
Beginning Android
Games Development

From Beginner to Pro
—

Fourth Edition
—
Ted Hagos
Mario Zechner
J.F. DiMarzio
Robert Green

Beginning Android
Games Development

From Beginner to Pro

Fourth Edition

Ted Hagos
Mario Zechner
J.F. DiMarzio
Robert Green

Beginning Android Games Development: From Beginner to Pro

ISBN-13 (pbk): 978-1-4842-6120-0 ISBN-13 (electronic): 978-1-4842-6121-7
https://doi.org/10.1007/978-1-4842-6121-7

Copyright © 2020 by Ted Hagos, Mario Zechner, J.F. DiMarzio and

Robert Green

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudi Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6120-0. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Ted Hagos
Makati, Philippines

Mario Zechner
Graz, Steiermark, Austria

J.F. DiMarzio
Kissimmee, FL, USA

Robert Green
Portland, OR, USA

https://doi.org/10.1007/978-1-4842-6121-7

For Adrianne and Stephanie.

v

Table of Contents

Chapter 1: Setup ...1

Installing Android Studio ...2

Configure Android Studio ..6

Hardware Acceleration ..9

Key Takeaways ..11

Chapter 2: Project Basics ...13

Create a Project ..13

Create an AVD ...18

Key Takeaways ..27

Chapter 3: Android Studio ..29

The IDE ..29

Main Editor ..32

Editing Layout Files ...33

Inserting TODO Items ..36

How to get more Screen Space for Code ..37

Preferences/Settings ..42

Key Takeaways ..44

About the Authors ..xi

About the Technical Reviewer ...xiii

Introduction ..xv

vi

Chapter 4: What’s in an Android Application45

What makes up an Android Project ...46

Application Entry Point ..49

Activities ...50

Intents ...52

Key Takeaways ..54

Chapter 5: Introduction to Game Development55

A Quick Tour of Game Genres ..56

Casual Games ..56

Puzzle Games ..58

Action Games ..61

Tower Defense Games ...62

Game Engine ...63

Key Takeaways ..65

Chapter 6: Building the Crazy Eights Game ..67

Basic Gameplay ..68

Key Parts of the Program ..69

Custom Views and Activities ...70

Drawing on the Screen ...72

Handling Events ..74

SplashScreen with a Title Graphic ..77

Adding the Play Button ..85

Launching the Game Screen ...90

Starting the Game ...95

Displaying the Cards ...102

Handling Turns ..107

TABLE OF CONTENTS

vii

Playing a Card ...107

When there is no Valid Play ...130

When it’s the Computer’s Turn ..133

Ending a Hand ...136

Chapter 7: Building the Balloon Popper Game149

Game Mechanics...150

Creating the Project ..151

Drawing the Background ..152

Game Controls and Pin Icons ..165

Drawing the Balloons ..181

Making the Balloons Float...187

Launching the Balloons ...194

Handling Game Levels ..198

Pop the Balloons ...202

Managing the Pins ..207

When the Game is Over ...209

Audio ...214

Final Touches ..223

Chapter 8: Testing and Debugging ..235

Types of Game Testing ..235

Unit Testing ...238

JVM Test vs. Instrumented Test ...239

A Simple Demo ..240

Implementing the Test ...244

Running a Unit Test ..247

TABLE OF CONTENTS

viii

Debugging ...249

Syntax Errors ...250

Runtime Errors ..251

Logic Errors ...252

Walking through the Code ...254

Profiler ..256

CPU ..258

Memory ...262

Network ...266

Energy ...267

Key Takeaways ..268

Chapter 9: Introduction to OpenGL ES ..269

What’s OpenGL ES ...270

What does OpenGL ES do ..272

Models or Objects ..274

Lights ...275

Camera ..275

Viewport ..275

Projections ..276

Matrices ..276

Rendering a Simple Sphere ..278

Key Takeaways ..315

Chapter 10: Monetization ...317

Paid or Free ...317

Freemium ..319

In-app Purchase ..320

Virtual Currency ...321

TABLE OF CONTENTS

ix

Advertising ..321

Getting your Game Discovered ..322

Social Network ..322

Discovery Services ..323

Blogs and Web Media ..324

Game Design ...324

Key Takeaways ..326

Chapter 11: Publishing the Game ...327

Prepare the Project for Release ..327

Prepare Material and Assets for Release ..328

Configure the App for Release ...328

Build a Release-Ready Application ..329

Releasing the App ...335

Key Takeaways ..339

Chapter 12: What’s Next ...341

Android NDK ..341

Vulkan ...346

Game Engines and Frameworks ...352

Frameworks...353

Engines ..354

Key Takeaways ..355

 Index ...357

TABLE OF CONTENTS

xi

About the Authors

Ted Hagos is a software developer by trade. At the moment, he’s Chief

Technology Officer and Data Protection Officer of RenditionDigital

International, a software development company based out of Dublin. He

wore many hats in his 20+ years in software development, for example,

team lead, project manager, architect, and director for development. He

also spent time as a trainer for IBM Advanced Career Education, Ateneo

ITI, and Asia Pacific College.

Mario Zechner runs Badlogic Games, a game development shop focused

on Android.

J.F. DiMarzio is a seasoned Android developer and author. He began

developing games in Basic on the TRS-80 Color Computer II in 1984.

Since then, he has worked in the technology departments of companies

such as the US Department of Defense and The Walt Disney Company.

He has been developing on the Android platform since the beta release

of version .03, and he has published two professional applications and

one game on the Android marketplace. He is also an accomplished

author. Over the last 10 years, he has released eight books, including

Android: A Programmer's Guide. His books have been translated into

four languages and published worldwide. His writing style is very easy to

read and understand, which makes the information on the topics that he

presents more retainable.

xii

Robert Green is a mobile video game developer from Portland, Oregon,

who develops and publishes mobile games under the brand Battery

Powered Games. He has developed over a dozen mobile games and

graphically interactive apps for himself and clients in the last two years,

which include 2D and 3D action, puzzle, racing, and casual games. Before

diving full time into video game development, he worked for software

companies in Minneapolis, Minnesota, and Chicago, Illinois, including

IBM Interactive. His current focus is on cross-platform game development

and high-performance mobile gaming.

ABOUT THE AUTHORS

xiii

About the Technical Reviewer

Nishant Srivastava is primarily an Android

Engineer, but also has experience writing

firmware code for custom wearable hardware,

building mobile SDKs for enabling DSP on

Android, and constantly contributing to the

community by giving talks, writing blog posts,

coauthoring books, and so on. He is a listed

inventor on two patents for using mobile tech in

the cross-device mobile ad retargeting domain.

You can find more about him at www.nisrulz.com.

http://www.nisrulz.com

xv

Introduction

Welcome to Beginning Android Games Development. This book will help you

get started in your game programming journey with the little green robot.

 Who This Book is For

The book is aimed at beginner game programmers, but not quite that new

to Android (nor Java). If you’re an applications programmer who has some

experience with Java and wants to get into Android game programming,

this book is perfect for you. While we assumed you have some experience

with Android programming, we’ve devoted some chapters for those who

are completely new to Android.

If you have a passing knowledge of Java and a bit of Android

programming, you should be fine. If you’re new to both, there are plenty of

Apress books on Java and Android introduction.

 Chapter Overview

Chapter 1—This chapter is about the setup and configuration of Android

Studio, the tool we’ll be using throughout the book for game development.

If you’re already using this and are quite familiar with the tool, you can

safely skip this chapter.

Chapter 2—This chapter walks through how a basic project is created,

set up, and compiled in Android Studio. It also discusses how to set up an

emulator, which you will need when you test your app.

xvi

Chapter 3—This chapter is about the IDE. Android Studio is a

full- featured IDE; it’s got a lot of parts. This is a good chapter to read if

you need to familiarize yourself with Android Studio. In the chapters

where we actually build the game, I’ll be making some references to

various parts of the IDE, for example, the Project tool window, Attributes

window, Logcat, and so on.

Chapter 4—Programming for the Android platform is not the same as

programming for the desktop or the Web; in fact, even if you come from

an iOS background, the Android platform may still feel foreign to you.

This chapter gives an overview of the platform and how it is structured

architecturally. It’s not an extensive introduction to Android components,

but it talks about the components that we will need for our games.

Chapter 5—It’s a quick tour on game genres and a short overview

on how most games are structured logically. If you’re new to game

programming, I suggest don’t skip this chapter. It might give you ideas for

your next game.

Chapter 6—This is the chapter where we build the first game. It’s a

card game called Crazy Eights; you might have played it in the past. This

is a long chapter. It’s best to download the source code for the game, then

keep it open in Android Studio while you’re reading through the chapter.

That, I think, is the best way to get the most out of it. We will build a turn-

based card game, and we’re to handle most of the graphics ourselves; we

won’t use built-in Android View objects, so it’s quite a chore—but it’s a

good learning experience on how to move around in Android graphics.

Chapter 7—In this chapter, we build another game called Pop

Balloons. The game has simpler mechanics than Crazy Eights. The player

basically just pops balloons as they float to the top of the screen. You’ll be

introduced to built-in Animator objects in the Android SDK, for example,

ValueAnimator, and how to use it as a timing engine. We’ll also use audio

and sound effects in this chapter.

INTRODUCTION

xvii

Chapter 8—This chapter introduces some techniques on how to

do testing in Android Studio and what kind of testing you can apply

for game apps.

Chapter 9—This chapter provides an easy-to-understand introduction

to OpenGL ES. It includes a small exercise on how to draw something in

3D space.

Chapter 10—This chapter talks about options on how to monetize

your game app. It’s not a how-to chapter, but it provides a high-level

discussion on the possible routes on how to get paid if you’re a game

programmer.

Chapter 11—When you’re ready to distribute your app, you’ll need to

sign it and list it in a marketplace like Google Play. This chapter walks you

through the steps on how to do it.

Chapter 12—This chapter talks about some areas of interest that you

can add to your game programming arsenal.

INTRODUCTION

1© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_1

CHAPTER 1

Setup
Welcome. Let’s start our journey at the beginning—setup. In this chapter,

we will cover

• Getting Android Studio

• Setting up the IDE

• Basic configuration

Building Android apps wasn’t always as convenient as today. Back

in 2008, when Android was first released, what we got by way of a

development kit was no more than a bunch of command-line tools and

Ant build scripts. Building apps with a plain editor, Android CLI tools, and

Ant wasn’t so bad if you’re used to that kind of thing, but many developers

were not. The lack of capabilities of a modern IDE like code hinting,

completion, project setup/scaffolding, and integrated debugging was

somewhat of a barrier to entry.

Thankfully, the Android Development Tools (ADT) for the Eclipse

IDE was released, also in 2008. Eclipse was (and still is) a favorite and

dominant choice of IDE for many Java developers. It felt very natural that it

would also be the go-to IDE for Android developers.

From 2009 up until 2012, Eclipse remained to be the choice IDE

for development. The Android SDK has undergone both major and

incremental changes in structure and in scope. In 2009, the SDK manager

https://doi.org/10.1007/978-1-4842-6121-7_1#DOI

2

was released; we use this to download tools, individual SDK versions,

and Android images that we can use for the emulator. In 2010, additional

images were released for the ARM processor and x86 CPUs.

2012 was a big year because Eclipse and ADT were finally bundled.

This was a big deal because until that time, developers had to install

Eclipse and the ADT separately; the installation process wasn’t always

smooth. So, the bundling of the two together made it a whole lot easier to

get started with Android development. 2012 is also memorable because it

marked the last year of Eclipse being the dominant IDE for Android.

In 2013 Android Studio was released. To be sure, it was still on beta,

but the writing on the wall was clear. It will be the official IDE for Android

development. Android Studio is based on JetBrains’s IntelliJ. IntelliJ is

a commercial Java IDE that also has a community (nonpaid) version. It

would be the community version that will serve as the base for Android

Studio.

 Installing Android Studio

At the time of writing, Android Studio is on version 3.5; hopefully, by

the time you read this book, the version won’t be too far away. You can

download it from https://developer.android.com/studio. It’s available

for Windows (both 32- and 64-bit), macOS, and Linux. I ran the installation

instructions on macOS (Catalina), Windows 10 64-bit, and Ubuntu 18.

I work primarily in a macOS environment, which explains why most of

the screenshots for this book looks like macOS. Android Studio looks,

runs, and feels (mostly) the same in all three platforms, with very minor

differences like key bindings and the main menu bar in macOS.

Before we go further, let’s look at the system requirements for Android

Studio. At a minimum, you’ll need either of the following:

• Microsoft Windows 7/8/10 (32- or 64-bit)

• macOS 10.10 (Yosemite or higher)

Chapter 1 Setup

https://developer.android.com/studio

3

• Linux (Gnome or KDE Desktop), Ubuntu 14.04 or

higher; 64-bit capable of running 32-bit applications

• GNU C Library (glibc 2.19 or later) if you’re on Linux

For the hardware, your workstation needs to be at least

• 3GB RAM (8GB or more recommended)

• 2GB of available HDD space

• 1280 x 800 minimum screen resolution

These requirements came from the official Android website; of course

more is better. If you can snag a 32GB RAM, 1TB SSD, and a Full HD (or

UHD) monitor, that wouldn’t be bad; not at all.

And now we come about the Java Development Kit (JDK) requirement.

Starting with Android Studio 2.2, the installer comes with OpenJDK

embedded. This way, a beginner programmer won’t have to bother with

the installation of a separate JDK; but you can still install a separate JDK

if that’s your preference. In this book, I’ll assume that you will use the

embedded OpenJDK which comes with Android Studio.

Download the installer from https://developer.android.com/

studio/; get the proper binary file for your platform.

If you have a Mac, do the following:

 1. Unpack the installer zipped file.

 2. Drag the application file into the Applications folder.

 3. Launch Android Studio.

 4. Android Studio will prompt you to import some

settings if you have a previous installation. You can

import that—it’s the default option.

Chapter 1 Setup

https://developer.android.com/studio/
https://developer.android.com/studio/

4

If you’re using Windows, do the following:

 1. Unzip the installer file.

 2. Move the unzipped directory to a location of

your choice, for example: C:\Users\myname\

AndroidStudio.

 3. Drill down to the “AndroidStudio” folder; inside

it, you’ll find “studio64.exe”. This is the file

you need to launch. It’s a good idea to create a

shortcut for this file—if you right-click studio64.

exe and choose “Pin to Start Menu,” you can make

Android Studio available from the Windows Start

menu; alternatively, you can also pin it to the

Taskbar.

The Linux installation requires a bit more work than simply double-

clicking and following the installer prompts. In future releases of Ubuntu

(and its derivatives), this might change and become as simple and

frictionless as its Windows and macOS counterparts, but for now, we need

to do some tweaking. The extra activities on Linux are mostly because

Android Studio needs some 32-bit libraries and hardware acceleration.

Note the installation instructions in this section are meant for

ubuntu 64-bit and other ubuntu derivatives, for example, Linux

Mint, Lubuntu, Xubuntu, and ubuntu Mate. I chose this distribution

because I assumed that it is a very common Linux flavor for the

readers of this book. If you are running a 64-bit version of ubuntu,

you will need to pull some 32-bit libraries for android Studio to

function well.

Chapter 1 Setup

5

To start pulling the 32-bit libraries for Linux, run the following

commands on a terminal window:

sudo apt-get update && sudo apt-get upgrade -y

sudo dpkg --add-architecture i386

sudo apt-get install libncurses5:i386 libstdc++6:i386

zlib1g:i386

When all the prep work is done, you need to do the following:

• Unpack the downloaded installer file. You can unpack

the file using command-line tools or using the GUI

tools—you can, for example, right-click the file and

select the “Unpack here” option, if your file manager

has that.

• After unzipping the file, rename the folder to

“AndroidStudio”.

• Move the folder to a location where you have read,

write, and execute privileges. Alternatively, you can

also move it to /usr/local/AndroidStudio.

• Open a terminal window and go to the AndroidStudio/

bin folder, then run ./studio.sh.

• At first launch, Android Studio will ask you if you want

to import some settings; if you have installed a previous

version of Android Studio, you may want to import

those settings.

Chapter 1 Setup

6

 Configure Android Studio

If this is the first time you’ve installed Android Studio, you might want to

configure a couple of things first before diving into coding work. In this

section, I’ll walk you through the following:

• Get some more software that we’ll need so we can

create programs that target specific versions of

Android.

• Make sure we have all the SDK tools we need.

Launch the IDE if you haven’t done so yet, then click “Configure,” as

shown in Figure 1-1. Choose “Preferences” from the drop-down list.

Figure 1-1. Go to “Preferences” from the Android Studio’s opening
dialog

Chapter 1 Setup

7

When you click the “Preferences” option, it will open the Preferences

dialog, as shown in Figure 1-2. On the left-hand side of the dialog, select

the “Android SDK” section.

The “Android SDK” section has three tabs: the “SDK Platforms,” “SDK

Tools,” and “SDK Update Sites”; their headings are self-explanatory.

When you get to the “SDK Platforms” section, enable the “Show

Package Details” option so you can see a more detailed view of each API

level. We don’t need to download everything in the SDK window. We will

get only the items we need.

SDK levels or platform numbers are specific versions of Android.

Android 9 or “Pie” is API level 28, Android 8 or “Oreo” is API levels 26

and 27, and Nougat is API levels 24 and 25. You don’t need to memorize

the platform numbers, at least not anymore because the IDE shows the

platform number with the corresponding Android nickname.

You will notice that only Android 9 (Pie) is selected in my setup. You

may choose to install as many SDK platforms as you like, but for the

purposes of this book, I will use either Android 9 or 10, as these versions

are the latest at the time of writing. That’s what we will use for the sample

Figure 1-2. SDK Platforms

Chapter 1 Setup

8

projects. Make sure that together with the platforms, you will also

download “Google APIs Intel x86 Atom_64 System Image.” We will need

those when we get to the part where we test run our applications.

Choosing an API level may not be a big deal right now because at this

point, we’re simply working with practice apps. When you plan to release

your application to the public, you may not be able to take this choice

lightly though. Choosing a minimum SDK or API level for your app will

determine how many people will be able to use your application. At the

time of writing, 25% of all Android devices are using “Marshmallow,” 22%

for “Nougat,” and 4% for “Oreo.” These stats are from the dashboard page of

https://developer.android.com. It’s a good idea to check these statistics

from time to time, you can find it here: https://developer.android.com/

about/dashboards/.

Our next stop is the “SDK Tools” section, which is shown in Figure 1-3.

Figure 1-3. SDK Tools

Chapter 1 Setup

https://developer.android.com
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/

9

You don’t need to change anything on this window, but it wouldn’t

hurt to check if you have the tools, as shown in the following list, marked

as “Installed.”

• Android SDK Build Tools

• Android SDK Platform Tools

• Android SDK Tools

• Android Emulator

• Support Repository

• HAXM Installer

Checking these tools ensures that we get tools like adb, sqlite, aapt,

zipalign, and so on. These tools help us in debugging, creating builds,

working with databases, running emulations, and so on.

Note If you are on the Linux platform, you cannot use haXM

even if you have an Intel processor. KVM will be used in Linux

instead of haXM.

Once you’re happy with your selection, click the “OK” button to start

downloading the packages.

 Hardware Acceleration

As you write your apps, it will be useful to test and run it from time to time

in order to get immediate feedback and find out if it is running as expected,

or if it is running at all. To do this, you will use either a physical or a virtual

device. Each option has its pros and cons, and you don’t have to choose

one over the other; in fact, you will have to use both options eventually.

Chapter 1 Setup

10

An Android Virtual Device, or AVD, is an emulator where you can

run your apps. Running on an emulator can sometimes be slow; this is

the reason why Google and Intel came up with HAXM. It is an emulator

acceleration tool that makes testing your app a bit more bearable. This is

a boon to developers. That is if you are using a machine that has an Intel

processor which supports virtualization and that you are not on Linux. But

don’t worry if you’re not lucky enough to fall on that part of the pie, there

are ways to achieve emulator acceleration in Linux, as we’ll see later.

macOS users probably have it the easiest because HAXM is

automatically installed with Android Studio. They don’t have to do

anything to get it, the installer took care of that for them.

Windows users can get HAXM either by

• Downloading it from https://software.intel.

com/en-us/android. Install it like you would any

other Windows software, double-click, and follow the

prompts.

• Alternatively, you can get HAXM via the SDK manager;

this is the recommended method.

For Linux users, the recommended software is KVM (Kernel-based

Virtual Machine); it’s a virtualization solution for Linux. It contains

virtualization extensions (Intel VT or AMD-V).

To get KVM, we need to pull some software from the repos; but even

before you can do that, you need to do the following first:

• Make sure that virtualization is enabled on your BIOS

or UEFI settings. Consult your hardware manual on

how to get to these settings. It usually involves shutting

down the PC, restarting it, and pressing an interrupt

key like F2 or DEL as soon as you hear the chime

of your system speaker, but like I said, consult your

hardware manual.

Chapter 1 Setup

https://software.intel.com/en-us/android
https://software.intel.com/en-us/android

11

• Once you made your changes, and rebooted to Linux,

find out if your system can run virtualization. This can

be accomplished by running the following command

from a terminal: egrep –c '(vmx|svm)' /proc/

cpuinfo. If the result is a number higher than zero, that

means you can go ahead with the installation.

To install KVM, type the commands, as shown in Listing 1-1, in a

terminal window.

Listing 1-1. Commands to install KVM

sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder

bridge-utils

sudo adduser your_user_name kvm

sudo adduser your_user_name libvirtd

You may have to reboot the system to complete the installation.

Hopefully, everything went well, and you now have a proper

development environment.

 Key Takeaways

• You can get Android and Android Studio for macOS,

Windows, and Linux. Each platform has an available

precompiled binary available on the Android website.

• HAXM gives us a way to accelerate emulation on

Android Virtual Devices. You will automatically get

HAXM when you’re on macOS or Windows (with an

Intel processor). If you’re on Linux, you can use KVM

instead of HAXM.

Chapter 1 Setup

13© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_2

CHAPTER 2

Project Basics
You will build many interesting apps, to be sure. Whether it be a gaming

app, line of business app, or some other kind, we need to learn the basics

of creating, building, and testing an app in Android Studio first; this

chapter is all about that. In here, we’ll cover the following:

• Create a simple project.

• Create an Android Virtual Device (emulator), so we can

run and test projects.

 Create a Project

Launch Android Studio, if you haven’t done so yet. Click “Start a new

Android Studio project,” as shown in Figure 2-1. You need to be online

when you do this because Android Studio’s Gradle (a project build tool)

pulls quite a few files from online repositories when starting a new project.

https://doi.org/10.1007/978-1-4842-6121-7_2#DOI

14

During the creation process, Android prompts for what kind of project

we want to build; choose “Phone and Tablet” ➤ “Empty Activity,” as shown

in Figure 2-2—we’ll discuss Activities in the coming chapters, but for now,

think of an Activity as a screen or form; it’s something that the user sees

and interacts with.

Figure 2-1. Welcome to Android Studio

CHAPTER 2 PROJECT BASICS

15

In the next screen, we get to configure the project. We set the app’s

name, package name (domain), and the target Android version. Figure 2-3

shows the annotated picture of the “Create New Project” screen.

Figure 2-2. Create a new project, choose an Activity type

CHAPTER 2 PROJECT BASICS

16

Figure 2-3. Create New Project

❶ NAME—This is what you want to call the application; this is also known

as the project name. This name becomes the name of the top-level folder

which contains all of the project’s files. This name also becomes part of your

application’s identity, should you release it in the Play Store.

❷ PACKAGE NAME—This is your organization or company’s domain name

in reverse DNS notation. If you don’t have a company name, you can use

anything that resembles a web domain. At the moment, it won’t matter if

we use a real company name or not, since we won’t release this to the

Play Store.

CHAPTER 2 PROJECT BASICS

17

❸ SAVE LOCATION—This is a location in your local directory where the project

files will be kept.

❹ LANGUAGE—You can use either Kotlin or Java; for this project, we will use

Java.

❺ MINIMUM API LEVEL—The min API level will determine the lowest version

of Android which your application can run on. You need to choose wisely and

prudently because it can severely limit the potential audience for your app.

❻ HELP ME CHOOSE—This shows the percentage of Android devices that your

app can run on. If you click the “Help me choose” link, it will open a window

that shows the distribution of Android devices, per Android version.

❼ INSTANT APPS—If you want your app to be playable, without the user

installing your app, enable this check box. Instant apps allow a user to browse

and “try out” your app in Google Play without downloading and installing the

app.

❽ ANDROID.X—These are support libraries. They’re included so that you can

use modern Android libraries (like the ones included in Android 9) but still

allow your app to be run on devices with lower Android versions.

When you’re all done, click “Finish” to begin the project creation.

Android Studio scaffolds the project and creates startup files like the main

Activity file, Android Manifest, and other files to get the project propped

up. The build tool (Gradle) will pull quite a few files from online repos—it

can take some time.

After all that, hopefully the project is created, and you get to see

Android Studio’s main editor window, as shown in Figure 2-4.

CHAPTER 2 PROJECT BASICS

18

Android Studio’s screen is composed of several sections which can

collapse and expand, depending on your needs. The section on the left

(Figure 2-4) is the Project Panel; it’s a tree-like structure that shows all

the (relevant) files in the project. If you want to edit a particular file,

simply select it in the Project Panel and double-click; at that point, it will

be opened for editing in the main editor window. In Figure 2-4, you can

see the MainActivity.java file available for editing. In the course of time,

we will spend a lot of hours doodling in the main editor window, but

for now, we simply want to go through the basic process of application

development. We won’t add or modify anything in this Java file nor any

other in the project. We’ll leave it as is.

 Create an AVD

We can test the application either by running it in an emulator or plugging

a physical Android device into the workstation. This section covers setting

up an emulator.

From Android Studio’s main menu bar, go to Tools ➤ AVD Manager,

as shown in Figure 2-5.

Figure 2-4. Main editor window

CHAPTER 2 PROJECT BASICS

19

Figure 2-5. Menu bar, Tools, AVD Manager

The AVD manager window will launch. AVD stands for Android Virtual

Device; it’s an emulator that runs a specific version of the Android OS which

we can use to run the apps on. The AVD manager (shown in Figure 2-6)

shows all the defined emulators in our local development environment.

Figure 2-6. AVD manager

CHAPTER 2 PROJECT BASICS

20

As you can see, I already have a couple of emulators; but let’s create

another one; to do that, click the “+ Create Virtual Device” button,

as shown in Figure 2-6. That action will launch the “Virtual Device

Configuration” screen, as shown in Figure 2-7.

Figure 2-7. Virtual Device Configuration

CHAPTER 2 PROJECT BASICS

21

Choose the “Phone” category, then choose the device resolution.

I chose the Pixel 5.0” 420dpi screen. Click the “Next” button, and we get

to choose the Android version we want to run on the emulator; we can do

this on the “System Image” screen, shown in Figure 2-8.

Figure 2-8. Virtual Device Configuration

CHAPTER 2 PROJECT BASICS

22

I want to use Android 9 (API level 28) or Pie, as some may call it; but

as you can see, I don’t have the Pie system image in my machine just

yet—when you can see the “download” link next to the Android version,

that means you don’t have that system image yet. I need to get the system

image for Pie first before I can use it for the AVD; so, click the “download”

link. You’ll need to agree to the license agreement before you can proceed.

Click “Accept,” then click “Next,” as shown in Figure 2-9.

Figure 2-9. SDK Quickfix Installation

CHAPTER 2 PROJECT BASICS

23

The download process can take some time, depending on your

Internet speed; when it’s done, you’ll get back to the “System Image”

selection screen, as shown in Figure 2-10.

Figure 2-10. Virtual Device Configuration

CHAPTER 2 PROJECT BASICS

24

As you can see, we can now use Pie as a system image for our emulator.

Select Pie, then click “Next.” The next screen shows a summary of our past

choices for creating the emulator; the “Verify Configuration” screen is

shown next (Figure 2-11).

Figure 2-11. Verify Configuration

CHAPTER 2 PROJECT BASICS

25

The “Verify Configuration” screen not only shows the summary of our

past choices, you can configure some additional functionalities here. If

you click the “Show Advanced Settings” button, you can also configure the

following:

• Front and back camera

• Emulated network speed

• Emulated performance

• Size of internal storage

• Keyboard input (whether enabled or disabled)

When you’re done, click the “Finish” button. When Android Studio

finishes provisioning the newly created AVD, we’ll be back in the “Android

Virtual Device Manager” screen, as shown in Figure 2-12.

Figure 2-12. Android Virtual Device Manager

CHAPTER 2 PROJECT BASICS

26

Now we can see the newly created emulator (Pixel API 28). You can

launch it by clicking the little green arrow on the “Actions” column—

the pencil icon edits the configuration of the emulator, the green arrow

launches it.

When the emulator launches, you’ll see an image of the Pixel phone

pop up on the desktop; it needs time to boot up completely. Go back to the

main editor window of Android Studio to run the app.

From the main menu bar, go to Run ➤ Run ‘app’, as shown in

Figure 2-13.

Android Studio compiles the project; then it looks for either a

connected (physical) Android device or a running emulator. We already

launched the emulator a while ago, so Android Studio should find it and

install the app in that emulator instance.

If all went well, you should see the Hello World app that Android

Studio scaffolded for us, as shown in Figure 2-14.

Figure 2-13. Main menu bar, Run

CHAPTER 2 PROJECT BASICS

27

Figure 2-14. Hello World

 Key Takeaways

• Android projects almost always have an Activity. If you

want to start with a basic project, choose one with an

“Empty Activity” and build from there.

• Pay some attention to what you put in the project

details during creation; if you do release the project to

Google Play, those project information will be part of

your application, and many people will see it.

CHAPTER 2 PROJECT BASICS

28

• Choose the minimum SDK carefully; it will limit the

number of potential users of your app.

• You can use an emulator to run your app and see how

it’s shaping up. Testing using an emulator is much

better if you have HAXM (emulator accelerator)

enabled on your system; if you’re on Linux,

acceleration can be achieved using KVM.

CHAPTER 2 PROJECT BASICS

29© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_3

CHAPTER 3

Android Studio

In the previous chapter, we built a simple app by creating a project, opened

it in the main editor window, and ran it in an emulator. In this chapter,

we’ll take a closer look at the parts of Android Studio where we’ll spend

most of our time. We’ll look at the following:

• Working with files in Android Studio

• Parts of the main editor

• Editing layout files

• The Project tool window

 The IDE

From the opening dialog of Android Studio, you can launch the previous

project we created. Links to existing projects appear on the left panel of the

opening dialog, as shown in Figure 3-1.

https://doi.org/10.1007/978-1-4842-6121-7_3#DOI

30

When you open a project, you’ll see the main editor window, the

project panel, and other panels that Android Studio opens by default. An

annotated picture of an opened project is shown in Figure 3-2.

Figure 3-1. Welcome to Android Studio

Figure 3-2. Main parts of Android Studio

Chapter 3 android Studio

31

➊ Main menu bar—You can navigate android Studio in various ways. often,

there’s more than one way to do a task, but the primary navigation is done

in the main menu bar. if you’re on Linux or Windows, the main menu bar

sits directly at the top of the ide; if you’re on macoS, the main menu bar is

disconnected from the ide (which is how all macoS software works).

➋ Navigation bar—this bar lets you navigate the project files. it’s a horizontally

arranged collection of chevrons that resembles some sort of breadcrumb

navigation that you can find on some websites. You can open your project files

either through the navigation bar or the project tool window.

➌ Toolbar—this lets you do a wide range of actions (e.g., save files, run the

app, open the aVd manager, open the SdK manager, undo, redo actions, etc.).

➍ Main editor window—this is the most prominent window and has the most

screen real estate. the editor window is where you can create and modify

project files. it changes its appearance depending on what you are editing.

if you’re working on a program source file, this window will show just the

source files. When you are editing layout files, you may see either the raw

XML file or a visual rendering of the layout.

➎ Project tool window—this window shows the contents of the project

folders; you’ll be able to see and launch all your project assets (source code,

XML files, graphics, etc.) from here.

➏ Tool window bar—the tool window bar runs along the perimeter of the ide

window. it contains the individual buttons you need to activate specific tool

windows, for example, todo, Logcat, project window, Connected devices,

and so on.

➐ Show/hide tool window—it shows (or hides) the tool window bar. it’s a

toggle.

Chapter 3 android Studio

32

➑ Tool Window—You will find tool windows on the sides and bottom of the

android Studio workspace. they’re secondary windows that let you look at the

project from different perspectives. they also let you access the typical tools you

need for development tasks, for example, debugging, integration with version

control, looking at the build logs, inspecting Logcat dumps, looking at todo

items, and so on. here are a couple of things you can do with the tool Windows:

• You can expand or collapse them by clicking the tool’s name in the tool

window bar. You can also drag, pin, unpin, attach, and detach the tool

windows.

• You can rearrange the tool windows, but if you feel you need to restore the

tool window to the default layout, you can do so from the main menu bar;

click Window ➤ Restore Default Layout. also, if you want to customize

the “default Layout,” you rearrange the windows to your liking, and then

from the main menu bar, click Window ➤ Store Current Layout as

Default.

 Main Editor

Like in most IDEs, the main editor window lets you modify and work with

source files. What makes it stand out is how well it understands Android

development assets. Android Studio lets you work with a variety of file types,

but you’ll probably spend most of your time editing these types of files:

• Java source files

• XML files

• UI layout files

When you’re working with Java source files, you get all the code hinting

and completions that you’ve come to expect from a modern editor. What’s

more, it gives you plenty of early warnings when something is wrong with

Chapter 3 android Studio

33

your code. Figure 3-3 shows a Java class file opened in the main editor.

The class file is an Activity, and it’s missing a semicolon on one of its

statements. You could see Android Studio peppering the IDE with (red)

squiggly lines which indicates that the class won’t compile.

Android Studio places the squiggly lines very near the offending code.

As you can see in Figure 3-3, the squiggly lines are placed right at the point

where the semicolon is expected.

 Editing Layout Files

The screens that the user sees are made up of Activity source files

and layout files. The layout files are written in XML. Android Studio,

undoubtedly, can edit XML files, but what sets it apart is how intuitively it

can render the XML files in a WYSIWYG mode (what you see is what you

get). Figure 3-4 shows the two ways you can work with layout files.

Figure 3-3. Main editor showing error indicators

Chapter 3 android Studio

34

Figure 3-5 shows the various parts of Android Studio that are relevant

when working on a layout file during design mode.

Figure 3-4. Design mode and text mode editing of layout files

Chapter 3 android Studio

35

• View palette—The View palette contains the Views

(widgets) that you can drag and drop on either the

Design surface or Blueprint surface.

• Design surface—It acts like a real-world preview of

your screen.

• Blueprint surface—Similar to the Design surface, but it

only contains the outlines of the UI elements.

Figure 3-5. Layout design tools of Android Studio

Chapter 3 android Studio

36

• Attributes window—You can change the properties

of the UI element (View) in here. When you make a

change on properties of a View using the Attributes

window, that change will be automatically reflected

on the layout’s XML file. Similarly, when you make

a change on the XML file, that will automatically be

reflected on the Attributes window.

 Inserting TODO Items

This may look like a trivial feature, but I hope some people will find this

useful—that’s why I squeezed in this section. Each one of us has a way of

writing TODO items for whatever app we’re working on. There isn’t much

fuss in writing TODO items; what’s difficult is consolidating them.

In Android Studio, you don’t have to create a separate file to keep track

of your TODO list for the app. Whenever you create a comment followed

by a “TODO” text, like this:

// TODO This is a sample todo

Android Studio will keep track of all the TODO comments in all of your

source files. See Figure 3-6.

Chapter 3 android Studio

37

To view all your TODO items, click the “TODO” tab in the tool window

bar.

 How to get more Screen Space for Code

You can have more screen real estate by closing all Tool Windows.

Figure 3- 7 shows a Java source file opened in the main editor window

while all the Tool Windows are closed. You can collapse any tool window

by simply clicking its name, for example, to collapse the Project tool

window, click “Project.”

Figure 3-6. TODO items

Chapter 3 android Studio

38

You can even get more screen real estate by hiding all the tool window

bars, as shown in Figure 3-8.

Figure 3-7. Main editor with all tool windows closed

Chapter 3 android Studio

39

You can get even more screen space by entering “Distraction Free

Mode,” as shown in Figure 3-9. You can enter distraction free mode from

the main menu bar; click View ➤ Enter Distraction Free Mode. To exit

the mode, click View from the main menu bar, then Exit Distraction Free

Mode.

Figure 3-8. Main editor with all tool windows closed and toolbars
hidden

Chapter 3 android Studio

40

You may also try two other modes that can increase the screen real

estate. They’re also found on the View menu from the main menu bar.

• Presentation mode

• Full screen

Project Tool Window

You can get to your project’s files and assets via the Project tool

window, shown in Figure 3-10. It has a tree-like structure, and the sections

are collapsible. You can launch any file from this window. If you want to

open a file, you simply need to double-click that file from this window.

Figure 3-9. Distraction free mode

Chapter 3 android Studio

41

By default, Android Studio displays the Project Files in Android View,

as shown in Figure 3-10. The “Android View” is organized by modules to

provide quick access to the project’s most relevant files. You change how

you view the project files by clicking the down arrow on top of the Project

window, as shown in Figure 3-11.

Figure 3-10. Project tool window

Chapter 3 android Studio

42

 Preferences/Settings

If you want to customize the behavior or look of Android Studio, you can

do so in its Settings or Preferences window; it’s called Settings if you’re on

Windows or Linux, and it’s called Preferences if you’re on macOS.

For Windows and Linux users, you can get to the Settings window in

one of two ways:

• From the main menu bar, click File ➤ Settings.

• Use the keyboard shortcut Ctrl+Alt+S.

Figure 3-11. How to change Views in the Project tool window

Chapter 3 android Studio

43

For macOS users, you can do it this way:

• From the main menu bar, click Android Studio ➤

Preferences.

• Use the keyboard shortcut Command+,.

You can access a variety of Settings in this window, ranging from how

Android Studio looks, whether to use spaces or tabs on the editor, how

many spaces to use for tabs, which version control to use, what API to

download, what system images to use for AVD, and so on.

Figure 3-12. Settings/Preferences window

Chapter 3 android Studio

44

 Key Takeaways

• You can see more of your code by increasing the screen

real estate for the main editor. You can do this by

• Collapsing all the Tool Windows

• Hiding the tool window bars

• Entering Distraction Free Mode

• Going to Full Screen mode

• You can change how you view the project files from

switching the view in the Project tool window.

• Adding a TODO item is easy in Android Studio; just add

a single line comment followed by a TODO text, like

this: // TODO This is my todo list

Chapter 3 android Studio

45© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_4

CHAPTER 4

What’s in an
Android Application
We already know how to create a basic project, and we took a tour of

Android Studio. In this chapter, we’ll look at what makes up an Android

application.

The Android application framework is vast and can be confusing to

navigate. Its architecture is different than a desktop or web app, if you’re

coming from that background. Learning the Android framework can take a

long time; fortunately, we don’t have to learn all of it. We only need a few,

and that’s what this chapter is about, those few knowledge areas that we

need to absorb so we can build an Android game:

• What makes up an Android project

• Overview of Android components

• Android Manifest file

• Intents

https://doi.org/10.1007/978-1-4842-6121-7_4#DOI

46

 What makes up an Android Project

An Android app may look a lot like a desktop app; some may even think

of them as miniature desktop apps, but that wouldn’t be correct. Android

apps are structurally different from their desktop or web counterparts.

A desktop app generally contains all the routines and subroutines it needs

in order to function; occasionally, it may rely on dynamically loaded

libraries, but the executable file is self-contained. An Android app, on the

other hand, is made up of loosely coupled components that communicate

to each other using a message-passing mechanism. Figure 4-1 shows the

logical structure of an Android app.

The app shown in Figure 4-1 is a big one—it’s got everything in it. Our app

won’t be as big; we don’t have to use all the kinds of components in Android,

but we need to learn how to use some of them, like Activities and Intents.

Figure 4-1. Logical representation of an Android app

Chapter 4 What’s in an android appliCation

47

Activities, Services, BroadcastReceivers, and ContentProviders

are called Android components. They are the key building blocks of an

application. They are high-level abstractions of useful things like showing

a screen to a user, running a task in the background, broadcasting an

event so that interested applications may respond to them, and so on.

Components are precoded or prebuilt classes with very specific behavior,

and we use them in our application by extending them so that we can add

the behavior that will be unique to our application.

Building an Android app is a lot like building a house. Some people

build houses the traditional way; they assemble beams, struts, floor panels,

and so on. They build the doors and other fittings from raw materials by

hand, like an artisan. If we built android applications this way, it could take

us a long time, and it might be quite difficult. The skill necessary to build

applications from the scratch could be out of reach for some programmers.

In Android, applications are built using components. Think of it as

prefabricated pieces of a house. The parts are manufactured in advance,

and all it requires is assembly.

An Activity is where we put together things that the user can see.

It’s a focused thing that a user can do. For example, an Activity may be

purposely made to enable a user to view a single email or fill up a form.

It’s where the user interface elements are glued together. As you can

see in Figure 4-1, inside the Activity, there are Views and Fragments.

Views are classes that are used to draw content into the screen; some

examples of View objects are Buttons and TextViews. A Fragment is

similar to an Activity in that it’s also a composition unit but a smaller

one. Like Activities, they can also hold View objects. Most modern apps

use Fragments in order to address the problem of deploying their app on

multiple form factors. Fragments can be turned on or off depending on the

available screen real estate and/or orientation.

Chapter 4 What’s in an android appliCation

48

Services are classes that allow us to run a program logic without

freezing up the user interface. Services are code that run in the

background; they can be very useful when your app is supposed to

download a file from the Web or maybe play music.

BroadcastReceivers allow our application to listen for specific

messages from either the Android system or from other applications—yes,

our apps can send messages and broadcast it systemwide. You might want

to use BroadcastReceivers if you want to display a warning message when

the battery dips to below 10%, for example.

ContentProviders allow us to create applications that may be able to

share data to other applications. It manages access to some sort of central

data repository. Some ContentProviders have their own UI but some

don’t. The main idea why you would use this component is to allow other

applications access to your app’s data without them going through some

SQL acrobatics. The details of the database access are completely hidden

from them (client apps). An example of a prebuilt application that is a

ContentProvider is the “Contacts” app in Android.

Your application may need some visual or audio assets; these are the

kinds of things we mean by “Resources” in Figure 4-1.

The AndroidManifest is exactly what its name implies; it’s a manifest and

it’s in XML format. It declares quite a few things about the application, like

• The name of the app.

• Which Activity will show up first when the user

launches the app.

• What kind of components are in the app. If it has

activities, the manifest declares them—names of

classes and all. If the app has services, their class names

will also be declared in manifest.

• What kinds of things can the app do? What are its

permissions? Is it allowed to access the Internet or the

camera? Can it record GPS locations and so on?

Chapter 4 What’s in an android appliCation

49

• Does it use external libraries?

• Does it support a specific type of input device?

• Are there specific screen densities that this application

requires?

As you can see, the manifest is a busy place; there’s a lot of things

to keep an eye on. But don’t worry too much about this file. Most of

the entries here are automatically taken care of by the creation wizards

of Android Studio. One of the few occasions you will interact with it is

probably when you need to add permissions to your app.

Note Google play filters out incompatible applications from the list

of available applications for a specific device. it uses the project’s

manifest file to do this filtering. Your app won’t be seen by devices

that cannot meet the requirements stipulated in the manifest file.

 Application Entry Point

An app typically interacts with a user, and it does so using Activity

components. These apps usually have at least these three things:

 1. An Activity class that serves as the first screen that

the user will see

 2. A layout file for the Activity class which contains all

the UI definitions like text views, buttons, and so on

 3. The AndroidManifest file, which ties all the project

resources and components together

Chapter 4 What’s in an android appliCation

50

When an application is launched, the Android runtime creates an

Intent object and inspects the manifest file. It’s looking for a specific value

of the intent-filter node (in the xml file). The runtime is trying to see if

the application has a defined entry point, something like a main function.

Listing 4-1 shows an excerpt from the Android manifest file.

Listing 4-1. Excerpt from AndroidManifest.xml

<activity android:name=".MainActivity">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

If the application has more than one Activity, you will see several

activity nodes in the manifest file, one node for each Activity. The first

line of the definition has an attribute called android:name. This attribute

points to the class name of an Activity. In this example, the name of the

class is “MainActivity”.

The second line declares the intent-filter; when you see something

like android.intent.action.MAIN, on the intent-filter node, it means the

Activity is the entry point for the application. When the app is launched,

this is the Activity that will interact with the user.

 Activities

You can think of an Activity as a screen or a window. It’s something that

a user can interact with. This is the UI of the app. An Activity is a class

that inherits from the android.app.Activity (one way or another), but we

usually extend the AppCompatActivity class (instead of the Activity) so we

Chapter 4 What’s in an android appliCation

51

can use modern UI elements but still make the app run on older Android

versions; hence, the “Compat” in the name AppCompatActivity, it stands

for “compatibility.”

An Activity component has two parts, a Java class (or Kotlin if that’s

your language of choice) and a layout file in XML format. The layout file is

where you put all the definitions of the UI, for example, the text box, button,

labels, and so on. The Java class is where you code all the behavior parts of

the UI, for example, what happens when the button is clicked, when text is

entered into the field, when the user changes the orientation of the device,

when another component sends a message to the Activity, and so on.

An Activity, like any other component in Android, has a life cycle. Each

lifecycle event has an associated method in the Activity’s Java class; we can

use these methods to customize the behavior of the application. Figure 4-2

shows the Activity life cycle.

In Figure 4-2, the boxes show the state of an Activity on a particular

stage of existence. The name of the method calls is embedded in the

directional arrows which connect the stages.

Figure 4-2. Activity life cycle

Chapter 4 What’s in an android appliCation

52

When the runtime launches the app, it calls the onCreate() method

of the main Activity which brings the state of the Activity to “created.” You

can use this method to perform initialization routines like preparing event

handling code and so on.

The Activity proceeds to the next state which is “started”; the Activity

is visible to the user at this point, but it’s not yet ready for interaction. The

next state is “resumed”; this is the state where the app is interacting with

the user.

If the user clicks anything that may launch another Activity, the

runtime pauses the current Activity, and it enters the “paused” state. From

there, if the user goes back to the Activity, the onResume() function is

called and the Activity runs again. On the other hand, if the user decides

to open a different application, the Android runtime may “stop” and

eventually “destroy” the application.

 Intents

If you have an experience with object-oriented programming, you

might be used to the idiom of activating an object’s behavior by simply

creating an instance of the object and calling its methods—that’s a

straightforward and simple way of making objects communicate to each

other; unfortunately, Android’s components don’t follow that idiom. The

code shown in Listing 4-2, while idiomatically object oriented, isn’t going

to work in Android.

Listing 4-2. Wrong way to activate another Activity

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

Chapter 4 What’s in an android appliCation

53

 Button b = (Button) findViewById(R.id.button);

 b.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 new SecondActivity(); // WON'T WORK

 }

 });

 }

}

Android’s architecture is quite unique in the way it builds application.

It has this notion of components instead of just plain objects. Android uses

Intents as a way for its components to communicate; it also uses Intents to

pass messages across components.

The reason Listing 4-2 won’t work is because an Android Activity

isn’t a simple object; it’s a component. You cannot simply instantiate a

component in order to activate it. Component activation in Android is

done by creating an Intent object and then passing it to the component

you want to activate, which, in our case now, is an Activity.

There are two kinds of Intents, an explicit Intent and an implicit Intent.

For our purposes, we will only need the explicit Intent. Listing 4-3 shows

a sample code on how to create an explicit Intent and how to use it to

activate another Activity.

Listing 4-3. How to activate another Activity

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

Chapter 4 What’s in an android appliCation

54

 Button b = findViewById(R.id.button);

 b.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View v) {

 Intent i = new Intent(v.getContext(), SecondActivity.

class);

 v.getContext().startActivity(i);

 }

 });

 }

}

It may look like there’s a lot of things to unpack on our sample code,

but don’t worry, I’ll explain the code with more context as we move further

along in the coming chapters.

 Key Takeaways

• Android applications are made up of loosely coupled

components. These components communicate via

Intent objects.

• An app’s entry point is usually a launcher Activity.

This launcher Activity is designated in the app’s

AndroidManifest file.

• The manifest file is like a glue that holds together

the components of the application; everything the

application has, can do, or cannot do is reflected in the

manifest.

Chapter 4 What’s in an android appliCation

55© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_5

CHAPTER 5

Introduction to
Game Development
There are an estimated 2.8 million apps on Google Play (at the time of

writing), and 300,000 of them are games. That’s a lot of games; and it

will still grow. Anyone thinking of writing a novel game will be hard-

pressed, considering that programmers have been writing games for a

long time now. If you’re hunting for ideas for a new game, it might be

best to survey the existing games; see what kinds of ideas you can pick

and combine.

In this chapter, we’ll look at some of the popular games in Google Play.

We’ll also discuss a high-level overview of what kind of functionalities we’ll

need to bake into our game code. We’ll cover the following areas:

• Game genres

• Game engine

• Game loop

https://doi.org/10.1007/978-1-4842-6121-7_5#DOI

56

 A Quick Tour of Game Genres

If you looked at the Wikipedia page for game genres, you’ll see the many

(and still growing) categories of games. A game genre is a specific category

of games related by their gameplay characteristics. We won’t describe all

the games here, but let’s look at some of the popular ones.

 Casual Games

Casual games are fast becoming a favorite for both experienced and non-

experienced gamers. These games usually have very simple rules, play

techniques, and degree of strategy. You don’t need to commit extra-long

hours for these games, nor do you need special skills to enjoy them; that’s

probably the reason why these games are very popular, because they’re

easy to learn and play as a pastime.

I’m sure you’ve seen some of these games already; you might have

played a couple of them. Minion Rush (Figure 5-1) is a runner game, based

loosely on the very popular Temple Run, where you guide a figure—in this

case, a minion—through hoops and obstacles. Swipe left and the minion

goes left, swipe right and it goes right, swipe down to slide, and swipe up

to jump; it really is simple. There are many derivatives of this game, but

the mechanics rarely changes. Usually, the objective is to run for as long as

possible and collect some tokens along the way.

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

57

Another example of a casual game is Candy Crush Saga (Figure 5-2).

It’s a “match three” game. The gameplay revolves around swapping two

adjacent candies among several on the game board so that you can

make a row or column of three matching colored candies. By the way,

Figure 5-1. Minion Rush

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

58

while Candy Crush Saga is considered a casual game, it also belongs to

another category called puzzle games; sometimes, a game may belong to

more than one category.

 Puzzle Games

Puzzle or logic games require the player to solve logic puzzles or navigate

challenging locations such as mazes. This genre frequently crosses over

with adventure, educational, or even casual games. I’m sure you’ve heard

of Tetris (Figure 5-3) or Bejeweled; these two are the best examples I can

think of for puzzle games.

Tetris is largely credited for popularizing the puzzler genre. Tetris,

originally, came from the Soviet Union and came to life sometime in 1984.

The goal in this game is simple; the player must destroy lines of block

Figure 5-2. Candy Crush Saga

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

59

before the blocks pile up and reaches the top. A tetromino is the shape of

the four connected blocks that falls from the top of the screen and settles

at the bottom. There are generally seven kinds of tetrominoes (Figure 5-4).

You can guide the tetrominoes as they fall; swiping left or right guides the

blocks to the desired location, and (usually) double tapping rotates the

tetrominoes.

Figure 5-3. Tetris

Figure 5-4. Tetrominoes

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

60

Bejeweled (Figure 5-5) is another popular puzzler. The goal is to clear

gems of the same color, potentially causing a chain reaction; this is done

by swapping one gem with an adjacent gem to form a horizontal or vertical

chain of three or more gems of the same color. When chains are formed,

the gems disappear and some other gems fall from the top to fill in the

gaps—sometimes, “cascades” are triggered when chains are formed by the

falling gems.

As you can see from the Tetris and Bejeweled examples, matchers

make for good puzzle gameplay; but there are other kinds of puzzlers.

Take “Cut the Rope” (Figure 5-6) by ZeptoLab as an example; it’s a physics

puzzler. The goal of the game is to feed the candy to “Om Nom” (the little

green creature). The candy must be guided toward Om Nom by cutting

ropes the candy is attached to; the candy may be blown or put inside

bubbles, so it avoids obstacles. Every game object is physically simulated

to some degree. The game is powered by Box2D, a 2D physics engine.

Figure 5-5. Bejeweled

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

61

 Action Games

Action games usually require hand-eye coordination and motor skills.

These games center around a player who is in control of most of the action.

This genre has many subgenres such as platformers, shooting games,

fighting games, stealth, survival games, battle royale, and rhythm games.

Platformers usually involve a character that jumps and climbs to

navigate the environment. There are usually enemies and obstacles that

the character must avoid. The most popular platform games are usually

released either in consoles or PCs (Mario Bros., Donkey Kong, Crash

Bandicoot, Sonic Mania, Limbo, etc.), but some platformers are making

their way into Google Play (Adventure Island, Blackmoor 2, Dandara, etc.).

Shooter games (or simply, shooters) are another popular subgenre

of action games. The genre is very descriptive, you can guess what these

games are all about just from their genre, and you would be right; you

shoot things, people, aliens, monsters, zombies, and so on. The player

Figure 5-6. Cut the Rope

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

62

uses a range of weapons to participate in action, which takes place at a

distance. This genre is usually characterized by violent gameplay and

lethal weaponry (with some notable exceptions like Splatoon, which have

a nonviolent objective and gameplay). Some of the popular shooter games

in Google Play are Call of Duty mobile, Fortnite, Hitman Sniper, PUBG

mobile, Critical Ops, Dead Effect 2, and Gigantic X, to name a few.

 Tower Defense Games

Tower defense is a subgenre of strategy games. Strategy games focus

on gameplay which requires skillful and careful thinking and planning

in order to achieve victory. In most strategy games, the player is given

“god- like” view of the game world so they can control the units in their

command, either directly or indirectly.

Tower defense gameplay typically features an evil force that sends

out waves of critters, zombies, balloons, or what have you. Your task is to

defend some strategic area in the game world (your tower) by mounting

defenses, whether that be turrets, monkeys, guns, and so on. These

defenses will shoot the incoming waves of the enemy, and you get points

for each kill. The points are converted into game currency that you can use

either to upgrade your weapons or buy new weapons.

At the time of writing, the popular tower defense games in Google Play

are Bloons TD 6, Defenders 2, Defense Zone 3, Digfender, Element TD,

Kingdom Rush, and Grow Castle, to name a few.

This is in no way a compendium of the game genres; it’s a small list

of what kinds of games you can find in Google Play. If you’re looking for

an inspiration for your next game (or first game), try to play the games

analytically, and set aside the entertainment part. Do it clinically. Try to get

a feel of how the game flows and try to deconstruct it in your mind. That

may give you some ideas for your game.

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

63

 Game Engine

Once you have an idea what game you want to build, and presumably,

you’ve gone through the exercise of designing your game through

storyboarding, mocking the graphics, and drawing some screen

wireframes—you know, the planning stage—you probably want to spend

some time on how to organize the code. The organization of the code is

what makes up the game engine and the game loop.

At the core of every game is the game engine. This is the code that

powers the game; this is the one that handles all the grunt work. A typical

game engine will handle the following tasks:

• Window management

• Graphics rendering

• Animation

• Audio

• Collision detection

• Physics

• Threading and memory

• Networking

• Input/output

• Storage

The game loop is a block of code within the game engine. As its name

suggests, it loops. It runs repeatedly and perpetually; it doesn’t stop until

the player quits. You may have heard gamers talked about frame rates

before; the speed at which your game loop can run affects the frame rate

of the game. The faster your code executes within the loop, the more

responsive it will be and the smoother the game will be.

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

64

A typical game loop does the following:

• Get inputs from the user—This is the command

interpreter; you need to set up your code to listen to

user inputs, whether they be double taps, long clicks,

button clicks, swipes, gestures, keyboard inputs, or

others. These inputs affect the characters and the

overall game, for example, if the game was Minion Rush

or Temple Run, swiping left, right, up, or down moves

the runner.

• Collision detection—This is where you track the

characters as they move through the game world. When

they reach the edges of the game world, you decide

what to do with the character. Collision detection is

also where you test if the character has bumped into

obstacles.

• Draw and move the background—This is where you

draw the game world, at least part of it that should be

visible to the player.

• Move the characters as a response to the user input.

• Play sound effects as interesting events happen to the

character or within the game world.

• Play background music—This isn’t the same as

playing sound effects. The background music persists

throughout a level, so it needs to be continuous. This is

where your knowledge of threads will come in handy.

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

65

• Track the player’s score—As the game progresses, the

player will accumulate points. You can store the game

stats locally using a local storage. In case you need to

update a leaderboard in the cloud, you need to use the

networking APIs of Android. Tracking the player’s score

might also involve displaying a dedicated screen (an

Activity or a Frame in Android) where the scores are

tallied.

This isn’t an exhaustive or definitive list of what you need to address

in code, but it’s a start. The number of things you need to do in the game

loop and the game engine will increase or decrease depending on the

complexity of the game.

 Key Takeaways

• There is already a myriad of games. Your next game

inspiration could come from existing games. Try

playing the game analytically, clinically, and divorced

from the entertainment aspect. Dissect them to get an

idea of how they flow.

• Smoothness of the game experience is heavily affected

by what you do inside the game loop. The faster the

loop executes, the snappier your game is.

CHAPTER 5 INTRODUCTION TO GAME DEVELOPMENT

67© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_6

CHAPTER 6

Building the
Crazy Eights Game
The best way to learn game programming is to start coding one. In this

chapter, we’ll build a simple card game, Crazy Eights. Crazy Eights is a

popular game, both the actual card game and its electronic counterparts. If

you search Google Play for Crazy Eights, it’ll turn up quite a few selections.

We’ll walk through the process of how to build a simple turn-based card

game like Crazy Eights. The rules of this game are simple, and it doesn’t

involve a lot of moving parts; that’s not to say it won’t be challenging to

build. There are plenty of challenges ahead, especially if this is the first time

you’ll build a game. In this chapter, we’ll discuss the following:

• How to use Custom Views

• How to build a splash screen

• Drawing graphics

• Handling screen orientation

• Going full screen

• Drawing buttons from graphics

• Handling touch events

• Mechanics of the Crazy Eights game

• All the logic required for the Crazy Eights game

https://doi.org/10.1007/978-1-4842-6121-7_6#DOI

68

Throughout the chapter, I’ll show the code snippets necessary to

build the game and what the program looks like at specific stages of

development. The best way to understand and learn the programming

techniques in this chapter is to download the source code for the game and

keep it open in Android Studio as you read through the chapter sections. If

you want to follow along and build the project yourself, it’s best to keep the

source code for the chapter handy, so you can copy and paste particular

snippets as necessary.

 Basic Gameplay

Crazy Eights can be played by two up to five players with a deck of 52

cards; in our case, there will only be two players—a human player and

a computer player. Of course, you can build this game to accommodate

more players, but limiting the players to one human player makes the

programming a lot simpler.

Seven cards are dealt to both players one card at a time; the top card of

the remaining deck is placed face up to start the discard pile.

The object of the game is to be the first player to get rid of their cards.

Cards with a matching suit or number can be played into the middle.

Conventionally, the player to the left of the dealer goes first, but in our

case, the human player will simply start. So, the human player (us) looks at

our cards, and if we have a card that matches either the suit or the number

of the top card in the discard pile, we can play that card. If we’re unable to

play any card, we will draw from the remaining deck (up to three cards);

if we’re still unable to play, we pass. In case we draw a card that can be

played, that will be played. The eights (any suit) are wild, and it can be

played on any card. The player of an eight will state or choose a suit, and

the next player will have to play a card in the suit that was chosen. When

one of the players is able to play the last card into the middle, the round is

finished. The round can also finish if none of the players can play a hand.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

69

The score is calculated by awarding players the point value of cards left

in their hands at the end of the round; for example, if the computer bested

us in the round, and we were left with the 9 of hearts and 3 of spades, our

score will be 12.

The game ends when one of the players hits 100 or more points. The

player with the lowest score wins.

 Key Parts of the Program

To build the game, the key things to figure out are the following:

• How to draw cards—Android doesn’t have a built-in

View object that can display cards; we have to draw it

for ourselves.

• How to handle events—There will be some parts of

the program where we can use the traditional event

handling of Android where we only have to attach a

listener to the View object, but there will also be parts

where we need to figure out if the user action falls on

the region where we drew the button.

• Make the game full screen.

There are other technical challenges, but the preceding list is a good

starting point.

We’ll build the game app with mainly two Activities and two Views,

two custom Views, to be precise. To illustrate the individual cards, the

card deck, and the discard pile, we need to do 2D drawings. The Android

SDK doesn’t have a ready-made View object that will suit our needs. It’s

not like we can drag and drop a Card object from the palette and go from

there; so, we have to build our own custom View object. The android.

view.View is the basic class for drawing and handling input;

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

70

we will use this class to draw the cards, the deck, and other things we

need for the game, like the scoreboard. We could use the SurfaceView

class as our base class for our 2D drawings, and it would have been a

better choice because of the performance benefits (it has to do with the

way SurfaceView handles threads), but the SurfaceView requires a bit

more effort in programming. So, let’s go with the simpler View object.

Our game doesn’t need to go crazy on the animation anyway. We should

be just fine with our choice.

 Custom Views and Activities

In our past projects, you may recall that an Activity component is used

to show the UI and that it has two parts—a Java program in code-behind

and an XML file, which is essentially where the UI is structured as nested

arrangements of the View object defined in XML. That was fine for apps,

but we need to render custom drawings from image files, so that technique

won’t work. What we’ll do is to create a Custom View object where we will

draw everything we need, then we will set the content view of the Activity

to that custom view. We can create the custom View by creating a Java class

that extends android.view.View.

Assuming you’ve already created a project with an empty Activity, like

how we did it in the previous chapters, you can add a class to your project

by using the context menu in the Project tool window. Right-click the

package name, then click New ➤ Java, as shown in Figure 6-1.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

71

Type the name of the class, then hit ENTER. I named the class

SplashScreen, and its contents are shown in Listing 6-1.

Listing 6-1. SplashScreen.java

import android.content.Context;

import android.view.View;

public class SplashScreen extends View {

 public SplashScreen(Context context) {

 super(context);

 }

}

This is the starting point on how to create a custom View object. We

can associate this View to our MainActivity by setting the MainActivity’s

View to SplashScreen, as shown in Listing 6-2.

Listing 6-2. MainActivity

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

Figure 6-1. Add a class to the project

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

72

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 SplashScreen splash = new SplashScreen(this);

 setContentView(splash);

 }

}

 Drawing on the Screen

To draw on the screen, we can override the onDraw() method of the View

object. Let’s modify the SplashScreen class to draw a simple circle on the

screen. The code is shown in Listing 6-3.

Listing 6-3. Drawing on the screen

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.view.View;

import android.graphics.Color;

public class SplashScreen extends View {

 private Paint paint;

 private int cx;

 private int cy;

 private float radius;

 public SplashScreen(Context context) {

 super(context);

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

73

 paint = new Paint(); ❶

 paint.setColor(Color.GREEN);

 paint.setAntiAlias(true);

 cx = 200; cy = 200; radius = 50; ❷❸❹

 }

 @Override

 protected void onDraw(Canvas canvas) { ❺

 super.onDraw(canvas);

 canvas.drawCircle(cx,cy,radius,paint); ❻

 }

}

❶ The Paint object determines how the circle will look like on the canvas.

❷❸❹ cx, cy, and radius variables hold the size and location where we’ll

paint the circle.

❺ When the Android runtime calls the onDraw method, a Canvas object

is passed to the method, which we can use to draw something on the

screen.

❻ The drawCircle is one of the drawing methods available from the

Canvas object.

The important takeaway here is to remember that if you want to draw

something on the screen, you need to do that on the onDraw() method of the

View object. The parameter to onDraw() is a Canvas object that the View can

use to draw itself. The Canvas defines methods for drawing lines, bitmaps,

circles (as in our example here), and many other graphic primitives.

Overriding the onDraw() is the key to creating a custom user interface.

You can run the example at this point. I won’t take a screen capture

anymore since it’s just an unassuming circle.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

74

 Handling Events

The touchscreen is the most common type of input for game apps,

so that’s what we’ll use. To handle touch events, we will override the

onTouchEvent() callback of our SplashScreen class. Listing 6-4 shows the

basic structure and a typical code for handling touch events. You can put

the onTouchEvent() callback anywhere inside the SplashScreen program.

Listing 6-4. Handling touch events

public boolean onTouchEvent(MotionEvent evt) { ❶

 int action = evt.getAction(); ❷

 switch(action) { ❸

 case MotionEvent.ACTION_DOWN:

 Log.d(TAG, "Down"); ❹

 break;

 case MotionEvent.ACTION_UP:

 Log.d(TAG, "Up");

 break;

 case MotionEvent.ACTION_MOVE:

 Log.d(TAG, "Move");

 cx = (int) evt.getX(); ❺

 cy = (int) evt.getY(); ❻

 break;

 }

 invalidate(); ❼

 return true;

}

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

75

❶ The Android runtime calls the onTouchEvent method when the screen is

touched, dragged, or swiped.

❷ evt.getAction() returns an int value which tells us the action taken by the

user, whether it was a swipe down, up, or just a touch. In our case, we’re

just watching for any movement.

❸ We can use a simple switch construct on the action to route the program

logic.

❹ We don’t need to handle the down action for now, but I’m logging it.

❺ This gets the x coordinate of where the touch happened.

❻ And this gets the y coordinate. We’re updating the values of our cx and cy

variables (the location of the circle).

❼ This will cause the Android runtime to call the onDraw method.

In Listing 6-4, all we did was capture the location where the touch

happened. Once we extracted the x and y coordinates of the touch, we

assigned those coordinates to our cx and cy member variables, then we

called invalidate(), which forced a redraw of the View class. Each time a

redraw is forced, the runtime will call the onDraw() method, which then

draws the circle (again), but this time using the updated location of cx and

cy (variables that hold the location of our small circle drawing). Listing 6-5

shows the completed code for SplashScreen.java.

Listing 6-5. SplashScreen completed code

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.util.Log;

import android.view.MotionEvent;

import android.view.View;

import android.graphics.Color;

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

76

public class SplashScreen extends View {

 private Paint paint;

 private int cx;

 private int cy;

 private float radius;

 private String TAG = getContext().getClass().getName();

 public SplashScreen(Context context) {

 super(context);

 paint = new Paint();

 paint.setColor(Color.GREEN);

 paint.setAntiAlias(true);

 cx = 200;

 cy = 200;

 radius = 50;

 }

 @Override

 protected void onDraw(Canvas canvas) {

 super.onDraw(canvas);

 cx = cx + 50;

 cy = cy + 25;

 canvas.drawCircle(cx,cy,radius,paint);

 }

 public boolean onTouchEvent(MotionEvent evt) {

 int action = evt.getAction();

 switch(action) {

 case MotionEvent.ACTION_DOWN:

 Log.d(TAG, "Down");

 break;

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

77

 case MotionEvent.ACTION_UP:

 Log.d(TAG, "Up");

 break;

 case MotionEvent.ACTION_MOVE:

 Log.d(TAG, "Move");

 cx = (int) evt.getX();

 cy = (int) evt.getY();

 break;

 }

 invalidate();

 return true;

 }

}

If you run this code, all it will do is draw a small green circle on the

screen, waiting for you to touch the screen. Every time you touch the

screen, the circle will move to the location where you touched it.

This isn’t part of our game. This is some sort of practice code so we can

warm up to the actual game code. Now that we have some idea on how to

paint something to the screen and how to handle basic touch event, let’s

proceed with the game code.

 SplashScreen with a Title Graphic

We don’t want to show just a small dot to the user when the game is launched;

instead, we want to display some title graphic. Some games probably will

show credits and some other info, but we’ll keep ours simple. We’ll display the

title of the game using a simple bitmap. Before you can do this, you need to

put the graphic file in the app/res/drawable folder of the project. A simple

way to do that is to use the context menu; right-click the app/res/drawable ➤

Reveal in Finder (on macOS); if you’re on Windows, this will read Show in

Explorer. The dialog window in macOS is shown in Figure 6-2.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

78

When you launch the file manager, you can place the graphic file in

there. The drawable folder is where graphical assets are usually stored.

To load the bitmap

Listing 6-6. Loading the bitmap

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

import android.content.Context;

import android.graphics.Canvas;

import android.view.View;

public class SplashScreen extends View {

 private Bitmap titleG;

 public SplashScreen(Context context) {

 super(context);

 titleG = BitmapFactory.decodeResource(getResources(),

 R.drawable.splash_graphic); ❶

 }

Figure 6-2. res ➤ drawable ➤ Reveal in Finder

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

79

 protected void onDraw(Canvas canvas) {

 super.onDraw(canvas);

 canvas.drawBitmap(titleG, 100, 100, null); ❷

 }

}

❶ Use the BitmapFactory to decode the graphical resource from the drawable

folder. This loads the bitmap onto memory which we will use later to draw

the graphic onto the screen.

❷ The drawBitmap method of Canvas draws the bitmap to the screen.

Our splash screen is shown in Figure 6-3.

Figure 6-3. Splash screen

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

80

The screen doesn’t look bad, but it’s skewed to the left. That’s

because we hardcoded the drawing coordinates for the bitmap. We’ll

fix that in a little while; first, let’s take care of that application title and

the other widgets on top of the screen. Let’s maximize the screen space

for our game. Open MainActivity.java and make the changes shown in

Listing 6-7.

Listing 6-7. Displaying the app full screen

public class MainActivity extends AppCompatActivity {

 private View splash;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 splash = new SplashScreen(this);

 splash.setKeepScreenOn(true);

 setContentView(splash);

 }

 private void setToFullScreen() { ❶

 splash.setSystemUiVisibility(View.SYSTEM_UI_FLAG_LOW_

PROFILE

 | View.SYSTEM_UI_FLAG_FULLSCREEN

 | View.SYSTEM_UI_FLAG_LAYOUT_STABLE

 | View.SYSTEM_UI_FLAG_IMMERSIVE_STICKY

 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION

 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION);

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

81

 @Override

 protected void onResume() {

 super.onResume();

 setToFullScreen(); ❷

 }

}

❶ Create a new method where we can put the necessary code to make the

app full screen.

❷ Call the setFullScreen method on the onResume callback. onResume()

is called just before the UI is visible to the user; so, this is a good place to

put our fullscreen code. This lifecycle method may be called several times

during the life of the app.

The setSystemUiVisibility method of the View object is the key to

display a more immersive screen experience to your users. There are

many combinations you can try for the system UI flags. You can read

more about them on the documentation page here: https://bit.ly/

androidfullscreen.

Next, we take care of the orientation. We can choose to let users play

the game either in portrait or landscape mode, but that means we need

to write more code to handle the orientation change; we won’t do that

here. Instead, we will fix our game in portrait mode. This can be done in

the AndroidManifest file. You need to edit the manifest file to reflect the

modifications shown in Listing 6-8. To open the manifest file, double-click

the file from the Project tool window, as shown in Figure 6-4.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

https://bit.ly/androidfullscreen
https://bit.ly/androidfullscreen

82

Listing 6-8. AndroidManifest

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/

android"

 package="net.workingdev.crazy8">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity"

 android:screenOrientation="portrait" ❶

 android:configChanges="orientation|keyboard

Hidden" ❷

 >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

Figure 6-4. AndroidManifest

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

83

 <category android:name="android.intent.category.

LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

❶ This fixes the screen orientation to portrait.

❷ This line prevents screen orientation changes when the software keyboard is

toggled.

Now that we have the orientation fixed and full screen sorted out, we

can work on centering the graphic.

To center the title graphic, we need the actual width of the screen and

the actual width of the title graphic. The width of the screen minus the

width of the title graphic divided by two should give us the location where

we can start drawing the title graphic such that it’s centered on the screen.

Listing 6-9 shows the changes we need to make in SplashScreen to make

all these happen.

Listing 6-9. Centering the title graphic

public class SplashScreen extends View {

 private Bitmap titleG;

 private int scrW; private int scrH; ❶

 public SplashScreen(Context context) {

 super(context);

 titleG = BitmapFactory.decodeResource(getResources(),

 R.drawable.splash_graphic);

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

84

 @Override

 public void onSizeChanged (int w, int h, int oldw, int oldh){

 super.onSizeChanged(w, h, oldw, oldh);

 scrW = w; scrH = h; ❷

 }

 protected void onDraw(Canvas canvas) {

 super.onDraw(canvas);

 int titleGLeftPos = (scrW - titleG.getWidth())/2; ❸

 canvas.drawBitmap(titleG, titleGLeftPos, 100, null); ❹

 }

}

❶ Let’s declare some variables to hold the dimensions of the screen.

❷ As soon as the Android runtime is able to calculate the actual dimensions of

the screen, the onSizeChanged() method is called. We can grab the actual

width and height of the screen from here and assign them to our member

variables which will hold screen-height and screen-width values.

❸ The title.getWidth() gets, well, the width of our title graphic, subtracts

it from the screen width (which we grabbed during onSizeChanged), and

divides it by two. That should center the graphic.

❹ Now we can draw the graphic with proper centering.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

85

Figure 6-5 shows our app, as it currently stands.

 Adding the Play Button

We will add a button to the splash screen so that we have a way for the

user to actually start the game. We’ll add just a “Play” button; we won’t

add a “Quit” button. We could add a Quit button, but we’re not doing this

because it’s not consistent with Android app conventions. Our game is

still, after all, an Android app. It needs to behave like most Android apps,

and most Android apps don’t have a Quit button. An app is typically

launched, used, paused, and killed, and the Android OS already has a

way to kill apps.

We can’t drag and drop a Button View object from the Palette

because we’re using a custom view. We have to draw the button just like

how we drew the title graphic. So, in the SplashScreen class, add the

declaration statement for the button and then initialize it by loading

the image using the BitmapFactory somewhere in the constructor of

SplashScreen.

Figure 6-5. Centered graphic and full screen

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

86

I prepared two graphics for the button; one graphic shows the regular

appearance of the button while it’s not pressed, and the other graphic

shows the image of the button while it’s depressed. It’s just a small visual

cue to the user so that when they click the button, something actually

happens. This also means we need to handle the button state. Drawing the

actual image of the button will happen in the onDraw() method; we need

a way to route the program logic whether to draw the regular state or the

depressed state of the button.

Another task we need to manage is detecting the button click. Our

button isn’t the regular button; it’s a drawn bitmap on the screen. We cannot

use findViewbyId then bind the reference to an event listener. Instead, we

need to detect if a touch happens within the bounds of the drawn button

and write the appropriate code. Listing 6-10 shows the annotated code for

loading, drawing, and managing the state of the Play button. The other code

related to the display and centering of the title graphic has been removed, so

only the code relevant for the button is displayed.

Listing 6-10. Displaying and managing the Play button states

import android.view.MotionEvent;

public class SplashScreen extends View {

 private Bitmap playBtnUp; ❶

 private Bitmap playBtnDn;

 private boolean playBtnPressed; ❷

 public SplashScreen(Context context) {

 super(context);

 playBtnUp = BitmapFactory.decodeResource(getResources(),

R.drawable.btn_up); ❸

 playBtnDn = BitmapFactory.decodeResource(getResources(),

R.drawable.btn_down);

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

87

 @Override

 public void onSizeChanged (int w, int h, int oldw, int oldh){

 super.onSizeChanged(w, h, oldw, oldh);

 scrW = w;

 scrH = h;

 }

 public boolean onTouchEvent(MotionEvent event) {

 int evtAction = event.getAction();

 int X = (int)event.getX();

 int Y = (int)event.getY();

 switch (evtAction) {

 case MotionEvent.ACTION_DOWN:

 int btnLeft = (scrW - playBtnUp.getWidth())/2; ❹

 int btnRight = btnLeft + playBtnUp.getWidth();

 int btnTop = (int) (scrH * 0.5);

 int btnBottom = btnTop + playBtnUp.getHeight();

 boolean withinBtnBounds = X > btnLeft && X

< btnRight &&

 Y > btnTop &&

 Y < btnBottom; ❺

 if (withinBtnBounds) {

 playBtnPressed = true; ❻

 }

 break;

 case MotionEvent.ACTION_MOVE:

 break;

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

88

 case MotionEvent.ACTION_UP:

 if (playBtnPressed) {

 // Launch main game screen

 }

 playBtnPressed = false;

 break;

 }

 invalidate();

 return true;

 }

 protected void onDraw(Canvas canvas) {

 super.onDraw(canvas);

 int playBtnLeftPos = (scrW - playBtnUp.getWidth())/2;

 if (playBtnPressed) { ❼

 canvas.drawBitmap(playBtnDn, playBtnLeftPos, (int)

(scrH *0.5), null);

 } else {

 canvas.drawBitmap(playBtnUp, playBtnLeftPos, (int)

(scrH *0.5), null);

 }

 }

}

❶ It defines the variables to hold the bitmap for the button images.

❷ We’ll use the btnPressed boolean variable as a switch; if this is false, it

means the button isn’t pressed, and we’ll display the regular button graphic.

If it’s true, we’ll display the button graphic for the depressed state.

❸ Let’s load up the button bitmap from the graphical file, just like how we did it

for the title graphic.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

89

❹ The variables btnLeft, btnTop, btnBottom, and btnRight are screen

coordinates for the bounds of the button.

❺ If the X and Y coordinates of the touch action are within the button bounds,

this expression will return true.

❻ If the button is within the bounds, we set the btnPressed variable to true.

❼ During onDraw, we can display the appropriate button graphic depending on

the value of the btnPressed variable.

Figure 6-6 shows our app with the centered title graphic and Play button.

Figure 6-6. Splash screen with the Play button

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

90

The play button is centered vertically on the screen; if you want to

adjust the vertical location of the button, you can change it in the onDraw

method; it’s the third parameter of the drawBitmap method, as shown in

the following snippet.

canvas.drawBitmap(playBtnUp, playBtnLeftPos, (int)(scrH *0.5),

null);

The expression (int) (scrH *0.5) means to get the value of the

midpoint of the detected screen height; multiplying the screen height by

50% gets you the midpoint.

 Launching the Game Screen

We will launch the game screen as another Activity, which means we need

to create another Activity and another View class.

To add another Activity, right-click the package name in the Project

tool window, then click New ➤ Activity ➤ Empty Activity, as shown in

Figure 6-7.

Figure 6-7. New Empty Activity

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

91

Then, fill up the Activity name, as shown in Figure 6-8.

Next, add a new class to the project. You can do this by right-clicking

the package name and choosing New ➤ Java Class, as shown in Figure 6-9.

Figure 6-8. Configure Activity

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

92

Name the class CrazyEightView, edit it, and make it extend the View

class, just like our SplashScreen class. Listing 6-11 shows the code for

CrazyEightView.

Listing 6-11. CrazyEightView.java

import android.content.Context;

import android.graphics.Canvas;

import android.view.View;

public class CrazyEightView extends View {

 public CrazyEightView(Context context) {

 super(context);

 }

 protected void onDraw(Canvas canvas) {

 super.onDraw(canvas);

 }

}

Figure 6-9. New Java Class

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

93

Next, we fix the second Activity class (CrazyEight class) to occupy the

whole screen, much like our MainActivity class. Listing 6-12 shows the

code for CrazyEightActivity.

Listing 6-12. CrazyEightActivity

public class CrazyEight extends AppCompatActivity {

 private View gameView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 gameView = new CrazyEightView(this); ❶

 gameView.setKeepScreenOn(true);

 setContentView(gameView); ❷

 }

 private void setToFullScreen() { ❸

 gameView.setSystemUiVisibility(View.SYSTEM_UI_FLAG_LOW_

PROFILE

 | View.SYSTEM_UI_FLAG_FULLSCREEN

 | View.SYSTEM_UI_FLAG_LAYOUT_STABLE

 | View.SYSTEM_UI_FLAG_IMMERSIVE_STICKY

 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION

 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION);

 }

 @Override

 protected void onResume() {

 super.onResume();

 setToFullScreen(); ❹

 }

}

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

94

❶ Create an instance of the CrazyEightView class and pass the current context.

❷ Set the View of this Activity to our custom view (CrazyEightView).

❸ Here comes our code for getting the whole View to occupy the entire screen,

same as we did before.

❹ We call the setFullScreen within the onResume callback because we want it

to run just before the screen is visible to the user.

Now that we’ve got an Activity where the actual game will be played,

we can put in the code in SplashScreen that will launch our second

Activity (CrazyEight).

Android uses Intent objects for component Activation, and launching

an Activity requires component Activation. There are many other uses for

Intents, but we won’t cover them here. We’ll just put in the necessary code

to launch our CrazyEight Activity.

Go back to SplashScreen’s onTouchEvent, specifically the

MotionEvent.ACTION_UP branch. In Listing 6-10, find the code where

we made the comment // Launch main game screen, as shown in the

snippet in Listing 6-13.

Listing 6-13. Code snippet MotionEvent.ACTION_UP

case MotionEvent.ACTION_UP:

 if (playBtnPressed) {

 // Launch main game screen

 }

 playBtnPressed = false;

 break;

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

95

We will replace that comment with the code that will actually launch

the CrazyEight Activity, but first, we’ll need to add a member variable to

SplashScreen that will hold the current Context object. Just add a variable

to the SplashScreen class like this:

private Context ctx;

Then, in SplashScreen’s constructor, add this line:

ctx = context;

We need a reference to the current Context because we need to pass it

as an argument to the Intent object.

Now, write the Intent code inside the ACTION_UP branch of

SplashScreen’s onTouchEvent handler so that it reads like Listing 6-14.

Listing 6-14. Intent to launch CrazyEight Activity

case MotionEvent.ACTION_UP:

 if (playBtnPressed) {

 Intent gameIntent = new Intent(ctx, CrazyEight.class);

 ctx.startActivity(gameIntent);

 }

 playBtnPressed = false;

 break;

 Starting the Game

The game starts by shuffling a deck of cards, dealing seven cards to our

opponent (the computer) and the user. After that, we place the top card of

the remaining deck face up to start a discard pile.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

96

To these things, we need something to represent a single card (we’ll

use a class for this); we need to represent the collection of cards in the

human player’s hand and in the computer’s hand; we also need to

represent the discard pile.

To represent a single card, let’s create a new class and add it to the

project. Right-click the project’s package name in the Project tool window,

as shown in Figure 6-10.

Name the new class “Card” and modify the contents, as shown in

Listing 6-15.

Listing 6-15. Card class

import android.graphics.Bitmap;

public class Card {

 private int id;

 private int suit;

 private int rank;

 private Bitmap bmp;

 private int scoreValue;

Figure 6-10. Add a new class

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

97

 public Card(int newId) {

 id = newId;

 }

 public void setBitmap(Bitmap newBitmap) {

 bmp = newBitmap;

 }

 public Bitmap getBitmap() {

 return bmp;

 }

 public int getId() {

 return id;

 }

}

Our Card class is a basic POJO. It’s meant to represent a single card

in the deck. The constructor takes an int parameter, which represents

a unique id for the card. We’ve assigned an id to all the cards, from the

deuce of Diamonds to the Ace of Spades. The four suits (Diamonds, Clubs,

Hearts, and Spades) are given base values, as follows:

• Diamonds (100)

• Clubs (200)

• Hearts (300)

• Spades (400)

Each card in the suit has a rank, which is the number value of the card.

The lowest rank is 2 (the deuce), and the highest rank is 14 (the Ace). The

id of a Card object will be calculated as the base value of the suit plus the

rank of the card; so, the 2 of Diamonds is 102, the 3 of Clubs is 203, and so

on and so forth.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

98

You can get your card images from a variety of places like www.

shutterstock.com and www.acbl.mybigcommerce.com (American

Contract Bridge League) or even create the images yourself if you’re up

to it. No matter where you get your card image files, you have to name

them according to how we’re assigning base values and rank. So, the 2

of Diamonds is “card102”, Ace of Diamonds is “card114”, and the Ace of

Spades is “card414”.

The Card class also has get() and set() methods for the image files so

we can get and set the bitmap image for a particular card.

Now that we have a POJO for the Card, we need to build a deck of 52

cards; to do this, let’s create a new method in the CrazyEightView class and

call it initializeDeck(); the annotated code is shown in Listing 6-16.

Listing 6-16. Initialize the deck

private void initializeDeck() {

 for (int i = 0; i < 4; i++) { ❶

 for (int j = 102; j < 115; j++) { ❷

 int tempId = j + (i*100); ❸

 Card tempCard = new Card(tempId); ❹

 int resourceId = getResources().

 getIdentifier("card" + tempId, "drawable",

 ctx.getPackageName()); ❺

 Bitmap tempBitmap = BitmapFactory.decodeResource(ctx.

getResources(),

 resourceId);

 scaledCW = (int) (scrW /8); ❻

 scaledCH = (int) (scaledCW *1.28);

 Bitmap scaledBitmap = Bitmap.createScaledBitmap

(tempBitmap,

 scaledCW, scaledCH, false);

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

http://www.shutterstock.com
http://www.shutterstock.com
http://www.acbl.mybigcommerce.com

99

 tempCard.setBitmap(scaledBitmap);

 deck.add(tempCard); ❼

 }

 }

}

❶ We loop through the suits (Diamonds, Clubs, Hearts, and Spades).

❷ Then, we loop through each rank in the current suit.

❸ Let’s get a unique id. This id will now be what the current value of j + the

current value of i multiplied by 100. Since we named our card images

card102.png up until card413.png, we should be able to walk through all

the image files using the j + (i * 100) expression.

❹ We create an instance of a Card object, passing in a unique id as an

argument. This unique id is consistent with our naming convention for the

card image files.

❺ Let’s create a resource id for an image based on tempId.

❻ We’re scaling the width of the card to 1/8th of the screen width so we can

fit seven cards horizontally. The variables scaledCW and scaledCH should

be declared as member variables in the Card class.

❼ Now, we add the Card object to the dec object, which is an ArrayList object

that should be declared as a member variable. You can add a declaration

for the deck like this: List<Card> deck = new ArrayList<Card>();

Now that we have a deck, we need to find a way to deal the cards to the

players. We need to represent the hand of the human player and the hand

of the computer player. Since we already used an ArrayList to represent

the card deck, let’s use ArrayLists as well to represent both hands (human

player and the computer). We will also use an ArrayList to represent the

discard pile.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

100

Add the following member variable declarations to the

CrazyEightView class:

private List<Card> playerHand = new ArrayList<>();

private List<Card> computerHand = new ArrayList<>();

private List<Card> discardPile = new ArrayList<>();

Now let’s add the method to deal the cards to the human player

and the computer player; Listing 6-17 shows the code for the method

dealCards().

Listing 6-17. Deal the cards to both players

private void dealCards() {

 Collections.shuffle(deck,new Random());

 for (int i = 0; i < 7; i++) {

 drawCard(playerHand);

 drawCard(computerHand);

 }

}

The first statement in the method is a Java utility function to randomize

the order of elements in a List; this should satisfy our card shuffling

requirement.

The for-loop comes around seven times (we want to give each hand

seven cards), and inside the loop, we call the drawCard() method

twice, once for each of the players; the code for this method is shown in

Listing 6-18.

Listing 6-18. drawCard() method

 private void drawCard(List<Card> hand) { ❶

 hand.add(0, deck.get(0)); ❷

 deck.remove(0); ❸

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

101

 if (deck.isEmpty()) { ❹

 for (int i = discardPile.size()-1; i > 0 ; i--) {

 deck.add(discardPile.get(i));

 discardPile.remove(i);

 Collections.shuffle(deck,new Random());

 }

 }

 }

❶ The drawCard() method is called for both the human player and the

computer. To call the method, we pass a List object as an argument; this

argument represents which hand should we deal the card to.

❷ We get the card at the top of the deck and add it to the hand object.

❸ Next, getting the card at the top of the card doesn’t automatically remove

it; so, we remove it from the deck. When a card is dealt with a player, it

should be removed from the deck.

❹ When the deck is empty, we bring cards from the discard pile back to the

deck, and we give a fresh shuffle.

The methods for initializing the deck and dealing the cards should be

placed inside the onSizeChanged() method. This method is called once

the screen dimensions have been calculated by the runtime, and it may

be called subsequently if, for some reason, the dimensions of the screen

change. The orientation of the screen always starts as portrait, and since

we made changes to the manifest file to always keep the orientation as

portrait, there is a good chance that the onSizeChanged() method will

be called only once (in the lifetime of the app at least). So, this seems like

a good place to put game initialization methods like initializeDeck()

and drawCard().

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

102

 Displaying the Cards

Our next tasks are to display the cards in the game, namely:

• The cards in our hand

• The computer’s hand

• Discard pile

• Face up card

• The scores

Figure 6-11 shows the layout of cards in the game.

Figure 6-11. How the game should look

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

103

The computer’s hand is faced down; we’re not supposed to see them;

so, all we need to do is to draw the back of the cards. We can do that by

iterating through the computer’s hand, and for each item in the List, we

draw the back of the card. We have a graphic file for the back of the card.

We’ll simply draw this the same way we’ve drawn other graphics.

Before we do any further drawing, we’ll need to establish some

scale and get the density of the device’s screen. We can do that with the

following code:

scale = ctx.getResources().getDisplayMetrics().density;

We’ll put that in the constructor of the CrazyEightView class. We need

to define the scale as a member variable as well. So, somewhere in the top

level of the class, define the scale as a variable, like this:

private float scale;

We will use the scale variable as a scaling factor for our drawings; this

way, if the density of the mobile devices changes, our card graphics will

still be in proportion.

Now we can draw the computer’s hand. Listing 6-19 shows that code.

Listing 6-19. Draw the computer’s hand

public void onSizeChanged (int w, int h, int oldw, int oldh){

// other statements

 scaledCW = (int) (scrW /8); ❶

 scaledCH = (int) (scaledCW *1.28); ❷

 Bitmap tempBitmap = BitmapFactory.decodeResource(ctx.

getResources(),

 R.drawable.card_back); ❸

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

104

 cardBack = Bitmap.createScaledBitmap(tempBitmap, ❹

 scaledCW, scaledCH, false);

}

protected void onDraw(Canvas canvas) {

 for (int i = 0; i < computerHand.size(); i++) {

 canvas.drawBitmap(cardBack, ❺

 i*(scale*5),

 paint.getTextSize()+(50*scale),

 null);

 }

}

❶ We won’t use the actual size of card graphics; we want to draw them in

proportion to the screen’s density. The variables scaledCW and scaledCH

(scaled Card height and width) will be used for drawing the scaled bitmaps.

These are defined as member variables, because we need access to them

outside the onSizeChanged() method.

❷ We’d like the scaled height to be 1.28 times longer than the scaled Card

width.

❸ Load the bitmap like how we loaded bitmaps before.

❹ Now we create a scaled bitmap from the tempBitmap we’ve loaded.

❺ We’re drawing all the cards in the computer’s hand one graphic at a time

and 5 pixels apart (horizontally) so that they overlap; we’re also drawing

the cards 50 scaling factors from the top of the screen plus the default text

size of the Paint object.

In bullet number ❺, we referred to a Paint object. This variable is

defined as a member variable, so if you’re following, you need to add this

variable right now, like this:

private Paint paint;

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

105

Then, somewhere in the constructor, add this statement:

paint = new Paint();

That should get us caught up already. We use the Paint object not only

for determining sizes of the default text but also we use it (later) for writing

some text to the screen.

Next, we draw the human player’s hand. Listing 6-20 shows the

annotated code.

Listing 6-20. Drawing the human player’s hand

protected void onDraw(Canvas canvas) {

 // other statements

 for (int i = 0; i < playerHand.size(); i++) { ❶

 canvas.drawBitmap(playerHand.get(i).getBitmap(), ❷

 i*(scaledCW +5),

 scrH - scaledCH - paint.getTextSize()-(50*scale),

 null);

 }

}

❶ We walk through all cards in the hand.

❷ Then, we draw the bitmap using the scaled card height and width variables.

The cards are drawn 5 pixels apart, and its Y position subtracts the (1)

height of the card, (2) the text height (which we will use later for drawing the

scores), and (3) 50 scaled pixels from the bottom of the screen.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

106

Next, we show the draw pile; add the code in Listing 6-21 to the

onDraw method so we can show the draw pile.

Listing 6-21. The draw pile

protected void onDraw(Canvas canvas) {

 // other statements

 float cbackLeft = (scrW/2) - cardBack.getWidth() - 10;

 float cbackTop = (scrH/2) - (cardBack.getHeight() / 2);

 canvas.drawBitmap(cardBack, cbackLeft, cbackTop, null);

}

The draw pile is represented by a single back of the card graphics. It’s

drawn approximately centered on the screen.

Next, we draw the discard pile. Remember that the discard pile is

started as by getting the top card of what remains in the deck after the

cards have been dealt with the players; so, before we draw them, we need

to check if it’s empty or not. Listing 6-22 shows the code for showing the

discard pile.

Listing 6-22. Discard pile

if (!discardPile.isEmpty()) {

 canvas.drawBitmap(discardPile.get(0).getBitmap(),

 (scrW /2)+10,

 (scrH /2)-(cardBack.getHeight()/2),

 null);

}

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

107

 Handling Turns

Crazy Eights is a turn-based game. We need to route the program logic

based on whose turn it is, whether it’s the computer or the human player.

We can facilitate this by adding a boolean variable as a member of the

CrazyEightView class, like this:

private boolean myTurn;

Throughout our code, we will enable or disable certain logic

based on whose turn it is. In the onSizeChanged method, we add the

following code:

myTurn = new Random().nextBoolean();

if (!myTurn) {

 computerPlay();

}

That should randomly choose who goes first. Naturally, the myTurn

variable needs to be toggled every time either player plays a valid card, and

also we need to add the computerPlay() method to our class; we’ll do that

in a little while.

 Playing a Card

A valid play in Crazy Eights requires that a player matches the top card of

the discard pile, which means we now need a way to get the rank and suit

from a Card object. Let’s modify the Card class to do just that. Listing 6-23

shows the revised Card class.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

108

Listing 6-23. Revised Card class with rank and suit calculation

public class Card {

 private int id;

 private int suit;

 private int rank;

 private Bitmap bmp;

 private int scoreValue;

 public Card(int newId) {

 id = newId;

 suit = Math.round((id/100) * 100);

 rank = id - suit;

 }

 public int getScoreValue() {

 return scoreValue;

 }

 public void setBitmap(Bitmap newBitmap) {

 bmp = newBitmap;

 }

 public Bitmap getBitmap() {

 return bmp;

 }

 public int getId() {

 return id;

 }

 public int getSuit() {

 return suit;

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

109

 public int getRank() {

 return rank;

 }

}

We added the suit and rank variables to hold the values of the suit

and rank, respectively. We also added the logic necessary to calculate both

values.

The suit variable is calculated by rounding it up to the nearest

hundred; for example, if the id is 102 (2 of Diamonds), the suit value

will be 100. The rank variable is calculated by subtracting the suit from

the id; if the id is 102, we subtract 100 from 102; hence, we get 2 as the

value of the rank.

Finally, we add a getSuit() and getRank() methods to provide getters

for the suit and rank values, respectively.

Having a way to get the rank and the suit of the card, we can start

writing the code for when it’s the computer’s turn to play. The code for

computerPlay(), which must be added to the CrazyEightView class, is

shown in Listing 6-24.

Listing 6-24. computerPlay()

private void computerPlay() {

 int tempPlay = 0;

 while (tempPlay == 0) {

 tempPlay = computerPlayer.playCard(computerHand, validSuit,

validRank); ❶

 if (tempPlay == 0) {

 drawCard(computerHand); ❷

 }

 }

}

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

110

❶ The computerPlay variable should be a member variable; we haven’t

created the class for the ComputerPlayer yet, but we will shortly. For now,

just imagine that the playCard() method should return a valid play. The

playCard method should go through all the cards in the computer’s hand if it

has a valid play that will be returned to the tempPlay variable.

❷ If the computer doesn’t have a play, it needs to draw a card from the deck.

Now, let’s build the ComputerPlayer class. Add another class to the

project and name it ComputerPlayer.java, as shown in Figure 6-12.

Code for ComputerPlayer.java is shown in Listing 6-25.

Figure 6-12. Add another class to the project

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

111

Listing 6-25. ComputerPlayer.java

import java.util.List;

public class ComputerPlayer {

 public int playCard(List<Card> hand, int suit, int rank) {

 int play = 0;

 for (int i = 0; i < hand.size(); i++) { ❶

 int tempId = hand.get(i).getId(); ❷

 int tempRank = hand.get(i).getRank(); ❸

 int tempSuit = hand.get(i).getSuit(); ❹

 if (tempRank != 8) {

 if (rank == 8) { ❺

 if (suit == tempSuit) {

 play = tempId;

 }

 } else if (suit == tempSuit || rank == tempRank) {

 play = tempId;

 }

 }

 }

 if (play == 0) { ❻

 for (int i = 0; i < hand.size(); i++) { ❼

 int tempId = hand.get(i).getId();

 if (tempId == 108 || tempId == 208 || tempId == 308 ||

tempId == 408) { // <>

 play = tempId;

 }

 }

 }

 return play;

 }

}

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

112

❶ The playCard method needs to go through all the cards in the computer’s

hand to see if we have a valid play.

❷ This gets the id of the current card.

❸ Let’s get the rank of the current card.

❹ Let’s also get the suit.

❺ If the top card is not an eight, let’s see if we can match either the top card’s

rank or suit.

❻ After going through all our cards, we cannot match the top card; that’s why

play variable still equals to zero.

❼ Let’s cycle through all our cards again and see if we have an eight.

Now we’ve got some simple logic for the opponent. Let’s go back to the

human player.

A play is made by dragging a valid card to the top card. We need to

show some animation that the card is being dragged. We can do this on

onTouchEvent. Listing 6-26 shows a snippet on how we can start doing

exactly that.

Listing 6-26. Moving cards

 public boolean onTouchEvent(MotionEvent event) {

 int eventaction = event.getAction();

 int X = (int)event.getX();

 int Y = (int)event.getY();

 switch (eventaction) {

 case MotionEvent.ACTION_DOWN:

 if (myTurn) { ❶

 for (int i = 0; i < 7; i++) { ❷

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

113

 if (X > i*(scaledCW +5) && X < i*(scaledCW +5) +

scaledCW &&

 Y > scrH - scaledCH - paint.getTextSize()-

(50*scale)) {

 movingIdx = i;

 movingX = X;

 movingY = Y;

 }

 }

 }

 break;

 case MotionEvent.ACTION_MOVE:

 movingX = X; ❸

 movingY = Y;

 break;

 case MotionEvent.ACTION_UP:

 movingIdx = -1; ❹

 break;

 }

 invalidate();

 return true;

 }

❶ The human player can only move a card when it’s their turn. The computer

opponent plays very quickly, so this shouldn’t be an issue. The game

actually feels that it’s always the human’s turn.

❷ Loop through all the cards in the human player’s hand to see if they have

touched on the area of the screen where any of the cards are drawn. If they

have, we assign the index of that card to the movingIdx variable; this is the

card that was moved by the player.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

114

❸ As the player drags the card through the screen, we monitor the X and Y

coordinates; we will use this to draw the card as it’s being dragged across

the screen.

❹ When the player lets up, we reset the value of movingIdx. A value of –1

means no card is being moved.

The next thing we need to do is to reflect all these movements in the

onDraw method. Listing 6-27 shows the annotated code for drawing the

card as it’s dragged across the screen.

Listing 6-27. Show the moving card

@Override

 protected void onDraw(Canvas canvas) {

 // some other statements

 for (int i = 0; i < playerHand.size(); i++) {

 if (i == movingIdx) { ❶

 canvas.drawBitmap(playerHand.get(i).getBitmap(),

 movingX,

 movingY,

 null);

 } else { ❷

 if (i < 7) {

 canvas.drawBitmap(playerHand.get(i).getBitmap(),

 i*(scaledCW +5),

 scrH - scaledCH - paint.getTextSize()-(50*scale),

 null);

 }

 }

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

115

 invalidate();

 setToFullScreen();

 }

❶ Let’s see if the current card matches the value of the movingIdx variable

(the card being dragged by the user); if it’s the right card, we draw it using

the updated X and Y coordinates.

❷ If none of the cards are moving, we simply draw all the cards as we did

before.

When you test the code as it stands now, you might notice that the

position where the card is drawn (as you drag a card across the screen)

isn’t right. The card might be obscured by your finger. We can fix this by

drawing the card with some offset values. Listing 6-28 shows the code.

Listing 6-28. Adding some offsets to X and Y coordinates

public boolean onTouchEvent(MotionEvent event) {

 int eventaction = event.getAction();

 int X = (int)event.getX();

 int Y = (int)event.getY();

 switch (eventaction) {

 case MotionEvent.ACTION_DOWN:

 if (myTurn) {

 for (int i = 0; i < 7; i++) {

 if (X > i*(scaledCW +5) && X < i*(scaledCW +5) +

scaledCW &&

 Y > scrH - scaledCH - paint.getTextSize()-

(50*scale)) {

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

116

 movingIdx = i;

 movingX = X-(int)(30*scale);

 movingY = Y-(int)(70*scale);

 }

 }

 }

 break;

 case MotionEvent.ACTION_MOVE:

 movingX = X-(int)(30*scale);

 movingY = Y-(int)(70*scale);

 break;

 invalidate();

 return true;

}

The highlighted lines are the only changes we need; instead of

following the original X and Y coordinates as it’s passed to us by the event,

we draw it 30 more pixels to the right and 70 more pixels offset up. This

way, when the card is dragged, the player can see it.

Now that we can drag the card across the screen, we need to

ensure that what’s being dragged is a valid card for play. A valid card

for play matches the top card either in rank or in suit; now, we need to

keep track of the suit and rank of the top card. Listing 6-29 shows the

onSizeChanged() method in the CrazyEightView class. The variables

validSuit and validRank are added.

Listing 6-29. Keeping track of the valid card for play

@Override

public void onSizeChanged (int w, int h, int oldw, int oldh){

 super.onSizeChanged(w, h, oldw, oldh);

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

117

 scrW = w;

 scrH = h;

 Bitmap tempBitmap = BitmapFactory.decodeResource(ctx.

getResources(),

 R.drawable.card_back);

 scaledCW = (int) (scrW /8);

 scaledCH = (int) (scaledCW *1.28);

 cardBack = Bitmap.createScaledBitmap(tempBitmap, scaledCW,

scaledCH, false);

 initializeDeck();

 dealCards();

 drawCard(discardPile);

 validSuit = discardPile.get(0).getSuit();

 validRank = discardPile.get(0).getRank();

 myTurn = new Random().nextBoolean();

 if (!myTurn) {

 computerPlay();

 }

}

When we draw a card from the deck and add it to the discard pile, the

top card of the discard pile determines the suit and rank for a valid card.

So, when the human player tries to drag a card into the discard pile,

we can determine if that card is a valid play; if it is, we add it to the discard

pile; if not, we return it to the player’s hand. With that, let’s check for valid

plays. Listing 6-30 shows the updated and annotated ACTION_UP of the

onTouchEvent.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

118

Listing 6-30. Check for valid play

case MotionEvent.ACTION_UP:

 if (movingIdx > -1 && ❶

 X > (scrW /2)-(100*scale) && ❷

 X < (scrW /2)+(100*scale) &&

 Y > (scrH /2)-(100*scale) &&

 Y < (scrH /2)+(100*scale) &&

 (playerHand.get(movingIdx).getRank() == 8 ||

 playerHand.get(movingIdx).getRank() == validRank || ❸

 playerHand.get(movingIdx).getSuit() == validSuit)) { ❹

 validRank = playerHand.get(movingIdx).getRank(); ❺

 validSuit = playerHand.get(movingIdx).getSuit();

 discardPile.add(0, playerHand.get(movingIdx)); ❻

 playerHand.remove(movingIdx); ❼

 }

break;

❶ Let’s check if the card is being moved.

❷ These lines take care of the drop area, and we’re basically dropping the

card in the middle of the screen. There’s no need to be precise on location.

❸ Let’s check if it has a valid rank.

❹ Let’s check if the card being dragged has a valid suit.

❺ If the play is valid, we update the value of validRank and validSuit. The

card being offered by the player is now the card with valid suit and rank.

❻ We add the new card to the discard pile.

❼ We remove the card from the player’s hand.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

119

Next thing to handle is when the human player plays an eight.

Remember that eights are wild; they’re always playable. When an eight

card is played (by the human player, let’s handle that first; the computer

can also play an eight, remember?), we need a way for the player to choose

the suit for the next valid play.

To choose the next suit when an eight is played, we need a way to show

some options to the user. A dialog box is usually used for such tasks. We

can draw the dialog box just like we did the Play button, or we can use

Android’s built-in dialogs. Figures 6-13 and 6-14 show the dialog in action.

Figure 6-13. Choose suit dialog

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

120

To start building this dialog box, we need an array resource to the

project. We can do this by adding an XML file to the folder app/res/values.

Currently, there are already three XML files in that folder (colors, strings,

and styles); these files were created for us when we created the project.

Android uses these files as resources for application labels and color

scheming. We will add another file to this folder.

Figure 6-14. Choose suit dialog, drop down

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

121

Right-click the app/res/values folder as shown in Figure 6-15, then

choose New ➤ XML ➤ Values XML File.

The next dialog window will ask for the name of the new resource file.

Type arrays, as shown in Figure 6-16.

Figure 6-15. Add Values XML File

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

122

Click Finish. Android Studio will try to update the Gradle file and other

parts of the project; it could take a while. When it’s done, Android Studio

will open the XML file in the main editor. Modify arrays.xml to match the

contents of Listing 6-31.

Listing 6-31. arrays.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <string-array name="suits">

 <item>Diamonds</item>

 <item>Clubs</item>

 <item>Hearts</item>

 <item>Spades</item>

 </string-array>

</resources>

Figure 6-16. Name the new values file as arrays

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

123

We will use this array to load the option for our dialog. Next, let’s

create a layout file for the actual dialog. The layout file is also an XML file;

to create it, right-click app/res/layout from the Project tool window, then

choose New ➤ XML ➤ Layout XML File, as shown in Figure 6-17.

Next, provide the layout file name, then type choose_suit_dialog

(shown in Figure 6-18).

Figure 6-17. Create a new Layout XML File

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

124

You can build the dialog in WYSIWYG style using the Palette, or you

can go directly to the code. When Android Studio launches the newly

created layout file, it might open it in Design mode. Switch to Text or Code

mode, and modify the contents of choose_suit_dialog.xml to match the

contents of Listing 6-32.

Listing 6-32. choose_suit.dialog.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

android:id="@+id/chooseSuitLayout"

android:layout_width="275dp"

android:layout_height="wrap_content"

android:orientation="vertical"

Figure 6-18. Create the choose_suit_dialog XML File

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

125

android:layout_gravity="top"

xmlns:android="http://schemas.android.com/apk/res/android"

>

<TextView

android:id="@+id/chooseSuitText"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Choose a suit."

android:textSize="16sp"

android:layout_marginLeft="5dp"

android:textColor="#FFFFFF"

>

</TextView>

<Spinner

android:id="@+id/suitSpinner"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:drawSelectorOnTop="true"

/>

<Button

android:id="@+id/okButton"

android:layout_width="125dp"

android:layout_height="wrap_content"

android:text="OK"

>

</Button>

</LinearLayout>

Figure 6-19 shows the dialog layout file in Design mode. You can click

each constituent View object of the dialog file and inspect the individual

properties in the properties window.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

126

The layout file has three View objects as UI elements—a TextView,

a Spinner, and a Button. The LinearLayout arranges these elements in

a linear fashion (a straight line). The vertical orientation lays out the

elements from top to bottom.

In the future, you can opt not to use the built-in View objects of

Android to make the UI more visually appealing; but as you might have

surmised from this chapter, drawing your own screen elements requires a

lot of work.

The TextView, Spinner, and Button all have ids. We will refer to them

later using these ids.

Now that we have the dialog sorted out, we can build the code to show

the dialog. When the human player plays an eight for a card, we will show

this dialog. Let’s add a method to the CrazyEightView class and call this

method changeSuit(). The contents of the changeSuit method are shown

in Listing 6-33.

Figure 6-19. choose_suit_dialog in Design mode

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

127

Listing 6-33. changeSuit method

private void changeSuit() {

 final Dialog changeSuitDlg = new Dialog(ctx); ❶

 changeSuitDlg.requestWindowFeature(Window.FEATURE_NO_TITLE); ❷

 changeSuitDlg.setContentView(R.layout.choose_suit_dialog); ❸

 final Spinner spinner = (Spinner) changeSuitDlg.findViewById

(R.id.suitSpinner); ❹

 ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFrom

Resource(❺

 ctx, R.array.suits, android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(android.R.layout.

simple_spinner_dropdown_item);

 spinner.setAdapter(adapter);

 Button okButton = (Button) changeSuitDlg.findViewById

(R.id.okButton); ❻

 okButton.setOnClickListener(new View.OnClickListener(){ ❼

 public void onClick(View view){

 validSuit = (spinner.getSelectedItemPosition()+1)*100;

 String suitText = "";

 if (validSuit == 100) {

 suitText = "Diamonds";

 } else if (validSuit == 200) {

 suitText = "Clubs";

 } else if (validSuit == 300) {

 suitText = "Hearts";

 } else if (validSuit == 400) {

 suitText = "Spades";

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

128

 changeSuitDlg.dismiss();

 Toast.makeText(ctx, "You chose " + suitText, Toast.

LENGTH_SHORT).show(); ❽

 myTurn = false;

 computerPlay();

 }

 });

 changeSuitDlg.show();

}

❶ This line creates a Dialog object; we pass the current context to its constructor.

❷ Remove the title of the dialog box. We’d like it as plain as possible.

❸ Then we set the contentView of the Dialog object to the layout resource file we

created earlier.

❹ This line creates the Spinner object.

❺ The ArrayAdapter supplies data to the View and determines its format. This

creates the ArrayAdapter using the arrays.xml we created earlier.

❻ Get a programmatic reference to the Button object using its id.

❼ Create an event handler for the Button. We use the onClickListener object here

to handle the click event. Overriding the onClick method of this handler lets us

code the logic necessary when the Button is clicked.

❽ A Toast is a small message displayed on the screen, like a tooltip. It’s visible

only for a few seconds. We use Toast here as feedback to show the user what

suit was chosen.

The changeSuit() method must be called only when the human

player plays an eight. We need to put this logic into the ACTION_UP

branch of the onTouchEvent method. Listing 6-34 shows the annotated

ACTION_UP branch.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

129

Listing 6-34. Triggering the changeSuit() method

case MotionEvent.ACTION_UP:

 if (movingIdx > -1 &&

 X > (scrW /2)-(100*scale) &&

 X < (scrW /2)+(100*scale) &&

 Y > (scrH /2)-(100*scale) &&

 Y < (scrH /2)+(100*scale) &&

 (playerHand.get(movingIdx).getRank() == 8 ||

 playerHand.get(movingIdx).getRank() == validRank ||

 playerHand.get(movingIdx).getSuit() == validSuit)) {

 validRank = playerHand.get(movingIdx).getRank();

 validSuit = playerHand.get(movingIdx).getSuit();

 discardPile.add(0, playerHand.get(movingIdx));

 playerHand.remove(movingIdx);

 if (playerHand.isEmpty()) {

 endHand();

 } else {

 if (validRank == 8) { ❶

 changeSuit();

 } else {

 myTurn = false;

 computerPlay();

 }

 }

 }

break;

❶ When the human player plays an eight, we call the changeSuit method,

which lets the player choose the suit. At this point, it’s still the turn of the

human player; presumably, they play another card.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

130

 When there is no Valid Play

It is possible to run out of valid cards to play. When that happens, the

human player must draw a card from the pile; and they must continue

to do so until there is a card to play. This means a player may have more

than seven cards. Remember in the onDraw method that we scaled

the cards on the player deck to display just seven? We may exceed that

number now.

To solve this, we can draw an arrow icon to signify to the user that there

are more than seven cards on their deck. By clicking the arrow icon, we

should be able to pan the player’s View of the cards. To do this, we need to

draw the arrow.

Add the following Bitmap object to the member variables of the

CrazyEightView class.

private Bitmap nextCardBtn;

We can load the Bitmap on the onSizeChanged method, just like the

other Bitmaps we drew earlier.

nextCardBtn = BitmapFactory.decodeResource(getResources(),

 R.drawable.arrow_next);

We need to draw the arrow when the player’s cards exceed seven. We

can do this in the onDraw method. Listing 6-35 shows that code.

Listing 6-35. Draw the next arrow

if (playerHand.size() > 7) { ❶

 canvas.drawBitmap(nextCardBtn, ❷

 scrW - nextCardBtn.getWidth()-(30*scale),

 scrH - nextCardBtn.getHeight()- scaledCH -(90*scale),

 null);

}

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

131

for (int i = 0; i < playerHand.size(); i++) {

 if (i == movingIdx) {

 canvas.drawBitmap(playerHand.get(i).getBitmap(),

 movingX,

 movingY,

 null);

 } else {

 if (i < 7) {

 canvas.drawBitmap(playerHand.get(i).getBitmap(),

 i*(scaledCW +5),

 scrH - scaledCH - paint.getTextSize()-(50*scale),

 null);

 }

 }

}

❶ Determine if the player has more than seven cards.

❷ If it’s more than seven, draw the next arrow.

Drawing the arrow is simply groundwork for our next task. Of course,

before we allow the player to draw a card from the pile, we need to

determine if they truly need to draw a card. If the player has a valid card

to play (if they have cards with matching suit and rank or they’ve got

an eight), then we should not let them draw. We need to provide that

logic; so, we add another method to the CrazyEightView class named

isValidDraw(). This method goes through all the cards in the player’s

deck and checks if there are cards with matching suit or rank (or if there’s

an eight card). Listing 6- 36 shows the code for isValidDraw().

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

132

Listing 6-36. isValidDraw()

private boolean isValidDraw() {

 boolean canDraw = true;

 for (int i = 0; i < playerHand.size(); i++) {

 int tempId = playerHand.get(i).getId();

 int tempRank = playerHand.get(i).getRank();

 int tempSuit = playerHand.get(i).getSuit();

 if (validSuit == tempSuit || validRank == tempRank ||

 tempId == 108 || tempId == 208 || tempId == 308 ||

tempId == 408) {

 canDraw = false;

 }

 }

 return canDraw;

}

We loop through all the cards; check if we can match either the suit or

the rank or if there’s an eight among the cards; if there is, we return false

(because the player has a valid play); otherwise, we return true.

When the human player tries to draw a card from the deck despite having

a valid play, let’s display a Toast message to remind them that they can’t draw

a card because they’ve got a valid play. This can be done on the ACTION_UP

branch of the onTouchEvent method (code shown in Listing 6-37).

Listing 6-37. Toast message when the player has a valid play

if (movingIdx == -1 && myTurn &&

 X > (scrW /2)-(100*scale) &&

 X < (scrW /2)+(100*scale) &&

 Y > (scrH /2)-(100*scale) &&

 Y < (scrH /2)+(100*scale)) {

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

133

 if (isValidDraw()) { ❶

 drawCard(playerHand); ❷

 } else {

 Toast.makeText(ctx, "You have a valid play.",

 Toast.LENGTH_SHORT).show(); ❸

 }

}

❶ Before we allow them to draw a card from the deck, check if the player has a

valid play. If they have, isValidDraw() will return false.

❷ Otherwise, let the player draw a card.

❸ If the player has a valid play, display a Toast message.

 When it’s the Computer’s Turn

Earlier in the chapter, we created a method named computerPlay(); this

method is invoked when the human player finishes their turn; we only

coded the stub of that method. Now, we need to put the additional logic so

that we can have a really playable opponent.

Let’s modify the computerPlay() method in the CrazyEightView class

to reflect the code in Listing 6-38.

Listing 6-38. computerPlay() method

private void computerPlay() {

 int tempPlay = 0; ❶

 while (tempPlay == 0) { ❷

 tempPlay = computerPlayer.playCard(computerHand, validSuit,

validRank);

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

134

 if (tempPlay == 0) {

 drawCard(computerHand);

 }

 }

 if (tempPlay == 108 ||

 tempPlay == 208 ||

 tempPlay == 308 ||

 tempPlay == 408) {

 validRank = 8;

 validSuit = computerPlayer.chooseSuit(computerHand); ❸

 String suitText = "";

 if (validSuit == 100) {

 suitText = "Diamonds";

 } else if (validSuit == 200) {

 suitText = "Clubs";

 } else if (validSuit == 300) {

 suitText = "Hearts";

 } else if (validSuit == 400) {

 suitText = "Spades";

 }

 Toast.makeText(ctx, "Computer chose " + suitText, Toast.

LENGTH_SHORT).show();

 } else {

 validSuit = Math.round((tempPlay/100) * 100); ❹

 validRank = tempPlay - validSuit;

 }

 for (int i = 0; i < computerHand.size(); i++) { ❺

 Card tempCard = computerHand.get(i);

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

135

 if (tempPlay == tempCard.getId()) {

 discardPile.add(0, computerHand.get(i));

 computerHand.remove(i);

 }

 }

 if (computerHand.isEmpty()) {

 endHand();

 }

 myTurn = true; ❻

}

❶ tempPlay variable holds the id of the played card.

❷ A value of zero means there is no valid play for the computer’s hand.

When we call the playCard() method of the ComputerPlayer class, it

will return the id of the card that is a valid play. If the computer’s hand

doesn’t have a valid play, let the computer draw a card from the pile; keep

drawing until there is a valid card for play.

❸ If the computer chooses to play an eight, we need to change the suit;

we’ve done this already for the human player, but we haven’t done it yet

for the computer player. We will now. The chooseSuit() method doesn’t

exist yet, and we will implement it shortly. For now, just imagine that the

chooseSuit() method will return an integer value which will let us set the

new validSuit for the next play.

❹ If the computer doesn’t play an eight, we simply reset the validRank and

validSuit to whatever the played cards’ value were.

❺ We loop through the computer’s hand, adding the played card to the

discard pile.

❻ Finally, the human will take the next turn.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

136

 Ending a Hand

When either the computer or the human player plays the last card, the

hand ends. When this happens, we need to

 1. Display a dialog to signify that the current hand

has ended

 2. Show and update the scores for both the human and

the computer player

 3. Start a new hand

We’ll display the scores on the top and bottom parts of the screen, as

shown in Figure 6-20.

Figure 6-20. Displaying the scores

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

137

To display the scores, we first need to calculate it. When a hand ends,

all the remaining cards (either the computer’s or the human player’s) must

be totaled. To facilitate this, we need to update the Card class. Listing 6-39

shows the updated Card class.

Listing 6-39. Card.java

public class Card {

 private int id;

 private int suit;

 private int rank;

 private Bitmap bmp;

 private int scoreValue; ❶

 public Card(int newId) {

 id = newId;

 suit = Math.round((id/100) * 100);

 rank = id - suit;

 if (rank == 8) { ❷

 scoreValue = 50;

 } else if (rank == 14) {

 scoreValue = 1;

 } else if (rank > 9 && rank < 14) {

 scoreValue = 10;

 } else {

 scoreValue = rank;

 }

 }

 public int getScoreValue() {

 return scoreValue;

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

138

 public void setBitmap(Bitmap newBitmap) {

 bmp = newBitmap;

 }

 public Bitmap getBitmap() {

 return bmp;

 }

 public int getId() {

 return id;

 }

 public int getSuit() {

 return suit;

 }

 public int getRank() {

 return rank;

 }

}

❶ Create a variable to hold the score for the card.

❷ Check the rank of the card and assign a score value. If an eight card is

left on the player’s hand, it’s worth 50 points to the opponent. Face cards

are worth 10 points, aces 1 point, and the rest of the cards are worth their

face values.

Next, we need a method to update the scores of both the computer

and the human player. Let’s add a new method to CrazyEightView named

updateScores(); the code for this method is shown in Listing 6-40.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

139

Listing 6-40. updateScores() method

private void updateScores() {

 for (int i = 0; i < playerHand.size(); i++) {

 computerScore += playerHand.get(i).getScoreValue();

 currScore += playerHand.get(i).getScoreValue();

 }

 for (int i = 0; i < computerHand.size(); i++) {

 myScore += computerHand.get(i).getScoreValue();

 currScore += computerHand.get(i).getScoreValue();

 }

}

The variables currScore, computerScore, and myScore need to be

declared as member variables in CrazyEightView.

If the computer’s hand is empty, we go through all the cards in the

human player’s hand, sum it up, and credit it to the computer’s score. If the

human player’s hand is empty, we go through all the remaining cards in

the computer’s hand, sum it up, and credit that score to the human player.

Now that the scores are calculated, we can display them.

To display the scores, we will use the Paint object we defined earlier

in the chapter. We need to set some attributes of the Paint object before

we can draw some text with it. Listing 6-41 shows the constructor of

CrazyEightView, which contains the code we need for the Paint object.

Listing 6-41. Paint object

import android.graphics.Color;

public CrazyEightView(Context context) {

 super(context);

 ctx = context;

 scale = ctx.getResources().getDisplayMetrics().density;

 paint = new Paint();

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

140

 paint.setAntiAlias(true);

 paint.setColor(Color.BLACK);

 paint.setStyle(Paint.Style.FILL);

 paint.setTextAlign(Paint.Align.LEFT);

 paint.setTextSize(scale*15);

}

To draw the scores, modify the onDraw() method and add the two

drawText() methods, as shown in Listing 6-42.

Listing 6-42. Drawing the scores

protected void onDraw(Canvas canvas) {

 canvas.drawText("Opponent Score: " + Integer.

toString(computerScore), 10,

 paint.getTextSize()+10, paint);

 canvas.drawText("My Score: " + Integer.toString(myScore),

10, scrH –

 paint.getTextSize()-10, paint);

 // ...

}

Next, we need to take care of the dialog for starting a new hand. This

will be similar to the change suit dialog. This is a new dialog, so we need

to create it. Right-click the res/layout folder in the Project tool window, as

shown in Figure 6-21.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

141

In the next window, enter end_hand_dialog for the layout file name.

When Android Studio opens the newly created layout file in the main

editor window, modify it to reflect the code, as shown in Listing 6-43.

Listing 6-43. end_hand_dialog.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

android:id="@+id/endHandLayout"

android:layout_width="275dp"

android:layout_height="wrap_content"

android:orientation="vertical"

android:layout_gravity="top"

xmlns:android="http://schemas.android.com/apk/res/android"

>

Figure 6-21. New Layout XML File

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

142

<TextView

android:id="@+id/endHandText"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text=""

android:textSize="16sp"

android:layout_marginLeft="5dp"

android:textColor="#FFFFFF"

>

</TextView>

<Button

android:id="@+id/nextHandButton"

android:layout_width="125dp"

android:layout_height="wrap_content"

android:text="Next Hand"

>

</Button>

</LinearLayout>

This layout file is much simpler than the change suit dialog. This one

only has a TextView and a Button.

Next, we add another method to CrazyEightView to handle the logic

when a given hand ends. Listing 6-44 shows the code for the endHand()

method.

Listing 6-44. endHand() method

 private void endHand() {

 String endHandMsg = "";

 final Dialog endHandDlg = new Dialog(ctx); ❶

 endHandDlg.requestWindowFeature(Window.FEATURE_NO_TITLE);

 endHandDlg.setContentView(R.layout.end_hand_dialog);

 updateScores(); ❷

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

143

 TextView endHandText = (TextView) endHandDlg.

findViewById(R.id.endHandText); ❸

 if (playerHand.isEmpty()) {

 if (myScore >= 300) {

 endHandMsg = String.format("You won. You have %d

points. Play again?",

 myScore);

 } else {

 endHandMsg = String.format("You lost, you only got %d",

currScore);

 }

 } else if (computerHand.isEmpty()) {

 if (computerScore >= 300) {

 endHandMsg = String.format("Opponent scored %d. You

lost. Play again?",

 computerScore);

 } else {

 endHandMsg = String.format("Opponent has lost. He

scored %d points.",

 currScore);

 }

 endHandText.setText(endHandMsg);

 }

 Button nextHandBtn = (Button) endHandDlg.findViewById(R.

id.nextHandButton); ❹

 if (computerScore >= 300 || myScore >= 300) { ❺

 nextHandBtn.setText("New Game");

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

144

 nextHandBtn.setOnClickListener(new View.OnClickListener(){ ❻

 public void onClick(View view){

 if (computerScore >= 300 || myScore >= 300) {

 myScore = 0;

 computerScore = 0;

 }

 initNewHand();

 endHandDlg.dismiss();

 }

 });

 endHandDlg.show();

 }

❶ Same as the previous dialog we created. Create an instance of a Dialog

and make sure it doesn’t display any titles. Then set the content view to the

layout file we created.

❷ When a hand ends, we call the updateScore() methods to display the

score information.

❸ Get a programmatic reference to the TextView object, and in the statements

that follow, depending on who ran out of cards, we display how many

points were earned.

❹ Get a programmatic reference to the Button.

❺ Let’s check if the game is already over. When one of the players reaches

300 points, the game is over. If it is, we change the text on the Button to

read “New Game” instead of “New Hand.”

❻ Create a listener object for the Button to handle the click event. In the

onClick method of the click handler, we call the initNewHand() method to

start a new hand; the code for this method is shown in Listing 6-45.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

145

Listing 6-45. initNewHand() method

private void initNewHand() {

 currScore = 0; ❶

 if (playerHand.isEmpty()) { ❷

 myTurn = true;

 } else if (computerHand.isEmpty()) {

 myTurn = false;

 }

 deck.addAll(discardPile); ❸

 deck.addAll(playerHand);

 deck.addAll(computerHand);

 discardPile.clear();

 playerHand.clear();

 computerHand.clear();

 dealCards(); ❹

 drawCard(discardPile);

 validSuit = discardPile.get(0).getSuit();

 validRank = discardPile.get(0).getRank();

 if (!myTurn) {

 computerPlay();

 }

}

❶ Let’s reset the points earned for the hand.

❷ If the human player won the previous hand, then it’s their turn to play first.

❸ Add the discard pile and both players’ cards back to the deck, then clear the

lists and the discard pile. We’re basically putting all the cards back to the

deck.

❹ Deal the cards, like at the beginning of the game.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

146

Now that we have all the required logic and assets for ending a hand,

it’s time to put the code for checking if the hand has ended. We can do this

on the ACTION_UP case of the onTouchEvent method; Listing 6-46 shows

this code. The pertinent code is in bold.

Listing 6-46. Check if the hand has ended

case MotionEvent.ACTION_UP:

 if (movingIdx > -1 &&

 X > (scrW /2)-(100*scale) &&

 X < (scrW /2)+(100*scale) &&

 Y > (scrH /2)-(100*scale) &&

 Y < (scrH /2)+(100*scale) &&

 (playerHand.get(movingIdx).getRank() == 8 ||

 playerHand.get(movingIdx).getRank() == validRank ||

 playerHand.get(movingIdx).getSuit() == validSuit)) {

 validRank = playerHand.get(movingIdx).getRank();

 validSuit = playerHand.get(movingIdx).getSuit();

 discardPile.add(0, playerHand.get(movingIdx));

 playerHand.remove(movingIdx);

 if (playerHand.isEmpty()) {

 endHand();

 } else {

 if (validRank == 8) {

 changeSuit();

 } else {

 myTurn = false;

 computerPlay();

 }

 }

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

147

We simply need to check if the player’s hand is empty; if it is, the hand

has ended. The next thing we need to do is to check on the computer’s side

if the hand has ended. Listing 6-47 shows that code.

Listing 6-47. Complete listing of the computerPlay() method

private void computerPlay() {

 int tempPlay = 0;

 while (tempPlay == 0) {

 tempPlay = computerPlayer.playCard(computerHand, validSuit,

validRank);

 if (tempPlay == 0) {

 drawCard(computerHand);

 }

 }

 if (tempPlay == 108 || tempPlay == 208 || tempPlay == 308 ||

tempPlay == 408) {

 validRank = 8;

 validSuit = computerPlayer.chooseSuit(computerHand);

 String suitText = "";

 if (validSuit == 100) {

 suitText = "Diamonds";

 } else if (validSuit == 200) {

 suitText = "Clubs";

 } else if (validSuit == 300) {

 suitText = "Hearts";

 } else if (validSuit == 400) {

 suitText = "Spades";

 }

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

148

 Toast.makeText(ctx, "Computer chose " + suitText, Toast.

LENGTH_SHORT).show();

 } else {

 validSuit = Math.round((tempPlay/100) * 100);

 validRank = tempPlay - validSuit;

 }

 for (int i = 0; i < computerHand.size(); i++) {

 Card tempCard = computerHand.get(i);

 if (tempPlay == tempCard.getId()) {

 discardPile.add(0, computerHand.get(i));

 computerHand.remove(i);

 }

 }

 if (computerHand.isEmpty()) { ❶

 endHand();

 }

 myTurn = true;

}

❶ We simply check if the computer’s hand is empty; if it is, the hand has ended.

And that’s all the logic we need to write for the Crazy Eights game. The

logic for ending the game is already shown in Listing 6-44 (bullet 5); when

either one of the players reaches 300, the game ends.

CHAPTER 6 BUILDING THE CRAZY EIGHTS GAME

149© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_7

CHAPTER 7

Building the Balloon
Popper Game
Let’s jump into the next game. This game will be simpler than the

previous one we built, both in mechanics and technique, but this one will

incorporate the use of audio and some sound effects. In this chapter, we’ll

discuss the following:

• How to use ImageView as a graphic object in the game

• Use the ValueAnimator in animating movements of

game objects

• Use AudioManager, MediaPlayer, and the SoundPool

classes to add audio effects and music to your game

• Use Java threads to run things in the background

Like in the previous chapter, I’ll show the code snippets necessary

to build the game; at times, even full code listings of some classes will

be provided. The best way to understand and learn the programming

techniques in this chapter is to download the source code for the game and

keep it open in Android Studio as you read through the chapter sections.

If you want to follow along and build the project yourself, it’s best to

keep the source code for the chapter handy, so you can copy and paste

particular snippets as necessary.

https://doi.org/10.1007/978-1-4842-6121-7_7#DOI

150

 Game Mechanics

We will make balloons float from the bottom of the screen, rising to the

top. The players’ goal is to pop as many balloons as they can before the

balloons reach the top of the screen. If a balloon reaches the top without

being popped, that will be a point against the user. The player will have five

lives (pins, in this case); each time the player misses a balloon, they lose a

pin. When the pins run out, it’s game over.

We’ll introduce the concept of levels. In each level, there will be several

balloons. As the player progresses in levels, the time it takes for the balloon

to float from the bottom to the top becomes less and less; the balloons float

faster as the level increases. It’s that simple. Figure 7-1 shows a screenshot

of Balloon Popper game.

The balloons will show up on random locations from the bottom of the

screen.

Figure 7-1. Pop balloons

Chapter 7 Building the Balloon popper game

151

We will devote the lower strip of the screen to game statistics. We will

use this to display the score and the level. On the lower left side, we’ll

place a Button view which the user can use to start the game and to start

a new level.

The game will be played in full screen (like our previous game), and it

will be done so exclusively in landscape mode.

 Creating the Project

Create a new project with an empty Activity, as shown in Figure 7-2.

Figure 7-2. New project with an empty Activity

Chapter 7 Building the Balloon popper game

152

In the window that follows, fill out the project details, as shown in

Figure 7-3.

Click Finish to create the project.

 Drawing the Background

The game has a background image; you can do without one, but it adds to

the user experience. Surely, if you’ll release a commercial game, you’ll use

an image that has more professional polish. I grabbed this image from one

of the public domain sites; feel free to use any image you prefer.

Figure 7-3. Create a new project

Chapter 7 Building the Balloon popper game

153

When I got the background image, I downloaded only one file and named

it “background.jpg.” I could have used this image and dropped it in the app/

res/drawable folder and be done with it. Had I done that, the runtime will

use this same image file as background for different display densities, and it

will try to make that adjustment while the game is playing, which may result

in a jittery game experience. So, it’s very important to provide a background

image for different screen densities. If you’re quite handy with Photoshop

or GIMP, you can try to generate the images for different screens; or, you

can use just one background image and then use an application called

Android Resizer (https://github.com/asystat/Final- Android- Resizer)

to generate the images for you. You can download the application from its

GitHub repo and use it right away. It’s an executable Java archive (JAR) file.

Once downloaded, you can open the zipped file and double-click

the file Final Android Resizer.jar in the Executable Jar folder (shown in

Figure 7-4).

In the window that follows (Figure 7-5), modify the settings of the

“export” section; the various screen density targets are in the Export

section. I ticked off ldpi because we don’t have to support the low-density

screens. I also ticked off the tvdpi because our targets don’t include

Android TVs.

Figure 7-4. Android Resizer app

Chapter 7 Building the Balloon popper game

https://github.com/asystat/Final-Android-Resizer

154

Click the browse button of the Android Resizer to set the target folder

where you would like to generate the images, as shown in Figure 7-6; then

click Choose.

Figure 7-5. Android Resizer

Figure 7-6. Target folder for generated images

Chapter 7 Building the Balloon popper game

155

The target directory (resources directory) should now be set.

Remember this directory because you will fetch the images from here and

transfer them to the Android project. In the window that follows (Figure 7-7),

you will set the target directory.

Next, drag the image you’d like to resize in the center area of the

Resizer app. As soon as you drop the image, the conversion begins. When

the conversion finishes, you’ll see a message “Done! Gimme some more…”,

as shown in Figure 7-8.

Figure 7-7. Android Resizer, target directory set

Chapter 7 Building the Balloon popper game

156

The generated images are neatly placed in their corresponding folders,

as shown in Figure 7-9.

Figure 7-9. Generated images

Figure 7-8. Android Resizer, done with the conversion

Chapter 7 Building the Balloon popper game

157

The background image file isn’t the only thing we need to resize. We

also need to do this for the balloon image. We will use a graphic image

to represent the balloons in the game. The balloon file is just a grayscale

image (shown in Figure 7-10); we’ll add the colors in the program later.

Drag and drop the balloon image in the Resizer app, as you did with

the background file. When it’s done, the Android Resizer would have

generated the files balloons.png and background.jpg in the appropriate

folders (as shown in Figure 7-11).

Figure 7-10. Grayscale image of the balloon

Chapter 7 Building the Balloon popper game

158

We can now use these images for the project. To move the images to

the project, open the app/res folder; you can do this by using a context

action; right-click app/res, then choose Reveal in Finder (if you’re on

macOS); if you’re on Windows, it will be Show in Explorer (as shown in

Figure 7-12).

Figure 7-11. Generated files

Chapter 7 Building the Balloon popper game

159

Now, you can simply drag and drop the generated image folders (and

files) into the correct folders in app/res/ directory.

Figure 7-13 shows an updated app/res directory of the project.

I switched the scope of the Project tool from Android scope to Project scope

to see the physical layout of the files. I usually change scopes, depending

on what I need.

Figure 7-12. Reveal in Finder

Chapter 7 Building the Balloon popper game

160

Before we draw the background image, let’s take care of the

screen orientation. It’s best to play this game in landscape mode;

that’s why we’ll fix the orientation to landscape. We can do this in the

AndroidManifest file. Edit the project’s AndroidManifest to match

Listing 7-1; Figure 7-14 shows the location of the AndroidManifest file

in the Project tool window.

Figure 7-13. app/res folder with the appropriate image files

Chapter 7 Building the Balloon popper game

161

Figure 7-14. AndroidManifest.xml

Listing 7-1. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/

android"

 package="net.workingdev.popballoons">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity"

 android:configChanges="orientation|keyboardHidden|

screenSize"

 android:label="@string/app_name"

Chapter 7 Building the Balloon popper game

162

 android:screenOrientation="landscape"

 android:theme="@style/FullscreenTheme"

 >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.

LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

The entries responsible for fixing the orientation to landscape

are found on the attributes of the <activity> node in the manifest

file. At this point, the project would have an error because the

Android:theme=” style/FullScreenTheme” attribute doesn’t exist as of

yet. We’ll fix that shortly.

Edit the /app/res/styles.xml file and add another style, as shown in

Listing 7-2.

Listing 7-2. /app/res/styles.xml

<resources>

 <!-- Base application theme. -->

 <style name="AppTheme" parent="Theme.AppCompat.Light.

DarkActionBar">

 <!-- Customize your theme here. -->

 <item name="colorPrimary">@color/colorPrimary</item>

 <item name="colorPrimaryDark">@color/colorPrimaryDark

</item>

 <item name="colorAccent">@color/colorAccent</item>

 </style>

Chapter 7 Building the Balloon popper game

163

Figure 7-15. PopBalloons

 <style name="FullscreenTheme" parent="AppTheme">

 <item name="android:windowBackground">@android:color/white

</item>

 </style>

</resources>

That should fix it. Figure 7-15 shows the app in its current state.

To load the background image from the app/res/mipmap folders, we

will use the following code:

getWindow().setBackgroundDrawableResource(R.mipmap.background);

We need to call this statement in the onCreate() method of

MainActivity, just before we call setContentView(). Listing 7-3 shows our

(still) minimal MainActivity.

Chapter 7 Building the Balloon popper game

164

Listing 7-3. MainActivity

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 getWindow().setBackgroundDrawableResource(R.mipmap.

background);

 setContentView(R.layout.activity_main);

 }

}

Now, build and run the app. You will notice that the app has a

background image now (as shown in Figure 7-16).

Figure 7-16. With background image

Chapter 7 Building the Balloon popper game

165

 Game Controls and Pin Icons

We will use the bottom part of the screen to show the score and the level.

We’ll also use this portion of the screen to place a button that triggers the

start of the game and the start of the level.

Let’s fix the activity_main layout file first. Currently, this layout file is

set to ConstraintLayout (this is the default), but we don’t need this layout,

so we’ll replace it with the RelativeLayout. We’ll set the layout_width and

layout_height of this container to match_parent so that it expands to the

available space. Listing 7-4 shows our refactored main layout.

Listing 7-4. activity_main

<RelativeLayout xmlns:android="http://schemas.android.com/apk/

res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

</RelativeLayout>

Next, we will add the Button and the TextView objects, which we’ll

use to start the game and to display game statistics. The idea is to nest the

TextViews inside a LinearLayout container, which is oriented horizontally,

and then put it side by side with a Button control; then, we’ll enclose the

Button and the LinearLayout container within another RelativeLayout

container. Listing 7-5 shows the complete activity_main layout, with the

game controls added.

Chapter 7 Building the Balloon popper game

166

Listing 7-5. activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/

res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

<!-- Buttons and status displays -->

<RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:background="@color/lightGrey">

 < Button

 android:id="@+id/go_button"

 style="?android:borderlessButtonStyle"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentStart="true"

 android:layout_centerVertical="true"

 android:text="@string/play_game"

 android:layout_alignParentLeft="true"/>

 <LinearLayout

 android:id="@+id/status_display"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentEnd="true"

 android:layout_centerVertical="true"

 android:layout_marginEnd="8dp"

Chapter 7 Building the Balloon popper game

167

 android:orientation="horizontal"

 tools:ignore="RelativeOverlap">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/level_label"

 android:textSize="20sp"

 android:textStyle="bold"

 tools:ignore="RelativeOverlap" />

 <TextView

 android:id="@+id/level_display"

 android:layout_width="40dp"

 android:layout_height="wrap_content"

 android:layout_marginEnd="32dp"

 android:gravity="end"

 android:text="@string/maxNumber"

 android:textSize="20sp"

 android:textStyle="bold" />

 <TextView

 android:id="@+id/score_label"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/score_label"

 android:textSize="20sp"

 android:textStyle="bold"

 tools:ignore="RelativeOverlap" />

 <TextView

 android:id="@+id/score_display"

 android:layout_width="40dp"

Chapter 7 Building the Balloon popper game

168

 android:layout_height="wrap_content"

 android:layout_marginEnd="16dp"

 android:gravity="end"

 android:text="@string/maxNumber"

 android:textSize="20sp"

 android:textStyle="bold" />

 </LinearLayout>

</RelativeLayout>

</RelativeLayout>

We referenced a couple of string and color resources in activity_main.

xml, and we need to add them to strings.xml and colors.xml in the

resources folder.

Open colors.xml and edit it to match Listing 7-6.

Listing 7-6. app/res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <color name="colorPrimary">#008577</color>

 <color name="colorPrimaryDark">#00574B</color>

 <color name="colorAccent">#D81B60</color>

 <color name="lightGrey">#DDDDDD</color>

 <color name="pinColor">@color/black_overlay</color>

 <color name="black_overlay">#66000000</color>

</resources>

Chapter 7 Building the Balloon popper game

169

Open strings.xml and edit it to match Listing 7-7.

Listing 7-7. app/res/values/strings.xml

<resources>

 <string name="app_name">PopBalloons</string>

 <string name="play_game">Play</string>

 <string name="stop_game">Stop</string>

 <string name="score_label">Score:</string>

 <string name="maxNumber">999</string>

 <string name="level_label">Level:</string>

 <string name="wow_that_was_awesome">Wow, that was awesome

</string>

 <string name="more_levels_than_ever">More Levels than Ever!

</string>

 <string name="new_top_score">New Top Score!</string>

 <string name="your_top_score_is">Top score: %s</string>

 <string name="you_completed_n_levels">Levels completed:

%s</string>

 <string name="game_over">Game over!</string>

 <string name="missed_that_one">Missed that one!</string>

 <string name="you_finished_level_n">You finished level

%s!</string>

 <string name="popping_pin">Popping Pin</string>

</resources>

String literals are stored in strings.xml to avoid hardcoding the String

literals in our program. This approach of using a resources file for String

literals makes it easier to change the Strings later on—say, when you

release the game to non-English speaking countries.

Chapter 7 Building the Balloon popper game

170

Figure 7-17 shows the app with game controls.

Next, let’s draw the pins. You can get the pins from Google’s material

icons. These are SVG icons, so we don’t have to create multiple copies for

different screen resolutions; they scale just fine. The vector definitions of

the pins will be in the drawable folder. We’ll create two vector definitions

for the pin; one image represents a whole pin (an unused game life) and

the other a broken pin (a used game life).

We need to create these files inside the drawable folder; we can do this

with the context menu actions. Right-click the app/res/drawable folder of

the project, as shown in Figure 7-18.

Figure 7-17. With game controls

Chapter 7 Building the Balloon popper game

171

Figure 7-19. New Resource File

In the window that follows, type the name of the file (as shown in

Figure 7-19).

Figure 7-18. New drawable resource file

Chapter 7 Building the Balloon popper game

172

Check to see that the Directory name is “drawable,” then click

OK. Simply type pin for the file name; no need to put the XML extension,

that will be automatically added by Android Studio. Do the same thing to

create the file for pin_broken.

Edit the newly created resource files. Listings 7-8 and 7-9 show the

code for pin.xml and pin_broken.xml, respectively.

Listing 7-8. app/res/drawable/pin.xml

<vector xmlns:android="http://schemas.android.com/apk/res/

android"

 android:height="24dp"

 android:width="24dp"

 android:viewportWidth="24"

 android:viewportHeight="24">

 <path android:fillColor="#000" android:pathData="M16,

12V4H17V2H7V4H8V12L6,14V16H11.2V22H12.8V16H18V14L16,12Z" />

</vector>

Listing 7-9. app/res/drawable.pin_broken.xml

<vector xmlns:android="http://schemas.android.com/apk/res/

android"

 android:height="24dp"

 android:width="24dp"

 android:viewportWidth="24"

 android:viewportHeight="24">

 <path android:fillColor="#000" android:pathData="M2,5.27L3.

28,4L20,20.72L18.73,22L12.8,16.07V22H11.2V16H6V14L8,12V11.

27L2,5.27M16,12L18,14V16H17.82L8,6.18V4H7V2H17V4H16V12Z" />

</vector>

Figure 7-20 shows a preview of the pin in Android Studio.

Chapter 7 Building the Balloon popper game

173

Now that we have images for the pins, we can add them to the

activity_main layout file. We’ll place five ImageView objects at the

top part of the screen, and then we will point each ImageView to the

pin images we recently created. Listing 7-10 shows a snippet of the pin

definitions in XML.

Listing 7-10. Pin definitions in XML

<ImageView

 android:id="@+id/pushpin1"

 android:layout_width="40dp"

 android:layout_height="40dp"

 android:contentDescription="@string/popping_pin"

 android:src="@drawable/pin"

 android:tint="@color/pinColor" />

The android:src attribute points the ImageView to our vector drawing

in the drawable folder.

Figure 7-20. Preview of the pin image

Chapter 7 Building the Balloon popper game

174

Listing 7-11 shows the full activity_main.xml, which contains the

game controls, the pin drawings, and the FrameLayout container, which

will contain all our game action.

Listing 7-11. Complete code for activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/

res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <FrameLayout

 android:id="@+id/content_view"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

 <!-- Container for pin icons -->

 <LinearLayout

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentEnd="true"

 android:layout_alignParentTop="true"

 android:layout_marginEnd="16dp"

 android:layout_marginTop="16dp"

 android:orientation="horizontal">

 <ImageView

 android:id="@+id/pushpin1"

 android:layout_width="40dp"

 android:layout_height="40dp"

 android:contentDescription="@string/popping_pin"

 android:src="@drawable/pin"

 android:tint="@color/pinColor" />

Chapter 7 Building the Balloon popper game

175

 <ImageView

 android:id="@+id/pushpin2"

 android:layout_width="40dp"

 android:layout_height="40dp"

 android:contentDescription="@string/popping_pin"

 android:src="@drawable/pin"

 android:tint="@color/pinColor" />

 <ImageView

 android:id="@+id/pushpin3"

 android:layout_width="40dp"

 android:layout_height="40dp"

 android:contentDescription="@string/popping_pin"

 android:src="@drawable/pin"

 android:tint="@color/pinColor" />

 <ImageView

 android:id="@+id/pushpin4"

 android:layout_width="40dp"

 android:layout_height="40dp"

 android:contentDescription="@string/popping_pin"

 android:src="@drawable/pin"

 android:tint="@color/pinColor" />

 <ImageView

 android:id="@+id/pushpin5"

 android:layout_width="40dp"

 android:layout_height="40dp"

 android:contentDescription="@string/popping_pin"

 android:src="@drawable/pin"

 android:tint="@color/pinColor" />

 </LinearLayout>

Chapter 7 Building the Balloon popper game

176

 <!-- Buttons and game statistics -->

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:background="@color/lightGrey">

 < Button

 android:id="n"

 style="?android:borderlessButtonStyle"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentStart="true"

 android:layout_centerVertical="true"

 android:text="@string/play_game" />

 <LinearLayout

 android:id="@+id/status_display"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentEnd="true"

 android:layout_centerVertical="true"

 android:layout_marginEnd="8dp"

 android:orientation="horizontal"

 tools:ignore="RelativeOverlap">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/level_label"

 android:textSize="20sp"

 android:textStyle="bold"

 tools:ignore="RelativeOverlap" />

Chapter 7 Building the Balloon popper game

177

 <TextView

 android:id="@+id/level_display"

 android:layout_width="40dp"

 android:layout_height="wrap_content"

 android:layout_marginEnd="32dp"

 android:gravity="end"

 android:text="@string/maxNumber"

 android:textSize="20sp"

 android:textStyle="bold" />

 <TextView

 android:id="@+id/score_label"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/score_label"

 android:textSize="20sp"

 android:textStyle="bold"

 tools:ignore="RelativeOverlap" />

 <TextView

 android:id="@+id/score_display"

 android:layout_width="40dp"

 android:layout_height="wrap_content"

 android:layout_marginEnd="16dp"

 android:gravity="end"

 android:text="@string/maxNumber"

 android:textSize="20sp"

 android:textStyle="bold" />

 </LinearLayout>

 </RelativeLayout>

</RelativeLayout>

At this point, you should have something that looks like Figure 7-21.

Chapter 7 Building the Balloon popper game

178

It’s starting to shape up, but we still need to fix that toolbar and the

other widgets displayed on the top strip of the screen. We’ve already

done this in the previous chapter so that this technique will be familiar.

Listing 7-12 shows the code for the setToFullScreen() method.

Listing 7-12. setToFullScreen()

private void setToFullScreen() {

 contentView.setSystemUiVisibility(View.SYSTEM_UI_FLAG_

LOW_PROFILE

 | View.SYSTEM_UI_FLAG_FULLSCREEN

 | View.SYSTEM_UI_FLAG_LAYOUT_STABLE

 | View.SYSTEM_UI_FLAG_IMMERSIVE_STICKY

 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION

 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION);

}

Figure 7-21. The app with game controls and pins

Chapter 7 Building the Balloon popper game

179

Enabling fullscreen mode is well documented in the Android Developer

website; here’s the link for more information: https://developer.

android.com/training/system-ui/immersive.

Listing 7-13 shows the annotated listing of MainActivity.

Listing 7-13. Annotated MainActivity

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.MotionEvent;

import android.view.View;

import android.view.ViewGroup;

public class MainActivity extends AppCompatActivity {

 ViewGroup contentView; ❶

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 getWindow().setBackgroundDrawableResource(R.mipmap.

background);

 setContentView(R.layout.activity_main);

 contentView = (ViewGroup) findViewById

(R.id.content_view); ❷

 contentView.setOnTouchListener(new View.OnTouchListener() {

 @Override

 public boolean onTouch(View v, MotionEvent event) { ❸

 if (event.getAction() == MotionEvent.ACTION_DOWN) {

 setToFullScreen();

 }

 return false;

 }

Chapter 7 Building the Balloon popper game

https://developer.android.com/training/system-ui/immersive
https://developer.android.com/training/system-ui/immersive

180

 });

 }

 @Override

 protected void onResume() {

 super.onResume();

 setToFullScreen(); ❹

 }

 private void setToFullScreen() {

 contentView.setSystemUiVisibility(View.SYSTEM_UI_FLAG_

OW_PROFILE

 | View.SYSTEM_UI_FLAG_FULLSCREEN

 | View.SYSTEM_UI_FLAG_LAYOUT_STABLE

 | View.SYSTEM_UI_FLAG_IMMERSIVE_STICKY

 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION

 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION);

 }

}

❶ declare the contentView variable as a member; we’ll use this on a couple

of methods, so we need it available class-wide.

❷ get a reference to the Framelayout container we defined earlier in

activity_main. Store the returned value to the containerView variable.

❸ the fullscreen setting is temporary. the screen may revert to displaying

the toolbar later (e.g., when dialog windows are shown). We’re binding the

setOnTouchListener() to the Framelayout to allow the user to simply tap

anywhere on the screen once to restore the full screen.

❹ We’re calling the setToFullScreen() here in the onResume() lifecycle

method. We want to set the screen to full when all of the View objects are

already visible to the user.

Chapter 7 Building the Balloon popper game

181

Figure 7-22 shows the app in fullscreen mode.

 Drawing the Balloons

The idea is to create a lot of balloons that will rise from the bottom to the

top of the screen. We need to create the balloons programmatically. We

can do this by creating a class that represents the balloon. We’ll write some

logic that will create instances of the Balloon class and make them appear

at random places at the bottom of the screen, but first things first, let’s

create that Balloon class.

Right-click the project’s package, then choose New ➤ Java Class, as

shown in Figure 7-23.

Figure 7-22. The app in full screen

Chapter 7 Building the Balloon popper game

182

In the window that follows, type the name of the class (Balloon) and

type its superclass (AppCompatImageView), as shown in Figure 7-24.

Listing 7-14 shows the code for the Balloon class.

Figure 7-23. New Java class

Figure 7-24. Create a new class

Chapter 7 Building the Balloon popper game

183

Listing 7-14. Balloon class

import androidx.appcompat.widget.AppCompatImageView;

import android.content.Context;

import android.util.TypedValue;

import android.view.ViewGroup;

public class Balloon extends AppCompatImageView {

 public Balloon(Context context) { ❶

 super(context);

 }

 public Balloon(Context context, int color, int height, int

level) { ❷

 super(context);

 setImageResource(R.mipmap.balloon); ❸

 setColorFilter(color); ❹

 int width = height / 2; ❺

 int dpHeight = pixelsToDp(height, context); ❻

 int dpWidth = pixelsToDp(width, context);

 ViewGroup.LayoutParams params =

 new ViewGroup.LayoutParams(dpWidth, dpHeight);

 setLayoutParams(params);

 }

 public static int pixelsToDp(int px, Context context) {

 return (int) TypedValue.applyDimension(

 TypedValue.COMPLEX_UNIT_DIP, px,

 context.getResources().getDisplayMetrics());

 }

}

Chapter 7 Building the Balloon popper game

184

❶ this is the default constructor of the appCompatimageView. We’ll leave this

alone

❷ We need a new constructor, one that takes in some parameters that we’ll

need for the game. overload the constructor and create one that takes in

parameters for the balloon’s color, height and game level

❸ Set the source for the image. point it to the balloon image in the mipmap

folders

❹ the balloon image is just monochromatic gray. the setColorFilter() tints

the image with any color you like. this is the reason why we want to

parameterize the color

❺ the image file of the balloon is set so that it’s twice as long as its width. to

calculate the width of the balloon, we divide the height by 2

❻ We want to calculate the device-independent pixels for the image; so, we

created a static method in the Balloon class that does exactly that (see the

implementation of pixelsToDp())

If you want to see this in action, you can modify the onTouch() listener

of the contentView container in MainActivity such that, every time you

touch the screen, a red balloon pops up exactly where you touched the

screen. The code for that is shown in Listing 7-15.

Listing 7-15. MainActivity’s onTouchListener

contentView.setOnTouchListener(new View.OnTouchListener() {

 @Override

 public boolean onTouch(View v, MotionEvent event) {

 Balloon btemp = new Balloon(MainActivity.this,

0xFFFF0000, 100, 1); ❶

 btemp.setY(event.getY()); ❷

 btemp.setX(event.getX()); ❸

 contentView.addView(btemp); ❹

Chapter 7 Building the Balloon popper game

185

 if (event.getAction() == MotionEvent.ACTION_DOWN) {

 setToFullScreen();

 }

 return false;

 }

});

❶ Create an instance of the Balloon class; pass the context, the color red, an

arbitrary height, and 1 (for the level, this isn’t important right now).

❷ Set the Y coordinate where we want the Balloon object to show up.

❸ Set the X coordinate.

❹ add the new Balloon object as a child to the View object; this is important

because this makes the Balloon visible to us.

At this point, every time you click the screen, a red balloon shows up.

We need to mix up the colors of the balloons to make it more interesting.

Let’s use at least three colors: red, green, and blue. We can look up the hex

values of these colors, or we can use the Color class in Android. To get the

red color, we can write something like this:

Color.argb(255, 255, 0, 0);

For blue and green, it would be as follows:

Color.argb(255, 0, 255, 0);

Color.argb(255, 0, 0, 255);

A simple solution to rotate the colors is to set up an array of three

elements, where each element contains a color value. Listing 7-16 shows

the partial code for this task.

Chapter 7 Building the Balloon popper game

186

Listing 7-16. Array of colors (this goes into the MainActivity)

private int[] colors = new int[3];

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // ...

 colors[0] = Color.argb(255, 255, 0, 0);

 colors[1] = Color.argb(255, 0, 255, 0);

 colors[2] = Color.argb(255, 0, 0, 255);

}

Next, we set up a method that returns a random number between 0

and 2. We’ll make this our random selector for color. Listing 7-17 shows

this code.

Listing 7-17. nextColor() method

private static int nextColor() {

 int max = 2;

 int min = 0;

 int retval = 0;

 Random random = new Random();

 retval = random.nextInt((max - min) + 1) + min;

 return retval;

}

Next, we modify that part of our code in MainActivity when we create

the Balloon (inside the onTouch() method) and assign it a color; now, we

will assign it a random color. Listing 7-18 shows that code.

Chapter 7 Building the Balloon popper game

187

Listing 7-18. Assigning a random color

int curColor = colors[nextColor()];

Balloon btemp = new Balloon(MainActivity.this, curColor, 100, 1);

btemp.setY(event.getY());

btemp.setX(event.getX());

contentView.addView(btemp);

Figure 7-25 shows the app randomizing the colors of the balloons.

 Making the Balloons Float

To make the balloons float from the bottom to the top, we will use a built-in

class in Android SDK. We won’t micromanage the position of the balloon

as it rises to the top of the screen.

Figure 7-25. Random colors

Chapter 7 Building the Balloon popper game

188

The ValueAnimator class (Android .animation.ValueAnimator) is

essentially a timing engine for running animations. It calculates animated

values and then sets them on the target objects.

Since we want to animate each balloon, we’ll put the animation logic

inside the Balloon class; let’s add a new method named release() where

we will put the necessary code to make the balloon float. Listing 7-19

shows the code.

Listing 7-19. release() method in the Balloon class

private BalloonListener listener;

// some other statements ...

listener = new BalloonListener(this);

// some other statements ...

public void release(int scrHeight, int duration) { ❶

 animator = new ValueAnimator(); ❷

 animator.setDuration(duration); ❸

 animator.setFloatValues(scrHeight, 0f); ❹

 animator.setInterpolator(new LinearInterpolator()); ❺

 animator.setTarget(this); ❻

 animator.addListener(listener);

 animator.addUpdateListener(listener); ❼

 animator.start(); ❽

}

❶ the release() method takes two arguments; the first one is the height of the

screen (we need this for the animation), and the second one is duration; we need

this later for the levels. as the level increases, the faster the balloon will rise.

❷ Create the animator object.

Chapter 7 Building the Balloon popper game

189

❸ this sets the duration of the animation. the higher this value is, the longer the

animation.

❹ this sets the float values that will be animated between. We want to animate

from the bottom of the screen to the top; hence, we pass 0f and the screen

height.

❺ We set the time interpolator used in calculating the elapsed fraction of this

animation. the interpolator determines whether the animation runs with linear

or nonlinear motion, such as acceleration and deceleration. in our case, we

want a linear acceleration, so we pass an instance of the linearinterpolator.

❻ the target of the animation is the specific instance of a Balloon, hence this.

❼ the animation has a life cycle. We can listen to these updates by adding some

listener objects. We will implement these listeners in a little while.

❽ Start the animation.

Create a new class (on the same package) and name it

BalloonListener.java; Listing 7-20 shows the code for the BalloonListener.

Listing 7-20. BalloonListener.java

import android.animation.Animator;

import android.animation.ValueAnimator;

public class BalloonListener implements ❶

 Animator.AnimatorListener,

 ValueAnimator.AnimatorUpdateListener{

 Balloon balloon;

 public BalloonListener(Balloon balloon) {

 this.balloon = balloon; ❷

 }

Chapter 7 Building the Balloon popper game

190

 @Override

 public void onAnimationUpdate(ValueAnimator valueAnimator) {

 balloon.setY((float) valueAnimator.getAnimatedValue()); ❸

 }

 // some other lifecycle methods ...

}

❶ We’re interested in the lifecycle methods of the animation; hence,

we implement Animator.AnimatorListener and ValueAnimator.

AnimatorUpdateListener.

❷ We need a reference to the Balloon object; hence, we take it in as a parameter

when this listener object gets created.

❸ When the Valueanimator updates its values, we will set the Y position of the

balloon instance to this value.

In MainActivity (where we create an instance of the Balloon), we need

to calculate the screen height. Listing 7-21 shows the annotated code that

will accomplish that.

Listing 7-21. Calculate the screen’s height and width

ViewTreeObserver viewTreeObserver = contentView.

getViewTreeObserver(); ❶

if (viewTreeObserver.isAlive()) { ❷

 viewTreeObserver.addOnGlobalLayoutListener(new ViewTree

Observer.OnGlobalLayoutListener() { ❸

 @Override

 public void onGlobalLayout() {

 contentView.getViewTreeObserver().removeOnGlobalLayout

Listener(this); ❹

Chapter 7 Building the Balloon popper game

191

 scrWidth = contentView.getWidth(); ❺

 scrHeight = contentView.getHeight();

 }

 });

}

❶ get an instance of the Viewtreeobserver.

❷ We can only work with this observer when it’s alive; so, we wrap the whole

logic inside an if-statement.

❸ We want to be notified when the global layout state or the visibility of views

within the view tree changes.

❹ We want to get notified only once; so, once the onGlobalLayout() method is

called, we remove the listener.

❺ now, we can get the screen’s height and width.

Listing 7-22 shows MainActivity with the code to calculate the screen’s

height and width.

Listing 7-22. MainActivity

public class MainActivity extends AppCompatActivity {

 ViewGroup contentView;

 private static String TAG;

 private int[] colors = new int[3];

 private int scrWidth; ❶

 private int scrHeight;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Chapter 7 Building the Balloon popper game

192

 TAG = getClass().getName();

 // other statements ...

 contentView = (ViewGroup) findViewById(R.id.content_view);

 contentView.setOnTouchListener(new View.OnTouchListener() {

 @Override

 public boolean onTouch(View v, MotionEvent event) {

 Log.d(TAG, "onTouch");

 int curColor = colors[nextColor()];

 Balloon btemp = new Balloon(MainActivity.this,

curColor, 100, 1);

 btemp.setY(scrHeight); ❷

 btemp.setX(event.getX());

 contentView.addView(btemp);

 btemp.release(scrHeight, 4000); ❸

 Log.d(TAG, "Balloon created");

 if (event.getAction() == MotionEvent.ACTION_DOWN) {

 setToFullScreen();

 }

 return false;

 }

 });

 }

 @Override

 protected void onResume() {

 super.onResume();

 setToFullScreen(); ❹

Chapter 7 Building the Balloon popper game

193

 ViewTreeObserver viewTreeObserver = contentView.

getViewTreeObserver(); ❺

 if (viewTreeObserver.isAlive()) {

 viewTreeObserver.addOnGlobalLayoutListener(new

 ViewTreeObserver.OnGlobalLayoutListener() {

 @Override

 public void onGlobalLayout() {

 contentView.getViewTreeObserver().removeOnGlobal

LayoutListener(this);

 scrWidth = contentView.getWidth();

 scrHeight = contentView.getHeight();

 }

 });

 }

 }

}

❶ Create member variables scrHeight and scrWidth.

❷ Change the value of Y coordinate for the Balloon instance. instead of showing

the Y position of the Balloon where the click occurred, let’s start the Y position

of the Balloon at the bottom of the screen.

❸ Call the release() method of the Balloon. We would have calculated the

screen height by the time we make this call. the second argument is

hardcoded for now (duration), which means the Balloon will take about

4 seconds to rise to the top of the screen.

❹ Before we calculate the screen height and width, it’s very important that we already

called setToFullScreen(); that way, we’ve got an accurate set of dimensions.

❺ put the code to calculate the screen’s height and width on the callback when

all the View objects are already visible to the user; that’s the onResume()

method.

Chapter 7 Building the Balloon popper game

194

At this point, if you run the app, a Balloon object will rise from the

bottom to the top of the screen whenever you click anywhere on the screen

(Figure 7-26).

 Launching the Balloons

Now that we can make balloons rise to the top one at a time, we need to

figure out how to launch a couple of balloons that resembles a level of a

game. Right now, the balloons appear on the screen in response to the

user’s click; this isn’t how we want to play the game. We need to make

some changes.

What we want is for the player to click a button, then start the

gameplay. When the button is first clicked, that automatically gets the user

into the first level. The levels of the game aren’t complicated; as the levels

rise, we’ll simply increase the speed of the balloons.

Figure 7-26. Balloons rising to the top

Chapter 7 Building the Balloon popper game

195

To launch the balloons, we need to do the following:

 1. Make the Button in activity_main.xml respond to

click events.

 2. Create a new method in MainActivity that will

contain all the code needed to start a level.

 3. Write a loop that will launch several balloons.

 4. Randomize the X position of the Balloons as they are

created.

To make the Button respond to click events, we need to bind it to an

OnClickListener object, as shown in Listing 7-23.

Listing 7-23. Binding the Button to an onClickListener

Button btn = (Button) findViewById(R.id.btn);

btn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 // start the level

 // when this is clicked

 }

});

The code to start a level is shown in Listing 7-24.

Listing 7-24. startLevel() in MainActivity

private void startLevel() {

 // we'll fill this codes later

}

Chapter 7 Building the Balloon popper game

196

We need to refactor the code to launch a single balloon. Right now,

we’re doing it inside the onTouchListener. We want to enclose this

logic in a method. Listing 7-25 shows the launchBalloon() method in

MainActivity.

Listing 7-25. launchBalloon()

public void launchBalloon(int xPos) { ❶

 int curColor = colors[nextColor()];

 Balloon btemp = new Balloon(MainActivity.this, curColor, 100, 1);

 btemp.setY(scrHeight);

 btemp.setX(xPos); ❷

 contentView.addView(btemp);

 btemp.release(scrHeight, 3000);

 Log.d(TAG, "Balloon created");

}

❶ the method takes an int parameter. this will be the X position of the Balloon

on the screen.

❷ Set the horizontal position of the Balloon.

We want to launch the balloons in the background; you don’t want

to do these things in the main UI thread because that will affect the

game’s responsiveness. We don’t want the game to feel janky. So, we’ll

write the looping logic in a Thread. Listing 7-26 shows the code for this

Thread class.

Chapter 7 Building the Balloon popper game

197

Listing 7-26. LevelLoop (implemented as an inner class in

MainActivity)

class LevelLoop extends Thread { ❶

 int balloonsLaunched = 0;

 public void run() {

 while (balloonsLaunched <= 15) { ❷

 balloonsLaunched++;

 Random random = new Random(new Date().getTime());

 final int xPosition = random.nextInt(scrWidth - 200); ❸

 try {

 Thread.sleep(1000); ❹

 }

 catch(InterruptedException e) {

 Log.e(TAG, e.getMessage());

 }

 // need to wrap this on runOnUiThread

 runOnUiThread(new Thread() {

 public void run() {

 launchBalloon(xPosition); ❺

 }

 });

 }

 }

}

Chapter 7 Building the Balloon popper game

198

❶ levelloop is an inner class in mainactivity. implementing it as an inner

class lets us access the outer class’ (mainactivity) member variables and

methods (which will be handy).

❷ the loop will stop when we’ve launched 15 balloons. the number of

balloons to launch is hardcoded right now, but we’ll refactor this later.

❸ get a random number to pick an X coordinate for the Balloon.

❹ let’s introduce a delay; if you don’t introduce the delay, all 15 balloons

can appear and rise to the top at the same time. right now, the delay is

hardcoded; we’ll refactor this later. We need to vary this according to the

level. By the way, Thread.sleep() throws the InterruptedException; that’s

why we need to wrap this in a try-catch block.

❺ Finally, call the launchBalloon() method of the outer class. We need

to wrap this call in a runOnUiThread() method because it’s illegal

for a background process to make calls on ui elements; ui elements

are rendered on the main thread (otherwise known as the ui thread).

if you need to make a call on objects that are on the ui thread while

you are running in the background, you’ll need to wrap that call on a

runOnUiThread() method like what we did here.

At this point, every time you click the “Play” button, the game will

launch a series of 15 balloons that will rise to the top of the screen;

however, the game has no concept of levels yet. No matter how many times

you click “Play,” the speed of the rising balloons remains constant. Let’s fix

that in the next section.

 Handling Game Levels

To introduce levels, let’s create a member variable in MainActivity to hold

the value of the levels, and every time we call the startLevel() method, we

increment that variable by 1. Listing 7-27 shows the code for these changes.

Chapter 7 Building the Balloon popper game

199

Listing 7-27. Preparing the levels

private int level; ❶

// other statements ...

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // other statements ...

 levelDisplay = (TextView) findViewById(R.id.level_display); ❷

 scoreDisplay = (TextView) findViewById(R.id.score_display); ❸

}

private void startLevel() {

 level++; ❹

 new LevelLoop(level).start(); ❺

 levelDisplay.setText(String.format("%s", level)); ❻

}

❶ declare level as a member variable.

❷ get a reference to the textView object that displays the current level.

❸ While we’re at it, also get a reference to the textView object that displays

the current score.

❹ increment the level variable every time the startLevel() method is called.

❺ let’s pass the level variable to the LevelLoop object (we need to refactor

the levelloop class, so it becomes aware of the game level).

❻ let’s display the current level.

Chapter 7 Building the Balloon popper game

200

Next, let’s refactor the LevelLoop class to make it sensitive to the

current game level. Listing 7-28 shows these changes.

Listing 7-28. LevelLoop

class LevelLoop extends Thread {

 private int shortDelay = 500; ❶

 private int longDelay = 1_500;

 private int maxDelay;

 private int minDelay;

 private int delay;

 private int looplevel;

 int balloonsLaunched = 0;

 public LevelLoop(int argLevel) { ❷

 looplevel = argLevel;

 }

 public void run() {

 while (balloonsLaunched < 15) {

 balloonsLaunched++;

 Random random = new Random(new Date().getTime());

 final int xPosition = random.nextInt(scrWidth - 200);

 maxDelay = Math.max(shortDelay,

(longDelay - ((looplevel -1)) * 500)); ❸

 minDelay = maxDelay / 2;

 delay = random.nextInt(minDelay) + minDelay;

 Log.i(TAG, String.format("Thread delay = %d", delay));

Chapter 7 Building the Balloon popper game

201

 try {

 Thread.sleep(delay); ❹

 }

 catch(InterruptedException e) {

 Log.e(TAG, e.getMessage());

 }

 // need to wrap this on runOnUiThread

 runOnUiThread(new Thread() {

 public void run() {

 launchBalloon(xPosition);

 }

 });

 }

 }

}

❶ let’s introduce the variables longDelay and shortDelay, which hold the

integer values for the longest possible delay (in milliseconds) and the

shortest possible delay, respectively.

❷ refactor the constructor to accept a level parameter. assign this parameter

to the member variable looplevel.

❸ this bit of math calculates the delay (which is now affected by the level).

the delay won’t be lower than shortDelay nor will it be higher than

longDelay.

❹ use the calculated delay in the Thread.sleep() method.

Chapter 7 Building the Balloon popper game

202

 Pop the Balloons

To score points, the player has to touch the balloons, thereby popping

them before they get to the top of the screen. When a balloon gets to the

top of the screen, it also pops, but the player doesn’t score a point; in fact,

the player loses a pin when that happens.

To pop a balloon, we need to set up a touch listener for the Balloon,

then inform MainActivity that the player popped the balloon; we need to

inform MainActivity because

 1. In MainActivity, we will update the score and the

status of how many pins are left.

 2. Also in MainActivity, we will remove the Balloon

from the ViewGroup, regardless of how it got

popped, whether the player popped it or the balloon

got away.

To do this, we need to set up an interface between the Balloon class

and MainActivity. Let’s create an interface and add it to the project.

Creating an interface in Android Studio is very similar to how we create

classes. Use the context menu; right-click the project’s package, then

choose New ➤ Java Class, as shown in Figure 7-27.

Figure 7-27. New Java class

Chapter 7 Building the Balloon popper game

203

In the window that follows, type the name of the interface

(PopListener) and choose Interface as the kind (shown in Figure 7-28).

The PopListener interface will only have one method (shown in

Listing 7-29).

Listing 7-29. PopListener interface

public interface PopListener {

 void popBalloon(Balloon bal, boolean isTouched);

}

Figure 7-28. New interface

Chapter 7 Building the Balloon popper game

204

The first parameter (bal) refers to a specific instance of a Balloon. We

need this reference because this is what we’ll remove from the ViewGroup.

Removing it from the ViewGroup makes it disappear from the screen. The

second parameter will tell us if the balloon popped because the player got

it, in which case this parameter will be true, or if it popped because it went

all the way to the top, in which case, the parameter will be false.

Now we make a quick change to MainActivity, as shown in Listing 7-30.

Listing 7-30. MainActivity

public class MainActivity extends AppCompatActivity

 implements PopListener { ❶

 @Override

 public void popBalloon(Balloon bal, boolean isTouched) { ❷

 contentView.removeView(bal); ❸

 if(isTouched) {

 userScore++; ❹

 scoreDisplay.setText(String.format("%d", userScore)); ❺

 }

 }

}

❶ implement the poplistener interface.

❷ implement the actual popBalloon() method.

❸ this code removes a specific instance of a Balloon in the Viewgroup.

❹ now we can increment the player’s score.

❺ this will display the score of the player.

Then we make adjustments on the Balloon class; Listing 7-31 shows

these changes.

Chapter 7 Building the Balloon popper game

205

Listing 7-31. Balloon class

public class Balloon extends AppCompatImageView

 implements View.OnTouchListener { ❶

 private ValueAnimator animator;

 private BalloonListener listener;

 private boolean isPopped; ❷

 private PopListener mainactivity; ❸

 private final String TAG = getClass().getName();

 public Balloon(Context context) {

 super(context);

 }

 public Balloon(Context context, int color, int height,

int level) {

 super(context);

 mainactivity = (PopListener) context; ❹

 // other statements ...

 setOnTouchListener(this); ❺

 }

 // other methods ...

 @Override

 public boolean onTouch(View view, MotionEvent motionEvent) {

 Log.d(TAG, "TOUCHED");

 if(!isPopped) {

 mainactivity.popBalloon(this, true);

 isPopped = true;

 animator.cancel();

 }

Chapter 7 Building the Balloon popper game

206

 return true;

 }

 public void pop(boolean isTouched) { ❻

 mainactivity.popBalloon(this, isTouched); ❼

 }

 public boolean isPopped() { ❽

 return isPopped;

 }

}

❶ implement the View.OnTouchListener on the Balloon class. We’ll make

this class the listener for touch events.

❷ the isPopped variable holds the state of any particular balloon, whether

popped or not.

❸ Create a reference to mainactivity (which implements the poplistener

interface).

❹ in the Balloon’s constructor, cast the Context object to poplistener and

assign it to the mainactivity variable.

❺ Set the ontouchlistener for this Balloon instance.

❻ Create a utility function named pop(). We’re making it public because we’ll

need to call this method from the BalloonListener class later on.

❼ Create a utility function named isPopped(); we will also call this method

from the BalloonListener class.

At this point, you can play the game with limited functionality. When

you click “Play,” a set of Balloons floats to the top; clicking a balloon

removes it from the ViewGroup. When a balloon reaches the top, it also

gets removed from the ViewGroup.

Chapter 7 Building the Balloon popper game

207

 Managing the Pins

When a balloon gets away from the player, we want to update the pushpin

images on top of the screen. For every missed balloon, we want to display a

broken pushpin image. The code we need to change is in MainActivity; so,

let’s implement that change.

We can start by declaring two member variables on MainActivity.

• numberOfPins = 5;—The number of pins in our layout.

• pinsUsed;—Each time a balloon gets away, we

increment this variable.

Let’s also create an ArrayList to hold the pushpin images. We want

to put them in an ArrayList so we can reference the pushpin images

programmatically. Creating and populating the ArrayList with the pushpin

images can be done with the code in Listing 7-32. This code can be written

inside the onCreate() method of MainActivity.

Listing 7-32. Pushpin images in an ArrayList

private ArrayList<ImageView> pinImages = new ArrayList<>();

pinImages.add((ImageView) findViewById(R.id.pushpin1));

pinImages.add((ImageView) findViewById(R.id.pushpin2));

pinImages.add((ImageView) findViewById(R.id.pushpin3));

pinImages.add((ImageView) findViewById(R.id.pushpin4));

pinImages.add((ImageView) findViewById(R.id.pushpin5));

We’ve already got the logic to handle the missed balloons inside the

popBalloon() method. We already know how to handle the case when the

player pops the Balloon; all we need to do is add some more logic to the

existing if-else condition. Listing 7-33 shows us that code.

Chapter 7 Building the Balloon popper game

208

Listing 7-33. popBalloon()

public void popBalloon(Balloon bal, boolean isTouched) {

 contentView.removeView(bal);

 if(isTouched) {

 userScore++;

 scoreDisplay.setText(String.format("%d", userScore));

 }

 else { ❶

 pinsUsed++; ❷

 if (pinsUsed <= pinImages.size()) { ❸

 pinImages.get(pinsUsed -1).setImageResource

(R.drawable.pin_broken); ❹

 Toast.makeText(this, "Ouch!",Toast.LENGTH_SHORT).

show(); ❺

 }

 if(pinsUsed == numberOfPins) { ❻

 gameOver();

 }

 }

}

private void gameOver() {

 // TODO: implement GameOver method

 Toast.makeText(this, "Game Over", Toast.LENGTH_LONG).show();

}

Chapter 7 Building the Balloon popper game

209

❶ if isTouched is false, that means the balloon got away from the player.

❷ increment the pinsUsed variable. For every missed balloon, we increment

this variable.

❸ let’s check if pinsUsed is less than or equal to the size of the arraylist

which contains the pushpin images (which has five elements); if this

expression is true, that means it isn’t game over yet, the player still has

some pins to spare, and we can continue the gameplay.

❹ this code replaces the image of the pushpin; it sets the image to that of the

broken pin.

❺ We display a simple toast message to the player. a toast message is a small

pop-up that appears at the bottom of the screen, then fades away from view.

❻ let’s check if the player has used up all five pins. if they have, we call the

gameOver() method, which we still have to implement.

 When the Game is Over

When the game is over, we need to do some cleanup; at the very least, we

have to reset the pushpin images—which is easy enough to do. Listing 7-34

should accomplish that job.

Listing 7-34. Resetting the pushpin images

for (ImageView pin: pinImages) {

 pin.setImageResource(R.drawable.pin);

}

We also need to reset a couple of counters. To do these cleanups,

let’s reorganize MainActivity a little bit. Start with implementing the

gameOver() method, as shown in Listing 7-35.

Chapter 7 Building the Balloon popper game

210

Listing 7-35. gameOver()

private void gameOver() {

 isGameStopped = true;

 Toast.makeText(this, "Game Over", Toast.LENGTH_LONG).show();

 btn.setText("Play game");

}

We’re simply displaying a Toast to the player, announcing the game

over message. We’re also resetting the text of the Button. You might have

noticed the isGameStopped variable; that’s another member variable we

need to create to help us manage some rudimentary game states.

Next, let’s add another method called finishLevel(), so we can group

some actions we need to take when the player finishes a level; the code for

that is in Listing 7-36.

Listing 7-36. finishLevel()

private void finishLevel() {

 Log.d(TAG, "FINISH LEVEL");

 String message = String.format("Level %d finished!", level);

 Toast.makeText(this, message, Toast.LENGTH_LONG).

show(); // ❶

 level++; ❷

 updateGameStats(); ❸

 btn.setText(String.format("Start level %d", level)); ❹

 Log.d(TAG, String.format("balloonsLaunched = %d",

balloonsLaunched));

 balloonsPopped = 0; ❺

}

Chapter 7 Building the Balloon popper game

211

❶ tell the player that the level is finished.

❷ increment the level variable.

❸ We haven’t implemented this method yet, but you could probably guess

what it will do. it will simply display the current score and the current level.

❹ Change the text of the Button to one that reflects the next level.

❺ We’re resetting the balloonsPopped variable to zero. We also need to create

this member variable. it will keep track of all the Balloons that got popped.

We will use this to determine if the level is already finished.

Listing 7-37 shows the code for the updateGameStats() method.

Listing 7-37. updateGameStats()

private void updateGameStats() {

 levelDisplay.setText(String.format("%s", level));

 scoreDisplay.setText(String.format("%s", userScore));

}

Now, we need to know when the level is finished. We never bothered

with this before because we simply let the LevelLoop thread do its work

of launching the balloons, but now we need to manage some game states.

There are a couple of places in MainActivity where we can signal the end

of the level. We can do it inside the LevelLoop thread. As soon as the while

loop ends, that should signal the end of the level; but the game might feel

out of sync if we put it there. The Toast messages might appear while some

balloons are still being animated. We will call the finishLevel() inside the

popBalloon() method instead.

Chapter 7 Building the Balloon popper game

212

If we simply count the number of Balloons that gets popped—which

is everything, because every balloon gets popped one way or another—

compare it with the number of balloons we launch per level; when the two

variables are equal, that should signal the end of the level. Listing 7-38

shows that implementation.

Listing 7-38. popBalloon()

@Override

public void popBalloon(Balloon bal, boolean isTouched) {

 balloonsPopped++;

 contentView.removeView(bal);

 if(isTouched) {

 userScore++;

 scoreDisplay.setText(String.format("%d", userScore));

 }

 else {

 pinsUsed++;

 if (pinsUsed <= pinImages.size()) {

 pinImages.get(pinsUsed -1).setImageResource(R.drawable.

pin_broken);

 Toast.makeText(this, "Ouch!",Toast.LENGTH_SHORT).show();

 }

 if(pinsUsed == numberOfPins) {

 gameOver();

 }

 }

 if (balloonsPopped == balloonsPerLevel) {

 finishLevel();

 }

}

Chapter 7 Building the Balloon popper game

213

Next, let’s move to the startLevel() method. The refactored code is

shown in Listing 7-39.

Listing 7-39. startLevel()

private void startLevel() {

 if (isGameStopped) { ❶

 isGameStopped = false; ❷

 startGame(); ❸

 }

 updateGameStats(); ❹

 new LevelLoop(level).start();

}

❶ let’s check for some game state. this will be false the very first time a player

starts the game. this gets reset in the gameOver() method. if this condition

is true, it means we’re starting a new game.

❷ let’s set the value of isGameStopped to false since we have started a

new game.

❸ Call the startGame() method. We will implement this shortly.

❹ update the game statistics.

Next, implement the startGame() method; Listing 7-40 shows us how.

Chapter 7 Building the Balloon popper game

214

Listing 7-40. startGame() method

private void startGame() {

 // reset the scores

 userScore = 0;

 level = 1;

 updateGameStats();

 //reset the pushpin images

 for (ImageView pin: pinImages) {

 pin.setImageResource(R.drawable.pin);

 }

}

That should take care of some basic housekeeping.

 Audio

Most games use music in the background to enhance the player’s

experience. These games also use sound effects for a more immersive

feel. Our little game will use both. We will play a background music

when the game starts, and we’ll also play a sound effect when a Balloon

gets popped.

I got the background music and the popping sound effect from YouTube

Audio Library; feel free to source your preferred background music.

Chapter 7 Building the Balloon popper game

215

Once you’ve procured the audio files, you need to add them to the

project; firstly, you need to create a raw folder in the app/res directory.

You can do that with the context menu. Right-click app/res, then choose

New ➤ Folder ➤ Raw Resources Folder, as shown in Figure 7-29.

Figure 7-29. New Resources Folder

Chapter 7 Building the Balloon popper game

216

In the window that follows, click Finish, as shown in Figure 7-30.

Next, right-click the raw folder. Depending on what OS you’re using,

choose either Reveal in Finder or Show in Explorer.

You can now drag and drop the audio files in the raw folder.

To play the background music, we will need a MediaPlayer object.

This object is built-in in Android SDK. We simply need to import it

to our Java source file. The following are the key method calls for the

MediaPlayer object. Listing 7-41 shows the important APIs we will use.

Figure 7-30. New Android Component

Chapter 7 Building the Balloon popper game

217

Listing 7-41. Key method calls on the MediaPlayer object

import android.media.MediaPlayer

MediaPlayer mplayer;

mplayer = MediaPlayer.create(ctx.getApplicationContext(),

R.raw.ngoni); ❶

mplayer.setVolume(07.f, 0.7f); ❷

mplayer.setLooping(true); ❸

mplayer.start(); ❹

mplayer.pause() ❺

❶ this statement creates an instance of mediaplayer. it takes two arguments;

the first one is a Context object, and the second argument is the name of the

resource file in the raw folder (ngoni.mp3). We are specifying a resource file

here, so there is no need to add the .mp3 extension.

❷ the setVolume() method takes two arguments. the first one is a float value

to specify the left channel volume, and the second one is for the volume of

the right channel. the range of these values is from 0.0 to 1.0. as you can

see, i specified a 70% volume. in an actual game, you might want to store

these values in a preferences file and let the user control it.

❸ i’d like the music to keep on playing. i’m setting it on auto-repeat here.

❹ this will start playing the music.

❺ this will pause the music.

To play the popping sound for the Balloon, we’ll use the SoundPool

object. The popping sound is provided as a very short audio file that will be

used over and over (every time we pop a balloon). These kinds of sounds

are best managed using the SoundPool object.

Chapter 7 Building the Balloon popper game

218

There’s a bit of setup required before you can use a SoundPool object;

Listing 7-42 shows this setup.

Listing 7-42. SoundPool

public Audio(Activity activity) { ❶

 AudioManager audioManager = (AudioManager)

 activity.getSystemService(Context.AUDIO_SERVICE);

 float actVolume = (float)

 audioManager.getStreamVolume(AudioManager.

STREAM_MUSIC); ❷

 float maxVolume = (float)

 audioManager.getStreamMaxVolume(AudioManager.

STREAM_MUSIC);

 volume = actVolume / maxVolume;

 activity.setVolumeControlStream(AudioManager.STREAM_MUSIC); ❸

 AudioAttributes audioAttrib = new AudioAttributes.Builder() ❹

 .setUsage(AudioAttributes.USAGE_GAME)

 .setContentType(AudioAttributes.CONTENT_TYPE_SONIFICATION)

 .build();

 soundPool = new SoundPool.Builder()

 .setAudioAttributes(audioAttrib)

 .setMaxStreams(6)

 .build();

 soundPool.setOnLoadCompleteListener(new SoundPool.OnLoad

CompleteListener() { ❺

Chapter 7 Building the Balloon popper game

219

 @Override

 public void onLoadComplete(SoundPool soundPool, int

sampleId, int status) {

 Log.d(TAG, "SoundPool is loaded");

 isLoaded = true;

 }

 });

 soundId = soundPool.load(activity, R.raw.pop, 1); ❻

}

public void playSound() {

 if (isLoaded) {

 soundPool.play(soundId, volume, volume, 1, 0, 1f); ❼

 }

 Log.d(TAG, "playSound");

}

❶ Setting up the Soundpool and the audiomanager is usually done on the

constructor. We need to pass an activity instance (which will be mainactivity),

so we can get a reference to the audio service.

❷ We will use the getStreamVolume() and getStreamMaxVolume() to

determine how loud we want our sound effect to be.

❸ this binds the volume control to mainactivity.

❹ We need to set some attributes to build the sound pool. this method of

building the sound pool is for android versions 5.0 and up (lollipop).

❺ the sound is loaded asynchronously. We need to set up a listener, so we get

notified when it’s loaded.

❻ now we get to load the sound file from our raw folder.

❼ this line plays the sound. this is what we will call in the popBalloon() method.

Chapter 7 Building the Balloon popper game

220

We’re going to put all of this code in a separate class; we’ll name it

the Audio class. Create a new Java class named Audio. You can do that by

right-clicking the project’s package, then choosing New ➤ Java Class, as

we did before. Listing 7-43 shows the full code for the Audio class.

Listing 7-43. Audio class

import android.app.Activity;

import android.content.Context;

import android.media.AudioAttributes;

import android.media.AudioManager;

import android.media.MediaPlayer;

import android.media.SoundPool;

import android.util.Log;

public class Audio {

 private final int soundId;

 private MediaPlayer mplayer;

 private float volume;

 private SoundPool soundPool;

 private boolean isLoaded;

 private final String TAG = getClass().getName();

 public Audio(Activity activity) {

 AudioManager audioManager = (AudioManager) activity.get

SystemService(Context.AUDIO_SERVICE);

 float actVolume = (float) audioManager.getStream

Volume(AudioManager.STREAM_MUSIC);

 float maxVolume = (float) audioManager.getStream

MaxVolume(AudioManager.STREAM_MUSIC);

 volume = actVolume / maxVolume;

 activity.setVolumeControlStream(AudioManager.STREAM_MUSIC);

Chapter 7 Building the Balloon popper game

221

 AudioAttributes audioAttrib = new AudioAttributes.Builder()

 .setUsage(AudioAttributes.USAGE_GAME)

 .setContentType(AudioAttributes.CONTENT_TYPE_

SONIFICATION)

 .build();

 soundPool = new SoundPool.Builder()

 .setAudioAttributes(audioAttrib)

 .setMaxStreams(6)

 .build();

 soundPool.setOnLoadCompleteListener(new SoundPool.OnLoad

CompleteListener() {

 @Override

 public void onLoadComplete(SoundPool soundPool,

int sampleId, int status) {

 Log.d(TAG, "SoundPool is loaded");

 isLoaded = true;

 }

 });

 soundId = soundPool.load(activity, R.raw.pop, 1);

 }

 public void playSound() {

 if (isLoaded) {

 soundPool.play(soundId, volume, volume, 1, 0, 1f);

 }

 Log.d(TAG, "playSound");

 }

Chapter 7 Building the Balloon popper game

222

 public void prepareMediaPlayer(Context ctx) {

 mplayer = MediaPlayer.create(ctx.getApplicationContext(),

R.raw.ngoni);

 mplayer.setVolume(05.f, 0.5f);

 mplayer.setLooping(true);

 }

 public void playMusic() {

 mplayer.start();

 }

 public void stopMusic() {

 mplayer.stop();

 }

 public void pauseMusic() {

 mplayer.pause();

 }

}

Now we can add some sounds to the app. In the MainActivity class, we

need to create a member variable of type Audio, like this:

Audio audio;

Then, in the onCreate() method, we instantiate the Audio class and

call the prepareMediaPlayer() method, as shown in the following:

audio = new Audio(this);

audio.prepareMediaPlayer(this);

We want to play the music only when the game is in play; so, in

MainActivity’s startGame() method, we add the following statement:

audio.playMusic();

Chapter 7 Building the Balloon popper game

223

When the game is not at play anymore, we want the music to stop; so,

in the gameOver() method, we add this statement:

audio.pauseMusic();

Finally, in the popBalloon() method, add the following statement:

audio.playSound();

 Final Touches

If you’ve been following the coding exercise (and running the game), you

may have noticed that even after the game is over, you can still see some

balloons flying around; you can thank the background thread for that. Even

when all the five pins have been used up, the level is still active, and we still

see some balloons being launched. To handle that, we can do the following:

 1. Keep track of all the balloons being released per

level. We can do this using an ArrayList. Every time

we launch a balloon, we add it to the list.

 2. As soon as a Balloon is popped, we take it

out of the list.

 3. If we reach game over, we go through all the

remaining Balloon objects in the ArrayList and set

their status to popped.

 4. Lastly, remove all the remaining Balloon objects

from the ViewGroup.

First, let’s declare an ArrayList (as a member variable on MainActivity)

to hold all the references to all Balloons that will be launched per level. The

following code accomplishes that:

private ArrayList<Balloon> balloons = new ArrayList<>();

Chapter 7 Building the Balloon popper game

224

Next, in the launchBalloon() method, we insert a statement that adds

a Balloon object to the ArrayList, like this:

balloons.add(btemp);

Next, in the gameOver() method, we add a logic that will loop through

all the remaining Balloons in the ArrayList, set their popped status to true,

and also remove the Balloon instance from the ViewGroup (the code is

shown in Listing 7-44).

Listing 7-44. gameOver() method

private void gameOver() {

 isGameStopped = true;

 Toast.makeText(this, "Game Over", Toast.LENGTH_LONG).show();

 btn.setText("Play game");

 for (Balloon bal : balloons) {

 bal.setPopped(true);

 contentView.removeView(bal);

 }

 balloons.clear();

 audio.pauseMusic();

}

Finally, we need to add the setPopped() method to the Balloon class,

as shown in Listing 7-45.

Listing 7-45. setPopped() method in the Balloon class

public void setPopped(boolean b) {

 isPopped = true;

}

Chapter 7 Building the Balloon popper game

225

That should do it. The final code listing we will see in this chapter is the

complete code for MainActivity. It may be difficult to keep things straight

after all the changes we made to MainActivity; so, to provide as a reference,

Listing 7-46 shows MainActivity’s complete code.

Listing 7-46. MainActivity

import android.graphics.Color;

import android.os.Bundle;

import android.util.Log;

import android.view.MotionEvent;

import android.view.View;

import android.view.ViewGroup;

import android.view.ViewTreeObserver;

import android.widget.Button;

import android.widget.ImageView;

import android.widget.TextView;

import android.widget.Toast;

import java.util.ArrayList;

import java.util.Date;

import java.util.Random;

public class MainActivity extends AppCompatActivity

 implements PopListener {

 ViewGroup contentView;

 private static String TAG;

 private int[] colors = new int[3];

 private int scrWidth;

 private int scrHeight;

 private int level = 1;

Chapter 7 Building the Balloon popper game

226

 private TextView levelDisplay;

 private TextView scoreDisplay;

 private int numberOfPins = 5;

 private int pinsUsed;

 private int balloonsLaunched;

 private int balloonsPerLevel = 8;

 private int balloonsPopped = 0;

 private boolean isGameStopped = true;

 private ArrayList<ImageView> pinImages = new ArrayList<>();

 private ArrayList<Balloon> balloons = new ArrayList<>();

 private int userScore;

 Button btn;

 Audio audio;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 TAG = getClass().getName();

 getWindow().setBackgroundDrawableResource

(R.mipmap.background);

 setContentView(R.layout.activity_main);

 colors[0] = Color.argb(255, 255, 0, 0);

 colors[1] = Color.argb(255, 0, 255, 0);

 colors[2] = Color.argb(255, 0, 0, 255);

 contentView = (ViewGroup) findViewById(R.id.content_view);

 levelDisplay = (TextView) findViewById(R.id.level_display);

 scoreDisplay = (TextView) findViewById(R.id.score_display);

Chapter 7 Building the Balloon popper game

227

 pinImages.add((ImageView) findViewById(R.id.pushpin1));

 pinImages.add((ImageView) findViewById(R.id.pushpin2));

 pinImages.add((ImageView) findViewById(R.id.pushpin3));

 pinImages.add((ImageView) findViewById(R.id.pushpin4));

 pinImages.add((ImageView) findViewById(R.id.pushpin5));

 btn = (Button) findViewById(R.id.btn);

 btn.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 startLevel();

 }

 });

 contentView.setOnTouchListener(new View.OnTouchListener() {

 @Override

 public boolean onTouch(View v, MotionEvent event) {

 if (event.getAction() == MotionEvent.ACTION_DOWN) {

 setToFullScreen();

 }

 return false;

 }

 });

 audio = new Audio(this);

 audio.prepareMediaPlayer(this);

 }

 @Override

 protected void onResume() {

 super.onResume();

 updateGameStats();

 setToFullScreen();

Chapter 7 Building the Balloon popper game

228

 ViewTreeObserver viewTreeObserver = contentView.getView

TreeObserver();

 if (viewTreeObserver.isAlive()) {

 viewTreeObserver.addOnGlobalLayoutListener(new ViewTree

Observer.OnGlobalLayoutListener() {

 @Override

 public void onGlobalLayout() {

 contentView.getViewTreeObserver().removeOnGlobal

LayoutListener(this);

 scrWidth = contentView.getWidth();

 scrHeight = contentView.getHeight();

 }

 });

 }

 }

 public void launchBalloon(int xPos) {

 balloonsLaunched++;

 int curColor = colors[nextColor()];

 Balloon btemp = new Balloon(MainActivity.this,

curColor, 100, level);

 btemp.setY(scrHeight);

 btemp.setX(xPos);

 balloons.add(btemp);

 contentView.addView(btemp);

 btemp.release(scrHeight, 5000);

 Log.d(TAG, "Balloon created");

 }

Chapter 7 Building the Balloon popper game

229

 private void startLevel() {

 if (isGameStopped) {

 isGameStopped = false;

 startGame();

 }

 updateGameStats();

 new LevelLoop(level).start();

 }

 private void finishLevel() {

 Log.d(TAG, "FINISH LEVEL");

 String message = String.format("Level %d finished!",

level);

 Toast.makeText(this, message, Toast.LENGTH_LONG).show();

 level++;

 updateGameStats();

 btn.setText(String.format("Start level %d", level));

 Log.d(TAG, String.format("balloonsLaunched = %d",

balloonsLaunched));

 balloonsPopped = 0;

 }

 private void updateGameStats() {

 levelDisplay.setText(String.format("%s", level));

 scoreDisplay.setText(String.format("%s", userScore));

 }

 private void setToFullScreen() {

Chapter 7 Building the Balloon popper game

230

 contentView.setSystemUiVisibility(View.SYSTEM_UI_FLAG_LOW_

PROFILE

 | View.SYSTEM_UI_FLAG_FULLSCREEN

 | View.SYSTEM_UI_FLAG_LAYOUT_STABLE

 | View.SYSTEM_UI_FLAG_IMMERSIVE_STICKY

 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION

 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION);

 }

 private static int nextColor() {

 int max = 2;

 int min = 0;

 int retval = 0;

 Random random = new Random();

 retval = random.nextInt((max - min) + 1) + min;

 Log.d(TAG, String.format("retval = %d", retval));

 return retval;

 }

 @Override

 public void popBalloon(Balloon bal, boolean isTouched) {

 balloonsPopped++;

 balloons.remove(bal);

 contentView.removeView(bal);

 audio.playSound();

 if(isTouched) {

 userScore++;

 scoreDisplay.setText(String.format("%d", userScore));

 }

Chapter 7 Building the Balloon popper game

231

 else {

 pinsUsed++;

 if (pinsUsed <= pinImages.size()) {

 pinImages.get(pinsUsed -1).setImageResource

(R.drawable.pin_broken);

 Toast.makeText(this, "Ouch!",Toast.LENGTH_SHORT).show();

 }

 if(pinsUsed == numberOfPins) {

 gameOver();

 }

 }

 if (balloonsPopped == balloonsPerLevel) {

 finishLevel();

 }

 }

 private void startGame() {

 // reset the scores

 userScore = 0;

 level = 1;

 updateGameStats();

 //reset the pushpin images

 for (ImageView pin: pinImages) {

 pin.setImageResource(R.drawable.pin);

 }

 audio.playMusic();

 }

 private void gameOver() {

Chapter 7 Building the Balloon popper game

232

 isGameStopped = true;

 Toast.makeText(this, "Game Over", Toast.LENGTH_LONG).show();

 btn.setText("Play game");

 for (Balloon bal : balloons) {

 bal.setPopped(true);

 contentView.removeView(bal);

 }

 balloons.clear();

 audio.pauseMusic();

 }

 class LevelLoop extends Thread {

 private int shortDelay = 500;

 private int longDelay = 1_500;

 private int maxDelay;

 private int minDelay;

 private int delay;

 private int looplevel;

 int balloonsLaunched = 0;

 public LevelLoop(int argLevel) {

 looplevel = argLevel;

 }

 public void run() {

 while (balloonsLaunched <= balloonsPerLevel) {

 balloonsLaunched++;

 Random random = new Random(new Date().getTime());

 final int xPosition = random.nextInt(scrWidth - 200);

Chapter 7 Building the Balloon popper game

233

 maxDelay = Math.max(shortDelay, (longDelay -

((looplevel -1)) * 500));

 minDelay = maxDelay / 2;

 delay = random.nextInt(minDelay) + minDelay;

 Log.i(TAG, String.format("Thread delay = %d", delay));

 try {

 Thread.sleep(delay);

 }

 catch(InterruptedException e) {

 Log.e(TAG, e.getMessage());

 }

 // need to wrap this on runOnUiThread

 runOnUiThread(new Thread() {

 public void run() {

 launchBalloon(xPosition);

 }

 });

 }

 }

 }

}

Chapter 7 Building the Balloon popper game

235© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_8

CHAPTER 8

Testing and
Debugging
What we’ll cover:

• Types of game testing

• Unit testing

• Debugging

• Android Profiler

We’ve gone through the programming phase of our project; next, we go

through testing and debugging. It’s in this stage that we must find all errors

and inconsistencies in the code. A polished game doesn’t have rough

edges; we need to test it, debug it, and make sure it doesn’t hog computing

resources.

 Types of Game Testing

Functional testing. A game is basically an app. Functional testing is a

standard way of testing an app. It’s called functional because we’re testing

the app’s features (also known as functions) as they are specified in the

requirement specification—the requirement specification is something

you (or the game designer) would have written during the planning stages

of the game. This would have been written in a document (usually called

https://doi.org/10.1007/978-1-4842-6121-7_8#DOI

236

functional requirements specification). Examples of what you might find

in a functional specification are “user must log in to the game server before

entering the game” and “user may be able to select or go back to levels

which have been completed; user cannot select a level which has not

been completed.” The testers, usually called QA or QC (short for quality

assurance and quality control, respectively), are the ones who carry out

these tests. They will create test assets, craft a test strategy, execute them,

and eventually report on the results of the executions. Failing tests are

usually assigned back to the developer (you) to fix and resubmit. What

I’m describing here is a typical practice for a development team that has

a separate or dedicated testing team; if you’re a one-person team, the

QA will most likely be you as well. Testing is an entirely different skill; I

strongly encourage you to enlist the help of other people, preferably those

who have experience in testing.

Performance testing. You could probably guess what this type of

testing does just from its name. It pushes the game to its limit and sees

it performs under stress. What you want to see here is how the game

responds when subjected to above-normal conditions. Soak testing or

endurance testing is a kind of performance testing; usually, you leave the

game running for a long long time and in various modes of operation, for

example, leave the game for a really long time while it’s paused or at the

title screen. What you’re trying to find here is how the game responds to

these conditions and how it utilizes system resources like the memory,

CPU, network bandwidth, and so on; you will use tools like the Android

Profiler to carry out these measurements.

Another form of performance testing is volume testing; if your game

uses a database, you might want to find out how the game will respond

when data is loaded to the database. What you’re checking is how the

system responds under various loads of data.

Spike testing or scalability testing is also another kind of performance

test. If your game depends on a central server, this test will usually raise the

number of users (device endpoints) connected to the central server. You’d

Chapter 8 testing and debugging

237

want to observe how a spike in number of users affects player experience;

is the game still responsive, was there an effect on frames per second, are

there lags, and so on?

Compatibility testing is where you check how the game behaves on

different devices and configurations of hardware/software. This is where

AVDs (Android Virtual Devices) will come in handy; because AVDs are

simply software emulators, you don’t have to buy different devices. Use the

AVDs whenever you can. There will be some games that will be difficult to

test reliably on emulators; when you’re in that situation, you really have to

fork over money for testing devices.

Compliance or conformance testing. This is where you check

the game against Google Play guidelines on apps or games; make sure

you read Google Play’s Developer Policy Center at https://bit.ly/

developerpolicycenter. Make sure you are also acquainted with PEGI

(Pan European Game Information) and ESRB (Entertainment Software

Rating Board). If the game has objectionable content that’s not aligned

with a specific rating, they need to be identified and reported. Violations

could be a cause for rejection, which may result in costly rework and

resubmission.

Localization testing is important especially if the game is intended for

global markets. Game titles, contents, and texts need to be translated and

tested in the supported languages.

Recovery testing. This is taking edge case testing to another level.

Here, the app is forced to fail, and you’re observing how the application

behaves as it fails and how it comes back after it fails. It should give you

insight whether you’ve written enough try-catch-finally blocks or not.

Apps should fail gracefully, not abruptly. Whenever possible, runtime

errors should be guarded by try-catch blocks; and when the exception

happens, try to write a log and save the state of the game.

Chapter 8 testing and debugging

https://bit.ly/developerpolicycenter
https://bit.ly/developerpolicycenter

238

Penetration or security testing. This kind of testing tries to discover

the weaknesses of the game. It simulates the activities that a would-be

attacker will do in order to circumvent all the security features of the game;

for example, if the game uses a database to store data, especially user data,

a pen tester (a professional who practices penetration testing) might play

through the game while Wireshark is running—Wireshark is a tool that

inspects packets; it’s a network protocol analyzer. If you stored passwords

in clear text, it will show up in these tests.

Sound testing. Check if there are any errors loading the files; also,

listen to the sound files if there’s a cracking sound or others.

Developer testing. This is the kind of testing you (the programmer)

do as you add layers and layers of code to the game. This involves writing

test code (in Java as well) to test your actual program. This is known as unit

testing. Android developers usually perform JVM testing and instrumented

testing; we’ll discuss these some more in the following sections.

 Unit Testing

Unit testing is actually functional testing that a developer performs, not the

QA or QC. A unit test is simple; it’s a particular thing that a method might

do or produce. An application typically has many unit tests because each

test is a very narrowly defined set of behavior. So, you’ll need lots of tests

to cover the whole functionality. Android developers usually use JUnit to

write unit tests.

JUnit is a regression testing framework written by Kent Beck and Erich

Gamma; you might remember them as the one who created extreme

programming and the other one from Gang of Four (GoF, Design Patterns),

respectively, among other things.

Java developers have long used JUnit for unit testing. Android Studio

comes with JUnit and is very well integrated in it. We don’t have to do

much by way of setup. We only need to write our tests.

Chapter 8 testing and debugging

239

 JVM Test vs. Instrumented Test

If you look at any Android application, you’ll see that it has two parts: a

Java-based behavior and an Android-based behavior.

The Java part is where we code business logic, calculations, and data

transformations. The Android part is where we actually interact with the

Android platform. This is where we get input from users or show results

to them. It makes perfect sense if we can test the Java-based behavior

separate from the Android part because it’s much quicker to execute.

Fortunately, this is already the way it’s done in Android Studio. When you

create a project, Android Studio creates two separate folders—one for the

JVM tests and another for the instrumented tests. Figure 8-1 shows the two

test folders in Android view, and Figure 8-2 shows the same two folders in

Project view.

Figure 8-1. JVM test and instrumented test in Android view

Chapter 8 testing and debugging

240

As you can see from either Figure 8-1 or 8-2, Android Studio went

the extra mile to generate sample test files for both the JVM and the

instrumented test. The example files are there to serve as just quick

references; it shows us what unit tests might look like.

 A Simple Demo

To dive into this, create a project with an empty Activity. Create a class, then

name it Factorial.java, and fill it up with the code shown in Listing 8-1.

Listing 8-1. Factorial.java

public class Factorial {

 public static double factorial(int arg) {

 if (arg == 0) {

Figure 8-2. JVM test and instrumented test in Project view

Chapter 8 testing and debugging

241

 return 1.0;

 }

 else {

 return arg + factorial(arg - 1);

 }

 }

}

Make sure that Factorial.java is open in the main editor, as shown in

Figure 8-3; then, from the main menu bar, go to Navigate ➤ Test. Similarly,

you can also create a test using the keyboard shortcut (Shift+Command+T

on macOS and Ctrl+Shift+T for Linux and Windows).

Right after you click “Test,” a pop-up dialog (Figure 8-4) will prompt

you to click another link—click “Create New Test” as shown in Figure 8-4.

Figure 8-3. Create a test for Factorial.java

Chapter 8 testing and debugging

242

Right after creating a new test, you’ll see another pop-up dialog, shown

in Figure 8-5, which I’ve annotated. Please follow the annotations and

instructions in Figure 8-5.

Figure 8-4. Create New Test pop-up

Figure 8-5. Create FactorialTest

Chapter 8 testing and debugging

243

➊ You can choose which testing library you want to use. You can choose Junit

3, 4, or 5. You can even choose groovy Junit, spock, or testng. i used Junit4

because it comes installed with android studio.

➋ the convention for naming a test class is “name of the class to test” + “test”.

android studio populates this field using that convention.

➌ Leave this blank; we don’t need to inherit from anything.

➍ We don’t need setUp() and tearDown() routines for now, so leave these

unchecked.

➎ Let’s check the factorial() method because we want to generate a test

for this.

When you click the OK button, Android Studio will ask where you want

to save the test file. This is a JVM test, so we want to save it in the “test”

folder (not in androidTest). See Figure 8-6. Click “OK.”

Android Studio will now create the test file for us. If you open

FactorialTest.java, you’ll see the generated skeleton code—shown in

Figure 8-7.

Figure 8-6. Choose Destination Directory

Chapter 8 testing and debugging

244

➊ the file Factorial.java was created under the test folder.

➋ a factorial() method was created, and it’s annotated as @Test. this is how

Junit will know that this method is a unit test. You can prepend your method

names with “test”, for example, testFactorial(), but that is not necessary, the @

Test annotation is enough.

➌ this is where we put our assertions.

See how simple that was? Creating a test case in Android Studio

doesn’t really involve us that much in terms of setup and configuration. All

we need to do now is write our test.

 Implementing the Test

JUnit supplies several static methods that we can use in our test to

make assertions about our code’s behavior. We use assertions to show

an expected result which is our control data. It’s usually calculated

independently and is known to be true or correct—that’s why you use it as

a control data. When the expected data is returned from the assertion, the

test passes; otherwise, the test fails. Table 8-1 shows the common assert

methods you might need for your code.

Figure 8-7. FactorialTest.java in Project view and the main editor

Chapter 8 testing and debugging

245

Now that we know a couple of assert methods, we’re ready to write

some test. Listing 8-2 shows the code for FactorialTest.java.

Listing 8-2. FactorialTest.java

import org.junit.Test;

import static org.junit.Assert.*;

public class FactorialTest {

 @Test

 public void factorial() {

 assertEquals(1.0, Factorial.factorial(1),0.0);

 assertEquals(120.0, Factorial.factorial(5), 0.0);

 }

}

Table 8-1. Common assert methods

Method Description

assertEquals() returns true if two objects or primitives have the same

value

assertNotEquals() the reverse of assertequals()

assertSame() returns true if two references point to the same object

assertNotSame() reverse of assertsame()

assertTrue() tests a boolean expression

assertFalse() reverse of asserttrue()

assertNull() tests for a null object

assertNotNull() reverse of assertnull()

Chapter 8 testing and debugging

246

Our FactorialTest class has only one method because it’s for illustration

purposes only. Real-world code would have many more methods than this,

to be sure.

Notice that each test (method) is annotated by @Test. This is how JUnit

knows that factorial() is a test case. Notice also that assertEquals() is a

method of the Assert class, but we’re not writing the fully qualified name here

because we’ve got a static import on Assert—it certainly makes life easier.

The assertEquals() method takes three parameters; they’re

illustrated in Figure 8-8.

➊ the Expected value is your control data; this is usually hardcoded in the test.

➋ the Actual value is what your method returns. if the expected value is the

same as the actual value, the assertequals() passes—your code is behaving

as expected.

➌ Delta is intended to reflect how close the actual and expected values can

be and still be considered equal. some developers call this parameter the

“fuzz” factor. When the difference between the expected and actual values

is greater than the “fuzz factor,” then assertEquals() will fail. i used 0.0

here because i don’t want to tolerate any kind of deviation. You can use other

values like 0.001, 0.002, and so on; it depends on your use case and how

much fuzz your app is willing to tolerate.

Now, our code is complete. You can insert a couple more asserts in the

code so you can get into the groove of things, if you prefer.

Figure 8-8. assertEquals method

Chapter 8 testing and debugging

247

There are a couple of things I did not include in this sample code.

 I did not override the setUp() and tearDown() methods because I didn’t

need it. You would normally use the setUp() method if you need to

set up database connections, network connections, and so on. Use the

tearDown() method to close whatever it is you opened in the setUp().

Now, we’re ready to run the test.

 Running a Unit Test

You can run just one test or all the tests in the class. The little green arrows

in the gutter of the main editor are clickable. When you click the little

arrow beside the name of the class, that will run all the tests in the class.

When you click the one beside the name of the test method, that will run

only that test case. See Figure 8-9.

Similarly, you can also run the test from the main menu bar; go to

Run ➤ Run.

Figure 8-10 shows the result of the text execution.

Figure 8-9. FactorialTest.java in the main editor

Chapter 8 testing and debugging

248

Android Studio gives you plenty of cues so you can tell if your tests are

passing or failing. Our first run tells us that there’s something wrong with

Factorial.java; the assertEquals() has failed.

Tip When a test fails, it’s best to use the debugger to investigate

the code. FactorialTest.java is no different than any other class in

our project; it’s just another Java file, we can definitely debug it. put

some breakpoints on strategic places of your test code, then instead

of “running” it, run the “debugger” so you can walk through it.

Our test failed because the factorial of 1 isn’t 2, it’s 1. If you look closer

at Factorial.java, you’ll notice that the factorial value isn’t calculated

properly.

Figure 8-10. Result of running FactorialTest.java

Chapter 8 testing and debugging

249

Edit the Factorial.java file, then change this line:

return arg + factorial(arg - 1);

to this line

return arg * factorial(arg - 1);

If we run the test again, we see successful results, as shown in Figure 8- 11.

Instead of yellow exclamation marks, we now see green check marks.

Instead of seeing “Test failed,” we now see “Test passed.” Now we know

that our code works as expected.

 Debugging

We’ve been writing code for a while now; I’m sure you’ve had some

mishaps with your code by now and have seen the various ways that

Android Studio prompted your attention about these errors.

Figure 8-11. Successful test

Chapter 8 testing and debugging

250

 Syntax Errors

One of the errors you’ll encounter with annoying frequency is syntax

errors. They happen because you wrote something in the code that’s not

supposed to be there; or you forgot to write something (like a semicolon).

These errors can be as benign as forgetting a closing curly brace or can

be as complex as passing the wrong type of argument to a method or a

parameterized class when using generics. Fortunately, Android Studio is

very competent in spotting these kinds of errors. It’s almost like the IDE is

continuously reading the code and compiling it.

Syntax errors are simple enough to solve, and you’ve probably figured

it out by now. Whenever you see red squiggly lines or red-colored text in

the IDE (as shown in Figure 8-12), just hover the mouse on top of the red-

colored text or red squiggly lines, and you should see Android Studio’s tips.

The tips typically tell you what’s wrong with the code. In Figure 8-12,

the error is Cannot resolve symbol ‘Button’, which means you haven’t

imported the Button class just yet. To resolve this, position the mouse

cursor on the offending word (Button, in this case), then use the Quick

Fix feature (Option+Enter in Mac, Alt+Enter in Windows). Quick Fix in

action is shown in Figure 8-13.

Figure 8-12. Syntax errors shown in the editor

Chapter 8 testing and debugging

251

 Runtime Errors

Runtime errors happen when your code encounters a situation it doesn’t

expect; and as its name implies, that errant condition is something that

appears only when the program is running—it’s not something you or

the compiler can see at the time of compilation. Your code will compile

without problems, but it may stop running when something in the runtime

environment doesn’t agree with what your code wants to do. There are

many examples of these things; here are some of them:

• The app gets something from the Internet, a picture

or a file and so on, so it assumes that the Internet is

available and there is a network connection. Always.

Experience should tell you that isn’t always the case.

Network connections go down sometimes, and if you

don’t factor this in your code, it may crash.

• The app needs to read from a file. Just like our first case

earlier, your code assumes that the file will always be

there. Sometimes, files get corrupted and may become

unreadable. This should also be factored in the code.

Figure 8-13. Quick Fix

Chapter 8 testing and debugging

252

• The app performs Math calculations. It uses values

that are inputted by users, and sometimes it also uses

values that are derived from other calculations. If your

code happens to perform a division and in one of

those divisions, the divisor is zero, that will also cause a

runtime problem.

For the most part, Java’s got your back when dealing with runtime

errors. Exception handling isn’t optional in Java. Just make sure that you’re

not skimping on your try-catch block; always put Exception handling code,

and you should be fine.

 Logic Errors

Logic errors are the hardest to find. As its name suggests, it’s an error on

your logic. When your code is not doing what you thought it should be

doing, that’s logic error. There are many ways to cope with it, but the most

common methods are (1) using log statements and (2) using breakpoints

and walking/stepping through the code.

Printing log messages is a simple way of marking the footprints of the

program; you can do it with the simple System.out.println() statement,

but I’d encourage you to use the Log class instead. Listing 8-3 shows a

basic usage of the Log class.

Listing 8-3. Basic use of the Log class

public class MainActivity extends AppCompatActivity {

 final String TAG = getClass().getName();

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

Chapter 8 testing and debugging

253

 setContentView(R.layout.activity_main);

 // ...

 }

 void doSomething() {

 Log.d(TAG, "Log message, doSomething");

 }

}

You can define the TAG variable anywhere in the class, but in Listing 8- 3,

I defined it as a class member; Log.d() prints a debug message. You can use

the other methods of the Log class to print warnings, info, or errors. The other

methods are shown here:

Log.v(TAG, message) // verbose

Log.d(TAG, message) // debug

Log.i(TAG, message) // info

Log.w(TAG, message) // warning

Log.e(TAG, message) // error

In each case, tag is a String literal or variable. You can use the tag for

filtering the messages in the Logcat window. The message is also a String

literal or variable which contains what you actually want to see in the log.

When you run your app, you can see the Log messages in the Logcat

tool window. You can launch it either by clicking its tab in the menu strip

at the bottom of the window (as shown in Figure 8-14) or from the main

menu bar, View ➤ Tool Windows ➤ Logcat.

Chapter 8 testing and debugging

254

 Walking through the Code

Android Studio includes an interactive debugger which allows you to walk

and step through your code as it runs. With the interactive debugger, we

can inspect snapshots of the application—values of variables, running

threads, and so on—at specific locations in the code and at specific points

in time. These specific locations in the code are called breakpoints; you get

to choose these breakpoints.

To set a breakpoint, choose a line that has an executable statement,

then click its line number in the gutter. When you set a breakpoint, there

will be a pink circle icon in the gutter, and the whole line is lit in pink—as

shown in Figure 8-15.

Figure 8-14. Logcat tool window

Chapter 8 testing and debugging

255

After the breakpoints are set, you have to run the app in debug mode.

Stop the app if it is currently running, then from the main menu bar, click

Run ➤ Debug ‘app’.

Note running the app in debug mode isn’t the only way to debug

the app. You can also attach the debugger process in a currently

running application. there are situations where this second technique

is useful; for example, when the bug you are trying to solve occurs

on very specific conditions, you may want to run the app for a while,

and when you think you are close to the point of error, you can then

attach the debugger.

Figure 8-15. Debugger window

Chapter 8 testing and debugging

256

Use the application as usual. When the execution comes to a line

where you set a breakpoint, the line turns from pink to blue. This is how

you know the code execution is at your breakpoint. At this point, the

debugger window opens, the execution stops, and Android Studio gets into

interactive debugging mode. While you are here, the state of the application

is displayed in the Debug tool window. During this time, you can inspect

values of variables and even see the threads running in the app.

You can even add variables or expressions in the Watch window by

clicking the plus sign with the spectacles icon. There will be a text field

where you can enter any valid expression. When you press Enter, Android

Studio will evaluate the expression and show you the result. To remove a

watch expression, select the expression and click the minus sign icon on

the Watch window.

To resume the program execution, you can click the “Resume

program” button at the top of the debugger toolbar—it’s the green arrow

pointing to the right. Alternatively, you can also resume the program from

the main menu bar, Run ➤ Resume Program. If you want to halt the

program before it finishes naturally, you can click the “Stop app” button on

the debugger toolbar; it’s the red square icon. Alternatively, you can do this

also from the main menu bar, Run ➤ Stop app.

 Profiler

The profiler gives us insights on how our app/game is using computing

resources, like the CPU, memory, network bandwidth, and battery.

The Profiler is new in Android Studio 3. It replaces the Android

monitor with its new unified and shared timeline view for the CPU,

memory, network, and energy graphs. Figure 8-16 shows the Profiler.

You can get to the Profiler by going to the main menu bar, then

selecting View ➤ Tool Windows ➤ Profiler.

Chapter 8 testing and debugging

257

➊ it shows the process and device being profiled.

➋ it shows you which sessions to view. You can also add new sessions from here

by clicking the + button.

➌ use the zoom buttons to control how much of the timeline to view.

➍ the new shared timeline view lets you see all the graphs for the Cpu, memory,

network, and energy usage. at the top, you will also see important app events,

like user inputs or activity state transitions.

As soon as you launch an application, either on an attached device or

an emulator, you’ll see its graph on the Profiler.

Note if you try to profile an apK with a version lower than api level

26, you will see some warnings because android studio needs to fully

instrument your code. You will need to enable “advance profiling”;

but, if your apK is Oreo or higher, you won’t see any warnings.

Figure 8-16. Profiler

Chapter 8 testing and debugging

258

If you click any of the charts, the Profiler window will take you to one of

the detailed views. If you click the CPU, for example, you’ll see the detailed

view for the CPU utilization.

 CPU

Figure 8-17 shows the detailed view for the CPU utilization on the sample

app I was running.

Aside from the live utilization graph, the CPU detailed view also shows

a list of all the threads in the app and their states—you can see if the

threads are waiting for I/O or when they are active.

You might have noticed the “Record” button in Figure 8-17; if you click

that button, you can get a report on all the methods that were executed in a

given period. Notice also the selected trace type in the drop-down (Sample

Java Methods); this trace type has a smaller overhead but not as detailed

nor as accurate as the instrumented type (Trace Java Methods), meaning

the sampled type may miss the execution of a very short-lived method. You

might think, “just always use the instrumented type then”—you have to

Figure 8-17. CPU view

Chapter 8 testing and debugging

259

remember, though, that while instrumented type can record every method

call, on Android devices before version 8, there is a limit on how much

data can be captured; so, if you use the instrumented trace, that limit will

be reached quickly. You can change that limit by editing the configuration

for the instrumented capture. On the trace type drop-down, choose “Edit

Configurations” as shown in Figure 8-18.

Figure 8-19 shows the “Sampling interval” and “File size limit” settings,

which you can use to adjust how frequent the sampling will be and how big

of a file size you’d like to allocate for the recording. Just to reiterate, the file

size limitation is only present on Android devices that are running Android

8.0 or lower (< API level 26). If your device has a higher Android version,

you’re not constrained by these limitations.

Figure 8-18. Edit Configurations

Chapter 8 testing and debugging

260

If you click record, Android Studio will begin capturing data. Click the

“Stop” button when you’d like to stop recording, as shown in Figure 8-20.

Figure 8-19. CPU Recording Configurations

Chapter 8 testing and debugging

261

When you hit stop, you can take a look at the individual threads, as

shown in Figure 8-21.

Figure 8-20. Recording session

Chapter 8 testing and debugging

262

 Memory

The memory profiler shows, in real time, how much memory your app

is consuming. Figure 8-22 shows a snapshot of the memory view as I

captured the memory footprint of a test app. As you can see, not only does

the graph show how much memory your app is gulping, it also shows the

breakdown, for example, how much memory is used by the code, stack,

graphics, Java, and so on.

Figure 8-21. Inspecting the threads

Chapter 8 testing and debugging

263

You can force garbage collection (GC) in the memory view. See that

garbage can icon at the top? Yup, if you click that, it’ll force a GC. The

button to its right is also useful—the icon with a down-pointing arrow

inside a box is a memory dump. If you click that, the Java heap will be

dumped, and then you can inspect it, as shown in Figure 8-23.

Figure 8-22. Memory view

Chapter 8 testing and debugging

264

The heap is a preserved amount of storage memory that the Android

runtime allocates for our app. When we dumped the heap, it gave us a

chance to examine instance properties of objects, as shown in Figure 8-24.

Figure 8-23. Java heap

Figure 8-24. Instance view, Reference tab

Chapter 8 testing and debugging

265

The Reference tab can be very useful in finding memory leaks because

it shows all the references pointing to the object you’re examining.

Another useful tool in the memory view is the Allocation tracker,

shown in Figure 8-25.

➊ Click anywhere in the timeline of the memory graph to view the allocation

tracker. this will show you a list of all objects that were allocated and

deallocated at that point in time.

➋ this shows a list of all classes being used by the app at a point in time.

➌ this shows the list of all those objects allocated and deallocated at a specific

point in time.

➍ the tracker even includes the call stack of the allocation.

Figure 8-25. Allocation tracker

Chapter 8 testing and debugging

266

 Network

Like the other views in the Profiler, the network view also shows real-time

data. It lets you see and inspect data that is sent and received by your

app; it also shows the total number of connections. Figure 8-26 shows a

snapshot of the network profiler.

Every time your app makes a request to the network, it uses the WiFi

radio to send and receive data—the radio isn’t the most energy efficient; it’s

power-hungry, and if you don’t pay attention to how your app makes network

requests, that’s a sure way of draining the device battery faster than usual.

When you use the network profiler, a good way to start is to look for

short spikes of network activity. When you see sharp spikes that rise and

fall abruptly and they’re scattered all over the timeline, that smells like you

could use some optimization by batching your network requests so as to

reduce the number of times that the WiFi radio needs to wake up and send

or receive data.

Figure 8-26. Network profiler

Chapter 8 testing and debugging

267

Figure 8-27. Energy profiler

 Energy

By now you’re probably seeing a pattern on how the Profiler works. It

shows you real-time data. In the case of the Energy profiler, it shows data

on how much energy your app is guzzling—though it doesn’t really show

the direct measure of energy consumption, the Energy profiler shows an

estimation of the energy consumption of the CPU, the radio, and the GPS

sensor. Figure 8-27 shows a snapshot of the Energy profiler.

You can also use the Energy profiler to find system events that affect

energy consumption, for example, wake locks, jobs, and alarms.

• A wake lock is a mechanism for keeping the CPU of the

screen on when the device would otherwise go to sleep,

for example, when an app plays a video, it may use a

wake lock to keep the screen on even when there’s no

user interaction—using a wake lock isn’t a problem, but

forgetting to release one is; it keeps the CPU on longer

than necessary which will surely drain the battery

faster.

Chapter 8 testing and debugging

268

• Alarms can be used to run background tasks that are

outside your application’s context at specific intervals.

When an alarm goes off, it can run some tasks; in case it

runs an energy-intensive piece of code, you’ll definitely

see it in the Energy profiler.

• A job can perform actions when certain conditions are

met, for example, when the network becomes available.

You would usually create a job with JobBuilder and use

JobScheduler to schedule the execution; when a job

kicks in, you will be able to see them also in the Energy

profiler.

That was a quick touch of the Android Studio Profiler; make sure you

check out the official documentation at https://developer.android.com/

studio/profile/android-profiler. Using the Profiler can give you insights

about which part of your game code is hogging resources. Optimizing the

use of resources can save battery; your users will thank you for it.

 Key Takeaways

• We’ve talked about various kinds of testing you can do

for your games; you don’t have to do them all, but make

sure you do the test that applies to your game.

• Dev testing (unit testing) should be a core development

task; try to get into the habit of writing your test cases

together with your actual code.

• Android Studio Profile can inspect your app’s behavior

from under the hood. It can give you insights on how

the app is consuming resources; use this tool when

you’re doing performance testing.

Chapter 8 testing and debugging

https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler

269© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_9

CHAPTER 9

Introduction to
OpenGL ES
What we’ll cover:

• About OpenGL ES

• OpenGL ES theories

• GLSurfaceView and GLSurfaceView.Renderer

• Using Blender data in OpenGL ES

Starting from API level 11 (Android 3), the 2D rendering pipeline

already supports hardware acceleration. When you draw on the Canvas

(which is what we used in the last two games we built), the drawing

operation is already done on the GPU; but this also meant the app

consumes more RAM because of the increased resources required to

enable hardware acceleration.

Building games using the Canvas isn’t a bad choice of tech if the

game you’re building isn’t that complex; but when the level of visual

complexities rises, the Canvas might run out of juice and won’t be able

to keep up with your game requirements. You’ll need something more

substantial. This is where OpenGL ES comes in.

https://doi.org/10.1007/978-1-4842-6121-7_9#DOI

270

 What’s OpenGL ES

Open Graphics Library (OpenGL) came from Silicon Graphics (SGI);

they were makers of high-end graphics workstations and mainframes.

Initially, SGI had a proprietary graphics framework called IRIS GL (which

grew to be an industry standard), but as competition increased, SGI

opted to turn IRIS GL to an open framework. IRIS GL was stripped down

of nongraphics- related functions and hardware-dependent features and

became OpenGL.

OpenGL is a cross-language, cross-platform application programming

interface (API) for rendering 2D and 3D graphics. It’s a lean mean

machine for rendering polygons; it’s written in C as an API for interacting

with a graphics processing unit (GPU) to achieve hardware accelerated

rendering. It’s a very low-level hardware abstraction.

As small handheld devices became more and more common, OpenGL

for Embedded Systems (OpenGL ES) was developed. OpenGL ES is a

stripped-down version of the desktop version; it removed a lot of the

more redundant API calls and simplified other elements to make it run

efficiently on the less powerful CPUs in the market; as a result, OpenGL ES

was widely adopted in many platforms such as HP webOS, Nintendo 3DS,

iOS, and Android.

OpenGL ES is now an industry standard for (3D) graphics

programming. It is maintained by the Khronos Group, which is an industry

consortium whose members include, among others, ATI, NVIDIA, and

Intel; together, these companies define and extend the standard.

Currently, there are six incremental versions of OpenGL ES: versions

1.0, 1.1, 2.0, 3.0, 3.1, and 3.2.

• OpenGL ES 1.0 and 1.1—This API specification is

supported by Android 1.0 and higher.

• OpenGL ES 2.0—This API specification is supported by

Android 2.2 (API level 8) and higher.

Chapter 9 IntroduCtIon to openGL eS

271

• OpenGL ES 3.0—This API specification is supported by

Android 4.3 (API level 18) and higher.

• OpenGL ES 3.1—This API specification is supported by

Android 5.0 (API level 21) and higher.

There are still developers, especially those who focus on games that

run on multiple platforms, who write for OpenGL ES 1.0; this is because of

its simplicity, flexibility, and standard implementation. All Android devices

support OpenGL ES 1.0, some devices support 2.0, and any device after

Jelly Bean supports OpenGL ES 3.0. At the time of writing, more than half

of activated Android devices already support OpenGL ES 3.0. Table 9-1

shows the distribution and Figure 9-1 shows a nice pie chart to go with

it; this data was taken from https://developer.android.com/about/

dashboards#OpenGL.

Note Support for one particular version of openGL eS also implies

support for any lower version (e.g., support for version 2.0 also

implies support for 1.1).

Table 9-1. OpenGL ES

version distribution

OpenGL ES Version Distribution

GL 1.1 only 0.0%

GL 2.0 14.5%

GL 3.0 18.6%

GL 3.1 9.8%

GL 3.2 57.2%

Chapter 9 IntroduCtIon to openGL eS

https://developer.android.com/about/dashboards#OpenGL
https://developer.android.com/about/dashboards#OpenGL

272

It’s important to note that OpenGL ES 2.0 breaks compatibility with the

1.x versions. You can use either 1.x or 2.0, but not both at the same time.

The reason for this is that the 1.x versions use a programming model called

fixed-function pipeline, while versions 2.0 and up let you programmatically

define parts of the rendering pipeline via shaders.

 What does OpenGL ES do

The short answer is OpenGL ES just renders triangles on the screen, and it

gives you some control on how those triangles are rendered. It’s probably

best also to describe (as early as now) what OpenGL ES is not. It is not

• A scene management API

• A ray tracer

• A physics engine

• A game engine

• A photorealistic rendering engine

OpenGL ES just renders triangles. Not much else.

Figure 9-1. OpenGL ES version distribution

Chapter 9 IntroduCtIon to openGL eS

273

Think of OpenGL ES as working like a camera. To take a picture, you

have to go to the scene you want to photograph. Your scene is composed of

objects that all have a position and orientation relative to your camera as

well as different materials and textures. Glass is translucent and reflective;

a table is probably made out of wood; a magazine has some photo of a

face on it; and so on. Some of the objects might even move around (e.g.,

cars or people). Your camera also has properties, such as focal length,

field of view, image resolution, size of the photo that will be taken, and a

unique position and orientation within the world (relative to some origin).

Even if both the objects and the camera are moving, when you press the

shutter release, you catch a still image of the scene. For that small moment,

everything stands still and is well defined, and the picture reflects exactly

all those configurations of position, orientation, texture, materials, and

lighting. Figure 9-2 shows an abstract scene with a camera, light, and three

objects with different materials.

Figure 9-2. Abstract scene

Chapter 9 IntroduCtIon to openGL eS

274

Each object has a position and orientation relative to the scene’s origin.

The camera, indicated by the eye, also has a position in relation to the

scene’s origin. The pyramid in Figure 9-2 is called the view volume or view

frustum, which shows how much of the scene the camera captures and

how the camera is oriented. The little white ball with the rays is the light

source in the scene, which also has a position relative to the origin.

We can map this scene to OpenGL ES, but to do so, we need to define

(1) models or objects, (2) lights, (3) camera, and (4) viewport.

 Models or Objects

OpenGL ES is a triangle rendering machine. OpenGL ES objects are a

collection of points in 3D space; their location is defined by three values.

These values are joined together to form faces, which are flat surfaces

that look a lot like triangles. The triangles are then joined together to form

objects or pieces of objects (polygons).

The resolution of your shapes can be improved by increasing the

number of polygons in it. Figure 9-3 shows various shapes with varying

number of polygons.

Figure 9-3. From simple shapes to complex shapes

Chapter 9 IntroduCtIon to openGL eS

275

On the far left of Figure 9-3 is a simple sphere; it doesn’t really go over

well as a sphere if you look closely at it. The shape next to it (right) is also a

sphere but with more polygons. The shapes, as they progress to the right,

form complex contours; this can be achieved by increasing the number of

polygons in the shape.

 Lights

OpenGL ES offers a couple different light types with various attributes.

They are just mathematical objects with positions and/or directions in 3D

space, plus attributes such as color.

 Camera

This is also a mathematical object that has a position and orientation in

3D space. Additionally, it has parameters that govern how much of the

image we see, similar to a real camera. All these things together define a

view volume or view frustum (indicated by the pyramid with the top cut

off in Figure 9-2). Anything inside this pyramid can be seen by the camera;

anything outside will not make it into the final picture.

 Viewport

This defines the size and resolution of the final image. Think of it as the

type of film you put into your analog camera or the image resolution you

get for pictures taken with your digital camera.

Chapter 9 IntroduCtIon to openGL eS

276

 Projections

OpenGL ES can construct a 2D bitmap of a scene from the camera’s point

of view. While everything is defined in 3D space, OpenGL maps the 3D

space to 2D via something called projections. A single triangle has three

points defined in 3D space. To render such a triangle, OpenGL ES needs to

know the coordinates of these 3D points within the pixel-based coordinate

system of the framebuffer that are inside the triangle.

 Matrices

OpenGL ES expresses projections in the form of matrices. The internals

are quite involved; for our introductory purposes, we don’t need to bother

with the internals of matrices; we simply need to know what they do with

the points we define in our scene.

• A matrix encodes transformations to be applied

to a point. A transformation can be a projection, a

translation (in which the point is moved around), a

rotation around another point and axis, or a scale,

among other things.

• By multiplying such a matrix with a point, we apply the

transformation to the point. For example, multiplying

a point with a matrix that encodes a translation by 10

units on the x axis will move the point 10 units on the x

axis and thereby modify its coordinates.

• We can concatenate transformations stored in separate

matrices into a single matrix by multiplying the

matrices. When we multiply this single concatenated

matrix with a point, all the transformations stored in

Chapter 9 IntroduCtIon to openGL eS

277

that matrix will be applied to that point. The order in

which the transformations are applied is dependent on

the order in which we multiplied the matrices.

There are three different matrices in OpenGL ES that apply to the

points in our models:

• Model-view matrix—This matrix is used to place a

model somewhere in the “world.” For example, if you

have a model of a sphere and you want it located 100

meters to the east, you will use the model matrix to do

this. We can use this matrix to move, rotate, or scale

the points of our triangles (this is the model part of the

model-view matrix). This matrix is also used to specify

the position and orientation of our camera (this is the

view part). If you want to view our sphere which is 100

meters to the east, we will have to move ourselves 100

meters to the east as well. Another way to think about

this is that we remain stationary and the rest of the

world moves 100 meters to the west.

• Projection matrix—This is the view frustum of our

camera. Since our screens are flat, we need to do a final

transformation to “project” our view onto our screen

and get that nice 3D perspective. This is what the

projection matrix is used for.

• Texture matrix—This matrix allows us to manipulate

texture coordinates.

There’s a lot more theories we need to absorb in OpenGL ES

programming, but let’s explore some of those theories alongside a simple

coding exercise.

Chapter 9 IntroduCtIon to openGL eS

278

 Rendering a Simple Sphere

OpenGL ES APIs are built into the Android framework, so we don’t

need to import any other libraries or include any other dependencies

into the project.

OpenGL ES is widely supported among Android devices, but just to

be prudent, if you want to exclude Google Play users whose device do

not support OpenGL ES, you need to add a uses-feature in the Android

Manifest file, like this:

<uses-feature android:glEsVersion="0x00020000"

 android:required="true" />

The manifest entry is basically saying that the app expects the device to

support OpenGL ES 2, which is practically all devices at the time of writing.

Additionally (and optionally), if your application uses texture

compression, you must also declare it in the manifest so that the app only

installs on compatible devices; Listing 9-1 shows how to do this in the

Android Manifest.

Listing 9-1. AndroidManifest.xml, texture compression

<supports-gl-texture android:name="GL_OES_compressed_ETC1_RGB8_

texture" />

<supports-gl-texture android:name="GL_OES_compressed_paletted_

texture" />

Assuming you’ve already created a project with an empty Activity

and a default activity_main layout file, the first thing to do is to add

GLSurfaceView to the layout file. Modify activity_main.xml to match the

contents of Listing 9-2.

Chapter 9 IntroduCtIon to openGL eS

279

Listing 9-2. activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <android.opengl.GLSurfaceView

 android:layout_width="400dp"

 android:layout_height="400dp"

 android:id="@+id/gl_view"

 />

</androidx.constraintlayout.widget.ConstraintLayout>

I removed the default TextView object and inserted a GLSurfaceView

element with 400dp by 400dp size. Let’s keep it evenly square for now,

so that our shape won’t skew. OpenGL assumes that drawing areas are

always square.

Figure 9-4 shows the activity_main layout in design mode.

Chapter 9 IntroduCtIon to openGL eS

280

The GLSurfaceView is an implementation of the SurfaceView class

that uses a dedicated surface for displaying OpenGL rendering; this

object manages a surface, which is a special piece of memory that can be

composited into the Android view system. The GLSurfaceView runs on a

dedicated thread to separate the rendering performance from the main

UI thread.

Next, in MainActivity, let’s get a reference to the GLSurfaceView we just

created. We can create a member variable on MainActivity that’s of type

GLSurfaceView, then in the onCreate() method, we’ll get a reference to it

using findViewByID. The code is shown in Listing 9-3.

Figure 9-4. activity_main.xml in design mode

Chapter 9 IntroduCtIon to openGL eS

281

Listing 9-3. Get a reference to the GLSurfaceView

public class MainActivity extends AppCompatActivity {

 private GLSurfaceView glView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 glView = findViewById(R.id.gl_view);

 }

}

Next, still on MainActivity, let’s determine if there’s support for

OpenGL ES 2.0. This can be done by using an ActivityManager object

which lets us interact with the global system state; we can use this to

get the device configuration info, which in turn can tell us if the device

supports OpenGL ES 2. The code to do this is shown in Listing 9-4.

Listing 9-4. Determine support for OpenGL ES 2.0

ActivityManager am = (ActivityManager)

 getSystemService(Context.ACTIVITY_

SERVICE);

ConfigurationInfo ci = am.getDeviceConfigurationInfo();

boolean isES2Supported = ci.reqGlEsVersion > 0x20000;

Once we know if the device supports OpenGL ES 2 (or not), we tell the

surface that we’d like an OpenGL ES 2 compatible surface, and then we

pass it in a custom renderer. The runtime will call this renderer whenever

it’s time to adjust the surface or draw a new frame. Listing 9-5 shows the

annotated code for MainActivity.

Chapter 9 IntroduCtIon to openGL eS

282

Listing 9-5. MainActivity, creation of OpenGL ES 2 environment

import android.app.ActivityManager;

import android.content.Context;

import android.content.pm.ConfigurationInfo;

import android.opengl.GLES20;

import android.opengl.GLSurfaceView;

import android.os.Bundle;

import javax.microedition.khronos.egl.EGLConfig;

import javax.microedition.khronos.opengles.GL10;

import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

 private GLSurfaceView glView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 glView = findViewById(R.id.gl_view);

 ActivityManager am = (ActivityManager)

 getSystemService(Context.ACTIVITY_SERVICE);

 ConfigurationInfo ci = am.getDeviceConfigurationInfo();

 boolean isES2Supported = ci.reqGlEsVersion > 0x20000;

 if(isES2Supported) { ❶

 glView.setEGLContextClientVersion(2); ❷

 glView.setRenderer(new GLSurfaceView.Renderer() { ❸

 @Override

Chapter 9 IntroduCtIon to openGL eS

283

 public void onSurfaceCreated(GL10 gl10, EGLConfig

eglConfig) {

 glView.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_

DIRTY); ❹

 // statements ❺

 }

 @Override

 public void onSurfaceChanged(GL10 gl10, int width, int

height) {

 GLES20.glViewport(0,0, width, height); ❻

 }

 @Override

 public void onDrawFrame(GL10 gl10) {

 // statements ❼

 }

 });

 }

 else {

 }

 }

}

❶ once we know openGL eS 2 is supported, we proceed to creating an

openGL eS 2 environment.

❷ We tell the surface view that we want an openGL eS 2 compatible surface.

❸ We create a custom renderer using an anonymous class, then passing an

instance of that class to the setRenderer() method of the surface view.

Chapter 9 IntroduCtIon to openGL eS

284

❹ We’re setting the render mode to draw only when there is a change to the

drawing data.

❺ this is a good place to create objects you will use for drawing; think of this

as the equivalent of the activity’s onCreate() method. this method may

also be called if we lose the surface context and is later recreated.

❻ the runtime calls this method once when the surface has been created

and subsequently when, for some reason, the size of the surface changes.

this is where you set the view port, because by the time this is called,

we’ve got the dimensions of the surface. think of this as the equivalent of

the onSizeChanged() of the View class. this may also be called when the

device switches orientation, for example, from portrait to landscape.

❼ this is where we do our drawing. this is called when it’s time to draw a

new frame.

The onDrawFrame() method of the Renderer is where we tell OpenGL

ES to draw something on the surface. We’ll do this by passing an array of

numbers which represents positions, colors, and so on. In our case, we’re

going to draw a sphere. We can hand-code the arrays of numbers—which

represent X,Y,Z coordinates of the vertices—that we need to pass OpenGL

ES, but that may not help us to envision what we’re trying to draw. So,

instead, let’s use a 3D creation suite like Blender (www.blender.org) to

draw a shape.

Blender is open source; you can use it freely. Once you’re done with

the download and installation, you can launch Blender, then delete the

default cube by pressing X; next, press Shift+A and select Mesh ➤ Ico

Sphere, as shown in Figure 9-5.

Chapter 9 IntroduCtIon to openGL eS

http://www.blender.org

285

Now we’ve got a moderately interesting object with a couple of

vertices—it will be cumbersome to hand-code these vertices; that’s why we

took the Blender route.

To use the sphere in our app, we must export it as a Wavefront object.

A Wavefront object is a geometry definition file format. It’s an open format

and is adopted by 3D graphics application vendors. This is a simple data

format that represents 3D geometry, namely, the position of each vertex;

the faces that make each polygon are defined as a list of vertices. For our

purposes, we’re only interested in the position of the vertices and the faces.

In Blender, go to File ➤ Export Wavefront (.obj) as shown in Figure 9- 6.

In the following screen, give it a name (sphere.obj) and save it in a location

of your choice. Don’t forget to note the export settings of Blender; check only

the following:

• Export as OBJ object

• Triangulate faces

• Keep vertex order

Figure 9-5. Create an Icosphere

Chapter 9 IntroduCtIon to openGL eS

286

These are the settings I found to be easy to work with, especially when

you’re about to parse the exported vertex and faces data.

The resulting object file is actually a text file; Listing 9-6 shows a partial

listing of that sphere.obj.

Figure 9-6. Export the sphere to Wavefront object format

Chapter 9 IntroduCtIon to openGL eS

287

Listing 9-6. Partial sphere.obj

Blender v2.82 (sub 7) OBJ File: 'sphere.blend'

www.blender.org

o Icosphere

v 0.000000 -1.000000 0.000000

v 0.723607 -0.447220 0.525725

v -0.276388 -0.447220 0.850649

v -0.894426 -0.447216 0.000000

v -0.276388 -0.447220 -0.850649

v 0.723607 -0.447220 -0.525725

v 0.276388 0.447220 0.850649

s off

f 1 14 13

f 2 14 16

f 1 13 18

f 1 18 20

f 1 20 17

f 2 16 23

f 3 15 25

f 4 19 27

f 5 21 29

Notice how each line starts with either a “v” or an “f”. A line that starts

with a “v” represents a single vertex, and a line that starts with an “f”

represents a face. The vertex lines have the X, Y, and Z coordinates of a

vertex, while the face lines have the indices of the three vertices (which

together form a face).

To keep things organized, let’s create a class that will represent our

sphere object—we don’t really want to write all the drawing code inside

the onDrawFrame() method now, do we?

Chapter 9 IntroduCtIon to openGL eS

288

Let’s create a new class and add it to the project. You can do this by

using Android Studio’s context menu; right-click the package name (as

shown in Figure 9-7), then choose New ➤ Java Class.

In the screen that follows, provide the name of the class (Sphere), as

shown in Figure 9-8.

Figure 9-7. Create a new class

Figure 9-8. Provide a name for the class

Chapter 9 IntroduCtIon to openGL eS

289

We’ll build the Sphere class a basic POJO that contains all the data that

OpenGL ES requires to draw a shape. Listing 9-7 shows the starting code

for Sphere.java.

Listing 9-7. Sphere.java

public class Sphere {

 private List<String> vertList;

 private List<String> facesList;

 private Context ctx;

 private final String TAG = getClass().getName();

 public Sphere(Context context) {

 ctx = context;

 vertList = new ArrayList<>();

 facesList = new ArrayList<>();

 }

}

The Sphere class has two List objects which will hold the vertices and

faces data (which we will load from the OBJ file). Apart from that, there’s a

Context object and a String object:

• Context ctx—The context object will be needed by

some of our methods, so I made it a member variable.

• String TAG—I just need an identifying String for when

we do some logging.

Chapter 9 IntroduCtIon to openGL eS

290

The idea is to read the exported Wavefront OBJ file and load the

vertices and faces data into their corresponding List objects. Before we can

read the file, we need to add it to the project. We can do that by creating an

assets folder. An assets folder gives us the ability to add external files to the

project and make them accessible to our code. If your project doesn’t have

an assets folder, you can create them. To do that, use the context menu;

right-click the “app” in the Project tool window (as shown in Figure 9-9),

then select New ➤ Folder ➤ Assets Folder.

Figure 9-9. Create an assets folder

Chapter 9 IntroduCtIon to openGL eS

291

In the window that follows, click Finish, as shown in Figure 9-10.

Gradle will perform a “sync” after you’ve added a folder to the

project. Figure 9-11 shows the Project tool window with the newly

created assets folder.

Figure 9-10. New Android component

Chapter 9 IntroduCtIon to openGL eS

292

Next, right-click the assets folder, then choose Reveal in Finder

(as shown in Figure 9-12)—this is the prompt I got because I’m using

macOS. If you’re on Windows, you will see “Show in Explorer” instead.

Figure 9-11. Assets folder created

Chapter 9 IntroduCtIon to openGL eS

293

You can now transfer the sphere.obj file to the assets folder of the project.

Alternatively, you can copy the sphere.obj file to the assets folder

using the Terminal of Android Studio (as shown in Figure 9-13).

Figure 9-12. Reveal in Finder or Show in Explorer (for
Windows users)

Chapter 9 IntroduCtIon to openGL eS

294

Use whichever way is more convenient for you. Some prefer the

GUI way, and some prefer the command line. Use the tools you’re more

familiar with.

Now we can read the contents of the OBJ file and load them onto the

ArrayList objects. In the Sphere class, add a method named loadVertices()

and modify it to match Listing 9-8.

Listing 9-8. loadVertices()

import java.util.Scanner;

// class definition and other statements

private void loadVertices() {

 try {

 Scanner scanner = new Scanner(ctx.getAssets().open("sphere.

obj")); ❶

 while(scanner.hasNextLine()) { ❷

 String line = scanner.nextLine(); ❸

Figure 9-13. Copy files using Terminal

Chapter 9 IntroduCtIon to openGL eS

295

 if(line.startsWith("v ")) {

 vertList.add(line); ❹

 } else if(line.startsWith("f ")) {

 facesList.add(line); ❺

 }

 }

 scanner.close();

 }

 catch(IOException ioe) {

 Log.e(TAG, ioe.getMessage()); ❻

 }

}

❶ Create a new Scanner object and open the sphere.obj text file.

❷ While we’re not yet at the end of the file, hasNextLine() will always

return true.

❸ read the contents of the current line and save it to the line variable.

❹ If the line starts with a “v”, add it to the vertList arrayList.

❺ If the line starts with an “f”, add it to the facesList arrayList.

We’re coding our app using the Java language, but you need to

remember that OpenGL ES is actually a bunch of C APIs. We can’t simply

pass our list of vertices and faces to OpenGL ES directly. We need to convert

our vertices and faces data into something OpenGL ES will understand.

Java and the native system might not store their bytes in the same order,

so we use a special set of buffer classes and create a ByteBuffer large enough

to hold our data and tell it to store its data using the native byte order. This is

an extra step we need to do before passing our data to OpenGL. To do that,

let’s add another method to the Sphere class; Listing 9-9 shows the contents

of the createBuffers() method.

Chapter 9 IntroduCtIon to openGL eS

296

Listing 9-9. createBuffers()

private FloatBuffer vertBuffer; ❶

private ShortBuffer facesBuffer;

// some other statements

private void createBuffers() {

 // BUFFER FOR VERTICES

 ByteBuffer buffer1 = ByteBuffer.allocateDirect(vertList.

size() * 3 * 4); ❷

 buffer1.order(ByteOrder.nativeOrder());

 vertBuffer = buffer1.asFloatBuffer();

 // BUFFER FOR FACES

 ByteBuffer buffer2 = ByteBuffer.allocateDirect(facesList.

size() * 3 * 2); ❸

 buffer2.order(ByteOrder.nativeOrder());

 facesBuffer = buffer2.asShortBuffer();

 for(String vertex: vertList) { ❹

 String coords[] = vertex.split(" "); ❺

 float x = Float.parseFloat(coords[1]);

 float y = Float.parseFloat(coords[2]);

 float z = Float.parseFloat(coords[3]);

 vertBuffer.put(x);

 vertBuffer.put(y);

 vertBuffer.put(z);

 }

 vertBuffer.position(0); ❻

Chapter 9 IntroduCtIon to openGL eS

297

 for(String face: facesList) {

 String vertexIndices[] = face.split(" "); ❼

 short vertex1 = Short.parseShort(vertexIndices[1]);

 short vertex2 = Short.parseShort(vertexIndices[2]);

 short vertex3 = Short.parseShort(vertexIndices[3]);

 facesBuffer.put((short)(vertex1 - 1)); ❽

 facesBuffer.put((short)(vertex2 - 1));

 facesBuffer.put((short)(vertex3 - 1));

 }

}

❶ You have to add FloatBuffer and ShortBuffer member variables to the

Sphere class. We will use this to hold the vertices and faces data.

❷ Initialize the buffer using the allocateDirect() method. We’re allocating

4 bytes for each coordinate (because they are float numbers). once

the buffer is created, we convert it to a FloatBuffer by calling the

asFloatBuffer() method.

❸ Similarly, we initialize a ByteBuffer for the faces, but this time, we allocate

only 2 bytes for each vertex index, because the indices are unsigned

short. next, we call the asShortBuffer() method to convert the ByteBuffer

to a ShortBuffer.

❹ to parse the vertices List object, we go through it using Java’s enhanced

for-loop.

❺ each entry in the vertices List object is a line that holds the X,Y,Z position

of the vertex, like 0.723607 -0.447220 0.525725; it’s separated by a

space. So, we use the split() method of the String object using a white

space as delimiter. this call will return an array of String with three

elements. We convert these elements to float numbers and populate the

FloatBuffer.

Chapter 9 IntroduCtIon to openGL eS

298

❻ reset the position of the buffer.

❼ Same drill we did like in the vertices List, we split them into array

elements, but this time convert them to short.

❽ the indices start from 1 (not zero); so, we subtract 1 to the converted

value before we add it to the ShortBuffer.

The next step is to create the shaders. We can’t render our 3D sphere

if we don’t create the shaders; we need a vertex shader and a fragment

shader. A shader is written in a C-like language called OpenGL Shading

Language (GLSL for short).

A vertex shader is responsible for a 3D object’s vertices, while a

fragment shader (also called a pixel shader) handles the coloring of the 3D

object’s pixels.

To create the vertex shader, add a file to the project’s assets folder and

name it vertex_shader.txt, as shown in Figure 9-14.

In the window that follows (Figure 9-15), enter the name of the file.

Figure 9-14. New file

Chapter 9 IntroduCtIon to openGL eS

299

Figure 9-15. Enter a new file name

Modify the newly created vertex_shader.txt to match the contents of

Listing 9-10.

Listing 9-10. vertex_shader.txt

attribute vec4 position; ❶

uniform mat4 matrix; ❷

void main() {

 gl_Position = matrix * position; ❸

}

❶ the attribute global variable receives the vertex position data from our Java

program.

❷ this is the uniform global variable view-project matrix from our Java code.

❸ Inside the main() function, we set the value of gl_position (a GLSL built-in

variable) to the product of the uniform and attribute global variables.

Next, we create the fragment shader. Like what we did in vertex_shader,

add a file to the project and name it fragment_shader.txt. Modify the

contents of the fragment shader program to match Listing 9-11.

Chapter 9 IntroduCtIon to openGL eS

300

Listing 9-11. fragment_shader.txt

precision mediump float;

void main() {

 gl_FragColor = vec4(0.481,1.000,0.865,1.000);

}

It’s a minimalistic fragment shader code; it basically assigns a light

green color to all the pixels.

The next step is to load these shaders into our Java program and

compile them. We will add another method to the Sphere class named

createShaders(); its contents are shown in Listing 9-12.

Listing 9-12. createShaders()

// class definition and other statements

private int vertexShader; ❶

private int fragmentShader;

private void createShaders() {

 try {

 Scanner scannerFrag = new Scanner(ctx.getAssets()

 .open("fragment_shader.txt")); ❷

 Scanner scannerVert = new Scanner(ctx.getAssets()

 .open("vertex_shader.txt")); ❸

 StringBuilder sbFrag = new StringBuilder(); ❹

 StringBuilder sbVert = new StringBuilder();

 while (scannerFrag.hasNext()) {

 sbFrag.append(scannerFrag.nextLine()); ❺

 }

Chapter 9 IntroduCtIon to openGL eS

301

 while(scannerVert.hasNext()) {

 sbVert.append(scannerVert.nextLine());

 }

 String vertexShaderCode = new String(sbVert.toString()); ❻

 String fragmentShaderCode = new String(sbFrag.toString());

 Log.d(TAG, vertexShaderCode);

 vertexShader = GLES20.glCreateShader(GLES20.GL_VERTEX_

SHADER); ❼

 GLES20.glShaderSource(vertexShader, vertexShaderCode);

 fragmentShader = GLES20.glCreateShader(GLES20.GL_FRAGMENT_

SHADER);

 GLES20.glShaderSource(fragmentShader, fragmentShaderCode);

 GLES20.glCompileShader(vertexShader); ❽

 GLES20.glCompileShader(fragmentShader);

 }

 catch(IOException ioe) {

 Log.e(TAG, ioe.getMessage());

 }

}

❶ add member variable declarations for vertexShader and fragmentShader.

❷ open fragment_shader.txt for reading.

❸ open vertex_shader.txt for reading.

❹ Create a StringBuffer to hold the partial Strings we will read from the Scanner

object; do this for both fragment_shader.txt and vertex_shader.txt.

❺ append the current line to the StringBuffer (do this for both StringBuffer objects).

Chapter 9 IntroduCtIon to openGL eS

302

❻ When all the lines in the Scanner object have been read and appended to the

StringBuffer, we create a new String object. do this for both StringBuffers.

❼ the shader’s code must be added to the shader objects of openGL eS. We

create a new shader using the glCreateShader() method, then we set the

shader source using the newly created shader and the shader program code;

do this for both vertex_shader and fragment_shader.

❽ Finally, compile the shaders.

Before we can use the shaders, we need to link them to a program.

We can’t use the shaders directly. This is what connects the output of

the vertex shader with the input of the fragment shader. It’s also what

lets us pass an input from our program and use the shader to draw our

shapes.

We’ll create a new program object, and if that turns out well, we’ll

attach the shaders. Let’s add a new method to the Sphere class and name it

runProgram(); the code for this method is shown in Listing 9-13.

Listing 9-13. runProgram()

private int program; ❶

// other statements

private void runProgram() {

 program = GLES20.glCreateProgram(); ❷

 GLES20.glAttachShader(program, vertexShader); ❸

 GLES20.glAttachShader(program, fragmentShader); ❹

 GLES20.glLinkProgram(program); ❺

 GLES20.glUseProgram(program);

}

Chapter 9 IntroduCtIon to openGL eS

303

❶ You need to create the program as a member variable in the Sphere class.

❷ use the glCreateProgram() method to create a program.

❸ attach the vertex shader to the program.

❹ attach the fragment shader to the program.

❺ to start using the program, we need to link it using the glLinkProgram()

method and put it to use via the glUseProgram() method.

Now that all the buffers and the shaders are ready, we can finally draw

something to the screen. Let’s add another method to the Sphere class and

name it draw(); the code for this method is shown in Listing 9-14.

Listing 9-14. draw()

import android.opengl.Matrix; ❶

// class definition and other statements

public void draw() {

 int position = GLES20.glGetAttribLocation(program,

"position"); ❷

 GLES20.glEnableVertexAttribArray(position);

 GLES20.glVertexAttribPointer(position, 3, GLES20.GL_FLOAT,

false, 3 * 4, vertBuffer); ❸

 float[] projectionMatrix = new float[16]; ❹

 float[] viewMatrix = new float[16];

 float[] productMatrix = new float[16];

 Matrix.frustumM(projectionMatrix, 0, -1, 1, -1, 1, 2, 9); ❺

 Matrix.setLookAtM(viewMatrix, 0, 0, 3, -4, 0, 0, 0, 0, 1,

0f); ❻

Chapter 9 IntroduCtIon to openGL eS

304

 Matrix.multiplyMM(productMatrix, 0, projectionMatrix, 0,

viewMatrix, 0);

 int matrix = GLES20.glGetUniformLocation(program, "matrix"); ❼

 GLES20.glUniformMatrix4fv(matrix, 1, false, productMatrix, 0);

 GLES20.glDrawElements(GLES20.GL_TRIANGLES, facesList.size() * 3,

 GLES20.GL_UNSIGNED_SHORT,

facesBuffer); ❽

 GLES20.glDisableVertexAttribArray(position);

}

❶ You need to import the Matrix class.

❷ If you remember in the vertex_shader.txt, we defined a position variable

that’s supposed to receive vertex position data from our Java code; we’re

about to send that data to this position variable. to do that, we must first

get a reference of the position variable in the vertex_shader. We do that

using the glGetAttribLocation() method, and then we enable it using the

glEnableVertexAttribArray() method.

❸ point the position handle to the vertices buffer. the glVertexAttribPointer()

method also expects the number of coordinates per vertex and the byte offset

per vertex. each coordinate is a float, so the byte offset is 3 * 4.

❹ our vertex shader expects a view-projection matrix, which is the product

of the view and projection matrices. a view matrix allows us to specify the

locations of the camera and the point it’s looking at. a projection matrix lets

us map the square coordinates of the android device and also specify the

near and far planes of the viewing frustum. We simply create float arrays for

these matrices.

Chapter 9 IntroduCtIon to openGL eS

305

❺ Initialize the projection matrix using the frustumM() method of the Matrix

class. You need to pass some arguments to this method; it expects the

locations of the left, right, bottom, top, near, and far clip planes. When we

defined the GLSurfaceView in our activity_main layout file, it’s already a

square, so we can use the values -1 and 1 for the near and far clip planes.

❻ the setLookAtM() method is used to initialize the view matrix. It expects

the positions of the camera and the point it is looking at. then calculate the

product matrix using the multiplyMM() method.

❼ Let’s pass the product matrix to the shader using the

glGetUniformLocation() method. When we get the handle (the matrix

variable), point it to the product matrix using the glUniformMatrix4fv()

method.

❽ the glDrawElements() method lets us use the faces buffer to create

triangles; its arguments expect the total number of vertex indices, the type of

each index, and the faces buffer.

Now that we’ve got the methods to load the vertices from a blender file,

create all the buffers, compile the shaders, and create an OpenGL program,

we can now tie all these methods together in the constructor of the Sphere

class, as shown in Listing 9-15.

Listing 9-15. Constructor of the Sphere class

public Sphere(Context context) {

 ctx = context;

 vertList = new ArrayList<>();

 facesList = new ArrayList<>();

Chapter 9 IntroduCtIon to openGL eS

306

 loadVertices();

 createBuffers();

 createShaders();

 runProgram();

}

After adding all these methods, it may be difficult to keep the code

straight. So, I’m showing all the contents of the Sphere class in Listing 9-16,

for your reference.

Listing 9-16. Complete code for the Sphere class

import android.content.Context;

import java.io.IOException;

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import java.nio.FloatBuffer;

import java.nio.ShortBuffer;

import java.util.ArrayList;

import java.util.List;

import java.util.Scanner;

import android.opengl.GLES20;

import android.opengl.Matrix;

import android.util.Log;

public class Sphere {

 private FloatBuffer vertBuffer;

 private ShortBuffer facesBuffer;

 private List<String> vertList;

 private List<String> facesList;

 private Context ctx;

 private final String TAG = getClass().getName();

Chapter 9 IntroduCtIon to openGL eS

307

 private int vertexShader;

 private int fragmentShader;

 private int program;

 public Sphere(Context context) {

 ctx = context;

 vertList = new ArrayList<>();

 facesList = new ArrayList<>();

 loadVertices();

 createBuffers();

 createShaders();

 runProgram();

 }

 private void loadVertices() {

 try {

 Scanner scanner = new Scanner(ctx.getAssets().

open("sphere.obj"));

 while(scanner.hasNextLine()) {

 String line = scanner.nextLine();

 if(line.startsWith("v ")) {

 vertList.add(line);

 } else if(line.startsWith("f ")) {

 facesList.add(line);

 }

 }

 scanner.close();

 }

Chapter 9 IntroduCtIon to openGL eS

308

 catch(IOException ioe) {

 Log.e(TAG, ioe.getMessage());

 }

 }

 private void createBuffers() {

 // BUFFER FOR VERTICES

 ByteBuffer buffer1 = ByteBuffer.allocateDirect(vertList.

size() * 3 * 4);

 buffer1.order(ByteOrder.nativeOrder());

 vertBuffer = buffer1.asFloatBuffer();

 // BUFFER FOR FACES

 ByteBuffer buffer2 = ByteBuffer.allocateDirect(facesList.

size() * 3 * 2);

 buffer2.order(ByteOrder.nativeOrder());

 facesBuffer = buffer2.asShortBuffer();

 for(String vertex: vertList) {

 String coords[] = vertex.split(" ");

 float x = Float.parseFloat(coords[1]);

 float y = Float.parseFloat(coords[2]);

 float z = Float.parseFloat(coords[3]);

 vertBuffer.put(x);

 vertBuffer.put(y);

 vertBuffer.put(z);

 }

 vertBuffer.position(0);

 for(String face: facesList) {

 String vertexIndices[] = face.split(" ");

 short vertex1 = Short.parseShort(vertexIndices[1]);

Chapter 9 IntroduCtIon to openGL eS

309

 short vertex2 = Short.parseShort(vertexIndices[2]);

 short vertex3 = Short.parseShort(vertexIndices[3]);

 facesBuffer.put((short)(vertex1 - 1));

 facesBuffer.put((short)(vertex2 - 1));

 facesBuffer.put((short)(vertex3 - 1));

 }

 facesBuffer.position(0);

 }

 private void createShaders() {

 try {

 Scanner scannerFrag = new Scanner(ctx.getAssets()

 .open("fragment_shader.txt"));

 Scanner scannerVert = new Scanner(ctx.getAssets()

 .open("vertex_shader.txt"));

 StringBuilder sbFrag = new StringBuilder();

 StringBuilder sbVert = new StringBuilder();

 while (scannerFrag.hasNext()) {

 sbFrag.append(scannerFrag.nextLine());

 }

 while(scannerVert.hasNext()) {

 sbVert.append(scannerVert.nextLine());

 }

 String vertexShaderCode = new String(sbVert.toString());

 String fragmentShaderCode = new String(sbFrag.toString());

 Log.d(TAG, vertexShaderCode);

Chapter 9 IntroduCtIon to openGL eS

310

 vertexShader = GLES20.glCreateShader(GLES20.GL_VERTEX_

SHADER);

 GLES20.glShaderSource(vertexShader, vertexShaderCode);

 fragmentShader = GLES20.glCreateShader(GLES20.GL_

FRAGMENT_SHADER);

 GLES20.glShaderSource(fragmentShader, fragmentShaderCode);

 GLES20.glCompileShader(vertexShader);

 GLES20.glCompileShader(fragmentShader);

 }

 catch(IOException ioe) {

 Log.e(TAG, ioe.getMessage());

 }

 }

 private void runProgram() {

 program = GLES20.glCreateProgram();

 GLES20.glAttachShader(program, vertexShader);

 GLES20.glAttachShader(program, fragmentShader);

 GLES20.glLinkProgram(program);

 GLES20.glUseProgram(program);

 }

 public void draw() {

 int position = GLES20.glGetAttribLocation(program,

"position");

 GLES20.glEnableVertexAttribArray(position);

 GLES20.glVertexAttribPointer(position, 3, GLES20.GL_FLOAT,

false, 3 * 4, vertBuffer);

Chapter 9 IntroduCtIon to openGL eS

311

 float[] projectionMatrix = new float[16];

 float[] viewMatrix = new float[16];

 float[] productMatrix = new float[16];

 Matrix.frustumM(projectionMatrix, 0, -1, 1, -1, 1, 2, 9);

 Matrix.setLookAtM(viewMatrix, 0, 0, 3, -4, 0, 0, 0, 0, 1, 0f);

 Matrix.multiplyMM(productMatrix, 0, projectionMatrix, 0,

viewMatrix, 0);

 int matrix = GLES20.glGetUniformLocation(program, "matrix");

 GLES20.glUniformMatrix4fv(matrix, 1, false, productMatrix, 0);

 GLES20.glDrawElements(GLES20.GL_TRIANGLES, facesList.

size() * 3, GLES20.GL_UNSIGNED_SHORT, facesBuffer);

 GLES20.glDisableVertexAttribArray(position);

 }

}

Now that all of the code for the Sphere class is complete, we can

go back to MainActivity. Remember in MainActivity that we created

a Renderer object using an anonymous inner class. We created that

renderer because a GLSurfaceView needs a renderer object so that it

can, well, render 3D graphics. Listing 9-17 shows the complete code for

MainActivity.

Listing 9-17. MainActivity, complete

public class MainActivity extends AppCompatActivity {

 private GLSurfaceView glView;

 private Sphere sphere; ❶

Chapter 9 IntroduCtIon to openGL eS

312

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 glView = findViewById(R.id.gl_view);

 ActivityManager am = (ActivityManager)

getSystemService(Context.ACTIVITY_SERVICE);

 ConfigurationInfo ci = am.getDeviceConfigurationInfo();

 boolean isES2Supported = ci.reqGlEsVersion > 0x20000;

 if(isES2Supported) {

 glView.setEGLContextClientVersion(2);

 glView.setRenderer(new GLSurfaceView.Renderer() {

 @Override

 public void onSurfaceCreated(GL10 gl10, EGLConfig

eglConfig) {

 glView.setRenderMode(GLSurfaceView.RENDERMODE_WHEN_

DIRTY);

 sphere = new Sphere(getApplicationContext()); ❷

 }

 @Override

 public void onSurfaceChanged(GL10 gl10, int width,

int height) {

 GLES20.glViewport(0,0, width, height);

 }

Chapter 9 IntroduCtIon to openGL eS

313

 @Override

 public void onDrawFrame(GL10 gl10) {

 sphere.draw(); ❸

 }

 });

 }

 else {

 }

 }

}

❶ Create a member variable as a reference to the sphere object we’re about

to create.

❷ Create the sphere object; pass the current context as an argument.

❸ Call the draw() method of the sphere.

At this point, you’re ready to run the app. Figure 9-16 shows the app

at runtime.

Chapter 9 IntroduCtIon to openGL eS

314

After nearly 300 lines of code, all we got was a little green Icosphere

without much definition. Welcome to OpenGL ES programming. This

should give you an idea how involved and how much work goes into an

OpenGL ES game.

Figure 9-16. Icosphere rendered in OpenGL ES

Chapter 9 IntroduCtIon to openGL eS

315

 Key Takeaways

• Starting with Android 3 (API level 11), drawings done

on the Canvas already enjoy hardware acceleration,

so it’s not a bad choice of tech for game programming.

However, if the visual complexities of your game exceed

the capabilities of the Canvas, you should consider

drawing the graphics using OpenGL ES.

• OpenGL ES is really good at just drawing triangles, not

much else. It gives you a lot of control though on how

you draw those triangles. With it, you can control the

camera, the light source, and the texture, among other

things.

• Android SDK already has built-in support for OpenGL

ES. The GLSurfaceView, which is what you will typically

use for drawing OpenGL ES objects, is already included

in the SDK.

Chapter 9 IntroduCtIon to openGL eS

317© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_10

CHAPTER 10

Monetization

If you want to release your game for free, after pouring blood, sweat, and

tears into it, that’s cool! Everybody wants a free game. You can skip this

chapter altogether. On the other hand, if you want some ideas on how

you can get paid, then read on. This chapter is about that. Here’s what

we’ll cover:

• Pricing models

• Freemium

• Advertising

• Discoverability

 Paid or Free

You must decide whether the game is paid or released for free. Once the

app has been released for free, it cannot be changed to paid. A paid app,

however, may be switched to free at a later time. Releasing the app as paid

is a straightforward way of getting paid for your efforts; build the app,

release the app, and ask money for it.

https://doi.org/10.1007/978-1-4842-6121-7_10#DOI

318

You can also release your game for free, but how can you build an

income stream if you’re giving it away? Some developers have taken the

“free with ads” route, and while many are still doing this, you might want to

consider other forms of income stream because of sheer competition. The

prevailing thought is there are a lot of mobile apps advertising and not a lot

of money behind the ads, so money is spread thinly. The basic idea is you

offer the game for free and you display adverts to generate income. The

key measurement to watch for here is CTR, which is short for click-through

rate. CTR is the number of ads that were tapped divided by the number of

ads displayed (impressions) expressed as a percentage. If you displayed

100 adverts and the user tapped twice, the CTR is 2%; the more people

playing your game, the more adverts you display and the more chances for

a higher CTR; that’s the basic idea.

Ads aren’t all created equal; some have higher potential than

others. A banner ad, let’s say, for example, has a CTR of 0.02%; if your

game displays 100,000 impressions, you get 200 clicks; at $0.05 per

click, that’s $10. If your app is getting 100,000 impressions per month,

you might want to think first before giving up that day job. Just doing

this math, you can figure out how much impressions a game needs to

get to a $1000 revenue.

Fortunately, adverts aren’t the only way to make money with

free games. A decade or so ago, the freemium pricing model got into

mainstream consciousness. Freemium is a portmanteau of the words

“free” and “premium.” It’s a pricing strategy where you can release a game

for free and derive income somewhere else, like in-app purchases, virtual

currencies, and so on.

CHAPTER 10 MONETIZATION

319

 Freemium

If you look at Google’s top grossing apps (https://bit.ly/topgrossingapps),

you’ll find that quite a few of them are free; to be more precise, they’re

freemium. They’re free to use and download, but they also have in-app

purchases that cost real money. These purchases allow the users to buy

extra content, for example, levels, new characters, costumes, virtual

currencies, or coins, which can be used for upgrades. There are many more

that you can buy in an in-app purchase, but these are the popular ones.

The freemium model is very successful, but it requires more development

work. On the side of the users, it works to their advantage because there

is no cost in trying out the game. If they like it and they’ve invested some

playing hours already, they’re more likely to spend real money to buy more

content. Going freemium is more work because of two things:

 1. The extra content isn’t defined in the game itself, it’s

defined somewhere in Google Play, which means you

need to spend time in administering Google Play.

When the items are defined, your game can then query

Google Play to get a list of items available for purchase.

 2. When new game content has been bought (and

downloaded), the game needs to change its

behavior. The changes in game behavior depending

on the content available need to factor into the

overall structure of the game; this adds to the

programming complexity.

By the way, going for the freemium model isn’t mutually exclusive with

adverts, neither is it mutually exclusive with paid apps. There are shady

developers who might release a paid app with adverts and then offer an

in-app purchase to remove the ads. It’s not difficult to see how this can

backfire. When the users start leaving comments and tell other users of the

unsavory maneuver, it’s game over.

CHAPTER 10 MONETIZATION

https://bit.ly/topgrossingapps

320

 In-app Purchase

In-app purchases (IAP) or in-app products refer to the buying of goods and

services from inside an application on a mobile device. The idea is that the

player wants something that’s offered in your game, and he’s willing to pay

a small amount of money to get it. There are two types of in-app product

options given on the Google Play Store:

• Managed items—These are items that can only be

purchased once. They are attached to the buyer

and not the device. Google Play keeps track of these

purchases, which allows the user to query these items

at a later time for restoration; also, if the buyer tries to

purchase an item that they have already purchased,

Google Play will respond that “the item has already

been purchased.” Examples of managed items are

levels, characters, or abilities.

• Unmanaged items—These are items that get used

up by the user, like coins, virtual currencies (VC), or

anything that needs to be “refilled.” Unmanaged items

aren’t tracked by Google Play; the user cannot “restore”

these purchases at a later time. If you wish to track

unmanaged items, you need to write code for that in

your game. Like managed items, these items are also

attached to the Google account and not the device.

Another monetization option related to IAPs is “subscriptions.” Google

Play allows you to set up subscriptions that bill at regular intervals.

A subscription is seen by your app as simply “on” or “off.” When it’s “on,”

the user is allowed continuous access to content or services for a fee.

The player can enjoy whatever your game has to offer while they are

subscribed.

CHAPTER 10 MONETIZATION

321

 Virtual Currency

Virtual currency is in-game money. They’re called by many names; in

some games, they’re called gold, coins, rubies, credits, and so on. VCs are

points or numbers that your game stores for the player; and it allows the

player to do or buy things while in the game. With VCs, the player can buy

hints, upgraded weaponry, more health, and so on.

VCs can (usually) be acquired either by earning them while playing the

game or by simply buying them (from Google Play, as unmanaged items)

in exchange for real money.

 Advertising

If you’re considering putting ads on the game, you need to get familiar with

the ad providers; they deliver the ads from advertisers and pay you for the

clicks. The money is split between you and the ad provider (it’s not split in

the middle). A portion of the money goes to you (the game publisher) and

the rest of the money goes to the ad provider, which is how the provider

makes money. You’ll need to configure some keywords for the app, so the

ads are more relevant; this is where you need a bit of SEO background

and keyword wizardry. The ads can be in a variety of formats, but the

common ones are banner and full-page ads. Here are some of the major ad

providers and aggregators:

• AdMob (https://admob.google.com)

• Verizon Media (https://bit.ly/verizonmedia)

• MoPub (www.mopub.com/)

These services have their own APIs which are generally easy to use.

Visit their websites for the technical documentation.

CHAPTER 10 MONETIZATION

https://admob.google.com
https://bit.ly/verizonmedia
http://www.mopub.com/

322

It’s easy to get excited when implementing ads, and you might overdo

it. Just remember that the goal for displaying ads is to make money. There’s

a sweet spot between displaying ads and irritating your users; the law of

diminishing returns clearly applies here. Users can get annoyed if there’s

too much interruption brought about by ads; when that happens, the user

base could shrink—your revenues will follow.

 Getting your Game Discovered

There are thousands of games available already (approx. 300,000 in Google

Play, at the time of writing) with many more on the way. This is red ocean

territory; it’s a very crowded place; but there is no shortage of success

stories. So, how do you get your games noticed? How do you make people

aware that your game is out in Google Play and that it’s awesome? Well,

you can always spend a lot of money on advertisements, or you can try the

things outlined in this section.

 Social Network

Facebook and Twitter are heavy hitters in social media. I’m assuming

you’ve already used these platforms by now. There are many tactics in

using social media to get your game some mindshare. You could always do

what a lot of people are already doing, like building a Facebook page and

“boosting” the page (you have to pay for that). Together with that, you can

tell your friends to like that page. That may get you a couple of downloads,

but that’s it—unless you have millions of friends or followers. I’m assuming

you don’t have that many, so let’s keep looking.

A few of the great things about these two social networking sites from

a marketing perspective are that nearly everyone uses them, they are free

to use, and they are friendly to more creative solutions. Here are some

CHAPTER 10 MONETIZATION

323

examples of how you can exploit these websites to market your game: Give

50 free VC credits to users who “like” your game on Facebook. Give 50 free

VC credits to users who mention your game in a tweet.

Hold a high-score contest once a month where the prize is a new

Android device, and only allow people to register if they’ve liked you on

Facebook. In the last example, you’d have to actually purchase a device to

give away as a prize, of course, but as far as incentivizing “likes” goes, such

a strategy can work really well. It’s easy to create incentives to get people

to share your game with each other, and these networks are the perfect

platform for that kind of information sharing.

Both Facebook and Twitter provide Android SDKs that you can

download and use to integrate the networks with your game. The API

integration docs are generally easy to follow, so make sure to try them out.

 Discovery Services

There are companies such as AppBrain (https://appbrain.com) whose

sole purpose is to help you get your game discovered. Other companies,

such as Tapjoy (www.tapjoy.com) and Flurry (www.flurry.com), also

have discovery services. Most of these services provide ways to put your

game “in network” so that it will be promoted by other games. You can

pay for installs and control a campaign to get your game into the hands of

numerous people.

Different companies offer different methods of discovery, but,

in short, if you’re looking to get your game discovered and you have

a budget to work with, you may want to look into one or more of

these services. When you combine such a service with a good social

networking strategy, you might just get the snowball rolling and create a

buzz about your game.

CHAPTER 10 MONETIZATION

https://appbrain.com
https://www.tapjoy.com/
https://www.flurry.com/

324

 Blogs and Web Media

Another strategy for getting your game discovered is to put together pilots

for stories, create videos for demos, and send all of this to blogs that review

new Android apps and games. The editors of these sites are bombarded

with requests to review apps and games, so do as much work for them as

possible by giving them all the information they need up front.

 Game Design

I mentioned earlier that a game with in-app purchase capabilities is more

complex to develop and administer. It’s better to anticipate the structural

complexities warranted on the outset if you want to monetize the game rather

than retrofitting an already finished game for monetization. A game that’s

designed for monetization may have one or more of the following elements:

• Optional modifiers that affect gameplay

• Boost

• Upgrades

• Cheats

• Optional content that does not affect gameplay

• Skins

• Characters

• Additional content

• New levels

• New cinematics

• New parts

• Unlockable parts of levels

CHAPTER 10 MONETIZATION

325

• Virtual currency that

• Can be acquired by simply playing the game

• Can be purchased using real money

• Can be used to purchase upgrades in the game

• Can be used to purchase additional content

Also, during the early planning stage, make the game discoverable by

design; these kinds of games provide incentives for players to tell other

people about the game. Much like a game that’s designed to be monetized,

a game that’s designed to be discoverable incorporates most or all of the

same elements (virtual currency, virtual goods, unlockables, additional

content, etc.) as incentives for telling other people about the game. Here

are some ideas on how to do this:

• Make a piece of content that can only be unlocked by

entering a referral code received from another player.

• Give additional content or VC for tweeting about the

game or sharing or liking it on Facebook.

• Award players with VC for all referrals they make to

other players.

• Integrate with Facebook or other social media to post

achievements and new high scores.

• Create another part of the game that is played as a

Facebook app but ties into the mobile game in

some way.

CHAPTER 10 MONETIZATION

326

 Key Takeaways

• There are plenty of ways to monetize your game; you

can straight up just sell it for a few dollars a pop; that’s it

and that’s all. You can release it for free and offer in-app

purchases within the game. You can also release the

game for free and get revenue by displaying adverts; or

you can use a combination of all three.

• Use social networking creatively when promoting

your game; there are far more cost-effective ways than

simply throwing money on adverts.

• A monetizable game is more complex and hence more

difficult to develop; but make sure that monetizing

the game isn’t an afterthought. You need to include

monetization strategies during the planning stage of

game development and design.

CHAPTER 10 MONETIZATION

327© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_11

CHAPTER 11

Publishing the Game
You can distribute your games quite freely and without much restrictions;

you can let your users download it from your website, Google Drive,

Dropbox, and so on; you may even email the game APK directly to the

users, if you wish; but many developers choose to distribute their apps or

games on a marketplace like Google or Amazon to maximize reach.

In this chapter, we’ll discuss the things you need to do to get your game

out in Google Play. Here’s what we’ll cover:

• Preparing for release

• Signing the app

• Google Play

• App bundle

 Prepare the Project for Release

There are three things you need to keep in mind when preparing for

release; these are

• Prepare the material and assets for release

• Configure the project for release

• Build a release-ready app

https://doi.org/10.1007/978-1-4842-6121-7_11#DOI

328

 Prepare Material and Assets for Release

Your code is great and you might even think it’s clever, but the user will

never see it. What they will see are your View objects, the icons, and the

other graphical assets. You should polish them.

If you think the app’s icon isn’t a big deal, that could be a mistake.

The icons help the users identify your app as it sits on the home screen.

This icon also appears on other areas like the launcher window and the

downloads section, and more importantly, it appears on Google Play.

The icon weighs in a lot in creating the first impressions of the users

about your game. It’s a good idea to put some work into this and read

Google’s guidelines for icons which can be found here: http://bit.ly/

androidreleaseiconguidelines.

Other things to consider if you will publish in Google’s marketplace

are graphical assets like screen captures and the text for promotional copy.

Make sure to read Google’s guidelines for graphical assets which can be

found here: http://bit.ly/androidreleasegraphicassets.

 Configure the App for Release

 1. Check the package name—You may want to check

the package name of the app. Make sure it isn’t still

com.example.myapp. The package name makes the

app unique across Google marketplace; and once

you decide on a package name, you can’t change it

anymore. So, give it some thought.

 2. Deal with the debug information—Make sure you

remove the android:debuggable attribute in the

<application> tag of the Manifest file.

Chapter 11 publishing the game

http://bit.ly/androidreleaseiconguidelines
http://bit.ly/androidreleaseiconguidelines
http://bit.ly/androidreleasegraphicassets

329

 3. Remove the log statements—Different developers

do this differently. Some would painstakingly

go through the code and remove the statements

manually. Some would write sed or awk programs

to strip away the log statements. Some would use

ProGuard, and others would use third-party tools

like Timber to take care of logging activities. It’s up

to you which you will use; but make sure that your

users won’t accidentally see the log information.

 4. Check the application’s permissions—Sometime

during development, you may have experimented

on some features of the application, and you

may have set permissions on the manifest like

permission to use the network, write to external

storage, and so on. Review the <uses- permission>

tag on the manifest and make sure that you don’t

grant permissions that the game does not need.

 5. Check remote servers and URLs—If the game

relies on web APIs or cloud services, make sure that

the release build is using production URLs and not

test paths. You may have been given sandboxes and

test URLs during development; you need to switch

them up to the production version.

 Build a Release-Ready Application

During development, Android Studio did quite a few things for you; it

• Created a debug certificate

• Assembled all your project’s assets, config files, and

runtime binaries into an APK

Chapter 11 publishing the game

330

• Signed the APK using a debug certificate

• Deployed the APK to an emulator or a connected

device

All these things happened in the background; you didn’t have to do

anything else but write your code. Now, you need to take care of that

certificate. Google Play and other similar marketplaces won’t distribute

an app that’s signed with a debug certificate. It needs to be a proper

certificate. You don’t need to go to a certificate authority like Thawte or

Verisign; a self-signed certificate will suffice. Also, make sure to keep that

certificate; when you make updates to the app, you will need to sign it with

the same certificate.

In the next steps, you’ll see how to generate a signed bundle or APK;

you already know what an APK is—it’s the package that contains your

application. It’s what you upload to Google Play. A bundle, on the other

hand, is a lot like an APK but it’s a newer upload format. Like the APK,

it also includes all your app’s compiled code and resources, but it defers

APK generation. It’s Google Play’s new app serving model called Dynamic

Delivery. It uses your app bundle to generate and serve optimized APK

for each user’s device configuration—so they download only the code and

resources that they need to run your app. You don’t have to build, sign, and

manage multiple APKs anymore.

In Android Studio, the steps to generate an APK and a bundle are

almost identical. In the following steps, we’ll see how to generate both the

bundle and an APK.

Launch Android Studio, if you haven’t done so yet. Open the project,

then from the main menu bar, go to Build ➤ Generate Signed Bundle/

APK, as shown in Figure 11-1.

Chapter 11 publishing the game

331

Choose either Bundle or APK, then click Next; in this example, I chose

to create a bundle. When you click Next, you will see the “Keystore” dialog,

as shown in Figure 11-2.

Figure 11-1. Generate signed APK

Figure 11-2. Keystore dialog

Chapter 11 publishing the game

332

The Key store path is asking where the Java Keystore (JKS) file is. At

this point, you don’t have it yet. So, click Create New. You’ll see the dialog

window for creating a new keystore, as shown in Figure 11-3.

Figure 11-3. New Key Store

Chapter 11 publishing the game

333

When you’re done filling up the New Key Store dialog, click OK. This

will bring you back to the Generate Signed Bundle or APK window, as

shown in Figure 11-4; but now, the JKS file is created and the Keystore

dialog is populated with it.

Table 11-1. Keystore items and description

Keystore items Description

Keystore path the location where you want to keep the keystore. this

is entirely up to you. Just make sure you remember this

location

password this is the password for the keystore

alias this alias identifies the key. it’s just a friendly name for it

(Key) password this is the password for the key. this is NOT the same

password as the keystore’s (but you can use the same

password if you like)

Validity, in years the default is 25 years; you can just accept the default. if

publish on google play, the certificate must be valid until

October of 2033—so, 25 years should be fine

Other information Only the first and last name fields are required

Table 11-1 shows the description for the input items of the keystore.

Chapter 11 publishing the game

334

Click Next. Now we choose the destination of the signed bundle as

shown in Figure 11-5.

Figure 11-4. Generate Signed Bundle or APK, populated

Figure 11-5. Signed APK, APK destination folder

Chapter 11 publishing the game

335

You need to remember the location of the “Destination Folder,” as

shown in Figure 11-5. This is where Android Studio will store the signed

bundle. Also, make sure that the Build Variants is set to “release.”

When you click Finish, Android Studio will generate the signed bundle

for your app. This is the file that you will submit to Google Play.

 Releasing the App

Before you can submit an app to Google Play, you’ll need a developer

account. If you don’t have one yet, you can sign up at https://developer.

android.com. There’s a lot of assumptions I’m making about the next

activities. I’m assuming that

 1. You already have a Google account (Gmail).

 2. You’re using Google Chrome to go to https://

developer.android.com.

 3. Your Google account is logged in to Chrome.

If your Google account isn’t logged in to Chrome, you might see

something like Figure 11-6. Chrome will ask you to go select an account

(or create one).

Chapter 11 publishing the game

https://developer.android.com
https://developer.android.com
https://developer.android.com
https://developer.android.com

336

When you get your Google account sorted out, you’ll be taken to the

developer.android.com website, as shown in Figure 11-7.

Figure 11-7. developer.android.com

Figure 11-6. Choose an account

Chapter 11 publishing the game

337

Click Google Play, as shown in Figure 11-7.

Figure 11-8. Launch Play Console

Chapter 11 publishing the game

338

Click Launch Play Console, as shown in Figure 11-8.

You need to go through four steps to complete the registration, (shown

in Figure 11-9):

• Sign in with your Google account.

• Accept the developer agreement.

• Pay the registration fee.

• Complete your account details.

Figure 11-9. Google Play Console, sign up

Chapter 11 publishing the game

339

Once you have completed the registration and payment, you will now

have access to the Google Play Console, as shown in Figure 11-10.

This is where you can start the process of submitting your app to the

store. Click the “Create Application” button to get started.

 Key Takeaways

• Before the users can experience your game, they will see

the icons and other graphical assets first—make sure the

graphical assets are just as polished as your code.

• Strip your code of all debug info and log statements

before you build a release.

• Code review your own work. If you have buddies or

other people who can review the code with you, that’s

much better. If your app uses servers, RESTful URLs,

and so on, make sure they are production ready and

not sandboxes.

Figure 11-10. Play Console

Chapter 11 publishing the game

340

• Before you can upload your app to Google Play, you

need to sign your app with a proper certificate.

• You’ll need a Google Play account if you want to sell

your apps on Google Play. I paid a one-time fee of $25.

• Don’t forget to test the game on a real device, as many

kinds and sizes as you can afford.

Chapter 11 publishing the game

341© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7_12

CHAPTER 12

What’s Next

After 11 chapters of learning the basics of Android programming, learning

Android Studio, a bit of theory about game development, and two games

that were built from scratch, we’re just about ready to conclude.

I’m sure you’ve got some newfound confidence after building those

two games from scratch. It’s a nice warm feeling when you get to see your

work running and humming on that emulator or device; but the learning

curve for game programming is steep. The bar is already very high on the

quality of games being released nowadays.

In this chapter, we’ll look at some areas of interest that you can add to

your game programming arsenal. We’ll cover the following:

• Android NDK

• Vulkan introduction and basic setup

• Game engines and game frameworks

 Android NDK

Quite a few of the gaming resources, libraries, frameworks, or even engines

that you’ll encounter in game programming will either be written in C or

C++. So, you’ll need to know how to play nice with these libraries and the

languages themselves. Android has a way to work side by side with C/C++.

That’s the NDK, which is short for Native Development Kit.

https://doi.org/10.1007/978-1-4842-6121-7_12#DOI

342

The NDK is an addition to the Android SDK that lets you write C/

C++ and assembly code that you can then integrate into your Android

application. The NDK consists of a set of Android-specific C libraries, a

cross-compiler toolchain based on the GNU Compiler Collection (GCC)

that compiles to all the different CPU architectures supported by Android

(ARM, x86, and MIPS), and a custom-built system (https://developer.

android.com/ndk/guides/ndk-build) that should make compiling C/C++

code easier when compared to writing your own make files.

The NDK doesn’t expose most of the Android APIs, such as the UI

toolkit. It is mostly intended to speed up some code that can benefit by

writing them in C/C++ and calling them from within Java. Since Android

2.3, Java can be bypassed almost completely by using the NativeActivity

class instead of Java activities. The NativeActivity class is specifically

designed to be used for games with full window control, but it does not

give you access to Java at all, so it can’t be used with other Java-based

Android libraries. Many game developers coming from iOS choose that

route because it lets them reuse most of the C/C++ on Android without

having to go too deep into the Android Java APIs. However, the integration

of services such as Facebook authentication or ads still needs to be done

in Java, so designing the game to start in Java and call into C++ via the JNI

(Java Native Interface) is often the most preferred way. With that said, how

does one use the JNI?

The JNI is a way to let the virtual machine (and hence Java code)

communicate with C/C++ code. This works in both directions; you can call

C/C++ code from Java, and you can call Java methods from C/C++. Many

of Android’s libraries use this mechanism to expose native code, such as

OpenGL ES or audio decoders.

Once you use JNI, your application consists of two parts: Java code

and C/C++ code. On the Java side, you declare class methods to be

implemented in native code by adding a special qualifier called native. The

code could look like the one in Listing 12-1.

CHAPTER 12 WHAT’S NEXT

https://developer.android.com/ndk/guides/ndk-build
https://developer.android.com/ndk/guides/ndk-build

343

Listing 12-1. NativeSample.java

class NativeSample {

 public native void doSomething(String a);

}

As you can see, the method we declared doesn’t have a method body.

When the JVM running your Java code sees this qualifier on a method, it

knows that the corresponding implementation is found in a shared library

instead of in the JAR file or the APK file.

A shared library is very similar to a Java JAR file. It contains compiled

C/C++ code that can be called by any program that loads this shared

library. On Windows, these shared libraries usually have the suffix .dll; on

Unix systems, they end in .so.

On the C/C++ side, we have a lot of header and source files that

define the signature of the native methods in C and contain the actual

implementation. The header file for our class in the preceding code would

look something like Listing 12-2.

Listing 12-2. NativeSample.h

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class NativeSample */

#ifndef _Included_NativeSample

#define _Included_NativeSample

#ifdef __cplusplus

extern "C" {

#endif

/*

CHAPTER 12 WHAT’S NEXT

344

 * Class: NativeSample

 * Method: doSomething

 * Signature: (Ljava/lang/String;)V

 */

JNIEXPORT void JNICALL Java_NativeSample_doSomething

 (JNIEnv *, jobject, jstring);

#ifdef __cplusplus

}

#endif

#endif

Before Java 10, programmers used javah to generate header files like

the preceding code, but javah became obsolete when Java 10 came about.

To generate this header files for JNI, we now use

javac NativeSample.java -h .

The tool takes a Java class as input and generates a C function signature

for any native methods it finds. There’s a lot going on here, as the C code

needs to follow a specific naming schema and needs to be able to marshal

Java types to their corresponding C types (e.g., Java’s int becomes a jint

in C). We also get two additional parameters of type JNIEnv and jobject.

The first can be thought of as a handle to the VM. It contains methods to

communicate with the VM, such as to call methods of a class instance. The

second parameter is a handle to the class instance on which this method

was invoked. We could use this in combination with the JNIEnv parameter

to call other methods of this class instance from the C code.

Of course you still need to write the C source file that actually

implements the function and compile it before the Java code can use it.

To install the NDK, you need to go to the SDK manager. If you have an

open project in Android Studio, go to Preferences or Settings (Windows

and Linux); then choose Android SDK, then check the boxes NDK (Side by

side) and CMake, as shown in Figure 12-1, then click OK.

CHAPTER 12 WHAT’S NEXT

345

In the window that follows (Figure 12-2.), click OK to confirm the

change and proceed.

Figure 12-1. Install CMake and NDK (Side by side)

Figure 12-2. Confirm change

CHAPTER 12 WHAT’S NEXT

346

In the window that follows (Figure 12-3), click Finish.

Now, you’re ready to use NDK in your projects.

 Vulkan

Vulkan is a new API by the Khronos Group (the same group that gave us

OpenGL) that provides a much better abstraction for modern graphics

cards. This new interface allows us to better describe what the application

intends to do, which can lead to better performance and less surprising

Figure 12-3. Component installer

CHAPTER 12 WHAT’S NEXT

347

driver behavior compared to existing APIs like OpenGL and Direct3D. The

ideas behind Vulkan are similar to those of Direct3D 12 (which you can

only use on Windows) and Metal (a graphics API that can only be used on

the Apple ecosystem), but Vulkan has the advantage of being fully cross-

platform and allows you to develop for Windows, Linux, and Android at

the same time.

The price to pay for these benefits is that we have to work with a

significantly more verbose API. Every detail related to the graphics API

needs to be set up from scratch by your application, including initial

frame buffer creation and memory management for objects like buffers

and texture images. The graphics driver will do a lot less hand holding,

which means that we need to do more work in our app to ensure

correct behavior.

Vulkan may not be for everyone. If you’re geeked up about high-

performance graphics and are willing to put some work in, this may be

right down your alley. On the other hand, if you’re more interested in game

development rather than computer graphics, you can always stay with

OpenGL ES—it won’t be deprecated in favor of Vulkan anytime soon.

The Android platform includes an Android-specific implementation of

the Vulkan API.

To get started with Vulkan on Android, you can download the LunarG

Vulkan repository. You’ll need to download the project from GitHub.

You can simply download the git file from https://github.com/LunarG/

VulkanSamples. Click the “Clone or download” button as shown in

Figure 12-4.

CHAPTER 12 WHAT’S NEXT

https://github.com/LunarG/VulkanSamples
https://github.com/LunarG/VulkanSamples

348

Or use git on a command line, like this (this was done on a Mac; same

commands will work on Linux):

mkdir vulkan

cd vulkan

git clone --recursive https://github.com/LunarG/VulkanSamples.

git

cd VulkanSamples/API-Samples

cmake -DANDROID=ON -DABI_NAME=abi

cd android

python3 compile_shaders.py

Note You will need to install Python 3 on your system, if you don’t

have it yet. You can get it from the Python website www.python.

org/downloads/.

Figure 12-4. VulkanSamples.git

CHAPTER 12 WHAT’S NEXT

https://www.python.org/downloads/
https://www.python.org/downloads/

349

Next, open Android Studio, if you haven’t launched it yet. Choose File

➤ Open and select VulkanSamples/API-Samples/android/build.gradle.

The project looks like the window shown in Figure 12-5.

We need to configure the SDK and NDK directories; to do that, go to

File ➤ Project Structure and then ensure that the SDK and NDK locations

are set (as shown in Figure 12-6).

Figure 12-5. Project pane displaying samples after the import

CHAPTER 12 WHAT’S NEXT

350

If your NDK isn’t set, click the drop-down arrow (near the ellipsis, the

three dots on the right). The drop-down should suggest the recommended

directory. If Android Studio doesn’t have a suggested directory, you need

to check if you’ve already installed the NDK. See our discussions on the

NDK installation in the previous sections of this chapter.

You can now compile the individual modules in the project. Select

the project you want to compile in the Project tool window, as shown in

Figure 12-7.

Figure 12-6. Project Structure, NDK and SDK

CHAPTER 12 WHAT’S NEXT

351

From the Build menu, choose Make Module <module name>. Resolve

any dependency issues, then compile. Most of the samples have simple

functionality. The drawcube example is one of the visually interesting

examples (shown in Figure 12-8).

These instructions on how to set up a Vulkan environment in Android

came from the Android Development website (https://developer.

android.com/ndk/guides/graphics/getting-started); the instructions

may change by the time this book goes to print; so, make sure to visit the

page when you set up your Vulkan environment.

Figure 12-7. Make module

CHAPTER 12 WHAT’S NEXT

https://developer.android.com/ndk/guides/graphics/getting-started
https://developer.android.com/ndk/guides/graphics/getting-started

352

 Game Engines and Frameworks

You had a tiny slice of a game developer’s life in Chapters 6 and 7 because

we built two small games, but we built them from scratch. Though the

games were not very sizable, as lines of code and assets go, we had to

do everything. We had to tell the program where to get the graphics file,

load them on specific coordinates on the screen, play some audio during

specific timings in the game, and so on. It’s like painting a house using a

toothbrush—yes, you have a lot of control over every aspect of the game,

but it’s just a lot of work too. You can bet that most of the AAA games you

played weren’t built that way.

Figure 12-8. drawcube module

CHAPTER 12 WHAT’S NEXT

353

Most modern games either use a game framework or a game engine.

A game engine is a complete package. It’s a comprehensive set of tools

to help you build a game from scratch. Engines typically contain some

scene or level editor, tools to import game assets (models, textures,

sounds, sprites, etc.), an animation system, and a scripting language or

API to program the game logic. You will still need to write code to use an

engine, but most of it will be focused on the game logic. The system-level

boilerplate code will be facilitated for you by the game engine.

The Android SDK provides a decent framework for games. Remember

when we used the View objects and the ImageView objects? The Android

SDK also provided some decent support so we can handle events, get the

window to full size, and draw some rudimentary graphics on the screen.

Those are the things a framework does; but there are other frameworks

apart from what the Android SDK offers.

To be honest, you don’t really need a game engine nor a framework;

but they do make your life a lot easier during game programming. Building

a nontrivial game without an engine or framework can be arduous and

perilous. If your end goal is to build a game, you will be better served to

consider using third-party tools.

There are many frameworks and engines out there; I’ve compiled only

those that include Android as a target platform; not all of them will use

Java or the Android SDK for development. You should remember that this

list is not comprehensive at all, but it should get you started.

 Frameworks

HaxeFlixel. http://haxeflixel.com/

It’s a 2D game framework. You can deploy it on HTML5, Android, iOS,

and Desktop. If you don’t mind learning the Haxe language, you can try

this out.

LÖVE. https://love2d.org/

CHAPTER 12 WHAT’S NEXT

http://haxeflixel.com/
https://love2d.org/

354

It’s also a 2D framework. You’ll have to use the Lua language, but

you can deploy it on Android, iOS, Linux, macOS, and Windows. This

framework has already been used on some commercial games; check out

Figure 12-9.

MonoGame. www.monogame.net/

It’s another 2D framework that targets iOS, Windows, Android, macOS,

PS4, PSVita, Xbox One, and Switch. The language used is C# (which shares

a lot of language element similarities with Java).

 Engines

Cocos2D. http://cocos2d.org/

It’s a 2D engine that targets Android (in development), PC, macOS,

and iOS. Depending on your platform, you’ll have to use either C++, C#, or

Objective-C.

CopperCube. www.ambiera.com/coppercube

This is a 3D engine that you can use for games that will run on

Windows, macOS, Android, and the Web. It supports the languages C++,

JavaScript, and Visual Scripting.

Figure 12-9. Commercial games done with LÖVE

CHAPTER 12 WHAT’S NEXT

http://www.monogame.net/
http://cocos2d.org/
https://www.ambiera.com/coppercube

355

Defold. www.defold.com/

You can target Windows, macOS, Linux, iOS, Android, and HTML with

this 2D engine if you don’t mind using the Lua language.

Esenthel. www.esenthel.com/

It’s a 2D/3D engine that targets Windows, Xbox, Mac, Linux, Android,

iOS, and the Web. You’ll have to code on C++.

GameMaker Studio 2. www.yoyogames.com/

This is a commercial 2D engine that targets Windows, Mac, Android,

iOS, Windows Phone 8, HTML5, Ubuntu, Tizen, and Windows UWP. It uses

a custom language called GML. There is a free (but limited) trial.

Unity. http://unity3d.com/

This is a 2D/3D engine that targets Windows, macOS, Linux, HTML5,

iOS, Android, PS4, XB1, N3DS, Wii U, and Switch. C# is the language of

choice here. This is free to use up until the first $100,000 revenue. Check

out their website for more details.

Unreal Engine 4. www.unrealengine.com/

You can target Windows, iOS, Mac, PS4, XB1, Switch, HTML5,

HoloLens, Lumin, Android, and Linux. This is a 2D/3D engine. You’ll

have to use either C++ or Blueprints Visual Scripting (JavaScript language

can be used with the use of some plugins). It’s free to use until the project

makes more than $1M. Check the website for more details.

 Key Takeaways

In this final chapter, we learned a little bit about the NDK, Vulkan,

and game engines and frameworks. Game programming is a big topic;

we’ve only scratched the surface in this book. I hope you continue your

journey to building interesting and engaging games. May the force be

with you!

CHAPTER 12 WHAT’S NEXT

https://www.defold.com/
http://www.esenthel.com/
http://www.yoyogames.com/
http://unity3d.com/
http://www.unrealengine.com/

357© Ted Hagos, Mario Zechner, J.F. DiMarzio and Robert Green 2020
T. Hagos et al., Beginning Android Games Development,
https://doi.org/10.1007/978-1-4842-6121-7

Index

A

Android Development

Tools (ADT), 1

Android NDK

changes, 345

CMake/NDK

installation, 344–345

component installer, 346

definition, 342

JNI virtual machine, 342

NativeSample.java, 343

Android Studio

configuration, 6

hardware acceleration, 3, 9–11

installation, 2

JDK requirement, 3

Linux installation, 4–5

opening dialog, 6

preferences option, 7

proper binary file, 3

SDK platforms, 7–9

system requirements, 2

Windows, 4

Android virtual device (AVD)

advanced settings button, 25

code running/menu bar, 26

configuration screen, 20

Hello World, 26–27

manager window, 19

menu bar, 18

SDK Quickfix installation, 22

system image screen, 21–23

verification screen, 24

virtual device screen, 25

Application framework

activities, 47–52

AndroidManifest, 48

BroadcastReceivers, 48

components, 46

ContentProviders, 48

desktop/web counterparts, 46

entry point, 49–50

intents, 52–54

logical representation, 46

meaning, 45

services, 48

assertEquals() method, 246

B

Balloon popper game

audio process

Android component, 216

Java class, 220–222

MediaPlayer object, 217

https://doi.org/10.1007/978-1-4842-6121-7#DOI

358

resources folder, 214–215

SoundPool object, 218–219

background image, 152

AndroidManifest.xml,

161–162

Android resizer

app, 153–154

/app/res/styles.xml

file, 162–163

appropriate image

files, 159–160

directory set, 155

executable jar folder, 153

finder window, 158–159

generated files, 157–158

generated images, 156

grayscale image, 157

MainActivity object, 164

PopBalloons, 163

resizer app, 155

target folder, 154

controls/pin icons

activity_main

file, 165–168, 174–177

colors.xml file, 168

definitions, 173

drawable resource

file, 171

fullscreen mode, 181

game controls/pins, 170, 178

MainActivity, 179–180

pin.xml file, 172

preview view, 172–173

resource file, 171

strings.xml, 169

drawing project

array class, 186

balloon class, 183–184

class creation, 182

Java class, 181–182

nextColor() method, 186

random color, 186

floating class

BalloonListener.java,

189–190

MainActivity

code, 190–194

release() method, 188–189

ValueAnimator class, 188

game mechanics, 150–151

gameover

finishLevel() method, 210

popBalloon() method, 212

pushpin images, 209

startGame() method, 214

startLevel() method, 213

handling game levels, 198–201

launching game, 195–199

pops

balloon class, 204–206

interface, 203

Java class, 202

MainActivity, 202–204

PopListener

interface, 203

project creation, 151–152

pushpin images, 207–209

Balloon popper game (cont.)

INDEX

359

C

Candy crush saga, 57–58

Central processing unit (CPU) view

edit configurations, 259

instrumented type/views, 258

recording configurations,

259–260

stop recording session, 260–261

threads, 261–262

Compatibility testing, 237

Compliance/conformance

testing, 237

computerPlay()

method, 107, 133–135

Crazy Eights game

displaying cards

discard pile, 106

layout, 102

onDraw() method, 106

source code, 103–105

gameplay, 68–69

game screen

configuration activity, 91

CrazyEightActivity, 92–95

empty activity, 90

Java class, 92

MotionEvent.ACTION_UP, 94

game starts

card class, 96

card images, 98

dealCards() method, 100–101

get()/set() methods, 98

initializeDeck() method,

98–99

onSizeChanged()

method, 101

project tool window, 96

hand ending process, 136

Card.java class, 137

computerPlay()

method, 147–148

drawText() methods, 140

end_hand_dialog.

xml, 141–142

initNewHand() method, 145

onTouchEvent()

method, 146–147

Paint object class, 139

scores screen, 136

updateScores() method, 139

XML file layout, 141

handling program.events,

74–77, 107

isValidDraw() method, 131

key parts, 69–70

MainActivity, 71

onDraw() method, 72–73

onSizeChanged() method, 130

onTouchEvent()

method, 132

play button, 89–94

playing cards game (see Playing

cards game)

process view, 67

SplashScreen (see SplashScreen/

title graphic)

validation, 130–133

views/activities, 70–72

INDEX

360

D

Debugging

breakpoints, 254–256

debugger window, 255

logcat tool window, 254

logic errors, 252–254

runtime errors, 251–252

syntax errors, 250–251

Developer testing, 238

E

Embedded Systems (OpenGL ES)

abstract scene, 273

camera, 275

fixed-function pipeline, 272

incremental versions, 270

light types, 275

matrices, 276–277

objects/pieces, 274

OpenGL definition, 270

projections, 276

renders triangles, 272

sphere (see Sphere rendering)

3D graphics programming, 270

version distribution, 271–272

viewport, 275

view volume/view

frustum, 274

endHand() method, 142–145

Endurance testing,

see Soak testing

Energy profiler, 267–268

F

Facebook/Twitter, 322

Fixed-function pipeline, 272

Framework games, 353–354

Freemium model

game content, 319

in-app purchases/in-app

products, 320

managed items, 320

unmanaged items, 320

virtual currency, 321

Functional testing, 235

G, H

Game engines, 63–65, 352–355

Game programming arsenal, 341

Game testing, 235–238

gameOver() method, 210, 224–225

Genres game

action games, 61

casual games, 56–58

game engine, 63–65

puzzle/logic games (see Puzzle/

logic games)

tower defense game, 62

GNU Compiler Collection

(GCC), 342

I

Integrated development

environment (IDE)

editing layout files

INDEX

361

design/text mode, 34

layout design tools, 35

source/layout files, 33

WYSIWYG mode, 33

main editor window, 32–33

main menu bar, 31

navigation bar, 31

opening dialog, 29–30

settings/preferences

window, 42–43

TODO items, 36–37

tool window bar, 31–32

distraction free mode, 40

main menu bar, 40

main screen, 37–38

project tool window, 41

project views, 41–42

toolbars hidden, 39

J

Java Development Kit (JDK)

requirement, 3

JVM test vs. instrumented

test, 239–240

K

Kernel-based Virtual Machine

(KVM), 10

L

launchBalloon() method, 196–224

Localization testing, 237

M

Memory profiler

allocation tracker, 265

dump, 263

garbage collection (GC), 263

instance view/reference

tab, 264–265

Java heap, 264

memory view, 262–265

Minion Rush game, 56–57

Model-view matrix, 277

Monetization, 317

advertising, 321–322

Freemium (see Freemium

model)

game design, 324–325

game discovery, 322

blogs/web media, 324

services, 323

social network, 322

paid/free, 317–318

N

Network profiler, 266

O

onDrawFrame()

method, 284–287

onSizeChanged()

method, 116–117

onTouchEvent()

method, 112, 118–119

INDEX

362

Open Graphics Library (OpenGL),

see Embedded Systems

(OpenGL ES)

P, Q

Penetration testing, 238

Performance testing, 236

Playing cards game

arrays.xml, 122

card class, 107–109

changeSuit() method, 127–130

choose_suit.dialog.xml, 124–125

ComputerPlayer

class, 110–112

computerPlay()

method, 109

design mode, 125–126

getSuit()/getRank()

methods, 109

layout file, 123–124

moving cards, 112–115

offset values code, 115–116

onDraw() method, 114

suit dialog, 119–120

values file/arrays, 122

XML file, 121

Profiler

CPU (see Central processing

unit (CPU) view)

energy, 267–268

memory view, 262–265

network view, 266

tool windows, 256

Project creation

activity type, 14–15

AVD (see Android virtual device

(AVD))

main editor window, 18

new project screen, 15–17

welcome screen, 13–14

Projection matrix, 277

Publishing game

app releasing

account details, 336

activities, 335

developer.android.com, 336

Google play console, 338–339

launch play console, 337

project preparation

configuration, 328–329

material/assets, 327–328

release-ready

application, 329–335

Puzzle/logic games

Bejeweled, 60

Cut the Rope, 60–61

tetris, 58–59

tetrominoes, 59

R

Recovery testing, 237

Release-ready application

APK generation, 331

background activities, 330

bundle generation, 334

destination folder, 334

INDEX

363

development, 329

items/description, 333

key store dialog, 331–332

runProgram() method, 302–303

S

Security testing, see Penetration

testing

setOnTouchListener()

method, 184–185

setPopped() method, 224–233

setToFullScreen() method, 178

Shooter games, 61

Silicon Graphics (SGI), 270

Soak testing, 236

Software development kit (SDK)

levels, 7

platforms, 7

tools section, 8

Sound testing, 238

Sphere rendering

activity_main.xml, 279

Android component, 291

assets folder, 290–292

class creation, 288

complete code, 306–311

constructor, 305–306

context/string object, 289

copy files, 294

createBuffers()

method, 296–298

createShaders()

method, 300–301

design mode, 280

determine support, 281

draw() method, 303–305

export wavefront, 285–286

file name, 299

finder/show, 293

fragment_shader.txt, 300

GLSurfaceView, 281

Icosphere creation/rendering,

285, 314

loadVertices() method, 294–295

MainActivity, 281–283, 311–313

sphere.obj, 287

texture compression, 278

uses-feature, 278

vertex_shader.txt, 298

Wavefront object format, 286

Spike testing, 236

SplashScreen/title graphic

AndroidManifest, 82–83

app information, 85

bitmap, 78

dialog window, 77

MainActivity.java, 80–81

play button, 89–94

setSystemUiVisibility

method, 81

source code, 83–84

splash screen, 79

T

Texture matrix, 277

Tower defense game, 62

INDEX

364

U

Unit testing

assert methods, 244

destination directory, 243

FactorialTest.java, 240–244

functional testing, 238

implementation, 244–247

JVM test vs. instrumented

test, 239–240

pop-up dialog, 241

running process, 247–249

updateGameStats() method, 211

V, W, X, Y, Z

Volume testing, 236

Vulkan, 346

benefits, 347

drawcube module,

351–352

import project

pane, 349

module creation, 350–351

project structure, 350

VulkanSamples.git,

347–348

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Setup
	Installing Android Studio
	Configure Android Studio
	Hardware Acceleration
	Key Takeaways

	Chapter 2: Project Basics
	Create a Project
	Create an AVD
	Key Takeaways

	Chapter 3: Android Studio
	The IDE
	Main Editor
	Editing Layout Files
	Inserting TODO Items
	How to get more Screen Space for Code
	Preferences/Settings
	Key Takeaways

	Chapter 4: What’s in an Android Application
	What makes up an Android Project
	Application Entry Point
	Activities
	Intents
	Key Takeaways

	Chapter 5: Introduction to Game Development
	A Quick Tour of Game Genres
	Casual Games
	Puzzle Games
	Action Games
	Tower Defense Games

	Game Engine
	Key Takeaways

	Chapter 6: Building the Crazy Eights Game
	Basic Gameplay
	Key Parts of the Program
	Custom Views and Activities
	Drawing on the Screen
	Handling Events
	SplashScreen with a Title Graphic
	Adding the Play Button
	Launching the Game Screen
	Starting the Game
	Displaying the Cards
	Handling Turns
	Playing a Card
	When there is no Valid Play
	When it’s the Computer’s Turn
	Ending a Hand

	Chapter 7: Building the Balloon Popper Game
	Game Mechanics
	Creating the Project
	Drawing the Background
	Game Controls and Pin Icons
	Drawing the Balloons
	Making the Balloons Float
	Launching the Balloons
	Handling Game Levels
	Pop the Balloons
	Managing the Pins
	When the Game is Over
	Audio
	Final Touches

	Chapter 8: Testing and Debugging
	Types of Game Testing
	Unit Testing
	JVM Test vs. Instrumented Test
	A Simple Demo
	Implementing the Test
	Running a Unit Test

	Debugging
	Syntax Errors
	Runtime Errors
	Logic Errors
	Walking through the Code

	Profiler
	CPU
	Memory
	Network
	Energy

	Key Takeaways

	Chapter 9: Introduction to OpenGL ES
	What’s OpenGL ES
	What does OpenGL ES do
	Models or Objects
	Lights
	Camera
	Viewport

	Projections
	Matrices
	Rendering a Simple Sphere
	Key Takeaways

	Chapter 10: Monetization
	Paid or Free
	Freemium
	In-app Purchase
	Virtual Currency

	Advertising
	Getting your Game Discovered
	Social Network
	Discovery Services
	Blogs and Web Media

	Game Design
	Key Takeaways

	Chapter 11: Publishing the Game
	Prepare the Project for Release
	Prepare Material and Assets for Release
	Configure the App for Release
	Build a Release-Ready Application

	Releasing the App
	Key Takeaways

	Chapter 12: What’s Next
	Android NDK
	Vulkan
	Game Engines and Frameworks
	Frameworks
	Engines

	Key Takeaways

	Index

