ==================================================

In [74]: tb.backtest_strategy(sl=0.017, tsl=None, tp=None,
                              wait=5, guarantee=True)  
         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         --------------------------------------------------
         *** STOP LOSS (SHORT | -0.0170) ***
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 10753.52
         2019-12-31 | net performance [%] = 7.5352
         2019-12-31 | number of trades [#] = 188
         ==================================================

Instantiates the backtesting class for risk management

Backtests the trading bot performance without any risk measure

Backtests the trading bot performance with an SL order (no guarantee)

Backtests the trading bot performance with an SL order (with guarantee)

Trailing Stop Loss
In contrast to a regular SL order, a TSL order is adjusted whenever a new high is
observed after the base order has been placed. Assume the base order for an unlever‐
aged long position has an entry price of 95 and the TSL is set to 5%. If the instrument
price reaches 100 and falls back to 95, this implies a TSL event, and the position is
closed at the entry price level. If the price reaches 110 and falls back to 104.5, this
would imply another TSL event.

The following Python code is the relevant part of the TBBacktesterRM class that han‐
dles a TSL order. To handle such an order correctly, the maximum prices (highs) and
the minimum prices (lows) need to be tracked. The maximum price is relevant for a
long position, whereas the minimum price is relevant for a short position:

# trailing stop loss order
if tsl is not None and self.position != 0:
    self.max_price = max(self.max_price, price)  
    self.min_price = min(self.min_price, price)  
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    rc_1 = (price - self.max_price) / self.entry_price  
    rc_2 = (self.min_price - price) / self.entry_price  
    if self.position == 1 and rc_1 < -self.tsl:  
        print(50 * '-')
        print(f'*** TRAILING SL (LONG  | {rc_1:.4f}) ***')
        self.place_sell_order(bar, units=self.units)
        self.wait = wait
        self.position = 0
    elif self.position == -1 and rc_2 < -self.tsl:  
        print(50 * '-')
        print(f'*** TRAILING SL (SHORT | {rc_2:.4f}) ***')
        self.place_buy_order(bar, units=-self.units)
        self.wait = wait
        self.position = 0

Updates the maximum price if necessary

Updates the minimum price if necessary

Calculates the relevant performance for a long position

Calculates the relevant performance for a short position

Checks whether a TSL event is given for a long position

Checks whether a TSL event is given for a short position

As the backtesting results that follow show, using a TSL order with the given para‐
metrization reduces the gross performance compared to a strategy without a TSL
order in place:

In [75]: tb.backtest_strategy(sl=None, tsl=0.015,
                              tp=None, wait=5)  
         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0152) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0169) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0164) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0191) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0166) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0194) ***
         --------------------------------------------------
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3 A take profit order has a fixed target price level. Therefore, it is unrealistic to use the high price of a time
interval for a long position or the low price of the interval for a short position to calculate the realized profit.

         *** TRAILING SL (SHORT | -0.0172) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0181) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0153) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0160) ***
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 10577.93
         2019-12-31 | net performance [%] = 5.7793
         2019-12-31 | number of trades [#] = 201
         ==================================================

Backtests the trading bot performance with a TSL order

Take Profit
Finally, there are TP orders. A TP order closes out a position that has reached a cer‐
tain profit level. Say an unleveraged long position is opened at a price of 100 and the
TP order is set to a level of 5%. If the price reaches 105, the position is closed.

The following code from the TBBacktesterRM class finally shows the part that handles
a TP order. The TP implementation is straightforward, given the references of the SL
and TSL order codes. For the TP order, there is also the option to backtest with a
guaranteed price level as compared to the relevant high/low price levels, which would
most probably lead to performance values that are too optimistic:3

# take profit order
if tp is not None and self.position != 0:
    rc = (price - self.entry_price) / self.entry_price
    if self.position == 1 and rc > self.tp:
        print(50 * '-')
        if guarantee:
            price = self.entry_price * (1 + self.tp)
            print(f'*** TAKE PROFIT (LONG  | {self.tp:.4f}) ***')
        else:
            print(f'*** TAKE PROFIT (LONG  | {rc:.4f}) ***')
        self.place_sell_order(bar, units=self.units, gprice=price)
        self.wait = wait
        self.position = 0
    elif self.position == -1 and rc < -self.tp:
        print(50 * '-')
        if guarantee:
            price = self.entry_price * (1 - self.tp)
            print(f'*** TAKE PROFIT (SHORT | {self.tp:.4f}) ***')
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        else:
            print(f'*** TAKE PROFIT (SHORT | {-rc:.4f}) ***')
        self.place_buy_order(bar, units=-self.units, gprice=price)
        self.wait = wait
        self.position = 0

For the given parametrization, adding a TP order—without guarantee—improves the
trading bot performance noticeably compared to the passive benchmark investment.
This result might be too optimistic given the considerations from before. Therefore,
the TP order with guarantee leads to a more realistic performance value in this case:

In [76]: tb.backtest_strategy(sl=None, tsl=None, tp=0.015,
                              wait=5, guarantee=False)  
         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0155) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0155) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0204) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0240) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0168) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0156) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0183) ***
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 11210.33
         2019-12-31 | net performance [%] = 12.1033
         2019-12-31 | number of trades [#] = 198
         ==================================================

In [77]: tb.backtest_strategy(sl=None, tsl=None, tp=0.015,
                              wait=5, guarantee=True)  
         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0150) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0150) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0150) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0150) ***
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         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0150) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0150) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0150) ***
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 10980.86
         2019-12-31 | net performance [%] = 9.8086
         2019-12-31 | number of trades [#] = 198
         ==================================================

Backtests the trading bot performance with a TP order (no guarantee)

Backtests the trading bot performance with a TP order (with guarantee)

Of course, SL/TSL orders can also be combined with TP orders. The backtest results
of the Python code that follows are in both cases worse than those for the strategy
without the risk measures in place. In managing risk, there is hardly any free lunch:

In [78]: tb.backtest_strategy(sl=0.015, tsl=None,
                              tp=0.0185, wait=5)  
         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         --------------------------------------------------
         *** STOP LOSS (SHORT | -0.0203) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0202) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0213) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0240) ***
         --------------------------------------------------
         *** STOP LOSS (SHORT | -0.0171) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0188) ***
         --------------------------------------------------
         *** STOP LOSS (SHORT | -0.0153) ***
         --------------------------------------------------
         *** STOP LOSS (SHORT | -0.0154) ***
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 10552.00
         2019-12-31 | net performance [%] = 5.5200
         2019-12-31 | number of trades [#] = 201
         ==================================================

In [79]: tb.backtest_strategy(sl=None, tsl=0.02,
                              tp=0.02, wait=5)  
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         ==================================================
         2018-01-17 | *** START BACKTEST ***
         2018-01-17 | current balance = 10000.00
         ==================================================
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0235) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0202) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0250) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0227) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0240) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0216) ***
         --------------------------------------------------
         *** TAKE PROFIT (SHORT | 0.0241) ***
         --------------------------------------------------
         *** TRAILING SL (SHORT | -0.0206) ***
         ==================================================
         2019-12-31 | *** CLOSING OUT ***
         2019-12-31 | current balance = 10346.38
         2019-12-31 | net performance [%] = 3.4638
         2019-12-31 | number of trades [#] = 198
         ==================================================

Backtests the trading bot performance with an SL and TP order

Backtests the trading bot performance with a TSL and TP order

Performance Impact

Risk measures have their reasoning and benefits. However, reduc‐
ing risk may come at the price of lower overall performance. On
the other hand, the backtesting example with the TP order shows
performance improvements that can be explained by the fact that,
given the ATR of a financial instrument, a certain profit level can
be considered good enough to realize the profit. Any hope to see
even higher profits typically is smashed by the market turning
around again.
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Conclusions
This chapter has three main topics. It backtests the performance of a trading bot (that
is, a trained deep Q-learning agent) out-of-sample in both vectorized and event-based
fashion. It also assesses risks in the form of the average true range (ATR) indicator
that measures the typical variation in the price of the financial instrument of interest.
Finally, the chapter discusses and backtests event-based typical risk measures in the
form of stop loss (SL), trailing stop loss (TSL), and take profit (TP) orders.

Similar to autonomous vehicles (AVs), trading bots are hardly ever deployed based
on the predictions of their AI only. To avoid large downside risks and to improve the
(risk-adjusted) performance, risk measures usually come into play. Standard risk
measures, as discussed in this chapter, are available on almost every trading platform,
as well as for retail traders. The next chapter illustrates this in the context of the
Oanda trading platform. The event-based backtesting approach provides the algorith‐
mic flexibility to properly backtest the effects of such risk measures. While “reducing
risk” may sound appealing, the backtest results indicate that the reduction in risk
often comes at a cost: the performance might be lower when compared to the pure
strategy without any risk measures. However, when finely tuned, the results also show
that TP orders, for example, can also have a positive effect on the performance.

References
Books and papers cited in this chapter:

Agrawal, Ajay, Joshua Gans, and Avi Goldfarb. 2018. Prediction Machines: The Simple
Economics of Artificial Intelligence. Boston: Harvard Business Review Press.

Hilpisch, Yves. 2020. Python for Algorithmic Trading: From Idea to Cloud Deployment.
Sebastopol: O’Reilly.

Khonji, Majid, Jorge Dias, and Lakmal Seneviratne. 2019. “Risk-Aware Reasoning for
Autonomous Vehicles.” arXiv. October 6, 2019. https://oreil.ly/2Z6WR.

332 | Chapter 11: Risk Management

http://oanda.com
https://oreil.ly/2Z6WR


Python Code
Finance Environment
The following is the Python module with the Finance environment class:

#
# Finance Environment
#
# (c) Dr. Yves J. Hilpisch
# Artificial Intelligence in Finance
#
import math
import random
import numpy as np
import pandas as pd

class observation_space:
    def __init__(self, n):
        self.shape = (n,)

class action_space:
    def __init__(self, n):
        self.n = n

    def sample(self):
        return random.randint(0, self.n - 1)

class Finance:
    intraday = False
    if intraday:
        url = 'http://hilpisch.com/aiif_eikon_id_eur_usd.csv'
    else:
        url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'

    def __init__(self, symbol, features, window, lags,
                 leverage=1, min_performance=0.85, min_accuracy=0.5,
                 start=0, end=None, mu=None, std=None):
        self.symbol = symbol
        self.features = features
        self.n_features = len(features)
        self.window = window
        self.lags = lags
        self.leverage = leverage
        self.min_performance = min_performance
        self.min_accuracy = min_accuracy
        self.start = start
        self.end = end
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        self.mu = mu
        self.std = std
        self.observation_space = observation_space(self.lags)
        self.action_space = action_space(2)
        self._get_data()
        self._prepare_data()

    def _get_data(self):
        self.raw = pd.read_csv(self.url, index_col=0,
                               parse_dates=True).dropna()
        if self.intraday:
            self.raw = self.raw.resample('30min', label='right').last()
            self.raw = pd.DataFrame(self.raw['CLOSE'])
            self.raw.columns = [self.symbol]

    def _prepare_data(self):
        self.data = pd.DataFrame(self.raw[self.symbol])
        self.data = self.data.iloc[self.start:]
        self.data['r'] = np.log(self.data / self.data.shift(1))
        self.data.dropna(inplace=True)
        self.data['s'] = self.data[self.symbol].rolling(self.window).mean()
        self.data['m'] = self.data['r'].rolling(self.window).mean()
        self.data['v'] = self.data['r'].rolling(self.window).std()
        self.data.dropna(inplace=True)
        if self.mu is None:
            self.mu = self.data.mean()
            self.std = self.data.std()
        self.data_ = (self.data - self.mu) / self.std
        self.data['d'] = np.where(self.data['r'] > 0, 1, 0)
        self.data['d'] = self.data['d'].astype(int)
        if self.end is not None:
            self.data = self.data.iloc[:self.end - self.start]
            self.data_ = self.data_.iloc[:self.end - self.start]

    def _get_state(self):
        return self.data_[self.features].iloc[self.bar -
                                              self.lags:self.bar]

    def get_state(self, bar):
        return self.data_[self.features].iloc[bar - self.lags:bar]

    def seed(self, seed):
        random.seed(seed)
        np.random.seed(seed)

    def reset(self):
        self.treward = 0
        self.accuracy = 0
        self.performance = 1
        self.bar = self.lags
        state = self.data_[self.features].iloc[self.bar -
                                               self.lags:self.bar]
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        return state.values

    def step(self, action):
        correct = action == self.data['d'].iloc[self.bar]
        ret = self.data['r'].iloc[self.bar] * self.leverage
        reward_1 = 1 if correct else 0
        reward_2 = abs(ret) if correct else -abs(ret)
        self.treward += reward_1
        self.bar += 1
        self.accuracy = self.treward / (self.bar - self.lags)
        self.performance *= math.exp(reward_2)
        if self.bar >= len(self.data):
            done = True
        elif reward_1 == 1:
            done = False
        elif (self.performance < self.min_performance and
              self.bar > self.lags + 15):
            done = True
        elif (self.accuracy < self.min_accuracy and
              self.bar > self.lags + 15):
            done = True
        else:
            done = False
        state = self._get_state()
        info = {}
        return state.values, reward_1 + reward_2 * 5, done, info

Trading Bot
The following is the Python module with the TradingBot class, based on a financial
Q-learning agent:

#
# Financial Q-Learning Agent
#
# (c) Dr. Yves J. Hilpisch
# Artificial Intelligence in Finance
#
import os
import random
import numpy as np
from pylab import plt, mpl
from collections import deque
import tensorflow as tf
from keras.layers import Dense, Dropout
from keras.models import Sequential
from keras.optimizers import Adam, RMSprop

os.environ['PYTHONHASHSEED'] = '0'
plt.style.use('seaborn')
mpl.rcParams['savefig.dpi'] = 300
mpl.rcParams['font.family'] = 'serif'
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def set_seeds(seed=100):
    ''' Function to set seeds for all
        random number generators.
    '''
    random.seed(seed)
    np.random.seed(seed)
    tf.random.set_seed(seed)

class TradingBot:
    def __init__(self, hidden_units, learning_rate, learn_env,
                 valid_env=None, val=True, dropout=False):
        self.learn_env = learn_env
        self.valid_env = valid_env
        self.val = val
        self.epsilon = 1.0
        self.epsilon_min = 0.1
        self.epsilon_decay = 0.99
        self.learning_rate = learning_rate
        self.gamma = 0.5
        self.batch_size = 128
        self.max_treward = 0
        self.averages = list()
        self.trewards = []
        self.performances = list()
        self.aperformances = list()
        self.vperformances = list()
        self.memory = deque(maxlen=2000)
        self.model = self._build_model(hidden_units,
                             learning_rate, dropout)

    def _build_model(self, hu, lr, dropout):
        ''' Method to create the DNN model.
        '''
        model = Sequential()
        model.add(Dense(hu, input_shape=(
            self.learn_env.lags, self.learn_env.n_features),
            activation='relu'))
        if dropout:
            model.add(Dropout(0.3, seed=100))
        model.add(Dense(hu, activation='relu'))
        if dropout:
            model.add(Dropout(0.3, seed=100))
        model.add(Dense(2, activation='linear'))
        model.compile(
            loss='mse',
            optimizer=RMSprop(lr=lr)
        )
        return model
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    def act(self, state):
        ''' Method for taking action based on
            a) exploration
            b) exploitation
        '''
        if random.random() <= self.epsilon:
            return self.learn_env.action_space.sample()
        action = self.model.predict(state)[0, 0]
        return np.argmax(action)

    def replay(self):
        ''' Method to retrain the DNN model based on
            batches of memorized experiences.
        '''
        batch = random.sample(self.memory, self.batch_size)
        for state, action, reward, next_state, done in batch:
            if not done:
                reward += self.gamma * np.amax(
                    self.model.predict(next_state)[0, 0])
            target = self.model.predict(state)
            target[0, 0, action] = reward
            self.model.fit(state, target, epochs=1,
                           verbose=False)
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay

    def learn(self, episodes):
        ''' Method to train the DQL agent.
        '''
        for e in range(1, episodes + 1):
            state = self.learn_env.reset()
            state = np.reshape(state, [1, self.learn_env.lags,
                                       self.learn_env.n_features])
            for _ in range(10000):
                action = self.act(state)
                next_state, reward, done, info = self.learn_env.step(action)
                next_state = np.reshape(next_state,
                                        [1, self.learn_env.lags,
                                         self.learn_env.n_features])
                self.memory.append([state, action, reward,
                                    next_state, done])
                state = next_state
                if done:
                    treward = _ + 1
                    self.trewards.append(treward)
                    av = sum(self.trewards[-25:]) / 25
                    perf = self.learn_env.performance
                    self.averages.append(av)
                    self.performances.append(perf)
                    self.aperformances.append(
                        sum(self.performances[-25:]) / 25)
                    self.max_treward = max(self.max_treward, treward)
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                    templ = 'episode: {:2d}/{} | treward: {:4d} | '
                    templ += 'perf: {:5.3f} | av: {:5.1f} | max: {:4d}'
                    print(templ.format(e, episodes, treward, perf,
                                       av, self.max_treward), end='\r')
                    break
            if self.val:
                self.validate(e, episodes)
            if len(self.memory) > self.batch_size:
                self.replay()
        print()

    def validate(self, e, episodes):
        ''' Method to validate the performance of the
            DQL agent.
        '''
        state = self.valid_env.reset()
        state = np.reshape(state, [1, self.valid_env.lags,
                                   self.valid_env.n_features])
        for _ in range(10000):
            action = np.argmax(self.model.predict(state)[0, 0])
            next_state, reward, done, info = self.valid_env.step(action)
            state = np.reshape(next_state, [1, self.valid_env.lags,
                                            self.valid_env.n_features])
            if done:
                treward = _ + 1
                perf = self.valid_env.performance
                self.vperformances.append(perf)
                if e % int(episodes / 6) == 0:
                    templ = 71 * '='
                    templ += '\nepisode: {:2d}/{} | VALIDATION | '
                    templ += 'treward: {:4d} | perf: {:5.3f} | eps: {:.2f}\n'
                    templ += 71 * '='
                    print(templ.format(e, episodes, treward,
                                       perf, self.epsilon))
                break

def plot_treward(agent):
    ''' Function to plot the total reward
        per training episode.
    '''
    plt.figure(figsize=(10, 6))
    x = range(1, len(agent.averages) + 1)
    y = np.polyval(np.polyfit(x, agent.averages, deg=3), x)
    plt.plot(x, agent.averages, label='moving average')
    plt.plot(x, y, 'r--', label='regression')
    plt.xlabel('episodes')
    plt.ylabel('total reward')
    plt.legend()

def plot_performance(agent):
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    ''' Function to plot the financial gross
        performance per training episode.
    '''
    plt.figure(figsize=(10, 6))
    x = range(1, len(agent.performances) + 1)
    y = np.polyval(np.polyfit(x, agent.performances, deg=3), x)
    plt.plot(x, agent.performances[:], label='training')
    plt.plot(x, y, 'r--', label='regression (train)')
    if agent.val:
        y_ = np.polyval(np.polyfit(x, agent.vperformances, deg=3), x)
        plt.plot(x, agent.vperformances[:], label='validation')
        plt.plot(x, y_, 'r-.', label='regression (valid)')
    plt.xlabel('episodes')
    plt.ylabel('gross performance')
    plt.legend()

Backtesting Base Class
The following is the Python module with the BacktestingBase class for event-based
backtesting:

#
# Event-Based Backtesting
# --Base Class (1)
#
# (c) Dr. Yves J. Hilpisch
# Artificial Intelligence in Finance
#

class BacktestingBase:
    def __init__(self, env, model, amount, ptc, ftc, verbose=False):
        self.env = env  
        self.model = model  
        self.initial_amount = amount  
        self.current_balance = amount  
        self.ptc = ptc   
        self.ftc = ftc   
        self.verbose = verbose  
        self.units = 0  
        self.trades = 0  

    def get_date_price(self, bar):
        ''' Returns date and price for a given bar.
        '''
        date = str(self.env.data.index[bar])[:10]  
        price = self.env.data[self.env.symbol].iloc[bar]  
        return date, price

    def print_balance(self, bar):
        ''' Prints the current cash balance for a given bar.
        '''
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        date, price = self.get_date_price(bar)
        print(f'{date} | current balance = {self.current_balance:.2f}')  

    def calculate_net_wealth(self, price):
        return self.current_balance + self.units * price  

    def print_net_wealth(self, bar):
        ''' Prints the net wealth for a given bar
            (cash + position).
        '''
        date, price = self.get_date_price(bar)
        net_wealth = self.calculate_net_wealth(price)
        print(f'{date} | net wealth = {net_wealth:.2f}')  

    def place_buy_order(self, bar, amount=None, units=None):
        ''' Places a buy order for a given bar and for
            a given amount or number of units.
        '''
        date, price = self.get_date_price(bar)
        if units is None:
            units = int(amount / price)  
            # units = amount / price  
        self.current_balance -= (1 + self.ptc) * \
            units * price + self.ftc  
        self.units += units  
        self.trades += 1  
        if self.verbose:
            print(f'{date} | buy {units} units for {price:.4f}')
            self.print_balance(bar)

    def place_sell_order(self, bar, amount=None, units=None):
        ''' Places a sell order for a given bar and for
            a given amount or number of units.
        '''
        date, price = self.get_date_price(bar)
        if units is None:
            units = int(amount / price)  
            # units = amount / price  
        self.current_balance += (1 - self.ptc) * \
            units * price - self.ftc  
        self.units -= units  
        self.trades += 1  
        if self.verbose:
            print(f'{date} | sell {units} units for {price:.4f}')
            self.print_balance(bar)

    def close_out(self, bar):
        ''' Closes out any open position at a given bar.
        '''
        date, price = self.get_date_price(bar)
        print(50 * '=')
        print(f'{date} | *** CLOSING OUT ***')
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        if self.units < 0:
            self.place_buy_order(bar, units=-self.units)  
        else:
            self.place_sell_order(bar, units=self.units)  
        if not self.verbose:
            print(f'{date} | current balance = {self.current_balance:.2f}')
        perf = (self.current_balance / self.initial_amount - 1) * 100  
        print(f'{date} | net performance [%] = {perf:.4f}')
        print(f'{date} | number of trades [#] = {self.trades}')
        print(50 * '=')

The relevant Finance environment

The relevant DNN model (from the trading bot)

The initial/current balance

Proportional transaction costs

Fixed transaction costs

Whether the prints are verbose or not

The initial number of units of the financial instrument traded

The initial number of trades implemented

The relevant date given a certain bar

The relevant instrument price at a certain bar

The output of the date and current balance for a certain bar

The calculation of the net wealth from the current balance and the instrument
position

The output of the date and the net wealth at a certain bar

The number of units to be traded given the trade amount

The impact of the trade and the associated costs on the current balance

The adjustment of the number of units held

The adjustment of the number of trades implemented
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The closing of a short position…

…or of a long position

The net performance given the initial amount and the final current balance

Backtesting Class
The following is the Python module with the TBBacktesterRM class for event-based
backtesting including risk measures (stop loss, trailing stop loss, take profit orders):

#
# Event-Based Backtesting
# --Trading Bot Backtester
# (incl. Risk Management)
#
# (c) Dr. Yves J. Hilpisch
#
import numpy as np
import pandas as pd
import backtestingrm as btr

class TBBacktesterRM(btr.BacktestingBaseRM):
    def _reshape(self, state):
        ''' Helper method to reshape state objects.
        '''
        return np.reshape(state, [1, self.env.lags, self.env.n_features])

    def backtest_strategy(self, sl=None, tsl=None, tp=None,
                          wait=5, guarantee=False):
        ''' Event-based backtesting of the trading bot's performance.
            Incl. stop loss, trailing stop loss and take profit.
        '''
        self.units = 0
        self.position = 0
        self.trades = 0
        self.sl = sl
        self.tsl = tsl
        self.tp = tp
        self.wait = 0
        self.current_balance = self.initial_amount
        self.net_wealths = list()
        for bar in range(self.env.lags, len(self.env.data)):
            self.wait = max(0, self.wait - 1)
            date, price = self.get_date_price(bar)
            if self.trades == 0:
                print(50 * '=')
                print(f'{date} | *** START BACKTEST ***')
                self.print_balance(bar)
                print(50 * '=')
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            # stop loss order
            if sl is not None and self.position != 0:
                rc = (price - self.entry_price) / self.entry_price
                if self.position == 1 and rc < -self.sl:
                    print(50 * '-')
                    if guarantee:
                        price = self.entry_price * (1 - self.sl)
                        print(f'*** STOP LOSS (LONG  | {-self.sl:.4f}) ***')
                    else:
                        print(f'*** STOP LOSS (LONG  | {rc:.4f}) ***')
                    self.place_sell_order(bar, units=self.units, gprice=price)
                    self.wait = wait
                    self.position = 0
                elif self.position == -1 and rc > self.sl:
                    print(50 * '-')
                    if guarantee:
                        price = self.entry_price * (1 + self.sl)
                        print(f'*** STOP LOSS (SHORT | -{self.sl:.4f}) ***')
                    else:
                        print(f'*** STOP LOSS (SHORT | -{rc:.4f}) ***')
                    self.place_buy_order(bar, units=-self.units, gprice=price)
                    self.wait = wait
                    self.position = 0

            # trailing stop loss order
            if tsl is not None and self.position != 0:
                self.max_price = max(self.max_price, price)
                self.min_price = min(self.min_price, price)
                rc_1 = (price - self.max_price) / self.entry_price
                rc_2 = (self.min_price - price) / self.entry_price
                if self.position == 1 and rc_1 < -self.tsl:
                    print(50 * '-')
                    print(f'*** TRAILING SL (LONG  | {rc_1:.4f}) ***')
                    self.place_sell_order(bar, units=self.units)
                    self.wait = wait
                    self.position = 0
                elif self.position == -1 and rc_2 < -self.tsl:
                    print(50 * '-')
                    print(f'*** TRAILING SL (SHORT | {rc_2:.4f}) ***')
                    self.place_buy_order(bar, units=-self.units)
                    self.wait = wait
                    self.position = 0

            # take profit order
            if tp is not None and self.position != 0:
                rc = (price - self.entry_price) / self.entry_price
                if self.position == 1 and rc > self.tp:
                    print(50 * '-')
                    if guarantee:
                        price = self.entry_price * (1 + self.tp)
                        print(f'*** TAKE PROFIT (LONG  | {self.tp:.4f}) ***')
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                    else:
                        print(f'*** TAKE PROFIT (LONG  | {rc:.4f}) ***')
                    self.place_sell_order(bar, units=self.units, gprice=price)
                    self.wait = wait
                    self.position = 0
                elif self.position == -1 and rc < -self.tp:
                    print(50 * '-')
                    if guarantee:
                        price = self.entry_price * (1 - self.tp)
                        print(f'*** TAKE PROFIT (SHORT | {self.tp:.4f}) ***')
                    else:
                        print(f'*** TAKE PROFIT (SHORT | {-rc:.4f}) ***')
                    self.place_buy_order(bar, units=-self.units, gprice=price)
                    self.wait = wait
                    self.position = 0

            state = self.env.get_state(bar)
            action = np.argmax(self.model.predict(
                self._reshape(state.values))[0, 0])
            position = 1 if action == 1 else -1
            if self.position in [0, -1] and position == 1 and self.wait == 0:
                if self.verbose:
                    print(50 * '-')
                    print(f'{date} | *** GOING LONG ***')
                if self.position == -1:
                    self.place_buy_order(bar - 1, units=-self.units)
                self.place_buy_order(bar - 1, amount=self.current_balance)
                if self.verbose:
                    self.print_net_wealth(bar)
                self.position = 1
            elif self.position in [0, 1] and position == -1 and self.wait == 0:
                if self.verbose:
                    print(50 * '-')
                    print(f'{date} | *** GOING SHORT ***')
                if self.position == 1:
                    self.place_sell_order(bar - 1, units=self.units)
                self.place_sell_order(bar - 1, amount=self.current_balance)
                if self.verbose:
                    self.print_net_wealth(bar)
                self.position = -1
            self.net_wealths.append((date, self.calculate_net_wealth(price)))
        self.net_wealths = pd.DataFrame(self.net_wealths,
                                        columns=['date', 'net_wealth'])
        self.net_wealths.set_index('date', inplace=True)
        self.net_wealths.index = pd.DatetimeIndex(self.net_wealths.index)
        self.close_out(bar)
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CHAPTER 12

Execution and Deployment

Considerable progress is needed before autonomous vehicles can operate reliably in
mixed urban traffic, heavy rain and snow, unpaved and unmapped roads, and where
wireless access is unreliable.

—Todd Litman (2020)

An investment firm that engages in algorithmic trading shall have in place effective
systems and risk controls suitable to the business it operates to ensure that its trading
systems are resilient and have sufficient capacity, are subject to appropriate trading
thresholds and limits and prevent the sending of erroneous orders or the systems
otherwise functioning in a way that may create or contribute to a disorderly market.

—MiFID II (Article 17)

Chapter 11 trains a trading bot in the form of a financial Q-learning agent based on
historical data. It introduces event-based backtesting as an approach flexible enough
to account for typical risk measures, such as trailing stop loss orders or take profit
targets. However, all this happens asynchronously in a sandbox environment based
on historical data only. As with an autonomous vehicle (AV), there is the problem of
deploying the AI in the real world. For an AV this means combining the AI with the
car hardware and deploying the AV on test and public streets. For a trading bot this
means connecting the trading bot with a trading platform and deploying it such that
orders are executed automatically. In other words, the algorithmic side is clear—exe‐
cution and deployment now need to be added to implement algorithmic trading.

This chapter introduces the Oanda trading platform for algorithmic trading. There‐
fore, the focus is on the v20 API of the platform and not on applications that provide
users with an interface for manual trading. To simplify the code, the wrapper package
tpqoa is introduced and used. It relies on the v20 Python package from Oanda and
provides a more Pythonic user interface.
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“Oanda Account” on page 346 details the prerequisites to use a demo account with
Oanda. “Data Retrieval” on page 347 shows how to retrieve historical and real-time
(streaming) data from the API. “Order Execution” on page 351 deals with the execu‐
tion of buy and sell orders, potentially including other orders, such as trailing stop
loss orders. “Trading Bot” on page 357 trains a trading bot based on historical intra‐
day data from Oanda and backtests its performance in vectorized fashion. Finally,
“Deployment” on page 364 shows how to deploy the trading bot in real-time and an
automated fashion.

Oanda Account
The code in this chapter relies on the Python wrapper package tpqoa. This package
can be installed via pip as follows:

pip install --upgrade git+https://github.com/yhilpisch/tpqoa.git

To make use of this package, a demo account with Oanda is sufficient. Once the
account is open, an access token is generated on the account page (after login). The
access token and the account id (also found on the account page) are then stored in a
configuration text file as follows:

[oanda]
account_id = XYZ-ABC-...
access_token = ZYXCAB...
account_type = practice

If the name of the configuration file is aiif.cfg and if it is stored in the current working
directory, then the tpqoa package can be used as follows:

import tpqoa
api = tpqoa.tpqoa('aiif.cfg')

Risk Disclaimers and Disclosures

Oanda is a platform for foreign exchange (FX) and contracts for dif‐
ference (CFD) trading. These instruments involve considerable
risks, in particular when traded with leverage. It is strongly recom‐
mended that you read all relevant risk disclaimers and disclosures
from Oanda on its website carefully before moving on (check for
the appropriate jurisdiction).
All code and examples presented in this chapter are for technical
illustration only and do not constitute any investment advice or
similar.
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Data Retrieval
As usual, some Python imports and configurations come first:

In [1]: import os
        import time
        import numpy as np
        import pandas as pd
        from pprint import pprint
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        pd.set_option('mode.chained_assignment', None)
        pd.set_option('display.float_format', '{:.5f}'.format)
        np.set_printoptions(suppress=True, precision=4)
        os.environ['PYTHONHASHSEED'] = '0'

Depending on the relevant jurisdiction of the account, Oanda offers a number of
tradable FX and CFD instruments. The following Python code retrieves the available
instruments for a given account:

In [2]: import tpqoa  

In [3]: api = tpqoa.tpqoa('../aiif.cfg')  

In [4]: ins = api.get_instruments()  

In [5]: ins[:5]  
Out[5]: [('AUD/CAD', 'AUD_CAD'),
         ('AUD/CHF', 'AUD_CHF'),
         ('AUD/HKD', 'AUD_HKD'),
         ('AUD/JPY', 'AUD_JPY'),
         ('AUD/NZD', 'AUD_NZD')]

Imports the tpqoa package

Instantiates an API object given the account credentials

Retrieves the list of available instruments in the format (display_name,

technical_name)

Shows a select few of these instruments

Oanda provides a wealth of historical data via its v20 API. The following examples
retrieve historical data for the EUR/USD currency pair—the granularity is set to D
(that is, daily).
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Figure 12-1 plots the closing (ask) prices:

In [6]: raw = api.get_history(instrument='EUR_USD',  
                              start='2018-01-01',  
                              end='2020-07-31',  
                              granularity='D',  
                              price='A')  

In [7]: raw.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 671 entries, 2018-01-01 22:00:00 to 2020-07-30 21:00:00
        Data columns (total 6 columns):
         #   Column    Non-Null Count  Dtype
        ---  ------    --------------  -----
         0   o         671 non-null    float64
         1   h         671 non-null    float64
         2   l         671 non-null    float64
         3   c         671 non-null    float64
         4   volume    671 non-null    int64
         5   complete  671 non-null    bool
        dtypes: bool(1), float64(4), int64(1)
        memory usage: 32.1 KB

In [8]: raw.head()
Out[8]:                           o       h       l       c  volume  complete
        time
        2018-01-01 22:00:00 1.20101 1.20819 1.20051 1.20610   35630      True
        2018-01-02 22:00:00 1.20620 1.20673 1.20018 1.20170   31354      True
        2018-01-03 22:00:00 1.20170 1.20897 1.20049 1.20710   35187      True
        2018-01-04 22:00:00 1.20692 1.20847 1.20215 1.20327   36478      True
        2018-01-07 22:00:00 1.20301 1.20530 1.19564 1.19717   27618      True

In [9]: raw['c'].plot(figsize=(10, 6));

Specifies the instrument…

…the starting date…

…the end date…

…the granularity (D = daily)…

…and the type of the price series (A = ask)
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Figure 12-1. Historical daily closing prices for EUR/USD from Oanda

Intraday data is as easily retrieved and used as daily data, as the code that follows
shows. Figure 12-2 visualizes minute bar (mid) price data:

In [10]: raw = api.get_history(instrument='EUR_USD',
                               start='2020-07-01',
                               end='2020-07-31',
                               granularity='M1',  
                               price='M')   

In [11]: raw.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 30728 entries, 2020-07-01 00:00:00 to 2020-07-30 23:59:00
         Data columns (total 6 columns):
          #   Column    Non-Null Count  Dtype
         ---  ------    --------------  -----
          0   o         30728 non-null  float64
          1   h         30728 non-null  float64
          2   l         30728 non-null  float64
          3   c         30728 non-null  float64
          4   volume    30728 non-null  int64
          5   complete  30728 non-null  bool
         dtypes: bool(1), float64(4), int64(1)
         memory usage: 1.4 MB

In [12]: raw.tail()
Out[12]:                           o       h       l       c  volume  complete
         time
         2020-07-30 23:55:00 1.18724 1.18739 1.18718 1.18738      57      True
         2020-07-30 23:56:00 1.18736 1.18758 1.18722 1.18757      57      True
         2020-07-30 23:57:00 1.18756 1.18756 1.18734 1.18734      49      True
         2020-07-30 23:58:00 1.18736 1.18737 1.18713 1.18717      36      True
         2020-07-30 23:59:00 1.18718 1.18724 1.18714 1.18722      31      True
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In [13]: raw['c'].plot(figsize=(10, 6));

Specifies the granularity (M1 = one minute)…

…and the type of the price series (M = mid)

Figure 12-2. Historical one-minute bar closing prices for EUR/USD from Oanda

Whereas historical data is important, for instance, to train and test a trading bot, real-
time (streaming) data is required to deploy such a bot for algorithmic trading. tpqoa
allows the synchronous streaming of real-time data for all available instruments with
a single method call. The method prints by default the time stamp and the bid/ask
prices. For algorithmic trading, this default behavior can be adjusted, as “Deploy‐
ment” on page 364 shows:

In [14]: api.stream_data('EUR_USD', stop=10)
         2020-08-13T12:07:09.735715316Z 1.18328 1.18342
         2020-08-13T12:07:16.245253689Z 1.18329 1.18343
         2020-08-13T12:07:16.397803785Z 1.18328 1.18342
         2020-08-13T12:07:17.240232521Z 1.18331 1.18346
         2020-08-13T12:07:17.358476854Z 1.18334 1.18348
         2020-08-13T12:07:17.778061207Z 1.18331 1.18345
         2020-08-13T12:07:18.016544856Z 1.18333 1.18346
         2020-08-13T12:07:18.144762415Z 1.18334 1.18348
         2020-08-13T12:07:18.689365678Z 1.18331 1.18345
         2020-08-13T12:07:19.148039139Z 1.18331 1.18345
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Order Execution
The AI of an AV needs to be able to control the physical vehicle. To this end it sends
different types of signals to the vehicle, for example, to accelerate, break, turn left, or
turn right. A trading bot needs to be able to place orders with the trading platform.
This section covers different types of orders, such as market orders and stop loss
orders.

The most fundamental type of order is a market order. This order allows buying or
selling a financial instrument at the current market price (that is, the ask price when
buying and the bid price when selling). The following examples are based on an
account leverage of 20 and relatively small order sizes. Therefore, liquidity issues, for
example, do not play a role. When executing orders via the Oanda v20 API, the API
returns a detailed order object. First, a buy market order is placed:

In [15]: order = api.create_order('EUR_USD', units=25000,
                                  suppress=True, ret=True)  
         pprint(order)  
         {'accountBalance': '98553.3172',
          'accountID': '101-004-13834683-001',
          'batchID': '1625',
          'commission': '0.0',
          'financing': '0.0',
          'fullPrice': {'asks': [{'liquidity': '10000000', 'price': 1.18345}],
                        'bids': [{'liquidity': '10000000', 'price': 1.18331}],
                        'closeoutAsk': 1.18345,
                        'closeoutBid': 1.18331,
                        'type': 'PRICE'},
          'fullVWAP': 1.18345,
          'gainQuoteHomeConversionFactor': '0.840811914585',
          'guaranteedExecutionFee': '0.0',
          'halfSpreadCost': '1.4788',
          'id': '1626',
          'instrument': 'EUR_USD',
          'lossQuoteHomeConversionFactor': '0.849262285586',
          'orderID': '1625',
          'pl': '0.0',
          'price': 1.18345,
          'reason': 'MARKET_ORDER',
          'requestID': '78757241547812154',
          'time': '2020-08-13T12:07:19.434407966Z',
          'tradeOpened': {'guaranteedExecutionFee': '0.0',
                          'halfSpreadCost': '1.4788',
                          'initialMarginRequired': '832.5',
                          'price': 1.18345,
                          'tradeID': '1626',
                          'units': '25000.0'},
          'type': 'ORDER_FILL',
          'units': '25000.0',
          'userID': 13834683}
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In [16]: def print_details(order):  
             details = (order['time'][:-7], order['instrument'], order['units'],
                        order['price'], order['pl'])
             return details

In [17]: print_details(order)  
Out[17]: ('2020-08-13T12:07:19.434', 'EUR_USD', '25000.0', 1.18345, '0.0')

In [18]: time.sleep(1)

Places a buy market order and prints the order object details

Selects and shows the time, instrument, units, price, and pl details of the order

Second, the position is closed via a sell market order of the same size. Whereas the
first trade has a profit/loss (P&L) of zero by its nature—before accounting for trans‐
action costs—the second trade in general has a nonzero P&L:

In [19]: order = api.create_order('EUR_USD', units=-25000,
                                  suppress=True, ret=True)  
         pprint(order)  
         {'accountBalance': '98549.283',
          'accountID': '101-004-13834683-001',
          'batchID': '1627',
          'commission': '0.0',
          'financing': '0.0',
          'fullPrice': {'asks': [{'liquidity': '9975000', 'price': 1.18339}],
                        'bids': [{'liquidity': '10000000', 'price': 1.18326}],
                        'closeoutAsk': 1.18339,
                        'closeoutBid': 1.18326,
                        'type': 'PRICE'},
          'fullVWAP': 1.18326,
          'gainQuoteHomeConversionFactor': '0.840850994445',
          'guaranteedExecutionFee': '0.0',
          'halfSpreadCost': '1.3732',
          'id': '1628',
          'instrument': 'EUR_USD',
          'lossQuoteHomeConversionFactor': '0.849301758209',
          'orderID': '1627',
          'pl': '-4.0342',
          'price': 1.18326,
          'reason': 'MARKET_ORDER',
          'requestID': '78757241552009237',
          'time': '2020-08-13T12:07:20.586564454Z',
          'tradesClosed': [{'financing': '0.0',
                            'guaranteedExecutionFee': '0.0',
                            'halfSpreadCost': '1.3732',
                            'price': 1.18326,
                            'realizedPL': '-4.0342',
                            'tradeID': '1626',
                            'units': '-25000.0'}],
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          'type': 'ORDER_FILL',
          'units': '-25000.0',
          'userID': 13834683}

In [20]: print_details(order) 
Out[20]: ('2020-08-13T12:07:20.586', 'EUR_USD', '-25000.0', 1.18326, '-4.0342')

In [21]: time.sleep(1)

Places a sell market order and prints the order object details

Selects and shows the time, instrument, units, price, and pl details of the order

Limit Orders

This chapter covers market orders as a type of base order only. With
a market order, buying or selling a financial instrument happens at
the price that is current when the order is placed. By contrast, a
limit order, as the other main type of base order, allows the place‐
ment of an order with a minimum price or a maximum price. Only
when the minimum/maximum price is reached is the order
executed. Until that point, no transaction takes place.

Next, consider an example for the same combination of trades but this time with a
stop loss (SL) order. An SL order is treated as a separate (limit) order. The following
Python code places the orders and shows the details of the SL order object:

In [22]: order = api.create_order('EUR_USD', units=25000,
                                  sl_distance=0.005,  
                                  suppress=True, ret=True)

In [23]: print_details(order)
Out[23]: ('2020-08-13T12:07:21.740', 'EUR_USD', '25000.0', 1.18343, '0.0')

In [24]: sl_order = api.get_transaction(tid=int(order['id']) + 1)  

In [25]: sl_order  
Out[25]: {'id': '1631',
          'time': '2020-08-13T12:07:21.740825489Z',
          'userID': 13834683,
          'accountID': '101-004-13834683-001',
          'batchID': '1629',
          'requestID': '78757241556206373',
          'type': 'STOP_LOSS_ORDER',
          'tradeID': '1630',
          'price': 1.17843,
          'distance': '0.005',
          'timeInForce': 'GTC',
          'triggerCondition': 'DEFAULT',
          'reason': 'ON_FILL'}
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In [26]: (sl_order['time'], sl_order['type'], order['price'],
          sl_order['price'], sl_order['distance'])  
Out[26]: ('2020-08-13T12:07:21.740825489Z',
          'STOP_LOSS_ORDER',
          1.18343,
          1.17843,
          '0.005')

In [27]: time.sleep(1)

In [28]: order = api.create_order('EUR_USD', units=-25000, suppress=True, ret=True)

In [29]: print_details(order)
Out[29]: ('2020-08-13T12:07:23.059', 'EUR_USD', '-25000.0', 1.18329, '-2.9725')

The SL distance is defined in currency units.

Selects and shows the SL order object data.

Selects and shows some relevant details of the two order objects.

A trailing stop loss (TSL) order is handled in the same way. The only difference is that
there is no fixed price attached to a TSL order:

In [30]: order = api.create_order('EUR_USD', units=25000,
                                  tsl_distance=0.005,  
                                  suppress=True, ret=True)

In [31]: print_details(order)
Out[31]: ('2020-08-13T12:07:23.204', 'EUR_USD', '25000.0', 1.18341, '0.0')

In [32]: tsl_order = api.get_transaction(tid=int(order['id']) + 1)  

In [33]: tsl_order  
Out[33]: {'id': '1637',
          'time': '2020-08-13T12:07:23.204457044Z',
          'userID': 13834683,
          'accountID': '101-004-13834683-001',
          'batchID': '1635',
          'requestID': '78757241564598562',
          'type': 'TRAILING_STOP_LOSS_ORDER',
          'tradeID': '1636',
          'distance': '0.005',
          'timeInForce': 'GTC',
          'triggerCondition': 'DEFAULT',
          'reason': 'ON_FILL'}

In [34]: (tsl_order['time'][:-7], tsl_order['type'],
          order['price'], tsl_order['distance'])  
Out[34]: ('2020-08-13T12:07:23.204', 'TRAILING_STOP_LOSS_ORDER', 1.18341, '0.005')
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In [35]: time.sleep(1)

In [36]: order = api.create_order('EUR_USD', units=-25000,
                                  suppress=True, ret=True)

In [37]: print_details(order)
Out[37]: ('2020-08-13T12:07:24.551', 'EUR_USD', '-25000.0', 1.1833, '-2.3355')

In [38]: time.sleep(1)

The TSL distance is defined in currency units.

Selects and shows the TSL order object data.

Selects and shows some relevant details of the two order objects.

Finally, here is a take profit (TP) order. This order requires a fixed TP target price.
Therefore, the following code uses the execution price from the previous order to
define the TP price in relative terms. Beyond this small difference, the handling is
again the same as before:

In [39]: tp_price = round(order['price'] + 0.01, 4)
         tp_price
Out[39]: 1.1933

In [40]: order = api.create_order('EUR_USD', units=25000,
                                  tp_price=tp_price,  
                                  suppress=True, ret=True)

In [41]: print_details(order)
Out[41]: ('2020-08-13T12:07:25.712', 'EUR_USD', '25000.0', 1.18344, '0.0')

In [42]: tp_order = api.get_transaction(tid=int(order['id']) + 1)  

In [43]: tp_order  
Out[43]: {'id': '1643',
          'time': '2020-08-13T12:07:25.712531725Z',
          'userID': 13834683,
          'accountID': '101-004-13834683-001',
          'batchID': '1641',
          'requestID': '78757241572993078',
          'type': 'TAKE_PROFIT_ORDER',
          'tradeID': '1642',
          'price': 1.1933,
          'timeInForce': 'GTC',
          'triggerCondition': 'DEFAULT',
          'reason': 'ON_FILL'}

In [44]: (tp_order['time'][:-7], tp_order['type'],
          order['price'], tp_order['price'])  
Out[44]: ('2020-08-13T12:07:25.712', 'TAKE_PROFIT_ORDER', 1.18344, 1.1933)
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In [45]: time.sleep(1)

In [46]: order = api.create_order('EUR_USD', units=-25000,
                                  suppress=True, ret=True)

In [47]: print_details(order)
Out[47]: ('2020-08-13T12:07:27.020', 'EUR_USD', '-25000.0', 1.18332, '-2.5478')

The TP target price is defined relative to the previous execution price.

Selects and shows the TP order object data.

Selects and shows some relevant details of the two order objects.

The code so far only deals with transaction details of single orders. However, it is also
of interest to have an overview of multiple historical transactions. To this end, the
following method call provides overview data for all the main orders placed in this
section, including P&L data:

In [48]: api.print_transactions(tid=int(order['id']) - 22)
          1626 | 2020-08-13T12:07:19.434407966Z |   EUR_USD |      25000.0 |      0.0
          1628 | 2020-08-13T12:07:20.586564454Z |   EUR_USD |     -25000.0 |  -4.0342
          1630 | 2020-08-13T12:07:21.740825489Z |   EUR_USD |      25000.0 |      0.0
          1633 | 2020-08-13T12:07:23.059178023Z |   EUR_USD |     -25000.0 |  -2.9725
          1636 | 2020-08-13T12:07:23.204457044Z |   EUR_USD |      25000.0 |      0.0
          1639 | 2020-08-13T12:07:24.551026466Z |   EUR_USD |     -25000.0 |  -2.3355
          1642 | 2020-08-13T12:07:25.712531725Z |   EUR_USD |      25000.0 |      0.0
          1645 | 2020-08-13T12:07:27.020414342Z |   EUR_USD |     -25000.0 |  -2.5478

Yet another method call provides a snapshot of the account details. The details shown
are from an Oanda demo account that has been in use for quite some time for techni‐
cal testing purposes:

In [49]: api.get_account_summary()
Out[49]: {'id': '101-004-13834683-001',
          'alias': 'Primary',
          'currency': 'EUR',
          'balance': '98541.4272',
          'createdByUserID': 13834683,
          'createdTime': '2020-03-19T06:08:14.363139403Z',
          'guaranteedStopLossOrderMode': 'DISABLED',
          'pl': '-1248.5543',
          'resettablePL': '-1248.5543',
          'resettablePLTime': '0',
          'financing': '-210.0185',
          'commission': '0.0',
          'guaranteedExecutionFees': '0.0',
          'marginRate': '0.0333',
          'openTradeCount': 1,
          'openPositionCount': 1,
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          'pendingOrderCount': 0,
          'hedgingEnabled': False,
          'unrealizedPL': '941.9536',
          'NAV': '99483.3808',
          'marginUsed': '380.83',
          'marginAvailable': '99107.2283',
          'positionValue': '3808.3',
          'marginCloseoutUnrealizedPL': '947.9546',
          'marginCloseoutNAV': '99489.3818',
          'marginCloseoutMarginUsed': '380.83',
          'marginCloseoutPercent': '0.00191',
          'marginCloseoutPositionValue': '3808.3',
          'withdrawalLimit': '98541.4272',
          'marginCallMarginUsed': '380.83',
          'marginCallPercent': '0.00383',
          'lastTransactionID': '1646'}

This concludes the discussion of the basics of executing orders with Oanda. All ele‐
ments are now together to support the deployment of a trading bot. The remainder of
this chapter trains a trading bot on Oanda data and deploys it in automated fashion.

Trading Bot
Chapter 11 shows in detail how to train a deep Q-learning trading bot and how to
backtest it in vectorized and event-based fashion. This section now repeats selected
core steps in this regard based on historical data from Oanda. “Oanda Environment”
on page 369 provides a Python module that contains the environment class OandaEnv
to work with Oanda data. It can be used in the same way as the Finance class from
Chapter 11.

The following Python code instantiates the learning environment object. During this
step, the major data-related parameters driving the learning, validation, and testing
are fixed. The OandaEnv class allows the inclusion of leverage, which is typical for FX
and CFD trading. Leverage amplifies the realized returns, thereby increasing the
profit potential but also the loss risks:

In [50]: import oandaenv as oe

In [51]: symbol = 'EUR_USD'

In [52]: date = '2020-08-11'

In [53]: features = [symbol, 'r', 's', 'm', 'v']

In [54]: %%time
         learn_env = oe.OandaEnv(symbol=symbol,
                           start=f'{date} 08:00:00',
                           end=f'{date} 13:00:00',
                           granularity='S30',  
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                           price='M',  
                           features=features,  
                           window=20,  
                           lags=3,  
                           leverage=20,  
                           min_accuracy=0.4,  
                           min_performance=0.85  
                          )
         CPU times: user 23.1 ms, sys: 2.86 ms, total: 25.9 ms
         Wall time: 26.8 ms

In [55]: np.bincount(learn_env.data['d'])
Out[55]: array([299, 281])

In [56]: learn_env.data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 580 entries, 2020-08-11 08:10:00 to 2020-08-11 12:59:30
         Data columns (total 6 columns):
          #   Column   Non-Null Count  Dtype
         ---  ------   --------------  -----
          0   EUR_USD  580 non-null    float64
          1   r        580 non-null    float64
          2   s        580 non-null    float64
          3   m        580 non-null    float64
          4   v        580 non-null    float64
          5   d        580 non-null    int64
         dtypes: float64(5), int64(1)
         memory usage: 31.7 KB

Sets the granularity for the data to five seconds

Sets the price type to mid prices

Defines the set of features to be used

Defines the window length for rolling statistics

Specifies the number of lags

Fixes the leverage

Sets the required minimum accuracy

Sets the required minimum performance

In a next step, the validation environment is instantiated, relying on the parameters of
the learning environment—apart from the time interval, for obvious reasons.
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Figure 12-3 shows the closing prices of EUR/USD as used in the learning, validation,
and test environments (from left to right):

In [57]: valid_env = oe.OandaEnv(symbol=learn_env.symbol,
                           start=f'{date} 13:00:00',
                           end=f'{date} 14:00:00',
                           granularity=learn_env.granularity,
                           price=learn_env.price,
                           features=learn_env.features,
                           window=learn_env.window,
                           lags=learn_env.lags,
                           leverage=learn_env.leverage,
                           min_accuracy=0,
                           min_performance=0,
                           mu=learn_env.mu,
                           std=learn_env.std
                          )

In [58]: valid_env.data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 100 entries, 2020-08-11 13:10:00 to 2020-08-11 13:59:30
         Data columns (total 6 columns):
          #   Column   Non-Null Count  Dtype
         ---  ------   --------------  -----
          0   EUR_USD  100 non-null    float64
          1   r        100 non-null    float64
          2   s        100 non-null    float64
          3   m        100 non-null    float64
          4   v        100 non-null    float64
          5   d        100 non-null    int64
         dtypes: float64(5), int64(1)
         memory usage: 5.5 KB

In [59]: test_env = oe.OandaEnv(symbol=learn_env.symbol,
                           start=f'{date} 14:00:00',
                           end=f'{date} 17:00:00',
                           granularity=learn_env.granularity,
                           price=learn_env.price,
                           features=learn_env.features,
                           window=learn_env.window,
                           lags=learn_env.lags,
                           leverage=learn_env.leverage,
                           min_accuracy=0,
                           min_performance=0,
                           mu=learn_env.mu,
                           std=learn_env.std
                          )

In [60]: test_env.data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 340 entries, 2020-08-11 14:10:00 to 2020-08-11 16:59:30
         Data columns (total 6 columns):
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          #   Column   Non-Null Count  Dtype
         ---  ------   --------------  -----
          0   EUR_USD  340 non-null    float64
          1   r        340 non-null    float64
          2   s        340 non-null    float64
          3   m        340 non-null    float64
          4   v        340 non-null    float64
          5   d        340 non-null    int64
         dtypes: float64(5), int64(1)
         memory usage: 18.6 KB

In [61]: ax = learn_env.data[learn_env.symbol].plot(figsize=(10, 6))
         plt.axvline(learn_env.data.index[-1], ls='--')
         valid_env.data[learn_env.symbol].plot(ax=ax, style='-.')
         plt.axvline(valid_env.data.index[-1], ls='--')
         test_env.data[learn_env.symbol].plot(ax=ax, style='-.');

Figure 12-3. Historical 30-second bar closing prices for EUR/USD from Oanda
(learning = left, validation = middle, testing = right)

Based on the Oanda environment, the trading bot from Chapter 11 can be trained
and validated. The following Python code performs this task and visualizes the per‐
formance results (see Figure 12-4):

In [62]: import sys
         sys.path.append('../ch11/')  

In [63]: import tradingbot  
         Using TensorFlow backend.

In [64]: tradingbot.set_seeds(100)
         agent = tradingbot.TradingBot(24, 0.001, learn_env=learn_env,
                                       valid_env=valid_env)  
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In [65]: episodes = 31

In [66]: %time agent.learn(episodes)  
         =======================================================================
         episode:  5/31 | VALIDATION | treward:   97 | perf: 1.004 | eps: 0.96
         =======================================================================
         =======================================================================
         episode: 10/31 | VALIDATION | treward:   97 | perf: 1.005 | eps: 0.91
         =======================================================================
         =======================================================================
         episode: 15/31 | VALIDATION | treward:   97 | perf: 0.986 | eps: 0.87
         =======================================================================
         =======================================================================
         episode: 20/31 | VALIDATION | treward:   97 | perf: 1.012 | eps: 0.83
         =======================================================================
         =======================================================================
         episode: 25/31 | VALIDATION | treward:   97 | perf: 0.995 | eps: 0.79
         =======================================================================
         =======================================================================
         episode: 30/31 | VALIDATION | treward:   97 | perf: 0.972 | eps: 0.75
         =======================================================================
         episode: 31/31 | treward:   16 | perf: 0.981 | av: 376.0 | max:  577
         CPU times: user 22.1 s, sys: 1.17 s, total: 23.3 s
         Wall time: 20.1 s

In [67]: tradingbot.plot_performance(agent)  

Imports the tradingbot module from Chapter 11

Trains and validates the trading bot based on Oanda data

Visualizes the performance results

As discussed in the previous two chapters, the training and validation performances
are just an indicator of the trading bot performance.
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Figure 12-4. Training and validation performance results of the trading bot for Oanda
data

The following code implements a vectorized backtest of the trading bot performance
for the test environment—again with the same parameters as the learning environ‐
ment apart from the time interval used. The code makes use of the function backt
est() as provided in the Python module presented in “Vectorized Backtesting” on
page 372. The reported performance numbers include a leverage of 20. This holds
true for both the gross performance of the passive benchmark investment and the
trading bot over time, as shown in Figure 12-5:

In [68]: import backtest as bt

In [69]: env = test_env

In [70]: bt.backtest(agent, env)

In [71]: env.data['p'].iloc[env.lags:].value_counts()  
Out[71]:  1    263
         -1     74
         Name: p, dtype: int64

In [72]: sum(env.data['p'].iloc[env.lags:].diff() != 0)  
Out[72]: 25

In [73]: (env.data[['r', 's']].iloc[env.lags:] * env.leverage).sum(
                 ).apply(np.exp)  
Out[73]: r   0.99966
         s   1.05910
         dtype: float64
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In [74]: (env.data[['r', 's']].iloc[env.lags:] * env.leverage).sum(
                 ).apply(np.exp) - 1  
Out[74]: r   -0.00034
         s    0.05910
         dtype: float64

In [75]: (env.data[['r', 's']].iloc[env.lags:] * env.leverage).cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6));  

Shows the total number of long and short positions

Shows the number of trades required to implement the strategy

Calculates the gross performance including leverage

Calculates the net performance including leverage

Visualizes the gross performance over time including leverage

Figure 12-5. Gross performance of the passive benchmark investment and the trading
bot over time (including leverage)
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Simplified Backtesting

The training and backtesting of the trading bot in this section hap‐
pen under assumptions that are not realistic. The trading strategy
based on the 30-second bars might lead to a large number of trades
over a short period of time. Assuming typical transaction costs
(bid-ask spreads), such a strategy often is not economically viable.
Longer bars or a strategy with fewer trades would be more realistic.
However, to allow for a “quick” deployment demo in the next sec‐
tion, the training and backtest are implemented intentionally on
the relatively short 30-second bars.

Deployment
This section combines the major elements of the previous sections to deploy the
trained trading bot in automated fashion. This is comparable to the point in time at
which an AV is prepared to be deployed on the streets. The class OandaTradingBot
presented in the following code inherits from the tpqoa class and adds some helper
functions and the trading logic:

In [76]: import tpqoa

In [77]: class OandaTradingBot(tpqoa.tpqoa):
             def __init__(self, config_file, agent, granularity, units,
                          verbose=True):
                 super(OandaTradingBot, self).__init__(config_file)
                 self.agent = agent
                 self.symbol = self.agent.learn_env.symbol
                 self.env = agent.learn_env
                 self.window = self.env.window
                 if granularity is None:
                     self.granularity = agent.learn_env.granularity
                 else:
                     self.granularity = granularity
                 self.units = units
                 self.trades = 0
                 self.position = 0
                 self.tick_data = pd.DataFrame()
                 self.min_length = (self.agent.learn_env.window +
                                    self.agent.learn_env.lags)
                 self.pl = list()
                 self.verbose = verbose
             def _prepare_data(self):
                 self.data['r'] = np.log(self.data / self.data.shift(1))
                 self.data.dropna(inplace=True)
                 self.data['s'] = self.data[self.symbol].rolling(
                                                     self.window).mean()
                 self.data['m'] = self.data['r'].rolling(self.window).mean()
                 self.data['v'] = self.data['r'].rolling(self.window).std()
                 self.data.dropna(inplace=True)
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                 # self.data_ = (self.data - self.env.mu) / self.env.std  
                 self.data_ = (self.data - self.data.mean()) / self.data.std()  
             def _resample_data(self):
                 self.data = self.tick_data.resample(self.granularity,
                                 label='right').last().ffill().iloc[:-1]  
                 self.data = pd.DataFrame(self.data['mid'])  
                 self.data.columns = [self.symbol,]  
                 self.data.index = self.data.index.tz_localize(None)  
             def _get_state(self):
                 state = self.data_[self.env.features].iloc[-self.env.lags:]  
                 return np.reshape(state.values, [1, self.env.lags,
                                                  self.env.n_features])  
             def report_trade(self, time, side, order):
                 self.trades += 1
                 pl = float(order['pl'])  
                 self.pl.append(pl)  
                 cpl = sum(self.pl)  
                 print('\n' + 75 * '=')
                 print(f'{time} | *** GOING {side} ({self.trades}) ***')
                 print(f'{time} | PROFIT/LOSS={pl:.2f} | CUMULATIVE={cpl:.2f}')
                 print(75 * '=')
                 if self.verbose:
                     pprint(order)
                     print(75 * '=')
             def on_success(self, time, bid, ask):
                 df = pd.DataFrame({'ask': ask, 'bid': bid,
                                    'mid': (bid + ask) / 2},
                                   index=[pd.Timestamp(time)])
                 self.tick_data = self.tick_data.append(df)  
                 self._resample_data()  
                 if len(self.data) > self.min_length:
                     self.min_length += 1
                     self._prepare_data()
                     state = self._get_state()  
                     prediction = np.argmax(
                         self.agent.model.predict(state)[0, 0])  
                     position = 1 if prediction == 1 else -1  
                     if self.position in [0, -1] and position == 1:  
                         order = self.create_order(self.symbol,
                                 units=(1 - self.position) * self.units,
                                         suppress=True, ret=True)
                         self.report_trade(time, 'LONG', order)
                         self.position = 1
                     elif self.position in [0, 1] and position == -1:  
                         order = self.create_order(self.symbol,
                                 units=-(1 + self.position) * self.units,
                                         suppress=True, ret=True)
                         self.report_trade(time, 'SHORT', order)
                         self.position = -1
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1 This little trick leads more quickly to trades in this particular context given the data used. For real deploy‐
ment, the statistics from the learning environment data are to be used for the normalization.

For demonstration, the normalization is done with the real-time data statistics.1

Collects the tick data and resamples it to the required granularity.

Returns the current state of the financial market.

Collects the P&L figures for every trade.

Calculates the cumulative P&L for all trades.

Predicts the market direction and derives the signal (position).

Checks whether the conditions for a long position (buy order) are met.

Checks whether the conditions for a short position (sell order) are met.

The application of this class is straightforward. First, an object is instantiated, provid‐
ing as the major input the trained trading bot agent from the previous section.
Second, the streaming for the instrument to be traded needs to be started. Whenever
new tick data arrives, the .on_success() method is called, which contains the main
logic for both the processing of the tick data and the placement of trades. To speed
things up a bit, the deployment example relies, as did the backtesting before, on
30-second bars. In a production context, when managing real money, a longer time
interval might be the better choice—if only to reduce the number of trades and there‐
with the transaction costs:

In [78]: otb = OandaTradingBot('../aiif.cfg', agent, '30s',
                               25000, verbose=False)  

In [79]: otb.tick_data.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 0 entries
         Empty DataFrame
In [80]: otb.stream_data(agent.learn_env.symbol, stop=1000)  

         ===========================================================================
         2020-08-13T12:19:32.320291893Z | *** GOING SHORT (1) ***
         2020-08-13T12:19:32.320291893Z | PROFIT/LOSS=0.00 | CUMULATIVE=0.00
         ===========================================================================

         ===========================================================================
         2020-08-13T12:20:00.083985447Z | *** GOING LONG (2) ***
         2020-08-13T12:20:00.083985447Z | PROFIT/LOSS=-6.80 | CUMULATIVE=-6.80
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         ===========================================================================

         ===========================================================================
         2020-08-13T12:25:00.099901587Z | *** GOING SHORT (3) ***
         2020-08-13T12:25:00.099901587Z | PROFIT/LOSS=-7.86 | CUMULATIVE=-14.66
         ===========================================================================

In [81]: print('\n' + 75 * '=')
         print('*** CLOSING OUT ***')
         order = otb.create_order(otb.symbol,
                         units=-otb.position * otb.units,
                         suppress=True, ret=True)  
         otb.report_trade(otb.time, 'NEUTRAL', order)  
         if otb.verbose:
             pprint(order)
         print(75 * '=')

         ===========================================================================
         *** CLOSING OUT ***

         ===========================================================================
         2020-08-13T12:25:16.870357562Z | *** GOING NEUTRAL (4) ***
         2020-08-13T12:25:16.870357562Z | PROFIT/LOSS=-3.19 | CUMULATIVE=-17.84
         ===========================================================================
         ===========================================================================

Instantiates the OandaTradingBot object

Starts the streaming of the real-time data and the trading

Closes the final position after a certain number of ticks retrieved

During the deployment, P&L figures are collected in the pl attribute, which is a list
object. Once the trading has stopped, the P&L figures can be analyzed:

In [82]: pl = np.array(otb.pl)  

In [83]: pl  
Out[83]: array([ 0.    , -6.7959, -7.8594, -3.1862])

In [84]: pl.cumsum()  
Out[84]: array([  0.    ,  -6.7959, -14.6553, -17.8415])

P&L figures for all trades

Cumulative P&L figures

The simple deployment example illustrates that one can trade algorithmically and in
automated fashion with a deep Q-learning trading bot in less than 100 lines of Python
code. The major prerequisite is the trained trading bot (i.e., an instance of the
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tradingbot class). Many important aspects are intentionally left out here. For exam‐
ple, in a production environment, one would probably like to persist the data. One
would also like to persist the order objects. Measures to make sure that the socket
connection is still alive are also important (for example, by monitoring a heartbeat).
Overall, security, reliability, logging, and monitoring are not really addressed. Some
more details in this regard are provided in Hilpisch (2020).

The Python script in “Oanda Trading Bot” on page 373 presents a standalone exe‐
cutable version of the OandaTradingBot class. This represents a major step toward a
more robust deployment option as compared to an interactive context such as Jupyter
Notebook or Jupyter Lab. The script also includes functionality to add SL, TSL, or TP
orders for the execution. The script expects a pickled version of the agent object in
the current working directory. The following Python code pickles the object for later
usage by the script:

In [85]: import pickle

In [86]: pickle.dump(agent, open('trading.bot', 'wb'))

Conclusions
This chapter discusses central aspects of the execution of an algorithmic trading strat‐
egy and the deployment of a trading bot. The Oanda trading platform provides
directly or indirectly with its v20 API all necessary capabilities to do the following:

• Retrieve historical data
• Train and backtest a trading bot (deep Q-learning agent)
• Stream real-time data
• Place market (and limit) orders
• Make use of SL, TSL, and TP orders
• Deploy a trading bot in an automated manner

The prerequisites to implement all these steps are a demo account with Oanda, stan‐
dard hardware and software (open source only), and a stable internet connection. In
other words, the barriers of entry to algorithmic trading for the purposes of exploit‐
ing economic inefficiencies are pretty low. This is in stark contrast, for example, to
the training, design, and construction of AVs for deployment on public streets—the
budgets of companies in the AV space run into the billions of dollars. In other words,
the finance domain has distinctive advantages compared to other industries and
domains with regard to the real-world deployment of AI agents, such as trading bots,
as focused on in this and the previous chapter.
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Python Code
This section contains code used and referenced in the main body of the chapter.

Oanda Environment
The following is the Python module with the OandaEnv class to train a trading bot
based on historical Oanda data:

#
# Finance Environment
#
# (c) Dr. Yves J. Hilpisch
# Artificial Intelligence in Finance
#
#
import math
import tpqoa
import random
import numpy as np
import pandas as pd

class observation_space:
    def __init__(self, n):
        self.shape = (n,)

class action_space:
    def __init__(self, n):
        self.n = n

    def sample(self):
        return random.randint(0, self.n - 1)

class OandaEnv:
    def __init__(self, symbol, start, end, granularity, price,
                 features, window, lags, leverage=1,
                 min_accuracy=0.5, min_performance=0.85,
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                 mu=None, std=None):
        self.symbol = symbol
        self.start = start
        self.end = end
        self.granularity = granularity
        self.price = price
        self.api = tpqoa.tpqoa('../aiif.cfg')
        self.features = features
        self.n_features = len(features)
        self.window = window
        self.lags = lags
        self.leverage = leverage
        self.min_accuracy = min_accuracy
        self.min_performance = min_performance
        self.mu = mu
        self.std = std
        self.observation_space = observation_space(self.lags)
        self.action_space = action_space(2)
        self._get_data()
        self._prepare_data()

    def _get_data(self):
        ''' Method to retrieve data from Oanda.
        '''
        self.fn = f'../../source/oanda/'  
        self.fn += f'oanda_{self.symbol}_{self.start}_{self.end}_'  
        self.fn += f'{self.granularity}_{self.price}.csv'  
        self.fn = self.fn.replace(' ', '_').replace('-', '_').replace(':', '_')
        try:
            self.raw = pd.read_csv(self.fn, index_col=0, parse_dates=True)  
        except:
            self.raw = self.api.get_history(self.symbol, self.start,
                                       self.end, self.granularity,
                                       self.price)  
            self.raw.to_csv(self.fn)  
        self.data = pd.DataFrame(self.raw['c'])  
        self.data.columns = [self.symbol]  

    def _prepare_data(self):
        ''' Method to prepare additional time series data
            (such as features data).
        '''
        self.data['r'] = np.log(self.data / self.data.shift(1))
        self.data.dropna(inplace=True)
        self.data['s'] = self.data[self.symbol].rolling(self.window).mean()
        self.data['m'] = self.data['r'].rolling(self.window).mean()
        self.data['v'] = self.data['r'].rolling(self.window).std()
        self.data.dropna(inplace=True)
        if self.mu is None:
            self.mu = self.data.mean()
            self.std = self.data.std()
        self.data_ = (self.data - self.mu) / self.std
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        self.data['d'] = np.where(self.data['r'] > 0, 1, 0)
        self.data['d'] = self.data['d'].astype(int)

    def _get_state(self):
        ''' Privat method that returns the state of the environment.
        '''
        return self.data_[self.features].iloc[self.bar -
                                    self.lags:self.bar].values

    def get_state(self, bar):
        ''' Method that returns the state of the environment.
        '''
        return self.data_[self.features].iloc[bar - self.lags:bar].values

    def reset(self):
        ''' Method to reset the environment.
        '''
        self.treward = 0
        self.accuracy = 0
        self.performance = 1
        self.bar = self.lags
        state = self._get_state()
        return state

    def step(self, action):
        ''' Method to step the environment forwards.
        '''
        correct = action == self.data['d'].iloc[self.bar]
        ret = self.data['r'].iloc[self.bar] * self.leverage
        reward_1 = 1 if correct else 0  
        reward_2 = abs(ret) if correct else -abs(ret)  
        reward = reward_1 + reward_2 * self.leverage  
        self.treward += reward_1
        self.bar += 1
        self.accuracy = self.treward / (self.bar - self.lags)
        self.performance *= math.exp(reward_2)
        if self.bar >= len(self.data):
            done = True
        elif reward_1 == 1:
            done = False
        elif (self.accuracy < self.min_accuracy and
              self.bar > self.lags + 15):
            done = True
        elif (self.performance < self.min_performance and
              self.bar > self.lags + 15):
            done = True
        else:
            done = False
        state = self._get_state()
        info = {}
        return state, reward, done, info
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Defines the path for the data file

Defines the filename of the data file

Reads the data if a corresponding data file exists

Retrieves the data for the API if no such file exists

Writes the data as a CSV file to disk

Selects the column with the closing prices

Renames the column to the instrument name (symbol)

Reward for correct prediction

Reward for the realized performance (return)

Combined reward for prediction and performance

Vectorized Backtesting
The following is the Python module with the helper function backtest to generate
the data to do a vectorized backtest for a deep Q-learning trading bot. The code is
also used in Chapter 11:

#
# Vectorized Backtesting of
# Trading Bot (Financial Q-Learning Agent)
#
# (c) Dr. Yves J. Hilpisch
# Artificial Intelligence in Finance
#
import numpy as np
import pandas as pd
pd.set_option('mode.chained_assignment', None)

def reshape(s, env):
    return np.reshape(s, [1, env.lags, env.n_features])

def backtest(agent, env):
    done = False
    env.data['p'] = 0
    state = env.reset()
    while not done:
        action = np.argmax(
            agent.model.predict(reshape(state, env))[0, 0])
        position = 1 if action == 1 else -1
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        env.data.loc[:, 'p'].iloc[env.bar] = position
        state, reward, done, info = env.step(action)
    env.data['s'] = env.data['p'] * env.data['r']

Oanda Trading Bot
The following is the Python script with the OandaTradingBot class and code to
deploy the class:

#
# Oanda Trading Bot
# and Deployment Code
#
# (c) Dr. Yves J. Hilpisch
# Artificial Intelligence in Finance
#
import sys
import tpqoa
import pickle
import numpy as np
import pandas as pd

sys.path.append('../ch11/')

class OandaTradingBot(tpqoa.tpqoa):
    def __init__(self, config_file, agent, granularity, units,
                 sl_distance=None, tsl_distance=None, tp_price=None,
                 verbose=True):
        super(OandaTradingBot, self).__init__(config_file)
        self.agent = agent
        self.symbol = self.agent.learn_env.symbol
        self.env = agent.learn_env
        self.window = self.env.window
        if granularity is None:
            self.granularity = agent.learn_env.granularity
        else:
            self.granularity = granularity
        self.units = units
        self.sl_distance = sl_distance
        self.tsl_distance = tsl_distance
        self.tp_price = tp_price
        self.trades = 0
        self.position = 0
        self.tick_data = pd.DataFrame()
        self.min_length = (self.agent.learn_env.window +
                           self.agent.learn_env.lags)
        self.pl = list()
        self.verbose = verbose
    def _prepare_data(self):
        ''' Prepares the (lagged) features data.
        '''
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        self.data['r'] = np.log(self.data / self.data.shift(1))
        self.data.dropna(inplace=True)
        self.data['s'] = self.data[self.symbol].rolling(self.window).mean()
        self.data['m'] = self.data['r'].rolling(self.window).mean()
        self.data['v'] = self.data['r'].rolling(self.window).std()
        self.data.dropna(inplace=True)
        self.data_ = (self.data - self.env.mu) / self.env.std
    def _resample_data(self):
        ''' Resamples the data to the trading bar length.
        '''
        self.data = self.tick_data.resample(self.granularity,
                                label='right').last().ffill().iloc[:-1]
        self.data = pd.DataFrame(self.data['mid'])
        self.data.columns = [self.symbol,]
        self.data.index = self.data.index.tz_localize(None)
    def _get_state(self):
        ''' Returns the (current) state of the financial market.
        '''
        state = self.data_[self.env.features].iloc[-self.env.lags:]
        return np.reshape(state.values, [1, self.env.lags, self.env.n_features])
    def report_trade(self, time, side, order):
        ''' Reports trades and order details.
        '''
        self.trades += 1
        pl = float(order['pl'])
        self.pl.append(pl)
        cpl = sum(self.pl)
        print('\n' + 71 * '=')
        print(f'{time} | *** GOING {side} ({self.trades}) ***')
        print(f'{time} | PROFIT/LOSS={pl:.2f} | CUMULATIVE={cpl:.2f}')
        print(71 * '=')
        if self.verbose:
            pprint(order)
            print(71 * '=')
    def on_success(self, time, bid, ask):
        ''' Contains the main trading logic.
        '''
        df = pd.DataFrame({'ask': ask, 'bid': bid, 'mid': (bid + ask) / 2},
                          index=[pd.Timestamp(time)])
        self.tick_data = self.tick_data.append(df)
        self._resample_data()
        if len(self.data) > self.min_length:
            self.min_length += 1
            self._prepare_data()
            state = self._get_state()
            prediction = np.argmax(self.agent.model.predict(state)[0, 0])
            position = 1 if prediction == 1 else -1
            if self.position in [0, -1] and position == 1:
                order = self.create_order(self.symbol,
                        units=(1 - self.position) * self.units,
                        sl_distance=self.sl_distance,
                        tsl_distance=self.tsl_distance,
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                        tp_price=self.tp_price,
                        suppress=True, ret=True)
                self.report_trade(time, 'LONG', order)
                self.position = 1
            elif self.position in [0, 1] and position == -1:
                order = self.create_order(self.symbol,
                        units=-(1 + self.position) * self.units,
                        sl_distance=self.sl_distance,
                        tsl_distance=self.tsl_distance,
                        tp_price=self.tp_price,
                        suppress=True, ret=True)
                self.report_trade(time, 'SHORT', order)
                self.position = -1

if __name__ == '__main__':
    agent = pickle.load(open('trading.bot', 'rb'))
    otb = OandaTradingBot('../aiif.cfg', agent, '5s',
                          25000, verbose=False)
    otb.stream_data(agent.learn_env.symbol, stop=1000)
    print('\n' + 71 * '=')
    print('*** CLOSING OUT ***')
    order = otb.create_order(otb.symbol,
                    units=-otb.position * otb.units,
                    suppress=True, ret=True)
    otb.report_trade(otb.time, 'NEUTRAL', order)
    if otb.verbose:
        pprint(order)
    print(71 * '=')
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PART V

Outlook

This part of the book serves as an epilogue. It provides an outlook on the conse‐
quences that the widespread adoption of AI in finance could have. It is concerned
primarily, as is the rest of the book, with the trading domain to keep the discussion
focused. This final part consists of two chapters:

• Chapter 13 discusses aspects of AI-driven competition in the financial industry,
such as new requirements for finance education or competitive scenarios that
might arise.

• Chapter 14 considers the prospect of a financial singularity and the emergence of
an artificial financial intelligence—a trading bot consistently generating profits
through algorithmic trading well beyond known human or institutional
capabilities.

This part is largely speculative, argues on a high level, and neglects many relevant and
interesting details. It can serve, however, as a starting point for a more in-depth dis‐
cussion and analysis of the important topics addressed in it.





CHAPTER 13

AI-Based Competition

One high-stakes and extremely competitive environment in which AI systems operate
today is the global financial market.

—Nick Bostrom (2014)

Financial services companies are becoming hooked on artificial intelligence, using it to
automate menial tasks, analyze data, improve customer service and comply with
regulations.

—Nick Huber (2020)

This chapter addresses topics related to competition in the financial industry based
on the systematic and strategic application of AI. “AI and Finance” on page 380 serves
as a review and summary of the importance that AI might have for the future of
finance. “Lack of Standardization” on page 382 argues that AI in finance is still at a
nascent stage, making the implementation in many instances anything but straight‐
forward. This, on the other hand, leaves the competitive landscape wide open for
financial players to secure competitive advantages through AI. The rise of AI in
finance requires a rethinking and redesign of finance education and training. Today’s
requirements cannot be met anymore by traditional finance curricula. “Fight for
Resources” on page 385 discusses how financial institutions will fight for necessary
resources to apply AI at a large scale in finance. As in many other areas, AI experts
are often the bottleneck for which financial companies compete with technology
companies, startups, and companies from other industries.

“Market Impact” on page 386 explains how AI is both a major cause of and the only
solution for the age of microscopic alpha—alpha that is, like gold nowadays, still to be
found but only at small scales and in many cases to be mined only with industrial
effort. “Competitive Scenarios” on page 387 discusses reasons for and against future
scenarios for the financial industry characterized by a monopoly, oligopoly, or perfect
competition. Finally, “Risks, Regulation, and Oversight” on page 388 has a brief look
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at risks arising from AI in finance in general and major problems regulators and
industry watchdogs are faced with.

AI and Finance
This book primarily focuses on the use of AI in finance as applied to the prediction of
financial time series. The goal is to discover statistical inefficiencies, situations in
which the AI algorithm outperforms a baseline algorithm in predicting future market
movements. Such statistical inefficiencies are the basis for economic inefficiencies. An
economic inefficiency requires that there be a trading strategy that can exploit the
statistical inefficiency in such a way that above-market returns are realized. In other
words, there is a strategy—composed of the prediction algorithm and an execution
algorithm—that generates alpha.

There are, of course, many other areas in which AI algorithms can be applied to
finance. Examples include the following:

Credit scoring
AI algorithms can be used to derive credit scores for potential debtors, thereby
supporting credit decisions or even fully automating them. For example, Gol‐
bayani et al. (2020) apply a neural network–based approach to corporate credit
ratings, whereas Babaev et al. (2019) use RNNs in the context of retail loan
applications.

Fraud detection
AI algorithms can identify unusual patterns (for example, in transactions related
to credit cards), thereby preventing fraud from remaining undetected or even
from happening. Yousefi et al. (2019) provide a survey of the literature on the
topic.

Trade execution
AI algorithms can learn how to best execute trades related to large blocks of
shares, for example, thereby minimizing market impact and transaction costs.
The paper by Ning et al. (2020) applies a double deep Q-learning algorithm to
learn optimal trade execution policies.

Derivatives hedging
AI algorithms can be trained to optimally execute hedge transactions for single
derivative instruments or portfolios composed of such instruments. The
approach is often called deep hedging. Buehler et al. (2019) apply a reinforcement
learning approach to implement deep hedging.
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Portfolio management
AI algorithms can be used to compose and rebalance portfolios of financial
instruments, say, in the context of long-term retirement savings plans. The recent
book by López de Prado (2020) covers this topic in detail.

Customer service
AI algorithms can be used to process natural language, such as in the context of
customer inquiries. Chat bots have therefore—like in many other industries—
become quite popular in finance. The paper by Yu et al. (2020) discusses a finan‐
cial chat bot based on the popular bidirectional encoder representations from
transformers (BERT) model, which has its origin within Google.

All these application areas of AI in finance and others not listed here benefit from the
programmatic availability of large amounts of relevant data. Why can we expect
machine, deep, and reinforcement learning algorithms to perform better than tradi‐
tional methods from financial econometrics, such as OLS regression? There are a
number of reasons:

Big data
While traditional statistical methods can often cope with larger data sets, they at
the same time do not benefit too much performance-wise from increasing data
volumes. On the other hand, neural network–based approaches often benefit
tremendously when trained on larger data sets with regard to the relevant perfor‐
mance metrics.

Instability
Financial markets, in contrast to the physical world, do not follow constant laws.
They are rather changing over time, sometimes in rapid fashion. AI algorithms
can take this more easily into account by incrementally updating neural networks
through online training, for example.

Nonlinearity
OLS regression, for example, assumes an inherent linear relationship between the
features and the labels data. AI algorithms, such as neural networks, can in gen‐
eral more easily cope with nonlinear relationships.

Nonnormality
In financial econometrics, the assumption of normally distributed variables is
ubiquitous. AI algorithms in general do not rely that much on such constraining
assumptions.

High dimensionality
Traditional methods from financial econometrics have proven useful for prob‐
lems characterized by low dimensionality. Many problems in finance are cast into
a context with a pretty low number of features (independent variables), such as
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one (CAPM) or maybe a few more. More advanced AI algorithms can easily deal
with problems characterized by high dimensionality, taking into account even
several hundred different features if required.

Classification problems
The toolbox of traditional econometrics is mainly based on approaches for esti‐
mation (regression) problems. These problems for sure form an important cate‐
gory in finance. However, classification problems are probably equally important.
The toolbox of machine and deep learning provides a large menu of options for
attacking classification problems.

Unstructured data
Traditional methods from financial econometrics can basically only deal with
structured, numerical data. Machine and deep learning algorithms are able to
also efficiently handle unstructured, text-based data. They can also handle both
structured and unstructured data efficiently at the same time.

Although the application of AI is in many parts of finance still at a nascent stage,
some areas of application have proven to benefit tremendously from the paradigm
shift to AI-first finance. It is therefore relatively safe to predict that machine, deep,
and reinforcement learning algorithms will significantly reshape the way finance is
approached and conducted in practice. Furthermore, AI has become the number one
instrument in the pursuit of competitive advantages.

Lack of Standardization
Traditional, normative finance (see Chapter 3) has reached a high degree of standard‐
ization. There are a number of textbooks available on different formal levels that
basically teach and explain the very same theories and models. Two examples in this
context are Copeland et al. (2005) and Jones (2012). The theories and models in turn
rely in general on research papers published over the previous decades.

When Black and Scholes (1973) and Merton (1973) published their theories and
models to price European option contracts with a closed-form analytical formula, the
financial industry immediately accepted the formula and the ideas behind it as a
benchmark. Almost 50 years later, with many improved theories and models sug‐
gested in between, the Black-Scholes-Merton model and formula are still considered
to be a benchmark, if not the benchmark, in option pricing.

On the other hand, AI-first finance lacks a noticeable degree of standardization.
There are numerous research papers published essentially on a daily basis (for exam‐
ple, on http://arxiv.org). Among other reasons, this is due to the fact that traditional
publication venues with peer review are in general too slow to keep up with the fast
pace in the field of AI. Researchers are keen to share their work with the public as fast
as possible, often to not be outpaced by competing teams. A peer review process,
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which also has its merits in terms of quality assurance, might take months, during
which the research would not be published. In that sense, researchers more and more
trust in the community to take care of the review while also ensuring early credit for
their discoveries.

Whereas it was not unusual decades ago that a new finance working paper circulated
for years among experts before being peer reviewed and finally published, today’s
research environment is characterized by much faster turnaround times and the will‐
ingness of researchers to put out work early that might not have been thoroughly
reviewed and tested by others. As a consequence, there are hardly any standards or
benchmark implementations available for the multitude of AI algorithms that are
being applied to financial problems.

These fast research publication cycles are in large part driven by the easy applicability
of AI algorithms to financial data. Students, researchers, and practitioners hardly
need more than a typical consumer notebook to apply the latest breakthroughs in AI
to the financial domain. This is an advantage when compared to the constraints of
econometric research some decades ago (in the form of limited data availability and
limited compute power, for example). But it also often leads to the idea of “throwing
as much spaghetti as possible at the wall” in the hope that some might stick.

To some extent, the eagerness and urgency are also caused by investors, pushing
investment managers to come up with new investment approaches at a faster pace.
This often requires the dismissal of traditional research approaches in finance in
favor of more practical approaches. As Lopéz de Prado (2018) puts it:

Problem: Mathematical proofs can take years, decades, and centuries. No investor will
wait that long.
Solution: Use experimental math. Solve hard, intractable problems, not by proof but by
experiment.

Overall, the lack of standardization provides ample opportunity for single financial
players to exploit the advantages of AI-first finance in a competitive context. At the
time of this writing in mid-2020, it feels like the race to leverage AI to revolutionize
how finance is approached is moving at full speed. The remainder of this chapter
addresses important aspects of AI-based competition beyond those of this and the
previous section.

Education and Training
Entering the field of finance and the financial industry happens quite often via a for‐
mal education in the field. Typical degrees have names such as the following:

• Master of Finance
• Master of Quantitative Finance
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• Master of Computational Finance
• Master of Financial Engineering
• Master of Quantitative Enterprise Risk Management

Essentially, all such degrees today require the students to master at least one pro‐
gramming language, often Python, to address the data processing requirements of
data-driven finance. In this regard, universities address the demand for these skills
from the industry. Murray (2019) points out:

The workforce will have to adapt as companies use artificial intelligence for more tasks.
[T]here are opportunities for Master’s in Finance (MiF) graduates. The blend of tech‐
nological and financial knowledge is a sweet spot.
Perhaps the highest demand comes from quantitative investors that use AI to trawl
markets and colossal data sets to identify potential trades.

It is not only universities that adjust their curricula in finance-related degrees to
include programming, data science, and AI. The companies themselves also invest
heavily in training programs for new and existing staff to be ready for data-driven
and AI-first finance. Noonan (2018) describes the large-scale training efforts of
JPMorgan Chase, one of the largest banks in the world, as follows:

JPMorgan Chase is putting hundreds of new investment bankers and asset managers
through mandatory coding lessons, in a sign of Wall Street’s heightened need for tech‐
nology skills.
With technology, from artificial intelligence trading to online lending platforms, shap‐
ing the future of banking, financial services groups are developing software to help
them boost efficiency, create innovative products and fend off the threat from start-ups
and tech giants.
The coding training for this year’s juniors was based on Python programming, which
will help them to analyze very large data sets and interpret unstructured data such as
free language text. Next year, the asset management division will expand the manda‐
tory tech training to include data science concepts, machine learning and cloud
computing.

In summary, more and more roles in the financial industry will require staff skilled in
programming, basic and advanced data science concepts, machine learning, and
other technical aspects, such as cloud computing. Universities and financial institu‐
tions on both the buy and sell sides react to this trend by adjusting their curricula and
by investing heavily in training their workforces, respectively. In both cases, it is a
matter of competing effectively—or even of staying relevant and being able to survive
—in a financial landscape changed for good by the increasing importance of AI.
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Fight for Resources
In the quest to make use of AI in a scalable, significant way in finance, players in the
financial markets compete for the best resources. Four major resources are of para‐
mount importance: human resources, algorithms, data, and hardware.

Probably the most important and, at the same time, scarcest resource is experts in AI
in general and AI for finance in particular. In this regard, financial institutions com‐
pete with technology companies, financial technology (fintech) startups, and other
groups for the best talent. Although banks are generally prepared to pay relatively
high salaries to such experts, cultural aspects of technology companies and, for exam‐
ple, the promise of stock options in startups might make it difficult for them to attract
top talent. Often, financial institutions resort to nurturing talent internally.

Many algorithms and models in machine and deep learning can be considered stan‐
dard algorithms that are well researched, tested, and documented. In many instances,
however, it is not clear from the outset how to apply them best in a financial context.
This is where financial institutions invest heavily in research efforts. For many of the
larger buy-side institutions, such as systematic hedge funds, investment and trading
strategy research is at the very core of their business models. However, as Chapter 12
shows, deployment and production are of equal importance. Both strategy research
and deployment are, of course, highly technical disciplines in this context.

Algorithms without data are often worthless. Similarly, algorithms with “standard”
data from typical data sources, such as exchanges or data service providers like Refi‐
nitiv or Bloomberg, might only be of limited value. This is due to the fact that such
data is intensively analyzed by many, if not all, relevant players in the market, making
it hard or even impossible to identify alpha-generating opportunities or similar com‐
petitive advantage. As a consequence, large buy-side institutions invest particularly
heavily in getting access to alternative data (see “Data Availability” on page 104).

How important alternative data is considered to be nowadays is reflected in invest‐
ments that buy-side players and other investors make in companies active in the field.
For example, in 2018 a group of investment companies invested $95 million in the
data group Enigma. Fortado (2018) describes the deal and its rationale as follows:

Hedge funds, banks and venture capital firms are piling into investments in data com‐
panies in the hope of cashing in on a business they are using a lot more themselves.
In recent years, there has been a proliferation of start-ups that trawl through reams of
data and sell it to investment groups searching for an edge.
The latest to attract investor interest is Enigma, a New York-based start-up that
received funding from sources including quant giant Two Sigma, activist hedge fund
Third Point and venture capital firms NEA and Glynn Capital in a $95m capital raising
announced on Tuesday.
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The fourth resource that financial institutions are competing for is the best hardware
options to process big financial data, implement the algorithms based on traditional
and alternative data sets, and thereby apply AI efficiently to finance. Recent years
have seen tremendous innovation in hardware dedicated to making machine and
deep learning efforts faster, more energy-efficient, and more cost-effective. While tra‐
ditional processors, such as CPUs, play a minor role in the field, specialized hardware
such as GPUs by Nvidia or newer options such as TPUs by Google and IPUs by
startup Graphcore have taken over in AI. The interest of financial institutions in new,
specialized hardware is, for example, reflected in the research efforts of Citadel, one
of the largest hedge funds and market makers, into IPUs. Its effort are documented in
the comprehensive research report Jia et al. (2019), which illustrates the potential
benefits of specialized hardware compared to alternative options.

In the race to dominance in AI-first finance, financial institutions invest billions per
year in talent, research, data, and hardware. Whereas large institutions seem well
positioned to keep up with the pace in the field, smaller or medium-sized players will
find it hard to comprehensively shift to an AI-first approach to their business.

Market Impact
The increasing and now widespread usage of data science, machine learning, and
deep learning algorithms in the financial industry without a doubt has an impact on
financial markets, investment, and trading opportunities. As the many examples in
this book illustrate, ML and DL methods are able to discover statistical inefficiencies
and even economic inefficiencies that are not discoverable by traditional econometric
methods, such as multivariate OLS regression. It is therefore to be assumed that new
and better analysis methods make it harder to discover alpha-generating opportuni‐
ties and strategies.

Comparing the current situation in financial markets with the one in gold mining,
Lopéz de Prado (2018) describes the situation as follows:

If a decade ago it was relatively common for an individual to discover macroscopic
alpha (i.e., using simple mathematical tools like econometrics), currently the chances
of that happening are quickly converging to zero. Individuals searching nowadays
for macroscopic alpha, regardless of their experience or knowledge, are fighting
overwhelming odds. The only true alpha left is microscopic, and finding it requires
capital-intensive industrial methods. Just like with gold, microscopic alpha does not
mean smaller overall profits. Microscopic alpha today is much more abundant than
macroscopic alpha has ever been in history. There is a lot of money to be made, but
you will need to use heavy ML tools.

Against this background, financial institutions almost seem to be required to
embrace AI-first finance to not be left behind and eventually maybe even go out of
business. This holds true not only in investing and trading, but in other areas as well.
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While banks historically have nurtured long-term relationships with commercial and
retail debtors and organically built their ability to make sound credit decisions, AI
today levels the playing field and renders long-term relationships almost worthless.
Therefore, new entrants in the field, such as fintech startups, relying on AI can often
quickly grab market share from incumbents in a controlled, viable fashion. On the
other hand, these developments incentivize incumbents to acquire and merge
younger, innovative fintech startups to stay competitive.

Competitive Scenarios
Looking forward, say, three to five years, how might the competitive landscape driven
by AI-first finance look? Three scenarios are come to mind:

Monopoly
One financial institution reaches a dominant position through major, unmatched
breakthroughs in applying AI to, say, algorithmic trading. This is, for example,
the situation in internet searches, where Google has a global market share of
about 90%.

Oligopoly
A smaller number of financial institutions are able to leverage AI-first finance to
achieve leading positions. An oligopoly is, for example, also present in the hedge
fund industry, in which a small number of large players dominate the field in
terms of assets under management.

Perfect competition
All players in the financial markets benefit from advances in AI-first finance in
similar fashion. No single player or group of players enjoys any competitive
advantages compared to others. Technologically speaking, this is comparable to
the situation in computer chess nowadays. A number of chess programs, running
on standard hardware such as smartphones, are significantly better at playing
chess than the current world champion (Magnus Carlsen at the time of this
writing).

It is hard to forecast which scenario is more likely. One can find arguments and
describe possible paths for all three of them. For example, an argument for a monop‐
oly might be that a major breakthrough in algorithmic trading, for example, might
lead to a fast, significant outperformance that helps accumulate more capital through
reinvestments, as well as through new inflows. This in turn increases the available
technology and research budget to protect the competitive advantage and attracts tal‐
ent that would be otherwise hard to win over. This whole cycle is self-reinforcing, and
the example of Google in search—in connection with the core online advertising
business—is a good one in this context.
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1 For a brief overview of these topics, see these articles by McKinsey: Confronting the risks of artificial intelli‐
gence and Derisking machine learning and artificial intelligence.

Similarly, there are good reasons to anticipate an oligopoly. Currently, it is safe to
assume that any large player in the trading business invests heavily in research and
technology, with AI-related initiatives making up a significant part of the budget. As
in other fields, say, recommender engines—think Amazon for books, Netflix for
films, and Spotify for music—multiple companies might be able to reach similar
breakthroughs at the same time. It is conceivable that the current leading systemic
traders will be able to use AI-first finance to cement their leading positions.

Finally, many technologies have become ubiquitous over the years. Strong chess pro‐
grams are only one example. Others might be maps and navigation systems or
speech-based personal assistants. In a perfect competition scenario, a pretty large
number of financial players would compete for minuscule alpha-creating opportuni‐
ties or even might be unable to generate returns distinguishable from plain market
returns.

At the same time, there are arguments against the three scenarios. The current land‐
scape has many players with equal means and incentives to leverage AI in finance.
This makes it unlikely that only a single player will stand out and grab market share
in investment management that is comparable to Google in search. At the same time,
the number of small, medium-sized, and large players doing research in the field and
the low barriers of entry in algorithmic trading make it unlikely that a select few can
secure defendable competitive advantages. An argument against perfect competition
is that, in the foreseeable future, algorithmic trading at a large scale requires a huge
amount of capital and other resources. With regard to chess, DeepMind has shown
with AlphaZero that there is always room for innovation and significant improve‐
ments, even if a field almost seems settled once and for all.

Risks, Regulation, and Oversight
A simple Google search reveals that there is an active discourse going on about the
risks of AI and its regulation in general, as well as in the financial services industry.1

This section cannot address all relevant aspects in this context, but it can address at
least a few important ones.

The following are some of the risks that the application of AI in finance introduces:

Privacy
Finance is a sensitive area with tight privacy laws. The use of AI at a large scale
requires the use of—at least partly—private data from customers. This increases
the risk that private data will be leaked or used in inappropriate ways. Such a risk
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2 For more on the problem of bias through AI and solutions to it, see Klein (2020).

obviously does not arise when publicly available data sources, such as for finan‐
cial time series data, are used.

Bias
AI algorithms can easily learn biases that are inherent in data related, for exam‐
ple, to retail or corporate customers. Algorithms can only be as good and as
objective in, say, judging the creditworthiness of a potential debtor as the data
allows.2 Again, the problem of learning biases is not really a problem when work‐
ing with market data, for instance.

Inexplicability
In many areas, it is important that decisions can be explained, sometimes in
detail and in hindsight. This might be required by law or by investors wanting to
understand why particular investment decisions have been taken. Take the exam‐
ple of investment and trading decisions. If an AI, based on a large neural
network, decides algorithmically when and what to trade, it might be pretty diffi‐
cult and often impossible to explain in detail why the AI has traded the way it
has. Researchers work actively and intensively on “explainable AI,” but there are
obvious limits in this regard.

Herding
Since the stock market crash of 1987, it is clear what kind of risk herding in
financial trading represents. In 1987, positive feedback trading in the context of
large-scale synthetic replication programs for put options—in combination with
stop loss orders—triggered the downward spiral. A similar herding effect could
be observed in the 2008 hedge fund meltdown, which for the first time revealed
the extent to which different hedge funds implement similar kinds of strategies.
With regard to the flash crash in 2010, for which algorithmic trading was blamed
by some, the evidence seems unclear. However, the more widespread use of AI in
trading might pose a similar risk when more and more institutions apply similar
approaches that have proven fruitful. Other areas are also prone to such an effect.
Credit decision agents might learn the same biases based on different data sets
and might make it impossible for certain groups or individuals to get credit at all.

Vanishing alpha
As has been argued before, the more widespread use of AI in finance at ever
larger scales might make alpha in the markets disappear. Techniques must get
better, and data may become “more alternative” to secure any competitive advan‐
tage. Chapter 14 takes a closer look at this in the context of a potential financial
singularity.
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Beyond the typical risks of AI, AI introduces new risks specific to the financial
domain. At the same time, it is difficult for lawmakers and regulators to keep up with
the developments in the field and to comprehensively assess individual and systemic
risks arising from AI-first finance. There are several reasons for this:

Know-how
Lawmakers and regulators need to acquire, like the financial players themselves,
new know-how related to AI in finance. In this respect, they compete with the
big financial institutions and technology companies that are known to pay salar‐
ies well above the possibilities of lawmakers and regulators.

Insufficient data
In many application areas, there is simply little or even no data available that
watchdogs can use to judge the real impact of AI. In some instances, it might not
even be known whether AI plays a role or not. And even if it is known and data
might be available, it might be hard to separate the impact of AI from the impact
of other relevant factors.

Little transparency
While almost all financial institutions try to make use of AI to secure or gain
competitive advantages, it is hardly ever transparent what a single institution
does in this regard and how exactly it is implemented and used. Many treat their
effort in this context as intellectual property and their own “secret sauce.”

Model validation
Model validation is a central risk management and regulatory tool in many
financial areas. Take the simple example of the pricing of a European option
based on the Black-Scholes-Merton (1973) option pricing model. The prices that
a specific implementation of the model generates can be validated, for example,
by the use of the Cox et al. (1979) binomial option pricing model—and vice
versa. This is often quite different with AI algorithms. There is hardly ever a
model that, based on a parsimonious set of parameters, can validate the outputs
of a complex AI algorithm. Reproducibility might be, however, an attainable goal
(that is, the option to have third parties verify the outputs based on an exact rep‐
lication of all steps involved). But this in turn would require the third party, say, a
regulator or an auditor, to have access to the same data, an infrastructure as pow‐
erful as the one used by the financial institution, and so on. For larger AI efforts,
this seems simply unrealistic.

Hard to regulate
Back to the option pricing example, a regulator can specify that both the Black-
Scholes-Merton (1973) and the Cox et al. (1979) option pricing models are
acceptable for the pricing of European options. Even when lawmakers and regu‐
lators specify that both support vector machine (SVM) algorithms and neural
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networks are “acceptable algorithms,” this leaves open how these algorithms are
trained, used, and so on. It is difficult to be more specific in this context. For
example, should a regulator limit the number of hidden layers and/or hidden
units in a neural network? What about the software packages to be used? The list
of hard questions seems endless. Therefore, only general rules will be formulated.

Technology companies and financial institutions alike usually prefer a more lax
approach to AI regulation—for often obvious reasons. In Bradshaw (2019), Google
CEO Sundar Pichai speaks of “smart” regulation and asks for an approach that differ‐
entiates between different industries:

Google’s chief executive has warned politicians against knee-jerk regulation of artificial
intelligence, arguing that existing rules may be sufficient to govern the new technology.
Sundar Pichai said that AI required “smart regulation” that balanced innovation with
protecting citizens…."It is such a broad cross-cutting technology, so it’s important to
look at [regulation] more in certain vertical situations,” Mr Pichai said.

On the other hand, there are popular proponents of a more stringent regulation of
AI, such as Elon Musk in Matyus (2020):

“Mark my words,” Musk warned. “A.I. is far more dangerous than nukes. So why do we
have no regulatory oversight?”

The risks from AI in finance are manifold, as are the problems faced by lawmakers
and regulators. Nevertheless, it is safe to predict that tighter regulation and oversight
addressing AI in finance specifically is certainly to come in many jurisdictions.

Conclusions
This chapter addresses aspects of using AI to compete in the financial industry. The
benefits are clear in many application areas. However, so far hardly any standards
have been established, and the field seems still wide open for players to strive for
competitive advantages. Because new technologies and approaches from data science,
machine learning, deep learning, and more generally AI infiltrate almost any finan‐
cial discipline, education and training in finance must take this into account. Many
master’s programs have already adjusted their curricula, while big financial institu‐
tions invest heavily in training incoming and existing staff in the required skills.
Beyond human resources, financial institutions also compete for other resources in
the field, such as alternative data. In the financial markets, AI-powered investment
and trading make it harder to identify sustainable alpha opportunities. On the other
hand, with traditional econometric methods it might be impossible today to identify
and mine microscopic alpha.

It is difficult to predict a competitive end scenario for the financial industry at a point
when AI has taken over. Scenarios ranging from a monopoly to an oligopoly to per‐
fect competition seem still reasonable. Chapter 14 revisits this topic. AI-first finance
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confronts researchers, practitioners, and regulators with new risks and new chal‐
lenges in addressing these risks appropriately. One such risk, playing a prominent
role in many discussions, is the black box characteristic of many AI algorithms. Such
a risk usually can only be mitigated to some extent with today’s state-of-the-art
explainable AI.
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CHAPTER 14

Financial Singularity

We find ourselves in a thicket of strategic complexity, surrounded by a dense mist of
uncertainty.

—Nick Bostrom (2014)

“Most trading and investment roles will disappear and over time, probably most roles
that require human services will be automated,” says Mr Skinner. “What you will end
up with is banks that are run primarily by managers and machines. The managers
decide what the machines need to do, and the machines do the job.”

—Nick Huber (2020)

Can AI-based competition in the financial industry lead to a financial singularity?
This is the main question that this final chapter discusses. It starts with “Notions and
Definitions” on page 396, which defines expressions such as financial singularity and
artificial financial intelligence (AFI). “What Is at Stake?” on page 396 illustrates what,
in terms of potential wealth accumulation, is at stake in the race for an AFI. “Paths to
Financial Singularity” on page 400 considers, against the background of Chapter 2,
paths that might lead to an AFI. “Orthogonal Skills and Resources” on page 401
argues that there are a number of resources that are instrumental and orthogonal to
the goal of creating an AFI. Anybody involved in the race for an AFI will compete for
these resources. Finally, “Star Trek or Star Wars” on page 403 considers whether an
AFI, as discussed in this chapter, will benefit only a few people or humanity as a
whole.
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Notions and Definitions
The expression financial singularity dates back at least to the 2015 blog post by Shiller.
In this post, Shiller writes:

Will alpha eventually go to zero for every imaginable investment strategy? More funda‐
mentally, is the day approaching when, thanks to so many smart people and smarter
computers, financial markets really do become perfect, and we can just sit back, relax,
and assume that all assets are priced correctly?
This imagined state of affairs might be called the financial singularity, analogous to the
hypothetical future technological singularity, when computers replace human intelli‐
gence. The financial singularity implies that all investment decisions would be better
left to a computer program, because the experts with their algorithms have figured out
what drives market outcomes and reduced it to a seamless system.

A bit more generally, one could define the financial singularity as the point in time
from which computers and algorithms begin to take over control of finance and the
whole financial industry, including banks, asset managers, exchanges, and so on, with
humans taking a back seat as managers, supervisors, and controllers, if anything.

On the other hand, one could define the financial singularity—in the spirit of this
book’s focus—as the point in time from which a trading bot exists that shows a consis‐
tent capability to predict movements in financial markets at superhuman and super-
institutional levels, as well as with unprecedented accuracy. In that sense, such a
trading bot would be characterized as an artificial narrow intelligence (ANI) instead
of an artificial general intelligence (AGI) or superintelligence (see Chapter 2).

It can be assumed that it is much easier to build such an AFI in the form of a trading
bot than an AGI or even a superintelligence. This holds true for AlphaZero in the
same way, as it is easier to build an AI agent that is superior to any human being or
any other agent in playing the game of Go. Therefore, even if it is not yet clear
whether there will ever be an AI agent that qualifies as an AGI or superintelligence, it
is in any case much more likely that a trading bot will emerge that qualifies as an ANI
or AFI.

In what follows, the focus lies on a trading bot that qualifies as an AFI to keep the
discussion as specific as possible and embedded in the context of this book.

What Is at Stake?
The pursuit of an AFI might be challenging and exciting in and of itself. However, as
is usual in finance, not too many initiatives are driven by altruistic motives; rather,
most are driven by the financial incentives (that is, hard cash). But what exactly is at
stake in the race to build an AFI? This cannot be answered with certainty or general‐
ity, but some simple calculations can shed light on the question.
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To understand how valuable it is to have an AFI as compared to inferior trading
strategies, consider the following benchmarks:

Bull strategy
A trading strategy that goes long only on a financial instrument in the expecta‐
tion of rising prices.

Random strategy
A trading strategy that chooses a long or short position randomly for a given
financial instrument.

Bear strategy
A trading strategy that goes short only on a financial instrument in the expecta‐
tion of falling prices.

These benchmark strategies shall be compared to AFIs with the following success
characteristics:

X% top
The AFI gets the top X% up and down movements correct, with the remaining
market movements being predicted randomly.

X% AFI
The AFI gets X% of all randomly chosen market movements correct, with the
remaining market movements being predicted randomly.

The following Python code imports the known time series data set with EOD data for
a number of financial instruments. The examples to follow rely on five years’ worth of
EOD data for a single financial instrument:

In [1]: import random
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'

In [2]: url = 'https://hilpisch.com/aiif_eikon_eod_data.csv'

In [3]: raw = pd.read_csv(url, index_col=0, parse_dates=True)

In [4]: symbol = 'EUR='

In [5]: raw['bull'] = np.log(raw[symbol] / raw[symbol].shift(1))  

In [6]: data = pd.DataFrame(raw['bull']).loc['2015-01-01':]  

In [7]: data.dropna(inplace=True)
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In [8]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 1305 entries, 2015-01-01 to 2020-01-01
        Data columns (total 1 columns):
         #   Column  Non-Null Count  Dtype
        ---  ------  --------------  -----
         0   bull    1305 non-null   float64
        dtypes: float64(1)
        memory usage: 20.4 KB

The bull benchmark returns (long only)

With the bull strategy being already defined by the log returns of the base financial
instrument, the following Python code specifies the other two benchmark strategies
and derives the performances for the AFI strategies. In this context, a number of AFI
strategies are considered to illustrate the impact of improvements in the accuracy of
the AFI’s predictions:

In [9]: np.random.seed(100)

In [10]: data['random'] = np.random.choice([-1, 1], len(data)) * data['bull']  

In [11]: data['bear'] = -data['bull']  

In [12]: def top(t):
             top = pd.DataFrame(data['bull'])
             top.columns = ['top']
             top = top.sort_values('top')
             n = int(len(data) * t)
             top['top'].iloc[:n] = abs(top['top'].iloc[:n])
             top['top'].iloc[n:] = abs(top['top'].iloc[n:])
             top['top'].iloc[n:-n] = np.random.choice([-1, 1],
                             len(top['top'].iloc[n:-n])) * top['top'].iloc[n:-n]
             data[f'{int(t * 100)}_top'] = top.sort_index()

In [13]: for t in [0.1, 0.15]:
             top(t)  

In [14]: def afi(ratio):
             correct = np.random.binomial(1, ratio, len(data))
             random = np.random.choice([-1, 1], len(data))
             strat = np.where(correct, abs(data['bull']), random * data['bull'])
             data[f'{int(ratio * 100)}_afi'] = strat

In [15]: for ratio in [0.51, 0.6, 0.75, 0.9]:
             afi(ratio)  

The random benchmark returns

The bear benchmark returns (short only)
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The X% top strategy returns

The X% AFI strategy returns

Using the standard vectorized backtesting approach, as introduced in Chapter 10
(neglecting transaction costs), it becomes clear what significant increases in the pre‐
diction accuracy imply in financial terms. Consider the “90% AFI,” which is not
perfect in its predictions but rather lacks any edge in 10% of all cases. The assumed
90% accuracy leads to a gross performance that over five years returns almost 100
times the invested capital (before transaction costs). With 75% accuracy, the AFI
would still return almost 50 times the invested capital (see Figure 14-1). This excludes
leverage, which can easily be added in an almost risk-less fashion in the presence of
such prediction accuracies:

In [16]: data.head()
Out[16]:                 bull    random      bear    10_top    15_top    51_afi  \
         Date
         2015-01-01  0.000413 -0.000413 -0.000413  0.000413 -0.000413  0.000413
         2015-01-02 -0.008464  0.008464  0.008464  0.008464  0.008464  0.008464
         2015-01-05 -0.005767 -0.005767  0.005767 -0.005767  0.005767 -0.005767
         2015-01-06 -0.003611 -0.003611  0.003611 -0.003611  0.003611  0.003611
         2015-01-07 -0.004299 -0.004299  0.004299  0.004299  0.004299  0.004299

                       60_afi    75_afi    90_afi
         Date
         2015-01-01  0.000413  0.000413  0.000413
         2015-01-02  0.008464  0.008464  0.008464
         2015-01-05  0.005767 -0.005767  0.005767
         2015-01-06  0.003611  0.003611  0.003611
         2015-01-07  0.004299  0.004299  0.004299

In [17]: data.sum().apply(np.exp)
Out[17]: bull       0.926676
         random     1.097137
         bear       1.079126
         10_top     9.815383
         15_top    21.275448
         51_afi    12.272497
         60_afi    22.103642
         75_afi    49.227314
         90_afi    98.176658
         dtype: float64

In [18]: data.cumsum().apply(np.exp).plot(figsize=(10, 6));
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Figure 14-1. Gross performance of benchmark and theoretical AFI strategies over time

The analyses show that quite a lot is at stake, although several simplifying assump‐
tions are of course made. Time plays an important role in this context. Re-
implementing the same analyses over a 10-year period makes the numbers even more
impressive—almost unimaginable in a trading context. As the following output illus‐
trates for “90% AFI,” the gross return would be more than 16,000 times the invested
capital (before transaction costs). The effect of compounding and reinvesting is
tremendous:

bull          0.782657
random        0.800253
bear          1.277698
10_top      165.066583
15_top     1026.275100
51_afi      206.639897
60_afi      691.751006
75_afi     2947.811043
90_afi    16581.526533
dtype: float64

Paths to Financial Singularity
The emergence of an AFI would be a rather specific event in a rather specified envi‐
ronment. It is, for example, not necessary to emulate the brain of a human being since
AGI or superintelligence is not the major goal. Given that there is no human being
who seems to be consistently superior in trading in the financial markets compared
to everybody else, it might even be a dead end street, trying to emulate a human brain
to arrive at an AFI. There is also no need to worry about embodiment. An AFI can
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live as software only on an appropriate infrastructure connecting to the required data
and trading APIs.

On the other hand, AI seems to be a promising path to an AFI because of the very
nature of the problem: take as input large amounts of financial and other data and
generate predictions about the future direction of a price movement. This is exactly
what the algorithms presented and applied in this book are all about—in particular
those that fall in the supervised and reinforcement learning categories.

Another option might be a hybrid of human and machine intelligence. Whereas
machines have supported human traders for decades, in many instances the roles
have changed. Humans support the machines in trading by providing the ideal envi‐
ronment and up-to-date data, intervening only in extreme situations, and so forth. In
many cases, the machines are already completely autonomous in their algorithmic
trading decisions. Or as Jim Simons—founder of Renaissance Technologies, one of
the most successful and secretive systematic trading hedge funds—puts it: “The only
rule is we never override the computer.”

While it is quite unclear which paths might lead to superintelligence, from today’s
perspective, it seems most likely that AI might pave the way to the financial singular‐
ity and an AFI.

Orthogonal Skills and Resources
Chapter 13 discusses the competition for resources in the context of AI-based compe‐
tition in the financial industry. The four major resources in this context are human
resources (experts), algorithms, and software, financial and alternative data, and
high-performance hardware. We can add a fifth resource in this context in the form
of the capital needed to acquire the other resources.

According to the orthogonality hypothesis, it is sensible and even imperative to
acquire such orthogonal skills and resources, which are instrumental no matter how
exactly an AFI will be achieved. Financial institutions taking part in the race to build
an AFI will try to acquire as many high-quality resources as they can afford and jus‐
tify to position themselves as advantageously as possible for the point in time at
which the, or at least one, path to an AFI becomes clear.

In a world driven by AI-first finance, such behavior and positioning might make the
difference between thriving, merely surviving, or leaving the market. It cannot be
excluded that progress could be made much faster than expected. When Nick Bos‐
trom in 2014 predicted that it might take 10 years until an AI could beat the world
champion in the game of Go, basically nobody expected that it would happen only
two years later. The major driver has been breakthroughs in the application of
reinforcement learning to such games, from which other applications still benefit
today. Such unforeseen breakthroughs cannot be excluded in finance either.
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Scenarios Before and After
It is safe to assume that every major financial institution around the world and many
other nonfinancial entities currently do research and have practical experience with
AI applied to finance. However, not all players in the financial industry are positioned
equally well to arrive at a trading AFI first. Some, like banks, are rather restricted by
regulatory requirements. Others simply follow different business models, such as
exchanges. Others, like certain assets managers, focus on providing low-cost, com‐
moditized investment products, such as ETFs, that mimic the performance of
broader market indices. In other words, generating alpha is not the major goal for
every financial institution.

From an outside perspective, larger hedge funds therefore seem best positioned to
make the most out of AI-first finance and AI-powered algorithmic trading. In gen‐
eral, they already have a lot of the required resources important in this field: talented
and well-educated people, experience with trading algorithms, and almost limitless
access to traditional and alternative data sources, as well as a scalable, professional
trading infrastructure. If something is missing, large technology budgets ensure quick
and targeted investments.

It is not clear whether there will be one AFI first with others coming later or if several
AFIs may emerge at the same time. If several AFIs are present, one could speak of a
multipolar or oligopolistic scenario. The AFIs would probably mostly compete
against each other, with “non-AFI” players being sidelined. The sponsors of the single
projects would strive to gain advantages, however small, because this might allow one
AFI to take over completely and finally become a singleton or monopoly.

It is also conceivable that a “winner take all” scenario might prevail from the start. In
such a scenario, a single AFI emerges and is able to quickly reach a level of domi‐
nance in financial trading that cannot be matched by any other competitor. This
could be for several reasons. One reason might be that the first AFI generates returns
so impressive that the assets under management swell at a tremendous pace, leading
to ever higher budgets that in turn allows it to acquire ever more relevant resources.
Another reason might be that the first AFI quickly reaches a size at which its actions
can have a market impact—with the ability to manipulate market prices, for instance
—such that it becomes the major, or even the only, driving force in financial markets.

Regulation could in theory prevent an AFI from becoming too big or gaining too
much market power. The major questions would be if such laws are enforceable in
practice and how exactly they would need to be designed to have their desired effects.
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Star Trek or Star Wars
The financial industry, for many people, represents the purest form of capitalism: the
industry in which greed drives everything. It has been and is for sure a highly
competitive industry, no arguing about that. Trading and investment management in
particular are often symbolized by billionaire managers and owners who are willing
to bet big and go head-to-head with their rivals in order to land the next mega deal or
trade. The advent of AI provides ambitious managers with a rich tool set to push the
competition to the next level, as discussed in Chapter 13.

However, the question is whether AI-first finance, potentially culminating in an AFI,
will lead to financial utopia or dystopia. The systematic, infallible accumulation of
wealth could theoretically serve only a few people, or it could potentially serve
humanity. Unfortunately, it is to be assumed that only the sponsors of the project
leading to an AFI will directly benefit from the type of AFI imagined in this chapter.
This is because such an AFI would only generate profits by trading in the financial
markets and not by inventing new products, solving important problems, or growing
businesses and industries. In other words, an AFI that merely trades in the financial
markets to generate profits is taking part in a zero-sum game and does not directly
increase the distributable wealth.

One could argue that, for example, pension funds investing in a fund managed by the
AFI would also benefit from its exceptional returns. But this would again only benefit
a certain group and not humanity as a whole. It would also be in question whether
the sponsors of a successful AFI project would be willing to open up to outside
investors. A good example in this regard is the Medallion fund, managed by Renais‐
sance Technologies and one of the best-performing investment vehicles in history.
Renaissance closed Medallion, which is essentially run exclusively by machines, to
outside investors in 1993. Its stellar performance for sure would have attracted large
amounts of additional assets. However, specific considerations, such as the capacity of
certain strategies, play a role in this context, and similar considerations might also
apply to an AFI.

Therefore, whereas one could expect a superintelligence to help overcome fundamen‐
tal problems faced by humanity as a whole—serious diseases, environmental prob‐
lems, unknown threats from outer space, and so forth—an AFI more probably leads
to more inequality and fiercer competition in the markets. Instead of a Star Trek–like
world, characterized by equality and inexhaustible resources, it cannot be excluded
that an AFI might rather lead to a Star Wars–like world, characterized by intensive
trade wars and fights over available resources. At the time of this writing, global trade
wars, such as the one between the US and China, seem more intense than ever, and
technology and AI are important battlegrounds.
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Conclusions
This chapter takes a high-level perspective and discusses the concepts of financial sin‐
gularity and artificial financial intelligence. AFI is an ANI that would lack many of
the capabilities and characteristics of a superintelligence. An AFI could rather be
compared to AlphaZero, which is an ANI for playing board games such as chess or
Go. An AFI would excel at the game of trading financial instruments. Of course, in
financial trading, a lot more is at stake compared to playing board games.

Similar to AlphaZero, AI is more likely to pave the way to an AFI as compared to
alternative paths, such as the emulation of the human brain. Even if the path is not yet
fully visible, and although one cannot know for sure how far single projects have pro‐
gressed already, there are a number of instrumental resources that are important no
matter which path will prevail: experts, algorithms, data, hardware, and capital. Large
and successful hedge funds seem best positioned to win the race for an AFI.

Even if it might prove impossible to create an AFI as sketched in this chapter, the sys‐
tematic introduction of AI to finance will certainly spur innovation and in many
cases intensify competition in the industry. Rather than being a fad, AI is a trend that
finally will lead to a paradigm shift in the industry.
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PART VI

Appendixes

This part serves as an appendix and presents additional material to support the con‐
tents, code, and examples presented in the other parts of this book. This part consists
of three appendixes:

• Appendix A covers fundamental notions related to neural networks, such as
tensor operations.

• Appendix B presents classes implementing simple and shallow neural networks
from scratch.

• Appendix C illustrates the application of convolutional neural networks with the
Keras package.





APPENDIX A

Interactive Neural Networks

This appendix explores fundamental notions of neural networks with basic Python
code—on the basis of both simple and shallow neural networks. The goal is to pro‐
vide a good grasp and intuition for important concepts that often disappear behind
high-level, abstract APIs when working with standard machine and deep learning
packages.

The appendix has the following sections:

• “Tensors and Tensor Operations” on page 407 covers the basics of tensors and the
operations implemented on them.

• “Simple Neural Networks” on page 409 discusses simple neural networks, or neu‐
ral networks that only have an input and an output layer.

• “Shallow Neural Networks” on page 417 focuses on shallow neural networks, or
neural networks with one hidden layer.

Tensors and Tensor Operations
In addition to implementing several imports and configurations, the following
Python code shows the four types of tensors relevant for the purposes of this appen‐
dix: scalar, vector, matrix, and cube tensors. Tensors are generally represented as
potentially multidimensional ndarray objects in Python. For more details and exam‐
ples, see Chollet (2017, ch. 2):

In [1]: import math
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        np.random.seed(1)
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        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        np.set_printoptions(suppress=True)

In [2]: t0 = np.array(10)  
        t0  
Out[2]: array(10)

In [3]: t1 = np.array((2, 1))  
        t1  
Out[3]: array([2, 1])

In [4]: t2 = np.arange(10).reshape(5, 2)  
        t2  
Out[4]: array([[0, 1],
               [2, 3],
               [4, 5],
               [6, 7],
               [8, 9]])

In [5]: t3 = np.arange(16).reshape(2, 4, 2)  
        t3  
Out[5]: array([[[ 0,  1],
                [ 2,  3],
                [ 4,  5],
                [ 6,  7]],

               [[ 8,  9],
                [10, 11],
                [12, 13],
                [14, 15]]])

Scalar tensor

Vector tensor

Matrix tensor

Cube tensor

In a neural network context, several mathematical operations on tensors are of
importance, such as element-wise operations or the dot product:

In [6]: t2 + 1  
Out[6]: array([[ 1,  2],
               [ 3,  4],
               [ 5,  6],
               [ 7,  8],
               [ 9, 10]])
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In [7]: t2 + t2  
Out[7]: array([[ 0,  2],
               [ 4,  6],
               [ 8, 10],
               [12, 14],
               [16, 18]])

In [8]: t1
Out[8]: array([2, 1])

In [9]: t2
Out[9]: array([[0, 1],
               [2, 3],
               [4, 5],
               [6, 7],
               [8, 9]])

In [10]: np.dot(t2, t1)  
Out[10]: array([ 1,  7, 13, 19, 25])

In [11]: t2[:, 0] * 2 + t2[:, 1] * 1  
Out[11]: array([ 1,  7, 13, 19, 25])

In [12]: np.dot(t1, t2.T)  
Out[12]: array([ 1,  7, 13, 19, 25])

Broadcasting operation

Element-wise operation

Dot product with NumPy function

Dot product in explicit notation

Simple Neural Networks
Equipped with the basics of tensors, consider simple neural networks, which only
have an input layer and an output layer.

Estimation
The first problem is an estimation problem for which the labels are real-valued:

In [13]: features = 3  

In [14]: samples = 5  

In [15]: l0 = np.random.random((samples, features))  
         l0  
Out[15]: array([[0.417022  , 0.72032449, 0.00011437],
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                [0.30233257, 0.14675589, 0.09233859],
                [0.18626021, 0.34556073, 0.39676747],
                [0.53881673, 0.41919451, 0.6852195 ],
                [0.20445225, 0.87811744, 0.02738759]])

In [16]: w = np.random.random((features, 1))  
         w  
Out[16]: array([[0.67046751],
                [0.4173048 ],
                [0.55868983]])

In [17]: l2 = np.dot(l0, w)  
         l2  
Out[17]: array([[0.58025848],
                [0.31553474],
                [0.49075552],
                [0.91901616],
                [0.51882238]])

In [18]: y = l0[:, 0] * 0.5 + l0[:, 1]   
         y = y.reshape(-1, 1)  
         y  
Out[18]: array([[0.9288355 ],
                [0.29792218],
                [0.43869083],
                [0.68860288],
                [0.98034356]])

Number of features

Number of samples

Random input layer

Random weights

Output layer via dot product

Labels to be learned

The following Python code goes step by step through a learning episode, from the
calculation of the errors to the calculation of the mean-squared error (MSE) after the
weights have been updated:

In [19]: e = l2 - y  
         e  
Out[19]: array([[-0.34857702],
                [ 0.01761256],
                [ 0.05206469],
                [ 0.23041328],
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                [-0.46152118]])

In [20]: mse = (e ** 2).mean()  
         mse  
Out[20]: 0.07812379019517127

In [21]: d = e * 1  
         d  
Out[21]: array([[-0.34857702],
                [ 0.01761256],
                [ 0.05206469],
                [ 0.23041328],
                [-0.46152118]])

In [22]: a = 0.01  

In [23]: u = a * np.dot(l0.T, d)  
         u  
Out[23]: array([[-0.0010055 ],
                [-0.00539194],
                [ 0.00167488]])

In [24]: w  
Out[24]: array([[0.67046751],
                [0.4173048 ],
                [0.55868983]])

In [25]: w -= u  

In [26]: w  
Out[26]: array([[0.67147301],
                [0.42269674],
                [0.55701495]])

In [27]: l2 = np.dot(l0, w)  

In [28]: e = l2 - y  

In [29]: mse = (e ** 2).mean()  
         mse  
Out[29]: 0.07681782193617318

Errors in estimation

MSE value given the estimation
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1 Since there is no hidden layer, backward propagation does take place with a factor of 1 as the value of the
derivative. Output and input layers are directly connected.

Backward propagation (here d = e)1

The learning rate

The update values

Weights before and after update

New output layer (estimation) after update

New error values after update

New MSE values after update

To improve the estimation, the same procedure needs to be repeated in general a
larger number of times. In the following code, the learning rate is increased and the
procedure is executed a few hundred times. The final MSE value is quite low and the
estimation quite good:

In [30]: a = 0.025  

In [31]: w = np.random.random((features, 1))  
         w  
Out[31]: array([[0.14038694],
                [0.19810149],
                [0.80074457]])

In [32]: steps = 800  

In [33]: for s in range(1, steps + 1):
             l2 = np.dot(l0, w)
             e = l2 - y
             u = a * np.dot(l0.T, e)
             w -= u
             mse = (e ** 2).mean()
             if s % 50 == 0:
                 print(f'step={s:3d} | mse={mse:.5f}')
         step= 50 | mse=0.03064
         step=100 | mse=0.01002
         step=150 | mse=0.00390
         step=200 | mse=0.00195
         step=250 | mse=0.00124
         step=300 | mse=0.00092
         step=350 | mse=0.00074
         step=400 | mse=0.00060
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         step=450 | mse=0.00050
         step=500 | mse=0.00041
         step=550 | mse=0.00035
         step=600 | mse=0.00029
         step=650 | mse=0.00024
         step=700 | mse=0.00020
         step=750 | mse=0.00017
         step=800 | mse=0.00014

In [34]: l2 - y  
Out[34]: array([[-0.01240168],
                [-0.01606065],
                [ 0.01274072],
                [-0.00087794],
                [ 0.01072845]])

In [35]: w  
Out[35]: array([[0.41907514],
                [1.02965827],
                [0.04421136]])

Adjusted learning rate

Initial random weights

Number of learning steps

Residual errors of the estimation

Final weights of the network

Classification
The second problem is a classification problem for which the labels are binary and
integer-valued. To improve the performance of the learning algorithm, a sigmoid
function is used for activation (of the output layer). Figure A-1 shows the sigmoid
function with its first derivative and compares it to a simple step function:

In [36]: def sigmoid(x, deriv=False):
             if deriv:
                 return sigmoid(x) * (1 - sigmoid(x))
             return 1 / (1 + np.exp(-x))

In [37]: x = np.linspace(-10, 10, 100)

In [38]: plt.figure(figsize=(10, 6))
         plt.plot(x, np.where(x > 0, 1, 0), 'y--', label='step function')
         plt.plot(x, sigmoid(x), 'r', label='sigmoid')
         plt.plot(x, sigmoid(x, True), '--', label='derivative')
         plt.legend();
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Figure A-1. Step function, sigmoid function, and its first derivative

To keep things simple, the classification problem is based on random binary features
and binary labels data. Apart from the different features and labels data, only the acti‐
vation for the output layer is different from the estimation problem. The learning
algorithm for the updating of the neural networks’ weights is basically the same:

In [39]: features = 4
         samples = 5

In [40]: l0 = np.random.randint(0, 2, (samples, features))  
         l0  
Out[40]: array([[1, 1, 1, 1],
                [0, 1, 1, 0],
                [0, 1, 0, 0],
                [1, 1, 1, 0],
                [1, 0, 0, 1]])

In [41]: w = np.random.random((features, 1))
         w
Out[41]: array([[0.42110763],
                [0.95788953],
                [0.53316528],
                [0.69187711]])

In [42]: l2 = sigmoid(np.dot(l0, w))  
         l2
Out[42]: array([[0.93112111],
                [0.81623654],
                [0.72269905],
                [0.87126189],
                [0.75268514]])

414 | Appendix A: Interactive Neural Networks



In [43]: l2.round()
Out[43]: array([[1.],
                [1.],
                [1.],
                [1.],
                [1.]])

In [44]: y = np.random.randint(0, 2, samples)  
         y = y.reshape(-1, 1)  
         y  
Out[44]: array([[1],
                [1],
                [0],
                [0],
                [0]])

In [45]: e = l2 - y
         e
Out[45]: array([[-0.06887889],
                [-0.18376346],
                [ 0.72269905],
                [ 0.87126189],
                [ 0.75268514]])

In [46]: mse = (e ** 2).mean()
         mse
Out[46]: 0.37728788783411127

In [47]: a = 0.02

In [48]: d = e * sigmoid(l2, True)  
         d
Out[48]: array([[-0.01396723],
                [-0.03906484],
                [ 0.15899479],
                [ 0.18119776],
                [ 0.16384833]])

In [49]: u = a * np.dot(l0.T, d)
         u
Out[49]: array([[0.00662158],
                [0.00574321],
                [0.00256331],
                [0.00299762]])

In [50]: w
Out[50]: array([[0.42110763],
                [0.95788953],
                [0.53316528],
                [0.69187711]])
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In [51]: w -= u

In [52]: w
Out[52]: array([[0.41448605],
                [0.95214632],
                [0.53060197],
                [0.68887949]])

Input layer with binary features

Sigmoid activated output layer

Binary labels data

Backward propagation via the first derivative

As before, a loop with a larger number of iterations for the learning step is required to
get to accurate classification results. Depending on the random numbers drawn, an
accuracy of 100% is possible, as in the following example:

In [53]: steps = 3001

In [54]: a = 0.025

In [55]: w = np.random.random((features, 1))
         w
Out[55]: array([[0.41253884],
                [0.03417131],
                [0.62402999],
                [0.66063573]])

In [56]: for s in range(1, steps + 1):
             l2 = sigmoid(np.dot(l0, w))
             e = l2 - y
             d = e * sigmoid(l2, True)
             u = a * np.dot(l0.T, d)
             w -= u
             mse = (e ** 2).mean()
             if s % 200 == 0:
                 print(f'step={s:4d} | mse={mse:.4f}')
         step= 200 | mse=0.1899
         step= 400 | mse=0.1572
         step= 600 | mse=0.1349
         step= 800 | mse=0.1173
         step=1000 | mse=0.1029
         step=1200 | mse=0.0908
         step=1400 | mse=0.0806
         step=1600 | mse=0.0720
         step=1800 | mse=0.0646
         step=2000 | mse=0.0583
         step=2200 | mse=0.0529
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         step=2400 | mse=0.0482
         step=2600 | mse=0.0441
         step=2800 | mse=0.0405
         step=3000 | mse=0.0373

In [57]: l2
Out[57]: array([[0.71220474],
                [0.92308745],
                [0.16614971],
                [0.20193503],
                [0.17094583]])

In [58]: l2.round() == y
Out[58]: array([[ True],
                [ True],
                [ True],
                [ True],
                [ True]])

In [59]: w
Out[59]: array([[-3.86002022],
                [-1.61346536],
                [ 4.09895004],
                [ 2.28088807]])

Shallow Neural Networks
The neural network of the previous section consists only of an input layer and an out‐
put layer. In other words, input and output layers are directly connected. A shallow
neural network has one hidden layer that is between the input and output layer. Given
this structure, two sets of weights are required to connect the total of three layers in
the neural network. This section analyzes shallow neural networks for estimation and
classification.

Estimation
As in the previous section, let’s take the estimation problem first. The following
Python code builds the neural network with the three layers and the two sets of
weights. This first sequence of steps is usually called forward propagation. The input
layer matrix in this context is in general of full rank, indicating that a perfect estima‐
tion result is possible:

In [60]: features = 5
         samples = 5

In [61]: l0 = np.random.random((samples, features))  
         l0  
Out[61]: array([[0.29849529, 0.44613451, 0.22212455, 0.07336417, 0.46923853],
                [0.09617226, 0.90337017, 0.11949047, 0.52479938, 0.083623  ],

Interactive Neural Networks | 417



                [0.91686133, 0.91044838, 0.29893011, 0.58438912, 0.56591203],
                [0.61393832, 0.95653566, 0.26097898, 0.23101542, 0.53344849],
                [0.94993814, 0.49305959, 0.54060051, 0.7654851 , 0.04534573]])

In [62]: np.linalg.matrix_rank(l0)  
Out[62]: 5

In [63]: units = 3  

In [64]: w0 = np.random.random((features, units))  
         w0  
Out[64]: array([[0.13996612, 0.79240359, 0.02980136],
                [0.88312548, 0.54078819, 0.44798018],
                [0.89213587, 0.37758434, 0.53842469],
                [0.65229888, 0.36126102, 0.57100856],
                [0.63783648, 0.12631489, 0.69020459]])

In [65]: l1 = np.dot(l0, w0)  
         l1  
Out[65]: array([[0.98109007, 0.64743919, 0.69411448],
                [1.31351565, 0.81000928, 0.82927653],
                [1.94121167, 1.61435539, 1.32042417],
                [1.65444429, 1.25315104, 1.08742312],
                [1.57892999, 1.50576525, 1.00865941]])

In [66]: w1 = np.random.random((units, 1))  
         w1  
Out[66]: array([[0.6477494 ],
                [0.35393909],
                [0.76323305]])

In [67]: l2 = np.dot(l1, w1)  
         l2  
Out[67]: array([[1.39442565],
                [1.77045418],
                [2.83659354],
                [2.3451617 ],
                [2.32554234]])

In [68]: y = np.random.random((samples, 1))  
         y  
Out[68]: array([[0.35653172],
                [0.75278835],
                [0.88134183],
                [0.01166919],
                [0.49810907]])

The random input layer

The rank of the input layer matrix
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The number of hidden units

The first set of random weights, given the features and units parameters

The hidden layer, given the input layer and the weights

The second set of random weights

The output layer, given the hidden layer and the weights

The random labels data

The second sequence of steps is usually called backward propagation—with respect to
the estimation errors. The two sets of weights are updated, starting at the output layer
and updating the set of weights w1 between the hidden layer and the output layer.
Afterwards, taking the updated weights w1 into account, the set of weights w0 between
the input layer and the hidden layer is updated:

In [69]: e2 = l2 - y  
         e2  
Out[69]: array([[1.03789393],
                [1.01766583],
                [1.95525171],
                [2.33349251],
                [1.82743327]])

In [70]: mse = (e2 ** 2).mean()
         mse
Out[70]: 2.9441152813655007

In [71]: d2 = e2 * 1  
         d2  
Out[71]: array([[1.03789393],
                [1.01766583],
                [1.95525171],
                [2.33349251],
                [1.82743327]])

In [72]: a = 0.05

In [73]: u2 = a * np.dot(l1.T, d2)  
         u2  
Out[73]: array([[0.64482837],
                [0.51643336],
                [0.42634283]])

In [74]: w1  
Out[74]: array([[0.6477494 ],
                [0.35393909],
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                [0.76323305]])

In [75]: w1 -= u2  

In [76]: w1  
Out[76]: array([[ 0.00292103],
                [-0.16249427],
                [ 0.33689022]])

In [77]: e1 = np.dot(d2, w1.T)  

In [78]: d1 = e1 * 1  

In [79]: u1 = a * np.dot(l0.T, d1)  

In [80]: w0 -= u1  

In [81]: w0  
Out[81]: array([[ 0.13918198,  0.8360247 , -0.06063583],
                [ 0.88220599,  0.59193836,  0.34193342],
                [ 0.89176585,  0.39816855,  0.49574861],
                [ 0.65175984,  0.39124762,  0.50883904],
                [ 0.63739741,  0.15074009,  0.63956519]])

Update procedure for the set of weights w1

Update procedure for the set of weights w0

The following Python code implements the learning (that is, the updating of the net‐
work weights) as a for loop with a larger number of iterations. By increasing the
number of iterations, the estimation results can be made arbitrarily precise:

In [82]: a = 0.015
         steps = 5000

In [83]: for s in range(1, steps + 1):
             l1 = np.dot(l0, w0)
             l2 = np.dot(l1, w1)
             e2 = l2 - y
             u2 = a * np.dot(l1.T, e2)
             w1 -= u2
             e1 = np.dot(e2, w1.T)
             u1 = a * np.dot(l0.T, e1)
             w0 -= u1
             mse = (e2 ** 2).mean()
             if s % 750 == 0:
                 print(f'step={s:5d} | mse={mse:.6f}')
         step=  750 | mse=0.039263
         step= 1500 | mse=0.009867
         step= 2250 | mse=0.000666
         step= 3000 | mse=0.000027
         step= 3750 | mse=0.000001
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         step= 4500 | mse=0.000000

In [84]: l2
Out[84]: array([[0.35634333],
                [0.75275415],
                [0.88135507],
                [0.01179945],
                [0.49809208]])

In [85]: y
Out[85]: array([[0.35653172],
                [0.75278835],
                [0.88134183],
                [0.01166919],
                [0.49810907]])

In [86]: (l2 - y)
Out[86]: array([[-0.00018839],
                [-0.00003421],
                [ 0.00001324],
                [ 0.00013025],
                [-0.00001699]])

Classification
Next is the classification problem. The implementation in this context is pretty close
to the estimation problem. However, the sigmoid function is used again for activa‐
tion. The following Python code generates the random sample data first:

In [87]: features = 5
         samples = 10
         units = 10

In [88]: np.random.seed(200)
         l0 = np.random.randint(0, 2, (samples, features))  
         w0 = np.random.random((features, units))
         w1 = np.random.random((units, 1))
         y = np.random.randint(0, 2, (samples, 1))  

In [89]: l0  
Out[89]: array([[0, 1, 0, 0, 0],
                [1, 0, 1, 1, 0],
                [1, 1, 1, 1, 0],
                [0, 0, 1, 1, 1],
                [1, 1, 1, 1, 0],
                [1, 1, 0, 1, 0],
                [0, 1, 0, 1, 0],
                [0, 1, 0, 0, 1],
                [0, 1, 1, 1, 1],
                [0, 0, 1, 0, 0]])

In [90]: y  
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Out[90]: array([[1],
                [0],
                [1],
                [0],
                [1],
                [0],
                [0],
                [0],
                [1],
                [1]])

Binary features data (input layer)

Binary labels data

The implementation of the learning algorithm again makes use of a for loop to
repeat the weights-updating step as often as necessary. Depending on the random
numbers generated for the features and labels data, an accuracy of 100% can be
achieved after enough learning steps:

In [91]: a = 0.1
         steps = 20000

In [92]: for s in range(1, steps + 1):
             l1 = sigmoid(np.dot(l0, w0))  
             l2 = sigmoid(np.dot(l1, w1))  
             e2 = l2 - y  
             d2 = e2 * sigmoid(l2, True)  
             u2 = a * np.dot(l1.T, d2)  
             w1 -= u2  
             e1 = np.dot(d2, w1.T)  
             d1 = e1 * sigmoid(l1, True)  
             u1 = a * np.dot(l0.T, d1)  
             w0 -= u1  
             mse = (e2 ** 2).mean()
             if s % 2000 == 0:
                 print(f'step={s:5d} | mse={mse:.5f}')
         step= 2000 | mse=0.00933
         step= 4000 | mse=0.02399
         step= 6000 | mse=0.05134
         step= 8000 | mse=0.00064
         step=10000 | mse=0.00013
         step=12000 | mse=0.00009
         step=14000 | mse=0.00007
         step=16000 | mse=0.00007
         step=18000 | mse=0.00012
         step=20000 | mse=0.00015

In [93]: acc = l2.round() == y  
         acc  
Out[93]: array([[ True],
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                [ True],
                [ True],
                [ True],
                [ True],
                [ True],
                [ True],
                [ True],
                [ True],
                [ True]])

In [94]: sum(acc) / len(acc)  
Out[94]: array([1.])

Forward propagation

Backward propagation

Accuracy of the classification
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APPENDIX B

Neural Network Classes

Building on the foundations from Appendix A, this appendix provides simple, class-
based implementations of neural networks that mimic the APIs of packages such as
scikit-learn. The implementation is based on pure, simple Python code and is for
illustration and instruction. The classes presented in this appendix cannot replace
robust, efficient, and scalable implementations found in the standard Python pack‐
ages, such as scikit-learn or TensorFlow in combination with Keras.

The appendix comprises the following sections:

• “Activation Functions” on page 425 introduces a Python function with different
activation functions.

• “Simple Neural Networks” on page 426 presents a Python class for simple neural
networks.

• “Shallow Neural Networks” on page 431 presents a Python class for shallow
neural networks.

• “Predicting Market Direction” on page 435 applies the class for shallow neural
networks to financial data.

The implementations and examples in this appendix are simple and straightforward.
The Python classes are not well suited to attack larger estimation or classification
problems. The idea is rather to show easy-to-understand Python implementations
from scratch.

Activation Functions
Appendix A uses two activation functions implicitly or explicitly: linear function and
sigmoid function. The Python function activation adds the relu (rectified linear
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unit) and softplus functions to the set of options. For all these activation functions,
the first derivative is also defined:

In [1]: import math
        import numpy as np
        import pandas as pd
        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        np.set_printoptions(suppress=True)

In [2]: def activation(x, act='linear', deriv=False):
            if act == 'sigmoid':
                if deriv:
                    out = activation(x, 'sigmoid', False)
                    return out * (1 - out)
                return 1 / (1 + np.exp(-x))
            elif act == 'relu':
                if deriv:
                    return np.where(x > 0, 1, 0)
                return np.maximum(x, 0)
            elif act == 'softplus':
                if deriv:
                    return activation(x, act='sigmoid')
                return np.log(1 + np.exp(x))
            elif act == 'linear':
                if deriv:
                    return 1
                return x
            else:
                raise ValueError('Activation function not known.')

In [3]: x = np.linspace(-1, 1, 20)

In [4]: activation(x, 'sigmoid')
Out[4]: array([0.26894142, 0.29013328, 0.31228169, 0.33532221, 0.35917484,
               0.38374461, 0.40892261, 0.43458759, 0.46060812, 0.48684514,
               0.51315486, 0.53939188, 0.56541241, 0.59107739, 0.61625539,
               0.64082516, 0.66467779, 0.68771831, 0.70986672, 0.73105858])

In [5]: activation(x, 'sigmoid', True)
Out[5]: array([0.19661193, 0.20595596, 0.21476184, 0.22288122, 0.23016827,
               0.23648468, 0.24170491, 0.24572122, 0.24844828, 0.24982695,
               0.24982695, 0.24844828, 0.24572122, 0.24170491, 0.23648468,
               0.23016827, 0.22288122, 0.21476184, 0.20595596, 0.19661193])

Simple Neural Networks
This section presents a class for simple neural networks that has an API similar to
those of models from standard Python packages for machine or deep learning (in
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particular, scikit-learn and Keras). Consider the class sinn as presented in the fol‐
lowing Python code. It implements a simple neural network and defines the two main
methods .fit() and .predict(). The .metrics() method calculates typical perfor‐
mance metrics: the mean-squared error (MSE) for estimation and the accuracy for
classification. The class also implements two methods for the forward and backward
propagation steps:

In [6]: class sinn:
            def __init__(self, act='linear', lr=0.01, steps=100,
                         verbose=False, psteps=200):
                self.act = act
                self.lr = lr
                self.steps = steps
                self.verbose = verbose
                self.psteps = psteps
            def forward(self):
                ''' Forward propagation.
                '''
                self.l2 = activation(np.dot(self.l0, self.w), self.act)
            def backward(self):
                ''' Backward propagation.
                '''
                self.e = self.l2 - self.y
                d = self.e * activation(self.l2, self.act, True)
                u = self.lr * np.dot(self.l0.T, d)
                self.w -= u
            def metrics(self, s):
                ''' Performance metrics.
                '''
                mse = (self.e ** 2).mean()
                acc = float(sum(self.l2.round() == self.y) / len(self.y))
                self.res = self.res.append(
                    pd.DataFrame({'mse': mse, 'acc': acc}, index=[s,])
                )
                if s % self.psteps == 0 and self.verbose:
                        print(f'step={s:5d} | mse={mse:.6f}')
                        print(f'           | acc={acc:.6f}')
            def fit(self, l0, y, steps=None, seed=None):
                ''' Fitting step.
                '''
                self.l0 = l0
                self.y = y
                if steps is None:
                    steps = self.steps
                self.res = pd.DataFrame()
                samples, features = l0.shape
                if seed is not None:
                    np.random.seed(seed)
                self.w = np.random.random((features, 1))
                for s in range(1, steps + 1):
                    self.forward()
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                    self.backward()
                    self.metrics(s)
            def predict(self, X):
                ''' Prediction step.
                '''
                return activation(np.dot(X, self.w), self.act)

Estimation
First is an estimation problem that can be solved by the use of regression techniques:

In [7]: features = 5
        samples = 5

In [8]: np.random.seed(10)
        l0 = np.random.standard_normal((samples, features))
        l0
Out[8]: array([[ 1.3315865 ,  0.71527897, -1.54540029, -0.00838385,  0.62133597],
               [-0.72008556,  0.26551159,  0.10854853,  0.00429143, -0.17460021],
               [ 0.43302619,  1.20303737, -0.96506567,  1.02827408,  0.22863013],
               [ 0.44513761, -1.13660221,  0.13513688,  1.484537  , -1.07980489],
               [-1.97772828, -1.7433723 ,  0.26607016,  2.38496733,  1.12369125]])

In [9]: np.linalg.matrix_rank(l0)
Out[9]: 5

In [10]: y = np.random.random((samples, 1))
         y
Out[10]: array([[0.8052232 ],
                [0.52164715],
                [0.90864888],
                [0.31923609],
                [0.09045935]])

In [11]: reg = np.linalg.lstsq(l0, y, rcond=-1)[0]  

In [12]: reg  
Out[12]: array([[-0.74919308],
                [ 0.00146473],
                [-1.49864704],
                [-0.02498757],
                [-0.82793882]])

In [13]: np.allclose(np.dot(l0, reg), y)  
Out[13]: True

Exact solution by regression
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Applying the sinn class to the estimation problem requires quite some effort in the
form of repeated learning steps. However, by increasing the number of steps, one can
make the estimate arbitrarily precise:

In [14]: model = sinn(lr=0.015, act='linear', steps=6000,
                     verbose=True, psteps=1000)

In [15]: %time model.fit(l0, y, seed=100)
         step= 1000 | mse=0.008086
                    | acc=0.000000
         step= 2000 | mse=0.000545
                    | acc=0.000000
         step= 3000 | mse=0.000037
                    | acc=0.000000
         step= 4000 | mse=0.000002
                    | acc=0.000000
         step= 5000 | mse=0.000000
                    | acc=0.000000
         step= 6000 | mse=0.000000
                    | acc=0.000000
         CPU times: user 5.23 s, sys: 29.7 ms, total: 5.26 s
         Wall time: 5.26 s

In [16]: model.predict(l0)
Out[16]: array([[0.80512489],
                [0.52144986],
                [0.90872498],
                [0.31919803],
                [0.09045743]])

In [17]: model.predict(l0) - y  
Out[17]: array([[-0.0000983 ],
                [-0.00019729],
                [ 0.0000761 ],
                [-0.00003806],
                [-0.00000191]])

Residual errors of the neural network estimation

Classification
Second is a classification problem that can also be attacked with the sinn class. Here,
standard regression techniques are in general of no use. For the particular set of ran‐
dom features and labels, the sinn model reaches an accuracy of 100%. Again, quite
some effort is required in the form of repeated learning steps. Figure B-1 shows how
the prediction accuracy changes with the number of learning steps:

In [18]: features = 5
         samples = 10

In [19]: np.random.seed(3)
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         l0 = np.random.randint(0, 2, (samples, features))
         l0
Out[19]: array([[0, 0, 1, 1, 0],
                [0, 0, 1, 1, 1],
                [0, 1, 1, 1, 0],
                [1, 1, 0, 0, 0],
                [0, 1, 1, 0, 0],
                [0, 1, 0, 0, 0],
                [0, 1, 0, 1, 1],
                [0, 1, 0, 0, 1],
                [1, 0, 0, 1, 0],
                [1, 0, 1, 1, 1]])

In [20]: np.linalg.matrix_rank(l0)
Out[20]: 5

In [21]: y = np.random.randint(0, 2, (samples, 1))
         y
Out[21]: array([[1],
                [0],
                [1],
                [0],
                [0],
                [1],
                [1],
                [1],
                [0],
                [0]])

In [22]: model = sinn(lr=0.01, act='sigmoid')  

In [23]: %time model.fit(l0, y, 4000)
         CPU times: user 3.57 s, sys: 9.6 ms, total: 3.58 s
         Wall time: 3.59 s

In [24]: model.l2
Out[24]: array([[0.51118415],
                [0.34390898],
                [0.84733758],
                [0.07601979],
                [0.40505454],
                [0.84145926],
                [0.95592461],
                [0.72680243],
                [0.11219587],
                [0.00806003]])

In [25]: model.predict(l0).round() == y  
Out[25]: array([[ True],
                [ True],
                [ True],
                [ True],

430 | Appendix B: Neural Network Classes



                [ True],
                [ True],
                [ True],
                [ True],
                [ True],
                [ True]])

In [26]: ax = model.res['acc'].plot(figsize=(10, 6),
                     title='Prediction Accuracy | Classification')
         ax.set(xlabel='steps', ylabel='accuracy');

The sigmoid function is used for activation

Perfect accuracy on this particular data set

Figure B-1. Prediction accuracy versus the number of learning steps

Shallow Neural Networks
This section applies the class shnn, which implements shallow neural networks with
one hidden layer, to estimation and classification problems. The class structure is
along the lines of the sinn class from the previous section:

In [27]: class shnn:
             def __init__(self, units=12, act='linear', lr=0.01, steps=100,
                          verbose=False, psteps=200, seed=None):
                 self.units = units
                 self.act = act
                 self.lr = lr
                 self.steps = steps
                 self.verbose = verbose
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                 self.psteps = psteps
                 self.seed = seed
             def initialize(self):
                 ''' Initializes the random weights.
                 '''
                 if self.seed is not None:
                     np.random.seed(self.seed)
                 samples, features = self.l0.shape
                 self.w0 = np.random.random((features, self.units))
                 self.w1 = np.random.random((self.units, 1))
             def forward(self):
                 ''' Forward propagation.
                 '''
                 self.l1 = activation(np.dot(self.l0, self.w0), self.act)
                 self.l2 = activation(np.dot(self.l1, self.w1), self.act)
             def backward(self):
                 ''' Backward propagation.
                 '''
                 self.e = self.l2 - self.y
                 d2 = self.e * activation(self.l2, self.act, True)
                 u2 = self.lr * np.dot(self.l1.T, d2)
                 self.w1 -= u2
                 e1 = np.dot(d2, self.w1.T)
                 d1 = e1 * activation(self.l1, self.act, True)
                 u1 = self.lr * np.dot(self.l0.T, d1)
                 self.w0 -= u1
             def metrics(self, s):
                 ''' Performance metrics.
                 '''
                 mse = (self.e ** 2).mean()
                 acc = float(sum(self.l2.round() == self.y) / len(self.y))
                 self.res = self.res.append(
                     pd.DataFrame({'mse': mse, 'acc': acc}, index=[s,])
                 )
                 if s % self.psteps == 0 and self.verbose:
                         print(f'step={s:5d} | mse={mse:.5f}')
                         print(f'           | acc={acc:.5f}')
             def fit(self, l0, y, steps=None):
                 ''' Fitting step.
                 '''
                 self.l0 = l0
                 self.y = y
                 if steps is None:
                     steps = self.steps
                 self.res = pd.DataFrame()
                 self.initialize()
                 self.forward()
                 for s in range(1, steps + 1):
                     self.backward()
                     self.forward()
                     self.metrics(s)
             def predict(self, X):
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                 ''' Prediction step.
                 '''
                 l1 = activation(np.dot(X, self.w0), self.act)
                 l2 = activation(np.dot(l1, self.w1), self.act)
                 return l2

Estimation
Again, the estimation problem comes first. For 5 features and 10 samples, a perfect
regression solution is unlikely to exist. As a result, the MSE value of the regression is
relatively high:

In [28]: features = 5
         samples = 10

In [29]: l0 = np.random.standard_normal((samples, features))

In [30]: np.linalg.matrix_rank(l0)
Out[30]: 5

In [31]: y = np.random.random((samples, 1))

In [32]: reg = np.linalg.lstsq(l0, y, rcond=-1)[0]

In [33]: (np.dot(l0, reg)  - y)
Out[33]: array([[-0.10226341],
                [-0.42357164],
                [-0.25150491],
                [-0.30984143],
                [-0.85213261],
                [-0.13791373],
                [-0.52336502],
                [-0.50304204],
                [-0.7728686 ],
                [-0.3716898 ]])

In [34]: ((np.dot(l0, reg)  - y) ** 2).mean()
Out[34]: 0.23567187607888118

However, the shallow neural network estimate based on the shnn class is quite good
and shows a relatively low MSE value compared to the regression value:

In [35]: model = shnn(lr=0.01, units=16, act='softplus',
                      verbose=True, psteps=2000, seed=100)

In [36]: %time model.fit(l0, y, 8000)
         step= 2000 | mse=0.00205
                    | acc=0.00000
         step= 4000 | mse=0.00098
                    | acc=0.00000
         step= 6000 | mse=0.00043
                    | acc=0.00000
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         step= 8000 | mse=0.00022
                    | acc=0.00000
         CPU times: user 8.15 s, sys: 69.2 ms, total: 8.22 s
         Wall time: 8.3 s

In [37]: model.l2 - y
Out[37]: array([[-0.00390976],
                [-0.00522077],
                [ 0.02053932],
                [-0.0042113 ],
                [-0.0006624 ],
                [-0.01001395],
                [ 0.01783203],
                [-0.01498316],
                [-0.0177866 ],
                [ 0.02782519]])

Classification
The classification example takes the estimation numbers and applies rounding to
them. The shallow neural network converges quickly to predict the labels with 100%
accuracy (see Figure B-2):

In [38]: model = shnn(lr=0.025, act='sigmoid', steps=200,
                      verbose=True, psteps=50, seed=100)

In [39]: l0.round()
Out[39]: array([[ 0., -1., -2.,  1., -0.],
                [-1., -2., -0., -0., -2.],
                [ 0.,  1., -1., -1., -1.],
                [-0.,  0., -1., -0., -1.],
                [ 1., -1.,  1.,  1., -1.],
                [ 1., -1.,  1., -2.,  1.],
                [-1., -0.,  1., -1.,  1.],
                [ 1.,  2., -1., -0., -0.],
                [-1.,  0.,  0.,  0.,  2.],
                [ 0.,  0., -0.,  1.,  1.]])

In [40]: np.linalg.matrix_rank(l0)
Out[40]: 5

In [41]: y.round()
Out[41]: array([[0.],
                [1.],
                [1.],
                [1.],
                [1.],
                [1.],
                [0.],
                [1.],
                [0.],
                [0.]])
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In [42]: model.fit(l0.round(), y.round())
         step=   50 | mse=0.26774
                    | acc=0.60000
         step=  100 | mse=0.22556
                    | acc=0.60000
         step=  150 | mse=0.19939
                    | acc=0.70000
         step=  200 | mse=0.16924
                    | acc=1.00000

In [43]: ax = model.res.plot(figsize=(10, 6), secondary_y='mse')
         ax.get_legend().set_bbox_to_anchor((0.2, 0.5));

Figure B-2. Performance metrics for the shallow neural network (classification)

Predicting Market Direction
This section applies the shnn class to predict the future direction of the EUR/USD
exchange rate. The analysis is in-sample only to illustrate the application of shnn to
real-world data. See Chapter 10 for the implementation of a more realistic setup for
the vectorized backtesting of such prediction-based strategies.

The following Python code imports the financial data—10 years’ worth of EOD data
—and creates lagged, normalized log returns used as the features. The labels data is
the direction of the price series as a binary data set:

In [44]: url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'

In [45]: raw = pd.read_csv(url, index_col=0, parse_dates=True).dropna()

In [46]: sym = 'EUR='
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In [47]: data = pd.DataFrame(raw[sym])

In [48]: lags = 5
         cols = []
         data['r'] = np.log(data / data.shift(1))
         data['d'] = np.where(data['r'] > 0, 1, 0)  
         for lag in range(1, lags + 1):
             col = f'lag_{lag}'
             data[col] = data['r'].shift(lag)  
             cols.append(col)
         data.dropna(inplace=True)
         data[cols] = (data[cols] - data[cols].mean()) / data[cols].std()  

In [49]: data.head()
Out[49]:               EUR=         r  d     lag_1     lag_2     lag_3     lag_4  \
         Date
         2010-01-12  1.4494 -0.001310  0  1.256582  1.177935 -1.142025  0.560551
         2010-01-13  1.4510  0.001103  1 -0.214533  1.255944  1.178974 -1.142118
         2010-01-14  1.4502 -0.000551  0  0.213539 -0.214803  1.256989  1.178748
         2010-01-15  1.4382 -0.008309  0 -0.079986  0.213163 -0.213853  1.256758
         2010-01-19  1.4298 -0.005858  0 -1.456028 -0.080289  0.214140 -0.214000

                        lag_5
         Date
         2010-01-12 -0.511372
         2010-01-13  0.560740
         2010-01-14 -1.141841
         2010-01-15  1.178904
         2010-01-19  1.256910

Market direction as the labels data

Lagged log returns as the features data

Gaussian normalization of the features data

With the data preprocessing accomplished, the application of the shallow neural net‐
work class shnn for a supervised classification is straightforward. Figure B-3 shows
that the prediction-based strategy in-sample significantly outperforms the passive
benchmark investment:

In [50]: model = shnn(lr=0.0001, act='sigmoid', steps=10000,
                      verbose=True, psteps=2000, seed=100)

In [51]: y = data['d'].values.reshape(-1, 1)

In [52]: %time model.fit(data[cols].values, y)
         step= 2000 | mse=0.24964
                    | acc=0.51594
         step= 4000 | mse=0.24951
                    | acc=0.52390
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         step= 6000 | mse=0.24945
                    | acc=0.52231
         step= 8000 | mse=0.24940
                    | acc=0.52510
         step=10000 | mse=0.24936
                    | acc=0.52430
         CPU times: user 9min 1s, sys: 40.9 s, total: 9min 42s
         Wall time: 1min 21s

In [53]: data['p'] = np.where(model.predict(data[cols]) > 0.5, 1, -1)  

In [54]: data['p'].value_counts()  
Out[54]:  1    1257
         -1    1253
         Name: p, dtype: int64

In [55]: data['s'] = data['p'] * data['r']  

In [56]: data[['r', 's']].sum().apply(np.exp)  
Out[56]: r    0.772411
         s    1.885677
         dtype: float64

In [57]: data[['r', 's']].cumsum().apply(np.exp).plot(figsize=(10, 6));  

Derives the position values from the prediction values

Calculates the strategy returns from the position values and the log returns

Calculates the gross performance of the strategy and the benchmark investment

Shows the gross performance of the strategy and the benchmark investment over
time
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Figure B-3. Gross performance of prediction-based strategy compared to passive bench‐
mark investment (in-sample)
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APPENDIX C

Convolutional Neural Networks

Part III focuses on dense neural networks (DNNs) and recurrent neural networks
(RNNs) as two standard types of neural networks. The charm of DNNs lies in the fact
that they are good universal approximators. The examples in the book for reinforce‐
ment learning, for instance, make use of DNNs to approximate the optimal action
policy. On the other hand, RNNs are specifically designed to handle sequential data,
such as time series data. This is helpful when trying, for example, to predict future
values of financial time series.

However, convolutional neural networks (CNNs) are another standard type of neural
network that is widely used in practice. They have been particularly successful,
among other domains, in computer vision. CNNs were able to set new benchmarks in
a number of standard tests and challenges, such as the ImageNet Challenge; for more
on this, see The Economist (2016) or Gerrish (2018). Computer vision in turn is
important in such domains as autonomous vehicles or security and surveillance.

This brief appendix illustrates the application of a CNN to the prediction of financial
time series data. For details on CNNs, see Chollet (2017, ch. 5) and Goodfellow et al.
(2016, ch. 9).

Features and Labels Data
The following Python code first takes care of the required imports and customiza‐
tions. It then imports the data set that contains end-of-day (EOD) data for a number
of financial instruments. This data set is used throughout the book for different
examples:

In [1]: import os
        import math
        import numpy as np
        import pandas as pd
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        from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['savefig.dpi'] = 300
        mpl.rcParams['font.family'] = 'serif'
        os.environ['PYTHONHASHSEED'] = '0'

In [2]: url = 'http://hilpisch.com/aiif_eikon_eod_data.csv'  

In [3]: symbol = 'EUR='  

In [4]: data = pd.DataFrame(pd.read_csv(url, index_col=0,
                                        parse_dates=True).dropna()[symbol])  

In [5]: data.info()  
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 2516 entries, 2010-01-04 to 2019-12-31
        Data columns (total 1 columns):
         #   Column  Non-Null Count  Dtype
        ---  ------  --------------  -----
         0   EUR=    2516 non-null   float64
        dtypes: float64(1)
        memory usage: 39.3 KB

Retrieves and selects the financial time series data

The next step is to generate the features data, lag the data, split it into training and
test data sets, and finally normalize it based on the statistics of the training data set:

In [6]: lags = 5

In [7]: features = [symbol, 'r', 'd', 'sma', 'min', 'max', 'mom', 'vol']

In [8]: def add_lags(data, symbol, lags, window=20, features=features):
            cols = []
            df = data.copy()
            df.dropna(inplace=True)
            df['r'] = np.log(df / df.shift(1))
            df['sma'] = df[symbol].rolling(window).mean()  
            df['min'] = df[symbol].rolling(window).min()  
            df['max'] = df[symbol].rolling(window).max()  
            df['mom'] = df['r'].rolling(window).mean()  
            df['vol'] = df['r'].rolling(window).std()  
            df.dropna(inplace=True)
            df['d'] = np.where(df['r'] > 0, 1, 0)
            for f in features:
                for lag in range(1, lags + 1):
                    col = f'{f}_lag_{lag}'
                    df[col] = df[f].shift(lag)
                    cols.append(col)
            df.dropna(inplace=True)
            return df, cols
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In [9]: data, cols = add_lags(data, symbol, lags, window=20, features=features)

In [10]: split = int(len(data) * 0.8)

In [11]: train = data.iloc[:split].copy()  

In [12]: mu, std = train[cols].mean(), train[cols].std()  

In [13]: train[cols] = (train[cols] - mu) / std  

In [14]: test = data.iloc[split:].copy()  

In [15]: test[cols] = (test[cols] - mu) / std  

Simple moving average feature

Rolling minimum value feature

Rolling maximum value feature

Time series momentum feature

Rolling volatility feature

Gaussian normalization of training data set

Gaussian normalization of test data set

Training the Model
The implementation of CNNs is similar to that of DNNs. First, the Python code that
follows takes care of the imports from Keras and the definition of the function to set
all relevant seed values of the random number generators:

In [16]: import random
         import tensorflow as tf
         from keras.models import Sequential
         from keras.layers import Dense, Conv1D, Flatten
         Using TensorFlow backend.

In [17]: def set_seeds(seed=100):
             random.seed(seed)
             np.random.seed(seed)
             tf.random.set_seed(seed)

Convolutional Neural Networks | 441



The following Python code implements and trains a simple CNN. At the core of the
model is a one-dimensional convolutional layer that is suited for time series data (see
Keras convolutional layers for details):

In [18]: set_seeds()
         model = Sequential()
         model.add(Conv1D(filters=96, kernel_size=5, activation='relu',
                          input_shape=(len(cols), 1)))
         model.add(Flatten())
         model.add(Dense(10, activation='relu'))
         model.add(Dense(1, activation='sigmoid'))

         model.compile(optimizer='adam',
                       loss='binary_crossentropy',
                       metrics=['accuracy'])

In [19]: model.summary()
         Model: "sequential_1"
         _________________________________________________________________
         Layer (type)                 Output Shape              Param #
         =================================================================
         conv1d_1 (Conv1D)            (None, 36, 96)            576
         _________________________________________________________________
         flatten_1 (Flatten)          (None, 3456)              0
         _________________________________________________________________
         dense_1 (Dense)              (None, 10)                34570
         _________________________________________________________________
         dense_2 (Dense)              (None, 1)                 11
         =================================================================
         Total params: 35,157
         Trainable params: 35,157
         Non-trainable params: 0
         _________________________________________________________________

In [20]: %%time
         model.fit(np.atleast_3d(train[cols]), train['d'],
                   epochs=60, batch_size=48, verbose=False,
                   validation_split=0.15, shuffle=False)
         CPU times: user 10.1 s, sys: 1.87 s, total: 12 s
         Wall time: 4.78 s

Out[20]: <keras.callbacks.callbacks.History at 0x7ffe3f32b110>

Figure C-1 presents the performance metrics for the training and validation data sets
over the different training epochs:

In [21]: res = pd.DataFrame(model.history.history)

In [22]: res.tail(3)
Out[22]:     val_loss  val_accuracy      loss  accuracy
         57  0.699932      0.508361  0.635633  0.597165
         58  0.719671      0.501672  0.634539  0.598937
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         59  0.729954      0.505017  0.634403  0.601890

In [23]: res.plot(figsize=(10, 6));

Figure C-1. Performance metrics for the training and validation of the CNN

Testing the Model
Finally, the Python code that follows applies the trained model to the test data set.
The CNN model outperforms the passive benchmark investment significantly. How‐
ever, taking into account transaction costs in the form of typical (retail) bid-ask
spreads, it eats up larger parts of the outperformance. Figure C-2 visualizes the per‐
formances over time:

In [24]: model.evaluate(np.atleast_3d(test[cols]), test['d'])  
         499/499 [==============================] - 0s 25us/step

Out[24]: [0.7364848222665653, 0.5210421085357666]

In [25]: test['p'] = np.where(model.predict(np.atleast_3d(test[cols])) > 0.5, 1, 0)

In [26]: test['p'] = np.where(test['p'] > 0, 1, -1)  

In [27]: test['p'].value_counts()  
Out[27]: -1    478
          1     21
         Name: p, dtype: int64

In [28]: (test['p'].diff() != 0).sum()  
Out[28]: 41

In [29]: test['s'] = test['p'] * test['r']  
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In [30]: ptc = 0.00012 / test[symbol]  

In [31]: test['s_'] = np.where(test['p'] != 0, test['s'] - ptc, test['s'])  

In [32]: test[['r', 's', 's_']].sum().apply(np.exp)
Out[32]: r     0.931992
         s     1.086525
         s_    1.031307
         dtype: float64

In [33]: test[['r', 's', 's_']].cumsum().apply(np.exp).plot(figsize=(10, 6));

The accuracy ratio out-of-sample

The positions (long/short) based on the predictions

The number of trades resulting from the positions

Proportional transaction costs for given bid-ask spread

The strategy performance before transaction costs

The strategy performance after transaction costs

Figure C-2. Gross performance of passive benchmark investment and CNN strategy
(before/after transaction costs)
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data-driven finance, 99-155
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EOD (end-of-day) versus intraday data, 110,

203
episode, in RL, 251
estimation task, 8

evaluation of algorithm, 172-177
machine learning example, 165-171
neural networks applied to, 14-19, 167-171,

243-244, 409-413, 417-420
OLS regression, 165-167

European call option, 64
EUT (expected utility theory), 66-71

basic assumption of, 100
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order execution, 351-357

Index | 449



trading bot learning, 357-363
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data-driven finance (see data-driven
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market prediction with, 175-177, 194-205,
435-437
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Q-Learning, 261-264
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brain-machine hybrids, 47
controls on, 53
goals of, 51-53
networks and organizations, 46
potential outcomes of, 54-56
reproduction or expansion of, 50
whole brain emulation, 48

sigmoid activation function, 20-22, 413, 421
simple moving average (see SMA)
simple neural networks, 409-416, 426-431
SimpleRNN layer, 232, 238
singleton outcome of technological singularity,

55
sinn classification, 429-431
SL (supervised learning), 4, 122, 162, 255

(see also DNNs; RNNs)
SMA (simple moving average), 199, 282-288,

293
societal impact of AFI, 402
softplus function, 425
St. Petersburg paradox, 118-119
state space, 62
state, in RL, 250
static economy, 62
stationarity of time series data, assumption of,

191
statistical inefficiencies

DNNs, 211-228
predicting markets with neural networks,

192
RL, 249-276
RNNs, 229-246

statistical learning, 10, 101-103
step, in RL, 250
Stockfish chess engine, 41
stop loss (SL) order
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