
Beginning
Functional
JavaScript

Functional Programming with
JavaScript Using EcmaScript 6
—
Anto Aravinth

www.allitebooks.com

http://www.allitebooks.org

Beginning Functional
JavaScript

Functional Programming with
JavaScript Using EcmaScript 6

Anto Aravinth

www.allitebooks.com

http://www.allitebooks.org

Beginning Functional JavaScript

Anto Aravinth
Chennai, Tamil Nadu, India

ISBN-13 (pbk): 978-1-4842-2655-1 ISBN-13 (electronic): 978-1-4842-2656-8
DOI 10.1007/978-1-4842-2656-8

Library of Congress Control Number: 2017934504

Copyright © 2017 by Anto Aravinth

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Pramila Balan
Development Editor: Anila Vincent
Technical Reviewers: Anand Kumar and Sakib Shaikh
Coordinating Editor: Prachi Mehta
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-2655-1.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2655-1
http://www.apress.com/source-code
http://www.allitebooks.org

Dedicated to God, Belgin Rayen (late), Susila, Kishore,
Ramya and my beloved ones.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author �� xiii

Acknowledgments ��� xv

 ■Chapter 1: Functional Programming in Simple Terms �������������������� 1

 ■Chapter 2: Fundamentals of JavaScript Functions ����������������������� 15

 ■Chapter 3: Higher-Order Functions ��� 29

 ■Chapter 4: Closures and Higher-Order Functions ������������������������� 45

 ■Chapter 5: Being Functional on Arrays ��� 57

 ■Chapter 6: Currying and Partial Application ��������������������������������� 77

 ■Chapter 7: Composition and Pipelines �� 93

 ■Chapter 8: Fun with Functors ��� 107

 ■Chapter 9: Monads in Depth ��� 125

 ■Chapter 10: Pause, Resume with Generators ����������������������������� 141

Appendix A �� 159

Index �� 161

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author �� xiii

Acknowledgments ��� xv

 ■Chapter 1: Functional Programming in Simple Terms �������������������� 1

What Is Functional Programming? Why It Matters? �������������������������������� 1

Referential Transparency ��� 4

Imperative, Declarative, Abstraction �� 5

Functional Programming Benefits ��� 6

Pure Functions �� 6

Pure Functions Lead to Testable Code �� 6

Reasonable Code �� 8

Parallel Code ��� 9

Cachable�� 10

Pipelines and Composable �� 11

Pure Function Is a Mathematical Function �� 11

What We Are Going to Build ��� 12

Is JavaScript a Functional Programming Language? ���������������������������� 13

Summary ��� 13

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■Chapter 2: Fundamentals of JavaScript Functions ����������������������� 15

ECMAScript A Bit of History ��� 16

Creating and Executing Functions ��� 16

First Function �� 17

Strict Mode ��� 18

Return Statement Is Optional ��� 19

Multiple Statement Functions ��� 20

Function Arguments ��� 21

ES5 Functions Are Valid in ES6 ��� 21

Setting Up Our Project ��� 21

Initial Setup �� 22

Our First Functional Approach to the Loop Problem ��� 23

Gist on Exports �� 25

Gist on Imports ��� 25

Running the Code Using Babel-Node �� 26

Creating Script in Npm ��� 26

Running the Source Code from Git ��� 27

Summary ��� 28

 ■Chapter 3: Higher-Order Functions ��� 29

Understanding Data ��� 30

Understanding JavaScript Data Types �� 30

Storing a Function �� 30

Passing a Function ��� 31

Returning a Function �� 32

Abstraction and Higher-Order Functions ��� 33

Abstraction Definitions ��� 33

Abstraction via Higher-Order Functions �� 34

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Higher-Order Functions in the Real World ��� 37

every Function �� 37

some Function �� 38

sort Function ��� 39

Summary ��� 43

 ■Chapter 4: Closures and Higher-Order Functions ������������������������� 45

Understanding Closures �� 46

What Are Closures? �� 46

Remembering Where It Is Born ��� 47

Revisiting sortBy Function �� 49

Higher-Order Functions in the Real World (Continued) �������������������������� 50

tap Function �� 50

unary Function �� 51

once Function ��� 52

Memoize Function �� 53

Summary ��� 55

 ■Chapter 5: Being Functional on Arrays ��� 57

Working Functionally on Arrays ��� 58

map��� 58

filter �� 61

Chaining Operations �� 62

concatAll ��� 63

Reducing Function �� 66

reduce Function �� 67

Zipping Arrays ��� 72

zip Function �� 73

Summary ��� 75

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

 ■Chapter 6: Currying and Partial Application ��������������������������������� 77

A Few Terminologies ��� 77

unary Function �� 78

Binary Function �� 78

variadic Functions �� 78

Currying ��� 79

Currying Use Cases �� 81

A logger Function - Using Currying �� 82

Revisit Curry ��� 83

Back to logger Function �� 86

Currying in Action �� 87

Finding number in Array Contents �� 87

squaring an Array ��� 88

Data Flow �� 88

Partial Application ��� 89

Implementing partial Function �� 89

Currying vs� Partial Application �� 92

Summary ��� 92

 ■Chapter 7: Composition and Pipelines �� 93

Composition in General Terms ��� 93

Unix Philosophy �� 94

Functional Composition ��� 96

Revisiting map,filter�� 96

compose Function �� 97

Playing with compose function ��� 98

curry and partial to the Rescue �� 99

compose many function ��� 102

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

Pipelines / Sequence ��� 103

Implementing pipe �� 104

Odds on Composition �� 104

Debugging Using tap Function�� 105

Summary ��� 106

 ■Chapter 8: Fun with Functors ��� 107

What Is a Functor? �� 107

Functor Is a Container �� 108

Functor Implements Method Called map �� 109

MayBe ��� 111

Implementing MayBe �� 111

Simple Use Cases ��� 112

Real-World Use Cases �� 114

Either Functor �� 118

Implementing Either ��� 118

Reddit Example Either Version �� 120

Word of Caution - Pointed Functor �� 123

Summary ��� 123

 ■Chapter 9: Monads in Depth ��� 125

Getting Reddit Comments for Our Search Query ��������������������������������� 125

The Problem �� 126

Implementation of the First Step �� 128

Problem of So Many maps �� 134

Solving the Problem via join �� 135

join Implementation �� 135

chain Implementation ��� 137

Summary ��� 140

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xii

 ■Chapter 10: Pause, Resume with Generators ����������������������������� 141

Async Code and Its Problem �� 142

Callback Hell ��� 142

Generators 101 �� 144

Creating Generators �� 144

Caveats of Generators �� 145

yield New Keyword ��� 146

done Property of Generator �� 148

Passing Data to Generators �� 149

Using Generators to Handle Async Calls ��� 151

Generators for Async - A Simple Case �� 151

Generators for Async - A Real-World Case ��� 156

Summary ��� 158

Appendix A �� 159

How to Install Node In Your System �� 159

Installing Depedencies �� 159

Index �� 161

xiii

About the Author

Anto Aravinth is a Senior Business Intelligence Developer at VisualBI, Chennai. He
has been busy developing web applications using Java; JavaScript; and frameworks like
ReactJs, Angular, etc., for the last five years. He has a solid understanding of the Web and
its standards. Anto is also an open source contributor to popular frameworks such as
ReactJs, Selenium, and Groovy.

Anto loves playing table tennis in his free time. He has a great sense of humor,
too! Anto is also a Technical Development Editor for React Quickly, a book that will be
published by Manning in 2017.

xv

Acknowledgments

Writing a book is not easy as I would have thought. It’s almost very like making a movie.
You need to go to each publication unit with your table of contents. The table of contents
are like your movie script. It needs to have a strong beginning, keep the audience
engaged, and then have a good ending. The screenplay should be very good which is
achieved via your text. The process of a book starts when an editorial team accepts your
table of contents. I want to thank Pramila for that; she was helpful in the initial stages of
the book. Of course, writing a technical book needs to be technically correct as well. And
that’s where I need to give a special thanks to our technical editorial team! They were
very good at catching any technical issues in my writing. I want to give special thanks to
Anila for working through the chapters and finding any grammatical errors – and making
sure the contents are good enough for the readers to be engaged. All these phases are
managed by our manager named Prachi. Thanks, Prachi, for making it happen!

I want to dedicate this book to my Lord Jesus, late father Belgin Rayen, and my
beloved mother named Susila. I also want to give thanks to Kishore, my brother-in-law,
for supporting me throughout my life and career. I never told my sister Ramya (one and
only sibling) that I’m authoring a book. I just couldn’t predict how she would react to this
event. Special thanks to her as well.

Special thanks to all my friends & colleagues who have been very supportive in my
career: Deepak, Vishal, Shiva, Mustafa, Anand, Ram (Juspay), Vimal (Juspay), Lalitha,
Swetha, Vishwapriya. Final thanks to my close cousins: Bianca, Jennifer, Amara, Arun,
Clinton, Shiny, Sanju.

There can be improvements made in my style of writing, content, authoring, etc.
If you want to share your thoughts, please contact me at antoaravinthrayen@gmail.com.
I’m also available on twitter @antoaravinth.

Thanks for purchasing this book! I hope you will enjoy it. Good luck!

Anto Aravinth, India

antoaravinthrayen@gmail.com

1© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_1

CHAPTER 1

Functional Programming in
Simple Terms

The first rule of functions is that they should be small. The second rule of
functions is that they should be smaller than that.

—ROBERT C. MARTIN

Welcome to the functional programming world. The world, which has only functions, living
happily without any outside world dependencies, without states, without mutations –
forever. Functional programming is a buzz in recent days. You might have heard about
this term within your team, in your local group meeting, and have thought about this. If
you’re already aware of what that means, this is great! But for those who don’t know the
term, don’t worry. This chapter is for that purpose: to introduce you to Functional terms
in simple English.

We are going to begin this chapter by asking a simple question: what is a function in
Mathematics? Then later on we are going to create a function in JavaScript with a simple
example using our function definition. The chapter ends by explaining the benefits that
functional programming gives to our developers.

What Is Functional Programming?
Why It Matters?
Before we begin to see what the functional programming term means, we have to answer
another question: what is a function in mathematics? A function in mathematics can be
written like this:

f(X) = Y

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2656-8_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-2656-8_1

Chapter 1 ■ FunCtional programming in Simple termS

2

The statement can be read like “A Function F, which takes X as its argument, and
returns the output Y.” X and Y can be any number, for instance. That’s a very simple
definition. But there are key takeaways in the definitions:

•	 A function must always take an argument.

•	 A function must always return a value.

•	 A function should act only on its receiving arguments (i.e., X) not
the outside world.

•	 For a given X, there will be only one Y.

You might be wondering why we saw the definition of functions in mathematics
rather than in JavaScript. Did you? That sounds like a great question to me. The answer
is pretty simple: functional programming techniques are heavily based on mathematical
functions and its ideas. But hold your breath – we are not going to teach you functional
programming in mathematics, but rather use JavaScript to teach them. But throughout
the book, we will be seeing the ideas of mathematical functions and how they are used in
order to understand functional programming.

Now with that definition in place, we are going to see the examples of functions in
JavaScript.

Imagine we have to write a function that does the tax calculation. How are you going
to do this in JavaScript?

 ■ Note all the examples in the book will be written with eS6. the code snippets in the book
are stand-alone so that you can copy and paste them in any one of your favorite browsers that
supports eS6. all the examples are run in the Chrome browser version 51.0.2704.84. the eS6
spec is over here: http://www.ecma-international.org/ecma-262/6.0/

We can implement such a function like this as shown in Listing 1-1:

Listing 1-1. Calculate Tax Function in ES6

var percentValue = 5;
var calculateTax = (value) => { return value/100 * (100 + percentValue) }

The above function calculateTax does exactly what we want to do. You can call this
function with the value, which will return the calculated tax value in the console. It looks
neat, doesn’t it? Let’s pause for a moment and analyze the above function with respect
to our mathematical definition. One of the key points of our mathematical function
term is that the function logic shouldn’t depend upon the outside world. In our above-
defined function calculateTax, we have made the function depend on the global variable
percentValue. Thus the above function we have created can’t be called as a real function in
a mathematical sense. So let’s fix that. (Doubt – Can’t change font in the template why?)

The fix is very straightforward: we have to just move the percentValue as our function
argument:

http://www.ecma-international.org/ecma-262/6.0/

Chapter 1 ■ FunCtional programming in Simple termS

3

Listing 1-2. Calculate Tax Function Rewritten

var calculateTax = (value, percentValue) => { return value/100 * (100 +
percentValue) }

Now our function calculateTax can be called as a real function. But what have
we gained? We have just made the elimination of global variable access inside our
calculateTax function. Removing global variable access inside a function makes it easy for
testing. (We will talk about the functional programming benefits in this chapter later on)

Now we have made our relationship with the Math function to our JavaScript
function. With this simple exercise, we can define functional programming in simple
technical terms. Functional programming is a paradigm in which we will be creating
functions that are going to work out its logic by depending only on its input. This ensures
that a function, when called multiple times, is going to return the same result. The function
also won’t change any data in the outside world, leading to cachable and testable codebase.

FUNCTIONS VS. METHODS IN JAVASCRIPT

We have talked about the word “function” a lot in this text. Before we move on, i
want to make sure you understand the difference between Functions and Methods
in JavaScript.

Simply put, a Function is a piece of code that can be called by its name. it can be
pass arguments and return values.

however, Methods is a piece of code that must be called by its name along with its
associated object name.

We will look at a quick example of function and method in listing 1-3:

Function

Listing 1-3. A Simple Function

var simple = (a) => {return a} // A simple function
simple(5) //called by its name

Method

Listing 1-4. A Simple Method

var obj = {simple : (a) => {return a} }
obj.simple(5) //called by its name along with its associated object

There are two more important characteristics of Functional programing that are
missing in the definition. We are going to discuss them in detail in the upcoming sections
before we dive into the benefits of functional programming.

Chapter 1 ■ FunCtional programming in Simple termS

4

Referential Transparency
With our above definition of function, we have made a statement that all the functions are
going to return the same value for the same input. And this property of a function is called
a Referential transparency. We will take a simple example as shown in Listing 1-5:

Listing 1-5. Referential Transparency Example

var identity = (i) => { return i }

In the above code snippet we have defined a simple function called identity. This
function is going to return whatever you‘re passing as its input; that is, if you’re passing 5,
it’s going to return back the value 5 (i.e., the function is just acts as a mirror or identity).
Note that our function does operate only on the incoming argument ‘i’, and there is no
global reference inside our function (remember in Listing 1-2, we removed ‘percentValue’
from global access and made it an incoming argument). This function satisfies the
conditions ofReferential Transparency. Now imagine this function is used between other
function calls like this:

sum(4,5) + identity(1)

With our Referential Transparency definition we can convert the above statement
into this:

sum(4,5) + 1

Now this process is called a Substitution model as you can directly substitute the
result of the function as is (mainly because the function doesn’t depend on other global
variables for its logic) with its value. This leads to parallel code and caching. Imagine
that with this model, you can easily run the above function with multiple threads without
even the need of synchronizing! Why? The reason for synchronizing comes from the fact
that threads shouldn’t act upon global data when running parallel. Functions that obey
Referential Transparency are going to depend only on inputs from its argument; hence
threads are free to run without any locking mechanism!

And since the function is going to return the same value for the given input, we can,
in fact cache it! For example, imagine there is a function called ‘factorial’, which calculates
the factorial of the given number. ‘Factorial’ takes the input as its argument for which
the factorial needs to be calculated. We all know the ‘factorial’ of ‘5’ going to be ‘120’.
What if the user calls the ‘factorial’ of ‘5’ a second time? If the ‘factorial’ function obeys
Referential transparency, we know that the result is going to be ‘120’ as before (and it
only depends on the input argument). With this characteristic in mind, we can cache the
values of our ‘factorial’ function. Thus if a ‘factorial’ is called for the second time with the
input as ‘5’, we can return the cached value instead of calculating once again

Here you can see how a simple idea helps in parallel code and cachable code. We will
be writing a function in our library for caching the function results, later in the chapter.

Chapter 1 ■ FunCtional programming in Simple termS

5

REFERENTIAL TRANSPARENCY IS A PHILOSHOPY

referential transparency is a word that came from Analytic Philosophy (https://
en.wikipedia.org/wiki/Analytical_philosophy). this branch of philosophy
deals with natural language semantics and its meanings. here the word
“referential” or “referent” means to the thing that the expression refers to. a
context in a sentence is “referentially transparent” if replacing a term in that context
by another term that refers to the same entity doesn’t alter the meaning.

and that’s exactly how we have been defining referential transparency in our
section. We have replaced the value of the function, without affecting the context.
Wow, functional programming is a philosophy!

Imperative, Declarative, Abstraction
Functional programming is also about being declarative and writing abstracted code. We
need to understand these two terms before we proceed further. We all know and have
worked on N imperative paradigm. We’ll take a problem and see how to solve it in an
imperative and declarative fashion.

Suppose you have a list or array and want to iterate through the array and print it to
the console. The code for might look like this:

Listing 1-6. Iterating over the Array Imperative Approach

var array = [1,2,3]
for(i=0;i<array.length;i++)
 console.log(array[i]) //prints 1, 2, 3

It works fine. But in the above approach to solve our problem, we are telling
exactly “how” we need to do it. For example, we have written an implicit for loop with
an index calculation of the array length and printing the items. We will stop here. What
was the task here? “Print the array elements,” right? But it looks like we are telling the
compiler what to do. In this case, we are telling “Get Array Length, Loop our array, Get
each Element of array using index etc.” We call it an “imperative” solution. Imperative
programming is all about telling the compiler “how” to do the things.

We will now switch to the other side of the coin, Declarative programming. In
Declarative programming, we are going to tell “what” the compiler needs to do rather
than the “how” parts. The “how” parts are being abstracted into common functions (these
functions are called as Higher-Order functions, which we will cover in the upcoming
chapters). Now we can use the in-built forEach function to iterate the array and print it.

https://en.wikipedia.org/wiki/Analytical_philosophy
https://en.wikipedia.org/wiki/Analytical_philosophy

Chapter 1 ■ FunCtional programming in Simple termS

6

Listing 1-7. Iterating over the Array Declarative Approach

var array = [1,2,3]
array.forEach((element) => console.log(element)) //prints 1, 2, 3

The above code snippet does print exactly the same output in the previous Listing 1-5.
But here we have removed the “how” parts like “Get Array Length, Loop our array, Get each
Element of array using index, etc.” We have used an abstracted function, which takes care
of “how” part, leaving us the developers to worry about our problem in hand (“what” part).
That’s great! We will be creating these in-built functions throughout the textbook!

Functional programming is about creating functions in an abstracted way, which
can be reused by other parts of the code. Now we have a solid understanding of what
a functional programming is; with this in mind, we can go and explore the benefits of
functional programming.

Functional Programming Benefits
We have seen the definition of functional programming and a very simple example of
a function in the JavaScript language. But we have to answer a simple question: “What
are the benefits of Functional programming?” This section will help you see through the
lenses and see the huge benefits that functional programming is opting to offer us! Most
of the benefits of Functional programming come from writing Pure Functions. So before
we see the benefits of Functional programming, we will see what a pure function is.

Pure Functions
With our definition in place, we can define what is meant by Pure functions. Pure
functions are the functions that return the same output for the given input. Take an
example as given in Listing 1-8:

Listing 1-8. A Simple Pure Function

var double = (value) => value * 2;

The above function ‘double’ is a pure function just because given an input, it is going
to always return the same output. You can try yourself. Calling the double function with
input 5 always gives back the result as 10! Pure functions obey Referential transparency.
Thus we can replace double(5) with 10, without any hesitations.

So what’s the big deal about Pure Functions? It has many benefits to give to us. We’ll
discuss one after the other in the following text.

Pure Functions Lead to Testable Code
Functions that are not pure have side effects. Take our previous tax calculation example
(Listing 1-1):

Chapter 1 ■ FunCtional programming in Simple termS

7

var percentValue = 5;
var calculateTax = (value) => { return value/100 * (100 + percentValue) } //
depends on external environment percentValue variable

The function calculateTax is not a pure function, mainly because for calculating
its logic it depends on the external environment. However, the function works but the
function is very tough to test! Let’s see the reason for this.

Imagine we are planning to run a test for our calculateTax function three times for
three different tax calculations. We set up the environment like this:

calculateTax(5) === 5.25

calculateTax(6) === 6.3

calculateTax(7) === 7.3500000000000005

The entire test passes! But hold on, since our original calculateTax function depends on
the external environment variable percentValue, things can go wrong. Imagine the external
environment is changing the variable percentValue while you are running the same test cases:

calculateTax(5) === 5.25

// percentValue is changed by other function to 2
calculateTax(6) === 6.3 //will the test pass?

// percentValue is changed by other function to 0
calculateTax(7) === 7.3500000000000005 //will the test pass or throw
exception?

As you can see here the function is very hard to test. However we can easily fix the
issue, by removing the external environment dependency from our function, leading the
code to this:

var calculateTax = (value, percentValue) => { return value/100 * (100 +
percentValue) }

Now you can test the above function without any pain! Before we close this section,
we need to mention an important property about Pure function, which is “Pure Function
also shouldn’t mutate any external environment variables.”

In other words, the pure function shouldn’t depend on any external variables (like
shown in the example) and also change any external variables. We’ll not take a quick look
what we meant by changing any external variables. For example, consider the following
code in Listing 1-9:

Listing 1-9. BadFunction Example

var global = "globalValue"
var badFunction = (value) => { global = "changed"; return value * 2 }

Chapter 1 ■ FunCtional programming in Simple termS

8

When ‘badfunction’ function is called it changes the global variable ‘global’ to value
‘changed’. Is it something to worry about? Yes! Imagine another function that depends on
‘global’ variable for its business logic! Thus, calling ‘badFunction’ affects other functions’
behavior. Functions of this nature (i.e., functions that have side effects) make the code
base hard to test. Apart from testing, these side effects will make the system behavior very
hard to predict in case of debugging!

So we have seen with simple example of how a pure function can help us in
easy testing the code. Now we’ll look at other benefits we get out of Pure Functions –
Reasonable Code.

Reasonable Code
As developers we should be good at reasoning about the code or a function. By creating
and using Pure functions we can achieve that very simply. To make this point clearer, we
are going to use a simple example of function double (from Listing 1-8):

var double = (value) => value * 2

By looking at this function name we can easily reason that this function doubles the
given number and nothing else! In fact, using our Referential transparency concept, we
can easily go ahead and replace the double function call with the corresponding result!
Developers spend most of their time in reading others’ code. Having a function with side
effects in your code base is hard to read for other developers in your team. Code base
with pure functions are easy to read, understand, and test. Remember that a function
(regardless if it’s pure function) must always have a meaningful name. With that said, you
can’t name function ‘double’ as ‘dd’ given what it does.

SMALL MIND GAME

We are just replacing the function with value, as if we know the result without
seeing its implementation! that’s a great improvement in your thinking process
about functions. We are substituting the function value as if that’s the result it will
return!

to give your mind a quick exercise, see this reasoning ability with our in-built math.
max function.

given the function call:

math.max(3,4,5,6)

What will be the result?

Did you see the implementation of max to give the result? no, right? Why? the
answer to that question is math.max is pure function. now have a cup of coffee; you
have done a great job!

Chapter 1 ■ FunCtional programming in Simple termS

9

Parallel Code
Pure function allows us to run the code in parallel. As pure function is not going
to change any of its environments, this means we do not need to worry about the
synchronizing at all! Of course JavaScript doesn’t have real threads to run the functions in
parallel, but what if your project uses WebWorkers for running multiple things in parallel?
Or a server-side code in node environment that runs the function in parallel?

For example, imagine we have the following code as given in Listing 1-10:

Listing 1-10. Impure Functions

let global = "something"
let function1 = (input) => {
 // works on input
 //changes global
 global = "somethingElse"
}
let function2 = () => {
 if(global === "something")
 {
 //business logic
 }
}

What if we need to run both ‘function1’ and ‘function2’ in parallel? Imagine thread
one (T-1) picks ‘function1’ to run. Thread two (T-2) picks ‘function’ to run. Now both
threads are ready to run and here comes the problem. What if T-1 runs before T-2? Since
both functions (‘function1’ and ‘function2’) depend on global variable ‘global’, running
these functions in parallel causes undesirable effects. Now change these functions into a
pure function as explained in Listing 1-11:

Listing 1-11. Pure Functions

let function1 = (input,global) => {
 // works on input
 //changes global
 global = "somethingElse"
}
let function2 = (global) => {
 if(global === "something")
 {
 //business logic
 }
}

Chapter 1 ■ FunCtional programming in Simple termS

10

Here we have moved ‘global’ variable as arguments for both the functions making
them pure. Now we can run both functions on parallel without any issues. Since the
functions don’t depend on an external environment (‘global’ variable), we aren’t worried
about thread execution order as with Listing 1-10.

This section shows us how pure function helps our code to run in parallel without
any problems.

Cachable
Since the pure function is going to always return the same output for the given input,
we can cache the function outputs. To make this more concrete, we can take a simple
example. Imagine we have a function that does do time-consuming calculations. We will
name this function longRunningFunction:

var longRunningFunction = (ip) => { //do long running tasks and return }

If longRunningFunction function is a pure function, then we know that for the given
input, it’s going to return us the same output! Now with that point in mind, why do we
need to call the function again with its input multiple times? Can’t we just replace the
function call with the function’s previous result? (Again note here how we are using the
referential transparency concept, thus replacing the function with the previous result
value and leaving the context unchanged). Imagine we have a bookkeeping object, which
does keep all the function call results of longRunningFunction like this:

var longRunningFnBookKeeper = { 2 : 3, 4 : 5 . . . }

The longRunningFnBookKeeper is a simple JavaScript object, which is going
to hold all the input (as keys) and outputs (as values) in it as a result of invoking
longRunningFunction functions. Now with our pure function definition in place, we can
check if the key is present in longRunningFnBookKeeper before invoking our original
function, like what is shown in Listing 1-12:

Listing 1-12. Caching Achieved via Pure Functions

var longRunningFnBookKeeper = { 2 : 3, 4 : 5 }
//check if the key present in longRunningFnBookKeeper
//if get back the result else update the bookkeeping object
longRunningFnBookKeeper.hasOwnProperty(ip) ?
 longRunningFnBookKeeper[ip] :
 longRunningFnBookKeeper[ip] = longRunningFunction(ip)

The above code is relatively straightforward. Before calling our real function, we are
checking if the result of that function with the corresponding ip is in the bookkeeping
object. If yes, we are returning it, or else we are calling our original function and updating
the result in our bookkeeping object as well. Did you see how easily we have made the
function calls cachable by using less code? That’s the power of pure functions!

We will be writing a functional lib, which does the caching, or technical
memorization, of our pure function calls later in the book!

Chapter 1 ■ FunCtional programming in Simple termS

11

Pipelines and Composable
With pure functions we are going to do only one thing in that function. We have seen already
how the pure function is going to act as a self-understanding of what that function does by
seeing its name. Pure functions should be designed such a way that it should do only one
thing. Doing only one thing and doing it perfectly is a UNIX philosophy; we will be following
the same while implementing our pure functions. There are many commands in UNIX and
LINUX platforms, which we are using for day-to-day tasks. For example, we use cat to print
the contents of the file, grep to search the files, wc to count the lines, etc. These commands
do solve one problem at a time. But we can compose or pipeline to do the complex tasks.
Imagine we want to find a specific name in a text file and count its occurrences. How we will
be doing that in our command prompt? The command looks like this:

cat jsBook | grep –i “composing” | wc

The above command does solve our problem via composing many functions.
Composing is not only unique to UNIX/LINUX command lines, but they are the heart
of the Functional programming paradigm. We call them Functional Composition in
our world. Imagine these same command lines have been implemented in JavaScript
functions. We can use them with the same principles to solve our problem!

Now think about another problem in a different way to solve. You want to count the
number of lines in text. How will you solve it? Ahaa! You got the answer. Isn’t?

The commands are in fact a pure function with respect to our definition. It takes
an argument and returns the output to the caller without affecting any of the external
environments!

 ■ Note You might be thinking, does JavaScript support the operator “|” for composing
functions? the answer is no; however we can create one. We will be creating the corresponding

That’s a lot of benefits we are getting by following a simple definition. Before I close
this chapter, I want to show the relationship between Pure function and an Mathematical
Function. We will tackle that next!

Pure Function Is a Mathematical Function
In the section “Cachable” we saw a code snippet (Listing 1-12):

var longRunningFunction = (ip) => { //do long running tasks and return }
var longRunningFnBookKeeper = { 2 : 3, 4 : 5 }
//check if the key present in longRunningFnBookKeeper
//if get back the result else update the bookkeeping object
longRunningFnBookKeeper.hasOwnProperty(ip) ?
 longRunningFnBookKeeper[ip] :
 longRunningFnBookKeeper[ip] = longRunningFunction(ip)

Chapter 1 ■ FunCtional programming in Simple termS

12

The main aim was to cache the function calls. We did so by the bookkeeping
object. Imagine we have called the longRunningFunction many times so that our
longRunningFnBookKeeper grows into the object, which looks like this:

longRunningFnBookKeeper = {
 1 : 32,
 2 : 4,
 3 : 5,
 5 : 6,
 8 : 9,
 9 : 10,
 10 : 23,
 11 : 44
}

Now imagine that longRunningFunction input ranges only from 1-11 integers
(just for an example). And since we have already built the bookkeeping object for this
particular range, we can refer only the longRunningFnBookKeeper to say the output
longRunningFunction for the given input.

Let’s analyze this bookkeeping object. This object gives us the clear picture that our
function longRunningFunction does takes a input and maps over the output for the given
range (in this case it’s 1-11). And the important point to note over here is that the inputs
(in this case, the keys) have, mandatorily, a corresponding output (in this case, the result)
in the object. And also there is no input in the key section that maps to two outputs!

With this analysis we can revisit the Mathematical Function definition (this time
a more concrete definition from Wikipedia). (https://en.wikipedia.org/wiki/
Function_(mathematics):

In mathematics, a function is a relation between a set of inputs and a set of
permissible outputs with the property that each input is related to exactly one output.
The input to a function is called the argument and the output is called the value. The
set of all permitted inputs to a given function is called the domain of the function,
while the set of permissible outputs is called the codomain.

The above definition is exactly the same as our Pure functions! Have a look at our
longRunningFnBookKeeper object. Can you find the domain and codomain of our
function? Yeah, you can! With this very simple example you can easily see how the
Mathematical Function idea is borrowed into Functional paradigm world (as I stated in
the beginning of the chapter).

What We Are Going to Build
We have talked a lot about functions and functional programming in this chapter. With
this fundamental knowledge we are going to build the functional library called ES6-
Functional. This library will be built chapter by chapter throughout the text. By building
the functional library you will be exploring how JavaScript functions can be used (in a
functional way) and also at the same time how functional programming can be applied in
day-to-day activities (using our created function to solve the problem in our code base)!

https://en.wikipedia.org/wiki/Function_(mathematics
https://en.wikipedia.org/wiki/Function_(mathematics

Chapter 1 ■ FunCtional programming in Simple termS

13

Is JavaScript a Functional Programming
Language?
Before we close this chapter, we have to take a step back and answer a fundamental
question. Is JavaScript a functional programming language? The answer is yes and no. We
said in the beginning of the chapter that functional programming is all about functions,
which have to take at least an argument and return a value. But to be frank we can
create a function in JavaScript that can take no argument and in fact return nothing. For
example, the below code is a valid code in the JavaScript engine:

var useless = () => {}

The above code will execute without any error in the JavaScript world! The reason is that
being JavaScript is not a pure functional language (like Haskell) but rather a Multi-paradigm
language. However the language is very much suitable for the functional programming
paradigm as discussed in this chapter. The techniques and the benefits that we have discussed
up to now can be applied in pure JavaScript! And that’s the reason for this book’s title!

JavaScript is a language that has a support for Function as arguments, passing
functions to another functions, etc – mainly because JavaScript treats functions as its
first-class citizens (we will talk more about this in upcoming chapters). Because of the
constraints according to the definition of the term function, we as developers need to take
them into account while creating them in the JavaScript world. By doing so, we will gain
many advantages from the functional paradigm as discussed in this chapter.

Summary
In this chapter we have seen what Functions are in Math and in the programming
world. We started with a simple definition of function in mathematics and went over
seeing small and solid examples of functions and functional programming paradigm in
JavaScript. We also defined what Pure function is and discussed, in detail, their benefits.
At the end of the chapter we also showed the relationship between Pure functions
and Mathematical functions. We also discussed how JavaScript could be treated as a
functional programming language. A lot of progress has been made in this chapter.

In the next chapter, we will be reading about creating and executing functions in the
ES6 context. Now with ES6 we have several ways to create functions; that’s exactly what
we will be reading about in the next chapter!

15© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_2

CHAPTER 2

Fundamentals of JavaScript
Functions

 ■ Note The chapter examples and library source code are in branch chap02. The repo’s
URL is: https://github.com/antoaravinth/functional-es6.git

Once checkout the code, please checkout branch chap02:

...

git checkout -b chap02 origin/chap02

...

For running the codes, as before run:

...

npm run playground

...

In the previous chapter we saw what functional programming is all about. We saw how
functions in the software world are nothing but Mathematical functions. We spent a lot of
time discussing how Pure functions can bring us huge advantages such as parallel code
execution, being cachable, etc. We are now convinced that functional programming is all
about functions.

In this chapter we are going to see how functions in JavaScript can be used. We will
be looking at the latest JavaScript version ES6. This chapter will be a refresher on how to
create functions, call them, and pass arguments in ES6 but not explaining all the features
of ES6. But that’s not the goal of this book. I strongly recommend you to try all the code
snippets in the book to get a gist of how to use ES6 functions (more precisely we will be
working on arrow functions).

https://github.com/antoaravinth/functional-es6.git#_blank

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

16

Once we have a solid understanding of how to use functions, we will be turning our
focus onto seeing how to run the ES6 code in our system. As of today, browsers don’t
support all features of ES6. In order to tackle that, we will be using a tool called Babel. At
the end of the chapter we will be starting our groundwork on creating a functional library.
For this purpose we will be using a node project that will be set up using Babel-Node tool
to run our ES6 codes in your system!

ECMAScript A Bit of History
ECMASCRIPT is a specification of JavaScript, which is maintained by Ecma International
in ECMA-262 and ISO/IEC 16262. There are three versions of ECMASCRIPT; to be more
specific they are the following:

 1. ECMAScript 1 – was the very first version of JavaScript
language, which was released in the year 1997.

 2. ECMAScript 2 – is the second version of the JavaScript
language, which contains very minor changes with respect
to the previous versions. This version got released in the year
1998.

 3. ECMAScript 3 – this version introduced several features,
which got released in the year 1999.

 4. ECMAScript 5 – this version is supported by almost all of the
browsers today. This is the version that had introduced strict
mode into the language. It was released in the year 2009.
ECMAScript 5.1 also released with minor corrections in June
2011.

 5. ECMAScript 6 – this version is where JavaScript has seen
many changes like introducing classes, Symbols, Arrow
Functions, and Generators, etc. It is not yet supported by
many browsers today.

We will be referring to ECMAScript as ES6 in this book. So these terms are
interchangeable.

Creating and Executing Functions
In this section we are going to see how to create and execute functions in several ways in
ES6. This section is going to be long and interesting!

Since many browsers do not yet support ES6 today, we want to find a way to run
ES6 code smoothly. Meet Babel. Babel is a transpiler, which can convert ES6 code into
valid ES5 code (note that in our history section, we mentioned ES5 code can be run in
all browsers today). By converting the code into ES5 the developers have a way of seeing
and using the features of ES6 without any problem. Using Babel, we can run all the code
samples that are presented in this book. Installation of Babel is covered in Appendix A.
Kindly refer to this appendix and install Babel before we begin.

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

17

Now having installed Babel, let’s get our hands dirty by seeing our first simple
function in ES6.

First Function
We will define our first simple function in ES6. The simplest function one can write in ES6
is as follows (Listing 2-1):

Listing 2-1. A Simple Function

 () => "Simple Function"

If you try to run this function in babel-repl, you can see the result as:

[Function]

 ■ Note it’s not necessary that you run the code samples in the Babel world. if you’re
using the latest browser and you’re sure that it supports es6 (you can check it here:
https://kangax.github.io/compat-table/es6/), then you can use your browser console
to run the code snippets. after all it’s a matter of choice. and if you’re running the code, say
in Chrome, for example, the above code snippet should give you this result:

function () => "Simple Function"

The point to note over here is the results might differ in showing the function representation
based on where you’re running the code snippets.

Yeah, that’s it – we have function! Take a moment to analyze the above function. Let’s
split them:

() => "Simple Function"

//where () represents function arguments
//=> starts the function body/definition
//content after => are the function body/definition.

In ES6 we can skip the function keyword to define functions. You can see we have
used => operator to define the function body. Functions created this way in ES6 are called
Arrow Functions. We will be using Arrow functions throughout the book.

Now that the function is defined, we can execute it to see the result. Oh wait! The
function we have created doesn’t have a name. Then how do I call it?

https://kangax.github.io/compat-table/es6/

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

18

 ■ Note Functions that don’t have names are called anonymous functions. We will
understand the usage of anonymous functions in the functional programming paradigm,
when seeing higher Order functions in the next chapter.

Let’s assign a name for it as shown in Listing 2-2:

Listing 2-2. A Simple Function with Name

var simpleFn = () => "Simple Function"

Since we now have access to the function simpleFn we can use this reference to
execute the function:

simpleFn()
//returns "Simple Function" in the console

That’s great! We have created a function and also executed it in ES6.
We can see how the same function looks alike in ES5. We can use babel to convert

our code into ES5, using the following command:

babel simpleFn.js --presets babel-preset-es2015 --out-file script-compiled.js

This will generate the file called the script-compiled.js in your current directory.
Now open up the generated file in your favorite editor:

"use strict";

var simpleFn = function simpleFn() {
 return "Simple Function";
};

That’s our equivalent code in ES5! You can sense how it’s much easier and concise
to write functions in ES6! Don’t you? There are two important points to note in the
converted code snippets. We will discuss them one after the other.

Strict Mode
In this section we will discuss “Strict Mode” in JavaScript. We’ll see its benefits and why
one should prefer “Strict Mode.”

You can see that the converted code runs in the strict mode, as shown here:

"use strict";

var simpleFn = function simpleFn() {
 return "Simple Function";
};

www.allitebooks.com

http://www.allitebooks.org

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

19

Strict modes have nothing to do with ES6, but discussing them here is the right
choice. As we have already discussed in the ECMAScript History section, strict mode was
introduced to the JavaScript language at ES5.

Simply put, strict mode is a restricted variant of JavaScript. The same JavaScript code
that is running in strict mode can be semantically different from the code, which is not
using strict. All the code snippets, which don’t add the use strict in their js files, are going
to be in non-strict mode.

Why should we use strict mode? What are the advantages? There are many
advantages of using strict mode style in the world of JavaScript. One simple thing is if you
are defining a variable in global state (i.e., without specifying var command) like this:

"use strict";

globalVar = "evil"

In strict mode it’s going to be an error! That’s a good catch for our developers,
because global variables are very evil in JavaScript! However if the same code were run in
non-strict mode, then it wouldn’t have complained about the error!

Now as you can guess, the same code in JavaScript can produce different results
whether you’re running in strict or non-strict mode. Since strict mode is going to be very
helpful for us, we will leave Babel to use strict mode while transpiling our ES6 codes.

 ■ Note We can place use stricts in either the beginning of your Javascript file, in which
case it’s going to apply its check for the full functions defined in the particular file. Or else you
can use strict mode only to specific functions. in that case, strict mode will be applied only
to that particular function, leaving other function behaviors in non-strict mode. more on mdn
(https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode)

Return Statement Is Optional
In ES5 converted code snippet, we saw that Babel adds the return statement in our
simpleFn.

"use strict";

var simpleFn = function simpleFn() {
 return "Simple Function";
};

Where as in our real ES6 code, we didn’t specify any return statement:

var simpleFn = () => "Simple Function"

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

20

Thus in ES6, if you have a function with only a single statement then it implicitly
means that it returns the value. What about multiple statement functions? How we are
going to create them in ES6?

Multiple Statement Functions
Now we are going to see how to write multiple statement functions in ES6. Let’s make our
simpleFn a bit more complicated as follows in Listing 2-3:

Listing 2-3. Multistatement Function

var simpleFn = () => {
 let value = "Simple Function"
 return value;
} //for multiple statement wrap with { }

Run the above function, and you will get the same result as before. But here we have
used the multiple arguments to achieve the same behavior. Apart from that, you could
notice that we have used let a keyword define our value variable. The let keyword is
new to the JavaScript keyword family. The let keyword allows you to declare variables
that are limited to a particular scope of block! This is unlike the var keyword that defines
the variable globally to a function regardless of the block in which it’s defined.

To make the point concrete, we can write the same function with var and the let
keyword, inside an if block as shown in Listing 2-4.

Listing 2-4. SimpleFn with var and let Keywords

var simpleFn = () => { //function scope
 if(true) {
 let a = 1;
 var b = 2;
 console.log(a)
 console.log(b)
 } //if block scope
 console.log(b) //function scope
 console.log(a) //function scope
}

Running this function gives the following output:

1
2
2
Uncaught ReferenceError: a is not defined(...)

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

21

As you can see from the output, the variable declared via let keyword is accessible
only within the if block not outside the block. As you notice, JavaScript throws the error
when we access the variable a variable outside the block! But whereas the variable
declared with var when doesn’t act that way. Rather, it declares the variable scope for the
whole function. That’s the reason variable b can be accessed outside the if block.

Since block scope is very much needed going further, we will be using the let
keyword for defining variables throughout the book. Now let’s see how to create a
function with arguments as the final section.

Function Arguments
Creating functions with arguments is the same as in ES5. Look at a quick example as
follows (Listing 2-5):

Listing 2-5. Function with Argument

var identity = (value) => value

Here we create a function called identity, which takes value as its argument and
returns the same. As you can see, creating functions with arguments are the same as ES5;
only the syntax of creating the function is changed.

ES5 Functions Are Valid in ES6
Before we close this section, we need to make an important point clear. The functions that
were written in ES5 are still valid in ES6! It’s just a small matter that ES6 has introduced
Arrow functions, it but doesn’t replace the old function syntax or anything else. However
we will be using ES6 functions throughout this book to showcase the functional
programming approach.

Setting Up Our Project
After having an understanding of how to create Arrow functions in ES6, we will shift our
focus onto project setup in this section. We are going to set up our project as a node project
and at the end of the section, we will be writing our first Functional Function. Let’s begin!

 ■ Note make sure you have installed node and npm by following appendix a.

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

22

Initial Setup
In this section, we will be following a simple step-by-step guide to set up our
environment. The steps are as follows:

 1. The first step is to create a directory where our source code
is going to be. Create a directory and name it whatever you
want.

 2. Go into that particular directory and run the following
command from your terminal:

npm init

 3. After running step 2, it will be asking you a set of questions;
you can provide the value you want. Once it’s done, it will
create a file called pacakage.json in your current directory.

The project package.json that I have created looks like this as shown here in
Listing 2-6:

Listing 2-6. Package.json Contents

{
 "name": "learning-functional",
 "version": "1.0.0",
 "description": "Functional lib and examples in ES6",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Anto Aravinth @antoaravinth",
 "license": "ISC"
}

Now we need to add a few libraries, which will allow us to write ES6 code and
execute them. Run the following command in the current directory:

npm install --save-dev babel-preset-es2015-node5

 ■ Note The book uses Babel version “babel-preset-es2015-node5.” it’s highly possible
that this specific version may be outdated by the time you read this text. You are free to
install the latest version and everything should work smoothly. however, in the context of the
book, we will be using the specified version.

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

23

The above command downloads the babel package called ES2015-Node5; the main
aim of this package is to allow ES6 code to run on Node Js platform. The reason is that
Node Js, at the time of writing this book; is not fully compatible with ES6 features.

Once the above command is run, you will be able to see a folder called node_modules
created in the directory, which has the babel-preset-es2015-node5 folder.

Since we have used --save-dev while installing, npm does add the corresponding babel
dependencies to our package.json. Now if you open your package.json, it looks like this:

Listing 2-7. After Adding the devDependencies

{
 "name": "learning-functional",
 "version": "1.0.0",
 "description": "Functional lib and examples in ES6",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Anto Aravinth @antoaravinth>",
 "license": "ISC",
 "devDependencies": {
 "babel-preset-es2015-node5": "^1.2.0",
 "babel-cli": "^6.23.0"
 }
}

Now that this is in place, we can go ahead and create two directories called lib and
functional-playground. So now your directory looks like the following:

learning-functional
 - functional-playground
 - lib
 - node_modules
 - babel-preset-es2015-node5/*
 - package.json

Now we are going to put all our functional library code into lib and use functional-
playground to play and understand our functional techniques.

Our First Functional Approach to the Loop Problem
Imagine we have to iterate through the array and print the data to the console. How do we
achieve this in JavaScript?

Listing 2-8. Looping an Array

var array = [1,2,3]
for(i=0;i<array.length;i++)
 console.log(array[i])

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

24

As we have already discussed in Functional Programming in Simple Terms,
Chapter 1, abstracting the operations into functions is one of the pillars of functional
programming. So let’s go and abstract this operation into function, so that we can reuse it
any time we need to rather than repeating ourselves in telling “how” to iterate the loop.

Create a file called es6-functional.js in lib directory. Our directory structure
looks like this:

learning-functional
 - functional-playground
 - lib
 - es6-functional.js
 - node_modules
 - babel-preset-es2015-node5/*
 - package.json

Now with that file in place, go ahead and place the below content into that file:

Listing 2-9. forEach Function

const forEach = (array,fn) => {
 let i;
 for(i=0;i<array.length;i++)
 fn(array[i])
}

 ■ Note For now don’t worry about how this function works. We are going to see how
higher-Order functions work in Javascript in the next chapter and provide loads of examples.

You might notice that we have started with a keyword const for our function
definition. This keyword is part of ES6, which makes the declaration constant. For
example, if someone tries to reassign the variable with the same name like this:

forEach = "" //making your function as string!

The above code will throw an error like this:

TypeError: Assignment to constant variable.

This will prevent it from being accidently reassigned! Now we’ll go and use the above
created function to print all the data of the array to the console. In order to do that, create
a file called play.js function in functional-playground directory. So now the current
file looks like:

learning-functional
 - functional-playground
 - play.js
 - lib

http://dx.doi.org/10.1007/978-1-4842-2656-8_1

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

25

 - es6-functional.js
 - node_modules
 - babel-preset-es2015-node5/*
 - package.json

We will call the forEach in our play.js file. But how are we are going to call this
function, which resides in a different file?

Gist on Exports
ES6 also introduced the concept called modules. ES6 modules are stored in files. In our
case we can think of es6-functional.js file itself as a module. Along with the concept
of modules came imports and exports statements. In our running example, we have
to export the forEach function so that others can use them. So that we can change the
following code into

Listing 2-10. Exporting forEach Functionconst forEach = (array,fn) => {

 let i;
 for(i=0;i<array.length;i++)
 fn(array[i])
}
export default forEach

in our es6-functional.js file.

Gist on Imports
Now that we have exported our function as you can see in Listing 2-10, let’s go and
consume it via import! Open the file play.js and add the following into it as shown in
Listing 2-11:

Listing 2-11. Importing forEach Function

import forEach from '../lib/es6-functional.js'

The above line tells JavaScript to import the function called forEach from es6-
functional.js. Now the function is available to the whole file with the name forEach.
Now add the code into play.js like this as shown here in Listing 2-12:

Listing 2-12. Using the Imported forEach function

import forEach from '../lib/es6-functional.js'
var array = [1,2,3]
forEach(array,(data) => console.log(data)) //refereing to imported forEach

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

26

Running the Code Using Babel-Node
Let’s run our play.js file. Since we are using ES6 in our file, we have to use Babel-Node to
run our code. Babel-Node is used to transpile our ES6 code and run it on Node js. Babel-
Node should be installed along with babel-cli.

 ■ Note Babel-node will be available in the terminal, only if you have installed babel-cli
globally. Kindly refer to appendix a for installing cli globally.

So from our project root directory, we can call the babel-node like this:

babel-node functional-playground/play.js --presets es2015-node5

The above command tells us that our play.js file should be transpiled with es2015-
node5 and run into node js. This should give the output as follows:

1
2
3

Hurray! Now we have abstracted out for logic into a function. Imagine you want to
iterate and print the array contents with multiples of 2. How will we do it? Super simple –
reuse our forEach:

forEach(array,(data) => console.log(2 * data))

which will print the output as expected!

 ■ Note We will be using this pattern throughout the book. We will be discussing the
problem with an imperative approach. Then will go ahead and implement our functional
techniques and capture them in a function into es6-functional.js. and then use that to play
around in play.js file!

Creating Script in Npm
We have seen how to run our play.js file. But it’s lot to type! Each time we need to run the
following:

babel-node functional-playground/play.js --presets es2015-node5

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

27

Rather than this, we can bind the following command to our npm script. We will
change the package.json accordingly:

Listing 2-13. Adding npm Scripts to package.json

{
 "name": "learning-functional",
 "version": "1.0.0",
 "description": "Functional lib and examples in ES6",
 "main": "index.js",
 "scripts": {
 "playground" : "babel-node functional-playground/play.js --presets

es2015-node5"
 },
 "author": "Anto Aravinth @antoaravinth",
 "license": "ISC",
 "devDependencies": {
 "babel-preset-es2015-node5": "^1.2.0"
 }
}

Now we have added the babel-node command to scripts. So we can run our
playground file (node functional-playground/play.js) as follows:

npm run playground

which will run the same as before.

Running the Source Code from Git
Whatever we are discussing in the chapter will go into a git repository (https://github.com/
antoaravinth/functional-es6). You can clone them into your system using git like this:

git clone https://github.com/antoaravinth/functional-es6.git

Once you clone the repo, you can move into a specific chapter source code branch.
Each chapter has its own branch in the repo. For example, in order to see the code
samples used in Chapter 2, then you need to do this:

git checkout -b chap02 origin/chap02

Once you check out the branch, you can run the playground file as before!

https://github.com/antoaravinth/functional-es6
https://github.com/antoaravinth/functional-es6
http://dx.doi.org/10.1007/978-1-4842-2656-8_2

ChapTeR 2 ■ FUndamenTaLs OF JavasCRipT FUnCTiOns

28

Summary
In this chapter, we have spent a lot of time in seeing how to use functions in ES6 modes.
We saw how Arrow functions are being introduced and used in ES6. We have taken the
advantage of Babel tools for running our ES6 code seamlessly in our Node platform. We
also created our project as a Node project. In our node project, we saw how to use Babel
Node to convert the ES6 code and run them in node environment using presets. We also
saw how to download the book source code and run it. With all these techniques under
our belt, in the next chapter we will be focusing on what Higher-Order Functions mean!

29© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_3

CHAPTER 3

Higher-Order Functions

 ■ Note The chapter examples and library source code are in branch chap03. The repo’s
URL is: https://github.com/antoaravinth/functional-es6.git

Once checkout the code, please checkout branch chap03:

...

git checkout -b chap03 origin/chap03

...

For running the codes, as before run:

...

npm run playground

...

In the previous chapter we saw how to create simple functions in ES6. We also set up
our environment to play around with functional programs using node ecosystem. In
fact, we have created our first functional program API called forEach in the previous
chapter. There is something special about the forEach function that we have developed
in Chapter 2. We passed a function itself as an argument to our forEach function. There
is no trick involved there; it’s part of JavaScript specification that a function can be passed
as an argument. JavaScript as a language treats functions as data. This is a very powerful
concept that allows us to pass functions in place of data. A function that takes another
function as its argument is called a Higher-Order function.

We are going to see Higher-Order functions (HOC for short) in this chapter in depth.
We will be starting the chapter with a simple example and definition of HOC. Later we
will be moving to see more real-world examples of how HOC can help a programmer to
solve complex problems easily. As before, we will be adding the HOC functions that we
are creating in the chapter in our library. Let’s get started!

https://github.com/antoaravinth/functional-es6.git#_blank
http://dx.doi.org/10.1007/978-1-4842-2656-8_2

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

30

 ■ Note We will be creating few higher-order functions and adding it to our library. We are
doing this for understanding how things work behind the scenes. The library is good for learning
the current resources but they are not production ready for the library. so keep that in mind. :)

Understanding Data
As programmers we know our programs act on data. Data is something that is very
important for the consumption of our written program to execute. Hence almost all
programming languages give several data for the programmer to work with. For example,
we can store the name of a person in String data type. JavaScript offers several data types
that we will be seeing in the next subsection. At the end of the section, we will be introduced
to a solid definition of higher-order functions, with simple and concise examples.

Understanding JavaScript Data Types
Every programming language has data types. These data types can hold data and allow
our program to act upon it. In this little section, we will be seeing JavaScripts’ data types.

In a nutshell, JavaScript as a language supports the following data types:

•	 .Numbers

•	 .Strings

•	 .Booleans

•	 .Objects

•	 .null

•	 .undefined

and importantly, we also have our friend functions as a data type in JavaScript
language. Since functions are data types like String, we can pass them around, store
them in a variable, etc., very similarly as we do for String and Numbers data types.
Functions are First Class Citizens when the language permits them to be used as any other
data type, that is, functions can be assigned to variables, passed around as arguments,
and can be returned from other functions. In the next section we will see a quick example
of what we mean by storing and passing functions around.

Storing a Function
As mentioned in the previous section, functions are nothing but data. Since it’s data,
we can hold them in a variable! The below code (Listing 3-1) is literally a valid code in
JavaScript context:

Listing 3-1. Storing a Function to Variable

let fn = () => {}

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

31

In the above code snippet, fn is nothing but a variable that is pointing to a data type
function. We can quickly check that fn is of type function by running the following:

typeof fn
=> "function"

Since fn is just a reference to our function, we can call it like this:

fn()

the above will execute the function that fn points to.

Passing a Function
As day-to-day JavaScript programmers, we know how to pass data to a function. Consider
the following function (Listing 3-2), which takes an argument and consoles the type of the
argument:

Listing 3-2. tellType Function

var tellType = (arg) => {
 console.log(typeof arg)
}

One can pass the argument to tellType function to see it in action:

let data = 1
tellType(data)
=> number

Nothing fancy here. As seen in the previous section, we can store even functions in
our variable (as functions in JavaScript are data). So how about passing a variable that has
reference to a function? Let’s quickly check it:

var dataFn = () => {
 console.log("I'm a function")
}
tellType(dataFn)
=> function

That’s great! Now we will make our tellType to execute the passed argument as
shown in Listing 3-3 if it’s of type function:

Listing 3-3. tellType Executes arg if It’s Function

var tellType = (arg) => {
 if(typeof arg === "function")
 arg()
 else
 console.log("The passed data is " + arg)
}

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

32

Here we are checking whether the passed arg is of type function; if so, call it.
Remember if a variable is of type function, it means it has a reference to a function that
can be executed. That is the reason we are calling arg() if it enters an if statement in the
above code snippet.

Let’s execute our tellType function by passing our dataFn variable to it:

tellType(dataFn)
=> I'm a function

We have successfully passed a function dataFn to another function tellType, which
has executed the passed function. That’s so simple.

Returning a Function
We have seen how to pass a function to another function. Since functions are simple data
in JavaScript, we can return them from other functions, too (like other data types).

We’ll take a simple example of a function that returns another function as shown
below in Listing 3-4:

Listing 3-4. Crazy Function Return String

let crazy = () => { return String }

 ■ Note Javascript has an in-built function called String. We can use this function to
create new string values in Javascript like this:

String(“HOC”)

=> HOC

Note that our crazy function returns a function reference that is pointing to String
function. Let’s go and call our crazy function:

crazy()
=> String() { [native code] }

As you can see, calling the crazy function returns a String function. Note that it
just returns the function reference not executing the function. So we can hold back the
returned function reference and call them like this:

let fn = crazy()
fn("HOC")
=> HOC

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

33

or even better like this:

crazy()("HOC")
=> HOC

 ■ Note We will be using simple documentation on top of all functions, which are going to
return another function. it will be really helpful going forward as it makes reading the source
code easy. For example, the crazy function will be documented like this:

//Fn => String

let crazy = () => { return String }

Fn => String comment helps the reader understand that crazy function, which executes
and returns another function that points to String.

We will be using these sorts of readable comments in our book.

In these sections we have seen functions, which take other functions as its argument
and have also seen examples on functions that do not return another function. Now it’s
time to bring you to the higher-order function definition:

A Higher-Order Function is a function that receives the
function as its argument and/or returns them as outputs.

Abstraction and Higher-Order Functions
Now we have seen how to create and execute higher-order functions. Generally speaking,
higher-order functions are written usually to abstract the common problems. In other
words, higher-order functions are nothing but defining Abstractions.

In this section we are going to discuss the relationship that higher-order functions
has with the term abstraction.

Abstraction Definitions
Wikipedia helps us in getting the definitions of Abstraction:

In software engineering and computer science, abstraction is
a technique for managing complexity of computer systems. It
works by establishing a level of complexity on which a person
interacts with the system, suppressing the more complex details
below the current level. The programmer works with an idealized
interface (usually well defined) and can add additional levels of
functionality that would otherwise be too complex to handle.

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

34

and it also includes the following text (which is what we are interested in):

For example, a programmer writing code that involves
numerical operations may not be interested in the way
numbers are represented in the underlying hardware (e.g.
whether they're 16 bit or 32 bit integers), and where those
details have been suppressed it can be said that they were
abstracted away, leaving simply numbers with which the
programmer can work.

The above text clearly gives the idea on abstraction. Abstraction allows us to work on
the desired goal but not worrying about the underlying system concepts.

Abstraction via Higher-Order Functions
In this section we will see how higher-order functions help us to achieve the abstraction
concept we discussed in the previous section. Here is the code snippet of our forEach
function defined in the previous chapter (Listing 2-9):

const forEach = (array,fn) => {
 for(let i=0;array.length;i++)
 fn(array[i])
}

The above function forEach here has abstracted away the problem of traversing
the array. The user of the API forEach doesn't need to understand how forEach have
implemented the traversing part, thus abstracting away the problem.

 ■ Note in the forEach function, the passed function fn is called with a single argument
as the current iteration content of the array as you can see here:

. . .
 fn(array[i])
. . .

so when the user of the forEach function calls it like this:

forEach([1,2,3],(data) => {
 //data is passed from forEach function
 //to this current function as argument
})

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

35

forEach essentially traverses the array. What about traversing a JavaScript object?
Traversing a JavaScript object has steps like this:

 1. Iterate all the keys of the given object.

 2. Identify that the key belongs to its own object.

 3. Get the value of the key if step 2 is true.

Let’s abstract these steps into a higher-order function named forEachObject:

Listing 3-5. forEachObject Function Definition

const forEachObject = (obj,fn) => {
 for (var property in obj) {
 if (obj.hasOwnProperty(property)) {
 //calls the fn with key and value as its argument
 fn(property, obj[property])
 }
 }
}

 ■ Note forEachObject takes the first argument as a Javascript object (as obj) and the
second argument is a function fn. it traverses the object using the above algorithm and calls
the fn with key and value as its argument, respectively.

Here they are in action:

let object = {a:1,b:2}
forEachObject(object, (k,v) => console.log(k + ":" + v))
=> a:1
=> b:1

Cool! An important point to note is that both forEach and forEachObject functions
are higher-order functions, which allow the developer to work on task (by passing the
corresponding function) abstracting away the traversing part! And also since these
traversing functions are being abstracted away, we can test them thoroughly, leading to a
concise code base. We will be more functional about higher-order functions. Let’s go and
implement an abstracted way for handling control flows.

For that, let us create a function called unless. Unless is a simple function, which
takes a predicate (that should be either true or false); and if the predicate is false; call
the fn as shown below here in Listing 3-6:

Listing 3-6. unless Function Definition

const unless = (predicate,fn) => {
 if(!predicate)
 fn()
}

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

36

With the unless function in place, we can go and write a concise piece of code to
find the list of even numbers. The code for it looks like this:

forEach([1,2,3,4,5,6,7],(number) => {
 unless((number % 2), () => {
 console.log(number, " is even")
 })
})

The above code when executed is going to print the following:

2 ' is even'
4 ' is even'
6 ' is even'

In the above case we are getting the even numbers from the array list. What if we
want to get the list of even numbers from, say, 0 to 100? We can't use forEach here (of
course we can, if we have the array that has [0,1,2.....,100] content). Let’s meet
another higher-order function called times. Times is yet another simple higher-order
function, which takes the number and calls the passed function as many times as the
caller mentioned. The times function looks like what is shown here in Listing 3-7:

Listing 3-7. times Function Definition

const times = (times, fn) => {
 for (var i = 0; i < times; i++)
 fn(i);
}

Times function looks very similar to the forEach function; it’s just that we are
operating on a Number rather than an Array. Now with the times function in place, we can
go ahead and solve our problem in hand like this:

times(100, function(n) {
 unless(n % 2, function() {
 console.log(n, "is even");
 });
});

That’s going to print our expected answer

0 'is even'
2 'is even'
4 'is even'
6 'is even'
8 'is even'
10 'is even'
. . .

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

37

. . .
94 'is even'
96 'is even'
98 'is even'

With the above code we have abstracted away looping, and the condition checks into
a simple and concise higher-order function!

Having seen a few examples of higher-order functions, it’s time to go into serious
mode! In the upcoming section, we will be discussing the real-world higher-order
functions and how to create them. So here we go.

 ■ Note all the higher-order functions that we are creating in the current chapter will be
in chap03 branch.

Higher-Order Functions in the Real World
In this section we are going to see real-world examples of higher-order functions. We
are going to start with simple higher-order functions and slowly grow into complex
higher-order functions, which are used by JavaScript developers in their day-to-day lives.
Excited? So what are you waiting for? Read on.

 ■ Note The examples will be continued in the next chapters after we introduce the
concept of closures. Most of the higher-order Functions work with the help of closures.

every Function
Often as a JavaScript developer we need to check if the array of content is a number,
custom object, or anything else. We usually write our typical for loop approach to solve
these problems. But let’s abstract these away into a function called every. The every
function takes two arguments: an array and a function. It checks if all the elements of the
array are evaluated to true by the passed function. The implementation looks like this as
shown in Listing 3-8:

Listing 3-8. every Function Definition

const every = (arr,fn) => {
 let result = true;
 for(let i=0;i<arr.length;i++)
 result = result && fn(arr[i])
 return result
}

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

38

Here we are simply iterating over the passed array and calling the fn by passing the
current content of the array element at the iteration. Note that the passed fn should be
returning a Boolean value. Then we do a && to make sure all the contents of the array are
obeying the criteria that is given by the fn.

We need to quickly check that our every function works fine. Then pass on the array
of NaN and pass fn as isNaN, which does check if the given number is NaN or not:

every([NaN, NaN, NaN], isNaN)
=> true
every([NaN, NaN, 4], isNaN)
=> false

Great. The every is a typical higher-order function that is easy to implement and
at the same time it’s very useful, too! Before we go further, we need to make ourselves
comfortable with the new for..of loop, which is a part of ES6 specifications. The for..of
loops can be used to iterate the array elements. Let’s rewrite our ever function with for
loop (Listing 3-9:

Listing 3-9. every Function with for-of loop

const every = (arr,fn) => {
 let result = true;
 for(const value of arr)
 result = result && fn(value)
 return result
}

The for..of loop is just an abstraction over our old for loop. As you can see here,
the for..of has eliminated the traversing of an array by hiding the index variable, etc.
We have abstracted away for..of with every. It’s all about abstraction. What if the next
version of JavaScript changes the way of for..of? We just need to change it in the every
function. This is one of the biggest advantages of abstraction.

some Function
Similar to every function, we also have a function called some. The some works quite the
opposite way of every function such that the some function returns true if either one of
the elements in the array returns true for the passed function. The some function is also
called as any function. In order to implement some function we use || rather than && :

Listing 3-10. some Function Definition

const some = (arr,fn) => {
 let result = false;
 for(const value of arr)
 result = result || fn(value)
 return result
}

www.allitebooks.com

http://www.allitebooks.org

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

39

 ■ Note Both every and some functions are inefficient implementations. every should
traverse the array until the first element that doesn’t match the criteria, and some should
traverse the array only until the first match. For large arrays they will be inefficient.
Remember that we are trying to understand the concepts of higher-order functions in this
chapter rather than writing code for efficiency and accuracy.

With some function in place, we can go and check its result by passing the array’s like
this:

some([NaN,NaN, 4], isNaN)
=>true
some([3,4, 4], isNaN)
=>false

Having seen both some and every function, let’s go and look at the sort function and
how a higher-order function plays an important role there.

sort Function
The sort is an in-built function that is available in the Array prototype of JavaScript.
Suppose we need to sort a list of fruits:

var fruit = ['cherries', 'apples', 'bananas'];

you can simply call the sort function that is available on the Array prototype:

fruit.sort()
=> ["apples", "bananas", "cherries"]

That’s so simple. The sort function is a higher-order function that takes up
a function as its argument, which will help the sort function to decide the sorting logic.
Simply put, the signature of the sort function looks like this:

arr.sort([compareFunction])

Here the compareFunction is optional. If the compareFunction is not supplied,
elements are sorted by converting them to strings and comparing strings in Unicode code
point order. You don’t need to worry about Unicode conversion in this section as we are
more focused on the higher-order functions. The important point to note here is that in
order to compare the element with our own logic while sorting is performed, we need
to pass our compareFunction. We can sense how the sort function is designed to be so
flexible in such a way that it can sort any data on the JavaScript world, provided we pass a
compareFunction. The sort function is flexible due to the nature of higher-order functions!

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

40

Before writing our compareFunction, let’s see what it should really implement. The
compareFunction should implement the following logic as mentioned here : https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Array/sort

Listing 3-11. Skeleton of compare Function

function compare(a, b) {
 if (a is less than b by some ordering criterion) {
 return -1;
 }
 if (a is greater than b by the ordering criterion) {
 return 1;
 }
 // a must be equal to b
 return 0;
}

As a simple example, imagine we have a list of people:

var people = [
 {firstname: "aaFirstName", lastname: "cclastName"},
 {firstname: "ccFirstName", lastname: "aalastName"},
 {firstname:"bbFirstName", lastname:"bblastName"}
];

Now we need to sort people using firstname key in the object, then we need to pass
on our own compareFunction like this:

people.sort((a,b) => { return (a.firstname < b.firstname) ? -1 :
(a.firstname > b.firstname) ? 1 : 0 })

which is going to return the following data:

 [{ firstname: 'aaFirstName', lastname: 'cclastName' },
 { firstname: 'bbFirstName', lastname: 'bblastName' },
 { firstname: 'ccFirstName', lastname: 'aalastName' }]

Sorting with respect to lastname looks like this:

people.sort((a,b) => { return (a.lastname < b.lastname) ? -1 : (a.lastname >
b.lastname) ? 1 : 0 })

will return:

[{ firstname: 'ccFirstName', lastname: 'aalastName' },
 { firstname: 'bbFirstName', lastname: 'bblastName' },
 { firstname: 'aaFirstName', lastname: 'cclastName' }]

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

41

Hooking again into the logic of compareFunction:

function compare(a, b) {
 if (a is less than b by some ordering criterion) {
 return -1;
 }
 if (a is greater than b by the ordering criterion) {
 return 1;
 }
 // a must be equal to b
 return 0;
}

Having known the algorithm for our compareFunction, can we do it better? Rather
than writing the compareFunction every time, can we abstract away the above logic
into a function? As you can see in the above example, we wrote two functions each for
comparing firstName and lastName with almost the same duplicate code. Let’s solve this
problem with our higher-order function. Now the function that we are going to design
won’t take function as its argument but rather return a function. (Remember HOC can
also return a function).

Let’s call this function sortBy, which allows the user to sort the array of objects
based on the passed property as shown below in Listing 3-12:

Listing 3-12. sortBy function Definition

const sortBy = (property) => {
 return (a,b) => {
 var result = (a[property] < b[property]) ? -1 : (a[property] >
b[property]) ? 1 : 0;
 return result;
 }
}

The sortBy function takes an argument named property and returns a new function
that takes two arguments:

. . .
 return (a,b) => { }
. . .

The returned function has a very simple function body that clearly tells the
compareFunction logic:

. . .
(a[property] < b[property]) ? -1 : (a[property] > b[property]) ? 1 : 0;
. . .

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

42

Imagine we are going to call the function with the property name firstname, and
then the function body with the replaced property argument looks like the one below:

(a,b) => return (a['firstname'] < b['firstname']) ? -1 : (a['firstname'] >
b['firstname']) ? 1 : 0;

That’s exactly what we did by manually writing a function. :) Here is our sortBy
function in action:

people.sort(sortBy("firstname"))

will return:

[{ firstname: 'aaFirstName', lastname: 'cclastName' },
 { firstname: 'bbFirstName', lastname: 'bblastName' },
 { firstname: 'ccFirstName', lastname: 'aalastName' }]

Sorting with respect to lastname looks like this:

people.sort(sortBy("lastname"))

returns:

[{ firstname: 'ccFirstName', lastname: 'aalastName' },
 { firstname: 'bbFirstName', lastname: 'bblastName' },
 { firstname: 'aaFirstName', lastname: 'cclastName' }]

as before!
Wow, that’s truly amazing! The sort function takes the compareFunction, which is

returned by the sortBy function! That’s a lot of higher-order functions floating around!
Again we have abstracted away the logic behind compareFunction leaving the user to focus
on what he or she really needs. After all, a higher-order function is all about abstractions!

But pause for a moment here and think about the sortBy function. Remember that
our sortBy function takes a property and returns another function. The returned function
is what passed as compareFunction to our sort function. The question here is how come
the returned function carries the property argument value that we have passed?

Welcome to the world of closures! The sortBy function works just because JavaScript
supports closures. We need to clearly understand what closures are before we go ahead
and write higher-order functions. Closures will be the topic of the next chapter.

Remember though, we will be writing our real-world higher-order function after
explaining closures in the next chapter!

ChapTeR 3 ■ higheR-ORdeR FUnCTiOns

43

Summary
We started with simple data types that JavaScript supports. We found that Function is
also a data type in JavaScript. Thus, we can keep functions in all the places where we can
keep our data. Put in other words, Function can be stored, passed, and reassigned like
other data types in JavaScript. This extreme feature of JavaScript allows the Function to
be passed over to another function, which we call a Higher-Order Function. Remember
that a Higher-Order Function is a function that takes another function as its argument or
returns a function. We saw a handful of examples in this chapter showcasing how these
Higher-Order Function concepts help the developer to write the code that abstracts away
the difficult part! We have created and added a few such functions in our own library!
We concluded the chapter by mentioning that Higher-Order Functions work with the
blessing of another important concept in JavaScript called Closures. Closures will be the
topic of Chapter 4!

http://dx.doi.org/10.1007/978-1-4842-2656-8_4

45© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_4

CHAPTER 4

Closures and Higher-Order
Functions

 ■ Note The chapter examples and library source code are in branch chap04. The repo’s
URL is: https://github.com/antoaravinth/functional-es6.git

Once checkout the code, please checkout branch chap04:

...

git checkout -b chap04 origin/chap04

...

For running the codes, as before run:

...

npm run playground

...

In the previous chapter we saw how higher-order functions help us as a developer to create
abstraction over the common problems! It’s a very powerful concept as we learned. We
have created our sortBy higher-order function to showcase a valid and relevant example
of the use case. Even though the sortBy function is working on the basis of higher-order
functions (which is again the concept of passing functions as arguments to the other
functions), it has something to do with yet another concept called Closures in JavaScript.

Closures is a concept that we need to understand in the JavaScript world before we
go further in our journey of functional programming techniques. And that's where this
chapter comes into the picture. In this chapter we are going to discuss in detail what is
meant by closures and at the same time continue our journey of writing useful and real-
world higher-order functions. The concept of closures has to do with scopes in JavaScript.
So let's get started with closures in the next section.

https://github.com/antoaravinth/functional-es6.git#_blank

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

46

Understanding Closures
In this section we are going to see what we mean by closures with a simple example and
then move on to our sortBy function by unwrapping how it works with closures.

What Are Closures?
Simply put closure is an inner function. So what is an inner function? Well, its a function
within an another function. Something like the following:

function outer() {
 function inner() {
 }
}

Yes, thats exactly what a closure is. The function inner is called a closure function.
The reason why closure is so powerful is because of its access to the scope chains (or
scope levels). We will be talking about scope chains in this section.

 ■ Note scope chains and scope levels are used interchangeably in this chapter.

Technically the closure has access to three scopes:

 1. Variables that are declared in its own declaration

 2. Access to the global variables.

 3. Access to the outer function's variable (interesting!)

Lets talk about theses three points separately with simple example. Consider the
following snippet:

function outer() {
 function inner() {
 let a = 5;
 console.log(a)
 }
 inner() //call the inner function.
}

what will be printed to the console when inner function gets called? The value
will be 5. This is mainly due to the point number 1. A closure function can access all the
variables declared in its own declaration (see point 1). No rocket science here!

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

47

 ■ Note a strong take away from the above code snippet is that, inner function won't be
visible outside outer function! go ahead and test it.

Now modifying the above code snippet to the following:

let global = "global"
function outer() {
 function inner() {
 let a = 5;
 console.log(global)
 }
 inner() //call the inner function.
}

now when inner function executed, it does print the value global. Thus closures can
access the global variable (see point 2).

Points 1 and 2 are now clear with the example. The 3rd point is very interesting, the
claim can be seen in the following code:

let global = "global"
function outer() {
 let outer = "outer"
 function inner() {
 let a = 5;
 console.log(outer)
 }
 inner() //call the inner function.
}

now when inner function executed, it does print the value outer. This looks reasonable,
but its a very important property of a closure.

Closure has the access to the outer function's variable(s). Here outer function mean,
the function which encloses the closure function.

This property is what make the closures so powerful!

 ■ Note Closure also has access to the enclosing function parameters. Try adding a
paramater to our outer function and try to access it from inner function. i will wait here till
your done with this small exercise.

Remembering Where It Is Born
In the previous section we saw what a closure is. Now we will be seeing slightly a
complicated example, which explains yet another important concept in closure -- closure
remembering its context!

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

48

Take a look at the following code:

var fn = (arg) => {
 let outer = "Visible"
 let innerFn = () => {
 console.log(outer)
 console.log(arg)
 }
 return innerFn
}

The code is simple. The innerFn is a closure function to fn and fn returns the
innerFn when called. Nothing fancy here.

Lets play around with fn:

var closureFn = fn(5);
closureFn()

will print the following:

Visible
5

How does calling closureFn prints Visible and 5 to the console? What is happening
behind the scenes? Lets break it down.

There are two steps happening in this case:

 1. When the below line is called:

var closureFn = fn(5);

our fn gets called with argument 5. As per our fn definition, it
returns the innerFn.

 2. This where interesting things happens. When innerFn is returned,
the javascript execution engine sees innerFn as a closure and
sets its scope accordingly. As we have seen in the previous
section, closures will have access to the 3 scope level. All these 3
scope level are set (arg, outer values will be set in scope level of
innerFn) when the innerFn is returned! The returned function
reference is stored in closureFn. Thus closureFn will have
remember arg, outer values when called via scope chains!

 3. When we finally call the closureFn:

closureFn()

it prints:

Visible
5

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

49

As now you can guess it out, closureFn remembers its context (the scopes i.e
outer and arg) when it born in the second step! Thus the calls to console.log print
appropriately.

You might be wondering, what is the use case of closure? We have already seen it in
action in our sortBy function. Let's quickly revisit them.

Revisiting sortBy Function
Let’s quickly revisit the sortBy function that we have defined and used in the previous
chapter:

const sortBy = (property) => {
 return (a,b) => {
 var result = (a[property] < b[property]) ? -1 : (a[property] >
b[property]) ? 1 : 0;
 return result;
 }
}

When we called sortBy function like this:

sortBy("firstname")

this is what happened:
sortBy returned a new function that takes two argument like this:

(a,b) => { /* implementation */ }

Now we are comfortable with closures and we are aware that the returned function
will have access to the sortBy function argument property. Since this function will be
returned only when sortBy is called, the property argument is revolved with a value;
hence the returned function will carry this context throughout its life:

//scope it carries via closure
property = "passedValue"
(a,b) => { /* implementation */ }

Now since the returned function carries the value of property in its context, it will
use the returned value where it is appropriate and when it is needed! Now with that
explanation in place, we can fully understand how closures and higher-order functions
that allow us to write a function like sortBy that is going to abstract away the inner details,
moving ahead to our functional world!

That’s a lot to take in for this section; in the next section we will be continuing our
journey of writing more abstract functions using closures and higher-order functions.

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

50

Higher-Order Functions in the Real World
(Continued)
With our understanding of closures in place, we will go ahead and implement some
useful higher-order functions that are used in the real world.

tap Function
Since we are going to deal with lots of functions in functional the programming world,
we need a way to debug what is happening between them. As we have seen in previous
chapters, we are designing the functions, which take arguments and returns another
function, which again takes a few arguments, etc., and so on.

Let’s design a simple function called tap:

const tap = (value) =>
 (fn) => (
 typeof(fn) === 'function' && fn(value),
 console.log(value)
)

Here the tap function takes a value and returns a function that has the closure over
value and it will be executed.

 ■ Note in Javascript the (exp1,exp2) means it will execute the two arguments and
return the result of the second expression, which is exp2. in our above example, the syntax
will call the function fn and also prints the value to the console.

Let’s play around with the tap function:

tap("fun")((it) => console.log("value is ",it))
=>value is fun
=>fun

As you can see in the above example, the value ‘value is fun’ gets printed and then
the value ‘fun’ is printed. Easy and straightforward.

So where can the tap function be used? Let’s imagine you are iterating an array that
has data come from a server. You are iterating the array and you feel that the data is wrong
so you want to debug and see what the array really contains, while iterating. How will
you do that? Nope, don't be imperative, let’s be functional. This is where the tap function
comes into the picture. For the current scenario, we can do this:

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

51

forEach([1,2,3],(a) =>
 tap(a)(() =>
 {
 console.log(a)
 }
)
)

which does print the value as expected. A simple but yet powerful function in our
toolkit.

unary Function
There is a default method in the array prototype called map. Don't worry; we are going to
discover a whole lot of functional functions for array in the next chapter, where we will be
seeing how to create our own map, too. For now, map is a function, which is very similar to
the forEach function we have defined. The only difference is that map returns the result of
the callback function.

To get the gist of it, let’s say we want to double the array and get back the result; then
using the map function, we can do like this:

[1, 2, 3].map((a) => { return a * a })
=>[1, 4, 9]

The interesting point to note over here is that the map calls the function with three
arguments, which are element, index, and arr. Imagine we want to parse the array
of strings to the array of int; we have an in-built function called parseInt that takes two
argument parses and radixes and converts the passed parse into a number if possible.
If we pass the parseInt to our map function, map will pass the index value to the radix
argument of parseInt, which will result in unexpected behavior.

['1', '2', '3'].map(parseInt)
=>[1, NaN, NaN]

Oops! As you can see in the above result, the array [1, NaN, NaN] is not what we
expect. Here we need to convert the parseInt function to another function that will be
expecting only one argument. How can we achieve that? Meet our next friend, unary
function. The task of unary function is to take the given function with n argument and
convert it into a single argument.

Our unary function looks like the following:

const unary = (fn) =>
 fn.length === 1
 ? fn
 : (arg) => fn(arg)

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

52

We are checking if the passed fn has an argument list of size 1 (which we can find via
length property); if so we are not going to do anything. If not, we return a new function,
which takes only one argument arg and calls the function with that argument.

To see our unary function in action, we can rerun our problem with unary:

['1', '2', '3'].map(unary(parseInt))
=>[1, 2, 3]

Here our unary function returns a new function (a clone of parseInt), which is going
to take only one argument! Thus the map function passing index, arr argument, becomes
unaffected as we are getting back the expected result.

 ■ Note There are also functions like binary, etc., which will convert the function to
accept corresponding arguments.

The next two functions that we are going to see are special higher-order functions,
which will allow the developer to control the number of times the function is getting
called. They have a lot of use cases in the real world.

once Function
There are a lot of situations in which we need to run a given function only once. This
scenario occurs to JavaScript developers in their day-to-day life, as they want to set up a
third-party library only once, initiate the payment set up only once, do a bank payment
request only once, etc. These are common cases that the developers face.

In this section we are going to write a higher-order function called once, which will
allow the developer to run the given function only once! Again the point to note over here is
that we have keep on abstracting away our day-to-day activities into our functional toolkits!

const once = (fn) => {
 let done = false;

 return function () {
 return done ? undefined : ((done = true), fn.apply(this, arguments))
 }
}

The above once function takes an argument fn and returns the result of it by calling
it with the apply method (note on the apply method is down below). The important
point to note here is that we have declared a variable called done and set it to false
initially. The returned function will have a closure scope over it; hence it will access it to
check if done is true, if return undefined else set done to true (thus preventing next time
execution) and calling the function with necessary arguments.

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

53

 ■ Note The apply function will allow us to set the context for the function and also pass
on the arguments for the given function. You can find more about it over here: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/

Function/apply

With the once function in place, we can go and do a quick check of it.

var doPayment = once(() => {
 console.log("Payment is done")
})

doPayment()
=>Payment is done

//oops bad, we are doing second time!
doPayment()
=>undefined!

The above code snippet showcases the function doPayment that is wrapped over once
will be executed only once regardless how many times we call them! The once is a simple
but effective function in our toolkit!

Memoize Function
Before we close this exciting section, let’s see my favorite function called memoize. We
know that the pure function is all about working on its argument and nothing else. They
don't depend on the outside world for anything. The results of the pure function are purely
based on its argument only. Imagine that we have a pure function called factorial, which
calculates the factorial for the given number. The function looks like the following:

var factorial = (n) => {
 if (n === 0) {
 return 1;
 }

 // This is it! Recursion!!
 return n * factorial(n - 1);
}

You can quickly check that factorial function with a few inputs:

factorial(2)
=>2
factorial(3)
=>6

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

54

Nothing fancy here. But we knew that the factorial of the value 2 is 2, 3 is 6, and
so on. Mainly because we know the factorial function does work but only based on
its argument and nothing else! So the question arises here: why can't we store back the
result for each input (some sort of an object) and give back the output if the input is
already present in the object? And moreover for calculating the factorial for 3, we need to
calculate the factorial for 2, so why can't we reuse those calculations in our function? Yup,
that's exactly what the memoize function is going to do. The memoize is a special higher-
order function that allows the function to remember or memorize its result. :)

Let’s see how we can implement such a function in JavaScript. No worries; it is as
simple as it looks - like the following:

const memoized = (fn) => {
 const lookupTable = {};

 return (arg) => lookupTable[arg] || (lookupTable[arg] = fn(arg));
}

Here in the above function we have a local variable called lookupTable that will be
in the closure context for the returned function. This will take the argument and check if
that argument is in the lookupTable :

. . lookupTable[arg] . .

if so return the value else, update the object with new input as key and result from fn
as its value:

(lookupTable[arg] = fn(arg))

Perfect. Now we can go and wrap our factorial function into a memoize function to
keep remembering its output:

let fastFactorial = memoized((n) => {
 if (n === 0) {
 return 1;
 }

 // This is it! Recursion!!
 return n * fastFactorial(n - 1);
})

Now go and call fastFactorial:

fastFactorial(5)
=>120
=>lookupTable will be like: Object {0: 1, 1: 1, 2: 2, 3: 6, 4: 24, 5: 120}
fastFactorial(3)
=>6 //returned from lookupTable
fastFactorial(7)

ChapTeR 4 ■ CLOsURes and higheR-ORdeR FUnCTiOns

55

=> 5040
=>lookupTable will be like: Object {0: 1, 1: 1, 2: 2, 3: 6, 4: 24, 5: 120,
6: 720, 7: 5040}

It is going to work the same way, but now much faster than before. While running the
fastFactorial, I would like you to inspect the lookupTable object and how it helps in
speeding things up as shown in the above snippet!

That is the beauty about the higher-order function – closure and pure functions in
action!

 ■ Note That our memoized function is written for the functions that take up only one
argument. Can you come up with a solution for all functions with n number of arguments?

We have abstracted away many common problems into higher-order functions that
allowed us to write the solution with elegant and ease.

Summary
We started this chapter with a set of questions on what a function can see. By starting
small and building up examples, we understand how closures make the function to
remember the context where it is born. With this understanding in place, we went ahead
and implemented few more higher-order functions that are used in the day-to-day life of
a JavaScript programmer. Throughout we have seen how to abstract away the common
problems into a specific function and reuse them! Now we understand the importance of
Closures, Higher-Order Functions, Abstraction, and Pure Functions! In the next chapter
we are going to continue building the higher-order functions, but with respect to Arrays!

57© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_5

CHAPTER 5

Being Functional on Arrays

 ■ Note The chapter examples and library source code are in branch chap05. The repo’s
URL is: https://github.com/antoaravinth/functional-es6.git

Once checkout the code, please checkout branch chap05:

...

git checkout -b chap05 origin/chap05

...

For running the codes, as before run:

...

npm run playground

...

Welcome to the chapter on Arrays and Objects. In this chapter we are going to continue
our journey of exploring higher-order functions that are useful for arrays.

Arrays are used literally in our JavaScript programming world. We use them to store
data, manipulate data, find data, and convert (project) the data to another format. In
this chapter we are going to see how to improve all these activities using our functional
programming techniques learned so far.

We will be creating a set of functions on Array, and we will be solving the common
problems functionally rather than imperatively.

 ■ Note The functions that we are creating in this chapter may or may not be defined
already in the Array/Object prototype. It’s been advised these are for understanding how the
real functions themselves work, rather than overriding them.

https://github.com/antoaravinth/functional-es6.git#_blank

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

58

Working Functionally on Arrays
In this section we are going to create a set of useful functions, and using them we are
going to solve the common problems with Array.

 ■ Note All the functions that we are going to create in this section are called Projecting
functions. Applying a function to a value and creating a new value is called a projection.
Don’t get worried about the term, it will make sense when we see our first projecting
function map.

map
We have already seen how to iterate over the Array using forEach. forEach is a higher-
order function, which is going to iterate over the given array and call the passed function
with the current index as its argument. forEach hides away the common problem of
iteration. But we can't use forEach in all cases.

Imagine we want to square all the contents of the array and get back the result in
a new array. How we can achieve this using forEach? Using forEach we can't return the
data; instead it just executes the passed function. And that’s where our first projecting
function comes into the picture, and it’s called map.

Implementing map is an easy and straightforward task given that we have already
seen how to implement forEach itself. The implementation of forEach looks like what is
shown in Listing 5-1:

Listing 5-1. forEach Function Definition

const forEach = (array,fn) => {
 for(const value of arr)
 fn(value)
}

map function implementation looks like that below:

Listing 5-2. map Function Definition

const map = (array,fn) => {
 let results = []
 for(const value of array)
 results.push(fn(value))

 return results;
}

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

59

The map implementation looks very similar to forEach; it’s just that we are capturing
the results in a new array as:

. . .
 let results = []
. . .

and returning the results from the function. Now it’s a good time to talk about
the word projecting function. We have mentioned earlier that the map function is a
projecting function. Why do we call the map function so? The reason is quite simple and
straightforward; since map returns the transformed value of the given function, we call
them projecting functions. Of course, few people do call map a transforming function. But
we are going to stick to the term projection (which I feel is very good!).

Now let’s go and solve the problem of squaring the contents of the array using our
map function defined in Listing 5-2.

map([1,2,3], (x) => x * x)
=>[1,4,9]

As you can see in the above code snippet, we have achieved our task with simple
elegance. Since we are going to create many functions, which are specifically to the Array
type, we are going to wrap all the functions into a const called arrayUtils and export
arrayUtils.

So it typically looks like the following (Listing 5-3):

Listing 5-3. Wrapping Functions into arrayUtils Object

//map function from Listing 5-2
const map = (array,fn) => {
 let results = []
 for(const value of array)
 results.push(fn(value))

 return results;
}

const arrayUtils = {
 map : map
}

export {arrayUtils}

//another file
import arrayUtils from 'lib'
arrayUtils.map //use map

//or

const map = arrayUtils.map
//so that we can call them map!

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

60

 ■ Note In the text, however, we are going to call them as map rather than arrayUtils.
map for clarity purposes.

Perfect. In order to make the chapter examples more realistic, we are going to build
an array of objects, which looks as shown below in Listing 5-4:

Listing 5-4. apressBooks Object Describing Book Details

let apressBooks = [
 {
 "id": 111,
 "title": "C# 6.0",
 "author": "ANDREW TROELSEN",
 "rating": [4.7],
 "reviews": [{good : 4 , excellent : 12}]
 },
 {
 "id": 222,
 "title": "Efficient Learning Machines",
 "author": "Rahul Khanna",
 "rating": [4.5],
 "reviews": []
 },
 {
 "id": 333,
 "title": "Pro AngularJS",
 "author": "Adam Freeman",
 "rating": [4.0],
 "reviews": []
 },
 {
 "id": 444,
 "title": "Pro ASP.NET",
 "author": "Adam Freeman",
 "rating": [4.2],
 "reviews": [{good : 14 , excellent : 12}]
 }
];

 ■ Note Kindly note that the array does contain the real titles that are published by
Apress. But the review key values are my own interpretations.

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

61

Now all the functions that we are going to create in this chapter will be run for the
above array of objects. Now suppose we need to get the array of object, which only has a
title and author name in it? How are we going to achieve the same using map function?
Do you see a solution that is running in your mind?

The solution is so simple using the map function, which looks like the following:

map(apressBooks,(book) => {
 return {title: book.title,author:book.author}
})

which is going to return the result as you would expect. The object in the returned
array will be having only two properties: one is title and another one is author, as you
have specified in your function:

[{ title: 'C# 6.0', author: 'ANDREW TROELSEN' },
 { title: 'Efficient Learning Machines', author: 'Rahul Khanna' },
 { title: 'Pro AngularJS', author: 'Adam Freeman' },
 { title: 'Pro ASP.NET', author: 'Adam Freeman' }]

Not always do we just want to transform all our array contents into a new one. Rather
we want to filter the content of array and then do the transformation!

Meet the next function in the queue called filter.

filter
Imagine we want to get the list of books whose rating is more than 4.5? How we are going
to achieve this? Definitely not a problem for map to solve. But we need a similar to map,
which just checks a condition, before pushing the results into the results array.

So first we’ll take another look at the map function (from Listing 5-2):

const map = (array,fn) => {
 let results = []
 for(const value of array)
 results.push(fn(value))

 return results;
}

Now here we need to check a condition or predicate before we do this:

. . .
 results.push(fn(value))
. . .

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

62

so let’s add that into a separate function called filter as shown in Listing 5-5:

Listing 5-5. filter Function Definition

const filter = (array,fn) => {
 let results = []
 for(const value of array)
 (fn(value)) ? results.push(value) : undefined

 return results;
}

Now with the filter function in place, we can solve our problem in hand like the
following way:

filter(apressBooks, (book) => book.rating[0] > 4.5)

which is going to return you the expected result:

[{ id: 111,
 title: 'C# 6.0',
 author: 'ANDREW TROELSEN',
 rating: [4.7],
 reviews: [[Object]] }]

That’s perfect! We are constantly improving the way to deal with arrays using these
higher-order functions. Before we go further looking into the next functions on the array,
we are going to see how to chain the projection function (map,filter) to get our desired
results in complex situations.

Chaining Operations
It’s always the case that we need to chain lots of functions to achieve our goal. For
example, imagine the problem of getting the title and author object out of our
apressBooks for which the review is greater than 4.5. The initial step to tackle this
problem is to solve via map and filter; the code might look like this:

let goodRatingBooks =
 filter(apressBooks, (book) => book.rating[0] > 4.5)

map(goodRatingBooks,(book) => {
 return {title: book.title,author:book.author}
})

which is going to return the result as expected:

[{
 title: 'C# 6.0',
 author: 'ANDREW TROELSEN'
 }
]

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

63

An important point to note here is that both map and filter are projection
functions. So they always return a data after applying the transformation (via the passed
higher-order function) on the array. So we can chain both filter and map (the order
is very important) to get the task done (without the need for additional variables – i.e.,
goodRatingBooks):

map(filter(apressBooks, (book) => book.rating[0] > 4.5),(book) => {
 return {title: book.title,author:book.author}
})

The above code literally tells the problem we are solving: “Map over the filtered
array whose rating is 4.5 and return their title and author keys in an object!” Due to the
nature of both map and filter we have abstracted away the details of array themselves,
and we started focusing on the problem in hand.

We will be seeing examples of chaining methods in the upcoming sections.

 ■ Note We will be seeing another way to achieve the same thing via function
composition in Chapter X (TODO: Mention it)

concatAll
Let’s now tweak the apressBooks a bit, so that we have a data structure that looks like the
following as shown in Listing 5-6:

Listing 5-6. Updated apressBooks Object with Book Details

let apressBooks = [
 {
 name : "beginners",
 bookDetails : [
 {
 "id": 111,
 "title": "C# 6.0",
 "author": "ANDREW TROELSEN",
 "rating": [4.7],
 "reviews": [{good : 4 , excellent : 12}]
 },
 {
 "id": 222,
 "title": "Efficient Learning Machines",
 "author": "Rahul Khanna",
 "rating": [4.5],
 "reviews": []
 }
]
 },

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

64

 {
 name : "pro",
 bookDetails : [
 {
 "id": 333,
 "title": "Pro AngularJS",
 "author": "Adam Freeman",
 "rating": [4.0],
 "reviews": []
 },
 {
 "id": 444,
 "title": "Pro ASP.NET",
 "author": "Adam Freeman",
 "rating": [4.2],
 "reviews": [{good : 14 , excellent : 12}]
 }
]
 }
];

Now let’s take up the same problem that we had in the previous section - to get
the title and author for the books whose rating is above 4.5. We can start solving the
problem by first mapping over data:

map(apressBooks,(book) => {
 return book.bookDetails
})

which is going to return us the value:

[[{ id: 111,
 title: 'C# 6.0',
 author: 'ANDREW TROELSEN',
 rating: [Object],
 reviews: [Object] },
 { id: 222,
 title: 'Efficient Learning Machines',
 author: 'Rahul Khanna',
 rating: [Object],
 reviews: [] }],
 [{ id: 333,
 title: 'Pro AngularJS',
 author: 'Adam Freeman',
 rating: [Object],
 reviews: [] },

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

65

 { id: 444,
 title: 'Pro ASP.NET',
 author: 'Adam Freeman',
 rating: [Object],
 reviews: [Object] }]]

As you can see, the return data from our map function contains Array inside Array.
It’s because our bookDetails itself is an array. Now if we pass the above data to our
filter, we are going to have problems, as filters can't work on nested arrays!

And that’s where concatAll function comes in! The job of concatAll function is
simple enough that it needs to concatenate all the nested arrays into a single array! You
can also call concatAll as a flatten method. The implementation of concatAll looks
like the following (Listing 5-7):

Listing 5-7. concatAll function Definition

const concatAll = (array,fn) => {
 let results = []
 for(const value of array)
 results.push.apply(results, value);

 return results;
}

Here we just pushed up the inner array while iterating into our results array.

 ■ Note We have used Javascript Function's apply method to set the push context to
results itself and passing the argument as the current index of the iteration - value.

The main goal of ‘concatAll’ is to un-nest the nested arrays into a single array. The
below code explains the concept in action:

concatAll(
 map(apressBooks,(book) => {
 return book.bookDetails
 })
)

which is going to return us the result we expected:

[{ id: 111,
 title: 'C# 6.0',
 author: 'ANDREW TROELSEN',
 rating: [4.7],
 reviews: [[Object]] },

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

66

 { id: 222,
 title: 'Efficient Learning Machines',
 author: 'Rahul Khanna',
 rating: [4.5],
 reviews: [] },
 { id: 333,
 title: 'Pro AngularJS',
 author: 'Adam Freeman',
 rating: [4],
 reviews: [] },
 { id: 444,
 title: 'Pro ASP.NET',
 author: 'Adam Freeman',
 rating: [4.2],
 reviews: [[Object]] }]

Now we can go ahead and easily do a filter with our condition like this:

let goodRatingCriteria = (book) => book.rating[0] > 4.5;
filter(
 concatAll(
 map(apressBooks,(book) => {
 return book.bookDetails
 })
)
,goodRatingCriteria)

which is going to return the expected value:

[{ id: 111,
 title: 'C# 6.0',
 author: 'ANDREW TROELSEN',
 rating: [4.7],
 reviews: [[Object]] }]

Brilliant! We have seen how designing a higher-order function within the world of Array
does solve a lot of problems in elegant fashion. We have done a really good job up to now. We
still have to see a few more functions with respect to Array in the upcoming sections.

Reducing Function
If you talk about functional programming anywhere, you often hear about the term reduce
functions. What are they? Why they are so useful? reduce is a beautiful function that is
designed for keeping the power of closure in JavaScript. In this section, we are going to
see the usefulness of reducing an array.

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

67

reduce Function
In order to give a solid example of reduce function and where it’s been used, let’s look at
the problem of finding the summation of the given array. To start with, suppose we have
an array called ‘’:

let useless = [2,5,6,1,10]

We need to find the sum of the given above array, but how we can achieve that? A
simple solution would be the following:

let result = 0;
forEach(useless,(value) => {
 result = result + value;
})
console.log(result)
=> 24

With the above problem, we are reducing the array (which has several data) into a
single value. We start with a simple accumulator; in this case we call it as result to store
our summation result while traversing the array itself. Note that we have set the result
value to default 0 in case of summation. But what if we need to find the product of all the
elements in the given array? In that case we will be setting up the result value to 1. This
whole process of setting up the accumulator and traversing the array (remembering the
previous value of accumulator) to produce a single element is called reducing an array.

Since we are going to repeat the above process for all array-reducing operations,
can’t we abstract away these into a function? You can – that’s where reduce function
comes in. The implementation of our reduce function looks like the following shown in
Listing 5-8:

Listing 5-8. reduce Function First Implementation

const reduce = (array,fn) => {
 let accumlator = 0;
 for(const value of array)
 accumlator = fn(accumlator,value)

 return [accumlator]
}

Now with reduce function in place, we can solve our summation problem using it
like this:

reduce(useless,(acc,val) => acc + val)
=>[24]

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

68

Great. But what if we want to find a product of the given array? Our reduce function
is going to fail, mainly due to the fact that we are using an accumulator value to 0. So our
product result will be 0 too:

reduce(useless,(acc,val) => acc * val)
=>[0]

We can solve this by rewriting our reduce function from Listing 5-8 such that it takes
an argument for setting up the initial value for the accumulator. Let’s do this right away in
Listing 5-9:

Listing 5-9. reduce Function Final Implementation

const reduce = (array,fn,initialValue) => {
 let accumlator;

 if(initialValue != undefined)
 accumlator = initialValue;
 else
 accumlator = array[0];

 if(initialValue === undefined)
 for(let i=1;i<array.length;i++)
 accumlator = fn(accumlator,array[i])
 else
 for(const value of array)
 accumlator = fn(accumlator,value)
 return [accumlator]
}

We have made the changes to our reduce function so that now if initialValue is
not passed, the reduce function will take the first element in the array as its accumulator
value. Cool.

 ■ Note have a look at the two for loop statements. When the initialValue is undefined,
we need to start looping the array from the second element, as the first value of the
accumulator will be used as the initial value. If the initialValue is passed by the caller, then
we need to iterate the full array.

Now let’s try our product problem using the reduce function:

reduce(useless,(acc,val) => acc * val,1)
=>[600]

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

69

Now we’ll use reduce in our running example, apressBooks. Bringing apressBooks
(updated in Listing 5-6) in here, for easy reference, we have this:

let apressBooks = [
 {
 name : "beginners",
 bookDetails : [
 {
 "id": 111,
 "title": "C# 6.0",
 "author": "ANDREW TROELSEN",
 "rating": [4.7],
 "reviews": [{good : 4 , excellent : 12}]
 },
 {
 "id": 222,
 "title": "Efficient Learning Machines",
 "author": "Rahul Khanna",
 "rating": [4.5],
 "reviews": []
 }
]
 },
 {
 name : "pro",
 bookDetails : [
 {
 "id": 333,
 "title": "Pro AngularJS",
 "author": "Adam Freeman",
 "rating": [4.0],
 "reviews": []
 },
 {
 "id": 444,
 "title": "Pro ASP.NET",
 "author": "Adam Freeman",
 "rating": [4.2],
 "reviews": [{good : 14 , excellent : 12}]
 }
]
 }
];

On a good day, your boss comes to your desk and asks you to implement the logic of
finding the number of good and excellent reviews from our apressBooks. And you think,
this is a perfect problem that can be solved easily via reduce function. Remember that our

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

70

apressBooks contains array inside array (as we saw in the previous section), so we need
to concatAll to make it a flat array. Since reviews are a part of bookDetails, we don't
name a key, so we can just map bookDetails and concatAll in the following way:

concatAll(
 map(apressBooks,(book) => {
 return book.bookDetails
 })
)

Now let’s solve our problem using reduce:

let bookDetails = concatAll(
 map(apressBooks,(book) => {
 return book.bookDetails
 })
)

reduce(bookDetails,(acc,bookDetail) => {
 let goodReviews = bookDetail.reviews[0] != undefined ? bookDetail.

reviews[0].good : 0
 let excellentReviews = bookDetail.reviews[0] != undefined ?

bookDetail.reviews[0].excellent : 0
 return {good: acc.good + goodReviews,excellent : acc.excellent +

excellentReviews}
},{good:0,excellent:0})

which is going to return the following result:

[{ good: 18, excellent: 24 }]

Now let’s walk down the reduce function to see how this magic happened. The first
point to note here is that we are passing an accumulator to an initialValue, which is
nothing but:

{good:0,excellent:0}

In our reduce function body, we are getting the good and excellent review details
(from our bookDetail object) and storing it in the corresponing variables namely,
goodReviews and excellentReviews:

let goodReviews = bookDetail.reviews[0] != undefined ? bookDetail.
reviews[0].good : 0
let excellentReviews = bookDetail.reviews[0] != undefined ? bookDetail.
reviews[0].excellent : 0

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

71

With that in place, we can walk through our reduce function call trace to understand
better what’s happening. For the first iteration, goodReviews and excellentReviews will
be the following:

goodReviews = 4
excellentReviews = 12

and our accumulator will be the following:

{good:0,excellent:0}

as we have passed the initial line. Once reduce function executes the line:

 return {good: acc.good + goodReviews,excellent : acc.excellent +
excellentReviews}

our internal accumulator value gets changed to:

{good:4,excellent:12}

And we are done with the first iteration of our array. In the second and third
iterations, we don't have reviews; hence, both goodReviews and excellentReviews will
be 0, but not affecting our accumulator value, which remains the same:

{good:4,excellent:12}

and in our final fourth iteration, we will be having goodReviews and
excellentReviews as:

goodReviews = 14
excellentReviews = 12

and accumulator value being:

{good:4,excellent:12}

and now when we execute the line:

return {good: acc.good + goodReviews,excellent : acc.excellent +
excellentReviews}

our accumulator value changes to:

{good:18,excellent:28}

Since we are done with iterating all our array content, the latest accumulator value
will be returned, which is the result!

Wow, as you can see here, in the above process we have abstracted away internal
details into higher-order functions, leading to elegant code! Before we close this chapter,
let’s implement zip function, which is another useful function.

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

72

Zipping Arrays
Life is not always as easy as you think. We had reviews within our bookDetails in
our apressBooks details such that we could easily work with it. However, if data like
apressBooks does come from the server, they do return data like reviews as a separate
array, rather than the embedded data, which will look like the following (Listing 5-10):

Listing 5-10. Splitting the apressBooks Object

let apressBooks = [
 {
 name : "beginners",
 bookDetails : [
 {
 "id": 111,
 "title": "C# 6.0",
 "author": "ANDREW TROELSEN",
 "rating": [4.7]
 },
 {
 "id": 222,
 "title": "Efficient Learning Machines",
 "author": "Rahul Khanna",
 "rating": [4.5],
 "reviews": []
 }
]
 },
 {
 name : "pro",
 bookDetails : [
 {
 "id": 333,
 "title": "Pro AngularJS",
 "author": "Adam Freeman",
 "rating": [4.0],
 "reviews": []
 },
 {
 "id": 444,
 "title": "Pro ASP.NET",
 "author": "Adam Freeman",
 "rating": [4.2]
 }
]
 }
];

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

73

Listing 5-11. reviewDetails Object Contains Review Details of the Book

let reviewDetails = [
 {
 "id": 111,
 "reviews": [{good : 4 , excellent : 12}]
 },
 {
 "id" : 222,
 "reviews" : []
 },
 {
 "id" : 333,
 "reviews" : []
 },
 {
 "id" : 444,
 "reviews": [{good : 14 , excellent : 12}]
 }
]

here in the above snippet (Listing 5-11), the reviews are fleshed out into a separate
array; they are matched with the book id. It’s a typical example of how data are
segregated into different parts.

But how do we work with these sorts of split data?

zip Function
The task of the zip function is to merge two given arrays. As with our example, we need
to merge both apressBooks and reviewDetails into a single array, so that we have all
necessary data under a single tree.

The implementation of zip looks like the following (Listing 5-12):

Listing 5-12. zip Function Definition

const zip = (leftArr,rightArr,fn) => {
 let index, results = [];

 for(index = 0;index < Math.min(leftArr.length, rightArr.
length);index++)

 results.push(fn(leftArr[index],rightArr[index]));

 return results;
}

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

74

zip is a very simple function; we just iterate over the two given arrays. Since here
we are dealing with two array details, we get the minimum length of the given two arrays
using Math.min:

. . .
Math.min(leftArr.length, rightArr.length)
. . .

Once you get the minimum length, we call our passed higher-order function fn with
current leftArr value and rightArr value.

Suppose we want to add the two contents of the array, then we can do via zip like the
following:

zip([1,2,3],[4,5,6],(x,y) => x+y)
=> [5,7,9]

Now let’s solve the same problem that we have solved in the previous section. Find
the total count of good and excellent review for Apress collection. Since the data are split
into two different structures, we are going to use zip to solve our current problem:

//same as before get the
//bookDetails
let bookDetails = concatAll(
 map(apressBooks,(book) => {
 return book.bookDetails
 })
)

//zip the results
let mergedBookDetails = zip(bookDetails,reviewDetails,(book,review) => {
 if(book.id === review.id)
 {
 let clone = Object.assign({},book)
 clone.ratings = review
 return clone
 }
})

Let us break down what’s happening in the zip function. The result of the zip
function is nothing but the same old data structure we had, precisely, mergedBookDetails:

[{ id: 111,
 title: 'C# 6.0',
 author: 'ANDREW TROELSEN',
 rating: [4.7],
 ratings: { id: 111, reviews: [Object] } },

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

75

 { id: 222,
 title: 'Efficient Learning Machines',
 author: 'Rahul Khanna',
 rating: [4.5],
 reviews: [],
 ratings: { id: 222, reviews: [] } },
 { id: 333,
 title: 'Pro AngularJS',
 author: 'Adam Freeman',
 rating: [4],
 reviews: [],
 ratings: { id: 333, reviews: [] } },
 { id: 444,
 title: 'Pro ASP.NET',
 author: 'Adam Freeman',
 rating: [4.2],
 ratings: { id: 444, reviews: [Object] } }]

The way we have arrived at this result is very simple; while doing the zip operation
we are taking the bookDetails array and reviewDetails array. We are checking if both
the ids match, and if so we clone a new object out of the book and call it a clone:

. . .
 let clone = Object.assign({},book)
. . .

Now clone gets a copy of what’s there in the book object. However, the important
point to note is that clone is pointing to a separate reference. Adding/manipulating clone
doesn't change the real book reference itself. In JavaScript, objects are used by reference,
so changing the book object by default within our zip function will affect the contents of
bookDetails itself, which we don't want to do.

So once we took up the clone, we added to it a ratings key with review object as its
value:

clone.ratings = review

and finally we are returning it! Now you can apply the reduce function as before to
solve the problem. zip is yet another small and simple function, but its usages are very
powerful.

Summary
We have made a lot of progress in this chapter. We created a bunch of useful functions
such as map, filter, concatAll, reduce, and zip to make it easier to work with Arrays. We
term these functions projection functions, as these functions always return the array after
applying the transformation (which is passed via a higher-order function). An important

ChApTeR 5 ■ BeIng FUnCTIOnAL On ARRAys

76

point to keep in mind is that these are just higher-order functions, which we will be using
in daily tasks. Understanding how these functions work will help us to think in more
functional terms. But our functional journey is not yet over.

Having created many useful functions on Arrays in this chapter, in the next one we
will be discussing Currying and Partial Application concepts. Don’t worry if these terms
make you fear; they are simple concepts but become very powerful when put it in action.
See you in Chapter 6!

http://dx.doi.org/10.1007/978-1-4842-2656-8_6

77© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_6

CHAPTER 6

Currying and Partial
Application

 ■ Note The chapter examples and library source code are in branch chap06. The repo’s
URL is: https://github.com/antoaravinth/functional-es6.git

Once checkout the code, please checkout branch chap06:

...

git checkout -b chap06 origin/chap06

...

For running the codes, as before run:

...

npm run playground

...

In this chapter we are going to see what the term currying means. Once we understand
what currying does and why it’s useful, we will move to another concept in functional
programming called Partial application. Both currying and partial application are
important to understand as we will be using them during functional composition!

As seen before in the previous chapters, we are going to look at a sample problem
and explain how functional techniques like currying and partial application work.

A Few Terminologies
Before explaining what currying/partial application does, we need to understand a few
terminologies that we will be using in this chapter.

https://github.com/antoaravinth/functional-es6.git#_blank

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

78

unary Function
A function is called unary if it takes a single function argument. For example, function
identity is a unary function:

Listing 6-1. unary Identity Function

const identity = (x) => x;

The above function (Listing 6-1) takes only one argument x, so we can call the above
function as a unary function.

Binary Function
A function is called binary if it takes two arguments. For example, in Listing 6-2, function
add is called a binary function:

Listing 6-2. binary add Function

const add = (x,y) => x + y;

add function takes two arguments x,y; hence we call it a binary function.
And now as you can guess there are ternary functions that take three arguments and

so on. But JavaScript does allow a special type of function that we call a variadic function,
which takes a variable number of arguments.

variadic Functions
A variadic function is a function that takes a variable number of arguments. Remember
that we had arguments in older versions of JavaScript, which we can use to capture the
variable number of arguments?

Listing 6-3. variadic Function

function variadic(a){
 console.log(a);
 console.log(arguments)
}

if we call the function variadic like this:

variadic(1,2,3)
=> 1
=> [1,2,3]

 ■ Note as you can see in the output, arguments does capture all the arguments that are
passed to a function.

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

79

As you can see in the above output (Listing 6-3), using arguments we are able to
capture the additional arguments one could call on a function. Using this technique, we
used to achieve the variadic functions in ES5 versions. However, starting with ES6, we
have a new operator called Spread Operator that we can use to achieve the same result.

Listing 6-4. variadic Function Using Spread Operator

const variadic = (a,...variadic) => {
 console.log(a)
 console.log(variadic)
}

Now if we call the above function we get exactly what we would expect:

variadic(1,2,3)
=> 1
=> [2,3]

As you can see in the result, we were pointed to the first passed argument 1 and all
other remaining arguments captured by our variadic variable that uses the ... spread
operator! ES6 style is more concise as it clearly mentions that a function does take
variadic arguments for processing.

Now that we have some common terminologies in mind with respect to functions,
it’s time to turn our attention into the fancy term Currying!

Currying
Have you seen the term Currying n number of times in functional programming blogs
and still wonder what it means? Don't worry; we are going to break the Currying
definition into smaller n definitions, which will make sense to you!

We’ll start with a simple question: what is Currying? A simple answer to that question
would be this:

Currying is a process of converting a function with n number
of arguments into a nested unary function.

Don’t worry if that doesn’t make sense to you yet! Let’s see what it means by a simple
example. Imagine we have a function called add:

const add = (x,y) => x + y;

It’s a simple function. We can call this function like add(1,1), which is going to give
me the result 2. Nothing fancy here. Now here is the curried version of the add function:

const addCurried = x => y => x + y;

The above addCurried function is now a curried version of add. If we call addCurried
with a single argument:

addCurried(4)

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

80

it returns a function where x value is captured via the closure concept as we have
seen in the previous chapters:

=> fn = y => 4 + y

So we can call the addCurried function like the following to get the proper result:

addCurried(4)(4)
=> 8

Here we have manually converted add a function, which takes the 2 argument into
an addCurried function, which has nested unary functions. Here is how to convert this
process into a method called curry (Listing 6-5):

Listing 6-5. curry Function Definition

const curry = (binaryFn) => {
 return function (firstArg) {
 return function (secondArg) {
 return binaryFn(firstArg, secondArg);
 };
 };
};

 ■ Note i have written the curry function in eS5 format, as i want the reader to visualize
the process of returning a nested unary function.

Now we can use our curry function to convert our add function to a curried version
like this:

let autoCurriedAdd = curry(add)
autoCurriedAdd(2)(2)
=> 4

The output is exactly what we wanted to get! Now it’s time to revise the definition of
Currying:

Currying is a process of converting a function with n number
of arguments into a nested unary function.

As you can see in our curry function definition, we are converting the binary
function into nested functions, each of which takes only one argument; that is, we are
returning the nested unary functions! Hopefully I have clarified the term currying in your
head. But the obvious questions you still have are these: Why do we need currying? What
is its use?

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

81

Currying Use Cases
To begin with, we’ll start simple. Imagine we have to create a function for creating tables.
For example, we need to create tableOf2, tableOf3, tableOf4 and so on.

We can achieve the same via the following in Listing 6-6:

Listing 6-6. tables Function without Currying

const tableOf2 = (y) => 2 * y
const tableOf3 = (y) => 3 * y
const tableOf4 = (y) => 4 * y

with that in place, the functions can be called this:

tableOf2(4)
=> 8
tableOf3(4)
=> 12
tableOf4(4)
=> 16

Now you see that you can generalize the tables concept into a single function like this:

const genericTable = (x,y) => x * y

and then you can use genericTable to get tableOf2 like the following:

genericTable(2,2)
genericTable(2,3)
genericTable(2,4)

and the same for tableOf3 and tableOf4. But if you notice the pattern, we are
filling up 2 in the first argument for tableOf2, 3 for tableOf3, and so on! Perhaps you are
thinking that we can solve this problem via curry? Let’s build tables from genericTable
using curry:

Listing 6-7. tables Function Using Currying

const tableOf2 = curry(genericTable)(2)
const tableOf3 = curry(genericTable)(3)
const tableOf4 = curry(genericTable)(4)

now you can do your testing with these curried version of tables:

console.log("Tables via currying")
console.log("2 * 2 =",tableOf2(2))
console.log("2 * 3 =",tableOf2(3))
console.log("2 * 4 =",tableOf2(4))

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

82

console.log("3 * 2 =",tableOf3(2))
console.log("3 * 3 =",tableOf3(3))
console.log("3 * 4 =",tableOf3(4))

console.log("4 * 2 =",tableOf4(2))
console.log("4 * 3 =",tableOf4(3))
console.log("4 * 4 =",tableOf4(4))

which is going to print the value we expect:

Table via currying
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
3 * 2 = 6
3 * 3 = 9
3 * 4 = 12
4 * 2 = 8
4 * 3 = 12
4 * 4 = 16

A logger Function - Using Currying
The previous section example helped you to understand what currying does. But let’s
use a bit more complicated example in this section. As developers when we write code,
we do a lot of logging at several stages of the application. We could write a helper logger
function that looks like the following (Listing 6-8):

Listing 6-8. Simple loggerHelper Function

const loggerHelper = (mode,initialMessage,errorMessage,lineNo) => {
 if(mode === "DEBUG")
 console.debug(initialMessage,errorMessage + "at line: " +

lineNo)
 else if(mode === "ERROR")
 console.error(initialMessage,errorMessage + "at line: " +

lineNo)
 else if(mode === "WARN")
 console.warn(initialMessage,errorMessage + "at line: " +

lineNo)
 else
 throw "Wrong mode"
}

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

83

and when any developer from our team needs to print an error to the console from
Stats.js file, he/she can use the function like the following:

loggerHelper("ERROR","Error At Stats.js","Invalid argument passed",23)
loggerHelper("ERROR","Error At Stats.js","undefined argument",223)
loggerHelper("ERROR","Error At Stats.js","curry function is not defined",3)
loggerHelper("ERROR","Error At Stats.js","slice is not defined",31)

and similarly we can use the ‘loggerHelper’ function for debug and warn messages.
As you can tell, we are repeating the arguments mainly mode and initialMessage for all
the calls. Can we do it better? Yes, we can do the above calls better via currying. Can we use
our curry function that is defined in the previous section? Unfortunately no; the reason
is the curry function that we have designed can handle only the binary functions, not a
function like loggerHelper that takes 4 arguments.

Let us solve this problem and implement the fully functional curry function, which
handles any function with n number of arguments.

Revisit Curry
We all know that we can curry (Listing 6-5) only a function. How about many functions?
It’s simple but important to have it in our implementation of curry. Let’s add the rule
first:

Listing 6-9. Revisting curry Function Definition

let curry =(fn) => {
 if(typeof fn!=='function'){
 throw Error('No function provided');
 }
};

With that check in place, if others call our curry function with an integer like 2, etc.,
they get back the error! That’s perfect! The next requirement to our curried function is
that if anyone provided all arguments to a curried function, we need to execute the real
function by passing the arguments. Let’s add that (Listing 6-10):

Listing 6-10. curry Function Handling Arguments

let curry =(fn) => {
 if(typeof fn!=='function'){
 throw Error('No function provided');
 }

 return function curriedFn(...args){
 return fn.apply(null, args);
 };
};

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

84

Now if we have function called multiply:

const multiply = (x,y,z) => x * y * z;

we can use our new curry function like the following:

curry(multiply)(1,2,3)
=> 6
curry(multiply)(1,2,0)
=> 0

So let’s look at how it really works; we have added the logic in our curry function
like this:

return function curriedFn(...args){
 return fn.apply(null, args);
};

The returned function is a variadic function, which returns the function result by
calling the function via apply along by passing the args:

. . .
fn.apply(null, args);
. . .

With our curry(multiply)(1,2,3) example, args will be pointing to [1,2,3] and
since we are calling apply on fn, it’s equivalent to:

multiply(1,2,3)

which is exactly what we wanted! Thus we get back the expected result from
the function.

Now let us get back to the problem of converting the n argument function into a
nested unary function (that’s the definition of curry itself)!

Listing 6-11. curry Function Converting n arg Function to unary Function

let curry =(fn) => {
 if(typeof fn!=='function'){
 throw Error('No function provided');
 }

 return function curriedFn(...args){

 if(args.length < fn.length){
 return function(){

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

85

 return curriedFn.apply(null, args.concat([].slice.call(arguments)));
 };
 }

 return fn.apply(null, args);
 };
};

We have added the part:

if(args.length < fn.length){
 return function(){
 return curriedFn.apply(null, args.concat([].slice.call(arguments)

));
 };
}

Let’s understand what’s happening in this piece of code, one by one:

args.length < fn.length

This particular line checks if the argument that is passed via ...args length and the
function argument list length is less or not. If so we go into the if block, or else we fall
back to call the full function as before.

Once we enter the if block, we used the apply function to call the curriedFn
recursively like this:

curriedFn.apply(null, args.concat([].slice.call(arguments)));

The snippet:

args.concat([].slice.call(arguments))

is important. Using the concat function, we are concating the arguments that are
passed one at a time and calling the curriedFn recursively. Since we are combining all
the passed arguments and calling it recursively, we will meet a point in which the line:

 if (args.length < fn.length)

condition fails. As the argument list length (‘args’) and function argument length (fn.
length) will be equal, thus skipping the if block and calling up:

return fn.apply(null, args);

which is going to yield the functions’ full result!

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

86

With that understanding in place, we can use our curry function to invoke the
multiply function:

curry(multiply)(3)(2)(1)
=> 6

Perfect! We have created our own curry function.

 ■ Note you can call the above code snippet like the following, too:

let curriedMul3 = curry(multiply)(3)

let curriedMul2 = curriedMul3(2)

let curriedMul1 = curriedMul2(1)

where curriedMul1 will be equal to 6. But we do it like curry(multiply)(3)(2)(1) as it is
much more readable!

An important point to note is that our curry function is now converting a function of
n arguments into a function that can be called as a unary function as the example shows.

Back to logger Function
Now let’s solve our logger function using the defined curry function. Bringing up the
function here for easy reference (Listing 6-8):

const loggerHelper = (mode,initialMessage,errorMessage,lineNo) => {
 if(mode === "DEBUG")
 console.debug(initialMessage,errorMessage + "at line: " +

lineNo)
 else if(mode === "ERROR")
 console.error(initialMessage,errorMessage + "at line: " +

lineNo)
 else if(mode === "WARN")
 console.warn(initialMessage,errorMessage + "at line: " +

lineNo)
 else
 throw "Wrong mode"
}

The developer used to call the function:

loggerHelper("ERROR","Error At Stats.js","Invalid argument passed",23)

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

87

Now let’s solve the repeating first two arguments problem via curry:

let errorLogger = curry(loggerHelper)("ERROR")("Error At Stats.js");
let debugLogger = curry(loggerHelper)("DEBUG")("Debug At Stats.js");
let warnLogger = curry(loggerHelper)("WARN")("Warn At Stats.js");

Now we can easily refer to the above curried functions and use them under the
respective context:

//for error
errorLogger("Error message",21)
=> Error At Stats.js Error messageat line: 21

//for debug
debugLogger("Debug message",233)
=> Debug At Stats.js Debug messageat line: 233

//for warn
warnLogger("Warn message",34)
=> Warn At Stats.js Warn messageat line: 34

That’s brilliant! We have seen how curry function helps in the real world to remove
a lot of boilerplates in function calls! Don't forget to say thanks to the closures concept,
which is backing up the curry function.

Currying in Action
In the previous section we created our own ‘curry’ function. We have also seen a simple
example of using the ‘curry’ function.

In this section we are going to see small but compact examples where the currying
technique will be used. The examples shown in this section will make you better
understand how to use currying in your day-to-day activities.

Finding number in Array Contents
Imagine we want to find the array content that has a number. We can solve the problem
via the following code snippet:

let match = curry(function(expr, str) {
 return str.match(expr);
});

The returned match function is a curried function. We can give the first argument expr
a regular expression /[0-9]+/ that will indicate whether the content has a number in it.

let hasNumber = match(/[0-9]+/)

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

88

Now we will create a curried filter function:

let filter = curry(function(f, ary) {
 return ary.filter(f);
});

Now with hasNumber and filter in place, we can create a new function called
findNumbersInArray:

let findNumbersInArray = filter(hasNumber)

Now you can test it:

findNumbersInArray(["js","number1"])
=> ["number1"]

That’s great!

squaring an Array
We know how to square contents of an array. We have also seen the same problem in
previous chapters. We use map function and pass on square function to achieve the
solution to our problem. But here we can use the curry function to solve the same
problem in another way:

let map = curry(function(f, ary) {
 return ary.map(f);
});

let squareAll = map((x) => x * x)

squareAll([1,2,3])
=> [1,4,9]

As you can see in the above example, we have created a new function squareAll
that we can now use elsewhere in our code base! Similarly you can also do this for
findEvenOfArray, findPrimeOfArray, etc.

Data Flow
In both sections of using currying, we have designed the curried functions such that it
always takes the array at the end. This is intentional way of creating a curried function! As
talked about in previous chapters, we as programmers often work on data structures like
array, so making the array as the last argument allows us to create lot of reusable functions
like squareAll and findNumbersInArray that we can use throughout the code base!

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

89

 ■ Note in our source code companion, we have termed the curry function as curryN.
it’s just to keep the old curry remains as is, which was supposed to do currying on binary
functions!

Partial Application
In this section we are going to see yet another function called partial that allows
developers to apply the function arguments partially!

Imagine we want to do a set of operations after every 10 ms. Using the setTimeout
function, we can do this:

setTimeout(() => console.log("Do X task"),10);
setTimeout(() => console.log("Do Y task"),10);

As you can see, we are passing on 10 for every one of our setTimeout function
calls. Can we hide that from the code? Can we use curry function to solve this problem?
The answer is no. The reason is that the curry function applies the argument from the
leftmost to rightmost lists! Since we want to pass on the functions as needed and keep
10 as a constant (which is most of the argument list), we can't use curry as such. One
workaround is that we can wrap our setTimeout function so that the function argument
becomes the rightmost one:

const setTimeoutWrapper = (time,fn) => {
 setTimeout(fn,time);
}

Then we can use our curry function to wrap our setTimeout to a 10-second delay:

const delayTenMs = curry(setTimeoutWrapper)(10)
delayTenMs(() => console.log("Do X task"))
delayTenMs(() => console.log("Do Y task"))

which will work as we needed it to. But the problem is we have to create wrappers
like setTimeoutWrapper, which will be an overhead! And that’s where we can use partial
application techniques!

Implementing partial Function
In order to fully understand how the partial application technique is working, we will be
creating our own ‘partial’ function in this section. Once the implementation is done, we
will learn how to use our ‘partial’ function with a simple example.

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

90

The implementation of partial function looks like the following (Listing 6-12):

Listing 6-12. partial Function Definition

const partial = function (fn,...partialArgs){
 let args = partialArgs;
 return function(...fullArguments) {
 let arg = 0;
 for (let i = 0; i < args.length && arg < fullArguments.length; i++) {
 if (args[i] === undefined) {
 args[i] = fullArguments[arg++];
 }
 }
 return fn.apply(null, args);
 };
};

Let’s quickly use the partial function with our current problem:

let delayTenMs = partial(setTimeout,undefined,10);
delayTenMs(() => console.log("Do Y task"))

which will print to the console as you expect. Now let’s walk through the
implementation details of partial function. Using closures, we are capturing the
arguments that are passed onto the function for the first time:

partial(setTimeout,undefined,10)

//will lead to
let args = partialArgs
=> args = [undefined,10]

And we return a function that will remember the args value (yeah, again we
are using closures!). The returned function is super easy. It takes an argument called
fullArguments. So we call functions like delayTenMs by passing the argument:

delayTenMs(() => console.log("Do Y task"))

//fullArguments points to
//[() => console.log("Do Y task")]

//args using closures will have
//args = [undefined,10]

www.allitebooks.com

http://www.allitebooks.org

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

91

Now in the for loop we iterate and create the necessary arguments array for our
function:

if (args[i] === undefined) {
 args[i] = fullArguments[arg++];
 }
}

Now let’s start with value i as 0:

//args = [undefined,10]
//fullArguments = [() => console.log("Do Y task")]
args[0] => undefined === undefined //true

//inside if loop
args[0] = fullArguments[0]
=> args[0] = () => console.log("Do Y task")

//thus args will become
=> [() => console.log("Do Y task"),10]

As you can see in the above code snippet examples, our args point to the array as we
would expect for setTimeout function calls. Once we have the necessary arguments in
args, we call the function via fn.apply(null, args)!

Remember that we can apply partial for any function that has n arguments. To
make the point concrete, let’s look at an example. In JavaScript we use the following
function call to do JSON pretty print:

let obj = {foo: "bar", bar: "foo"}
JSON.stringify(obj, null, 2);

As you can see, the last two arguments for the function call stringify are always
going to be the same null,2. We can use partial to remove the boilerplate:

let prettyPrintJson = partial(JSON.stringify,undefined,null,2)

and then you can use prettyPrintJson to print the json:

prettyPrintJson({foo: "bar", bar: "foo"})

which will give you the output:

"{
 "foo": "bar",
 "bar": "foo"
}"

ChapTeR 6 ■ CURRying and paRTiaL appLiCaTiOn

92

 ■ Note There is a slight bug in our implementation of partial function. What if you call
prettyPrintJson again with a different argument? does it work?

it always gives the result for the first invoked argument, but why? Can you see where we
are making the mistake?

hinT: Remember, we are modifying the partialArgs by replacing the undefined values
with our argument, and Arrays are used for reference!

Currying vs. Partial Application
We have seen both of these techniques. So the question is when to use which one?
The answer depends on how your API is been defined. If your API is defined as such
map,filter then we can easily use the curry function to solve our problem. But as
discussed in the previous section, life is not always easy. There could be functions that
are not designed for curry such as setTimeout in our examples. In those cases, the best
fit option would be to use partial functions! After all, we use curry or partial to make
function arguments/ function setup easy and more powerful!

And also it’s important to note that currying will return nested unary functions; we
have implemented curry so that it takes n arguments just for our convenience. And also
it’s a proven fact that developers need either curry or partial but not both.

And that brings us to the end of our discussion!

Summary
Currying and partial application are always a tool in functional programming. We started
the chapter by explaining the definition of currying, which is nothing but converting a
function of n arguments into nested unary functions. We saw the examples of currying
and where it can be very useful. But there are cases where you want to fill the first 2
arguments of a function and the last argument, leaving the middle argument to be
unknown for a certain time! And that’s where partial application comes into the picture.
In order to fully understand both these concepts, we have implemented our own curry
and partial functions! We have made a lot of progress, we’re not done yet!

Functional programming is all about composing functions – composing several
small functions to build a new function! Composing and Pipelines will be the topic of the
next chapter. Stay tuned!

93© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_7

CHAPTER 7

Composition and Pipelines

 ■ Note The chapter examples and library source code are in branch chap07. The repo’s
URL is: https://github.com/antoaravinth/functional-es6.git

Once checkout the code, please checkout branch chap07:

...

git checkout -b chap07 origin/chap07

...

For running the codes, as before run:

...

npm run playground

...

In the previous chapter we saw two important techniques for functional programming:
Currying and Partial application. We discussed how these two techniques work! We
also discussed that as a JavaScript programmer we will be choosing either Currying or
Partial application in our code base. In this chapter we are going to see what Functional
Composition means and its practical use cases.

Functional Composition is simply referred as composition in the functional
programming world. We are going to see a bit of theory on the idea of composition and
quite a few examples of it. Then we will be writing our own compose function. Again, it’s
fun! Understanding how compose function works under the hood is really a fun task.

Composition in General Terms
Before we see what a functional composition is all about, let’s step back and understand
the idea behind composition. In this section we are going to drive a philosophy that will
help us to get the benefit out of composition in general.

https://github.com/antoaravinth/functional-es6.git#_blank

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

94

Unix Philosophy
Unix philosophy is a set of ideas that originated by Ken Thompson. One part of the Unix
philosophy is this:

Make each program do one thing well. To do a new job, build
afresh rather than complicate old programs by adding new
“features.”

This is exactly what we are doing as part of creating our functions. Functions as we
have seen until now in the books are supposed to take an argument and return a data. Yes,
functional programming does follow Unix philoshopy. Kudos!

The second part of the philosophy is this:

Expect the output of every program to become the input to
another, as yet unknown, program.

Hmmm, that's an interesting quote. What does it mean by Expect the output of
every program to become the input to another? To make the point clear, let’s look at a few
commands on Unix platform that were built by following these philosophies.

For example, cat is a command (or you can think of it as a function) that is used to
display the contents of a text file to a console. Here the cat command takes an argument
(as similar to a function), that is, the file location, etc., and returns the output (again as
similar to a function) to the console. So we can do the following:

cat test.txt

Which will print to the console?

Hello world

 ■ Note here the content of the test.txt will be Hello world.

That’s so simple. Another command called grep allows us to search for content in a
given text. An important point to note is that the grep function takes an input and gives
the output (again very similar to a function).

We can do the following with the grep command:

grep 'world' test.txt

which will return us the matching content, in this case:

Hello world

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

95

We have seen two very simple functions: grep and cat that are is built by following
the Unix philosophy. Now we can take some time to understand this quote:

Expect the output of every program to become the input to
another, as yet unknown, program.

Imagine you to want to send the data from the cat command as an input to the
grep command in order to do a search. We know that the cat command will return the
data; and also we know that the grep command takes the data for processing the search
operation. Thus, using the Unix | (pipe symbol), we can achieve our task:

cat test.txt | grep 'world'

which will return the data as expected:

Hello world

 ■ Note The symbol | is called a pipe symbol. This allows us to combine several functions
to create a new function that will help us to solve our problem! Basically | sends the output
of a function on the left-hand side as an input to a function on the right-hand side! This
process, technically, is called s pipeline!

The above example might be trivial, but it conveys the idea behind the quote:

Expect the output of every program to become the input to
another, as yet unknown, program.

As our example shows, the grep command or a function receives the output of a cat
command or a function. What we have done here is that we have created a new function
altogether without any effort! Of course the | pipe acts as a bridge to connect the given
two commands.

Let’s change our problem statement a bit; what if we want to count the number of
occurrences of the word world in a given text file? How we can achieve it?

This is how we are going to solve it:

cat test.txt | grep 'world' | wc

 ■ Note The command wc is used to count the words in a given text. This command is
available on all of the Unix and Linux platforms.

which is going to return the data as we expect! As the above examples show, we
are creating a new function as per our need on the fly from our base functions! In other
words, we are composing a new function from our base function(s). Note that the base
function needs to obey this rule:

Each base function needs to take an argument and return data!

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

96

We would be able to compose a new function with the help of |. As this chapter
shows, we will be building our own compose function in JavaScript, which does the same
job of | in the Unix/Linux world.

Now we have the idea of composing functions from base functions! The real
advantage of composing functions is that we can combine our base function to solve the
problem at hand, without re-creating a new function!

Functional Composition
In this section we are going to discuss a use case where functional composition will be useful
in the JavaScript world. Stay with me – you’re going to love the idea of the compose function.

Revisiting map,filter
In Chapter 5, “Being Functional on Arrays, under the section “Chaining Operations,”
we saw how to chain the data from a map and filter to solve the problem in hand. Let’s
quickly revisit the problem and the solution we have taken.

We had an array of objects, whose structure looks like the following:

Listing 7-1. Apress book object structure

let apressBooks = [

 {
 "id": 111,
 "title": "C# 6.0",
 "author": "ANDREW TROELSEN",
 "rating": [4.7],
 "reviews": [{good : 4 , excellent : 12}]
 },
 {
 "id": 222,
 "title": "Efficient Learning Machines",
 "author": "Rahul Khanna",
 "rating": [4.5],
 "reviews": []
 },
 {
 "id": 333,
 "title": "Pro AngularJS",
 "author": "Adam Freeman",
 "rating": [4.0],
 "reviews": []
 },
 {
 "id": 444,
 "title": "Pro ASP.NET",

http://dx.doi.org/10.1007/978-1-4842-2656-8_5

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

97

 "author": "Adam Freeman",
 "rating": [4.2],
 "reviews": [{good : 14 , excellent : 12}]
 }
];

The problem was to get the title and author object out of our apressBooks for which
the review is greater than 4.5. Our solution to that current problem looks like the following:

Listing 7-2. Getting author details using map

map(filter(apressBooks, (book) => book.rating[0] > 4.5),(book) => {
 return {title: book.title,author:book.author}
})

for which we have got the result as the following:

[
 {
 title: 'C# 6.0',
 author: 'ANDREW TROELSEN'
 }
]

The code to achieve the solution tells an important point. The data out of our filter
function is passed into the map function as its input argument! Yeah, you have guessed it
correctly. Does it sound like the exact same problem we solved in the previous section
using | in the Unix world? Can we do the same thing in the JavaScript world? Can we
create a function that will combine two functions by sending the output of one function
as an input to another function?

Yes, we can! Meet compose function.

compose Function
In this section, let’s create our first compose function. Creating a new compose function is
easy and straightforward. compose function needs to take the output of one function and
give it as input to another function. Let’s put them up in in a function:

Listing 7-3. compose function definition

const compose = (a, b) =>
 (c) => a(b(c))

The compose function is simple and does what we need it to do. It takes two functions, a
and b, and returns a function that takes the argument c. When we call the return function by
supplying the value of c, it will call the function b with input of c and the output of the function
b goes into as input of function a. And that’s exactly what a compose function definition is!

Great, now let’s quickly test our compose function with a simple example before we
dive into our running example from the previous section.

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

98

 ■ Note compose function executes b first and pass the return value of b as an argument
to the function a. The direction of function calling in compose is right to left (i.e b executes
first, followed by a).

Playing with compose function
With our compose function in place, let’s go and build some toy examples.

Imagine we want to round a given number. The given number will be a float, so we
have to convert that number to a float and then call Math.round.

Without compose, we can do the following:

let data = parseFloat("3.56")
let number = Math.round(data)

the output will be 4 as we would expect. As you can see in the above example, the
data (which is the output of parseFloat function) is passed as input to Math.round to get
a solution; this is the right problem candidate which our compose function will solve.

Let’s solve this via our compose function:

let number = compose(Math.round,parseFloat)

The above statement will return a new function that is stored as a number and looks
like this:

number = (c) => Math.round(parseFloat(c))

Now if we pass the input c to our number function, we will get what we expect:

number("3.56")
=> 4

Wow, what we have done right above is functional composition! Yes, we have
composed two functions in order to build a new function on the fly! An important point to
note over here is that, the functions Math.round or parseFloat aren’t executed/run until
we call our number function.

Now imagine we have two functions namely:

let splitIntoSpaces = (str) => str.split(" ");
let count = (array) => array.length;

Now if you want to build a new function in order to count number of words in a
string, we can easily do this:

const countWords = compose(count,splitIntoSpaces);

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

99

Now we can call that:

countWords("hello your reading about composition")
=> 5

The newly created function countWords using compose is an elegant and easy way to
see exactly what it does exactly!

curry and partial to the Rescue
We know that we can compose two functions, only if this function takes one input argument!
But that’s not the case always, as there can be functions that have multiple arguments! How
we are going to compose those functions? Is there something we can do about it?

Yes, we can do it using either curry or partial function that we have defined in the
previous chapter! As you can recall from the section “Revisiting map,filter.” From this
chapter, we have the following code to solve our problem in hand (Listing 7-2):

map(filter(apressBooks, (book) => book.rating[0] > 4.5),(book) => {
 return {title: book.title,author:book.author}
})

Now can we use the compose function to compose both map and filter with specifics
to our example? Remember that both map and filter functions do take two arguments:
the first argument is the array, and the second argument being the function to operate on
that array. So we can't compose these two functions directly.

However we can take help from partial functions. Remember that the above code
snippet does work on the apressBooks object. Pulling it out here again for easy reference:

let apressBooks = [
 {
 "id": 111,
 "title": "C# 6.0",
 "author": "ANDREW TROELSEN",
 "rating": [4.7],
 "reviews": [{good : 4 , excellent : 12}]
 },
 {
 "id": 222,
 "title": "Efficient Learning Machines",
 "author": "Rahul Khanna",
 "rating": [4.5],
 "reviews": []
 },
 {
 "id": 333,
 "title": "Pro AngularJS",
 "author": "Adam Freeman",

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

100

 "rating": [4.0],
 "reviews": []
 },
 {
 "id": 444,
 "title": "Pro ASP.NET",
 "author": "Adam Freeman",
 "rating": [4.2],
 "reviews": [{good : 14 , excellent : 12}]
 }
];

Now let’s say we have many small functions in our code base for filtering the books
based out of different ratings like the following:

let filterOutStandingBooks = (book) => book.rating[0] === 5;
let filterGoodBooks = (book) => book.rating[0] > 4.5;
let filterBadBooks = (book) => book.rating[0] < 3.5;

and we do have many projection functions like:

let projectTitleAndAuthor = (book) => { return {title: book.
title,author:book.author} }
let projectAuthor = (book) => { return {author:book.author} }
let projectTitle = (book) => { return {title: book.title} }

 ■ Note You might be wondering why we have small functions even for simple things.
Remember that composition is all about small functions being composed into a larger
function. simple functions are easy to read, test, and maintain; and using compose we can
build anything out of it, as we will see in this section.

Now to solve our problem – To get Books titles and authors for 4.5 above rating, we
can use compose and partial as in the following:

let queryGoodBooks = partial(filter,undefined,filterGoodBooks);
let mapTitleAndAuthor = partial(map,undefined,projectTitleAndAuthor)

let titleAndAuthorForGoodBooks = compose(mapTitleAndAuthor,queryGoodBooks)

Let’s take some time to understand the position of partial function in the current
problem domain. As mentioned, the compose function can only compose a function
that takes one argument! However both filter and map take two arguments, so we can't
compose them directly.

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

101

That’s the reason we have used partial function to partially apply the second
argument for both map and filter as you can see here:

partial(filter,undefined,filterGoodBooks);
partial(map,undefined,projectTitleAndAuthor)

Here we have passed filterGoodBooks function to query the books that have ratings
over 4.5 and passed projectTitleAndAuthor function to take the title and author
property from the apressBooks object! Now the returned partial application will expect
only one argument, which is nothing but the array itself! Now with these two partial
functions in place, we can compose them via compose as we already have done:

Listing 7-4. Using compose function

let titleAndAuthorForGoodBooks = compose(mapTitleAndAuthor,queryGoodBooks)

Now the function titleAndAuthorForGoodBooks expects one argument in our case
that is apressBooks; let’s pass the object array to it:

titleAndAuthorForGoodBooks(apressBooks)
=> [
 {
 title: 'C# 6.0',
 author: 'ANDREW TROELSEN'
 }
]

Wow, we got back exactly what we wanted without compose. But the latest composed
version titleAndAuthorForGoodBooks is much more readable and elegant in my opinion.
You can sense the importance of creating small units of function that can be again rebuilt
using compose as per our needs!

In the same example, what if we want to get only the titles of the books with those
above a 4.5 rating? Ah ha, it’s so simple:

let mapTitle = partial(map,undefined,projectTitle)
let titleForGoodBooks = compose(mapTitle,queryGoodBooks)

//call it
titleForGoodBooks(apressBooks)
=> [
 {
 title: 'C# 6.0'
 }
]

How about getting only author names for books with ratings that equal 5? That
should be easy, right? I leave you to solve this using the above defined functions and the
compose function!

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

102

 ■ Note in this section, we have used partial to fill the arguments of a function.
however you can use curry to do the same thing. it’s just a matter of choice. But can you
come up with a solution for using curry in our example above? (hint: Reverse the order of
argument for map, filter).

compose many function
Currently our version of compose function does compose only two given functions.
How about composing three, four, or n number of functions? Sadly, our current
implementation doesn't handle this. Let’s rewrite our compose function so that it can
compose multiple functions on the fly.

Remember that we need to send the output of each function as an input to another
function (by remembering the last executed function output recursively). We can use
reduce function, which we have used in previous chapters to reduce the n of function
calls one at a time. The rewritten compose function now looks like the following:

Listing 7-5. compose many function

const compose = (...fns) =>
 (value) =>
 reduce(fns.reverse(),(acc, fn) => fn(acc), value);

 ■ Note The above function is called composeN in source code repo.

The important line of the function is:

reduce(fns.reverse(),(acc, fn) => fn(acc), value);

 ■ Note if you recall from the previous chapter, we have used reduce function to reduce
the array into a single value (along with an accumulator value; i.e., the third parameter of
reduce), for example, to find the sum of the given array, using reduce:

reduce([1,2,3],(acc,it) => it + acc,0)

=> 6

here the array [1,2,3] is reduced into [6]; the accumulator value here is 0.

Here we are first reversing the function array via fns.reverse() and passing the
function as (acc, fn) => fn(acc), which is going to call each function one after the
other by passing the acc value as its argument. And notably the initial accumulator value
is nothing but a value variable, which will be the first input to our function!

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

103

With the new compose function in place, let’s go and test it with our old example.
In the previous section we composed a function to count words given in a string:

let splitIntoSpaces = (str) => str.split(" ");
let count = (array) => array.length;
const countWords = compose(count,splitIntoSpaces);

//count the words
countWords("hello your reading about composition")
=> 5

Now imagine we want to find out whether the word count in the given string is odd
or even. We already have a function for it:

let oddOrEven = (ip) => ip % 2 == 0 ? "even" : "odd"

Now with our compose function in place, we can compose these three functions to
get what we really want:

const oddOrEvenWords = compose(oddOrEven,count,splitIntoSpaces);
oddOrEvenWords("hello your reading about composition")
=> ["odd"]

We got back the expected result! Go and play around with our new compose function!
Now we have a solid understanding of how to use compose function to get what we

need. In the next section, we are going to see the same concept of compose in a different
way called Pipelines.

Pipelines / Sequence
In the previous section, we saw how the compose function data flow works. Yes, the data
flow of compose is from left to right, as the functions on the left mostly get executed first,
passing on the data to the next function, and so on . . . and the right-most function gets
executed at last!

Certain people prefer the other way – where the right-most function gets executed
first and the left-most function on the left most gets executed last. As you can remember,
the data flow on Unix commands when we do | is from right to left. So in this section, we
are going to implement a new function called pipe that does exactly the same thing as the
compose function, but just swaps the data flow!

 ■ Note This process of flowing the data from right to left is called pipelines or even
sequences! You can call them either pipeLine or sequences as you prefer.

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

104

Implementing pipe
pipe function is just replica of our compose function, the only change is that the data flow:

Listing 7-6. pipe function definition

const pipe = (...fns) =>
 (value) =>
 reduce(fns,(acc, fn) => fn(acc), value);

That’s it! Note that there is no more call on fns reverse functions as in compose,
which means we are going to execute the function order as it is (from right to left).

Let’s quickly check our implementation of pipe function by rerunning the same
example in previous section:

const oddOrEvenWords = pipe(splitIntoSpaces,count,oddOrEven);
oddOrEvenWords("hello your reading about composition");
=> ["odd"]

The result is going to be the exact same; however, notice that we have changed the
order of functions when we do piping! First we call splitIntoSpaces and then count and
finally oddOrEven!

Some people (who have the knowledge of shell scripting) prefer pipes over compose.
It’s just a personal preference and nothing to do with the underlying implementation. The
takeaway is that both pipe and compose do the same thing, but in different data flow! You
can use either pipe or compose in your code base, but not both, as it can lead to confusion
between your team members! Stick to one style of composing. :)

Odds on Composition
In this section, we discuss two topics. The first discussion is on one of the most important
properties of compose - Composition is associative. The second discussion will be on how
we debug when we compose many functions!

Let’s tackle one after the other.

Composition is associative
The functional composition is always associative:

compose(f, compose(g, h)) == compose(compose(f, g), h);

let’s quickly check our previous section example:

//compose(compose(f, g), h)

let oddOrEvenWords = compose(compose(oddOrEven,count),splitIntoSpaces);
let oddOrEvenWords("hello your reading about composition")

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

105

=> ['odd']

//compose(f, compose(g, h))

let oddOrEvenWords = compose(oddOrEven,compose(count,splitIntoSpaces));
let oddOrEvenWords("hello your reading about composition")
=> ['odd']

As you can see in the above examples, the result is going to be the same for both the
cases! Thus it proves the functional composition is associative. You might be thinking,
what is the benefit of compose being associative?

The real benefit is that it allows us to group functions into their own compose! That is:

let countWords = compose(count,splitIntoSpaces)
let oddOrEvenWords = compose(oddOrEven,countWords)

or
let countOddOrEven = compose(oddOrEven,count)
let oddOrEvenWords = compose(countOddOrEven,splitIntoSpaces)

or
...

The above code is possible just because the composition possesses the associative
property! Earlier in the chapter we discussed that creating small functions is the key to
compose! Since compose is associative we can create small functions by composition,
without any worry, as the result is going to be the same!

Debugging Using tap Function
We have been using compose function quite a lot in this chapter. compose function can
compose any number of functions. The data is going to flow from left to right in a chain
until the full function list is evaluated! In this section, I'm going to teach you a trick that
allows you to debug the failures on compose!

Let’s create a simple function called identity. The aim of this function is to take the
argument and return the same argument; hence the name identity:

const identity = (it) => {
 console.log(it);
 return it
}

Here we have added a simple console.log to print the value this function receives
and also return it as it is! Now imagine we have the following call:

ChapTeR 7 ■ COmpOsiTiOn and pipeLines

106

compose(oddOrEven,count,splitIntoSpaces)("Test string");

When you execute the above code, what if count function throws an error? How will
you know what value does count function receive as its argument? And that’s where our
little identity function comes into picture. We can add

identity in the flow where we see the error like:

compose(oddOrEven,count,identity,splitIntoSpaces)("Test string");

which is going to print the input argument that the count function is going to receive.
This little function can be very helpful in debugging what data a function does receive.

Summary
We started this chapter by taking Unix philosophy as an example. We have seen how,
by following the Unix philosophy, Unix commands like cat,grep,wc could be able to
compose as needed! Then we went ahead and created our own version of the compose
function to achieve the same in JavaScript world! The little compose function brings heavy
usage to developers as we can compose complex functions as needed from our well-
defined small functions. We also saw an example of how currying helps in functional
composition, by a partial function.

We also discussed another function called pipe, which does exactly the same thing
but inverts the data flow when compared to the compose function. At the end of the
chapter we discussed an important property of compose - composition is associative! We
also presented a small function called identity that we can use as our debugging tool
while facing problems with the compose function!

In the next chapter, we are going to see Functors. Functors are very simple, but at the
same time very powerful. We will be seeing the use cases and lot more about Functors in
the next chapter! Stay tuned!

107© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_8

CHAPTER 8

Fun with Functors

 ■ Note The chapter examples and library source code are in branch chap08. The repo’s
URL is: https://github.com/antoaravinth/functional-es6.git

Once checkout the code, please checkout branch chap08:

...

git checkout -b chap08 origin/chap08

...

For running the codes, as before run:

...

npm run playground

...

In our previous chapter, we dealt with many functional programming techniques. In this
chapter we are going to see yet important concept in programming called error handling.
Error handling is a common programming technique for handling errors in your
application. But the functional programming way of error handling will be different, and
that’s exactly what we are going to see in the current chapter.

We will be looking at a new concept called Functor. This new friend will be
introduced, and it is going to help us to handle errors in a purely functional way. Once we
grasp the idea of Functor, we are going to implement two real-world functors: namely,
MayBe and Either. So let’s get started.

What Is a Functor?
In this section we are going to see what a Functor really is. Here is its definition:

Functor is a plain object (or type class in other languages) that
implements the function map that, while running over each
value in the object to produce a new object.

https://github.com/antoaravinth/functional-es6.git#_blank

ChapTeR 8 ■ FUn wiTh FUnCTORs

108

Hmmm, that's the definition of Functor. But it is not as easy to understand the
definition at first sight. We are going to break it down step by step section so that we
clearly understand and see in action (via writing code) what a Functor is.

Functor Is a Container
Simply put, functor is a container that holds the value in it. We have seen this in the
definition stating that Functor is a plain object. So let’s go ahead and create a simple
container that can hold any value we pass onto it, and we call it a Container :

Listing 8-1. Container Definition

const Container = function(val) {
 this.value = val;
}

You might be wondering why we didn't write the Container function using our arrow syntax:

const Container = (val) => {
 this.value = val;
}

The above code will be fine, but the moment we try to apply new keyword on our Container,
we will be getting the back an error like this:

Container is not a constructor(...)(anonymous function)

why is that? well, technically, in order to create a new Object, the function should have
the internal method [[Construct]] and the property prototype. sadly, the arrow function
doesn't have both! so here we are falling back to our old school friend function, which has
the internal method [[Construct]], and it also has access to the prototype property.

Now with Container in place, we can go ahead and create a new object out of it:

Listing 8-2. Playing With Container

let testValue = new Container(3)
=> Container(value:3)

let testObj = new Container({a:1})
=> Container(value:{a:1})

let testArray = new Container([1,2])
=> Container(value:[1,2])

ChapTeR 8 ■ FUn wiTh FUnCTORs

109

Nothing fancy here; Container is just holding the value inside it. We can pass any
data type in JavaScript to it and Container will hold it. Before we move on, we can create
a util method called of in the Container prototype, which will save us in writing the new
keyword to create a new Container. The code looks like the following:

Listing 8-3. of method definition

Container.of = function(value) {
 return new Container(value);
}

With this of method in place, we can rewrite the above code (Listing 8-2) snippets
like this:

Listing 8-4. Creating Container with of

testValue = Container.of(3)
=> Container(value:3)

testObj = Container.of({a:1})
=> Container(value:{a:1})

testArray = new Container([1,2])
=> Container(value:[1,2])

It is worth noting that Container can contain nested Containers too:

Container.of(Container.of(3));

is going to print:

Container {
 value: Container {
 value: 3
 }
}

Now that we have defined that the Functor is nothing but a Container that can hold
the value, let’s revisit the definition of Functor.

Functor is a plain object (or type class in other languages) that implements the
function map while running over each value in the object to produce a new object.

It looks like Functor needs to implement a method called map. Let’s implement that
method in the next section.

Functor Implements Method Called map
Before we implement the map function, let’s stop here and think why we need map
function in the first place. Remember that the created Container just holds the value that
we pass onto it. But holding the value hardly has any use cases. And that is where map

ChapTeR 8 ■ FUn wiTh FUnCTORs

110

function comes into place. map function allows us to call any function on the value that is
being currently held by the Container.

map function takes the value out of the Container and applies the passed function
on that value and again put back the result in the Container. Let’s visualize using the
following image (Figure 8-1):

The above image tells the way map function is going to work with our Container
object. It takes the value in the Container; in this case the value is 5, and pass on that
value to the passed function double (this function just doubles the given number), and
the result is being put back again to Container. With that understanding in place, we can
implement the map function:

Listing 8-5. map function definition

Container.prototype.map = function(fn){
 return Container.of(fn(this.value));
}

As shown above, the above map function just simply does what we have discussed in
our image! It’s simple and elegant! Now to make the point concrete, let’s put our image
piece into code action:

let double = (x) => x + x;
Container.of(3).map(double)
=> Container { value: 6 }

Note that the map returns the result of the passed function again in the container,
which allows us to chain the operation:

Container.of(3).map(double)
 .map(double)
 .map(double)

=> Container {value: 24}

Container

map

map takes
out value

apply
double
function
to 5

put backs the
result to
Container

double
5

5

5 10

Figure 8-1. Mechanism of Container And map Function

ChapTeR 8 ■ FUn wiTh FUnCTORs

111

Now implementing Container with our map function, we can make complete sense
of Functor definition:

Functor is a plain object (or type class in other languages) that
implements the function map that, while running over each
value in the object to produce a new object.

Or in other words:

Functor is an object, which implement a map contract!

Well that’s Functor for you. But you might be wondering what Functor is useful for?
We are going to answer that in the upcoming section.

 ■ Note that Functor is a concept that looks for a contract. The contract as we have seen is
simple, implement map! The way in which we implement map function provides different types
of Functor like MayBe, Either, which we are going to discuss later in this chapter.

MayBe
We started the chapter with the argument of how we handle errors/exception using
functional programming techniques. In the previous section we learned about the
fundamental concept of Functor. In this section, we are going to see a type of Functor
called as MayBe. The MayBe functor allows us to handle errors in our code in a more
functional way.

Implementing MayBe
MayBe is a type of Functor, which means it’s going to implement a map function but in a
different way. Let’s start with a simple MayBe, which can hold the data (very similar to
Container implementation):

Listing 8-6. MayBe Function Definition

const MayBe = function(val) {
 this.value = val;
}

MayBe.of = function(val) {
 return new MayBe(val);
}

We just created MayBe, which resembles the Container implementation. Now as
stated earlier, we have to implement a map contract for the MayBe, which looks like this:

ChapTeR 8 ■ FUn wiTh FUnCTORs

112

Listing 8-7. MayBe’s map function definition

MayBe.prototype.isNothing = function() {
 return (this.value === null || this.value === undefined);
};
MayBe.prototype.map = function(fn) {
 return this.isNothing() ? MayBe.of(null) : MayBe.of(fn(this.value));
};

The map function does very similar things to the Container (simple Functor) map
function. MayBe's map first checks whether the value in the container is null or undefined
before applying the passed function using the isNothing function, which takes care of
null/undefined checks:

(this.value === null || this.value === undefined);

Note that map puts back the result of applying the function back in the container:

return this.isNothing() ? Maybe.of(null) : Maybe.of(f(this.__value));

Now it’s time to see MayBe in action.

Simple Use Cases
As we discussed in the previous section, MayBe does checks the null, undefined before
applying the passed function in map. This is a very powerful abstraction that takes care of
error handling! To make this concrete, here’s a simple example:

Listing 8-8. Creating our first MayBe

MayBe.of("string").map((x) => x.toUpperCase())

which returns

MayBe { value: 'STRING' }

The most important and interesting point to note here:

(x) => x.toUpperCase()

doesn't care if x is null or undefined or that it has been abstracted by the MayBe
functor! What if the value of the string is null? Then the code looks like the following:

MayBe.of(null).map((x) => x.toUpperCase())

we will be getting back:

MayBe { value: null }

ChapTeR 8 ■ FUn wiTh FUnCTORs

113

Wow, our code now doesn’t explode in null or undefined values as we have
wrapped our value in the type safety container MayBe! We are now handling the null values
in a declarative way.

 ■ Note On MayBe.of(null) case, if we call map function, from our implementation we
know that map first checks if the value is null or undefined by calling isNothing:

//implementation of map
MayBe.prototype.map = function(fn) {
 return this.isNothing() ? MayBe.of(null) : MayBe.of(fn(this.value));
};

if isNothing returns true. we return back MayBe.of(null) instead of calling the passed
function!

In a normal imperative way, we would have done this:

let value = "string"
if(value != null || value != undefined)
 return value.toUpperCase();

The above code does exactly the same thing, but look at the steps required to check if
the value is null or undefined, even for a single call! And also using MayBe, we don't care
about those sneaky variables to hold the resulting value! Remember that we can chain our
map function as desired:

Listing 8-9. Chaining with map

MayBe.of("George")
 .map((x) => x.toUpperCase())
 .map((x) => "Mr. " + x)

gives back:

MayBe { value: 'Mr. GEORGE' }

It’s so pleasant to watch! Before we close this section, we need to talk about two more
important properties of MayBe.

The first one is that even if your passed function to map returns null/undefined,
MayBe can take care of it! In other words, in the whole chain of map calls, it is fine if a
function returns null or undefined. To illustrate the point, let’s tweak the last example:

MayBe.of("George")
 .map(() => undefined)
 .map((x) => "Mr. " + x)

ChapTeR 8 ■ FUn wiTh FUnCTORs

114

Note that our second map function returns undefined; however, running the above
code will give this result:

MayBe { value: null }

as expected!
The second important point is that all map functions will be called regardless if it

receives null/undefined. We’ll pull out the same code snippet (Listing 8-9) that we have
used in the previous example:

MayBe.of("George")
 .map(() => undefined)
 .map((x) => "Mr. " + x)

The point here is that even though the first map does return undefined:

map(() => undefined)

the second map will be called always (i.e., the chained maps to any level will be
called always); it is just that the next map function in the chain returns undefined (as
the previous map returns undefined/null), without applying the passed function! This
process is repeated until the last map function call is evaluated in the chain.

Real-World Use Cases
Since MayBe is a type of container that can hold any values, it can also hold values of type
Array. Imagine you have written an API to get the top 10 subreddit data based on types
like top, new, hot:

Listing 8-10. Getting Top 10 SubReddit Posts

let getTopTenSubRedditPosts = (type) => {
 let response
 try{
 response = JSON.parse(request('GET',"https://www.reddit.com/r/

subreddits/" + type + ".json?limit=10").getBody('utf8'))
 }catch(err) {
 response = { message: "Something went wrong" , errorCode:
err['statusCode'] }
 }
 return response
}

request comes from the package sync-request. This will allow us to fire a request and
get the response in synchronous fashion. This is just for illustration, and i don't recommend
using synchronous calls in production.

ChapTeR 8 ■ FUn wiTh FUnCTORs

115

getTopTenSubRedditPosts function just hits the URL and gets back the response. If
there are any issues in hitting the reddit API, it sends back a custom response of the format:

. . .
response = { message: "Something went wrong" , errorCode: err['statusCode']
}
. . .

and if we call our API like this:

getTopTenSubRedditPosts('new')

we will be getting back the response in this format:

{"kind": "Listing", "data": {"modhash": "", "children": [], "after": null,
"before": null}}

where children property will have an array of JSON objects. It will look something
like this:

"{
 "kind": "Listing",
 "data": {
 "modhash": "",
 "children": [
 {
 "kind": "t3",
 "data": {
 . . .
 "url": "https://twitter.com/malyw/status/780453672153124864",
 "title": "ES7 async/await landed in Chrome",
 . . .
 }
 }
],
 "after": "t3_54lnrd",
 "before": null
 }
}"

From the response we need to return the array of JSON object that has the URL
and title in it. Remember that if we pass an invalid subreddit type such as test to our
getTopTenSubRedditPosts, it will return an error response that does not have a data or
children property.

ChapTeR 8 ■ FUn wiTh FUnCTORs

116

With MayBe in place, we can go ahead and implement the logic as such:

Listing 8-11. Getting Top 10 SubReddit Posts using MayBe

//arrayUtils from our library
import {arrayUtils} from '../lib/es6-functional.js'

let getTopTenSubRedditData = (type) => {
 let response = getTopTenSubRedditPosts(type);
 return MayBe.of(response).map((arr) => arr['data'])
 .map((arr) => arr['children'])
 .map((arr) => arrayUtils.map(arr,
 (x) => {
 return {
 title : x['data'].title,
 url : x['data'].url
 }
 }
))
}

Let's break down how getTopTenSubRedditData works. First we are wrapping the
result of the reddit API call within the MayBe context using MayBe.of(response). Then we
are running a series of functions using MayBe's map:

. . .

.map((arr) => arr['data'])

.map((arr) => arr['children'])

. . .

This will return the children array object from the response structure:

{"kind": "Listing", "data": {"modhash": "", "children": [. . . .], "after":
null, "before": null}}

And in the last map, we are using our own ArrayUtils's map to iterate over the
children property and return only the title and URL as needed:

. . .

.map((arr) =>
 arrayUtils.map(arr,
 (x) => {
 return {
 title : x['data'].title,
 url : x['data'].url
 }
 }
. . .

ChapTeR 8 ■ FUn wiTh FUnCTORs

117

Now if we call our function with a valid reddit name like new:

getTopTenSubRedditData('new')

we get back the response:

MayBe {
 value:
 [{ title: '/r/UpliftingKhabre - The subreddit for uplifting and positive

stories from India!',
 url: 'https://www.reddit.com/r/upliftingkhabre' },
 { title: '/R/JerkOffToCelebs - The Best Place To Jerk Off To Your Fave

Celebs',
 url: 'https://www.reddit.com/r/JerkOffToCelebs' },
 { title: 'Angel Vivaldi channel',
 url: 'https://qa1web-portal.immerss.com/angel-vivaldi/angel-vivaldi' },
 { title: 'r/SuckingCock - Come check us out for INSANE Blowjobs!

(NSFW)',
 url: 'https://www.reddit.com/r/suckingcock/' },
 { title: 'r/Just_Tits - Come check us out for GREAT BIG TITS! (NSFW)',
 url: 'https://www.reddit.com/r/just_tits/' },
 { title: 'r/Just_Tits - Come check us out for GREAT BIG TITS! (NSFW)',
 url: 'https://www.reddit.com/r/just_tits/' },
 { title: 'How to Get Verified Facebook',
 url: 'http://imgur.com/VffRnGb' },
 { title: '/r/TrollyChromosomes - A support group for those of us whose

trollies or streetcars suffer from chronic genetic disorders',
 url: 'https://www.reddit.com/r/trollychromosomes' },
 { title: 'Yemek Tarifleri Eskimeyen Tadlarımız',
 url: 'http://otantiktad.com/' },
 { title: '/r/gettoknowyou is the ultimate socializing subreddit!',
 url: 'https://www.reddit.com/r/subreddits/comments/50wcju/

rgettoknowyou_is_the_ultimate_socializing/' }] }

The above response might not be the same for the readers, as the response will change
from time to time.

The beauty of the getTopTenSubRedditData method is how it handles unexpected
input that can cause null/undefined errors in our logic flow. What if someone calls your
getTopTenSubRedditData with a wrong reddit type? Remember that it will return the
JSON response from Reddit:

{ message: "Something went wrong" , errorCode: 404 }

ChapTeR 8 ■ FUn wiTh FUnCTORs

118

That is, the data – children property – will be empty! Let’s try this by passing the
wrong reddit type and see how it responds:

getTopTenSubRedditData('new')

which returns:

MayBe { value: null }

without throwing any error! Even though our map function tries to get the data
from the response (which is not present in this case), it returns MayBe.of(null), so the
corresponding maps would not apply the passed function, as we have discussed earlier.

We can clearly sense how MayBe handled all the undefined/null errors with ease!
Our getTopTenSubRedditData looks so declarative!

That’s all about the MayBe Functor. We are going to meet another functor in the next
section called Either.

Either Functor
In this section we are going to create a new functor called Either. Either will allow us
to solve the branching-out problem. To give a context, let’s see an example from the
previous section (Listing 8-9):

MayBe.of("George")
 .map(() => undefined)
 .map((x) => "Mr. " + x)

The above code will return the result as:

MayBe {value: null}

as we would expect. But the question is, which branching (i.e., out of two map calls
above) failed with undefined or null values. We can't answer this question easily with
MayBe. The only way is to manually dig into the branching of MayBe and discover the
culprit! This doesn't mean that MayBe has flaws, but just that in certain use cases, we need
a better Functor than MayBe (mostly where you have many nested maps). This is where
Either comes into the picture.

Implementing Either
We have seen the problem Either is going to solve for us; now let’s see its
implementation:

ChapTeR 8 ■ FUn wiTh FUnCTORs

119

Listing 8-12. Either Functor Parts Definition

const Nothing = function(val) {
 this.value = val;
};

Nothing.of = function(val) {
 return new Nothing(val);
};

Nothing.prototype.map = function(f) {
 return this;
};

const Some = function(val) {
 this.value = val;
};

Some.of = function(val) {
 return new Some(val);
};

Some.prototype.map = function(fn) {
 return Some.of(fn(this.value));
}

The implementation has two functions, namely, Some and Nothing. You can see
that Some is just a copy of a Container with a name change. The interesting part is with
Nothing. Nothing is also a Container, but its map doesn't run over a given function but
rather just returns:

Nothing.prototype.map = function(f) {
 return this;
};

In other words, you can run your functions on Some but not on Nothing (not a
technical statement right? :)

Here’s a quick example:

Some.of("test").map((x) => x.toUpperCase())
=> Some {value: "TEST"}

Nothing.of("test").map((x) => x.toUpperCase())
=> Nothing {value: "test"}

ChapTeR 8 ■ FUn wiTh FUnCTORs

120

As shown in the above code snippet, calling map on Some runs over the passed
function. However, in Nothing, it just returns the same value back test. And we will wrap
these two objects into Either object like this:

Listing 8-13. Either Definition

const Either = {
 Some : Some,
 Nothing: Nothing
}

You might be wondering, what’s the usefulness of Some or Nothing. To understand
this, let’s revisit our reddit example version of MayBe.

Reddit Example Either Version
The MayBe version of reddit example looks like (Listing 8-11):

let getTopTenSubRedditData = (type) => {
 let response = getTopTenSubRedditPosts(type);
 return MayBe.of(response).map((arr) => arr['data'])
 .map((arr) => arr['children'])
 .map((arr) => arrayUtils.map(arr,
 (x) => {
 return {
 title : x['data'].title,
 url : x['data'].url
 }
 }
))
}

on passing a wrong reddit type, say, for example, unknown:

getTopTenSubRedditData('unknown')
=> MayBe {value : null}

we get back MayBe of null value. But we didn't know the reason why null was
returned! We know that getTopTenSubRedditData uses getTopTenSubRedditPosts
to get the response. Now that Either in place, we can create a new version of
getTopTenSubRedditPosts using Either:

ChapTeR 8 ■ FUn wiTh FUnCTORs

121

Listing 8-14. Get Top Ten Subreddit Using Either

let getTopTenSubRedditPostsEither = (type) => {

 let response
 try{
 response = Some.of(JSON.parse(request('GET',"https://www.reddit.

com/r/subreddits/" + type + ".json?limit=10").getBody('utf8')))
 }catch(err) {
 response = Nothing.of({ message: "Something went wrong" , errorCode:

err['statusCode'] })
 }
 return response
}

Note that we have wrapped the proper response with Some and error response with
Nothing! Now with that in place, we can modify our reddit API to:

Listing 8-15. Get Top Ten Subreddit Using Either

let getTopTenSubRedditDataEither = (type) => {
 let response = getTopTenSubRedditPostsEither(type);
 return response.map((arr) => arr['data'])
 .map((arr) => arr['children'])
 .map((arr) => arrayUtils.map(arr,
 (x) => {
 return {
 title : x['data'].title,
 url : x['data'].url
 }
 }
))
}

The above code is just literally the MayBe version, but it’s just not using MayBe, rather
it’s using Either's type.

Now let's call our new API with the wrong reddit data type:

getTopTenSubRedditDataEither('new2')

which will return:

Nothing { value: { message: 'Something went wrong', errorCode: 404 } }

This is so brilliant! Now with Either types in place, we get back the exact reason
why our branching failed! As you can guess, getTopTenSubRedditPostsEither returns
Nothing in case of an error (i.e., unknown reddit type); hence the mappings on
getTopTenSubRedditDataEither will never happen since it is of type Nothing! You can

ChapTeR 8 ■ FUn wiTh FUnCTORs

122

sense how Nothing helped us in preserving the error message and also blocking the
functions to map over!

On a closing note, we can try our new version with a valid reddit type:

getTopTenSubRedditDataEither('new')

It will give back the expected response in Some:

Some {
 value:
 [{ title: '/r/UpliftingKhabre - The subreddit for uplifting and positive

stories from India!',
 url: 'https://www.reddit.com/r/upliftingkhabre' },
 { title: '/R/JerkOffToCelebs - The Best Place To Jerk Off To Your Fave

Celebs',
 url: 'https://www.reddit.com/r/JerkOffToCelebs' },
 { title: 'Angel Vivaldi channel',
 url: 'https://qa1web-portal.immerss.com/angel-vivaldi/angel-vivaldi' },
 { title: 'r/SuckingCock - Come check us out for INSANE Blowjobs!

(NSFW)',
 url: 'https://www.reddit.com/r/suckingcock/' },
 { title: 'r/Just_Tits - Come check us out for GREAT BIG TITS! (NSFW)',
 url: 'https://www.reddit.com/r/just_tits/' },
 { title: 'r/Just_Tits - Come check us out for GREAT BIG TITS! (NSFW)',
 url: 'https://www.reddit.com/r/just_tits/' },
 { title: 'How to Get Verified Facebook',
 url: 'http://imgur.com/VffRnGb' },
 { title: '/r/TrollyChromosomes - A support group for those of us whose

trollies or streetcars suffer from chronic genetic disorders',
 url: 'https://www.reddit.com/r/trollychromosomes' },
 { title: 'Yemek Tarifleri Eskimeyen Tadlarımız',
 url: 'http://otantiktad.com/' },
 { title: '/r/gettoknowyou is the ultimate socializing subreddit!',
 url: 'https://www.reddit.com/r/subreddits/comments/50wcju/

rgettoknowyou_is_the_ultimate_socializing/' }] }

That’s all about Either.

if you are from a Java background, you can sense that Either is very similar to Optional in
Java 8. in fact, Optional is a functor!

ChapTeR 8 ■ FUn wiTh FUnCTORs

123

Word of Caution - Pointed Functor
Before we close the chapter, I need to make a point clear. In the beginning of the chapter
we started saying that we created the of method just to escape the new keyword in place
for creating Container. We did the same for MayBe and Either as well. To recall, Functor
is just an interface that has a map contract. Pointed Functor is a subset of Functor, which
has an interface that has a of contracts!

So what we have designed until now is called a Pointed Functor! This is just to make
the terminologies right in the book! But you got to see what he problem does Functor or
Pointed Functor solves for us in the real world, which is much important.

e6 adds Array.of making arrays a pointed functor!

array.of("You are a pointed functor, too?")

Summary
We started our chapter with asking questions about how we will be handling exceptions
in the functional programming world. We began with creating a simple Functor. We
defined a Functor as being nothing but a container with a map function implemented.
Then we went ahead and implemented a functor called MayBe. We saw how MayBe helps
us in avoiding those pesky null/undefined checks. MayBe allowed us to write code in
functional and declarative ways. Then we saw how Either helped us to preserve the error
message while branching out. Either is just a supertype of Some and Nothing. Now we
have seen Functors in action!

125© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_9

CHAPTER 9

Monads in Depth

 ■ Note The chapter examples and library source code are in branch chap09. The repo’s
URL is: https://github.com/antoaravinth/functional-es6.git

Once checkout the code, please checkout branch chap09:

...

git checkout -b chap09 origin/chap09

...

For running the codes, as before run:

...

npm run playground

...

In the previous chapter we have seen what Functors are and how they are useful to us. In
this chapter we are going to continue with Functors. We will learn about a new functor
called Monads. Don’t be afraid with the terms: the concepts are easy.

We are going to start with a problem of retrieving and displaying the reddit
comments for our search query. Initially we are going to use Functors, especially the
MayBe functor, to solve this problem. But while we solve the problem, we are going to
encounter a few issues with the MayBe functor. Then we will be moving ahead to create a
special type of functor called Monad.

Getting Reddit Comments for Our Search Query
We have been using reddit API starting from the previous chapter. In this section, too, we
will be using the reddit API for searching the posts with our query and getting the list of
comments for each of the search results. We are going to use MayBe for this problem; as
we have seen in the previous chapter, MayBe allows us to focus on the problem, without
worrying about those pesky null/undefined values.

https://github.com/antoaravinth/functional-es6.git#_blank

ChapTeR 9 ■ MOnads in depTh

126

You might be wondering why not the Either functor for the current problem, as MayBe has
a few drawbacks of not capturing the error when branching out as we have seen in the
previous chapter. That’s true, but the reason i have chosen MayBe is mainly to keep things
simple. as you see, we will be extending the same idea to Either as well!

The Problem
Before we begin implementing the solution, let’s look at the problem and its associated
Reddit API endpoints. The problem contains two steps:

 1. For searching a specific posts/comments/ we need to hit the
Reddit API endpoint:

https://www.reddit.com/search.json?q=<SEARCH_STRING>

and pass along the SEARCH_STRING. For example, if we search for the string functional
programming like this:

https://www.reddit.com/search.json?q=functional%20programming

we get back:

Listing 9-1. Structure of Reddit Response

{ kind: 'Listing',
 data:
 { facets: {},
 modhash: '',
 children:
 [[Object],
 [Object],
 [Object],
 [Object],
 [Object],
 [Object],
 . . .
 [Object],
 [Object]],
 after: 't3_terth',
 before: null } }

and each children object looks like this:

{ kind: 't3',
 data:
 { contest_mode: false,
 banned_by: null,

https://www.reddit.com/search.json?q=<SEARCH_STRING
https://www.reddit.com/search.json?q=functional programming

ChapTeR 9 ■ MOnads in depTh

127

 domain: 'self.compsci',
 . . .
 downs: 0,
 mod_reports: [],
 archived: true,
 media_embed: {},
 is_self: true,
 hide_score: false,
 permalink: '/r/compsci/comments/3mecup/eli5_what_is_functional_

programming_and_how_is_it/?ref=search_posts',
 locked: false,
 stickied: false,
 . . .
 visited: false,
 num_reports: null,
 ups: 134 } }

where these objects specify the results that are matching our search query.

 2. Once we have the search result, we need to get each search
result’s comments. How do we do it? As mentioned in the
previous point, each children object is our search result.
These objects have a field called permalink, which looks like :

permalink: '/r/compsci/comments/3mecup/eli5_what_is_functional_
programming_and_how_is_it/?ref=search_posts',

we need to navigate to the above URL:

GET: https://www.reddit.com//r/compsci/comments/3mecup/eli5_what_is_
functional_programming_and_how_is_it/.json

which is going to return the array of comments like the following:

[Object,Object,..,Object]

where each Object gives the information about comments.
Once we get the comments object, we need to merge the result with title and

return as a new Object:

{
 title : Functional programming in plain English,
 comments : [Object,Object,..,Object]
}

where title is the title we get from the first step. Now with our understanding of the
problem, let’s go and implement the logic.

ChapTeR 9 ■ MOnads in depTh

128

Implementation of the First Step
Let’s implement the solution step by step. In this section, we’ll implement the solution for
the first step. The first step involves hitting the Reddit search API endpoint along with our
search query. Since we need to fire the HTTP GET call, we will be requiring the sync-
request module that we used in the previous chapter.

Let’s pull out the module by and hold it in a variable for future use:

let request = require('sync-request');

Now with the request function, we could fire HTTP GET call to our Reddit Search API
endpoint. Let’s wrap the search steps in a specific function, which we call searchReddit:

Listing 9-2. searchReddit function definition

let searchReddit = (search) => {
 let response
 try{
 response = JSON.parse(request('GET',"https://www.reddit.com/search.

json?q=" + encodeURI(search)).getBody('utf8'))
 }catch(err) {
 response = { message: "Something went wrong" , errorCode:

err['statusCode'] }
 }
 return response
}

Now we’ll walk down the code in steps:

 1. We are firing the search request to the URL endpoint https://
www.reddit.com/search.json?q= as shown here:

response = JSON.parse(request('GET',"https://www.reddit.com/
search.json?q=" + encodeURI(search)).getBody('utf8'))

Note that we are using the encodeURI method for escaping special characters in our
search string.

 2. Once the response is a success, we are returning back the value.

 3. In case of error, we are catching it in a catch block and getting
the error code and returning the error response like this:

. . .
catch(err) {
 response = { message: "Something went wrong" , errorCode:

err['statusCode'] }
 }
. . .

https://www.reddit.com/search.json?q
https://www.reddit.com/search.json?q

ChapTeR 9 ■ MOnads in depTh

129

With our little function in place, we go ahead and test it:

searchReddit("Functional Programming")

which will return the result:

{ kind: 'Listing',
 data:
 { facets: {},
 modhash: '',
 children:
 [[Object],
 [Object],
 [Object],
 [Object],
 [Object],
 [Object],
 [Object],
 [Object],
 . . .
 after: 't3_terth',
 before: null } }

That’s perfect! We are done with step 1! Let’s go and implement step 2.
Implementing the decond Step For each search children object, we need to get

its permalink value to get the list of comments. We can write a separate method for
getting s list of comments for the given URL. We call this method getComments. The
implementation of getComments is simple, which looks like the following:

Listing 9-3. getComments function definition

let getComments = (link) => {
 let response
 try {
 response = JSON.parse(request('GET',"https://www.reddit.com/" +

link).getBody('utf8'))
 } catch(err) {
 response = { message: "Something went wrong" , errorCode:

err['statusCode'] }
 }

 return response
}

ChapTeR 9 ■ MOnads in depTh

130

getComments implementation is very similar to our searchReddit. Let’s walk down in
steps and see what getComments does:

 1. It fires the HTTP GET call for the given link value. For
example, if the link value is passed as:

r/IAmA/comments/3wyb3m/we_are_the_team_working_on_react_native_
ask_us/.json

getComments then will fire a HTTP GET call to the URL:

https://www.reddit.com/r/IAmA/comments/3wyb3m/we_
are_the_team_working_on_react_native_ask_us/.json

which is going to return the array of comments. As before, we are a bit defensive here
and catching any errors within the getComments method in our favorite catch block. And
finally we are returning back the response.

Quickly we’ll test our getComments, by passing the below link value:

r/IAmA/comments/3wyb3m/we_are_the_team_working_on_react_native_ask_us/.json

getComments('r/IAmA/comments/3wyb3m/we_are_the_team_working_on_react_native_
ask_us/.json')

for the above call we get back:

[{ kind: 'Listing',
 data: { modhash: '', children: [Object], after: null, before: null } },
 { kind: 'Listing',
 data: { modhash: '', children: [Object], after: null, before: null } }]

the result. Now with both APIs ready, it’s time to go and merge these results.
Merging Reddit Calls. Now we have defined two functions, namely, searchReddit

and getComments (Listing 9-2 and Listing 9-3 respectively), which does it tasks and return
the response as seen in the previous sections. In this section, let’s write a higher-level
function, which takes up the search text and use these two functions to achieve our end
goal.

We’ll call the function we create as mergeViaMayBe and its implementation looks like
the following:

Listing 9-4. mergeViaMayBe function definition

let mergeViaMayBe = (searchText) => {

 let redditMayBe = MayBe.of(searchReddit(searchText))
 let ans = redditMayBe
 .map((arr) => arr['data'])
 .map((arr) => arr['children'])

https://www.reddit.com/r/IAmA/comments/3wyb3m/we_are_the_team_working_on_react_native_ask_us/.json
https://www.reddit.com/r/IAmA/comments/3wyb3m/we_are_the_team_working_on_react_native_ask_us/.json

ChapTeR 9 ■ MOnads in depTh

131

 .map((arr) => arrayUtils.map(arr,(x) => {
 return {
 title : x['data'].title,
 permalink : x['data'].permalink
 }
 }
))
 .map((obj) => arrayUtils.map(obj, (x) => {
 return {
 title: x.title,
 comments: MayBe.of(getComments(x.permalink.

replace("?ref=search_posts",".json")))
 }
 }));

 return ans;
}

Let’s quickly check our function by passing the search text functional programming:

mergeViaMayBe('functional programming')

the above call will give the result:

MayBe {
 value:
 [{ title: 'ELI5: what is functional programming and how is it different

from OOP',
 comments: [Object] },
 { title: 'ELI5 why functional programming seems to be "on the rise" and

how it differs from OOP',
 comments: [Object] }] }

For better clarity i have reduced the number of results in the output of the above call. The
default call will give back 25 results, which will take a couple of pages to put in the output
of mergeViaMayBe. From here on, i will be displaying only minimal output in the book. Kindly
note that the source code example does call and print all of the 25 results.

Great! Now let’s step back and understand in detail what mergeViaMayBe function does.
The function first calls the searchReddit with searchText value. The result of the

call is wrapped in MayBe:

let redditMayBe = MayBe.of(searchReddit(searchText))

ChapTeR 9 ■ MOnads in depTh

132

and once the result is wrapped inside a MayBe type, we are free to map over it as you
can see in the code.

To remind us of the search query (which our searchReddit will call), it will send
back the result in the following structure:

{ kind: 'Listing',
 data:
 { facets: {},
 modhash: '',
 children:
 [[Object],
 [Object],
 [Object],
 [Object],
 [Object],
 [Object],
 . . .
 [Object],
 [Object]],
 after: 't3_terth',
 before: null } }

In order to get the permalink (which is in our children object), we need to navigate
to data.children. This is exactly demonstrated in the code:

redditMayBe
 .map((arr) => arr['data'])
 .map((arr) => arr['children'])

Now we got the handle to children array. Remember that each children has an
object with the following structure:

{ kind: 't3',
 data:
 { contest_mode: false,
 banned_by: null,
 domain: 'self.compsci',
 . . .
 permalink: '/r/compsci/comments/3mecup/eli5_what_is_functional_

programming_and_how_is_it/?ref=search_posts',
 locked: false,
 stickied: false,
 . . .
 visited: false,
 num_reports: null,
 ups: 134 } }

ChapTeR 9 ■ MOnads in depTh

133

We need to get only title and permalink out of it; since it’s an array, we run Array's
map function over it:

.map((arr) => arrayUtils.map(arr,(x) => {
 return {
 title : x['data'].title,
 permalink : x['data'].permalink
 }
 }
))

Now we have both title and permalink, our last step is to take permalink and pass
it to our getComments function, which will fetch the list of comments for the passed value.
This is seen here in the code:

.map((obj) => arrayUtils.map(obj, (x) => {
 return {
 title: x.title,
 comments: MayBe.of(getComments(x.permalink.replace("?ref=search_

posts",".json")))
 }
}));

Since the call of getComments can get an error value, we are wrapping it again inside
a MayBe:

. . .
 comments: MayBe.of(getComments(x.permalink.replace("?ref=search_

posts",".json")))
. . .

 ■ Note That we are replacing the permalink value ?ref=search_posts with .json as
search results append the value ?ref=search_posts, which is not the correct format for
the getComments api call.

That's it!
Throughout the full process we haven't come outside our MayBe type. We run our

all map function happily on our MayBe type without worrying about it too much! We have
solved our problem so elegantly with MayBe, didn’t we? There is a slight problem with our
MayBe functor that is used this way. Let’s talk about it in next section.

ChapTeR 9 ■ MOnads in depTh

134

Problem of So Many maps
If you count the number of map calls on our MayBe in our mergeViaMayBe function, its 4!
You might be thinking what is the big deal about it? Who cares about the number of map
calls! Do we?

Let’s try to understand the problem of many chained map calls like in mergeViaMayBe.
Now imagine we want to get a comments array that is returned from mergeViaMayBe.

We’ll pass our search text functional programming in our mergeViaMayBe function:

let answer = mergeViaMayBe("functional programming")

after the call answer:

MayBe {
 value:
 [{ title: 'ELI5: what is functional programming and how is it different

from OOP',
 comments: [Object] },
 { title: 'ELI5 why functional programming seems to be "on the rise" and

how it differs from OOP',
 comments: [Object] }] }

Now let’s get the comments object for processing. Since the return value is MayBe, we
can map over it:

answer.map((result) => {
 //process result.
})

The result (which is the value of MayBe) is an array that has title and comments, so
let’s map over it using our Array's map:

answer.map((result) => {
 arrayUtils.map(result,(mergeResults) => {
 //mergeResults
 })
})

Each mergeResults is an object, which has title and comments. Remember that
comments are also a MayBe! So in order to get comments, we need to map over our comments:

answer.map((result) => {
 arrayUtils.map(result,(mergeResults) => {
 mergeResults.comments.map(comment => {
 //finally got the comment object!
 })
 })
})

ChapTeR 9 ■ MOnads in depTh

135

It looks like we have done more work to get the list of comments! Imagine someone is
using our mergeViaMayBe API to get the comments list. They will be really irritated to get
back the result using nested maps as you can see above. Can we make our mergeViaMayBe
better? Yes we can – meet Monads!

Solving the Problem via join
We saw in previous sections how deep we have to go inside our MayBe to get back our
desired results! Writing such API's is not going to help us definitely but rather irritate
other developers working on it! In order to solve these deep-nested issues, let’s add join
to the MayBe functor.

join Implementation
Let’s start implementing the join function. The join function is simple and looks like the
following:

Listing 9-5. join function definition

MayBe.prototype.join = function() {
 return this.isNothing() ? MayBe.of(null) : this.value;
}

join is very simple and it simply returns the value inside our container (if there are
values); if not, returning MayBe.of(null). join is simple, but it helps us to unwrap the
nested MayBe's:

let joinExample = MayBe.of(MayBe.of(5))

=> MayBe { value: MayBe { value: 5 } }

joinExample.join()
=> MayBe { value: 5 }

As shown in the above example, it unwraps the nested structure into a single level!
Imagine we want to add 4 to our value in joinExample MayBe. Let’s give it a try:

joinExample.map((outsideMayBe) => {
 return outsideMayBe.map((value) => value + 4)
})

The above code gives back:

MayBe { value: MayBe { value: 9 } }

ChapTeR 9 ■ MOnads in depTh

136

Even though the value is correct, we have mapped twice to get the result. Again the
result that we got ends up in a nested structure! Now let’s do the same via join:

joinExample.join().map((v) => v + 4)

=> MayBe { value: 9 }

Wow, the above code is just elegant! The call to join returns the inside MayBe, which
has the value of 5; once we have that, we are running over it via map and thenadd the
value 4. Now the resulting value is in a flatten structure MayBe { value: 9 }.

Now with join in place, let’s go and try to level our nested structure returned by
mergeViaMayBe. We’ll change the code to the following:

Listing 9-6. mergeViaMayBe using join

let mergeViaJoin = (searchText) => {
 let redditMayBe = MayBe.of(searchReddit(searchText))
 let ans = redditMayBe.map((arr) => arr['data'])
 .map((arr) => arr['children'])
 .map((arr) => arrayUtils.map(arr,(x) => {
 return {
 title : x['data'].title,
 permalink : x['data'].permalink
 }
 }
))
 .map((obj) => arrayUtils.map(obj, (x) => {
 return {
 title: x.title,
 comments: MayBe.of(getComments(x.permalink.

replace("?ref=search_posts",".json"))).join()
 }
 }))
 .join()

 return ans;
}

As you can see, we have just added two joins in our code. One is on the comments
section, where we create a nested MayBe; and another one is right after our all map
operation.

Now with mergeViaJoin in place, let’s go and implement the same logic of getting
the comments array out of the result.

First let’s quickly see the response returned by mergeViaJoin:

mergeViaJoin("functional programming")

ChapTeR 9 ■ MOnads in depTh

137

which is going to return:

[{ title: 'ELI5: what is functional programming and how is it different
from OOP',
 comments: [[Object], [Object]] },
 { title: 'ELI5 why functional programming seems to be "on the rise" and
how it differs from OOP',

 comments: [[Object], [Object]] }]

Compare the above result with our old mergeViaMayBe:

MayBe {
 value:
 [{ title: 'ELI5: what is functional programming and how is it different

from OOP',
 comments: [Object] },
 { title: 'ELI5 why functional programming seems to be "on the rise" and

how it differs from OOP',
 comments: [Object] }] }

As you can see, join has taken out the MayBe’s value and sent it back. Now lets see
how to use the comments array for our processing task. Since the value returned from
mergeViaJoin is an array, we can map over it using our Arrays map:

arrayUtils.map(result, mergeResult => {
 //mergeResult
})

Now each mergeResult variable directly points to the object that has title and
comments. Note that we have called join in our MayBe call of getComments, so the
comments object is just a simple array! With that in mind, to get the list of comments from
the iteration, we just need to call mergeResult.comments:

arrayUtils.map(result,mergeResult => {
 //mergeResult.comments has the comments array!
})

This looks promising, as we have gotten the full benefit of our MayBe and also a good
data structure to return the result, which are easy for processing!

chain Implementation
Have a look at the code in listing 9-6. As you can guess, we need to call join always after
map. Let’s wrap this logic inside a method called chain:

ChapTeR 9 ■ MOnads in depTh

138

Listing 9-7. chain function definition

MayBe.prototype.chain = function(f){
 return this.map(f).join()
}

Once chain is in place, we can make our merge function logic to looks like this:

Listing 9-8. mergeViaMayBe using chain

let mergeViaChain = (searchText) => {
 let redditMayBe = MayBe.of(searchReddit(searchText))
 let ans = redditMayBe.map((arr) => arr['data'])
 .map((arr) => arr['children'])
 .map((arr) => arrayUtils.map(arr,(x) => {
 return {
 title : x['data'].title,
 permalink : x['data'].permalink
 }
 }
))
 .chain((obj) => arrayUtils.map(obj, (x) => {
 return {
 title: x.title,
 comments: MayBe.of(getComments(x.permalink.

replace("?ref=search_posts",".json"))).join()
 }
 }))

 return ans;
}

The output is going to be exactly the same via chain too! Go and play around with
above function! In fact, with chain in place, we can move the logic of counting the
number of comments to an in-place operation:

Listing 9-9. Making improvements on mergeViaChain

let mergeViaChain = (searchText) => {
 let redditMayBe = MayBe.of(searchReddit(searchText))
 let ans = redditMayBe.map((arr) => arr['data'])
 .map((arr) => arr['children'])
 .map((arr) => arrayUtils.map(arr,(x) => {
 return {
 title : x['data'].title,
 permalink : x['data'].permalink
 }
 }
))

ChapTeR 9 ■ MOnads in depTh

139

 .chain((obj) => arrayUtils.map(obj, (x) => {
 return {
 title: x.title,
 comments: MayBe.of(getComments(x.permalink.

replace("?ref=search_posts",".json"))).chain(x => {
 return x.length
 })
 }
 }))

 return ans;
}

Now calling the above code:

mergeViaChain("functional programming")

will return the following:

[{ title: 'ELI5: what is functional programming and how is it different
from OOP',
 comments: 2 },
 { title: 'ELI5 why functional programming seems to be "on the rise" and
how it differs from OOP',

 comments: 2 }]

Bingo! We won! The solution looks so elegant! But still we haven’t seen a Monad,
have we?

So What Is a Monad?
You might be wondering why we started the chapter with a promise of teaching you a
Monad! But still now we haven’t defined what a Monad is. I'm sorry for not defining the
Monad, but you have already seen it in action. (What?!!)

Yes, Monad is a functor that has a chain method! Yeah, that’s it, that’s what a Monad
is! As you have already seen, we have extended our favorite MayBe functor to add a chain
(and of course a join function) to make it a Monad!

We started with an example of a functor to solve an ongoing problem and ended
up solving the problem using a Monad without even being aware of using it! That’s
intentional from my side as I wanted to see the intuition behind Monad (the problem it
solves in hand with a functor)! I could have started with a simple definition of Monad, but
that directly shows what a Monad is, but it won’t show why a Monad!

You might be in confused thinking about whether MayBe is a Monad or a Functor! don't get
confused: MayBe with only of and map is a Functor. a functor with chain is a Monad!

ChapTeR 9 ■ MOnads in depTh

140

Summary
In this chapter we have seen a new Functor type called Monad. We discussed the problem
of how repetitive maps will cause nested values, which become tough to handle later! We
introduced a new function called chain, which helps to flatten the MayBe data. We saw
that a pointed functor with a chain is called a Monad. In the current chapter, we were
using a third- party library to create AJAX calls. In the next chapter, we will be seeing a
new way to think of Asynchronous calls.

141© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8_10

CHAPTER 10

Pause, Resume with
Generators

 ■ Note The chapter examples and library source code are in branch chap10. The repo’s
URL is: https://github.com/antoaravinth/functional-es6.git

Once checkout the code, please checkout branch chap10:

...

git checkout -b chap10 origin/chap10

...

For running the codes, as before run:

...

npm run playground

...

We started the book with a simple definition of functions. Then we constantly saw how
to use functions to do great things using functional programming technique. We have
seen how to handle arrays, objects, and error handling, in pure functional terms. It has
been quite a long journey for us. But still we have not talked about yet another important
technique that every JavaScript developer should be aware of – asynchronous code.

You have dealt with a whole lot of asynchronous codes in your project. You might
be wondering whether functional programming can help developers in asynchronous
code? The answer is yes and no. The technique that I'm going to showcase here is using
ES6 Generators. Generators are new specs for functions in ES6. Generators are not
really a functional programming technique; however, it’s part of a function (functional
programming is about function, right?); for that reason we have dedicated a chapter for it
in this functional programming book!

https://github.com/antoaravinth/functional-es6.git#_blank

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

142

even if you are a big fan of promises (which is a technique for solving the callback problem),
i would still advise you to have a look at this chapter. i will bet you, that you are going to love
generators and the way they solve the async code problems!

Async Code and Its Problem
Before we really see what generators are, let's discuss the problem of handling async code
in JavaScript in this section. We are going to talk about a Callback Hell problem. If you
already knew what it is, you are free to move to the next section. For others, please read on.

Callback Hell
Imagine you have a function like the following:

Listing 10-1. Synchronous functions

let sync = () => {
 //some operation
 //return data
}

let sync2 = () => {
 //some operation
 //return data
}

let sync3 = () => {
 //some operation
 //return data
}

The above functions sync, sync1, and sync2 do some operations synchronously and
return the results. As a result, one can call these functions like this:

result = sync()
result2 = sync2()
result3 = sync3()

What if the operation is asynchronous? Let’s see it in action:

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

143

Listing 10-2. Asynchronous functions

let async = (fn) => {
 //some async operation
 //call the callback with async operation
 fn(/* result data */)
}

let async2 = (fn) => {
 //some async operation
 //call the callback with async operation
 fn(/* result data */)
}

let async3 = (fn) => {
 //some async operation
 //call the callback with async operation
 fn(/* result data */)
}

synchronous vs. asynchronous

synchronous is when the function blocks the caller when it is executing and returns the
result once it’s available.

asynchronous is when the function doesn't block the caller when it’s executing the function
but returns the result once available.

we deal with asynchronous heavily when we deal with an aJaX request in our project.

Now if someone wants to process these functions at once, how they do it? The only
way to do it is like this:

Listing 10-3. Async functions calling example

async(function(x){
 async2(function(y){
 async3(function(z){
 ...
 });
 });
});

Oops! You can see in the above code (Listing 10-3), we are passing many callback
functions to our async functions! This little piece of code showcases what Callback Hell
is! Callback Hell makes the program harder to understand. Handling errors and bubbling
the errors out of callback are tricky and always error prone.

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

144

Before ES6 arrived, JavaScript developers used Promises to solve the above problem.
Promises are great, but given the fact that ES6 has generators at language level, we don’t
need Promises anymore!

Generators 101
As mentioned, generators are part of ES6 specifications and it’s bundled up at language
level. We talked about using generators helping in handling async code. But before we get
there, we are going to talk about the fundamentals of generators. This section will focus
on explaining the core concepts behind generators. Once we learn the basics, we will be
creating a generic function using generators to handle async code in our library. That’s
the plan of this chapter. Let’s begin.

Creating Generators
Let’s start our journey by seeing how to create generators in the first place. Generators are
nothing but a function that comes up with its own syntax. A simple generator looks like
the following:

Listing 10-4. First Simple Generator

function* gen() {
 return 'first generator';
}

The function gen in the above code is a generator. As you might notice, we have used an
asterisk before our function name (in this case gen) to denote that it’s a generator function! Al
right, we have seen how to create a generator; now let’s see how to invoke a generator:

let generatorResult = gen()

What will be the result of generatorResult? Is it going to be first generator value?
Let’s print it on the console and inspect it:

console.log(generatorResult)

The result will be:

gen {[[GeneratorStatus]]: "suspended", [[GeneratorReceiver]]: Window}

The above result shows that the generatorResult is not a normal function, but an
instance of Generator primitive type! So the question is how to get the value from this
generator instance? The answer is to call the function next, which is available on the
generator instance. So to get the value you need to do this:

generator.next()

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

145

The above code returns:

Object {value: "hello world", done: true}

As you can see the returned object from next has value and is done. So we need to
call next along with fetching a value from the object:

generator.next().value
=> 'first generator'

That’s great!

Caveats of Generators
The above examples show how to create a generator, how to create an instance for it, and
how it gets value. But there are a few important things we need to take care of while we
are working with generators.

The first thing is that we can't call next as many times as we want to get the value
from the generator. To make it clearer, let’s try to fetch a value from our first generator
(Refer Listing 10-4 for first generator definition):

let generatorResult = gen()

//for the first time
generatorResult.next().value
=> 'first generator'

//for the second time
generatorResult.next().value
=> undefined

As you can see in the above code, calling next for the second time will return an
undefined rather than first generator. The reason is that generators are like sequences:
once the values of the sequence are consumed, you can't consume it again. In our case
generatorResult is a sequence that has value as a first generator. With our first call
to next, we (as the caller of the generator) have consumed the value from the sequence.
Since the sequence is empty by now, calling it a second time will return you undefined!

In order to consume the sequence again, you need to create another generator instance:

let generatorResult = gen()
let generatorResult2 = gen()

//first sequence
generatorResult.next().value
=> 'first generator'

//second sequence
generatorResult2.next().value
=> 'first generator'

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

146

The above code also shows that different instances of Generators can be in different
states. The key takeaway here is that each generator's state depends on how we are calling
the next function on it.

yield New Keyword
With generator functions, there is a new keyword that we can use called yield. In this
section, we are going to see how to use yield within a generator function.

Let’s start with the below code:

Listing 10-5. Simple Generator Sequence

function* generatorSequence() {
 yield 'first';
 yield 'second';
 yield 'third';
}

As usual we can create a generator instance for the above code:

let generatorSequence = generatorSequence();

Now if we call next for the first time we get back the value first:

generatorSequence.next().value
=> first

What happens if we call next again? Do we get first? Or second? Or third? Or
Error? Let’s find that out:

generatorSequence.next().value
=> second

What? We got back the value second, how come? yield makes the generator
function pause the execution and send back the result to the caller. So when we call
generatorSequence for the first time, the function sees the yield with value first, so it put
the function to pause mode and returned back the value (and it remembers where it exactly
paused, too). The next time, we call the generatorSequence (using the same instance
variable), the generator function resumes from where it left off. Since it paused at the line:

yield 'first';

for the first time, when we call it for second time (using the same instance variable), we
get back the value second. What happens when we call it for the third time? Yeah, we will
get back the value third!

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

147

This is better explained by looking at Figure 10-1:

This sequence is explained via the code here:

Listing 10-6. Calling our generator sequence

//get generator instance variable
let generatorSequenceResult = generatorSequence();

console.log('First time sequence value',generatorSequenceResult.next().
value)
console.log('Second time sequence value',generatorSequenceResult.next().
value)
console.log('thrid time sequence value',generatorSequenceResult.next().
value)

prints back to the console:

First time sequence value first
Second time sequence value second
third time sequence value third

With that understanding in place, you can see why we call a generator as a sequence
of values! One more important point to keep in mind is that all generators with yield will
execute in lazy evaluation order.

first first

second second

third third

Generator Sequence

next

yield value ‘first’ yield value ‘second’ yield value ‘third’

next next

Paused Generator Location

first

second

third

first

second

third

Figure 10-1. Visual View Of Generator Listed In 10-4

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

148

Lazy evaluation

what is lazy evaluation? To put it in simple terms, lazy evaluation means the code won’t run
until we ask it to run. as you can guess, the example of generatorSequence function shows
that Generators are lazy evaluated. The values are being executed and returned only when
we ask for them. That’s so lazy about Generators, isn't it?

done Property of Generator
Now we have seen how a generator can produce a sequence of values lazily with the
yield keyword. But a generator can produce n numbers of sequence; as a user of the
generator function, how will you know when to stop calling next? Because calling next on
your already consumed generator sequence will give back the undefined value. How to
handle this situation? This is where the done property comes into the picture.

Remember that every call to the next function is going to return back an object that
looks like the following:

{value: 'value', done: false}

We are aware that the value is the value from our generator. But what about done?
done is a property that is going to tell whether the generator sequence has been fully
consumed or not.

We will rerun the code from previous sections here (Listing 10-4), just to print the
object being returned from the next call:

Listing 10-7. Code For Understanding done property

//get generator instance variable
let generatorSequenceResult = generatorSequence();

console.log('done value for the first time',generatorSequenceResult.next())
console.log('done value for the second time',generatorSequenceResult.next())
console.log('done value for the third time',generatorSequenceResult.next())

Running the above code will print the following:

done value for the first time { value: 'first', done: false }
done value for the second time { value: 'second', done: false }
done value for the third time { value: 'third', done: false }

As you can see we have consumed all the values from the generator sequence, so
calling next again will return the following object:

console.log(generatorSequenceResult.next())
=> { value: undefined, done: true }

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

149

Now the done property clearly tells us that the generator sequence is already fully
consumed! When the done is true, it’s time for us to stop calling next on that particular
generator instance! Again it can be better visualized with Figure 10-2:

Since Generator become the core part of ES6, we have a for loop that will allow us to
iterate a generator (after all it’s a sequence. :)

for(let value of generatorSequence())
 console.log("for of value of generatorSequence is",value)

which is going to print:

for of value of generatorSequence is first
for of value of generatorSequence is second
for of value of generatorSequence is third

notably for using the generator’s done property to iterate through it!

Passing Data to Generators
In this section, let’s discuss how we pass data to generators. Passing data to generators might
feel confusing at first, but as you will see in this chapter, it makes async programming easy!

Let’s take a look at the following code snippet:

Listing 10-8. Passing Data Generator Example

function* sayFullName() {
 var firstName = yield;
 var secondName = yield;
 console.log(firstName + secondName);
}

first

second

third

done : false done : false done : false done : true

first

second

third

first

second

third

first

second

third

Generator
Sequence

next next next

yield value ‘first’ yield value ‘second’ yield value ‘third’

Paused Generator Location

Figure 10-2. Visual View Of Generators done property for generatorSequence

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

150

The code snippet now might be not a surprise for you. Let’s use this code to explain
the concept of passing data to the generator. As always, we create a generator instance first:

let fullName = sayFullName()

Once the generator instance is created, let’s call next on it:

fullName.next()
fullName.next('anto')
fullName.next('aravinth')
=> anto aravinth

In the above code snippet the last call will print anto aravinth to the console! You
might be confused with this result, so let’s walk over the code slowly. When we call the
next for the first time:

fullName.next()

the code will return and pause at the line:

var firstName = yield;

Since here we are not sending any value back via yield, next will return a value
undefined. The second call to next is where an interesting thing happens:

fullName.next('anto')

Here we are passing value anto to the next call! Now the generator will be resumed
from its previous paused state, if you remember the previous paused state is on the line:

var firstName = yield;

Since we have passed value anto on this call, yield will be replaced by anto and thus
firstName holds the value anto. After the value is being set to firstName, the execution
will be resumed (from the previous paused state) and again sees the yield and stops the
execution at:

var secondName = yield;

Now for the third time, if we call next:

fullName.next('aravinth')

When this line gets executed, our generator will resume from where it paused. The
previous paused state is:

var secondName = yield;

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

151

As before, the passed value aravinth of our next call will be replaced by yield and
aravinth is set to secondName. Then the generator happily resumes the execution and
sees the statement:

console.log(firstName + secondName);

By now, firstName is anto and secondName is aravinth, so the console will print
anto aravinth.

This full process is explained in Figure 10-3:

You might be wondering why we need such an approach. It turns out that using
generators by passing data to them makes it very powerful. We will be using the same
technique in the next section to handle async calls!

Using Generators to Handle Async Calls
In this section, we are going to use generators in real-world stuff. We are going to see how
passing data to generators make them very powerful to handle async calls. We are going
to have quite a lot of fun in this section!

Generators for Async - A Simple Case
In this section, we are going to see how to use generators for handling async code. Since
we are getting started with a different mindset of using generators to solve the async
problem, I want it to keep the section simple. So we will be mimicking the async calls with
setTimeout calls!

Imagine you have two functions (which are async in nature):

Listing 10-9. Simple Asynchronous Functions

let getDataOne = (cb) => {
 setTimeout(function(){
 //calling the callback
 cb('dummy data one')
 }, 1000);
}

firstName yield
next

paused at firstName yield paused at secondName yield No more yield execution finishes
and returns to the caller.

next

anto

next

yield is replaced by ‘anto’ yield is replaced by aravinth

aravinth

secondName yield

firstName yield*

secondName yield

firstName ‘anto’ firstName anto

secondName yield* secondName aravinth

Figure 10-3. Explaining How Data Is Passed To sayFullName Generator

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

152

let getDataTwo = (cb) => {
 setTimeout(function(){
 //calling the callback
 cb('dummy data two')
 }, 1000);
}

Both of the above functions mimics the async code with setTimeout. Once the
desired time has elapsed, setTimeout will call the passed callback cb with value dummy
data one and dummy data two respectively. Let’s see how we will be calling these two
functions without generators in the first place:

getDataOne((data) => console.log("data received",data))
getDataTwo((data) => console.log("data received",data))

The above code will print:

data received dummy data one
data received dummy data two

after 1000ms.
Now as you notice, we are passing the callbacks to get back the response. We have

talked about how bad the Callback Hell can be in async code. Let’s use our generator
knowledge to solve the current problem. We now change both the functions getDataOne
and getDataTwo to use generator instances rather than callbacks for passing the data.

First let’s change the function getDataOne (Listing 10-8) to:

Listing 10-10. Changing getDataOne to use generator

let generator;
let getDataOne = () => {
 setTimeout(function(){
 //call the generator and
 //pass data via next
 generator.next('dummy data one')
 }, 1000);
}

We have changed the callback line from:

. . .
cb('dummy data one')
. . .

to

generator.next('dummy data one')

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

153

That’s a simple change. Note that we have also removed the cb, which is not required
in this case. We will do the same for getDataTwo (Listing 10-8) too:

Listing 10-11. Changing getDataTwo to use generator

let getDataTwo = () => {
 setTimeout(function(){
 //call the generator and
 //pass data via next
 generator.next('dummy data two')
 }, 1000);
}

Now with that change in place, let’s go and test our new code. We’ll wrap our call to
getDataOne and getDataTwo inside a separate generator function:

Listing 10-12. main generator function

function* main() {
 let dataOne = yield getDataOne();
 let dataTwo = yield getDataTwo();
 console.log("data one",dataOne)
 console.log("data two",dataTwo)
}

Now the main code looks exactly like sayFullName function from our previous section.
Let’s create a generator instance for main and trigger the next call and see what happens:

generator = main()
generator.next();

which will print the following to the console:

data one dummy data one
data two dummy data two

which is what exactly we wanted. Look at our main code; the code looks like
synchronous calls to the function getDataOne and getDataTwo. However both these calls
are asynchronous. Remember that these calls never block and they work in async fashion!
Let’s distill how this whole process works.

First we are creating a generator instance for main using the generator variable
that we declared earlier. Remember that this generator is used by both getDataOne and
getDataTwo to push the data to its call, which we will see soon. After creating the instance,
we are firing the whole process with the line:

generator.next()

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

154

This calls the main function. main function is put into execution and we see the first
line with yield:

. . .
let dataOne = yield getDataOne();
. . .

Now the generator will be put into pause mode as it has seen a yield statement. But
before it’s been put into pause mode, it calls the function getDataOne.

an important point to note here is that even though the yield makes the statement pause, it
won’t make the caller wait (i.e., caller is not blocked). To make the point more concrete, let’s
see the below code:

generator.next() //even though the generator pause for Async codes

console.log("will be printed")
=> will be printed
=> Generator data result is printed

The above code shows that even though our generator.next causes the Generator function
to wait on the next call, the caller (the one who is calling the generator) won’t be blocked!
as you can see above, console.log will be printed (showcasing generator.next isn't
blocked), and then we get the data from the generator once the async operation is done!

Now interestingly getDataOne function has the following line in its body:

. . .
 generator.next('dummy data one')
. . .

As we discussed in a previous section, calling next by passing parameter will resume
the paused yield! And that’s exactly what happens here in this case too! Remember that
this piece of line is inside setTimeout. So this line will get executed only when 1000ms
have elapsed. Still then, the code will be paused at the line:

let dataOne = yield getDataOne();

One more important point to note here is that while this line is paused, the timeout
will be running down from 1000 to 0. Once it reaches 0, it is going to execute the line:

. . .
 generator.next('dummy data one')
. . .

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

155

which is going to send back dummy data one to our yield statement. So the dataOne
variable becomes dummy data one:

//after 1000ms dataOne becomes
//`dummy data one`
let dataOne = yield getDataOne();
=> dataOne = `dummy data one`

That’s a lot of interesting stuff going around! And once dataOne is set to dummy data
one value, the execution will continue to the next line:

. . .
let dataTwo = yield getDataTwo();
. . .

This line is going to run the same way as the line before! So after the execution of this
line, we have dataOne and dataTwo:

dataOne = dummy data one
dataTwo = dummy data two

which is what is getting printed to the console at the final statements of the main function:

. . .
 console.log("data one",dataOne)
 console.log("data two",dataTwo)
. . .

The full process is shown in Figure 10-4:

Phew! Now you have made an Asynchronous call look like a Synchronous call, but it
works in an Asynchronous way!

yield getDataOne

yield getDataTwo

yield getDataOne*

next

getDataOne is executed
and generator is paused

when getDataOne is executed
the caller is not blocked

* paused statement

when getDataTwo is executed
the caller is not blocked

getDataOne

async task

getDataTwo

async task

yield getDataTwo

yield returnedValue

after 1000ms, getDataOne
finishes and call ‘next’

after 1000ms, getDataTwo
finishes and call ‘next’

yield returnedValue

yield returnedValueyield getDataTwo*

Figure 10-4. Image Explainging How main generators works internally

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

156

Generators for Async - A Real-World Case
In the previous section, we saw how to handle asynchronous code using generators
effectively. To mimic the async workflow we have used setTimeout. In this section, we
are going to use a function to fire a real AJAX call to Reddit APIs to showcase the power of
generators in the real world!

To make a async call, let’s create a function called httpGetAsync:

Listing 10-13. httpGetAsync function definition

let https = require('https');
function httpGetAsync(url,callback) {

 return https.get(url,
 function(response) {
 var body = '';
 response.on('data', function(d) {
 body += d;
 });
 response.on('end', function() {
 let parsed = JSON.parse(body)
 callback(parsed)
 })
 }
);

}

This is a simple function that uses a https module from node to fire an AJAX call to
get the response back.

here we are not going to see in detail how httpGetAsync function works. The problem we
are trying to solve is how to convert functions like httpGetAsync, which works the async
way but expects a callback to get the response from aJaX calls.

Let’s check the httpGetAsync by passing a reddit URL:

httpGetAsync('https://www.reddit.com/r/pics/.json',(data)=> {
 console.log(data)
})

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

157

It works by printing the data to the console. The URL https://www.reddit.com/r/
pics/.json prints the list of json about Picture Reddit page. The returned json has a data
key whose structure looks like the following:

{ modhash: '',
 children:
 [{ kind: 't3', data: [Object] },
 { kind: 't3', data: [Object] },
 { kind: 't3', data: [Object] },
 . . .
 { kind: 't3', data: [Object] }],
 after: 't3_5bzyli',
 before: null }

Imagine we want to get the URL of the first children of the array; we need to navigate
to data.children[0].data.url. This will give us a URL like https://www.reddit.com/r/
pics/comments/5bqai9/introducing_new_rpics_title_guidelines/. Since we need
to get the json format of the given URL, we need to append .json to the URL, so that
it becomes https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_
rpics_title_guidelines/.json.

Now let’s see that in action:

httpGetAsync('https://www.reddit.com/r/pics/.json',(picJson)=> {
 httpGetAsync(picJson.data.children[0].data.url+".
json",(firstPicRedditData) => {
 console.log(firstPicRedditData)
 })
})

The above code will print the data as required. We are least worried about the data
being printed. But we are worried about our code structure. As we have seen in the
beginning of the chapter, code that looks like this suffers from Callback Hell. Here there
are two levels of callbacks that might not be a real problem. But what if it goes to 4-5
nested levels? Can you read such codes easily? Definitely not. Now let’s find out how to
solve the problem via generator!

Let’s wrap httpGetAsync inside a separate method called request:

Listing 10-14. request function

function request(url) {
 httpGetAsync(url, function(response){
 generator.next(response);
 });
}

https://www.reddit.com/r/pics/.json
https://www.reddit.com/r/pics/.json
https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_rpics_title_guidelines/
https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_rpics_title_guidelines/
https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_rpics_title_guidelines/.json
https://www.reddit.com/r/pics/comments/5bqai9/introducing_new_rpics_title_guidelines/.json

ChapTeR 10 ■ paUse, ResUme wiTh GeneRaTORs

158

We have removed the callback with the generators’ next call, very similar to our
previous section. Now let’s wrap our requirement inside a generator function; again we
call it main:

Listing 10-15. main generator function

function *main() {
 let picturesJson = yield request("https://www.reddit.com/r/pics/.json");
 let firstPictureData = yield request(picturesJson.data.children[0].data.

url+".json")
 console.log(firstPictureData)
}

The above main function looks very similar to the main function that we have defined
in Listing 10-11 (only change is method call details). In the code we are yielding on
two calls to request. As you have seen in the setTimeout example, calling yield on
request will make it pause until request calls the generator next by sending the AJAX
response back! The first yield will get the json of pictures, and the second yield gets the
first picture data by calling request respectively! Now we have made the code look like
synchronous code, but in reality it works in asynchronous fashion!

We have also escaped from Callback Hell using generators. Now the code looks clean
and clearly tells what it’s doing! That’s so much more power for us!

Try running it:

generator = main()
generator.next()

It’s going to print the data as required! We have clearly seen how to use generators to
convert any function that expects a callback mechanism into a generator based one. In
turn, we get back clean code for handling an asynchronous operation.

Summary
The world is full of AJAX calls. There was a time when handling AJAX calls, we needed
to pass a callback to process the result. Callbacks have their own limitations. Too many
callbacks create Callback Hell problems. We have seen in this chapter a new type in
JavaScript called Generator. Generators are functions that can be paused and resumed
using the next method. The next method is available on all generator instances. We have
seen how to pass data to generator instances using the next method. The technique of
sending data to generators helps us to solve the asynchronous code problem. We have
seen how to use Generator to make Asynchronous code look synchronous, which is a very
powerful technique for any JavaScript developer!

159© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8

Appendix A

How to Install Node In Your System
 1. Navigate to https://nodejs.org/en/download/.

 2. Select your operating system and download the installer.

 3. Run the installer.

 4. Finish the setup.

Installing Depedencies
In node, we will install the dependencies via npm. npm will be part of your installation.

Run the following command to install babel:

npm install -g babel

Run the following command to install babel-node:

npm install -g babel-cli

Note that -g will install the scripts globally.

https://nodejs.org/en/download/

161© Anto Aravinth 2017
A. Aravinth, Beginning Functional JavaScript, DOI 10.1007/978-1-4842-2656-8

��������� A
Abstraction, 5
Arguments function, 21
Arrays

chain (see Chaining
operations)

functions, 58
filter, 61
map, 58

overview, 57
reduce function, 67
zipping arrays

apressBooks object, 72
reviewDetails object, 73
zip function, 73

Arrow functions, 17
Asynchronous, 143, 155

��������� B
Binary function, 78

��������� C
Cachable function, 10
Callback Hell problem, 142
Chaining operations, 62

apressBooks, 63
concatAll, 63
implementation, 137
projection functions, 63

Closures
definition, 45
memoize function, 53–55
once function, 52–53
sortBy function, 49

tap function, 50–51
unary function, 51

Closures. See Higher-order functions
Composable. See Pipelines/sequence
compose function, 98
Composition, 93

compose function, 97–98
curry/partial function, 99
grep command, 94
many function, 102
map and filter function, 96
Unix philosophy, 94

concatAll function, 63
Container function, 108
crazy function, 32
Create and execute functions

arguments, 21
arrow functions, 17
ES5 functions, 21
first simple function, 17
multiple statement, 20
return statement, 19
strict mode, 18
transpiler, 16

Currying/partial application
addCurried function, 80
array

finding number, 87
square, 88

binary function, 78
data flow, 88

partial application, 89
partial function

implementation, 89
definition, 79
handling arguments, 83–84
logger function, 82–83, 86

Index

■ INDEX

162

nested unary function, 84–85
vs. partial application, 92
revisting curry function, 83
tables function using currying, 81
tables function without currying, 81
terminologies, 77
unary function, 78
variadic functions, 78–79

��������� D
Data flow, 88

implementing
partial function, 89–91

partial application, 89
Data types

nutshell, 30
passing a function, 31
returning a function, 32
storing a function, 30

Declarative programming, 5
done properties, 148–149

��������� E
ECMASCRIPT, 16
Either functor

creation, 118
implementation, 118
reddit, 120

Error handling, 107
ES6 functions

babel-node, 26
exports, 25
ES6-Functionals, 12
imports, 25
initial setup, 22
loop problem, 23
modules, 25
Npm, 26
project setup, 21
source code, 27

every function, 37

��������� F
filter function, 61
fns.reverse() function, 102
forEach function, 24–25

Functional programming, 1
abstraction, 5
benefits, 6
cachable, 10
declarative, 5
definitions, 2
ES6-Functionals, 12
imperative paradigm, 5
JavaScript, 13
mathematics, 1
meaning, 1
vs. methods, 3
parallel code, 9
pipelines and

composable, 11
pure functions (see

Pure functions)
referential transparency, 4
tax function calculation, 2

Functions
arrow, 15
create and execute (see Create and

execute functions)
ECMASCRIPT, 16

Functor, 107
container, 108
definition, 107
Either

creation, 118
implementation, 118
reddit function, 120

map function, 109
MayBe (see MayBe)
point clear, 123

��������� G
Generators

Callback Hell problem, 142
caveats, 145
creation, 144
definition, 141
done properties, 148–149
handle async calls, 151

getDataOne function, 152
httpGetAsync function, 156
real-world case, 156
simple case, 151

passing data, 149
yield keyword, 146

Currying/partial application (cont.)

■ INDEX

163

getTopTenSubRedditData method, 117
getTopTenSubRedditPosts function,

115, 120

��������� H
Handling async code, 144
Handling errors. See Error handling
Higher-Order functions

abstraction
definition, 33
definitions of, 33
forEach function, 34
forEachObject function, 35
times function, 36–37
unless function, 35–36

data (see Data types)
every function, 37
meaning, 29
some function, 38
sort (see Sort function)

httpGetAsync function, 157

��������� I
Imperative programming, 5

��������� J, K
join implementation, 135–137

��������� L
Lazy evaluation, 148
logger function, 82, 86
longRunningFnBookKeeper

function, 10
longRunningFunction function, 10

��������� M
many function, 102
map

apressBooks object, 60
arrays, 61
arrayUtils object, 59
definition, 58
filter function, 96
forEach function, 58
functor, 109

Mathematical functions, 2
Math.max function, 8
MayBe

getTopTenSubRedditPosts
function, 115

handle errors/exception, 111
implementation, 111–112
map function, 113
real-world use cases, 114
use cases, 112

Memoize function, 53–55
mergeViaMayBe function, 130
Methods, 3
Monads. See also Functor

chain implementation, 137
definition, 125
getComments implementation, 130
implementation, 128
join implementation, 135
map function, 134
mergeViaJoin, 136
mergeViaMayBe, 130
method, 139
problems, 126
Reddit API endpoint, 126
reddit comments, 125

Multiple statement functions, 20

��������� N
Npm script creation, 26

��������� O
once function, 52–53

��������� P, Q
Parallel code, 9
Partial application vs. Curry function, 92
Passing data, 149
Pipelines/sequence, 103

composition is associative, 104
left-most function, 103
odds, 104
pipe function, 104
pipelines, 11
right-most function, 103
tap function, 105

Pointed functor, 123

■ INDEX

164

Pure functions
definition, 6
external environment, 7
Math.max function, 8
mathematical function, 11
reasonable code, 8
testable code, 6

��������� R
reduce function, 67
Referential transparency, 4

��������� S
script-compiled.js file, 18
some function, 38
Sort function

compareFunction, 39–42
in-built function, 39
sortBy function, 41

Strict modes, 18
Synchronous vs. Asynchronous, 143

��������� T
tap function, 50–51, 105
tellType function, 31
times function, 36–37

��������� U
unary function, 51
Unix philosophy, 94
Unless function, 35

��������� V, W, X
variadic function, 78–79

��������� Y
yield keyword, 146

��������� Z
zip function, 73–75

	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Chapter 1: Functional Programming in Simple Terms
	What Is Functional Programming? Why It Matters?
	Referential Transparency
	Imperative, Declarative, Abstraction
	Functional Programming Benefits
	Pure Functions
	Pure Functions Lead to Testable Code
	Reasonable Code

	Parallel Code
	Cachable
	Pipelines and Composable
	Pure Function Is a Mathematical Function
	What We Are Going to Build
	Is JavaScript a Functional Programming Language?
	Summary

	Chapter 2: Fundamentals of JavaScript Functions
	ECMAScript A Bit of History
	Creating and Executing Functions
	First Function
	Strict Mode
	Return Statement Is Optional
	Multiple Statement Functions
	Function Arguments
	ES5 Functions Are Valid in ES6

	Setting Up Our Project
	Initial Setup
	Our First Functional Approach to the Loop Problem
	Gist on Exports
	Gist on Imports
	Running the Code Using Babel-Node
	Creating Script in Npm
	Running the Source Code from Git

	Summary

	Chapter 3: Higher-Order Functions
	Understanding Data
	Understanding JavaScript Data Types
	Storing a Function
	Passing a Function
	Returning a Function

	Abstraction and Higher-Order Functions
	Abstraction Definitions
	Abstraction via Higher-Order Functions

	Higher-Order Functions in the Real World
	every Function
	some Function
	sort Function

	Summary

	Chapter 4: Closures and Higher-Order Functions
	Understanding Closures
	What Are Closures?
	Remembering Where It Is Born
	Revisiting sortBy Function

	Higher-Order Functions in the Real World (Continued)
	tap Function
	unary Function
	once Function
	Memoize Function

	Summary

	Chapter 5: Being Functional on Arrays
	Working Functionally on Arrays
	map
	filter

	Chaining Operations
	concatAll

	Reducing Function
	reduce Function

	Zipping Arrays
	zip Function

	Summary

	Chapter 6: Currying and Partial Application
	A Few Terminologies
	unary Function
	Binary Function
	variadic Functions

	Currying
	Currying Use Cases
	A logger Function - Using Currying
	Revisit Curry
	Back to logger Function

	Currying in Action
	Finding number in Array Contents
	squaring an Array

	Data Flow
	Partial Application
	Implementing partial Function
	Currying vs. Partial Application

	Summary

	Chapter 7: Composition and Pipelines
	Composition in General Terms
	Unix Philosophy

	Functional Composition
	Revisiting map,filter
	compose Function

	Playing with compose function
	curry and partial to the Rescue
	compose many function

	Pipelines / Sequence
	Implementing pipe
	Odds on Composition
	Composition is associative

	Debugging Using tap Function

	Summary

	Chapter 8: Fun with Functors
	What Is a Functor?
	Functor Is a Container
	Functor Implements Method Called map

	MayBe
	Implementing MayBe
	Simple Use Cases
	Real-World Use Cases

	Either Functor
	Implementing Either
	Reddit Example Either Version

	Word of Caution - Pointed Functor
	Summary

	Chapter 9: Monads in Depth
	Getting Reddit Comments for Our Search Query
	The Problem
	Implementation of the First Step
	Problem of So Many maps

	Solving the Problem via join
	join Implementation
	chain Implementation
	So What Is a Monad?

	Summary

	Chapter 10: Pause, Resume with Generators
	Async Code and Its Problem
	Callback Hell

	Generators 101
	Creating Generators
	Caveats of Generators
	yield New Keyword
	done Property of Generator
	Passing Data to Generators

	Using Generators to Handle Async Calls
	Generators for Async - A Simple Case
	Generators for Async - A Real-World Case

	Summary

	Appendix A
	How to Install Node In Your System
	Installing Depedencies

	Index

