




Building	High	Integrity	Applications	with
SPARK	

Software	is	pervasive	in	our	lives.	We	are	accustomed	to	dealing	with	the	failures	of	much
of	that	software	–	restarting	an	application	is	a	very	familiar	solution.	Such	solutions	are
unacceptable	 when	 the	 software	 controls	 our	 cars,	 airplanes,	 and	 medical	 devices	 or
manages	 our	 private	 information.	 These	 applications	 must	 run	 without	 error.
SPARK	provides	a	means,	on	the	basis	of	mathematical	proof,	to	guarantee	that	a	program
has	 no	 errors.	 This	 book	 provides	 an	 introduction	 to	 SPARK	 2014	 for	 students	 and
developers	wishing	to	master	the	basic	concepts	for	building	systems	with	SPARK.

SPARK	 is	 a	 formally	 defined	 programming	 language	 and	 a	 set	 of	 verification	 tools
specifically	 designed	 to	 support	 the	 development	 of	 software	 used	 in	 high	 integrity
applications.	Using	SPARK,	developers	can	formally	verify	properties	of	their	code	such	as
information	flow,	freedom	from	runtime	errors,	functional	correctness,	security	properties,
and	safety	properties.
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Preface

SPARK	 is	 a	 formally	 defined	 programming	 language	 and	 a	 set	 of	 verification	 tools
specifically	designed	to	support	the	development	of	high	integrity	software.	Using	SPARK,
developers	can	formally	verify	properties	of	their	code	such	as

information	flow,
freedom	from	runtime	errors,
functional	correctness,
security	policies,	and
safety	policies.

SPARK	meets	the	requirements	of	all	high	integrity	software	safety	standards,	including
DO-178B/C	 (and	 the	 Formal	 Methods	 supplement	 DO-333),	 CENELEC	 50128,	 IEC
61508,	 and	 DEFSTAN	 00-56.	 SPARK	 can	 be	 used	 to	 support	 software	 assurance	 at	 the
highest	 levels	 specified	 in	 the	 Common	 Criteria	 Information	 Technology	 Security
Evaluation	standard.

It	 has	 been	 twenty	 years	 since	 the	 first	 proof	 of	 a	 nontrivial	 system	 was	 written	 in
SPARK	 (Chapman	 and	 Schanda,	 2014).	 The	 27,000	 lines	 of	 SPARK	 code	 for	 SHOLIS,	 a
system	 that	 assists	with	 the	 safe	 operation	 of	 helicopters	 at	 sea,	 generated	 nearly	 9,000
verification	 conditions	 (VCs).	 Of	 these	 VCs,	 75.5%	 were	 proven	 automatically	 by	 the
SPARK	 tools.	 The	 remaining	 VCs	 were	 proven	 by	 hand	 using	 an	 interactive	 proof
assistance	tool.	Fast-forward	to	2011	when	the	NATS	iFACTS	enroute	air	 traffic	control
system	went	online	in	the	United	Kingdom.	The	529,000	lines	of	SPARK	code	were	proven
to	 be	 “crash	 proof.”	 The	 SPARK	 tools	 had	 improved	 to	 the	 point	 where	 98.76%	 of	 the
152,927	VCs	were	proven	automatically.	Most	of	the	remaining	proofs	were	accomplished
by	the	addition	of	user-defined	rules,	leaving	only	200	proofs	to	be	done	“by	review.”

Although	 SPARK	 and	 other	 proof	 tools	 have	 significant	 successes,	 their	 use	 is	 still
limited.	Many	software	engineers	presume	that	the	intellectual	challenges	of	proof	are	too
high	to	consider	using	these	technologies	on	their	projects.	Therefore,	an	important	goal	in
the	 design	 of	 the	 latest	 version	 of	 SPARK,	 called	 SPARK	 2014,	 was	 to	 provide	 a	 less
demanding	approach	for	working	with	proof	tools.	The	first	step	toward	this	goal	was	the
arrival	 of	 Ada	 2012	 with	 its	 new	 syntax	 for	 contracts.	 We	 no	 longer	 need	 to	 write
SPARK	assertions	as	special	comments	in	the	Ada	code.	The	subset	of	Ada	that	is	legal	as
SPARK	language	has	grown	to	encompass	a	larger	subset	of	Ada,	giving	developers	a	much
richer	set	of	constructs	from	which	to	develop	their	code.

The	 real	 power	 of	 SPARK	 2014	 is	 under	 the	 hood.	 The	 new	 set	 of	 SPARK	 tools	 is
integrated	with	the	front	end	of	the	GNAT	compiler.	This	merger	allows	the	SPARK	tools	to
make	direct	use	of	 the	many	code	analyses	performed	by	 the	GNAT	compiler.	Also,	 the
new	 tools	 use	 an	 entirely	 new	 proof	 system	 based	 on	 the	 Why3	 software	 verification
system	(Bobot	et	al.,	2011).	Why3	manages	a	collection	of	modern	satisfiability	modulo
theory	 (SMT)	 provers	 such	 as	 Alt-Ergo	 (OCamlPro,	 2014),	 CVC4	 (New	 York
University,	 2014),	 YICES	 (Dutertre,	 2014),	 and	 Z3	 (Bjørner,	 2012)	 that	 complete	 the
actual	proving	of	 the	contracts	 in	our	program.	These	underlying	proof	 tools	can	handle



far	more	situations	than	the	original	SPARK	prover.	Do	not	be	put	off	by	this	high-powered
mathematical	foundation;	you	do	not	need	knowledge	of	these	low-level	proof	tools	to	use
SPARK.

Another	significant	improvement	in	SPARK	2014	is	the	integration	of	proof	and	testing
techniques.	The	Ada	2012	assertions	in	a	SPARK	program	can	be	checked	dynamically	by
running	test	cases.	Alternatively,	these	assertions	can	be	proven	correct	by	the	SPARK	proof
tools.	Such	a	mixed	verification	approach	allows	us	to	incrementally	increase	the	level	of
formality	in	our	programs.	Having	the	ability	to	combine	testing	and	proof	also	allows	us
to	more	easily	verify	programs	written	in	a	mixture	of	languages.

It	 is	 useful	 to	 distinguish	 between	 SPARK	 as	 a	 programming	 language	 and	 the
SPARK	 tools	 that	 perform	 the	 analysis	 and	 proof	 of	 program	properties.	 The	 removal	 of
difficult-to-analyze	 features	 such	 as	 access	 types	 and	 exceptions	makes	 the	SPARK	2014
language	a	subset	of	Ada	2012.	Yet,	the	SPARK	2014	language	also	extends	Ada	2012	with
additional	 pragmas	 and	 aspects.	 The	 SPARK	 language	 is	 described	 in	 the	 SPARK	 2014
Reference	Manual	 (SPARK	Team,	2014a)	and	could	potentially	be	 implemented	by	many
Ada	compiler	vendors.

At	the	time	of	this	writing,	Altran/AdaCore’s	implementation	of	SPARK	is	the	only	one
that	exists.	Details	of	their	implementation	are	described	in	the	SPARK	2014	Toolset	User’s
Guide	 (SPARK	 Team,	 2014b).	 Because	 there	 is	 only	 one	 implementation	 of	 SPARK,	 it	 is
easy	 to	 assume	 that	 SPARK	 is	 really	 the	 union	 of	 behaviors	 described	 in	 the	 reference
manual	 and	 user’s	 guide.	 However,	 it	 is	 possible	 that	 another	 implementation	 of
SPARK	may	arise	that	implements	the	language	in	the	reference	manual	while	providing	a
different	user	experience.

As	 a	 convenience	 to	 the	 reader,	 in	 this	 book	 we	 have	 at	 times	 conflated	 SPARK	 the
language	and	SPARK	as	implemented	by	Altran/AdaCore.	With	only	one	implementation	of
SPARK	available,	this	approach	seems	reasonable,	and	it	has	the	advantage	of	streamlining
the	presentation.	For	example,	SPARK_Mode,	described	in	Section	7.1.1,	provides	a	way	of
identifying	which	parts	of	a	program	are	SPARK.	Technically,	SPARK_Mode	 is	 a	 feature	of
Altran/AdaCore’s	 implementation	 and	 not	 part	 of	 the	 SPARK	 language	 itself.	 Another
implementation	 of	 SPARK	 could	 conceivably	 use	 a	 different	 mechanism	 for	 identifying
SPARK	code.

It	is	also	important	to	understand	that	while	the	SPARK	language	is	relatively	static,	the
tools	 are	 rapidly	 evolving.	As	 the	 tools	mature	 they	 are	 able	 to	 automatically	 complete
more	 proofs	 faster	 than	 before.	 You	 may	 find	 that	 recent	 versions	 of	 the	 tools	 do	 not
require	as	many	hints	and	assertions	as	older	versions.	In	particular,	some	examples	in	this
book	may	be	provable	by	newer	tools	with	fewer	assertions	required	than	we	use	here.

The	 SPARK	 language	 includes	 the	 Ada	 2012	 constructs	 necessary	 for	 object-oriented
programming:	 tagged	 types,	 type	 extensions,	 dispatching	 operations,	 abstract	 types,	 and
interface	types.	Contract	notations	are	provided	for	ensuring	that	any	operations	applied	to
a	 superclass	 instance	 are	 also	 valid	 for	 instances	 of	 a	 subclass	 (the	Liskov	Substitution
Principle).	 We	 have	 elected	 not	 to	 cover	 the	 object-oriented	 aspects	 of
SPARK	programming	in	this	book.



Chapter	Synopses

Chapter	 1	 provides	 an	 overview	 of	 high	 integrity	 software	 and	 some	 approaches
commonly	 used	 to	 create	 high-quality	 software.	 The	 SPARK	 language	 and	 tool	 set	 are
described	in	the	context	of	reducing	defect	rates.

Chapter	2	introduces	the	basic	subset	of	Ada	2012	that	constitutes	the	SPARK	language.
SPARK’s	 decision	 and	 loop	 structures	will	 be	 familiar	 to	 all	 programmers.	 Subprograms
come	 in	 two	 forms:	 functions	 and	 procedures.	 A	 significant	 portion	 of	 this	 chapter	 is
devoted	to	types.	Ada	allows	us	to	define	our	own	simple	and	complex	types.	Using	these
types,	we	can	create	accurate	models	of	the	real	world	and	provide	valuable	information	to
the	SPARK	tools	so	we	can	identify	errors	before	the	program	is	executed.

Chapter	3	is	about	the	package.	Packages	facilitate	the	construction	of	large	programs.
We	use	packages	to	support	separation	of	concerns,	encapsulation,	information	hiding,	and
more.	A	 SPARK	 program	 consists	 of	 a	main	 subprogram	 that	 uses	 services	 provided	 by
packages.

Chapter	4	provides	the	first	look	at	contracts	–	assertions	about	the	program’s	behavior
that	must	be	 implemented	correctly	by	 the	developer.	Dependency	contracts	provide	 the
means	 to	verify	data	dependencies	 and	 information	 flow	dependencies	 in	our	programs.
Incorrect	implementation	of	data	dependencies	or	flow	of	information	can	lead	to	security
violations.	 The	 SPARK	 tools	 can	 check	 that	 the	 implementation	 conforms	 to	 the
requirements	of	 these	contracts.	This	analysis	offers	 two	major	services.	First,	 it	verifies
that	 uninitialized	data	 is	 never	used.	Second,	 it	 verifies	 that	 all	 results	 computed	by	 the
program	 participate	 in	 some	 way	 in	 the	 program’s	 eventual	 output	 –	 that	 is,	 all
computations	are	effective.

Chapter	5	provides	a	review	of	basic	discrete	mathematics	useful	in	reading	and	writing
contracts.	 Propositional	 and	 predicate	 logic	 provide	 the	 fundamental	 notions	 needed	 for
expressing	 the	 assertions	 in	 contracts	 that	 specify	 functional	 behavior.	 The	 existential
(there	 exists)	 and	 universal	 (for	 all)	 quantifiers	 of	 predicate	 logic	 are	 crucial	 in	 stating
assertions	 about	 collections.	 Although	 not	 necessary	 to	 use	 the	 SPARK	 tools,	 we	 give	 a
basic	 introduction	 to	 arguments	 and	 their	 validity.	 The	 verification	 conditions	 (VCs)
generated	by	the	SPARK	proof	tools	are	arguments	that	must	be	proven	valid	to	ensure	that
our	 implementation	fulfills	 the	contracts.	We	leave	 it	 to	 the	SPARK	 tools	 to	do	 the	actual
proofs.

Chapter	 6	 describes	 how	 to	 use	 the	 SPARK	 tools	 to	 prove	 behavioral	 properties	 of	 a
program.	The	first	step	is	the	proof	that	our	program	is	free	of	runtime	errors	–	that	is,	no
exceptions	 can	 ever	 be	 raised.	 By	 including	 contracts	 such	 as	 preconditions	 and
postconditions	with	each	subprogram,	we	state	 the	desired	functionality.	We	can	use	 the
SPARK	 tools	 to	 show	 that	 these	 contracts	 are	 always	 honored,	 and	 thus,	 our	 code
implements	 that	 functionality.	 In	 an	 ideal	world,	 the	 tools	would	need	only	our	 code	 to
verify	it	is	free	of	runtime	errors	and	meets	all	of	its	contracts.	In	reality,	the	tools	are	not
yet	smart	enough	to	accomplish	that	verification	alone.	When	a	proof	fails	in	a	situation
where	 we	 believe	 our	 code	 to	 be	 correct,	 we	 need	 to	 give	 the	 tool	 some	 additional
information	 it	 can	 use	 to	 complete	 its	 proof.	 This	 information	 comes	 in	 the	 form	 of
additional	assertions.



Chapter	7	explores	the	issues	around	building	programs	that	are	not	completely	written
in	SPARK.	 It	 is	often	 infeasible	or	even	undesirable	 to	write	an	entire	program	in	SPARK.
Some	 portions	 of	 the	 program	 may	 need	 to	 be	 in	 full	 Ada	 to	 take	 advantage	 of	 Ada
features	 that	 are	 not	 available	 in	SPARK	 such	 as	 access	 types	 and	 exceptions.	 It	may	 be
necessary	for	SPARK	programs	 to	call	 third-party	 libraries	written	 in	 full	Ada	or	 in	some
other	 programming	 language	 such	 as	 C.	 Of	 course,	 SPARK’s	 assurances	 of	 correctness
cannot	 be	 formally	 guaranteed	 when	 the	 execution	 of	 a	 program	 flows	 into	 the	 non-
SPARK	components.

Chapter	 8	 provides	 an	 overview	 of	 SPARK	 in	 the	 context	 of	 a	 software	 engineering
process.	 We	 describe	 three	 common	 usages:	 conversion	 of	 SPARK	 2005	 programs	 to
SPARK	 2014,	analysis	or	conversion	of	existing	Ada	programs,	and	development	of	new
SPARK	 programs	 from	 scratch.	 We	 introduce	 the	 INFORMED	 design	 method	 for
SPARK	and	discuss	how	testing	and	proof	may	be	used	in	combination.	Finally,	we	present
a	case	study	of	developing	an	application	using	the	INFORMED	process.

In	 Chapter	 9	 we	 examine	 some	 advanced	 techniques	 for	 proving	 properties	 of
SPARK	programs	including	ghost	entities	and	proof	of	transitive	properties.	We	discuss	the
approaches	we	found	useful	for	debugging	proofs	and	provide	a	number	of	guidelines	for
completing	 difficult	 proofs.	 Finally,	 we	 give	 a	 brief	 tour	 of	 the	 internal	 workings	 of
SPARK	and	suggestions	for	learning	more.

Tools

Currently,	 the	 partnership	 of	 Altran	 and	 AdaCore	 provides	 the	 only	 implementation	 of
SPARK	2014.	They	provide	two	versions.	SPARK	GPL	with	the	corresponding	GNAT	GPL
Ada	 compiler	 is	 available	 for	 free	 to	 software	 developers	 and	 students	 at
http://www.libre.adacore.com.	 SPARK	 Pro	 with	 the	 corresponding	 GNAT	 Pro	 Ada
compiler	 is	 intended	 for	 industrial,	military,	and	commercial	developers.	 Information	on
subscriptions	to	these	professional	tools	is	available	at	http://www.adacore.com.

Web	Resources

A	 Web	 site	 with	 the	 complete	 source	 code	 for	 all	 of	 the	 examples	 and	 some	 of	 the
exercises	 in	 the	 book	 may	 be	 found	 at
http://www.cambridge.org/us/academic/subjects/computer-science/programming-

languages-and-applied-logic/building-high-integrity-applications-spark.

The	 Ada	 2012	 Language	 Reference	 Manual	 and	 the	 Rationale	 for	 Ada	 2012	 are
available	 at	 http://www.ada-auth.org/standards/12rm/html/RM-TTL.html	 and
http://www.ada-auth.org/standards/12rat/html/Rat12-TTL.html.

The	 GNAT	 Reference	 Manual	 and	 the	 GNAT	 User’s	 Guide	 are	 available	 at
http://docs.adacore.com/gnat_rm-docs/html/gnat_rm.html	 and
http://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn.html.

The	 SPARK	 2014	 Reference	 Manual	 and	 the	 SPARK	 2014	 Toolset	 User’s	 Guide	 are
available	 at	 http://docs.adacore.com/spark2014-docs/html/lrm	 and

http://www.libre.adacore.com
http://www.adacore.com
http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/building-high-integrity-applications-spark
http://www.ada-auth.org/standards/12rm/html/RM-TTL.html
http://www.ada-auth.org/standards/12rat/html/Rat12-TTL.html
http://docs.adacore.com/gnat_rm-docs/html/gnat_rm.html
http://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn.html
http://docs.adacore.com/spark2014-docs/html/lrm


http://docs.adacore.com/spark2014-docs/html/ug.

Additional	 resources	 for	 Ada	 2012	 and	 SPARK	 may	 be	 found	 at
http://university.adacore.com,	 https://www.linkedin.com/groups/Ada-

Programming-Language-114211/about,	and	https://www.linkedin.com/groups/SPARK-
User-Community-2082712/about

You	can	keep	up	with	the	latest	SPARK	developments	at	http://www.spark-2014.org.

Acknowledgments

We	would	 like	 to	 thank	 the	many	 SPARK	 2014	 developers	 at	 AdaCore	 and	Altran	who
helped	us	with	all	of	the	nuances	of	the	language	and	tools.	We	appreciate	their	work	in
reading	 and	 commenting	 on	 several	 drafts	 of	 this	 book.	 This	 book	 is	much	 better	 as	 a
result	of	their	efforts.	We	also	thank	those	individuals	in	industry	who	use	SPARK	on	real
projects	 for	 their	 feedback.	 Their	 comments,	 corrections,	 and	 suggestions	 have
enormously	 improved	and	enriched	 this	book.	We	are	grateful	 to	 (in	 alphabetical	order)
Stefan	Berghofer,	Roderick	Chapman,	Arnaud	Charlet,	Robert	Dorn,	Claire	Dross,	Pavlos
Efstathopoulos,	 Johannes	Kanig,	David	Lesens,	 Stuart	Matthews,	Yannick	Moy,	 Florian
Schanda,	and	Tucker	Taft.

Anyone	 who	 has	 written	 a	 textbook	 can	 appreciate	 the	 amount	 of	 time	 and	 effort
involved	and	anyone	related	to	a	textbook	author	can	tell	you	at	whose	expense	that	time
is	spent.	John	thanks	his	wife	Naomi	for	her	support	and	understanding.	Peter	thanks	his
wife	Sharon	for	her	patience	and	his	students	for	their	interest	in	SPARK.

John	W.	McCormick
University	of	Northern	Iowa

mccormick@cs.uni.edu

Peter	C.	Chapin
Vermont	Technical	College

PChapin@vtc.vsc.edu

http://docs.adacore.com/spark2014-docs/html/ug
http://university.adacore.com
http://www.linkedin.com/groups/Ada-Programming-Language-114211/about
http://www.linkedin.com/groups/SPARK-User-Community-2082712/about
http://www.spark-2014.org
http://mccormick@cs.uni.edu
http://PChapin@vtc.vsc.edu


1
Introduction	and	Overview

Software	is	critical	to	many	aspects	of	our	lives.	It	comes	in	many	forms.	The	applications
we	install	and	run	on	our	computers	and	smart	phones	are	easily	recognized	as	software.
Other	software,	such	as	that	controlling	the	amount	of	fuel	injected	into	a	car’s	engine,	is
not	so	obvious	to	its	users.	Much	of	the	software	we	use	lacks	adequate	quality.	A	report
by	 the	National	 Institute	of	Standards	 and	Technology	 (NIST,	2002)	 indicated	 that	poor
quality	software	costs	the	United	States	economy	more	than	$60	billion	per	year.	There	is
no	evidence	to	support	any	improvement	in	software	quality	in	the	decade	since	that	report
was	written.

Most	 of	 us	 expect	 our	 software	 to	 fail.	We	 are	 never	 surprised	 and	 rarely	 complain
when	our	e-mail	program	locks	up	or	 the	font	changes	we	made	to	our	word	processing
document	are	lost.	The	typical	“solution”	to	a	software	problem	of	turning	the	device	off
and	then	on	again	is	so	encultured	that	it	is	often	applied	to	problems	outside	of	the	realm
of	computers	and	software.	Even	our	humor	reflects	this	view	of	quality.	A	classic	joke	is
the	 software	 executive’s	 statement	 to	 the	 auto	 industry,	 “If	 GM	 had	 kept	 up	 with	 the
computing	 industry	we	would	 all	 be	 driving	 $25	 cars	 that	 got	 1,000	miles	 per	 gallon,”
followed	 by	 the	 car	 maker’s	 list	 of	 additional	 features	 that	 would	 come	 with	 such	 a
vehicle:

1.	 For	no	apparent	reason,	your	car	would	crash	twice	a	day.

2.	 Occasionally,	your	engine	would	quit	on	the	highway.	You	would	have	to	coast	over
to	the	side	of	the	road,	close	all	of	the	windows,	turn	off	the	ignition,	restart	the
car,	and	then	reopen	the	windows	before	you	could	continue.

3.	 Occasionally,	 executing	 a	maneuver,	 such	 as	 slowing	 down	 after	 completion	 of	 a
right	turn	of	exactly	97	degrees,	would	cause	your	engine	to	shut	down	and	refuse
to	restart,	in	which	case	you	would	have	to	reinstall	the	engine.

4.	 Occasionally,	 your	 car	 would	 lock	 you	 out	 and	 refuse	 to	 let	 you	 in	 until	 you
simultaneously	lift	the	door	handle,	turn	the	key,	and	kick	the	door	(an	operation
requiring	the	use	of	three	of	your	four	limbs).

Why	do	we	not	care	about	quality?	The	simple	answer	is	that	defective	software	works
“well	enough.”	We	are	willing	to	spend	a	few	hours	finding	a	work-around	to	a	defect	in
our	software	to	use	those	features	that	do	work	correctly.	Should	the	doctor	using	robotic
surgery	 tools,	 the	pilot	 flying	a	 fly-by-wire	aircraft,	or	 the	operators	of	 a	nuclear	power
plant	 be	 satisfied	 with	 “well	 enough”?	 In	 these	 domains,	 software	 quality	 does	matter.
These	 are	 examples	 of	 high-integrity	 applications	 –	 those	 in	 which	 failure	 has	 a	 high
impact	 on	 humans,	 organizations,	 or	 the	 environment.	 However,	 we	 would	 argue	 that
software	quality	matters	in	every	domain.	Everyone	wants	their	software	to	work.	Perhaps
the	 biggest	 need	 for	 quality	 today	 is	 in	 the	 software	 security	 arena.	 In	 his	 newsletter
article,	Security	Changes	Everything,	Watts	Humphrey	(2006b)	wrote:	“It	is	now	common
for	 software	defects	 to	disrupt	 transportation,	cause	utility	 failures,	enable	 identity	 theft,
and	even	result	in	physical	injury	or	death.	The	ways	that	hackers,	criminals,	and	terrorists



can	exploit	 the	defects	 in	our	 software	are	growing	 faster	 than	 the	current	patch-and-fix
strategy	can	handle.”

1.1	 Obtaining	Software	Quality

The	 classic	 definition	 of	 the	 quality	 of	 a	 product	 focuses	 on	 the	 consumer’s	 needs,
expectations,	 and	 preferences.	 Customer	 satisfaction	 depends	 on	 a	 number	 of
characteristics,	some	of	which	contribute	very	little	to	the	functionality	of	the	product.

Manufacturers	have	 a	different	view	of	product	quality.	They	are	 concerned	with	 the
design,	engineering,	and	manufacturing	of	products.	Quality	 is	assessed	by	conformance
to	 specifications	 and	 standards	 and	 is	 improved	 by	 removing	 defects.	 In	 this	 book,	 we
concentrate	on	this	defect	aspect	of	quality.

This	 is	 because	 the	 cost	 and	 time	 spent	 in	 removing	 software	 defects	 currently
consumes	such	a	 large	proportion	of	our	efforts	 that	 it	overwhelms	everything	else,
often	 even	 reducing	 our	 ability	 to	 meet	 functional	 needs.	 To	 make	 meaningful
improvements	 in	 security,	 usability,	 maintainability,	 productivity,	 predictability,
quality,	 and	 almost	 any	 other	 “-ility,”	 we	 must	 reduce	 the	 defect	 problem	 to
manageable	 proportions.	 Only	 then	 can	 we	 devote	 sufficient	 resources	 to	 other
aspects	of	quality.	(Humphrey,	2006a)

1.1.1	 Defect	Rates
In	traditional	manufacturing,	quality	is	assured	by	controlling	the	manufacturing	process.
Statistical	 tools	 are	 used	 to	 analyze	 the	 production	 process	 and	 predict	 and	 correct
deviations	 that	 may	 result	 in	 unacceptable	 products.	 Statistical	 process	 control	 was
pioneered	by	Walter	A.	Shewhart	in	1924	to	reduce	the	frequency	of	failures	of	telephone
transmission	equipment	manufactured	by	the	Western	Electric	Company.	After	World	War
II,	 W.	 Edwards	 Deming	 introduced	 statistical	 process	 control	 methods	 to	 Japanese
industry.	The	 resulting	quality	of	 Japanese-manufactured	products	 remains	 a	benchmark
for	the	rest	of	the	world.

In	1987,	the	Software	Engineering	Institute	(SEI),	led	by	the	work	of	Watts	Humphrey,
brought	 forth	 the	notion	 that	 statistical	 process	 control	 could	be	 applied	 to	 the	 software
engineering	process.	SEI	defined	 the	Capability	Maturity	Model	 for	Software	 (Software
CMM)	in	1991.1	The	Software	CMM	defines	the	five	levels	of	process	maturity	described
in	Table	1.1.	Each	level	provides	a	set	of	process	improvement	priorities.

Table	1.1.	 The	software	CMM	(Paulk,	2009)

Level Focus Characteristics

1,	Initial None Ad	hoc	or	chaotic.
	 	 	

2,	Repeatable Project	Management The	necessary	process	discipline



is	in	place	to	repeat	earlier
successes	on	projects	with	similar
applications.

	 	 	

3,	Defined Software	Engineering The	software	process	for	both
management	and	engineering
activities	is	documented,
standardized,	and	integrated	into
a	set	of	standard	software
processes	for	the	organization.

	 	 	

4,	Managed Quality	Processes Detailed	measures	of	the	software
process	and	product	quality	are
collected.	Both	the	software
process	and	products	are
quantitatively	understood	and
controlled.

	 	 	

5,	Optimizing Continuous	Improvement Continuous	process	improvement
is	enabled	by	feedback	from	the
process	and	from	piloting
innovative	ideas	and
technologies.

There	is	a	good	deal	of	evidence	to	support	the	assertion	that	using	better	processes	as
defined	by	the	Software	CMM	leads	to	programs	with	fewer	defects.	Figure	1.1	shows	the
typical	rate	of	defects	delivered	in	projects	as	a	function	of	the	Software	CMM	level.	The
average	 rate	 of	 1.05	 defects	 per	 thousand	 lines	 of	 code	 (KLOC)	 obtained	 by	 engineers
working	 at	 CMM	 level	 5	 appears	 to	 be	 a	 low	 number.	 However,	 this	 rate	 must	 be
considered	in	the	context	of	the	large	size	of	most	sophisticated	projects.	It	suggests	that
the	 typical	million	 lines	 of	 code	 in	 an	 aircraft’s	 flight	management	 system	 is	 delivered
with	more	than	1,000	defects.	A	NASA	report	on	Toyota	Camry’s	unintended	acceleration
describes	 the	 examination	 of	 280,000	 lines	 of	 code	 in	 the	 car’s	 engine	 control	module
(NASA,	2011).	Assuming	this	code	was	developed	under	the	highest	CMM	level,	the	data
in	Figure	1.1	suggests	that	this	code	might	contain	nearly	300	defects.	These	numbers	are
too	large	for	high	integrity	software.



	

Figure	1.1.	 Delivered	defects	by	CMM	level	(data	from	Jones	(2000)	and	Davis	and
Mullaney	(2003)).

To	prevent	or	detect	and	remove	defects	before	a	software	application	is	released,	it	is
useful	 to	 understand	where	 defects	 originate.	 Table	 1.2	 shows	 the	 estimates	 from	 three
studies	 on	 the	 origins	 of	 defects	 in	 software.	 This	 data	 indicates	 that	 the	 majority	 of
defects	are	created	during	the	design	and	coding	phases	of	development.

Table	1.2.	 Origin	of	defects

Design	and Requirements	and

Study coding specification Other

Beizer	(1990) 89% 9% 2%

NIST	(2002) 58% 30% 12%

Jones	(2012,	2013) 60% 20% 20%

Verification	 and	 validation	 are	 names	 given	 to	 processes	 and	 techniques	 commonly
used	 to	 assure	 software	quality.	Software	verification	 is	 the	process	of	 showing	 that	 the
software	 meets	 its	 written	 specification.	 This	 definition	 is	 commonly	 illustrated	 by	 the
question,	“Are	we	building	 the	product	right?”	Verification	 is	a	means	of	demonstrating
correctness.	We	 use	 verification	 to	 locate	 and	 remove	 the	 defects	 from	 our	 design	 and
implementation,	the	compiler,	operating	systems,	and	hardware	on	which	we	execute	our
application	–	defects	that	constitute	the	majority	of	those	classified	in	Table	1.2.

Software	validation	is	the	process	of	evaluating	an	application	to	ensure	that	it	actually
meets	 the	users’	needs	–	 that	 the	specification	was	correct.	This	definition	 is	commonly
illustrated	by	the	question,	“Are	we	building	the	right	product?”	Validation	is	important	in
showing	that	we	remove	the	defects	originating	in	our	specification	(the	third	column	of
Table	1.2).



1.1.2	 Software	Testing
The	 verification	 strategies	 used	 to	 achieve	 the	 defect	 rates	 shown	 in	 Figure	 1.1	 are
typically	based	on	software	testing.	An	in-depth	coverage	of	software	testing	is	beyond	the
scope	 of	 this	 book.	 For	 additional	 information,	 see	 Ammann	 and	 Offutt	 (2008),
Black	(2007),	 Jorgensen	 (2008),	Kaner,	 Falk,	 and	Nguyen	 (1999),	 or	 the	 classic	 testing
book	 by	 Beizer	 (1990).	 There	 are	 two	 fundamental	 approaches	 to	 testing:	 black-box
testing	and	white-box	testing.

Black-box	 testing	 is	 based	 solely	 on	 the	 behavior	 of	 the	 program	 without	 any
knowledge	of	coding	details.	It	is	also	called	behavioral	testing	or	functional	testing.	Test
cases	are	created	from	requirements	given	in	the	specification	for	the	application.	Black-
box	 testing	 is	 usually	 performed	 on	 complete	 systems	 or	 large	 subsystems.	 It	 is	 often
performed	by	people	who	did	not	write	 the	software	under	 test.	These	 testers	 frequently
have	more	knowledge	of	the	application	domain	than	of	software	engineering.	There	are
many	black-box	testing	tactics,	including	Black	(2007):

Equivalence	classes	and	boundary	value	testing
Use	case,	live	data,	and	decision	table	testing
State	transition	table	testing
Domain	testing
Orthogonal	array	and	all	pairs	testing
Reactive	and	exploratory	testing

As	black-box	tests	are	derived	entirely	from	the	specification,	they	provide	a	means	of
verifying	that	our	design,	implementation,	compiler,	operating	system,	and	hardware	work
together	 to	 successfully	 realize	 the	 specification.	 Black-box	 testing	 does	 not	 directly
provide	validation	that	our	specification	is	correct.	However,	the	testers’	domain	expertise
is	a	valuable	resource	in	finding	errors	in	the	specification	during	testing.

White-box	 testing	 is	 based	 on	 the	 actual	 instructions	within	 the	 application.	 It	 is	 also
called	glass-box	testing	or	structural	testing.	White-box	tests	are	created	from	the	possible
sequences	 of	 execution	 of	 statements	 in	 the	 application.	 White-box	 testing	 is	 usually
performed	by	programmers	and	may	be	applied	to	small	units	(unit	testing)	as	well	as	to	a
combination	of	units	 (integration	 testing).	The	 two	basic	 tactics	of	white-box	 testing	are
control-flow	testing	and	data-flow	testing.

Control-flow	tests	are	usually	designed	to	achieve	a	particular	level	of	coverage	of	the
code.	Commonly	used	code	coverage	tactics	include:

statement	coverage;
condition	coverage;
multicondition	coverage;
multicondition	decision	coverage;
modified	condition/decision	coverage	(MC/DC);	and
path	coverage.

Data-flow	 tests	 add	 another	 dimension	 to	 control-flow	 testing.	 In	 addition	 to	 testing
how	 control	 flows	 through	 the	 program,	 data-flow	 testing	 checks	 the	 order	 in	 which



variables	are	set	and	used.

1.1.3	 Improving	Defect	Rates
There	are	at	least	three	reasons	why	testing	alone	cannot	meet	current	and	future	quality
needs.	First,	complete	testing	is	almost	always	impossible.	Suppose	we	would	like	to	use
black-box	testing	to	verify	that	a	function	correctly	adds	two	32-bit	 integers.	Exhaustive
testing	 of	 this	 function	 requires	 	 combinations	 of	 two	 integers	 –	 far	 too	 many	 to
actually	test.	With	white-box	testing,	we	would	like	to	test	every	possible	path	through	the
program.	As	the	number	of	possible	paths	through	a	program	increases	exponentially	with
the	 number	 of	 branch	 instructions,	 complete	 path	 coverage	 testing	 of	 a	 small	 program
requires	a	huge	effort	and	is	impossible	for	most	realistic-size	programs.	Good	testing	is	a
matter	of	selecting	a	subset	of	possible	data	for	black-box	tests	and	the	determination	of
the	most	likely	execution	paths	for	white-box	testing.	That	brings	us	to	the	second	reason
that	 testing	 alone	 cannot	 achieve	 the	 quality	 we	 need.	 Users	 always	 find	 innovative,
unintended	ways	to	use	applications.	We	probably	did	not	test	the	data	entered	or	the	paths
executed	by	those	“creative”	uses	of	our	application.	Third,	we	now	face	a	new	category
of	user:	one	who	is	hostile.	Our	applications	are	under	attack	by	criminals,	hackers,	and
terrorists.	These	people	actively	search	for	untested	data	and	untested	execution	paths	to
exploit.	 As	 a	 result,	 we	 find	 ourselves	 updating	 our	 applications	 each	 time	 a	 security
vulnerability	is	discovered	and	patched.

Watts	Humphrey	(2004)	has	 suggested	 four	alternative	 strategies	 for	achieving	defect
rates	below	those	obtained	at	Software	CMM	level	5.

Clean	Room:	This	process	was	developed	by	Harlan	Mills,	Michael	Dyer,	and	Richard
Linger	(1987)	at	IBM	in	the	mid-1980s	with	a	focus	on	defect	prevention	rather	than
defect	 removal.	 Defect	 prevention	 is	 obtained	 through	 a	 combination	 of	 manually
applied	 formal	methods	 in	 requirements	 and	 design	 followed	 by	 statistical	 testing.
Quality	results	are	ten	times	better	than	Software	CMM	level	5	results.

Team	 Software	 Process	 (TSP):	 A	 process-based	 approach	 for	 defect	 prevention
developed	by	Watts	Humphrey	(2000).	Quality	results	are	more	than	ten	times	better
than	Software	CMM	level	5	results.

Correct	 by	 Construction	 (CbyC):	 A	 software	 development	 process	 developed	 by
Praxis	Critical	Systems	(Amey,	2002;	Hall	and	Chapman,	2002).	CbyC	makes	use	of
formal	methods	throughout	the	life	cycle	and	uses	SPARK	for	strong	static	verification
of	code.	Quality	results	are	50	to	100	times	better	than	Software	CMM	level	5	results
(Croxford	and	Chapman,	2005).

CbyC	 in	 a	 TSP	 Environment:	 A	 process	 combining	 the	 formal	 methods	 of	 CbyC
utilizing	SPARK	with	the	process	improvements	of	the	Team	Software	Process.

Both	 clean	 room	 and	 CbyC	 are	 based	 on	 formal	 methods.	 Formal	 methods	 are
mathematically	based	techniques	for	the	development	of	software.	A	formal	specification
provides	a	precise,	unambiguous	description	of	an	application’s	functionality.	Later	in	the
development	cycle,	 the	formal	specification	may	be	used	 to	verify	 its	 implementation	 in
software.	 Although	 there	 has	 been	 much	 work	 over	 the	 years,	 formal	 methods	 remain
poorly	 accepted	 by	 industrial	 practitioners.	 Reasons	 cited	 for	 this	 limited	 use	 include



claims	that	 formal	methods	extend	the	development	cycle,	 require	difficult	mathematics,
and	have	limited	tool	support	(Knight	et	al.,	1997).

In	this	book	we	introduce	you	to	the	SPARK	programming	language	and	how	it	may	be
used	 to	 create	 high-integrity	 applications	 that	 can	 be	 formally	 verified.	 Contrary	 to	 the
claim	that	formal	methods	increase	development	time,	the	use	of	SPARK	has	been	shown	to
decrease	the	development	cycle	by	reducing	testing	time	by	80	percent	(Amey,	2002).	A
goal	 of	 this	 book	 is	 to	 show	 that	 with	 the	 tools	 provided	 by	 SPARK,	 the	 mathematics
involved	is	not	beyond	the	typical	software	engineer.	We	do	not	attempt	to	cover	formal
specification	or	 the	 software	development	 processes	 defined	 by	CbyC	 or	 TSP	 in	which
SPARK	can	play	a	critical	role	in	producing	high	assurance,	reliable	applications.

1.2	 What	Is	SPARK?

SPARK	 is	a	programming	language	and	a	set	of	verification	tools	specifically	designed	to
support	 the	 development	 of	 software	 used	 in	 high-integrity	 applications.	 SPARK	 was
originally	 designed	 with	 formally	 defined	 semantics	 (Marsh	 and	 O’Neill,	 1994).
Semantics	refer	to	the	meaning	of	instructions	in	a	programming	language.	The	semantics
of	a	language	describe	the	behavior	that	a	computer	follows	when	executing	a	program	in
that	 language.	 Formally	 defined	 means	 that	 SPARK’s	 semantics	 underwent	 rigorous
mathematical	 study.	 Such	 study	 is	 important	 in	 ensuring	 that	 the	 behavior	 of	 a
SPARK	 program	 is	 unambiguous.	 This	 deterministic	 behavior	 allows	 us	 to	 analyze	 a
SPARK	program	without	actually	executing	it,	a	process	called	static	verification	or	formal
verification.

The	information	provided	by	the	static	verification	of	a	SPARK	program	can	range	from
the	detection	of	simple	coding	errors	such	as	a	failure	to	properly	initialize	a	variable	to	a
proof	that	the	program	is	correct.	Correct	in	this	context	means	that	the	program	meets	its
specification.	Although	such	correctness	proofs	are	invaluable,	they	provide	no	validation
that	 a	 specification	 is	 correct.	 If	 the	 formal	 requirements	 erroneously	 state	 that	 our
autopilot	software	shall	keep	the	aircraft	upside	down	in	the	southern	hemisphere,	we	can
analyze	our	SPARK	 program	 to	 prove	 that	 it	 will	 indeed	 flip	 our	 plane	 as	 it	 crosses	 the
equator	 on	 a	 flight	 from	 the	 United	 States	 to	 Brazil.	 We	 still	 need	 validation	 through
testing	or	other	means	to	show	that	we	are	building	the	right	application.

In	addition,	verification	of	a	SPARK	program	cannot	find	defects	in	the	compiler	used	to
translate	 it	 into	 machine	 code.	 Nor	 will	 SPARK	 find	 defects	 in	 the	 operating	 system	 or
hardware	 on	which	 it	 runs.	We	 still	 need	 some	 verification	 testing	 to	 show	 that	 it	 runs
correctly	with	 the	given	operating	 system	and	hardware.	But	with	 a	 full	 analysis	of	our
SPARK	program,	we	can	eliminate	most	of	the	verification	testing	for	defects	in	the	design
and	implementation	of	our	application	–	 the	defects	 that	constitute	 the	majority	of	 those
listed	in	Table	1.2.

SPARK	 is	 based	 on	 the	 Ada	 programming	 language.	 SPARK’s	 designers	 selected	 a
restricted,	 well-defined,	 unambiguous	 subset	 of	 the	 Ada	 language	 to	 eliminate	 features
that	cannot	be	statically	analyzed.	They	extended	the	language	with	a	set	of	assertions	to
support	modular,	formal	verification.

SPARK	 has	 evolved	 substantially	 over	 its	 lifetime.	 The	 first	 three	 versions,	 called



SPARK	 83,	SPARK	 95,	 and	SPARK	 2005,	 are	 based	 on	 the	 corresponding	 versions	 of	Ada
(Ada	83,	Ada	95,	and	Ada	2005).	This	book	describes	the	current	version	–	SPARK	2014	–
which	is	based	on	Ada	2012.

The	complete	 set	of	goals	 for	SPARK	 2014	 is	 available	 in	 the	SPARK	2014	Reference
Manual	(SPARK	Team,	2014a).	Some	of	the	more	important	goals	include	the	following:

The	SPARK	2014	language	shall	embody	the	largest	subset	of	Ada	2012	to	which	it	is
currently	practical	to	apply	automatic	formal	verification.

Prior	to	this	version,	SPARK	executable	statements	were	a	small	subset	of	Ada	called
the	Spark	kernel.	A	special	non-Ada	syntax	was	used	to	write	annotations	–	 formal
statements	used	for	the	static	verification	of	the	program.	SPARK	2014	uses	the	syntax
available	 in	 Ada	 2012	 to	 write	 both	 executable	 statements	 and	 static	 verification
statements	 called	 assertions.	 Preconditions,	 postconditions,	 and	 loop	 invariants	 are
examples	 of	 assertions	 we	 shall	 look	 at	 in	 detail.	 The	 two	 Venn	 diagrams	 in
Figure	1.2	illustrate	the	relationships	between	Ada	and	SPARK.

SPARK	 2014	 shall	 provide	 counterparts	of	 all	 language	 features	 and	analysis	modes
provided	in	SPARK	83/95/2005.
SPARK	 2014	 shall	have	executable	 semantics	 for	 preconditions,	 postconditions,	 and
other	assertions.	All	such	expressions	may	be	executed,	proven,	or	both.
SPARK	 2014	 shall	 support	 verification	 through	 a	 combination	 of	 testing	 and	 proof.
Our	programs	can	be	written	as	 a	mix	 of	 SPARK	 2014,	 unrestricted	Ada	 2012,	 and
other	languages.	We	can	formally	verify	or	use	testing	to	verify	those	parts	written	in
SPARK	2014.	We	must	use	testing	to	verify	those	parts	not	written	in	SPARK	2014.

Throughout	this	book,	we	use	the	name	SPARK	to	refer	to	SPARK	2014.

	

Figure	1.2.	 Relationships	between	Ada	and	SPARK.

1.3	 SPARK	Tools

SPARK	comes	with	a	set	of	tools	for	developing	SPARK	programs.	A	full	description	of	the
tools	 is	available	in	the	SPARK	2014	Toolset	User’s	Guide	(SPARK	Team,	2014b).	 In	 this
section	we	list	and	provide	a	very	brief	summary	of	these	tools.	More	detailed	descriptions
of	each	tool	are	given	in	later	chapters	when	appropriate.

1.3.1	 GNAT	Compiler



The	GNAT	compiler	performs	the	tasks	of	a	typical	compiler:

Checks	that	the	program	is	in	conformance	with	all	of	the	Ada	syntax	and	semantic
rules.
Generates	the	executable	code.

The	SPARK	2014	Toolset	User’s	Guide	(SPARK	Team,	2014b)	recommends	that	our	first
step	in	developing	a	SPARK	program	is	to	use	the	GNAT	compiler	semantic	check	tool	to
ensure	that	the	code	is	valid	Ada.	Once	we	have	completed	the	formal	verification	of	our
SPARK	 program,	 our	 final	 step	 is	 to	 use	 the	GNAT	 compiler	 to	 generate	 the	 executable
code.

For	testing	purposes,	we	can	request	that	the	compiler	generate	machine	code	to	check
any	assertions	(preconditions,	postconditions,	etc.)	while	 the	program	is	running.	Should
any	 assertion	 be	 found	 false,	 the	 exception	Assertion_Error	 is	 raised.	 This	 capability
allows	us	to	perform	tests	of	our	assertions	prior	to	proving	them.

1.3.2	 GNATprove
GNATprove	is	the	verification	tool	for	SPARK.	It	may	be	run	in	three	different	modes:

Check:	Checks	that	a	program	unit	contains	only	the	subset	of	Ada	that	is	defined	for
SPARK.

Flow:	Performs	a	 flow	analysis	of	SPARK	 code.	This	 analysis	 consists	of	 two	parts:	 a
data-flow	 analysis	 that	 considers	 the	 initialization	 of	 variables	 and	 the	 data
dependences	 of	 subprograms	 and	 an	 information-flow	 analysis	 that	 considers	 the
dependencies	 or	 couplings	 between	 the	 values	 being	 passed	 into	 and	 out	 of	 a
subprogram.2

Proof:	Performs	a	formal	verification	of	the	SPARK	code.	Formal	verification	will	point
out	any	code	that	might	raise	a	runtime	error	such	as	division	by	zero,	assignment	to
a	variable	that	is	out	of	range	of	the	type	of	the	variable,	incorrect	indexing	of	arrays,
or	 overflow	 of	 an	 arithmetic	 expression.	 If	 the	 SPARK	 code	 contains	 assertions
expressing	functional	properties	of	the	code,	they	are	verified.

The	 assertions	 in	 the	 SPARK	 code	 that	GNATprove	 verifies	 are	 logical	 statements.	A
logical	statement	is	a	meaningful	declarative	sentence	that	is	either	true	or	false.	The	term
logical	statement	is	often	shortened	to	statement.	A	statement	cannot	be	true	at	one	point
in	 time	and	 false	 at	 another	 time.	Here,	 for	 example,	 are	 two	 simple	 logical	 statements,
one	true	and	one	false:

Sodium	Azide	is	a	poison.
New	York	City	is	the	capital	of	New	York	state.

Our	 assertions	 will	 often	 involve	 existential	 (there	 exists)	 or	 universal	 (for	 all)
quantifiers	as	in	the	following	examples:

There	exists	a	human	with	two	heads.
All	men	are	mortal.



To	convince	ourselves	that	the	first	of	these	quantified	statements	is	true,	we	need	to	find
at	least	one	person	with	two	heads.	If	we	can	find	one	man	that	is	immortal,	we	can	feel
comfortable	that	the	second	quantified	statement	is	false.	In	later	chapters	you	will	 learn
how	to	write	logical	statements	for	SPARK	assertions.

GNATprove	analyzes	the	SPARK	code	and	our	assertions	to	produce	a	number	of	logical
statements.	 A	 theorem	 is	 a	 statement	 that	 has	 been	 proven	 (to	 be	 true).	 The	 logical
statements	produced	by	GNATprove	are	conjectures	–	statements	 that	are	believed	to	be
true	but	not	yet	proven.	SPARK	calls	these	conjectures	verification	conditions	or	VCs.	We
say	that	a	VC	is	discharged	when	we	have	shown	it	to	be	true.	If	we	discharge	all	the	VCs
generated	by	GNATprove,	we	can	have	confidence	that	our	SPARK	program	is	correct.

If	you	took	a	discrete	mathematics	course,	you	studied	different	approaches	for	proving
logical	 statements.	 It	 takes	 skill	 and	 time	 to	 manually	 prove	 a	 logical	 statement.
GNATprove	 produces	 too	 many	 VCs	 to	 be	 proven	 by	 hand.	 Fortunately,	 there	 are	 a
number	of	proof	tools	available	to	perform	the	necessary	proofs.	GNATprove	makes	use
of	 two	 proof	 tools	 called	 Alt-Ergo	 (OCamlPro,	 2014)	 and	 CVC4	 (New	 York
University,	2014).	Other	tools	that	GNATprove	may	use	include	YICES	(Dutertre,	2014)
and	Z3	(Bjørner,	2012).

1.3.3	 GNATtest
Formal	 verification	provides	 us	with	 the	greatest	 confidence	 that	 our	 program	meets	 its
specification.	However,	it	is	not	always	possible	to	formally	verify	all	parts	of	a	program.
There	are	a	number	of	reasons	why	some	subprograms	cannot	be	formally	verified:

We	may	not	be	able	to	express	formally	the	desired	properties	of	a	subprogram.	Take,
for	example,	a	program	that	takes	in	a	large	amount	of	seismic	data,	performs	a	set	of
sophisticated	 mathematical	 transformations	 on	 that	 data,	 and	 displays	 a	 graphical
picture	 for	 the	 geophysicist	 on	 the	 basis	 of	 the	 results	 of	 the	 transformations.
Although	we	can	formally	specify	the	mathematical	transformations,	it	is	unlikely	we
can	formally	specify	the	graphical	output.
We	 may	 need	 to	 use	 a	 programming	 language	 feature	 not	 amenable	 to	 formal
verification.	For	example,	we	may	need	to	make	use	of	pointers	to	solve	a	particular
subproblem.
It	may	not	be	cost	effective	to	apply	formal	verification	 to	some	components	 in	our
program.	We	might	have	a	module	from	a	previous	project	that	has	been	verified	by
other	means,	but	we	do	not	have	the	budget	to	reverify	it.	Sometimes	it	may	be	more
cost	 effective	 to	 test	 a	 simple	 subprogram	 than	 to	 formally	 specify	 and	 formally
verify	it.

Testing	 is	 the	 primary	 method	 used	 to	 verify	 subprograms	 that	 are	 not	 amenable	 to
formal	verification.	We	also	recommend	that	some	testing	be	performed	on	code	prior	to
formal	verification	with	proof	tools.	In	addition	to	finding	errors	in	the	code,	such	testing
may	also	reveal	errors	 in	 the	assertions.	GNATtest	 is	a	 tool	based	on	AUnit	 that	creates
unit-test	skeletons	and	test	drivers	for	valid	Ada	program	units.	Test	cases	for	GNATtest
may	even	be	written	directly	in	the	Ada	code.



SPARK	was	designed	 to	 allow	engineers	 to	mix	 formal	verification	using	GNATprove
with	testing	using	GNATtest.	Formal	verification	provides	more	confidence	at	lower	cost,
while	 testing	allows	verification	of	portions	of	 the	code	 for	which	 formal	 specifications
are	 not	 feasible.	 Ada	 contracts	 on	 subprograms	 provide	 the	 mechanism	 for	 combining
proof	and	testing.

1.4	 SPARK	Example

To	give	you	a	feel	for	what	SPARK	code	looks	like,	we	end	this	chapter	with	an	example.
Our	example	is	of	a	SPARK	implementation	of	the	selection	sort	algorithm	derived	from	the
Ada	code	given	in	Dale	and	McCormick	(2007).	Do	not	be	worried	about	the	details	yet	–
we	 spend	 the	 rest	 of	 the	book	describing	 them.	We	encapsulate	 all	 of	 the	details	 of	 the
selection	sort	 in	a	package.	We	discuss	packages	 in	detail	 in	Chapter	3.	SPARK	packages
are	written	in	two	parts:	a	specification	that	defines	what	the	package	contains	and	a	body
that	contains	the	actual	implementation.	Here	is	the	specification	of	a	package	containing
a	sort	procedure	that	sorts	an	array	of	integers:

The	 first	 line	 of	 this	 specification	 is	 a	 pragma,	 which	 is	 a	 directive	 to	 the	 GNAT
compiler	 and	 GNATprove.	 In	 this	 example,	 the	 pragma	 informs	 GNATprove	 that	 this
package	specification	should	be	checked	to	ensure	that	it	contains	only	constructs	that	are
in	the	SPARK	subset	of	Ada.	Line	4	defines	an	array	type	that	is	indexed	by	positive	whole
numbers	 and	 contains	 integer	 elements.	 The	 <>	 symbol	 indicates	 that	 the	 first	 and	 last
index	values	are	not	specified.	Such	an	array	 type	 is	called	an	unconstrained	array	 type.



We	discuss	arrays	in	detail	in	Chapter	2.

SPARK	has	two	forms	of	subprograms:	the	procedure	and	the	function.	Lines	13	through
20	 specify	 the	 selection	 sort	 procedure.	 On	 line	 13	 we	 see	 that	 this	 procedure	 takes	 a
single	 parameter,	 Values,	 that	 is	 an	 array	 of	 the	 type	 defined	 in	 line	 4.	 The	 notation
in	out	tells	us	that	the	array	Values	is	passed	into	the	procedure	(in),	possibly	modified,
and	returned	back	to	the	caller	(out).	We	discuss	subprograms	in	detail	in	Chapter	2.

Lines	15	through	20	are	the	formal	contracts	for	this	procedure.	A	SPARK	contract	is	a
type	of	assertion	and	is	based	on	an	Ada	construct	called	an	aspect.	An	aspect	describes	a
property	of	an	entity.	In	this	case	the	entity	is	the	procedure	Selection_Sort	.	The	aspect
Depends	describes	the	information	flow	in	 the	procedure.	Here,	 the	new	array	is	derived
from	 the	 information	 in	 the	 original	 array.	 The	 aspect	 Pre	 is	 a	 precondition.	 Here	 we
specify	that	the	array	passed	into	this	subprogram	contains	at	least	one	value	and	its	last
index	 is	 less	 than	 the	 largest	 possible	 positive	 integer.	 The	 final	 aspect,	 Post,	 is	 a
postcondition	stating	that	after	the	procedure	completes	its	execution,	the	values	will	be	in
ascending	order	(each	value	in	the	array	is	less	than	or	equal	to	the	value	that	follows	it),
and	 the	 array	 will	 be	 a	 permutation	 of	 the	 original	 array	 (this	 ensures	 that	 the	 result
contains	the	same	values	as	the	original	array).

Lines	6	through	11	specify	a	function	that	is	given	two	array	parameters,	A	and	B,	and
returns	True	if	one	array	is	a	permutation	of	the	other	and	False	otherwise.	The	notation	in
tells	 us	 that	 each	 array	 is	 passed	 into	 the	 function	 and	 not	 modified	 by	 it.	 The	 aspect
Global	 tells	 us	 that	 this	 function	 does	 not	 access	 any	 global	 data.	 The	 aspect	 Ghost
indicates	that	this	function	will	only	be	used	during	static	verification	of	the	code;	it	need
not	 be	 compiled	 into	machine	 code	 that	might	 be	 executed.	 Finally,	 the	 aspect	 Import
indicates	 that	 we	 have	 not	 written	 an	 implementation	 of	 this	 function.	 We	 discuss
functions	in	Chapter	2	and	ghost	functions	in	Chapter	9	and	complete	the	formal	proof	of
correctness	of	this	selection	sort	in	Section	9.2.

Now	 let	 us	 look	 at	 a	 program	 that	 uses	 our	 selection	 sort	 program.	 The	 following
program	reads	integers	from	the	standard	input	file,	calls	the	selection	sort	procedure,	and
displays	the	sorted	array.



The	first	line	of	this	program	is	a	pragma	telling	the	tools	that	this	code	is	not	written	in
the	 SPARK	 subset	 of	 Ada.	 Thus,	 although	 we	 can	 formally	 verify	 the	 selection	 sort
procedure,	we	will	need	 to	verify	 this	code	some	other	way.	We	reviewed	this	code	and
conducted	a	number	of	test	runs	to	convince	ourselves	that	this	code	is	correct.

Lines	 2	 through	 4	 tell	what	 outside	 resources	 are	 needed	 by	 this	 program.	Here,	we
need	 operations	 from	 the	Ada	 library	 to	 do	 input	 and	 output	 with	 strings	 (the	 package
Ada.Text_IO)	 and	 integers	 (the	 package	 Ada.Integer_Text_IO).	 We	 also	 need	 the
package	Sorters	that	we	specified	earlier.



Lines	 8	 through	 10	 define	 three	 subtypes.	 Subtypes	 allow	 us	 to	 derive	 a	 more
specialized	 or	 restricted	 domain	 from	 an	 existing	 type.	 For	 example,	 the	 subtype
Index_Type	 has	 a	 domain	 limited	 to	 whole	 numbers	 between	 1	 and	 50.	 The	 subtype
My_Array_Type	 constrains	 the	 array	 type	 from	 the	 Sorters	 package	 such	 that	 the	 first
index	 is	 1	 and	 the	 last	 index	 is	 50.	 We	 will	 discuss	 types	 and	 subtypes	 in	 detail	 in
Chapter	2.

Lines	 12	 through	 14	 define	 three	 variables	 for	 the	 program.	 List	 is	 an	 array	 of	 50
integers	(indexed	from	1	to	50),	Count	is	a	whole	number	between	0	and	50,	and	Value	is
a	whole	number.

Lines	17	through	34	are	the	executable	statements	of	our	program.	We	will	discuss	the
details	 of	 all	 these	 statements	 in	Chapter	 2.	 Even	without	 detailed	 knowledge,	 you	 can
probably	follow	the	three	major	steps:	a	sentinel	controlled	loop	to	read	integers,	a	call	to
the	selection	sort	procedure,	and	a	loop	to	display	the	resulting	array.

One	task	remains.	We	need	to	write	the	SPARK	code	that	implements	the	selection	sort.
This	code	goes	into	the	body	of	package	Sorters.	We	will	complete	this	body	and	prove	it
is	correct	in	Section	9.2.

Summary

High	 integrity	 applications	 are	 those	 whose	 failure	 has	 a	 high	 impact	 on	 humans,
organizations,	or	 the	environment.	Software	 quality	 is	 extremely	 important	 in	 such
applications.
Software	quality	should	matter	in	all	applications.
The	conformance	of	software	to	specifications	and	standards	is	an	important,	but	not
the	only,	aspect	of	software	quality.
A	 software	 defect	 is	 a	 difference	 between	 the	 behavior	 of	 the	 software	 and	 its
specification.
A	correct	program	has	no	defects.
The	better	the	process	used	to	develop	software,	the	lower	the	defect	rate.
Testing	alone	is	not	adequate	for	developing	high	integrity	software.
Formal	methods	provide	a	means	for	producing	software	with	fewer	defects	than	that
verified	with	testing.
SPARK	 is	a	programming	language	specifically	designed	to	support	the	development
of	 software	 used	 in	 high	 integrity	 applications.	 It	 is	 an	 unambiguous	 subset	 of	 the
Ada	programming	language.
Static	analysis	is	the	examination	of	software	without	executing	it.	Static	verification
can	only	be	done	on	programs	written	in	unambiguous	languages	such	as	SPARK.
The	information	provided	by	a	static	verification	of	a	SPARK	program	can	range	from
the	detection	of	simple	coding	errors	to	a	proof	that	the	program	is	correct.
GNATprove	is	the	tool	used	to	carry	out	the	static	verification	of	a	SPARK	program.
An	 Ada	 compiler	 is	 used	 to	 translate	 a	 SPARK	 program	 into	 machine	 language
instructions.
Aspects	are	used	to	specify	properties	of	entities.
The	Depends	aspect	describes	what	values	a	calculated	result	depends	on.



The	Pre	and	Post	aspects	describe	preconditions	and	postconditions.

Exercises

1.1		 Describe	a	defect	you	have	observed	in	software	you	use	and	how	you	manage	to
get	around	that	defect.

1.2		 If	the	Toyota	Camry	engineers	worked	at	CMM	level	3,	how	many	defects	should
we	expect	in	the	280,000	lines	of	code	in	the	car’s	engine	control	module?

1.3		 If	the	typical	million	lines	of	code	in	a	flight	management	system	might	contain
more	than	1,000	defects,	why	are	there	not	more	reports	of	airplanes	falling	from
the	sky	as	a	result	of	software	failures?

1.4		 Which	of	the	software	testing	techniques	described	in	this	chapter	have	you	used
to	verify	programs	you	have	written?

1.5		 What	is	the	difference	between	software	verification	and	software	validation?

1.6	 	 Why	 is	 testing	 alone	 not	 adequate	 to	meet	 current	 and	 future	 software	 quality
needs?

1.7		 Define	the	term	semantics	in	relation	to	software	development.

1.8		 True	or	false:	SPARK	is	a	subset	of	Ada.

1.9		 Name	and	give	a	brief	description	of	each	of	GNATprove’s	three	modes.

1.10	 Define	logical	statement.

1.11	 Give	an	example	of	a	logical	statement	that	is	true.	Give	an	example	of	a	logical
statement	that	is	false.

1.12	 Determine	whether	the	following	existential	statements	are	true	or	false:

a.	 Some	men	live	to	be	100	years	old.

b.	 Some	women	live	to	be	200	years	old.

c.	 There	 is	 some	 number	 whose	 square	 root	 is	 exactly	 half	 the	 value	 of	 the
number.

1.13	 Determine	whether	the	following	universal	statements	are	true	or	false:

a.	 All	men	live	to	be	100	years	old.

b.	 The	square	of	any	number	is	positive.

c.	 Every	mammal	has	a	tail.

1.14	 Define	theorem	and	conjecture.

1.15	 Define	verification	condition	(VC).

1.16	 What	is	meant	by	discharging	a	VC?

1.17	 What	is	a	pragma?

1.18	 What	is	an	aspect?



1.19	 Define	precondition	and	postcondition.



2
The	Basic	SPARK	Language

SPARK	 is	 a	 programming	 language	based	on	Ada.	The	 syntax	 and	 semantics	of	 the	Ada
language	 are	 defined	 in	 the	Ada	Reference	Manual	 (ARM,	2012).	 The	SPARK	 Reference
Manual	 (SPARK	 Team,	 2014a)	 contains	 the	 specification	 of	 the	 subset	 of	 Ada	 used	 in
SPARK	 and	 the	 aspects	 that	 are	 SPARK	 specific.	As	 stated	 in	Chapter	 1,	 a	major	 goal	 of
SPARK	2014	was	 to	embody	the	 largest	possible	subset	of	Ada	2012	amenable	 to	formal
analysis.	The	following	Ada	2012	features	are	not	currently	supported	by	SPARK:

Aliasing	of	names;	no	object	may	be	referenced	by	multiple	names
Pointers	(access	types)	and	dynamic	memory	allocation
Goto	statements
Expressions	or	functions	with	side	effects
Exception	handlers
Controlled	types;	types	that	provide	fine	control	of	object	creation,	assignment,	and
destruction
Tasking/multithreading	(will	be	included	in	future	releases)

This	 chapter	 and	 Chapter	 3	 cover	 many,	 but	 not	 all,	 of	 the	 features	 of	 Ada	 2012
available	 in	 SPARK.	We	 discuss	 those	 features	 that	 are	 most	 relevant	 to	 SPARK	 and	 the
examples	used	in	this	book.	We	assume	that	the	reader	has	little,	if	any,	knowledge	of	Ada.
Barnes	(2014)	presents	 a	 comprehensive	description	of	 the	Ada	programming	 language.
Ben-Ari	(2009)	does	an	excellent	 job	describing	 the	aspects	of	Ada	relevant	 to	software
engineering.	 Dale,	Weems,	 and	McCormick	 (2000)	 provide	 an	 introduction	 to	 Ada	 for
novice	programmers.	Ada	implementations	of	the	common	data	structures	can	be	found	in
Dale	 and	 McCormick	 (2007).	 There	 are	 also	 many	 Ada	 language	 resources	 available
online	 that	 you	 may	 find	 useful	 while	 reading	 this	 chapter,	 including	 material	 by
English	(2001),	Riehle	(2003),	and	Wikibooks	(2014).

Let	us	start	with	a	simple	example	that	illustrates	the	basic	structure	of	an	Ada	program.
The	following	program	prompts	the	user	to	enter	two	integers	and	displays	their	average.



The	 first	 three	 lines	 of	 the	 program	 are	 context	 items.	 Together,	 these	 three	 context
items	 make	 up	 the	 context	 clause	 of	 the	 program.	 The	 three	with	 clauses	 specify	 the
library	 units	 our	 program	 requires.	 In	 this	 example,	we	use	 input	 and	output	 operations
from	three	different	library	units:	one	for	the	input	and	output	of	strings	and	characters	(
Ada.Text_IO),	one	for	the	input	and	output	of	integers	(	Ada.Integer_Text_IO),	and	one
for	 the	 input	and	output	of	 floating	point	 real	numbers	 (	Ada.Float_Text_IO).	The	bold
words	 in	 all	 our	 examples	 are	 reserved	words.	 You	 can	 find	 a	 list	 of	 all	 seventy-three
reserved	words	in	section	2.9	of	the	ARM	(2012).

Following	 the	 context	 clause	 is	 the	 specification	 of	 our	 program	 on	 line	 4.	 In	 this
example,	the	specification	consists	of	the	name	Average	and	no	parameters.	The	name	is
repeated	in	the	last	line	that	marks	the	end	of	this	program	unit.	Comments	start	with	two
adjacent	hyphens	and	extend	to	the	end	of	the	line.	In	our	listings,	comments	are	formatted
in	italics.

Following	 the	 program	 unit’s	 specification	 is	 the	declarative	part	 (lines	 5–8).	 In	 our
example,	 we	 declared	 three	 variables.	 Variables	 A	 and	 B	 are	 declared	 to	 be	 of	 type
Integer,	 a	 language-defined	whole	number	 type	with	an	 implementation-defined	 range.
Variable	M	is	declared	to	be	of	type	Float,	a	language-defined	floating	point	number	type
with	 an	 implementation-defined	 precision	 and	 range.	 The	 initial	 value	 of	 all	 three
variables	is	not	defined.

The	executable	statements	of	the	program	follow	the	reserved	word	begin.	All	but	one



of	the	executable	statements	in	our	example	are	calls	to	procedures	(subprograms)	defined
in	various	library	packages.	In	the	first	statement,	we	call	the	procedure	Put_Line	in	the
library	package	Ada.Text_IO.

Except	 for	 procedure	 New_Line,	 all	 of	 the	 procedures	 called	 in	 the	 example	 require
parameters.	 Ada	 provides	 both	 named	 and	 positional	 parameter	 association.	 You	 are
probably	 very	 familiar	 with	 positional	 parameter	 association	 in	 which	 the	 formal	 and
actual	 parameters	 are	 associated	 by	 their	 position	 in	 the	 parameter	 list.	 With	 named
parameter	association,	the	order	of	parameters	in	our	call	is	irrelevant.	Our	example	uses
named	 association	 to	 match	 up	 the	 formal	 and	 actual	 parameters.	 To	 use	 named
association,	we	give	the	name	of	the	formal	parameter	followed	by	the	arrow	symbol,	=>,
followed	by	the	actual	parameter.	In	our	call	to	procedure	Put_Line,	the	formal	parameter
is	Item	and	the	actual	parameter	is	the	string	literal	of	our	prompt.	When	there	is	only	a
single	 parameter,	 named	 parameter	 association	 provides	 little	 useful	 information.	When
there	are	multiple	parameters,	however,	as	in	the	call	to	Ada.Float_Text_IO.Put,	named
parameter	association	provides	 information	 that	makes	both	 reading	and	writing	 the	call
easier.	The	formal	parameters	Fore,	Aft,	and	Exp	in	this	call	supply	information	on	how	to
format	 the	 real	 number.	Details	 on	 the	 formatting	 of	 real	 numbers	 are	 given	 in	 section
A.10.9	of	the	ARM	(2012).

The	 only	 statement	 in	 our	 example	 that	 is	 not	 a	 procedure	 call	 is	 the	 assignment
statement	on	 line	15	 that	 calculates	 the	average	of	 the	 two	 integers	 entered	by	 the	user.
The	arithmetic	expression	in	this	assignment	statement	includes	three	operations.	First,	the
two	 integers	 are	 added.	Then	 the	 integer	 sum	 is	 explicitly	 converted	 to	 a	 floating	 point
number.	Finally,	the	floating	point	sum	is	divided	by	2.	The	explicit	conversion	(casting)
to	type	Float	is	necessary	because	Ada	makes	no	implicit	type	conversions.	The	syntax	of
an	explicit	type	conversion	is	similar	to	that	of	a	function	call	using	the	type	as	the	name
of	the	function.

You	may	feel	 that	program	Average	 required	more	 typing	 than	you	would	 like	 to	do.
Prefixing	 the	 name	 of	 each	 library	 procedure	 with	 its	 package	 name	 (e.g.,
Ada.Integer_Text_IO)	 may	 seem	 daunting.	 Of	 course,	 most	 integrated	 development
environments	 such	 as	 the	 GNAT	 Programming	 Studio	 (GPS)	 provide	 smart	 code
completion,	 making	 the	 chore	 easier.	 Ada	 provides	 another	 alternative,	 the	 use	 clause,
which	 allows	us	 to	make	use	 of	 resources	 from	program	units	without	 having	 to	 prefix
them	with	the	unit	name.	It	is	possible	that	different	program	units	define	resources	with
the	 same	 name.	 For	 example,	 both	 Ada.Text_IO	 and	 Ada.Integer_Text_IO	 include	 a
subprogram	 called	 Put.	 The	 compiler	 uses	 the	 signature	 of	 the	 subprogram	 call	 to
determine	which	Put	to	call.	You	will	see	an	error	message	if	the	compiler	is	not	able	to
resolve	a	name.	A	shorter	version	of	our	Average	program	that	 illustrates	 the	use	clause
follows.	We	have	also	used	positional	parameter	association	to	shorten	the	parameter	lists.



Throughout	 the	 remainder	 of	 this	 book	 we	 will	 make	 use	 of	 prefixing	 and	 named
parameter	association	when	it	makes	the	code	clearer	for	the	reader.

One	 final	note	before	 leaving	 this	 simple	program.	Ada	 is	case	 insensitive.	Thus,	 the
three	identifiers	–	Total,	total,	and	tOtAl	–	are	equivalent.	It	is	considered	bad	practice
to	use	different	casings	 for	 the	 same	 identifier.	A	commonly	used	switch	 for	 the	GNAT
compiler	requests	that	warnings	be	given	for	uses	of	different	casings.

2.1	 Control	Structures

Ada	provides	two	statements	for	making	decisions	on	the	basis	of	some	condition:	the	if
statement	and	the	case	statement.	Section	5.3	of	the	ARM	(2012)	provides	 the	details	of
the	if	statement	and	section	5.4	provides	the	details	of	the	case	statement.	Ada	provides	a
loop	 statement	with	 several	 different	 iteration	 schemes.	These	 schemes	 are	described	 in
detail	in	section	5.5	of	the	ARM.	In	this	section	we	will	provide	examples	of	each	control
structure.

2.1.1	 If	Statements
Following	are	some	examples	of	various	forms	of	the	if	statement.



Ada	 provides	 the	 following	 equality,	 relational,	 logical,	 and	 membership	 operators
commonly	used	in	the	Boolean	expressions	of	if	statements.

Equality	Operators

	 	

= equal
/= not	equal

	 	

Relational	Operators

	 	

< less	than
<= less	than	or	equal	to
> greater	than
>= greater	than	or	equal	to

Logical	Operators

	 	

not logical	negation
and logical	conjunction
or logical	disjunction
xor exclusive	or
and	then short	circuit	and
or	else short	circuit	or

	 	

Membership	Operators



	 	

in not	in

Boolean	expressions	that	include	both	and	and	or	operators	must	include	parentheses	to
indicate	the	desired	order	of	evaluation.	Section	4.5	of	the	ARM	(2012)	gives	a	complete
listing	and	description	of	all	of	Ada’s	operators	and	the	six	precedence	levels.

2.1.2	 Case	Statement
The	 case	 statement	 selects	 one	 of	 many	 alternatives	 on	 the	 basis	 of	 the	 value	 of	 an
expression	with	a	discrete	result.	An	example	of	a	case	statement	follows.

The	case	selector	may	be	any	expression	that	has	a	discrete	result.	In	our	example,	the
expression	 is	 the	 character	 variable	 Ch.	 Variable	 Ch	 is	 of	 the	 language-defined	 type
Character,	 a	 type	 whose	 256	 values	 correspond	 to	 the	 8-bit	 Latin-1	 values.	 Ada	 also
provides	 16-bit	 and	 32-bit	 character	 types,	 which	 are	 described	 in	 section	 3.5.2	 of	 the
ARM	(2012).

Our	example	contains	five	case	alternatives.	The	determination	of	which	alternative	is
executed	is	based	on	the	value	of	the	case	selector.	Each	alternative	is	associated	with	a	set
of	 discrete	 choices.	 In	 our	 example,	 these	 choices	 are	 given	 by	 ranges	 (indicated	 by
starting	and	ending	values	separated	by	two	dots),	specific	choices	(separated	by	vertical
bars),	and	others,	which	handles	 any	 selector	 values	 not	 given	 in	 previous	 choice	 sets.
The	others	 alternative	must	 be	 given	 last.	Ada	 requires	 that	 there	 be	 an	 alternative	 for
every	 value	 in	 the	 domain	 of	 the	 discrete	 case	 selector.	 The	 others	 alternative	 is
frequently	used	to	meet	this	requirement.

2.1.3	 Conditional	Expressions
Conditional	 expressions	 are	 not	 control	 structures	 in	 the	 classical	 sense.	 They	 are
expressions	 that	 yield	 a	 value	 from	 the	 evaluation	 of	 one	 or	 a	 number	 of	 dependent
expressions	 defined	 within	 the	 conditional	 expression.	 Conditional	 expressions	 can	 be
used	 in	 places	 such	 as	 declarations	 and	 subprogram	 parameter	 lists	 where	 conditional
statements	are	not	allowed.	Conditional	expressions	can	also	 reduce	duplication	of	code



snippets.	Ada	has	two	conditional	expressions:	the	if	expression	and	the	case	expression.

If	Expressions

If	expressions	are	syntactically	similar	to	if	statements	but	yield	a	value	rather	than	alter
the	flow	of	control	 in	 the	program.	Because	 they	yield	a	single	value,	 if	expressions	are
more	limited	than	if	statements.	Following	are	three	examples	of	if	statements	and,	to	their
right,	equivalent	assignment	statements	using	if	expressions.

Notice	 that	 the	 if	expressions	are	enclosed	 in	parentheses	and	do	not	 include	end	if.
You	may	nest	if	expressions	within	if	expressions.	The	expressions	such	as	D	+	5,	F	/	2,
and	2	*	A	within	the	if	expression	are	called	dependent	expressions.	In	the	last	example,
the	if	expression	determines	whether	X	or	 2X	is	passed	to	the	square	root	function.

If	the	type	of	the	expression	is	Boolean,	you	may	leave	off	the	final	else	part	of	the	if
expression.	The	omitted	else	part	is	taken	to	be	True	by	default.	Thus,	the	following	two	if
expressions	are	equivalent:

Boolean	 if	expressions	are	commonly	used	 in	preconditions,	postconditions,	and	 loop
invariants.	Here,	for	example,	is	a	precondition	that	states	that	if	A	is	less	than	zero	then	B
must	 also	 be	 less	 than	 zero.	 However,	 if	 A	 is	 not	 less	 than	 zero,	 the	 precondition	 is
satisfied	(True).

This	 if	 expression	 implements	 the	 implication	 .	 We	 look	 more	 at
implications	in	Chapter	5	in	our	discussion	of	the	basics	of	mathematical	logic.



Case	Expressions

Case	expressions	return	a	value	from	a	number	of	possible	dependent	expressions.	As	you
might	expect,	case	expressions	are	syntactically	similar	to	case	statements.	The	following
case	 expression	 assigns	 the	Scrabble	 letter	 value	 for	 the	uppercase	 letter	 in	 the	variable
Letter

1.

In	 this	 example	 the	 dependent	 expressions	 are	 all	 simple	 integer	 literals.	 Case
expressions	 with	 Boolean	 dependent	 expressions	 are	 commonly	 used	 in	 preconditions,
postconditions,	 and	 loop	 invariants.	While	we	may	 leave	 off	 the	 final	 else	 part	 of	 an	 if
expression,	a	case	expression	must	have	a	dependent	expression	for	every	possible	value
the	case	selector	(	Letter	in	our	example)	may	take.	The	compiler	would	complain	if	we
had	omitted	any	of	the	twenty-six	uppercase	characters.

2.1.4	 Loop	Statements
Ada’s	 loop	statement	 executes	 a	 sequence	of	 statements	 repeatedly,	 zero	or	more	 times.
The	simplest	form	of	the	loop	statement	is	the	infinite	loop.	Although	it	may	at	first	seem
odd	 to	 have	 a	 loop	 syntax	 for	 an	 infinite	 loop,	 such	 loops	 are	 common	 in	 embedded
software	 where	 the	 system	 runs	 from	 the	 time	 the	 device	 is	 powered	 up	 to	 when	 it	 is
switched	 off.	 Following	 is	 an	 example	 of	 such	 a	 loop	 in	 an	 embedded	 temperature
controller.	 It	 obtains	 the	 current	 temperature	 from	 an	 analog-to-digital	 converter	 (ADC)
and	adjusts	the	output	of	a	gas	valve	via	a	digital-to-analog	converter	(DAC).

We	use	 an	 exit	 statement	within	 a	 loop	 to	 terminate	 the	 execution	of	 that	 loop	when
some	condition	is	met.	The	exit	statement	may	go	anywhere	in	the	sequence	of	statements
making	up	the	loop	body.	A	loop	that	reads	and	sums	integer	values	until	it	encounters	a
negative	sentinel	value	follows.	The	negative	value	is	not	added	to	the	sum.



There	are	 two	 iteration	schemes	 that	may	be	used	with	 the	 loop	statement.	The	while
iteration	 scheme	 is	 used	 to	 create	 a	 pretest	 loop.	 The	 loop	 body	 is	 executed	 while	 the
condition	is	true.	The	loop	terminates	when	the	condition	is	false.	The	following	loop	uses
a	 while	 iteration	 scheme	 to	 calculate	 an	 approximation	 of	 the	 square	 root	 of	 X	 using
Newton’s	method.

This	 program	 fragment	 uses	 two	 operators	 not	 found	 in	 some	 programming	 languages.
The	 operator	 abs	 returns	 the	 absolute	 value	 of	 its	 operand,	 and	 **	 is	 used	 to	 raise	 a
number	to	an	integer	power.

The	 for	 iteration	 scheme	 is	 used	 to	 create	 deterministic	 counting	 loops.	 A	 simple
example	of	this	scheme	is	as	follows.

As	you	can	probably	guess,	 this	 loop	displays	 the	 four	 integers	5,	6,	7,	and	8.	Let	us
look	at	the	details	underlying	the	for	iteration	scheme.	The	variable	Count	in	this	example
is	called	the	loop	parameter.	The	loop	parameter	 is	not	defined	in	a	declarative	part	 like
normal	 variables.	 Count	 is	 defined	 only	 for	 the	 body	 of	 this	 loop.	 The	 range	 5	 ..	 8
defines	a	discrete	subtype	with	four	values.	The	body	of	the	loop	is	executed	once	for	each
value	in	this	discrete	subtype.	The	values	are	assigned	to	the	loop	parameter	in	increasing
order.	Within	the	body	of	the	loop,	the	loop	parameter	is	treated	as	a	constant;	we	cannot
modify	 it.	 To	 make	 our	 loops	 more	 general,	 we	 can	 replace	 the	 literals	 5	 or	 8	 in	 our
example	with	any	expression	 that	evaluates	 to	an	 integer	 type.	We	will	 revisit	 this	 topic
when	we	discuss	types	and	subtypes	later	in	this	chapter.

If	we	add	the	reserved	word	reverse	to	the	for	loop,	the	values	are	assigned	to	the	loop
parameter	in	decreasing	order.	The	following	for	loop	displays	the	four	numbers	in	reverse
order.

Reversing	 the	order	of	 the	values	 in	our	example	 range	creates	a	 subtype	with	a	null
range	–	a	subtype	with	no	values.	A	for	loop	with	a	null	range	iterates	zero	times.	Such	a
situation	 often	 arises	when	 the	 range	 is	 defined	by	 variables.	Each	of	 the	 following	 for



loops	displays	nothing:

2.2	 Subprograms

A	subprogram	 is	a	program	unit	whose	execution	 is	 invoked	by	a	subprogram	call.	Ada
provides	two	forms	of	subprograms:	the	procedure	and	the	function.	We	use	a	procedure
call	 statement	 to	 invoke	a	procedure.	You	saw	examples	of	procedure	call	 statements	 in
the	program	Average	at	 the	beginning	of	 this	chapter.	We	invoke	a	function	by	using	its
name	 in	 an	 expression.	 A	 function	 returns	 a	 value	 that	 is	 used	 in	 the	 expression	 that
invoked	it.

The	definition	 of	 a	 subprogram	 can	 be	 given	 in	 two	 parts:	 a	 declaration	 defining	 its
signature	and	a	body	containing	its	executable	statements.	The	specification	for	package
Sorters	on	page	§	includes	the	declaration	of	procedure	Selection_Sort.	Alternatively,
we	can	skip	the	subprogram	declaration	and	use	the	specification	at	the	beginning	of	the
body	 to	 define	 the	 signature.	We	will	 take	 this	 second	 approach	 in	 this	 section	 and	 use
separate	declarations	when	we	discuss	packages.	Section	6	of	 the	ARM	(2012)	provides
the	details	on	subprograms.

2.2.1	 Procedures
Let	us	start	with	a	complete	program	called	Example	that	illustrates	the	major	features	of	a
procedure.



The	first	thing	you	might	notice	is	that	our	program	is	itself	a	procedure.	It	is	called	the
main	 procedure.	 Each	 procedure	 consists	 of	 a	 declarative	 part	 where	 all	 of	 its	 local
resources	are	defined	and	a	sequence	of	statements	that	are	executed	when	the	procedure
is	called.	The	declarative	part	of	procedure	Example	contains	four	declarations:	the	named
constant	 Limit,	 the	 procedure	 Bounded_Increment,	 and	 the	 two	 variables	 Value	 and
Modified.	Named	 constants	 are	 assigned	values	 that	we	may	not	 change.	This	 program
also	introduces	the	language-defined	type	Boolean	with	possible	values	True	and	False.

Execution	of	our	program	begins	with	the	executable	statements	of	the	main	procedure



(line	 25	 of	 procedure	 Example).	 The	 first	 statement	 executed	 is	 the	 call	 to	 procedure
Put_Line	 that	displays	 the	prompt	“Enter	a	number.”	The	program	 then	obtains	a	value
from	the	user,	calls	procedure	Bounded_Increment,	and	finally,	based	on	the	actions	of	the
procedure	just	called,	it	may	display	a	message.

Parameter	Modes

Many	 programming	 languages	 require	 that	 programmers	 assign	 parameter	 passing
mechanisms	such	as	pass-by-value	and	pass-by-reference	to	their	parameters.	Ada	uses	a
higher	 level	means	based	on	 the	direction	of	data	 flow	of	 the	parameter	 rather	 than	 the
passing	mechanism.	 Procedure	Bounded_	 Increment	 illustrates	 all	 of	 the	 three	 different
modes	we	can	assign	to	a	parameter.

in Used	to	pass	data	from	the	caller	into	the	procedure.	Within	the
procedure,	an	in	mode	parameter	is	treated	as	a	constant.	The
actual	parameter	may	be	any	expression	whose	result	matches
the	type	of	the	formal	parameter.	In	our	example,	parameter
Bound	has	mode	in.

out Used	to	pass	results	out	of	the	procedure	back	to	its	caller.	You
should	treat	the	formal	parameter	as	an	uninitialized	variable.
The	actual	parameter	must	be	a	variable	whose	type	matches
that	of	the	formal	parameter.	In	our	example,	parameter
Changed	has	mode	out.

in	out Used	to	modify	an	actual	parameter.	A	value	is	passed	in,	used
by	the	procedure,	possibly	modified	by	the	procedure,	and
returned	to	the	caller.	It	is	like	an	out	mode	parameter	that	is
initialized	to	the	value	of	the	actual	parameter.	Because	a	value
is	returned,	the	actual	parameter	must	be	a	variable.	In	our
example,	parameter	Value	has	mode	in	out.

As	you	might	imagine,	the	SPARK	analysis	tools	make	use	of	these	parameter	modes	to
locate	errors	such	as	passing	an	uninitialized	variable	as	an	in	parameter.

Scope

The	scope	of	an	 identifier	determines	where	 in	 the	program	that	 identifier	may	be	used.
We	have	already	seen	one	example	of	scope	in	our	discussion	of	the	for	loop.	The	scope	of
a	 loop	 parameter	 is	 the	 body	 of	 the	 loop.	 You	 may	 not	 reference	 the	 loop	 parameter
outside	 the	 body	 of	 the	 loop.	The	 scope	 of	 every	 other	 identifier	 in	 an	Ada	 program	 is
based	on	the	notion	of	declarative	regions.	Each	subprogram	defines	a	declarative	region.
This	 region	 is	 the	 combination	 of	 the	 subprogram	 declaration	 and	 body.	 A	 declarative
region	is	more	than	the	declarative	part	we	defined	earlier.

Let	 us	 look	 at	 the	 declarative	 regions	 defined	 in	 program	 Example	 on	 page	 §.	 The



declarative	region	of	procedure	Example	begins	after	its	name	(on	line	3)	and	ends	with	its
end	 keyword	 on	 line	 35.	 Similarly,	 the	 declarative	 region	 for	 procedure
Bounded_Increment	begins	just	after	its	name	(on	line	7)	and	ends	with	its	end	keyword
on	 line	 19.	 Note	 that	 Bounded_Increment’s	 declarative	 region	 is	 nested	 within	 the
declarative	 region	 of	 Example.	 Also	 note	 that	 Bounded_Increment’s	 declarative	 region
contains	the	definition	of	its	three	parameters.

Where	a	particular	identifier	may	be	used	is	determined	from	two	rules:

The	scope	of	an	identifier	includes	all	the	statements	following	its	definition,	within
the	declarative	 region	containing	 the	definition.	This	 includes	all	nested	declarative
regions,	except	as	noted	in	the	next	rule.
The	 scope	 of	 an	 identifier	 does	 not	 extend	 to	 any	 nested	 declarative	 region	 that
contains	 a	 locally	 defined	 homograph.2	 This	 rule	 is	 sometimes	 called	 name
precedence.	When	homographs	exist,	the	local	identifier	takes	precedence	within	the
procedure.

Based	 on	 these	 rules,	 the	 variables	 Value	 and	 Modified	 may	 be	 used	 by	 the	 main
procedure	Example	but	not	by	procedure	Bounded_Increment.	The	constant	Limit	could
be	used	in	both	procedure	Example	and	procedure	Bounded_	Increment.	Because	Limit	is
declared	 within	 procedure	 Example’s	 declarative	 region,	 Limit	 is	 said	 to	 be	 local	 to
Example.	As	Limit	 is	 declared	 in	 procedure	Bounded_Increment’s	 enclosing	declarative
region,	Limit	 is	 said	 to	 be	global	 to	Bounded_Increment.	 The	 three	 parameters,	Value,
Bound,	and	Changed,	are	local	to	procedure	Bounded_Increment.

Although	global	constants	are	useful,	the	use	of	global	variables	is	usually	considered	a
bad	 practice	 as	 they	 can	 potentially	 be	 modified	 from	 anywhere.	 We	 use	 the	 style	 of
always	declaring	variables	after	procedures	so	that	the	variables	may	not	be	accessed	by
those	 procedures.	 In	 Chapter	 3,	 we	 use	 global	 variables	 whose	 scope	 is	 restricted	 to
implement	variable	packages.	We	may	include	a	global	aspect	to	indicate	that	a	procedure
accesses	or	does	not	access	global	variables.	Should	a	procedure	violate	its	stated	global
access,	the	SPARK	tools	will	give	an	error	message.

2.2.2	 Functions
Functions	 return	a	value	 that	 is	used	 in	 the	 expression	 that	 invoked	 the	 function.	While
some	programming	languages	restrict	return	values	to	scalars,	an	Ada	function	may	return
a	composite	value	 such	as	 an	array	or	 record.	SPARK	 restricts	 all	 function	parameters	 to
mode	in.	This	mode	restriction	encourages	programmers	to	create	functions	that	have	no
side	 effects.	 For	 the	 same	 reason,	 SPARK	 functions	 may	 use	 but	 not	 modify	 global
variables.	Here	is	an	example	of	a	function	that	is	given	a	real	value	and	acceptable	error
tolerance.	It	returns	an	approximation	of	the	square	root	of	the	value.



The	signature	of	 this	function	includes	its	parameters	and	the	type	of	 the	value	that	 it
returns.	Approx	 is	 a	 local	variable	 that	holds	our	 approximation	of	 the	 square	 root	of	X.
Execution	of	the	return	statement	completes	the	execution	of	the	function	and	returns	the
result	 to	 the	 caller.	You	may	 have	multiple	 return	 statements	 in	 a	 function.	 Should	 you
need	to	calculate	a	square	root	in	your	programs,	it	would	be	better	to	use	a	function	from
a	library	rather	than	our	example	code.

Expression	Functions

Expression	functions	allow	us	to	write	functions	consisting	of	a	single	expression	without
the	 need	 to	write	 a	 function	 body.	The	 executable	 code	 of	 an	 expression	 function	 is	 an
expression	written	directly	within	the	specification	of	the	function.	Here,	for	example,	is	a
Boolean	 expression	 function	 that	 returns	True	 if	 the	 second	 parameter	 is	 twice	 the	 first
parameter	regardless	of	the	sign	of	either	number:

Note	 that	 the	expression	 implementing	 function	Double	 is	 enclosed	 in	parentheses.	A
common	 use	 of	 expression	 functions	 is	 within	 assertions	 such	 as	 preconditions,
postconditions,	 and	 loop	 invariants.	 Replacing	 complex	 expressions	 with	 well-named
function	calls	can	make	assertions	easier	to	read.	Of	course,	we	can	also	easily	reuse	the
expression	in	other	assertions.

2.3	 Data	Types

A	computer	program	operates	on	data	stored	in	memory.	Our	programs	reference	this	data
through	 symbolic	 names	 known	 as	 objects.	 An	 object	 is	 declared	 as	 either	 variable	 or
constant.	In	Ada,	every	object	must	be	of	a	specific	type.	The	data	type	establishes	the	set
of	 possible	 values	 that	 an	 object	 of	 that	 type	 may	 take	 (its	 domain)	 and	 the	 set	 of
operations	 that	 can	be	performed	with	 those	values.	For	example,	 an	 integer	 type	might
have	a	domain	consisting	of	all	of	 the	whole	numbers	between	 	and	

.	 Operations	 on	 these	 numbers	 typically	 include	 the	 arithmetic
operators	( ),	equality	operators	( ),	and	relational	operators	(
).

The	 primary	 predefined	 types	 in	 Ada	 are	 Boolean,	 Character,	 Integer,	 Float,



Duration,	 and	 String.	 You	 are	 familiar	 with	 most	 of	 these	 types	 from	 your	 prior
programming	experiences.	Duration	 is	a	real	number	 type	used	 to	keep	 track	of	 time	in
seconds.	As	you	saw	in	the	examples	earlier	in	this	chapter,	an	Ada	variable	is	declared	by
writing	its	name	followed	by	the	name	of	its	type.	Here	are	some	more	examples:

Constant	declarations	are	similar	but	require	 the	addition	of	 the	word	constant	and	a
value:

Ada	allows	us	to	define	our	own	simple	and	complex	types.	Using	these	types,	we	can
create	 accurate	 models	 of	 the	 real	 world	 and	 provide	 valuable	 information	 to	 the
SPARK	 tools	 so	we	can	 identify	errors	before	 the	program	 is	executed.	Let	us	 look	at	an
example	program	with	an	obvious	error:

In	 this	 example	we	have	defined	 three	variables,	 each	of	which	holds	 a	 real	 number.
The	programmer	ignored	the	comments	given	with	each	of	these	variable	declarations	and
neglected	to	convert	the	wall	thickness	measurement	from	inches	to	feet	before	adding	it
to	 the	 room	 length	 measurement.	 Although	 the	 error	 in	 this	 short	 program	 is	 obvious,
finding	 similar	 errors	 in	 large	 programs	 requires	 a	 great	 deal	 of	 effort	 in	 testing	 and
debugging.	Ada’s	 type	model	helps	eliminate	a	wide	class	of	errors	 from	our	programs.
However,	 as	 the	 example	 illustrates,	we	 can	 still	 have	 such	 errors	 in	our	Ada	programs
when	we	do	not	take	full	advantage	of	the	type	system	to	model	our	values.

SPARK’s	types	are	a	subset	of	Ada’s	types.	Ada’s	access	types	(pointers)	and	controlled
types	are	not	amenable	to	formal	analysis	and	therefore	not	part	of	SPARK.	At	the	time	of
this	 writing,	 SPARK	 does	 not	 support	 task	 types.	We	 expect	 that	 to	 change	 in	 the	 near
future.	Figure	2.1	shows	the	relationships	among	SPARK’s	various	types.	The	hierarchy	in



this	figure	is	similar	to	a	class	inheritance	hierarchy.	Type	Boolean	is	an	enumeration	type.
An	enumeration	type	is	a	discrete	type.	The	types	whose	names	are	in	italics	in	Figure	2.1,
such	as	Scalar,	are	abstract	entities	used	to	organize	the	classification	of	types.	The	set	of
operations	available	for	all	Ada	types3	include	assignment	(:=)	and	equality	testing	(=	and
/=).

	

Figure	2.1.	 The	SPARK	type	hierarchy.

Figure	 2.1	 shows	 that	 types	 are	 divided	 into	 two	 groups:	 atomic	 and	 composite.	 A
composite	type	is	one	whose	values	may	be	decomposed	into	smaller	values.	A	string	type
is	a	composite	type.	A	string	value	is	composed	of	characters.	We	can	access	and	use	the
individual	characters	making	up	a	string.	An	atomic	type	is	one	whose	values	cannot	be
decomposed	 into	 smaller	 values.	A	 character	 type	 is	 an	 atomic	 type.	A	 character	 value
cannot	 be	 decomposed	 into	 smaller	 values.	 Integers	 and	 real	 numbers	 are	 also	 atomic
types.

2.3.1	 Scalar	Types
A	scalar	type	is	an	atomic	type	with	the	additional	property	of	ordering.	We	can	compare
scalar	values	with	the	relational	operators	(	<,	<=,	>,	and	>=).	Characters,	integers,	and	real
numbers	are	all	scalar	types.

One	of	the	principles	of	object-oriented	programming	is	the	development	of	classes	that
accurately	 model	 the	 objects	 in	 the	 problem.	We	 can	 apply	 this	 same	 approach	 to	 the
design	of	our	scalar	types.	By	using	scalar	types	that	more	accurately	reflect	the	nature	of
the	data	in	a	problem	we	are	solving,	we	can	write	better	programs.	One	research	study	on



the	 nature	 of	 costly	 software	 faults	 indicates	 that	 poor	models	 of	 scalar	 quantities	were
responsible	 for	 nearly	 90	 percent	 of	 the	 errors	 in	 the	 cases	 studied
(Eisenstadt,	1997;	McCormick,	1997).	Ada	allows	programmers	to	define	their	own	scalar
data	types	that	accurately	model	the	scalar	values	in	the	problem	domain.

Figure	 2.1	 shows	 that	 there	 are	 two	 kinds	 of	 scalar	 types.	 Real	 types	 provide	 the
mechanisms	 for	 working	 with	 real	 numbers.	 A	 discrete	 type	 is	 a	 scalar	 type	 with	 the
additional	property	of	unique	 successors	 and	predecessors.	We	will	 look	at	 specific	 real
and	discrete	types	in	the	next	sections.

Real	Types

The	 storage	 and	 manipulation	 of	 real	 numbers	 is	 the	 substance	 of	 the	 discipline	 of
numerical	analysis.	The	underlying	problem	with	computations	involving	real	numbers	is
that	 very	 few	 real	 numbers	 can	 be	 represented	 exactly	 in	 a	 computer’s	 memory.	 For
example,	 of	 the	 infinite	 number	 of	 real	 numbers	 in	 the	 interval	 between	 10,000.0	 and
10,001.0,	 only	 1,024	 are	 represented	 exactly	 in	 the	 IEEE	 754	 single	 precision
representation.	 The	 numbers	 with	 exact	 representations	 are	 called	model	 numbers.	 The
remaining	numbers	are	approximated	and	represented	by	 the	closest	model	number.	The
representational	error	for	a	particular	real	number	is	equal	to	the	difference	between	it	and
the	model	number	used	to	represent	it.

Floating	Point	Types

Here	is	a	revised	version	of	our	simple	program	for	adding	room	dimensions.	In	place	of
the	language-defined	type	Float,	we	have	defined	two	new	floating	point	types:	Feet	and
Inches.	Because	the	variables	Room_Length	and	Wall_Thickness	are	now	different	types,
the	 SPARK	 tools	 will	 catch	 the	 inappropriate	 addition	 of	 feet	 and	 inches	 we	 had	 in	 our
earlier	erroneous	program.



The	 addition	 of	 feet	 and	 inches	 requires	 that	 we	 convert	 a	 value	 from	 one	 unit	 to
another.	We	have	 included	a	 function	 that	makes	 this	conversion.	The	 function	To_Feet
first	 does	 an	 explicit	 type	 conversion	 (3	 inches	 is	 converted	 to	 3	 feet),	 which	 is	 then
divided	by	12	to	complete	the	unit	conversion.

Our	two	new	floating	point	types	are	defined	by	the	type	definitions	at	the	beginning	of
the	program.	To	define	a	new	floating	point	type,	we	must	specify	the	minimum	number
of	decimal	digits	we	require	 in	 the	mantissa	 in	 the	 floating	point	numbers.	This	number
follows	the	word	digits	in	the	type	definition.	The	specification	of	a	range	for	a	floating
point	type	is	optional.	If	the	range	is	omitted,	the	compiler	will	create	a	floating	point	type
with	the	widest	range	possible.

We	 select	 the	 minimum	 number	 of	 digits	 in	 the	 mantissa	 based	 on	 the	 expected
precision	 of	 our	 largest	 value.	 For	 our	 room	 length,	 we	 selected	 100	 feet	 as	 the	 upper
bound	of	 our	domain.	We	estimated	 that	 the	precision	of	 a	measurement	 of	 a	 100-foot-
long	room	is	one-tenth	of	a	foot.	Therefore,	we	need	four	digits	of	precision	to	represent
100.0	–	three	account	for	the	digits	to	the	left	of	the	decimal	point	and	one	for	the	digit	to
the	 right	of	 the	decimal	point.	Should	we	use	 a	 laser	 range	 finder	with	 a	precision	of	 a
thousandth	of	a	foot	in	place	of	a	tape	measure,	we	would	increase	the	number	of	digits	of
precision	to	six,	three	on	each	side	of	the	decimal	point.	Similarly,	we	estimated	that	the
precision	of	a	measurement	of	a	12-inch-thick	wall	is	one-tenth	of	an	inch.	So	we	need	a



total	of	three	digits	of	precision	for	our	wall	thickness	type.	The	precisions	we	select	are
minimums	 we	 will	 accept.	 The	 compiler	 will	 select	 the	 most	 efficient	 floating	 point
representation	available	on	the	hardware	with	at	least	the	precision	we	specify.	The	most
common	 representations	used	 are	 those	 specified	by	 the	 IEEE	754	 standard	 for	 floating
point	 representation.	We	 usually	 consider	 the	 precisions	 specified	 in	 our	 floating	 point
type	definitions	as	documentation	on	the	precision	of	our	actual	data.

We	cannot	use	 the	procedures	 in	 the	 library	package	Ada.Float_Text_IO	 to	do	 input
and	output	with	values	of	type	Feet	and	Inches.	Ada	provides	a	generic	library	package
that	 may	 be	 instantiated	 to	 obtain	 packages	 for	 doing	 input	 and	 output	 with	 our	 own
floating	point	types.	You	can	see	the	two	instantiations	for	packages	Feet_IO	and	Inch_IO
immediately	following	the	definitions	of	our	two	floating	point	types.	We	talk	more	about
Ada’s	generic	facilities	in	Sections	2.4.2	and	3.3.3.

Fixed	Point	Types

As	illustrated	in	Figure	2.1,	Ada	provides	support	for	two	representations	of	real	numbers:
fixed	 point	 and	 floating	 point.	 Fixed	 point	 numbers	 provide	 a	 fixed	 number	 of	 digits
before	and	after	the	radix	point.	When	we	write	a	real	number	on	paper,	we	usually	use	a
fixed	point	format	such	as

In	a	floating	point	number,	the	radix	point	may	“float”	to	any	location.	Floating	point	is
the	computer	 realization	of	 scientific	notation.	A	 floating	point	value	 is	 implemented	as
two	 separate	 numbers:	 a	 mantissa	 and	 an	 exponent.	 The	 following	 are	 all	 valid
representations	of	1,285.1:

Floating	point	 is	 by	 far	 the	more	 commonly	used	 representation	 for	 real	 numbers.	 In
most	 programming	 languages,	 floating	 point	 is	 the	 only	 type	 available	 for	 representing
real	numbers.	Floating	point	types	support	a	much	wider	range	of	values	than	fixed	point
types.	 However,	 fixed	 point	 types	 have	 two	 properties	 that	 favor	 their	 use	 in	 certain
situations.	 First,	 fixed	 point	 arithmetic	 is	 performed	 with	 standard	 integer	 machine
instructions.	Integer	instructions	are	typically	faster	than	floating	point	instructions.	Some
inexpensive	embedded	microprocessors,	microcontrollers,	and	digital	signal	processors	do
not	 support	 floating	 point	 arithmetic.	 In	 such	 cases,	 fixed	 point	 is	 the	 only	 efficient
representation	available	for	real	numbers.

The	 second	 advantage	 of	 fixed	 point	 is	 that	 the	 maximum	 representational	 error	 is
constant	 throughout	 the	 range	 of	 the	 type.	 The	 maximum	 representational	 error	 for	 a
floating	point	type	depends	on	the	magnitude	of	the	number.	This	difference	is	a	result	of
the	 distribution	 of	model	 numbers	 in	 each	 of	 the	 representations.	The	 distance	 between
model	 floating	 point	 numbers	 varies	 through	 the	 range;	 it	 depends	 on	 the	 value	 of	 the
exponent.	 The	 distance	 between	model	 fixed	 point	 numbers	 is	 constant	 throughout	 the
range.

Figure	2.2	 illustrates	 the	difference	 in	model	number	distributions.	Figure	2.2a	shows



the	model	numbers	 for	 a	very	 simple	 floating	point	 representation.	There	are	 ten	model
numbers	between	1.0	and	10.0,	 ten	model	numbers	between	0.1	and	1.0,	and	 ten	model
numbers	between	0.01	and	0.1.	Figure	2.2b	shows	the	model	numbers	for	a	simple	fixed
point	 representation.	 The	 distance	 between	 model	 numbers	 is	 constant	 throughout	 the
range.	Figure	2.2	 shows	 that	 the	 representational	 error	 for	 a	 floating	 point	 number	 gets
larger	 as	 the	 number	 gets	 larger,	 whereas	 the	 representational	 error	 for	 a	 fixed	 point
number	is	constant	throughout	its	range.

	

Figure	2.2.	 Distribution	of	model	numbers.

Does	 the	 choice	 of	 real	 number	 representation	 really	 make	 a	 difference	 in	 our
applications?	 “On	 February	 25,	 1991,	 a	 Patriot	 missile	 defense	 system	 operating	 at
Dhahran,	 Saudi	Arabia,	 during	Operation	Desert	 Storm	 failed	 to	 track	 and	 intercept	 an
incoming	 Scud	 [missile].	 This	 Scud	 subsequently	 hit	 an	 Army	 barracks,	 killing	 28
Americans”	Blair,	Obenski,	and	Bridickas	(1992).	The	Patriot	battery	failed	because	of	a
software	 problem	 related	 to	 the	 storage	 and	 use	 of	 floating	 point	 numbers.	 The	 system
stored	time,	 in	 tenths	of	a	second,	 in	a	floating	point	variable.	Table	2.1,	 taken	from	the
Government	Accounting	Office	 report,	 shows	 the	magnitude	of	 the	error	 in	 representing
this	 time	 as	 a	 floating	 point	 value.	 As	 with	 all	 floating	 point	 representations,	 the
magnitude	of	the	error	increases	with	the	magnitude	of	the	value.

Table	2.1.	 Magnitude	of	range	gate	error	when	modeling	time	as	a	floating	point	real
number

Absolute Approximate	shift	in

Time

inaccuracy missile	range	gate
Hours Seconds (Seconds) (Meters)

0 0.0 0.0 0
1 3600.0 0.0034 7
8 28800.0 0.0275 55



20 72000.0 0.0687 137
48 172800.0 0.1648 330
72 259200.0 0.2472 494
100 360000.0 0.3433 687

Table	2.1	shows	that	the	floating	point	representation	error	grows	as	the	number	grows.
After	twenty	hours,	the	time	is	off	enough	that	the	target	is	outside	the	range	gate	and	the
Patriot	 missile	 fails	 to	 launch	 against	 a	 threat.	 After	 the	 tragedy,	 the	 software	 was
corrected	by	replacing	the	floating	point	time	variables	with	fixed	point	variables.	Let	us
note	that	Ada’s	predefined	type	Duration	is	a	fixed	point	type	for	seconds.

To	 declare	 a	 fixed	 point	 type,	 we	 specify	 the	 maximum	 distance	 between	 model
numbers	that	we	are	willing	to	accept.	The	maximum	representational	error	is	half	of	this
distance.	We	may	also	specify	an	optional	range	for	the	type.	Here	are	two	examples:

Thirds	is	a	fixed	point	type	with	a	specified	distance	of	 	(0.33333…)	between	model
numbers	 and	 Volts	 is	 a	 fixed	 point	 type	 with	 a	 specified	 distance	 of	
(0.000244140625)	between	model	numbers.	Both	of	these	types	are	called	ordinary	 fixed
point	 types.	The	actual	distance	between	model	numbers	 in	our	 fixed	point	 type	may	be
smaller	than	our	request.	The	actual	distance	between	model	numbers	is	the	largest	power
of	two	that	 is	 less	than	or	equal	 to	the	value	given	for	delta.	So	although	we	specified	a
delta	value	of	 	for	Thirds,	the	actual	delta	used	is	the	power	of	two,	 	( ).	The	delta
we	 specified	 for	 Volts	 is	 a	 power	 of	 two	 so	 it	 is	 used	 directly.	 Because	 the	 distance
between	model	numbers	is	some	power	of	two,	ordinary	fixed	point	types	are	sometimes
called	binary	fixed	point	types.

Neither	 floating	 point	 nor	 ordinary	 fixed	 point	 types	 are	 appropriate	 for	 currency
calculations.	 Neither	 is	 capable	 of	 accurate	 storage	 of	 decimal	 fractions	 that	 are	 so
important	 in	 commercial	 applications.	 Ada’s	 decimal	 fixed	 point	 types	 are	 the	 more
appropriate	choice	for	such	values.	Here	is	an	example:

For	decimal	fixed	point	types,	we	must	specify	both	a	delta	that	is	a	power	of	ten	and
the	number	of	decimal	digits.	A	range	is	optional.	A	value	of	type	Dollars	contains	twelve
decimal	digits.	Because	the	distance	between	model	numbers	is	0.01,	two	of	these	digits
are	 to	 the	 right	 of	 the	 decimal	 point,	 leaving	 ten	 digits	 for	 the	 left	 side	 of	 the	 decimal
point.

We	use	the	generic	packages	Ada.Text_IO.Fixed_IO	and	Ada.Text_IO.Decimal_IO	to
instantiate	packages	 for	 the	 input	 and	output	of	ordinary	 and	decimal	 fixed	point	 types.
You	 may	 find	 the	 details	 for	 the	 available	 I/O	 operations	 in	 section	 A.10.9	 of	 the
ARM	(2012).	Here	are	the	instantiations	for	our	example	types:



Ada’s	rules	that	prevent	the	mixing	of	different	types	are	more	relaxed	for	fixed	point
type	multiplication	and	division.	Multiplication	and	division	are	allowed	between	any	two
fixed	point	types.	The	type	of	the	result	is	determined	by	the	context.	So,	for	example,	if
we	assign	the	result	of	multiplying	a	Volts	value	and	a	Thirds	value	to	a	Volts	variable,
the	 result	 type	 of	 the	 multiplication	 would	 be	 Volts.	 Similarly,	 if	 we	 assign	 the	 same
product	 to	 a	 Thirds	 variable,	 the	 result	 type	 of	 the	 multiplication	 would	 be	 Thirds.
Additionally,	a	fixed	point	value	may	be	multiplied	or	divided	by	an	integer	yielding	the
same	fixed	point	type.

2.3.2	 Discrete	Types
Recall	 that	 a	 scalar	 type	 is	 an	 atomic	 type	with	 the	 additional	 property	 of	 ordering.	 A
discrete	 type	 is	 a	 scalar	 type	 with	 the	 additional	 property	 of	 unique	 successors	 and
predecessors.	 The	 language-defined	 types	 Boolean,	 Character,	 and	 Integer	 are	 all
discrete	types.	In	the	next	sections	we	will	look	at	defining	our	own	discrete	types.

Enumeration	Types

An	enumeration	type	provides	a	means	for	defining	a	type	by	enumerating	(listing)	all	the
values	 in	 the	 domain.	 The	 following	 program	 illustrates	 the	 definition	 and	 use	 of	 three
enumeration	types:





Each	of	our	three	enumeration	types	is	defined	by	listing	literals	for	all	of	the	values	in
the	 domain.	 These	 literals	 are	 case	 insensitive.	 We	 could	 also	 have	 typed	 MONDAY	 or
monday	for	the	first	value	of	Day_Type.	Notice	that	Red	is	both	a	Pixel_Color	literal	and	a
Traffic_Light_Color	literal.

We	may	 instantiate	 packages	 for	 the	 input	 and	 output	 of	 enumeration	 values.	 In	 our
example	 program,	 we	 instantiated	 the	 Ada	 library	 generic	 package	 Enumeration_IO	 to
create	 the	 package	 Day_IO	 that	 allows	 us	 to	 get	 and	 put	 day	 values.	 You	may	 find	 the
details	 of	 the	 input	 and	 output	 operations	 available	 for	 enumeration	 values	 in	 section
A.10.10	 of	 the	 ARM	 (2012).	 Like	 the	 defining	 literals,	 the	 input	 values	 are	 not	 case
sensitive.	For	output,	we	may	select	between	all	uppercase	or	all	 lowercase	values.	The
first	 portion	 of	 the	 main	 procedure	 in	 our	 example	 calls	 procedures	 get	 and	 put	 in
package	Day_IO	to	get	a	day	and	display	the	next	day.

Our	main	subprogram	calls	the	function	Next_Day	to	determine	the	day	that	follows	the
day	 entered	 by	 the	 user.	This	 function	 has	 our	 first	 use	 of	 attributes.	An	attribute	 is	 an
operator	that	yields	a	characteristic	of	a	type	or	object.	Some	attributes	require	parameters.
Here	are	the	most	common	attributes	for	scalar	types:

’First Returns	the	lower	bound	of	the	type
’Last Returns	the	upper	bound	of	the	type
’Image Returns	a	string	equivalent	to	the	given	value
’Value Returns	a	value	equivalent	to	the	given	string
	 	

And	here	are	two	additional	attributes	available	for	discrete	types:

’Succ Returns	the	successor	of	the	given	value
’Pred Returns	the	predecessor	of	the	given	value
	 	

Let	 us	 look	 at	 the	 attributes	 used	 in	 program	 Enum_Example.	 The	 expression
Day_Type’Last	 (read	 “day	 type	 tick	 last”)	 in	 the	 if	 statement	 of	 our	 function	 uses	 the
attribute	 ’Last	 to	 determine	 the	 last	 (largest)	 value	 in	 the	 domain	 of	 the	 type.	 As	 you
might	expect,	the	attribute	’	First	returns	the	first	(smallest)	value	in	the	domain	of	the
type.	The	attribute	’Succ	requires	a	parameter.	It	returns	the	successor	of	the	value	passed
to	it.	Because	there	is	no	successor	for	the	value	Sunday	in	type	Day_Type,	passing	Sunday
to	the	successor	attribute	function	is	an	error.	The	purpose	of	the	if	statement	in	function
Next_Day	is	to	avoid	this	error	by	returning	the	first	day	of	our	type	(	Monday)	for	the	one
case	in	which	the	successor	function	fails.	The	attribute	’Pred	returns	the	predecessor	of	a
value	passed	 to	 it.	 It	 is	an	error	 to	use	 this	 function	 to	determine	 the	predecessor	of	 the
smallest	value	in	the	type’s	domain.	You	may	find	descriptions	of	the	attributes	available
for	all	scalar	types	in	section	3.5	of	the	ARM	(2012).	Additional	attributes	for	all	discrete
types	are	described	in	section	3.5.5.	Sections	3.5.8	and	3.5.10	describe	attributes	available
for	all	floating	point	and	fixed	point	types.



The	next	portion	of	the	main	subprogram	of	our	example	illustrates	the	use	of	relational
operators	with	 enumeration	values.	These	 operators	 use	 the	 order	 of	 the	 literals	 in	 each
enumeration	 type	 definition.	Day_Type	 defines	 an	 order	 of	 days	 in	which	Monday	 is	 the
smallest	day	and	Sunday	 is	 the	 largest	 day.	The	 if	 statement	 that	 asks	whether	Today	 is
greater	than	Tomorrow	is	true	only	when	Today	is	Sunday.

The	remainder	of	our	example	program	illustrates	additional	variations	of	the	for	loop.
Our	previous	for	loop	examples	used	only	integer	loop	parameters.	A	loop	parameter	may
be	of	any	discrete	 type.	Recall	 that	a	 loop	parameter	 is	not	declared	before	 the	 loop.	 Its
type	and	range	are	defined	by	the	discrete	subtype	definition	following	the	reserved	word
in.

The	second	loop	in	our	example	program	uses	a	type	name	without	a	range.	This	loop
iterates	through	all	three	values	of	type	Traffic_Light_Color	displaying	each	value.	We
used	 another	 approach	 for	 displaying	 the	 traffic	 light	 colors	 in	 this	 loop.	 The	 ’Image
attribute	function	returns	an	uppercase	string	equivalent	to	the	enumeration	parameter.	We
then	 used	 Ada.Text_IO.	 Put_Line	 to	 display	 this	 string.	 The	 advantage	 of	 the	 ’Image
attribute	is	its	simplicity.	However,	it	does	not	provide	the	control	available	for	formatting
enumeration	 values	 available	 in	 the	 put	 procedures	 created	 in	 instantiations	 of
enumeration	I/O	packages.

Integer	Types

Most	programmers	use	the	integer	type	defined	in	their	language	for	all	variables	that	hold
whole	numbers.	As	we	saw	earlier	 in	our	room	length	example,	using	the	same	type	for
different	quantities	may	result	 in	 logic	errors	requiring	debugging	effort.	By	again	using
different	 and	 appropriate	 types	 for	 our	 integers,	 we	 can	 have	 more	 confidence	 in	 our
software.	Ada	provides	both	signed	and	unsigned	integer	types.

Signed	Integers
To	 define	 a	 new	 signed	 integer	 type,	 we	 need	 only	 specify	 the	 range.	 Here	 are	 the
definitions	of	three	signed	integer	types	and	the	declaration	of	a	variable	of	each	of	those
types:

The	range	of	each	type	is	specified	by	a	smallest	and	largest	value,	not	by	some	storage
unit	size	such	as	byte	or	word.	Because	they	are	different	types,	a	comparison	of	Apples
and	Oranges	is	illegal.	Of	course,	should	you	really	want	to	combine	apples	and	oranges
in	an	expression,	you	can	use	explicit	type	conversions	as	in



Operations	available	for	signed	integers	include	+,	 ,	*,	/,	**,	abs,	rem,	and	mod.	The
rem	 (remainder	 on	 division)	 and	 mod	 (mathematical	 modulo)	 operators	 return	 the	 same
result	when	both	of	their	operands	are	positive.	Should	one	of	your	operands	be	negative,
you	should	consult	 the	formal	definitions	of	these	two	similar	operators	given	in	section
4.5.5	 of	 the	 ARM	 (2012).	 The	 attributes	 ’	 First	 ,	 ’Last,	 ’Succ,	 ’Pred,	 and	 ’Image
discussed	for	enumeration	values	are	also	available	for	signed	integers.

To	do	input	and	output	of	our	own	integer	types,	we	need	to	instantiate	a	package	from
the	generic	integer	I/O	package	available	in	the	Ada	library.	Here	are	the	instantiations	for
the	three	integer	types	we	defined:

Modular	Integers
Modular	integer	types	are	unsigned	integer	types	that	use	modular	arithmetic.	The	value	of
a	 modular	 integer	 variable	 wraps	 around	 after	 reaching	 an	 upper	 limit.	 To	 define	 a
modular	 integer	 type,	we	 need	 only	 specify	 a	modulus.	Here	 are	 some	modular	 integer
type	definitions	and	variable	declaration:

The	following	assignment	statement	illustrates	the	modular	nature	of	this	type:

In	addition	to	the	usual	arithmetic	operators,	the	logical	operators	and,	or,	xor,	and	not
are	 available	 for	modular	 integer	 types.	These	 operators	 treat	 the	 values	 as	 bit	 patterns.
The	result	of	the	not	operator	for	a	modular	type	is	defined	as	the	difference	between	the
high	bound	of	the	type	and	the	value	of	the	operand.	For	a	modulus	that	is	a	power	of	two,
this	corresponds	to	a	bit-wise	complement	of	the	binary	representation	of	the	value	of	the
operand.

You	may	recall	using	the	logical	operators	and	bit	masks	in	your	assembly	language,	C,
C++,	or	Java	programs	 to	clear,	 set,	and	 toggle	 individual	bits	 in	a	computer’s	memory.
Thus,	you	might	think	that	Ada’s	modular	types	provide	the	mechanism	for	Ada	programs
to	 manipulate	 individual	 bits.	 Ada	 provides	 a	 much	 higher	 level	 approach	 to	 bit
manipulation.	This	topic	is	beyond	the	scope	of	this	work.	See	McCormick,	Singhoff,	and
Hugues	(2011)	for	a	full	discussion	of	low	level	programming	with	Ada.

Again,	we	must	 instantiate	packages	 to	do	input	and	output	with	 the	 types	we	define.
You	 can	 find	 the	 details	 on	 these	 packages	 and	 the	 get	 and	 put	 procedures	 in	 section
A.10.8	of	the	ARM	(2012).	Here	are	the	instantiations	for	our	four	modular	types:



2.3.3	 Subtypes
By	 defining	 our	 own	 types,	 we	make	 our	 programs	 easier	 to	 read	 and	 safer	 from	 type
errors	and	allow	range	checking	by	the	SPARK	tools.	In	some	cases,	values	with	different
constraints	are	related	so	closely	that	using	them	together	in	expressions	is	common	and
desired.	 Although	 explicit	 type	 conversion	 allows	 us	 to	 write	 such	 expressions,	 Ada
provides	a	better	solution	–	the	subtype.	Subtypes	allow	us	to	create	a	set	of	values	that	is
a	subset	of	 the	domain	of	some	existing	type.	Subtypes	 inherit	 the	operations	from	their
base	 type.	Subtypes	are	compatible	with	 the	 type	 from	which	 they	were	derived	and	all
other	subtypes	derived	from	that	type.	A	subset	is	defined	by	specifying	an	existing	type
and	an	optional	constraint.	Let	us	look	at	some	examples:

The	domain	of	the	subtype	Uppercase	is	a	subset	of	the	domain	of	the	language-defined
type	Character.	Objects	of	subtype	Uppercase	may	be	combined	with	or	used	in	place	of
objects	of	type	Character.	Similarly,	 the	domain	of	 the	subtype	Negative	 is	a	subset	of
the	domain	of	 the	language-defined	type	Integer.	The	domain	of	subtypes	Weekday	and
Weekend	 are	 both	 subsets	 of	 the	 programmer-defined	 type	 Day_Type.	 The	 following
assignment	statement	illustrates	the	combining	of	subtypes	with	the	same	base	type:

Subtype	 definitions	may	 also	 be	 used	 to	 create	 synonyms	 –	 subtypes	with	 the	 same
domain	as	 their	base	 type.	Synonyms	are	often	used	to	provide	a	more	problem	specific
name	for	a	type	whose	name	is	more	general	or	to	eliminate	the	need	to	prefix	a	type	name



defined	in	a	package.	The	subtype	Column_Number	is	an	example	of	such	a	synonym.

There	are	two	commonly	used	language-defined	subtypes	defined	in	Ada.	Positive	is
a	subtype	of	Integer	with	a	range	that	starts	at	one.	Natural	is	a	subtype	of	Integer	with	a
range	that	starts	at	zero.

2.3.4	 Scalar	Types	and	Proof
Defining	 and	 using	 our	 own	 types	 and	 subtypes	 to	 accurately	model	 real-world	 values
helps	prevent	errors	in	our	programs.	Selecting	appropriate	ranges	for	variables	provides
an	additional	benefit	when	using	the	SPARK	proof	tools.	Take,	for	example,	the	following
assignment	statement:

To	prove	that	the	program	containing	this	statement	is	correct	requires	the	tool	to	prove
that	C	can	never	be	zero.	This	proof	 is	much	simpler	 if	C	 is	declared	to	be	some	type	or
subtype	that	does	not	include	zero	in	its	range	(for	example,	subtype	Positive	).	Here	is
another	example	whose	proof	can	be	simplified	by	using	appropriate	ranges:

Can	you	see	 the	error	 lurking	 in	 this	simple	statement?	If	B	and	C	are	both	very	 large
numbers,	 their	 sum	may	exceed	 that	 of	 the	processor’s	 accumulator.	To	 ensure	 that	 this
statement	is	correct,	 the	tool	must	prove	that	the	sum	of	the	two	numbers	cannot	exceed
the	maximum	accumulator	value.	By	declaring	types	or	subtypes	with	limited	ranges	for	B
and	 C,	 the	 proof	 tool’s	 job	 is	 much	 easier.	 Using	 types	 and	 subtypes	 with	 appropriate
ranges	rather	than	the	predefined	types	Integer	and	Float	will	reduce	the	effort	both	you
and	the	proof	tools	expend	to	verify	your	program.

2.3.5	 Array	Types
Arrays	are	composite	types	whose	components	have	the	same	type.	We	access	a	specific
component	by	giving	its	location	via	an	index.	Defining	an	array	type	requires	two	types:
one	 type	 or	 subtype	 for	 the	 component	 and	 one	 type	 or	 subtype	 for	 the	 index.	 The
component	may	be	any	type.	The	index	may	be	any	discrete	type.	Here	are	some	examples
of	array	definitions:



Variable	 Inventory	 is	 an	 array	 of	 1,000	 natural	 numbers	 indexed	 from	 1	 to	 1,000.
Control	 and	Unknown	 are	 arrays	 of	 26	 percentages	 indexed	 from	 a	 to	 z.	 On_Call	 is	 an
array	of	seven	Boolean	values	indexed	from	Monday	to	Sunday.

Ada	provides	a	rich	set	of	array	operations.	Let	us	start	with	a	selection	operation.	We
use	indexing	to	select	a	particular	component	in	an	array.	We	can	use	indexing	to	obtain	a
value	 from	 an	 array	 or	 change	 a	 value	 in	 an	 array.	 Here	 are	 some	 examples	 using	 the
variables	we	just	defined:

Assignment	is	another	operation	available	with	arrays.	As	usual,	strong	typing	requires
that	 the	 source	 and	 target	 of	 an	 assignment	 statement	 be	 the	 same	 type.	 The	 following
assignment	statement	makes	the	array	Unknown	a	copy	of	the	array	Control.

We	can	use	the	equality	operators	to	compare	two	arrays	of	the	same	type.	If	the	array
components	are	discrete	values,	we	can	also	compare	two	arrays	with	any	of	the	relational
operators.	The	 relational	operators	are	based	on	 lexicographical	order	 (sometimes	called
dictionary	order)	using	 the	order	 relation	of	 the	discrete	component	 type.	We	frequently
use	 relational	operators	with	arrays	of	characters	 (strings).	Here	 is	an	example	 that	uses
two	of	the	array	variables	we	defined	earlier:



Slicing	 is	 another	 selection	 operation.	 It	 allows	 us	 to	 work	 with	 sub-arrays.	We	 use
slicing	 to	 read	 a	 portion	 of	 an	 array	 or	write	 a	 portion	 of	 an	 array.	A	 range	 is	 used	 to
specify	the	portion	of	interest.	Here	are	two	examples	of	slicing:

Our	 second	 example	 illustrates	 slice	 assignment	 with	 overlapping	 ranges.	 Such
assignments	are	useful	in	shuffling	the	components	in	an	array	when	inserting	or	deleting
components	in	an	array-based	list.

Although	indexing	and	slicing	both	access	components,	their	results	are	quite	different.
The	 indexing	 operation	 accesses	 a	 single	 component.	 The	 slicing	 operation	 accesses	 an
array.	So	while	the	expressions	Inventory	(5)	and	Inventory	(5..5)	are	very	similar,
their	 result	 types	 are	 very	 different.	 Inventory	 (5)	 is	 a	 natural	 number,	 whereas
Inventory	(5..5)	is	an	array	consisting	of	one	natural	number.

Our	slicing	examples	also	illustrate	the	sliding	feature	of	array	assignment.	The	index
ranges	of	 the	source	and	 target	of	 these	assignments	are	different.	The	 ten	values	 in	 the
source	array	slide	 into	 the	 target	array.	The	range	of	 the	 indices	of	 the	source	and	target
may	be	different.	The	two	restrictions	for	array	assignment	are	that	the	target	and	source
be	the	same	type	and	that	the	number	of	components	is	the	same.

We	 define	 multidimensional	 arrays	 by	 defining	 multiple	 indices.	 The	 following
examples	 illustrate	 two	ways	 to	define	an	array	 in	which	we	use	 two	indices	 to	 locate	a
component:

The	syntax	for	indexing	a	two-dimensional	array	is	different	from	that	for	indexing	an
array	of	arrays.	Here	are	examples	of	each	kind:



Slicing	is	limited	to	one-dimensional	arrays.	We	cannot	slice	the	array	variable	Canary.
However,	we	can	slice	an	array	in	our	array	of	arrays	variable	Finch.

Constrained	and	Unconstrained	Array	Types

All	the	previous	array	examples	were	of	constrained	arrays.	A	constrained	array	type	is	an
array	 type	 for	 which	 there	 is	 an	 index	 range	 constraint.	 An	 unconstrained	 array	 type
definition	provides	only	the	type	of	 the	index,	 it	does	not	specify	the	range	of	 that	 type.
Here	is	an	example:

This	statement	defines	the	unconstrained	array	type	Float_Array.	The	components	of
this	array	type	are	type	Float	and	the	index	of	this	array	is	subtype	Positive	.	We	did	not
specify	 the	 range	 of	 the	 positive	 index.	 The	 box	 symbol,	 <>,	 indicates	 that	 this	 is	 the
definition	 of	 an	 unconstrained	 array	 type.	 Because	 there	 is	 no	 range	 constraint	 for	 this
array	type,	we	cannot	use	an	unconstrained	array	type	to	declare	an	array	variable	because
the	compiler	cannot	determine	how	much	memory	to	allocate	to	such	an	array	variable.

The	two	important	uses	of	unconstrained	array	types	are	(a)	as	a	base	for	a	constrained
array	subtype	and	(b)	for	the	type	of	a	formal	parameter.	Here	are	examples	of	constrained
array	subtypes:

Because	the	arrays	Small	and	Large	have	the	same	base	type,	we	can	combine	them	in
expressions	like	these:

The	 second	 assignment	 statement	 in	 the	 preceding	 example	 illustrates	 another	 array
operation,	concatenation.	The	&	operator	may	be	used	to	concatenate	two	arrays,	an	array
and	a	component,	or	two	components.	The	result	in	all	cases	is	an	array.	In	our	example,
we	created	a	21	component	array	by	concatenating	a	copy	of	array	Small	with	the	value
14.2	and	a	second	copy	of	Small.



Here	 is	 an	 example	 of	 a	 subprogram	 specification	 with	 an	 unconstrained	 array
parameter:

The	formal	parameter	Values	will	match	any	actual	parameter	that	is	a	constrained	array
subtype	of	Float_Array.	 The	 formal	 parameter	will	 take	 on	 the	 index	 constraint	 of	 the
actual	 parameter.	 Here	 are	 some	 calls	 to	 function	 Average	 using	 our	 two	 previously
defined	array	variables:

Array	Attributes

As	you	just	saw,	we	can	pass	different	size	arrays	to	function	Average.	We	do	not	need	to
pass	 the	 size	 of	 the	 array	 or	 its	 starting	 or	 ending	 indices.	 The	 function	makes	 use	 of
attributes	 to	 obtain	 the	 properties	 of	 the	 actual	 array	 parameter.	 Earlier	 we	 introduced
some	 of	 the	most	 commonly	 used	 attributes	 for	 discrete	 types.	 There	 are	 attributes	 for
array	types	as	well.	The	attributes	most	commonly	used	with	arrays	are	as	follows:

’First Returns	the	lower	bound	of	the	index	range
’Last Returns	the	upper	bound	of	the	index	range

’Length Returns	the	number	of	components	in	the	array
’Range Returns	the	index	range	of	the	array	(’First	..	’Last)

Here	is	the	body	of	function	Average,	which	uses	two	of	these	attributes:

When	 working	 with	 unconstrained	 array	 parameters,	 you	 should	 not	 make	 any
assumptions	about	the	first	or	last	index	values.	Although	many	arrays	use	1	as	a	starting
index,	you	should	use	the	attributes	rather	than	make	such	an	assumption.

Section	3.6	of	the	ARM	(2012)	provides	the	details	on	array	types	and	attributes.	There
you	may	also	find	how	to	use	attributes	with	multidimensional	arrays.

Array	Aggregates



An	 array	 aggregate	 is	 a	 collection	 of	 components	 enclosed	 in	 parentheses.	 One	 might
think	of	an	array	aggregate	as	an	array	literal.	Aggregates	are	commonly	used	to	initialize
array	 objects.	 Here	 are	 some	 examples	 of	 using	 array	 aggregates	 to	 initialize	 the	 array
variable	Small	defined	earlier:

In	 the	 first	 example,	 the	 ten	 components	 assigned	 to	 the	 array	 Small	 are	 given	 by
position:	0.0	is	assigned	to	Small(1),	1.0	is	assigned	to	Small(2),	and	so	on.	In	the	other
examples,	we	use	array	indices	as	names	to	assign	values	to	specific	locations	within	the
array.	Similar	to	the	case	selector,	we	can	use	ranges	and	individual	index	values	separated
by	vertical	bars	to	associate	locations	with	values.	The	others	keyword	may	be	used	last
to	 associate	 a	 value	 with	 locations	 not	 previously	 specified.	 The	 last	 example,	 which
calculates	 a	 value	 from	 the	variables	A	 and	B,	 demonstrates	 that	 aggregates	 are	 not	 true
literals,	but	simply	collections	of	components.

Array	aggregates	are	available	for	multidimensional	arrays.	Let	us	look	at	an	example.
Here	is	a	two-dimensional	array	of	integers	with	three	rows	indexed	from	-1	to	1	and	four
columns	indexed	from	1	to	4:

And	here	are	examples	of	using	aggregates	to	assign	values	to	Table:

Strings



We	conclude	our	discussion	of	unconstrained	arrays	with	a	very	brief	discussion	of	Ada’s
predefined	fixed-length	string	type.	Type	String	 is	predefined	as	an	unconstrained	array
of	characters	with	a	positive	index.

Here	 are	 examples	 of	 declarations	 of	 a	 string	 subtype,	 a	 string	 constant,	 and	 several
string	variables:

Fixed-length	 strings	 are	 efficient	 but	 require	more	 thought	 in	 their	 use	 than	 varying-
length	 strings.	 For	 example,	 you	 may	 not	 assign	 a	 string	 of	 one	 length	 to	 a	 string	 of
another	length.	We	can	make	use	of	array	slicing	to	make	assignments	to	different	length
strings.

In	 the	 last	 statement,	 only	 twenty	 of	 the	 forty	 characters	 in	 the	 variable	 Address	 are
changed	by	the	assignment.

Should	we	want	to	store	fewer	characters	in	a	fixed-length	string	than	its	length,	we	can
make	use	of	 additional	variables	 to	keep	 track	of	 the	 string’s	 “real”	 length	 and	use	 that
variable	to	slice	the	string.	Here	is	an	example	that	demonstrates	how	we	might	store	five
characters	in	a	fixed-length	string	with	a	length	of	twenty.

Here	 is	 a	 complete	 program	 that	 uses	 type	 String	 to	 illustrate	 constrained	 array
subtypes,	slicing,	unconstrained	array	parameters,	and	array	attributes:



The	fixed-length	string	variable	Line	contains	100	characters.	The	variable	Count	keeps
track	of	 the	 index	of	 the	 last	 “good”	character	 in	Line.	The	 call	 to	procedure	Get_Line
fills	 in	 Line	 with	 the	 characters	 typed	 at	 the	 keyboard.	 The	 Get_Line	 procedure	 reads
characters	until	either	the	string	is	filled	(100	characters	for	Line)	or	it	encounters	a	line
terminator.	 If	our	user	 types	 the	word	toot	and	 then	presses	 the	enter	key,	 the	first	 four
characters	 of	 Line	 will	 be	 t	 o	 o	 t	 and	 the	 remaining	 ninety-six	 characters	 will	 be



undefined.	When	we	 call	 the	 function	Is_Palindrome,	we	 slice	 off	 the	garbage	passing
only	the	characters	entered	by	the	user.

2.3.6	 Record	Types
Arrays	 are	 homogeneous	 composite	 types	 –	 the	 components	 are	 all	 of	 the	 same	 type.
Records	are	heterogeneous	composite	types	–	the	components	may	be	different	types.	In
an	array	we	access	a	specific	component	by	giving	its	position	in	the	collection.	We	access
a	specific	component	in	a	record	by	giving	its	name.	The	following	declarations	define	a
simple	record	type	for	an	inventory	system.

There	 are	 three	 components	 (fields)	 defined	 in	 type	 Part_Rec.	 Each	 component	 is
identified	 by	 a	 name.	 The	 name	 is	 used	 with	 the	 variable	 name	 to	 select	 a	 particular
component	in	the	record.	Here	are	some	examples	that	illustrate	component	selection:

Record	Aggregates

In	the	previous	example,	we	used	three	assignment	statements	to	give	the	record	variable
Part	a	value.	We	can	use	a	record	aggregate	to	assign	a	value	to	a	record	variable	with	a
single	assignment	statement.	A	record	aggregate	is	a	record	value	written	as	a	collection	of
component	values	enclosed	with	parentheses.	The	association	of	values	 in	 the	aggregate
and	the	record	field	may	be	given	by	position	or	by	name.	Here	are	examples	of	each:

When	using	named	association	in	a	record	aggregate,	we	can	order	the	fields	as	we	like.



Discriminants

We	often	parameterize	record	 types	with	one	or	more	discriminants.	A	discriminant	 is	a
record	 component	 on	 which	 other	 components	 may	 depend.	 Whereas	 ordinary	 record
components	can	be	any	constrained	type,	discriminants	are	limited	to	discrete	types.	The
following	declarations	use	a	discriminated	record	to	define	an	array-based	list	of	inventory
records.	The	 discriminant,	Max_Size,	 is	 used	 to	 define	 the	 index	 constraint	 of	 the	 array
component.

When	we	use	a	discriminated	record	in	the	declaration	of	an	object,	we	supply	an	actual
value	for	the	discriminant.	The	following	declaration	defines	an	inventory	list	that	holds	a
maximum	of	1,000	part	records:

Inventory	 is	 a	 record	 with	 three	 components:	 Max_Size,	 Size,	 and	 Items.	 The	 last
component	is	an	array	of	part	records.	Here	is	some	code	that	accesses	the	information	in
this	data	structure:

2.3.7	 Derived	Types
Subtypes	allow	us	to	define	subsets	of	existing	types	whose	values	may	be	combined	with
any	other	 subtype	 that	 shares	 the	 same	base	 type.	Sometimes	we	would	 like	 to	 create	 a
new	type	that	is	similar	to	an	existing	type	yet	is	a	distinct	type.	Here	is	an	example	of	a
definition	of	a	derived	type:

Type	 Imperial_Gallons	 is	 a	 derived	 type.	 Gallons	 is	 the	 parent	 of	 Imperial_
Gallons.	Derived	types	are	not	limited	to	scalar	types.	We	can	derive	types	from	array	and
record	types	as	well.	The	domain	of	the	derived	type	is	a	copy	of	the	domain	of	the	parent



type.	Because	they	are	different	types,	however,	values	of	one	type	may	not	be	assigned	to
objects	of	the	other	type.	We	may	use	explicit	type	conversions	to	convert	a	value	of	one
type	to	a	value	of	the	other	type.

The	most	common	use	of	derived	types	is	in	the	creation	of	class	hierarchies	associated
with	object-oriented	programming.	A	detailed	discussion	of	classes	and	inheritance	is	not
in	the	scope	of	this	book.

2.4	 Subprograms,	More	Options

2.4.1	 Overloading
We	may	have	two	subprograms	with	the	same	name	as	long	as	their	signatures	differ.	The
signature	 of	 a	 subprogram	 consists	 of	 the	 number,	 the	 types,	 and	 the	 order	 of	 the
parameters.	For	 functions,	 the	 type	of	 the	 returned	value	 is	 also	considered.	The	 formal
parameter	 names	 and	 modes	 are	 not	 part	 of	 the	 signature.	 Here	 are	 examples	 of
specifications	of	three	different	procedures	with	the	same	name:

We	may	also	overload	operators.	Let	us	look	at	an	example.	Here	is	a	record	type	for
the	coordinates	of	a	point	on	a	plane	and	two	point	variables:

The	 following	 function,	 that	 overloads	 the	 <=	 operator,	 may	 be	 used	 to	 determine
whether	 the	Left	 point	 is	 the	 same	distance	 from	or	closer	 to	 the	origin	 than	 the	Right
point.	Notice	that	we	must	enclose	the	operator	symbols	in	double	quotes.



Finally,	 some	 code	 that	 calls	 function	”<=”.	The	 call	may	be	made	 as	 either	 an	 infix
operator	or	a	normal	function	call	(prefix	operator).	When	the	function	call	syntax	is	used,
the	operator	must	be	enclosed	in	double	quotes.

2.4.2	 Generic	Subprograms
Ada	 provides	 parameterized	 generic	 units	 for	 writing	 reusable	 software	 components.
Generic	 units	 are	 templates	 that	 can	 be	 instantiated	 to	 create	 a	 unit	 for	 a	 specific
application.	While	the	initial	effort	 to	create	a	generic	unit	may	be	higher,	 the	long-term
savings	can	be	substantial.	Not	only	can	we	 reuse	 the	code	 in	 the	 template,	but	also	we
need	only	test	one	instance	to	verify	all	future	instantiations.4	We	have	already	seen	how
to	use	generic	packages	to	create	packages	for	doing	input	and	output	with	the	types	we
define.	Now	let	us	look	at	writing	our	own	generic	units.

Suppose	 we	 have	 written	 the	 following	 function	 to	 count	 the	 number	 of	 times	 a
particular	character	occurs	in	a	string	of	characters:



While	this	function	is	specific	for	counting	characters	in	a	string,	the	same	logic	could
be	used	for	counting	occurrences	of	objects	in	any	array.	For	each	different	application	we
need	 different	 types	 for	 the	 parameters	 Source	 and	 Pattern.	 Rather	 than	 write	 a	 new
counting	 function	 for	 each	 application,	 we	 can	 write	 a	 single	 generic	 function	 and
instantiate	 it	 as	 appropriate.	We	 supply	 the	 different	 types	 for	 each	 application	 through
generic	 parameters.	 We	 define	 generic	 formal	 parameters	 in	 the	 specification	 of	 the
generic	unit	and	supply	generic	actual	parameters	when	we	instantiate	the	generic	unit	for
a	particular	application.	Ada	provides	many	different	kinds	of	generic	formal	parameters
with	 specific	 rules	 for	 what	 actual	 parameters	 may	 be	 supplied.	 Table	 2.2	 shows	 the
commonly	used	generic	 formal	 types	with	descriptions	of	what	generic	 actual	 types	 are
acceptable.	See	the	ARM	(2012),	Barnes	(2014),	or	Wikibooks	(2014)	for	a	complete	list.

Table	2.2.	 Some	of	Ada’s	generic	formal	types

Generic	formal	type Acceptable	generic	actual	types

type	T	is	range	<>; Any	signed	integer	type.
	 	

type	T	is	mod	<>; Any	unsigned	integer	(modular)	type.
	 	

type	T	is	(<>); Any	discrete	type.
	 	

type	T	is	digits	<>; Any	floating	point	type.
	 	

type	T	is	delta	<>; Any	ordinary	fixed	point	type.
	 	

type	T	is	delta	<>	digits	<>; Any	decimal	fixed	point	type.
	 	



type	T	is	array	(Indx)	of	Cmp; Any	array	type	with	index	of	type	Indx
and	components	of	type	Cmp.	The
formal	and	actual	array	parameters
must	both	be	constrained	or	both	be
unconstrained.

	 	

type	T	is	private; Any	type	for	which	assignment	and
equality	testing	are	available
(nonlimited).

	 	

type	T	is	limited	private; Any	type	at	all.

Let	us	start	with	our	type	for	Pattern.	This	type	is	also	the	type	of	the	components	in
the	array	we	wish	to	process.	There	are	no	restrictions	on	what	type	the	component	of	an
array	can	be.	We	do,	however,	need	to	compare	a	component	in	our	array	to	Pattern	 so
this	 type	 must	 be	 one	 for	 which	 the	 equality	 operator	 is	 defined.	 The	 generic	 formal
parameter	 type	 private	 meets	 this	 requirement.	 Any	 type	 that	 has	 assignment	 and
equality	testing	may	be	supplied	as	an	actual	parameter	for	a	private	generic	formal	type	–
that	is	every	type	we	have	seen	at	this	point.

The	generic	formal	parameter	type	for	the	array	is	a	little	more	complicated.	We	have
three	decisions	to	make:

1.	 What	types	should	we	allow	for	the	index	of	the	array?

2.	 Should	the	array	type	be	constrained	or	unconstrained?

3.	 What	types	should	we	allow	for	the	component	of	the	array?

Our	 selection	 for	 the	 type	 of	 Pattern	 has	 already	 given	 us	 the	 answer	 to	 the	 third
question	–	it	can	be	any	type.	As	an	unconstrained	array	type	can	be	of	any	length;	 it	 is
more	general	than	a	constrained	array	type.	Indeed,	our	original	example’s	array	type	was
an	unconstrained	array	of	characters	indexed	by	positive	numbers.	We	could	choose	to	use
a	positive	index	for	our	array.	However,	we	can	be	more	general.	The	only	restriction	on
the	index	of	an	array	is	that	it	must	be	a	discrete	type.	The	formal	generic	parameter	type
(<>)	will	match	any	discrete	actual	type.	By	now	your	head	is	probably	spinning	with	all
of	this	new	terminology	so	let	us	go	right	to	the	code	that	implements	all	this	text.	Here	is
the	specification	of	a	general	object	counting	function:

A	generic	unit	begins	with	the	keyword	generic,	followed	by	a	list	of	generic	formal



parameters,	followed	by	the	unit	specification.	Let	us	review	the	choice	of	generic	formal
parameters	 in	 this	example.	Component_Type	 is	a	 formal	 type	 that	will	match	any	actual
type	 that	 allows	 assignment	 and	 equality	 testing.	Index_Type	 is	 a	 formal	 type	 that	will
match	any	discrete	actual	type.	Finally,	Array_Type	 is	a	formal	 type	that	will	match	any
actual	unconstrained	array	 type	 that	 is	 indexed	by	 the	actual	 type	given	 for	Index_Type
and	has	components	of	the	actual	type	given	for	Component_Type.

Now	let	us	create	some	actual	counting	functions	from	our	generic	function.	Here	are
the	types	for	an	unconstrained	array	of	percentages	indexed	by	character:

Here	 is	 the	 instantiation	of	 a	 function	 to	 count	 how	many	 times	 a	 particular	 percentage
value	occurs	in	an	array:

And	here	is	a	call	to	our	newly	created	function	using	an	array	aggregate	with	ten	values
for	the	Source	and	the	literal	5	for	the	Pattern:

Let	us	look	at	another	instantiation	of	the	generic	function.	This	time,	we	will	look	at
one	 that	 counts	 the	 number	 of	 times	 a	 particular	 character	 occurs	 in	 a	 string	 –	 an
equivalent	 of	 the	 nongeneric	 function	we	 gave	 at	 the	 beginning	 of	 this	 section	 –	 and	 a
sample	call.

Writing	 a	 separate	 specification	 for	 nongeneric	 subprograms	 is	 optional.	 Generic
subprograms	must	be	written	with	separate	specifications	and	bodies.	The	executable	code
of	 Generic_Count	 is	 identical	 to	 the	 original	 function	 we	wrote	 for	 counting	 character
occurrences	in	a	string.



When	 writing	 the	 body,	 we	 have	 no	 idea	 of	 what	 actual	 types	 will	 be	 supplied	 for
Array_Type	 and	 Component_Type.	 So,	 what	 operations	 can	 we	 apply	 to	 the	 parameters
Source	 and	 Pattern?	 All	 we	 know	 about	 Source	 is	 that	 it	 is	 an	 unconstrained	 array
indexed	 by	 some	 discrete	 type.	 We	 made	 use	 of	 the	 array	 attribute	 ’Range	 and	 array
indexing	in	this	body.	We	have	no	idea	of	the	type	of	the	parameter	Pattern.	However,	we
do	 know	 that	 it	 supports	 assignment	 and	 equality	 testing.	 It	 is	 only	 the	 latter	 that	 we
needed	to	implement	the	function.

Let	us	make	this	counting	logic	even	more	general.	Perhaps	we	would	like	to	know	how
many	values	in	an	array	of	percentages	are	greater	than	ninety.	Or,	how	many	values	in	an
array	 of	Cartesian	 points	 are	 inside	 a	 circle	 of	 radius	 of	 1.0	 centered	 on	 the	 origin.	 To
accomplish	these	tasks,	we	need	to	replace	the	equality	test	in	the	if	statement	with	a	test
for	 some	 other	 property.	 To	 accomplish	 this	 task,	 we	 make	 use	 of	 generic	 formal
subprograms.	As	 our	 last	 example	was	 of	 a	 generic	 function,	 this	 time	we	will	write	 a
generic	procedure.	Here	is	its	specification:

This	generic	procedure	has	three	generic	formal	type	parameters	and	one	generic	formal
function	 parameter.	 We	 have	 changed	 the	 type	 of	 the	 generic	 formal	 parameter
Component_Type	 to	limited	 private.	 This	 change	 allows	 the	 component	 to	 be	 of	 any
type,	 even	 if	 it	 should	 not	 have	 assignment	 and	 equality	 testing	 operations.	 The	 new
generic	 formal	 parameter	 Selected	 is	 a	 function	 that	 takes	 two	 Component_Type
parameters	 and	 returns	 a	 Boolean	 value.	 In	 our	 application,	 we	 can	 pass	 any	 actual
function	 that	 has	 the	 same	 signature	 as	 function	 Selected.	 Here,	 for	 example,	 is	 an



instantiation	of	 this	generic	procedure	 that	 tallies	 the	number	of	percentage	values	 in	an
array	 that	 is	greater	 than	 some	value.	The	actual	 function	passed	 for	 the	generic	 formal
function	parameter	Selected	is	the	>	for	percents	so	it	returns	True	when	a	percent	value
in	the	array	Source	is	greater	than	the	percentage	in	Pattern.

Types	Percent	and	Percent_Array	are	defined	on	page	§.	Here	is	a	sample	call	of	the
procedure	we	instantiated	from	the	generic	procedure	Tally	to	count	all	the	values	in	an
array	greater	than	five.

Summary

SPARK	 is	 a	 subset	 of	 the	 Ada	 language.	 This	 is	 a	 summary	 of	 the	 Ada	 features	 in	 the
SPARK	subset	that	are	discussed	in	this	chapter.

Ada	 provides	 all	 of	 the	 control	 structures	 expected	 in	 a	 high	 level	 programming
language.
If	expressions	and	case	expressions	may	be	used	to	select	a	value	from	a	number	of
dependent	expressions.
The	 loop	 statement	 and	 exit	 statement	 may	 be	 used	 to	 implement	 any	 iteration
scheme.
The	for	loop	option	may	be	used	to	implement	counting	loops.
The	while	loop	option	may	be	used	to	implement	pre-test	loops.
Ada	provides	two	kinds	of	subprograms:	procedures	and	functions.
Parameter	passing	modes	are	based	on	direction	of	data	flow	not	on	the	underlying
passing	mechanism.
The	 nested	 structure	 of	 an	 Ada	 program	 provides	 a	 powerful	 mechanism	 for
controlling	the	scope	of	identifiers.
Ada’s	 type	model	 is	 perhaps	 the	 most	 important	 feature,	 giving	 Ada	 a	 significant
advantage	over	other	programming	languages.
Programmer-defined	scalar	types	allow	us	to	more	accurately	model	the	problem	we
are	solving.
Ada	provides	both	floating	point	and	fixed	point	representations	for	real	numbers.
Ada	 provides	 both	 signed	 and	 unsigned	 (modular)	 representations	 for	 integer
numbers.
Enumeration	 types	 allow	 us	 to	 create	 types	 by	 listing	 all	 possible	 values	 in	 the



domain.
Attributes	provide	information	about	a	type	or	object.
Subtypes	 allow	us	 to	 create	 a	 set	 of	 values	 that	 is	 a	 subset	 of	 the	domain	of	 some
existing	type.
We	may	 index	our	arrays	with	any	discrete	data	 type;	we	are	not	 limited	 to	 integer
indices.
Indexing	allows	us	to	access	an	element	of	an	array.
Slicing	allows	us	to	access	a	portion	of	an	array;	a	slice	is	an	array.
Unconstrained	array	types	allow	us	to	define	formal	array	parameters	that	match	any
size	actual	array	parameter.
Records	are	heterogeneous	composite	data	types.
Derived	types	allow	us	to	create	a	new	and	different	type	from	an	existing	type.
Subprogram	names	may	be	overloaded	provided	each	has	a	different	signature.	The
signature	consists	of	the	number	and	types	of	parameters	and,	for	functions,	the	type
returned.
Generic	units	allow	us	to	write	code	that	may	be	reused	in	other	applications.

Exercises

2.1		 What	is	the	purpose	of	the	with	clause?

2.2		 Where	is	the	declarative	part	of	an	Ada	program	located?

2.3		 Define	the	following	terms:

a.	 formal	parameter

b.	 actual	parameter

c.	 dependent	expression

d.	 loop	parameter

e.	 scope

f.	 local	variable

g.	 global	variable

h.	 data	type

i.	 model	number

j.	 attribute

2.4		 What	is	meant	by	parameter	association?	Describe	how	parameters	are	associated
with	named	parameter	association	and	positional	parameter	association.

2.5		 What	is	the	purpose	of	the	use	clause?

2.6		 True	or	False?	Ada	is	case	sensitive.

2.7		 Write	an	if	statement	that	checks	three	integer	variables,	A,	B,	and	C,	and	displays
one	of	the	three	messages:	“Two	of	the	values	are	the	same,”	“All	three	values	are
the	same,”	or	“All	of	the	values	are	different.”



2.8	 	 Ada	has	 two	different	operators	 for	and	 (	and	 and	and	then)	 and	 two	 different
operators	for	or	(	or	and	or	else).	The	latter	operator	in	each	case	is	called	the
short	circuit	form.	Read	section	4.5.1	of	the	ARM	and	then	explain	the	difference
between	the	normal	and	short	circuit	forms	of	these	logical	operators.

2.9	 	 Which	 of	 the	 four	 if	 statements	 in	 the	 examples	 given	 on	 page	 §	 could	 be
translated	into	if	expressions?

2.10	 Why	 cannot	 the	 case	 statement	 example	 on	 page	 §	 be	 translated	 into	 a	 case
expression?

2.11	 Write	a	 loop	 that	displays	all	of	 the	 integers	between	0	and	100	 that	are	evenly
divisible	by	3.

2.12	 True	or	False?	A	for	loop	with	a	null	range	executes	exactly	one	iteration.

2.13	 Write	a	procedure	that	swaps	the	contents	of	its	two	integer	parameters.

2.14	 Write	a	function	that	returns	the	larger	of	its	two	real	parameters.

2.15	 What	two	characteristics	does	a	data	type	define?

2.16	 Suppose	we	have	 a	 type	 for	 complex	numbers.	Why	 is	 this	 type	not	 an	 atomic
type?

2.17	 Why	is	5.3	not	the	unique	successor	of	5.2?

2.18	 Errors	in	quantities	can	be	expressed	in	absolute	terms	or	relative	terms.	For	each
of	 the	 following	quantities,	 determine	which	 type	of	 error	 (absolute	 or	 relative)
makes	more	sense,	then	declare	the	most	appropriate	Ada	type	for	that	quantity:

a.	 Distances	in	light	years	to	various	galaxies	in	the	universe

b.	 Altitude	in	feet	of	an	aircraft

c.	 Number	of	gallons	of	gasoline	in	a	car’s	fuel	tank

d.	 Bank	account	balance

2.19	 Write	 a	 Boolean	 function	 called	 Nearly_Equal	 that	 returns	 True	 if	 two	 float
numbers	 are	 nearly	 equal.	 Two	 numbers	 are	 considered	 nearly	 equal	 if	 the
absolute	value	of	their	difference	is	less	than	0.001	percent	of	the	smaller	number.

2.20	 Suppose	 we	 have	 a	 type	 for	 a	 choice	 in	 the	 game	 rock-paper-scissors	 with	 a
domain	consisting	of	the	three	possible	player	choices.

a.	 Why	is	this	type	an	atomic	type?

b.	 Is	this	type	a	scalar	type?	Explain	your	answer.

2.21	 What,	if	any,	are	the	restrictions	on	the	types	we	may	use	for	the	components	of
an	array	type?	What,	if	any,	are	the	restrictions	on	the	types	we	may	use	for	the
index	of	an	array	type?

2.22	 Declare	an	array	type	whose	components	are	positive	whole	numbers	indexed	by
Pixel_Color	(defined	on	page	§).

2.23	 Given	the	following	unconstrained	array	type	



complete	the	following	function	that	returns	the	value	of	the	largest	value	in	the
array:	

2.24	 Given	 the	 following	 array	 type	 that	 defines	 an	 unconstrained	 array	 of	 real
numbers:	

2.25	 Why	is	the	following	variable	declaration	illegal?	Write	a	declaration	for	a	string
variable	suitable	for	holding	a	person’s	name.	

Write	an	instantiation	of	the	generic	procedure	Tally	given	on	page	§	that	tallies
up	 the	 number	 of	 floating	 point	 numbers	 in	 an	 array	 that	 are	 nearly	 equal	 to	 a
given	 number.	Make	 use	 of	 the	 function	Nearly_Equal	 you	wrote	 for	Exercise
2.19.

2.26	 Given	 the	 following	array	 types	 that	define	an	unconstrained	array	of	Cartesian
points	 (defined	 on	 page	 §)	 indexed	 by	 Natural	 integers,	 an	 array	 variable	 that
holds	100	points,	and	a	variable	that	holds	a	count	of	points:

a.	 Write	 an	 instantiation	 of	 the	 generic	 procedure	 Tally	 given	 on	 page	 §	 that
tallies	up	the	number	of	points	in	an	array	that	are	not	further	from	the	origin
than	a	given	point.	You	may	use	the	function	”<=”	defined	on	page	§.

b.	 Write	a	call	to	the	procedure	you	instantiated	to	tally	the	number	of	points	 in
the	array	My_Points	that	are	on	or	inside	a	circle	of	radius	1.0.	Put	the	result
into	 the	 variable	Point_Tally.	 You	may	 either	 declare	 a	 variable	 to	 hold	 a
pattern	point	or	use	a	record	aggregate	in	your	procedure	call.



3
Programming	in	the	Large

DeRemer	and	Kron	(1975)	distinguished	the	activities	of	writing	large	programs	from	that
of	writing	small	programs.	They	considered	large	programs	to	be	systems	built	from	many
small	 programs	 (modules),	 usually	 written	 by	 different	 people.	 It	 is	 common	 today	 to
separate	 the	features	of	a	programming	language	along	the	same	lines.	In	Chapter	2,	we
presented	the	aspects	of	Ada	required	to	write	the	most	basic	programs.	In	this	chapter,	we
discuss	some	of	Ada’s	features	that	support	the	development	of	large	programs.

To	facilitate	the	construction	of	large	programs,	Ada	makes	use	of	programming	units.
An	Ada	 program	 consists	 of	 a	main	 subprogram	 that	 uses	 services	 provided	 by	 library
units.	A	library	unit	 is	a	unit	of	Ada	code	that	we	may	compile	separately.	Library	units
are	often	called	compilation	units.	We	have	already	made	use	of	many	predefined	library
units	 in	our	examples.	The	with	clause	provides	access	 to	a	 library	unit.	The	use	clause
provides	direct	visibility	to	the	public	declarations	within	a	library	unit	so	we	do	not	have
to	prefix	them	with	the	name	of	the	library	unit.

A	library	unit	is	a	subprogram	(a	procedure	or	function),	package,	or	generic	unit.	The
main	subprogram	is	itself	a	library	unit.	Subprograms,	packages,	and	generic	units	that	are
nested	within	another	programming	unit	are	not	library	units;	they	must	be	compiled	with
the	programming	unit	in	which	they	are	nested.	Generally,	we	use	a	compiler	and	linker	to
create	 an	 executable	 from	a	 collection	of	 library	 units.	Library	 units	 also	 play	 a	 role	 in
mixing	SPARK	and	non-SPARK	code	in	a	single	program	–	a	topic	we	discuss	in	Chapter	7.
In	the	following	sections,	we	will	introduce	you	to	the	package	and	to	generic	units.

Encapsulation	and	information	hiding	are	the	cornerstones	of	programming	in	the	large.
Both	concepts	deal	with	the	handling	complexity.	There	are	two	aspects	of	encapsulation:
the	 combining	 of	 related	 resources	 and	 the	 separation	 of	 specification	 from
implementation.	 In	 object-oriented	 design	 and	 programming,	 we	 use	 encapsulation	 to
combine	data	and	methods	into	a	single	entity	called	a	class.	Encapsulation	also	allows	us
to	separate	what	methods	a	class	supplies	for	manipulating	the	data	without	revealing	how
those	methods	are	implemented.

The	package	 is	Ada’s	construct	 for	encapsulation.	The	package	supports	abstract	data
types,	 separate	 compilation,	 and	 reuse.	 We	 write	 packages	 in	 two	 parts:	 the	 package
declaration	and	the	package	body.	The	declaration	specifies	the	resources	the	package	can
supply	to	the	rest	of	the	program.	These	resources	may	include	types,	subtypes,	constants,
variables,	 and	 subprograms.	 The	 package	 body	 provides	 the	 implementation	 of	 the
subprograms	defined	in	the	package	declaration.

Information	 hiding	 is	 related	 to	 but	 different	 than	 encapsulation.	 Encapsulation	 puts
things	into	a	box.	Whether	that	box	is	opaque	or	clear	determines	whether	the	information
is	hidden	or	not.

Information	hiding	is	what	we	do	in	the	design	process	when	we	hide	the	decisions	that
are	most	likely	to	change.	We	hide	information	to	protect	the	other	portions	of	our	design
from	 changes	 to	 that	 decision.	Modern	 programming	 languages	 provide	mechanisms	 to



ensure	 that	details	of	a	design	are	not	accessible	 to	portions	of	our	program	 that	do	not
need	those	details.

Information	hiding	ensures	 that	 the	users	of	a	class	are	not	affected	when	we	make	a
change	to	the	implementation	of	that	class.	Suppose,	for	example,	our	program	makes	use
of	a	 sorted	 list.	 If	we	were	 to	change	 the	 implementation	of	 that	 list	 from	one	based	on
linked	 lists	 to	 one	 based	 on	 arrays,	 information	 hiding	 ensures	 that	 this	 change	 has	 no
affect	on	the	parts	of	our	program	that	use	a	sorted	list.

The	major	Ada	construct	for	information	hiding	is	the	private	type,	which	is	introduced
in	 Section	 3.3.2.	 Private	 subprograms	 and	 private	 child	 packages	 are	 additional	 Ada
constructs	for	restricting	access	to	design	details.

Although	 there	 are	many	 different	ways	 to	 define	 and	 use	 packages,	we	 can	 usually
place	 packages	 into	 one	 of	 four	 categories:	 definition	 packages,	 utility	 packages,	 type
packages,	and	variable	packages.	This	classification	scheme	is	neither	strict	nor	inclusive.
In	the	following	sections	we	will	look	at	an	example	from	each	category.

3.1	 Definition	Packages

A	 definition	 package	 groups	 together	 related	 constants	 and	 types.	 Such	 packages	 are
useful	when	 the	 same	 types	must	 be	 used	 in	 several	 different	 programs	 or	 by	 different
programmers	working	on	different	parts	 of	one	 large	program.	Here	 is	 an	 example	of	 a
definition	package:

This	package	defines	six	 types	and	one	subtype.	 It	uses	 the	value	of	 	 from	the	Ada
library	 definition	 package	 Ada.Numerics.	 Because	 definition	 packages	 have	 no
subprograms,	 there	 is	 nothing	 to	 implement.	 In	 fact,	 the	 compiler	will	 give	 us	 an	 error
should	we	 try	 to	compile	a	body	 for	 it.	Here	 is	a	 short	program	 that	uses	our	definition
package:



This	program	also	illustrates	the	use	type	clause.	When	we	declare	a	type,	we	define	its
domain	and	a	set	of	operations.	As	type	Ohms	is	a	fixed	point	type,	the	operations	include
all	 of	 the	 standard	 arithmetic	 operators.	 To	 add	 two	 resistance	 values,	 we	 use	 the	 plus
operator.	However,	 because	 this	 operator	 is	 defined	 in	 package	Common_Units,	we	must
either	prefix	the	plus	operator	with	the	package	name	or	include	a	use	clause	to	access	the
operator	directly.	A	use	clause	makes	all	of	the	resources	in	the	named	package	available
without	prefixing.	A	use	type	clause	is	more	specific;	it	allows	us	to	use	operators1	of	the
given	type	without	prefixing.

3.2	 Utility	Packages

A	 utility	 package	 groups	 together	 the	 constants,	 types,	 subtypes,	 and	 subprograms
necessary	 to	 provide	 some	 particular	 service.	 The	 library	 package
Ada.Numerics.Elementary_Functions	 is	 a	 utility	 package	 that	 includes	 twenty-nine
mathematical	 functions	 such	 as	 square	 root,	 trigonometric	 functions,	 and	 logarithms	 for
Float	 values.	 There	 is	 also	 a	 generic	 version	 of	 this	mathematical	 package	 that	may	 be
instantiated	 for	 any	 floating	point	 type.	Here	 is	 the	declaration	of	 a	 utility	 package	 that
provides	three	operations	for	control	over	output	displayed	on	a	screen:



The	implementation	of	these	three	operations	depends	on	the	display	hardware.	Having
placed	 this	 dependency	 in	 a	 package	 body	 allows	 us	 to	 use	 the	 operations	 without
knowledge	of	that	hardware.	Here	is	a	body	for	this	package	with	the	implementation	for	a
display	 that	 supports	 ANSI	 escape	 sequences.	 It	 includes	 one	 procedure	 body	 for	 each
procedure	declared	in	the	package	specification.



This	package	body	uses	resources	from	two	library	packages.	Although	not	necessary
in	 this	 package	 body,	 bodies	 may	 include	 additional	 subprograms.	 These	 helper
subprograms	are	local	to	the	package	body;	they	may	not	be	called	from	outside.

3.3	 Type	Packages

We	 use	 the	 type	 package	 to	 create	 abstract	 data	 types	 (ADTs).	 An	 abstract	 data	 type
consists	of	a	set	of	data	values	and	associated	operations	that	are	specified	independent	of
any	 particular	 implementation.	 The	 abstract	 data	 type	 is	 a	 fundamental	 concept	 of	Ada
(Dale	and	McCormick,	2007;	Barnes,	2014;	Ben-Ari,	2009).	Our	example	for	an	abstract



data	type	is	a	bounded	queue.	Here	is	the	package	declaration	for	a	bounded	queue	whose
elements	are	integers:





This	package	defines	a	queue	type	as	a	record	with	five	components	(a	discriminant	and
four	fields)	and	eight	queue	operations.	Five	of	the	queue	operations	include	contracts	for
preconditions	and	postconditions.	We	will	get	 to	 those	shortly.	But	 first,	 let	us	 look	at	a
short	program	that	uses	the	abstract	queue	type	defined	in	the	package	specification.

The	 first	 declaration	 in	 this	 example	 program	 defines	 a	 bounded	 queue	 with	 a
maximum	 size	 of	 100.	 For	 clarity,	 we	 chose	 to	 prefix	 the	 type	 Queue_Type	 in	 our
declaration	 of	 the	 variable	 My_Queue	 even	 though	 the	 use	 clause	 allows	 us	 to	 omit	 the
package	 name.	 After	 the	 loop	 enqueues	 thirty-six	 values,	 the	 program	 dequeues	 five
values	and	displays	them.	After	clearing	the	queue,	it	displays	the	size	of	the	queue.

All	that	remains	is	to	complete	the	body	of	our	queue	package	where	we	implement	the
queue	operations	defined	 in	 the	package	 specification.	Here	 is	 the	body	of	our	bounded
queue	package:





3.3.1	 Introduction	to	Contracts
The	contracts	in	our	queue	package	specification	(page	§)	are	given	in	the	form	of	aspects.
An	 aspect	 describes	 a	 property	 of	 an	 entity.	 Ada	 2012	 defines	 nearly	 seventy	 different
aspects	that	we	may	use	in	our	programs.	In	this	chapter,	we	will	 look	at	a	few	of	these
standard	 aspects.	 An	 implementation	 of	 Ada	 may	 provide	 additional	 aspects.	 We	 will
begin	our	look	at	SPARK	specific	aspects	in	Chapter	4.

The	specification	of	a	typical	aspect	consists	of	a	name,	an	arrow	(	=>),	and	a	definition.
Take,	for	example,	the	postcondition	aspect	of	procedure	Clear:

The	 name	 Post	 indicates	 that	 this	 aspect	 is	 a	 postcondition	 for	 the	 procedure.	 This
aspect	 requires	 a	 Boolean	 definition	 after	 the	 arrow.	 Our	 Boolean	 definition	 is	 an
expression	that	 includes	calls	 to	 the	queue	functions	Empty	and	Size.	Postconditions	are
expected	to	be	true	after	completion	of	the	operation.	In	this	case,	after	Clear	completes
its	execution	we	expect	that	the	queue	will	be	empty	and	have	a	size	of	zero.	Of	course,
there	could	be	an	error	in	the	implementation	of	procedure	Clear.	We	need	to	verify	that
Clear	does	indeed	meet	its	postcondition.

Testing	is	the	obvious	way	to	verify	this	procedure.	We	could	write	a	test	program	that
enqueues	 items	 into	 a	 queue,	 clears	 the	queue,	 and	 finally	 calls	 and	displays	 the	values
returned	 by	 functions	 Empty	 and	 Size.	 Ada	 2012	 provides	 a	 quicker	 way	 of	 testing
postconditions.	By	setting	a	compiler	option,	we	can	have	the	Ada	compiler	generate	code
to	 check	 contracts	 at	 runtime.	 Should	 any	 postcondition	 in	 the	 program	 not	 be	 true	 on
completion	of	a	subprogram	call,	the	program	will	halt	with	a	runtime	error	stating	which
postcondition	was	violated.

Executing	the	postcondition	definition	at	the	end	of	every	subprogram	call	increases	the
running	 time	 of	 our	 programs.	 And,	 of	 course,	 just	 because	 our	 test	 runs	 never	 find	 a
violation	of	a	postcondition	does	not	mean	that	the	subprogram	is	correct	for	all	possible
executions.	SPARK	provides	another	approach	to	verifying	postconditions.	We	can	use	the
GNATprove	tool	to	formally	verify	the	postcondition	without	executing	the	code.	We	will
discuss	this	static	verification	approach	in	Chapter	6.

Now	let	us	look	at	the	contract	for	procedure	Enqueue.

The	 aspect	 name	 Pre	 indicates	 a	 precondition	 for	 a	 subprogram.	 This	 Boolean
expression	should	be	true	each	time	the	subprogram	is	called.	As	with	postconditions,	the



Boolean	expression	may	include	function	calls.	In	this	example,	the	precondition	tells	us
that	 the	 procedure	 Enqueue	 should	 not	 be	 called	 when	 the	 queue	 is	 full.	 As	 with
postconditions,	setting	a	compiler	option	will	generate	code	to	check	the	precondition	each
time	 the	 subprogram	 is	 called.	 Should	 a	 precondition	 in	 the	 program	 not	 be	 true	 for	 a
subprogram	 call,	 the	 program	will	 halt	with	 a	 runtime	 error	 stating	which	 precondition
was	violated.	We	may	also	use	the	GNATprove	tool	to	statically	verify	that	all	subprogram
calls	in	our	program	meet	the	given	preconditions.

The	 postcondition	 for	 procedure	 Enqueue	 states	 that,	 after	 calling	 the	 procedure,	 the
queue	is	not	empty,	its	size	has	been	increased	by	one,	and	the	item	is	the	last	element	of
the	queue.	The	logic	of	the	size	expression	illustrates	the	use	of	the	’Old	attribute	to	refer
to	the	original	value	of	an	in	out	mode	parameter.	In	our	example,	after	calling	procedure
Enqueue,	the	size	of	the	resulting	queue	(	Queue)	is	one	greater	than	the	size	of	the	queue
before	the	call	(	Queue’Old).	As	preconditions	refer	to	the	state	of	the	parameters	before
the	call,	the	’Old	attribute	may	not	be	used	in	them.	The	precondition	not	Full	(Queue)
refers	to	the	queue	that	is	passed	in	to	be	modified	by	the	procedure.

We	use	 the	’Result	 attribute	 to	 refer	 to	 the	 result	 of	 a	 function	 in	 its	 postcondition.
Here,	for	example,	is	a	function	that	returns	the	square	root	of	a	natural	number:

The	postcondition	states	that	the	result	of	the	function	is	the	largest	whole	number	whose
square	is	less	than	or	equal	to	the	parameter	Item.

3.3.2	 Information	Hiding
The	details	of	the	type	Queue_Type	defined	in	our	queue	package	specification	on	page	§
are	 public.	 Programmers	 using	 this	 package	 may	 ignore	 the	 operations	 defined	 in	 the
package	 and	 access	 the	 components	 of	 the	 record	 directly	 to	manipulate	 a	 queue.	They
may	 set	 the	 fields	 defining	 a	 queue	with	 inconsistent	 or	 invalid	 states.	 Should	we	 later
change	 the	 record	 defining	 the	 queue	 type,	 the	 parts	 of	 the	 program	 that	 accessed	 the
original	components	would	fail.	This	approach	is	at	odds	with	the	concept	of	information
hiding.	 By	 enforcing	 information	 hiding	 we	 can	 eliminate	 the	 possibilities	 for
inconsistency	while	ensuring	that	changes	to	the	implementation	details	have	no	affect	on
other	parts	of	the	program.

Ada	uses	the	private	type	for	information	hiding.	Here	is	a	second	version	of	our	queue
package	that	uses	a	private	type	to	protect	the	details	that	comprise	our	queue	type:





The	first	change	to	notice	in	this	version	is	that	the	definition	of	Queue_Type	has	been
changed	from	a	record	type	to	private.	An	application	programmer	may	use	this	type	to
declare	queue	variables.	As	with	the	public	record	implementation	in	our	first	version,	the
discriminant	 Max_Size	 is	 used	 to	 give	 a	 maximum	 size	 to	 each	 queue	 object.	 The
operations	on	a	private	type	object	available	to	a	programmer	are	limited	to	those	defined
in	the	package	specification	(	Full,	Empty,	Clear,	Enqueue,	and	Dequeue	in	our	example),
assignment,	and	equality	testing.

The	 second	change	 is	 the	division	of	 the	 specification	 into	 two	parts	by	 the	keyword
private	written	just	after	the	definition	of	procedure	Dequeue.	Everything	above	the	word
private	 may	 be	 freely	 used	 by	 an	 application	 programmer.	 This	 part	 of	 the	 package
specification	is	called	the	visible	part.	Everything	below	the	word	private	is	hidden.	This
part	of	the	package	is	called	the	private	part.	A	client	programmer	using	this	package	may
see	these	details	when	they	read	the	specification,	but	they	may	not	reference	them	in	their
programs.	 In	 our	 example,	 the	 details	 of	 the	 array	 type	 used	 to	 store	 the	 elements	 of	 a
queue	 and	 the	 record	 type	 that	 actually	 defines	 the	 queue	 type	 are	private.	 Application
programmers	may	not	manipulate	 the	 fields	 of	 the	queue	 record	 as	 they	 could	with	our
first	version.	They	must	call	the	public	operations	in	the	package	to	manipulate	a	queue.

The	package	body	for	our	hidden	version	that	implements	the	operations	is	identical	to
that	 of	 the	 public	 version.	 A	 copy	 is	 available	 on
http://www.cambridge.org/us/academic/subjects/computer-science/programming-
languages-and-applied-logic/building-high-integrity-applications-spark.	 The	 sample
application	we	 gave	 on	 page	 §	 that	made	 use	 of	 our	 queue	 type	may	 be	 used	with	 the
hidden	version	simply	by	changing	the	imported	package	name.

3.3.3	 Generic	Packages
Both	versions	of	our	queue	package	define	a	queue	type	whose	elements	are	integers.	To
create	 a	 type	 for	 a	 queue	 of	 characters,	 we	 could	 copy	 the	 integer	 queue	 package
specification	 and	 body,	 change	 the	 type	 of	 the	 element	 from	 integer	 to	 character,	 and
compile	our	new	files.	Ada’s	generic	packages	provide	a	simpler	and	safer	approach.	 In
Chapter	2	we	used	generic	packages	from	the	Ada	library	to	create	packages	for	the	input
and	 output	 of	 our	 own	 scalar	 types.	 Now	 we	 look	 at	 writing	 such	 a	 package.	We	 use
generic	 parameters	 to	 supply	 the	 information	 needed	 by	 the	 compiler	 to	 customize	 our
package.	With	our	queue,	we	need	only	supply	the	type	of	the	element	we	wish	to	store	in
our	queues.	Table	2.2	 lists	 the	most	commonly	used	generic	 formal	 types.	As	 the	queue
package	 body	 makes	 use	 of	 element	 assignment	 and	 the	 contracts	 in	 the	 queue
specification	make	use	of	element	equality	testing,	the	appropriate	generic	formal	type	is
private.	Here	is	the	specification	of	a	generic	queue	package	that	can	be	instantiated	for
any	element	type	that	has	assignment	and	equality	testing	operations:

http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/building-high-integrity-applications-spark




The	reserved	word	private	is	used	for	two	different	purposes	in	this	package.	It	is	used
in	the	definition	of	the	generic	formal	parameter	Element_Type	 to	specify	that	the	actual
parameter	can	be	any	type	that	has	assignment	and	equality	testing.	The	generic	package
body	may	only	use	those	operations	with	values	of	this	type.	The	second	use	of	private	in
our	generic	package	specification	is	in	the	definition	of	Queue_Type.	As	before,	this	type
restricts	the	operations	that	can	be	used	in	an	application	to	those	defined	in	the	package.
In	 both	 situations,	 private	 restricts	 access	 to	 details.	 In	 a	 generic	 formal	 parameter,	 it
restricts	 the	writer	of	 the	package	body.	 In	a	 type	declaration,	 it	 restricts	 the	application
using	the	type.	The	third	time	the	word	private	appears	in	this	package	(eleven	lines	up
from	the	bottom	on	a	 line	by	 itself)	 relates	 to	 the	second	usage.	As	we	discussed	 in	 the
previous	 section,	 the	 details	 of	 our	 private	 Queue_Type	 are	 given	 below	 this	 line.
Everything	above	this	line	is	public	and	accessible	to	other	program	units.

When	we	instantiate	a	queue	package	from	this	generic	package,	we	supply	an	actual
parameter	that	is	the	type	of	the	desired	queue	component.	Here	is	a	version	of	our	queue
application	 revised	 to	 use	 the	 generic	 queue	 package	 to	 instantiate	 a	 queue	 type	 with
character	components:



3.4	 Variable	Packages

A	variable	package	is	used	to	encapsulate	a	single	object.	This	concept	is	sometimes	called
a	singleton	or	singleton	class.	As	 an	 example,	we	 look	 at	 some	packages	 that	might	 be
used	 in	 a	 simulation	 of	 the	 game	 of	 Bingo.	 Players	 of	 this	 game	manage	 a	 number	 of
different	Bingo	 cards.	As	 there	 are	many	 cards	 involved,	we	would	use	 a	 type	package
with	 appropriate	 operations	 to	 model	 them.	 When	 the	 game	 is	 played,	 numbers	 are
randomly	drawn	from	a	single	source.	We	can	use	a	variable	package	to	model	this	source.
We	begin	with	a	definition	package	that	describes	the	numbers	used	in	Bingo.

Here	is	the	specification	of	a	variable	package	that	models	the	basket	from	which	Bingo
numbers	are	drawn:



Notice	that	there	is	no	type	for	a	Bingo	basket	and	no	basket	parameter	for	any	of	the
operations.	The	package	body	hides	a	single	basket.	All	three	operations	act	on	this	hidden
basket	object.	Here	is	that	body:





The	variable	The_Basket,	an	array	containing	all	of	the	Bingo	numbers,	is	global	to	all
of	the	operations	in	this	package	body.	The	global	variable	The_Count	keeps	track	of	how
many	numbers	in	this	array	have	not	yet	been	drawn.	Function	Empty	returns	True	when
The_Count	 is	 zero.	Together,	 these	 two	variables	maintain	 the	 state	of	 the	bingo	basket.
The	variable	Bingo_Gen	 is	a	 random	Bingo	number	generator	used	globally	by	 the	Load
operation.	Procedure	Swap	was	not	defined	in	the	package	specification.	It	is	not	a	basket
operation	but	a	local	subprogram	called	by	procedure	Load.

3.4.1	 Package	Initialization
A	program	using	our	Bingo_Basket	 package	 should	 call	 the	Load	 operation	 to	 initialize
the	 global	 package	 variable	 The_Basket	 before	 drawing	 numbers	 from	 it.	 This	 explicit
initialization	 is	appropriate	for	 this	particular	variable	package	as	we	will	 likely	use	 this
package	to	play	multiple	Bingo	games.	However,	some	situations	require	that	initialization
occur	 only	 once.	 For	 example,	 consider	 the	 following	 package	 that	 implements	 a	 serial
number	generator:

Calls	to	procedure	Get_Next	return	the	next	available	serial	number.	Because	we	do	not
want	 to	 repeat	 numbers,	 we	 have	 not	 included	 an	 operation	 to	 initialize	 the	 sequence.
Instead,	we	set	the	initial	serial	number	in	the	package	body:

The	declaration	of	the	global	package	variable	Next_Number	includes	an	assignment	of
an	initial	value.	This	value	is	assigned	to	the	variable	during	elaboration	of	this	package
body.	Elaboration	 is	 the	 runtime	processing	of	declarations.	Elaboration	brings	 the	 item
being	declared	into	existence	and	then,	if	the	declaration	includes	an	initial	value,	assigns
that	value	to	the	item.

When	a	variable	package	encapsulates	a	nontrivial	data	structure,	initializing	that	data
structure	may	require	more	than	can	be	accomplished	with	assignments	of	initial	values	to
its	 variables.	We	may,	 for	 example,	 need	 a	 loop	 to	 create	 an	 initial	 linked	 list.	 Package
bodies	may	include	an	optional	sequence	of	statements	that	are	executed	when	the	body	is



elaborated.	This	initialization	code	is	placed	between	a	begin	and	the	end	of	the	package.
Here	 is	 how	 we	 might	 use	 package	 initialization	 code	 to	 give	 Next_Number	 its	 initial
value:

There	are	no	 restrictions	on	what	may	be	 included	 in	package	 initialization	code.	We
can	 call	 subprograms	defined	 there	 or	 in	 any	package.	 It	 is,	 however,	wise	 to	 keep	 this
initialization	 code	 simple	 to	 minimize	 the	 possibility	 of	 an	 exception	 being	 raised.
Although	package	initialization	code	is	primarily	used	to	initialize	the	state	of	a	variable
package	 (by	 initializing	 its	 global	 variables),	 there	 are	 no	 rules	 against	 using	 it	 in	 any
package	that	has	a	body.

When	 does	 elaboration	 occur?	 Each	 time	 we	 call	 a	 subprogram,	 all	 of	 its	 local
declarations	are	elaborated	prior	to	the	execution	of	the	code	after	the	word	begin.	In	this
case,	 storage	 for	 the	 local	 variables	 is	 allocated	 on	 the	 stack	 and	 any	 initial	 values	 are
assigned.

Each	 package	 specification	 and	 body	 is	 elaborated	 once	 after	 the	 program	 is	 loaded.
The	order	in	which	packages	are	elaborated	must	follow	the	basic	rule	that	a	unit	must	be
elaborated	 before	 another	 unit	 can	 use	 a	 resource	within	 it.	 For	most	 projects,	 the	Ada
compiler	can	determine	a	 legal	elaboration	order.	However,	using	packages	with	mutual
dependencies	 may	 make	 it	 difficult	 or	 impossible	 for	 the	 compiler	 to	 determine	 an
elaboration	order.	Ada	provides	pragmas	that	we	may	use	to	give	the	compiler	hints	on	a
correct	order.	In	some	cases,	however,	it	may	be	necessary	to	remove	mutual	dependencies
by	restructuring	the	design	of	the	program.	Section	3.6	provides	additional	discussion	and
examples	of	elaboration.

3.5	 Child	Packages

Ada	provides	a	hierarchical	naming	scheme	for	library	units.	A	package	named	Apple	may
have	 a	 child	package	with	 the	name	Apple.McIntosh.	Apple	 is	 the	 parent	 of	 McIntosh.
This	naming	scheme	overcomes	problems	with	uniqueness	of	names	just	as	a	hierarchical
file	 system	 allows	 us	 to	 distinguish	 between	 two	 files	with	 the	 same	 name	 by	 keeping
them	 in	 two	 different	 directories.	We	 have	 seen	 examples	 of	 this	 hierarchy	 of	 package



names	in	the	Ada	library.	Ada	is	the	parent	package	of	all	predefined	units	in	the	library.
Text_IO	is	a	child	of	Ada	containing	resources	for	the	input	and	output	of	text.

In	addition	to	providing	a	hierarchy	for	organizing	names,	child	units	provide	important
information	hiding	properties.	We	have	seen	how	private	types	are	used	to	hide	the	details
of	 an	 abstract	 data	 type.	 In	 our	 bounded	 queue	 type	 package	 examples,	 the	 record	 and
array	defining	the	implementation	are	not	accessible	to	program	units	that	use	our	queue
type.	These	clients	must	use	the	operations,	such	as	Enqueue,	that	we	defined	in	the	public
portion	of	the	package	specification	to	manipulate	queue	objects.	However,	the	details	of
the	private	type	are	available	in	the	package	body	where	the	operations	are	implemented.
These	private	details	 are	 also	 available	 to	 the	private	part	 and	body	of	 a	 child	package.
This	 access	 allows	 a	 group	 of	 units	 to	 share	 private	 information	 while	 keeping	 that
information	hidden	from	external	clients.2

This	sharing	allows	us	to	easily	extend	an	abstract	data	type.	In	fact,	child	packages	are
the	 key	 construct	 for	 object-oriented	 programming	 features	 such	 as	 inheritance	 and
dynamic	dispatching	 that	are	beyond	 the	scope	of	 this	book.	Let	us	 look	at	an	example.
Here	is	the	specification	of	a	simple	stack	type	package:

And	here	is	a	child	package	specification	with	a	new	operation	for	our	stack	type:

We	certainly	could	have	added	function	Peek	 to	our	original	stack	package.	However,
that	change	to	the	original	package	would	require	us	to	recompile	all	clients	that	used	it.
And,	of	course,	we	wanted	 to	 illustrate	a	use	of	child	packages.	To	 that	end,	here	 is	 the



body	of	our	child	package:

You	can	see	that	this	body	makes	use	of	the	details	of	the	stack	type	given	in	the	private
part	of	the	stack	package	specification.

3.5.1	 Private	Children
Package	 Stacks.More	 is	 an	 example	 of	 a	 public	 child	 package.	 Public	 child	 packages
allow	 extension	 and	 continued	 privacy	 of	 their	 private	 types	 to	 provide	 additional
resources	for	clients.

When	developing	a	subsystem,	there	are	times	that	we	would	like	to	decompose	it	into
pieces	without	giving	clients	of	that	subsystem	direct	access	to	those	pieces.	Ada’s	private
child	package	provides	the	mechanism	for	hiding	these	pieces.	The	use	of	resources	from
a	private	child	package	is	restricted	to	the	hierarchy	of	packages	rooted	at	its	parent.

To	 illustrate	 this	 role	of	private	child	packages,	consider	a	 flight	management	 system
(FMS).	An	FMS	is	a	component	of	the	cockpit	software	that	automates	a	wide	variety	of
in-flight	tasks.	A	primary	function	of	an	FMS	is	in-flight	management	of	the	flight	plan.
Here	is	an	outline	of	a	package	that	supplies	clients	with	operations	on	flight	plans:

Navigational	 databases	 and	 position	 determination	 are	 two	 of	 the	 many	 components
making	up	an	FMS.	The	client	of	our	flight	management	subsystem	has	no	need	to	access
these	two	components	directly.	They	are	accessed	by	operations	in	the	FMS	that	are	called
by	the	clients.	Therefore,	we	place	these	two	subsystems	into	private	child	packages.	Here
are	the	outlines	of	these	two	private	children:



The	body	of	package	FMS	will	with	 these	private	packages	 to	use	 their	 resources.	Client
units	cannot	with	these	packages.

Let	 us	 look	 at	 one	more	 level	 of	 this	 FMS	 design.	 Position	 information	 is	 obtained
through	multiple	 subsystems	 including	 the	 global	 positioning	 system,	 inertial	 reference
systems	(IRS),	and	VHF	omnidirectional	 radio	 range	 (VOR).	As	 these	 three	subsystems
are	components	of	 the	positioning	system,	we	make	 them	private	child	packages	of	 that
system.

In	this	book	we	make	use	of	private	child	packages	in	the	development	of	hierarchical
state	 abstractions	 (Sections	4.3.3	 and	7.3.3),	 isolating	non-SPARK	 code	 from	 legacy	Ada
software	(Section	8.2),	and	partitioning	unproved	SPARK	code	(Section	9.3.5).

3.5.2	 Visibility	and	the	Child	Hierarchy
Each	of	the	packages	in	our	hierarchy	may	have	both	visible	and	private	parts	and	a	body.
These	parts	and	bodies	may	access	parts	of	other	packages	in	the	hierarchy	by	default	or
by	withing	them.	Of	course,	we	can	with	any	public	unit	outside	the	hierarchy.	Here	are
the	visibility	rules:

A	child	specification	never	needs	to	with	its	parent;	a	specification	may	with	a	sibling
except	that	a	public	child	specification	may	not	with	a	private	sibling;	a	specification
may	not	with	its	own	child.
A	body	never	needs	to	with	its	parent.
The	 entities	 of	 a	 parent	 are	 accessible	 by	 simple	 name	 within	 its	 descendants
(children,	grandchildren,	etc.);	use	clauses	are	not	required.
A	with	clause	given	 in	 the	specification	of	a	parent	also	applies	 to	 its	body	and	 its
descendants.



A	private	child	is	never	visible	outside	the	tree	rooted	at	its	parent.	And	within	 that
tree,	it	is	not	visible	to	the	visible	parts	of	public	siblings.
The	private	part	and	body	of	any	child	can	access	 the	private	parts	of	 its	ancestors
(parent,	grandparent,	etc.).
The	visible	part	of	a	private	child	can	access	the	private	parts	of	its	ancestors.
A	with	clause	for	a	child	automatically	implies	with	clauses	for	all	its	ancestors.
A	use	clause	for	a	unit	makes	 the	resources	 in	 its	descendants	accessible	by	simple
name.	Those	descendants	must	be	withed.
A	private	with	clause	allows	the	private	part	but	not	the	visible	part	of	a	package	to
access	 resources	 in	 the	 named	 package.	A	 public	 child	may	 private	 with	 a	 private
sibling.

Figure	3.1	 illustrates	 the	direct	 visibility	 between	 children	 and	 parent	 packages.	 This
visibility	 is	 automatic;	 it	 does	 not	 require	 any	with	 or	use	 context	 clauses.	 The	 arrows
show	that	every	private	part	of	a	specification	has	direct	visibility	of	the	visible	part	of	that
specification.	Every	body	has	access	to	everything	in	its	specification	and	the	specification
of	its	parent.	Both	the	visible	part	and	the	private	part	of	a	private	child	have	direct	access
to	everything	in	their	parent’s	specification.	The	access	of	a	public	child	is	more	limited.
The	 visible	 part	 of	 a	 public	 child	 can	 only	 access	 resources	 in	 its	 parent’s	 visible	 part.
However,	 the	private	part	of	a	public	child	has	direct	access	 to	everything	 in	 its	parent’
specification.

	

Figure	3.1.	 Direct	visibility	with	child	packages.

Figure	3.2	 shows	 options	 for	 obtaining	 access	 to	 other	 related	 units	 via	with	clauses
placed	 at	 the	 beginning	 of	 a	 package	 specification	 or	 body.	 In	 all	 cases,	 a	 with	 clause
provides	access	to	only	the	resources	in	the	visible	part	of	the	package	being	withed.	The
body	of	a	parent	package	may	with	any	of	its	descendants.	The	body	of	any	descendant	in
the	hierarchy,	whether	private	or	public,	can	with	any	other	package	in	the	hierarchy.	But
as	 shown	 in	 Figure	 3.1,	 no	 with	 is	 needed	 to	 access	 ancestor	 packages.	 Whereas	 the
specification	 of	 a	 private	 child	 package	 can	 with	 any	 package	 in	 the	 hierarchy,	 the
specification	of	a	public	child	may	only	with	other	public	children.



	

Figure	3.2.	 Visibility	via	with	clauses	in	child	packages.

There	are	two	special	forms	of	the	with	clause.	Including	a	private	with	clause	at	the
beginning	of	a	package’s	specification	allows	access	to	the	named	package	from	only	the
private	 part	 of	 that	 specification.	 The	 dotted	 arrow	 in	 Figure	 3.2	 representing	 a
private	with	clause	shows	that	resources	in	a	private	child’s	visible	part	may	be	used	in
the	private	part	of	a	public	child.	In	later	chapters,	we	make	use	of	private	with	clauses
to	exempt	private	parts	from	our	SPARK	analyses.	A	limited	with	provides	a	mechanism
for	mutually	dependent	units.	We	have	not	used	any	limited	with	clauses	in	this	book.

Both	public	and	private	children	can	themselves	have	children	of	both	kinds.	A	private
child	of	a	public	child	begins	a	new	hierarchy	of	visibility	beginning	at	its	public	parent.	A
private	child	of	a	private	child	also	begins	a	new	hierarchy	of	visibility	beginning	at	 its
private	 parent.	A	 public	 child	 of	 a	 private	 child	 extends	 the	 specification	 of	 the	 private
child.	This	public	child	is	visible	to	the	bodies	of	its	public	uncles	(packages	sharing	the
same	grandparent	as	the	new	public	child)	and	to	all	parts	of	its	private	uncles.

Child	 packages	 provide	 a	 very	 flexible	 mechanism	 for	 implementing	 complex
architectures.	 As	 usual,	 it	 is	 important	 to	 keep	 the	 relations	 between	 modules	 as
understandable	as	possible.

3.6	 Elaboration

We	 conclude	 this	 chapter	 with	 another	 look	 at	 elaboration,	 a	 concept	 introduced	 in
Section	3.4.1.	Elaboration	 is	 the	runtime	processing	of	a	declaration,	declarative	part,	or
program	unit	body.	This	processing	occurs	during	the	execution	of	a	program	and	consists
of	activities	such	as	allocating	space	and	providing	initial	values	to	objects.	As	shown	in
Section	 3.4.1,	 the	 elaboration	 of	 a	 package	 body	 may	 include	 the	 execution	 of	 the
sequence	of	statements	at	the	end	of	the	body.

Here	is	a	simple	example	of	elaboration	in	a	procedure:



When	 procedure	 Elaboration_Demo	 is	 called,	 its	 declarations	 are	 elaborated	 before	 the
execution	of	the	statements	between	its	begin	and	end.	Space	for	the	array	variable	Line
with	 Size	 components	 is	 allocated	 on	 the	 system	 stack	 and	 all	 its	 components	 are
initialized	to	blank.	Similarly,	space	is	allocated	for	Guess	and	it	is	initialized	to	 ,	the
Golden	Ratio.

Subprogram	 calls	 are	 possible	 during	 elaboration	 as	 demonstrated	 by	 the	 call	 to	 the
square	root	 function	 in	 the	 initialization	of	Guess.	Such	calls	allow	any	arbitrary	part	of
the	program	to	be	executed	as	part	of	elaboration.

Elaboration	can	be	more	complicated	with	packages	as	the	order	in	which	packages	are
elaborated	 is	 important.	 Take,	 for	 example,	 the	 following	 two	 skeleton	 package
specifications	and	bodies:

During	 the	 elaboration	 of	 the	 specification	 of	Pack_A,	 the	 value	of	Pack_B.	Var_3	 is
used	 in	 the	 initialization	 of	 Var_1.	 So	 it	 is	 important	 that	 the	 elaboration	 of	 the



specification	of	Pack_B	be	completed	before	the	elaboration	of	the	specification	of	Pack_A.
Similarly,	 the	 elaboration	 of	 the	 specification	 of	 Pack_B	 must	 be	 completed	 before	 the
elaboration	 of	 the	 body	 of	 Pack_A.	 Finally,	 the	 body	 of	 Pack_B	 uses	 the	 value	 of
Pack_A.Var_1	 in	 the	 initialization	 of	 Var_4.	 So	 the	 specification	 of	 Pack_A	 must	 be
elaborated	before	the	body	of	Pack_B.

The	determination	of	legal	orders	of	elaboration	in	a	program	with	many	packages	is	a
problem	 that	 must	 be	 solved	 prior	 to	 linking	 the	 object	 code	 of	 the	 packages	 into	 an
executable	file.3	The	GNAT	Ada	compiler	uses	a	tool	called	GNATbind	that,	among	other
tasks,	checks	that	an	acceptable	order	of	elaboration	exists	for	the	program	and	generates	a
main	program	incorporating	a	valid	elaboration	order.

A	program	with	circular	elaboration	dependencies	has	no	valid	order	of	elaboration.	In
such	 cases,	 GNATbind	 issues	 an	 error	 message.	 It	 is	 then	 up	 to	 the	 programmer	 to
reorganize	the	packages	 into	a	set	 that	does	have	a	valid	order	of	elaboration	or	provide
the	binder	with	additional	information	so	it	can	find	a	valid	order.	Decomposing	a	package
into	child	packages	is	one	way	to	remove	circular	elaboration	dependencies.

Appendix	 C	 of	 the	 GNAT	 User’s	 Guide	 (GNAT,	 2015b)	 provides	 an	 excellent
discussion	of	the	elaboration	process,	elaboration	problems,	and	solutions.	These	solutions
include	a	number	of	pragmas	that	a	programmer	may	use	to	give	additional	information	to
the	binder	that	might	allow	it	to	determine	a	valid	order	that	it	could	not	determine	on	its
own.

Summary

A	library	unit	is	a	separately	compiled	program	unit.
In	Ada,	library	units	may	be	subprograms,	packages,	or	generic	units.
The	with	clause	provides	access	to	the	public	declarations	in	a	library	unit.
The	use	clause	provides	direct	visibility	of	the	public	declarations	in	a	library	unit	so
we	do	not	have	to	prefix	them	with	the	library	unit	name.
Packages	provide	the	logical	structure	to	large	software	applications.
Packages	 are	 the	 primary	 means	 in	 Ada	 for	 abstraction,	 encapsulation,	 and
information	hiding.
A	package	consists	of	a	specification	and	a	body	that	implements	the	specification.
We	define	a	definition	package	as	a	package	 that	 groups	 together	 related	 constants
and	types.
As	there	are	no	operations	to	implement,	a	definition	package	has	no	body.
We	define	a	utility	package	as	a	package	that	groups	together	related	constants,	types,
and	subprograms	that	provide	some	service.
The	type	package	is	used	to	create	abstract	data	types.
Private	types	are	used	to	encapsulate	the	details	of	an	abstract	data	type.
We	 use	 aspects	 to	 specify	 preconditions	 and	 postconditions	 for	 operations	 in	 a
package.
We	may	use	an	optional	compiler	switch	to	generate	code	to	check	each	precondition
and	postcondition	when	our	program	executes.
Generic	packages	are	templates	that	may	be	instantiated	for	a	specific	purpose.



Generic	formal	parameters	provide	the	mechanism	for	customizing	generic	packages.
A	variable	package	is	used	to	create	singletons	–	hidden	single	objects.
A	 package	 may	 contain	 initialization	 code	 that	 is	 executed	 when	 the	 package	 is
elaborated.
Initialization	code	is	commonly	used	to	initialize	the	state	of	a	variable	package	that
encapsulates	a	nontrivial	data	structure.
Public	and	private	child	packages	allow	us	to	decompose	subsystems	in	a	structured
manner.
Public	children	enable	 the	decomposition	of	 the	view	of	a	subsystem	to	 the	user	of
the	subsystem.
Private	children	enable	the	decomposition	of	the	implementation	of	a	subsystem.
Private	with	clauses	allow	access	to	the	named	package’s	visible	part	from	only	the
private	part	of	that	specification.
Elaboration	 is	 the	 runtime	processing	of	 a	declaration,	declarative	part,	or	program
unit	body.

Exercises

3.1		 What	are	the	purposes	of	the	with	clause	and	use	clause?

3.2		 Define	the	following	terms	(some	require	knowledge	from	sources	outside	of	this
book).

a.	 Encapsulation

b.	 Information	hiding

c.	 Definition	package

d.	 Utility	package

e.	 Abstract	data	type

f.	 Type	package

g.	 Aspect

h.	 Attribute

i.	 Precondition

j.	 Postcondition

k.	 Variable	package

l.	 Elaboration

3.3		 Look	at	the	specification	of	the	package	Ada.Text_IO	in	section	A.10.1	of	the	Ada
Reference	 Manual.	 Explain	 how	 this	 package	 could	 be	 classified	 as	 a	 utility
package.	Explain	how	this	package	could	be	classified	as	a	type	package.

3.4	 	 Obtain	a	 copy	of	 the	 specification	and	body	of	 the	Bounded_Queue_V2	 from	the
http://www.cambridge.org/us/academic/subjects/computer-science/programming-
languages-and-applied-logic/building-high-integrity-applications-spark.	 Also

http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/building-high-integrity-applications-spark


obtain	a	copy	of	the	sample	application	Bounded_Queue_Example_V1.

a.	 Make	the	necessary	changes	in	names	so	the	application	will	use	this	second
version	of	the	queue	package.	Build	and	run	the	application.

b.	 Corrupt	 the	 implementation	 of	 the	 dequeue	 procedure	 by	 incrementing	 the
length	of	the	queue	rather	than	decrementing	it.	Build	and	run	the	application.
Was	the	error	detected	or	were	the	results	simply	incorrect?

c.	 Look	up	 the	 appropriate	 switch	 for	 the	 compile	 command	 that	 adds	 code	 to
check	the	contracts	at	runtime.	Build	and	run	the	application	with	this	switch.
Was	the	error	detected	or	were	the	results	simply	incorrect?

3.5	 	 Ada	 uses	 the	 reserved	 word	 private	 to	 restrict	 access	 to	 details.	 Who	 has
complete	access	(application	programmer	or	package	programmer)	to	the	details
of	 a	 private	 type?	Who	 has	 complete	 access	 to	 the	 details	 of	 a	 private	 generic
parameter?

3.6		 Using	version	2	of	our	queue	package	as	a	guide,	write	a	type	package	for	a	stack
whose	 components	 are	 characters.	 Include	 appropriate	 preconditions	 and
postconditions.	Write,	build,	and	 run	a	simple	 test	program	 that	uses	your	 stack
package.

3.7	 	 Convert	 the	 character	 stack	 package	 you	 wrote	 in	 Exercise	 3.6	 into	 a	 generic
package	 that	 may	 be	 instantiated	 for	 any	 component	 type	 that	 supports
assignment.	Modify	your	test	program,	build,	and	run	it.

3.8		 Why	can	we	not	use	the	’Old	attribute	in	preconditions?

3.9	 	 Why	 does	 the	 square	 root	 function,	 Sqrt,	 defined	 on	 page	 §	 not	 require	 a
precondition	stating	that	Item	is	not	negative?

3.10	 Write	 the	 specification	 of	 a	 generic	 type	 package	 for	 a	 mathematical	 set	with
operations	 Union,	 Intersection,	 Is_Member,	 Add_Value,	 Remove_Value,	 and
Make_Empty.	 Encapsulate	 the	 set	 in	 a	 private	 type.	 Use	 an	 array	 of	 Booleans
indexed	 by	 the	 set	 component	 type	 to	 implement	 the	 set	 type.	 Select	 an
appropriate	 generic	 formal	 parameter	 type	 for	 the	 set	 component	 type.	 (Hint:
What	 restrictions	must	we	 place	 on	 the	 kind	 of	 elements	we	might	 use	 in	 this
simple	array	implementation?)	Check	the	syntax	of	your	package	specification.

3.11	 Write	the	body	of	the	set	package	from	the	Exercise	3.10.	A	set	is	made	empty	by
setting	all	components	in	the	array	to	False.	An	element	 is	added	to	or	removed
from	a	set	by	setting	its	component	to	True	or	False.	The	Union	operation	may	be
implemented	by	or’ing	the	corresponding	Boolean	components	in	the	two	arrays
to	 create	 a	 resulting	 array	 of	 Booleans.	 Similarly,	 the	 Intersection	may	 be
implemented	by	and’ing	the	corresponding	components.

3.12	 Write	 a	 simple	 application	 that	 uses	 the	 generic	 set	 package	 developed	 in
Exercises	 3.10	 and	 3.11.	 Instantiate	 a	 set	 package	 whose	 components	 are	 the
twenty-six	uppercase	 letters	of	 the	alphabet.	Write	a	procedure	 that	displays	 the
letters	 in	 a	 set.	 (Hint:	Write	 a	 loop	 that	 goes	 through	 all	 twenty-six	 letters	 and
displays	 those	 that	 are	members	 of	 the	 set.)	 Include	 code	 to	 construct	 sets	 and



perform	operations	on	them.

3.13	 What	is	elaboration?	When	does	elaboration	occur	for	a	subprogram?

3.14	 Procedure	Load	in	the	package	body	of	Bingo_Basket	resets	the	random	number
generator	 each	 time	 it	 is	 called.	 We	 need	 only	 reset	 the	 generator	 once.	 Use
package	initialization	to	make	this	change	to	the	body	of	Bingo_Basket.	Also	set
the	initial	basket	to	empty.

3.15	 What	 is	 the	major	use	of	public	children	 in	 the	decomposition	of	a	 system?	Of
private	children?

3.16	 What	restriction	does	a	private	with	clause	impose	that	is	not	imposed	by	a	with
clause?



4
Dependency	Contracts

In	 this	 chapter	 we	 describe	 SPARK’s	 features	 for	 describing	 data	 dependencies	 and
information	flow	dependencies	in	our	programs.	This	analysis	offers	two	major	services.
First,	 it	verifies	 that	no	uninitialized	data	 is	ever	used.	Second,	 it	verifies	 that	all	 results
computed	by	the	program	participate	in	some	way	in	the	program’s	eventual	output	–	that
is,	all	computations	are	effective.

The	value	of	the	first	service	is	fairly	obvious.	Uninitialized	data	has	an	indeterminate
value.	If	it	is	used,	the	effect	will	likely	be	a	runtime	exception	or,	worse,	the	program	may
simply	compute	the	wrong	output.	The	value	of	the	second	service	is	less	clear.	A	program
that	 produces	 results	 that	 are	 not	 used	 is	 at	 best	 needlessly	 inefficient.	 However,
ineffective	 computations	 may	 also	 be	 a	 symptom	 of	 a	 larger	 problem.	 Perhaps	 the
programmer	forgot	to	implement	or	incompletely	implemented	some	necessary	logic.	The
flow	 analysis	 done	 by	 the	 SPARK	 tools	 helps	 prevent	 the	 programmer	 from	 shipping	 a
program	that	is	in	reality	only	partially	complete.

It	 is	 important	 to	 realize,	 however,	 that	 flow	 analysis	 by	 itself	 will	 not	 show	 your
programs	to	be	free	from	the	possibility	of	runtime	errors.	Flow	analysis	is	only	the	first
step	 toward	building	robust	software.	 It	can	reveal	a	significant	number	of	 faults,	but	 to
create	 highly	 robust	 systems,	 it	 is	 necessary	 to	 use	 proof	 techniques	 as	 described	 in
Chapter	6.

As	described	 in	Chapter	1,	 there	are	 three	 layers	of	analysis	 to	consider	 in	 increasing
order	of	rigor:

1.	 Show	 that	 the	program	 is	 legal	Ada	 that	 abides	by	 the	 restrictions	of	SPARK	 where
appropriate.	 The	most	 straightforward	way	 to	 verify	 this	 is	 by	 compiling	 the	 code
with	a	SPARK-enabled	compiler	such	as	GNAT.

2.	 Show	 that	 the	 program	has	 no	 data	 dependency	 or	 flow	 dependency	 errors.	Verify
this	by	running	the	SPARK	tools	to	“examine”	each	source	file.

3.	 Show	that	the	program	is	free	from	runtime	errors	and	that	it	honors	all	its	contracts,
invariants,	 and	 other	 assertions.	Verify	 this	 by	 running	 the	 SPARK	 tools	 to	 “prove”
each	source	file.

We	 recommend	making	 these	 three	 steps	 explicit	 in	your	work.	Move	on	 to	 the	next
step	 only	 when	 all	 errors	 from	 the	 previous	 step	 have	 been	 remedied.	 This	 chapter
discusses	the	second	step.

4.1	 Data	Dependency	Contracts

The	data	dependency	contract	describes	what	global	data	a	subprogram	depends	on	and
whether	 that	 data	 is	 read,	 written,	 or	 both.	 The	 data	 dependency	 contract	 appears	 as	 a
Global	aspect	on	a	subprogram’s	declaration.



The	use	of	global	data	is	normally	discouraged.	This	is	primarily	because	it	is	difficult
for	 programmers	 to	 reason	 about	 the	 behavior	 of	 a	 program	 when	 it	 makes	 frequent,
undisciplined	use	of	 such	data.	Normally,	one	expects	 a	 subprogram	 to	only	 read	 its	in
parameters	 and	modify	 its	 out	 parameters.	 Reads	 and	writes	 the	 subprogram	makes	 to
global	data	is	not	obvious	from	the	call	site	and	is	easy	to	ignore.	For	example,	if	a	call
Process(X,	Y)	reads	a	global	variable	Z,	it	is	easy	to	forget	to	initialize	Z	before	the	call	is
made.

SPARK’s	 data	 dependency	 contracts	 allow	 the	 programmer	 to	 explicitly	 specify	 what
global	 data	 each	 subprogram	 uses	 in	 a	 manner	 that	 is	 similar	 to	 the	 way	 subprogram
parameters	are	specified.	Thus,	global	data	read	and	written	 is	clearly	defined	as	part	of
each	subprogram’s	declaration.	The	SPARK	 tools	use	this	information	to	ensure	all	global
data	 is	 initialized	before	 it	 is	needed	and	all	 results	written	 to	global	data	are	used.	The
flow	analysis	done	by	the	SPARK	tools	verifies	that	the	body	of	a	subprogram	manipulates
both	 parameters	 and	 global	 data	 as	 described	 by	 the	 parameter	 list	 and	 the	 data
dependency	contract.

As	an	example,	consider	the	following	abbreviated	package	specification	for	a	package
that	performs	raster	graphics	drawing:

The	 first	 line	 of	 this	 package	 specification,	 pragma	 SPARK_Mode	 (On),	 informs	 the
SPARK	tools	that	this	unit	follows	all	the	rules	of	the	SPARK	language.	We	say	that	this	unit



is	“in	SPARK.”	We	can	write	programs	 in	which	certain	units	are	written	 in	SPARK	while
other	units	are	written	in	full	Ada	or	another	programming	language.	We	discuss	mixing
SPARK,	 full	Ada,	and	C	in	Chapter	7.	We	can	also	use	an	aspect	 to	state	 that	a	unit	 is	 in
SPARK	as	follows:

In	this	book	we	use	both	the	pragma	and	the	aspect	to	state	that	a	unit	is	in	SPARK.	We	talk
more	about	SPARK	mode	in	Section	7.1.1.

Now	 let	 us	 look	 at	 the	 details	 of	 the	 package	 specification	 Raster_Graphics.	 The
package	 draws	 on	 a	 square	 workspace	 of	 size	 100	 pixels.	 It	 first	 introduces
Coordinate_Type	 to	 distinguish	 other	 integer	 values	 from	 values	 used	 to	 represent
coordinates	 on	 the	 drawing	 space.	 The	 package	 then	 defines	 a	 record	 type	 Point	 for
representing	specific	two-dimensional	positions.

The	 procedure	 Draw_Line	 draws	 a	 line	 between	 two	 points	 A	 and	 B.	 The	 data
dependency	contract,	as	given	by	the	Global	aspect,	specifies	three	global	variables	used
by	the	procedure.	Three	modes	can	be	used	in	data	dependency	contracts	 to	indicate	the
direction	of	data	flow	just	as	subprogram	parameters	can	use	three	modes	for	that	purpose.
In	 this	 case	 the	 desired	 line	 drawing	 algorithm	 is	 read,	 a	 status	 value	 representing	 the
success	or	 failure	of	 the	procedure	 is	written,	and	a	counter	of	 the	 total	number	of	 lines
ever	 drawn	 is	 updated.	Each	mode	 can	only	 appear	 once	but	 can	be	 associated	with	 an
arbitrary	list	of	variables	enclosed	in	parentheses.

Global	variables	used	by	a	subprogram	behave	similarly	to	parameters	where	the	actual
argument	is	fixed.	However,	it	is	not	necessary	in	the	data	dependency	contract	to	specify
the	types	of	the	global	variables.	To	be	used	in	the	contract,	the	variables	must	be	visible
at	 that	 point	 in	 the	 program.	 Thus,	 their	 types	 are	 available	 from	 their	 declarations
elsewhere.	 In	 the	 preceding	 example,	 the	 global	 variables	 are	 declared	 inside	 the
specification	of	package	Raster_Graphics.

One	important	rule	is	that	the	variables	mentioned	in	the	data	dependency	contract	have
to	be	entire	objects.	For	example,	it	is	not	permitted	to	use	a	single	array	element	or	record
component.	 The	 variable	 must	 be	 the	 entire	 array	 or	 record	 even	 if	 the	 subprogram
accesses	only	one	component	of	the	composite	entity.

SPARK	also	requires	that	functions	only	read	from	global	data.	Thus,	the	modes	Output
and	 In_Out	 are	 illegal	 for	 functions.	 This	 is	 consistent	 with	 SPARK’s	 restriction	 that
functions	have	only	in	parameters.	It	is	necessary	to	ensure	that	the	unspecified	evaluation
order	of	subexpressions	remains	deterministic.

Consider,	for	example,	an	assignment	statement	such	as

If	F	were	allowed	to	output	to	a	global	variable,	the	final	result	stored	in	that	variable
would	depend	on	the	order	in	which	the	operands	to	+	are	evaluated.	However,	that	order
is	 unspecified	 by	 the	 language.	 To	 ensure	 the	 program	 always	 produces	 well-defined,
predictable	results,	outputs	cannot	be	allowed	to	depend	on	such	unspecified	ordering.	The



concern	is	eliminated	by	forbidding	functions	from	having	side	effects	such	as	writing	to
global	data.	This	problem	does	not	arise	in	the	case	of	procedures	because	each	procedure
is	called	in	its	own	statement,	and	the	order	in	which	statements	execute	is	specified.

Procedure	Draw_Line	described	earlier	has	two	ordinary	parameters	and	makes	use	of
three	global	variables.	One	might	wonder	why	some	or	all	of	those	global	variables	were
not	declared	as	parameters	instead.	Doing	so	would	be	considered	better	style	in	the	eyes
of	many	developers.

There	 are,	 however,	 at	 least	 two	 cases	 in	which	 the	 use	 of	 global	 data	 is	 reasonable.
Perhaps	 the	most	 important	 use	of	global	 data	 is	 to	hold	 the	 internal	 state	of	 a	variable
package.	We	used	this	approach	with	the	Bingo	basket	package	in	Section	3.4.	We	discuss
the	SPARK	aspects	for	managing	internal	state	in	Section	4.3.

Global	 data	 is	 also	 useful	when	 a	 nested	 subprogram	 accesses	 the	 local	 variables	 or
parameters	 of	 an	 enclosing	 subprogram.	 To	 demonstrate	 this,	 consider	 the	 following
abbreviated	 body	 of	 package	 Raster_Graphics.	 For	 now	 we	 will	 continue	 to	 let
Draw_Line	access	three	global	variables,	although,	in	a	more	reasonable	application,	some
or	all	of	those	global	variables	might	be	passed	into	Draw_Line	as	parameters.



We	assume,	for	purposes	of	 illustration,	 that	Draw_Line	requires	the	end	points	of	 the
line	to	be	sufficiently	far	apart.	Perhaps	it	is	required	for	very	short	lines	to	be	represented
as	large	dots,	or	perhaps	the	underlying	drawing	hardware	does	not	work	reliably	for	short
lines.	In	any	case	Draw_Line	needs	to	check	the	distance	between	the	points	it	is	given	and



uses	a	helper	subprogram	Check_Distance	to	do	so.

However,	 from	 Check_Distance’s	 point	 of	 view	 the	 parameters	 of	 the	 enclosing
procedure,	as	well	as	the	local	variables	of	the	enclosing	procedure	that	are	declared	above
Check_Distance	(if	any),	are	global	variables.	The	flow	analysis	done	by	the	SPARK	tools
thus	requires	any	global	variables	that	are	used	to	be	mentioned	in	Check_Distance’s	data
dependency	contract.

Notice	that	Check_Distance	also	writes	to	the	global	variable	Status.	It	must	specify
this	 in	 its	 data	 dependency	 contract	 despite	 the	 fact	 that	 the	 enclosing	 procedure	 has
already	done	so.	The	body	of	each	subprogram,	even	nested	subprograms,	is	analyzed	on
its	 own	 so	 all	 information	moving	 into	 and	 out	 of	 each	 subprogram	must	 be	 declared.
Flow	 analysis	 will	 ensure	 that	 the	 modes	 are	 all	 consistent.	 For	 example,	 if
Check_Distance’s	data	dependency	contract	was

flow	analysis	would	object	because	A	and	B	are	in	parameters	of	the	enclosing	subprogram
and	 thus	 may	 not	 be	 modified.	 The	 constant	 Min_Distance	 in	 the	 body	 of	 package
Raster_Graphics	is	handled	differently.	Because	it	is	a	constant	that	is	initialized	with	a
static	expression,1	it	can	be	used	by	any	of	the	subprograms	for	which	it	is	visible	without
being	mentioned	in	the	data	dependency	contract	of	those	subprograms.

Finally,	notice	 that	Draw_Line	 increments	Line_Count.	Flow	analysis	verifies	 that	 the
mode	 on	 that	 global	 variable	 is	 consistent	 with	 this	 usage.	 Also,	 the	 SPARK	 tools	 will
understand	 that,	because	 the	global	variable	has	an	 input	mode,	 it	must	be	 initialized	 in
some	way	before	Draw_Line	can	be	called.

4.2	 Flow	Dependency	Contracts

An	important	part	of	the	flow	analysis	done	by	the	SPARK	tools	is	to	track	which	values	are
used	 in	 the	 computation	 of	 which	 results.	 Techniques	 for	 doing	 flow	 analysis	 inside	 a
subprogram	are	well	known	and	described	in	detail	in,	for	example,	textbooks	on	compiler
design	 (Aho	 et	 al.,	 2007).	 However,	 to	 accomplish	 the	 larger	 goal	 of	 ensuring	 no
information	 is	 misused	 in	 the	 overall	 program,	 it	 is	 necessary	 to	 extend	 flow	 analysis
across	subprograms,	including	across	subprograms	in	different	packages.

Ada	 promotes	 the	 construction	 of	 large	 software	 systems	 as	 collections	 of	 loosely
coupled	 packages.	 These	 packages	 are	 developed	 independently,	 often	 in	 parallel,	 and
only	integrated	into	the	final	program	after	they	have	been	separately	tested	and	analyzed.
SPARK	 would	 be	 useless	 for	 realistic	 programs	 if	 it	 did	 not	 support	 this	 style	 of
development.

SPARK	allows	programwide	flow	analysis	to	be	carried	out	on	packages	independently
by	 requiring	 the	 programmer	 to	 declare	 the	 way	 information	 moves	 into	 and	 out	 of	 a
subprogram	as	part	of	that	subprogram’s	declaration.	These	flow	dependency	contracts	are



used	 when	 analyzing	 code	 that	 calls	 the	 subprogram	 and	 checked	 when	 analyzing	 the
implementation	of	the	subprogram.

As	an	example,	consider	a	procedure	that	searches	a	string	for	the	first	occurrence	of	a
given	character	starting	at	a	given	position.	It	returns	a	status	value	of	true	if	the	character
is	found	along	with	its	location	in	the	string.	The	declaration	of	this	procedure	might	look
like	the	following:

The	flow	dependency	contract,	expressed	using	the	Depends	aspect,	describes	how	each
output	of	the	procedure	depends	on	the	inputs.	In	this	case	the	value	produced	for	Found
depends	on	the	text	being	searched,	the	letter	being	searched	for,	and	the	starting	position
of	the	search.	The	value	produced	for	Position	depends	on	the	same	three	inputs.

Based	on	the	intended	behavior,	or	semantics,	of	Search,	it	is	intuitively	clear	that	the
dependencies	expressed	above	are	correct.	For	example,	Found	clearly	depends	on	Start.
If	Letter	appears	only	in	the	first	position	of	the	text,	the	search	will	succeed	if	Start	is
the	beginning	of	the	string	but	fail	if	Start	is	in	the	middle	of	the	string.	Similarly,	Found
clearly	depends	on	the	letter	being	searched	for	and	on	the	text	being	searched.

Notice	 that	we	 can	meaningfully	declare	 the	 flow	dependency	 contract	 for	 procedure
Search	without	 having	 to	 implement	 it	 –	 or	 even	 look	 at	 its	 implementation.	Thus,	 the
flow	dependency	 contracts	 can	be	written	 in	 a	 package	 specification	before	 the	 body	 is
written.	They	represent	a	formal	way	of	expressing	a	certain	aspect	of	each	subprogram’s
semantic	behavior.

As	an	aside,	we	note	 that	Search	 does	not	make	use	of	 any	global	data.	This	 can	be
stated	explicitly	by	adding

to	the	aspect	specification	on	Search.	However,	not	specifying	data	(or	flow)	dependency
contracts	 explicitly	 is	 not	 necessarily	 an	 error.	We	 describe	 in	more	 detail	 the	 effect	 of
leaving	off	the	contracts	in	Section	4.5.

Let	 us	 look	 at	 an	 example	 that	 illustrates	 flow	 analysis	 through	multiple	 procedures.
Consider	 another	 procedure	 that	 is	 intended	 to	 take	 strings	 in	 the	 form
“NAME=NUMBER”	and	return	the	specified	number	if	the	name	matches	a	given	name.
The	declaration	of	this	procedure,	with	its	flow	dependency	contract,	is	as	follows:



Here,	the	intention	is	for	Value	to	be	initialized	to	a	default	before	Get_Value	is	called.
If	 the	 given	 string	 is	 malformed	 or	 if	 it	 does	 not	 include	 Name	 as	 a	 prefix,	 Value	 is
unchanged.

The	body	of	Get_Value	is	as	follows:

The	assignment	to	the	parameter	Value	requires	the	conversion	of	a	string	of	digits,	such
as	”4932”,	to	an	integer.	We	use	the	’Value	attribute	to	accomplish	this	conversion.

Notice	that	Get_Value	makes	use	of	the	procedure	Search	specified	on	page	§.	When
doing	 the	 flow	 analysis	 of	 Get_Value,	 the	 SPARK	 tools	 will	 know,	 from	 the	 flow
dependency	contract	on	 the	declaration	of	Search,	 that	Equals_Found	 depends	on	Text.
Furthermore,	 because	 Equals_Found	 is	 used	 in	 the	 controlling	 expression	 of	 an	 if
statement,	 any	 values	 written	 inside	 that	 statement	 also	 depend,	 indirectly,	 on	 Text.
Finally,	because	Name	 is	used	in	the	controlling	expression	of	 the	if	 statement	enclosing
the	assignment	 to	Value,	 it	 follows	 that	Value	 depends	on	Name.	Notice	also	 that	Value
depends	 on	 its	 own	 input	 because,	 if	Equals_Found	 is	 false,	 the	 procedure	 returns	with
Value	unchanged.



Our	 simple	 “by	 inspection”	 analysis	 has	 shown	 that	 the	 flow	 dependency	 contract	 is
obeyed.	However,	 if	 the	 procedure	was	 incomplete,	 it	 is	 possible	 that	 some	 part	 of	 the
flow	dependency	contract	would	be	violated	and	flow	analysis	would	produce	diagnostics
as	 appropriate.	 Flow	 analysis	 helps	 the	 programmer	 avoid	 shipping	 an	 incomplete
program.

Continuing	 this	example,	 suppose	 that	 later	a	change	 is	made	 to	Search	 that	changes
the	 way	 information	 flows	 through	 that	 procedure.	 The	 flow	 dependency	 contract	 on
Search	would	have	to	be	updated	to	reflect	this	change.	Thus,	Get_Value	would	need	to
be	reanalyzed,	and	it	is	possible	it	might	then	contain	flow	errors	as	a	result	of	the	change
to	Search.	In	this	way,	changing	the	body	of	Search	has	the	potential	of	causing	a	cascade
of	changes	to	the	callers	of	Search,	to	the	callers	of	those	callers,	and	so	forth.

This	cascade	might	sound	unappealing,	but	it	is	no	different	than	what	might	happen	if
a	parameter	was	removed	from	Search’s	parameter	list	or	if	the	type	of	a	parameter	was
changed.	In	 that	case,	 the	callers	of	Search	would	have	to	be	edited	appropriately	along
with,	potentially,	the	callers	of	those	callers,	and	so	forth.	The	flow	dependency	contract	is
part	of	 the	 subprogram’s	 interface	 just	 as	 is	 the	parameter	 list.	 It	 serves	 to	expose	more
information	about	the	subprogram’s	behavior	than	can	be	done	by	the	parameter	list	alone.
The	 flow	 analysis	 done	 by	 the	 SPARK	 tools	 checks	 the	 consistency	 of	 this	 additional
information	 just	 as	 a	 traditional	 Ada	 compiler	 checks	 the	 consistency	 of	 each	 call’s
arguments.

There	 are	many	 implementations	 of	Search	 that	will	 satisfy	 the	 parameter	 types	 and
modes.	 A	 large	 number	 of	 those	 implementations	 have	 nothing	 to	 do	 with	 searching	 a
string	 for	 a	 particular	 character,	 despite	whatever	 suggestive	 names	 are	 used.	 The	 flow
dependency	 contract	 rules	 out	 some	 of	 those	 implementations	 as	 flow	 errors	 leaving
behind	 a	 smaller	 set	 of	 implementations	 that	 conform	 to	 both	 the	 parameter	 types	 and
modes	and	the	flow	dependency	contract.

However,	it	is	still	easy	to	see	that	many	incorrect	implementations	of	Search	exist	that
satisfy	the	flow	dependency	contract.	To	further	tighten	the	possibilities,	the	programmer
can	use	pre-	 and	postconditions	 to	describe	more	precisely	 the	 relationship	between	 the
subprogram’s	 outputs	 and	 its	 inputs.	We	 introduced	 the	 Pre	 and	 Post	 aspects	 with	 the
bounded	 queue	 package	 in	 Section	 3.3.	 We	 cover	 these	 aspects	 in	 more	 detail	 in
Section	6.2.

One	important	point,	however,	is	that	flow	dependency	contracts	must	be	complete.	If
you	use	 the	Depends	 aspect	 at	 all,	 you	must	 fully	describe	all	 flows	 into	 and	out	of	 the
subprogram,	 including	 flows	 involving	 global	 data	 described	 by	 the	 data	 dependency
contract.	In	contrast,	as	you	will	see,	pre-	and	postconditions	are	often	incomplete.	They
may	 not	 describe	 every	 aspect	 of	 the	 relationship	 between	 inputs	 and	 outputs.	 In	 this
respect	 effective	use	of	pre-	and	postconditions	depends	 significantly	on	your	 skill	with
them	and	on	the	proof	technology	being	used.	However,	flow	contracts	are	more	reliable
in	 the	 sense	 that	 your	 program	 will	 simply	 not	 pass	 SPARK	 examination	 until	 it	 is
completely	free	of	flow	errors.

4.2.1	 Flow	Dependency	Contract	Abbreviations



In	general,	a	flow	dependency	contract	consists	of	an	association	between	each	output	of	a
subprogram	 and	 a	 list	 of	 the	 inputs	 on	 which	 that	 output	 depends.	 Writing	 these
associations	can	be	tedious	and	repetitive	so	SPARK	provides	two	important	abbreviations
that	make	writing	flow	dependency	contracts	easier.

First,	 it	 is	 common	 for	multiple	outputs	 to	depend	on	 the	 same	 inputs.	An	especially
common	 case,	 although	 not	 universal,	 is	 when	 each	 output	 depends	 on	 all	 inputs.	 The
procedure	Search	shown	previously	is	like	this.	The	syntax	of	flow	dependency	contracts
allows	the	programmer	to	associate	a	list	of	outputs	with	a	list	of	inputs.	Thus,	a	contract
such	as

can	be	abbreviated	as

The	understanding	 is	 that	 each	output	mentioned	 in	 an	output	 list	depends	on	all	of	 the
inputs	mentioned	in	the	associated	input	list.

For	the	case	of	in	out	parameters	or	global	variables	that	are	In_Out,	it	is	common	for
the	 output	 value	 of	 the	 parameter	 or	 variable	 to	 depend	 on	 its	 own	 input	 value.	 The
parameter	Value	 in	 the	previously	shown	procedure	Get_Value	 is	 like	 this.	 In	 that	case,
the	symbol	=>+	can	be	used	to	indicate	that	each	output	on	the	left	side	depends	on	itself
as	well	as	on	all	inputs	on	the	right	side.	For	example,	the	contract

can	be	abbreviated	as

In	the	important	case	where	an	in	out	parameter	or	In_Out	global	variable	depends	on
only	 itself,	 a	 flow	dependency	 contract	 such	 as	Value	=>	Value	 can	 be	 abbreviated	 to
Value	 =>+	 null.	 The	 abbreviated	 form	 can	 be	 read	 as,	 “	 Value	 depends	 on	 itself	 and
nothing	else.”

Sometimes	an	output	depends	on	no	inputs	whatsoever.	This	occurs	when	a	subprogram
writes	a	value	from	“out	of	the	blue”	to	initialize	an	output.	For	example,

The	 flow	 dependency	 contract	 Value	 =>	 null	 can	 be	 read	 as,	 “	 Value	 depends	 on
nothing.”	It	means	the	subprogram	sets	the	value	without	reference	to	any	input.

Finally,	 it	 is	 also	 possible	 to	 give	 a	 flow	 dependency	 contract	 that	 uses	 null	 on	 the
output	side	of	a	dependency	as	shown	in	the	following	example:



Here,	Value	depends	only	on	itself,	and	nothing	depends	on	Adjust.	Thus,	Adjust	is	not
used	in	the	computation	of	any	results.	Such	a	flow	dependency	contract	is	unusual,	but	it
explicitly	documents	that	a	particular	value	is	not	(yet)	being	used.

4.3	 Managing	State

For	 our	 purposes,	 the	 state	 of	 a	 package	 consists	 of	 the	 values	 of	 all	 global	 variables
defined	 inside	 the	 package	 together	 with	 the	 state	 of	 any	 packages	 nested	 within	 the
package.	By	placing	these	entities	within	the	private	part	of	 the	package	specification	or
the	package	body,	the	state	of	a	package	is	hidden	from	its	clients.	When	a	subprogram	in
a	 package	 is	 called,	 the	 caller	 is	 not	 directly	 aware	 of	 any	 global	 variables	 or	 nested
packages	 the	 subprogram	uses	or	modifies.	Restricting	 the	visibility	of	data	 as	much	as
feasible	 is	 an	 important	 principle	 of	 software	 engineering.	 This	 hiding	 allows	 the
representation	of	that	data	to	be	changed	at	a	later	time	with	minimal	impact	on	the	rest	of
the	program.	If	clients	of	a	package	only	interact	with	the	package’s	internal	state	by	way
of	a	small	set	of	public	subprograms,	the	precise	design	of	that	state	is	not	significant	to
the	clients.

As	 an	 example	 consider	 a	 package	 that	 encapsulates	 a	 datebook.	The	 package	might
provide	 subprograms	 for	 adding	 events	 to	 the	 datebook,	 removing	 events	 from	 the
datebook,	and	enumerating	the	events	currently	stored	in	the	datebook.	The	specification
of	such	a	package	could	be,	in	part	as	follows:

Here	 we	 assume	 the	 package	 Dates	 provides	 a	 type	 Dates.Datetime	 that	 represents	 a
combined	date	and	time.

Each	event	 that	 is	entered	into	 the	datebook	has	a	short	description	and	an	associated
date	 and	 time	when	 the	 event	occurs.	For	purposes	of	 this	 example,	 the	duration	of	 the
event	and	other	information	about	the	event	is	ignored.	The	procedure	Add_Event,	one	of
several	 procedures	 the	 package	 might	 contain,	 adds	 information	 about	 an	 event	 to	 the
datebook	and	returns	a	status	indication,	by	way	of	an	out	parameter,	to	report	the	success
or	failure	of	that	operation.



Everything	 seems	 fine,	but	where,	 exactly,	 is	 the	datebook	 to	which	events	 are	being
added?	 In	 this	 case	 the	datebook	 is	presumably	 implemented	 in	 the	 form	of	global	data
inside	the	body	of	package	Datebook.	It	is	the	package’s	state.	It	might	be	implemented	as
a	simple	array	of	records	where	each	record	stores	information	about	a	single	event,	or	it
might	 be	 implemented	 in	 some	 more	 elaborate	 way.	 Perhaps	 the	 package	 maintains
indexes	to	speed	up	datebook	queries.	Perhaps	the	package	packs	event	descriptions	into
some	 auxiliary	 data	 structure	 to	 save	 space.	 None	 of	 this	 matters	 to	 the	 users	 of	 the
package.

However,	the	fact	that	the	package	contains	internal	state	that	is	accessed	and	modified
by	the	public	subprograms	is	important	to	flow	analysis.	For	example,	Add_Event	updates
the	 internal	 state	 by	 adding	 a	 new	 event	 record	 to	 the	 datebook.	Because	 the	 new	 state
depends	 on	 the	 existing	 state,	 Add_Event	 must	 effectively	 read	 the	 existing	 state.	 This
implies	 that	 the	 internal	 state	 of	 the	 package	 must	 already	 be	 initialized	 in	 some	 way
before	Add_Event	can	be	called.

To	talk	about	the	internal	state	in	SPARK	aspects,	it	is	necessary	to	give	that	internal	state
a	 name.	 It	 is	 not	 necessary	 to	 declare	 the	 internal	 state	 fully.	 In	 fact,	 doing	 so	 would
expose	the	information	hidden	by	the	package.	The	clients	are	not	interested	in	the	details
of	how	the	internal	state	is	organized.	They	are	only	interested	in	the	fact	that	it	exists	and
in	how	it	is	read	and	updated	by	the	public	subprograms.	Thus,	all	that	is	needed	is	for	the
internal	state	to	be	abstracted	into	a	single	name	called	a	state	abstraction.

The	 following	example	 shows	a	SPARK	 version	of	 the	Datebook	 specification.	Here	 a
state	abstraction	named	State	is	introduced	to	represent	the	internal	state	of	the	package:

The	name	State	 in	 this	example	 is	a	name	chosen	by	 the	programmer	 to	 identify	 the
internal	state	of	the	package.	Because	we	wish	to	keep	the	nature	of	this	internal	state	as
hidden	as	possible,	we	cannot	easily	give	it	a	more	descriptive	name.	As	you	will	see	in
Section	 4.3.2,	 it	 is	 sometimes	 desirable	 to	 break	 the	 abstract	 state	 into	 two	 or	 more
components.	 In	 that	 case,	 we	 would	 give	 the	 components	 names	 that	 distinguish	 them
clearly.



We	have	enhanced	the	declaration	of	Add_Event	with	descriptions	of	the	effects	it	has
on	the	package’s	internal	state.	Notice	that	State	is	treated	as	a	kind	of	global	variable.	In
fact,	 that	 is	exactly	what	 it	 is.	The	state	abstraction	 represents	 the	global	data	 inside	 the
package.	The	details	of	this	hidden	data	are	not	needed	by	the	clients	of	the	package.	They
need	only	be	 aware	 that	 the	package	has	 a	 state	 and	 that	 the	 subprograms	 they	call	 use
and/or	change	that	state.

The	data	and	flow	dependency	contracts	on	Add_Event	indicate	that	the	status	depends
on	 the	 state	of	 the	datebook	and	on	 the	 incoming	description.	Add_Event	 can	 fail	 if	 the
datebook	is	already	full	or	if	the	description	is	overly	large.

If	the	only	public	subprogram	in	the	package	is	Add_Event	as	shown	in	the	preceding
example,	the	flow	analysis	done	by	the	SPARK	tools	will	complain	that	the	internal	state	of
the	package	has	no	way	of	being	initialized.	Procedure	Add_Event	requires	that	State	has
a	value	before	it	is	called.	How	does	State	get	its	initial	value?

One	approach	would	be	to	provide	an	initialization	procedure.	It	might	be	declared	as
follows:

This	procedure	 takes	no	parameters	because	 it	 initializes	global	data	 inside	 the	package.
The	data	and	flow	dependency	contracts	say	this	by	declaring	that	the	procedure	gives	the
state	 abstraction	 a	 value	 from	 “nothing.”	With	 this	 procedure	 it	 is	 now	 possible	 to	 call
Add_Event	 correctly	 by	 first	 calling	 Initialize	 .	 Flow	 analysis	 will	 ensure	 that	 this
happens.

In	some	cases	the	global	data	inside	a	package	can	be	initialized	without	the	help	of	an
explicit	procedure	call.	As	we	saw	in	Section	3.4.1,	the	internal	state	of	a	variable	package
can	be	initialized	with	suitable	static	expressions	or	with	initialization	code	executed	when
the	 package	 body	 is	 elaborated.	 In	 such	 cases	 the	 package	 initializes	 itself.	 The	 aspect
declaration	 on	 the	 package	 can	 be	 changed	 to	 reflect	 this	 behavior	 as	 the	 following
example	shows:



If	 during	 program	 development	 the	 internal	 state	 becomes	 complicated	 enough	 to
require	a	special	 initialization	procedure,	one	can	be	added	and	the	Initializes	aspect
removed.	Flow	analysis	will	ensure	that	the	new	procedure	will	get	called	as	needed.

The	package	Datebook	 presented	 so	 far	 is	 a	kind	of	variable	package	as	discussed	 in
Section	3.4.	It	allows	a	single	datebook	variable	to	be	manipulated.	Before	looking	at	the
body	of	package	Datebook,	it	is	useful	to	consider	an	alternative	implementation	as	a	type
package,	as	described	in	Section	3.3.	The	following	version,	named	Datebooks	(note	the
plural),	 provides	 a	 Datebook	 private	 type	 and	 has	 no	 internal	 state.	 Instead,	 the
components	of	the	private	type	hold	the	state	of	each	Datebook	object.



In	 this	 version	 the	 caller	must	 create	 a	 Datebook	 object	 and	 explicitly	 pass	 it	 to	 the
various	subprograms	in	the	package.	Accordingly,	those	subprograms,	such	as	Add_Event,
must	 now	 be	 given	 an	 additional	 parameter.	 The	 subprograms	 no	 longer	 have	 a	 data
dependency	contract,	but	the	flow	dependency	contract	appropriate	for	the	new	parameter



mimics	the	flow	dependency	contract	used	with	the	state	abstraction	in	the	original	version
of	the	package.

This	version	has	some	advantages	over	the	previous	version.	First,	 it	allows	clients	to
create	and	manipulate	many	different	Datebook	objects.	Second,	package	Datebooks	has
no	internal	state,	which	presents	advantages	in	multi-tasking	environments.	However,	the
original	 version	 was	 easier	 to	 use	 because	 clients	 did	 not	 need	 to	 create	 their	 own
datebooks.	The	most	appropriate	approach	depends	on	the	application’s	needs.

The	 private	 section,	 shown	 in	 full	 earlier,	 seems	 complicated.	 However,	 the	 original
Datebook	 package	 needs	 similar	 declarations	 in	 the	 package	 body	 to	 fully	 define	 the
internal	state	of	that	package.	This	is	described	in	more	detail	in	the	next	section.

4.3.1	 Refinement
When	a	state	abstraction	 is	used,	 the	body	of	 the	package	must	explicitly	declare	which
global	variables	and	nested	package	state,	if	any,	compose	the	abstract	state.	Such	entities
are	 called	 the	 constituents	 of	 the	 state	 abstraction,	 and	 the	 process	 of	 breaking	 a	 state
abstraction	 into	 its	 constituents	 is	 called	 refinement.	 In	 simple	 cases,	 a	 state	 abstraction
might	be	refined	to	a	single	package	global	variable,	thus,	having	a	single	constituent.	In
more	 complex	 cases,	 the	 state	 abstraction	 will	 be	 refined	 to	 multiple	 package	 global
variables.

For	 example,	 suppose	 the	 Datebook	 package	 is	 implemented	 by	 way	 of	 an	 array	 of
records	in	which	each	record	contains	information	about	one	event,	similar	to	the	way	the
Datebooks	 package	 works.	 The	 array	 would	 thus	 be	 the	 single	 constituent	 of	 the	 state
abstraction.	The	package	body	might	look,	in	part,	as	follows:



The	Refined_State	aspect	on	the	package	body	specifies	which	global	variables	inside
the	package	form	the	constituents	of	the	abstract	state	previously	declared.	In	our	example,
the	abstract	state	State	is	refined	to	the	single	global	variable	Event_Array.	It	is	an	error
to	have	an	abstract	state	in	a	package	specification	without	also	refining	it	in	the	package
body.

In	addition,	the	data	and	flow	dependency	contracts	in	the	package	specification	must
be	refined	in	the	package	body	to	explicitly	specify	the	effects	those	subprograms	have	on
the	refined	state.	These	refined	contracts	appear	inside	the	package	body	as	they	reference
information	that	is	internal	to	the	package.	The	body	of	procedure	Add_Event	might	be



Notice	that	the	Refined_Global	and	Refined_Depends	aspects	are	expressed	 in	 terms	of
the	actual	package	global	variable	rather	than	in	terms	of	the	state	abstraction	as	was	done
in	the	package	specification.



The	example	so	far	shows	a	one-to-one	correspondence	between	a	state	abstraction	and
a	single	constituent	variable.	A	more	elaborate	 implementation	of	 the	Datebook	package
might	 include	 an	 index	 that	 allows	 events	 to	 be	 looked	 up	 quickly	 on	 the	 basis	 of	 a
commonly	used	 field.	 In	 that	case	 the	state	abstraction	might	be	 refined	 to	 two	package
global	variables	as	follows:

Similarly,	the	refined	data	and	flow	dependency	contracts	on	the	subprograms	must	be
updated	to	describe	the	effects	those	subprograms	have	on	the	individual	constituents.	It	is
likely	that	Add_Event	will	modify	both	the	datebook	itself	and	its	index.	For	example,

Notice	that	 in	this	case	Status	does	not	depend	on	the	Event_Index.	Presumably,	the
success	or	failure	of	Add_Event	is	not	affected	by	the	index.	In	the	package	specification,
Status	 depends	 on	 the	 overall	 state	 abstraction	 State	 as	 it	 depends	 on	 one	 of	 that



abstraction’s	constituents,	namely	the	Event_Array.

The	important	point	is	that	the	new	version	of	the	Datebook	package	has	changed	the
internal	organization	of	 the	datebook	without	changing	 the	 specification	of	 the	package.
Not	only	do	clients	of	this	package	not	need	to	be	recompiled,	but	flow	analysis	of	those
clients	does	not	need	 to	be	 redone.	Of	course,	 the	analysis	of	package	Datebook’s	body
does	need	to	be	redone,	causing	the	SPARK	 tools	to	consider	the	new	refined	contracts	in
light	of	the	changes	in	the	implementation.

4.3.2	 Multiple	State	Abstractions
In	 the	 formulation	 of	 the	Datebook	 package	 so	 far,	 a	 single	 state	 abstraction	 is	 used	 to
abstract	two	constituents:	the	datebook	itself	and	its	index.	This	maximizes	the	amount	of
information	hidden	 from	 the	 package’s	 clients.	 Suppose,	 now,	 that	 one	wanted	 to	 add	 a
public	 subprogram	 to	 compact	 the	 index.	The	 specification	must	 be	 changed	 to	 include
this	subprogram	and	to	declare	how	it	interacts	with	the	state	abstraction	provided	by	the
package.	We	 give	 this	 package	 the	 name	 Indexed_Datebook	 to	 inform	 its	 users	 of	 its
different	nature	as	compared	to	the	previously	described	Datebook	package.	Because	the
index	 is	 now	 public	 information,	 it	 is	 appropriate	 to	 reflect	 that	 information	 in	 the
package’s	name:



Because	 Compact_Index	 only	 updates	 the	 internal	 state,	 it	 need	 not	 take	 parameters.
The	 flow	 dependency	 contract	 shows	 that	 the	 new	 state	 depends	 only	 on	 the	 old	 state.
Because	 the	 data	 dependency	 contract	 declares	 that	 the	 state	 has	 mode	 In_Out,	 flow
analysis	 will	 require	 that	 the	 initialization	 procedure	 for	 the	 package	 be	 called	 before
Compact_Index	can	be	used.

However,	 using	 a	 single	 state	 abstraction	 can	 sometimes	 cause	 unnecessary	 and
undesirable	 coupling	 between	 the	 subprograms	 in	 a	 package.	 For	 example,	 suppose	 the
event	 index	can	be	 initialized	directly	by	 the	package	and	does	not	need	 the	help	of	 an
initialization	procedure.	In	that	case,	it	should	be	possible	to	call	Compact_Index	without
first	calling	Initialize	.	Perhaps	some	programs	may	find	it	convenient	to	do	so.

These	 ideas	 can	 be	 expressed	 by	 using	 multiple	 state	 abstractions.	 The	 following
version	of	the	specification	shows	this.	The	name	State	has	been	dropped	in	favor	of	two
more	descriptive	names.



In	addition	 to	declaring	 two	state	abstractions,	 the	package	declares	 that	one	of	 those
abstractions	 is	 automatically	 initialized.	 The	 data	 and	 flow	 dependency	 contracts	 on
procedure	Compact_Index	indicate	that	it	only	needs	the	Index	abstraction	to	be	initialized
before	 it	 can	be	used.	Flow	analysis	will	now	allow	Compact_Index	 to	 be	 called	before
Initialize	is	called.

The	body	of	package	Indexed_Datebook	needs	to	also	show	how	each	state	abstraction
is	refined.	For	example,



The	refined	aspects	on	the	subprogram	bodies	remain	as	before	because	they	were	written
in	terms	of	the	constituents	anyway.	Flow	analysis	will	verify,	of	course,	that	the	refined
contracts	 on	 the	 bodies	 are	 consistent	 with	 the	 contracts	 in	 the	 declarations	 of	 the
subprograms.

This	approach	reduces	the	false	coupling	between	subprograms	as	a	result	of	an	overly
abstracted	 view	 of	 the	 package’s	 internal	 state.	However,	 the	 price	 that	 is	 paid	 is	more
exposure	of	the	package’s	internal	structure	to	clients.

Suppose	after	making	this	change	it	was	decided	that	the	index	was	unnecessary	and	it
was	removed.	The	data	and	flow	dependency	contracts	in	the	specification	would	need	to
be	 updated	 to	 reflect	 this	 change,	 necessitating	 a	 reanalysis	 of	 all	 clients	 along	 with
possible	modifications	to	the	contracts	of	those	clients.	One	might	be	tempted	to	replace
the	procedure	Compact_Index	with	a	version	that	does	nothing	so	as	to	avoid	removing	the
procedure	outright	(and	breaking	client	code	 that	calls	 it).	However,	 the	SPARK	contracts
for	the	new	procedure	would	indicate	that	it	has	no	effect	and	flow	analysis	would	produce
a	warning	because	of	this.	Thus,	the	introduction	of	multiple	state	abstractions	in	a	single
package	should	be	done	cautiously	as	it	is	a	form	of	information	exposure;	undoing	such	a
change	later	might	be	more	difficult	than	one	desires.

4.3.3	 Hierarchical	State	Abstractions
Complex	state	information	may	be	simplified	by	the	use	of	state	hierarchies	implemented
by	a	hierarchy	of	packages.	A	general	state	at	the	top	level	may	be	refined	into	concrete
state	variables	and	abstract	states	contained	in	lower	level	packages.	This	refinement	into
abstract	states	can	continue	until	all	have	been	refined	into	concrete	state	variables.	Let	us
look	at	an	example:



In	the	body	of	package	Hierarchical_State_Demo,	we	refine	the	state	Top_State	into
the	 concrete	 state	 variable	 Count	 and	 the	 abstract	 state	 State	 (defined	 in	 the	 nested
package	A_Pack):



The	Refined_Globals	and	Refined_Depends	of	procedure	Do_Something	also	refer	to	the
abstract	state	State.	Notice	that	the	Initializes		=>	Top_State	in	the	top	level	package



specification	 is	 fulfilled	 by	 assignment	 of	 an	 initial	 value	 to	 Count	 and	 the
Initializes		=>	State	 aspect	 in	 the	 specification	of	 the	nested	package	A_Pack.	 The
body	of	package	A_Pack	refines	the	abstract	state	State	into	the	concrete	variable	Total,
which	is	used	in	the	Refined_Global	and	Refined_Depends	aspects	of	procedure	A_Proc.

We	 could	 easily	 extend	 the	 logic	 illustrated	 by	 this	 example	with	 additional	 abstract
states	 in	packages	nested	within	 the	body	of	Hierarchical_State_	Demo	 (to	widen	our
hierarchy)	 or	 with	 packages	 nested	within	 the	 body	 of	 package	 A_Pack	 (to	 deepen	 our
hierarchy).	 The	 obvious	 problem	 with	 these	 extensions	 is	 that	 the	 package	 body
Hierarchical_State_Demo	grows	larger	with	each	additional	state	abstraction.

A	 seemingly	 obvious	 answer	 to	 this	 problem	 is	 to	 put	 the	 nested	 package	 into	 an
independent	 library	unit	and	use	a	with	 clause	 to	gain	access	 to	 it.	Here	 is	a	version	of
Hierarchical_State_Demo	that	does	just	that:

Removing	the	nested	package	A_Pack	has	made	this	body	much	shorter.	We	made	A_Pack
a	 child	 of	 Hierarchical_State_Demo	 to	 align	 our	 package	 hierarchy	 with	 our	 abstract
state	hierarchy.

However,	 we	 run	 into	 difficulty	 when	 we	 attempt	 to	 examine	 the	 independent	 child
package	containing	our	new	abstract	state.	SPARK	requires	that	all	refined	states	be	hidden
from	clients	–	 in	our	example,	 the	clients	of	Hierarchical_State_Demo.	This	was	not	a
problem	when	the	package	with	the	abstract	state	used	in	the	refinement	was	nested	in	the
body.	But	as	an	ordinary	child	package,	it	is	accessible	to	all.

The	solution	is	to	make	A_Pack	a	private	child	package.	That	way	its	resources	are	only
accessible	to	its	parent,	Hierarchical_State_Demo,	and	its	parent’s	descendants.	Here	is
the	specification	for	the	private	child	package	A_Pack:



This	private	child	package	specification	contains	the	option	Part_Of.	When	refining	to
an	abstract	state	defined	in	a	private	child	package,	this	option	must	be	included	with	that
abstract	state.	The	Part_Of	option	denotes	the	encapsulating	state	abstraction	of	which	the
declaration	 is	 a	 constituent.	 In	 our	 example,	 State	 is	 a	 constituent	 of	 Top_State.	 The
reasons	for	requiring	the	Part_Of	option	when	the	abstract	state	is	not	“local”	are	given	in
section	7.2.6	of	the	SPARK	2014	Reference	Manual	(SPARK	Team,	2014a).

The	 body	 of	 package	 A_Pack	 requires	 no	 modification	 from	 the	 original	 given	 on
page	 §.	 Complete	 code	 for	 both	 the	 nested	 and	 private	 child	 versions	 of
Hierarchical_State_Demo	 are	 available	 on	 our
http://www.cambridge.org/us/academic/subjects/computer-science/programming-
languages-and-applied-logic/building-high-integrity-applications-spark.

4.4	 Default	Initialization

One	of	 the	 purposes	 of	 flow	 analysis	 is	 to	 ensure	 that	 no	 ineffective	 computations	 take
place.	However,	Ada	 allows	you	 to	define	default	 initializers	 for	 types	 that	 require	 it,	 a
feature	 that	 ensures	 all	 objects	of	 that	 type	are	 initialized.	 If	you	attempt	 to	 re-initialize
such	 an	 object	 to	 a	 nondefault	 value,	 you	 might	 wonder	 if	 that	 causes	 the	 default
initialization	to	be	ineffective.

To	illustrate,	consider	the	following	declarations	that	introduce	a	type	for	arrays	of	ten
integers:

Now	consider	a	simple	function	that	adds	the	elements	of	such	an	array.	In	this	example,
we	only	consider	flow	issues,	so	concerns	about	overflow	during	the	computations	can	be
set	aside	for	now.

http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/building-high-integrity-applications-spark


This	function	contains	a	redundant	initialization	of	Sum,	first	when	the	variable	is	declared
and	then	again	later	at	the	top	of	the	function’s	body.	Flow	analysis	flags	the	initialization
as	a	flow	issue	saying	that	it	has	“no	effect”	as	the	value	initialized	is	overwritten	without
being	used.

This	 is	 fine,	but	now	consider	 the	 case	when	Ada’s	 facilities	 for	 specifying	a	default
initial	value	for	a	 type	are	used.	You	might	 introduce	a	special	kind	of	 integer	 to	use	as
accumulators.

The	use	of	the	Default_Value	aspect	means	that	each	time	an	object	of	type	Accumulator
is	declared,	 it	will	automatically	be	given	 the	value	zero.	This	ensures	accumulators	are
always	 initialized	 to	 a	 reasonable	 value.	 Now	 consider	 a	 second,	 somewhat	 different,
implementation	of	Add_Elements:

In	this	version,	Sum	is	automatically	initialized	to	its	default	value	of	zero.	Ordinarily	this
would	be	a	nice	convenience	for	a	function	like	this.	However,	Add_Elements2	wishes	to
bias	 the	 accumulated	 sum	 by	 one	 and	 thus	 re-initializes	 Sum	 to	 1	 in	 the	 body	 of	 the
function.	Significantly,	this	does	not	cause	flow	analysis	to	flag	the	default	initialization	as
ineffective.	The	tools	understand	that	it	is	reasonable	to	override	the	default	initialization
in	some	circumstances	and,	thus,	does	not	consider	doing	so	a	flow	problem.

Because	Accumulator	 is	a	new	 type	distinct	 from	Integer,	 it	 is	now	necessary	 to	do
some	type	conversions	in	Add_Elements2.	You	might	wonder	why	not	define	Accumulator
as	a	subtype	of	Integer.	Alas,	Ada	does	not	allow	the	Default_Value	aspect	to	be	applied



to	a	subtype.

As	 another	 example,	 consider	 the	 following	 record	 definition	 that	 wraps	 a	 pair	 of
integers.	Here	default	values	are	specified	for	both	components.

Now	consider	a	function	Adjust_Pair	that	takes	a	Pair_With_Default	and	moves	it	on
the	 	plane:

As	 with	 the	 previous	 example,	 Offset	 is	 default	 initialized.	 Yet	 the	 assignment	 to
Offset	.Y	is	not	a	flow	issue	because	the	re-initialization	of	a	default	initialized	value	is
considered	 reasonable	 and	 correct.	 Furthermore,	 the	 use	 of	 Offset	 .X	 in	 the	 return
expression	is	not	a	flow	issue	because,	of	course,	Offset	has	a	default	initializer	for	its	X
component.

You	might	wonder	what	happens	if	the	record	had	default	initializers	for	only	some	of
its	components:

Although	such	a	type	declaration	is	legal	in	full	Ada,	it	is	not	allowed	in	SPARK.	Either	all
components	must	have	default	initializers	or	none	of	them	can.

Variable	packages	 can	 also	be,	 in	 effect,	 default	 initialized	when	 they	 are	 elaborated.
Consider	 again	 the	 Datebook	 example,	 shown	 here	 with	 a	 procedure	 that	 clears	 the
datebook	of	all	events.	For	brevity,	the	other	subprograms	in	the	package	are	not	shown.



The	Datebook	package	models	a	single	object	represented	by	the	state	abstraction	State.
The	Initializes	aspect	asserts	that	the	package	initializes	the	state	when	it	is	elaborated.
However,	 the	 Clear	 procedure	 also	 initializes	 the	 state	 as	 evidenced	 from	 its	 flow
dependency	contract,	State	=>	null.	If	a	nervous	programmer	calls	Clear	before	using
the	package,	the	programmer	would	then	be	re-initializing	a	default	initialized	“variable.”
Following	the	principle	described	earlier,	flow	analysis	will	not	flag	this	as	a	flow	issue.

In	general,	 re-initialization	may	bring	 the	 entity	 being	 re-initialized	 to	 a	 new	 starting
state.	In	the	preceding	example	of	Adjust_Pair	Offset	.Y	is	set	to	a	starting	value	of	1	as
per	 the	 needs	 of	 the	 enclosing	 subprogram.	 Similarly,	 a	 complex	 package	 might	 have
several	“clearing”	procedures	that	clear	the	internal	state	in	different	ways.

Of	 course	 re-initialization	 entails	 some	 overhead.	When	 a	 value	 is	 re-initialized,	 the
time	spent	doing	the	default	initialization	was	wasted.	This	is	an	argument	against	defining
default	 initializations	 for	 all	 entities	 everywhere.	 Instead,	 the	 programmer	may	wish	 to
explicitly	initialize	an	object	when,	if,	and	how	the	programmer	desires.	However,	default
initialization	 is	 useful	 for	 certain	 types	 and	 certain	 packages;	 the	 SPARK	 tools	 allow	 re-
initialization	in	those	cases	when	it	makes	sense.

4.5	 Synthesis	of	Dependency	Contracts

Conceptually,	SPARK	 requires	every	subprogram	 to	have	both	data	and	 flow	dependency
contracts.	However,	it	is	not	necessary	to	explicitly	include	these	contracts	in	all	cases;	the
SPARK	tools	can	synthesize	them	using	rules	discussed	in	this	section.

You	 can	 write	 SPARK	 code	 without	 tediously	 providing	 data	 and	 flow	 dependency
contracts	everywhere	provided	you	are	content	with	the	synthesized	contracts.	This	means
you	can	“convert”	existing	Ada	code	to	SPARK	by	just	adding	an	appropriate	SPARK_Mode
aspect	 to	 an	 existing	 compilation	 unit	 as	 we	 describe	 in	 Section	 7.1.1,	 and,	 of	 course,
removing	any	non-SPARK	constructs	the	unit	might	be	using.	It	is	not	necessary	to	annotate
all	subprograms	with	dependency	contracts	before	starting	to	work	with	the	SPARK	 tools.
Applying	SPARK	to	existing	Ada	in	this	way	is	called	retrospective	analysis.

Earlier	 we	 emphasized	 that	 the	 data	 and	 flow	 dependency	 contracts	 are	 part	 of	 the
specification	of	a	subprogram.	Like	 the	parameter	 list,	 the	dependency	contracts	should,
ideally,	 be	 written	 as	 part	 of	 your	 design	 process	 before	 you	 have	 implemented	 the



subprogram.	Applying	SPARK	 to	 your	 code	 base	 as	 you	 design	 and	 implement	 is	 called
constructive	analysis.

Yet	 even	 in	 the	 constructive	 case,	 relying	 on	 synthesized	 contracts	 is	 sometimes
reasonable.	 This	 is	 particularly	 true	 for	 subprograms	 that	 are	 nested	 inside	 other
subprograms	 or	 that	 are	 used	 only	 in	 the	 context	 of	 a	 particular	 package.	 The	 internal
subprograms	exist	 to	service	the	enclosing	subprogram	or	package	and	are	really	part	of
the	implementation	of	the	enclosing	entity	and	not	design	elements	in	themselves.

The	precise	rules	for	how	contracts	are	synthesized	are	detailed,	but	the	effect	is	largely
intuitive:

1.	 If	a	Global	aspect	exists	but	a	Depends	aspect	does	not	the	flow	dependency	contract
is	synthesized	by	assuming	each	output	depends	on	all	inputs.	For	small	subprograms
such	as	the	Search	procedure	on	page	§,	this	is	often	exactly	correct.	In	any	case	the
resulting	 flow	 dependency	 is	 conservative	 in	 the	 sense	 that	 it	 might	 define	 more
dependencies	 than	 actually	 exist.	 This	 has	 the	 potential	 to	 increase	 the	 number	 of
false	positives	in	the	callers	but	does	not,	 for	example,	allow	any	errors	such	as	 the
accidental	use	of	uninitialized	values2.	If	false	positives	prove	to	be	problematic,	you
can	always	add	more	precise	flow	dependency	contracts	explicitly.

2.	 If	a	Depends	aspect	exists	but	a	Global	aspect	does	not	the	data	dependency	contract
is	synthesized	by	examining	the	flow	dependency	contract	and	constructing	the	data
dependencies	 from	 the	 flows.	 For	 example,	 suppose	 a	 subprogram	 is	 declared	 as
follows:	

This	contract	mentions	A,	B,	and	C,	which	must	be	visible	as	global	variables	at	 this
point	in	the	program.	The	flows	specified	require	that	A	be	an	input,	C	be	an	output,
and	B	be	both	an	 input	and	an	output.	The	synthesized	data	dependency	contract	 is
thus	

3.	 If	neither	a	Global	aspect	nor	a	Depends	 aspect	 exists,	 the	SPARK	 tools	analyze	 the
body	of	the	subprogram	to	synthesize	the	data	dependency	contract	and	then	use	that
to	synthesize	the	flow	dependency	contract	as	described	earlier.

In	some	cases,	however,	the	body	of	the	subprogram	is	not	available,	not	analyzed,	or
imported	 from	another	 language.	One	 important	example	of	 this	 is	when	processing	 the
specification	 of	 a	 library	 package	 with	 no	 source	 code	 for	 the	 body.	 In	 that	 case	 the
SPARK	 tools	assume	the	subprogram	makes	use	of	no	global	data	at	all,	but	a	warning	is
produced	to	alert	the	programmer	of	this	(possibly	incorrect)	assumption.	The	synthesized
flow	dependency	contract	then	only	considers	the	subprogram’s	parameters	and,	as	usual,



assumes	each	output	depends	on	all	inputs.

Functions	 are	 handled	 in	 largely	 the	 same	 way	 as	 procedures.	 The	 synthesized	 data
dependency	 contract	 takes	 the	 function	 result	 as	 the	 only	 output	 of	 the	 function.	 It	 is
possible	to	specify	flows	to	the	output	of	a	function	F	by	using	F’Result	explicitly	in	the
flow	 dependency	 contract.	 However,	 writing	 explicit	 flow	 dependency	 contracts	 for
functions	is	uncommon	as	the	generated	contracts	are	often	exactly	correct.

There	 are	 two	 other	 important	 issues	 to	 keep	 in	 mind	 with	 respect	 to	 dependency
contract	use	and	synthesis.	First,	it	is	permitted	to	declare	more	dependencies	than	actually
exist.	The	SPARK	tools	will	detect	the	inconsistency,	but	it	is	not	considered	an	error.	The
diagonstic	message	is	justifiable	using	pragma	Annotate,3	allowing	you	 to	“pre-declare”
dependencies	that	you	anticipate	future	versions	of	your	code	may	need.	Callers	will	thus
be	 forced	 to	 consider	 such	 dependencies	 even	 if	 they	 are	 not	 currently	 active.	 For
example,	callers	might	be	required	to	initialize	certain	global	variables	before	calling	your
subprogram	if	you	have	declared	those	variables	as	Input	data	dependencies,	even	if	your
subprogram	does	not	currently	use	them.

It	is	also	important	to	understand	that	synthesized	dependency	contracts	are	not	checked
in	 the	 body	 of	 the	 subprogram	 to	 which	 they	 apply.	 The	 synthesized	 contracts	 are	 too
aggressive	in	many	cases,	for	example,	declaring	more	flows	than	actually	exist,	resulting
in	many	 false	positives.	However,	 the	 synthesized	dependency	contracts	 are	used	 in	 the
analysis	 of	 calling	 code.	 The	 aggressive	 contracts	 might	 increase	 the	 number	 of	 false
positives	in	callers	as	well,	yet	practice	shows	the	burden	of	these	false	positives	is	usually
minimal.	 In	 cases	 where	 it	 matters,	 false	 positives	 can	 be	 avoided	 by	 making	 the
dependency	contracts	explicit.

In	 the	 future,	 the	 SPARK	 tools	 will	 also	 be	 able	 to	 synthesize	 Abstract_State,
Refined_State,	Refined_Global,	and	Refined_Depends	aspects.	However,	at	the	time	of
this	writing,	support	for	synthesizing	these	aspects	is	largely	missing.	For	example,	if	you
include	 Abstract_State	 in	 a	 package,	 you	 must	 explicitly	 provide	 the	 corresponding
refined	 dependency	 contracts.	 On	 the	 other	 hand,	 at	 the	 time	 of	 this	 writing,	 the
SPARK	tools	are	able	to	synthesize	dependency	contracts	of	a	subprogram	in	terms	of	the
abstract	state	of	packages	being	referenced	by	that	subprogram.

Summary

The	development	of	SPARK	programs	can	be	split	into	three	stages:	verifying	that	the
program	 is	 in	 the	SPARK	 subset,	verifying	 that	 the	program	has	no	 flow	errors,	 and
verifying	 that	 the	 program	 is	 free	 from	 runtime	 errors	 and	 that	 all	 executable
contracts	are	obeyed.
The	data	dependency	contract	using	the	Global	aspect	specifies	what	global	variables
a	 subprogram	 uses	 and	 the	modes	 on	 those	 variables.	 The	 three	modes	 for	 global
variables	are	equivalent	to	those	for	parameters.
The	data	dependency	contract	treats	global	variables	like	additional	parameters	to	the
subprogram	where	the	argument	used	at	every	call	site	is	the	same.
The	global	variables	used	in	data	dependency	contracts	must	be	entire	variables;	they
cannot	be	components	of	some	larger	variable.



Functions	can	only	input	from	global	variables.
Using	global	variables	should	be	avoided	or	at	least	minimized.	They	are	reasonable,
however,	when	accessing	local	variables	and	parameters	of	an	enclosing	subprogram
or	when	accessing	the	global	state	of	a	package	from	inside	that	package.
Global	constants	initialized	with	a	static	expression	do	not	need	to	be	mentioned	 in
the	data	dependency	contract.
When	 analyzing	 a	 subprogram	 with	 a	 data	 dependency	 contract,	 the	 SPARK	 tools
verify	 that	 the	modes	 declared	 on	 the	 global	 variables	 are	 consistent	with	 the	way
those	variables	are	actually	used.
The	flow	dependency	contract	using	the	Depends	aspect	specifies	for	each	output	of	a
subprogram	which	inputs	the	output	depends	on.
Flow	 dependency	 contracts	 on	 a	 subprogram	 can,	 and	 ideally	 should,	 be	 specified
before	that	subprogram	is	written;	they	form	part	of	the	subprogram’s	interface.
Flow	analysis	verifies	that	no	uninitialized	data	is	used	and	that	all	computations	are
effective.
Flow	 dependency	 contracts	 constrain	 the	 set	 of	 legal	 implementations	 beyond	 that
required	by	the	parameters	alone.
Flow	 dependency	 contracts	 are	 complete	 in	 the	 sense	 that	 flow	 analysis	 will	 fail
unless	all	data	flow	information	is	fully	in	place.	In	contrast,	pre-	and	postconditions
are	only	as	strong	as	the	programmer	makes	them.
It	is	possible	to	declare	that	an	output	of	a	subprogram	depends	on	no	inputs	(and	is
thus	 being	 initialized	 by	 the	 subprogram)	 using	 null	 on	 the	 input	 side	 of	 the
dependency.
SPARK	allows	compilation	units	to	be	separately	analyzed.	Dependency	contracts	on
called	subprograms	participate	in	the	analysis	of	the	calling	subprogram.
A	state	abstraction	is	a	name	representing	global	state	inside	a	package	(either	global
variables	or	the	state	of	internally	nested	packages).
Once	 declared,	 a	 state	 abstraction	 can	 be	 used	 as	 a	 kind	 of	 global	 variable	 for	 the
purposes	 of	 data	 dependency	 and	 flow	 dependency	 contracts	 on	 the	 public
subprograms	of	the	package.
An	Initializes	aspect	can	be	used	to	specify	that	a	package	initializes	its	internal
state	without	the	help	of	a	specific	initialization	procedure.
Each	state	abstraction	must	be	refined	in	the	package	body	into	its	constituent	global
variables	or	nested	package	state.
When	 refining	 state	 abstraction	 in	 a	 package	 body,	 the	 data	 dependency	 and	 flow
dependency	 contracts	 on	 the	public	 subprograms	must	 also	 be	 refined	 in	 the	 body.
They	must	be	refined	in	terms	of	the	state	abstraction’s	constituents.
A	package	can	define	multiple	state	abstractions	 to	 reduce	 false	 couplings	 between
subprograms	at	the	cost	of	exposing	more	details	of	the	package’s	internal	structure.
When	an	entity	 (variable	or	variable	package)	 is	default	 initialized,	 it	 is	not	 a	 flow
error	to	re-initialize	it.	The	default	initialization	is	not	marked	as	ineffective.
The	SPARK	tools	can	synthesize	data	and	flow	dependency	contracts	for	subprograms
that	are	not	explicitly	marked	as	having	them.
If	 a	 subprogram	 has	 a	 Global	 aspect	 but	 no	 Depends	 aspect,	 the	 synthesized	 flow
dependency	contract	takes	each	output	as	depending	on	all	inputs.
If	 a	 subprogram	 has	 a	 Depends	 aspect	 but	 no	 Global	 aspect,	 the	 synthesized	 data



dependency	 contract	 is	 generated	 from	 the	 inputs	 and	 outputs	 listed	 in	 the	 flow
dependency	contract.
If	 a	 subprogram	has	neither	 a	Global	aspect	nor	 a	Depends	aspect,	 the	 synthesized
data	dependency	contract	is	deduced	from	the	body	of	the	subprogram,	if	available,
and	the	synthesized	flow	dependency	contract	is	computed	from	the	data	dependency
contract	as	usual.
The	synthesized	contracts	are	conservative.	They	may	include	flows	that	do	not	exist
causing	false	positives.
Without	access	to	a	subprogram’s	body,	if	no	contracts	exist,	the	SPARK	tools	cannot
synthesize	a	data	dependency	contract	and	 instead	assume	the	subprogram	does	not
use	global	data.	A	warning	is	issued	to	this	effect.
Dependencies	 are	 not	 checked	 in	 the	 body	 of	 subprograms	 that	 have	 synthesized
contracts.	This	is	done	to	avoid	excessive	numbers	of	false	positive	messages.
The	ability	to	synthesize	contracts	allows	retrospective	analysis	where	SPARK	is	used
on	 existing	 code	 written	 without	 SPARK	 in	mind.	 It	 also	 allows	 you	 to	 not	 bother
writing	dependency	contracts	on,	for	example,	internal	subprograms.

Exercises

4.1		 Which	of	the	following	data	dependency	contracts	are	definitely	illegal	and	why?

a.

b.

c.

d.

4.2		 What	is	an	“ineffective”	computation?

4.3		 Which	of	the	following	flow	dependency	contracts	are	definitely	illegal	and	why?

a.



b.

c.

d.

e.

f.

4.4	 	 Modify	 the	 specifications	of	versions	1	and	2	of	 the	bounded	queue	package	 in
Chapter	 3,	 pages	 §	 and	 §,	 to	 include	 appropriate	 data	 dependency	 and	 flow
dependency	contracts.

4.5	 	 Modify	 the	 specification	 and	 body	 of	 the	 Bingo	 basket	 package	 in	 Chapter	 3,
page	§,	 to	 include	appropriate	data	dependency	and	 flow	dependency	contracts.
This	package	encapsulates	the	state	of	a	Bingo	basket.



4.6	 	 Modify	 the	 specification	 and	 body	 of	 the	 serial	 number	 package	 in	 Chapter	 3,
page	§,	to	include	appropriate	data	dependency	and	flow	dependency	contracts.

4.7		 State	abstractions	expose,	to	a	certain	degree,	the	internal	structure	of	a	package
and	thus	seem	to	partially	break	information	hiding.	Is	this	a	problem?	Discuss.

4.8		 What	does	it	mean	to	say	an	object	is	default	initialized?	Default	initialization	is
never	considered	ineffective	even	if	the	object	is	later	re-initialized.	Why	not?

4.9	 	 Consider	 the	 following	 simple	 package	 with	 a	 global	 variable	 and	 a	 swap
procedure	that	exchanges	its	parameter	with	the	global	variable:	

What	flow	dependency	contract	is	synthesized	for	Swap?	Is	it	accurate?

4.10	 When	a	contract	is	synthesized,	it	is	not	checked	in	the	body	of	the	subprogram	to
which	 the	 contract	 applies.	 Consider	 the	 following	 subprogram	 with	 a	 flow
dependency	contract:	

a.	 What	data	dependency	contract	is	synthesized?

b.	 If	 P’s	 body,	 in	 fact,	 makes	 use	 of	 another	 global	 variable	 C,	 will	 the
inconsistency	be	detected?	Be	careful!

4.11	 When	a	contract	is	synthesized,	it	is	not	checked	in	the	body	of	the	subprogram	to
which	 the	 contract	 applies.	 Consider	 the	 following	 subprogram	 with	 a	 data
dependency	contract:	

a.	 What	flow	dependency	contract	is	synthesized?

b.	 If	 P’s	 body	 does	 not	 actually	 have	 one	 of	 the	 flow	 dependencies	 in	 the
synthesized	contract,	will	the	inconsistency	be	detected?

4.12	 We	 recommend	 explicitly	 declaring	 data	 and	 flow	dependency	 contracts	 on	 the
public	subprograms	of	a	package.	Why?

4.13	 When	is	it	reasonable	to	rely	on	synthesized	data	and	flow	dependency	contracts?

4.14	 What	is	the	difference	between	constructive	analysis	and	retrospective	analysis?



5
Mathematical	Background

In	 this	 chapter	 we	 present	 some	 background	 in	 mathematical	 logic	 in	 the	 context	 of
software	analysis.	This	material	may	be	review	for	some	readers,	but	we	encourage	all	to
at	 least	 skim	 this	chapter	 to	gain	understanding	of	our	notation,	 terminology,	and	use	 in
writing	SPARK	programs.	You	may	wish	to	consult	a	discrete	mathematics	textbook	such	as
those	by	Epp	(2010),	Gersting	(2014),	or	Rosen	(2011)	for	a	complete	treatment	of	these
topics.

5.1	 Propositional	Logic

A	proposition	is	a	meaningful	declarative	sentence	that	is	either	true	or	false.	Propositions
are	 also	 called	 logical	statements	 or	 just	 statements.	 A	 statement	 cannot	 be	 true	 at	 one
point	 in	 time	and	 false	at	 another	 time.	Here,	 for	example,	are	 two	simple	propositions,
one	true	and	one	false:

Sodium	Azide	is	a	poison.

New	York	City	is	the	capital	of	New	York	state.

Not	all	statements	that	can	be	uttered	in	a	natural	language	are	unambiguously	true	or
false.	When	a	person	makes	a	 statement	 such	as,	 “I	 like	 Italian	 food,”	 there	 are	usually
many	 subtle	 qualifications	 to	 the	 meaning	 at	 play.	 The	 speaker	 might	 really	 mean,	 “I
usually	 like	 Italian	 food,”	 or,	 “I’ve	 had	 Italian	 food	 that	 I	 liked.”	 The	 true	meaning	 is
either	evident	from	the	context	of	the	conversation	or	can	be	explored	in	greater	depth	by
asking	clarifying	questions.	In	any	case,	the	speaker	almost	certainly	does	not	mean	he	or
she	 definitely	 likes	 all	 Italian	 food	 in	 the	 world.	 The	 original	 statement	 is	 neither
completely	true	nor	completely	false.

Even	 mathematical	 expressions	 may	 be	 ambiguous.	 We	 cannot	 tell	 whether	 the
expression	 	 is	 true	or	 false	as	we	do	not	know	the	value	of	 .	We	can	 turn	 this
expression	into	a	proposition	by	giving	 	a	value.	In	Section	5.4,	we	will	show	how	to	use
quantifiers	to	give	values	to	such	variables.

Whereas	 literature,	poetry,	 and	humor	depend	on	 the	 emotional	 impact	of	 ambiguous
statements	rife	with	subtle	meanings,	high-integrity	systems	must	be	constructed	in	more
absolute	terms.	The	pilot	of	an	aircraft	wants	to	know	that	if	a	certain	control	is	activated,
the	landing	gear	will	definitely	respond.	Thus,	we	are	interested	in	statements	with	clear
truth	values.

We	use	symbols	such	as	 	to	represent	statements.	For	example,	 	might
represent	 “The	Chicago	Cubs	won	 the	world	 series	 this	year,”	 	might	 represent	 “The
winner	of	the	world	series	is	the	best	baseball	team,”	and	 	might	represent	“The	players
of	 the	 best	 baseball	 team	 have	 the	 highest	 average	 salary.”	 We	 can	 combine	 these
statements	using	operators	called	propositional	connectives.	The	names	and	symbols	used



for	 these	 operators	 are	 given	 in	 Table	 5.1	 in	 decreasing	 order	 of	 precedence.	As	 usual,
parentheses	can	be	used	to	clarify	or	override	the	normal	precedence.

Table	5.1.	 Connectives	of	propositional	logic

Symbol Formal	name Informal	name

¬ Negation not
∧ Conjunction and
∨ Disjunction or
→ Implication conditional
↔ Equivalence biconditional

All	of	the	connectives	listed	in	Table	5.1	are	infix	binary	operators	except	for	 ,	which
is	 a	 prefix	 unary	 operator.	 The	 truth	 values	 for	 these	 connectives	 are	 given	 in	 the
Table	5.2.

Table	5.2.	 Truth	tables	for	propositional	connectives

x y ¬x x	∧	y x	∨	y x	→	y x	↔	y

F F					 T F F T T
F T					 T F T T F
T F					 F F T F F
T T					 F T T T T

The	 first	 two	 propositional	 logic	 connectives	 in	 Table	 5.2	 behave	 according	 to	 their
informal	descriptions:	 	means	“not	 ”	and	returns	true	whenever	 	is	false	and	vice
versa,	and	 	means	“ 	and	 .”	It	returns	true	only	when	both	 	and	 	are	both
true.	 You	 are	 certainly	 familiar	 with	 operators	 in	 various	 programming	 languages	 that
carry	 out	 negation	 and	 conjunction.	 Here	 are	 two	 assignment	 statements	 that	 illustrate
their	use	in	SPARK	with	Boolean	variables	A,	B,	and	C:

The	 other	 connectives	 require	 some	 additional	 explanation:	 ,	 the	 or	 connective,	 is
inclusive	in	the	sense	that	it	returns	true	when	either	one	or	both	of	its	operands	are	true.	In
common	speaking,	 the	word	or	 is	sometimes	used	 in	an	exclusive	 sense	(“You	can	have
cookies	or	candy	[but	not	both]”).	In	propositional	logic	this	exclusive	or	function	can	be
simulated	with	a	more	complex	formula:

Informally,	 this	 reads,	 “You	can	have	 (cookies	or	 candy)	 and	not	 (cookies	 and	candy).”
Notice	 that	 even	 though	 people	 do	 not	 normally	 speak	 with	 parentheses,	 it	 is	 often
necessary	to	add	some	clarification	to	the	informal	expression	to	avoid	ambiguity.	Without



the	parentheses	the	listener	might	wonder	if	the	speaker	meant,	“You	can	have	(cookies	or
(candy	 and	 not	 cookies))	 and	 candy.”	 In	 real	 life,	 ambiguities	 of	 this	 nature	 are	 often
resolved	 using	 contextual	 information,	 which	 humans	 are	 exceptionally	 good	 at
processing,	 but	 misunderstandings	 do	 sometimes	 occur	 regardless.	 SPARK	 provides
operators	for	inclusive	and	exclusive	or:

The	implication	connective,	 ,	captures	the	meaning	of	conditional	expressions.	Let	
	 be	 the	 statement,	 “You	work	 hard	 in	 this	 course,”	 and	 	 be	 “You	will	 get	 a	 good

grade.”	For	now	we	will	suppose	these	statements	have	well-defined	truth	values.	In	that
case,	the	formula	 	informally	translates	to	“If	you	work	hard	in	this	course,	then
you	will	get	a	good	grade.”	This	formula	is	often	read	“ 	implies	 .”

Table	5.2	shows	that	the	only	time	the	conditional	expression	is	false	is	when	the	first
statement,	called	the	antecedent,	is	true	and	the	second	statement,	called	the	consequent,	is
false.	 In	 that	 world,	 you	 did	 work	 hard	 and	 yet	 you	 got	 a	 poor	 grade	 anyway	 –	 the
conditional	expression	was	not	true.	In	all	other	cases,	however,	the	conditional	expression
is	 considered	 true.	 Sometimes	 this	 can	 lead	 to	 surprising	 results.	 For	 example,	 the
following	statement	is	true:	“If	the	moon	is	made	of	green	cheese,	then	you	will	win	the
lottery	this	year.”	Because	the	antecedent	is	false,	it	does	not	matter	what	the	truth	value	of
the	consequent	might	be.	In	effect,	the	conditional	expression	does	not	apply	in	that	case.
Conditional	expressions	with	false	antecedents	are	said	to	be	vacuously	true.

In	SPARK,	 conditional	 expressions	may	be	written	as	 if	 expressions.	For	 example,	 the
value	of	 	determined	by	the	logical	statement	 	may	be	written	in	SPARK	as

Recall	 from	Section	 2.1.3	 that	 an	 if	 expression	without	 an	 else	 clause	 evaluates	 to	 true
when	 the	 condition	 is	 false,	 just	 as	 in	 the	definition	of	 implication.	This	vacuously	 true
behavior	is	essential	when	we	prove	SPARK	verification	conditions.

The	biconditional	connective	expresses	the	idea	that	the	truth	value	of	its	operands	are
always	 the	 same.	 If	 	 is	 true,	 then	 	 and	 	 have	 identical	 truth	 values	 in	 all
cases.	The	phrase	“if	and	only	if,”	as	often	used	in	mathematical	texts,	is	translated	to	the
biconditional	connective.	“P	 if	and	only	 if	Q”	means	 .	This	property	 is	used	 to
express	the	concept	of	logical	equivalence	that	we	discuss	in	Section	5.2.	SPARK	does	not
have	a	construct	to	directly	implement	the	biconditional.	Instead,	we	must	make	use	of	a
logically	equivalent	expression	described	in	Section	5.2.

One	 of	 the	 tasks	 of	 developing	 software	 is	 the	 translation	 of	 English	 language
expressions	 into	 formal	 expressions.	 This	 translation	 is	 particularly	 important	 when
working	with	logical	connectives.	Table	5.3	gives	a	number	of	common	English	phrases
and	their	equivalent	logical	expressions.

Table	5.3.	 Logical	connectives	associated	with	common	English	phrases

English	phrase Proposition



A	and	B,	 A	but	B,	 A	also	B, A	∧	B
A	in	addition	B,	 A	moreover	B
	 	

A	or	B A	∨	B
	 	

if	A,	then	B,	 A	only	if	B,	 A	implies	B,
A,	therefore	B,	 B	follows	from	A, A	→	B
A	is	a	sufficient	condition	for	B,
B	is	a	necessary	condition	for	A
	 	

A	if	and	only	if	B, A	↔	B
A	is	a	necessary	and	sufficient	condition	for	B

It	is	important	to	remember	that	English,	like	any	natural	language,	is	often	ambiguous
and	nuanced.	Furthermore,	people	often	speak	inaccurately.	Use	Table	5.3	only	as	a	guide.

We	used	Table	 5.2	 to	 define	 the	 five	 propositional	 connectives.	 Truth	 tables	 are	 also
used	 to	 show	all	 the	possible	 values	 of	 a	 complex	 statement.	For	 example,	 the	possible
values	of	the	complex	statement	 	defined	as

are	 given	 in	 Table	 5.4.	 This	 table	 contains	 a	 row	 for	 each	 combination	 of	 the	 three
primitive	statements	( ,	 ,	 )	that	define	 .	The	number	of	rows	in	a	truth	table	for	a
complex	statement	is	 	when	 	 is	 the	number	of	different	primitive	statements	 in	 the
definition	of	the	complex	statement.	The	three	primitive	statements	defining	 	are	written
as	 the	 first	 three	 columns	 of	 Table	 5.4.	 The	 eight	 rows	 contain	 all	 the	 possible
combinations	 of	 values	 of	 these	 three	 inputs.	 The	 remaining	 five	 columns	 in	 the	 table
correspond	to	the	five	logical	connectives	used	in	the	definition	of	 	and	are	in	the	order
that	the	connectives	would	be	evaluated	from	the	three	inputs.

Table	5.4.	 Truth	table	for	¬s1	∧	(s2	→	(s3	∨	(s1	↔	s3)))

Three	inputs

s3	∨ s2	→ ¬s1	∧	(s2	→
s1 s2 s3 ¬s1 s1	↔	s3 (s1	↔	s3) (s3	∨	(s1	↔	s3)) (s3	∨	(s1	↔	s3)))

F F F T T T T T
F F T T F T T T
F T F T T T T T
F T T T F T T T
T F F F F F T F
T F T F T T T F
T T F F F F F F



T T T F T T T F

Certain	formulae	have	the	property	of	being	true	regardless	of	the	truth	values	of	their
constituent	statements.	These	expressions	are	said	to	be	tautologies.	A	simple	example	of
a	tautology	is	 .	If	 	is	true,	then	 	is	true.	And	if	 	is	false,	
is	still	true.	Although	tautologies	might	at	first	glance	appear	to	be	uninteresting,	they	play
a	very	important	role	in	validating	arguments,	as	we	will	see	in	Section	5.3.

5.2	 Logical	Equivalence

Look	at	the	fourth	column	(labeled	 )	and	the	last	column	of	Table	5.4.	The	values	in
these	 two	columns	are	 identical.	We	say	that	 	and	
are	logical	equivalents.	The	symbol	 	is	used	to	indicate	the	logical	equivalence	of	two
statements	as	shown	here:

We	can	substitute	the	value	of	one	statement	for	the	value	of	the	other	statement.	Another
way	 to	 look	 at	 this	 particular	 equivalence	 is	 that	 the	 statement	

	can	be	simplified	to	 .

Simplification	 of	 statements,	 like	 the	 simplification	 of	 algebraic	 expressions,	 can	 be
accomplished	by	applying	certain	 rules.	The	rules	we	use	for	simplifying	statements	are
called	 logical	 equivalences.	 Table	 5.5	 summarizes	 the	 most	 commonly	 used	 logical
equivalences.	 Each	 of	 the	 logical	 equivalences	 in	 Table	 5.5	 could	 be	 proven	 by
constructing	a	truth	table.

Table	5.5.	 Logical	equivalences

Name or	form and	form

Commutative
Associative
Distributive
De	Morgan
Absorption
Idempotent
Identity
Universal	bound
Complement

Double	negation

Conditional	as	disjunction



Biconditional	as	conjunction

Let	us	 look	at	some	examples	 to	show	how	these	 logical	equivalences	can	be	used	to
simplify	statements.	The	name	after	each	line	is	that	of	the	logical	equivalence	we	used	to
obtain	the	line	from	the	previous	line.	In	the	first	example,	we	use	logical	equivalences	to
reduce	 the	 number	 of	 logical	 connectives	 from	 four	 to	 two.	 In	 the	 second	 example,	we
simplify	a	complex	statement	to	a	single	primitive	statement	with	no	connectives.

5.3	 Arguments	and	Inference

An	 argument	 is	 an	 attempt	 to	 convince	 someone	 of	 something.	 In	 formal	 logic,	 an
argument	is	expressed	by	a	set	of	statements	called	premises	that	together	support	the	truth
of	 another	 statement	 called	 a	 conclusion.	Here	 is	 an	 example	 of	 an	 argument	with	 two
premises	followed	by	a	conclusion:

If	Horace	swallowed	Sodium	Azide,	then	Horace	was	poisoned.

Horace	swallowed	Sodium	Azide.

Therefore,	Horace	was	poisoned.

All	arguments	can	be	expressed	in	the	following	form:



where	the	 ’s	are	 the	premises	and	 	 is	 the	conclusion.	 Informally,	 this	statement	says
that	 if	 all	 of	 the	premises	 are	 true,	 then	 the	 conclusion	 is	 true.	As	premises	 in	 a	 poorly
constructed	argument	can	have	no	relationship	to	the	conclusion,	having	true	premises	is
not	sufficient	to	show	that	the	conclusion	is	true.	We	need	to	be	concerned	with	the	form
of	 the	argument.	An	argument	 is	said	 to	be	valid	 if	 this	 implication	 is	a	 tautology.	Only
when	an	argument	is	valid	is	the	conclusion	a	logical	consequence	of	its	premises.

Consider	the	poisoning	argument	given	at	the	beginning	of	this	section.	If	we	use	 	to
represent	“Horace	swallowed	Sodium	Azide”	and	 	to	represent	“Horace	was	poisoned,”
we	can	write	the	argument	formally	as

One	 way	 to	 demonstrate	 that	 this	 statement	 is	 a	 tautology,	 and	 therefore	 a	 valid
argument,	is	to	construct	a	truth	table	as	we	have	done	in	Table	5.6.	There	you	can	see	that
no	 matter	 what	 the	 values	 of	 the	 inputs	 	 and	 ,	 the	 value	 of	 the	 argument,	

,	is	true.	Note	that	there	is	only	one	row	in	this	truth	table	where
both	of	the	two	premises,	 	and	 ,	are	true.	Because	of	the	nature	of	implication,
when	a	premise	is	false,	the	argument	is	vacuously	true.	Thus,	to	show	that	an	argument	is
valid,	we	need	only	fill	in	the	rows	of	the	truth	table	in	which	the	premises	are	all	true.

Table	5.6.	 Truth	table	for	((s1	↔	s2)	∧	s1)	↔	s1

s1 s2 s1	↔	s2 (s1	↔	s2)	∧	s1 ((s1	↔	s2)	∧	s1)	↔	s1

F F T F T
F T T F T
T F F F T
T T T T T

Whereas	truth	tables	provide	one	method	of	validating	arguments,	they	are	cumbersome
when	there	are	large	numbers	of	inputs	and	premises.	Another	approach	is	to	construct	a
formal	proof	of	the	validity	of	an	argument.	We	do	this	by	applying	derivation	rules	called
rules	of	inference	or	inference	rules.	We	use	these	rules	to	derive	new	valid	statements	that
follow	from	previous	statements.	Inference	rules	are	like	“mini-arguments”	that	are	known
to	 be	 valid.	Our	 poison	 argument	 is	 an	 example	 of	 one	 of	 the	most	 common	 inference
rules	called	modus	ponens.	It	may	expressed	as	follows:

Informally	 this	 notation	 means	 that	 the	 conclusion	 below	 the	 line	 follows	 from	 the
hypotheses	 spaced	 out	 above	 the	 line.	 More	 precisely,	 this	 notation	 means	 that	 if	 one
forms	a	conditional	expression	with	 the	conjunction	of	 the	hypotheses	as	 the	antecedent
and	the	conclusion	as	the	consequent,	that	conditional	expression	is	a	tautology.

Many	useful	rules	of	inference	exist.	Here	are	the	most	commonly	used	ones:



The	 simplification	 rule	 contains	 two	 conclusions.	 This	 is	 a	 shorthand	 for	 two	 different
rules	with	the	same	premises	and	two	different	conclusions.

Here	 are	 two	 example	 proofs	 using	 rules	 of	 inference	 to	 demonstrate	 an	 argument	 is
valid	 (the	 statement	defining	 the	argument	 is	 a	 tautology).	To	accomplish	 the	proof,	we
start	 with	 the	 premises	 and	 use	 various	 inference	 rules	 and	 logical	 equivalences	 to
transform	 them	 to	 the	 conclusion.	 The	 right	 column	 of	 each	 proof	 describes	 how	 the
particular	statement	on	the	line	was	derived	from	prior	lines.

	 –	The	argument	to	validate

	 –	The	argument	to	validate



This	 approach	 to	 proving	 argument	 validity	 has	 a	 direct	 counterpart	 in	 SPARK.
GNATprove	 can	 generate	 arguments1	 called	 verification	 conditions	 (VCs)	 for	 each
subprogram.	It	uses	our	preconditions	as	premises	and	our	postconditions	as	conclusions.
If	we	can	prove	these	VCs,	we	have	shown	that	our	postconditions	always	follow	from	our
preconditions.	Fortunately,	we	do	not	have	to	manually	perform	the	proofs	like	we	did	in
the	 preceding	 examples.	 GNATprove	 makes	 use	 of	 automated	 theorem	 provers	 to
accomplish	the	task.	However,	we	sometimes	need	to	help	out	the	prover	with	additional
assertions.	We	will	look	at	the	details	of	program	proof	in	Chapter	6.

What	do	you	think	of	the	following	argument?

If	the	moon	is	made	of	green	cheese,	then	NASA	can	feed	the	world.

The	moon	is	made	of	green	cheese.

Therefore,	NASA	can	feed	the	world.

This	 argument	 is	 valid	by	modus	ponens.	As	we	know,	however,	 the	 second	premise	 is
false.	 That	 makes	 the	 argument	 statement	 	 vacuously	 true.	 Argument
validity	is	just	about	argument	form	or	syntax.	Most	useful	arguments	have	premises	that
are	true.	An	argument	that	is	valid	and	has	true	premises	is	said	to	be	a	sound	argument.
This	principle	applies	to	program	proof.	GNATprove	will	check	that	the	preconditions	we
write	for	our	subprograms	are	always	true.

5.4	 Predicate	Logic

The	 statements	 studied	 so	 far	 are	 fixed	 statements.	 However,	 the	 interesting	 logical
structure	 of	 many	 useful	 statements	 is	 lost	 when	 expressed	 in	 such	 simple	 terms.	 For
example,	a	statement	such	as	“all	students	work	hard”	might	be	a	legitimate	statement	but
expressing	 it	 as	 such	does	not	convey	 the	 significant	 fact	 that	 it	 is	a	 statement	about	an
entire	set	of	entities.

To	express	such	statements	more	directly,	we	need	to	first	parameterize	them.	Instead	of
treating	 a	 statement	 as	 a	 bare	 fact	 ,	 we	 can	 give	 it	 multiple	 parameters	

.	We	call	such	parameterized	statements	predicates.	The	values	of	
are	 taken	 from	 a	 set	 	 called	 the	 universe	 of	 discourse	 and	 can	 be	 any	 set	 that	 is
convenient.



For	example,	 let	 	be	 the	 set	of	 all	humans	alive	on	Earth	 today.	Let	 the	predicate	
	be	true	if	 	is	a	student.2	Let	the	predicate	 	be	true	if	 	works	hard.

Once	appropriate	arguments	are	given	to	a	predicate,	we	will	take	the	resulting	statement
to	be	either	true	or	false.	For	now,	we	require	that	all	arguments	come	from	the	same	set	

	and	thus	are,	in	effect,	the	same	type.

If	Alice	 ,	then	a	statement	such	as	 	is	true	if	Alice	is	a	student	and	false
otherwise.	The	statement	 	means	 informally	“if	Alice	 is	a	student
then	Alice	works	hard.”	This	statement	is	a	statement	about	Alice	specifically.	It	might	be
true	or	 it	might	be	 false.	 In	 any	case,	 the	 truth	of	 a	 similar	 statement	 about	Bob	 ,	

,	might	be	entirely	different.

What	can	we	say	about	an	expression	 ?	A	variable	 	stands	for	an
as	 yet	 unspecified	 element	 of	 .	 Without	 a	 particular	 value	 for	 ,	 	 is	 not	 a
statement	–	it	has	no	truth	value.	We	say	that	the	variable	 	is	unbound	in	 .

To	make	 	 into	a	proper	statement,	we	need	 to	bind	 the	variable	 .	There	are	 two
binders	 that	 interest	 us	 the	universal	quantifier,	 symbolized	with	 ,	 and	 the	 existential
quantifier,	symbolized	with	 .

The	 statement	 	 reads	 informally	 as,	 “for	 all	 ,	 if	 	 is	 a	 student,
then	 	works	hard.”	More	precisely,	we	mean	 ,	but	the	universe
of	discourse	is	usually	evident	from	context	and	not	normally	mentioned	explicitly	in	the
formulae.	It	is	important	to	note	that	 	ranges	over	the	whole	set	 .	Recall	that	when	the
antecedent	of	an	implication	is	false,	the	implication	is	vacuously	true.	So	
is	automatically	true	for	any	 	that	is	not	a	student.

SPARK	 uses	 the	 syntax	 for	 	 all	 and	 the	 arrow	 delimiter,	 =>,	 to	 implement	 the
universal	quantifier.	The	expression	on	the	right	side	of	the	assignment	statement

implements	 the	 quantified	 predicate	 ,	where	 	 (our	 universe	 of
discourse)	is	the	set	of	all	 integers,	 	 is	 the	predicate	“ 	is	evenly	divisible	by	10,”
and	 	 is	 the	 predicate	 “ 	 is	 even.”	 This	 expression	 states	 that	 any	 integer	 that	 is
evenly	divided	by	10	is	even.	As	you	might	imagine,	true	is	assigned	to	variable	A.

At	the	beginning	of	this	section	we	talked	about	the	statement,	“all	students	work	hard,”
and	we	now	have	a	formal	encoding	of	that	statement	using	the	universal	quantifier	 that
exposes	 the	 fact	 that	 it	 is	 a	 statement	 about	 an	 entire	 set	 of	 entities.	We	could	bury	 the
quantification	inside	a	simple	statement	by	just	setting	 	and	then
talk	 about	 .	 There	 is	 nothing	wrong	with	 this,	 and	 at	 times	 it	 is	 entirely	appropriate.
However,	many	 interesting	proofs	will	 require	 the	more	detailed	view	of	 the	predicate’s
internal,	universally	quantified	structure.

Now	 let	 us	 look	 at	 the	 use	 of	 the	 existential	 quantifier	 to	 bind	 statement	 variables.
Consider	the	informal	statement,	“some	students	work	hard.”	This	means	that	 there	is	at
least	one	student	who	works	hard	or,	equivalently,	there	exists	a	student	who	works	hard.
This	statement	can	be	encoded	using	the	existential	quantifier	as	 .



The	truth	of	 	implies	that	there	is	at	least	one	entity	in	 	that	is	both	a	student	and	who
works	hard.	The	precise	number	of	such	entities	that	satisfy	the	predicate	is	not	specified;
it	 could	 even	 be	 all	 of	 them.	 Notice	 that	 	 is	 something	 entirely
different.	To	understand	 it	we	 can	 use	 the	 conditional	 as	 a	 disjunction	 equivalent	 (from
Table	5.5)	on	 the	 expression	 covered	by	 the	quantifier	 to	obtain	 .	 If
there	is	even	one	entity	in	 	that	is	not	a	student,	this	statement	is	true.	It	is	clear	this	has
nothing	to	do	with	saying	that	some	students	work	hard.

SPARK	 uses	 the	 syntax	 for	 some	 and	 the	 arrow	 delimiter,	 =>,	 to	 implement	 the
existential	quantifier.	The	expression	on	 the	 right	 side	of	 the	assignment	 statement	 (that
calls	the	Boolean	function	Is_Prime)

implements	 the	 quantified	 predicate	 ,	 where	 	 (our	 universe	 of
discourse)	is	the	set	of	all	natural	numbers,	 	is	the	predicate	“ 	is	even,”	and	 	is
the	predicate	“ 	is	a	prime	number.”	This	expression	states	that	some	natural	number	is
both	even	and	prime.	As	2	is	a	prime	number,	true	is	assigned	to	variable	A.

Our	 examples	 illustrate	 a	 common	 association	 between	 quantifiers	 and	 logical
connectives.	 The	 universal	 quantifier,	 ,	 is	 most	 commonly	 associated	 with	 the
implication	operator,	 .	The	existential	quantifier,	 ,	is	most	commonly	associated	with
the	conjunction	operator,	 .

We	can	simplify	quantified	expressions	by	narrowing	the	domain	of	the	bound	variable.
For	example,	our	statement,	“all	students	work	hard,”	may	be	written	as	either

where	 	is	the	set	of	all	humans	alive	on	earth	today	and	 	is	the	set	of	all	students	(a
subset	 of	 ).	 Similarly	 our	 statement,	 “some	 students	 work	 hard,”	 may	 be	 written	 as
either

We	 frequently	 use	 types	 or	 subtypes	 to	 narrow	 domains	 when	writing	 quantifiers	 in
SPARK.	For	example,	the	subtype	declaration

limits	the	value	of	the	bound	variable	X	in	the	following	quantified	expression:

How	can	we	determine	whether	a	quantified	predicate	is	true	or	false?	To	show	that	a
universally	quantified	predicate	 is	 false,	we	simply	need	 to	 find	one	value	of	 the	bound
variable	that	results	in	the	predicate	being	false.	For	example,	to	show	that	the	statement	

	is	false,	we	need	to	find	one	student	who	does	not	work	hard.	It	takes
more	effort	to	show	that	a	universally	quantified	predicate	is	true.	We	need	to	go	through
the	 entire	 universe	 of	 discourse	 to	 see	 that	 there	 are	 no	 values	 that	make	 our	 predicate
false.	In	your	discrete	math	class,	you	probably	studied	how	direct	proofs	can	be	used	in
place	of	this	brute	force	approach.



With	 the	 existential	 quantifier,	we	need	 find	only	one	value	 that	makes	 the	predicate
true	to	say	the	entire	statement	is	true.	To	show	that	it	is	false,	we	must	go	through	all	of
the	values	in	the	domain	to	make	sure	that	none	of	them	satisfy	the	predicate.

As	with	logical	connectives	we	need	to	be	able	to	translate	English	phrases	into	logical
quantifiers.	 Our	 examples	 should	 give	 you	 some	 insight	 into	 the	 correspondences.
Table	5.7	shows	the	most	common	English	phrases	for	our	 two	quantifiers.	However,	as
with	Table	5.3,	care	still	needs	to	be	used	when	translating	English	statements	into	formal
logical	statements.

Table	5.7.	 Quantifiers	associated	with	common	English	phrases

English	phrase						 Quantifier

for	all,	 all,	 every,	 each,	 any						 use	∀
there	exists,	 some,	 one,	 at	least	one					 use	∃
					

All	of	our	predicates	to	this	point	have	had	a	single	parameter.	We	may	have	multiple
parameter	 predicates.	 For	 example,	 let	 the	 predicate	 	 stand	 for	 “person	 	 likes
cuisine	 ,”	where	“likes”	means	that	they	would	be	willing	to	go	with	a	group	of	friends
to	a	restaurant	that	specializes	in	that	cuisine.	This	predicate	involves	two	universal	sets	of
discourse:	 ,	 the	 set	 of	 all	 humans	 alive	 today,	 and	 ,	 the	 set	 of	 all	 possible	 food
cuisines.	Table	5.8	gives	examples	of	the	use	of	this	two-parameter	predicate.

Table	5.8.	 Examples	using	the	predicate	c(x,	y),	“person	x	likes	cuisine	y”

Predicate English	translations

c(Bob,	Thai) Bob	likes	Thai	food.
∀p	∈	U(c	(p,	Chinese)) Everybody	likes	Chinese	food.
∀f	∈	F(c	(Mildred,	f	)) Mildred	likes	all	cuisines.
∃f	∈	F(¬c	(Horace,	f)) Horace	does	not	like	some	cuisine.
∃p	∈	U(c	(p,	Mexican)) Somebody	likes	Mexican	food.

Predicates	 with	 multiple	 parameters	 are	 usually	 used	 in	 statements	 with	 multiple
quantifiers.	Table	5.9	provides	some	examples.	Here	we	use	the	predicate	 	defined
for	 the	previous	 table	and	 the	predicate	 	defined	as	“person	 	 loves	person	 .”
For	the	second	half	of	the	table,	the	universe	of	discourse	is	implied	to	be	 ,	the	set	of	all
people	alive	today.

Table	5.9.	 Examples	using	multiple	quantifiers	with	 the	predicates	c(x,	y),	“person	x
likes	cuisine	y,”	and	l(x,	y),	“person	x	loves	person	y”

Predicate English	translations



∀p	∈	U(∀f	∈	F(c	(p,	f))) Everybody	likes	all	cuisines.
∀p	∈	U(∃f	∈	F(c	(p,	f))) Everybody	likes	some	cuisine.
∃p	∈	U(∀f	∈	F(c	(p,	f))) Somebody	likes	all	cuisines.
∃p	∈	U(∃f	∈	F(c	(p,	f))) Somebody	likes	some	cuisine.
	 	

∀p	(l	(p,	Raymond)) Everybody	loves	Raymond.
∃p	(∀q	(¬l	(p,	q))) Somebody	loves	no	one.
∃p	(∀q	(¬l	(q,	p))) There	is	somebody	that	no	one	loves.
∀p	(∃q	(l	(p,	q))) Everybody	loves	somebody.
∃p	(∀q	(l	(p,	q))) Somebody	loves	everybody.
∀p	(∀q	(l	(p,	q)	→	p	=	q)) Everybody	loves	only	themselves.

It	takes	practice	to	translate	quantified	statements	into	English	and	even	more	practice
to	 translate	 English	 into	 quantified	 statements.	 Each	 of	 the	 three	 discrete	 mathematics
textbooks	 referenced	 at	 the	 beginning	 of	 this	 chapter	 provides	 a	 wealth	 of	 further
examples.

Let	 us	 look	 at	 some	 realistic	 examples	 of	 the	 use	 of	 the	 existential	 and	 universal
quantifiers	 in	 a	 SPARK	 program.	 Here	 is	 the	 specification	 for	 a	 search	 procedure	 that
determines	the	location	of	the	first	occurrence	of	a	value	in	an	array	of	values:

The	precondition	states	that	there	is	at	least	one	occurrence	of	Value	in	the	array	List,	
.	The	predicate	variable	Index	has	a	domain	(universe	of

discourse)	of	the	range	of	the	array	List’s	index.

The	 postcondition	 is	 a	 conjunction	 of	 three	 parts.	 The	 first	 part	 states	 that	 the	 result
Position	 is	a	legal	subscript	for	the	array	List.	The	second	part	states	 that	Position	 is
the	 location	 of	Value	 in	 List.	 The	 third	 part	 uses	 a	 universal	 quantifier	with	 a	 limited
domain	to	state	that	all	the	locations	before	Position	do	not	contain	Value.

Here	 is	another	search	procedure	 that	has	a	slightly	different	specification.	This	 time,
the	 value	we	 are	 looking	 for	may	 or	may	 not	 be	 in	 the	 array.	Also,	 the	 array	 does	 not



contain	any	duplicate	values.	The	answers	consist	of	a	Boolean	telling	whether	or	not	the
value	was	found	and,	if	it	was	found,	a	position	giving	its	location	in	the	array.

We	have	 three	 preconditions.	The	 first	 states	 that	 there	 is	 at	 least	 one	 element	 in	 the
array.	The	second	states	that	the	upper	bound	of	the	array	is	less	than	the	largest	Positive
value.	 These	 first	 two	 preconditions	 ensure	 that	 there	 is	 no	 overflow	 in	 any	 of	 the
arithmetic	expressions	required	in	the	body.	The	third	precondition	states	that	the	array	has
no	duplicate	values.	This	check	requires	 two	universal	quantifiers.	The	way	to	state	 that
there	are	no	duplicates	is	to	compare	all	pairs	of	values	in	the	array.	If	we	find	an	equality
in	this	comparison,	the	two	indexes	must	be	the	same.	We	used	the	same	logic	in	the	last
example	in	Table	5.9.	In	formal	terms	this	last	postcondition	may	be	expressed	as

The	postcondition	is	more	complicated.	The	first	part	states	that	the	location	returned	is
a	legal	subscript	of	the	array.	The	second	part	states	that	either	we	found	the	value	in	the
array	at	the	returned	location	or	we	did	not	find	the	value	in	the	array.	In	the	case	we	did
not	find	the	value	in	the	array,	the	location	returned	is	the	largest	index	of	the	array.

Summary

A	proposition	is	a	meaningful	declarative	sentence	that	is	either	true	or	false.
Logical	statement	and	statement	are	synonyms	of	proposition.
Statements	may	be	represented	by	symbols	such	as	 ,	 ,	 ,	and	 .
Statements	 may	 be	 combined	 using	 the	 logical	 connectives	 	 (negation),	
(conjunction),	 	(disjunction),	 	(implication),	or	 	(equivalence).
In	the	implication	 ,	 	is	called	the	antecedent,	and	 	is	called	the	consequent.
An	implication	with	a	false	antecedent	is	vacuously	true.
Truth	tables	are	used	to	define	logical	connectives	and	to	show	the	possible	values	of



a	complex	statement.
A	tautology	 is	a	statement	that	 is	always	true	irregardless	of	the	truth	values	of	any
primitive	statements	defining	it.
Two	 propositions	 are	 logically	 equivalent	 when	 they	 have	 the	 same	 values	 for	 all
“inputs”.
Logical	equivalences	are	used	to	simplify	logical	statements.
A	 formal	argument	 is	 a	 set	 of	 statements	 called	premises	 that	 together	 support	 the
truth	of	another	statement	called	the	conclusion.
Arguments	are	expressed	in	the	form	 .
A	valid	argument	is	one	whose	implication	form	is	a	tautology.
A	truth	table	can	be	used	to	show	that	an	argument	is	valid.
Rules	of	inference	are	valid	arguments	that	may	be	used	to	show	that	other	arguments
are	valid.
SPARK	 uses	 arguments	 called	 verification	 conditions	 to	 demonstrate	 that	 the
postconditions	of	a	subprogram	may	be	derived	from	its	preconditions.
A	sound	argument	is	a	valid	argument	whose	premises	are	all	true.
A	 predicate	 is	 a	 parameterized	 statement.	 We	 must	 supply	 specific	 values	 for	 a
predicate’s	parameters	to	determine	its	truthfulness.
An	unbound	variable	 is	 a	 variable	without	 a	 value	 that	 is	 used	 in	 a	 predicate.	We
cannot	determine	the	truthfulness	of	a	predicate	with	unbound	variables.
We	may	use	 the	universal	quantifier,	 ,	 or	 the	existential	quantifier,	 ,	 to	 bind	 a
variable	in	a	predicate.
Converting	English	 language	sentences	 into	propositions	with	 quantified	 predicates
and	 logical	 connectors	 is	 an	 important	 skill	 for	 software	 engineers	 who	 write
SPARK	preconditions	and	postconditions.

Exercises

5.1		 Define	the	following	terms.

a.	 proposition

b.	 statement

c.	 propositional	connective

d.	 conjunction

e.	 disjunction

f.	 exclusive	or

g.	 implication

h.	 antecedent

i.	 consequent

j.	 vacuously	true

k.	 logical	equivalence



l.	 tautology

5.2 	Complete	the	following	truth	table	to	prove	the	logical	equivalence	conditional	as
disjunction,	 .

x y x	→	y ¬x ¬x	∨	y
F F				
F T				
T F				
T T				

5.3	 	 Complete	 the	 following	 truth	 table	 to	prove	 the	absorption	 logical	 equivalence,	
.

x y x	∨	y x	∧	(x	∨	y)
F F				
F T				
T F				
T T				

5.4	 	 Given	 that	 	 is	 true,	 	 is	 false,	and	 	 is	 true,	what	are	 the	 truth	values	of	 the
following	propositions?

a.	

b.	

c.	

d.	

e.	

f.	

g.	

h.	

5.5		 Translate	the	statement	definition	 	into	a	SPARK	assignment	statement
using	the	Boolean	variables	A,	B,	and	C.	You	will	need	to	use	a	logical	equivalence
from	Table	5.5.

5.6	 	 Use	 the	 logical	 equivalences	 from	 Table	 5.5	 to	 simplify	 the	 following
propositions.	State	 the	name	of	each	equivalence	you	use	as	 in	 the	examples	on
page	§.

a.	

b.	

c.	



d.	

e.	

f.	

5.7		 Let	 	be	the	statement	“Roses	are	red,”	 	be	the	statement	“Violets	are	blue,”
and	 	 be	 the	 statement	 “Sugar	 is	 sweet.”	 Translate	 the	 following	 English
sentences	into	formal	statements.

a.	 Roses	are	red	and	violets	are	blue.

b.	 Roses	are	red,	but	sugar	is	not	sweet.

c.	 It	is	not	true	that	roses	are	red	and	violets	are	blue.

d.	 Roses	are	red,	but	sugar	is	sweet.

e.	 Roses	are	red	only	if	violets	are	blue.

f.	 Roses	being	red	is	a	sufficient	condition	for	violets	being	blue.

g.	 Roses	being	red	is	a	necessary	condition	for	violets	being	blue.

h.	 Roses	being	red	follows	from	violets	being	blue.

i.	 If	roses	are	red	and	violets	are	blue,	then	sugar	is	sweet.

j.	 Whenever	roses	are	red,	violets	are	blue	and	sugar	is	sweet.

k.	 Roses	are	red,	and	if	sugar	is	sour,	then	violets	are	not	blue.

5.8		 Define	the	following	terms.

a.	 argument

b.	 premise

c.	 conclusion

d.	 valid	argument

e.	 sound	argument

f.	 inference	rule

5.9		 Use	inference	rules	and	logical	equivalences	to	show	that	the	following	arguments
are	valid.	Label	each	step	as	we	did	on	page	§.

a.	

b.	

c.	

d.	

e.	

5.10	 Given	the	predicates	
	is	 	is	a	car,



	is	 	is	a	motorcycle,	and	
	is	 	is	fast,

translate	 each	 of	 the	 following	 English	 sentences	 into	 formal	 statements.	 The
universe	of	discourse	is	all	things	in	the	world.	Recall	that	 	is	usually	associated
with	 	and	that	 	is	usually	associated	with	 .	We	have	given	an	answer	for
the	first	one.

a.	 All	cars	are	fast.	  answer	

b.	 Some	motorcycles	are	fast.

c.	 All	cars	are	fast	but	no	motorcycle	is	fast.

d.	 Only	motorcycles	are	fast.

e.	 No	car	is	fast.

f.	 If	every	car	is	fast,	then	every	motorcycle	is	fast.

g.	 Some	motorcycles	are	not	fast.

h.	 If	no	car	is	fast,	then	some	motorcycles	are	not	fast.

5.11	 Given	the	predicates	
	is	 	is	a	bee,
	is	a	flower,	
	is	 	stings,	and	

	is	 	pollinates	 .
translate	 each	 of	 the	 following	 English	 sentences	 into	 formal	 statements.	 The
universe	of	discourse	is	all	things	in	the	world.	Recall	that	 	is	usually	associated
with	 	and	that	 	is	usually	associated	with	 .	We	have	given	an	answer	for
the	second	one.

a.	 All	bees	sting.

b.	 Some	flowers	sting.	  answer	

c.	 Only	bees	sting.

d.	 Some	bees	pollinate	all	flowers.

e.	 All	bees	pollinate	some	flowers.

5.12	 The	 predicate	 	 is	 “ 	 is	 an	 even	 integer.”	 Use	 only	 this	 predicate	 and
quantifiers	 to	 translate	 the	 following	 English	 sentences	 into	 formal	 statements.
The	universe	of	discourse	is	all	integers.

a.	 Some	integers	are	even.

b.	 All	integers	are	even.

c.	 Some	integers	are	odd.

d.	 Some	integers	are	both	even	and	odd.

e.	 The	sum	of	an	even	integer	and	12	is	an	even	integer.



f.	 The	sum	of	any	two	even	integers	is	an	even	integer.

5.13	 The	following	function	is	given	an	array	of	percentages	and	a	specific	percentage.
It	 returns	 the	 number	 of	 percentages	 in	 the	 array	 that	 are	 less	 than	 the	 given
specific	percentage.	As	you	can	see	 from	 the	code,	 it	accomplishes	 this	 task	by
searching	for	the	first	value	in	the	array	that	is	greater	than	or	equal	to	the	specific
percentage.	 For	 this	 algorithm	 to	 work,	 the	 values	 in	 the	 array	 must	 be	 in
ascending	order.	Complete	the	precondition	that	states	this	requirement.	

5.14	 Add	a	second	precondition	to	 the	function	in	Exercise	5.13	that	states	 that	List
contains	at	least	one	value.



6
Proof

In	this	chapter	we	describe	how	you	can	use	SPARK	to	prove	certain	correctness	properties
of	your	programs.	When	you	ask	 to	 “prove”	your	 code,	 the	SPARK	 tools	will	by	default
endeavor	to	prove	that	 it	will	never	raise	any	of	the	predefined	language	exceptions	that
we	 describe	 in	 Section	 6.1.	 If	 you	 additionally	 include	 pre-	 and	 postconditions,	 loop
invariants,	 or	 other	 kinds	 of	 assertions,	 the	 tools	 will	 also	 attempt	 to	 prove	 that	 those
assertions	will	never	fail.

It	 is	important	to	understand	that	proofs	created	by	the	SPARK	 tools	are	entirely	static.
This	 means	 if	 they	 succeed,	 the	 thing	 being	 proved	 will	 be	 true	 for	 every	 possible
execution	of	your	program	regardless	of	the	inputs	provided.	This	is	the	critical	property
of	proof	that	sets	it	apart	from	testing.

However,	Ada	assertions	are	also	executable	under	the	control	of	the	assertion	policy	in
force	at	the	time	a	unit	is	compiled.	Assertions	for	which	proofs	could	not	be	completed
can	be	 checked	when	 the	program	 is	 run,	 for	 example	during	 testing,	 to	 help	provide	 a
certain	 level	 of	 confidence	 about	 the	 unproved	 assertions.	 Testing	 can	 thus	 be	 used	 to
complement	 the	proof	 techniques	described	here	 to	obtain	greater	overall	 reliability.	We
discuss	this	further	in	Section	8.4.

6.1	 Runtime	Errors

A	logical	error	is	an	error	in	the	logic	of	the	program	itself	that	may	cause	the	program	to
fail	as	it	is	executing.	It	is	an	error	that,	in	principle,	arises	entirely	because	of	programmer
oversight.	In	contrast,	an	external	error	 is	an	error	caused	by	a	problem	in	the	execution
environment	of	the	program,	such	as	being	unable	to	open	a	file	because	it	does	not	exist.
If	a	program	is	correct,	it	should	not	contain	any	logical	errors.	However,	external	errors
are	outside	of	a	program’s	control	and	may	occur	regardless	of	how	well	constructed	the
program	might	be.	A	properly	designed	program	should	be	able	to	cope	with	any	external
errors	 that	might	 arise.	However,	 the	handling	of	 external	 errors	 is	outside	 the	 scope	of
this	book	and	is	a	matter	for	software	analysis,	design,	and	testing	(see	Black,	2007).

We	distinguish	a	runtime	error	as	a	special	kind	of	logical	error	that	is	detected	by	Ada-
mandated	 checks	 during	 program	 execution.	 Examples	 of	 runtime	 errors	 include	 the
attempt	to	access	an	array	with	an	out	of	bounds	index,	arithmetic	overflow,	or	division	by
zero.	 Other	 kinds	 of	 logical	 errors	 include	 calling	 a	 subprogram	 without	 satisfying	 its
precondition,	but	 those	errors	are	not	checked	by	the	Ada	language	itself.	However,	you
can	 include	 custom	 assertions	 to	 check	 for	 such	 errors.	 We	 describe	 how	 to	 do	 so	 in
Section	6.2.

For	 programs	written	 in	 an	 unsafe	 language	 such	 as	C,	 runtime	 errors	 often	 produce
“undefined	 behavior,”	 referred	 to	 as	 erroneous	 execution	 in	 the	 Ada	 community,	 that
commonly	result	in	a	crash.	Such	errors	are	often	caused	by	exploitable	faults	and	indicate
potential	security	problems	as	well.	In	contrast,	Ada	raises	an	exception	when	a	runtime



error	occurs.	A	careful	programmer	will	provide	exception	handlers1	to	deal	with	runtime
errors	 in	 some	 sensible	way	 by,	 for	 example,	 reporting	 the	 error	 or	 even	 attempting	 to
recover	from	it.

Unfortunately,	in	a	high-integrity	system	after-the-fact	handling	of	runtime	errors	is	not
acceptable.	 If	 a	 program	 does	 something	 illogical,	 such	 as	 divide	 by	 zero,	 that	 means
whatever	 the	 programmer	 intended	 to	 happen	 did	 not	 actually	 happen.	 An	 exception
handler	 can	make	 a	guess	 about	how	 to	proceed	 from	 that	point,	 but	 it	 is	 only	 a	guess.
Because	 the	 error	 should	 never	 have	 occurred	 in	 the	 first	 place,	 the	 exception	 handler
cannot	 know	with	 certainty	 how	 to	 respond.	 For	 example,	 retrying	 the	 failed	 operation
may	cause	the	same	illogical	computation	to	be	attempted	again,	potentially	resulting	in	an
infinite	loop	of	ineffective	error	handling	actions.

In	a	high-integrity	context,	 it	 is	 important	 that	runtime	errors	never	occur.	The	ability
SPARK	gives	you	to	construct	a	mathematical	proof	that	a	program	has	no	runtime	errors
justifies	SPARK’s	lack	of	support	for	exception	handling.	A	program	proved	free	of	runtime
errors	 will	 never	 raise	 an	 exception	 and	 thus	 has	 no	 need	 for	 exception	 handling.	 In
Section	7.1	we	discuss	the	issues	arising	when	calling	full	Ada	libraries	from	SPARK	and
how	to	deal	with	the	exceptions	those	libraries	might	produce.

As	 a	 side	 effect,	 it	 may	 also	 be	 possible	 to	 create	 more	 efficient	 programs	 with
SPARK	than	with	full	Ada,	both	in	terms	of	space	and	time.	If	the	program	has	been	proved
exception-free,	 it	 can	 be	 compiled	 with	 all	 runtime	 checks	 disabled.	 This	 allows	 the
compiler	to	create	a	faster	and	more	compact	executable	than	might	otherwise	be	the	case.
Finally,	 it	may	be	possible	 to	 enjoy	 additional	 savings	by	using	 a	 reduced	Ada	 runtime
system	without	exception	handling	support.	We	discuss	how	and	when	to	suppress	runtime
checks	in	Section	6.8.

Proving	that	a	program	is	free	of	runtime	errors	is	the	first	level	of	proof	to	pursue	in
SPARK	 programming.	 It	 is	 important	 to	 understand,	 however,	 that	 showing	 freedom	 of
runtime	 errors	 does	 not	 show	 that	 the	 program	 is	 “correct”	 in	 the	 intuitive	 sense.
SPARK	 also	 allows	 one	 to	 prove	 higher	 level	 correctness	 properties.	 The	 techniques	 for
doing	 so	are	discussed	 in	 the	 later	 sections	of	 this	 chapter.	Those	 techniques	extend	 the
methods	 described	 here.	 Proving	 freedom	 from	 runtime	 errors	 is	 the	 basis	 from	which
more	complex	proofs	are	constructed.

6.1.1	 Predefined	Exceptions
The	 SPARK	 language	 allows	 the	 programmer	 to	 explicitly	 raise	 an	 exception,	 but	 the
SPARK	 tools	 attempt	 to	prove	 that	 the	raise	 statement	will	 never	 actually	 execute.	This
feature	allows	you	 to,	 for	example,	declare	a	Not_Implemented	exception	and	raise	 it	 in
subprograms	 that	 are	 unfinished.	 The	 SPARK	 tools	 will	 not	 able	 to	 prove	 such	 a
subprogram	as	long	as	there	is	a	way	for	the	exception	to	be	raised,	serving	as	a	reminder
that	more	work	needs	to	be	done2.

The	only	exceptions	that	could	conceivably	arise	in	a	pure	SPARK	program	are	those	that
are	predefined	 in	 the	Ada	 language	and	 raised	automatically	by	 the	Ada	compiler	when
language-mandated	checks	fail.	There	are	four	predefined	exceptions.	They	are	potentially
raised	 for	 a	 wide	 variety	 of	 reasons.	 In	 this	 section	 we	 describe	 these	 four	 predefined



exceptions	and	outline	how	SPARK	manages	them.

Program_Error

The	Program_Error	exception	arises	 in	 full	Ada	for	a	variety	of	program	organizational
problems	that	cannot	always	be	detected	by	the	compiler.	The	complete	list	of	situations
where	Program_Error	might	be	raised	is	long,	but	as	one	example,	the	exception	will	be
raised	if	the	execution	of	a	function	ends	without	returning	a	value.	To	see	how	that	might
happen,	consider	the	following	function	that	searches	an	array	of	integers	and	returns	the
index	associated	with	the	first	occurrence	of	zero	in	the	array.

The	function	ends	as	soon	as	the	search	is	successful	by	returning	from	inside	the	loop.
What	happens	 if	 the	array	does	not	contain	a	zero	value?	In	full	Ada	 the	function	“falls
off”	the	end	and	Program_Error	is	raised.	This	function	is	not	necessarily	wrong.	If	it	is
only	 used	 on	 arrays	 that	 contain	 at	 least	 one	 zero	 value,	 it	 will	 behave	 as	 intended.
However,	 this	 function	as	written	 entails	 the	possibility	 that	 an	 exception	will	 be	 raised
and	that	is	not	acceptable	in	a	high-integrity	application.

The	preceding	function	is	not	legal	SPARK	because	it	can	be	shown	statically	to	raise	an
exception	–	Program_Error	in	this	case	–	under	certain	circumstances.	One	way	to	fix	the
problem	would	be	to	add	a	return	statement	to	the	path	that	currently	falls	off	the	end.	The
programmer	would	need	to	decide	what	value	should	be	returned	if	a	zero	does	not	appear
in	the	array.

An	alternative	approach	would	be	to	add	a	precondition	to	the	function	that	ensures	it	is
always	called	with	an	array	containing	at	least	one	zero	value.	It	is	also	necessary	to	add
an	 explicit	raise	 statement	 at	 the	 end	 of	 the	 function.	 The	modifications	 are	 shown	 as
follows:



The	SPARK	 tools	will	attempt	to	prove	that	 the	explicit	raise	can	never	execute,	and	the
precondition	allows	that	proof	to	be	successful.	The	SPARK	tools	will	also	attempt	to	prove
that	 the	 precondition	 is	 satisfied	 at	 every	 call	 site.	 We	 discuss	 preconditions	 in
Section	6.2.1.

The	 explicit	 raise	 also	 prevents	 the	 flow	 of	 control	 from	 falling	 off	 the	 end	 of	 the
function	and	triggering	the	automatically	generated	exception.	The	SPARK	tools	do	not	see
this	as	an	error	but	instead	regard	the	explicit	raise	as	a	signal	that	you	want	the	tools	to
prove	the	raise	statement	will	never	execute.

You	 can	 also	 use	 an	 explicit	 raise	 of	 Program_Error	 as	 a	 way	 of	 documenting
arbitrary	“impossible”	events	in	your	program.	The	SPARK	tools	will	then	try	to	prove	that
those	 events	 are,	 indeed,	 impossible,	 as	 you	 believe.	 Consider,	 for	 example,	 a	 simple
package	for	managing	a	street	light.	The	specification	might	look	as	follows:

Function	 Next_Color	 takes	 a	 color	 and	 returns	 the	 next	 color	 to	 be	 used	 in	 a	 specific
sequence.	An	enumeration	type	defines	the	three	possible	color	values.	The	body	of	this
package	is	shown	as	follows:



Function	Next_Color	uses	a	case	statement	to	handle	each	of	the	possible	colors.	Ada’s
full	coverage	rules	for	case	statements,	described	in	Section	2.1.2,	ensure	that	every	color
is	considered.	Suppose	now	that	a	new	color	is	added	to	the	set	of	possible	colors	so	the
definition	of	Color_Type	becomes

The	 Ada	 compiler	 will	 require	 a	 case	 for	 Pink	 be	 added	 to	 the	 case	 statement	 in
Next_Color.	 Suppose,	 however,	 that	 you	believe	 the	 logic	of	 your	program	 is	 such	 that
Next_Color	 will	 never	 be	 called	with	 a	 Pink	 value.	 To	 satisfy	 the	 compiler	 you	might
include	an	empty	case	such	as

This	 executes	 the	 special	 null	 statement	 in	 that	 case,	 which	 does	 nothing.	 However,	 if
calling	Next_Color	with	a	Pink	value	is	a	logical	error,	this	approach	just	hides	the	error
and	is	thus	highly	undesirable.

Another	strategy	would	be	 to	explicitly	 raise	Program_Error	 as	a	way	of	announcing
the	error	in	terms	that	cannot	be	easily	swept	under	the	rug:

Now	the	SPARK	tools	will	attempt	to	prove	this	case	can	never	happen,	thus	verifying	what
you	believe	to	be	true	about	your	program.	However,	with	Next_Color	written	as	we	have
shown	so	far,	that	proof	would	fail.	Using	a	precondition	makes	the	proof	trivial:



Of	course,	now	the	SPARK	tools	will	try	to	prove	that	this	precondition	is	satisfied	at	each
call	site.

Tasking_Error

Ada	 has	 extensive	 support	 for	 writing	 programs	 built	 from	 multiple,	 interacting	 tasks.
Certain	 error	 conditions	 can	 arise	 in	 connection	with	 these	 tasking	 features,	 and	 in	 that
case	 Tasking_Error	 is	 raised.	 The	 version	 of	 SPARK	 2014	 available	 at	 the	 time	 of	 this
writing	 does	 not	 support	 any	 of	 Ada’s	 tasking	 features	 and,	 thus,	 avoids
Tasking_Error	 entirely.3	 However,	 we	 note	 that	 because	 SPARK	 allows	 you	 to	 build
programs	from	a	mixture	of	SPARK	and	full	Ada,	as	we	discuss	in	Section	7.1,	it	is	possible
to	use	the	SPARK	tools	to	analyze	the	sequential	portions	of	a	larger	concurrent	program.

Storage_Error

In	an	Ada	program,	Storage_Error	is	raised	if	a	program	runs	out	of	memory.	There	are
two	primary	ways	that	can	happen.	First,	the	program	might	run	out	of	heap	space	while
objects	 are	dynamically	 allocated.	Second,	 the	program	might	 run	out	 of	 stack	 space	 to
hold	local	variables	while	subprograms	are	called.

SPARK	 avoids	 Storage_Error	 from	 heap	 exhaustion	 by	 disallowing	 heap	 allocated
memory.	 Unfortunately,	 avoiding	 stack	 overflow	 is	 more	 difficult,	 and	 SPARK	 by	 itself
cannot	guarantee	that	a	program	will	not	raise	Storage_Error.

However,	an	analysis	can	be	done	to	ensure	a	program	will	not	run	out	of	stack	space.
The	approach	requires	two	steps.	First,	it	is	necessary	to	forbid	all	forms	of	recursion,	both
direct	where	a	subprogram	calls	itself	and	indirect	where	two	(or	more)	subprograms	call
each	other.	It	is	very	difficult	to	put	a	static	bound	on	the	amount	of	stack	space	required
by	a	 recursive	program	because	 the	number	of	 recursive	 invocations	 is,	 in	general,	only
discovered	dynamically.	The	SPARK	tools	do	not	detect	recursion,	but	additional	tools	such
as	AdaCore’s	GNATcheck	can	do	so.

If	a	program	is	not	recursive,	and	if	it	does	not	make	any	indirect	calls	(SPARK	forbids
such	calls),	it	is	possible	to	build	a	tree	representing	the	subprogram	calls	it	might	make.
Such	a	tree	is	referred	to	as	a	call	tree.	For	example,	if	procedure	A	calls	procedures	B1	and
B2,	then	the	tree	would	have	B1	and	B2	as	children	of	A.

With	a	complete	call	tree	in	hand,	one	must	then	compute	the	stack	space	required	on
each	path	from	the	tree’s	overall	root,	representing	the	main	procedure,	to	each	leaf.	Some
of	these	paths	may	not	be	possible	executions	and	could	potentially	be	ruled	out	by	a	static
analysis.	Some	of	these	paths	may	contain	dynamically	sized	local	variables,	and	an	upper
bound	on	the	size	of	those	variables	would	need	to	be	statically	determined.	Although	the
SPARK	 tools	 do	 not	 do	 this	 analysis,	 GNATstack	 from	AdaCore	 or	 StackAnalyzer	 from
AbsInt	are	two	tools	available	at	the	time	of	this	writing	that	do.

Alternatively,	stack	usage	can	be	dynamically	analyzed	during	testing.	It	may	then	be
possible	to	obtain	a	worst	case	upper	bound	on	the	required	stack	size	via	reasoning	about
the	test	cases.	However	the	bound	is	obtained,	stack	overflow	can	be	avoided	by	providing
the	program	with	stack	space	that	equals	or	exceeds	that	bound.

Technically,	 the	Ada	standard	allows	 the	compiler	 to	 raise	Storage_Error	 during	 the



execution	of	potentially	any	construct	at	all.	Indeed	some	compilers	do	make	implicit	use
of	additional	storage	in	a	manner	that	is	not	visible	to	the	programmer.	Thus,	completely
ruling	 out	 Storage_Error	 also	 requires	 tools	 that	 are	 aware	 of	 the	 compiler’s
implementation	strategies.

Constraint_Error

We	have	seen	how	SPARK	manages	Program_Error,	Tasking_Error,	and	Storage_	Error,
making	 it	 possible	 to	 write	 programs	 that	 will	 not	 raise	 those	 exceptions.	 The	 last
exception	predefined	by	Ada	 is	Constraint_Error.	This	exception	 is	 raised	whenever	a
constraint	is	violated,	such	as	when	(a)	a	value	is	assigned	to	a	variable	that	violates	the
range	constraint	of	that	variable’s	type;	(b)	an	array	element	is	accessed	with	an	index	that
is	out	of	bounds	for	that	array;	or	(c)	overflow	occurs	during	arithmetic	operations.

Certain	 sources	 of	 Constraint_Error	 in	 full	 Ada	 cannot	 arise	 in	 SPARK	 because	 of
limitations	 in	 the	 SPARK	 language.	 For	 example,	 Ada	 raises	 Constraint_Error	 if	 an
attempt	 is	 made	 to	 dereference	 a	 null	 access	 value	 (pointer).	 That	 is	 not	 possible	 in
SPARK	 because	 SPARK	 forbids	 access	 values.	 However,	 many	 sources	 of
Constraint_Error	 are	 possible	 in	 SPARK.	 Guaranteeing	 that	 Constraint_Error	 cannot
arise	requires	constructing	proofs	based	on	the	structure	of	the	code	being	analyzed.

6.1.2	 Verification	Conditions
At	 each	 point	 in	 your	 program	 where	 a	 language-mandated	 check	 must	 occur,	 the
SPARK	 tools	 generate	 a	 verification	 condition,	 also	 called	 a	 proof	 obligation	 in	 some
literature.	Each	verification	condition	is	a	logical	implication	as	described	in	Section	5.3.
The	hypotheses	of	 the	verification	condition	are	 taken	 from	 the	 the	code	 leading	 to	 that
program	 point	 with	 every	 possible	 path	 to	 the	 program	 point	 being	 considered.	 The
conclusion	of	the	verification	condition	is,	in	essence,	that	the	exception	will	not	be	raised.
That	is,	the	conclusion	states	the	condition	that	would	cause	the	exception	is	false.	If	the
verification	condition	is	proved,	then	the	hypotheses	imply	the	exception	will	never	occur.

In	a	typical	program,	a	large	number	of	verification	conditions	are	generated,	some	with
complex	hypotheses.	The	SPARK	tools	make	use	of	automatic	theorem	provers	to	discharge
the	verification	conditions	without	human	intervention.	At	least	that	is	the	idea.	Usually,	it
is	 necessary	 to	 help	 the	 tools	 by	 organizing	 the	 program	 in	 a	 particular	 way	 or	 by
providing	additional	information	to	the	tools.	We	discuss	these	techniques	in	the	context	of
several	examples	in	the	following	sections	of	this	chapter.	Once	we	have	discharged	all	of
the	verification	conditions,	we	have	great	confidence	that	our	program	contains	no	runtime
errors.

6.2	 Contracts

Some	 of	 the	 most	 significant	 additions	 to	 Ada	 2012	 relative	 to	 earlier	 versions	 of	 the
language	 are	 the	 facilities	 supporting	 contract	 based	 programming.	 This	 is	 a	 style	 of
programming	 in	 which	 the	 semantics	 of	 subprograms	 and	 the	 properties	 of	 types	 are
formally	 specified	 in	 the	 program	 itself	 by	 way	 of	 assertions	 written	 by	 the	 software
designer.	 We	 use	 the	 term	 assertion	 to	 refer	 to	 a	 specific	 condition	 encoded	 into	 the



program	and	reserve	the	term	contracts	to	refer	to	the	abstract	concept	of	using	assertions
to	formalize	a	program’s	behavior.

In	Ada,	assertions	created	during	program	design	are	executable.	During	runtime	they
can	be	checked	to	ensure	that	the	behaviors	specified	by	the	designers	are	being	realized.
The	SPARK	 tools	go	beyond	 this	dynamic	checking	and	endeavor	 to	 statically	prove	 that
none	of	the	assertions	will	ever	fail.

Table	6.1	 shows	 all	 the	 assertion	 forms	 available	 to	 an	Ada/SPARK	 programmer	with
references	to	where	we	discuss	each	form	in	more	detail.	At	the	time	of	this	writing	not	all
assertion	forms	that	exist	in	Ada	are	yet	supported	by	SPARK.	Unsupported	assertions	are
indicated	as	such	in	the	table.	Furthermore,	SPARK	adds	some	assertion	forms	that	are	not
part	of	standard	Ada.	Those	that	are	SPARK	specific	are	also	indicated	in	the	table.

Table	6.1.	 Ada/SPARK	assertions

Aspect/Pragma Supported	in
SPARK	

SPARK	only Cross	reference

Assert Yes No Section	6.3.1
Assert_And_Cut Yes Yes Section	6.3.2
Assume Yes Yes Section	6.3.3
Contract_Cases Yes Yes Section	6.2.6
Dynamic_Predicate No No Section	6.2.5
Initial_Condition Yes Yes Section	6.2.2
Loop_Invariant Yes Yes Section	6.4
Loop_Variant Yes Yes Section	6.5
Post Yes No Section	6.2.2
Pre Yes No Section	6.2.1
Refined_Post Yes Yes Section	6.2.3
Static_Predicate Yes No Section	6.2.5
Type_Invariant No No Section	6.2.4

Whenever	 a	 program	 unit	 is	 compiled,	 some	 assertion	 policy	 is	 in	 effect.	 The	 Ada
standard	 defines	 only	 two	 such	 policies,	 Check	 and	 Ignore,	 although	 compilers	 are
allowed	to	provide	additional	policies.

If	the	assertion	policy	is	Check,	then	any	assertion	that	fails	(evaluates	to	false)	causes
an	 Assertion_Error	 exception	 from	 the	 Ada.Assertions	 package	 to	 be	 raised.	 It	 is
important	 to	understand	 that	 this	check	occurs	at	 runtime	and	 recovery	must	be	done	at
runtime,	for	example,	by	way	of	a	suitable	exception	handler.	In	this	respect,	assertions	are
similar	to	the	runtime	errors	described	in	Section	6.1.	However,	unlike	runtime	errors,	it	is
up	 to	 the	 programmers	 to	 explicitly	 include	 assertions	 in	 their	 programs.	 Furthermore,
assertions	can	be	used	to	check	whatever	conditions	the	programmers	deem	appropriate.

An	assertion	policy	of	Ignore	 causes	 the	compiler	 to	 remove	 the	assertion	checks	 so



they	will	not	be	tested	at	runtime.	In	that	case,	failures	of	the	assertions	are	not	detected,
probably	causing	other,	 less	well-behaved	failures.	One	of	the	main	goals	of	SPARK	 is	 to
allow	proof	that	all	assertions	never	fail.4	In	that	case,	the	program	can	be	compiled	with
an	 assertion	 policy	 of	 Ignore	 without	 being	 concerned	 about	 unexpected	 failures.	 In
addition	to	 increasing	the	reliability	of	 the	program,	SPARK	can	 improve	 its	performance
because	the	assertions	consume	resources,	such	as	processor	time,	to	check.

In	the	following	subsections	we	describe	how	to	specify	assertions	and	give	some	hints
about	their	use.	Our	approach	is	to	show	examples	of	increasing	complexity	and	realism	to
give	a	feeling	for	how	SPARK	assertions	work	in	practice.

6.2.1	 Preconditions
Ada	allows	subprograms	 to	be	decorated	with	preconditions.	A	precondition	 is	 a	 logical
expression	(an	expression	with	Boolean	type)	that	must	hold	(evaluate	to	True)	whenever
the	 subprogram	 is	 called.	 Preconditions	 are	 specified	 using	 the	Pre	 aspect.	Because	 the
expression	used	to	define	the	precondition	is	arbitrary,	it	can	be	used	to	encode	conditions
of	any	complexity.

As	an	example,	consider	a	package,	Shapes,	that	does	some	geometric	computations	on
two-dimensional	 shapes.	All	coordinates	used	by	 the	package	are	 in	Cartesian	 form	and
constrained	 to	 a	workspace	 in	 the	 range	of	 100	 to	100	pixels	 in	 each	dimension.	An
abbreviated	specification	of	the	package	follows:



Here,	a	circle	 is	described	by	 the	coordinates	of	 its	center	and	a	 radius.	The	 function
Inside_Circle	takes	a	pair	of	X,	Y	coordinates	and	a	circle	and	returns	true	if	the	given
coordinates	are	inside	the	given	circle.

The	 precondition	 given	 on	 Inside_Circle	 enforces	 the	 rule	 that	 the	 circle	must	 be
entirely	contained	 in	 the	workspace.	We	do	not	want	 to	consider	circles	 that	overlap	 the
allowed	 range	 of	 coordinates	 such	 as	 a	 circle	 with	 a	 center	 near	 the	 boundaries	 of
Coordinate_Type	and	with	a	large	radius.

Because	 the	 precondition	 is	 part	 of	 the	 subprogram’s	 declaration,	 it	 is	 known	 to	 all
users	of	the	subprogram	and	becomes	part	of	the	subprogram’s	interface.	It	is	the	caller’s
responsibility	 to	ensure	 that	 the	precondition	is	satisfied.	If	 it	 is	not	(and	if	 the	assertion
policy	 is	Check),	 then	an	exception	will	 be	 raised	at	 runtime.	However,	 the	SPARK	 tools
will	generate	a	verification	condition	at	each	location	where	Inside_Circle	is	called	that,
if	proved,	shows	the	precondition	is	satisfied	at	each	of	those	places.

Notice	that	ordinary	Ada	subtype	constraints	are	a	kind	of	precondition.	Consider,	for
example,	a	function	Fibonacci	that	computes	Fibonacci	numbers.5	If	it	is	declared	as

it	will	 raise	Constraint_Error	 even	 for	 fairly	 small	 values	of	N.	 This	 is	 because	 the
Fibonacci	sequence	grows	very	rapidly	and	causes	an	arithmetic	overflow	to	occur	inside
the	function	if	N	is	even	moderately	large.	In	particular,	for	systems	using	32	bits	for	type
Integer,	 the	largest	Fibonacci	number	that	can	be	calculated	is	for	 .	One	could
express	this	constraint	by	adding	a	precondition:

However,	it	is	more	appropriate	to	use	Ada’s	facilities	for	creating	scalar	subtypes	instead
of	a	precondition.

Now	 an	 attempt	 to	 use	 a	 value	 out	 of	 range	 will	 cause	 Constraint_Error	 rather	 than
Assertion_Error	as	a	failed	precondition	would	do,	but	the	SPARK	 tools	will	attempt	to
prove	that	the	error	cannot	occur	in	either	case.

Using	 subtypes	when	 possible	 is	 best	 because,	 being	 simpler,	 they	 are	 easier	 for	 the
compiler	 to	 manage	 and	 optimize.	 They	 will	 also	 continue	 being	 checked	 even	 if	 the
assertion	policy	is	Ignore.	However,	Ada’s	scalar	subtypes	are	relatively	limited	because
they	can	only	express	certain	restricted	kinds	of	constraints	such	as	range	constraints.	In
contrast,	 preconditions	 are	 entirely	 general	 and	 can	 be	 used	 to	 express	 conditions	 of
arbitrary	complexity.	In	 the	example	of	Inside_Circle	 ,	 scalar	subtypes	cannot	capture
the	desired	condition.	A	small	circle	right	at	the	edge	of	the	coordinate	system	might	still
be	acceptable.	Trying,	for	example,	to	constrain	the	type	used	to	represent	the	coordinates
of	 the	 circle’s	 center	 is	 not	 a	 solution.	 The	 acceptability	 of	 a	 circle	 depends	 on	 the
interaction	between	the	values	of	its	components.



In	Section	5.4	we	introduced	Ada’s	syntax	for	quantified	expressions	using	for		all
or	 for	 some.	 Preconditions,	 and	 assertions	 in	 general,	 can	 often	 make	 good	 use	 of
quantified	expressions	particularly	when	arrays	are	involved.	In	fact,	 it	 is	primarily	their
use	 in	 assertions	 that	 motivated	 the	 addition	 of	 quantified	 expressions	 to	 the	 Ada
language.

As	an	example,	consider	a	procedure	that	implements	the	binary	search	algorithm.	This
algorithm	takes	an	array	and	a	data	item	and	efficiently	checks	to	see	if	the	array	contains
the	data	 item.	However,	 the	algorithm	 requires	 that	 it	be	given	an	array	 in	 sorted	order.
The	following	specification	of	package	Searchers	contains	the	declaration	of	a	procedure
Binary_Search

6	along	with	a	precondition:

The	precondition	uses	two	nested	for-all	quantified	expressions	to	assert	that	each	item
of	the	array	comes	before	(or	is	the	same	as)	all	the	items	that	follow	it.	The	SPARK	tools
will,	as	usual,	create	a	verification	condition	at	each	place	where	Binary_Search	is	called
to	prove	that	the	precondition	is	satisfied.

It	bears	repeating	that	assertions	in	Ada	are	executable.	With	that	in	mind,	notice	that
the	 precondition	 given	 for	 Binary_Search	 runs	 in	 	 time.	 In	 contrast,	 the	 binary
search	algorithm	itself	runs	in	only	 	time.

An	alternative	way	of	expressing	that	the	array	is	sorted	is

This	 has	 the	 advantage	 of	 running	 in	 only	 	 time,	 and	 it	might	 also	 be	 considered
clearer.	 However,	 it	 is	 still	 asymptotically	 slower	 than	 the	 algorithm	 to	 which	 it	 is
attached.	Because	 assertions	 can	 use	 quantified	 expressions	 over	 large	 arrays,	 and	 even
call	 recursive	 functions,	 they	can	consume	 large	amounts	of	 space	and	 time.	Expressive
assertions	thus	have	the	potential	to	render	unusable	a	program	that	would	otherwise	have
acceptable	performance	characteristics.	We	discuss	this	issue	further	in	Section	6.8.



6.2.2	 Postconditions
A	postcondition	is	a	condition	that	is	asserted	to	be	true	when	a	subprogram	completes	its
actions	 and	 returns	 control	 to	 the	 caller.	 It	 describes	 the	 effects	 of	 the	 subprogram.
Postconditions	are,	thus,	formal	statements	derived	from	the	functional	requirements	that
our	program	must	meet.

Postconditions	 are	 introduced	 with	 the	 Post	 aspect.	 As	 an	 example,	 consider	 the
Searchers	package	again.	A	version	of	 that	package	 follows,	where	 the	Binary_Search
procedure	has	been	given	a	postcondition:

The	postcondition	says	that	if	the	procedure	reports	it	has	found	the	search	item,	then
that	 item	 exists	 at	 the	 reported	 position	 in	 the	 array.	 The	 else	 clause	 says	 that	 if	 the
procedure	 does	 not	 find	 the	 search	 item,	 the	 item	 does	 not	 exist	 at	 any	 location	 in	 the
array.

Preconditions	 and	 postconditions	 have	 a	 dual	 relationship.	 A	 precondition	 is	 an
obligation	on	 the	caller	 to	show,	either	by	 runtime	 testing	or	proof,	 that	 the	condition	 is
true	before	calling	a	subprogram.	Inside	the	subprogram	the	precondition	can	be	used	in
the	 hypotheses	 of	 verification	 conditions,	 being	 taken	 as	 a	 given	 in	 the	 context	 of	 the
subprogram’s	body.

Postconditions,	on	the	other	hand,	are	obligations	on	the	subprogram	itself	to	show	that
the	 condition	 is	 true	 when	 the	 subprogram	 returns.	 The	 calling	 context	 can	 use	 the
postcondition	in	the	hypotheses	of	verification	conditions	that	appear	past	the	point	of	the
call.

Callers	 are	 interested	 in	 weak	 preconditions	 that	 are	 easy	 to	 prove	 but	 strong
postconditions	 that	 provide	 a	 lot	 of	 information	 they	 can	 use	 after	 the	 call.	 In	 contrast,



implementers	 want	 strong	 preconditions	 that	 provide	 a	 lot	 of	 information	 in	 the
subprograms	 being	 implemented	 but	 weak	 postconditions	 that	 are	 easy	 to	 prove.	 Both
sides	of	 the	call	want	 to	make	as	few	promises	as	possible	but	get	as	many	promises	as
they	can.

Of	course	in	real	programs,	just	as	in	real	life,	a	balance	must	be	struck.	Postconditions
describe	what	it	means	for	a	subprogram	to	be	correct	and	thus	would	ideally	be	written	as
part	of	the	subprogram’s	design.	The	more	specific	(stronger)	a	postcondition	is,	the	more
information	about	 the	subprogram’s	behavior	 it	 captures.	Preconditions	often	need	 to	be
provided	to	support	the	postcondition.

For	 example,	 in	 the	 case	 of	 Binary_Search,	 the	 implementation	 has	 no	 chance	 of
proving	 the	 postcondition	 unless	 it	 “knows”	 the	 array	 is	 already	 sorted.	 The	 algorithm
depends	on	that.	Thus,	the	precondition	is	necessary	if	the	postcondition	is	to	be	proved.

The	Binary_Search	procedure	has	only	in	and	out	parameters.	In	the	case	of	in	out
parameters	 (or	In_Out	 global	 items),	 it	 is	 sometimes	necessary	 to	 reference	 the	 original
value	of	 the	parameter	 (or	global	 item)	 in	 the	postcondition.	As	an	example,	 consider	 a
procedure	 that	 finds	 the	 smallest	 prime	 factor	 of	 a	 natural	 number	 and	 returns	 both	 the
factor	and	the	original	number	after	the	factor	has	been	divided	out:

Here	we	make	use	of	a	function	Is_Prime	that	returns	true	if	and	only	if	its	argument	is	a
prime	number.

The	procedure	changes	the	value	of	N.	However,	we	can	reference	its	original	value	in
the	postcondition	using	the	’Old	attribute.	This	implies	that	the	compiler	must	maintain	a
copy	 of	 the	 value	 of	N	 before	 the	 procedure	 is	 called	 so	 it	 can	 use	 that	 copy	when	 the
postcondition	 is	 evaluated.	 Here,	 N	 is	 just	 an	 integer	 so	 keeping	 a	 copy	 of	 it	 is	 not
expensive.	 Yet	 this	 is	 another	 example	 of	 how	 assertions	 can	 potentially	 consume
significant	resources;	consider	the	case	when	the	parameter	is	a	large	data	structure.

In	 general,	we	 can	 talk	 about	 the	prestate	 of	 a	 subprogram	 as	 the	 state	 of	 the	 entire
program	 just	 before	 the	 subprogram	 begins	 executing.	 Similarly,	we	 can	 talk	 about	 the
poststate	of	a	subprogram	as	the	state	of	the	entire	program	after	the	subprogram	returns.
In	these	terms,	the	’Old	attribute	can	be	said	to	make	a	copy	of	a	part	of	the	prestate	for
use	in	the	evaluation	of	the	postcondition.

Care	is	needed	when	using	’Old	with	arrays.	Consider	the	following	four	expressions.
Here,	A	is	an	array	and	Index	is	a	variable	of	the	array’s	index	subtype.

A’Old(Index)	accesses	the	original	array	element	at	the	position	given	by	the	current
Index.	Here	original	means	part	of	 the	prestate,	and	current	means	 the	value	when
the	postcondition	is	executing	–	that	is,	part	of	the	poststate.



A(Index’Old)	accesses	the	current	array	element	at	the	position	given	by	the	original
Index.
A’Old(Index’Old)	accesses	 the	original	 array	 element	 at	 the	position	given	by	 the
original	 Index.	 Both	 the	 original	 array	 (in	 its	 entirety)	 and	 the	 original	 Index	 are
saved	when	the	subprogram	is	entered.
A(Index)’Old	is	largely	the	same	as	A’Old(Index’Old).	In	particular,	it	refers	to	the
original	 value	 of	 the	 expression	 A(Index).	 However,	 only	 the	 original	 value	 of
A(Index),	not	the	entire	array,	is	saved	when	the	subprogram	is	entered.

The	 last	 case	 illustrates	 a	 general	 rule.	 The	 prefix	 of	 ’Old	 can	 be	 an	 arbitrary
expression,	 the	 value	 of	which	 is	 saved	when	 the	 subprogram	 is	 entered.	 For	 example,
(X	+	Y)’Old	 in	a	postcondition	causes	 the	original	value	of	 the	expression	X	+	Y	 to	be
saved	and	used	when	evaluating	the	postcondition.	Each	usage	of	’Old	in	a	postcondition
implies	 the	creation	of	a	separate	saved	value.	We	also	note	 that	because	 the	expression
used	as	a	prefix	to	’Old	is	copied,	it	cannot	have	a	limited	type.7

The	 postcondition	 of	 Smallest_Factor	 shown	 earlier	 does	 not	 fully	 describe	 the
intended	behavior	of	 the	procedure.	It	only	says	that	Factor	 is	some	prime	factor	of	 the
original	value	of	N,	but	not	necessarily	the	smallest	one.	Although	the	postcondition	is	not
as	strong	as	it	could	be,	it	still	conveys	useful	information	into	the	calling	context.	Proving
that	 the	postcondition	will	always	be	satisfied	 is	a	partial	proof	of	 the	correctness	of	 the
procedure.	 The	 remaining	 properties	 could	 be	 explored	 with	 testing.	 We	 describe	 the
interplay	between	proof	and	testing	in	more	detail	in	Section	8.4.

The	postcondition	can	be	strengthened	as	follows:

The	additional	quantified	expression	says	there	are	no	other	factors	of	the	original	N	 that
are	smaller	than	Factor.	 It	 is	no	 longer	necessary	 to	directly	assert	 that	Factor	is	prime
because	it	is	a	mathematical	fact	that	the	smallest	factor	of	a	number	will	always	be	prime.
Notice	that	now	the	postcondition	relys	on	a	mathematical	property	that	is	proved	outside
the	 scope	 of	 the	 program.	 This	 is	 an	 example	 of	 the	 interplay	 between	 design	 and
implementation.	 Although	 SPARK	 allows	 you	 to	 formalize	 the	 construction	 of	 your
software,	it	is	not	by	itself	a	complete	formal	design	methodology.

Function	results	are	normally	anonymous,	so	to	reference	them	in	a	postcondition	for	a
function,	 it	 is	 necessary	 to	 use	 the	 ’Result	 attribute.	 Consider	 a	 function	 version	 of
Smallest_Factor	that	returns	the	smallest	factor	of	a	natural	number:



It	 is	 not	 necessary	 to	 use	 ’Old	 here	 because	 in	 this	 case	 N	 is	 an	 in	 parameter	 that	 the
function	cannot	change.

Package	Initial	Conditions

As	 we	 describe	 in	 Section	 3.4.1,	 when	 a	 package	 is	 elaborated,	 certain	 initialization
activities	 can	 occur.	 Global	 variables	 in	 the	 package	 specification	 or	 body	 that	 have
initialization	expressions	are	given	their	initial	values.	Also,	the	package	body	can	have	a
sequence	of	statements	used	 to	perform	more	complex	package-wide	 initializations.	The
Initial_Condition	aspect	can	be	used	on	a	package	specification	 to	assert	a	condition
that	 is	 true	after	 the	package	has	been	fully	elaborated.	Conceptually	 the	aspect	 is	 like	a
kind	of	package-wide	postcondition.

Typically,	Initial_Condition	makes	sense	in	cases	where	a	variable	package	has	an
abstract	state	that	it	initializes,	as	described	in	Section	4.3.	The	initial	condition	can	then
capture	 information	 about	 the	 result	 of	 that	 initialization.	 The	 SPARK	 tools	 generate	 a
verification	 condition	 to	 show	 that	 the	 package’s	 elaboration	 does	 indeed	 initialize	 the
internal	state	as	specified.

As	an	example,	consider	again	the	Datebook	package	discussed	in	Section	4.3.	Here	we
show	an	abbreviated	specification	that	includes	a	function	returning	the	number	of	events
in	the	datebook.	For	brevity,	the	other	subprograms	in	the	package	are	not	shown.

If	the	Initial_Condition	aspect	is	used,	it	must	appear	after	the	Abstract_State	and
Initializes	 aspects,	 if	 they	 are	 present.	 It	 can	 also	 only	 use	 visible	 variables	 and
subprograms.	 In	 the	 preceding	 example,	 the	 package	 initial	 condition	 asserts	 that	 after
elaboration,	the	number	of	events	in	the	datebook	is	zero.	This	is	an	intuitive	expectation,
now	formally	specified	and	checked	by	the	SPARK	tools.

Notice	 that	 function	 Number_Of_Events	 is	 declared	 after	 it	 is	 used	 in	 the
Initial_Condition	 aspect	 of	 package	 Datebook.	 This	 order	 violates	 the	 scope	 rules
defined	on	page	§.	Our	Datebook	example	shows	one	of	the	few	places	where	Ada	allows
use	of	as	yet	undeclared	entities	–	assertions	can	reference	names	that	are	declared	later	in
the	 same	 declarative	 part.	We	will	make	 frequent	 use	 of	 this	 exception	 to	Ada’s	 scope
rules.

6.2.3	 Private	Information



Consider	 the	 type	 package	 Shapes	 on	 page	 §.	 In	 many	 applications	 it	 would	 be	 more
appropriate	 to	keep	 the	representation	of	circles	hidden	by	making	 type	Circle	private.
However,	 by	 moving	 the	 details	 of	 Circle	 into	 the	 private	 section,	 we	 find	 another
problem	 –	 the	 precondition	 for	 function	 Inside_Circle	 no	 longer	 compiles.	 The
precondition	of	a	public	subprogram	cannot	make	use	of	hidden	(private)	information.

To	work	around	this	issue,	we	can	introduce	a	public	function,	In_Bounds,	that	tests	if	a
Circle	 is	 entirely	 inside	 the	 workspace.	 The	 following	 package	 Shapes2	 shows	 these
changes:

The	 precondition	 on	 Inside_Circle	 has	 been	 rewritten	 to	 make	 use	 of	 the	 new
function.	The	body	of	function	In_Bounds	is	written	in	the	package	body	and	has	access	to
the	 package’s	 private	 information.	 Thus,	 it	 can	 make	 use	 of	 the	 representation	 of	 type
Circle	as	necessary.	Defining	functions	for	use	in	assertion	expressions	can	also	improve
the	readability	of	such	expressions	as	they	become	complex,	and	it	simplifies	the	sharing
of	 elaborate	 conditions	 between	 multiple	 assertions.	 Notice	 that	 as	 mentioned	 in	 the
previous	section,	we	are	using	In_Bounds	in	an	assertion	before	it	has	been	declared.

The	function	In_Bounds	is	a	perfectly	ordinary	function.	It	can	be	called	by	clients	of
the	package	like	any	other	public	function.	In	fact,	it	offers	a	useful	service	that	might	be
of	interest	to	package	clients.	It	is	also	possible	to	create	functions	that	can	only	be	used	in
assertion	expressions.	We	discuss	these	ghost	functions	in	more	detail	in	Section	9.1.1.

As	you	might	expect,	postconditions	on	subprograms	 in	 the	visible	part	of	a	package



are	also	forbidden	from	using	private	information.	We	can	introduce	functions	to	specify
the	effect	of	 a	 subprogram	 in	abstract	 terms	 just	 as	we	did	with	 the	precondition	of	 the
Inside_Circle	function.	For	example,	 the	Shapes2	 package	does	not	provide	a	way	 to
create	 initialized	 Circle	 objects.	 We	 can	 remedy	 this	 problem	 by	 adding	 a	 suitable
constructor	function	to	the	package:

Here	we	assume	Make_Circle	forces	the	resulting	circle	to	be	in	bounds	by	adjusting	the
radius	if	necessary	without	indicating	an	error.	How	desirable	such	behavior	is	in	practice
will	depend	on	the	design	of	the	overall	application.

The	SPARK	 tools	 can	 reason	 that	 Circle	objects	 returned	 from	 Make_Circle	 will	 be
acceptable	to	Inside_Circle	without	knowing	anything	about	what	In_Bounds	does.	The
tools	can	treat	the	function	abstractly.	This	relies	on	In_Bounds	having	no	side	effects,	a
requirement	of	all	functions	in	SPARK,	nor	reading	any	global	variables	as	specified	in	its
data	dependency	contract	(synthesized	in	this	case).

Subprograms	in	a	package	body	have	full	access	to	the	information	in	the	private	part
of	 the	 package	 specification.	 Helper	 subprograms	 inside	 the	 body	 of	 package	 Shapes2
may	 need	 to	 see	 the	 effects	 of	 Make_Circle	 in	 terms	 of	 the	 private	 structure	 of	 type
Circle	.	Just	knowing	that	the	circle	objects	returned	by	Make_Circle	are	“in	bounds”	is
not	 enough.	 Internal	 subprograms	 may	 need	 to	 know	 something	 about	 the	 relationship
between	 the	 circle’s	 center	 coordinates	 and	 radius.	 Internal	 subprograms	 are	 allowed	 to
have	that	knowledge,	but	how	can	they	be	given	it?

SPARK	 allows	you	 to	 refine	 a	 postcondition	 in	 the	body	of	 a	 package	 to	 express	 it	 in
terms	of	the	private	information	available	in	the	body.	An	implementation	of	Make_Circle
that	refines	the	postcondition	in	the	specification	using	the	Refined_Post	aspect	follows:



The	effect	of	Make_Circle	is	described	in	internal	terms.	The	SPARK	tools	will	generate
verification	 conditions	 to	 show	 that	 the	 body	 of	 the	 subprogram	 honors	 the	 refined
postcondition.	 In	addition,	 the	 tools	will	generate	a	verification	condition	 that	shows	the
precondition	(if	any),	together	with	the	refined	postcondition,	implies	the	publicly	visible
postcondition.	 This	 allows	 the	 refined	 postcondition	 to	 be	 stronger	 than	 the	 public
postcondition	(it	can	say	more),	but	not	weaker.

Callers	of	Make_Circle	inside	the	package	body	will	use	the	refined	postcondition	as	it
is	written	in	terms	of	the	private	information	of	interest	to	them.	The	general	rule	is	that	if
the	 refined	 aspects	 are	 visible,	 they	 are	 used.	 This	 includes	 the	 Refined_Global	 and
Refined_Depends	aspects	mentioned	in	Section	4.3.1.

Of	course,	 the	 refined	postcondition	cannot	be	used	by	clients	of	 the	package	 to	help
prove	verification	conditions	in	the	calling	context.	This	is	a	necessary	restriction	because
the	refined	postcondition	is	written	in	private	terms	to	which	the	clients	have	no	access.	In
effect,	the	public	postcondition	sanitizes	the	refined	postcondition	to	make	it	appropriate
for	clients.	If	the	private	information	changes,	the	refined	postcondition	might	have	to	be



updated,	but	 the	public	postcondition	captures	essential	design	information	and	need	not
(should	not)	be	changed.

If	 a	 refined	 postcondition	 is	 not	 used,	 the	 public	 postcondition	 takes	 its	 place	 and
represents	the	only	information	known	about	the	effect	of	the	subprogram,	even	to	internal
callers.	If	the	public	postcondition	is	not	used,	it	is	taken	to	be	true,	which	is	easily	proved
from	any	refined	postcondition	that	might	exist.

In	 the	 earlier	 implementation	 of	Make_Circle,	 the	SPARK	 tools	 cannot	 prove	 that	 the
public	 postcondition	 follows	 from	 the	 refined	 postcondition.	 This	 is	 because	 the	 public
postcondition	is	written	in	terms	of	function	In_Bounds,	and	the	effect	In_Bounds	has	on
the	 private	 components	 of	Circle	 is	 not	 known	 to	 the	 SPARK	 tools.	We	 need	 to	 add	 a
refined	postcondition	to	In_Bounds:

The	refined	postcondition	asserts	 that	 the	value	returned	by	In_Bounds	 is	 the	same	as
that	 given	 by	 its	 implementation.	 Of	 course	 this	 is	 extremely	 redundant.	 SPARK	 has	 a
special	 rule	 that	 helps	 in	 cases	 like	 this.	 When	 an	 expression	 function	 is	 used	 (see
Section	 2.2.2),	 the	 body	 of	 the	 expression	 function	 automatically	 serves	 as	 its
postcondition.	 In	effect,	a	postcondition	 is	generated	 that	asserts	 the	expression	function
returns	the	same	value	as	its	implementation.	Such	a	postcondition	is	trivially	proved,	yet
this	behavior	means	expression	functions	can	be	thought	of	as	fragments	of	logic	that	have
been	factored	out	of	the	assertions.	In	effect,	expression	functions	are	pure	specification.
Thus,	we	can	more	easily	write	In_Bounds	like	this:

Expression	 functions	 are	 often	 fairly	 short	 and	 make	 excellent	 candidates	 for	 being
inline	expanded.8	 A	 common	 idiom	 is	 to	 declare	 the	 function	 in	 the	 visible	 part	 of	 the



package	using	the	Inline	aspect	and	implement	it	as	an	expression	function	in	the	private
part	 of	 the	 package	 specification.	 Here	 the	 specification	 of	 Shapes3	 illustrates	 this
approach:

The	 SPARK	 tools	 can	 now	 prove	 that	 Make_Circle	 satisfies	 its	 public	 postcondition
because	 it	 “knows”	what	In_Bounds	 does.	 Furthermore,	 the	 refined	 postcondition	 is	 no
longer	needed	on	Make_Circle	in	this	case	because	In_Bounds	captures	all	the	necessary
information	in	a	way	that	is	also	usable	to	internal	subprograms.	Thus	we	have	come	full
circle	and	can	remove	the	Refined_Post	aspect	on	Make_Circle	as	well.



The	 moral	 of	 this	 story	 is,	 try	 to	 implement	 functions	 used	 in	 public	 assertions	 as
expression	functions	in	the	private	section	of	a	package’s	specification	or	in	the	package’s
body.

We	finish	this	section	by	noting	that	private	information	may	also	include	the	internal
state	of	a	package	such	as	any	global	data	that	it	contains.	Much	of	the	previous	discussion
applies	 equally	 to	 the	 case	when	 a	 public	 assertion	 needs	 to	 access	 such	 internal	 state.
However,	 in	 that	 case	 the	 implementation	 of	 any	 functions	 used	 in	 the	 assertion	would
need	to	be	in	the	package	body	where	the	package’s	internal	state	can	be	accessed;	being
in	the	private	part	of	the	specification	would	not	be	enough.

6.2.4	 Type	Invariants9

So	 far	we	 have	 discussed	 assertions	 that	 are	 attached	 to	 subprograms	 and	 that	 describe
conditions	 associated	 with	 calling	 subprograms	 or	 with	 the	 values	 returned	 by
subprograms.	However,	Ada	also	allows	you	to	attach	assertions	to	the	types	themselves.
Such	assertions	describe	properties	of	all	objects	of	those	types.	In	this	section	we	describe
type	invariants	and	give	some	hints	about	how	SPARK	may	support	them	in	the	future.

In	 package	 Shapes3	 in	 the	 previous	 section,	 a	 precondition	 was	 used	 to	 ensure	 that
Circle	objects	 are	 sensible	 before	 passing	 them	 to	 function	 Inside_	 Circle	 .	 If	 the
package	provided	many	subprograms,	each	would	presumably	need	similar	preconditions
for	all	Circle	parameters.

Alternatively,	 one	 could	 apply	 postconditions	 on	 all	 subprograms	 to	 check	 that	 the
Circle	 objects	 returned	 by	 them	 are	 sensible.	 This	 was	 done	 with	 the	 Make_Circle
function.	Because	 the	Circle	 type	 is	private,	 it	 is	not	necessary	 to	do	both.	Circles	can
only	be	changed	by	the	subprograms	in	the	package.	If	all	subprograms	that	return	circles
return	 only	 valid	 circles,	 the	 subprograms	 that	 accept	 circles	 can	 just	 assume	 they	 are
valid.

In	any	case,	the	assertion	we	are	trying	to	apply	–	that	all	circles	are	entirely	inside	the
workspace	–	is	really	a	restriction	on	the	type	Circle	and	not	a	restriction	associated	with
the	 procedures	 that	 manipulate	 circles.	 Ada	 provides	 a	 way	 to	 express	 this	 idea	 more
directly	using	a	type	invariant.	The	following	specification	of	package	Shapes4	illustrates
the	approach:



The	only	 change	 relative	 to	 the	 earlier	Shapes3	 package	 is	 that	 the	 condition	 on	 the
circle	 being	 in	 the	 workspace	 has	 been	 moved	 from	 being	 a	 precondition	 of
Inside_Circle	and	a	postcondition	of	Make_Circle	 to	being	an	invariant	of	the	Circle
private	type.	Notice	that	in	the	expression	used	for	the	type	invariant	the	name	of	the	type
itself,	Circle	,	is	used	as	a	stand-in	for	the	object	of	that	type	being	checked.

Type	invariants	can	only	be	applied	to	private	types.	The	condition	they	assert	is	only
enforced	at	the	“boundary”	of	the	package	that	implements	the	type.	Inside	that	package,
objects	 may	 go	 through	 intermediate	 states	 where	 the	 invariant	 is	 temporarily	 false.
However,	 the	 invariant	 is	 checked	whenever	 a	public	 subprogram	 returns	 to	 ensure	 that



objects	seen	by	the	clients	of	the	package	are	always	in	a	proper	state.	In	this	respect,	type
invariants	 are	 somewhat	 like	 postconditions	 that	 are	 automatically	 applied	 to	 all	 public
subprograms.	Because	SPARK	does	not	currently	support	type	invariants,	their	effect	could
be	simulated,	in	large	measure,	by	tediously	defining	appropriate	postconditions.

Package	Shapes4	 as	 currently	 defined	 provides	 no	 default	 initialization	 for	 a	 Circle
object.	Merely	declaring	a	Circle	may	cause	the	type	invariant	to	fail	as	type	invariants
are	also	checked	after	default	 initialization	and	 the	 initial	values	of	 the	components	of	a
Circle	are	indeterminate.

Sensible	default	initialization	can	be	specified	by	simply	adding	appropriate	initializers
to	the	components	of	the	record	defining	Circle	:

A	default	initialized	Circle	will	now	obey	its	invariant.

Once	 SPARK	 supports	 type	 invariants,	 it	 will	 generate	 verification	 conditions	 at	 each
place	where	an	invariant	check	is	needed	that,	if	proved,	will	show	that	the	check	cannot
fail.

6.2.5	 Subtype	Predicates
In	addition	to	type	invariants,	Ada	also	allows	assertions	to	be	applied	to	nonprivate	types
in	 the	 form	 of	 subtype	 predicates.	 In	 some	 ways,	 subtype	 predicates	 are	 similar	 to
constraints,	such	as	range	constraints,	that	limit	the	allowed	values	of	a	subtype.	They	are
checked	 in	 similar	 places.	 However,	 it	 is	 natural	 to	 describe	 subtype	 predicates	 as
assertions	 because,	 like	 other	 kinds	 of	 assertions,	 they	 are	 conditions	 of	 arbitrary
complexity	 provided	 by	 the	 programmer	 and	 are	 under	 the	 control	 of	 the	 the	 assertion
policy.

Dynamic	Predicates10

A	type	can	be	considered	a	set	of	values	 (a	domain)	and	a	set	of	operations	 that	can	be
applied	 to	 those	 values.	 Ada’s	 subtype	 declaration	 creates	 a	 subtype	 by	 specifying	 a
subset	of	the	domain	of	the	base	type.	Consider,	for	example,

Instead	 of	 being	 the	 entire	 set	 of	 values	 associated	 with	 Natural,	 Pixel_

Coordinate_Type	is	associated	with	a	subset	of	those	values	in	the	range	from	0	to	1023.

While	 this	 facility	 is	useful,	 it	 is	also	quite	 limited.	To	define	a	more	complex	subset
requires	a	more	general	method	of	specification.	Dynamic	predicates	allow	you	to	define
which	values	are	in	the	subset	by	using	an	arbitrary	condition,	for	example,



As	with	the	Type_Invariant	aspect,	when	the	name	of	the	type	appears	in	the	condition,	it
is	interpreted	as	a	stand-in	for	the	value	being	tested.	If	the	condition	is	true	the	value	is	in
the	 subtype	 being	 defined.	 In	 this	 example	 Even_Type	 has	 values	 that	 are	 even	 natural
numbers.

As	another	example	consider	the	following:

Here	 the	 values	 of	 Prime_Type	 are	 the	 natural	 numbers	 for	 which	 function	 Is_Prime
returns	true	–	presumably	prime	numbers.

The	precise	locations	where	dynamic	predicates	are	checked	is	given	in	section	3.2.4	of
the	Ada	 Reference	Manual	 (2012),	 but	 intuitively	 they	 are	 checked	 in	 the	 same	 places
where	the	simpler	constraints	are	checked:	during	assignment	to	an	object,	when	passing
values	as	parameters	to	subprograms,	and	so	forth.	For	example,	if	E	is	of	type	Even_Type,
an	expression	such	as

raises	 Assertion_Error	when	 the	 expression	 (A	 +	 B)	 /	 2	 results	 in	 an	 odd	 number.
Notice	 that	 although	 the	dynamic	predicate	 is	 like	a	kind	of	user-defined	constraint,	 the
Constraint_Error	exception	is	not	used	if	 the	predicate	fails.	The	checking	of	dynamic
predicates	is	controlled	by	the	assertion	policy	just	as	with	other	kinds	of	assertions.

When	 SPARK	 does	 support	 dynamic	 predicates,	 it	 will	 likely	 still	 impose	 some
restrictions	on	their	use	as	compared	to	full	Ada.	For	example,	consider	the	following	type
definition:

Instances	of	 the	Lower_Half	 type	represent	points	 in	 the	first	quadrant	 that	are	below
the	 line	 .	 However,	 in	 full	 Ada	 the	 dynamic	 predicate	 is	 not	 checked	 when
individual	components	are	modified.	Thus,	if	Point	were	a	variable	of	type	Lower_Half,
the	program	could	set	Point.X	:=	0	without	causing	Assertion_Error	to	be	raised.	It	is
likely	SPARK	will	close	that	loophole	by	forbidding	dynamic	predicates	that	depend	on	the
components	of	a	composite	type	such	as	in	this	example.

Dynamic	predicates	that	depend	on	global	variables,	for	example,	by	calling	a	function
F	 that	 reads	 such	a	variable,	 also	 create	problems.	Consider,	 for	 example,	 the	 following
dynamic	predicate:



Because	the	global	variable	might	change	during	the	life	of	the	program,	a	value	of	type
Example_Type	might	sometimes	be	valid	(in	the	subtype)	and	sometimes	not,	even	if	the
value	itself	does	not	change.	It	is	likely	SPARK	will	forbid	examples	such	as	this	as	well.

Static	Predicates

Dynamic	predicates	are	very	general,	but	there	is	a	price	to	be	paid	for	their	generality.	It
is	not	reasonable	(or	normally	even	possible)	for	the	compiler	to	compute	the	membership
of	a	subtype	defined	with	a	dynamic	predicate.	As	a	result,	subtypes	defined	with	dynamic
predicates	cannot	be	used	in	certain	areas	where	subtypes	are	allowed.

As	an	example,	consider	the	following	case	statement	in	which	the	selector,	N,	has	type
Natural:

Ada’s	 full	coverage	 rules	 require	 that	 every	possible	 value	of	N	 be	 accounted	 for	 in	 the
various	when	clauses.	In	this	example	that	 is	not	 the	case	since	because	there	are	natural
numbers	 that	 are	 neither	 even	 nor	 prime.	However,	 the	 compiler	 cannot	 be	 expected	 to
know	 this	without	understanding	 the	detailed	 semantics	of	 the	predicates	used	 to	define
the	subtypes.	Those	predicates	might	involve	calling	functions	of	significant	complexity,
such	as	is	the	case	for	Prime_Type	in	this	example.	Thus,	the	example	is	ruled	out	because
it	uses	subtypes	defined	with	dynamic	predicates.

Ada	defines	a	more	restricted	form	of	subtype	predicate,	called	a	static	predicate,	 that
does	support	many	(although	not	all)	of	the	usual	features	of	subtypes	while	still	allowing
some	degree	 of	 customization.	 Furthermore,	 at	 the	 time	 of	 this	writing,	 SPARK	 supports
static	predicates.

The	 precise	 rules	 for	 the	 kinds	 of	 predicate	 specifications	 that	 can	 be	 used	 as	 static
predicates	is	given	in	section	3.2.4	of	the	Ada	Reference	Manual	(2012).	However,	as	one
example,	we	show	a	static	predicate	using	a	membership	test	to	specify	a	non-contiguous
range	of	values.	Consider	a	package	for	managing	a	game	of	Scrabble.	The	specification
of	the	package	might	be,	in	part,	shown	as	follows:



Here	a	subtype	Scrabble_Letter	is	used	to	constrain	Character	to	just	the	uppercase
letters	used	by	the	game.	The	subtype	Scrabble_Value	is	defined	with	a	static	predicate	to
only	 contain	 the	 values	 that	 are	 actually	 used	 on	 the	 various	 letters.	 The	 type
Scrabble_Word	 is	 an	unconstrained	 array	of	 letters	 intended	 to	hold	 a	 single	word.	The
function	Raw_Score	adds	together	the	value	of	the	letters	in	the	given	word	and	returns	it
as	a	value	in	the	range	from	0	to	100.	The	precondition	on	Raw_Score	ensures	that	words
of	no	 longer	 than	 ten	characters	are	used.	This	 is	 the	 justification	for	 limiting	 the	return
value	 to	 100	 (the	 maximum	 value	 of	 a	 letter	 is	 10).	 Notice	 that	 in	 this	 case	 the
postcondition	is	stated	using	a	subtype.

The	 type	 Scrabble_Word	 cannot	 easily	 be	made	 into	 a	 fixed	 size	 of	 an	 array	 of	 ten
Scrabble_Letter	because	there	 is	no	character,	such	as	a	space,	 in	Scrabble_Letter	 to
use	as	padding	needed	for	short	words.	You	might	be	tempted	to	define	Scrabble_Letter
using	a	static	predicate	like	this:

However,	 the	body	of	 the	package	uses	Scrabble_Letter	 as	an	 index	subtype	 for	an
array,	and	subtypes	with	predicates	can	never	be	used	in	that	situation.	Here	is	the	body	of
package	Scrabble:



A	lookup	table	is	defined	to	translate	Scrabble	letters	into	their	corresponding	values.	It
is	declared	as	a	constant	with	a	static	expression	as	an	initializer	so	that	even	though	it	is
read	by	function	Raw_Score,	it	is	not	necessary	to	declare	it	as	global	input.

The	SPARK	 tools	are	able	to	work	with	the	subtype	defined	with	a	static	predicate	and
prove	this	function	obeys	its	postcondition.	The	Loop_Invariant	pragma	is	used	 to	help
the	tools	handle	the	loop.	Loop	invariants	are	discussed	in	detail	in	Section	6.4.

6.2.6	 Contract	Cases
It	 is	 common	 for	 preconditions	 to	 divide	 the	 input	 space	 of	 a	 subprogram	 into	 several
equivalence	 classes	 (disjoint	 subdomains)	where	 each	 class	 has	 its	 own	 postconditions.
Although	we	 can	use	Pre	 and	Post	 aspects	 to	 handle	 contracts	 of	 arbitrary	 complexity,
SPARK	provides	the	Contract_Cases	aspect	to	simplify	writing	contracts	for	subprograms
that	divide	their	input	space	into	a	substantial	number	of	different	equivalence	classes.

As	 a	 simple	 example,	 consider	 a	 function	 Sign	 that	 takes	 an	 arbitrary	 integer	 and
returns	 1	 if	 the	 integer	 is	 negative,	 0	 if	 the	 integer	 is	 zero,	 and	 +1	 if	 the	 integer	 is
positive.	Such	a	function	might	be	declared	and	contract	specified	as	follows:



This	 example	 shows	 three	 contract	 cases.	 Each	 case	 consists	 of	 a	Boolean	 condition
intended	to	be	checked	when	the	subprogram	is	called	followed	by	a	Boolean	consequent
that	is	checked	when	the	subprogram	returns.	In	effect,	each	contract	case	is	like	a	mini-
precondition	followed	by	a	corresponding	postcondition.

When	the	subprogram	is	called,	all	of	the	conditions	are	checked	and	exactly	one	must
be	 true.	When	 the	subprogram	returns	 the	consequent	associated	with	 the	condition	 that
was	true	is	checked.	At	runtime	Assertion_Error	is	raised	if

none	of	the	conditions	are	true	at	the	time	of	the	call,
more	than	one	of	the	conditions	are	true	at	the	time	of	the	call,	or
the	 consequent	 associated	 with	 the	 true	 condition	 is	 false	 when	 the	 subprogram
returns.

The	SPARK	tools	generate	verification	conditions	to	prove

the	 conditions	 cover	 the	 entire	 input	 domain	 of	 the	 subprogram	 (and	 thus	 it	 will
always	be	the	case	that	one	of	them	will	be	true),
the	conditions	are	mutually	exclusive,	and
the	 subprogram	 always	 returns	 with	 the	 consequent	 true	 for	 each	 corresponding
precondition.

In	other	words,	 the	 tools	generate	verification	conditions	 to	show	that	Assertion_Error
will	never	be	raised.

It	 is	 important	 that	 the	 contract	 cases	 divide	 the	 entire	 input	 domain	 into	 disjoint
subdomains.	 To	 illustrate,	 consider	 a	 function	 In_Unit_Square	 as	 an	 extension	 of	 our
Sign	function.	In_Unit_Square	returns	+1	if	the	given	X,	Y	coordinates	are	inside	a	square
centered	 on	 the	 origin	 with	 a	 side	 length	 of	 two.	 Otherwise	 the	 function	 returns	 0	 for
points	 in	 the	 first	 and	 third	 quadrants	 and	 1	 for	 points	 in	 the	 second	 and	 fourth
quadrants.	The	following	specification	of	this	function	using	Contract_Cases	must	ensure
that	each	case	is	disjoint.



Here	we	use	others	to	specify	a	case	not	handled	by	the	other	cases	(the	case	where	the
given	point	is	on	the	square).	If	others	appears,	it	must	be	last.	Because	others	is	always
true,	 it	 is	 trivial	 to	show	that	at	 least	one	of	 the	previous	cases	will	always	be	available.
Showing	that	the	four	cases,	one	for	each	quadrant,	are	really	disjoint	is	less	obvious,	but
the	SPARK	tools	will	take	care	of	that.

The	 implementation	 of	 In_Unit_Circle	 could	 follow	 the	 structure	 of	 the	 contract
cases,	but	it	need	not.	Here	is	an	implementation	based	on	an	if…		elsif	…	chain:

This	 implementation	 takes	 advantage	 of	 the	 fact	 that	 the	 first	 succeeding	 condition
stops	the	comparisons.	The	conditions	in	the	implementation	are	not	mutually	exclusive,
but	they	do	not	need	to	be.	The	SPARK	tools	will	generate	verification	conditions	to	show
that	 this	 implementation	 does	 meet	 the	 contract	 cases	 provided	 in	 the	 specification.



However,	this	example	shows	that	as	the	number	of	parameters	(and	input	global	items)	to
the	subprogram	increases,	the	dimensionality	of	the	space	that	must	be	partitioned	over	the
contract	cases	increases	as	well.

Also	 notice	 that	 the	 consequent	 of	 a	 contract	 case	 is	 evaluated	 after	 the	 subprogram
returns,	 and	 so	 it	 is	 permitted	 to	 use	 the	 ’Result	 and	 ’Old	 attributes	 there	 as	 in
postconditions.

Finally	 we	 note	 that	 it	 is	 permitted	 to	 use	 the	 normal	 Pre	 and	 Post	 aspects	 with
Contract_Cases.	The	semantics	are	largely	intuitive:	the	pre-	and	postconditions	must	be
obeyed	 in	 addition	 to	 the	 contract	 cases.	 See	 the	 SPARK	 2014	 Reference	 Manual
(SPARK	Team,	2014a)	for	the	full	details.

6.2.7	 Runtime	Errors	in	Assertions
Because	assertions	are	executable,	 the	possibility	exists	 that	a	 runtime	error	could	occur
while	 the	 assertions	 are	 being	 evaluated.	 Thus,	 executing	 an	 assertion	 might	 raise	 an
exception	other	 than	Assertion_Error	because	 of	 problems	 in	 the	 assertion	 itself.	 The
SPARK	 tools	 will	 generate	 verification	 conditions	 for	 the	 assertions	 to	 prove	 that	 they,
along	with	the	rest	of	the	program,	are	free	of	runtime	errors.

If	 the	assertion	 is	possibly	 false	or	outright	 illogical,	 it	 is	 appropriate	 for	 the	 tools	 to
object	to	it.	However,	there	are	situations	in	which	an	assertion	is	mathematically	true	and
yet	 causes	 runtime	 errors	 when	 evaluated.	 There	 is	 only	 one	 way	 that	 can	 happen:
arithmetic	overflow.	If	the	assertion	contains	other	kinds	of	runtime	errors	such	as	division
by	zero	or	accessing	an	array	out	of	bounds,	the	assertion	does	not	make	sense	anyway.

As	 an	 example,	 consider	 the	 following	 silly	 procedure	 with	 a	 precondition	 that
expresses	a	true	fact	about	the	parameters:

The	precondition	asserts	that	the	average	of	the	two	Positive	parameters	is	in	the	range
of	Positive	and	then	does	some	pointless	computations	that	nevertheless	are	completely
free	of	runtime	error	and	obey	the	synthesized	flow	dependency	contract.	There	is	nothing
wrong	 with	 this	 procedure,	 yet	 the	 evaluation	 of	 the	 precondition	 may	 raise
Constraint_Error	 because	 X	 +	 Y	 might	 overflow	 the	 base	 type	 of	 Positive	 .	 The



SPARK	 tools	will	 generate	 an	 unprovable	 verification	 condition	 attempting	 to	 check	 that
overflow	will	not	occur.

One	way	to	work	around	this	is	to	write	the	assertions	carefully	so	that	they	too	will	be
free	of	runtime	error.	However,	you	may	feel	frustrated	by	this,	particularly	if	you	plan	to
deploy	your	program	with	assertion	checking	disabled,	as	we	discuss	in	Section	6.8.	The
assertions	are,	after	all,	 intended	to	be	statements	about	the	design	of	your	system.	Why
can	they	not	be	evaluated	in	the	pure	mathematical	world	where	concerns	about	machine
limitations	do	not	exist?

In	fact,	the	GNAT	compiler	and	SPARK	 tools	provide	some	options	for	controlling	 the
way	overflow	is	handled.	Three	different	overflow	modes	are	provided:

STRICT:	 Overflow	 is	 handled	 as	 according	 to	 the	 Ada	 standard.	 Arithmetic
computations	are	done	in	a	subtype’s	base	type.
MINIMIZED:	Computations	 are	 done	 in	 an	 oversized	 integer	 type	 selected	 by	 the
compiler	such	as	Long_Long_Integer	(which	is	64	bits	for	the	GNAT	compiler).	This
will	not	prevent	all	possibilities	of	overflow,	but	it	will	prevent	many	common	cases
and	remains	reasonably	efficient.
ELIMINATED:	Computations	are	done	in	an	extended	integer	type	with	unbounded
size.	No	overflow	is	possible	although,	conceivably,	Storage_Error	might	be	raised.

The	 overflow	mode	 can	 be	 selected	 separately	 for	 both	 general	 computations	 in	 the
normal	part	of	your	program	and	for	computations	done	in	assertions.	By	default	the	tools
use	 STRICT	 for	 both.	 In	 cases	where	 you	 plan	 to	 deploy	with	 assertions	 disabled,	 you
might	consider	changing	the	overflow	mode	on	assertions	to	ELIMINATED.	This	reduces
the	 number	 of	 verification	 conditions	 that	must	 be	 proved	 in	 the	 assertions	 themselves,
and	 the	 performance	 penalty	 of	 doing	 computations	with	 extended	 integers	will	 not	 be
paid	if	the	assertions	are	not	actually	executed	anyway.	See	the	GNAT	and	SPARK	user’s
guides	 for	more	 information	 about	 overflow	mode	 handling.	We	 show	 a	more	 practical
example	of	these	issues	in	Section	6.7.

Keep	in	mind	that	the	expressions	in	assertions	are	general	and	could	call	functions	that
are	not	 in	SPARK.	Such	functions	might	 raise	any	exception	at	all.	Assertions	might	also
raise	 Storage_Error	 if	 they	 involve	 unbounded	 recursion.	 For	 example,	 if	 the
postcondition	 on	 some	 function	 F	 called	 F	 itself,	 the	 postcondition	 of	 the	 second	 call
would	 be	 checked	 as	 part	 of	 evaluating	 the	 postcondition	 of	 the	 first	 call,	 and	 so	 forth.
This	is	not	necessarily	an	error;	if	the	postcondition	is	written	properly,	it	will	have	a	base
case	that	does	not	entail	calling	F.

For	example,	consider	the	following	specification	of	a	function	Fibonacci	to	compute
Fibonacci	numbers:



We	 leave	 it	 as	 an	 exercise	 to	 the	 reader	 to	 consider	 what	 happens	 if	 the	 Fibonacci
function	is	implemented	recursively	as	well.	It	probably	goes	without	saying	that	recursive
assertions	are	best	avoided.

6.3 	Assert	and	Assume

The	assertions	we	have	seen	so	far	are	contractual	in	that	they	form	part	of	the	design	of
your	system	and	should,	ideally,	be	written	when	the	package	specifications	are	written.	In
this	section	we	look	at	assertions	that	can	be	used	in	the	body	of	a	subprogram	to	make
statements	 about	 a	 computation	 in	 progress.	 In	 essence	 these	 assertions	 are
implementation	details	that,	in	a	perfect	world,	would	be	unnecessary.	However,	because
theorem	proving	is	an	evolving	technology,	it	is	sometimes	necessary	for	you	to	assist	the
tools	by	providing	“stepping	stones”	 that	allow	an	overall	proof	 to	be	built	 from	several
simpler	 proofs.	 In	 the	 language	 of	 mathematics	 the	 assertions	 we	 cover	 in	 this	 section
allow	you	 to	 state,	 in	 effect,	 lemmas	 and	 corollaries	 to	 simplify	 proving	more	 complex
statements.

All	three	of	the	assertions	in	this	section	are	provided	as	pragmas	rather	than	aspects.
This	 is	 because,	 unlike	 the	 previous	 assertions,	 they	 behave	 more	 like	 executable
statements	rather	than	as	information	associated	with	a	declaration.	The	Assert	pragma	is
part	of	Ada,	but	the	other	two	–	Assert_And_	Cut	and	Assume	–	are	specific	to	SPARK.

6.3.1	 Assert
The	Assert	pragma	 allows	 you	 to	 specify	 an	 arbitrary	 condition	 that	 you	 believe	 to	 be
true.	 The	 pragma	 can	 appear	 any	 place	 in	 a	 subprogram	 where	 a	 declaration	 or	 an
executable	statement	can	appear.	Each	assertion	carries	a	proof	obligation	to	show	that	the
specified	condition	is	always	true	at	that	point.	You	can	use	Assert	as	a	kind	of	check	on
your	 thinking.	 Suppose	 in	 the	 middle	 of	 some	 complex	 subprogram	 you	 find	 yourself
saying	something	like,	“X	should	be	greater	than	one	here.”	You	can	express	this	idea	in
the	program	itself	like	this:

When	we	humans	reason	about	programs,	we	make	many	such	statements	in	our	minds.
We	 then	 use	 these	 statements	 to	 reason	 about	 other	 constructs	 appearing	 later	 in	 the
program.	For	example,	we	might	say,	“Because	X	was	greater	than	one	a	few	lines	before,
thus-and-such	an	assignment	statement	will	always	assign	an	in-bounds	value.”	For	each
Assert	pragma	the	SPARK	tools	generate	a	verification	condition	to	check	it.	Likewise,	the
tools	will	use	the	asserted	condition	in	the	hypotheses	of	following	verification	conditions.
Thus	 for	 both	 humans	 and	 SPARK,	 assertions	 can	 help	 clarify	what	 is	 happening	 in	 the
program	and	simplify	the	process	of	deriving	conclusions	about	what	the	code	does.

To	 illustrate	 some	 of	 the	 issues,	 we	 present	 a	 somewhat	 contrived	 example	 of	 a
subprogram	that	calculates	a	student’s	semester	bill	at	a	hypothetical	state	university.	The
specification	 of	 package	 Students	 provides	 the	 necessary	 type	 and	 subprogram
declarations.



The	function	Compute_Bill	 takes	a	suitably	defined	student	 record	and	a	base	 tuition
value	for	in-state	students.	It	returns	the	final	bill	computed	as	a	possibly	adjusted	tuition,
plus	fees	and	insurance	premiums,	minus	any	grants	received	by	the	student.	Notice	that
Compute_Bill	 includes	a	precondition	that	puts	a	 limit	on	the	size	of	 the	Base_Tuition.
An	 alternative	 approach	 would	 be	 to	 define	 a	 subtype	 of	 Money_Type	 that	 encodes	 the
constraint	on	base	tuition	values.

Similarly,	Compute_Bill	 returns	 a	value	of	 type	Money_Type	 suggesting	 that	negative



bills	might	be	possible.	If	that	is	not	intended,	one	could	either	define	a	suitable	subtype	of
Money_Type	or,	perhaps,	use	a	postcondition.

The	 following	 listing	 shows	 an	 implementation	 of	 package	 Students	 that	 passes
SPARK	examination:





This	 implementation	 considers	 a	 number	 of	 conditions	 such	 as	 the	 different	 cost	 of
meal	plans	for	resident	and	nonresident	students,	different	base	fees	for	full-time	and	part-
time	students,	and	special	grants	given	to	high	achieving	students.

At	 the	 time	 of	 this	 writing,	 the	 SPARK	 tools	 have	 trouble	 proving	 that	 the	 final
computation	 of	 the	 bill	 given	 by	((Tuition	+	Fees)	 	 Grants)	 +	 Insurance	 is	 in
range	of	Money_Type.	A	careful	study	of	the	procedure	shows	that	even	if	Tuition,	Fees,
Grants,	and	Insurance	 are	 all	 at	 their	 extreme	values,	 the	overall	bill	 should	 still	 be	 in
range.	Doing	this	review	is	tedious	because	of	the	many	paths	through	the	subprogram	that
need	 to	 be	 considered.	Also,	 the	 overall	 bill	 is	 computed	 by	way	of	 both	 additions	 and
subtractions	so	one	needs	to	consider	all	combinations	of	both	upper	and	lower	bounds	on
the	computed	values	to	be	sure	the	final	result	remains	in	range	in	every	case.

Ideally,	 the	 SPARK	 tools	 would	 do	 all	 this	 work.	 However,	 if	 the	 tools	 are	 having
problems,	you	can	provide	hints	in	the	form	of	Assert	pragmas.	For	example,	you	might
add	the	following	assertions	just	before	the	return	statement:

Armed	with	this	knowledge	the	SPARK	tools	easily	prove	that	the	overall	bill	is	in	range.
The	 tools	 are	 also	 able	 to	 prove	 the	 assertions	 themselves,	 provided	 a	 suitably	 large
timeout	value	 is	used	 (see	Section	9.3),	 thus	proving	 the	entire	 function	 free	of	 runtime
errors.

It	 is	 important	 to	 understand	 that	 the	 assertions	 are	 only	 hints	 to	 the	 SPARK	 tools.	A
future	version	of	the	tools,	or	perhaps	a	different	back-end	prover,	might	be	able	to	prove
the	entire	function	without	the	help	of	the	assertions.	In	this	sense,	the	assertions	are	not
contractual;	they	are	not	part	of	the	subprogram’s	specification.

This	example	illustrates	three	important	concepts:

What	assertions	are	needed,	if	any,	depends	on	the	capabilities	of	the	SPARK	tools	and
the	 theorem	 provers	 they	 use.	 Because	 the	 tools	 are	 always	 evolving,	 you	 may
discover	that	assertions	needed	in	the	past	are	not	needed	in	the	future.
The	Assert	pragma	can	be	used	to	track	down	problems	in	the	proving	process.	We
discuss	this	more	in	Section	9.3.
Even	if	the	SPARK	 tools	do	not	need	the	assertions	to	complete	the	proofs,	 they	can
still	 add	 valuable	 documentation	 to	 your	 program.	 Unlike	 ordinary	 comments,
information	documented	in	Assert	pragmas	is	checkable	by	the	tools	or	alternatively
during	runtime.

6.3.2	 Assert	and	Cut
In	the	last	section	we	made	the	statement,	“The	SPARK	tools	will	use	the	asserted	condition
in	the	hypotheses	of	following	verification	conditions.”	But	what,	exactly,	do	we	mean	by
“following	 verification	 conditions”?	 We	 must	 first	 define	 this	 concept	 more	 precisely



before	the	use	and	purpose	of	the	Assert_And_Cut	pragma	will	make	sense.

At	 each	 place	 in	 the	 program	 where	 a	 check	 is	 needed,	 the	 SPARK	 tools	 generate	 a
verification	 condition	 concluding	 that	 the	 check	will	 succeed.	 The	 hypotheses	 used	 are
gathered	 from	 statements	 encountered	 on	 the	 execution	 path	 from	 the	 beginning	 of	 the
subprogram	to	the	point	of	the	check.	If	there	is	more	than	one	path	to	the	check,	the	tools
must	consider	all	of	those	paths.	This	is	necessary	to	show	that	no	matter	how	execution
arrives	 at	 a	 particular	 point,	 the	 condition	 being	 checked	 will	 succeed.	 Consider	 the
following	simplified	version	of	Compute_Bill:

The	SPARK	tools	will	wish	to	show	that	Base_Tuition	+	Fees	does	not	go	out	of	range
of	Money_Type	 in	the	return	statement.	However,	 in	the	example	there	are	two	paths	by
which	 the	 final	 statement	 can	 be	 reached	 depending	 on	 the	 outcome	of	 the	 conditional.
Both	of	those	paths	must	be	considered.

The	SPARK	 tools	provide	 two	basic	strategies.	Using	the	one	proof	per	check	 strategy,
the	 tools	 generate	 a	 single	 verification	 condition	 that	 simultaneously	 considers	 all	 the
paths	to	the	point	of	the	check.	Using	the	one	proof	per	path	strategy,	the	tools	generate
separate	verification	conditions	for	each	path.	There	is	also	a	progressive	mode	in	which
the	tools	first	attempt	a	single	proof	for	the	check	but,	failing	that,	will	attempt	to	prove
individual	paths.

The	information	known	when	attempting	a	proof	depends	on	the	path	taken	to	reach	the
check.	In	the	previous	example,	if	the	then	branch	of	the	conditional	is	taken,	the	prover
knows	that	Student.Part_Time	is	true	and	Fees	has	the	value	100.00.	Conversely,	if	the
else	branch	is	taken,	the	prover	knows	that	Student.Part_Time	is	false	and	Fees	has	the
value	 500.00.	 This	 knowledge	 is	 added	 to	 the	 hypotheses	 of	 the	 verification	 condition
checking	Base_Tuition	+	Fees.

In	the	case	where	one	verification	condition	is	generated	for	each	path,	the	verification
conditions	 are	 relatively	 simple	 but	 there	 are	 more	 of	 them.	 Also,	 failure	 to	 prove	 a
verification	condition	yields	specific	information	about	which	path	is	causing	the	problem.
On	 the	 other	 hand,	 where	 one	 verification	 condition	 is	 generated	 for	 each	 check	 that
includes	 information	from	all	paths	 leading	 to	 that	check,	 the	verification	conditions	are
fewer	but	more	complicated.	Also,	if	the	proof	fails,	teasing	out	specific	information	about
the	failure	is	harder.



It	is	important	to	understand	that	every	check	after	the	conditional	will	have	two	paths
leading	to	it	because	of	the	two	paths	produced	by	the	conditional.	This	includes	following
conditional	 statements.	 In	 general,	 as	 the	 control	 flow	 complexity	 of	 a	 subprogram
increases,	 the	 number	 of	 paths	 tends	 to	 increase	 exponentially.	 Consider	 the	 following
example,	also	a	simplified	version	of	Compute_Bill:

There	 are	 two	 paths	 through	 the	 first	 conditional	 statement.	Each	 of	 those	 two	 paths
split	when	Student.GPA	>=	3.00	 is	 tested.	The	paths	 that	 enter	 the	 second	 conditional
split	again	on	the	innermost	if	statement.	Overall,	there	are	six	ways	to	reach	the	return
statement	 and,	 thus,	 six	 different	 collections	 of	 hypotheses	 that	 need	 to	 be	 considered
when	proving	(Base_Tuition	+	Fees)	 		Grants	is	in	range.

In	 the	 version	 of	Compute_Bill	 shown	 earlier,	 there	 are	 several	 control	 structures	 in
sequence,	each	multiplying	the	number	of	paths,	until	 the	total	number	of	ways	to	reach
the	 final	 return	 statement,	 and	 the	 Assert	 pragmas	 just	 before	 it,	 is	 quite	 large.
Regardless	of	the	proof	strategy	used,	this	increases	the	computational	burden	of	proving
the	subprogram.

One	approach	to	dealing	with	this	problem	is	to	factor	large	subprograms	into	several
smaller	ones.	The	idea	is	to	lift	out	relatively	independent	blocks	of	code	from	the	large
subprogram	and	transform	those	blocks	into	(probably	local)	helper	subprograms.	Because
the	SPARK	 tools	do	 their	analysis	on	a	per-subprogram	basis,	 the	number	of	paths	 in	 the
helper	 subprograms	 do	 not	 multiply	 each	 other.	 Instead,	 the	 effect	 of	 the	 helper
subprograms,	and	whatever	paths	they	contain	internally,	is	summarized	by	their	contracts.



Another	 approach,	 that	 we	 introduce	 here,	 is	 to	 add	 one	 or	 more	 cut	 points	 to	 the
subprogram.	A	cut	point	is	a	place	in	the	subprogram	where	all	incoming	paths	terminate
and	 from	 which	 a	 single	 new	 path	 is	 outgoing.	 All	 information	 gathered	 by	 the
SPARK	tools	on	the	incoming	paths	is	forgotten.

The	Assert_And_Cut	pragma	works	 like	 the	Assert	 pragma	 in	 that	 it	 creates	a	proof
obligation	and	provides	 information	 that	 the	SPARK	 tools	can	use	on	 the	outgoing	paths.
However,	 unlike	 Assert,	 the	 Assert_And_Cut	 pragma	 introduces	 a	 cut	 point.	 Only	 a
single	 path	 leaves	 Assert_And_Cut.	 Furthermore,	 the	 only	 information	 known	 to	 the
SPARK	 tools	immediately	after	Assert_And_Cut	 is	 that	which	 is	specifically	stated	 in	 the
pragma.

As	an	example,	here	is	a	version	of	the	Students	package	body	using	Assert_And_Cut
in	function	Compute_Bill:





Here	each	intermediate	result	of	interest	is	stated	with	Assert_And_Cut	as	soon	as	it	is
computed.	 The	 multiple	 paths	 generated	 by	 the	 preceding	 control	 structures	 are	 thus
blocked,	 and	 the	 number	 of	 paths	 do	not	multiply	 as	 one	goes	 down	 the	 function.	This
keeps	 the	 verification	 conditions	 simple	 or	 small	 in	 number	 depending	 on	 the	 proof
strategy	 being	 used	 and	 speeds	 up	 the	 proving	 process.	 However,	 notice	 how	 it	 is
necessary	 for	 each	Assert_And_Cut	 to	 reassert	 any	 information	 that	 needs	 to	be	 carried
forward.

6.3.3	 Assume
The	Assume	pragma	is	very	similar	to	the	Assert	pragma	in	many	respects.

1.	 Assume	contains	a	boolean	expression	that	is	evaluated	if	 the	assertion	policy	 is	set
to	 Check.	 If	 that	 expression	 returns	 false	 the	 Assertion_Error	 exception	 is
raised.

2.	 The	 SPARK	 tools	 use	 the	 asserted	 condition	 in	 the	 hypotheses	 of	 verification
conditions	that	follow	the	Assume.

However,	unlike	Assert,	 the	Assume	pragma	does	not	create	a	proof	obligation.	 Instead,
the	SPARK	tools	just	take	the	assumed	condition	as	a	given.	Thus,	it	is	important	for	you	to
ensure	that	the	assumed	condition	is	true.	However,	because	Assume	is	executable,	like	all
assertions,	 a	 false	 assumption	may	 be	 detected	 during	 testing	 by	way	 of	 the	 exception
raised	when	it	is	evaluated.	This	means	the	safety	of	the	assumption	depends	entirely	on
code	review	and	testing	rather	than	on	proof.

In	general,	you	should	use	Assume	only	under	special	circumstances	and	only	with	great
care.	 To	 illustrate	 the	 potential	 danger,	 consider	 the	 effect	 of	 an	 assumption	 that	 is
blatantly	false:

Verification	 conditions	 following	 this	 assume	 will	 contain	 a	 false	 hypothesis.	 When
conjoined	with	the	other	hypotheses,	the	result	is	a	false	antecedent.	Because	a	verification



condition	is	just	an	implication,	a	false	antecendent	allows	the	verification	condition	to	be
proved	 no	 matter	 what	 the	 consequent	 might	 be.	 You	 can	 prove	 anything	 from	 a
contradiction.	Thus,	 the	preceding	Assume	allows	all	 following	verification	conditions	 to
be	proved.

Of	 course	 this	 is	 a	 silly	 example.	 It	 would	 fail	 in	 testing	 immediately	 (provided	 the
program	was	 compiled	with	 an	 assertion	 policy	 of	Check).	Also,	 it	 seems	 clear	 nobody
would	 purposely	 write	 such	 an	 assumption.	 However,	 some	 contradictory	 assumptions
may	be	less	clear.	For	example,	consider	the	following	Assume,	where	A	is	an	array:

Again,	 all	 verification	 conditions	 after	 this	 contradictory	 assumption	 would	 be
provable	–	even	verification	conditions	that	had	nothing	to	do	with	the	array	A.

Contradictory	 assumptions	might	 evade	 detection	 during	 code	 review	 if	 they	 contain
complicated	conditions,	 but	 such	an	 assumption	would	 fail	 at	 runtime	and	 so	 should	be
easily	detectable	during	 testing.	The	 real	danger	 is	with	assumptions	 that	might	only	be
false	sometimes,	as	in	this	example:

Using	 the	 assumption,	 the	SPARK	 tools	 successfully	prove	 that	B	/	C	 does	 not	 entail
division	 by	 zero.	Yet	what	 if	 the	 assumption	 is	wrong?	 If	 the	 Assume	 is	 changed	 to	 an
Assert,	 the	 tools	will	 try	 to	prove	 that	C	>	0	 is	 true	 in	 all	 cases.	The	Assume	 does	 not
carry	that	requirement.

So	what	 is	 the	purpose	of	Assume?	The	pragma	allows	you	 to	 inject	 information	 into
your	 program	 that	 you	 know	 to	 be	 true	 for	 reasons	 unrelated	 to	 the	 program’s	 logic.
Without	 this	 information	 the	 SPARK	 tools	 may	 require	 you	 to	 add	 error	 handling	 or	 do
other	processing	 that	 in	 the	 larger	view	of	your	 system	you	know	 to	be	unnecessary.	 In
effect,	Assume	 allows	you	 to	 encode	 information	 about	 the	 external	world	 that	 the	 tools
need	to	know	but	otherwise	would	not.

As	an	example,	consider	an	embedded	system	using	a	64-bit	counter	as	a	kind	of	clock.
The	following	procedure	Tick	is	called	each	millisecond	to	update	the	clock	value	and	do
other	housekeeping:



In	this	simple	program,	the	SPARK	tools	cannot	prove	the	incrementing	of	Clock_Value
will	 stay	 in	 range.	 However,	 if	 the	 system	 initializes	 at	 boot	 time	 and	 increments
Clock_Value	only	once	every	millisecond,	 it	would	 take	more	 than	290	million	years	 to
reach	its	maximum	value.

You	could	push	the	proofs	through	by	adding	error	handling:

In	the	event	that	the	system	is	still	running	when	the	next	supercontinent	forms,	it	now	has
the	 sense	 to	 reboot	 and	 re-initalize	 itself.	 More	 importantly,	 the	 SPARK	 tools	 are	 now
convinced	 that	Clock_Value	+	1	 is	safe.	However,	adding	error	handling	 like	 this	 for	a
condition	that	will	never	arise	in	any	realistic	scenario	is	more	obscure	than	useful.

Instead,	this	is	an	appropriate	place	to	use	Assume:

Now	 the	 SPARK	 tools	 discharge	 the	 verification	 condition	 associated	 with	 incrementing
Clock_Value	 without	 complaint.	 Furthermore,	 the	 assumption	 made	 to	 do	 so	 is
documented	in	the	code	in	an	easy-to-find	manner.	The	assumption	will	potentially	even
be	checked	at	runtime.	In	effect,	information	about	the	external	environment	in	which	the
program	 runs,	 namely	 that	 it	will	 be	 rebooted	at	 least	 every	290	million	years,	 is	 being
made	known	to	the	tools	so	they	can	account	for	that	information	in	the	proofs.



The	preceding	example	seems	compelling,	but	even	here	caution	is	necessary.	Perhaps
at	a	later	time	Clock_Type	is	changed	to	be

Now	Clock_Value	will	reach	its	maximum	value	after	only	24.8	days.	It	is	very	possible
the	 system	might	 run	 that	 long	causing	Assertion_Error	when	 the	 assumption	 fails	 or
Constraint_Error	 when	 Clock_Value	 overflows	 if	 assertion	 checking	 is	 off.	 The
SPARK	tools	will	not	detect	this	problem	because	it	is	masked	by	the	assumption.	Of	course
after	making	such	a	change,	all	assumptions	should	be	reviewed.	Fortunately,	the	Assume
pragmas	stand	out	in	the	program	making	it	easy	to	locate	them.

We	make	use	of	the	Assume	pragma	in	Section	9.2	when	using	transitivity	in	the	proof
of	the	selection	sort	introduced	in	Chapter	1.

6.4	 Loop	Invariants

Loops	are	a	problem.	Each	execution	of	a	loop	is	a	separate	path	through	the	subprogram
being	analyzed.	Yet,	 in	general,	 the	number	of	 times	a	 loop	executes	 is	only	discovered
dynamically.	As	a	result	there	are	potentially	an	unknown	number	of	paths	around	a	loop
and	leading	away	from	that	loop.

Imagine	unwinding	a	loop	so	that	there	are	as	many	sequential	executions	of	its	body	as
there	are	loop	passes.	Constructs	after	the	loop	might	be	reachable	after	one	unwinding	or
after	 two	 unwindings,	 or	 after	 any	 number	 of	 unwindings.	 Verification	 conditions
generated	for	checks	after	 the	 loop	need	 to	account	 for	each	of	 these	potentially	 infinite
number	 of	 possibilities.	The	 same	 applies	 for	 constructs	 in	 the	 loop	body	 itself	 that	 are
repeatedly	 visited	 during	 the	 loop’s	 execution.	 In	 this	 section	 we	 look	 at	 the
Loop_Invariant	 pragma	 provided	 by	 SPARK	 for	 managing	 loops.	 We	 describe	 the
Loop_Variant	pragma	used	for	proving	loop	termination	in	Section	6.5.

Using	the	Loop_Invariant	pragma	the	programmer	can	assert	a	Boolean	condition	that
must	 be	 true	 at	 a	 particular	 point	 in	 the	 loop	 whenever	 that	 point	 is	 reached.	 The
SPARK	tools	generate	verification	conditions	considering	every	path	that	can	reach	the	loop
invariant.	If	 these	verification	conditions	can	be	discharged,	 the	 invariant	will	always	be
true.	Like	 all	 assertions,	 loop	 invariants	 are	 also	 executable,	 depending	on	 the	 assertion
policy,	and	will	raise	Assertion_Error	if	they	fail.

One	 special	 feature	 of	 the	 Loop_Invariant	 pragma	 is	 that	 it	 is	 a	 cut	 point	 as	 we
described	in	Section	6.3.2.	All	paths	that	reach	the	invariant	are	considered	terminated	at
that	 point.	 Only	 one	 path	 leaves	 the	 invariant.	 This	 behavior	 is	 essential	 to	 control	 the
otherwise	unbounded	number	of	paths	a	program	with	a	loop	might	contain.

The	invariant	splits	 the	loop	into	three	parts:	 the	path	that	enters	the	loop	for	the	first
time	and	terminates	on	the	invariant,	the	path	that	goes	from	the	invariant	around	the	loop
and	terminates	on	the	invariant	again,	and	finally,	the	path	that	goes	from	the	invariant	and
leaves	the	loop.	Of	course	each	of	these	parts	may	entail	multiple	paths	if	there	are	other
control	 structures	 before,	 after,	 or	 inside	 the	 loop.	 However,	 this	 approach	 fixes	 the
number	of	paths	 to	something	the	SPARK	 tools	can	know	rather	 than	having	that	number
depend	on	the	number	of	times	the	loop	executes.



A	 consequence	 of	 the	 invariant	 being	 a	 cut	 point	 is	 that	 it	must	 appear	 immediately
inside	the	loop.	That	means	it	cannot	be	nested	inside	some	other	control	structure	such	as
an	if	statement	within	the	loop.	An	invariant	that	was	only	executed	conditionally	would
not	cut	the	loop	nor	would	it	limit	the	number	of	paths	the	SPARK	tools	need	to	consider.
Loop	 invariants	are	so	essential	 that	 the	SPARK	 tools	will	 automatically	generate	one	 for
each	loop	where	you	do	not	provide	one.	The	generated	invariant	only	asserts	True.	It	is,
thus,	trivial	to	prove	but	not	useful	in	following	proofs.

You	 might	 suppose	 that	 a	 loop	 invariant,	 even	 the	 trivial	 one	 generated	 by	 the
SPARK	 tools	 if	needed,	would	block	 information	gathered	before	 the	 loop	 from	 reaching
past	the	loop.	This	would	be	an	expected	consequence	of	the	invariant	being	a	cut	point.
However,	 the	SPARK	 tools	 have	 special	 handling	 that	 allow	 them	 to	 convey	 information
gathered	before	the	loop	about	objects	not	modified	in	the	loop	past	the	cut	point	and	to
verification	 conditions	 beyond	 the	 loop.	 This	 simplifies	 the	 writing	 of	 loop	 invariants
because	it	is	not	necessary	to	reassert	information	in	the	invariant	about	objects	the	loop
does	not	modify.

Like	 the	Assert	 and	Assume	 pragmas,	Loop_Invariant	 is	 not	 really	 contractual.	 It	 is
needed	 to	 assist	 the	 SPARK	 tools	 in	 proving	 verification	 conditions	 in	 the	 face	 of	 a
potentially	 unknown	 number	 of	 loop	 iterations.	 As	 the	 tools	 evolve,	 they	may	 become
better	 at	 generating	 loop	 invariants	 without	 assistance.	 You	 may	 find	 that	 you	 need	 to
explicitly	state	fewer	of	them	in	the	future	than	in	the	past.

As	an	 example,	 consider	 a	 package	 that	 provides	 a	 buffer	 type	 as	 a	 kind	 of	 array	 of
characters	 together	 with	 some	 subprograms	 for	 operating	 on	 buffers.	 A	 part	 of	 the
specification	of	such	a	Buffers	package	might	look	like

Here	is	the	body	of	function	Count_Character:



The	SPARK	tools	are	interested	in	showing,	among	other	things,	that	the	value	of	Count
will	not	go	out	of	range	despite	it	being	incremented	inside	the	loop.	This	is	a	reasonable
concern.	If	 the	loop	runs	an	excessive	number	of	times,	Count	could	be	incremented	too
often.	Yet	in	this	case,	the	function	is	fine.	The	value	of	Count	is	initialized	to	zero	and	it
is	 incremented	at	most	 the	number	of	 times	 the	 loop	 runs,	which	 is	1,024	passes.	Thus,
even	if	the	inner	conditional	is	true	for	every	pass,	Count	would	only	be	1,024	and	still	in
range	at	the	end	of	the	loop.

To	convey	this	information	to	the	tools,	we	add	a	Loop_Invariant	pragma	to	the	loop
asserting	 that	whenever	 that	point	 is	 reached,	 the	value	of	Count	 is	 always	 less	 than	 the
loop	parameter.	The	tools	can	easily	show	this	is	true.	On	entry	to	the	loop,	Count	is	zero
and	Index	 is	one.	Each	 time	around	 the	 loop	Index	 is	 always	 incremented	and	Count	 is
only	sometimes	incremented,	depending	on	the	path.	Either	way	Count	remains	less	than
Index	 if	 it	was	so	on	 the	previous	 iteration.	Finally,	 the	 tools	use	 the	 information	 in	 the
loop	invariant	to	readily	show	that	Count	+	1	will	never	go	out	of	 the	allowed	range	of
Buffer_Count_Type.

As	a	second	example,	consider	a	procedure	for	copying	an	ordinary	string	value	into	a
buffer.	The	declaration	of	that	procedure	might	look	like

If	 the	 source	 string	 is	 too	 long,	 this	 procedure	 is	 intended	 to	 truncate	 that	 string	 and
only	copy	the	characters	 that	will	fit	 into	the	buffer.	If	 the	source	string	is	 too	short,	 the
buffer	is	to	be	padded	with	spaces.	Here	is	an	implementation	of	this	procedure:



After	determining	how	many	characters	actually	need	to	be	copied,	a	loop	is	used	to	do
the	 copying	 one	 character	 at	 a	 time.	 The	 loop	 invariant	 asserts	 that	 the	 value	 of
Characters_To_Copy	does	not	change	as	the	loop	executes.	It	accomplishes	this	using	the
’Loop_Entry	attribute	allowing	you	to	refer	to	a	value	a	variable	has	when	the	loop	is	first
entered.	The	’Loop_Entry	 attribute	 is,	 thus,	 similar	 to	 the	 ’Old	 attribute	 in	 that	 its	 use
requires	the	compiler	to	maintain	a	copy	of	the	variable’s	earlier	value.

The	current	generation	of	the	SPARK	tools	does	not	actually	need	the	loop	invariant	we
wrote	in	procedure	Copy_Into.	This	relaxation	is	a	result	of	the	special	handling	afforded
to	 values,	 such	 as	 Characters_To_Copy	 that	 do	 not	 change	 inside	 the	 loop;	 it	 is	 not
actually	 necessary	 to	 reassert	 information	 about	 them	 at	 the	 cut	 point	 created	 by	 the
invariant.	 However,	 an	 earlier	 generation	 of	 the	 SPARK	 tools	 did	 require	 the	 invariant
because	 the	 technology	was	 less	mature	 at	 that	 time.	 This	 illustrates	 the	 point	 that	 the
number	 and	 nature	 of	 the	 non-contractual	 assertions	 required	 in	 your	 programs	 may
change	 as	 the	 tools	 evolve.	 However,	 contractual	 assertions	 such	 as	 pre-	 and
postconditions	embody	design	information	and	are	to	a	certain	extent	tool	independent.

Finding	 an	 appropriate	 loop	 invariant	 requires	 a	 certain	 amount	 of	 practice	 and	 skill.
You	need	to	find	a	condition	that	describes	the	work	of	the	loop	in	a	nontrivial	way,	is	easy
for	the	tools	to	prove,	and	provides	useful	information	for	later	verification	conditions	to
use.

As	a	more	complex	example,	consider	a	procedure	that	converts	an	IP	version	4	(IPv4)
address	 into	 a	 dotted	 decimal	 string	 suitable	 for	 display	 to	 humans.11	 This	 procedure	 is
part	 of	 package	 Network.Addresses	 from	 the	 Thumper	 project	 that	 we	 describe	 in
Section	8.5.	Here	the	specification	of	the	package	is	shown,	in	part.	In	this	code	the	type
Network.Octet	is	an	8-bit	modular	type	holding	values	in	the	range	of	0	to	255.



This	package	takes	advantage	of	the	fact	that	the	text	form	IP	addresses	require	at	most
fifteen	characters.	 It	 thus	defines	a	 suitable	 subtype	 to	express	 this	 limitation.	However,
because	 some	 IP	 addresses	 are	 shorter	 than	 fifteen	 characters,	 the	 procedure
To_IPv4_String	 also	 outputs	 a	 count	 of	 the	 number	 of	 characters	 that	 were	 actually
required.	 The	 procedure	 pads	 the	 output	 string	 with	 spaces	 in	 that	 case.	 Here	 is	 one
attempt	at	implementing	this	procedure:





This	 procedure	 works	 by	 looping	 over	 each	 byte	 in	 the	 IP	 address	 and	 filling	 in
appropriate	text	in	the	output	string	as	it	works.	The	amount	of	space	in	the	output	string
used	 by	 each	 pass	 of	 the	 loop	 depends	 on	 the	 value	 of	 the	 address	 component	 being
processed.	 Sometimes	 only	 one	 digit	 is	 needed,	 but	 sometimes	 up	 to	 three	 digits	 are
required.	The	value	of	Skip	 records	how	much	space	was	used	 in	 the	current	 loop	pass;
that	value	is	used	to	update	the	running	total	of	the	number	of	characters	consumed	so	far.

The	 subprogram	contains	 no	 flow	errors,	 but	 the	SPARK	 tools	 have	difficulty	 proving
that	the	various	accesses	of	the	array	Text	are	in	bounds.	The	tools	do	not	“understand”
that	 the	 loop	 will	 execute	 a	 limited	 number	 of	 times	 and	 never	 run	 Count	 and,	 hence,
Index	up	to	an	excessive	value.

To	 help	 the	 proofs	 succeed,	 we	 must	 add	 a	 loop	 invariant	 that	 explains	 to	 the
SPARK	tools	that	Count	is	suitably	bounded.	We	must	find	a	condition	that	is	both	within
the	tools’	ability	to	prove	and	yet	also	adds	enough	information	to	let	the	tools	complete
the	proofs	they	are	stuck	on.	To	find	an	appropriate	invariant,	start	by	asking	the	question,
How	do	we,	as	humans,	know	this	code	works?	Answering	this	question	gives	us	insight
about	what	we	must	 tell	 the	SPARK	 tools.	Furthermore,	 if	 the	procedure	 is	 in	 fact	 faulty,
attempting	 to	 explain	 to	 ourselves	why	 it	works	will	 likely	 reveal	 the	 fault.	 This	 is	 the
essence	of	how	SPARK	transforms	incorrect	programs	into	reliable	ones.

If	we	study	the	procedure,	we	can	see	that	each	loop	pass	adds	at	most	four	characters
to	the	output	string	(up	to	three	digit	characters	and	a	dot).	Thus,	as	a	first	attempt	we	add
the	following	loop	invariant	immediately	inside	the	for	loop:

This	 increases	 the	 number	 of	 verification	 conditions	 to	 be	 proved	 as	 the	 loop	 invariant
adds	additional	proof	obligations.	However,	 this	 invariant	does	allow	 the	 tools	 to	verify
that	the	accesses	to	the	Text	array	are	all	in	bounds	–	a	significant	step	forward.	The	only
two	remaining	objections	are	to	the	statement

at	 the	 end	 of	 the	 loop	 and	 to	 the	 final	 assignment	 to	 Character_Count	 before	 the
procedure	returns.

One	problem	is	that	the	last	loop	pass	is	special	but	we	do	not	convey	any	information
about	that	to	the	tool.	In	particular,	the	dot	character	is	not	output	in	the	last	pass	so	only
three	characters	at	most	are	added	to	the	output	string.	This	is	important	because	the	size
of	 the	output	 string	 is	 exactly	 fifteen	characters	and	not	 sixteen	as	would	be	 required	 if
four	characters	were	output	with	every	pass.	To	express	this	concept,	we	add	the	following
assertion	 to	 the	 end	 of	 the	 loop	 immediately	 before	 the	 statement
Count	:=	Count	+	Skip:

This	informs	the	tools	that	the	skip	distance	is	at	most	three	during	the	last	loop	iteration
and	 allows	 the	 tools	 to	 discharge	 the	 verification	 condition	 associated	 with	 updating



Count.

The	remaining	issue	is	on	the	statement

The	 problem	 here	 is	 that	 Character_Count	 has	 type	 Address_Length_Type,	 which	 is
constrained	 to	 the	 range	 7	 ..	 15.	 The	 assertions	 so	 far	 only	 put	 an	 upper	 bound	 on	 the
number	of	characters	written,	and	the	tools	are	having	trouble	showing	that	at	least	seven
characters	are	output.	To	address	this,	we	change	the	loop	invariant	to

Now	the	tools	are	able	to	discharge	all	verification	conditions	in	the	subprogram,	proving
that	it	is	free	of	any	possibility	of	runtime	error.

It	might	 seem	as	 if	 this	 process	would	have	been	easier	 if	 the	 types	had	not	been	 so
precisely	 defined.	 For	 example,	 if	 Address_Length_Type	 had	 a	 lower	 bound	 of	 one
instead	 of	 seven,	 perhaps	 the	 final	 step	 would	 not	 have	 been	 necessary.	 However,
loosening	type	definitions	for	the	sake	of	making	certain	proofs	easier	is	almost	never	the
right	approach.	In	fact,	loosely	specified	types	typically	make	proofs	more	difficult,	if	not
in	 one	 place	 then	 in	 another.	 The	 tools	 might	 be	 able	 to	 use	 the	 tight	 constraint	 on
Address_Length_Type	 to	 its	 advantage	 when	 proving	 verification	 conditions	 elsewhere
related	 to	 IP	 addresses.	Always	 strive	 to	 tighten	 type	definitions;	 avoid	 loosening	 them.
Embed	as	much	information	as	you	can	into	the	program.

This	 example	 also	 illustrates	 the	 interplay	 between	 human	 reasoning	 and	 the
SPARK	tools.	After	convincing	ourselves	of	the	correctness	of	the	code,	we	could	have	just,
perhaps,	 recorded	 our	 reasoning	 in	 a	 comment	 and	 not	 bothered	 with	 finding	 suitable
SPARK	 assertions.	However,	SPARK	 serves	 to	 check	our	work,	which	 is	valuable	because
humans	are	very	error	prone	when	trying	to	mentally	manage	the	mass	of	details	required
while	 reasoning	 about	 programs.	 Also,	 the	 SPARK	 assertions	 are	 a	 form	 of	 machine
readable	 documentation	 that	 can	 be	 checked	 automatically	 by	 other	 programmers	 less
familiar	with	the	code.	If	a	change	is	made	to	the	procedure,	the	SPARK	tools	will	alert	the
programmer	making	the	change	to	any	potential	runtime	issues	introduced.

As	an	example,	consider	the	following	code	from	the	To_IPv4_String	procedure:

It	is	necessary	that	the	values	used	to	index	the	lookup	table	are	all	in	the	range	0	..	9.	No
doubt	 the	 programmer	 considered	 that	when	writing	 the	 code	 initially.	 The	 SPARK	 tools
also	 proved	 this	 without	 comment	 so	 the	 programmer	 did	 not	 need	 to	 spend	 time
reviewing	 the	code	 for	 that	error.	The	 tools	can	 thus	 take	care	of	many	“simple”	proofs
and	only	require	human	assistance	for	the	more	difficult	cases.	However,	ultimately	it	 is
the	human	and	not	the	tools	that	generated	the	“proofs”	for	the	code,	even	if	just	mentally.



The	tools	simply	serve	to	check	the	human’s	work.

As	a	final	example,	consider	this	implementation	of	procedure	Binary_Search	that	we
specified	on	page	§:





The	 implementation	 is	 non-recursive	 and	 relatively	 straightforward.	 To	 complete	 the
proof,	 an	 appropriate	 loop	 invariant	 must	 be	 given.	 As	 usual	 finding	 the	 right	 loop
invariant	is	the	trickiest	part	of	the	problem.	At	the	point	where	the	invariant	is	given	the
search	item	has	not	yet	been	found	and,	 if	 it	exists	 in	 the	array	at	all,	 it	 resides	between
position	Low_Index	and	High_Index	inclusive.

With	the	invariant	shown,	the	preceding	implementation	of	Binary_Search	is	proved.	It
will	never	exhibit	any	runtime	error	and	it	honors	its	strong	postcondition.

Unfortunately,	 the	 preceding	 implementation	 contains	 a	 serious	 fault.	 Under	 certain
circumstances	 the	 loop	 runs	 infinitely	 without	 ever	 making	 any	 progress.	 Consider	 the
case	 where	 Low_Index	 and	 High_Index	 are	 adjacent	 and	 the	 array	 elements	 under
consideration	 are	 the	 natural	 numbers	 10	 and	 20.	 Suppose	 the	 search	 item	 is	 20.	 The
implementation	computes	a	Mid_Index	equal	to	Low_Index	in	this	case.	Because	the	item
in	the	array	at	that	position	(10)	is	less	than	the	search	item	(20),	the	implementation	sets
Low_Index	 to	 the	 value	 of	Mid_Index,	 which	 does	 not	 change	 anything.	 The	 procedure
loops	forever.

Although	 the	 tools	 have	 proved	 the	 procedure	 honors	 its	 postcondition,	 that	 is	 only
applicable	 if	 the	 procedure	 returns	 at	 all.	 We	 have	 not	 yet	 proved	 that	 the	 procedure
actually	terminates	in	every	case.	We	discuss	how	to	do	that	in	Section	6.5.

6.5	 Loop	Variants

In	the	previous	section	we	saw	that	it	is	possible	for	the	SPARK	tools	to	prove	even	strong
postconditions	 about	 a	 subprogram	 and	 yet	 for	 there	 to	 still	 be	 serious	 faults	 in	 that
subprogram.	This	unexpected	effect	occurs	because	the	proof	of	a	postcondition	does	not
consider	 the	possibility	of	nontermination.	The	 subprogram	may	simply	execute	 forever
without	 returning.	 In	 general,	 nontermination	 can	 occur	 if	 the	 subprogram	 contains
unbounded	recursion	or	if	it	contains	loop	statements.	In	this	section	we	look	at	how	we
can	prove	that	a	subprogram	has	no	infinite	loops.

Many	 loops	 in	 SPARK	 subprograms	 obviously	 terminate	 and	 do	 not	 need	 any	 special
handling.	For	example,	a	for	loop	runs	its	loop	parameter	over	a	range	that	is	computed
when	 the	 loop	 is	 first	 encountered.	 The	 rules	 of	 Ada	 prevent	 the	 loop	 parameter	 from
being	 changed	 in	 the	 loop,	 so	 it	 can	 only	 advance	 across	 the	 specified	 range	 of	 values.
Such	loops	are	guaranteed	to	terminate	once	the	loop	parameter	has	exhausted	its	range.
However,	 while	 loops	 and	 loops	 constructed	 without	 an	 iteration	 scheme	 (a	 bare	 loop
statement)	 may	 run	 for	 an	 indeterminate	 number	 of	 passes.	 Proving	 that	 such	 loops
terminate	 is	 often	 desirable	 and	 even	 necessary	 as	 part	 of	 a	 full	 proof	 of	 the	 enclosing
subprogram’s	correctness.

Proving	loop	termination	can	be	done	with	the	help	of	the	Loop_Variant	pragma.	The
semantics	of	Loop_Variant	are	more	complex	than	for	the	other	assertions	we	have	seen
so	far.	Loop_Variant	allows	you	to	define	an	expression	that	either	always	increases	(or
always	decreases)	as	the	loop	executes.	If	the	value	of	the	expression	has	a	suitable	upper
(or	 lower)	 bound,	 then	 the	 loop	 must	 end	 because	 the	 value	 of	 the	 expression	 cannot
increase	(or	decrease)	infinitely	without	crossing	the	bound.	The	expression	is	not	allowed



to	 stay	 the	 same	 between	 loop	 iterations.	 The	 expression	 must	 “make	 progress”
monotonically	toward	a	bound.	Otherwise,	 the	loop	might	execute	forever.	For	example,
the	Loop_Variant	pragma

asserts	that	the	expression	A	 	B	+	C	increases	with	each	iteration	of	the	loop.

The	Loop_Variant	pragma	allows	you	to	specify	several	expressions.	Each	expression
is	prefixed	with	a	change	direction	of	either	Increases	or	Decreases.	Here	is	an	example
using	the	integer	variables,	X,	Y,	and	Z:

This	assertion	states	that	during	each	loop	iteration,	either	the	value	of	X	increases	or	the
value	 of	 the	 expression	 Y	 	 Z	 decreases.	When	 there	 are	multiple	 expressions	 in	 the
pragma,	any	particular	expression	may	stay	the	same	during	a	particular	iteration	as	long
as	one	of	the	other	expressions	moves	in	the	specified	direction.

The	order	of	the	expressions	in	pragma	Loop_Variant	 is	significant.	In	each	iteration,
expressions	are	checked	in	textual	order	until	either	a	change	is	found	or	all	expressions
have	 been	 checked.	 The	 assertion	 is	 true	 if	 the	 last	 expression	 checked	 moved	 in	 the
specified	 direction	 and	 false	 otherwise.	 Any	 expressions	 after	 the	 one	 that	 moved	 are
ignored.	So	in	our	example,	if	X	increases,	what	happens	to	Y	 	Z	is	not	considered.

The	expressions	in	a	Loop_Variant	pragma	must	have	a	discrete	type.	The	domain	of
any	 discrete	 type	 consists	 of	 a	 finite	 set	 of	 ordered	 values.	 Therefore,	 the	 values	 of	 a
discrete	 type	 are	 automatically	 bounded	 both	 above	 and	 below.	 In	 our	 examples,	 the
expressions	 have	 type	 Integer	 and	 so	 are	 bounded	 by	 Integer	 ’	 First	 and
Integer	’Last.	It	is	not	necessary	for	you	to	specify	any	other	bounds.

Of	course	the	loop	may	not	run	the	expressions	all	the	way	to	their	bounds.	That	is	not
important.	 It	 is	 only	 necessary	 for	 the	 bound	 to	 exist	 and	 for	 the	 loop	 to	 increase	 (or
decrease)	 the	value	of	 the	expressions	monotonically.	That	 is	sufficient	 to	prove	that	 the
loop	must	eventually	terminate.

Like	 all	 assertions,	 loop	 variants	 are	 executable	 under	 the	 control	 of	 the	 assertion
policy.	 If	 they	 fail,	 Assertion_Error	 is	 raised	 as	 usual.	 Also,	 like	 all	 assertions,	 the
SPARK	 tools	 will	 create	 a	 verification	 condition	 to	 prove	 that	 the	 variant	 never	 fails.
Discharging	that	verification	condition	proves	that	the	loop	terminates.

In	the	Binary_Search	example	in	Section	6.4,	 the	procedure	made	use	of	a	bare	loop
statement	with	an	exit	statement	that	ends	the	loop	under	certain	conditions.	Unlike	for
loops,	a	loop	of	this	form	may	conceivably	execute	forever.	It	 is	 thus	appropriate	in	this
case	to	use	Loop_Variant	to	prove	that	will	not	happen.

To	 find	 an	 appropriate	 loop	 variant	 start	 by	 asking,	 What	 expression	 describes	 the
progress	 the	 loop	 is	 making?	 In	 the	 case	 of	 Binary_Search	 one	 possibility	 is	 that
High_Index	and	Low_Index	always	get	closer	together:

If	each	iteration	of	the	loop	reduces	the	distance	between	the	two	indicies,	eventually	the
loop	will	end.



The	 subprogram	 exits	 the	 loop	 when	 the	 difference	 between	 the	 indicies	 is	 zero.
However,	you	might	wonder	what	would	happen	 if	High_Index	 	Low_Index	 skipped
over	zero	and	became	negative.

The	 type	 of	 the	 loop	 variant	 expression	 in	 this	 case	 is	 Integer	 (the	 base	 type	 of
Index_Type).	In	theory	the	smallest	possible	value	of	High_Index	 	Low_Index	 is	 -99.
This	could	occur	 if	 the	 two	 index	values	were	at	 their	 appropriate	extremes.	 If	 the	 loop
were	 truly	 infinite	 and	yet	 the	 loop	variant	 succeeded,	 then	High_Index	 	 Low_Index

would	decrease	forever.	Eventually,	Constraint_	Error	would	be	raised	when	one	of	the
two	indices	goes	out	of	bounds	or,	if	not	that,	when	the	subtraction	overflows	the	range	of
Integer.	 If	 the	 code	 proves	 free	 of	 runtime	 error,	 neither	 of	 these	 cases	 can	 occur;	 the
program	cannot	have	both	an	infinite	loop	and	a	satisfied	loop	variant	at	the	same	time.

Unfortunately,	 the	 implementation	 of	 Binary_Search	 in	 Section	 6.4	 does	 contain	 a
possible	infinite	loop,	and	as	you	would	expect,	the	loop	variant	fails	to	prove.	To	fix	the
subprogram,	it	is	necessary	to	correct	the	error	in	such	a	way	as	to	maintain	the	proofs	of
freedom	 from	 runtime	 error,	 the	 postcondition,	 and	 some	 suitable	 loop	 variant.	 An
implementation	that	does	so	follows:





The	key	idea	is	to	assign	Mid_Index	+	1	to	Low_Index	to	force	Low_Index	to	advance
in	 the	 case	 of	 a	 two-element	 subsequence	 as	 described	 previously.	 However,	 this	 now
requires	an	extra	 test	 in	case	 the	extra	advance	skips	past	 the	 search	 item’s	value	 in	 the
array.	These	changes	caused	the	SPARK	tools	to	have	trouble	proving	the	postcondition	in
the	case	of	the	resulting	early	return.	Adding	not	Found	to	the	loop	invariant	clarified	for
the	tools	which	part	of	the	postcondition	was	relevant.

Finally,	 it	 was	 necessary	 to	 assert	 a	 loop	 invariant	 that	 described	 the	 relationship
between	Low_Index,	Mid_Index,	and	High_Index	 so	 the	 effect	of	 the	 assignments	 at	 the
bottom	of	the	loop	could	be	tracked.	With	these	changes	the	SPARK	tools	are	able	to	prove
that	the	subprogram	works	and	never	loops	infinitely.

We	should	note	 that	 technically	 the	SPARK	 tools	only	allow	a	 single	 loop	 invariant	 in
each	loop,	but	as	a	convenience,	it	is	permitted,	as	was	done	in	the	previous	example,	to
use	several	Loop_Invariant	pragmas	in	a	row.	The	effect	is	to	create	an	overall	invariant
that	is	the	conjunction	of	the	individually	listed	invariants.

Finally,	 it	bears	mentioning	that	 technically	proving	a	particular	loop	variant	does	not
by	 itself	 prove	 a	 subprogram	 returns.	 A	 subprogram	 might	 contain	 multiple	 loops	 on
various	paths;	proving	that	one	loop	terminates	leaves	open	the	possibility	that	a	different
loop	might	 run	 infinitely.	To	ensure	 that	a	 subprogram	always	 returns,	 it	 is	necessary	 to
prove	that	all	loops	contained	in	the	subprogram	that	can	be	feasibly	reached	terminate.	In
practice	 this	 is	not	normally	an	 issue,	but	 the	SPARK	 tools	by	 themselves	do	not	provide
any	direct	checking	of	this	requirement.

6.6	 Discriminants

Ada	provides	a	way	to	parameterize	record	 types	using	discriminants.	The	basics	of	 this
topic	were	briefly	described	 in	Section	2.3.6.	 In	 this	section	we	provide	a	more	detailed
example	of	the	use	of	discriminants	and	show	how	they	interact	with	SPARK	proofs.

A	 discriminated	 type	 is	 a	 kind	 of	 indefinite	 type	 similar	 in	 some	 respects	 to	 an
unconstrained	array	type.	To	declare	an	object,	it	is	necessary	to	provide	a	specific	value
for	 the	 discriminant.	 The	 value	 provided	 can	 be	 dynamically	 computed,	 giving	 you
flexibility.	 However,	 different	 objects	 with	 different	 discriminants	 are	 still	 of	 the	 same
type	and	thus	can	be,	for	example,	passed	to	a	single	subprogram	that	accepts	that	type.	In
Section	 6.7	 we	 show	 an	 example	 of	 using	 SPARK	 with	 an	 alternative	 method	 of
parameterizing	types,	namely,	generics.

As	 a	 concrete	 example	 of	 using	 discriminated	 types,	 consider	 the	 problem	 of	 doing
integer	computations	on	very	large	values.	The	integer	types	built	into	your	Ada	compiler
may	 support	 64-bit	 computations	 and	 conceivably	 even	 larger	 sizes,	 but	 they	 will	 be
limited	by	whatever	is	natural	for	your	hardware.	However,	some	applications	have	a	need
to	do	computations	on	extremely	large	integers	with,	for	example,	1,024	bits	or	even	more.
Many	cryptographic	algorithms	such	as	RSA	or	elliptic	curve-based	cryptosystems	need	to
manipulate	such	extended	precision	integers.

It	is	natural	to	design	a	package	supporting	an	extended	precision	integer	type.	In	this
example,	 we	will	 call	 that	 type	 Very_Long.	 Following	 the	 common	Ada	 convention	 of



making	the	name	of	a	type	package	plural,	we	will	call	the	package	that	defines	our	type
Very_Longs.

Unfortunately,	 different	 applications	 have	 different	 needs	 regarding	 the	 size	 of	 the
numbers	 they	 must	 manipulate.	 We	 could	 design	 Very_Long	 to	 expand	 (and	 contract)
dynamically	as	needed,	but	the	natural	way	of	doing	this	would	entail	the	use	of	memory
allocators,	a	feature	not	supported	by	SPARK.	Alternatively,	we	could	set	a	 fixed	size	 for
Very_Long,	picking	a	size	large	enough	to	support	any	conceivable	application.	However,
this	may	still	not	be	enough	for	some	exceptional	applications	and	will	waste	space	and
time	in	the	majority	of	cases	where	a	very	large	size	is	not	needed.

The	type	Very_Long	is	thus	a	prime	candidate	for	being	discriminated	with	a	value	that
gives	 the	 size	of	 the	 integer.	Different	objects	 could	 thus	have	different	 sizes	 as	needed
and	yet	all	be	of	the	same	type.

For	cryptographic	applications	modeling	signed	integers,	using	the	usual	mathematical
operations	 is	 not	 normally	 needed.	 Instead,	 unsigned,	modular	 integers	 tend	 to	 be	more
useful	where	addition	and	subtraction	“wrap	around”	inside	a	value	with	a	fixed	number
of	bits	without	overflow.	These	are	the	kinds	of	integers	we	show	in	our	example.	The	full
specification	of	package	Very_Longs	with	line	numbers	for	reference	is	as	follows:





The	package	starts	by	declaring	three	types.	We	regard	a	Very_Long	as	being	expressed
in	the	base	256,	where	each	extended	digit	is	an	8-bit	value	in	the	range	of	0–255.	In	our
discussion	of	 this	example,	and	 in	 the	code	 itself,	we	use	 the	word	digit	 to	mean	a	base
256	extended	digit.

Lines	6	and	7	introduce	a	type	used	for	counting	digits	in	a	Very_Long.	The	maximum
number	of	digits	we	choose	 to	 support	 is	 the	somewhat	arbitrary	number	 .	Yet	 each
Very_Long	is	the	length	it	needs	to	be;	they	do	not	all	need	to	have	 	digits.	However,
imposing	a	reasonable	bound	simplifies	many	of	the	proofs.	If	Digit_Count_Type	did	not
apply	any	constraints	on	Natural,	the	code	would	be	forced	to	deal	with	integers	having
potentially	billions	of	digits.	Certain	computations	on	 lengths	would	 tend	to	overflow	in
this	general	case.	Limiting	the	range	of	Digit_Count_Type	allows	those	computations	to
complete	successfully	without	intricate	handling.

Although	the	limit	of	 	digits	may	seem	arbitrary,	it	is	no	more	arbitrary	than	a	limit
of	 	 that	would	be	typical	of	Natural’Last	on	a	32-bit	system.	If	some	arbitrary
limit	 must	 be	 specified,	 why	 not	 choose	 one	 that	 gives	 enough	 “headroom”	 for	 doing
simple	calculations	on	lengths	without	overflowing?	We	note	that	if	this	code	is	compiled
for	 a	 16-bit	 system	 where	 Natural’Last	 is	 only	 ,	 the	 code	 will	 either	 fail	 to
compile	outright	or,	at	worst,	fail	to	prove.	Either	way	the	potential	problem	will	be	caught
during	development.

Line	 8	 introduces	 a	 subtype	 used	 to	 index	 digits	 in	 a	 Very_Long.	 The	 indexing
discipline	 assigns	 the	 least	 significant	 digit	 the	 index	 1.	 Although	 it	 might	 seem	more
natural	to	start	the	indexing	at	zero,	that	turns	out	to	be	unworkable	as	a	result	of	certain
limitations	on	discriminants	we	describe	shortly.

Line	9	introduces	the	discriminated	Very_Long	 type	itself	as	private.	The	discriminant
specifies	 the	 number	 of	 digits	 in	 the	 value.	 For	 example,	 a	 1024-bit	 integer	 would	 be	

	digits	 in	 length.	Although	 the	details	of	Very_Long	 are	 hidden	 from	 the
user,	 the	discriminant	 is	not	 and,	 instead,	behaves	much	 like	 a	public	 component	of	 the
type.	As	a	result	it	can	be	used	in	pre-	and	postconditions	on	the	public	subprograms.

Notice	also	 that	 these	declarations	use	 the	Ada	 type	 system	 to	 enforce	 the	 restriction
that	zero	length	Very_Long	objects	are	not	allowed.	The	discriminant	cannot	take	the	value
zero;	 every	 object	 must	 be	 at	 least	 one	 digit	 in	 length.	 Of	 course,	 all	 the	 digits	 of	 a
Very_Long	could	be	zero	so	the	length	of	a	Very_Long	and	the	number	of	significant	digits
it	contains	are	two	separate	matters.

There	are	two	constructor	subprograms	provided	on	lines	12–21.	They	allow	Very_Long
objects	to	be	created	from	ordinary	natural	numbers	and	also	from	strings	of	hexadecimal
digits.	 The	 later	 subprogram	 is	 useful	 for	 initializing	 extremely	 large	 values.	 Because
arbitrary	 strings	may	contain	characters	 that	 are	not	hexadecimal	digits,	 the	 subprogram
returns	 a	 Valid	 parameter	 set	 to	 false	 if	 invalid	 characters	 are	 found.	 Checking	 this
requires	 error	 handling	 at	 runtime.	 An	 alternative	 strategy	 would	 be	 to	 strengthen	 the
precondition	as	follows:



This	assumes	a	function	Is_Hex_Digit	with	the	obvious	meaning	is	available.

Although	 the	 second	 approach	 increases	 the	 burden	 of	 proof	 on	 all	 callers	 of	 the
constructor,	it	allows	the	error	detection	code	inside	the	procedure	to	be	removed.	It	also
allows	 the	 Valid	 parameter	 to	 be	 removed	 along	 with	 all	 the	 error	 handling	 code
associated	with	checking	 it.	Finally,	 it	would	allow	the	procedure	 to	be	converted	 into	a
function	 that,	 in	 turn,	 would	 allow	 it	 to	 be	 used	 in	 a	 declarative	 part	 to	 initialize	 a
Very_Long	as	shown	in	the	following	example:

This	example	shows	an	interesting	cascade	effect	arising	from	moving	checks	from	the
dynamic	 domain	 of	 program	 execution	 to	 the	 static	 domain	 of	 program	 verification.
Furthermore,	 it	could	be	argued	that	 the	modification	described	here	 is	superior	because
callers	 are	not	 likely	 to	 intentionally	give	Make_From_Hex_String	 an	 invalid	 string.	The
original	design	 suffers	 from	 the	problem	 that	 the	 flow	analysis	done	by	 the	SPARK	 tools
will	require	Valid	to	be	checked	even	in	the	case	when	the	programmer	knows	the	given
string	is	fine.

Also	 notice	 that	 the	 precondition	 of	 Make_From_Hex_String	 uses	 the	 expression
2*Result.Length.	This	is	an	example	of	a	computation	that	would	have	been	problematic
if	Digit_Index_Type	had	the	full	range	of	Natural.	For	example,	2*Natural’Last	would
(likely)	 overflow.	 This	 is	 also	 an	 example	 of	 how	 the	 expressions	 in	 the	 assertions
themselves	are	subject	to	checking	by	SPARK,	as	we	discussed	in	Section	6.2.7.

One	could	allow	the	full	range	of	Natural	in	this	case	by	rewriting	the	precondition	as

The	first	condition	ensures	that	the	length	of	the	given	string	is	even.	Such	rewritings	are
commonly	possible,	but	they	can	be	obscure.	It	is	often	easier	and	better	to	just	constrain
the	types	involved	to	“reasonable”	ranges.

Before	leaving	Make_From_Hex_String,	we	point	out	that	the	flow	dependency	contract
uses	Result	as	input:

This	might	seem	surprising	given	that	Result	is	an	out	parameter.	However,	similar	to	the
bounds	on	parameters	of	unconstrained	array	types,	the	actual	parameter	used	in	the	call
has	a	specific	value	of	the	discriminant	set	by	the	caller.	The	value	written	to,	for	example,
Result	depends	on	this	discriminant.	If	Result’s	length	is	large,	the	value	written	to	it	will
be	different	than	if	Result’s	length	is	small.	Thus	the	dependency	as	shown	is	correct.

Returning	now	to	the	listing	of	Very_Long’s	specification,	 lines	24–34	declare	several
relational	operators.	Private	types	can	already	be	compared	for	equality,	but	it	is	natural	to
also	have	the	other	relational	operators	for	a	numeric	type	such	as	Very_Long.	Notice	that
the	preconditions	require	that	both	numbers	being	compared	be	the	same	size.	Although	it
is	 mathematically	 logical	 to	 compare	 numbers	 with	 different	 sizes,	 the	 expected
application	 domain	 (cryptography)	 does	 not	 normally	 require	 that.	 Furthermore,	 the
restriction	simplifies	the	implementation.	Notice	here	that	the	precondition	is	being	used
to	describe	a	relationship	between	the	parameters;	something	Ada’s	type	system	cannot	do



by	itself.

Line	37	declares	a	convenience	 function	Is_Zero	 to	 test	 if	 a	Very_Long	 is	 zero.	This
function	was	originally	motivated	for	use	in	later	assertions,	but	it	also	has	usefulness	to
clients	of	the	package.

Line	 40	 declares	 another	 convenience	 function	 Number_Of_Digits	 that	 returns	 the
number	of	significant	digits	in	a	Very_Long.	This	is	different	than	the	Very_Long’s	length
as	leading	zeros	are	not	significant.	In	fact,	if	all	the	digits	of	the	Very_Long	are	zero,	then
the	Number_Of_Digits	returns	zero.

Lines	43–62	declare	three	arithmetic	operators	for	Very_Long.	Unlike	the	case	with	the
relational	 operators,	 most	 of	 these	 functions	 are	 given	 names	 rather	 than	 overloaded
operator	 symbols.	 This	 is	 because	 they	 do	 modular	 calculations	 in	 which	 the	 resulting
carry	is	ignored	without	error.	It	is	best	to	reserve	the	operator	symbols	for	functions	that
follow	 the	 usual	mathematical	 behavior.	The	one	 exception	 is	 the	 second	multiplication
operator	that	does	produce	an	extended	result	without	overflow	or	loss	of	information.

The	pre-	and	postconditions	on	the	arithmetic	operators	assert	 that	 they	only	work	on
values	that	are	the	same	size	and	produce	values	with	specific	sizes	based	on	their	inputs.
The	”*”	 operator	 function	 produces	 an	 extended	 result	 large	 enough	 to	 hold	 the	 largest
possible	value	it	might	produce.	Notice	that	leading	zero	bits	are	not	stripped	by	any	of	the
subprograms,	 for	example,	 	–	 that	 is,	 two	8-bit	values	multiplied
by	”*”	always	produces	a	16-bit	value.

A	 division	 procedure	 is	 declared	 on	 lines	 65–75.	 Unlike	 the	 normal	 ”/”	 operator,
Divide	 returns	 both	 the	 quotient	 and	 the	 remainder.	 The	 precondition	 asserts	 several
important	relationships	on	the	sizes	of	the	numbers	involved.	In	summary,	it	requires	that
a	 -bit	dividend	be	divided	by	an	 -bit	divisor	to	yield	a	 -bit	quotient	and	an	 -bit
remainder.

The	division	algorithm	used	(Knuth,	1998)	requires	that	the	number	of	significant	digits
in	 the	 divisor	 be	 strictly	 greater	 than	 one.12	 This	 requirement	 is	 stated	 with	 the
precondition

using	the	previously	declared	convenience	function.

Because	 the	 pre-	 and	 postconditions	 on	 the	 various	 arithmetic	 operations	 all	 make
statements	about	the	sizes	of	the	numbers	involved,	using	them	together	works	smoothly.
The	outputs	of	one	operation	are	verified	by	SPARK	to	be	compatible	with	the	inputs	of	the
next	operation.	The	implementations	of	the	operations	can	be	simplified	(possibly	giving
improved	 performance)	 by	 taking	 advantage	 of	 the	 restrictions	 without	 concern	 that	 a
misbehaving	program	might	not	follow	them.

The	 postconditions	 on	 the	 arithmetic	 operations	 do	 not	 attempt	 to	 capture	 the	 actual
mathematical	result	of	each	operation.	Doing	so	is	beyond	the	scope	of	this	example,	and
this	 illustrates	 that	 postconditions	 are,	 in	general,	 only	partial	 statements	of	 subprogram
behavior.	Although	the	SPARK	tools	will	attempt	to	prove	the	postconditions	as	stated	are
always	 satisfied,	more	 complete	 verification	 of	 these	 subprograms	will,	 at	 the	moment,
require	testing.



The	 private	 section	 of	 the	 specification	 is	 on	 lines	 78–91.	Here,	 the	 full	 view	 of	 the
private	 type	 is	 provided.	 The	 size	 of	 the	 Long_Digits	 component	 holding	 the	 digits
themselves	is	specified	by	the	discriminant.

It	might	 seem	more	natural	 to	 define	 the	Digit_Index_Type	 as	 ranging	 from	zero	 to
Digit_Count_Type’Last	 	1.	This	would	allow	the	least	significant	digit	to	be	at	index
zero	 in	 the	 Long_Digits	 array.	 However,	 doing	 so	 would	 require	 the	 full	 view	 of
Very_Long	to	look	like

Unfortunately,	this	is	illegal	in	Ada	because	the	value	of	the	discriminant	cannot	be	used
as	part	of	an	expression	inside	the	record.

The	body	of	package	Very_Longs	is	too	long	to	display	fully	here	but	may	be	found	on
http://www.cambridge.org/us/academic/subjects/computer-science/programming-

languages-and-applied-logic/building-high-integrity-applications-spark.
However,	it	is	instructive	to	look	at	Number_Of_Digits.	That	function	is	too	complicated
to	 easily	 implement	 as	 an	 expression	 function.	 Instead	 it	 must	 be	 implemented	 as	 an
ordinary	function	in	the	package	body	as	the	following	shows:

http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/building-high-integrity-applications-spark


For	SPARK	to	have	any	hope	of	proving	the	body	of	Divide	free	of	runtime	error,	it	will
need	to	know	how	Number_Of_Digits	works	in	terms	of	the	full	view	of	Very_Long.	This
is	 because	 Number_Of_Digits	 is	 used	 in	 the	 precondition	 of	 Divide	 to	 express	 an
important	 restriction	 ensuring	Divide	will	 not	 raise	 an	 exception.	Thus,	 as	 described	 in
Section	6.2.3,	it	is	necessary	to	give	Number_Of_Digits	a	refined	postcondition	that	can	be
used	during	the	analysis	of	Divide.

6.7	 Generics

As	described	in	Sections	2.4.2	and	3.3.3,	Ada	supports	generic	subprograms	and	generic
packages	that	can	be	instantiated	by	the	programmer	in	different	ways.	In	this	section	we
describe	 how	 generics	 are	 handled	 by	 SPARK	 and,	 in	 particular,	 some	 of	 the	 issues
surrounding	the	proof	of	generic	code.

The	central	idea	with	generics	and	SPARK	is	that	each	instantiation	of	a	generic	must	be
proved	separately.	 It	 is	not	possible	 to	prove	 the	generic	code	 itself	because	 the	specific



details	 of	 the	 types	 and	 values	 used	 to	 instantiate	 the	 generic	 will	 affect	 the	 proofs.
Although	 in	 principle	 it	might	 be	 possible	 to	 prove	 certain	 aspects	 of	 the	 generic	 code
once	and	for	all,	the	SPARK	tools	currently	do	not	attempt	to	do	this.

Instead,	 the	 tools	 do	 flow	 analysis	 and	 generate	 verification	 conditions	 at	 the	 point
where	a	generic	is	instantiated.	Each	instantiation	is	processed	separately.	It	is	possible	for
all	proofs	to	succeed	for	one	instantiation	and	yet	not	for	others.	In	fact,	it	is	possible	for
one	 instantiation	 to	 be	 “in	 SPARK”	 and	 others	 to	 be	 outside	 of	 the	 SPARK	 language
entirely	–	another	reason	the	SPARK	tools	do	not	analyze	the	generic	code	directly.

We	do	not	normally	give	a	SPARK_Mode	 to	a	generic	unit.	The	mode	is	determined	by
the	mode	at	 the	location	of	the	instantiation	of	the	generic	unit.	However,	 if	 the	body	of
the	 generic	 unit	 contains	 non-SPARK	 code,	 that	 body	 should	 be	 explicitly	 marked	 with
SPARK_Mode	 (Off).	 We	 do	 not	 want	 the	 SPARK	 tools	 to	 analyze	 that	 body	 at	 any
instantiation	of	that	generic	unit.

As	an	example,	consider	 the	following	abbreviated	specification	of	a	generic	variable
package	that	implements	a	doubly	linked	list.	The	objects	in	the	list	are	of	a	type	given	by
the	generic	parameter	Element_Type.



The	traditional	way	to	implement	a	dynamic	list	is	to	use	the	heap	to	store	nodes	in	the
list.	 However,	 if	 any	 instantiations	 are	 to	 be	 analyzed	 by	 SPARK,	 that	 approach	 is	 not
possible	because	SPARK	does	not	support	memory	allocators	or	access	types.	Instead,	this



package	stores	the	list	in	a	fixed	size	structure	making	it	more	properly	called	a	bounded
doubly	 linked	 list.	Although	the	 list	can	change	size	dynamically,	 the	region	of	memory
reserved	 for	 it	 cannot.	 The	 maximum	 number	 of	 list	 elements	 allowed	 is	 given	 as	 the
generic	parameter	Max_Size.

The	package	defines	a	private	Iterator	type.	Objects	of	that	type	are	used	to	“point”
into	the	list.	An	iterator	can	point	at	any	element	in	the	list	and	also	at	a	special	end-of-list
element,	 also	 called	 a	 sentinel	 element,	 that	 conceptually	 exists	 just	 past	 the	 last	 valid
element.	The	Back	function	returns	an	iterator	to	the	sentinel;	it	is	valid	to	call	Back	even
for	an	empty	list.

A	 more	 complete	 package	 would	 also	 include	 subprograms	 for	 moving	 iterators
forward	and	backward	over	the	list	and	for	reading	and	writing	list	items	through	iterators.
The	generic	parameter	Default_Element	is	intended	to	be	returned	when	one	attempts	to
(incorrectly)	read	the	list’s	sentinel.	The	generic	package	cannot	know	what	value	would
be	appropriate	to	return	in	that	case	so	it	relies	on	the	instantiation	to	provide	such	a	value.

The	 package	 specification	 has	 SPARK	 data	 and	 flow	 dependency	 contracts	 and	 a
declaration	of	the	abstract	state	held	by	the	package.	Here	is	the	body	of	this	abbreviated
package:







A	List_Node	type	is	defined	containing	a	value	of	 the	list’s	Element_Type	along	with
two	 “pointers”	 to	 the	 next	 and	 previous	 nodes	 in	 the	 list.	 Here,	 the	 pointers	 are
implemented	as	indices	into	a	suitably	dimensioned	array	of	list	nodes.	Each	list	node	has
a	corresponding	component	 in	the	Free_List	array	 indicating	if	 the	node	is	available	or
not.	The	free	list	itself	is	a	singly	linked	list	with	the	head	given	by	Free.	The	list	node	at
position	zero	is	the	sentinel	node.

The	 package	 body	 also	 has	 SPARK	 aspects	 as	 usual,	 including	 a	 refinement	 of	 the
package’s	 abstract	 state	 and	 refined	 data	 and	 flow	 dependency	 contracts.	 Although	 not
used	in	this	example,	the	body	may	contain	other	SPARK	assertions	such	as	loop	invariants
needed	to	prove	instantiations	of	this	generic	unit.

Despite	 the	SPARK	 aspects,	 the	 SPARK	 tools	 do	 not	 directly	 analyze	 the	 generic	 code.
Instead,	 the	aspects	are	used	when	SPARK	analyzes	each	 instantiation.	Consider	a	simple
package	that	provides	higher	level	subprograms	around	a	particular	instantiation	of	a	list
of	 integers.	 For	 the	 sake	 of	 an	 example,	 this	 package	 is	 shown	with	 a	 single	 procedure
Append_Range	that	appends	a	given	range	of	integers	onto	the	list.

The	package	is	given	a	SPARK	specification	by	way	of	the	SPARK_Mode	pragma.	It	declares
as	abstract	state	the	list	it	is	managing.	Here	is	the	body	of	this	package:



Notice	 the	 refined	 state	 clause	at	 the	beginning	of	 this	package	body.	The	abstract	 state
List	 is	 refined	 to	 the	 abstract	 state	 Internal_List	 of	 the	 instantiated	 package
Integer_List	 .	 In	 effect,	 the	 instantiation	 is	 a	 kind	 of	 global	 variable	 inside	 package
List_Handler.

The	pragma	Elaborate_All(Double_List)	 that	appears	at	 the	 top	of	List_Handler’s
body	 controls	 elaborate	 order.	 As	 we	 described	 in	 Section	 3.6,	 dependencies	 between
packages	sometimes	require	special	measures	be	taken	to	control	the	order	in	which	they
are	 elaborated	 to	 ensure	 no	 unelaborated	 units	 are	 used.	 Because	 the	 instantiation	 of
Double_List	 occurs	 as	 a	 global	 variable	 in	 the	 body	 of	 a	 library	 level	 package,	 the
SPARK	tools	require	that	Double_List’s	body,	and	transitively	the	bodies	of	all	packages	it
depends	 on,	 be	 elaborated	 first.	 This	 is	 the	 effect	 of	 Elaborate_All.	 This	 ensures	 the
elaboration	 of	 the	 instantiation	 succeeds	 because	 all	 library	 units	 required	 by	 it	will	 be
elaborated	by	then.

As	the	SPARK	tools	do	flow	analysis	and	generate	verification	conditions	for	the	body	of



package	List_Handler,	they	also	do	flow	analysis	and	generate	verification	conditions	for
the	particular	instantiation	of	Double_List	being	used.	If	the	proofs	all	succeed,	as	they	do
for	 this	 example,	 that	 only	 implies	 the	 proofs	 for	 the	 Integer_List	 instantiation
succeeded.	Other	instantiations	may	have	failing	proofs	and,	conceivably,	may	even	have
serious	errors	that	the	Integer_List	instantiation	does	not.

For	example,	Integer_List	is	an	instantiation	of	Double_List	with	a	Max_Size	of	128
elements.	 Because	 the	 type	 of	 Max_Size	 is	 Natural,	 it	 is	 possible	 to	 instantiate
Double_List	 with	 a	 Max_Size	 of	 zero.	 Conceivably	 that	 boundary	 case	 may	 contain
runtime	problems	that	the	non-zero	sized	case	may	not	contain.	If	so,	the	analysis	done	by
the	tools	will	fail	for	the	problematic	instantiation	while	still	passing	other,	better	behaved
instantiations.

Some	instantiations	might	not	even	be	SPARK.	Consider	an	instantiation	such	as

This	instantiation	creates	a	list	variable	that	holds	integer	access	values.	However,	because
access	 types	 are	 not	 allowed	 in	 SPARK,	 this	 instantiation	 can	 not	 appear	 in	 code	where
SPARK_Mode	is	on.	It	is	not	SPARK.

Double_List	 is	 a	 generic	 variable	 package.	 When	 we	 instantiate	 an	 actual	 package
from	 it,	 that	 instance	 implements	 a	 single	 list	 variable.	 Because	 it	 is	 generic,	 it	 can	 be
instantiated	multiple	times	in	a	program.	Thus,	our	generic	variable	package	supports	the
creation	of	multiple	list	variables.	However,	the	SPARK	tools	will	repeat	the	proofs	for	each
instantiation.	 Also,	 the	 “variables”	 created	 in	 this	 way	 cannot	 readily	 be	 copied	 or
compared	as	they	have,	in	effect,	different	types.

An	 alternative	 design	 would	 be	 to	 revise	 Double_List	 into	 a	 type	 package	 that	 is
generic	 only	 in	 the	 list’s	 element	 type.	One	 could	use	 a	 discriminant	 on	 the	 list	 type	 to
specify	 the	maximum	size	of	 each	 list	object	 at	declaration	 time.	This	 approach	has	 the
advantage	 of	 allowing	 list	 objects	 to	 be	 assigned	 and	 compared	 provided	 they	 had	 the
same	size	(and	the	SPARK	tools	would	statically	prove	that	was	so).	It	would	also	mean	the
tools	would	only	need	to	prove	the	Double_List	code	once	for	each	element	type	and	not
once	for	each	list	variable.	We	leave	the	details	of	this	alternative	design	as	an	exercise	for
the	reader.

Ada	also	allows	individual	subprograms	to	be	generic.	As	an	example	of	this,	consider
the	 following	 specification	 of	 a	 package	 Generic_Searchers	 that	 contains	 a	 generic
procedure	 that	 does	 a	 binary	 search	 of	 a	 sorted	 array.	 This	 is	 a	 generic	 version	 of	 the
Binary_Search	procedure	described	in	Section	6.2.1.



The	 generic	 Binary_Search	 procedure	 is	 parameterized	 by	 an	 array	 type	 along	with
suitable	 types	 for	 the	array	 indices	and	elements.	Recall	 that	declaring	Element_Type	as
private	 in	 this	 context	means	 that	 any	 type	can	be	used	as	 long	as	 it	 can	be	copied	and
provides	 equality	 comparison	 operators.	 The	 binary	 search	 algorithm	 makes	 use	 of
equality	comparison	of	Element_Type	objects.

The	declaration	of	Index_Type	as

means	 that	 Index_Type	 can	 be	 any	 signed	 integral	 type	 (or	 subtype).	 In	 contrast,	 if
Index_Type	had	been	declared	as

this	would	 allow	 any	discrete	 type	 to	 be	 used	 to	 index	 the	 array	 including	 enumeration
types.	However,	the	binary	search	algorithm	does	computations	on	index	values	to	find	the
midpoint	between	two	locations	in	the	array,	and	those	operations	are	more	difficult	with
enumeration	types.

Notice	 that	 the	 declaration	 of	 the	 generic	 array	 type	 parameter	 requires	 instantiation
with	 only	 fully	 constrained	 arrays.	 That	 is,	 each	 instantiation	 of	 Binary_Search	 only
works	with	arrays	of	a	particular	size.	One	could	generalize	the	procedure	by	allowing	it
to	work	with	 unconstrained	 array	 types	 by	 changing	 the	 declaration	 of	 the	 Array_Type
parameter	to



In	 that	 case,	 each	 instantiation	 could	work	with	variable	 sized	 arrays	of	 the	given	 type.
Although	 it	 is	 more	 general,	 this	 approach	 has	 other	 implications	 that	 we	 will	 discuss
shortly.

Because	the	binary	search	algorithm	requires	that	Element_Type	have	an	ordering,	the
last	generic	parameter	declares	a	function	”<”	that	can	be	used	to	determine	if	one	value
comes	before	another.	The	generic	code	does	not	understand	anything	about	this	function
other	than	what	is	declared	in	the	generic	parameter	list.	However,	when	the	SPARK	tools
analyze	 an	 instantiation,	 the	 tools	 will	 know	 at	 that	 time	 precisely	 which	 function	 is
actually	being	used.

For	example,	consider	an	instantiation	of	Binary_Search	as	follows:

Here,	procedure	Natural_Search	does	a	binary	search	over	arrays	of	exactly	 ten	natural
numbers.	 Because	 the	 ”<”	 operator	 for	 type	 Natural	 is	 directly	 visible	 at	 the	 point	 of
instantiation,	the	compiler	will	automatically	provide	it	for	the	”<”	generic	parameter	(this
is	the	meaning	of	the	“box”	symbol,	<>,	at	the	end	of	the	generic	parameter	declaration).

When	the	SPARK	tools	analyze	the	instantiation,	they	understand	that	”<”	is	the	ordinary
less	 than	 operation	 on	 natural	 numbers	 and	make	use	 of	 that	 information	 in	 the	 proofs.
This	 is	 helpful	 because	 the	 tools	 have	 some	 built-in	 knowledge	 of	 the	 properties	 of
fundamental	 arithmetic	 operators	 including	 relational	 operators.	 However,	 consider	 a
different	instantiation	using	the	extended	precision	integers	presented	in	Section	6.6:

In	this	case	the	elements	of	the	array	are	256-bit	integers.	Notice	that	because	the	”<”
operator	 of	 the	Very_Long	 type	 is	 not	 directly	 visible,	 it	must	 be	 explicitly	 named	 as	 a
generic	argument	in	the	instantiation.

Unlike	the	earlier	case,	the	SPARK	tools	have	no	built-in	knowledge	of	the	behavior	of
”<”	for	the	Very_Long	type.	All	they	know	about	the	operator	is	what	they	learn	from	the
contract	 on	 the	 operator	 function	 provided	 by	 the	 package.	 That	 contract	 does	 not
completely	specify	all	the	relevant	properties	of	Very_Longs.”<”,	and	thus	the	tools	may
have	more	difficulties	with	the	proofs	for	this	instantiation.	The	necessary	properties	can



be	provided	 to	 the	SPARK	 tools	using	an	external	axiomatization,	an	advanced	 technique
we	 discuss	 very	 briefly	 in	 Section	 9.4.	 However,	 this	 example	 shows	 the	 value	 of
analyzing	each	instantiation	separately.	The	tools	are	able	to	take	advantage	of	whatever
specific	information	is	available	for	each	instantiation.	If	the	tools	attempted	to	prove	the
generic	once	and	for	all,	they	would	not	be	able	to	use	specialized	information	to	simplify
the	proofs	when	appropriate.

Let	 us	 now	 turn	 our	 attention	 to	 the	 pre-	 and	 postconditions	 on	 Binary_	 Search,
repeated	here	as	a	convenience.

The	precondition	is	similar	to	the	one	given	for	the	nongeneric	version	of	the	procedure
described	in	Section	6.2.1.	In	particular,	it	asserts	that	the	input	array	is	sorted	and	also,	in
this	 case,	 that	 every	 element	 in	 the	 array	 is	 unique.	 Be	 aware,	 however,	 that	 such	 a
conclusion	relies	on	the	“expected”	properties	of	”<”.	While	there	is	nothing	in	the	generic
code	 itself	 that	 guarantees	”<”	 behaves	 as	 expected,	 the	 SPARK	 tools	will	 use	whatever
interpretation	is	justified	at	the	point	of	instantiation	as	described	previously.

It	might	 seem	more	natural	 and	more	general	 to	use	”<=”	 in	 the	precondition	 as	was
done	 in	 the	 nongeneric	 example.	 Unfortunately,	 no	 ”<=”	 operator	 is	 available	 for
Element_Type	 so	 such	 a	 modification	 does	 not	 compile.	 As	 stated	 previously,	 because
assertions	are	executable,	they	must	obey	the	same	semantics	and	name	resolution	rules	as
ordinary	Ada	code.	This	could	be	worked	around	in	several	ways.	You	could	add	a	”<=”
function	 to	 the	generic	parameter	 list.	Alternatively,	you	could	write	out	 the	 logic	 in	 the
precondition	itself	using

This	works	because	Element_Type	is	not	a	limited	type	and	thus	is	guaranteed	to	have	an
”=”	operator.

One	could	consider	using	the	simpler	precondition	also	mentioned	in	Section	6.2.1:

However,	it	is	potentially	problematic.	Consider	the	case	in	which	the	array	contains	only
one	 element.	 In	 that	 situation	 Items’	 First	 	 =	 Items’Last.	 The	 computation
Items’Last	 	 1	 might	 overflow	 causing	 a	 Constraint_Error	 exception	 when	 the
precondition	 is	 evaluated.	 Specifically	 consider	 an	 instantiation	 of	 Binary_Search	 as
follows:



The	Natural_Search2	procedure	only	searches	single	element	arrays	that	are	indexed	by
the	first	(most	negative)	integer	value	supported.	When	the	precondition	is	evaluated,	the
expression	 Integer	 ’	 First	 	 	 1	 is	 computed.	 This	 computation	 likely	 causes	 an
exception	 as	 a	 result	 of	 overflow.	 The	 SPARK	 tools	 will	 detect	 this	 problem	when	 they
generate	and	attempt	to	prove	the	verification	conditions	associated	with	the	assertion	as
described	in	Section	6.2.7.	Unfortunately,	the	preceding	instantiation	of	Natural_Search2
will	include	an	unprovable	verification	condition	associated	with	the	precondition.

Notice	 that	 the	 original	 precondition	 suffers	 from	 a	 similar	 problem	 because	 of	 the
computation	of	J	+	1.	You	can	work	around	this	in	a	couple	of	ways.	One	is	to	change	the
overflow	checking	mode	used	by	the	tools.	Another	approach	is	to	make	the	precondition
expression	more	complex	to,	for	example,	only	apply	the	quantified	expression	in	the	case
when	 the	 array	 has	 at	 least	 two	 elements	 (a	 single	 element	 array	 is	 already	 sorted).
Alternatively,	 in	 this	 case,	 you	 could	 ignore	 the	 issue.	 Because	 the	 tools	 analyze	 each
instantiation	 separately,	 an	 instantiation	 that	 does	 not	 have	 the	 problem	 will	 be
successfully	 proved	without	 incident.	 In	 this	 case,	 it	would	 be	 rather	 silly	 to	 instantiate
Binary_Search	to	search	arrays	of	size	one,	so	the	failing	instantiation	would	likely	never
be	attempted	anyway.

In	the	meantime,	Ada’s	type	system	will	prevent	you	from	accidentally	sending	an	array
of	 size	 one	 to	 an	 instantiation	 expecting	 some	 other	 size.	 However,	 notice	 that	 more
caution	is	needed	if	you	create	a	generic	procedure	expecting	an	unconstrained	array	type.

6.8	 Suppression	of	Checks

Once	you	have	successfully	completed	all	the	proofs	in	a	program	unit,	such	as	a	package
body,	you	may	wish	 to	suppress	 the	checks	ordinarly	 inserted	by	 the	Ada	compiler.	The
SPARK	 tools	will	have	shown	that	none	of	those	checks	can	ever	fail,	so	why	suffer	their
overhead?	This	allows	you	to	create	a	program	that	is	both	correct	and	efficient.

One	 demonstration	 of	 this	 effect	 is	 in	 the	 SPARK	 implementation	 of	 SPARKSkein
(Chapman,	 Botcazou,	 and	 Wallenburg,	 2011),	 a	 secure	 hash	 algorithm.13	 The
SPARK	 implementation	was	proved	 free	of	 runtime	errors	and,	 in	 fact,	helped	discover	a
fault	 in	 the	 original	 reference	 implementation	 of	 the	 algorithm	 in	 C.	 Yet	 the
SPARK	 implementation	 yielded	 performance,	 with	 all	 checks	 suppressed,	 essentially
identical	to	the	C	implementation.

There	are	actually	two	classes	of	checks	to	consider,	and	they	are	handled	differently.
The	 first,	 which	 we	 will	 simply	 call	 “runtime	 checks,”	 are	 added	 by	 the	 compiler
automatically	 in	 accordance	 with	 the	 Ada	 language.	 If	 these	 checks	 fail,	 one	 of	 the



predefined	exceptions,	usually	Constraint_Error,	is	raised.

The	other	kind	of	checks	are	the	assertions	added	by	the	programmer	in	the	form	of	pre-
and	postconditions,	Assert	pragmas,	loop	invariants,	and	so	forth.	These	differ	 from	the
runtime	 checks	 in	 that	 they	 do	 not	 exist	 at	 all	 unless	 the	 programmer	 writes	 them.
Furthermore,	the	compiler	is	not	obligated	to	execute	the	assertions	by	default;	it	depends
on	 the	 implementation-defined	 default	 assertion	 policy.	 Finally,	 a	 failed	 assertion	 raises
the	Assertion_Error	exception	instead	of	one	of	the	four	previously	discussed	language-
defined	exceptions.

The	 methods	 for	 suppressing	 checks	 and	 the	 issues	 associated	 with	 doing	 so	 are
somewhat	different	depending	on	the	kind	of	check	being	suppressed.	In	the	two	sections
that	follow	we	describe	these	issues	in	more	detail.

6.8.1	 Runtime	Checks
Runtime	checks	are	inserted	automatically	by	the	compiler	to	test	for	situations	where	one
of	the	predefined	exceptions	discussed	in	Section	6.1	should	be	raised.	The	Ada	standard
allows	compilers	to	“optimize	away”	any	runtime	checks	the	compiler	can	determine	will
never	fail.	Because	some	compilers	may	analyze	the	code	more	deeply	than	others,	there
is	no	easy	way	to	know	precisely	which	runtime	checks	the	compiler	removes	and	which
are	left	behind.

The	analysis	done	by	the	SPARK	tools	can	be	seen	as	a	deepening	of	the	analysis	already
done	by	 the	compiler.	The	 tools	 fully	analyze	all	 runtime	checks	of	certain	kinds;	 if	 the
proofs	succeed,	none	of	those	runtime	checks	are	necessary.	It	is	thus	reasonable	to	direct
the	compiler	to	remove	all	runtime	checks	covered	by	SPARK	in	fully	proved	units.

One	 approach	 to	 removing	 runtime	 checks	 in	 a	 unit	 is	 to	 use	 pragma	 Suppress	 as
follows	to	remove	all	checks:

However,	this	needs	to	be	done	with	care.	Certain	runtime	checks	covered	by	All_Checks,
in	 particular	 related	 to	 memory	 exhaustion,	 are	 not	 ruled	 out	 by	 SPARK	 alone.	 It	 is
theoretically	possible	to	prove	a	unit	free	of	runtime	errors	and	yet	still	experience	a	stack
overflow	in	that	unit	during	execution.	With	all	runtime	checks	suppressed,	such	an	event
would	 cause	 the	 program	 to	 execute	 “erroneously”	 or,	 in	 other	words,	 in	 an	 undefined
manner	 instead	of	 raising	Storage_Error	 as	usual.	This	 is	highly	undesirable	 in	a	high-
integrity	context.

It	should	be	mentioned,	however,	 that	 the	Ada	standard	does	not	require	compilers	 to
remove	runtime	checks	that	are	mentioned	in	pragma	Suppress.	The	pragma	only	grants
permission	to	do	so.	For	example,	the	GNAT	compiler	will	still	check	for	stack	overflow	if
asked,	 despite	 the	 use	 of	 pragma	 Suppress	 (All_Checks)	 in	 the	 source	 code.	 See	 the
GNAT	Reference	Manual	(2015a)	for	more	information.



As	 a	 result,	 the	 use	 of	 pragma	 Suppress	 may	 have	 less	 effect	 on	 the	 behavior	 and
performance	of	your	program	than	you	might	think,	both	because	the	compiler	may	insert
some	 runtime	 checks	 anyway	 and	 because	 the	 compiler	may	 be	 optimizing	 away	 some
runtime	 checks	 already.	 As	 always,	 when	 dealing	with	 performance	 issues,	 you	 should
carefully	 benchmark	 your	 program	 before	 and	 after	 making	 changes	 to	 ensure	 you	 are
actually	having	a	useful	effect.

In	any	case,	to	suppress	All_Checks	safely,	you	may	need	to	ensure	code	with	runtime
checks	suppressed	will	not	experience	any	memory	problems,	perhaps	by	using	additional
tools	as	described	in	Section	6.1.	You	should	also	review	your	compiler’s	documentation
to	 understand	 what	 runtime	 checks,	 if	 any,	 are	 retained	 despite	 the	 use	 of	 pragma
Suppress.

A	 potentially	 safer,	 if	 more	 tedious,	 way	 to	 suppress	 runtime	 checks	 is	 to	 explicitly
suppress	 only	 the	 checks	 that	 are	 definitely	 covered	 by	 SPARK’s	 analysis.	 This	 requires
using	multiple	Suppress	pragmas,	one	for	each	check.	However,	any	checks	you	do	not
mention	 or	 are	 not	 aware	 of	 will	 still	 be	 checked.	 Although,	 this	 might	 cause	 some
unnecessary	checks	 to	 remain,	 it	 is	 safe.	The	example	package	body	 that	 follows	shows
this	approach.

Certain	checks	mentioned	 in	 the	Ada	Reference	Manual	 (2012)	are	not	 listed	because
they	pertain	to	features	that	are	not	legal	in	a	SPARK	unit.	In	particular,	the	checks	related
to	access	types	are	not	suppressed.	If	a	future	version	of	SPARK	supports	analysis	of	those
things,	 the	previous	list	of	Suppress	pragmas	would	be	 incomplete,	but	 that	would	only
mean	some	unnecessary	checks	might	remain.	The	program	would	not	become	erroneous.

6.8.2	 Assertions
Suppressing	 unnecessary	 assertions	 is	 potentially	 far	 more	 important	 than	 suppressing
unnecessary	runtime	checks.	This	is	because	assertions	can	be	very	expensive	to	evaluate
and	can	even	change	 the	asymptotic	 running	 time	of	 the	subprograms	 to	which	 they	are
attached.	We	noted	this	effect,	for	example,	when	discussing	the	Binary_Search	example
in	Section	6.2.1.	Consequently,	assertions	have	the	potential	to	slow	down	programs	by	a
huge	factor,	making	them	thousands	or	even	millions	of	times	slower	in	some	cases.	For



programs	that	rely	on	highly	efficient	algorithms,	removing	unnecessary	assertions	could
make	the	difference	between	meeting	performance	goals	and	total	unusability.

For	 this	 reason	some	compilers,	 such	as	GNAT,	do	not	execute	assertions	by	default.
Instead	they	are	only	executed	by	explicitly	setting	the	assertion	policy	to	Check.	This	can
be	 done	 for	 all	 assertions	 in	 the	 program	 using	 a	 compiler	 command	 line	 option	 or	 by
setting	 the	 configuration	 pragma	 Assertion_Policy	 to	 the	 desired	 policy.	 Once	 the
SPARK	 tools	 have	 proved	 that	 all	 assertions	 will	 never	 fail,	 you	 can	 disable	 them	 by
explicitly	 setting	 the	 policy	 to	Ignore,	 or	 in	 the	 case	 of	GNAT,	 simply	 fall	 back	 to	 the
default	 behavior.	 It	 is	 of	 course	 necessary	 to	 recompile	 the	 program	 if	 you	 change	 the
assertion	policy	for	the	change	to	take	effect.

Of	particular	interest	are	assertions	that	you	might	wish	to	ignore	inside	a	package	body
but	 still	 enforce	 at	 the	 interface	 to	 the	 package.	 Suppose,	 for	 example,	 that	 you	 have
successfully	discharaged	all	verification	conditions	in	a	certain	package	body.	That	means,
among	other	things,	that	the	preconditions	on	internal	subprograms	are	satisfied	at	every
call	site	in	that	body.	If	you	compile	the	body	with	the	assertion	policy	set	to	Ignore,	you
will	remove	the	overhead	associated	with	those	precondition	checks.	However,	you	might
still	want	to	have	preconditions	on	the	public	subprograms	checked,	at	least	until	you	have
shown	that	every	call	site	in	the	entire	program	necessarily	satisfies	them.	To	do	this,	you
can	set	the	assertion	policy	on	the	specification	where	the	public	subprograms	are	declared
to	Check.

The	 rule	 is	 that	 the	assertion	policy	used	 for	a	particular	assertion	 is	 that	which	 is	 in
force	at	the	point	the	assertion	is	defined.	Thus,	even	though	the	compiler	inserts	pre-	and
postcondition	 checks	 into	 the	 body	 of	 the	 subprograms	 to	 which	 they	 apply,	 it	 is	 the
assertion	 policy	 in	 effect	 in	 the	 specification	 that	 affects	 the	 pre-	 and	 postconditions	 of
public	subprograms.

For	 example,	 consider	 the	 function	 Search_For_Zero	 discussed	 on	 page	 §.	 A	 utility
package	containing	this	function	might	have	a	specification,	in	part,	as	follows:

Here	 the	 assertion	 policy	 is	 explicitly	 set	 to	 Check	 causing	 the	 precondition	 (and
postcondition)	 to	 be	 checked	 at	 runtime	whenever	 the	 function	 is	 called.	 However,	 the
body	of	this	package	could	include



This	removes	all	assertion	checking	inside	the	body	itself.	Notice,	however,	that	all	calls
to	Search_For_Zero	will	have	the	precondition	(and	postcondition)	checked	even	if	those
calls	come	from	inside	the	package.

The	 checking	 of	 the	 postcondition	 in	 this	 case	 is	 somewhat	 unfortunate	 because
discharging	 all	 verification	 conditions	 in	 the	 body	will	 have	 shown	 the	 postcondition	 is
always	 satisfied.	 However,	 with	 the	 GNAT	 compiler,	 it	 is	 possible	 to	 use	 the
Assertion_Policy	pragma	to	selectively	control	each	kind	of	assertion	individually.	See
the	GNAT	Reference	Manual	(2015a)	for	more	information.	For	example,	the	specification
could	be	written	as	follows.

Care	 is	 required	 whenever	 explicitly	 setting	 the	 assertion	 policy	 to	 Ignore.	 For
example,	 if	 a	 change	 is	 made	 to	 the	 body	 of	 preceding	 package	 Utility	 and	 not	 all
verification	conditions	are	discharged	after	 the	change,	you	could	easily	end	up	with	the
case	in	which	a	postcondition	is	not	satisfied	and	not	checked.	However,	the	SPARK	tools
always	 generate	 verification	 conditions	 and	 attempt	 to	 discharge	 them	 regardless	 of	 the
assertion	policy	 setting.	Thus,	 static	verification	 is	unaffected	by	 the	Assertion_Policy
pragma.

Summary

A	logical	error	is	an	error	in	the	program’s	logic	as	a	result	of	programmer	oversight.
A	 runtime	error	 is	a	 special	kind	of	 logical	error	 that	 is	detected	by	Ada-mandated
runtime	checks.
An	assertion	is	a	programmer-defined	check.	All	assertions	are	executable	under	 the
control	of	 the	assertion	policy	 in	 force	when	a	unit	 is	compiled.	A	policy	of	Check
enables	 assertions.	 A	 policy	 of	 Ignore	 disables	 them.	 If	 an	 assertion	 fails	 during
execution,	Assertion_Error	is	raised.
The	 SPARK	 tools	 attempt	 to	 prove	 that	 a	 program	 is	 free	 of	 runtime	 errors	 and,	 in
addition,	all	programmer	supplied	assertions	will	always	be	satisfied.
SPARK	eliminates	Program_Error	and	Tasking_Error	by	prohibiting	the	features	that
might	raise	them.



SPARK	 does	 not	 eliminate	 the	 possibility	 of	 Storage_Error,	 but	 it	 simplifies	 the
analysis	required	to	eliminate	it.
SPARK	eliminates	Constraint_Error	as	part	of	proving	freedom	of	runtime	errors.
At	each	point	where	a	check	is	required,	either	as	mandated	by	the	Ada	standard	or	as
added	 by	 the	 programmer	 in	 the	 form	 of	 an	 assertion,	 the	 SPARK	 tools	 generate	 a
verification	condition	that,	if	proved,	shows	the	check	will	never	fail.
A	precondition	is	an	assertion	attached	to	a	subprogram	that	must	hold	whenever	the
subprogram	is	called.	It	can	be	used	to	constrain	the	inputs	to	a	subprogram	beyond
the	constraints	imposed	by	the	type	system.	In	particular,	preconditions	can	describe
required	relationships	between	inputs.
A	postcondition	is	an	assertion	attached	to	a	subprogram	that	must	hold	whenever	the
subprogram	 returns.	 It	 describes	 the	 effect	 of	 the	 subprogram	 and	 is	 part	 of	 the
subprogram’s	functional	specification.
In	a	postcondition,	you	can	use	the	’Old	attribute	to	reference	the	value	of	an	input
when	the	subprogram	is	first	entered.	You	can	use	the	’Result	attribute	to	reference
the	return	value	of	a	function.
The	Initial_Condition	aspect	can	 be	 used	 on	 a	 package	 to	 specify	 the	 state	 the
package	has	after	elaboration.	It	serves	as	a	kind	of	package-wide	postcondition	and
is	most	useful	for	packages	that	have	internal	state.
Assertions	 in	 the	visible	part	of	 a	package	cannot	directly	 reference	 information	 in
the	 private	 section	 of	 a	 package.	 It	 is	 thus	 sometimes	 necessary	 to	 define	 and	 use
public	functions	in	such	assertions.
The	 Refined_Post	 aspect	 can	 be	 used	 in	 the	 body	 of	 a	 package	 to	 describe	 a
subprogram’s	postcondition	in	internal	terms.	SPARK	attempts	to	prove	that	the	public
postcondition,	 if	 any,	 follows	 from	 the	 subprogram’s	 precondition	 and	 refined
postcondition.
Expression	functions	are	automatically	given	a	refined	postcondition	that	asserts	they
return	 the	 value	 of	 the	 expression	 used	 to	 define	 them.	 As	 a	 result,	 expression
functions	can	be	thought	of	as	pure	specification.
It	is	common	to	define	functions	in	public	assertions	as	inline	expression	functions	in
the	private	section	of	a	package	specification.
A	 type	 invariant	 is	 an	assertion	attached	 to	private	 type	 that	must	hold	whenever	a
subprogram	manipulating	an	object	of	that	type	returns.	They	can	be	approximately
thought	 of	 as	 postconditions	 that	 are	 automatically	 applied	 to	 all	 subprograms
manipulating	the	type.
Type	invariants	are	currently	not	supported	by	SPARK.	However,	they	are	part	of	Ada
and	 can	 still	 be	 used.	The	SPARK	 tools	will	 simply	 not	 (yet)	 attempt	 to	 prove	 they
never	fail.
Subtype	predicates	allow	you	to	specify	complex	constraints	on	a	subtypes.	They	can
be	used	 to	specify	 types	more	precisely.	SPARK	currently	does	not	 support	 dynamic
predicates	but	does	support	static	predicates.
Contract_Cases	 gives	 you	 a	 way	 of	 specifying	 a	 collection	 of	 pre-	 and
postconditions	in	a	convenient,	easy-to-maintain	way.	It	is	most	applicable	when	 the
input	 domain	 of	 a	 subprogram	 can	 be	 partitioned	 into	 disjoint	 subdomains.
SPARK	proves	that	all	the	cases	are	mutually	exclusive	and	that	they	cover	the	entire
input	domain.



Because	assertions	are	executable,	 there	 is	a	possibility	 they	might	cause	a	 runtime
error	when	evaluated.	The	SPARK	tools	also	generate	verification	conditions	to	show
this	will	not	happen.
Runtime	errors	 in	 the	assertions	can	be	avoided	by	adjusting	 the	overflow	mode	of
the	GNAT	compiler.
The	 Assert	 pragma	 allows	 you	 to	 inject	 arbitrary	 checks	 into	 the	 body	 of	 a
subprogram.	The	SPARK	 tools	 attempt	 to	 prove	 every	Assert	 is	 always	 true,	 and	 it
uses	the	asserted	information	to	help	with	following	proofs.	The	Assert	pragma	lets
you	give	“hints”	to	the	tools	to	simplify	later	proofs.
The	Assert_And_Cut	pragma	is	like	the	Assert	pragma	except	that	it	also	introduces
a	 cut	point.	All	 paths	 that	 reach	 the	Assert_And_Cut	are	 terminated.	Only	 a	 single
path	leaves	the	Assert_And_Cut.	This	is	useful	for	reducing	the	total	number	of	paths
in	a	subprogram	to	simplify	verification	conditions	and	speed	up	processing.
The	Assume	pragma	 introduces	 information	 for	 the	SPARK	 tools	 to	use	but	 does	not
carry	any	proof	obligations	itself.	It	can	be	used	to	encode	information	external	to	the
program	that	the	tools	nevertheless	need	to	complete	reasonable	proofs.
The	 Assume	 pragma	 should	 be	 used	 carefully.	 If	 the	 assumption	 is	 false,	 the
SPARK	tools	may	end	up	proving	false	things.	However,	Assume	is	executed	as	usual
so	testing	may	uncover	false	assumptions.
A	loop	invariant	is	an	assertion	added	to	the	body	of	the	loop	that	asserts	a	condition
that	is	true	for	every	loop	iteration.	It	serves	as	a	cut	point	and	thus	prevents	the	loop
from	creating	a	potentially	infinite	number	of	paths.
Despite	being	a	cut	point,	the	SPARK	tools	give	special	handling	to	values	that	are	not
changed	inside	the	loop.	Information	about	those	values	do	not	need	to	be	reasserted
by	the	loop	invariant.
Choosing	loop	invariants	can	be	 tricky.	You	need	 to	find	a	condition	 that	 is	 readily
proved	on	loop	entry	and	for	each	iteration	of	the	loop	and	that	also	provides	enough
information	to	prove	other	verification	conditions	inside	and	beyond	the	loop.
If	the	SPARK	tools	successfully	prove	a	subprogram’s	postcondition,	it	only	means	the
postcondition	is	honored	if	the	subprogram	actually	returns.
The	 Loop_Variant	 pragma	 allows	 you	 to	 specify	 one	 or	 more	 expressions	 that
always	increase	or	always	decrease	as	a	loop	executes.	The	expressions	must	have	a
discrete	 type	 so	 if	 the	 loop	 variant	 is	 true	 it	 implies	 the	 loop	 must	 terminate
eventually.
It	is	appropriate	to	use	Loop_Variant	 in	while	 loops	or	 in	 loops	constructed	with	a
bare	loop	reserved	word.
SPARK	handles	discriminated	types	similarly	to	the	way	it	handles	unconstrained	array
types.	 The	 tools	 generate	 verification	 conditions	 related	 to	 the	 discriminants	 as
appropriate,	and	the	discriminants	can	be	used	in	assertions	in	a	natural	way.
The	 SPARK	 tools	 do	 not	 analyze	 generic	 code	 directly	 but	 instead	 analyze	 each
instantiation	of	a	generic	separately.	Some	instantiations	might	prove	fully,	whereas
others	might	not	even	be	legal	SPARK.
When	the	SPARK	tools	analyze	a	generic	instantiation,	they	use	information	about	the
actual	generic	parameters	 involved.	Some	instantiations	might	 be	 difficult	 to	 prove
because	of	the	limited	information	available	about	the	types	and	operations	used.
In	 fully	proved	code,	 it	may	be	desirable	 to	 suppress	 runtime	 checks	 and	 assertion



checks	 to	 improve	 the	efficiency	of	 the	program.	Assertion	checks,	especially,	may
warrant	suppression	because	assertions	have	the	potential	of	slowing	down	execution
asymptotically.

Exercises

6.1 	Alice	is	interested	in	using	a	package	Bob	created.	Which	of	them	wants	the	public
subprograms	in	that	package	to	have	strong	preconditions?	Which	of	them	wants
strong	postconditions?

6.2		 Suppose	there	is	a	function	File_Exists	that	takes	a	string	and	returns	True	if	a
file	 of	 the	given	name	 is	 available	 to	your	program.	Now	consider	 a	 procedure
that	reads	a	configuration	file	declared	as	follows:	

This	is	an	suspicious	use	of	contracts.	Why?

6.3 	 What	 is	 a	 cut	 point	 and	 under	 what	 circumstances	 would	 it	 be	 appropriate	 to
consider	introducing	one	into	your	code?	How	would	you	add	a	cut	point	to	your
code?

6.4		 Suppose	you	wanted	to	create	a	subprogram	that	accepted	only	even	nonnegative
integers.	You	could	either	use	a	precondition	as	follows,	

or	you	could	use	a	subtype	predicate	as	follows,	

Discuss	 the	 relative	 merits	 of	 these	 two	 approaches	 with	 respect	 to
SPARK	 programming.	 Is	 your	 answer	 different	 if	 the	 subtype	 could	 be	 defined
using	a	static	predicate	instead?

6.5		 Type	invariants	are	not	supported	by	SPARK	at	the	time	of	this	writing.	However,	to
a	large	degree	this	can	be	worked	around.	How?

6.6		 Explain	how	contract	cases	can	be	considered	a	combination	of	preconditions	and
postconditions.	 Is	 the	 Contract_Cases	 aspect	 strictly	 necessary,	 or	 is	 it	 always
possible	to	express	contract	cases	using	pre-	and	postconditions?

6.7	 	 Write	 a	 procedure	 that	 increments	 every	 counter	 in	 an	 array	 of	 counters.	Prove
your	procedure	free	of	runtime	errors.	You	will	need	a	precondition	to	assert	that



all	the	counters	are	not	yet	at	their	maximal	values.	You	may	also	need	a	suitable
loop	invariant.

6.8		 If	one	says	informally	that	condition	 	is	“stronger”	than	condition	 	(where	a
condition	 is	 a	 boolean	 expression),	 what	 is	 the	 intended	 formal	 relationship
between	 	and	 ?

6.9	 	 Consider	 the	 specification	 of	 package	 Buffers	 on	 page	 §.	 Add	 the	 following
subprograms	to	that	package.	For	each	subprogram	write	a	suitable	postcondition,
implement	 the	subprogram,	and	prove	your	 implementation	correct	with	 respect
to	your	postcondition.

a.	 Add	a	procedure	Reverse_Buffer	with	a	declaration	as	follows:	

The	 procedure	 reverses	 the	 contents	 of	 Buffer.	 For	 example,	 reversing	 the
string	“Hello”	results	in	“olleH”.

b.	 Add	a	procedure	Rotate_Right	with	a	declaration	as	follows:	

The	procedure	moves	the	contents	of	Buffer	 toward	higher	 index	values	 (to
the	 right)	 by	 an	 amount	Distance.	Any	 elements	 that	 “fall	 off	 the	 end”	 are
brought	back	to	the	beginning.	For	example,	rotating	the	string	“Hello”	to	the
right	by	three	results	in	“lloHe”.

c.	 Add	a	function	Search	with	a	declaration	as	follows:	

The	function	returns	the	index	in	Haystack	where	Needle	first	appears	or	zero
if	 Needle	 does	 not	 appear.	 It	 is	 permitted	 for	 Needle	 to	 be	 longer	 than
Haystack	in	which	case	it	can	never	be	found.

d.	 Add	a	procedure	Count_And_Erase_Character	with	a	declaration	as	follows:	

The	procedure	returns	 in	Count	 the	number	of	 times	Ch	occurs	 in	Buffer.	 It
also	modifies	Buffer	so	that	each	occurrence	of	Ch	is	replaced	with	a	space.

e.	 Add	a	procedure	Compact	with	a	declaration	as	follows:	



The	 procedure	 compacts	 Buffer	 by	 removing	 occurrences	 of
Erase_Character.	 Free	 space	 opened	 at	 the	 end	 of	 the	 buffer	 is	 filled	with
instances	of	Fill_Character	.	On	returning,	the	value	of	Valid	is	a	count	of
the	number	of	original	characters	that	were	not	erased.

6.10	 Let	 the	 specification	 of	 the	Buffers	 package	 on	 page	 §	 be	modified	 to	 use	 an
unconstrained	array	type	as	follows:	

Repeat	Exercise	6.9.

6.11	 Loop	variant	pragmas	are	not	needed	for	many	loops	in	SPARK	programs.	Under
what	circumstances	is	it	appropriate	to	consider	using	a	loop	variant?

6.12	 When	a	loop	variant	pragma	is	used	with	multiple	expressions,	it	is	possible	 that
later	 expressions	 might	 “go	 the	 wrong	 way”	 as	 long	 as	 an	 earlier	 expression
changes	in	the	right	direction.	In	particular,	a	 later	expression	might	get	 reset	 to
some	 initial	value.	Explain	why	 the	 loop	must	 still	 eventually	 terminate	 despite
this	behavior.	How	does	this	relate	to	nested	loops?

6.13	 The	precondition	of	Binary_Search	does	not	actually	need	to	state	that	the	input
array	is	sorted.	A	weaker,	but	still	adequate,	precondition	is	that	the	array	must	be
partitioned	 by	 both	 the	 expressions	E	 <	 Search_Item	 and	 E	 <=	 Search_Item,
where	 E	 is	 an	 array	 element.	 An	 array	 is	 partitioned	 by	 an	 expression	 if	 there
exists	an	index	 	such	that	the	expression	is	true	for	every	element	before	 	and
false	for	every	element	at	or	above	 .	For	example,	if	the	search	item	is	10,	the
array	containing	(5,	3,	10,	10,	8,	6)	is	suitably	partitioned.

Modify	the	precondition	on	Binary_Search	shown	on	page	§	to	use	this	weaker
condition.	 Does	 the	 implementation	 given	 on	 page	 §	 still	 satisfy	 the
postcondition?

6.14	 Consider	 the	 In_Unit_Square	 function	 on	 page	 §.	 Following	 the	 style	 of	 that
function,	 show	 the	 specification	 of	 an	 In_Unit_Circle	 function	 taking	 Float
parameters	 and	 that	 returns	 +1	 if	 the	 given	 point	 is	 in	 a	 circle	with	 radius	 one
centered	on	the	origin.

6.15	 The	generic	package	Double_List	discussed	in	Section	6.7	is	incomplete.	Make
the	package	usable	by	adding	subprograms	for	iterator	movement	and	for	reading



and	updating	list	elements	via	an	iterator.	Also	add	a	Front	function	that	returns
an	iterator	to	the	first	element	of	the	list	(or	the	sentinal	if	the	list	is	empty).	Add
some	 procedures	 to	 package	List_Handler	 in	 Section	 6.7	 to	 demonstrate	 these
new	 capabilities.	 Ensure	 that	 SPARK	 proves	 your	 revised	 List_Handler	 free	 of
runtime	errors.

6.16	 Extend	Exercise	6.15	by	revising	package	Double_List	again	so	that	it	is	a	 type
package	 rather	 than	 a	 variable	 package.	 Let	 the	 maximum	 size	 of	 each	 list	 be
given	by	a	discriminant.	Call	your	revised	package	Double_Lists	with	a	private
type	List.	Revise	 the	List_Handler	 package	 to	 use	 your	 new	 package.	 Ensure
that	SPARK	proves	your	revised	List_Handler	free	of	runtime	errors.

6.17	 Why	is	it	more	important	to	suppress	assertions	than	runtime	checks	in	deployed
programs?



7
Interfacing	with	SPARK

It	 is	 often	 infeasible	 or	 even	 undesirable	 to	 write	 an	 entire	 program	 in	 SPARK.	 Some
portions	of	the	program	may	need	to	be	in	full	Ada	to	take	advantage	of	Ada	features	that
are	not	available	 in	SPARK	 such	as	access	 types	and	exceptions.	 It	may	be	necessary	 for
SPARK	 programs	 to	 call	 third-party	 libraries	written	 in	Ada	 or	 some	 other	 programming
language	 such	 as	 C.	 Of	 course	 SPARK’s	 assurances	 of	 correctness	 cannot	 be	 formally
guaranteed	 when	 the	 execution	 of	 a	 program	 flows	 into	 the	 non-SPARK	 components.
However,	 mixing	 SPARK	 and	 non-SPARK	 code	 is	 of	 great	 practical	 importance.	 In	 this
chapter	we	explore	the	issues	around	building	programs	that	are	only	partially	SPARK.	 In
Chapter	8	we	look	at	how	combining	proof	with	testing	can	verify	applications	that	are	not
all	SPARK.

7.1	 SPARK	and	Ada

In	this	section	we	discuss	mixing	SPARK	with	full	Ada.	Calling	SPARK	from	Ada	is	trivial
because	SPARK	 is	 a	 subset	 of	Ada	 and	 thus	 appears	 entirely	 ordinary	 from	 the	 point	 of
view	of	the	full	Ada	compiler.	Calling	full	Ada	from	SPARK,	however,	presents	more	issues
because	the	limitations	of	SPARK	require	special	handling	at	the	interface	between	the	two
languages.

7.1.1	 SPARK	Mode
Conceptually	 each	 part	 or	 construct	 of	 your	 program	 is	 either	 “in	 SPARK”	 or	 “not	 in
SPARK.”	If	a	construct	is	in	SPARK,	then	it	conforms	to	the	restrictions	of	SPARK,	whereas	if
a	construct	is	not	in	SPARK,	it	can	make	use	of	all	the	features	of	full	Ada	as	appropriate
for	 the	 construct.	 It	 is	 not	 permitted	 for	 SPARK	 constructs	 to	 directly	 reference	 non-
SPARK	 constructs.	 For	 example,	 a	 subprogram	 body	 that	 is	 in	 SPARK	 cannot	 call	 a
subprogram	 with	 a	 non-SPARK	 declaration.	 However,	 as	 declarations	 and	 bodies	 are
separate	constructs,	it	is	permitted	for	a	SPARK	subprogram	body	to	call	a	subprogram	with
a	SPARK	declaration	even	if	the	body	of	the	called	subprogram	is	not	in	SPARK.

It	is	up	to	you	to	mark	the	SPARK	constructs	of	your	program	as	such	by	specifying	their
SPARK	 mode.	 This	 is	 done	 using	 the	 SPARK_Mode	 pragma	 or	 SPARK_Mode	 aspect	 as
appropriate.	The	SPARK	mode	can	be	explicitly	set	to	either	On	or	Off.	If	the	SPARK	mode
of	 a	 construct	 is	 not	 mentioned	 at	 all,	 then	 its	 value	 is	 taken	 from	 some	 appropriate
enclosing	construct.	For	library	level	units,1	if	the	SPARK	mode	is	not	specified	explicitly,
it	is	taken	to	have	the	special	value	Auto.	We	describe	the	effect	of	automatic	SPARK	mode
in	Section	7.1.3.

You	may	not	change	the	SPARK	mode	on	a	fine	grained	basis	such	as	between	different
subexpressions	of	a	single	expression	or	between	individual	statements	of	a	subprogram.
Roughly,	the	SPARK	mode	setting	can	only	be	changed	on	the	granularity	of	packages	or
subprograms.	Specifically,	there	are	six	locations	for	which	we	can	specify	a	SPARK	mode:



Immediately	within	or	before	a	library-level	package	specification
Immediately	within	a	library-level	package	body
Immediately	following	the	private	keyword	of	a	library-level	package	specification
Immediately	following	the	begin	keyword	of	a	library-level	package	body
Immediately	following	a	library-level	subprogram	specification
Immediately	within	a	library-level	subprogram	body

If	 you	 desire	 for	 your	 entire	 program	 to	 be	 SPARK,	 you	 can	 change	 the	 default	 by
specifying

as	a	configuration	pragma	 to	 your	 compiler.	Such	pragmas	 are	used	by	 the	 compiler	 to
control	various	features	of	the	entire	compilation.	The	mechanism	by	which	configuration
pragmas	are	applied	and	 the	scope	over	which	 they	operate	 is	compiler	specific.	Should
you	use	a	configuration	pragma	 to	 turn	on	SPARK	mode	 for	 the	entire	program,	you	can
still	turn	it	off	for	specific	parts	of	your	program	as	necessary.	The	configuration	pragma
only	changes	the	default,	it	does	not	prohibit	you	from	creating	a	program	that	is	a	mixture
of	SPARK	and	non-SPARK	code.

There	 are	 several	 important	 use	 cases	 that	 are	 supported.	 In	 this	 section	 we	 will
examine	 some	 of	 these	 cases.	 In	 the	 examples	 that	 follow,	 we	 explicitly	 specify	 the
SPARK	 mode.	 Later	 we	 will	 describe	 some	 important	 consistency	 rules	 on	 the	 way
SPARK	mode	must	be	used	and	the	effect	of	not	specifying	a	SPARK	mode	explicitly.

One	of	the	most	important	cases	is	one	in	which	a	package	specification	is	in	SPARK	and
yet	the	corresponding	package	body	is	not	in	SPARK.	This	allows	you	to	call	subprograms
in	 a	 non-SPARK	 package	 from	 SPARK	 code.	 As	 an	 example,	 consider	 the	 following
abbreviated	 specification	 of	 the	 variable	 package	 Interval_Tree	 that	 encapsulates	 an
object	 that	 stores	 real	 intervals	 in	 a	 structured	 way.	 A	 more	 realistic	 version	 of	 this
package	would	include	additional	interval	tree	operations.



Interval	trees	are	useful	for	efficiently	determining	if	a	given	interval	overlaps	any	of	a
set	of	existing	intervals	along	with	similar	operations.	Here,	for	purposes	of	illustration,	an
interval	 is	 represented	 simply	 as	 a	 record	 holding	 two	 floating	 point	 values.	 The
specification	carries	the	SPARK_Mode	aspect	set	to	On	to	indicate	that	it	is	intended	to	be	in
SPARK.	The	use	of	On	is	optional;	if	SPARK_Mode	is	mentioned	at	all,	it	is	assumed	to	take
the	value	On	unless	otherwise	specified.	A	SPARK_Mode	pragma	could	also	have	been	used
instead.	The	two	forms	have	the	same	meaning.	The	one	you	use	is	a	matter	of	style.

The	subprogram	declarations	in	the	package	specification	are	decorated	with	the	usual
SPARK	 aspects	 such	 as	 Global,	 Depends,	 and	 Post.	 Although	 this	 example	 does	 not
illustrate	 it,	 preconditions	 could	 also	 be	 provided.	 These	 aspects	 are	 used	 by	 the
SPARK	tools	in	the	usual	way	during	the	analysis	of	code	that	calls	the	subprograms	in	the
package.

Here	 is	 the	 complete	 body	 of	 package	 Interval_Tree	 .	 This	 body	 only	 shows	 the



implementation	of	the	subprograms	declared	in	the	example	specification,	along	with	the
necessary	supporting	type	declarations.





The	tree	data	structure	in	this	variable	package	body	uses	pointers2	(access	types)	and
dynamically	 allocated	 memory	 to	 allow	 the	 tree	 to	 grow	 as	 large	 as	 necessary	 during
program	 execution.	 As	 these	 constructs	 are	 not	 legal	 in	 SPARK,	 the	 package	 body	 is
explicitly	declared	to	be	not	in	SPARK	by	setting	the	SPARK_Mode	aspect	to	Off.	Setting	the
SPARK	 mode	 of	 the	 body	 explicitly	 is	 required	 in	 this	 case.	 Because	 the	 package’s
specification	is	explicitly	marked	as	being	in	SPARK,	the	tools	will	assume	the	body	is	as
well	unless	told	otherwise.

Because	the	package	body	is	not	in	SPARK,	it	is	not	necessary	to	refine	the	abstract	state
declared	 in	 the	 specification.	 Furthermore,	 the	 SPARK	 tools	 will	 not	 verify	 that	 the
subprograms	 in	 the	body	conform	 to	 their	 declared	data	 and	 flow	dependency	contracts
nor	 will	 the	 tools	 attempt	 to	 prove	 that	 the	 code	 is	 free	 from	 runtime	 errors	 and	 that
subprograms	always	obey	their	declared	postconditions.	The	onus	is	on	the	programmer,
together	with	proper	testing,	to	ensure	the	correctness	of	the	code.

It	is	important	to	note,	however,	that	pre-	and	postconditions	are	part	of	Ada,	and	thus
the	Ada	compiler	will,	as	usual,	include	runtime	checks	that	verify	the	postconditions	(in
this	 example),	 depending	 on	 the	 assertion	 policy	 in	 force	 at	 the	 time	 the	 package
specification	 is	 compiled.	 If	 a	postcondition	 fails,	 the	Assertion_Error	exception3	will
be	raised,	which	would	then	propagate	into	SPARK	code.	This	would	also	be	true	for	any
unhandled	Constraint_Error	or	Storage_Error	exceptions	or,	for	that	matter,	any	other
unhandled	exceptions	that	might	be	raised	in	the	package	body.

This	 seems	problematic	because	SPARK	 code	 cannot	define	 any	 exception	handlers	 to
deal	with	exceptions	from	the	non-SPARK	code	it	calls.	One	might	hope	that	all	such	cases
would	be	caught	during	testing,	but	even	if	not,	it	is	still	possible	to	call	the	SPARK	code
from	 a	 high	 level	 “main”	 subprogram	 that	 is	 not	 in	 SPARK	 and	 that	 includes	 exception
handlers	for	any	unexpected	exceptions	raised	by	low-level	non-SPARK	subprograms.

It	 would	 also	 be	 possible	 for	 the	 subprograms	 in	 the	 package	 body	 to	 catch	 all
exceptions	 they	might	 generate	 (aside	 from	 the	Assertion_Error	 exceptions	 raised	 by
pre-	and	postcondition	failures)	and	translate	them	into	error	status	codes.	However,	such
an	 approach	might	 not	 be	 ideal	 if	 the	 package	 is	 to	 also	 be	 called	 by	 non-SPARK	 code
where	exceptions	handling	 is	natural	 and	convenient.	As	we	show	 in	Section	7.1.2,	 this
can	be	managed	by	creating	a	special	wrapper	package.

The	previous	example	illustrated	a	variable	package,	but	what	if	you	wanted	to	provide
interval	trees	as	a	type	package?	That	would	allow	the	user	to	create	multiple,	independent
tree	objects.	This	can	be	done,	as	usual,	by	declaring	a	private	type	to	represent	the	trees
themselves	 along	 with	 a	 private	 section	 in	 the	 package	 specification	 to	 detail	 to	 the
compiler	the	nature	of	the	tree	type.	However,	that	private	section	requires	the	use	of	non-
SPARK	constructs,	access	types	in	this	example.	Fortunately,	it	is	possible	to	mark	just	the
private	section	of	the	specification	as	not	in	SPARK	as	follows:





In	this	case	it	is	necessary	to	use	the	pragma	form	of	SPARK_Mode	as	Ada	does	not	allow
aspects	 to	 be	 applied	 to	 just	 the	private	 section	of	 a	 package	 specification.	The	pragma
SPARK_Mode	(Off)	must	appear	at	the	top	of	the	private	section	marking	the	entire	private
section	as	not	in	SPARK.

This	example	also	makes	use	of	Ada’s	facility	for	automatic	finalization	of	objects4	so
there	is	no	need	for	the	programmer	to	call	a	“destroy”	procedure	in	this	case.	To	do	this,	it
is	necessary	to	with	Ada.	Finalization	.	However,	because	that	package	is	only	needed
to	 support	 the	 private	 section,	 it	 can	 be	 introduced	 using	 the	 special	 form	 of	 the	 with
clause	we	introduced	in	Section	3.5.2.	The	private	with	makes	the	package’s	resources
only	available	in	the	private	part.

It	is	also	possible	to	mark	individual	subprograms	as	being	in	SPARK.	This	is	useful	in
cases	where	a	package	specification	needs	to	make	use	of	non-SPARK	constructs,	yet	some
of	the	subprograms	in	the	package	can	still	be	given	SPARK	declarations.	SPARK	code	can
then	call	the	subprograms	with	SPARK	declarations	even	though	it	might	not	be	able	to	use
all	the	facilities	of	the	enclosing	package.

Similarly,	the	bodies	of	subprograms	in	a	package	body	can	be	marked	as	in	or	out	of
SPARK	 as	 appropriate.	 This	 allows	 you	 to	 use	 the	 SPARK	 tools	 on	 code	where	 it	 makes
sense	 to	 do	 so	 without	 creating	 an	 unnatural	 design	 by	 artificially	 avoiding	 full	 Ada
features	for	other	subprograms	in	the	same	package.

There	 is	 an	 important	 consistency	 rule	 regarding	 SPARK	 mode	 that	 says	 once
SPARK	mode	is	turned	off,	you	cannot	turn	it	back	on	again	for	any	subordinate	construct.
To	illustrate,	packages	are	considered	to	have	four	parts:

1.	 The	visible	part	of	the	specification

2.	 The	private	part	of	the	specification

3.	 The	body

4.	 Elaboration	code	in	the	body	that	appears	after	begin

The	consistency	rule	means	 that	 if	SPARK	mode	 is	explicitly	 turned	off	 for	one	of	 the
parts,	 it	cannot	be	turned	on	again	in	a	later	part.	For	example,	if	 the	body	of	a	package
has	its	SPARK	mode	off,	you	cannot	then	turn	SPARK	mode	back	on	in	the	elaboration	code
for	that	package.

Furthermore	 if	 SPARK	 mode	 is	 turned	 on	 for	 a	 part,	 it	 is	 assumed	 to	 be	 on	 for	 all
following	 parts	 unless	 it	 is	 explicitly	 turned	 off.	 Thus,	 setting	 SPARK_Mode	 to	 On	 in	 the
specification	 of	 a	 package	 declares	 all	 parts	 of	 the	 package	 to	 be	 in	 SPARK	 unless
SPARK_Mode	is	explicitly	set	to	Off	for	a	later	part.

7.1.2	 Wrapper	Packages
As	previously	described,	it	is	permitted	for	SPARK	to	call	code	in	a	library	package	with	a
non-SPARK	body	provided	the	specification	of	that	package,	or	at	least	of	the	subprogram
being	 called,	 is	 in	 SPARK.	 Even	 if	 the	 declarations	 of	 the	 called	 subprograms	 are	 not
specifically	marked	 as	 being	 in	 SPARK,	 it	may	 still	 be	 permitted	 for	 SPARK	 code	 to	 call
them	using	automatic	SPARK	mode	as	described	in	Section	7.1.3.



However,	 errors	 in	 the	 non-SPARK	 library	 package	 are	 likely	 to	 be	 reported	 by	 way	 of
exceptions	as	that	is	the	normal	method	of	error	handling	in	full	Ada.	Thus,	some	means
of	 translating	 exceptions	 into	 the	 status	 codes	 required	 by	SPARK-style	 error	 handling	 is
needed.	Furthermore	 if	 the	non-SPARK	 library	 package	 has	 a	 non-SPARK	 specification,	 it
may	still	be	possible	with	suitable	 translations	and	conversions	 to	make	 it	 callable	 from
SPARK.	 Doing	 these	 things	 requires	 constructing	 a	 wrapper	 package	 that	 provides	 a
SPARK	 specification	 and	 contains	 subprograms	 that	 just	 forward	 their	 calls	 to	 the
underlying	library	package.

As	an	example,	consider	the	Interval_Tree	package	described	in	Section	7.1.1.	That
package	happens	to	have	a	SPARK	specification,	yet	exceptions	arising	in	the	body	of	the
package	may	still	propagate	into	SPARK	code.	To	deal	with	this,	we	create	a	new	package
Interval_Tree_Wrapper	 with	 a	 specification	 very	 similar	 to	 that	 of	 Interval_Tree
shown	as	follows:



The	main	 difference	 between	 this	 specification	 and	 that	 for	Interval_Tree	 is	 that	 a
status	 type	 is	 introduced	 and	 subprograms	 that	 might	 fail	 –	 Insert	 in	 this	 case	 –	 are
modified	to	return	a	status	indication.

The	 wrapper	 package	 also	 introduces	 its	 own	 types	 for	 the	 types	 provided	 by	 the
underlying	package	(type	Interval	in	this	case).	This	allows	the	wrapper	package	to	be
self-contained	without	its	clients	needing	to	with	the	underlying	package.

Notice	 also	 that	 the	 SPARK	 aspects	 for	 Insert	 are	 slightly	 different	 than	 for	 the
underlying	version	of	the	procedure.	The	flow	dependency	contract	adds	a	dependency	of
Status	on	Underlying_Tree.	Furthermore,	the	postcondition	is	changed	to	assert	that	the
size	of	the	tree	increases	if	and	only	if	the	subprogram	returns	successfully.



It	would	be	more	natural	to	write	the	postcondition	as

However,	Ada	disallows	use	of	the	’Old	attribute	with	a	prefix	of	a	function	call	 in	a
context	where	it	might	not	be	evaluated,	such	as	in	a	branch	of	a	conditional	expression.
Recall	that	’Old	implies	the	value	of	the	prefix	expression	is	saved	when	the	subprogram
is	entered.	It	is	undesirable	to	call	a	function	when	the	result	might	not	be	needed.	Here,
Size’Old	is	used	in	both	branches	of	the	conditional	expression.	Nevertheless	the	rules	of
Ada	forbid	it	in	this	case.

The	Underlying_Tree	state	abstraction	is	intended	to	represent	the	internal	tree	of	the
underlying	 package.	 Strictly	 speaking,	Interval_Tree_Wrapper	 has	 no	 internal	 state	 so
declaring	 any	 Abstract_State	 for	 it	 is	 a	 “lie.”	 The	 SPARK	 tools	will	 not	 notice	 the	 lie
because	the	body	of	Interval_Tree_Wrapper	is,	as	you	will	see,	not	in	SPARK	and	thus	not
examined	by	the	tools.	However,	if	the	only	access	to	the	underlying	package	is	through
the	 wrapper,	 the	 lie	 is	 not	 really	 a	 problem	 because	 the	 wrapper	 package,	 in	 effect,
assumes	the	internal	state	of	the	wrapped	package,	just	as	wrapping	paper	can	be	said	to
contain	the	same	present	as	the	box	it	wraps.

In	this	case,	however,	Interval_Tree	has	a	SPARK	specification	and	could	potentially
be	called	directly	by	SPARK	code	willing	to	pass	exceptions	through	to	a	higher	level.	For
the	SPARK	 tools	 to	properly	understand	 the	 relationship	between	 that	other	 code	and	 the
wrapper	package,	it	is	necessary	to	tell	the	truth	about	what	the	wrapper	package	is	doing.
This	can	be	done	by	defining	no	Abstract_State	on	Interval_Tree_Wrapper	and	instead
explicitly	 referencing	 Interval_Tree	 .	 Internal_Tree	 in	 the	 SPARK	 aspects	 where
Underlying_Tree	is	mentioned	previously.

The	body	of	the	wrapper	package	contains	relatively	simple	subprograms	that	wrap	the
subprograms	of	the	underlying	library	package.	Here	is	the	implementation	of	Insert	in
the	wrapper	package:

Exceptions	are	converted	to	status	codes	in	this	case,	but	no	other	work	is	done	aside
from	 a	 trivial	 type	 conversion	 from	 the	 wrapper’s	 type	 Interval	 to	 the	 underlying
package’s	 type	 Interval	 .	 In	 general,	 the	 wrapper	 subprograms	 could	 transform	 the



parameters	 in	 arbitrary	ways	 before	 calling	 the	 underlying	 subprogram	or	 transform	 the
results	of	the	underlying	subprogram	before	returning.

Creating	a	wrapper	package	can	be	tedious	and	must	be	done	carefully	to	prevent	errors
arising	that	the	SPARK	tools	cannot	detect.	However,	it	has	the	advantage	of	not	requiring
any	access	to	the	source	code	of	the	underlying	library	package	body.

7.1.3	 Automatic	SPARK	Mode
So	far	we	have	discussed	SPARK_Mode	as	a	binary	valued	aspect	 that	can	either	be	On	or
Off.	However,	there	is	also	an	automatic	setting	that	allows	the	SPARK	tools	to	determine
the	 SPARK	 mode	 of	 a	 construct	 on	 their	 own.	 This	 Auto	 setting	 cannot	 be	 explicitly
specified;	it	is	only	implied	under	certain	circumstances	that	we	outline	here.

An	important	use	case	of	automatic	SPARK	mode	is	when	you	attempt	 to	make	use	of
existing	library	packages	in	a	SPARK	program.	The	Ada	standard	 library	 is	a	particularly
noteworthy	case,	but	any	library	written	without	SPARK	in	mind	is	at	issue.	Many	entities
declared	 by	 such	 a	 library	may	 be	 perfectly	 reasonable	 SPARK.	 If	 the	 tools	 required	 an
explicit	SPARK	mode	on	the	specification	of	the	library,	you	would	have	to	wait	until	the
library	 vendor	 provided	 a	 SPARK-aware	 update	 to	 the	 library	 before	 you	 could	 use	 it	 in
your	SPARK	program.	That	might	never	happen.

To	 see	 an	 example	 of	 automatic	 SPARK	 mode,	 consider	 the	 following	 function
Contains.	This	function	accepts	a	string	and	a	character	and	returns	true	if	and	only	if	the
given	string	contains	the	given	character.

This	function	is	in	its	own	compilation	unit	and	is	thus	a	library	level	function	that	is
not	nested	inside	any	package.	Its	SPARK_Mode	 is	explicitly	set	 to	On.	However,	 it	makes
use	of	a	function	Index	from	the	Ada	standard	library	package	Ada.Strings.Fixed.	This
function	 searches	 a	 string	 for	 a	 specified	 substring	 and	 returns	 the	 index	 where	 the
substring	appears	or	zero	if	it	does	not	appear.

However,	 the	 library	 level	 specification	 of	 Ada.Strings.Fixed	 does	 not	 contain	 an
explicit	 SPARK_Mode	 setting	 and	 is	 thus	 processed	 in	 automatic	 SPARK	 mode.	 The	 tools
determine	that	the	declaration	of	function	Index	is	in	SPARK	and	thus	allow	that	function	to



be	called	from	SPARK	code.	The	tools	synthesize	data	and	flow	dependency	contracts	for
the	function	as	described	in	Section	4.5.	However,	the	body	of	Ada.Strings.Fixed	is	not
analyzed	and,	thus,	the	tools	are	not	able	to	synthesize	the	Global	aspect	of	function	Index
and	 produce	 a	 warning	 to	 this	 effect.	 By	 default,	 this	 warning	 prevents	 the	 tools	 from
attempting	to	prove	the	body	of	Contains.

The	documentation	for	function	Index	makes	it	clear	that	it	does	not	read	nor	write	any
global	data.	The	assumption	made	by	the	SPARK	tools	is	thus	true	for	it.	The	tools	can	be
run	in	such	a	way	as	to	continue	even	if	warnings	are	issued,	and	that	is	appropriate	to	do
in	 this	 case.	 However,	 one	 verification	 condition	 is	 not	 proved.	 In	 particular,	 passing
S’	First	to	Index	may	raise	Constraint_Error	because	in	the	case	when	S	is	empty,	the
bounds	may	be	outside	the	range	of	the	Positive	subtype.

One	way	to	handle	this	is	to	treat	the	empty	string	as	a	special	case.	Alternatively,	we
decide	to	prohibit	calling	Contains	on	empty	strings	by	adding	a	precondition:

In	this	version	all	verification	conditions	are	proved.

There	is	one	additional	detail	 to	consider	when	using	library	packages	in	this	manner.
The	 Index	 function	 may	 raise	 various	 exceptions	 depending	 on	 the	 values	 of	 its
arguments.	Thus,	as	when	calling	any	code	that	is	not	in	SPARK,	we	need	to	be	mindful	of
the	possibility	 that	exceptions	may	be	 raised	despite	 the	 fact	 that	no	 runtime	errors	will
arise	 from	 the	 body	of	Contains2	 itself	 (provided	 its	 precondition	 is	 honored).	We	 can
ensure	no	exceptions	are	raised	by	encoding	the	preconditions	of	Index	directly	 into	 the
SPARK	code	as	an	assertion.	Furthermore,	the	postcondition	of	Index	can	be	expressed	as
an	assumption.



This	 example	 illustrates	 how	pre-	 and	 postconditions	 for	 library	 subprograms	 can	 be
provided,	in	effect,	without	modifying	the	source	code	of	the	library	packages.	Of	course	a
wrapper	package	around	Index	could	also	be	used	to	provide	pre-	and	postconditions	in	a
more	natural	way.

We	note	that	this	example	is	unrealistic	in	the	sense	that	if	you	really	wanted	to	write	a
function	 like	 Contains3,	 it	 could	 be	 trivially	 done	 using	 Ada’s	 quantified	 expressions
directly:

However,	the	example	illustrates	the	general	approach	to	using	automatic	SPARK	mode
to	call	library	subprograms	that	were	not	written	with	SPARK	in	mind.

7.2	 SPARK	and	C

SPARK	has	an	important	role	to	play	in	safety-critical	embedded	systems	where	failure	of



the	 software	 can	 cause	 major	 loss	 of	 investment	 or	 serious	 injury.	 However,	 most
embedded	 systems	 are	 written	 today	 in	 the	 C	 programming	 language	 –	 a	 language
notorious	for	being	difficult	to	use	correctly.	Yet	despite	this,	a	large	amount	of	carefully
built	and	very	well	tested	C	code	exists	that	SPARK	developers	might	want	to	reuse.

To	make	use	of	an	existing	C	library	from	SPARK,	you	first	need	an	Ada	compiler	that
has	 an	 “associated”	 C	 compiler.	 In	 the	 case	 of	 the	 GNAT	 Ada	 compiler,	 one	 such	 C
compiler	is	gcc,	but	there	can	potentially	be	many	C	compilers	that	would	be	compatible
with	a	given	Ada	compiler.	In	general,	it	is	necessary	for	the	Ada	compiler	to	be	aware	of
the	 C	 compiler	 so	 that	 data	 layout	 and	 calling	 conventions	 can	 be	 properly	 matched
whenever	information	crosses	from	Ada	to	C	and	vice	versa.	Also,	the	Ada	compiler	must
match	 the	 facilities	 in	 package	 Interfaces	 .C,	 described	 shortly,	 with	 the	 facilities
provided	by	the	associated	C	compiler.

Although	many	of	the	details	 that	arise	when	interfacing	SPARK	and	C	are	outside	 the
scope	of	this	book,	we	now	show	an	example	that	illustrates	several	important	points.	The
Ada	standard	mandates	certain	features	for	any	implementation	that	wishes	to	provide	a	C
interface,	and	we	endeavor	to	use	just	those	features.	Individual	Ada	implementations	can
provide	 additional	 features	 that	 are	 not	 required	 by	 the	 standard	 and,	 hence,	 are	 less
portable.	We	make	use	of	one	such	additional	feature	that	we	will	highlight	later.

Our	example	is	contrived	but	is	realistic	enough	to	be	illustrative.	Suppose	there	is	an
existing	C	library	that	manages	message	packets	in	some	kind	of	communication	system.
We	focus	first	on	the	C	header	file	that	declares	certain	types	and	two	example	functions:



In	this	hypothetical	system,	each	node	in	the	“network”	is	represented	by	a	16-bit	node
identifier.	Message	 packets	 have	 headers	 consisting	 of	 the	 source	 and	 destination	 node
addresses	and	a	unique	sequence	number.	A	function	for	computing	the	Fletcher	checksum
over	a	data	array	is	given.	Here,	the	array	is	treated	in	the	usual	C	style	as	a	pointer	to	the
first	element	and	a	separately	provided	size.	A	second	function	 is	declared	 that	copies	a
header	 structure	 into	 a	packet	buffer,	 providing	 some	checks	 to	 ensure	 the	 sanity	of	 the
operation.

This	 example	 illustrates	 the	 use	 of	 type	 aliases	 (C’s	typedef	 declaration),	 structures,
arrays,	 enumeration	 types,	 and	 functions	 that	 take	 these	parameters	 in	a	natural	C	style.
The	implementation	of	the	example	functions	is	straightforward	but	not	shown	here	as	it	is
not	important	for	our	purposes.	In	some	cases	the	implementation	of	the	library	functions
may	not	be	available	anyway.	However,	any	C	programmer	who	wishes	to	use	the	library
will	have	access	to	the	header	file(s)	that	describe	it.

The	first	step	is	to	write	a	SPARK	package	specification	that	declares	the	necessary	types



and	subprograms.	In	effect,	we	translate	the	C	header	file	to	Ada	following	certain	rules
described	in	the	Ada	standard	and	extended	by	your	specific	Ada	compiler.	We	will	show
the	specification	in	stages	starting	with	the	type	declarations:

The	Ada	 standard	 does	 not	 require	 every	Ada	 compiler	 to	 support	 an	 interface	 to	C.
However,	 if	 a	 compiler	 does	 support	 such	 an	 interface,	 it	 must	 also	 provide	 package
Interfaces	.C,	which	contains,	among	other	 things,	definitions	of	 types	 that	match	 the
built-in	 types	used	by	 the	 associated	C	compiler.	For	 example,	Interfaces	.C.int	 has
the	same	size	and	range	of	values	as	the	associated	C	compiler’s	type	int.	This	approach
is	 necessary	 because	 there	 is	 no	 assurance,	 for	 example,	 that	 the	 Ada	 type	 Integer	 is
compatible	with	the	C	type	int.	It	happens	that	with	the	GNAT	and	gcc	compilers	the	two
types	 are	 compatible,	 but	 for	 maximum	 portability	 it	 is	 better	 to	 use	 the	 types	 in
Interfaces	.C.

The	previous	package	specification,	written	with	SPARK_Mode	on,	starts	by	introducing
types	 for	 the	 node	 identifiers	 and	 sequence	 numbers.	 The	 names	 do	 not	 have	 to	 be	 the
same	 as	 in	 the	C	 header	 file;	 they	 only	 need	 to	 be	 used	 appropriately	 in	 the	 following
declarations.	In	the	original	C,	nodeid_t	and	sequenceno_t	are	aliases	for	C	built-in	types
and	can	be	mixed	freely	with	other	unrelated	variables	having	those	same	types.	However,
the	definitions	in	package	Messages	are	for	entirely	new	types	that	cannot	be	accidentally
mixed.	This	is	more	robust	and	is	an	example	of	Ada’s	ability	to	increase	the	type	safety
of	a	preexisting	C	interface.

The	enumeration	is	defined	as	an	Ada	enumeration	with	the	Convention	aspect	set	to	C.
This	informs	the	Ada	compiler	that	objects	of	that	type	should	be	represented	compatibly
with	 the	 associated	 C	 compiler’s	 handling	 of	 enumerations.	 The	 ability	 to	 set	 the



Convention	 aspect	 on	 an	 enumeration	 type	 is	 the	 only	GNAT	 extension	we	 use	 in	 this
example.	Because	the	C	header	file	defines	the	enumeration	starting	at	one	instead	of	the
default	of	zero,	package	Messages	 uses	 an	enumeration	representation	clause	 to	 specify
the	values	of	the	enumerators	in	a	matching	way.5

Finally,	the	C	structure	is	modeled	as	an	Ada	record,	again	using	the	Convention	aspect
of	 C	 to	 ensure	 that	 the	Ada	 compiler	 lays	 out	 the	 record	 in	 a	manner	 that	matches	 the
associated	C	compiler’s	expectations	for	structures.

Armed	 with	 these	 type	 definitions	 we	 can	 now	 write	 declarations	 for	 the	 two	 C
functions	 in	our	example.	We	will	 start	with	 the	checksum	computing	 function	because,
being	a	pure	function,	it	is	easy	to	represent	in	SPARK:

The	C	version	of	 this	 function	 takes	 an	 array	of	 characters	 and	does	not	modify	 that
array	as	evidenced	by	the	const	in	the	declaration	of	the	buffer	parameter	in	the	C	header
file.	Package	Interfaces	.C	contains	a	declaration	of	an	unconstrained	array	type	holding
C-style	characters.	Thus,	the	first	parameter	of	the	function	is	of	this	type	and	has	mode
in.	The	Ada	compiler	will	pass	the	actual	parameter	by	its	address	as	expected	by	the	C
function.

The	 aspects	 associated	 with	 the	 declaration	 include	 the	 Import	 aspect	 set	 to	 True,
indicating	 that	 the	 function	 is	 actually	 written	 in	 a	 foreign	 language.	 The	 Convention
aspect	specifies	which	language	is	used.	It	is	not	necessary,	or	even	legal,	to	write	a	body
(in	Ada)	for	an	imported	subprogram.

The	 External_Name	 aspect	 specifies	 the	 name	 of	 the	 function	 as	 created	 by	 the	 C
programmer.	The	 language	C	 is	 case	 sensitive	 so	 this	 allows	us	 to	 give	 the	 function	 an
Ada-friendly	name	using	mixed	case	while	still	connecting	the	declaration	to	the	correct
underlying	C	function.

In	addition,	 the	Global	aspect	 indicates	 that	 the	 function	does	not	modify	 any	global
data.	As	with	packages	that	wrap	non-SPARK	Ada	code,	the	SPARK	tools	cannot	verify	the
truth	of	this	assertion	because	they	cannot	analyze	the	C	body	of	the	function.	Again,	the
onus	 is	 on	 the	 programmer	 to	 get	 it	 right.	 Presumably,	 the	 programmer	 read	 the
documentation	 for	 the	 C	 library	 before	 writing	 the	 Global	 aspect.	 In	 effect,	 the
programmer	is	transferring	information	from	the	C	library	documentation	into	a	form	that
can	be	understood	by	the	SPARK	tools.

Before	 considering	 the	 second	 function	 in	 the	C	 header	 file,	 it	 is	worthwhile	 to	 step
back	 and	 reflect	 on	 the	 package	 specification	 we	 have	 created	 so	 far.	 Although	 the
specification	 is	 in	 SPARK,	 it	 makes	 visible	 use	 of	 various	 entities	 in	 package



Interfaces	.C.	This	informs	everyone	 that	 the	body	of	 the	package	 is	written	 in	C	and
thus	 exposes	 what	 should	 ideally	 be	 a	 hidden	 implementation	 detail.	 Furthermore,	 the
clients	 of	 this	 package	 are	 forced	 to	 deal	 with	 the	 types	 in	 Interfaces	 .C	 to	 use	 the
subprograms	provided	by	the	package	even	though	clients	should	know	nothing	about	C.
In	effect,	 the	“C-isms”	from	the	 implementation	of	 this	package	are	 leaking	out	 into	 the
rest	of	the	program.

It	is	often	useful	to	distinguish	between	thin	and	thick	bindings	to	an	existing	library.	A
thin	binding	is	a	nearly	literal	translation	of	the	existing	library	interface	with	little	or	no
effort	 made	 to	 change	 the	 architecture	 or	 design	 of	 that	 interface.	 In	 contrast	 a	 thick
binding	is	a	reworking	of	the	existing	library	interface	to	take	good	advantage	of	features
in	the	client	environment.

Our	 work	 so	 far	 uses	 Ada	 features	 to	 distinguish	 the	 types	 Node_Id_Type	 and
Sequence_Number_Type	from	each	other,	but	it	is	otherwise	a	thin	binding.	We	can	thicken
the	binding	both	 to	provide	a	more	natural	 interface	 to	SPARK	 clients	 and	 to	 completely
hide	 all	 use	 of	 Interfaces	 .C.	 To	 do	 this	 we	 must	 create	 a	 wrapper	 package.	 The
following	specification	shows	one	possibility:

No	mention	 of	Interfaces	.C	 appears	 in	 this	 specification.	 Furthermore,	 because	Ada
arrays	 know	 their	 size,	 there	 is	 no	 reason	 for	 this	 function	 to	 take	 an	 additional	 size
parameter	as	is	common	for	C	functions.	Here	is	the	body	of	this	package:



The	 declaration	 of	 the	 imported	C	 function	 now	 appears	 in	 the	 body	 instead	 of	 in	 a
specification	of	its	own.	Appropriate	type	conversions	are	done	to	match	the	natural	Ada
types	used	by	the	wrapper	package	to	the	C-like	types	provided	by	Interfaces	.C.	The
body	of	the	preceding	package	is	in	SPARK,	and	the	SPARK	tools	successfully	prove	that	it
is	 free	 of	 runtime	 errors.	 Thus,	 the	 type	 conversion	 from,	 for	 example,
Interfaces	 .C.unsigned	 to	 Checksum_Type	 will	 always	 succeed	 without	 raising
Constraint_Error.	 Furthermore,	 the	precondition	 specified	on	 the	 imported	declaration
will	always	be	satisfied.

Writing	a	wrapper	package	is	more	work	than	just	writing	a	specification	with	imported
declarations,	but	it	has	the	advantage	of	completely	hiding	the	use	of	C	inside	the	body	of
the	wrapper	package.	The	GNAT	compiler	has	a	command	line	option,	-fdump-ada-spec,
that	 automatically	 converts	 a	 C	 header	 file	 into	 an	 approximately	 correct	 Ada	 package
specification.	 The	 binding	 created	 by	 this	 option	 is	 very	 thin	 and	 may	 require	 some
adjustments	before	 it	 even	 compiles.	However,	 this	 feature	provides	 a	 quick	way	 to	get



started	writing	a	thicker	binding	such	as	we	just	described.

Writing	 a	 SPARK	 declaration	 for	 the	 second	 C	 function	 in	 our	 example
(install_header)	 is	 tricky.	Because	 this	C	 function	modifies	 its	 parameter	buffer,	 we
cannot	provide	a	direct	SPARK	 function	declaration.	Recall	 that	SPARK	 functions	may	not
modify	their	parameters.	Instead,	we	must	write	a	SPARK	procedure	declaration	that	passes
the	 buffer	 as	 an	 in	 out	 parameter	 and	 returns	 the	 status	 of	 the	 operation	 as	 an	 out
parameter.	This	solution	requires	us	to	write	a	helper	subprogram	that	calls	the	underlying
C	 function	install_header	 and	 returns	 the	 status	 through	 a	 parameter	 rather	 than	 as	 a
function	return	value.	The	helper	subprogram	could	be	written	in	C	or,	alternatively,	in	full
Ada.	Here	is	the	C	version	of	the	helper	subprogram:

This	function	must	be	compiled	with	the	associated	C	compiler	and	linked	into	the	final
program.	However,	it	does	not	require	any	access	to	the	source	code	of	the	original	library
function	it	wraps.

We	can	now	write	an	Ada	declaration	as	a	procedure	using	the	helper	function:



The	buffer	parameter	is	declared	with	mode	in	out	because	the	logic	of	the	C	function
is	 such	 that	 it	 returns	 the	buffer	with	 some	of	 its	 elements	 unchanged.	Thus,	 the	 buffer
should	be	fully	initialized	before	calling	the	procedure	(the	SPARK	tools	will	ensure	this	is
true).	Notice	also	that	 the	header	record	is	passed	as	an	ordinary	in	parameter.	The	Ada
compiler	 will	 pass	 it	 to	 the	 underlying	 C	 function	 using	 a	 pointer	 as	 the	 C	 function
expects.	 In	 this	case	 the	Ada	procedure	 is	given	a	natural	name,	but	 the	External_Name
aspect	points	the	declaration	to	the	helper	function	rather	than	the	original.

The	declaration	includes	several	SPARK	aspects	to	specify	the	data	dependency	and	flow
dependency	contracts.	A	postcondition	is	also	provided.	As	before,	these	contracts	cannot
be	 checked	 by	 the	 SPARK	 tools.	 In	 fact,	 because	 postconditions	 are	 ordinarily	 compiled
into	 the	 body	 of	 the	 subprogram	 to	 which	 they	 apply,	 you	might	 expect	 that	 even	 the
postcondition	would	not	be	checked	at	runtime	because	the	body	of	the	procedure	in	this
case	is	actually	a	C	function.	However,	the	GNAT	Ada	compiler	will	generate	a	stub	for
the	 declaration	 that	 surrounds	 the	 actual	 call	 to	 the	 C	 function,	 and	 that	 includes
postcondition	 runtime	 checks.	 Thus,	 Assertion_Error	might	 be	 raised	 at	 runtime,	 as
usual,	depending	on	the	assertion	policy	in	force.

Preconditions	are	handled	similarly.	Although	 the	SPARK	 tools	will	 endeavor	 to	prove
that	any	precondition	is	satisfied	at	each	call	site,	the	GNAT-generated	stub	also	includes
runtime	 checking	 for	 preconditions	 as	 described	 previously.	 The	 compiler’s	 ability	 to
create	 these	 stubs	 enhances	 the	 assurances	 of	 correctness	 obtained	 when	 testing	mixed
Ada/C	programs.

In	any	case,	assuming	the	underlying	C	function	is	correct,	perhaps	verified	via	testing,
the	SPARK	 tools	will	use	 the	contracts	on	 the	declaration	 to	help	prove	properties	of	 the
code	that	calls	the	procedure.	This	is	another	example	of	bringing	information	that	might



be	in	the	C	library	documentation	forward	into	the	code	itself.

As	we	mentioned	previously,	the	helper	subprogram	could	also	be	written	in	full	Ada.
The	idea	would	be	to	write	an	imported	declaration	for	the	underlying	C	function	that	has
an	 in	 out	 parameter,	 as	 allowed	 in	 full	 Ada	 2012.	 A	 helper	 procedure	 could	 call	 the
imported	 C	 function	 and	 perform	 essentially	 the	 same	 steps	 as	 the	 C	 helper	 above.	 In
particular,	 it	 could	 write	 the	 value	 returned	 by	 the	 underlying	 function	 into	 an	 out
parameter.

The	helper	procedure	could	be	placed	in	its	own	package,	or	in	a	package	serving	as	a
thick	 binding	 to	 the	 C	 library	 as	 previously	 described,	 with	 pre-	 and	 postconditions
applied	to	the	helper	procedure	instead	of	to	the	imported	declaration.	However	the	body
of	 the	helper	procedure	cannot	be	 in	SPARK	 as	 it	must	use	a	non-SPARK	 declaration.	We
leave	the	details	of	this	implementation	as	an	exercise	for	the	reader.

7.3	 External	Subsystems

In	 the	previous	sections	we	saw	that	a	system	need	not	be	entirely	written	in	SPARK.	By
providing	SPARK	interfaces	to	non-SPARK	code,	we	can	still	make	use	of	the	analysis	tools
provided	by	SPARK.	In	this	section	we	look	at	a	higher	level	approach	to	interacting	with
hardware	devices	and	other	software	subsystems	that	are	external	to	our	SPARK	program.
These	external	subsystems	are	by	definition	outside	 the	control	of	our	program	and	 thus
have	 behaviors	 the	 program	 can	 not	 fully	 anticipate.	 When	 SPARK	 is	 being	 used,	 it	 is
especially	important	to	properly	model	this	situation	so	the	SPARK	tools	can	account	for	it.
External	variables	and	external	state	abstractions	provide	the	necessary	models.

7.3.1	 External	Variables
Memory	 mapped	 variables	 provide	 one	 method	 that	 programs	 use	 to	 interact	 with
hardware.6	 The	 basic	 idea	 is	 that	 particular	 memory	 addresses	 resolve	 to	 hardware
registers	 rather	 than	 to	 random	 access	 memory.	 Thus,	 a	 program	 can	 access	 hardware
registers	through	ordinary	variables.	In	Ada,	memory	mapped	variables	are	defined	by	the
Volatile	and	Address	aspects.	With	the	addition	of	SPARK	aspects	describing	the	external
properties	 of	 memory	 mapped	 variables,	 we	 can	 use	 the	 SPARK	 tools	 to	 analyze	 the
program’s	use	of	these	variables.

If	the	external	subsystem	reads	the	value	of	a	memory	mapped	variable	at	a	time	of	its
own	 choosing,	 that	 variable	 is	 said	 to	 have	 an	 asynchronous	 reader.	 Similarly,	 if	 the
external	subsystem	updates	a	variable	at	a	time	of	its	own	choosing,	that	variable	is	said	to
have	an	asynchronous	writer.	Notice	that	the	terms	asynchronous	reader	and	asynchronous
writer	are	from	the	point	of	view	of	 the	external	subsystem.	It	 is	 the	external	subsystem
that	is	reading	and	writing.

SPARK	provides	two	Boolean	aspects	to	specify	either	or	both	of	these	possibilities:

Async_Readers:	Any	object	for	which	Async_Readers	is	true	may	be	read	at	any	time
(asynchronously)	by	hardware	or	software	outside	the	program.

Async_Writers:	Any	object	 for	which	Async_Writers	 is	 true	may	be	changed	at	any



time	(asynchronously)	by	hardware	or	software	outside	the	program.

Async_Readers	has	no	effect	on	either	flow	analysis	or	proof	analysis	and	thus	serves
mostly	a	documentation	purpose.	Async_Writers	has	no	effect	on	flow	analysis	but	does
have	 an	 effect	 on	 proof	 analysis.	 The	 proof	 tool	 takes	 into	 account	 that	 two	 successive
reads	of	the	same	variable	may	return	different	results.

SPARK	 provides	 two	 related	 Boolean	 aspects	 that	 do	 control	 the	 flow	 analysis	 of
external	objects:

Effective_Reads:	 Indicates	 that	 the	program’s	reading	 the	value	of	a	volatile	variable
has	an	effect	on	the	external	hardware	or	software	subsystem.	Effective_Reads	can
only	be	specified	on	a	variable	that	also	has	Async_Writers	set.

Effective_Writes:	Indicates	that	the	program’s	assigning	a	value	to	the	variable	has	an
effect	on	the	external	hardware	or	software	subsystem.	Effective_Writes	can	only
be	specified	on	a	variable	that	also	has	Async_Readers	set.

Both	Effective_Reads	and	Effective_Writes	have	an	effect	on	 flow	dependencies.
Reading	the	former	or	writing	the	latter	is	modeled	as	having	an	effect	on	the	value	of	the
variable.

We	 typically	 set	Effective_Reads	 to	 true	 for	 devices	 that	 provide	 a	 stream	 of	 input
values	such	as	mass	storage	devices	and	serial	ports	and	to	false	for	reading	from	devices
such	 a	 sensors	 for	which	 there	 is	 no	 significant	 relation	between	 successive	 values.	We
typically	set	Effective_Writes	to	true.

Let	us	look	at	a	simple	example	of	how	Effective_Reads	change	flow	analysis.7	In	the
following	code	fragment,	Volatile_Value	is	a	volatile	variable	for	which	Async_Writers
is	true.	The	hardware	or	software	outside	the	program	can	change	this	volatile	variable	at
any	time.

Does	the	value	of	My_Value	depend	on	the	value	of	Count?	If	Effective_Reads	is	true,
then	My_Value	will	depend	on	Count.	For	example,	when	reading	characters	from	a	buffer,
Count	 determines	 whether	 My_Value	 ends	 up	 with	 the	 first	 or	 second	 character.	 With
Effective_Reads	 set	 to	 false,	My_Value	will	 not	 depend	 on	Count.	 For	 example,	when
reading	from	a	temperature	sensor,	My_Value	will	contain	the	most	recent	temperature.

The	Ada	language	provides	the	concept	of	Volatile	objects.	Such	objects	behave	as	if
all	 four	 of	 the	 SPARK	 aspects	 are	 true.	 SPARK	 allows	 you	 to	 refine	 the	 behavior	 of	 the
program	by	specifying	some	subset	of	those	aspects	in	cases	where	it	makes	sense	to	do
so.

Let	us	look	at	some	examples.	Here	is	a	definition	package	that	defines	a	modular	type
and	a	single	8-bit	volatile	variable	mapped	to	memory	address	FFFF0000 :



The	 variable	 Value	 is	 a	 single	 8-bit	 memory	 mapped	 register	 at	 a	 specific	 memory
address.	 This	 register	 controls	 a	 standard	 seven	 segment	 LED	 display.	 The	 register	 is
given	 the	 Ada	 Volatile	 aspect,	 which	 means	 it	 has	 both	 asynchronous	 readers	 and
writers.	 Furthermore,	 reads	 and	 writes	 are	 always	 effective.	 Consider	 the	 following
program	fragment	that	makes	use	of	this	memory	mapped	register:

Normally,	 flow	analysis	would	warn	us	 that	 the	 first	 assignment	 statement	 is	unused.
However,	because	the	volatile	variable	Value	has	an	asynchronous	reader	and	writes	to	it
are	 effective,	 this	 code	does	 not	 generate	 a	 flow	error.	Each	update	 is	 processed	by	 the
external	system	(a	hardware	device	in	this	case).

Suppose	 now	 that	 the	 program	wishes	 to	 read	 back	 the	 value	 in	 the	 control	 register.
Variable	X	is	type	Numeric_Display.Octet:

This	code	also	does	not	generate	a	flow	error	because	the	register	is	assumed	to	potentially
change	values	between	each	read	and	each	read	is	effective	(could	change	the	state	of	the
hardware).

However,	 this	characterization	of	our	device	 is	overly	aggressive.	Because	 the	device
does	not	change	the	value	in	the	control	register	at	all,	reading	it	twice	in	succession	will
always	produce	the	same	value.	Nor	does	reading	the	register	controlling	an	LED	display
change	 that	 display.	 Consider	 instead	 the	 following	 declaration	 of	 the	memory	mapped
register:



Because	two	of	the	SPARK	aspects	are	explicitly	provided,	the	other	two	SPARK	aspects
default	to	false.	The	declaration	is	as	if	we	wrote

The	meaning	of	this	can	be	summarized	as	follows:

Async_Readers	 	 True.	 There	 is	 external	 hardware	 that	may	 read	 Value	 at	 any
time.
Effective_Writes	 	True.	Values	assigned	to	Value	have	an	effect	on	 the	external
hardware.
Async_Writers	 	False.	There	is	no	external	hardware	that	writes	to	Value.
Effective_Reads	 	 False.	 It	 is	 a	 flow	 problem	 to	 read	 Value	 multiple	 times
without	the	program	doing	any	intervening	writes.

This	 refined	 description	 of	 how	 the	 external	 register	 works	 is	 more	 robust	 than	 our
original	because	it	catches	errors	that	using	just	Volatile	would	not.	For	example,	flow
analysis	of	this	double	assignment	now	tells	us	that	the	first	assignment	is	unused:

7.3.2	 External	State	Abstractions
Information	hiding	is	an	important	principle	of	design.	By	hiding	our	design	decisions,	we
can	more	easily	change	 those	decisions.	For	example,	 in	 the	previous	section	we	used	a
memory	mapped	variable	to	allow	our	program	to	display	values	on	a	seven	segment	LED
display.	Should	we	need	to	move	this	application	to	a	processor	that	used	port-based	I/O
rather	 than	memory	mapped	 I/O,	we	would	probably	need	 to	change	many	parts	of	 that
program.	By	hiding	the	details	of	the	hardware	connection,	we	would	only	have	to	change
the	module	containing	those	details.

SPARK	provides	external	state	abstractions	to	hide	the	details	of	the	external	interface.



Here	is	a	package	specification	that	describes	the	properties	of	our	external	LED	display
while	hiding	the	memory	mapped	external	variable	in	the	package	body.	We	also	provide	a
procedure	that	translates	the	ten	digits	into	individual	display	segments.

The	 Abstract_State	 aspect	 defining	 the	 abstract	 state	 LED_State	 has	 more	 options
than	those	you	saw	in	Section	4.3.8	Procedure	Display_Digit	references	this	abstract	state
in	its	Global	aspect.

The	 declaration	 of	 LED_State	 includes	 the	 option	 External,	 which	 tells	 us	 that	 the
actual	state	 is	maintained	 in	hardware	devices	and/or	other	software	subsystems	 that	are
external	 to	 our	 SPARK	 program.	Finally,	 the	 two	 external	 properties	 Async_Readers	 and
Effective_Writes	are	given	for	this	external	state	object.	These	are	the	same	properties
we	used	with	volatile	variables	in	the	previous	section.	Like	a	volatile	variable,	if	none	of
the	four	properties	is	specified,	all	four	properties	are	assumed	to	be	true.	And,	as	is	 the
case	here,	if	one	or	more	properties	are	defined,	the	undefined	properties	are	assumed	to
be	false.

Here	is	the	body	of	package	LED_Display	where	we	refine	the	abstract	state	LED_State,
define	the	external	variable	that	connects	us	to	the	hardware,	and	implement	the	procedure
Display_Digit:



We	refined	our	abstract	state	LED_State	to	the	volatile	variable	Value.	We	can	refine	an
abstract	 state	 into	 several	 different	 concrete	 or	 abstract	 states.	However,	 SPARK	 requires
that	 all	 the	 external	properties	 specified	 for	our	 abstract	 state	 are	 realized	 in	 the	 refined
state.	These	 realizations	of	properties	may	be	done	by	a	 single	 refined	object	 as	we	did
here	or	by	a	combination	of	objects.	Should	an	external	abstract	state	have	no	properties
given,	you	must	 refine	 it	 into	one	or	more	objects	 that	 together	 realize	 all	 four	 external
properties.

Let	 us	 look	 at	 a	 more	 complex	 example	 that	 uses	 an	 external	 state	 abstraction.	 The
following	package	provides	an	interface	to	a	single	serial	port.	It	provides	procedures	for
opening	and	closing	the	port	and	procedures	for	reading	and	writing	single	bytes.





The	specification	of	 the	package	 is	 in	SPARK	 and	declares	 two	 state	 abstractions.	The
first,	Port_State,	models	the	serial	port	hardware	itself.	It	 tracks	if	 the	port	 is	open,	 the
serial	parameters	that	are	in	use	and	any	other	related	information	such	as	permissions	or
system	level	errors.	This	state	is	initialized	in	some	way	by	the	underlying	system	so	the
package	declares	that	Port_State	is	automatically	initialized.

The	other	state	abstraction,	Data_State,	represents	the	external	subsystem	to	which	the
serial	port	 is	connected	and	 is	 thus	declared	 to	be	an	external	 state	abstraction.	Because
none	 of	 the	 four	 external	 properties	 are	 specified,	 they	 all	 default	 to	 true.	 The	 external
subsystem	is	assumed	to	do	I/O	asynchronously	with	the	serial	port	and	that,	furthermore,
all	reads	and	writes	to	the	port	are	effective.	In	particular,	two	successive	reads	from	the
port	may	return	different	values,	and	writing	the	same	value	to	the	port	twice	in	succession
is	certainly	useful.

The	subprograms	in	the	package	are	decorated	with	data	and	flow	dependency	contracts
as	usual,	written	in	terms	of	the	two	state	abstractions.	When	writing	these	contracts,	it	is
important	 to	 keep	 clearly	 in	 mind	 what	 the	 state	 abstractions	 represent.	 For	 example,
consider	the	contracts	on	the	Read	procedure:

The	Read	procedure	reports	an	error	if	the	port	is	not	open,	and	that	information	is	part	of
Port_State.	 Furthermore,	 Read	 checks	 error	 information	 reported	 by	 the	 underlying
runtime	system,	which	is	also	contained	in	Port_State.	Thus,	the	procedure	inputs	from
Port_State	and,	furthermore,	Port_State	is	used	to	derive	both	the	value	of	Item	and	the
resulting	Status.

In	 addition,	Read	 also	 inputs	 from	 the	Data_State	 because	 it	 reads	 a	 value	 from	 the
external	 subsystem	connected	 to	 the	 serial	 port.	That	 value	 is	 used	 to	 derive	 the	 output
Item	but	does	not	participate	in	setting	Status.

You	 might	 imagine	 that	 the	 body	 of	 Serial_Port	 contains	 one	 or	 more	 volatile
variables	connected	to	the	serial	port	hardware.	However,	in	this	example,	we	decided	to
implement	 a	version	 that	 runs	under	 the	Windows	operating	 system.	 Instead	of	 refining
our	 external	 state	 to	 hardware	 variables,	 we	 make	 calls	 to	 the	 Windows	 application
programming	interface	(API).

The	 body	 of	 Serial_Port	 is	 not	 in	 SPARK.	 It	 makes	 use	 of	 APIs	 that	 use	 non-
SPARK	 features	 such	 as	 access	 types.	 The	 body	 of	 Serial_Port	 is	 written	 in	 Ada.
However,	 it	 could	be	coded	 in	C,	 in	which	case	our	 specification	would	 require	Import
and	 Convention	 aspects	 on	 the	 declared	 subprograms	 as	 described	 in	 Section	 7.2.	 As
usual,	 this	 requires	 that	 the	 programmer	 review	 the	 SPARK	 aspects	 in	 the	 package
specification	carefully	as	their	refinement	will	not	be	checked	by	the	SPARK	tools.

To	illustrate	how	a	higher	level	package	might	use	the	low	level	interface	to	an	external



subsystem,	consider	the	following	abbreviated	specification	of	a	package	Terminal.	 It	 is
used	 to	 provide	 more	 convenient	 access	 to	 a	 standard	 serial	 terminal	 connected	 to	 the
serial	port.

This	specification	only	shows	a	single	procedure,	Get_Line,	that	reads	a	carriage	return
terminated	string	of	characters	from	the	terminal	and	installs	them	into	the	given	buffer.	It
returns	an	error	indication	if	it	runs	out	of	space	before	getting	a	carriage	return	character
or	if	the	underlying	serial	port	reports	an	I/O	error.

The	procedure	is	decorated	with	SPARK	data	and	flow	dependency	contracts	written	in
terms	of	the	state	abstractions	of	the	underlying	serial	port.	This	appears	to	be	a	violation
of	information	hiding:	 the	specification	otherwise	does	not	mention	the	serial	port	at	all,
leading	one	to	suppose	that	it	could	support	other	kinds	of	communications	media.

However,	despite	syntactic	appearances,	the	use	of	the	serial	port	is	not	hidden	by	this
package.	For	example,	it	is	important	to	open	the	serial	port	before	calling	Get_Line;	the
dependency	of	Get_Line	on	the	port	state	must	be	declared.	Thus,	SPARK	serves	to	make
explicitly	visible	dependencies	that	are	semantically	visible	in	any	case.

The	body	of	package	Terminal	is	straight	forward	and	shown	here	in	its	entirety:



The	main	loop	contains	a	loop	invariant	pragma	that	is	needed	to	prove	that	no	buffer



overflows	will	occur.	Notice	that	package	Terminal	adds	useful	functionality,	completely
in	 SPARK,	 to	 the	 interface	 of	 an	 external	 subsystem	 even	 though	 direct	 access	 to	 the
subsystem	 is	 outside	 of	 SPARK.	 The	 strategy	 followed	 here	 was	 to	 wrap	 the	 external
subsystem	in	a	minimalistic	package	with	a	non-SPARK	body	and	then	implement	as	much
functionality	as	possible	in	SPARK	packages	that	use	the	subsystem	wrapper	package.

There	 are	 actually	 two	 problems	with	 the	 implementation	 of	Get_Line	 as	 previously
shown,	 despite	 SPARK	 being	 able	 to	 prove	 the	 procedure	 free	 of	 runtime	 errors.	 See
Exercise	7.13	for	more	information.

7.3.3	 Hierarchical	External	State	Abstractions
In	 Section	 4.3.3	 we	 showed	 how	 a	 hierarchy	 of	 state	 abstractions	 can	 help	 simplify	 a
system	with	complex	state.	A	hierarchy	of	state	abstractions	can	also	be	used	to	simplify	a
system	with	complex	external	state.	Let	us	look	at	an	example.

Air	density	is	perhaps	the	single	most	 important	factor	affecting	aircraft	performance.
Density	altitude	 is	a	commonly	used	measure	of	air	density.	 It	 is	 the	altitude,	 relative	 to
standard	atmosphere	conditions,	at	which	the	air	density	would	be	equal	to	the	indicated
air	density	at	the	place	of	observation.	The	density	altitude	at	a	location	may	be	computed
from	 the	 current	 temperature,	 air	 pressure,	 and	 humidity.	 Here	 is	 a	 specification	 for	 a
package	that	uses	external	sensors	to	measure	these	three	components	and	determine	the
density	altitude:

This	package	encapsulates	an	abstract	external	state	from	which	the	density	altitude	is
returned	 by	 a	 call	 to	 procedure	 Read.	 The	 abstract	 state,	 Density_State,	 is	 given	 the
single	 external	 property	 Async_Writers.	 This	 property	 tells	 us	 and	 SPARK	 that
Density_State	will	be	updated	by	components	external	to	our	system.	As	the	other	three
properties	 (	Async_Readers,	Effective_	Writes,	 and	 Effective_Reads)	 are	 not	 listed,
they	default	to	false.

We	refine	Density_State	and	the	Global	and	Depends	aspects	of	procedure	Read	in	the
package	body:



Density_State	is	refined	into	abstract	states	defined	in	three	private	child	packages,	one
for	 each	 of	 our	 input	 sensors.	 The	 Refined_Globals	 and	 Refined_Depends	 are	 also
refined	into	those	abstract	states.	Values	are	read	from	each	of	the	sensors	and	the	density
altitude	is	calculated.

Here	is	the	specification	of	the	private	child	package	for	humidity:



The	abstract	state	Humid_State	of	package	Humidity_Unit	has	two	options:	Part_Of	and
External.	The	Part_Of	option	tells	us	and	SPARK	that	the	abstract	state	Humid_State	is	a
constituent	 of	 the	 abstract	 state	 Density_State.	 The	 external	 property	 Async_Writers
matches	 that	of	 the	abstract	 state	Density_	State	 that	 it	 is	 refining.	At	 least	one	of	 the
constituents	of	Density_State	must	have	the	external	property	specified	for	that	abstract
state.

Here	is	the	body	of	the	private	child	package	for	humidity:

Here,	 the	 abstract	 state	 Humid_State	 is	 refined	 to	 the	 concrete	 external	 variable
Humid_Sensor.	Again,	at	least	one	constituent	of	the	refined	abstract	state	must	have	the
same	external	property	as	the	abstract	state.	The	private	child	packages	for	the	temperature



and	pressure	 sensors	 are	nearly	 identical	 to	 the	one	 for	pressure.9	Our	 job	 is	 done	–	 all
abstract	states	have	been	refined	to	concrete	variables.

Summary

Constructs	such	as	packages	and	 subprograms	 can	 be	 either	 “in	 SPARK”	 or	 “not	 in
SPARK.”	The	parts	of	your	program	that	are	in	SPARK	only	use	the	facilities	allowed
by	SPARK	and	obey	SPARK’s	other	restrictions.
The	SPARK_Mode	aspect	or	pragma	controls	which	constructs	are	 to	be	processed	as
SPARK.	By	default	SPARK_Mode	 is	off,	meaning	 that	 the	compiler	 treats	your	entire
program	as	Ada.
SPARK_Mode	can	be	turned	on	by	default	using	a	configuration	pragma.	Otherwise	it
can	 be	 turned	 on	 for	 a	 given	 construct	 using	 either	 the	 SPARK_Mode	 aspect	 or	 the
SPARK_Mode	pragma.
The	 value	 of	 SPARK_Mode	 cannot	 be	 changed	 over	 small-scale	 constructs	 such	 as
subexpressions	 of	 an	 expression	 or	 individual	 statements	 in	 a	 subprogram.
SPARK_Mode	 can	 only	 be	 changed	 at	 the	 granularity	 of	 larger	 constructs	 such	 as
subprograms	and	packages.
It	is	permitted	for	code	in	SPARK	to	call	libraries	written	in	some	other	language	such
as	C	provided	the	programmer	writes	a	SPARK	declaration	for	each	foreign	operation.
The	programmer	takes	responsibility	for	ensuring	that	 the	 library	actually	conforms
to	the	SPARK	aspects	declared	by	the	programmer;	the	SPARK	tools	cannot	check	them.
When	calling	C	from	SPARK,	it	is	sometimes	necesary	to	write	a	small	helper	function
that	gathers	the	return	value	of	 the	underlying	C	function	and	returns	it	as	an	“out”
parameter.	This	allows	you	to	write	the	interface	to	the	function	as	a	procedure	and
work	around	SPARK’s	restriction	on	functions	with	out	parameters.
Access	to	information	external	to	the	program	such	as	external	hardware	subsystems
is	 possible	 by	 declaring	 external	 variables.	 Commonly,	 a	 package	 is	 created	 that
wraps	the	external	subsystem	with	abstract	state	declared	as	an	external	variable.
By	default	external	variables	are	assumed	to	have	asynchronous	readers	and	writers,
meaning	 that	 the	 external	 subsystem	 accesses	 those	 variables	 at	 a	 time	 outside	 the
program’s	control.
By	default	external	variables	are	assumed	to	always	have	effective	reads	and	writes,
meaning	 that	 each	 read	of	 the	external	variable	may	produce	 a	 new	value	 and	 that
every	write	is	significant,	even	if	the	same	value	is	written	twice	in	succession.
External	variables	with	other	combinations	of	asynchronous	readers	and	writers	and
effective	reads	and	writes	can	be	declared	to	handle	specialized	circumstances.
Hierarchical	external	state	abstractions	provide	a	way	 to	 simplify	 complex	 external
states.

Exercises

7.1		 What	are	the	advantages	of	allowing	parts	of	a	program	to	not	be	in	SPARK?	What
are	the	dangers	of	doing	so?



7.2		 The	Ada	compiler	defaults	to	having	SPARK_Mode	off.	Why?	When	writing	a	high-
integrity	 program,	 you	would	 normally	 want	 as	much	 of	 the	 program	 to	 be	 in
SPARK	as	feasible.	How	could	you	arrange	for	that	to	happen	in	a	convenient	and
robust	way?

7.3		 Which	of	the	following	are	permitted	and	which	are	disallowed?	Here	A	and	B	are
the	names	of	 two	subprograms.	They	could	be	either	procedures	or	 functions	or
one	of	each.

a.	 A’s	 body	 is	 in	 SPARK	 and	 calls	 B,	 which	 has	 a	 SPARK	 declaration	 and	 a
SPARK	body.

b.	 A’s	body	 is	 in	SPARK	and	calls	B,	which	has	a	 SPARK	 declaration	 and	 a	 non-
SPARK	body.

c.	 A’s	body	is	in	SPARK	and	calls	B,	which	has	a	non-SPARK	declaration	and	a	non-
SPARK	body.

d.	 A’s	 body	 is	 not	 in	 SPARK	 and	 calls	 B,	 which	 as	 a	 SPARK	 declaration	 and	 a
SPARK	body.

e.	 A’s	body	is	not	in	SPARK	and	calls	B,	which	has	a	SPARK	declaration	and	a	non-
SPARK	body.

f.	 A’s	body	is	not	in	SPARK	and	calls	B,	which	has	a	non-SPARK	declaration	and	a
non-SPARK	body.

7.4	 	 It	 is	 not	 permitted	 for	 a	 subprogram	 to	 have	 a	 non-SPARK	 declaration	 and	 a
SPARK	body.	Why	would	this	be	disallowed?

7.5	 	 Add	 a	 function	 Check_Overlap	 to	 package	 Interval_Tree	 described	 in
Section	7.1.1	with	the	following	profile:	

The	 function	 should	 return	True	 if	 the	 given	 interval	 overlaps	with	 at	 least	one
interval	in	the	tree,	otherwise	it	should	return	False.	Your	function	should	run	in	

	time	and	have	appropriate	SPARK	aspects.

7.6		 	Suppose	you	write	a	package	with	a	non-SPARK	body	and	a	SPARK	 specification.
Which	of	the	following	aspects	that	may	appear	on	the	subprogram	declarations	in
the	specification	would	actually	be	checked	and	when	would	that	checking	occur?

a.	 Global

b.	 Depends

c.	 Pre

d.	 Post

7.7	 	 The	 wrapper	 package	 presented	 on	 page	 §	 shows	 imported	 declarations	 in	 the
body	of	 the	wrapper	package.	 Is	 it	necessary	 for	 those	declarations	 to	 be	 in	 the
body	or	could	they	continue	to	be	in	a	package	specification	of	their	own?	If	they
could	 be	 in	 their	 own	 specification,	 modify	 the	 wrapper	 package	 presented	 to



show	how	it	would	look.	If	they	must	appear	in	the	body,	explain	why.

7.8		 Write	a	full	Ada	version	of	the	C	helper	function	presented	on	page	§.	An	outline
of	how	to	proceed	can	be	found	at	the	end	of	Section	7.2.	You	may	find	it	useful
or	appropriate	 to	complete	package	Messages_Wrapper	 started	on	page	§.	 (Hint:
The	imported	declaration	of	the	underlying	C	function	can	be	made	 local	 to	 the
helper	procedure.	Thus,	only	the	helper	procedure	needs	to	have	SPARK_Mode	 set
to	Off.)

7.9		 Pick	a	small	C	library	that	you	have	already	written.	Write	a	SPARK	 specification
for	your	library	and	a	demonstration	program,	in	SPARK,	that	uses	your	library.

7.10	 Repeat	Exercise	7.6	for	the	case	in	which	the	package	body	is	really	a	C	library.

7.11	 Define	 the	 phrases	 effective	 read	 and	 effective	 write.	 Why	 is	 it	 necessary	 to
sometimes	specify	that	reads	and	writes	of	external	variables	are	always	effective?

7.12	 Write	a	package	DIP	 that	wraps	a	memory	mapped	 register	holding	 the	 state	of
eight	DIP	 switches	 the	 user	 can	 adjust	 to	 provide	 input	 to	 your	 program.	Your
package	 should	 provide	 a	 subprogram	 for	 reading	 the	 switches	 and	 an
appropriately	declared	external	state	abstraction.

7.13	 The	 implementation	 of	 Get_Line	 in	 package	 Terminal	 suffers	 from	 two
problems.	First,	a	buffer	of	size	zero	will	always	cause	the	Insufficient_	Space
error	 to	 be	 returned.	However,	 it	 should	be	possible	 to	 pass	 a	 zero-sized	 buffer
successfully	 provided	 the	 user	 enters	 a	 blank	 line	 in	 response.	 Second,	 if	 the
buffer	is	returned	completely	filled	with	characters,	there	is	no	way	to	distinguish
between	the	case	when	the	 line	 is	exactly	 the	 length	of	 the	buffer	and	when	 the
user	 is	 trying	 to	 enter	 too	 much	 data.	 Fix	 these	 problems	 while	 maintaining
SPARK’s	proof	of	freedom	from	runtime	error.



8
Software	Engineering	with	SPARK

In	the	preceding	chapters	we	have	concentrated	on	the	details	of	 the	SPARK	 language.	 In
this	chapter,	we	look	at	a	broader	picture	of	how	SPARK	might	be	used	in	the	context	of	a
software	engineering	process.	The	SPARK	2014	Toolset	User’s	Guide	(SPARK	Team,	2014b)
lists	three	common	usage	scenarios:

1.	 Conversion	of	existing	software	developed	in	SPARK	2005	to	SPARK	2014

2.	 Analysis	and/or	conversion	of	legacy	Ada	software

3.	 Development	of	new	SPARK	2014	code	from	scratch

We	start	by	examining	each	of	these	scenarios	in	more	detail,	discussing	the	interplay
between	 proof	 and	 testing,	 and	 then	 presenting	 a	 case	 study	 to	 illustrate	 some	 issues
arising	when	developing	new	SPARK	2014	code	from	scratch.

8.1	 Conversion	of	SPARK	2005

Converting	 a	 working	 SPARK	 2005	 program	 to	 SPARK	 2014	 makes	 sense	 when	 that
program	 is	 still	 undergoing	 active	 maintenance	 for	 enhanced	 functionality.	 The	 larger
language	and	the	enhanced	set	of	analysis	tools	provided	by	SPARK	2014	offer	a	potential
savings	 in	 development	 time	 when	 adding	 functionality	 to	 an	 existing	 SPARK	 2005
program.

As	 SPARK	 2014	 is	 a	 superset	 of	 SPARK	 2005,	 the	 conversion	 is	 straight	 forward.
Section	 7.2	 of	 the	SPARK	 2014	 Toolset	 User’s	 Guide	 (SPARK	 Team,	 2014b)	 provides	 a
short	introduction	to	this	conversion.	Appendix	A	of	the	SPARK	2014	Reference	Manual
(SPARK	 Team,	 2014a)	 has	 information	 and	 a	 wealth	 of	 examples	 for	 converting
SPARK	 2005	 constructs	 to	 SPARK	 2014.	 Explanations	 and	 examples	 are	 provided	 for
converting	 subprograms,	 type	 (ADT)	 packages,	 variable	 (ASM)	 packages,	 external
subsystems,	proofs,	and	more.	Should	you	need	to	constrain	your	code	to	the	SPARK	2005
constructs	 but	 wish	 to	 use	 the	 cleaner	 syntax	 of	 SPARK	 2014,	 you	 may	 use
pragma	Restrictions	(SPARK_05)	to	have	the	analysis	tools	flag	SPARK	2014	constructs
that	are	not	available	in	SPARK	2005.

Dross	et	al.	(2014)	discuss	their	experiences	with	converting	SPARK	2005	to	SPARK	2014
in	three	different	domains.	AdaCore	has	a	SPARK	2005	to	SPARK	2014	translator	to	assist
with	the	translation	process.	At	the	time	of	this	writing,	this	tool	is	available	only	to	those
using	the	pro	versions	of	their	GNAT	and	SPARK	products.

We	illustrate	a	simple	example	of	converting	a	SPARK	2005	package	to	SPARK	2014.	The
package	 encapsulates	 a	 circular	 buffer	 holding	 temperature	 data,	 for	 example,	 from	 an
analog	to	digital	converter.	The	SPARK	2005	specification	is	shown	as	follows:



The	 abstract	 state	 of	 this	 variable	 package	 is	 declared	 in	 SPARK	 2005	 by	way	 of	 “own
variables”	 in	 the	 specification.	Annotations,	 in	 the	 form	 of	Ada	 comments,	 provide	 the
data	and	flow	dependency	contracts	in	a	largely	intuitive	way.	Of	particular	interest	is	the
precondition	on	procedure	Get	that	requires	Has_More	to	return	true.	It	is	not	permitted	to
get	an	item	from	the	buffer	if	it	is	empty.

In	SPARK	2005	the	use	of	Has_More	in	the	precondition	is	abstract	because	SPARK	2005
annotations	 are	 not	 executable.	 Any	 functions	 used	 in	 pre-	 and	 postconditions	must	 be
pure,	therefore,	SPARK	2005	requires	that	the	abstract	state	read	by	the	function	be	passed
as	an	explicit	parameter.



The	 body	 of	 the	 package	 starts	 by	 refining	 the	 abstract	 state	 and	 declaring	 the
constituents	of	that	state:

The	use	of	a	modular	type	for	Buffer_Index_Type	causes	buffer	indexes	to	wrap	around
automatically	and	simplifies	the	programming.	In	this	case	the	buffer	never	fills;	old	data
is	pushed	out	as	new	data	is	entered.

The	implementation	of	function	Has_More	and	procedure	Get	follows:

As	 with	 SPARK	 2014,	 the	 data	 and	 flow	 dependencies	 are	 refined	 in	 terms	 of	 their
constituents.	 The	 code	 itself	 is	 straightforward.	 However,	 the	 SPARK	 2005	 tools	 have
difficulty	proving	that	the	assignment	statement	Count	:=		Count	 	1	does	not	cause	a
runtime	error.	 It	does	not	because	 the	precondition	 forbids	Get	 from	being	called	unless
Count	>	0.	However,	the	SPARK	2005	tools	do	not	understand	the	behavior	of	Has_More
and	 need	 to	 be	 taught	 that	 behavior	 using	 techniques	 we	 do	 not	 detail	 here.	 This	 is



necessary	despite	the	fact	that	Has_More	is	implemented	in	the	body	of	the	package	where,
in	principle,	the	tools	can	see	it.

The	 following	 SPARK	 2014	 version	 of	 the	 package	 specification	 is	 a	 straightforward
translation	of	the	SPARK	2005	version:

The	 body	 refines	 the	 abstract	 state	 using	 the	 Refined_State	 aspect.	 However,	 of
particular	interest	is	the	implementation	of	Has_More	and	Get:



The	 Has_More	 function	 is	 an	 expression	 function	 so	 its	 implementation	 is	 used	 to
synthesize	 its	postcondition.	The	SPARK	 2014	 tools	 do	not	 need	 to	 have	 the	meaning	of
Has_More	explained	separately.	As	a	result,	the	SPARK	2014	tools	prove	procedure	Get	free
of	runtime	errors	without	additional	complications.

This	example	 illustrates	 that	 the	conversion	of	SPARK	2005	 to	SPARK	2014	may	allow
certain	simplifications	 to	be	made	 in	 the	code	or	 in	 the	proofs.	 It	 is	not	 just	a	matter	of
translating	SPARK	 2005	 annotations	 to	SPARK	 2014	 aspects.	 In	 addition,	 the	SPARK	 2014
tools	use	generally	more	powerful	theorem	provers;	some	verification	conditions	that	were
difficult	with	SPARK	2005	may	be	easier	with	SPARK	2014.	As	a	result,	it	may	be	possible
to	simplify	or	eliminate	certain	loop	invariants	or	write	the	code	in	the	more	natural	way.

Finally,	the	richer	language	provided	by	SPARK	2014	offers	the	possibility	of	refactoring
a	 SPARK	 2005	 program	 to	 take	 advantage	 of	 that	 richness.	 The	 Temperature_Buffer
example	presented	earlier	comes	from	an	embedded	system	that	also	buffers	other	kinds	of
readings.	It	would	be	natural	to	make	all	of	the	buffers	instances	of	a	single	generic	unit.
However,	 earlier	 versions	 of	 SPARK	 did	 not	 support	 generics.	 Of	 course,	 how	 much
rewriting	of	a	legacy	system	is	appropriate	will	depend	on	the	situation.	However,	if	it	is
deemed	worthwhile	 to	update	 the	software	 to	SPARK	2014,	 it	may	also	be	worthwhile	 to
reorganize	 and	 even	 redesign	 parts	 of	 the	 software	 to	 take	 advantage	 of	 SPARK	 2014’s
larger	set	of	features.

8.2	 Legacy	Ada	Software

The	 preferred	 use	 of	 SPARK	 is	 in	 a	 constructive	 analysis	 style	 in	 which	 we	 create	 a
program	whose	units	contain	a	full	set	of	contracts	specified	by	the	aspects	discussed	in
Chapters	4	and	6.	As	we	saw	in	Chapter	7,	SPARK	provides	the	means	to	mix	SPARK	code
with	non-SPARK	code	through	the	use	of	contracts	on	the	specifications	of	non-SPARK	code.
Commonly,	the	non-SPARK	code	is	written	in	Ada	or	C.



SPARK	 2014	 has	 the	 capability	 to	 analyze	 preexisting	 Ada	 code	 where	 no
SPARK	contracts	are	given.	This	retrospective	analysis	 is	made	possible	by	 the	ability	of
the	 SPARK	 tools	 to	 synthesize	 a	 set	 of	 data	 dependency	 contracts	 and	 flow	 dependency
contracts	 directly	 from	 the	 source	 code	 of	 a	 program	 unit	 (see	 Section	 4.5).	 These
synthesized	 contracts	 can	 be	 used	 to	 analyze	 legacy	 Ada	 code	 or	 during	 the	 early
development	of	SPARK	code	in	which	contracts	have	not	yet	been	included.

The	 synthesized	 contracts	 are	 safe	 over-approximations	 of	 the	 real	 contracts.	 For
example,	they	assume	that	all	outputs	are	dependent	on	all	 inputs.	Because	it	is	unlikely
that	the	body	of	the	subprogram	meets	all	of	the	synthesized	contracts,	the	SPARK	tools	do
not	generate	warnings	or	checks	when	the	body	does	not	respect	the	synthesized	contracts.
The	 synthesized	 contracts	 are	 used	 to	 verify	 proper	 initialization	 and	 respect	 of	 any
dependency	contracts	in	the	callers	of	the	subprogram.

Section	6.8.1	of	the	SPARK	2014	User’s	Guide	describes	how	contracts	are	synthesized
for

a	non-SPARK	subprogram	–	one	with	Spark_Mode	=>	Off;
a	SPARK	subprogram	with	no	data	or	flow	contracts;
a	SPARK	subprogram	with	only	data	contracts;	and
a	SPARK	subprogram	with	only	flow	contracts.

As	mentioned	 in	 the	previous	paragraph,	 the	aspects	 that	 the	SPARK	 tools	synthesize	are
almost	always	more	general	 than	those	we	would	write.	However,	when	no	data	or	flow
contracts	 are	 given	 on	 a	 SPARK	 subprogram,	 the	 tools	 generate	 precise	 data	 and	 flow
dependencies	by	using	path-sensitive	flow	analysis	to	track	data	flows	in	the	subprogram
body.	These	synthesized	contracts	accurately	describe	the	code	whether	or	not	that	code	is
correct.

Section	7.3	of	the	SPARK2014	Toolset	User’s	Guide	(SPARK	Team,	2014b)	provides	some
guidance	 to	 using	 the	 SPARK	 tools	 to	 analyze	 legacy	 Ada	 code	 as	 a	 first	 step	 prior	 to
performing	a	full	or	partial	conversion	to	SPARK.	Even	without	the	intention	of	converting
legacy	Ada	code	 to	SPARK,	 the	 tools	 can	help	us	 find	 errors	 in	our	Ada	 code.	Take,	 for
example,	the	following	contrived	package	specification	and	body:



Here	we	made	 a	mistake	 in	 the	 body	 by	 typing	 (A	 +	 A)	 rather	 than	 (A	 +	 B).	 The
SPARK	Examine	tool	reports	that	B	is	not	used.	This	analysis	is	not	provided	by	the	GNAT
compiler.	Here	is	another	simple	package:

This	time	the	Examine	tool	reports	no	problems.	However,	the	Prove	tool	reports	that
the	line

may	overflow.	It	is	possible	that	the	values	of	A	and	B	are	so	large	that	their	sum	exceeds
that	 of	 the	 largest	 value	 the	 accumulator	 can	 hold.	 This	 error	 is	 still	 present	 in
implementations	 of	 the	 binary	 search	 and	 merge	 sort	 algorithms	 in	 many	 introductory
programming	books	even	after	being	pointed	out	by	Pattis	 in	1988.	While	one	probably
would	 not	 think	 to	 test	 this	 case,	 our	 proof	 tool	 was	 quick	 to	 discover	 it.	With	 a	 little
algebra,	we	can	reorganize	the	expression	to

Now	the	Prove	tool	reports	no	possible	runtime	error.

Let	us	 look	at	 a	 larger	 example	of	using	SPARK	 to	analyze	preexisting	Ada	 code.	We



would	like	to	verify	that	no	runtime	errors	will	be	raised	in	the	package	Bingo_Basket	that
we	 presented	 in	 Section	 3.4.	Here	 is	 its	 specification	with	 the	 addition	 of	 the	 aspect	 to
make	it	in	SPARK:

When	 we	 run	 the	 SPARK	 Examine	 tool	 we	 see	 the	 following	 messages	 concerning	 the
package	body	(code	on	page	§):

Phase	1	of	2:	generation	of	Global	contracts
Phase	2	of	2:	analysis	of	data	and	information	flow
bingo_basket.adb:34:07:	warning:	no	Global	contract	available	for	“Reset”
bingo_basket.adb:34:07:	warning:	assuming	“Reset”	has	no	effect	on	global	items
bingo_basket.adb:36:26:	warning:	no	Global	contract	available	for	“Random”
bingo_basket.adb:36:26:	warning:	assuming	“Random”	has	no	effect	on	global	items

It	 is	 obvious	 that	 the	Examine	 tool	 is	 not	 happy	with	 our	 use	 of	 the	 generic	 random
value	generator	from	the	Ada	library.	Our	solution	here	is	to	factor	out	the	code	involving
operations	 from	 the	 library	 and	 put	 it	 into	 a	 private	 child	 package.	 We	 mark	 the
specification	as	in	SPARK	and	the	body	as	not	in	SPARK:



Here	is	the	revised	body	of	package	Bingo_Basket	with	all	Ada	library	usage	done	in
calls	to	the	child	package:





With	 all	 of	 the	 code	 that	 uses	 the	 Ada	 library	 moved	 out	 to	 a	 child	 package,	 the
SPARK	Examine	tool	finds	no	problems	with	this	package.	Nor	does	the	proof	tool	report
any	 problems.	We	 are	 now	 confident	 that	 package	Bingo_Basket	 has	 no	 runtime	 errors
and	 that	procedure	Load’s	postcondition	 that	 the	basket	 is	not	 empty	always	holds.1	We
were	 tempted	 to	 add	 Abstract_State	 and	 Initializes	 aspects	 to	 the	 specification	 of
Bingo_Basket.	Random.	However,	our	goal	here	 is	 the	analysis	of	 legacy	Ada	code,	not
the	conversion	of	Ada	to	SPARK.

When	analyzing	legacy	code,	we	suggest	beginning	with	the	lowest	level	packages	in
your	program	–	those	that	do	not	depend	on	other	units.	Add	SPARK_Mode	=>	On	to	each
package	 specification	 and	 run	 the	SPARK	 examine	 tool	 on	 it	 to	 see	 a	 listing	 of	 potential
errors.	Correct	any	errors	reported	by	the	examination.	Then	add	SPARK_Mode	=>	On	to	the
body	and	examine	 it.	As	we	did	with	package	Bingo_Basket,	you	will	see	warnings	for
any	 standard	 Ada	 library	 operations	 you	 use.	 To	 obtain	 a	 deeper	 analysis,	 move	 such
operations	 to	 their	 own	 package	whose	 body	 is	 not	 in	 SPARK.	 You	 can	 then	 repeat	 the
process	for	the	next	level	of	program	units.

8.3	 Creating	New	Software

SPARK	is	best	applied	to	the	development	of	new	software.	Starting	from	scratch	provides
the	opportunity	to	make	use	of	the	SPARK	tools	from	the	development	of	the	architectural
design	through	the	detailed	implementation.

Test	 Driven	 Development	 (TDD)	 is	 a	 popular,	 evolutionary	 approach	 to	 software
development	 that	 combines	 test-first	development	 (in	which	you	write	a	 test	before	you
write	 just	 enough	code	 to	 fulfill	 that	 test)	 and	 refactoring	 (a	disciplined	 restructuring	of
code).	With	SPARK’s	ability	to	combine	proof	with	testing,	we	can	extend	TDD	to	an	even
more	rigorous	approach	we	call	Verification	Driven	Development	(VDD).2	With	VDD,	we
write	 contracts	 before	 we	 write	 the	 code	 to	 fulfill	 them.	 Data	 dependency	 and	 flow
dependency	contracts	can	be	verified	early	on.	Verification	of	freedom	from	runtime	errors
and	of	pre-	and	postconditions	can	be	done	once	 the	code	 is	written.	Designing	 to	meet
your	verification	goals	is	a	powerful	approach	to	creating	quality	software.

Software	 design	 is	 all	 about	 the	 decisions	 a	 software	 engineer	 makes	 between	 the
gathering	 and	 verification	 of	 requirements	 and	 the	 creation	 of	 code	 to	 implement	 those
requirements.	A	design	is	the	specification	of	a	group	of	software	artifacts	or	modules.

Many	 different	 design	 methodologies	 have	 been	 devised	 to	 guide	 us	 in	 making	 the
many	 decisions	 involved.	 Section	 7.1	 of	 the	 SPARK	 2014	 Toolset	 User’s	 Guide
(SPARK	 Team,	 2014b)	 gives	 the	 following	 overall	 view	 of	 developing	 SPARK	 programs
from	scratch:

1.	 Begin	 by	 creating	 a	 set	 of	 package	 specifications	 that	 describe	 the	 architectural
design	 of	 the	 system.	 Include	 contracts	 with	 each	 specification	 that	 describe	 the
abstract	 state	 encapsulated	 by	 each	 package.	 Use	 subprogram	 contracts	 to	 specify
global	 dependencies	 on	 the	 abstract	 state	 and	 dependency	 contracts	 to	 specify
information	 flow	 in	 each	 subprogram.	 Preconditions	 and	 postconditions	 may	 be



added	 to	 these	high-level	 packages	 to	 describe	 high-level	 properties	 such	 as	 safety
and	security.

2.	 Identify	the	SPARK	packages	with	the	SPARK_Mode	aspect.	At	this	stage	the	high-level
package	structure	can	be	analyzed	with	the	Examine	tool	before	any	executable	code
is	implemented.

3.	 Implement	the	package	bodies	making	use	of	top-down	decomposition.	Start	with	the
top-level	 subprogram	 specifications	 and	 implement	 the	 bodies	 by	 breaking	 them
down	 into	 lower-level	 subprograms,	 each	 with	 appropriate	 contracts.	 You	 can
continuously	run	the	Examine	tool	during	each	iteration	of	this	process.

4.	 As	 each	 subprogram	 is	 implemented,	 you	 can	verify	 it	 by	proof	or	 testing.	Testing
contracts	 with	 assertion	 checking	 enabled	 provides	 us	 with	 confidence	 that	 our
contracts	are	written	correctly.	Proof	 then	shows	absence	of	runtime	errors	and	that
the	contracts	are	met.

5.	 Once	verification	is	complete,	the	executable	can	be	compiled	with	assertion	checks
either	enabled	or	disabled	depending	on	the	policy	chosen	by	the	project.

In	 the	 following	 sections	 we	 look	 at	 a	 more	 detailed	 approach	 to	 designing
SPARK	programs.	The	INFORMED3	design	method	was	developed	especially	for	applying
the	strengths	of	SPARK	during	this	crucial	stage.	This	introduction	to	INFORMED	is	based
on	 the	 technical	 report	 INFORMED	 Design	 Method	 for	 SPARK	 (SPARK	 Team,	 2011).
Chapter	 13	 SPARK:	 The	 Proven	 Approach	 to	 High	 Integrity	 Software	 (Barnes,	 2012)
provides	another	discussion	of	 the	INFORMED	method.	Although	 the	examples	 in	both
the	 technical	 report	 (SPARK	 Team,	 2011)	 and	 book	 (Barnes,	 2012)	 are	 SPARK	 2005,	 the
principles	apply	equally	well	to	SPARK	2014.

8.3.1	 Design	Principles
The	properties	of	a	good	design	are	reasonably	well	known:

Abstraction	 is	 the	separation	of	 the	essential	 features	of	an	entity	 from	the	details	of
how	those	features	actually	work.	It	is	our	major	tool	for	dealing	with	complexity.

Encapsulation	is	the	inclusion	of	one	entity	within	another	entity	so	that	the	included
entity	 is	 not	 apparent.	 The	 concept	 of	 class,	 in	 which	 data	 and	 operations	 are
combined	to	form	a	single	component,	is	a	prime	example	of	encapsulation	in	object-
oriented	design.	Encapsulation	provides	a	clear	separation	between	specification	and
implementation	 –	 a	 necessary	 tenet	 of	 the	 contract	 model	 of	 programming.	 The
package	is	SPARK’s	major	construct	for	encapsulation.

Information	hiding	is	the	principle	of	segregation	of	the	design	decisions	 in	a	system
that	are	most	likely	to	change.	It	protects	other	parts	of	the	program	from	extensive
modification	 when	 the	 design	 decision	 is	 changed.	 Information	 hiding	 is	 closely
related	 to	 abstraction	 as	 it	 is	 the	 details	 of	 how	 things	work	 that	we	want	 to	 hide.
Hiding	unnecessary	details	allows	us	to	focus	on	the	essential	properties	of	an	entity.	
	 	 	 	 	 Information	hiding	 is	 related	 to	but	different	 than	encapsulation.	Encapsulation
puts	 things	 into	a	box.	Whether	 that	box	is	opaque	or	clear	determines	whether	 the
information	 is	 hidden	 or	 not.	 The	 private	 type	 is	 SPARK’s	 major	 construct	 for
information	hiding.

Coupling	 is	 a	 measure	 of	 the	 connections	 between	 entities.	 Highly	 coupled	 objects



interact	 in	ways	 that	make	 it	 difficult	 to	modify	 one	 object	without	modifying	 the
other.	 High	 levels	 of	 coupling	may	 be	 a	 result	 of	 poor	 abstractions	 or	 inadequate
encapsulation.	Weak	or	loose	coupling	is	desirable.	
	 	 	 	 	 In	SPARK,	 the	appearance	of	a	package	name	 in	a	with	clause	represents	 loose
coupling	(use	of	a	service).	The	appearance	of	a	package	name	in	a	data	dependency
contract	(	global	aspect)	or	a	flow	dependency	contract	(	depends	aspect)	 indicates
stronger	coupling.

Cohesion	 is	 a	measure	 of	 focus	 or	 purpose	within	 a	 single	 entity.	 It	 is	 the	degree	 to
which	 the	 elements	 of	 a	 module	 belong	 together.	 Having	 high	 cohesion	 in	 our
modules	makes	it	easier	for	us	to	understand	them	and	make	changes	to	them.	Having
unrelated	abstract	state	variables	in	a	SPARK	package	is	an	indicator	of	low	cohesion.

Hiding	unnecessary	details	allows	us	 to	 focus	on	 the	essential	properties	of	an	entity.
However,	 the	 state	 of	 an	 entity	 is	 an	 essential	 property	 that	 should	 not	 be	 hidden	 –	we
cannot	reason	in	the	absence	of	state	information.	The	state	of	an	object	is	defined	by	its
implementation.	 Because	 inspecting	 the	 implementation	 of	 an	 object	 to	 ascertain	 state
information	breaks	 the	 contract	model,	we	must	 include	 this	 information	 in	 the	object’s
specification.	 We	 accomplish	 this	 task	 by	 including	 Abstract_State	 aspects.	 These
aspects	provide	the	appropriate	level	of	abstraction	of	state	information	that	is	needed	to
reason	about	the	effect	of	operations	on	an	object	without	having	or	needing	the	details	of
how	the	state	is	represented.	Managing	state	information	in	this	way	is	an	important	piece
of	the	INFORMED	design	method.

8.3.2	 Design	Elements
INFORMED	 uses	 concepts	 from	 both	 object-oriented	 design	 (OOD)	 and	 functional
design.	 OOD	 techniques	 are	 used	 to	 establish	 the	 architecture	 of	 the	 system.	 This
architecture	is	expressed	as	a	main	program	and	framework	of	packages	with	contracts.	Of
particular	importance	is	the	assignment	of	state	to	these	packages.	With	this	information,
we	can	use	 the	SPARK	 tools	 to	 analyze	 the	 data	 dependency	 and	 flow	dependency	 at	 an
early	stage.

We	 use	 classic	 functional	 decomposition	 to	 implement	 the	 operations	 within	 our
objects.	We	can	again	make	use	of	SPARK	tools	to	check	that	the	desired	properties	of	our
design	 are	 being	 maintained,	 our	 code	 is	 free	 of	 runtime	 errors,	 and	 any	 functional
properties	expressed	by	postconditions	are	met.

Main	Programs

Main	programs	 frequently	have	a	 form	similar	 to	 the	 following	program.	The	 system	 is
initialized	and	then	a	loop	(often	infinite)	does	all	of	the	processing	required.



The	 Initialize	 and	 Do_Something	 procedures	 are	 likely	 decomposed	 into	 several
procedures,	 each	 responsible	 for	 some	 individual	 mode	 of	 the	 system’s	 behavior.	 For
example,	one	Do_Something	procedure	may	be	responsible	for	controlling	the	temperature
in	a	vessel	while	another	is	responsible	for	controlling	the	pressure.

The	most	 important	 parts	 of	 this	 generalized	main	 program	 are	 the	 two	 aspects	 that
specify	 the	 data	 dependencies	 and	 flow	 dependencies	 of	 the	 system.	 These	 aspects
generally	refer	to	the	abstract	state	of	the	packages	that	are	withed	rather	than	to	specific
variables.

Packages

In	Chapter	3	we	organized	packages	into	four	groups:	(1)	definition	packages,	(2)	utility
packages,	(3)	type	packages,	and	(4)	variable	packages.	INFORMED	adds	a	few	more	to
this	classification	scheme.

Variable	Packages.	Contain	states	 that	should	be	revealed	 through	an	Abstract_	State
aspect.	We	use	 the	name	of	 the	abstract	 state	 in	 the	Global	and	Depends	 aspects	 of	 our
main	 program	 and/or	 other	 units	 that	 use	 the	 package.	 Encapsulation	 and	 information
hiding	 are	 maintained	 because	 no	 details	 of	 the	 internal	 state	 need	 be	 revealed.
Refined_State	 allows	 us	 to	 specify	 a	 number	 of	 more	 detailed	 state	 items	 within	 the
package	body.

We	 may	 compose	 variable	 packages.	 Thus,	 a	 bicycle	 object	 could	 contain	 a	 frame
object	 and	 two	wheel	 objects.	The	 abstract	 state	 of	 the	 bicycle	may	 be	 refined	 into	 the
abstract	states	of	its	components.	SPARK	private	child	packages	allow	the	logical	nesting	or
embedding	of	variable	packages	without	the	need	to	physically	embed	the	packages	that
represent	them.

Type	Packages.	Do	not	have	state	and	therefore	do	not	have	Abstract_State	aspects.	As
described	in	Section	3.3,	a	type	package	provides	the	name	of	a	type	that	may	be	used	in
the	declaration	of	objects	in	other	units.	This	type	may	be	a	concrete	type	(as	illustrated	by
the	first	version	of	our	bounded	queue	on	page	§)	or	a	private	type	(as	illustrated	by	the
second	version	of	our	bounded	queue	on	page	§).



Type	packages	are	used	to	implement	abstract	data	types.	For	private	types,	the	package
must	 also	 provide	 a	 set	 of	 operations	 that	 may	 be	 performed	 on	 objects	 of	 that	 type.
Concrete	types	come	with	their	own	predefined	set	of	operations,	which	may	be	extended
by	the	declaration	of	additional	operations	with	parameters	of	that	type.4

Variables	of	 the	 types	declared	 in	 type	packages	 are	declared	 at	 the	point	 of	 use	 and
passed	 as	 parameters	 to	 the	 operations	 provided	 by	 the	 type	 package.	 Because	 this
localizes	state	at	the	point	of	variable	declaration,	type	packages	provide	a	mechanism	for
the	reduction	of	information	flow	and,	hence,	coupling.	The	INFORMED	report	uses	the
phrase	“instance	of	a	type	package”	for	a	variable	of	a	type	declared	in	a	type	package.

INFORMED	 describes	 a	 more	 specialized	 type	 package	 called	 a	 type	 package
declaring	concrete	types.	This	form	of	type	package	is	equivalent	to	the	definition	package
we	described	in	Section	3.1.

Utility	 Packages.	 Provide	 shared	 services	 to	 other	 packages.	 These	 packages	 never
contain	state	(otherwise	they	would	be	variable	packages).	Any	types	declared	in	a	utility
package	 should	be	 simple	concrete	 types	 rather	 than	abstract	data	 types	 (otherwise	 they
would	 be	 type	 packages).	 The	 INFORMED	 report	 provides	 examples	 of	 where	 utility
packages	are	appropriate	and	where	they	are	not.

Boundary	 Variable	 Packages.	 Are	 a	 special	 kind	 of	 variable	 package	 that	 provide
interfaces	 between	 our	 system	 and	 the	 elements	 outside	 of	 it.	 The	 entity	 to	 which	 our
SPARK	 program	 communicates	 might	 be	 some	 kind	 of	 hardware	 sensor	 or	 actuator.
Section	 7.3	 discusses	 the	 nature	 of	 external	 subsystems	 found	 commonly	 in	 embedded
applications.

These	external	subsystems	make	use	of	external	variables	that	represent	streams	of	data
arriving	 from	 or	 being	 sent	 to	 the	 external	 system	 so	 they	 are	 characterized	 by	 a
with	External	in	their	abstract	state	aspects.

Boundary	 Variable	 Abstraction	 Packages.	 Are	 used	 to	 place	 an	 abstraction	 layer
between	the	external	variables	of	a	system	and	their	users.	This	approach	eliminates	direct
exposure	of	any	external	variables,	shielding	the	higher	level	units	from	the	details	of	the
external	variables.	Boundary	variable	abstraction	packages	use	SPARK’s	state	refinements
to	provide	this	indirect	access	to	the	external	variables.

The	abstraction	may	hide	 the	 fact	 that	more	 than	one	external	variable	 is	 involved	 in
providing	 the	 inputs	 or	 may	 hide	 some	 other	 processing	 that	 is	 taking	 place.	 The
abstraction	may	also	hide	other	local	state	(such	as	previous	values)	that	are	not	external
variables.	 The	 INFORMED	 technical	 report	 provides	 an	 example	 of	 using	 a	 single
boundary	 variable	 abstraction	 package	 to	 encapsulate	 two	 different	 buttons	 that	may	 be
pressed	 by	 a	 user.	 This	 package	 is	 refined	 into	 two	 boundary	 variable	 packages
implemented	as	private	child	packages.	Accompanying	this	example	 in	 the	INFORMED
report	is	a	very	important	guideline	concerning	boundary	variable	abstraction	packages	–
never	mix	input	and	output	external	variables	in	a	single	abstraction.	This	mixing	leads	to
confusing	 information	 flow	 results	where	 inputs	 incorrectly	 appear	 to	depend	on	values
previously	 sent	 as	 outputs.	Use	 a	 separate	 abstraction	 for	 each	 external	 variable	 as	was
done	in	package	Serial_Port	in	Section	7.3.2.



Finally,	 we	 note	 that	 a	 variable	 abstraction	 package	 need	 not	 include	 any	 hidden
external	variables.	The	external	entity	to	which	our	SPARK	program	communicates	might
be	an	API	of	some	library,	operating	system,	or	cooperating	software	system.

8.3.3	 Principles	of	the	INFORMED	Design	Approach
The	INFORMED	technical	report	lists	five	guiding	design	principles.

1.	Application-Oriented	Aspects

SPARK	aspects	provide	an	expression	of	the	behavior	of	the	software	independently	of	the
actual	 code.	This	 description	 is	more	 useful	 if	 it	 is	 expressed	 in	 problem	domain	 terms
rather	 than	 in	 implementation	 terms.	For	example,	we	prefer	 to	 see	 the	 terms	 fuel	 valve
rather	than	digital-to-analog	converter	#3.

2.	Minimal	Information	Flow

To	reason	about	 the	behavior	of	a	 system,	we	need	 to	 reason	about	 the	 information	 that
flows	 through	 it.	 Such	 reasoning	 is	 simplified	 if	 the	 information	 flows	 are	 minimized.
Moving	 data	 from	 one	 part	 of	 the	 system	 to	 another	 increases	 the	 information	 flow
complexity	 as	 measured	 by	 the	 Global	 and	 Depends	 aspects.	 Methods	 for	 minimizing
information	flow	include

Minimizing	propagation	of	unnecessary	details;
Localizing	and	encapsulating	of	state	information;
Avoiding	making	copies	of	data;	and
Using	an	appropriate	hierarchy	of	packages.

3.	Clear	Separation	of	the	Essential	from	the	Inessential

Software	designers	have	to	reconcile	many,	sometimes	conflicting,	constraints.	When	such
conflicts	 arise,	 the	 designer	 should	 make	 the	 essential	 functionality	 of	 the	 system	 the
highest	priority.

For	 example,	 although	 it	 might	 ease	 the	 testing	 of	 a	 system	 by	making	 certain	 data
global,	it	is	preferred	that	this	inessential	aspect	of	the	design	be	located	in	the	place	that
ensures	minimal	 information	 flow.	Additional	 code,	 clearly	 identified	by	 comments	 and
flow	 analysis	 as	 not	 being	 necessary	 for	 the	 essential	 functionality	 of	 the	 system,	 can
provide	access	to	the	data	at	test	time.

4.	Careful	Selection	of	the	SPARK	Boundary

Careful	thought	should	be	given	to	defining	the	boundary	between	what	is	in	SPARK	and
what	is	not.	This	boundary	is	far	more	fluid	with	SPARK	2014	with	its	goal	of	supporting
verification	through	a	combination	of	proof	and	testing	than	it	is	with	SPARK	2005.

5.	Use	Static	Analysis	Early

The	 packages	 making	 up	 the	 design	 should	 be	 examined	 as	 early	 as	 possible	 with	 the
SPARK	 tools.	 Early	 use	 of	 these	 tools	 is	 facilitated	 by	 using	 abstractions,	 deferring



implementation	details,	and	making	appropriate	use	of	Spark_Mode	=>	Off.	The	analysis
should	continue	as	the	design	evolves.	This	constant	checking	of	design	choices	provides
assurance	that	our	aims	are	met.

8.3.4	 INFORMED	Design	Steps
The	 INFORMED	 report	 includes	 a	 suggested	 sequence	 of	 six	 steps	 for	 constructing	 a
SPARK	application.

1.	 Identification	of	the	system	boundary,	inputs,	and	outputs.

2.	 Identification	of	the	SPARK	boundary	within	the	overall	system	boundary.

3.	 Identification	and	localization	of	system	state.

4.	 Handling	of	the	initialization	of	state.

5.	 Handling	of	secondary	requirements.

6.	 Implementing	the	internal	behavior	of	components.

Design	is	an	iterative	process	so	there	is	usually	considerable	looping,	backtracking,	and
feedback	among	the	steps	within	the	following	steps.

1.	 Identification	of	the	system	boundary,	inputs,	and	outputs

The	SPARK	system	being	designed	is	typically	part	of	a	larger	system	that	has	interactions
with	 the	 outside	 world.	 The	 first	 step	 is	 to	 delineate	 this	 boundary	 and	 identify	 the
physical	 inputs	 and	 outputs.	 These	 are	 the	 environmental	 quantities	 that	 impact	 or	 are
impacted	 by	 the	 system’s	 behavior.	 They	 are	 described	 as	 monitored	 and	 controlled
variables	 in	 the	Four-Variable	Model	 of	Parnas	 and	Madey	 (1995),	which	 describes	 the
interactions	between	a	computer	system	and	the	environment.	This	model	is	illustrated	in
Figure	8.1.

	

Figure	8.1.	 The	four-variable	model	(adapted	from	Parnas	and	Madey,	1995).

2.	 Identification	of	the	SPARK	boundary

After	identifying	the	boundary	of	our	overall	system,	we	give	thought	as	to	where	to	place
the	 boundary	 of	 the	 SPARK	 portions	 of	 our	 application	 –	 that	 is,	 what	 parts	 are	 in
SPARK	and	what	parts	are	not.	Selection	of	the	boundary	variable	packages	and	boundary



variable	abstract	packages	is	one	way	to	define	the	SPARK	boundary.	The	input	and	output
values	provided	by	the	abstract	state	of	these	packages	are	the	input	data	items	and	output
data	 items	 of	 the	 Parnas	model	 illustrated	 in	 Figure	 8.1.	 Figure	 8.2	 shows	 the	 flow	 of
information	through	these	packages	to	and	from	the	non-SPARK	software	and	environment
defined	 by	 the	 Parnas	 four-variable	 model.	 The	 INFORMED	 report	 gives	 examples	 of
systems	that	contain	multiple	SPARK	systems	within	an	overallsystem.

	

Figure	8.2.	 Boundary	variable	packages	define	the	SPARK	boundary.

The	 identification	of	 the	styles	of	verification	 that	will	be	applied	 to	each	component
identified	at	this	point	is	a	crucial	part	of	VDD.	Proof	will	certainly	play	a	large	role	in	the
verification	of	SPARK	units,	and	runtime	assertion	checking	will	help	us	verify	Ada	units.
Units	written	 in	other	 languages	will	need	 to	be	 tested.	We	must	determine	 the	depth	of
analysis	 required	 of	 each	 unit.	 The	 recommendations	 given	 in	 Section	 8.4	 provide
guidance	 in	 planning	 the	 verification	 at	 the	 boundaries	 between	 SPARK	 and	 non-
SPARK	units.

3.	 Identification	and	localization	of	state

The	identification	of	state	 that	 is	required	in	our	system	and	determining	where	 to	place
that	state	 information	are	central	 to	meeting	 the	INFORMED	design	method’s	goals.	As
such,	 the	 report	 categorizes	 the	 different	 ways	 that	 packages	 can	 be	 used	 for	 the
management,	concealment,	and	communication	of	state.

Most	nontrivial	systems	store	values	in	variables	and	therefore	have	“history”	or	state.
In	the	absences	of	state,	calling	an	operation	with	a	particular	set	of	values	always	returns
the	same	answer.	On	the	other	hand,	the	result	of	calling	an	operation	that	uses	state	may



also	 depend	 on	 some	 complex	 history	 of	 all	 previous	 calls	 of	 that	 procedure.	 The
INFORMED	report	emphasizes	that	the	selection	of	appropriate	locations	for	this	state	is
probably	 the	 single	 most	 important	 decision	 that	 influences	 the	 amount	 of	 information
flow	 in	 the	 system.	 You	 must	 decide	 (1)	 what	 must	 be	 stored,	 (2)	 where	 should	 it	 be
stored,	and	(3)	how	should	it	be	stored.

What	 must	 be	 Stored?	 Some	 static	 data	 storage	 is	 almost	 always	 required,	 but	 the
amount	 should	 be	 minimized	 as	 far	 as	 possible.	 You	 should	 avoid	 duplicating	 data	 by
storing	 it	 in	 a	 single	 place	 and	 make	 it	 available	 to	 other	 units	 through	 “accessor
functions.”

Classification	 of	 state	 is	 a	 crucial	 part	 of	 INFORMED.	States	may	 be	 classified	 into
groups	 such	 as	 essential,	 inessential,	 input,	 output,	 and	 so	 on.	 The	 golden	 rule	 of
refinement	tells	us	to	only	refine	concrete	states	as	constituents	of	the	same	abstract	state	if
they	are	of	the	same	classification	and	initialization	mode.

Integrity	 levels	 for	 safety	 (level	 A,	 B,	 etc.)	 or	 security	 (classified,	 unclassified,	 top-
secret,	 etc.)	 are	 good	 candidates	 for	 state	 classes.	 The	 golden	 rule	 of	 refinement	 is
especially	important	here	–	never	refine	together	states	that	are	of	different	integrities.	If
you	 have	 separation	 properties,	 such	 as	 making	 sure	 that	 top-secret	 and	 unclassified
material	are	kept	separate,	you	need	to	design	that	separation	into	your	state	hierarchy.5

Where	should	it	be	Stored?	The	INFORMED	reports	gives	us	several	guidelines.	Data
stored	 inside	 the	 main	 program	 does	 not	 appear	 in	 its	 data	 flow	 or	 information	 flow
dependency	contracts.	This	has	the	unfortunate	effect	of	removing	all	of	the	information
describing	 the	 flow	 of	 data.	 Therefore,	 it	 is	 more	 appropriate	 to	 place	 this	 data	 within
variable	 packages	 or	 boundary	 variable	 packages.	 The	main	 program	 then	 includes	 the
abstract	states	of	these	packages	in	its	global	and	depends	aspects.	Of	course,	within	the
packages	we	will	 refine	 the	 abstract	 states	 into	 combinations	of	 concrete	 state	variables
and	abstract	state	variables	of	lower	level	packages	with	state.

How	should	it	be	Stored?	The	INFORMED	report	describes	a	number	of	ways	to	store
state:

In	a	variable	package	at	library	level	(global	state)
In	a	variable	package	embedded	within	another	variable	package	(hierarchical	state
refinement)
In	a	variable	package	that	is	a	private	child	of	another	variable	package	(the	preferred
approach	to	hierarchical	state	refinement)
In	a	variable	package	embedded	within	the	main	program
As	an	instance	of	type	defined	in	a	type	package
As	a	concrete	Ada	variable

State	 should	be	 localized	 as	much	 as	 possible.	 It	 should	be	 avoided	 entirely	where	 a
local	variable	within	a	subprogram	will	suffice.	Variables	declared	in	subprograms	(other
than	the	main	program)	exist	only	for	the	life	of	a	call	to	that	subprogram.	Type	packages
give	us	extra	freedom	in	to	locate	items	with	complex	state	as	locally	as	possible.

We	advise	that	when	you	need	only	a	single	instance	of	an	object	with	state	that	you	use
a	variable	package	and	use	type	packages	when	multiple	copies	are	required.	The	use	of



variable	 packages	 can	 be	 extended	 to	 those	 situations	 with	 a	 small	 finite	 number	 of
objects.	For	example,	it	might	be	better	to	encapsulate	three	buttons	within	a	single	control
panel	package	rather	than	to	define	a	button	type	package.

4.	 Handling	of	the	initialization	of	state

After	identifying	and	determining	the	location	of	states,	our	next	consideration	is	on	how
the	various	states	will	be	initialized.	There	are	two	approaches	to	initialize	state:

a.	 Initializing	during	program	elaboration.	This	 initialization	 includes	 the	 assignment
of	 initial	 values	 accompanying	 variable	 declarations	 and	 the	 execution	 of
statements	in	a	package’s	elaboration	part	(see	Section	3.4.1).

		We	discussed	default	 initialization	in	Section	4.4.	The	use	of	 the	Initializes
aspect	 provides	 an	 important	 piece	 of	 information	 to	 the	 SPARK	 tools	 to	 ensure
that	states	within	a	variable	package	are	not	used	prior	to	their	initialization.

b.	 Initializing	during	program	execution.	The	main	program	can	assign	values	directly
to	concrete	Ada	variables	and	call	initialization	procedures	to	initialize	the	state	of
variable	packages	or	objects	declared	from	types	in	type	packages.

5.	 Handling	of	secondary	requirements

The	third	principle	of	the	INFORMED	design	approach	is	to	have	a	clear	separation	of	the
essential	 and	 inessential	 requirements.	 INFORMED	 defines	 secondary	 requirements	 as
those	that	are	not	derived	from	the	core	functional	requirements.	Secondary	does	not	mean
unimportant,	but	rather	that	they	should	be	accommodated	in	ways	that	do	not	distort	the
“purity”	of	design	through	state	and	information	flow.	Read-only	variables,	data	 logging
and	 test	 points,	 and	 caching	 are	 three	 examples	 of	 secondary	 requirements	 discussed	 in
Apppendix	B	of	the	INFORMED	report	(SPARK	Team,	2011).

6.	 Implementation	of	the	internal	behavior	of	components

After	 identifying	 the	 components	 of	 our	 architecture	 such	 as	 variable	 packages,	 type
packages,	 and	 boundary	 variable	 packages,	we	 can	 create	 specifications	with	 contracts.
We	can	perform	early	static	analysis	on	these	specifications.

Next,	we	need	to	implement	the	desired	behavior	of	each	object.	The	first	step,	as	usual,
is	 to	 decompose	 this	 behavior	 into	 smaller	 INFORMED	 components.	 For	 example,	 a
variable	 package	 for	 a	 control	 panel	might	 be	 decomposed	 into	 a	 number	 of	 boundary
variable	 packages	 –	 one	 for	 each	 component	 on	 the	 panel.	 When	 we	 have	 taken
decomposition	 as	 far	 as	we	 can,	we	 can	use	 a	 standard	 top-down	 refinement	process	 to
decomposed	behaviors	into	appropriate	subprograms.	We	can	include	contracts	with	each
subprogram	specification	and	continue	 to	run	 the	Examine	 tool	before	 implementing	 the
bodies.	As	the	bodies	of	 the	subprograms	within	a	particular	package	are	completed,	we
can	run	the	Proof	tool	to	check	for	potential	runtime	errors	or	postcondition	violations.

The	INFORMED	report	(SPARK	Team,	2011)	includes	three	case	studies	to	illustrate	the
design	method.	Although	 these	 designs	 are	 in	 SPARK	 2005,	 the	 ideas	 translate	 easily	 to
SPARK	2014.	We	illustrate	this	approach	with	a	security-related	case	study	in	Section	8.5.

8.4	 Proof	and	Testing



As	we	discussed	in	Section	1.1.2,	testing	is	the	primary	means	for	verifying	and	validating
software.	 Testing	 can	 only	 show	 us	 that	 the	 program	 is	 “correct”	 for	 the	 cases	 actually
tested.	 A	 good	 tester	 picks	 the	 most	 appropriate	 test	 cases	 to	 discover	 faults.	 Industry
standards	such	as	DO-178	(RTCA,	2011a)	and	ISO/IEC/IEEE	29119	provide	guidance	on
appropriate	testing	techniques.

In	 Chapter	 6	 we	 looked	 at	 how	 to	 use	 SPARK	 to	 prove	 correctness	 properties	 of
programs.	If	we	can	prove	that	our	program	is	correct,	then	we	have	total	confidence	that
it	 will	 work	 in	 all	 cases	 covered	 by	 the	 assertions.	 Formal	 verification	 gives	 stronger
guarantees	than	testing.	New	verification	standards	provide	guidance	on	using	proof.	For
example,	 The	 DO-333	 standard,	 a	 supplement	 on	 formal	 methods	 for	 the	 DO-178C
standard,	 states,	 “Formal	methods	might	be	used	 in	 a	very	 selective	manner	 to	partially
address	 a	 small	 set	 of	 objectives,	 or	 might	 be	 the	 primary	 source	 of	 evidence	 for	 the
satisfaction	 of	 many	 of	 the	 objectives	 concerned	 with	 development	 and	 verification”
(RTCA,	2011b).

In	addition	to	providing	stronger	guarantees,	the	cost	of	proof	can	be	less	than	the	cost
of	 testing.	 This	 is	 particularly	 true	 for	 the	 most	 critical	 software	 for	 which	 coverage
criteria	require	a	lot	of	testing	(Moy	et	al.,	2013).	A	clear	example	of	savings	was	seen	in
the	use	of	SPARK	for	the	mission	computer	of	the	C130J	aircraft.	Lockheed	reported	an	80
percent	savings	over	their	projected	cost	for	testing	and	certification	of	more	than	100,000
lines	of	code	(Amey,	2002).

However,	there	are	times	when	proof	is	not	the	best	option:

Our	entire	program	is	not	amenable	to	proof.	Parts	of	our	program	may	need	to	use
Ada	constructs	such	as	exceptions	or	access	types	that	are	not	legal	in	SPARK.	Parts	of
our	programs	may	be	written	in	another	language	such	a	C	(see	Section	7.2).
It	may	be	very	expensive	or	even	impossible	to	provide	formal	descriptions	of	all	the
desired	 properties	 of	 a	 package.	 Interactive	 packages	 are	 particularly	 difficult	 to
formalize.
Software	 validation6	 is	 not	 specifically	 addressed	 by	 formal	 contracts.	 Testing
remains	the	best	way	to	validate	software.

By	 combining	 proof	 and	 testing,	 we	 get	 the	 best	 of	 both	 worlds.	 We	 can	 combine
methods	by	dividing	our	application	into	pieces	(packages	or	subprograms)	and	applying
either	proof	or	testing	to	each	separate	piece.	As	the	verification	chain	is	only	as	strong	as
its	weakest	link,	our	goal	is	to	obtain	verification	at	least	as	good	as	can	be	accomplished
with	 testing	 alone,	 but	 at	 a	 lower	 cost.	 Comar,	 Kanig,	 and	 Moy	 (2012)	 provide	 an
excellent	discussion	of	combining	formal	verification	and	testing.	This	paper	is	available
through	AdaCore’s	GEM	series.

SPARK’s	 contracts	 provides	 an	 ideal	 mechanism	 for	 combining	 proof	 with	 testing	 in
such	a	divided	program.	How	we	verify	the	contracts	depends	on	the	relationship	between
the	subprograms	in	our	application:

When	a	proven	subprogram	calls	another	proven	subprogram,	 the	preconditions	and
postconditions	of	the	called	subprogram	are	verified	by	proof.
When	 a	 tested	 subprogram	 calls	 another	 tested	 subprogram,	 the	 preconditions	 and



postconditions	of	the	called	subprogram	need	to	be	verified	by	test.
When	 a	 tested	 subprogram	 calls	 a	 proven	 subprogram,	 the	 preconditions	 of	 the
proven	subprogram	need	to	be	verified	by	test	and	the	postconditions	of	 the	proven
subprogram	 are	 verified	 by	 proof	 (see	 Figure	 8.3a).	 Calls	 from	 different	 tested
subprograms	 to	 the	 same	 proven	 subprogram	must	 have	 the	 proven	 subprogram’s
preconditions	tested	separately.
When	a	proven	subprogram	calls	a	tested	subprogram,	the	preconditions	of	the	tested
subprogram	 are	 verified	 by	 proof	 and	 the	 postconditions	 of	 the	 tested	 subprogram
need	to	be	verified	by	test	(see	Figure	8.3b).

	

Figure	8.3.	 Verifying	preconditions	and	postconditions	when	combining	proof	and
testing.

The	80/20	ratio	so	common	in	software	engineering	seems	to	fit	the	model	of	combined
proof	and	testing.	About	80	percent	of	the	subprograms	in	a	typical	high	integrity	program
can	 be	 “easily”	 proven,	 and	 80	 percent	 of	 the	 remaining	 subprograms	 can	 be	 “easily”
tested.	That	leaves	4	percent	of	the	subprograms	in	the	difficult-to-verify	category.

By	setting	a	switch	in	our	Ada	2012	compiler,	the	preconditions	and	postconditions	we
have	written	 in	our	 subprograms	will	be	checked	at	 runtime.	This	 simplifies	our	 testing
work.	We	 need	 only	 develop	 and	 run	 an	 appropriate	 set	 of	 test	 cases.	 An	 exception	 is
raised	whenever	an	assertion	check	fails.

The	GNATtest	 tool	 in	combination	with	the	GNAT	specific	aspect	Test_Case	may	be
used	 to	build	 and	 run	 a	 complete	 testing	harness.	This	 tool	 is	 based	on	AUnit,	 the	Ada
version	of	the	xUNIT	family	of	unit	test	frameworks.

Finally,	it	is	worth	saying	that	irrespective	of	how	you	intend	to	verify	your	operations,
testing	can	help	identify	potential	issues	with	proofs	and	proof	can	help	identify	potential
issues	with	tests.	If	you	cannot	prove	a	postcondition,	try	testing	it.	You	may	find	that	the
error	is	in	the	contract,	not	in	the	code.



8.5	 Case	Study:	Time	Stamp	Server

In	 this	 section	 we	 outline	 a	 realistic	 case	 study	 to	 illustrate	 the	 use	 of	 SPARK	 in	 the
construction	 of	 new	 software.	 The	 latest	 source	 for	 this	 case	 study,	 with	 additional
documentation,	can	be	found	on	GitHub	(Chapin,	2014).

Our	application	 is	a	 secure	 time	stamp	server,	which	we	call	Thumper,	 implementing
the	 time	 stamp	 protocol	 specified	 in	 RFC-3161	 (Adams	 et	 al.,	 2001).	 For	 the	 sake	 of
brevity,	 certain	 details	 of	 the	 protocol	 are	 not	 fully	 supported.	 However,	 the
implementation	is	complete	enough	to	demonstrate	many	features	of	SPARK.	In	this	section
we	 describe	 the	 protocol,	 sketch	 the	 architecture	 of	 Thumper,	 and	 discuss	 the	 role
SPARK	plays	in	its	implementation.

8.5.1	 Time	Stamp	Protocol
The	time	stamp	protocol	is	simple	in	concept.	It	provides	a	way	for	some	person,	such	as
Alice,	 to	 obtain	 a	 small,	 cryptographic	 token	 that	 proves	 a	 particular	 document	 in	 her
possession	 existed	 on	 or	 before	 a	 specific	 time.	Alice	 can	 present	 this	 token	 to	 another
person,	Bob,	for	later	verification.

More	concretely,	suppose	Alice	is	a	student	at	a	university	and	Bob	is	an	instructor.	Bob
requires	that	a	certain	assignment	be	completed	by	a	certain	date	and	time.	Alice	finishes
the	assignment	and	obtains	the	time	stamp	token.	She	then	submits	her	work	to	Bob	via	e-
mail.	Unfortunately,	 because	 of	 some	 network	 problem,	 her	message	 does	 not	 arrive	 in
Bob’s	mailbox	until	after	the	due	date.	Alice	can	then	use	the	time	stamp	to	prove	to	Bob
that	she	did,	in	fact,	complete	the	assignment	on	time.

The	 time	 stamp	 protocol	 makes	 use	 of	 three	 cryptographic	 concepts	 that	 we	 briefly
review	 here.	 For	 more	 information,	 consult	 any	 textbook	 on	 cryptography	 such	 as
Mao	(2004)	or	Stallings	(2014).

A	cryptographic	hash	 is	a	relatively	small	value	that	can	be	used	to	represent	a	larger
document.	If	a	change	is	made	to	the	document,	the	hash	will,	with	very	high	 likelihood,
be	 different.	 A	 cryptographic	 hash	 is	 similar	 to	 a	 checksum	 except	 that	 it	 is
computationally	infeasible	for	anyone	to	find	a	document	that	generates	a	particular	hash
value	or	modify	a	document	 in	such	a	way	as	 to	generate	 the	same	hash	value.	When	a
high	quality	cryptographic	hash	algorithm	is	used,	it	is	also	computationally	infeasible	to
find	 two	 different	 documents	 that	 generate	 the	 same	 hash	 value,	 a	 property	 sometimes
called	strong	collision	resistance.

A	public/private	key	pair	 is	a	 related	pair	of	keys	such	 that	material	encrypted	by	 the
public	key	can	only	be	decrypted	by	the	corresponding	private	key.	Typically,	a	user	keeps
the	private	key	secret	but	distributes	the	public	key	widely	allowing	people	the	user	does
not	know	to	send	encrypted	messages	that	only	the	user	can	read.

A	digital	 signature	 is	 a	 unit	 of	 data	 attached	 to	 a	message	 obtained	 by	 processing	 a
cryptographic	 hash	 of	 that	message	with	 the	 signer’s	 private	 key.	 The	 signature	 can	 be
verified	 by	 anyone	 using	 the	 corresponding	 public	 key.	A	 successful	 verification	 shows
both	 that	 the	 message	 was	 unmodified,	 because	 any	 modification	 would	 (with	 high
likelihood)	change	the	hash,	and	that	the	signer	is	authentic	because	only	the	owner	of	the



private	key	can	make	a	signature	that	is	verifiable	with	the	corresponding	public	key.

Here	is	how	Alice	obtains	a	time	stamp	for	one	of	her	documents	using	a	time	stamp
server:

1.	 Alice	computes	a	cryptographic	hash	 	of	her	document.

2.	 Alice	sends	 	to	the	server.

3.	 The	server	appends	the	current	time	to	 	and	then	digitally	signs	the	combination.
The	result	is	the	time	stamp.

4.	 The	server	returns	the	time	stamp	to	Alice.

5.	 Alice	verifies	the	time	stamp	by	checking	the	time	it	contains	is	reasonable,	the	hash
it	contains	is	still	 ,	and	the	digital	signature	on	the	time	stamp	is	valid.

Later	Alice	submits	her	document	together	with	its	time	stamp	to	Bob.	Bob	computes
the	hash	 	of	the	document	and	verifies	that	it	agrees	with	the	hash	in	the	time	stamp.	He
also	 verifies	 the	 server’s	 digital	 signature.	 If	 Bob	 believes	 the	 server	 has	 not	 been
compromised	 and	 trusts	 the	 server	 to	 have	 an	 accurate	 time,	 he	must	 agree	 that	Alice’s
document	existed	at	or	before	the	time	mentioned	in	the	time	stamp.7

Even	though	Alice	holds	the	time	stamp,	she	cannot	defeat	this	protocol.	Modifying	her
document	after	obtaining	the	time	stamp	will	change	its	hash.	If	she	tries	to	tamper	with
the	time	stamp	itself	to	change	either	the	hash	or	time	stored	in	it,	she	will	invalidate	the
server’s	 signature.	Notice	 that	Alice	does	not	need	 to	 reveal	her	document	 to	 the	 server
(only	a	hash	of	 it),	authenticate	 to	 the	server,	or	 trust	 the	server	 in	any	way	because	she
verifies	the	time	stamp	when	she	receives	it.

8.5.2	 Architecture,	Design,	and	Implementation
Clearly,	both	Alice	and	Bob	would	make	use	of	a	specialized	client	program	to	simplify
the	handling	of	the	time	stamps	and	the	required	cryptographic	operations.	However,	here
we	are	only	concerned	with	the	time	stamp	server,	Thumper.

During	 the	 design	 and	 implementation	 of	 Thumper	 we	 will	 make	 two	 important
security-related	assumptions.	We	assume	all	files	stored	on	the	host	file	system	are	private
to	Thumper.	This	includes	especially	Thumper’s	private	key.	Furthermore,	we	assume	the
time	 returned	 by	 the	 host	 operating	 system	 is	 correct.	 Ensuring	 these	 assumptions	 is	 a
problem	of	system	administration	rather	than	of	software	design	and	implementation.

Thumper	 is	 conceptually	 simple.	 It	waits	 for	 a	 time	 stamp	 request	message	 from	 the
network,	computes	the	desired	time	stamp,	and	returns	it.	Thumper	then	waits	for	the	next
request	message.	Invalid	request	messages	cause	Thumper	to	generate	an	error	response.
However,	 RFC-3161	 has	 many	 requirements	 for	 precisely	 how	 messages	 are	 to	 be
formatted.	 In	 particular	 the	 Distinguished	 Encoding	 Rules	 (DER)	 of	 Abstract	 Syntax
Notation	1	(ASN.1)	(International	Telecommunication	Union,	2002)	are	used.

RFC-3161	is	not	prescriptive	about	how	messages	are	to	be	transported.	Thumper	uses
the	User	Datagram	Protocol	 (UDP).	This	 is	 reasonable	because	both	 the	request	and	 the
response	are	small	enough	to	fit	into	a	single	UDP	datagram.	Thus,	there	are	no	concerns
about	 ordering	multiple	 packets	 or	 about	 acknowledgments.	 The	 response	 serves	 as	 the



acknowledgment	to	the	request.	Furthermore,	Thumper	is	an	iterative	server	that	processes
only	one	request	at	a	time.	This	simplifies	the	implementation	and	is	reasonable	because
the	time	required	to	process	a	request	is	small.	Also,	clients	can	in	no	way	slow	down	the
operation	 of	 the	 server	 by,	 for	 example,	 refusing	 to	 send	 required	 information	 after	 the
initial	request	is	made.

Thumper	makes	use	of	three	major	supporting	services:

The	network
A	cryptography	library
A	serial	number	generator

Thumper	 abstracts	 these	 services	 into	 their	 own	 packages.	 The	 network	 package
provides	 subprograms	 for	 sending	 and	 receiving	 UDP	 datagrams.	 We	 use	 a	 non-
SPARK	Ada	 library	 provided	 by	 the	 compiler	 vendor,	GNAT.	 Sockets.	 The	 cryptography
package	 provides	 a	 subprogram	 for	making	 digital	 signatures.	 It	 is	 built	 on	 top	 of	 a	 C
library	provided	by	a	third	party,	OpenSSL	(OpenSSL	Project,	2014a).

RFC-3161	 requires	 that	 each	 time	 stamp	 created	 by	 the	 server	 be	 marked	 with	 an
integer	serial	number.	Furthermore,	the	serial	number	must	be	unique	over	the	life	of	the
server’s	 deployment;	 even	 if	 the	 server	 is	 shut	 down	 and	 restarted	 it	 cannot	 use	 serial
numbers	from	previous	runs.	We	implement	this	requirement	by	generating	serial	numbers
randomly	using	a	pseudo-random	number	generator	with	a	large	period	( ),	seeded	by
the	 server’s	boot	 time.	Although	 this	 admits	 the	possibility	of	 creating	 two	 time	 stamps
with	the	same	serial	number,	 the	probability	of	doing	so	is	vanishingly	small.	The	serial
number	generator	package	makes	use	of	the	Ada	standard	library.

In	Section	8.3.4	we	presented	the	six	steps	of	the	INFORMED	design	process.	Here	we
walk	through	those	steps	showing	how	they	can	be	applied	to	Thumper:

1.	 Identification	of	the	system	boundary,	inputs,	and	outputs

The	simple	 structure	of	Thumper	makes	 this	 step	 relatively	easy.	The	server	as	a	whole
reads	messages	from	and	writes	messages	to	the	network.	It	must	also	read	its	private	key
from	the	host	file	system.	Finally,	we	identify	a	secondary	requirement	of	writing	a	log	file
where	messages	about	errors	encountered	can	be	stored.

It	is	possible	that	a	future	version	of	Thumper	may	have	other	inputs	and	outputs.	For
example,	 we	 considered	 providing	 remote	 management	 through	 a	 web	 interface	 or	 the
ability	 to	 store	 generated	 time	 stamps	 in	 a	 database	 for	 auditing	 purposes.	 However,
security	sensitive	applications	such	as	Thumper	benefit	from	being	as	simple	as	possible.
Every	 input	 increases	 the	 attack	 surface	 of	 the	 system	 and	makes	maintaining	 security
more	 difficult.	 Consequently,	 the	 current	 version	 of	 Thumper	 does	 not	 support	 these
additional	 features.	For	 similar	 reasons,	 all	 of	Thumper’s	 “configurable”	parameters	 are
hard	coded;	no	configuration	file	is	used.

2.	 Identification	of	the	SPARK	boundary

The	 INFORMED	 design	 method	 emphasizes	 the	 importance	 of	 clearly	 delineating	 the
boundary	between	the	SPARK	and	non-SPARK	sections	of	the	system.	Deciding	when	to	not
use	 SPARK	 is	 as	 important	 as	 deciding	when	 to	 use	 it.	 The	 first	 step	 in	 identifying	 this



boundary	 is	 to	 identify	your	verification	goals.	These	 goals	 represent	what	 you	wish	 to
accomplish	 by	 using	 SPARK,	 and	 they	 guide	 your	 decision	 about	 how	 to	 partition	 your
program	 into	 SPARK	 and	 non-SPARK	 sections.	 In	 the	 case	 of	 Thumper	 we	 identify	 our
verification	 goals	 as	 ensuring	 freedom	 from	 runtime	 error	when	 processing	 client	 input
along	with	 ensuring	 that	 an	 invalid	or	 inappropriate	 time	 stamp	 is	never	 returned	 to	 the
client.

From	a	security	point	of	view,	the	critical	path	through	Thumper	is	that	traversed	by	the
messages	 received	 from	 the	 client	 on	 their	way	 to	becoming	 responses	 sent	 back	 to	 the
client.	We	assume	 input	messages	may	be	malicious	 and	purposely	malformed	with	 the
intent	of	crashing	 the	 server	or	coaxing	 the	 server	 to	generate	an	 invalid	 time	stamp.	 In
contrast,	Thumper’s	 initialization	 and	 secondary	 logging	 feature	 are	 not	 critical	 because
they	do	not	depend	on	client	input	and	can	thus	be	reasonably	written	in	full	Ada.

Figure	8.4	shows	the	architecture	of	the	SPARK	components	of	Thumper.	The	boundary
between	the	SPARK	and	non-SPARK	code	is	marked	by	several	boundary	variable	packages
that	 encapsulate	 the	 connection	 to	 the	 non-SPARK	 components.	 The	 packages
Network.Socket.Reader	 and	 Network.Socket.	 Writer	 wrap	 the	 compiler	 vendor’s
network	library	and	provide	simplified	interfaces.	They	also	hide	the	underlying	network
library	 to	 prevent	 vendor	 specific	 names	 from	 leaking	 into	 the	 rest	 of	 the	 program.	 A
future	 version	 of	 Thumper	 may	 use	 a	 different	 networking	 library	 or	 even	 a	 different
transport	mechanism	for	messages;	the	SPARK	components	do	not	need	to	know	about	such
changes.

	

Figure	8.4.	 Architecture	of	the	SPARK	components	of	Thumper.

For	 pragmatic	 reasons	 we	 choose	 to	 use	 the	 OpenSSL	 library	 for	 Thumper’s
cryptographic	needs.	This	is	not	ideal	and	is	particularly	worrisome	in	light	of	OpenSSL’s
history	of	security	problems	(OpenSSL	Project,	2014b).	Unfortunately,	at	the	time	of	this
writing	no	open	source	cryptographic	 library	supporting	digital	signature	algorithms	and
written	 in	 verified	 SPARK	 is	 available	 to	 us.	 Because	OpenSSL	 is	written	 in	 C	 and	 lies
outside	 of	 SPARK,	 we	 use	 a	 boundary	 variable	 package	 Cryptographic_Services	 that
allows	SPARK	to	access	OpenSSL’s	services.	It	hides	all	the	required	C	interfacing	as	well



as	Thumper’s	private	key	in	its	(non-SPARK)	body.

SPARK	 is	 used	 in	 Thumper,	 as	 shown	 in	 Figure	 8.4,	 to	 decode	 the	 incoming	 request
messages,	 check	 their	 validity,	 and	 encode	 either	 an	 error	 response	 or	 a	 time	 stamp
response	as	appropriate.	Because	of	the	complexity	involved	in	processing	DER	encoded
ASN.1	 messages,	 there	 are	 plenty	 of	 opportunities	 for	 errors	 in	 this	 process,	 and	 we
endeavor	to	show	that	no	runtime	exceptions	can	be	raised	by	Thumper’s	code.

3.	 Identification	and	localization	of	state

The	boundary	variable	packages	Network.Socket.Reader	and	Network.Socket.	Writer
contain	 external	 state	 abstractions	 that	 represent	 the	 flow	 of	messages	 from	 and	 to	 the
network,	respectively.

The	specification	of	the	Reader	package	is	as	follows:

The	Messages	package	is	a	utility	package	written	in	SPARK	that	provides	basic	data	types
and	few	helper	subprograms	for	manipulating	bounded	messages	of	raw	data.	The	package
Network.Addresses	is	a	type	package	written	in	SPARK	that	provides	an	abstract	type	for
UDP	addresses.	Notice	that	although	the	body	of	this	package	is	implemented	in	terms	of
a	vendor-provided	library,	no	evidence	of	that	fact	is	visible	here.

The	stream	of	messages	coming	 from	 the	network	 is	modeled	using	an	external	 state
abstraction	Input_Message_Stream.	The	external	state	abstraction	has	Async_Writers	 set
to	 True	 because	 messages	 can	 appear	 at	 any	 time	 for	 reasons	 outside	 of	 Thumper’s
control.	In	particular,	multiple	calls	to	Receive	in	succession	might	return	different	results.
On	 the	other	hand,	Effective_Reads	 is	 set	 to	False	 because	 reading	 a	message	has	 no



influence	on	the	external	system	sending	them.	This	is	particularly	true	in	the	case	of	the
UDP	 protocol	 where	 there	 is	 no	 connection	 between	 the	 sender	 and	 receiver	 of	 a
datagram.

The	specification	of	the	Writer	package	is	as	follows:

Here	the	stream	of	outgoing	messages	is	modeled	using	another	external	state	abstraction
Output_Message_Stream.	In	this	case,	Async_Readers	is	set	to	True	indicating	that	some
external	 system	 is	 reading	 the	 outgoing	 messages	 at	 a	 time	 unrelated	 to	 Thumper’s
activities.	 Also,	 Effective_Writes	 is	 set	 to	 True,	 indicating	 that	 every	 message
potentially	influences	the	external	system	reading	them.

Some	of	the	flow	dependences	on	the	Send	procedure	are	not	immediately	obvious.	For
example,	why	should	the	output	message	stream	depend	on	itself?	This	arises	because	it	is
possible,	in	principle,	for	the	output	message	stream	to	be	temporarily	unusable	as	a	result
of	a	 filled	network	queue	 in	 the	underlying	operating	system.	 In	 that	case,	 sending	may
fail	 and	 the	 output	 message	 stream’s	 state	 would	 not	 be	 changed.	 The	 output	 message
stream	returned	by	the	procedure	thus	depends	on	the	output	message	stream	given	to	the
procedure.

It	 is	 important	 to	 remember	 that	 the	 contracts	 used	 with	 these	 boundary	 variable
packages	are	not	verified	by	SPARK	 because	 the	bodies	of	 these	packages	are	outside	of
SPARK	and	not	analyzed	by	the	tools.	Careful	review	of	these	contracts	is	thus	required	if
SPARK	is	to	have	a	proper	understanding	of	the	real	data	and	information	flows	involved.



Following	the	guideline	in	the	INFORMED	report	(SPARK	Team,	2011),	we	do	not	use	a
single	 state	 abstraction	 to	model	 both	 input	 and	output	 streams	 simultaneously.	Using	 a
single	 state	 abstraction	 would	 confuse	 analysis.	 For	 example,	 the	 SPARK	 tools	 might
conclude	 that	 the	messages	read	from	the	network	are	somehow	related	 to	 the	messages
sent	to	the	network.

There	 are	 two	 variable	 packages	 containing	 state	 to	 consider.	 The	 first	 is	 the
pseudorandom	 number	 generator	 used	 to	 create	 serial	 numbers.	 Its	 specification	 is	 as
follows:

The	second	package	containing	state	 is	 the	cryptographic	 services	package	 that	holds
the	server’s	private	key	used	to	make	digital	signatures.	Its	specification	is	as	follows:



Here,	Hermes	 is	a	package,	entirely	written	in	SPARK,	containing	ASN.1	encoding	and
decoding	facilities.	The	type	Octet_Array	 in	that	package	holds	raw	data	intended	to	be
part	of	a	DER	encoded	ASN.1	data	stream.

The	body	of	Cryptographic_Services	 contains	all	 the	necessary	code	 to	 interface	 to
the	OpenSSL	library,	but	the	use	of	that	library	is	not	visible	here.	If	at	some	future	time	a
suitable	 SPARK	 cryptographic	 library	 becomes	 available,	 only	 the	 body	 of
Cryptographic_Services	would	need	to	be	updated	to	use	it.

We	 note	 that	 the	 state	 held	 by	 the	 two	 packages	 described	 here	 have	 significantly
different	security	levels.	The	key	held	by	Cryptographic_Services	is	obviously	security
sensitive	 information.	 In	 contrast,	 the	 state	 of	 the	 pseudorandom	 number	 generator	 is
much	less	sensitive	because	it	is	only	used	to	derive	serial	numbers	on	response	messages.
It	 is	 thus	 appropriate	 to	 store	 these	 states	 in	 different	 variable	 packages	 rather	 than,	 for
example,	creating	a	single	package	to	hold	all	the	state	in	one	place.

4.	 Handling	of	the	initialization	of	state

The	previously	described	state	is	initialized	in	different	ways.	The	network	packages	are
children	of	Network.Socket,	a	non-SPARK	package	that	encapsulates	a	single	UDP	socket.
The	specification	of	Network.Socket	is	as	follows:



The	procedure	Create_And_Bind_Socket	initializes	the	two	network	streams.	It	reports
failures	 by	 way	 of	 raising	 the	 Network_Error	 exception,	 a	 translation	 of	 the	 vendor
specific	 exception	 GNAT.Socket_Error.	 The	 variable	 Socket	 declared	 in	 the	 private
section	 of	 this	 package	 is	 visible	 to	 the	 (non-SPARK)	 bodies	 of	 the	 Reader	 and	 Writer
packages.	 Here	 we	 use	 a	 parent	 package	 to	 provide	 private	 resources	 to	 the	 two	 child
packages.	 In	 reality	 both	 message	 streams	 use	 the	 same	 underlying	 socket,	 yet	 this
organization	 makes	 it	 possible	 to	 abstract	 the	 streams	 into	 different	 packages	 as	 we
described	earlier.

The	Serial_Generator	package	is	initialized	at	elaboration	time,	as	evidenced	by	the
Initializes	aspect	 on	 its	 specification.	 It	 uses	 the	 system	 time	 at	 start-up	 to	 seed	 the
pseudorandom	number	generator.	The	Cryptographic_Services	package	is	initialized	by
the	main	 program	 by	way	 of	 a	 special	 initialization	 procedure.	 It	 reads	 the	 private	 key
from	the	file	system	and	stores	it	internally	for	future	use.

5.	 Handling	of	secondary	requirements

At	this	time	Thumper	has	only	one	secondary	requirement:	to	create	a	log	of	any	external
errors	 that	 arise	 during	 operation.	 We	 are	 not	 concerned	 with	 initialization	 errors.	 If
Thumper	fails	to	initialize,	it	terminates	at	once	with	an	appropriate	message;	such	errors
do	not	need	to	be	logged.	However,	there	might	be	problems	receiving	or	sending	on	the
network	 and	 such	 problems	 should	 be	 recorded	 to	 alert	 the	 operator	 and	 assist	 with
troubleshooting.

The	 logger	 is	 another	 boundary	 variable	 package,	 not	 shown	 in	 Figure	 8.4,	 with	 a
specification	as	follows:



At	elaboration	time	this	package	initializes	itself	by	opening	a	suitable	log	file.

6.	 Implementation	of	the	internal	behavior	of	components

What	 remains,	 of	 course,	 is	 implementing	 the	 bodies	 of	 the	 packages	mentioned	 so	 far
along	with	 the	 core	 logic	 of	 the	 program.	Here	we	 describe	 a	 few	 of	 highlights	 of	 the
implementation.

Thumper’s	main	program	is	not	in	SPARK.	It	is	mostly	concerned	with	initialization	and
dealing	with	 any	 initialization	 errors.	 It	 then	 calls	 a	procedure	Service_Clients	where
the	core	functionality	of	the	system	resides.	The	main	program,	in	its	entirety,	follows:



The	 package	 SPARK_Boundary	 corresponds	 to	 the	 dashed	 box	 in	 Figure	 8.4.	 The
Service_Clients	 procedure	 executes	 the	 material	 inside	 that	 box	 in	 an	 infinite	 loop,
making	use	of	the	(boundary)	variable	packages	we	described	earlier.	The	specification	of
SPARK_Boundary	is	shown	as	follows:



Notice	that	the	with	statements	exactly	mention	those	packages	 that	are	either	boundary
variable	packages	or	packages	 containing	 state.	These	with	 statements	 are	 necessary	 so
that	the	various	abstract	states	can	be	used	in	the	data	and	flow	dependency	contracts	on
Service_Clients	.

The	presence	of	 the	 logger	complicates	 the	dependency	contracts.	This	 is	unfortunate
because	the	logger	is	a	secondary	requirement,	and	one	might	prefer	that	it	did	not	clutter
the	 essential	 information.	 Unfortunately,	 the	 SPARK	 tools	 require	 that	 flows	 to	 (and,	 in
general	from)	the	logger’s	state	be	properly	declared	as	for	any	other	flows.

Some	of	 the	flows	are	surprising.	 In	particular	 the	dependency	of	 the	output	message
stream	on	itself.	This	arises	because	Service_Clients	ultimately	calls	the	Send	procedure



in	 the	 Writer	 package.	 As	 explained	 previously,	 this	 procedure	might	 leave	 the	 output
message	stream	unchanged.	In	addition	if	Service_Clients	only	gets	errors	when	trying
to	receive	a	request,	it	will	never	even	attempt	to	write	to	the	output	message	stream.	Thus
the	output	message	 stream	must	be	an	In_Out	 global	 item.	These	details	were	not	 fully
appreciated	when	the	contracts	on	Service_Clients	were	first	written.	Some	adjustments
were	made	during	the	implementation	of	Service_Clients	as	these	issues	came	to	light.

It	 is	 interesting	 to	note	 that	 the	 flow	dependency	contract	helps	with	 security	 review.
Because	attackers	can	manipulate	the	input	message	stream,	any	items	that	depend	on	that
stream	need	to	be	carefully	secured.	In	this	case	all	outputs	are	potentially	attackable.	Of
particular	 interest	 is	 the	 log	 stream.	 Is	 it	 possible	 for	 an	 attacker	 to	 send	 a	malformed
request	 in	 such	 a	 way	 as	 to	 cause	 a	 malformed	 log	message	 to	 crash	 the	 server?	 This
question	is	particularly	interesting	in	light	of	the	fact	that	the	body	of	package	Logger	is
not	 in	 SPARK.	 Similarly,	 could	 an	 attacker	 somehow	 manipulate	 the	 state	 of	 the	 serial
number	generator	by	sending	appropriately	malformed	requests?

The	Service_Clients	procedure	itself	contains	an	infinite	loop	as	shown:



The	 variables	 Network_Request	 and	 Network_Response	 hold	 raw	 octets	 of	 type
Network.Octet	received	from	and	being	sent	to	the	network.	They	are	records	that	carry	a
fixed	size	array	along	with	a	count	of	the	number	of	elements	in	that	array	actually	being
used.	 The	 variables	 Request_Message	 and	 Response_Message	 hold	 raw	 octets	 of	 type
Hermes.Octet	that	contain	DER	encoded	ASN.1	data.

The	 functions	 From_Network	 and	 To_Network	 only	 do	 type	 conversions	 on	 the	 data
from	Network.Octet	to	Hermes.Octet	and	vice	versa.	Although	it	may	seem	pedantic	to



distinguish	 between	 different	 kinds	 of	 octets,	 it	 makes	 sense	 because	 data	 on	 the
underlying	 network	 may	 have	 many	 forms.	 Hermes	 works	 only	 with	 DER	 encoded
ASN.1.	But	in	the	future,	time	stamp	messages	may	be	encapsulated	in	some	application
protocol	such	as	HTTP.	So	distinguishing	between	raw	network	data	and	the	time	stamp
messages	would	be	useful	in	a	future	version	of	Thumper.

The	procedure	Create_Timestamp	 converts	 request	messages	 into	 response	messages.
Every	 request	 generates	 a	 response;	 invalid	 or	 malformed	 requests	 generate	 error
responses.	 Create_Timestamp	 is	 the	 heart	 of	 the	 application	 and	 is	 almost	 purely
functional.	 It	 accepts	 one	 array	 of	 octets	 and	 returns	 another.	 However,	 because	 each
generated	 time	 stamp	 is	 digitally	 signed	 and	 must	 include	 a	 unique	 serial	 number,
Create_Timestamp	 needs	 to	 use	 the	 cryptographic	 key	 and	 the	 serial	 number	 generator.
The	SPARK	declaration	of	Create_Timestamp	is	as	follows:

The	 bulk	 of	 the	 program	 is	 actually	 inside	 Create_Timestamp.	 However,	 the	 high
degree	 of	 purity	 of	 the	 procedure	 –	 it	 rarely	 references	 any	 state	 –	 means	 that	 its
implementation	 is,	 in	 principle,	 straightforward.	 We	 refer	 you	 to	 the	 Thumper	 site	 on
GitHub	(Chapin,	2014)	for	the	details.

Alternate	Designs

It	 is	 useful	 to	 consider	 some	 alternate	 designs	 to	 understand	how	 the	 concepts	we	have
developed	so	 far	apply	 to	 them.	First,	 consider	 the	network	boundary	variable	packages
Network.Socket.	Reader	and	Network.Socket.Writer.	These	two	packages	encapsulate
external	state	abstractions	for	input	from	and,	respectively,	output	to	the	network.	For	the
sake	of	accurate	flow	analysis,	 it	 is	 important	 that	differen	state	abstractions	be	used	for
inputs	and	outputs.	Yet	creating	two	separate	packages	is	not	strictly	necessary	even	if	two
state	abstractions	are	to	be	used.	It	would	be	possible	to	define	a	single	package	with	two
state	abstractions.	Such	an	approach	might	seem	more	natural	particularly	in	light	of	 the
fact	that	both	state	abstractions	use	a	common	underlying	socket.

However,	we	anticipate	that	a	future	version	of	Thumper	may	wish	to	store	generated
time	 stamps	 for	 auditing.	 Such	 a	 change	 could	 be	 made	 by	 replacing	 the
Network.Socket.Writer	package	body	with	a	different	body	that	also	communicates	with
a	database.	This	change	would	not	affect	the	Network.Socket.Reader	package	at	all.	Two
separate	 packages	may	 seem	 like	 overkill,	 but	 it	 does	 clearly	 distinguish	 the	 inputs	 and
outputs	of	the	system,	allowing	one	to	be	changed	without	interfering	with	the	other.



The	use	of	variable	packages	to	hold	the	key	and	pseudorandom	number	generator	state
could	 also	 be	 changed.	 In	 particular,	 Cryptographic_Services	 and	 Serial_Generator
could	be	converted	to	type	packages	that	provided	suitable	abstract	data	types	to	hold	their
state.	 Objects	 of	 those	 types	 could	 be	 declared	 in	 the	 main	 program	 and	 passed	 to
Service_Clients	 as	 parameters.	 However,	 this	 does	 not	 simplify	 the	 dependency
contracts	 on	 Service_Clients	 very	 much.	 Cryptographic_Services	 .Key	 and
Serial_Generator	.State	would	no	longer	be	global	items,	but	they	would	still	appear,
as	 parameter	 names,	 in	 the	 flow	 dependency	 contract.	 Also,	 Thumper	 needs	 neither
multiple	 cryptographic	 keys	nor	multiple	 pseudorandom	number	generators	 so	 the	main
advantage	of	using	type	packages	is	not	required.

Summary

The	 conversion	 of	 a	 SPARK	 2005	 program	 to	 SPARK	 2014	 is	 straight	 forward	 as
SPARK	2014	is	a	superset	of	SPARK	2005.
The	SPARK	tools	may	be	used	to	perform	retrospective	analyses	of	existing	Ada	code
where	no	SPARK	aspects	are	given.
The	SPARK	tools	will	generate	safe	over-approximations	of	data	dependency	contracts
and	flow	dependency	contracts	directly	from	the	source	code	of	a	program	unit.
More	 in-depth	 analyses	 of	 legacy	Ada	 code	 may	 require	 moving	 non-SPARK	 code
segments	into	child	or	private	child	packages.
Designing	to	meet	your	verification	goals	is	a	powerful	approach	 to	creating	quality
software.	This	approach	to	creating	new	SPARK	programs	is	called	verification	driven
development.
Abstraction,	 encapsulation,	 information	 hiding,	 coupling,	 and	 cohesion	 provide
measures	of	good	software	design.
The	INFORMED	design	method	was	developed	especially	for	applying	the	strengths
of	SPARK	during	this	crucial	stage	of	software	development.
The	 elements	 of	 an	 INFORMED	design	 include	 variable	 packages,	 type	 packages,
utility	 packages,	 boundary	 variable	 packages,	 and	 boundary	 variable	 abstraction
packages.
We	use	Abstract_State	aspects	to	make	it	known	that	a	package	encapsulates	state
without	revealing	the	implementation	details	of	that	state.
Localizing	 state	 and	 minimizing	 data	 flow	 are	 major	 tenets	 of	 the	 INFORMED
design	method.
Combining	 proof	 and	 testing	 is	 a	 powerful	 mechanism	 for	 verifying	 code.	 As	 the
verification	 chain	 is	 only	 as	 strong	 as	 its	 weakest	 link,	 our	 goal	 is	 to	 obtain
verification	at	least	as	good	as	can	be	accomplished	with	testing	alone,	but	at	a	lower
cost.



9
Advanced	Techniques

In	 this	 chapter	 we	 examine	 some	 advanced	 techniques	 for	 proving	 properties	 of
SPARK	 programs.	Although	 the	 approaches	we	 describe	 here	will	 not	 be	 needed	 for	 the
development	of	many	programs,	you	may	find	them	useful	or	even	necessary	for	handling
larger,	realistic	applications.

9.1	 Ghost	Entities

Ghost	entities	make	it	easier	to	express	assertions	about	a	program.	The	essential	property
of	ghost	entities	is	that	they	have	no	effect	on	the	execution	behavior	of	a	valid	program.
Thus,	a	valid	program	that	 includes	ghost	entities	will	execute	 the	same	with	or	without
them.

9.1.1	 Ghost	Functions
In	applications	where	you	are	 trying	 to	prove	strong	statements	about	 the	correctness	of
your	programs,	the	expressions	you	need	to	write	in	assertions	become	very	complex.	To
help	manage	that	complexity,	it	is	desirable	to	factor	certain	subexpressions	into	separate
functions,	both	to	document	them	and	to	facilitate	reuse	of	them	in	multiple	assertions.

Functions	that	you	create	for	verification	purposes	only	are	called	ghost	functions.	The
essential	 property	 of	 ghost	 functions	 is	 that	 they	 do	 not	 normally	 play	 any	 role	 in	 the
execution	of	your	program.1	Ghost	functions	may	only	be	called	from	assertions	such	as
preconditions,	 postconditions,	 and	 loop	 invariants.	 They	 may	 not	 be	 called	 from	 the
ordinary,	non-assertive	portions	of	your	program.

As	 an	 example	 consider	 the	 specification	 of	 a	 package	 Sorted_Arrays	 that	 contains
subprograms	for	creating	and	processing	sorted	arrays	of	integers:



Notice	that	the	postcondition	of	Sort	and	the	precondition	of	Binary_Search	both	use
the	same	quantified	expression	to	assert	that	the	array	being	processed	is	sorted.	Although
the	expression	is	not	exceptionally	unwieldy	in	this	case,	it	is	still	somewhat	obscure	and
hard	 to	 read.	 Having	 it	 duplicated	 on	 two	 subprograms	 also	 hurts	 the	 package’s
maintainability.

Our	 second	 version	 of	 this	 specification	 introduces	 a	 ghost	 function	 to	 abstract	 and
simplify	the	pre-	and	postconditions	on	the	other	subprograms.	We	use	the	Boolean	aspect
Ghost	to	indicate	that	the	function	Is_Sorted	is	included	only	for	verification	purposes.



The	 postcondition	 on	 Sort	 and	 the	 precondition	 on	 Binary_Search	 use	 the	 Is_Sorted
function	rather	than	the	lengthier	quantified	predicates.	They	are	now	clearer	and	easier	to
maintain.

The	function	Is_Sorted	is	decorated	with	a	postcondition	that	explains	its	effect.	One
might	be	tempted	to	use	a	conditional	expression	in	the	postcondition	as	follows:

However,	 this	 postcondition	 is	 not	 strong	 enough.	 It	 says	 nothing	 about	 the	 array	 if
Is_Sorted	 returns	 False.	 In	 particular,	 an	 implementation	 of	 Is_Sorted	 that	 returns
False	 would	 always	 satisfy	 this	 postcondition	 (see	 the	 implication	 entry	 in	 Table	 5.1).
What	is	required	is	for	Is_Sorted	to	return	true	“if	and	only	if”	the	array	is	sorted.	This
equivalence	is	expressed	in	our	first	version	with	the	equality	of	Is_Sorted	’Result	and
the	qualified	expression.	To	satisfy	the	postcondition,	it	is	necessary	for	the	truth	value	of
both	those	things	to	be	the	same.

It	 is	 not	 strictly	 necessary	 to	 include	 a	 postcondition	 on	 Is_Sorted	 at	 all.	 The
SPARK	tools	will	understand	that	the	array	coming	out	of	Sort	passes	Is_Sorted,	and	this
is	all	that	is	required	to	send	that	array	to	Binary_Search.	Exactly	what	Is_Sorted	does	is
of	no	immediate	concern.

However,	exposing	the	details	of	what	Is_Sorted	does	might	allow	the	SPARK	tools	to
complete	 other	 proofs	 elsewhere	 in	 the	 program	 more	 easily.	 For	 example,	 with	 the
postcondition	on	Is_Sorted	 visible,	 the	 tools	will	 “know”	 that	 the	 array	 coming	 out	 of
Sort	has,	for	example,	the	property

as	 a	 result	 of	 the	 transitivity	 of	 <=.	 In	 general	 it	 is	 good	 practice	 to	 expose	 as	 much
information	as	feasible	to	the	SPARK	tools.

Here	is	a	body	for	the	ghost	function	Is_Sorted:

In	this	case,	the	body	is	essentially	a	duplication	of	the	postcondition.	This	is	not	unusual
for	 ghost	 functions	 although	 it	 is	 not	 required	 or	 even	 universal.	 It	 does	 mean	 if	 the
assertion	policy	is	Check	the	test	done	by	Is_Sorted	is	essentially	done	twice.	The	test	is
done	 in	 the	 body	 to	 compute	 Is_Sorted	 ’Result	 and	 then	 again	 in	 the	 postcondition.
However,	 if	 the	 assertion	 policy	 is	 Ignore,	 assertions	 are	 not	 executed	 and	 the	 entire
Is_Sorted	 function	could	be	 removed	from	the	program	by	 the	compiler	because	 it	can
never	be	used	outside	assertion	expressions	anyway.



A	 better	 alternative	 in	 this	 case	 is	 to	write	 the	 Is_Sorted	 function	 as	 an	 expression
function	as	follows:

This	version	has	the	advantage	that	no	separate	body	is	needed	for	Is_Sorted	because
the	entire	function	is	implemented	in	the	package	specification.	Furthermore,	the	body	of
an	expression	function	is	used	to	automatically	generate	a	postcondition	for	the	function	as
explained	in	Section	6.2.3.

9.1.2	 Ghost	Variables
The	aspect	Ghost	may	be	applied	to	variables	and	constants	as	well	as	to	functions.	Such
variables	may	only	 be	 used	 in	 verification	 assertions.	They	 are	 commonly	 used	 in	 loop
invariants.	As	with	ghost	functions,	 the	runtime	behavior	of	a	valid	program	is	the	same
with	 or	 without	 the	 ghost	 variables.	 We	 look	 at	 an	 example	 with	 ghost	 variables	 and
constants	in	the	next	section.

9.2	 Proof	of	Transitive	Properties

Many	 properties	 we	 need	 to	 prove	 are	 transitive	 relations.	 As	 an	 example	 of	 such	 a
property	and	the	use	of	ghost	entities,	we	return	to	the	selection	sort	procedure.	We	gave
its	specification	in	Section	1.4	and	repeat	it	here:



Procedure	Selection_Sort	has	two	postconditions.	The	first	postcondition	states	 that
the	 values	 returned	 are	 in	 ascending	 order.	 The	 second	 postcondition	 uses	 the	 ghost
function	 Perm	 to	 state	 that	 the	 array	 returned,	 Values,	 is	 a	 permutation	 of	 the	 original
array,	Values’Old.	That	is,	the	new	array	is	a	reordering	of	the	values	in	the	original	array.
Without	this	second	postcondition,	a	sort	procedure	that	was	given	the	integers	(5,	7,	3,	3,
8)	and	returned	(5,	5,	5,	5,	5)	would	be	valid.

A	common	approach	to	determining	whether	two	arrays	are	permutations	is	to	sort	each
array	and	compare	the	sorted	arrays.	As	we	are	using	the	permutation	property	to	verify
our	sort	procedure,	we	cannot	use	the	sort	to	verify	the	permutation.	Another	approach	is
to	count	the	number	of	each	element	in	each	array	and	compare	the	counts.	As	our	array
components	 are	 integers,	 this	 approach	 could	 require	 	 counters	 for	 32-bit	 integer
representations.

We	 take	 another	 approach	 to	 show	 that	 the	 result	 is	 a	 permutation	 of	 the	 original.
Function	Perm	is	a	ghost	function.	The	aspect	Import	states	that	the	body	of	the	function	is
external	to	the	SPARK	program.	Rather	than	write	a	body,	we	will	give	the	proof	tool	the
mathematical	rules	it	needs	to	verify	our	permutation	postcondition.	Here	is	the	complete
package	body	that	implements	our	selection	sort:





The	heart	of	 the	permutation	verification	 is	 in	procedure	Swap	 starting	on	 line	14.	 Its
postcondition	states	that	(1)	the	resulting	array	is	a	permutation	of	the	original	array;	(2)
the	values	at	index	locations	X	and	Y	were	swapped;	and	(3)	the	rest	of	the	values	in	the
array	are	unchanged.

We	know	that	swapping	two	elements	in	an	array	creates	a	permutation	of	the	original
array.	However,	the	SPARK	tools	do	not	know	this	fact.	We	use	pragma	Assume	on	line	34
with	 the	 ghost	 function	 Perm	 to	 state	 this	 fact.	 After	 swapping	 two	 elements,	 the
SPARK	tools	will	assume	that	the	result	is	a	permutation	of	the	original.	We	used	the	ghost
constant	Values_Old	to	hold	a	copy	of	the	original	array.	We	could	not	use	Values’Old	as
the	’Old	attribute	can	only	be	used	in	postconditions.2

Next	we	have	to	tell	the	SPARK	tools	that	after	multiple	element	swaps	the	final	array	is
a	 permutation	 of	 the	 original	 array.	 This	 is	 a	 transitivity	 property:	 if	 	 and	 	 are
permutations	and	 	and	 	are	permutations,	then	 	and	 	are	permutations.	We	use
another	 ghost	 function,	 Perm_Transitive	 defined	 on	 lines	 4–11,	 to	 express	 this
transitivity.	The	postcondition	of	 this	 function	states	 the	 transitivity	property.	A	function
postcondition	should	always	mention	the	result	of	the	function	so	we	have	also	included	it.
As	the	postcondition	is	all	we	need	for	our	proof,	we	included	the	aspect	Import	so	we	do
not	have	to	write	a	body	for	this	function.

The	pragma	Assume	on	 line	78	 tells	 the	proof	 tools	 that	after	each	swap,	 the	result	 is
still	a	permutation	of	the	original.	The	three	parameters	of	the	call	to	Perm_Transitive	in
this	pragma	are	the	original	array	(its	value	prior	to	the	start	of	the	loop),	the	array	before
the	last	swapping,	and	the	current	array.	We	use	the	ghost	variable	Values_Last	to	hold	a
copy	of	the	array	prior	to	swapping	elements.

There	is	still	one	more	fact	we	need	to	give	to	the	proof	tools:	an	array	is	a	permutation
of	itself.	This	fact	is	given	in	the	pragma	Assume	on	line	67.

As	usual,	we	need	to	help	the	proof	tools	prove	our	postconditions	by	writing	invariants
for	our	loops.	While	you	may	only	write	one	invariant	for	each	loop,	you	may	use	multiple
Loop_Invariant	pragmas	as	long	as	they	are	consecutive.	The	three	pragmas	on	lines	80–
86	could	be	written	as	a	single	pragma	using	 the	conjunctive	operator	and	then	as	was
done	 in	 the	 function	 Index_Of_Minimum.	 Notice	 how	 the	 loop	 invariants	 in	 both
Selection_Sort	and	Index_Of_Minimum	support	their	postconditions.

The	approach	taken	in	this	example	may	be	applied	to	any	proof	requiring	a	transitivity
property.	Let	us	look	at	a	more	general	example.	In	the	specification,

declare	the	property	for	which	there	is	transitivity	as	a	ghost	function	without	a	body
and
use	 that	 property	 in	 the	 postcondition	 of	 the	 change	 operation	 you	 wish	 to	 prove
maintains	that	property.

See	if	you	can	pick	out	these	two	steps	in	our	sorting	package	specification	(page	§).

In	the	package	body,

declare	the	transitivity	relation	as	a	ghost	function	without	a	body	(see	lines	4–11	of



the	sorting	package	body),
add	a	pragma	Assume	to	the	beginning	of	the	change	operation	body	to	state	that	the
property	applies	to	itself	(see	line	67	of	the	sorting	package	body),
declare	a	ghost	variable	(see	lines	63–64	of	the	sorting	package	body)	and	assign	the
current	value	to	it	prior	to	applying	a	change	(see	line	69),	and
add	a	pragma	Assume	with	the	transitive	relation	ghost	function	after	carrying	out	a
change	 to	 indicate	 that	 the	property	applies	 to	 the	current	value	 (see	 line	78	of	 the
sorting	package	body).

Let	 us	 look	 at	 a	 simpler	 example	 that	 illustrates	 this	 approach.3	 Procedure	 Change
makes	 some	 modification	 to	 its	 parameter	 X	 with	 the	 postcondition	 that	 the	 transitive
property,	given	by	procedure	Property,	holds.

Here	 is	 the	body	of	 this	 package.	Notice	 that	we	have	no	 idea	 about	 the	meaning	of
Property,	just	that	it	is	transitive.



Until	recently,	the	default	theorem	provers	were	not	able	to	complete	the	proof	of	our



selection	 sort.	And	 they	 took	 a	while	 to	 prove	 our	 simpler	 transitive	 property	 example.
However,	the	Z3	theorem	prover	was	able	to	prove	both	of	these	packages	in	a	very	short
amount	of	time.	See	Section	9.3.2	for	a	brief	discussion	of	alternative	theorem	provers.

9.3	 Proof	Debugging

As	a	programmer	you	have	no	doubt	learned	a	variety	of	techniques	for	finding	and	fixing
bugs	 in	your	programs.	You	have	probably	also	 learned	 that	program	debugging	can	be
difficult	and	requires	significant	practice.	Special	debugging	tools	exist	to	simplify	finding
and	removing	bugs,	yet	such	tools	also	require	practice	to	use	well.

When	 you	 start	 to	 formally	 verify	 your	 programs	 using	 SPARK	 you	 need	 to	 develop
skills	for	a	new	kind	of	debugging:	proof	debugging.	If	a	proof	 is	unsuccessful,	how	do
you	find	out	what	is	wrong	and	how	do	you	fix	it?	Of	course,	if	the	proof	is	unsuccessful
because	 the	 program	 has	 an	 error,	 fixing	 the	 error	 is	 a	 necessary	 first	 step.	 It	 is	 a
surprisingly	easy	step	to	overlook	–

If	a	proof	fails,	check	carefully	that	the	code	is	right	before	trying	to	fix	the	proof.

Even	before	reviewing	the	code	itself,	 it	 is	worth	stepping	back	to	be	sure	 the	formal
specification	 of	 that	 code	 is	 correct.	 For	 example,	 you	 may	 have	 implemented	 a
subprogram	properly,	but	if	you	stated	the	postcondition	wrong,	it	may	not	prove.	Here	the
problem	is	not	in	your	implementation	but	in	your	specification	of	what	the	subprogram	is
intended	to	do.	It	is	surprisingly	easy	to	overlook	this	step	as	well	–

If	a	proof	fails,	check	carefully	that	your	assertions	state	what	you	intend.

However,	 a	 proof	 might	 fail	 even	 on	 a	 correctly	 specified	 and	 implemented	 code
because	of	insufficient	information	in	your	program	or	because	of	limited	theorem	prover
technology.	 In	 this	 section	we	 talk	 about	 various	methods	 of	 proof	 debugging	 that	 help
you	diagnose	such	cases	and	fix	them.	However,	be	aware	that	like	any	debugging	activity,
proof	debugging	requires	practice	and	experience.	The	best	way	to	learn	how	to	do	it	is	to
work	through	many	troublesome	proofs.

9.3.1	 Proof	Workflow
Imagine	that	you	have	just	completed	a	package	of	SPARK	code	that	successfully	compiles
as	Ada	and	that	successfully	passes	examination	and	so	is	free	of	flow	issues.	You	are	now
ready	 to	 prove	 the	 code	 is	 free	 of	 runtime	 errors	 and	 that	 it	 obeys	 its	 pre-	 and
postconditions	and	other	assertions.	Unfortunately	when	you	run	the	SPARK	tools,	you	find
that	some	proofs	fail.	How	should	you	proceed?

The	automatic	theorem	prover	that	backs	the	SPARK	tools	requires	a	certain	amount	of
time	to	complete	the	proof	of	each	verification	condition.	Unfortunately	it	is	not	possible,
in	general,	 to	 set	 a	 specific	 limit	 on	how	much	 time	 is	 required.	Verification	 conditions
that	are	false	will	never	prove	no	matter	how	long	the	theorem	prover	works	(assuming	the
theorem	 prover	 is	 sound).	 But	 even	 verification	 conditions	 that	 are	 true	 may	 not	 be
provable	by	any	given	theorem	prover	or,	even	if	they	are,	may	require	a	very	long	time



for	the	proof	to	complete.

The	problem	with	 allowing	 the	 theorem	prover	 to	work	 for	 a	 long	 time	 is	 that	many
failing	verification	conditions	will	require	you	to	wait	an	inordinate	amount	of	time	for	the
proving	process	to	finish.	For	example,	if	your	package	has	fifty	verification	conditions	of
which	ten	fail	to	prove	and	you	set	your	theorem	prover	to	work	for	a	maximum	of	sixty
seconds	on	each	verification	condition,	you	may	have	to	wait	ten	minutes	to	get	past	the
failing	 verification	 conditions	 –	 in	 addition	 to	 whatever	 time	 the	 prover	 spends	 on	 the
other	proofs.	This	makes	the	process	of	editing	and	reproving	your	code	tedious	because
each	 time	 you	 try	 to	 prove	 your	 code	 you	 must	 wait	 for	 all	 the	 failing	 verification
conditions	to	time	out.

The	SPARK	tools	mitigate	this	problem	to	some	extent	by	caching	proof	results	on	a	per-
subprogram	 basis.	 If	 you	 edit	 only	 one	 subprogram	 in	 your	 package,	 it	 is	 only	 that
subprogram	 that	 is	 reprocessed.	The	proofs	 (failed	or	otherwise)	done	 in	 the	unchanged
subprograms	are	not	recomputed.	However,	this	is	not	as	helpful	if	you	are	working	in	a
complex	 subprogram	with	many	 failing	 verification	 conditions.	 Thus,	 your	 first	 line	 of
defense	when	trying	to	prove	complicated	code	is	to	avoid	complex	subprograms	–

Split	complicated	subprograms	into	several	simpler	ones.

In	addition	 to	 taking	better	advantage	of	 the	SPARK	 tools’	proof	caching	 features,	 this
also	tends	to	reduce	the	complexity	of	the	verification	conditions	by	reducing	the	number
of	paths	in	each	subprogram,	thus,	speeding	up	their	processing.	As	an	additional	bonus,	it
can	make	your	program	easier	for	a	human	to	understand	as	well.

We	 recommend	 at	 first	 using	 a	 relatively	 short	 timeout,	 say	 five	 seconds,	 on	 the
theorem	prover.	This	will	abort	 the	prover	on	failing	verification	conditions	quickly	and
gives	you	a	quicker	turnaround	time	in	your	editing	cycle.	Unfortunately	this	also	means
some	proofs	will	fail	that	might	succeed	if	given	more	time.	As	you	work	with	your	code
and	 fix	 “easy”	 failing	 proofs	 by,	 for	 example,	 adding	 necessary	 preconditions	 or	 loop
invariants,	 you	 can	 gradually	 increase	 the	 prover’s	 timeout.	 It	 is	 reasonable	 to	 spend
twenty	 or	 even	 thirty	 seconds	 on	 each	 verification	 condition	 as	 the	 number	 of	 failing
verification	conditions	declines,	depending	on	your	patience.	The	longer	timeout	by	itself
may	allow	other	proofs	to	succeed	with	no	additional	work	on	your	part	–

Start	 with	 a	 short	 timeout	 on	 the	 prover,	 but	 increase	 it	 as	 the	 number	 of	 failing
verification	conditions	drops.

Sometimes	 you	 will	 encounter	 a	 verification	 condition	 that	 can	 be	 proved	 using	 an
exceptionally	long	timeout	of,	perhaps,	many	minutes.	It	may	be	possible	to	prove	such	a
verification	condition	more	quickly	by	changing	your	code.	Using	extremely	long	timeout
values	should	only	be	done	as	a	last	resort.	However,	if	nothing	else	is	working	and	you
are	 confident	 that	 your	 code	 is	 actually	 correct,	 trying	 a	 timeout	value	of	 ten	or	 twenty
minutes	or	more	may	be	successful.

Of	course	it	also	helps	if	your	development	system	is	fairly	powerful.	Ten	seconds	on
one	machine	might	 get	more	 work	 done	 than	 two	minutes	 on	 another.	 In	 addition,	 the
SPARK	 tools	 support	 multicore	 systems.	 You	 can	 set	 the	 number	 of	 processors	 used	 by



GNATprove	with	a	switch	on	the	command	line	or	in	the	GNAT	project	properties.

In	the	version	of	the	SPARK	tools	available	at	the	time	of	this	writing,	each	verification
condition	is	analyzed	by	a	single	thread.	Running,	for	example,	four	threads	at	once	allows
the	tools	to	process	four	verification	conditions	in	parallel,	but	each	verification	condition
by	itself	is	not	accelerated.	A	single	verification	condition	that	requires	many	minutes	to
prove	will	still	require	many	minutes	regardless	of	how	many	threads	you	use	–

Use	your	multi-core	processor	to	make	long	timeouts	more	tolerable	by	allowing	the
SPARK	tools	to	work	on	several	difficult	proofs	simultaneously.

9.3.2	 Alternate	Theorem	Provers
At	 the	 time	of	 this	writing,	 the	SPARK	 tools	actually	use	 two	 theorem	provers	each	 time
you	launch	a	proof:	CVC4	(New	York	University,	2014)	and	Alt-Ergo	(OCamlPro,	2014).
You	can	also	download	and	install	other	provers.	Different	provers	have	different	strengths
and	weaknesses.	You	may	 find	some	verification	conditions	provable	by	one	prover	but
not	others.	In	fact,	 this	is	the	reason	the	SPARK	 tools	ship	with	two	provers	that	are	used
together.	Yet	even	 if	 two	provers	both	discharge	a	verification	condition,	 there	might	be
considerable	difference	in	the	time	required	or	memory	consumed	to	do	so.	Furthermore,
theorem	proving	is	an	evolving	technology	so	the	capabilities	and	performance	of	provers
used	in	the	future	are	likely	to	be	better	than	that	available	today.

As	 an	 example,	 until	 recently	we	were	 not	 able	 to	 prove	 the	 selection	 sort	 given	 in
Section	9.2	with	these	two	provers,	even	with	very	long	timeouts.	We	discovered	that	the
Z3	theorem	prover	(Bjørner,	2012)	could	prove	this	procedure	with	a	very	short	timeout.
However,	a	new	version	of	CVC4	was	also	able	to	prove	this	code	–

Try	 using	 alternate	 theorem	 provers	 to	 see	 how	 they	 fare	 against	 your	 difficult
verification	conditions.

Section	 9.2	 of	 the	SPARK	2014	Toolset	User’s	Guide	 (SPARK	 Team,	 2014b)	 provides
information	 on	 using	 alternative	 theorem	 provers.	 GNATprove	 can	 use	 any	 theorem
prover	that	is	supported	by	the	Why3	platform.4	To	use	another	prover,	it	must	be	listed	in
your	.why3.conf	configuration	file.	The	command	why3config	—detect-provers	can	be
used	 to	 search	 your	 PATH	 for	 any	 supported	 provers	 and	 add	 them	 to	 your	 .why3.conf
configuration	file.	Any	prover	name	configured	in	your	.why3.conf	file	can	be	used	as	an
argument	to	switch	—prover	when	running	GNATprove	from	the	command	line	or	entered
into	 the	 “Alternate	 prover”	 box	when	 running	GNATprove	 from	GPS.	You	 can	 specify
that	multiple	provers	be	used	by	listing	their	names	separated	by	commas.

Theorem	provers	all	endeavor	to	be	sound	in	the	sense	that	they	should	never	claim	to
have	 proved	 a	 false	 verification	 condition.	 Thus	 if	 any	 one	 prover	 claims	 to	 have
discharged	a	verification	condition,	it	is	reasonable	for	you	to	say	it	has	been	proved.	This
does	 assume,	 of	 course,	 that	 all	 the	 provers	 you	 use	 are	 themselves	 error	 free.	 Using
multiple	 provers	 increases	 the	 size	 of	 your	 trusted	 computing	base,	 defined	 here	 as	 the
body	 of	 software	 that	 needs	 to	 be	 correct	 for	 you	 to	 have	 faith	 in	 the	 validity	 of	 your
proofs.	 Clearly	 that	 is	 a	 disadvantage	 of	 using	 multiple	 provers,	 but	 we	 feel	 that	 the



advantages	of	doing	so	generally	outweigh	the	disadvantages.

9.3.3	 General	Techniques
The	previous	discussion	 is	mostly	 about	 different	ways	 to	 run	 the	 tools.	 In	 this	 and	 the
following	subsections	we	talk	about	ways	to	modify	your	program	to	help	difficult	proofs
go	through.	Here	we	make	a	few	general	observations	that	can	be	helpful	to	consider.	In
the	later	subsections	we	discuss	more	active	techniques	of	proof	debugging	–

Use	types	and	subtypes	that	are	as	specific	as	possible.

Types	such	as	Integer	or	Float	are	almost	never	the	right	choice.	Instead	you	should
define	types	that	encode	as	much	information	about	your	problem	as	possible	and	then	use
those	types.	The	built-in	subtypes	Natural	and	Positive	are	sometimes	appropriate,	but
often	you	can	do	better	than	that.	For	example:

Many	 proofs	 are	 greatly	 simplified	 if	 the	 SPARK	 tools	 have	 knowledge	 about	 the
constraints	that	are	really	being	used.	For	example,	computing	the	average	(A	+	B)/2	of
two	Positive	values	may	overflow,	but	computing	the	average	of	two	Class_Size_Type
values	will	not	because	 the	computation	 is	done	 in	Class_Size_Type’s	base	 type	(likely
Integer).	 Similarly,	 proving	 that	 X/Y	 does	 not	 entail	 division	 by	 zero	 is	 trivial	 if	 Y’s
subtype	does	not	allow	the	zero	value.

While	tight	constraints	may	make	certain	proofs	more	complicated,	in	the	long	run	they
simplify	 the	 overall	 proving	 process	 tremendously.	 A	 corollary	 of	 this	 rule	 is	 that
unconstrained	 types,	 such	 as	 unconstrained	 array	 types,	 tend	 to	make	 the	proofs	 harder.
Although	they	can	be	very	useful	for	writing	general	purpose	code,	do	not	use	them	unless
they	are	really	necessary	–

Verification	is	typically	easier	if	the	code	is	less	general.

Many	subprograms	are	written	with	assumptions	about	 the	nature	of	 their	 inputs.	The
SPARK	 tools	 cannot	 know	 these	 assumptions	 unless	 you	 make	 them	 explicit	 using
preconditions.	Suitable	preconditions	will	often	allow	difficult	proofs	in	the	subprogram’s
body	to	go	through	because	more	information	is	now	available	to	the	tools	when	analyzing
the	 body.	 Of	 course,	 strong	 preconditions	 do	 add	 proof	 obligations	 at	 the	 call	 site,	 but
probably	those	are	proofs	that	should	have	been	done	anyway	–

Add	strong	preconditions.

Preconditions	 and	 tightly	 specified	 subtypes	 are	 really	 two	ways	 of	 saying	 the	 same
thing.	Both	entail	bringing	more	 information	 into	a	subprogram	body.	Preconditions	can
express	relationships	between	inputs	and	are	thus	more	general	and	have	a	heavier	weight.
It	is	usually	better	to	use	subtypes	when	it	is	possible	to	do	so	and	resort	to	preconditions



for	the	situations	in	which	Ada’s	subtyping	is	insufficiently	expressive.5

Many	 subprograms	with	 loops	will	 need	 loop	 invariants	 to	 be	 fully	 proved.	Writing
good	 loop	 invariants	can	be	 tricky.	However,	 if	you	find	difficult	verification	conditions
inside	or	past	a	 loop,	 it	 is	 likely	 that	a	 loop	 invariant	 is	what	you	need.	Of	course,	 loop
invariants	 also	 add	 their	 own	 proof	 obligations,	 but	 that	 is	 often	 a	 necessary	 cost	 for
getting	the	other	proofs	to	work	–

Add	loop	invariants.

You	 can	 get	 any	 verification	 condition	 to	 prove	 by	 adding	 an	 appropriate	 Assume
pragma.	You	might	 convince	 yourself	 that	 the	 assumption	 you	want	 to	make	 is	 always
valid	and	so	be	tempted	to	do	this	–

Avoid	using	Assume.

See	Section	6.3.3	 for	 a	 discussion	 about	why	 the	Assume	 pragma	 is	 dangerous.	 That
said,	Assume	does	have	a	role	to	play	in	the	proof	debugging	process	as	we	describe	in	the
next	 section	 and	 in	 conveying	 to	 the	 SPARK	 tools	 information	 that	 would	 ordinarly	 be
outside	their	knowledge	such	as	when	we	proved	transitive	properties	in	Section	9.2.

9.3.4	 Containing	Proof	Problems
Although	 uninhibited	 use	 of	 the	 Assume	 pragma	 can	 be	 dangerous,	 we	 now	 describe	 a
powerful	way	to	use	it	temporarily	while	debugging	a	failing	proof.	The	procedure	can	be
described	with	three	steps:

1.	 As	always,	when	trying	to	fix	a	failing	proof,	try	to	understand	why	the	code	looks
correct	 to	you.	For	example,	 imagine	 trying	to	explain	to	someone	else	why	the
code	is	correct.

2.	 Temporarly	add	an	Assume	pragma	to	the	code	that	embodies	your	understanding	of
what	makes	 the	code	correct.	Adjust	 your	 assumption	 until	 the	 SPARK	 tools	 are
able	to	complete	the	previously	failing	proof.

3.	 If	the	assumption	still	looks	reasonable	to	you	after	any	adjustments	you	made	to	it,
try	 changing	 it	 to	 an	 Assert	 pragma.	 If	 the	 SPARK	 tools	 are	 able	 to	 prove	 the
assertion,	 you	 are	 done.	 If	 not,	 try	 changing	 the	 assumption,	 or	 moving	 the
assumption	to	a	different	place,	or	even	repeating	the	process	by	using	a	second
assumption	to	assist	with	proving	the	newly	placed	assertion.

In	some	cases	you	may	find	the	only	way	to	get	a	difficult	proof	to	succeed	is	to	make
assumptions	 that	are	entirely	unreasonable.	This	 is	a	strong	indication	 that	 there	may,	 in
fact,	 be	 something	 wrong	 with	 your	 code	 or	 with	 your	 assertions.	 The	 nature	 of	 the
assumption	you	have	to	make,	and	where	you	have	to	make	it,	can	help	you	find	the	fault.

We	 recommend	 using	 assumptions	 for	 this	 process	 rather	 than	 assertions	 directly
because	 the	SPARK	 tools	will	not	attempt	 to	prove	an	assumption	and	 that	 speeds	up	 the
analysis	 of	 your	 program.	 If	 instead	you	used	 an	 assertion	 immediately	 and	 if	 the	 tools
failed	 to	 prove	 both	 the	 assertion	 and	 the	 original	 verification	 condition,	 you	 end	 up



waiting	 twice	 as	 long	 before	 you	 can	 try	 again.	 This	 is	 particularly	 an	 issue	 if	 you	 are
using	long	timeouts.	Just	be	sure	you	convert	the	assumption	into	an	assertion	before	you
are	done.

This	 approach	 could	 be	 called	 backward	 tracing	 because	 it	 involves	 starting	 at	 the
failing	proof	and	moving	backward	 through	 the	code	until	you	 find	 the	assertion(s)	you
need.	For	example,	suppose	the	program	contained	an	assignment	statement	such	as

Suppose	the	proof	that	B	/=	0	is	failing.	You	can	“fix”	this	proof	by	using	an	assumption
such	as

Of	 course,	 as	 soon	 as	 you	 convert	 the	 assumption	 to	 an	 assertion	 that	 assertion	 will
immediately	 fail	 to	 prove	 and	 you	 will	 have	 gained	 nothing.	 However,	 if	 you	 move
backward	through	the	program	flow,	you	may	be	able	to	find	a	place	where	you	can	say
something	more	meaningful.	For	example,	showing	a	bit	more	context	in	our	hypothetical
program	gives

In	 this	case	 if	 the	if	 block	 is	 skipped,	B	must	be	greater	 than	zero.	Otherwise,	 if	we
assume	C	receives	a	value	that	is	not	one	from	the	expression	G(X)	+	1,	all	is	well.	In	this
case	 converting	 the	 assumption	 to	 an	 assertion	may	 still	 fail	 to	 prove,	 but	 the	 exercise
perhaps	reveals	that	G’s	postcondition	 is	 inadequately	specified.	For	example,	you	might
find	yourself	saying,	“That	is	not	a	problem	because	G	always	returns	a	positive	value	and
any	positive	value	plus	one	cannot	be	one.”	The	fix	to	the	failing	proof	might	be	as	simple
as	adding	a	postcondition	to	G	such	as

Of	 course	 the	 real	 problem	might	 be	 that	 G’s	 result	 type	 is	 not	 declared	 appropriately.
Perhaps	it	was	declared	as	Integer	but	instead	should	be	Positive	,	or	even	better,	some
more	constrained	subtype	of	Positive	.

This	 example	 is	 simple	 and	 highly	 contrived.	 However,	 it	 illustrates	 the	 general
approach	of	exploring	the	paths	leading	to	the	troublesome	proof	by	injecting	suggestive
assumptions	 into	 those	paths	until	 the	proof	can	be	made	 to	work.	The	assumptions	can
then	be	converted	to	assertions	or	at	least	guide	other	changes	that	need	to	be	made	in	the
program.	 As	 hinted	 here,	 the	method	 can	 often	 reveal	 problems	 in	 remote	 parts	 of	 the
program	or	help	you	uncover	faults	you	missed.

Another	 similar	 approach	 that	 could	 be	 called	 forward	 tracing	 entails	 starting	 at	 the



beginning	of	 the	program	flow,	adding	assertions	(not	assumptions)	 that	are	“obviously”
true,	 and	 working	 toward	 the	 failing	 proof.	 Each	 assertion	 that	 you	 add	 can	 contain
progressively	more	information	and	be	readily	proved	using	the	assertions	before	it,	until
the	amount	of	 information	available	 to	 the	 tools	by	the	 time	the	flow	reaches	 the	failing
verification	condition	is	sufficient	to	complete	the	difficult	proof.	This	approach	is	similar
to	proving	a	difficult	theorem	in	mathematics	by	first	proving	a	series	of	increasily	strong
lemmas	 that	 ultimately	 make	 the	 final	 proof	 straightforward.	 Adding	 assumptions	 or
assertions	 in	 this	 way	 is	 the	 proof	 debugging	 equivalent	 of	 adding	 debugging	 print
statements	to	your	program.

As	with	 ordinary	 debugging,	 finding	 the	 problem	 is	 really	 only	 the	 first	 step	 toward
solving	 it.	Often	 the	more	difficult	 step	 is	 deciding	on	 the	most	 appropriate	 fix.	Should
more	 suitable	 types	 be	 declared	 and	 used?	 Should	 a	 runtime	 test	 be	 added	 using	 a
conditional	 statement?	 Should	 pre-	 or	 postconditions	 be	 adjusted?	 All	 of	 these	 choices
have	 the	 potential	 to	 affect	 significant	 parts	 of	 your	 program.	 For	 example,	 adding	 a
stronger	 postcondition	 on	 a	 procedure	 will	 increase	 the	 burden	 of	 proof	 inside	 that
procedure.	 If	 that,	 in	 turn,	 requires	 the	procedure	 to	have	 a	 stronger	precondition,	more
proof	obligations	may	be	created	throughout	the	code	base.

9.3.5	 Partitioning	Unproved	Code
Sometimes	 completing	 the	 proof	 of	 certain	 verification	 conditions	 is	 infeasible	 for	 one
reason	or	another.	Yet	you	may	still	have	confidence	about	the	code	in	question	as	a	result
of	 rigorous	 testing,	 code	 review,	 or	 other	 reasons.	 Having	 program	 units	 with	 failing
proofs	 is	 unsightly.	 It	 can	 also	 be	 hazardous	 because	 you	 become	 insensitive	 to	 the
repeated	 ignorable	messages	 from	 the	 tools.	 If	 the	messages	 change	 or	 a	 new	message
appears	 that	 is	 not	 ignorable,	 you	may	 not	 notice.	 Thus,	 it	 is	 highly	 desirable	 to	 have
program	units	partitioned	into	those	that	prove	cleanly	and	those	that	are	not	intended	to
be	SPARK.

The	SPARK	tools	do	provide	a	means	for	suppressing	warnings	using	pragma	Warnings
and	 for	 justifying	 failed	 proofs	 using	 pragma	 Annotate.	 See	 the	 SPARK	 2014	 Toolset
User’s	 Guide	 (SPARK	 Team,	 2014b)	 for	 more	 information.	 Of	 course,	 suppressing
messages	should	be	done	cautiously	and	only	after	careful	review	or	concentrated	testing
provides	evidence	of	correctness.

In	 cases	 where	 a	 larger	 block	 of	 code	 contains	 numerous	 unproved	 verification
conditions,	or	is	even	outside	of	SPARK,	it	may	be	more	appropriate	to	factor	the	unproved
code	into	a	separate	unit.	This	can	help	draw	attention	to	the	difficult	code	as	a	subject	for
future	 review.	 The	 Ada	 feature	 of	 private	 child	 packages	 is	 particularly	 useful	 in	 this
context.	We	illustrate	the	technique	with	a	simple	example.

In	an	earlier	version	the	SPARK	tools	did	not	have	a	good	understanding	of	the	effect	of
the	 bit	 manipulation	 operations.6	 As	 a	 result,	 proving	 verification	 conditions	 related	 to
those	operations	was	often	problematic.

Suppose	one	wanted	 to	 create	 a	package	 implementing	 serveral	network	protocols.	 It
would	be	reasonable	to	organize	such	a	potentially	large	package	as	a	collection	of	child
packages	working	 together.	 The	 top-level	 parent	 package	might	 include	 declarations	 of



interest	 to	 the	 entire	 system	 such	 as	 declarations	 of	 fundamental	 types	 representing	 the
basic	 units	 of	 data	 flowing	 over	 the	 network.	A	 partial	 specification	 of	 such	 a	 package
Network	follows:

Children	 of	 this	 package	 might	 implement	 various	 network	 protocols	 such	 as,	 for
example,	 TCP,	 UDP,	 or	 application	 protocols	 like	 SMTP.	 Assume	 that	 various	 helper
subprograms	that	are	useful	when	implementing	multiple	protocols	are	factored	out	into	a
child	package	Network.Helpers.	For	sake	of	illustration,	suppose	that	package	contained
a	procedure	Split16	that	separated	a	16-bit	value	into	an	8-bit	most	significant	octet	and
an	8-bit	least	significant	octet.	One	might	attempt	to	write	that	procedure	as	follows:

Of	 course,	 a	 realistic	 package	 Network.Helpers	 would	 likely	 contain	 many	 other
subprograms	of	varying	complexity.	Function	Shift_Right	has	two	aspects.	The	Boolean
aspect	Import	 tells	us	and	the	tools	that	 the	body	of	this	function	is	defined	in	a	foreign
language	that	is	imported	into	our	Ada	program.	The	aspect	Convention	names	the	foreign
language.	In	Section	7.2	we	used	Convention	=>	C	to	say	that	the	body	of	a	subprogram
was	written	in	C.	In	this	case,	the	Convention	specified	is	Intrinsic	 .	This	convention
means	 that	 the	 body	 of	 the	 subprogram	 is	 provided	 by	 the	 compiler	 itself,	 usually	 by
means	of	an	efficient	code	sequence	(usually	a	single	machine	 instruction),	and	 the	user
does	 not	 supply	 an	 explicit	 body	 for	 it.	 Intrinsic	 operations	 available	 with	 the	 GNAT
compiler	are	listed	in	Section	2.10.2	of	the	GNAT	User’s	Guide	(GNAT,	2015b).

The	 desire	 is	 to	write	 as	much	of	 the	 network	 protocol	 implementations	 in	SPARK	as



possible.	 However,	 the	 older	 version	 of	 the	 SPARK	 tools	 had	 difficulty	 proving,	 for
example,	 that	 the	 conversion	 of	 Value	 and	 16#00FF#	 to	 an	 Octet	 will	 not	 raise
Constraint_Error	 because	 it	 did	 not	 understand	 the	 significance	 of	 the	 masking
operation.	All	the	tools	saw	was	that	the	type	being	converted,	Double_Octet,	might	have
a	value	that	would	not	fit	into	Octet.	Similar	comments	apply	to	the	use	of	Shift_Right
to	 find	 the	 least	 significant	 byte.	 To	 get	 around	 this,	 we	 can	 move	 the	 problematic
constructs	into	a	separate	package	as	follows:

The	aspect	Inline	applied	 to	 the	 two	functions	 in	 this	package	specification	requests
that	 the	 compiler	 replace	 subprogram	 calls	 with	 copies	 of	 the	 subprogram.	 This
substitution	typically	improves	the	execution	time	and	stack	memory	usage	but	increases
the	size	of	the	program.	Here	is	the	body	of	this	package:



This	package	has	a	specification	with	SPARK_Mode	set	to	On	so	that	it	can	be	used	from
SPARK	code.	However,	the	body	has	SPARK_Mode	set	to	Off	as	a	way	of	explicitly	saying
that	its	code	is	not	subject	to	proof.	The	Network.Helpers	package	is	now

This	new	version	proves	easily	as	all	the	types	match	without	conversions.

Notice	that	Network.Bit_Operations	 is	a	private	child	package.	This	 is	stated	by	the
use	of	private	in	its	specification.	Private	children	are	commonly	used	in	Ada	as	a	way	of
factoring	 out	 internal	 support	 facilities	 from	 a	 collection	 of	 related	 packages.	 See
Section	 3.5.1	 for	 more	 information.	 Here	 we	 use	 a	 private	 child	 to	 encapsulate	 the
unprovable	code	needed	by	some	other	package(s)	allowing	the	bulk	of	the	code	base	to



be	proved	cleanly.

9.3.6	 When	All	Else	Fails
If	 you	 are	 completely	 unable	 to	 get	 a	 verification	 condition	 to	 prove	 after	 trying	 the
techniques	described	in	this	section,	you	can	instead	resort	to	testing	to	explore	the	issue.
We	discuss	this	 in	Section	8.4.	Here,	 the	value	of	SPARK	 is	 in	 the	focus	 it	provides.	The
unproved	verification	conditions	must	be	carefully	covered	by	test	cases,	whereas	tests	to
cover	the	proved	aspects	of	the	code	are	less	critical	and	can	be	given	a	lower	priority	–

Use	testing	to	cover	unproved	verification	conditions.

9.4	 SPARK	Internals

In	this	section	we	give	an	overview	of	how	the	SPARK	tools	work	internally.	Our	intention
is	not	to	provide	a	detailed	description	of	the	theory	and	operation	of	the	tools,	but	rather
to	give	you	a	sense	of	what	they	are	doing	so	you	can	be	a	more	effective	tool	user.	We
also	hope	to	interest	you	in	learning	more	about	how	to	use	the	advanced	techniques	made
possible	by	the	SPARK	architecture.

We	illustrate	the	internal	operation	of	the	tools	by	way	of	a	short	example.	Consider	a
package	 Workspaces	 that	 contains	 a	 number	 of	 utility	 subprograms	 for	 manipulating
unconstrained	 arrays	 of	 natural	 numbers.	 An	 abbreviated	 specification	 for	 that	 package
might	be	as	follows:

The	function	Generate_Workspace	returns	an	array	of	the	specified	size	initialized	in	a
specific	way.	In	particular,	all	array	elements	in	the	first	half	of	the	array	are	initialized	to
their	index	values,	and	all	array	elements	beyond	the	halfway	point	are	initialized	with	the
same	values	in	descending	order.	For	example,	a	call	to	Generate_Workspace(6)	 returns
the	array	(1,	2,	3,	3,	2,	1).

To	 keep	 the	 example	 simple	 from	 a	 verification	 standpoint	 we	 do	 not	 provide	 a
postcondition	for	the	function.	However,	we	will	verify	that	our	implementation	is	free	of
runtime	errors.	Our	first	attempt	at	an	implementation	follows:



The	 SPARK	 tools	 are	 unable	 to	 prove	 that	 the	 computation	 of	 Size	 +	 1	 will	 not
overflow.	This	 attempted	proof	 shows	a	 real	problem	with	 the	 implementation.	Because
Natural’Last	is	the	same	as	largest	value	of	Natural’s	base	type	(using	GNAT’s	default
overflow	options),	adding	one	to	Size	might,	 in	fact,	cause	an	overflow.	But	what	proof
are	the	tools	actually	trying	to	complete	and	how	are	they	trying	to	do	it?

The	 SPARK	 tools	 make	 use	 of	 a	 program	 verification	 system	 called	 Why3	 (Bobot
et	 al.,	 2011).	 The	Why3	 tools	 accept	 as	 input	 a	 language	 called	WhyML	 that	 provides
many	facilities	similar	 to	other	ML	family	 languages	such	as	Standard	ML	or	Objective
Caml.	WhyML	programs	have	executable	 semantics	and	could,	 in	principle,	be	 run	 like
any	other	program.

WhyML	was	developed	as	an	intermediate	language	for	software	verification.	WhyML
augments	the	usual	ML	language	elements	with	extensive	features	for	expressing	pre-	and
postconditions,	loop	invariants,	and	other	assertions	similar	to	the	ones	available	in	SPARK.
WhyML	also	supports	the	ability	to	specify	and	use	various	theories	about	the	properties
of	types	and	data	structures.	The	Why3	system	includes	a	predefined	library	of	theories	for
commonly	used	entities.

The	main	SPARK	tool,	GNATprove,	translates	each	unit	it	analyzes	into	a	collection	of
WhyML	modules,	with	 one	module	 for	 each	 subprogram	 analyzed.	This	module,	 along
with	 extensive	 supporting	 material,	 is	 written	 into	 a	 file	 (workspaces.mlw	 for	 our
example)	in	the	proof	folder	for	the	project.	By	default	the	proof	folder	is	the	gnatprove
folder	in	the	project’s	build	output	folder.

As	an	example	of	some	of	the	supporting	material	created	for	SPARK	programs,	consider
the	following	WhyML	module	describing	the	Ada	built-in	type	Natural:



Here,	various	library	theories	are	imported,	including	some	provided	by	the	SPARK	tools
to	supplement	those	available	in	the	stock	Why3	platform.	A	type	natural	is	 introduced
along	 with	 functions	 returning	 the	 lower	 and	 upper	 bound	 of	 that	 type.	 In	 addition,	 a
predicate	is	defined	that	takes	an	integer	and	returns	true	if	the	integer	is	in	the	bounds	of
the	 type.	We	note	 that	 in	WhyML	 integers	have	arbitrary	precision	and	 thus	model	 true
mathematical	 integers.	 Finally,	 the	 Static_Discrete	 theory	 is	 cloned	 with	 the	 type
natural	substituted	for	Static_Discrete’s	type	t	and	similarly	for	functions	first	and
last	 and	 predicate	 in_range.	 The	 result	 is	 a	 full	 logical	 description	 of	 the	 Ada	 type
Natural	as	a	discrete	type.

All	 standard	 Ada	 types	 are	 provided	 in	 this	 way	 in	 addition	 to	 types	 defined	 in	 the
program	 itself.	 In	 this	 example,	 this	 includes	 the	 unconstrained	 array	 type
Workspace_Type,	 which	 is	 described	 by	 cloning	 a	 library	 Unconstr_Array	 theory.
Anonymous	 types	used	 in	 the	program	are	given	 tool-generated	names	and	described	as
well.	 In	 the	 example,	 the	 dynamic	 subtype	 used	 to	 specify	 the	 bounds	 on	 the	 array
Workspace	 is	 given	 the	 name	 TTworkspaceSP1	 and	 described	 by	 cloning	 a	 library
Dynamic_Discrete	theory.

The	WhyML	module	created	to	check	contracts	and	freedom	from	runtime	errors	of	the
SPARK	function	Generate_Workspace	appears	in	workspaces.mlw	after	all	 the	supporting
definitions.	The	SPARK	tools	do	not	format	the	WhyML	in	a	human-friendly	way,	making
the	code	difficult	 to	 read.	However,	WhyML	is	 intended	 to	be	producible	by	humans	as
some	 users	 of	 the	Why3	 system	write	WhyML	 directly.	With	more	 natural	 names	 and
better	 formatting,	 it	 is	 clearer	 that	 the	 WhyML	 program	 is	 a	 translation	 of	 the
SPARK	subprogram	with	all	checks	made	explicit.

The	 following	 fragment	 of	 WhyML	 is	 taken	 from	 the	 module	 created	 from
Generate_Workspace.	To	promote	readability,	the	names	have	been	greatly	simplified	and
the	formatting	arranged	suggestively.



Understanding	WhyML	 also	 requires	 a	 familiarity	 with	 the	 syntax	 and	 semantics	 of
ML-like	 languages	 in	 general.	 The	 preceding	 expression	 was	 generated	 from	 the
SPARK	assignment	statement

The	code	creates	a	new	version	of	the	Workspace	array	by	using	a	function	set	to	set	one
of	 the	 elements	 of	 the	 existing	 array.	 In	 ML-like	 languages	 function	 arguments	 are
separated	by	spaces,	here	shown	as	blank	lines.	The	first	argument	on	line	3	is	the	existing
Workspace	array.	The	name	workspace	is	actually	a	kind	of	pointer,	and	the	!	operator	is
used	to	dereference	that	pointer.

The	second	argument	 to	 the	 function	on	 lines	5–13	 is	 the	 result	of	a	“let	expression”
that	 creates	 a	 temporary	 variable	 workspaces_0	 initialized	 by	 (Size	 +	 1)	 	 J	 and
ultimately	 just	 evaluates	 to	 that	 variable	 on	 line	 13.	 GNATprove	 inserted	 an	 overflow
check	 into	 the	 evaluation	 of	Size	+	1	 using	 a	 range-checking	 helper	 function.	 Finally,
before	workspaces_0	is	returned,	an	assertion	is	used	to	check	that	its	value	is	in	the	range
of	the	array’s	index	subtype.

The	 third	 argument	 to	 the	set	 function	 on	 line	 15	 is	 just	 the	 value	 of	J	 used	 on	 the
right-hand	side	of	the	original	assignment	statement.	Notice	that	no	check	is	needed	here
because	the	type	of	J	at	the	SPARK	level	guarantees	its	value	must	be	in	range	of	the	array
element.

The	 Why3	 tools	 can	 convert	 WhyML	 directly	 into	 code	 in	 the	 Objective	 Caml
programming	language.	Thus,	GNATprove	together	with	the	Why3	tools	constitute	a	kind
of	 SPARK	 to	 OCaml	 compiler.	 However,	 of	 greater	 interest	 to	 us	 is	 the	 use	 of	 theorem
provers.	The	Why3	tools	extract	from	the	WhyML	“proof	 tasks”	based	on	the	requested
checks	and	using	other	information	in	the	program	(not	shown	in	the	previous	example).
These	proof	tasks	are	then	processed	by	Why3	into	a	form	that	can	be	read	as	input	by	a
theorem	prover.	This	processing	is	guided	by	a	Why3	driver.

Different	theorem	provers	have	different	requirements	on	the	kinds	of	logics	they	can



accept	as	input.	It	is	the	job	of	the	Why3	driver	to	transform	the	proof	tasks	extracted	from
the	WhyML	program	into	a	form	suitable	for	the	prover	being	driven.

In	 this	case	 the	overflow	check	 fails	 to	prove	because	overflow	might,	 in	 fact,	occur.
The	 code	 is	 easily	 fixed	 by	 rearranging	 the	 order	 of	 operations	 in	 the	 expression
(Size	+	1)	 	J	to	(Size	 	J)	+	1.	This	change	results	in	correponding	changes	to
the	generated	WhyML	that	allow	the	proof	to	succeed.

Why	 use	 an	 intermediate	 verification	 system	 such	 as	Why3?	Why	 not	 just	 generate
proof	 tasks	directly	 from	 the	SPARK	 code	 in	 a	 format	 suitable	 for	 the	 theorem	prover	 to
process?	In	fact,	that	is	exactly	what	the	SPARK	2005	tools	did.	However,	the	architecture
of	 SPARK	 2014	 is	 much	 more	 flexible	 and	 extensible.	 It	 can	 also	 capitalize	 better	 on
advances	 in	 proof	 technology.	 For	 example,	 to	 support	 a	 new	 theorem	 prover	 one	 only
needs	to	create	a	suitable	Why3	driver	for	it.	This	could	even	be	done	by	a	third	party;	no
changes	to	GNATprove	are	required.	The	SPARK	tools	ship	with	Why3	drivers	for	several
popular	theorem	provers,	and	this	is	the	basis	of	how	the	tools	support	multiple	provers.

Also,	 it	 is	 possible	 to	 directly	 interact	 with	 the	 underlying	 tools	 at	 the	Why3	 level.
Consider,	 for	 example,	 asking	 the	 SPARK	 tools	 to	 prove	 a	mathematical	 property	 about
trigonometry	functions	such	as	the	Pythagorean	identity

Even	 if	we	 set	 aside	 the	difficulties	 associated	with	 floating	point	 arithmetic,	 it	 is	not	 a
simple	matter	to	write	suitable	(provable)	postconditions	for	Sin	and	Cos	that	would	allow
the	 above	 to	 be	 proved.	 The	 Pythagorean	 identity	 is	 a	 consequence	 of	 an	 underlying
mathematical	theory	relating	the	two	functions.	To	illustrate,	suppose	Cos	was	declared	as
follows:

The	body	of	Cos	might	be	something	like7

It	might	be	possible	to	prove	the	given	postcondition	of	such	an	implementation,	provided
a	 suitable	 postcondition	 for	 Sqrt	 was	 available,	 but	 clearly	 Sin	 cannot	 be	 written	 in	 a
similar	way	or	else	the	two	functions	would	be	infinitely	mutually	recursive.	Instead,	some
other	implementation	of	Sin	would	be	necessary,	say	based	on	the	Taylor	series	expansion
of	 .	The	relationship	between	such	an	implementation	and	the	Pythagorean	identity
is	not	obvious;	the	connection	requires	an	appeal	to	broader	mathematical	concepts.

Yet	 the	Pyhagorean	 identity	 is	an	example	of	a	basic	 relationship	 that	might	be	quite
useful	 in	 proving	 other	 properties	 of	 your	 program.	 How	 can	 you	 tell	 the	 SPARK	 tools
about	such	relationships?

One	way	 it	 can	be	done	 is	 to	provide	an	external	axiomatization.	This	 is,	 in	effect,	 a
handwritten	Why3	theory	 that	describes	 the	desired	properties.	The	Why3	tools	will	use



this	theory	like	any	other,	allowing	proofs	to	succeed	that	otherwise	might	not.	However,
care	 is	 needed	 when	 using	 this	 technique	 because	 an	 error	 in	 the	 Why3	 theory	 might
introduce	unsoundness	and	allow	false	conclusions	to	be	proved	as	well	as	true	ones.	As
we	 cautioned	 in	 Section	 6.3.3,	 if	 even	 one	 false	 conclusion	 can	 be	 proved,	 then	 all
conclusions	 can	 be	 proved.	 In	 this	 respect,	 careless	 use	 of	 external	 axiomatizations	 has
much	in	common	with	careless	use	of	the	Assume	pragma.	See	Section	9.5	of	the	SPARK
2014	 Toolset	 User’s	 Guide	 (SPARK	 Team,	 2014b)	 for	 more	 information	 about	 external
axiomatizations.

In	addition	to	manually	injecting	human	written	WhyML	into	the	proving	process,	it	is
also	possible	to	conduct	human	proofs	at	this	level	as	well.	In	particular,	the	SPARK	 tools
ship	with	Why3	drivers	supporting	the	Coq	and	Isabelle	proof	assistants.	This	may	allow
you	 to	 discharge	 some	 difficult	 proofs	 that	 elude	 fully	 automated	 theorem	 provers.
However,	the	use	of	a	proof	assistant	obviously	requires	you	to	be	familiar	with	that	tool
as	well.	See	Section	9.2.3	of	the	SPARK	2014	Toolset	User’s	Guide	(SPARK	Team,	2014b)
for	more	information	about	configuring	Coq	for	use	with	SPARK.

Finally,	there	are	other	software	verification	systems	that	use	Why3	as	an	intermediate
verification	system.	One	system	of	particular	interest	is	Frama-C	with	the	WP	plug-in	for
C	programs.	Using	a	common	intermediate	verification	language	opens	the	possibility	of
seamless	mixed	language	verification.	 In	many	embedded	systems	applications	 in	which
SPARK	and	C	are	often	used	 together,	 the	possibility	of	doing	 full	verification	across	 the
SPARK-C	boundary	is	very	enticing.

The	techniques	mentioned	here	are	advanced	and,	outside	of	this	section,	we	have	not
discussed	 them	 in	 this	 book.	 However,	 they	 do	 illustrate	 that	 the	 architecture	 of
SPARK	2014	sets	 the	stage	for	more	advances	and	developments	 in	 the	future.	This	 is	an
exciting	 time	 to	 be	 involved	 in	 the	 formal	 verification	 of	 software,	 and	SPARK	 is	 at	 the
forefront	of	the	field.



Notes

1	Introduction	and	Overview

1.			 In	1997	the	SEI	replaced	the	Software	CMM	with	the	Capability	Maturity
Model	Integration	(CMMI).

2. When	using	the	(GPS)	–	integrated	development	environment	or
GNATbench	(the	Ada	plug-in	for	Eclipse),	the	check	and	flow	analyses	are
combined	into	the	examine	command.

2	The	Basic	SPARK	Language

1.			 The	variable	Letter,	declared	as	subtype	Uppercase	defined	on	page	§,	has
a	domain	of	the	26	uppercase	letters.

2. A	different	identifier	with	the	same	name.
3. Assignment	and	equality	testing	are	not	available	for	Ada’s	limited	types.	A

limited	type	is	a	type	that	includes	the	reserved	word	limited	in	its	definition
or	in	the	definition	of	a	component	of	a	composite	type.

4. With	SPARK,	each	instantiation	is	individually	verified.

3	Programming	in	the	Large

1.			 Ada’s	operators	are	and,	or,	xor,	=,	/=,	<,	<=,	>,	>=,	+,	-	,	&,	*,	/,	rem,	mod,
**,	abs,	and	not.

2. This	sharing	of	private	data	is	similar	to	the	friend	class	notion	found	in
some	object-oriented	programming	languages.

3. Elaboration	order	is	a	significant	problem	in	C++	and	Java,	programs	where
it	is	commonly	called	the	static	initialization	order	fiasco	on	programmer
forums.

4	Dependency	Contracts

1.			 Roughly,	a	static	expression	is	an	expression	that	can	be	evaluated	by	the
compiler.	See	the	Ada	Reference	Manual	(2012),	Section	4.9,	for	more
details.

2. It	does	mean	an	ineffective	value	computed	by	the	caller	might	appear
effective	if	it	participates	as	an	input	in	a	flow	dependency	that	does	not
actually	exist.

3. See	the	SPARK	2014	Toolset	User’s	Guide	(SPARK	Team,	2014b).

5	Mathematical	Background

1.			 Arguments	in	this	context	are	usually	called	conjectures	(potential
theorems).

2. The	operator	 	is	for	set	membership.	The	expression	 	is	read	“x	is	a
member	of	the	set	of	all	humans	alive	today.”



6	Proof

1.			 For	an	explanation	of	Ada’s	exceptions	and	exception	handlers,	see	Dale
and	McCormick	(2007)	or	Barnes	(2014).

2. Examination	of	the	subprogram	may	also	fail	if	it	is	not	sufficiently
implemented	to	honor	its	data	and	flow	dependency	contracts.

3. The	older	SPARK	2005	does	have	some	support	for	tasking.
4. The	assume	assertion	is	special.	See	Section	6.3.
5. The	 -th	Fibonacci	number,	 ,	is	given	by	 ,

where	 	and	 	are	base	cases.
6. In	this	example,	the	procedure	only	searches	arrays	of	exactly	100	integers.

In	Section	6.7	we	show	a	generic	version	of	this	procedure	that	is	more
general.

7. Recall	that	limited	types	cannot	be	copied.
8. Inline	expansion	is	a	process	in	which	the	compiler	replaces	subprogram

calls	with	copies	of	the	subprogram.	This	substitution	typically	improves	the
execution	time	and	stack	memory	usage;	however,	it	also	increases	the	size
of	the	program.	The	aspect	Inline	is	used	to	request	this	expansion.

9. At	the	time	of	this	writing	SPARK	does	not	support	type	invariants.	However,
support	is	planned	for	a	future	version	of	SPARK.

10. At	the	time	of	this	writing	SPARK	does	not	support	dynamic	predicates.
However,	support	is	planned	for	a	future	version	of	SPARK.

11. For	example,	192.168.56.2.
12. The	algorithm	can	be	supplemented	to	deal	with	single	digit	divisors

(Knuth,	1998),	but	we	do	not	do	so	here.
13. Secure	hash	algorithms	are	used	with,	for	example,	digital	signature

algorithms	to	provide	strong	data	integrity	checks.

7	Interfacing	with	SPARK

1.			 Library	level	means	that	the	program	unit	is	not	nested	within	another
program	unit.	It	may	be	compiled	separately	and	referenced	in	with	and	use
clauses.

2. For	an	explanation	of	Ada’s	pointers,	see	Dale	and	McCormick	(2007)	or
Barnes	(2014).

3. For	an	explanation	of	Ada’s	exceptions	and	exception	handlers,	see	Dale
and	McCormick	(2007)	or	Barnes	(2014).

4. For	an	explanation	of	Ada’s	automatic	finalization,	see	Dale	and
McCormick	(2007)	or	Barnes	(2014).

5. For	a	full	treatment	of	using	Ada	to	interact	with	hardware,	see	McCormick,
Singhoff,	and	Hugues	(2011).

6. McCormick	et	al.	(2011)	provide	a	complete	discussion	on	interacting	with
hardware	in	Ada.

7. Thanks	to	Angela	Wallenburg,	Altran	UK,	and	Yannick	Moy,	AdaCore,	for



this	example.
8. The	complete	syntax	for	abstract	state	aspects	is	given	in	Section	7.1.4	of

the	Spark	2014	Reference	Manual	(SPARK	Team,	2014a).
9. All	of	the	source	code	for	this	example	is	available	on	the

http://www.cambridge.org/us/academic/subjects/computer-
science/programming-languages-and-applied-logic/building-high-integrity-
applications-spark?format=PB.

8	Software	Engineering	with	SPARK

1.			 The	postcondition	was	not	proven	when	function	Empty	was	written	as	an
ordinary	function.	The	SPARK	tools	do	not	generate	postconditions	for
subprograms.	The	proof	succeeded	when	a	postcondition	was	added	to	the
body	of	the	ordinary	function.	Because	the	result	of	an	expression	function
is	taken	as	that	function’s	postcondition,	it	is	worthwhile	to	use	expression
functions	rather	than	ordinary	functions	whenever	possible.

2. Thanks	to	Rod	Chapman	for	suggesting	the	name	Verification	Driven
Development.

3. The	name	of	the	method	is	loosely	derived	from	the	concept	of	using
information	flow	as	the	central	tool	in	the	design	of	the	objects	or	entities
making	up	the	system.	INFORMED	is	an	acronym	for	INformation	Flow
ORiented	MEthod	of	Design.

4. For	example,	defining	a	record	type	implicitly	defines	equality	and	field
selection	operations.	We	might	add	an	additional	operation	such	as	less	than
or	equal	to.

5. The	Heartbleed	Bug	in	the	popular	OpenSSL	library	was,	in	part,	a	result	of
combining	sensitive	data	with	nonsensitive	data	in	the	same	buffer	object.

6. The	classic	colloquial	definitions:	Verification	–	are	we	building	the	product
right?	Validation	–	Are	we	building	the	right	product?

7. Bob	must	also	believe	that	the	various	cryptographic	algorithms	used	are
secure.

9	Advanced	Techniques

1.			 Ada	assertions	are	executable	when	the	assertion	policy	is	set	to	Check.	So
when	the	assertion	policy	is	set	to	Check,	ghost	functions	may	be	executed.

2. A	future	version	of	SPARK	may	allow	’Old	to	be	used	in	Assume	pragmas.
3. Thanks	to	Johannes	Kanig.
4. See	http://why3.lri.fr/\#provers	for	a	complete	list	of	compatible	provers.
5. Also	keep	subtype	predicates	in	mind,	although	at	the	time	of	this	writing

Dynamic_Predicate	is	not	supported	by	SPARK.
6. This	limitation	has	since	been	partially	removed,	and	work	is	ongoing	to

improve	the	SPARK	tools	further	in	this	area.
7. A	real	implementation	would	need	to	choose	the	positive	or	negative	square

root	depending	on	the	value	of	X.

http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/building-high-integrity-applications-spark?format=PB
http://why3.lri.fr/\#provers
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