CPYTHON
INTERNALS

NARRRRRRNRRNNRN
OO TR

YOUR GUIDE TO THE
PYTHON 3 INTERPRETER

FIRST EDITION

BY ANTHONY SHAW AND THE REALPYTHON.COM TUTORIAL TEAM

CPython Internals: Your Guide to the
Python 3 Interpreter

Anthony Shaw

CPython Internals: Your Guide to the Python 3 Interpreter
Anthony Shaw
Copyright © Real Python (realpython.com), 2012—2020

For online information and ordering of this and other books by Real
Python, please visit realpython.com. For more information, please
contact us at info@realpython.com.

ISBN: 9781775093343 (paperback)
ISBN: 9781775093350 (electronic)
Cover design by Aldren Santos

“Python” and the Python logos are trademarks or registered trade-
marks of the Python Software Foundation, used by Real Python with
permission from the Foundation.

Thank you for downloading this ebook. This ebook is licensed for
your personal enjoyment only. This ebook may not be re-sold or
given away to other people. If you would like to share this book
with another person, please purchase an additional copy for each
recipient. If you’re reading this book and did not purchase it,
or it was not purchased for your use only, then please return to
realpython.com/cpython-internals and purchase your own copy.
Thank you for respecting the hard work behind this book.

Updated 2020-05-29 We would like to thank our early access readers
for their excellent feedback: Jim Anderson, Michal Portes, Dan Bader,
Florian Dahlitz, Mateusz Stawiarski, Evance Soumaoro, Fletcher Gra-
ham, André Roberge, Daniel Hao, Kimia. Thank you all!

https://realpython.com/
https://realpython.com/
https://realpython.com/cpython-internals

This is an Early Access version of “CPython
Internals: Your Guide to the Python 3
Interpreter”

With your help we can make this book even better:

At the end of each section of the book you’ll find a “magical” feedback
link. Clicking the link takes you to an online feedback form where
you can share your thoughts with us.

Please feel free to be as terse or detailed as you see fit. All feedback
is stored anonymously, but you can choose to leave your name and
contact information so we can follow up or mention you on our “Thank
You” page.

We use a different feedback link for each section, so we’ll always know
which part of the book your notes refer to.

Thank you for helping us make this book an even more valuable learn-
ing resource for the Python community.

— Anthony Shaw

What Readers Say About CPython Internals: Your Guide to
the Python 3 Interpreter

“A comprehensive walkthrough of the Python internals, a topic which
surprisingly has almost no good resource, in an easy-to-understand
manner for both beginners as well as advanced Python users.”

— Abhishek Sharma, Data Scientist

“The ‘Parallelism and Concurrency’ chapter is one of my favorites. I
had been looking to get an in depth understanding around this topic
and I found your book extremely helpful.

Of course, after going over that chapter I couldn’t resist the rest. I am
eagerly looking forward to have my own printed copy once it’s out!

I had gone through your ‘Guide to CPython Source code’ article previ-
ously which got me interested in finding out more about the internals.

There are a ton of books on Python which teach the language, but T
haven’t really come across anything that would go about explaining
the internals to those curious minded.

And while I teach Python to my daughter currently, I have this book
added in her must-read list. She’s currently studying Information Sys-
tems at Georgia State University.”

— Milan Patel, Vice President at (a major investment bank)

“What impresses me the most about Anthony’s book is how it puts all
the steps for making changes to the CPython code base in an easy to
follow sequence. It really feels like a ‘missing manual’ of sorts.

Diving into the C underpinnings of Python was a lot of fun and it
cleared up some longstanding questions marks for me. I found the
chapter about CPython’s memory allocator especially enlightening.

CPython Internals is a great (and unique) resource for anybody look-
ing to take their knowledge of Python to a deeper level.”

— Dan Bader, Author of Python Tricks and Editor-in-Chief at
Real Python

“This book helped me to better understand how lexing and parsing
works in Python. It’'s my recommended source if you want to under-
stand it.”

— Florian Dahlitz, Pythonista

Acknowledgements

Thank you to my wife, Verity, for her support and patience. Without
her this wouldn’t be possible.

Thank you to everyone who has supported me on this journey.

— Anthony Shaw

About the Author

Anthony Shaw is an avid Pythonista and Fellow of the Python Soft-
ware Foundation.

Anthony has been programming since the age of 12 and found a love
for Python while trapped inside a hotel in Seattle, Washington, 15
years later. After ditching the other languages he’d learned, Anthony
has been researching, writing about, and creating courses for Python
ever since.

Anthony also contributes to small and large Open Source projects, in-
cluding CPython, as well as being a member of the Apache Software
Foundation.

Anthony’s passion lies in understanding complex systems, then sim-
plifying them, and teaching them to people.

About the Review Team

Jim Anderson has been programming for a long time in a variety
of languages. He has worked on embedded systems, built distributed
build systems, done off-shore vendor management, and sat in many,
many meetings.

Contents

Contents
Foreword

Introduction
HowtoUseThisBook
Bonus Material & Learning Resources

Getting the CPython Source Code

Setting up Your Development Environment

Settingup Visual Studio
Setting up Visual StudioCode
Setting up JetBrainsCLion
SettingupVim.
Conclusion.,

Compiling CPython
Compiling CPythononmacOS
Compiling CPythonon Linux
Installing a Custom Version
A Quick PrimeronMake
CPython’s Make Targets
Compiling CPython on Windows
Profile Guided Optimization
Conclusion.,

13

15
16

17

21

24
24
26
28
33
37
41

Contents

The Python Language and Grammar 61
Why CPython Is Written in C and Not Python 62
The Python Language Specification 64
Using the Parser Generator 69
The Parser Generator 69
Regenerating Grammar 70
A More Complex Example 75
Conclusion. 78

Configuration and Input 8o
Configuration State 83
Build Configuration 86
Building a Module From Input 87
Conclusion. 93

Lexing and Parsing with Syntax Trees 94
Concrete Syntax Tree Generation 95
The CPython Parser-Tokenizer 98
Abstract Syntax Trees v oo 103
Important Terms to Remember 113
Example: Adding an Almost Equal Comparison Operator . 113
Conclusion., 118

The Compiler 119
Related Source Files 121
ImportantTerms 121
Instantiating a Compiler 122
Future Flags and Compiler Flags 123
SymbolTables 125
Core Compilation Process 132
Assembly L 138
Creatinga Code Object 143
Using Instaviz to Show a Code Object 144
Example: Implementing the “Almost-Equal” Operator . . . 147
Conclusion. 152

Contents

The Evaluation Loop 154
Stack Frames 155
Related Source Files 156
ImportantTerms 156
Constructing Thread State 156
Constructing Frame Objects 158
Frame Execution 166
TheValueStack 169
Example: Adding an Itemtoa List 175
Conclusion. 180

Memory Management 182
Memory AllocationinC 182
Design of the Python Memory Management System 186
The CPython Memory Allocator 188
The Object and PyMem Memory Allocation Domains . . . 198
The Raw Memory Allocation Domain 202
Custom Domain Allocators 202
Custom Memory Allocation Sanitizers 203
The PyArena MemoryArena 206
Reference Counting 207
Garbage Collection 214
Conclusion. 224

Parallelism and Concurrency 226
Models of Parallelism and Concurrency 228
The StructureofaProcess 228
Multi-Process Parallelism 231
Multithreading 255
Asynchronous Programming 268
Generators. 269
Coroutines v v v v i e e e e e e e 275
Asynchronous Generators 281
Subinterpreters Lo, 282
Conclusion., 286

10

Contents

Objects and Types
Examplesin This Chapter
BuiltinTypes
Object and Variable Object Types
Thetype Type o . i it it
Bool and Long Integer Type
Unicode StringType
Dictionary Type v

Conclusion

The Standard Library
PythonModules
PythonandCModules

The Test Suite
Running the Test Suite on Windows
Running the Test Suite on Linux/macOS

Test Flags

Running SpecificTests
TestingModules
Test Utilities

Conclusion

Debugging

Using the CrashHandler
Compiling Debug Support
Using LldbformacOS

Using Gdb

Using Visual Studio Debugger.
Using CLion Debugger

Conclusion

288
289
290
201
292
206
301
311
316

318
318
320

324
324
325
326
326
328
329
330

331
332
332
333
337
340
342
352

11

Contents

Benchmarking, Profiling, and Tracing 353
Using Timeit for Micro-Benchmarks 354
Using the Python Benchmark Suite for Runtime Benchmarks 356
Profiling Python Code with cProfile 362
Profiling C Code with Dtrace 365
Conclusion. 370

Conclusion 371
Writing C Extensions for CPython 371

Using This Knowledge to Improve Your Python Applications 372
Using This Knowledge to Contribute to the CPython Project 373
KeepLearning 376

Appendix 1 : Introduction to C for Python Programmers 378

CPreprocessor o v v v i i i 378
BasicCSyntax 381
Conclusion. 389

12

Foreword

“A programming language created by a community fos-
ters happiness in its users around the world.”

— Guido van Rossum, King’s Day Speech 2016

I love building tools that help us learn, empower us to create, and
move us to share knowledge and ideas with others. I feel humbled,
thankful, and proud when I hear how these tools and Python are
helping you to solve real-world problems, like climate change or
Alzheimer’s.

Through my “four decades” love of programming and problem solving,
I have spent time learning, writing a lot of code, and sharing my ideas
with others. I've seen profound changes in technology as the world
progressed from mainframes to cell phone service to the wide-ranging
wonders of the web and cloud computing. All of these technologies,
including Python, have one thing in common.

At one moment, these successful innovations were nothing more than
an idea. The creators, like Guido, had to take risks and leaps of faith
to move forward. Dedication, learning through trial and error and
working through many failures together built a solid foundation for
success and growth.

CPython Internals will take you on a journey to explore the wildly suc-
cessful language, Python. The book serves as a guidebook for learn-
ing how CPython is created under the hood. It will give you a glimpse
of how the core developers crafted the language. Python’s strengths

13

http://neopythonic.blogspot.com/2016/04/

Contents

include its readability and a welcoming community dedicated to edu-
cation. Anthony embraces these strengths when explaining CPython,
encouraging you to read the source, and sharing the building blocks
of the language with you.

Why do I want to share Anthony’s CPython Internals with you? It’s the
book that I wish existed years ago when I started my Python journey.
More importantly, I believe we, as members of the Python commu-
nity, have a unique opportunity — to put our expertise to work to help
solve the complex real-world problems facing us. I'm confident after
reading this book your skills will grow and you will be able solve even
more complex problems that can improve our world.

It’s my hope that Anthony motivates you to learn more about Python,
inspire you to build innovative things, and give you confidence to
share your creations with the world.

“Now 1s better than Never.”

— Tim Peters, The Zen of Python

Let’s follow Tim’s wisdom and get started now.
Warmly,

— Carol Willing, CPython Core Developer & Member of the CPython
Steering Council

14

Introduction

Are there certain parts of Python that just seem magic? Like how dic-
tionaries are so much faster than looping over a list to find an item.
How does a generator remember the state of the variables each time
it yields a value, and why do you never have to allocate memory like
other languages? It turns out, CPython, the most popular Python run-
time is written in human-readable C and Python code.

CPython abstracts the complexities of the underlying C platform
and your Operating System. It makes threading cross-platform
and straightfoward. It takes the pain of memory management in C
and makes it simple. CPython gives the developer writing Python
code the platform to write scalable and performant applications. At
some stage in your progression as a Python developer, you need to
understand how CPython works. These abstractions are not perfect,
and they are leaky.

Once you understand how CPython works, you can optimize your ap-
plications and fully leverage its power. This book will explain the con-
cepts, ideas, and technicalities of CPython.

In this book you’ll cover the major concepts behind the internals of
CPython, and learn how to:

« Read and navigate the source code

« Compile CPython from source code

+ Make changes to the Python syntax and compile them into your
version of CPython

15

How to Use This Book

« Navigate and comprehend the inner workings of concepts like lists,
dictionaries, and generators

« Master CPython’s memory management capabilities

+ Scale your Python code with parallelism and concurrency
+ Modify the core types with new functionality

+ Run the test suite

« Profile and benchmark the performance of your Python code and
runtime

» Debug C and Python code like a professional

« Modify or upgrade components of the CPython library to con-
tribute them to future versions

Take your time for each chapter and make sure you try out the de-
mos and the interactive elements. You can feel a sense of achievement
that you grasp the core concepts of Python that can make you a better
Python programmer.

How to Use This Book

This book is all about learning by doing, so be sure to set up your IDE
early in the book using the instructions, downloading the code, and
writing the examples.

For the best results, we recommend that you avoid copying and past-
ing the code examples. The examples in this book took many itera-
tions to get right, and they may also contain bugs.

Making mistakes and learning how to fix them is part of the learning
process. You might discover better ways to implement the examples,
try changing them, and seeing what effect it has.

With enough practice, you will master this material—and have fun
along the way!

How skilled do I need to be in Python to use this book? This

16

Bonus Material & Learning Resources

book is aimed at Intermediate to Advanced Python developers. Every
effort has been taken to show code examples, but some intermediate
Python techniques will be used throughout the book.

Do I need to know C to use this book? You do not need to be
proficient in Cto use this book. If you are new to C, check out Appendix
1: Introduction to C for Python Programmers at the back of this book
for a quick introduction.

How long will it take to finish this book? I don’t recommend
rushing this book, try reading a chapter at a time, trying the exam-
ples after each chapter and exploring the code simultaneously. Once
you’ve finished the book, it will make a great reference guide for you
to come back to in time.

Won’t the content in this book be out of date really quickly?
Python has been around for over 20 years. Some parts of the CPython
code haven’t been touched since they were originally written. Many of
the principles in this book have been the same for ten or more years.
In fact, whilst writing this book, I discovered many lines of code writ-
ten by Guido van Rossum (the author of Python) and untouched since
version 1.

The skills you'll learn in this book will help you read and understand
current and future versions of CPython. Change is constant, and your
expertise is something you can develop along the way.

Some of the concepts in this book are brand-new; some are even exper-
imental. While writing this book, I came across issues in the source
code and bugs in CPython. Then, they got fixed or improved. That’s
part of the wonder of CPython as a flourishing open-source project.

Bonus Material & Learning Resources

Online Resources

This book comes with a number of free bonus resources that you can
access at realpython.com/cpython-internals/resources/. On this web

17

https://github.com/python/cpython/pulls?q=is%3Apr+author%3Atonybaloney+is%3Amerged+
https://realpython.com/cpython-internals/resources/

Bonus Material & Learning Resources

page, you can also find an errata list with corrections maintained by
the Real Python team.

Code Samples

The examples and sample configurations throughout this book will
be marked with a header denoting them as part of the cpython-book-
samples folder.

cpython-book-samples» 01 » example.py

import this

You can download the code samples at realpython.com/cpython-
internals/resources/ .

Code Licenses

The example Python scripts associated with this book are licensed un-
der a Creative Commons Public Domain (CCo) License. This means
that you're welcome to use any portion of the code for any purpose in
your own programs.

CPython is licensed under the PSF 2 license. Snippets and samples of
CPython source code used in this book are done so under the license
of the PSF 2.0 license terms.

The code found in this book has been tested with Python 3.9.0b1
on Windows 10, macOS 10.15, and Linux.

Formatting Conventions

Code blocks will be used to present example code:

This is Python code:
print("Hello world!"™)

18

https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/python/cpython/blob/master/LICENSE

Bonus Material & Learning Resources

Operating System agnostic commands follow the Unix-style format:

$ # This is a terminal command:

$ python hello-world.py

The $ is not part of the command.

Windows-specific commands have the Windows command line for-
mat:

> python hello-world.py
The > is not part of the command.
Bold text will be used to denote a new or important term.

Notes and Warning boxes appear as follows:

This is a note filled in with placeholder text. The quick brown
fox jumps over the lazy dog. The quick brown Python slithers
over the lazy hog.

Important

This is a warning also filled in with placeholder text. The quick
brown fox jumps over the lazy dog. The quick brown Python
slithers over the lazy hog.

Any references to a file within the CPython source code will be shown
like this:

path» to» file.py

Shortcuts or menu commands will be given in sequence, like this:

[File)) Other) Option|

Keyboard commands and shortcuts will be given for both macOS and

19

Bonus Material & Learning Resources

Windows:

(CTRL) 4 SPACE

Feedback & Errata

We welcome ideas, suggestions, feedback, and the occasional rant.
Did you find a topic confusing? Did you find an error in the text or
code? Did we leave out a topic you would love to know more about?

We're always looking to improve our teaching materials. Whatever
the reason, please send in your feedback at the link below:

realpython.com/cpython-internals/feedback

About Real Python

At Real Python, you’ll learn real-world programming skills from a
community of professional Pythonistas from all around the world.

The realpython.com website launched in 2012 and currently helps
more than two million Python developers each month with books,
programming tutorials, and other in-depth learning resources.

Here’s where you can find Real Python on the web:

« realpython.com
» @realpython on Twitter
« The Real Python Email Newsletter

Leave feedback on this section »

20

https://realpython.com/cpython-internals/feedback
https://realpython.com
https://realpython.com
https://realpython.com
https://twitter.com/realpython
https://realpython.com/newsletter/
https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoicDskYkEhKGZCZVotP3ZXTjBtYnRsajB0fGR9bGBnUittPlJgOHA-NSIsInQiOiJjaGFwdGVycy8wMC1pbnRyb2R1Y3Rpb24ubWQgKGYwMTRlNTE0N2Q1YWUyYzUpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvZjAxNGU1MTQ3ZDVhZTJjNWYzZjczN2RkMWIxY2I3N2UyMDgxOWM2Yy9jaGFwdGVycy8wMC1pbnRyb2R1Y3Rpb24ubWQifQ==

Getting the CPython Source
Code

When you type python at the console or install a Python distribution
from python.org, you are running CPython. CPython is one of
many Python implementations, maintained and written by different
teams of developers. Some alternatives you may have heard are PyPy,
Cython, and Jython.

The unique thing about CPython is that it contains both a runtime
and the shared language specification that all other Python implemen-
tations use. CPython is the “official” or reference implementation of
Python.

The Python language specification is the document that describes the
Python language. For example, it says that assert is a reserved key-
word, and that [] is used for indexing, slicing, and creating empty lists.

Think about what you expect to be inside the Python distribution:

« When you type python without a file or module, it gives an interac-
tive prompt (REPL).

* You can import built-in modules from the standard library like

json, csv, and collections.
+ You can install packages from the internet using pip.

 You can test your applications using the built-in unittest library.

These are all part of the CPython distribution. There’s a lot more than

21

https://www.python.org
https://www.python.org/download/alternatives/
https://pypy.org/
https://cython.org/
https://www.jython.org/

just a compiler.

In this book, we'll explore the different parts of the CPython distribu-
tion:

The language specification

The compiler

The standard library modules
« The core types
The test suite

What’s in the Source Code?

This book targets version 3.9.0b1 of the CPython source code.

The CPython source distribution comes with a whole range of tools,
libraries, and components. We'll explore those in this book.

To download a copy of the CPython source code, you can use git to
pull the latest version:

$ git clone https://github.com/python/cpython
$ cd cpython

We are using version 3.9.0b1 throughout this book. Check out that
version and create a local branch from it:

$ git checkout tags/v3.9.0bl -b v3.9.0bl

22

https://github.com/python/cpython/tree/v3.9.0b1
https://git-scm.com/

If you don’t have Git available, you can install it from git-
sem.com. Alternatively, you can download the CPython source
in a ZIP file directly from the GitHub website.

If you download the source as a ZIP file, it won’t contain any
history, tags or branches.

Inside of the newly downloaded cpython directory, you will find the
following subdirectories:

E] cpython/

——Doc
——Grammar
Include
——Lib
—Mac
——DMisc
Modules
——Objects
—Parser
——PC
——PCBuild
Programs
——Python
——Tools
—mq

Source for the documentation

The computer-readable language definition

The C header files

Standard library modules written in Python

macOS support files

Miscellaneous files

Standard library modules written in C

Core types and the object model

The Python parser source code

‘Windows build suppport files for older versions of Windows
‘Windows build support files

Source code for the ‘python’ executable and other binaries
The CPython interpreter source code

Standalone tools useful for building or extending CPython
Custom scripts to automate configuration of the makefile

Next, you can set up your environment ready for development.

Leave feedback on this section »

23

https://git-scm.com/
https://git-scm.com/
https://github.com/python/cpython/archive/v3.9.0b1.zip
https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiJklHfV5UWW1TVV5-KGJGWDBoPn5FZlJQZ1JuYGF8e2J1fFliMzY3fCIsInQiOiJjaGFwdGVycy8xMC1zZXR1cC1hbmQtaW5zdGFsbGF0aW9uLm1kIChmMDE0ZTUxNDdkNWFlMmM1KSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iL2YwMTRlNTE0N2Q1YWUyYzVmM2Y3MzdkZDFiMWNiNzdlMjA4MTljNmMvY2hhcHRlcnMvMTAtc2V0dXAtYW5kLWluc3RhbGxhdGlvbi5tZCJ9

Setting up Your
Development Environment

Throughout this book, you’ll be working with C and Python code. It’s
going to be essential to have your development environment config-
ured to support both languages.

The CPython source code is about 65% Python (the tests are a signifi-
cant part), 24% C, and the remainder a mix of other languages.

IDE or Editor?

If you haven’t yet decided which development environment to use,
there is one decision to make first, whether to use an Integrated De-
velopment Environment (IDE) or code editor.

« An IDE targets a specific language and toolchain. Most IDEs have
integrated testing, syntax checking, version control, and compila-
tion.

+ A code editor enables you to edit code files, regardless of lan-
guage. Most code editors are simple text editors with syntax high-
lighting.

Because of their full-featured nature, IDEs often consume more hard-
ware resources. So if you have limited RAM (less than 8GB), a code
editor is recommended. IDEs also take longer to start-up. If you want
to edit a file quickly, a code editor is a better choice.

24

IDE or Editor?

There are 100’s of editors and IDEs available for free or at a cost, here
are some commonly used IDEs and Editors that would suit CPython
development:

Application Style Supports
Microsoft VS Code Editor Windows,
macOS and
Linux
Atom Editor Windows,
macOS and
Linux
Sublime Text Editor Windows,
macOS and
Linux
Vim Editor Windows,
macOS and
Linux
Emacs Editor Windows,
macOS and
Linux
Microsoft Visual Studio IDE (C, Python, Windows*
and others)
PyCharm by JetBrains IDE (Python and ~ Windows,
others) macOS and
Linux
CLion by JetBrains IDE (C and Windows,
others) macOS and
Linux

= A version of Visual Studio is available for Mac, but does not support
Python Tools for Visual Studio, nor C compilation.

To aid the development of CPython, you will explore the setup steps
for:

Microsoft Visual Studio
Microsoft Visual Studio Code

« JetBrains CLion

e Vim

25

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.vim.org/
https://www.gnu.org/s/emacs/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/clion/
https://visualstudio.microsoft.com/vs/mac/

Setting up Visual Studio

Skip ahead to the section for your chosen application, or read all of
them if you want to compare.

Setting up Visual Studio

The newest version of Visual Studio, Visual Studio 2019, has builtin
support for Python and the C source code on Windows. I recommend
it for this book. If you already have Visual Studio 2017 installed, that
would also work.

None of the paid features are required for compiling CPython
or this book. You can use the free, Community edition of Visual
Studio.

The Profile-Guided-Optimization build profile requires the Pro-
fessional Edition or higher.

Visual Studio is available for free from Microsoft’s Visual Studio web-
site.

Once you've downloaded the Visual Studio installer, you'll be asked to
select which components you want to install. The bare minimum for
this book is:
» The Python Development workload
« The optional Python native development tools
« Python 3 64-bit (3.7.2) (can be deselected if you already have
Python 3.7 installed)

Deselect any other optional features if you want to be more conscien-
tious with disk space.

The installer will then download and install all of the required compo-
nents. The installation could take an hour, so you may want to read
on and come back to this section.

26

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/

Setting up Visual Studio

Once the installer has completed, click the button to start Vi-
sual Studio. You will be prompted to sign in. If you have a Microsoft
account, you can log in, or skip that step.

You will now be prompted to Open a Project. You can clone
CPython’s Git repository directly from Visual Studio by choosing the
\CIone or check out code‘ option.

For the Repository Location, enter https://github.com/python/cpython,
chose your Local path, and select [Clone|,

Visual Studio will then download a copy of CPython from GitHub us-
ing the version of Git bundled with Visual Studio. This step also saves
you the hassle of having to install Git on Windows. The download may
take 10 minutes.

Once the project has downloaded, you need to point Visual
Studio to the PCBuild » pcbuild.sln Solution file, by clicking on
[Solutions and Projects>> pcbuild.sln}:

s’ PREVIEW
Solution Explorer - Folder View

@) B~ CaRE =
Search Solut ¥ cpython (C:\..\Repos\cpython)

B. Click on pcbuild.sin
Solution pythonba.sin

cpython (C:\Users\anthonyshaw\Source\Repos\cpython
.azure-pipelines
.github
Doc
Grammar
Include
Lib

Now that you have Visual Studio configured and the source code

27

Setting up Visual Studio Code

downloaded, you can compile CPython on Windows by following the
steps in the next chapter.

Setting up Visual Studio Code

Microsoft Visual Studio Code is an extensible code-editor with an on-
line marketplace of plugins.

It makes an excellent choice for working with CPython as it supports

both C and Python, with an integrated Git interface.

Installing

Visual Studio Code, or sometimes known as “VS Code,” is available
with a simple installer at code.visualstudio.com.

Out-of-the-box, VS Code will have required code editing capabilities
but becomes more powerful once you have installed extensions.

The Extensions panel is available by selecting [View) Extensions| from
the top menu:

28

https://code.visualstudio.com/

Setting up Visual Studio Code

00 e Extension: C/C++ — cpython

EXTENSIONS «+ etokh C object.c C listobject.c Extension: C/C++ X cO -

Search Extensions in Marketplace

C/C++

 ENABLED 9
% > 2Ui0.1LY o Microsoft & 8,688,841 * %k * %k Repos
of tools to help writers for realp... cl
Real Python @ C+ + C/C++ IntelliSense, debugging, and code browsing.
*
C/C++ 0263-insiders2 DBEM K 35 IS prease refoad Visual Studio

C/C++ IntelliSense, debugging, and code b...

e Reload Required 453 Please reload Visual Studio Code to enable the updated extension.

GitHub Pull Requests 0130 ©279K * 45
Pull Request Provider for GitHub

Gittub @
Live Share 10140¢ SN S C/C++ for Visual Studio Code

Real-time collaborative development from t...

)
@
o

Details Contributions Changelog
Live Share Audio 0180 @294k %5 Repository | Issues | Documentation | Code Samples | Offline Installers
Adds audio calling capabilities to Visual Stu...

Microsoft & i Live Share enabled

Pyright 1114 DK Kk 45
{ VS Code static type checking for Python This preview release of the C/C++ extension adds language support for C/C++ to Visual

ms-pyright & Studio Code, including features such as InteliSense and debugging.
Python 2019150794 DIAEM * 45 i .
P Linting, Debugging (multi-threaded, remote.. OVerview and getting started
Microsoft &
e C/C#++ extension overview
> RECOMMENDED 1 « Get Started with C++ and Windows Subsystem for Linux (WSL) °

> DISABLED o * Get Started with C++ and Mingw-w64
0 d93605de* © ®O0AO [ALiveShare @ tonybaloney S— P 2

Inside the extensions panel, you can search for extensions by name
or by their unique identifier, e.g., ‘ms-vscode.cpptools.” In some cases,
there are many plugins with similar names, so to be sure you're in-
stalling the right one, use the unique identifier.

Recommended Extensions for This Book

+ C/C++ (ms-vscode.cpptools) Provides support for C/C++, including
IntelliSense, debugging and code highlighting.

 Python (ms-python.python) Provides rich Python support for editing,
debugging, and reading Python code.

+ Restructured Text (lextudio.restructuredtext) Provides rich
support for reStructuredText, the format used in the CPython
documentation.

« Task Explorer (spmeesseman.vscode-taskexplorer) Adds a “Task Ex-
plorer” panel inside the Explorer tab, making it easier to launch
make tasks.

29

https://github.com/Microsoft/vscode-cpptools
https://github.com/Microsoft/vscode-python
https://github.com/vscode-restructuredtext/vscode-restructuredtext
https://github.com/spmeesseman/vscode-taskexplorer

Setting up Visual Studio Code

Once you have installed these extensions, you will need to reload the
editor.

Because many of the tasks in this book require a command-line, you
can add an integrated Terminal into VS Code by selecting

and a terminal will appear below the code editor:

78 return 0;

79 i

80

81 static int

]2 list nreallacate exact(Pvl istNhiect xcelf. Pv scize t cize)]

PROBLEMS (250) OUTPUT DEBUG CONSOLE ~ TERMINAL 1:zsh
+ cpython git:(d93605de72) x []

Using the Advanced Code Navigation
(IntelliSense)

With the plugins installed, you can perform some advanced code nav-
igation.

For example, if you right-click on a function call in a C file and select
|Go to References| it will find other references in the codebase to that
function:

Include > C listobject.h > & PyList_CheckExact(op)

50 #define PyList_CheckExact(op) (Py_TYPE(op) == &PyList_Type)
VN

_bisectmodule.c ~/cpython/Modules - References (30)
T0T IMUEX = IMCETMa_DISECT_TIgNT(IS, LItem, (0, 1MLJ; el i
v

102 if (index < @) _bisectmodule.c Modules (2
103 return NULL; if (PyList_CheckExact(list)) {
104 if (PyList_CheckExact(list)) { if (PyList_CheckExact(list)) {
105 if (PyList_Insert(list, index, item) < @) > _elementtree.c Modules 6 -
106 return NULL; ~
107 } > textio.c Modules/_io 1
108 else { > _pickle.c Modules 4
109 result = _PyObject_CallMethodId(list, &PyId_insert, > statement.c Modules/_sqlite’3
110 if 1t == NULL) -

LiUesy ! > _testcapimodule.c Modules 1
111 return NULL;
115 Dy NEFDEE(racil+): >_acmodule.c Modules 1
51

52 PyAPI_FUNC(PyObject %) PyList_New(Py_ssize_t size);

30

Setting up Visual Studio Code

Go to References| is very useful for discovering the proper calling form

for a function.

By clicking or hovering over a C Macro, the editor will expand that
Macro to the compiled code:

Objects > C listobject.c > @ list_resize(PyListObject * Py_ssize_t)

50
5il:

}

/* This over-allocates proportional to the list size, making room
* for additional growth. The over-allocation is mild, but is
* enough to give linear-time amortized behavior over a long
* sequence of appends() in the presence of a poorly-performing
* system realloc().
* The growth pattern is:
* Note: new_allocated won't Largest positive value of type Py _ssize_t.
* is PY_SSIZE_T_MAX
Expands to:
*/
new_allocated = (size_t)news ((Py_ssize_t)(((size_t)-1)>>1))
if (new_allocated > (size_ t)PY_SSIZE_T_MAX / sizeof(PyObject *)) {
PyErr_NoMemory();
return -1;

a #define PY_SSIZE_T_MAX ((Py_ssize_t)(((size_t)-1)>>1))

To jump to the definition of a function, hover over any call to it and

press (cmd)+|click| on macOS and [ctrl]+|click| on Linux and Windows.

Configuring the Task and Launch Files

VS Code creates a folder, .vscode in the Workspace Directory. Inside
this folder, you can create:

+ tasks.json for shortcuts to commands that execute your project

* launch. json to configure the debugger (see the chapter on Debug-

ging)

« other plugin-specific files

Create a tasks. json file inside the .vscode directory. If it doesn’t exist,
create it now. This tasks. json will get you started:

cpython-book-samples?» 11» tasks. json

31

Setting up Visual Studio Code

{
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"group": {
"kind": "build",
"isDefault": true
},
"windows": {
"command": "PCBuild\build.bat",
"args": ["-p x64 -c Debug"]
1
"linux":{
"command": "make -j2 -s"
1,
"osx":{
"command": "make -j2 -s"
}
}
]
}

With the Task Explorer plugin, you will see a list of your configured
tasks inside the vscode group:

\/ TASK EXPLORER
Vv Last Tasks
A build (cpython - Workspace)
A tags (cpython - make)
A clean (cpython - make)
v cpython
> bash
> batch
> 3 make
>
>
v

PROBLEMS ~ OUTPUT DEBUG CONSOLE ~ TERMINAL

No problems have been detected in the workspace so far.

BY powershell
@ python
>q vscode
K build
A clean

In the next chapter, you will learn more about the build process for

32

Setting up JetBrains CLion

compiling CPython.

Setting up JetBrains CLion

JetBrains make an IDE for Python, called PyCharm, as well as an IDE
for C/C++ development called CLion.

CPython has both C and Python code. You cannot install C/C++ sup-
port into PyCharm, but CLion comes bundled with Python support.

To setup CPython in CLion, install the following plugins:
« Makefile support

CLion is fully integrated with the CMake system. However, CPython
uses GNU Make. CLion will give an error saying it cannot locate a
CMakeLists.txt file when you open the CPython source code directory.
There is a workaround to create a compile_commands. json file from the
compilation steps inside the CPython Makefile.

This step assumes you can compile CPython, please read Com-
piling CPython for your Operating System and return to this
chapter.

We need to create a “Compile Database” using a utility called compiledb.
At the command line, within the CPython repository:

$ pip install compiledb
$ compiledb make

Then open CLion and open the compile_commands. json file, you will be

asked to open file or “Open as Project,” select [Open as Project:

33

https://plugins.jetbrains.com/plugin/9333-makefile-support/

Setting up JetBrains CLion

Welcome to CLion

cpython '
~/cpython Open Project
cpython_eval compile_commands.json is a project file.

Would you like to open this project?
~/CLionProjects/cpy s b (D

cpython J | Openas File | Cancel Open as Project

~/CLionProjects/cp!

python-cmake-buildsystem CLTOT1
~/PycharmProj...ke-buildsystem

Version 2019.1

-+ New Project
¥ New CMake Project from Sources
= Open

H Check out from Version Control ¥

£ Configure v Get Help v

CLion will then open up the CPython source directory as a Project.

34

Setting up JetBrains CLion

For versions of CLion before 2020.1, you need to link the
compile commands and the project together. Go to CLion
Settings,

[Build, Execution, Deployment>>Compi|ation Database} and check
the “Use auto-import” box:

e e Preferences

Build, i > Ce ilation Database For current project Reset

Appearance & Behavior Linked Compilation Database projects
LD
Editor
Plugins
Neronconel Project-level settings
Build, Use imp
Toolchains Toolchain: Use Default
CMake
| Custom Build Targets
| Build Tools
Debugger

©

Global Compilation Database settings

Python Debugger

Python Interpreter

Deployment

Console

Dynamic Analysis Tools

Embedded Development

Required Plugins
Languages & Frameworks
Tools

? Cancel Aoy (TSN

When you open this project in the future, it will have intelligent
code navigation based on the compiled version of CPython.

Within the code editor, the shortcut [cmd |+ click| on macOS, and [ctrl|+
on Windows and Linux will give in-editor navigation features:

35

Setting up JetBrains CLion

5

static int do_raise(PyThreadState xtstate, PyObject kexc, PyObject xcause);
static int unpack_iterable(PyThreadState %, PyObject *, int, int, PyObject xx);

it

#define _Py_TracingPossible(ceval) ((ceval)->tracing_possible)
LD (D Usages of _Py_TracingPossible in All Places (4 usages found) ;A

PyObject * imceval.c 847 if (lltrace && !_Py_TracingPossible(ceval) && !PyDTrace_LINE_ENABLED() { \
< PyEval_EvalCode(PyObj ¢ cevalc 1274 if (Py_TracingPossible(ceval) &
{ # tags 8231 _Py_TracingPossible ./Python/ceval.c /A#define _Py_TracingPossible(/;" d file:
return PyEval_Eva Press 57 again to search in Project Files
globals, locals,
(PyObject *x)NULL, @,
(PyObject *x)NULL, 0,
(PyObject *x)NULL, @,
NULL, NULL);

/* Interpreter main loop */

You can use the Makefile plugin to create shortcuts for compiling
CPython. Select |Run)) Edit Configurations...| to open the “Run/Debug
Configurations” window. Inside this window select [+)) Makefile| to
add a Makefile configuration. Set Make all as the name, all as the
target, and -s j2 as the arguments. Ensure the Working Directory is
set to the directory where you have downloaded the source code:

e 0 Run/Debug Configurations
+ - B F v K Name: Make all Share Allow parallel run
CMake Application
@9 Makefile Makefile /Users/anthonyshaw/cpython/Makefile
7 Make all Targets all
(=
“Build ceval-prof roTts
Templates -
-5 =j2
Working Directory /Users/anthonyshaw/cpython =
Environment variables:
~ Before launch: Activate tool window
S
Show this page Activate tool window
2 cose nony (N

Click Apply to add this configuration. You can repeat this step as many
times as you like for any of the CPython make targets. See CPython’s
Make Targets for a full reference.

36

Setting up Vim

The Make all build configuration will now be available in the top-right
of the CLion window:

Y Makeall v | P Git v v @®

Now that CLion is set up follow the steps for compiling CPython.

Setting up Vim

Vim is a powerful console-based text editor. Use Vim with your hands
resting on the keyboard home keys. The shortcuts and commands are
within reach for fast development.

On most Linux distributions and within the macOS Terminal,
vi is an alias for vim. I'll use the vim command, but if you have
the alias, vi will also work.

Out of the box, Vim has only basic functionality, little more than a text
editor like Notepad. With some configuration and extensions, Vim
can become powerful for both Python and C editing. Vim’s extensions
are in various locations, like GitHub. To ease the configuration and
installation of plugins from GitHub, you can install a plugin manager,
like Vundle.

To install Vundle, run this command at the terminal:

37

https://github.com/VundleVim/Vundle.vim

Setting up Vim

$ git clone https://github.com/VundleVim/Vundle.vim.git \
~/.vim/bundle/Vundle.vim

Once Vundle is downloaded, you need to configure Vim to load the
Vundle engine.

We will install two plugins:

» vim-fugitive A status bar for Git with shortcuts for many Git tasks.

« tagbar A pane for making it easier to jump to functions, methods,
and classes.

To install these plugins, first change the contents of your vim configu-
ration file, (normally HOME» .vimrc) to include the following lines:

cpython-book-samples?» 11» .vimrc

syntax on
set nocompatible " be iMproved, required

filetype off required

" set the runtime path to include Vundle and initialize
set rtp+=~/.vim/bundle/Vundle.vim

call vundle#begin()

" let Vundle manage Vundle, required

Plugin 'VundleVim/Vundle.vim'

" The following are examples of different formats supported.
" Keep Plugin commands between vundle#begin/end.

" plugin on GitHub repo

Plugin 'tpope/vim-fugitive'

Plugin 'majutsushi/tagbar’

" All of your Plugins must be added before this line

call vundle#end() " required

filetype plugin indent on required

" Open tagbar automatically in C files, optional

38

https://github.com/tpope/vim-fugitive
http://vimcasts.org/episodes/fugitive-vim---a-complement-to-command-line-git/
https://github.com/majutsushi/tagbar

Setting up Vim

autocmd FileType c call tagbar#autoopen(0)

" Open tagbar automatically in Python files, optional
autocmd FileType python call tagbar#autoopen(0)

" Show status bar, optional

set laststatus=2

" Set status as git status (branch), optional

set statusline=%{FugitiveStatusline()}

To download and install these plugins, run:

$ vim +PluginInstall +qall

You should see output for the download and installation of the plugins
specified in the configuration file.

When editing or exploring the CPython source code, you will want to
jump between methods, functions, and macros quickly. Only using
text search won’t determine a call to a function, or its definition, ver-
sus the implementation. An application called ctags will index source
files across a multitude of languages into a plaintext database.

To index CPython’s headers for all the C files, and Python files in the
standard library, run:

$ make tags
When you open vim now, for example editing the Python» ceval.c file:
$ vim Python/ceval.c

You will see the Git status at the bottom and the functions, macros,
and variables on the right-hand pane:

39

http://ctags.sourceforge.net/

Setting up Vim

eoce
#include "setobject.h"
#include "structmember.h"

#include <ctype.h>

#ifdef Py_DEBUG

/% For debugging the interpreter: */

#define LLTRACE 1 /% Low-level trace feature */
#define CHECKEXC 1 /* Double-check exception checking */
#endif

#if !defined(Py_BUILD_CORE)
error "ceval.c must be build with Py_BUILD_CORE define for best per|
formance"
#endif

/* Private API for the LOAD_METHOD opcode. */
extern int _PyObject_GetMethod(PyObject %, PyObject %, PyObject #k);

typedef PyObject *(*callproc)(PyObject %, PyObject *, PyObject *);

/% Forward declarations */

Py_LOCAL_INLINE(PyObject *) call_function(
PyThreadState *tstate, PyObject sxxpp_stack,
Py_ssize_t oparg, PyObject xkwnames);

static PyObject * do_call_core(
PyThreadState xtstate, PyObject *func,
PyObject kcallargs, PyObject xkwdict);

#ifdef LLTRACE
static int 1lltrace;

cpython — vi Python/ceval.c — vi — vi Python/ceval.c — 111x34

" Press <F1>, ? for help

p macros

v

prototypes

[v typedefs
—callproc

[v variables
_Py_CheckRecursionLimit
—-dxp

~dxpairs

—~1ltrace

v functions

PyEval_AcquirelLock(void)
PyEval_AcquireThread(PyThreadState *
PyEval_EvalCode(PyObject *co, PyObje
PyEval_EvalCodeEx(PyObject %_co, PyO
PyEval_EvalFrame(PyFrameObject *f)
PyEval_EvalFrameEx(PyFrameObject f,
PyEval_GetBuiltins(void)
PyEval_GetFrame(void)
PyEval_GetFuncDesc (PyObject *func)
PyEval_GetFuncName (PyObject *func)
PyEval_GetGlobals(void)
PyEval_GetLocals(void)
PyEval_InitThreads(void)
PyEval_MergeCompilerFlags(PyCompiler
PyEval_Releaselock(void)

tat t prtrace(Pyol
[Git(master)]

const char *

ct *,

PyEval _ReleaseThread(PyThreadState *
[Name] ceval.c

When editing Python files, such as the Lib» subprocess.py:

$ vim Lib/subprocess.py

The tagbar will show imports, classes, methods, and functions:

40

Conclusion

[XON) cpython — vi Lib/subpi .py — Vi — vi Lil pi .py — 111x34.
self.returncode = returncode " Press <F1>, ? for help
self.cmd = cmd
self.output = output p imports

self.stderr = stderr
[v CalledProcessError : class

def l_str__(self): +__init__ : function
if self.returncode and self.returncode < 0: —__str__ : function
try: +stdout : function
return "Command '%s' died with %r." % (+stdout : function
self.cmd, signal.Signals(-self.returncode))
except ValueError: [v CompletedProcess : class
return "Command '%s' died with unknown signal %d." % (| +__init__ : function
self.cmd, -self.returncode) —__repr__ : function
else: +check_returncode : function
return "Command '%s' returned non-zero exit status %d." %
([v Handle : class
self.cmd, self.returncode) +Close : function
+Detach : function
@property —__repr__ : function
def stdout(self): [variables]
wnupalias for output attribute, to match stderr""" _PopenSelector
return self.output _PopenSelector
__del__
@stdout.setter closed

def stdout(self, value):
There's no obvious reason to set this, but allow it anyway sflv Popen : class

0 —__del__ : function
.stdout is a transparent alias for .output —__enter__ : function
self.output = value —__exit__ : function

+__init__ : function
+_check_timeout : function
class TimeoutExpired(SubprocessError): v+ _close_pipe_fds : function

[Git(master)] [Name] subprocess.p:

Within vim you can switch between tabs as +(W], to move

to the right-hand pane, using the arrow keys to move up and down
between the tagged functions. Press enter to skip to any function im-

plementation. To move back to the editor pane press|(CTRL|+ W,

Check out vim adventures for a fun way to learn and memorize
the vim commands.

Conclusion

If you're still undecided about which environment to use, you don’t
need to make a decision right here and now. I used multiple environ-
ments while writing this book and working on changes to CPython. A
critical feature for productivity is debugging, so having a reliable de-
bugger that you can use to explore the runtime and understand bugs
will save a lot of time. Especially if you're used to relying on print()

41

https://vim-adventures.com/

Conclusion

functions for debugging in Python, that approach doesn’t work in C.
You will cover Debugging in full later in this book.

Leave feedback on this section »

42

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiTyNqRzAxTDMyaEEhdU5HTXRzfEhxSX5pSzZWdGoqc3d-TVgrUUFpayIsInQiOiJjaGFwdGVycy8xMS1lbnZpcm9ubWVudC1zZXR1cC5tZCAoMThiYmMyODlkNDkwZGQzMykiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi8xOGJiYzI4OWQ0OTBkZDMzYjlhYmI1NjJhNzAzOGE4N2Y0MjYyOTQwL2NoYXB0ZXJzLzExLWVudmlyb25tZW50LXNldHVwLm1kIn0=

Compiling CPython

Now that you have CPython downloaded a development environment
and configured it, you can compile the CPython source code into an
executable interpreter.

Unlike Python files, C source code must be recompiled each time it
changes. So you’ll probably want to bookmark this chapter and mem-
orize some of the steps because you'll be repeating them a lot.

In the previous chapter, you saw how to set up your development
environment, with an option to run the “Build” stage, which recom-
piles CPython. Before the build steps work, you require a C compiler,
and some build tools. The tools used depend on the operating system
you're using, so skip ahead to the section for your Operating System.

If you're concerned that any of these steps will interfere with
your existing CPython installations, don’t worry. The CPython
source directory behaves like a virtual environment.

For compiling CPython, modifying the source, and the standard
library, this all stays within the sandbox of the source directory.

If you want to install your custom version, this step is covered
in this chapter.

43

Compiling CPython on macOS

Compiling CPython on macOS

Compiling CPython on macOS requires some additional applications
and libraries. You will first need the essential C compiler toolkit.
“Command Line Development Tools” is an app that you can update
in macOS through the App Store. You need to perform the initial
installation on the terminal.

To open up a terminal in macOS, go to |Applications)) Other)

) Terminal|. You will want to save this app to your Dock, so right-

click the Icon and select

Within the terminal, install the C compiler and toolkit by running the
following:

$ xcode-select --install

This command will pop up with a prompt to download and install a
set of tools, including Git, Make, and the GNU C compiler.

You will also need a working copy of OpenSSL to use for fetching pack-
ages from the PyPi.org website. If you later plan on using this build
to install additional packages, SSL validation is required.

The simplest way to install OpenSSL on macOS is by using Homebrew.

If you don’t have Homebrew, you can download and install
Homebrew directly from GitHub with the following command:

$ /usr/bin/ruby -e "$(curl -fsSL \

https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once you have Homebrew installed, you can install the dependencies
for CPython with the brew install command:

44

https://www.openssl.org/
https://brew.sh

Compiling CPython on macOS

$ brew install openssl xz zlib gdbm sqlite

Now that you have the dependencies, you can run the configure script.
Homebrew has a command brew --prefix [package] that will give the
directory where the package is installed. You will enable support for
SSL by compiling the location that Homebrew uses.

The flag --with-pydebug enables debug hooks. Add this if you intend on
debugging for development or testing purposes. Debugging CPython
is covered extensively in the Debugging chapter.

The configuration stage only needs to be run once, also specifying the
location of the zlib package:

$ CPPFLAGS="-I$(brew --prefix zlib)/include" \
LDFLAGS="-L$ (brew --prefix zlib)/lib" \

./configure --with-openssl=$§(brew --prefix openssl) --with-pydebug

Running configure will generate a Makefile in the root of the repository
that you can use to automate the build process.

You can now build the CPython binary by running;:

$ make -j2 -s

See Also

For more help on the options for make, see section A Quick
Primer on Make.

During the build, you may receive some errors. In the build the sum-
mary, make will notify you that not all packages were built. For exam-
ple, ossaudiodev, spwd, and _tkinter would fail to build with this set of
instructions. That’s okay if you aren’t planning on developing against
those packages. If you are, then check out the official dev guide web-
site for more information.

The build will take a few minutes and generate a binary called
python.exe. Every time you make changes to the source code, you will

45

https://devguide.python.org/

Compiling CPython on Linux

need to rerun make with the same flags. The python.exe binary is the
debug binary of CPython. Execute python.exe to see a working REPL:

$./python.exe
Python 3.9.0b1l (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)
[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Important

Yes, that’s right, the macOS build has a file extension for .exe.
This extension is not because it’s a Windows binary! Because
macOS has a case-insensitive filesystem and when working with
the binary, the developers didn’t want people to accidentally re-
fer to the directory Python/ so .exe was appended to avoid am-
biguity. If you later run make install Or make altinstall, it will
rename the file back to python before installing it into your sys-
tem.

Compiling CPython on Linux

To compile CPython on Linux, you first need to download and install
make, gce, configure, and pkgeonfig.

For Fedora Core, RHEL, CentOS, or other yum-based systems:
$ sudo yum install yum-utils

For Debian, Ubuntu, or other apt-based systems:

$ sudo apt install build-essential

Then install some additional required packages.

For Fedora Core, RHEL, CentOS or other yun-based systems:

46

Compiling CPython on Linux

$ sudo yum-builddep python3

For Debian, Ubuntu, or other apt-based systems:

$ sudo apt install libssl-dev zliblg-dev libncurses5-dev \
libncursesw5-dev libreadline-dev libsqlite3-dev libgdbm-dev \
libdb5.3-dev libbz2-dev libexpatl-dev liblzma-dev libffi-dev

Now that you have the dependencies, you can run the configure script,
optionally enabling the debug hooks --with-pydebug:

$./configure --with-pydebug

Next, you can build the CPython binary by running the generated
Makefile:

$ make -j2 -s

See Also

For more help on the options for make, see section A Quick
Primer on Make.

Review the output to ensure that there weren’t issues compiling the
_ss1 module. If there were, check with your distribution for instruc-
tions on installing the headers for OpenSSL.

During the build, you may receive some errors. In the build the sum-
mary, make will notify you that not all packages were built. That’s okay
if you aren’t planning on developing against those packages. If you
are, then check out the package details for required libraries.

The build will take a few minutes and generate a binary called python.
This is the debug binary of CPython. Execute . /python to see a working
REPL:

$./python
Python 3.9.0bl (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)
[Clang 10.0.1 (clang-1001.0.46.4)] on Linux

47

Installing a Custom Version

Type "help", "copyright", "credits" or "license" for more information.

>>>

Installing a Custom Version

From your source repository, if you're happy with your changes and
want to use them inside your system, you can install it as a custom
version.

For macOS and Linux, you can use the altinstall command, which
won’t create symlinks for python3 and install a standalone version:

$ make altinstall

For Windows, you have to change the build configuration from bebug
to Release, then copy the packaged binaries to a directory on your com-
puter which is part of the system path.

A Quick Primer on Make

As a Python developer, you might not have come across make before,
or perhaps you have but haven’t spent much time with it. For C, C++,
and other compiled languages, the number of commands you need
to execute to load, link, and compile your code in the right order can
be exhaustive. When compiling applications from source, you need
to link any external libraries in the system. It would be unrealistic
to expect the developer to know the locations of all of these libraries
and copy+paste them into the command line, so make and configure
are commonly used in C/C++ projects to automate the creation of a
build script. When you executed ./configure, autoconf searched your
system for the libraries that CPython requires and copied their paths
into Makefile.

The generated Makefile is similar to a shell script, broken into sections
called “targets.”

48

A Quick Primer on Make

Take the docclean target as an example. This target deletes some gen-
erated documentation files using the rm command.

docclean:
-rm -rf Doc/build
-rm -rf Doc/tools/sphinx Doc/tools/pygments Doc/tools/docutils

To execute this target, run make docclean. docclean is a simple target as
it only runs two commands.

The convention for executing any make target is:
$ make [options] [target]

If you call make without specifying a target. make will run the default
target, which is the first specified in the Makefile. For CPython, this is
the a11 target which compiles all parts of CPython.

Make has many options, so here are the ones I think you'll find useful
throughout this book:

Option Use

-d, --debug [=FLAGS] Print various types of debugging information
-e, ——environment-overrides Environment variables override makefiles
-i, --ignore-errors Ignore errors from commands

-j [NI, -—jobs[=N] Allow N jobs at once (infinite jobs otherwise)
-k, --keep-going Keep going when some targets can’t be made
-1 [N], --load-average[=N] Only start multiple jobs if load < N
--max-load[=N]

-n, ——dry-run Print commands instead of running them.
-s, —-silent Don’t echo commands.

-S, —-stop Turns off -k.

In the next section and throughout the book, I'm going to ask you to
run make with the options:

$ make -j2 -s [target]

The -j2 flag allows make to run 2 jobs simultaneously. If you have 4

49

CPython’s Make Targets

or more cores, you can change this to 4 or larger and the compilation
will complete faster. The -s flag stops the Makefile from printing every
command it runs to the console. If you want to see what is happening,
remove the -s flag.

CPython’s Make Targets

For both Linux and macOS, you will find yourself needing to clean up
files, build, or to refresh configuration.

There are a number of useful make targets built into CPython’s Make-
file:

Build Targets
Target Purpose
all (default) Build the compiler, libraries and modules
profile-opt Compile the Python binary with profile guided
optimization
clinic Run “Argument Clinic” over all source files)
sharedmods Build the shared modules
regen-all Regenerate all generated files
Test Targets
Target Purpose
test Run a basic set of regression tests
testall Run the full test suite twice - once without .pyc files, and
once with
quicktest Run a faster set of regression tests, excluding the tests
that take a long time
testuniversal Run the test suite for both architectures in a Universal
build on OSX
coverage Compile and run tests with gcov
coverage-lcov Create coverage HTML reports

50

CPython’s Make Targets

Cleaning Targets

The primary clean targets are clean, clobber and distclean. The clean
target is for generally removing compiled and cached libraries and
pyc files. If you find that clean doesn’t do the job, try clobber. For
completely cleaning out an environment before distribution, run the
distclean target.

Target Purpose

check-clean-src Check that the source is clean when building out of
source

cleantest Remove "test_python_*” directories of previous failed
test jobs

clean Remove pyc files, compiled libraries and profiles

pycremoval Remove pyc files

docclean Remove built documentation in Doc/

profile-removal Remove any optimization profiles

clobber Same as clean, but also removes libraries, tags,
configurations and builds

distclean Same as clobber, but also removes anything generated

from source, e.g. Makefile

Installation Targets

There are two flavors for the installation targets, the default version,
e.g. install and the alt version, e.g. altinstall. If you want to install
the compiled version onto your computer, but don’t want it to become
the default Python 3 installation, use the a1t version of the commands.

After installing using make install, the command python3 will now link
to your compiled binary.

Whereas, using make altinstall, only python$(VERSION) will be installed
and the existing link for python3 will remain intact.

Target Purpose

install Installs shared libraries, binaries and documentation.
Will run commoninstall, bininstall and maninstall

bininstall Installs all the binaries, e.g. python, idle, 2to3

altinstall Installs shared libraries, binaries and documentation

with the version suffix

51

Compiling CPython on Windows

Target Purpose

maninstall Install the manuals

altmaninstall Install the versioned manuals

altbininstall Install the python interpreter, with the version affixed,
€.g. python3.9

commoninstall Install shared libraries and modules

libinstall Install shared libraries

sharedinstall Dynamically loaded modules

Miscellaneous Targets

Target Purpose

python-config Generate the python-config script

recheck Rerun configure with the same options as it was run last
time

autoconf Regenerate configure and pyconfig.h.in

tags Create a tags file for vi

TAGS Create a tags file for emacs

smelly Check that exported symbols start py or _py (see PEP7)

Compiling CPython on Windows

There are two ways to compile the CPython binaries and libraries from
Windows.

The first is to compile from the command line, this still requires the
Microsoft Visual C++ compiler, which comes with Visual Studio. The
second is to open the PCBuild» pcbuild.sln from Visual Studio and build
directly.

Installing the Dependencies

For either the command line compile script or the Visual Studio solu-
tion, you need to install several external tools, libraries, and C head-
ers.

Inside the pcBuild folder there is a .bat file that automates this for you.

52

Compiling CPython on Windows

Open up a command-line prompt inside pcBuild and execute PCBuild»

get_externals.bat:

> get_externals.bat
Using py -3.7 (found 3.7 with py.exe)
Fetching external libraries...
Fetching bzip2-1.0.6...
Fetching sqlite-3.28.0.0...
Fetching xz-5.2.2...
Fetching zlib-1.2.11...
Fetching external binaries...
Fetching openssl-bin-1.1.1d...
Fetching tcltk-8.6.9.0...

Finished.

Now you can compile from the command line or Visual Studio.

Compiling From the Command Line

To compile from the command line, you need to select the CPU ar-
chitecture you want to compile against. The default is win32, but the
chances are you want a 64-bit (amd64) binary.

If you do any debugging, the debug build comes with the ability to
attach breakpoints in the source code. To enable the debug build, you
add -c Dpebug to specify the Debug configuration.

By default, build.bat will fetch external dependencies, but because
we've already done that step, it will print a message skipping down-
loads:

> build.bat -p x64 -c Debug

This command will produce the Python binary pcbuild» amd64 » python_-
d.exe. Start that binary directly from the command line:

> amd64\python_d.exe

Python 3.9.0b1l (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)

53

Compiling CPython on Windows

[MSC v.1922 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>>
You are now inside the REPL of your compiled CPython binary.
To compile a release binary:

> build.bat -p x64 -c Release

This command will produce the binary pcbuild» amd64» python.exe.

The suffix _d specifies that CPython was built in the pebug con-
figuration.

The released binaries on python.org are compiled in the
Profile-Guided-Optimization (PGO) configuration. See the
Profile-Guided-Optimization (PGO) section at the end of this
chapter for more details on PGO.

Arguments

The following arguments are available in build.bat:

Flag Purpose Expected Value
-p Build platform CPU x64, Win32 (default), ARM, ARM64
architecture

-c Build configuration Release (default), Debug, PGInstrument
Or PGUpdate

-t Build target Build (default), Rebuild, Clean,
CleanAll

Flags

Here are some optional flags you can use for build.bat. For a full list,
run build.bat -h.

54

Compiling CPython on Windows

Flag Purpose

-v Verbose mode. Show informational messages during build

-vv Very verbose mode. Show detailed messages during build

-q Quiet mode. Only show warning and errors during build

-e Download and install external dependencies (default)

-E Don’t download and install external dependencies

--pgo Build with profile-guided-optimization

--regen Regenerate all grammar and tokens, used when you update
the language

Compiling From Visual Studio

Inside the pcBuild folder is a Visual Studio project file, pcBuild »
pcbuild.sln, for building and exploring CPython source code.

When the Solution is loaded, it will prompt you to retarget the
project’s inside the Solution to the version of the C/C++ compiler
you have installed. Visual Studio will also target the release of the
Windows SDK you have installed.

Ensure that you change the Windows SDK version to the newest in-
stalled version and the platform toolset to the latest version. If you
missed this window, you can right-click on the Solution in the Solu-
tions and Projects window and click Retarget Solution.

Navigate to |Build)) Configuration Manager| and ensure the “Active solu-
tion configuration” is set to Debug, and the “Active Solution Platform”
is set to x64 for 64-bit CPU architecture or win32 for 32-bit.

Next, build CPython by pressing + +[B], or choosing

Build)) Build Solution|. If you receive any errors about the Windows
SDK being missing, make sure you set the right targeting settings in
the Retarget Solution window. You should also see Windows Kits in-
side your Start Menu, and Windows Software Development Kit inside
of that menu.

The build stage could take 10 minutes or more the first time. Once the
build completes, you may see a few warnings that you can ignore.

55

Compiling CPython on Windows

To start the debug version of CPython, press and CPython will
start in Debug mode straight into the REPL:

) File Edit View Project Buld Debug Test Analyze Tools Extensions Window Help | Search Visual Studio (Ctrl+Q) P pcbuild

SO W °§e Continue ~ | A1 _E M m O Z -

¥ Process: [F4AOLewthan o

You can run the Release build by changing the build configuration
from Debug to Release on the top menu bar and rerunning

Build Solution|. You now have both Debug and Release versions of

the CPython binary within PCBuild» amd64.

You can set up Visual Studio to be able to open a REPL with

either the Release or Debug build by choosing

> Python Environments from the top menu:

In the Python Environments panel, click Add Environment and then
target the Debug or Release binary. The Debug binary will end in
_d.exe. For example, python_d.exe and pythonw_d.exe. You will most
likely want to use the debug binary as it comes with Debugging sup-
port in Visual Studio and will be useful for this book.

In the Add Environment window, target the python_d.exe file as the in-
terpreter inside PCBuild» amd64 and the pythonw_d.exe as the windowed
interpreter:

56

Compiling CPython on Windows

Add environment

Virtual environment Project

Conda environment

Existing environment

Environment
Python installation

Prefix path

c

Make this environment available globally

Description Language version
win32 37 -

interpreter path Architecture

L repos\cpython\PCbuild\win32\python_d.exe

64-bit ~
Windowed interpreter (optional) Path environment variable
L

repos\cpython\PChuild\win32\pythonw._d.exe e.g. PYTHONPATH

How do | manage Python environments?

Cancel

Start a REPL session by clicking|Open Interactive Window |in the Python

Environments window and you will see the REPL for the compiled
version of Python:

win32 Interactive

=

v B x
O E 4 ¥ Environment win32 ~ Module:
>>> import sys
>>> sys.version_info

__main_

sys.version_info(major=3, minor=8, micro=e, releaselevel='alpha', serial=3)
> |

100% -

During this book, there will be REPL sessions with example com-

mands. I encourage you to use the Debug binary to run these REPL
sessions in case you want to put in any breakpoints within the code.

57

Profile Guided Optimization

To make it easier to navigate the code, in the Solution View, click on
the toggle button next to the Home icon to switch to Folder view:

Solution Explorer - Folder View v 3 X
@Wo- sega@ -

| o

4 cpython (C:\Users\anthonyshaw\source\repos\cpython)

.azure-pipelines

.github

Doc

» 4

Grammar
Include
Lib

mé

Mac
Misc
Modules
Objects
Parser

PC

v VvV VvV VYV VYVYVVYYVYY

Profile Guided Optimization

The macOS, Linux, and Windows build processes have flags for
“PGO,” or “Profile Guided Optimization.” PGO is not something cre-
ated by the Python team, but a feature of many compilers, including
those used by CPython.

PGO works by doing an initial compilation, then profiling the applica-
tion by running a series of tests. The profile created is then analyzed,
and the compiler will make changes to the binary that would improve
performance.

For CPython, the profiling stage runs python -m test --pgo, which ex-
ecutes the regression tests specified in Lib» test » 1ibregrtest » pgo.py.
These tests have been specifically selected because they use a com-
monly used C extension module or type.

58

Profile Guided Optimization

The PGO process is time-consuming, so throughout this book
I've excluded it from the list of recommended steps to keep
your compilation time short. If you want to distribute a custom
compiled version of CPython into a production environment,
you should run ./configure with the --with-pgo flag in Linux
and macOS, and use the --pgo flag in build.bat on Windows.

Because the optimizations are specific to the platform and architec-
ture that the profile was executed on, PGO profiles cannot be shared
between operating systems or CPU architectures. The distributions
of CPython on python.org have already been through PGO, so if you
run a benchmark on a vanilla-compiled binary it will be slower than
one downloaded from python.org.

The Windows, macOS and Linux profile-guided optimizations include
these checks and improvements:

« Function Inlining - If a function is regularly called from another
function, then it will be “inlined” to reduce the stack-size.

+ Virtual Call Speculation and Inlining - If a virtual function
call frequently targets a certain function, PGO can insert a condi-
tionally executed direct call to that function. The direct call can
then be inlined.

+ Register Allocation Optimization - Based on profile data re-
sults, the PGO will optimize register allocation.

« Basic Block Optimization - Basic block optimization allows
commonly executed basic blocks that temporally execute within
a given frame to be placed in the same set of pages (locality). It
minimizes the number of pages used, which minimizes memory
overhead.

+ Hot-Spot Optimization - Functions where the program spends
the most execution time can be optimized for speed.

« Function Layout Optimization - After analyzing the call graph,

59

Conclusion

functions that tend to be along the same execution path are moved
to the same section of the compiled application.

+ Conditional Branch Optimization - PGO can look at a deci-
sion branch, like an if..else if or switch statement and spot the
most commonly used path. For example, if there are 10 cases in
a switch statement and one is used 95% of the time, then it will
be moved to the top so that it will be executed immediately in the
code path.

« Dead-Spot Separation - Code that isn’t called during PGO is
moved to a separate section of the application.

Conclusion

In this chapter, you've seen how to compile CPython source code into
a working interpreter. You can use this knowledge throughout the
book as you explore and adapt the source code.

You might need to repeat the compilation steps tens, or even hundreds
of times when working with CPython. If you can adapt your develop-
ment environment to create shortcuts for recompilation, it is better to
do that now and save yourself a lot of time.

Leave feedback on this section »

60

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiO21rOyUkd31pYnQyKkZVOy1zYStVSG8lLXJEdEhwNyYqUXNkYXQkJSIsInQiOiJjaGFwdGVycy8xMi1jb21waWxpbmctY3B5dGhvbi5tZCAoMzZmMmJlNmEzOTUyMmMxYykiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi8zNmYyYmU2YTM5NTIyYzFjYTFlYjkyMDU0MzM2NmIzOTZjNjBmYjkxL2NoYXB0ZXJzLzEyLWNvbXBpbGluZy1jcHl0aG9uLm1kIn0=

The Python Language and
Grammar

The purpose of a compiler is to convert one language into another.
Think of a compiler like a translator. You would hire a translator to
listen to you speaking in English and then speak in Japanese.

To accomplish this, the translator must understand the grammatical
structures of the source and target languages.

Some compilers will compile into a low-level machine code, which can
be executed directly on a system. Other compilers will compile into
an intermediary language, to be executed by a virtual machine.

A consideration when choosing a compiler is the system portability
requirements. Java and .NET CLR will compile into an Intermedi-
ary Language so that the compiled code is portable across multiple
systems architectures. C, Go, C++, and Pascal will compile into an ex-
ecutable binary. This binary is built for the platform on which it was
compiled.

Python applications are typically distributed as source code. The role
of the Python interpreter is to convert the Python source code and
execute it in one step. The CPython runtime does compile your code
when it runs for the first time. This step is invisible to the regular user.

Python code is not compiled into machine code; it is compiled into
a low-level intermediary language called bytecode. This bytecode
is stored in .pyc files and cached for execution. If you run the same

61

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Common_Language_Runtime

Why CPython Is Written in C and Not Python

Python application twice without changing the source code, it will be
faster on the second execution. This is because it loads the compiled
bytecode instead of recompiling each time.

Why CPython Is Written in C and Not
Python

The C in CPython is a reference to the C programming language, im-
plying that this Python distribution is written in the C language.

This statement is mostly true: the compiler in CPython is written in
pure C. However, many of the standard library modules are written
in pure Python or a combination of C and Python.

So Why Is the CPython Compiler Written in C
and Not Python?

The answer is located in how compilers work. There are two types of
compilers:

1. Self-hosted compilers are compilers written in the language
they compile, such as the Go compiler. This is done by a process
known as bootstrapping.

2. Source-to-source compilers are compilers written in another
language that already has a compiler.

If you're writing a new programming language from scratch, you
need an executable application to compile your compiler! You need a
compiler to execute anything, so when new languages are developed,
they’re often written first in an older, more established language.

There are also tools available that can take a language specification
and create a parser (topics you will cover in this chapter). Popular
compiler-compilers include GNU Bison, Yace, and ANTLR.

62

https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Source-to-source_compiler

Why CPython Is Written in C and Not Python

See Also

If you want to learn more about parsers, check out the lark
project. Lark is a parser for context-free grammar written in
Python.

An excellent example of compiler bootstrapping is the Go program-
ming language. The first Go compiler was written in C, then once Go
could be compiled, the compiler was rewritten in Go.

CPython kept its C heritage; many of the standard library modules,
like the ss1 module or the sockets module, are written in C to access
low-level operating system APIs. The APIs in the Windows and Linux
kernels for creating network sockets, working with the filesystem, or
interacting with the display are all written in C.

It made sense for Python’s extensibility layer to be focused on the C
language. Later in this book, you will cover the Python Standard Li-
brary and the C modules.

There is a Python compiler written in Python called PyPy. PyPy’s logo
is an Ouroboros to represent the self-hosting nature of the compiler.

Another example of a cross-compiler for Python is Jython. Jython
is written in Java and compiles from Python source code into Java
bytecode. In the same way that CPython makes it easy to import C
libraries and use them from Python, Jython makes it easy to import
and reference Java modules and classes.

The first step of creating a compiler is to define the language. For
example, this is not valid Python:

def my_example() <str> :
{
void* result = ;

3

The compiler needs strict rules of the grammatical structure for the
language before it tries to execute it.

63

https://github.com/lark-parser/lark
https://realpython.com/python-sockets/
https://realpython.com/working-with-files-in-python/
https://realpython.com/python-gui-with-wxpython/
https://pypy.org/
https://en.wikipedia.org/wiki/Ouroboros
https://www.jython.org/

The Python Language Specification

For the rest of this tutorial, . /python will refer to the compiled
version of CPython. However, the actual command will depend
on your Operating System.

For Windows:
> python.exe
For Linux:

$./python

For macOS:

$./python.exe

The Python Language Specification

Contained within the CPython source code is the definition of the
Python language. This document is the reference specification used
by all the Python interpreters.

The specification is in both a human-readable and machine-readable
format. Inside the documentation is a detailed explanation of the
Python language. What is allowed and how each statement should
behave.

Language Documentation

Located inside the Doc » reference directory are reStructured-
Text explanations of each of the features in the Python lan-
guage. These files form the official Python reference guide at
docs.python.org/3/reference.

Inside the directory are the files you need to understand the whole
language, structure, and keywords:

64

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
https://docs.python.org/3/reference/

The Python Language Specification

E‘] cpython/Doc/reference

F——compound_stmts.rst
datamodel.rst
——-executionmodel.rst
expressions.rst
grammar.rst
——1import.rst
——rindex.rst
——introduction.rst
—lexical_analysis.rst
simple_stmts.rst
——toplevel _components.rst

Compound statements like if, while, for and function definitions
Objects, values and types

The structure of Python programs

The elements of Python expressions

Python’s core grammar (referencing Grammar/Grammar)

The import system

Index for the language reference

Introduction to the reference documentation

Lexical structure like lines, indentation, tokens and keywords
Simple statements like assert, import, return and yield
Description of the ways to execute Python, like scripts and modules

An Example

Inside Doc » reference » compound_stmts.rst, you can see a simple example
defining the with statement.

The with statement has many forms, the simplest being the instantia-
tion of a context-manager, and a nested block of code:

with x():

You can assign the result to a variable using the as keyword:

with x() as y:

You can also chain context managers together with a comma:

with x() as vy, z() as jk:

The documentation contains the human-readable specification of the
language, and the machine-readable specification is housed in a single

ﬁle, Grammar » Grammar.

65

https://dbader.org/blog/python-context-managers-and-with-statement
https://dbader.org/blog/python-context-managers-and-with-statement

The Python Language Specification

The Grammar File

Important

This section refers to the grammar file used by the “old parser”.
At the time of publishing, the “new parser” (the PEG parser) is
experimental and unfinished.

For releases of CPython up to and including 3.8, the pgen parser
is the default. For releases of CPython 3.9 and above, the PEG
parser is the default. The old parser can be enabled with -x
oldparser on the command line.

The Tokens file is used by both parsers.

The Grammar file is written in a context-notation called Backus-Naur
Form (BNF). BNF is not specific to Python and is often used as the
notation for grammar in many other languages.

The concept of grammatical structure in a programming language
is inspired by Noam Chomsky’s work on Syntactic Structures in the
1950s!

Python’s grammar file uses the Extended-BNF (EBNF) specification
with regular-expression syntax. So, in the grammar file you can use:
« * for repetition
« + for at-least-once repetition
« [1 for optional parts
« | for alternatives

« O for grouping
As an example, think about how you would define a cup of coffee:

It must have a cup

« It must include at least one shot of espresso and can contain mul-
tiple

66

https://en.m.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.m.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Syntactic_Structures

The Python Language Specification

« It can have milk, but it is optional

» There are many types of milk you can put into coffee, like full fat,
skimmed and soy

Defined in EBNF, a coffee order could look like this:

coffee: 'cup' ('espresso')+ ['water'] [milk]

milk: 'full-fat' | 'skimmed' | 'soy'

In this chapter, grammar is visualized with railroad diagrams. This
diagram is the railroad diagram for the coffee statement:

In a railroad diagram, each possible combination must go in a line
from left to right. Optional statements can be bypassed, and some
statements can be formed as loops.

If you search for with_stmt in the grammar file, you can see the defini-
tion:

with_stmt: 'with' with_item (',' with_item)* ':' suite

with_item: test ['as' expr]

Anything in quotes is a string literal, known as a terminal. Terminals
are how keywords are recognized. The with_stmt is specified as:
1. Starting with the word with

2. Followed by a with_item, which is a test and (optionally), the word
as, and an expression

3. Following one or many with_item, each separated by a comma

67

The Python Language Specification

4. Ending with a :
5. Followed by a suite

There are references to three other definitions in these two lines:

« suite refers to a block of code with one or multiple statements
« test refers to a simple statement that is evaluated

« expr refers to a simple expression

Visualized in a Railroad Diagram, the with statement looks like this:

G HeT PO Heo{Tom PO

As a more complex example, the try statement is defined as:

try_stmt: ('try' ':' suite

((except_clause ':' suite)+

['else' ':' suite]

['"finally' '":' suite] |

o

'finally suite))

except_clause: 'except' [test ['as' NAME]]

There are two uses of the try statement:

1. try with one or many except clauses, followed by an optional else,
then an optional finally

2. try with only a finally statement

Or, visualized in a Railroad Diagram:

finally suite

68

Using the Parser Generator

The try statement is a good example of a more complex structure.

If you want to understand the Python language in detail, the grammar
is defined in Grammar » Grammar.

Using the Parser Generator

The grammar file itself is never used by the Python compiler. Instead,
a parser table is created by a parser generator. If you make changes to
the grammar file, you must regenerate the parser table and recompile
CPython.

Parser Tables are a list of potential parser states. When parse trees
become complex, they ensure that grammar cannot be ambiguous.

The Parser Generator

A parser generator works by converting the EBNF statements into a
Non-deterministic Finite Automaton (NFA). The NFA states and tran-
sitions are resolved and consolidated into a Deterministic Finite Au-
tomaton (DFA).

The DFAs are used by the parser as parsing tables. This technique was
formed at Stanford University and developed in the 1980s, just before
the advent of Python. CPython’s parser generator, pgen, is unique to
the CPython project.

The pgen application is was rewritten in Python 3.8 from C to Python
as Parser» pgen» pgen.py.

It is executed as :
$./python -m Parser.pgen [grammar] [tokens] [graminit.h] [graminit.c]
It is normally executed from the build scripts, not directly.

The DFA and NFA don’t have a visual output, but there is a branch of
CPython with a directed graph output. decorator grammar is defined

69

http://infolab.stanford.edu/~ullman/dragon/slides1.pdf
https://github.com/tonybaloney/cpython/tree/dot_pgen
https://github.com/tonybaloney/cpython/tree/dot_pgen

Regenerating Grammar

in Grammar/Grammar as:

decorator: '@' dotted_name ['(' [arglist] ')'] NEWLINE

The parser generator creates a complex NFA graph of 11 states. Each
of the states is numerically represented (with hints on their name in
the grammar). The transitions are referred to as ‘arcs.’

The DFA is simpler than the NFA, with the paths reduced:

)
(o@o T
oPortro o
NEWLINE

The NFA and DFA graphs are only useful for debugging the design of
complex grammars.

We will use Railroad Diagrams for representing grammar instead of
DFA or NFA graphs.

As an example, this diagram represents the paths that can be taken
for the decorator statement:

(O Feresamame F-(O-Lamsiise P-(D-{Fowne |

Regenerating Grammar

To see pgen in action, let’s change part of the Python grammar. Search
Grammar » Grammar for pass_stmt to see the definition of a pass statement:

pass_stmt: 'pass'

70

Regenerating Grammar

Change that line to accept the terminal (keyword) 'pass' or 'proceed’
as keywords by adding a choice, |, and the proceed literal:

pass_stmt: 'pass' | 'proceed'

G

proceed

Next, rebuild the grammar files by running pgen. CPython comes with
scripts to automate pgen.

On macOS and Linux, run the make regen-grammar target:

$ make regen-grammar

For Windows, bring up a command line from the pcBuild directory and
run build.bat with the --regen flag:

> build.bat --regen

You should see an output showing that the new Include» graminit.h and
Python» graminit.c files have been regenerated.

With the regenerated parser tables, when you recompile CPython, it
will use the new syntax. Use the same compilation steps you used in
the last chapter for your operating system.

If the code compiled successfully, you can execute your new CPython
binary and start a REPL.

71

Regenerating Grammar

In the REPL, you can now try defining a function. Instead of using the
pass statement, use the proceed keyword alternative that you compiled
into the Python grammar:

$./python -X oldparser

Python 3.9.0bl (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> def example():

proceed
>>> example()

Congratulations, you've changed the CPython syntax and compiled
your own version of CPython.

Next, we’ll explore tokens and their relationship to grammar.

Tokens

Alongside the grammar file in the Grammar folder is the Grammar » Tokens
file, which contains each of the unique types found as leaf nodes in a
parse tree. Each token also has a name and a generated unique ID.
The names are used to make it simpler to refer to in the tokenizer.

The Grammar » Tokens file is a new feature in Python 3.8.

For example, the left parenthesis is called LpaR, and semicolons are
called sem1. You'll see these tokens later in the book:

LPAR G
RPAR !
LSQB [
RSQB 1
COLON gt

72

Regenerating Grammar

COMMA gt
SEMI gt

As with the Grammar file, if you change the Grammar » Tokens file, you need
to rerun pgen.

To see tokens in action, you can use the tokenize module in CPython.

There are two tokenizers in the CPython source code. One tok-
enizer written in Python demonstrated here, and another writ-
ten in C. The tokenizer written in Python is a utility, and the
Python interpreter uses the one written in C. They have identi-
cal output and behavior. The version written in C is designed
for performance, and the module in Python is designed for de-
bugging.

Create a simple Python script called test_tokens.py:
cpython-book-samples» 13 » test_tokens.py

Demo application
def my_function():

proceed

Input the test_tokens.py file to a module built into the standard library
called tokenize. You will see the list of tokens by line and character.
Use the -e flag to output the exact token name:

$./pvthon -m tokenize -e test_tokens.py

0,0-0,0: ENCODING 'utf-8'

1,0-1,14: COMMENT '# Demo application'
1,14-1,15: NL "\n'

2,0-2,3: NAME 'def’

2,4-2,15: NAME 'my_function'
2,15-2,16: LPAR NG

73

Regenerating Grammar

2,16-2,17: RPAR !
2,17-2,18: COLON gt
2,18-2,19: NEWLINE "\n'
3,0-3,3: INDENT ! !
3,3-3,7: NAME 'proceed’
3,7-3,8: NEWLINE "\n'
4,0-4,0: DEDENT v
4,0-4,0: ENDMARKER og

In the output, the first column is the range of the line/column coor-
dinates, the second column is the name of the token, and the final
column is the value of the token.

In the output, the tokenize module has implied some tokens:

The encopING token for utf-8

A blank line at the end

A DEDENT to close the function declaration

« An ENDMARKER to end the file

It is best practice to have a blank line at the end of your Python source
files. If you omit it, CPython adds it for you.

The tokenize module is written in pure Python and is located in Lib»

tokenize.py.

To see a verbose readout of the C tokenizer, you can run Python with
the -d flag. Using the test_tokens.py script you created earlier, run it
with the following:

$./python -d test_tokens.py
Token NAME/'def' ... It's a keyword
DFA 'file_input', state 0: Push 'stmt'

DFA 'stmt', state 0: Push 'compound_stmt'

Token NEWLINE/'' ... It's a token we know

74

A More Complex Example

DFA 'funcdef', state 5: [switch func_body_suite to suite] Push 'suite'
DFA 'suite', state 0: Shift.

Token INDENT/'' ... It's a token we know

DFA 'suite', state 1: Shift.

Token NAME/'proceed' ... It's a keyword

DFA 'suite', state 3: Push 'stmt'

ACCEPT.

In the output, you can see that it highlighted proceed as a keyword. In
the next chapter, we’ll see how executing the Python binary gets to the
tokenizer and what happens from there to execute your code.

To clean up your code, revert the change in Grammar » Grammar, re-
generate the grammar again, then clean the build, and recom-
pile:

For macOS or Linux:

$ git checkout -- Grammar/Grammar
$ make regen-grammar
$ make clobber

$ make -j2 -s

Or for Windows:

> git checkout -- Grammar/Grammar
> build.bat --regen

> build.bat -t CleanAll

> build.bat -t Build

A More Complex Example
Adding proceed as an alternate keyword for pass is a simple change, the

parser generator does the work of matching 'proceed’ as a literal for
the pass_stmt token. This new keyword works without any changes to

75

A More Complex Example

the compiler.
In practice, most changes to the grammar are more complicated.

Python 3.8 introduced assignment expressions, with the format :=.
An assignment expression both assigns a value to a name and returns
the value of the named variable.

One of the statements impacted by the addition of assignment expres-
sions to the Python language was the if statement.

Prior to 3.8, the if statement was defined as:

» The keyword if followed by a test, then a :
o A nested series of statements (suite)

« Zero-or-more elif statements, which are followed by atest, a : and

a suite

+ An optional else statement, which is followed by a : and a suite
In the grammar this was represented as:
if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]

Visualized, this looks like:

O IIN O = I PR en S N e Wy M S v We Wy

To support assignment expressions, the change needed to be back-
ward compatible. The use of := in an if statement, therefore, had to
be optional.

The test token type used in the if statement is generic between many
statements. For example, the assert statement is followed by a test
(and then optionally a second test).

76

A More Complex Example

assert_stmt: 'assert' test [',' test]

An alternate test token type was added in 3.8, so that the grammar
could be prescriptive about which statements should support assign-
ment expressions and which should not.

This is called namedexpr_test and is defined in the Grammar as:

namedexpr_test: test [':=' test]

Or, visualized in a Railroad Diagram:

H— test —L(:= test LH

The new syntax for the if statement was changed to replace test with

namedexpr_test:

if_stmt: 'if' namedexpr_test ':' suite ('elif' namedexpr_test ':' suite)

o

['else suite]

Visualized in a Railroad Diagram:

H—Go)—[mamsaerpr_test (D) =uite o1t)| nameasxpr_test ()| suite Grso (D wuiee |

To distinguish between := and the existing COLON (:) and EQUAL (=)
token, the following token was then added to Grammar » Tokens

COLONEQUAL vt

This is not the only change required to support assignment expres-
sions. The change altered many parts of the CPython compiler, as
seen in the Pull Request.

77

https://github.com/python/cpython/pull/10497

Conclusion

See Also

For more information on CPython’s parser generator, the au-
thor of pgen has recorded a presentation on the implementation
and design: “The soul of the beast” at PyCon Europe 2019.

Conclusion

In this chapter, you've been introduced to the Python grammar defini-
tions and parser generator. In the next chapter, you’ll expand on that
knowledge to build a more complex syntax feature, an “almost-equals”
operator.

In practice, changes to the Python grammar have to be carefully con-
sidered and discussed. There are two reasons for the level of scrutiny:

1. Having “too many” language features, or a complex grammar
would change the ethos of Python being a simple and readable
language

2. Changes to grammar introduce backward-incompatibilities,
which create work for all developers

If a Python Core Developer proposes a change to the grammar, it must
be proposed as a Python Enhancement Proposal (PEP). All PEPs are
numbered and indexed on the PEP index. PEP 5 documents the guide-
lines for evolving the language and specifies that changes must be pro-
posed in PEPs.

Members can also suggest changes to the language outside of the core
development group through the python-ideas mailing list.

You can see the drafted, rejected, and accepted PEPs for future ver-
sions of CPython in the PEP index. Once a PEP has consensus, and
the draft has been finalized, the Steering Council must accept or reject
it. The mandate of the Steering Council, defined in PEP 13, states that
they shall work to “Maintain the quality and stability of the Python
language and CPython interpreter.”

78

https://www.youtube.com/watch?v=1_23AVsiQEc
https://www.python.org/dev/peps/pep-0005/
https://www.python.org/community/lists/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0013/

Conclusion

Leave feedback on this section »

79

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiM2xnSSZ5UCVFQGZPTVJJUEZJTjxGcSNuP2ZYVCZPJUxlUzQ_M1NoLSIsInQiOiJjaGFwdGVycy8xMy1jb21waWxlci1hbmQtZ3JhbW1hci5tZCAoZGE3NWQzZWU3YTZmMTFhZSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi9kYTc1ZDNlZTdhNmYxMWFlNTRlYTIwNzIzYzA4YjAzOGE2ZjU1MzhkL2NoYXB0ZXJzLzEzLWNvbXBpbGVyLWFuZC1ncmFtbWFyLm1kIn0=

Configuration and Input

Now that you’ve seen the Python grammar, its time to explore how
code gets input into a state that can be executed.

There are many ways Python code can be run in CPython. Here are
some of the most commonly used:

1. By running python -c and a Python string

2. By running python -m and the name of a module

3. By running python [file] with the path to a file that contains
Python code

4. By piping Python code into the python executable over stdin, e.g.,
cat [file] | python

5. By starting a REPL and executing commands one at a time

6. Byusing the C API and using Python as an embedded environment

See Also

Python has so many ways to execute scripts; it can be a little
overwhelming. Darren Jones has put together a great course at
realpython.com on running Python scripts if you want to learn
more.

80

https://realpython.com/courses/running-python-scripts/
https://realpython.com/courses/running-python-scripts/

To execute any Python code, the interpreter needs:

« A module to execute

» A state to hold information such as variables

+ Configuration, such as which options are enabled

With these three components, the interpreter can execute code and

provide an output:

Input
T I I
+ + -
Configuration State Modules
T I I
v v R 2
Runtime
I
£
Output

81

Similar to the PEPS style guide for Python code, there is PEP7
for the CPython C code.

There are some naming standards for C source code:

« Use a py prefix for public functions, never for static functions.
The py_ prefix is reserved for global service routines like py_-
FatalError. Specific groups of routines (like specific object
type APIs) use a longer prefix, such as pystring_ for string
functions.

o Public functions and variables use MixedCase with under-
scores, like this: PyObject_GetAttr(), Py_BuildValue(), PyExc_-
TypeError().

+ Occasionally an “internal” function has to be visible to the
loader. Use the _py prefix for this, for example, _Pyobject_-
Dump ().

» Macros should have a MixedCase prefix and then use upper
case, for example PyString_AS_STRING, Py_PRINT_RAW.

Unlike PEPS8, there are few tools for checking the compliance of
PEP7. This task is instead done by the core developers as part
of code reviews. As with any human-operated process, it isn’t
perfect so you will likely find code that does not adhere to PEP7.

The only bundled tool is a script called smelly.py, which you can
execute using the make smelly target on Linux or macOS, or via
the command line:

$./python Tools/scripts/smelly.py

This will raise an error for any symbols that are in 1ibpython (the
shared CPython library) that do not start py, or _py.

82

https://realpython.com/courses/writing-beautiful-python-code-pep-8/
https://www.python.org/dev/peps/pep-0007/

Configuration State

Configuration State

Before any Python code is executed, the CPython runtime first estab-
lishes the configuration of the runtime and any user-provided options.

The configuration of the runtime is in three data structures, defined
in PEP587:

1. PyPreConfig, used for pre-initialization configuration
2. PyConfig, used for the runtime configuration

3. The compiled configuration of the CPython interpreter

Both data structures are defined in Include» cpython» initconfig.h.

Pre-Initialization Configuration

The pre-initialization configuration is separate to the runtime config-
uration as it’s properties relate to the Operating System or user envi-
ronment.

The three primary functions of the pyPreconfig are:

« Setting the Python memory allocator
+ Configuring the LC_CTYPE locale
+ Setting the UTF-8 mode (PEP540)

The pyPrecConfig type contains the following fields; all of type int:

Name Purpose

allocator Name of the memory allocator (e.g. PYMEM_ALLOCATOR_MALLOC).
Run . /configure --help for more information on the memory
allocator

configure_- Set the LC_CTYPE locale to the user preferred locale. If equal

locale to 0, set coerce_c_locale and coerce_c_locale_warn to O

coerce_c_- If equal to 2, coerce the C locale; if equal to 1, read the

locale LC_CTYPE locale to decide if it should be coerced

coerce_c_- If non-zero, emit a warning if the C locale is coerced

locale_warn
dev_mode See PyConfig.dev_mode

83

https://www.python.org/dev/peps/pep-0587/
https://github.com/python/cpython/blob/v3.9.0b1/Include/cpython/initconfig.h#L125
https://github.com/python/cpython/blob/v3.9.0b1/Include/cpython/initconfig.h#L416
https://www.python.org/dev/peps/pep-0540/

Configuration State

Name Purpose

isolated Enable isolated mode: sys.path contains neither the script’s
directory nor the user’s site-packages directory

legacy_- (_Windows only_) If non-zero, disable UTF-8 Mode, set the

windows_fs_- Python filesystem encoding to mbes

encoding

parse_argv If non-zero, Py_ PrelnitializeFromArgs() and
Py_PrelnitializeFromBytesArgs() parse from command line
arguments

use_- See PyConfig.use_environment

environment

utf8_mode If non-zero, enable the UTF-8 mode

Related Source Files

The source files relating to PyPreConfig are:

File Purpose

Python» initconfig.c Loads the configuration from the system
environment and merges it with any command line
flags

Include» cpython» Defines the initialization configuration data

initconfig.h structure

Runtime Configuration Data Structure

The second stage configuration is the runtime configuration. The run-
time configuration data structure in pyConfig includes values, such as:

« Runtime flags for modes like debug and optimized

The mode of execution, e.g. script file, stdin or a module

Extended options, specified by -x <option>

« Environment variables for runtime settings

The configuration data is used by the CPython runtime to enable and
disable features.

84

https://github.com/python/cpython/blob/v3.9.0b1/Include/cpython/initconfig.h#L416

Configuration State

Setting Runtime Configuration with the
Command Line

Python also comes with several Command Line Interface Options.

As an example, CPython has a mode called verbose mode. This is
primarily aimed at developers for debugging CPython.

In Python you can enable verbose mode with the -v flag. In verbose
mode, Python will print messages to the screen when modules are
loaded:

$./python -v -c "print('hello world')"

installing zipimport hook
import zipimport # builtin

installed zipimport hook

You will see a hundred lines or more with all the imports of your user
site-packages and anything else in the system environment.

Because runtime configuration can be set in several ways, configura-
tion settings have levels of precedence over each other. The order of
precedence for verbose mode is:

1. The default value for config->verbose is hardcoded to -1 in the
source code.

2. The environment variable PYTHONVERBOSE is used to set the value of

config->verbose.

3. If the environment variable does not exist, then the default value
of -1 will remain.

4. In config parse_cmdline() within Python » initconfig.c, the com-
mand line flag is used to set the value, if provided.

5. This value is copied to a global variable, Py_verboseFlag by _py_-
GetGlobalVariablesAsDict().

All pyconfig values follow the same sequence and order of precedence:

85

https://docs.python.org/3/using/cmdline.html
https://github.com/python/cpython/blob/v3.9.0b1/Python/initconfig.c#L1875
https://github.com/python/cpython/blob/v3.9.0b1/Python/initconfig.c#L167
https://github.com/python/cpython/blob/v3.9.0b1/Python/initconfig.c#L167

Build Configuration

System
Configuration

Command Line
Arguments

Environment
Variables

¥

v

v

PyPreConfig

I
¥
PyConfig

I
¥

Runtime

Viewing Runtime Flags

CPython interpreters have a set of runtime flags. These flags are ad-
vanced features used for toggling CPython specific behaviors. Within
a Python session, you can access the runtime flags, like verbose mode
and quiet mode, by using the sys.flags named tuple. All -x flags are
available inside the sys._xoptions dictionary:

$./python -X dev -q

>>> import sys

>>> sys.flags

sys.flags(debug=0, inspect=0, interactive=0, optimize=0,
dont_write_bytecode=0, no_user_site=0, no_site=0,
ignore_environment=0, verbose=0, bytes_warning=0,
quiet=1, hash_randomization=1, isolated=0,

dev_mode=True, utf8_mode=0)

>>> sys._xoptions

{'dev': True}
Build Configuration

As well as the runtime configuration in Python » cpython » initconfig.h,
there is also a build configuration. This is located inside pyconfig.h in

86

Building a Module From Input

the root folder. This file is created dynamically in the ./configure step
in the build process for macOS/Linux, or by build.bat in Windows.

You can see the build configuration by running;:

$./python -m sysconfig

Platform: "macosx-10.15-x86_64"
Python version: "3.9"

Current installation scheme: "posix_prefix"

Paths:
data = "/usr/local”
include = "/Users/anthonyshaw/CLionProjects/cpython/Include”

platinclude = "/Users/anthonyshaw/CLionProjects/cpython"

Build configuration properties are compile-time values used to select
additional modules to be linked into the binary. For example, debug-
gers, instrumentation libraries, and memory allocators are all set at
compile time.

With the three configuration stages, the CPython interpreter can now
take input and process text into executable code.

Building a Module From Input

Before any code can be executed, it must be compiled into a module
from an input. As discussed before, inputs can vary in type:

 Local files and packages
 I/0O Streams, e.g., stdin or a memory pipe

« Strings

Inputs are read and then passed to the parser, and then the compiler.

87

Building a Module From Input

File Input

I0 Stream .
Input — Reader > Parser > Compiler

String Input

Due to this flexibility, a large portion of the CPython source code is
dedicated to processing inputs to the CPython parser.

Related Source Files

There are two main files dealing with the command line interface:

File Purpose

Lib» runpy.py Standard Library module for importing Python
modules and executing them

Modules » main.c Functions wrapping the execution of external code,
e.g. from a file, module, or input stream

Programs » python.c The entry point for the python executable for

Windows, Linux and macOS. Only serves as a
wrapper for Modules/main.c.

Python» pythonrun. c Functions wrapping the internal C APIs for
processing inputs from the command line

Reading Files/Input

Once CPython has the runtime configuration and the command line
arguments, it can load the code it needs to execute.
This task is handled by the pymain_main() function inside Modules »

main.c.

Depending on the newly created pyconfig instance, CPython will now

88

https://github.com/python/cpython/blob/v3.9.0b1/Modules/main.c#L651

Building a Module From Input

execute code provided via several options.

Input String From the Command Line

CPython can execute a small Python application at the command line
with the -c option. For example to execute print(2 ** 2):

$./python -c "print(2 ** 2)"
4

The pymain_run_command() function is executed inside Modules » main.c
taking the command passed in -c as an argument in the C type wchar_-
t*,

The wchar_t* type is often used as a low-level storage type for
Unicode data across CPython as the size of the type can store
UTF8 characters.

When converting the wchar_t* to a Python string, the objects
» unicodeobject.c file has a helper function PyUnicode_-
FromWideChar() that returns Unicode string. The encoding
to UTF8 is then done by PyUnicode_AsUTF8String().

Python Unicode Strings are covered in depth in the Unicode
String Type section of the Objects and Types chapter.

Once this is complete, pymain_run_command() will then pass the Python
bytes object to PyRun_SimpleStringFlags() for execution.

The PyRun_SimpleStringFlags() function is part of Python » pythonrun. c.
Its purpose is to turn a string into a Python module and then
send it on to be executed. A Python module needs to have an
entry-point, (_main__), to be executed as a standalone module.
PyRun_SimpleStringFlags() creates the entry point implicitly.

Once PyRun_SimpleStringFlags() has created a module and a dictionary,

89

https://github.com/python/cpython/blob/v3.9.0b1/Modules/main.c#L226
https://github.com/python/cpython/blob/v3.9.0b1/Objects/unicodeobject.c#L2183
https://github.com/python/cpython/blob/v3.9.0b1/Objects/unicodeobject.c#L2183
https://github.com/python/cpython/blob/v3.9.0b1/Modules/main.c#L226
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463

Building a Module From Input

it calls PyRun_StringFlags(). PyRun_SimpleStringFlags() creates a fake
filename and then calls the Python parser to create an AST from the
string and return a module.

Python modules are the data structure used to hand parsed
code onto the compiler. The C structure for a Python module
is mod_ty and is defined in Include» Python-ast.h.

Input with a Local Module

Another way to execute Python commands is by using the -m option
with the name of a module. A typical example is python -m unittest to
run the unittest module in the standard library.

Being able to execute modules as scripts was initially proposed in
PEP 338. The standard for explicit relative imports was defined in
PEP366.

The use of the “-m” flag implies that within the module package, you
want to execute whatever is inside the entry point (__main__). It also
implies that you want to search sys.path for the named module.

This search mechanism in the import library (importlib) is why you
don’t need to remember where the unittest module is stored on your
filesystem.

CPython imports a standard library module, runpy and executes it
using PyoObject_call(). The import is done using the C API function
PyImport_ImportModule(), found within the Python» import.c file.

90

https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1054
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://www.python.org/dev/peps/pep-0338
https://www.python.org/dev/peps/pep-0366
https://realpython.com/python-main-function/
https://github.com/python/cpython/blob/v3.9.0b1/Objects/call.c#L289
https://github.com/python/cpython/blob/v3.9.0b1/Python/import.c#L1477

Building a Module From Input

In Python, if you had an object and wanted to get an attribute,
you could call getattr(). In the C API, this call is pyobject_-
GetAttrString(), which is found in objects » object.c. If you
wanted to run a callable, you would give it parentheses, or you
can run the __call__() property on any Python object. The
__call__() method is implemented inside Objects»object.c:

>>> my_str = "hello world!"
>>> my_str.upper()

'"HELLO WORLD!'

>>> my_str.upper.__call_ ()

'"HELLO WORLD!'

The runpy module is written in pure Python and located in Lib »
runpy.py.

Executing python -m <module> is equivalent to running python -m runpy
<module>. The runpy module was created to abstract the process of lo-
cating and executing modules on an Operating System.

runpy does a few things to run the target module:

« Calls __import__() for the module name you provided
» Sets __name__ (the module name) to a namespace called __main__

+ Executes the module within the __main__ namespace

The runpy module also supports executing directories and zip files.

Input From a Script File or Standard Input

If the first argument to python was a filename, such as python test.py,
then CPython will open a filehandle, and pass the handle to PyRun_-
SimpleFileExFlags(), inside Python» pythonrun.c.

There are three paths this function can take:

o1

https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L786
https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L786
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L382
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L382

Building a Module From Input

1. If the file path is a .pyc ﬁle, it will call run_pye_file().
2. If the file path is a script file (.py) it will run PyRun_FileExFlags().

3. If the file path is stdin because the user ran command | python, then
treat stdin as a filehandle and run PyRun_FileExFlags().

For stdin and basic script files, CPython will pass the filehandle to
PyRun_FileExFlags() located in the Python» pythonrun. c file.

The purpose OnyRun_FileExFlags @) is similar to PyRun_SimpleStringFlags().
CPython will load the filehandle into PyParser_ASTFromFileObject ().

Identical to PyRun_SimpleStringFlags(), ONce PyRun_FileExFlags() has
created a Python module from the file, it sent it to run_mod() to be
executed.

Input From Compiled Bytecode

If the user runs python with a path to a .pyc file, then instead of loading
the file as a plain text file and parsing it, CPython will assume that the
.pyc file contains a code object written to disk.

In PyRun_SimpleFileExFlags() there is a clause for the user providing a
file path to a .pyc file.

The run_pyc_file() function inside Python » pythonrun.c marshals the
code object from the .pyc file by using a filehandle. The code object
data structure on the disk is the CPython compiler’s way to cache
compiled code so that it doesn’t need to parse it every time the script
is called.

Marshaling is a term for copying the contents of a file into
memory and converting them to a specific data structure.

Once the code object has been marshaled to memory, it is sent to run_-
eval_code_obj(), which calls Python» ceval.c to execute the code.

02

https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1205
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1442
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1186
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L382
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1205
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1155
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1155

Conclusion

Conclusion

In this chapter, you've uncovered how Python’s many configura-
tion options are loaded and how code is input into the interpreter.
Python’s flexibility of input makes it a great tool for a range of
applications, such as:

« Command-line utilities
» Long-running network applications, like web servers

+ Short, composable scripts

Python’s ability to set configuration properties in many ways causes
complexity. For example, if you tested a Python application on Python
3.8, and it executed correctly. But in a different environment, it failed,
you need to understand what settings were different in that environ-
ment. This means you’d need to inspect environment variables, run-
time flags, and even the sys config properties. The compile-time prop-
erties found in sys config can be different amongst distributions of
Python. For example, Python 3.8 downloaded from python.org for
macOS has different default values than the Python 3.8 distribution
found on Homebrew or the one found on the Anaconda distribution.

All of these input methods have an output of a Python module. In
the next chapter, you will uncover how modules are created from the
input.

Leave feedback on this section »

93

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiKj9vfXN2fTJLIUZzaVMlSiR5bWBKdHYkX3JSUCE3cVBjbU9pO2doUiIsInQiOiJjaGFwdGVycy8yMC1jb25maWd1cmF0aW9uLWFuZC1pbnB1dC5tZCAoN2JjMzc1Y2JmY2U0ZjQ3NCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi83YmMzNzVjYmZjZTRmNDc0ZDAzZWViM2UwMTI4MTkwYTExMmFiMTZhL2NoYXB0ZXJzLzIwLWNvbmZpZ3VyYXRpb24tYW5kLWlucHV0Lm1kIn0=

Lexing and Parsing with
Syntax Trees

In the previous chapter, you explored how Python text is read from
various sources. It needs to be converted into a structure that the com-
piler can use.

This stage is parsing:

File Input

I0 Stream

Tnput Reader > Parser > Compiler

String Input

In this chapter, you will explore how the text is parsed into logical
structures that can be compiled.

There are two structures used to parse code in CPython, the Concrete
Syntax Tree and the Abstract Syntax Tree.

94

Concrete Syntax Tree Generation

Text csT AST
Reader |—> Lexer —_— Parser —> | Compiler

The two parts of the parsing process are:

1. Creating a Concrete Syntax Tree using a Parser-Tokenizer
(Lexer)

2. Creating an Abstract Syntax Tree from a Concrete Syntax Tree us-
ing a Parser

These two steps are common paradigms used in many programming
languages.

Concrete Syntax Tree Generation

The Concrete Syntax Tree (CST) (or sometimes known as a parse-
tree), is an ordered, rooted tree structure that represents code in a
context-free grammar.

The CST is created from a tokenizer and parser. You explored the
parser-generator in the chapter on The Python Language and
Grammar. The output from the parser-generator is a Deterministic
Finite Automaton (DFA) parsing table, describing the possible states
of context-free grammar.

The original author of Python, Guido van Rossum is currently
working on a contextual-grammar as an alternative to LL(1), the
grammar used in CPython. The alternative is called Parser Ex-
pression Grammar, or PEG.

This will be available as an experimental feature in Python 3.9

95

Concrete Syntax Tree Generation

In the grammar chapter, you explored some expression types, such as
if_stmt and with_stmt. The Concrete Syntax Tree represents grammar
symbols (like if_stmt) as branches, with tokens and terminals as leaf
nodes.

For example, the arithmetic expression “a + 1” becomes the CST:

arith_expr
T
term PLUS term
fac‘tor' ‘J—’ fac‘tor
pov‘ver pOM‘ler‘
atomprr‘ atom_‘expr‘
at‘om ath
NAME ‘a’ NUMBER 1

An arithmetic expression is represented here with three major
branches, the left, operator, and right.

The parser iterates through tokens from an input stream and matches
it against the possible states and tokens in the grammar to build a CST.

In Grammar » Grammar, all of the symbols shown in the CST above are de-
fined:

arith_expr: term (('+'|'-') term)*
term: factor (('*'|'@'|'/'|'%'|'//') factor)*
factor: ('+'|'-"|'~"') factor | power

power: atom_expr ['**' factor]

atom_expr: [AWAIT] atom trailer*

atom: ('(' [yield_expr|testlist_comp] ')' |
'[" [testlist_comp] ']" |

96

Concrete Syntax Tree Generation

'{"' [dictorsetmaker] '}' |

NAME | NUMBER | STRING+ | '..."' | 'None' | 'True' | 'False')

In Grammar » Tokens, the tokens are also defined:

ENDMARKER
NAME
NUMBER
STRING
NEWLINE
INDENT
DEDENT

LPAR G
RPAR !
LSQB '
RSQB 1
COLON gt
COMMA P
SEMI Vgt
PLUS '+
MINUS U=t
STAR vt

A NAME token represents the name of a variable, function, class, or mod-
ule. Python’s syntax doesn’t allow a NAME to be:

+ One of the reserved keywords, like await and async
« A numeric or other literal type

For example, if you tried to define a function named 1, Python would
raise a SyntaxError:

>>> def 1():
File "<stdin>", line 1
def 1():

A

SyntaxError: invalid syntax

97

The CPython Parser-Tokenizer

A NUMBER is a particular token type to represent one of Python’s many
numeric values. Python has a special grammar for numbers, includ-
ing:

+ Octal values, e.g., 0020

+ Hexadecimal values, e.g., 0x10

« Binary values, e.g., 0b10000

« Complex numbers, e.g., 10j

 Floating-point numbers, e.g., 1.01

+ Underscores as commas, €.g., 1_000_000

You can see compiled symbols and tokens using the symbol and token
modules in Python:

$./python
>>> import symbol

>>> dir(symbol)

['_builtins__', '__cached__', '_doc__', '__file__', '__loader__',
'__name__', '__package_', '_spec__', '_main', '_name', '_value',
'and_expr', 'and_test', 'annassign', 'arglist', 'argument',
'arith_expr', 'assert_stmt', 'async_funcdef', 'async_stmt',
'atom', 'atom_expr',

>>> import token

>>> dir(token)

['AMPER', 'AMPEREQUAL', 'AT', 'ATEQUAL', 'CIRCUMFLEX',
'CIRCUMFLEXEQUAL', 'COLON', 'COMMA', 'COMMENT', 'DEDENT', 'DOT',
'DOUBLESLASH', 'DOUBLESLASHEQUAL', 'DOUBLESTAR', 'DOUBLESTAREQUAL',

The CPython Parser-Tokenizer

Programming languages have different implementations for the
Lexer. Some use a Lexer-Generator, as a complement to the
Parser-Generator.

98

The CPython Parser-Tokenizer

CPython has a Parser/Tokenizer module, written in C.

Related Source Files

The source files relating to the parser-tokenizer are:

File Purpose

Python » pythonrun.c Executes the parser and the compiler from an input

Parser » parsetok.c The Parser and Tokenizer implementation

Parser » tokenizer.c Tokenizer implementation

Parser » tokenizer.h Header file for the Tokenizer Implementation,
describes data models like token state

Include) token.h Declaration of token types, generated by Tools»
scripts? generate_token.py

Include» node.h Parse tree node interface and macros for the
tokenizer

Inputting Data Into the Parser From a File

The entry point for the parser-tokenizer, pyParser_ASTFromFileObject (),
takes a file handle, compiler flags and a Pyarena instance and converts
the file object into a module. There are two steps:

1. Convert to a CST using PyParser_ParseFileObject ()

2. Convert into a AST/module, using the AST function pyAST -
FromNodeObject ()

The PyParser_parseFileObject () function has two important tasks:

1. Instantiate a tokenizer state tok_state using PyTokenizer_FromFile()

2. Convert the tokens into a CST (a list of node) using parsetok()

Parser-Tokenizer Flow

The parser-tokenizer takes text input and executes the tokenizer and
parser in a loop until the cursor is at the end of the text (or a syntax
error occurred).

99

https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1442
https://github.com/python/cpython/blob/v3.9.0b1/Parser/parsetok.c#L165
https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L741
https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L741
https://github.com/python/cpython/blob/v3.9.0b1/Parser/parsetok.c#L165
https://github.com/python/cpython/blob/v3.9.0b1/Parser/tokenizer.c#L779
https://github.com/python/cpython/blob/v3.9.0b1/Parser/parsetok.c#L216

The CPython Parser-Tokenizer

Before execution, the parser-tokenizer establishes tok_state, a tempo-
rary data structure to store all state used by the tokenizer. The tok-
enizer state contains information such as the current cursor position
and line.

The parser-tokenizer calls tok_get () to get the next token. The parser-
tokenizer passes the resulting token ID to the parser, which uses the
parser-generator DFA to create a node on the Concrete Syntax Tree.

tok_get () is one of the most complex functions in the whole CPython
codebase. It has over 640 lines and includes decades of heritage with
edge cases, new language features, and syntax.

The process of calling the tokenizer and parser in a loop can be shown
as:

Text

Init Tokenizer
State

|
|
o |
Q |
I e
n 8.\
(L x‘
S o !
[Get next token | 3 1
= N
O‘ g\
~
A el it -1 %P i
s
- |
N Parse Token
° o
I}
S Y 5!
| Node 2
| 3 S !
|
: Add node |
\ to CST |
‘ l
| |
e CST |- ----- ‘

The CST root node returned by PyParser_parseFileObject () is going to be
essential for the next stage, converting a CST into an Abstract-Syntax-
Tree (AST). The node type is defined in Include» node.h as:

typedef struct _node {
short n_type;

char *n_str;

100

https://github.com/python/cpython/blob/v3.9.0b1/Parser/tokenizer.c#L1178
https://github.com/python/cpython/blob/v3.9.0b1/Parser/parsetok.c#L165

The CPython Parser-Tokenizer

int n_lineno;

int n_col_offset;

int n_nchildren;

struct _node *n_child;

int n_end_lineno;

int n_end_col_offset;
} node;

Since the CST is a tree of syntax, token IDs, and symbols, it would be
difficult for the compiler to make quick decisions based on the Python
language.

Before you jump into the AST, there is a way to access the output from
the parser stage. CPython has a standard library module parser, which
exposes the C functions with a Python API.

The output will be in the numeric form, using the token and symbol
numbers generated by the make regen-grammar stage, stored in Include»
token.h:

>>> from pprint import pprint
>>> import parser
>>> st = parser.expr('a + 1')

>>> pprint(parser.st2list(st))

[258,
13325
[306,
[310,
[311,
[312,
[313,
[316,
[317,
[318,
[319,
[320,
[321, [322, [323, [324, [325, [1, 'a']]lll],
[14, "+'],

[321, [322, [323, [324, [325, [2, '1']11111111111111111,

101

The CPython Parser-Tokenizer

[4, ''1,
[o, ''11

To make it easier to understand, you can take all the numbers in the
symbol and token modules, put them into a dictionary and recursively
replace the values in the output of parser.st21ist() with the names of
the tokens:

cpython-book-samples» 21» lex.py

import symbol
import token

import parser

def lex(expression):
symbols = {v: k for k, v in symbol.__dict__.items()
if isinstance(v, int)}
tokens = {v: k for k, v in token.__dict__.items()
if isinstance(v, int)}
lexicon = {**symbols, **tokens}
st = parser.expr(expression)

st_list = parser.st2list(st)

def replace(l: list):
r=1[1]
for i in 1:
if isinstance(i, list):
r.append(replace(i))
else:
if i in lexicon:
r.append(lexicon[i])
else:
r.append(i)

return r
return replace(st_list)
You can run lex() with a simple expression, like a + 1 to see how this

is represented as a parser-tree:

102

Abstract Syntax Trees

>>> from pprint import pprint

>>> pprint(lex('a + 1"))

['eval_input',
["testlist',
['"test',
['or_test',
['and_test"',
['not_test"',
['comparison',
['expr',
['xor_expr',
["and_expr',
['shift_expr',
["arith_expr',

['"term',

['factor', ['power', ['atom_expr', ['atom',

['NAME", 'a']]11111,
['PLUS', "+'],
['"term',

['factor',

['power', ['atom_expr',

'1'11111111111111111,
['NEWLINE', ''I,
['ENDMARKER', ''1]

['"atom',

["NUMBER',

In the output, you can see the symbols in lowercase, such as 'arith_-
expr' and the tokens in uppercase, such as 'NUMBER'.

Abstract Syntax Trees

The next stage in the CPython interpreter is to convert the CST gener-
ated by the parser into something more logical that can be executed.

Concrete Syntax Trees are a very literal representation of the text in
the code file. At this stage, it could be a number of languages. Python’s
basic grammatical structure has been interpreted, but you could not
use the CST to establish functions, scopes, loops or any of the core

103

Abstract Syntax Trees

Python language features.

Before code is compiled, the CST needs to be converted into a higher-
level structure that represents actual Python constructs. The struc-
ture is a representation of the CST, called an Abstract Syntax Tree
(AST).

As an example, a binary operation in the AST is called a Binop and is
defined as a type of expression. It has three components:

+ left - The left-hand part of the operation
+ op - The operator, e.g., +, -, *

« right - The right-hand part of the expression

The AST for a + 1 can be represented in an AST as:

Expr

BinOp
‘ Left ‘ Op ‘ ‘ Right‘

[
‘ Name ‘ ‘ Add ‘ ‘ Num ‘

ASTs are produced by the CPython parser process, but you can also
generate them from Python code using the ast module in the Standard
Library.

Before diving into the implementation of the AST, it would be useful
to understand what an AST looks like for a simple piece of Python
code.

Related Source Files

The source files relating to Abstract Syntax Trees are:

104

Abstract Syntax Trees

File Purpose

Include» Python-ast.h Declaration of AST Node types, generated by Parser»
asdl_c.py

Parser » Python.asdl Alist of AST Node Types and Properties in a
domain-specific-language, ASDL 5

Python» ast.c The AST implementation

Using Instaviz to View Abstract Syntax Trees

Instaviz is a Python package written for this book. It displays ASTs
and compiled code in a web interface.

To install instaviz, install the instaviz package from pip:
$ pip install instaviz

Then, open up a REPL by running python at the command line with
no arguments. The function instaviz.show() takes a single argument
of type code object.

You will cover code objects in the next chapter. For this example,
define a function and use the name of the function as the argument
value:

$ python
>>> import instaviz

>>> def example():

a=1
b=a+1
return b

>>> instaviz.show(example)

You'll see a notification on the command-line that a web server has
started on port 8080. If you were using that port for something else,
you could change it by calling instaviz.show(example, port=9090) or an-
other port number.

In the web browser, you can see the detailed breakdown of your func-
tion:

105

Abstract Syntax Trees

Code Object Properties

Field
co_argcount
co_cellvars
co_code
co_consts
co_filename
co_firstlineno
co_freevars
co_kwonlyargcount
co_lnotab
co_name
co_names
co_nlocals
co_stacksize
co_varnames
4def foo():
5 a=1

6 b=a+1
7 return b

Value

0

0
64017d007¢00640117007d017c015300
(None, 1)

test.py

4

0

0
b'\x00\x01\x04\x01\x08\x01"
foo

0

2

2

(a','d)

Graph direction: | Up-Down = Down-Up | Left-Right =Right-Left

The bottom left graph is the function you declared in REPL, repre-
sented as an Abstract Syntax Tree. Each node in the tree is an AST
type. They are found in the ast module, and all inherit from _ast.AST.

Some of the nodes have properties that link them to child nodes, un-
like the CST, which has a generic child node property.

For example, if you click on the Assign node in the center, this links
tothelineb = a + 1:

106

Abstract Syntax Trees

<;A\s:3|gr\1/\ / Return O Module>
\
& © & @© @
\
s e hs m
G

The assign node has two properties:
1. targetsis alist of names to assign. Itis alist because you can assign
to multiple variables with a single expression using unpacking
2. value is the value to assign, which in this case is a Binop statement,

a + 1.

If you click on the Binop statement, it shows the properties of rele-
vance:

+ left: the node to the left of the operator
« op: the operator, in this case, an Add node (+) for addition

+ right: the node to the right of the operator

107

Abstract Syntax Trees

Node Properties

Select a node on the AST graph to see properties.
json
targets
0 object
id:'db' string

ctx

value
left
id:'a'

ctx

op
right

n:l

lineno : 3

AST Compilation

Compiling an AST in Cis not a straightforward task. The Python» ast.c
module has over 5000 lines of code.

There are a few entry points, forming part of the AST’s public API. The
AST API takes a node tree (CST), a filename, the compiler flags, and a
memory storage area. The result type is mod_ty representing a Python
module, defined in Include» Python-ast.h.

mod_ty is a container structure for one of the five module types in
Python:

1. Module

2. Interactive

3. Expression

4. FunctionType

5. Suite

The module types are all listed in Parser» Python.asdl. You will see the
module types, statement types, expression types, operators, and com-

prehensions all defined in this file. The names of the types in Parser
» Python.asdl relate to the classes generated by the AST and the same

108

https://github.com/python/cpython/blob/v3.9.0b1/Include/Python#L14

Abstract Syntax Trees

classes named in the ast standard module library:

-- ASDL's 5 builtin types are:

-- identifier, int, string, object, constant

module Python
{
mod = Module(stmt* body, type_ignore *type_ignores)
| Interactive(stmt* body)
| Expression(expr body)

| FunctionType(expr* argtypes, expr returns)

The AST module imports Include» Python-ast.h, a file created automat-
ically from Parser » Python.asdl when regenerating grammar. The pa-
rameters and names in Include» Python-ast.h correlate directly to those
speciﬁed in Parser» Python.asdl.

The mod_ty type is generated into Include» Python-ast.h from the Module
definition in Parser» Python.asdl:

enum _mod_kind {Module_kind=1, Interactive_kind=2, Expression_kind=3,
FunctionType_kind=4, Suite_kind=5};
struct _mod {
enum _mod_kind kind;
union {
struct {
asdl_seq *body;
asdl_seq *type_ignores;
} Module;

struct {
asdl_seq *body;

} Interactive;
struct {

expr_ty body;

} Expression;

109

Abstract Syntax Trees

struct {
asdl_seq *argtypes;
expr_ty returns;

} FunctionType;

struct {
asdl_seq *body;
} Suite;

} v
1

The C header file and structures are there so that the Python» ast.c pro-
gram can quickly generate the structures with pointers to the relevant
data.

The AST entry-point, PyAST_FromNodeObject(), is essentially a switch
statement around the result from TYPE(n). TYPE() is a macro used by
the AST to determine what type a node in the concrete syntax tree is.
The result of TyPE() will be either a symbol or token type. By starting
at the root node, it can only be one of the module types defined as

Module, Interactive, Expression, FunctionType.
+ For file_input, the type should be a Module
» For eval_input, such as from a REPL, the type should be an

Expression

For each type of statement, there is a corresponding ast_for_xxx C
function in python» ast.c, which will look at the CST nodes to complete
the properties for that statement.

One of the simpler examples is the power expression, i.e., 2**4 is 2 to
the power of 4.

The ast_for_power() function will return a Binop (binary operation)
with the operator as pow (power), the left hand of e (2), and the right
hand of £ (4):

110

https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L741
https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L2694

Abstract Syntax Trees

Python?» ast.c line 2604

static expr_ty

ast_for_power(struct compiling *c, const node *n)

{
/* power: atom trailer* ('#**' factor)*
*/
expr_ty e;
REQ(n, power);
e = ast_for_atom_expr(c, CHILD(n, 0));
if (le)
return NULL;
if (NCH(n) == 1)
return e;
if (TYPE(CHILD(n, NCH(n) - 1)) == factor) {
expr_ty f = ast_for_expr(c, CHILD(n, NCH(n) - 1));
if (!1f)
return NULL;
e = BinOp(e, Pow, f, LINENO(n), n->n_col_offset,
n->n_end_lineno, n->n_end_col_offset, c->c_arena);
3
return e;
3

You can see the result of this if you send a short function to the instaviz
module:

>>> def foo():
P ELY]
>>> import instaviz

>>> instaviz.show(foo)

111

Abstract Syntax Trees

BinOp

Pow

In the UI, you can also see the corresponding properties:

Node Properties
Select a node on the AST graph to see properties.
json object
value object
left object
n: 2 number
op object
right object
n:4 number
lineno : 2 number

In summary, each statement type and expression has a corresponding
ast_for_+() function to create it. The arguments are defined in parser
» Python.asdl and exposed via the ast module in the standard library.
If an expression or statement has children, then it will call the corre-
sponding ast_for_* child function in a depth-first traversal.

112

Important Terms to Remember

Important Terms to Remember
« Concrete Syntax Tree CST A non-contextual tree representa-
tion of tokens and symbols
« Parse-Tree Another term for Concrete Syntax Tree

« Abstract Syntax Tree A contextual tree representation of
Python’s grammar and statements

« Token A type of symbol, e.g., “+”

» Tokenizer The process of converting text into tokens

« Parser A generic term of the process in converting text into a CST
or AST

Example: Adding an Almost Equal
Comparison Operator

To bring all this together, you can add a new piece of syntax to the
Python language and recompile CPython to understand it.

A comparison expression will compare the values of two or more
values. For example,

>>>a=1
>>> b =2
>>> a ==

False

The operator used in the comparison expression is called the com-
parison operator. Here are some comparison operators you may
recognize:

 <Less than

> Greater than

« == Equal to

« 1= Not equal to

113

Example: Adding an Almost Equal Comparison Operator

See Also

Rich comparisons in the data model were proposed for Python
2.1in PEP207. The PEP contains context, history, and justifica-
tion for custom Python types to implement comparison meth-
ods.

We will now add another comparison operator, called almost equal,
represented by ~= with the following behaviors:

« If you compare a float and an integer, it will cast the float into an
integer and compare the result.
« If you compare two integers, it will use the normal equality opera-

tors.

Once implemented, this new operator should return the following in
a REPL:

>>> 1 ~= 1
True

>> 1 ~=1.0
True

>>> 1 ~= 1.01
True
>>> 1 ~= 1.9

False

To add the new operator, you first need to update the CPython gram-
mar.

In Grammar » Grammar, the comparison operators are defined as a symbol,

comp_op:

comp_op: TS T==" >=" | '<="|"<>" ["I="|"in" | 'not"

'in'|'is'|'is' 'not'

Change this line to include the ~= comparison operator in between
"1-'1and |'in':

114

https://www.python.org/dev/peps/pep-0207/

Example: Adding an Almost Equal Comparison Operator

comp_op: T ST T== =" k=" "> ["= | "~="|"in" | 'noOt"

'in'|'is'|'is' 'not’

To update the grammar and tokens in C, you now have to regenerate
the headers:

On macOS/Linux:

$ make regen-all

On Windows, within the pcBuild directory:

> build.bat --regen

The tokenizer will be automatically updated by these steps. For exam-
ple, open the Parser/token.c source and see how a case in the PyToken_-
TwoChars () function has changed:

v

case '~':
switch (c2) {
case '=': return ALMOSTEQUAL;
}

break;

If you recompile CPython at this stage and open a REPL, you can see
that the tokenizer can successfully recognise the token, but the AST
does not know how to handle it:

$./python
>>> 1 ~= 2

SystemError: invalid comp_op: ~=

This exception is raised by ast_for_comp_op() inside Python » ast.c be-
cause it does not recognise AIMOSTEQUAL as a valid operator for a com-
parison statement.

Compare is an expression type defined in Parser» Python.asdl, it has prop-
erties for the left expression, alist of operators, ops, and a list of expres-
sions to compare to, comparators:

115

https://github.com/python/cpython/blob/v3.9.0b1/Parser/token.c#L109
https://github.com/python/cpython/blob/v3.9.0b1/Parser/token.c#L109
https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L1199

Example: Adding an Almost Equal Comparison Operator

| Compare(expr left, cmpop* ops, expr* comparators)
Inside the compare definition is a reference to the cmpop enumeration:
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotlIn

This is a list of possible AST leaf nodes that can act as comparison
operators. Ours is missing and needs to be added. Update the list of
options to include a new type, A1E (Almost Equal):

cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn | AlE
Next, regenerate the AST again to update the AST C header files:

$ make regen-ast

This will have updated the comparison operator, _cmpop, enum inside
Include/Python-ast.h to include the AlE option:

typedef enum _cmpop { Eq=1, NotEg=2, Lt=3, LtE=4, Gt=5, GtE=6, Is=7,
IsNot=8, In=9, NotIn=10, AlE=11 } cmpop_ty;

The AST has no knowledge that the ALMOSTEQUAL token is equivalent to

the A1E comparison operator. So you need to update the C code for the
AST.

Navigate to ast_for_comp_op() in Python» ast.c. Find the switch state-
ment for the operator tokens. This returns one of the _cmpop enumer-
ation values.

Add two lines, to catch the ALMOSTEQUAL token and return the AlE com-
parison operator:

Python» ast.c line 1199

static cmpop_ty
ast_for_comp_op(struct compiling *c, const node *n)
{

/% comp_op: '<'['>"['=="[">="["'<="["I="]"in"| 'not’' 'in'|'is'

116

https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L1199

Example: Adding an Almost Equal Comparison Operator

REQ(n, comp_op);
if (NCH(n) == 1) {
n = CHILD(n, 0);
switch (TYPE(n)) {
case LESS:
return Lt;
case GREATER:
return Gt;
case AIMOSTEQUAL: // Add this line to catch the token
return AlE; // And this one to return the AST node

Now recompile CPython and open up a REPL to test the command:

>>a=1
>>> b = 1.0
>>>a~=b
True

At this stage, the tokenizer and the AST can parse this code, but the
compiler won’t know how to handle the operator. To test the AST rep-
resentation, use the ast.parse() function and explore the first operator
in the expression:

>>> import ast

>>> m = ast.parse('l ~= 2")

>>> m.body[0].value.ops[0]
<_ast.AlE object at 0x10a8d7ee0>

This is an instance of our A1E comparison operator type, so the AST
has correctly parsed the code.

In the next chapter, you will learn about how the CPython compiler
works, and revisit the almost-equal operator to build out its behavior.

117

Conclusion

Conclusion

CPython’s versatility and low-level execution API make it the ideal
candidate for an embedded scripting engine. You will see CPython
used in many Ul applications, such as Game Design, 3D graphics, and
system automation.

The interpreter process is flexible and efficient, and now you have an
understanding of how it works you’re ready to understand the com-
piler.

Leave feedback on this section »

118

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiZDZVU2p5eXNWQjVqZzsjMG1AcUtnVj9gSjRuODwxYHhGcn1eYWxrPSIsInQiOiJjaGFwdGVycy8yMS1sZXhpbmctYW5kLXBhcnNpbmcubWQgKDE4YmJjMjg5ZDQ5MGRkMzMpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvMThiYmMyODlkNDkwZGQzM2I5YWJiNTYyYTcwMzhhODdmNDI2Mjk0MC9jaGFwdGVycy8yMS1sZXhpbmctYW5kLXBhcnNpbmcubWQifQ==

The Compiler

After completing the task of parsing, the interpreter has an AST with
the operations, functions, classes, and namespaces of the Python code.
The job of the compiler is to turn the AST into instructions the CPU
could understand.

File Input

I0 Stream

Tnput Reader > Parser > Compiler

String Input

This compilation task is split into two components:

1. Compiler - Traverse the AST and create a control-flow-graph
(CFG), which represents the logical sequence for execution

2. Assembler - Convert the nodes in the CFG to sequential, exe-
cutable statements, known as bytecode

119

AST CFG

Parser |——>| Compiler | — > | Assembler | ——>

Bytecode
Execution

Throughout this chapter, it is important to remember that the
unit of compilation for CPython is a module. The compilation

steps and process indicated in this chapter will happen once for
each module in your project.

In this chapter, you will focus on the compilation of an AST module

into a code object:

PyRun_FileExFlags()

File Pointer

‘ PyParser_ASTFromFileObject() ‘

AST Module

i

‘ PyAST_CompileObject()

i

Code Object

‘ run_eval_code()

Return Value

i

The PyAST_CompileObject() function is the main entry point to the
CPython compiler. It takes a Python AST module as its primary
argument, along with the name of the file, the globals, locals, and the
PyArena all created earlier in the interpreter process.

120

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L318

Important Terms

We're starting to get into the guts of the CPython compiler now,
with decades of development and Computer Science theory be-
hind it. Don’t be put off by the size of it. Once you break down
the compiler into logical steps, it is easier to understand.

Related Source Files

The source files relating to the compiler are:

File Purpose

Python» pythonrun.c Executes the parser and the compiler from
an input

Python» compile.c The compiler implementation

Include» compile.h The compiler API and type definitions

Important Terms

This chapter refers to many terms that may be new to you:

The container type is the compiler state, which contains one
symbol table

The Symbol Table contains many variable names and can op-
tionally contain child symbol tables

The compiler type contains many compiler units

Each compiler unit can contain many names, variable names, con-
stants and cell variables

A compiler unit contains many basic frame blocks

Basic frame blocks many bytecode instructions

The compiler state container and its components can be shown as:

121

Instantiating a Compiler

Compiler State

Symbol Table

Constant

h=——

Symtable Entry

Variable Name

fffffffff

,,,,,,,,,

Name

Compiler Unit

Basic Frame Block

Variable Name

i

Cellvar

Instruction

Instantiating a Compiler

Before the compiler starts, a global compiler state is created. The com-
piler state, (compiler), struct contains properties used by the compiler
to such as compiler flags, the stack, and the pyarena. It also contains
links to other data structures, like the symbol table.

Field Type Purpose

c_filename PyObject * (str) A string of the filename being
compiled

c_st symtable * The compiler’s symbol table

c_future PyFutureFeatures * A pointer to module’s __future__

c_flags PyCompilerFlags * Inherited compiler flags (See
compiler flags)

c_optimize int Optimization level

c_interactive int 1if in interactive mode

c_nestlevel int Current nesting level

c_do_not_emit_~ int The compiler won’t emit any

bytecode

c_const_cache

PyObject * (dict)

bytecode if this value is different
from zero. This setting can be used
to temporarily visit nodes without
emitting bytecode to check only
errors

Python dict holding all constants,
including names tuple

122

Future Flags and Compiler Flags

Field Type Purpose

u compiler_unit* Compiler state for current block

c_stack PyObject * (list) Python list holding compiler_unit
ptrs

c_arena PyArena * A pointer to the memory allocation

arena

Inside PyAST_CompileObject(), the compiler state is instantiated:

 If the module does not have a docstring (__doc__) property, an

empty one is created here, as with the __annotations__ property.

PyAST_CompileObject() sets the filename in the compiler state to the
value passed. This function is later used for stack traces and ex-
ception handling.

The memory allocation arena for the compiler is set to the one used
by the interpreter. See the Custom Memory Allocators section in
the Memory Management chapter for more information on mem-
ory allocators.

« Any future flags are configured before the code is compiled.

Future Flags and Compiler Flags

Before the compiler runs, there are two types of flags to toggle the
features inside the compiler. These come from two places:

1.

The configuration state, which contains environment variables
and command-line flags. See the chapter on Configuration State.

. Theuse of __future__statements inside the source code of the mod-

ule.

Future Flags

Future flags are required because of the syntax or features in that spe-
cific module. For example, Python 3.7 introduced delayed evaluation
of type hints through the annotations future flag:

123

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L318
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L318

Future Flags and Compiler Flags

from __future__ import annotations

The code after this statement might use unresolved type hints, so the
__future__ statement is required. Otherwise, the module wouldn’t im-

port.

Reference of Future Flags in 3.9.0b1

As of 3.9.0b1, all but two of the future flags are mandatory and enabled

automatically:
Mandatory
Import Since Purpose
nested_- 2.2 Statically nested scopes (PEP227)
scopes
generators 2.3 Simple generators (PEP255)
division 3.0 Use the “true” division operator (PEP238)
absolute_- 3.0 Enable absolute imports (PEP328)
import
with_- 2.6 Enable the with statement (PEP343)
statement
print_- 3.0 Make print a function (PEP3105)
function
unicode_- 3.0 Make str literals Unicode instead of bytes (PEP3112)
literals
barry_as_- N/A Easter Egg (PEP401)
FLUFL
generator_- 3.7 Enable StopIteration inside generators (PEP479)
stop
annotations 4.0 Postponed evaluation of type annotations (PEP563)

Many of the __future__ flags were used to aid portability be-
tween Python 2 and 3. As Python 4.0 approaches, you may see
more future flags added.

124

https://www.python.org/dev/peps/pep-0227
https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-3105
https://www.python.org/dev/peps/pep-3112
https://www.python.org/dev/peps/pep-0401
https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0563

Symbol Tables

Compiler Flags

The other compiler flags are specific to the environment, so they might
change the way the code executes or the way the compiler runs, but
they shouldn’t link to the source in the same way that __future__ state-
ments do.

One example of a compiler flag would be the -0 flag for optimizing
the use of assert statements. This flag disables any assert statements,
which may have been put in the code for debugging purposes. It can
also be enabled with the PYTHONOPTIMIZE=1 environment variable set-
ting.

Symbol Tables

Before the code is compiled, a symbol table is created by the
PySymtable_BuildObject () API.

The purpose of the symbol table is to provide a list of namespaces,
globals, and locals for the compiler to use for referencing and resolv-
ing scopes.

Related Source Files

The source files relating to the symbol table are:

File Purpose

Python » symtable.c The symbol table implementation

Include» symtable.h The symbol table API definition and type
definitions

Lib» symtable.py The symtable standard library module

Symbol Table Data Structure

The symtable structure should be one symtable instance for the com-
piler, so namespacing becomes essential.

125

https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://realpython.com/python-debugging-pdb/
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L261

Symbol Tables

For example, if you create a method called resolve_names() in one class
and declare another method with the same name in another class. In-
side the module, you want to be sure which one is called.

The symtable serves this purpose, as well as ensuring that variables
declared within a narrow scope don’t automatically become globals.

The symbol table struct, (symtable), has the following fields:

Field Type Purpose
st_filename PyObject * (str) Name of file being compiled
st_cur _symtable_entry Current symbol table entry
%
st_top _symtable_entry Symbol table entry for the module
st_blocks PyObject * (dict) Map of AST node addresses to symbol table
entries
st_stack Pyobject * (list) Stack of namespace info
st_global PyoObject * (dict) Reference to the symbols in st_top
(st_top—>ste_symbols)
st_nblocks int Number of blocks used
st_private PyObject * (str) Name of current class or NULL
st_future PyFutureFeatures ~ Module’s future features that affect the
* symbol table
recursion_- int Current recursion depth
depth
recursion_- int Recursion limit before RecursionError is
limit raised. Set by Py_SetRecursionLimit ()

Using the symtable Standard Library Module

Some of the symbol table C API is exposed in Python via the symtable
module in the standard library.

Using another module called tabulate (available on PyPi), you can cre-
ate a script to print a symbol table. Symbol tables can be nested, so if
a module contains a function or class, that will have a symbol table.

Create a script called symviz.py with a recursive show() function:

126

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L799
https://docs.python.org/3/library/symtable.html
https://docs.python.org/3/library/symtable.html
https://pypi.org/project/tabulate/

Symbol Tables

cpython-book-samples? 30 » symviz.py

import tabulate
import symtable
code = """

def calc_pow(a, b):

return a ** b
a=1
b = 2

¢ = calc_pow(a,b)

_st = symtable.symtable(code, "example.py", "exec")

def show(table):

print("Symtable {0} ({1})".format(table.get_name(),

print(

tabulate.tabulate(

[

table.get_type()))

(
symbol.get_name(),
symbol.is_global(),
symbol.is_local(),
symbol.get_namespaces(),
)
for symbol in table.get_symbols()
1,
headers=["name", "global", "local", "namespaces"],

tablefmt="grid",

)

if table.has_children():
[show(child) for child in table.get_children()]

show(_st)

127

Symbol Tables

Run symviz.py at the command-line to see the symbol tables for the
example code:

(venv) - git: (master) python symviz.py
Symtable top (module)

| name | global | local | namespaces

i calc_pow i False i True i [<Function SymbolTable for calc_pow in example.py>]

| a | False | True | O |
| b | False | True | O |
| ¢ | False | True | O

Symtable calc_pow (function)

| name | global | local | namespaces |

| a | False | True | O |

| b | False | True | O |

Symbol Table Implementation

The implementation of symbol tables is in Python» symtable.c and the
primary interface is the pySymtable_Buildobject () function.

Similar to AST compilation covered in the last chapter, the
PySymtable_BuildObject() function switches between the mod_ty pos-
sible types (Module, Expression, Interactive, Suite, FunctionType),
and visits each of the statements inside them.

The Symbol Table will recursively explore the nodes and branches of
the AST (of type mod_ty) and add entries to the symtable:

Python» symtable.c line 261

struct symtable *
PySymtable_BuildObject(mod_ty mod, PyObject *filename,

PyFutureFeatures *future)

struct symtable *st = symtable_new();

128

https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L261
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L261

Symbol Tables

asdl_seq *seq;
int i;
PyThreadState *tstate;

int recursion_limit = Py_GetRecursionLimit();

st->st_top = st->st_cur;
switch (mod->kind) {
case Module_kind:

seq = mod->v.Module.body;

for (i = 0; i < asdl_seq_LEN(seq); i++)

if (!symtable_visit_stmt(st,
(stmt_ty)asdl_seq_GET(seq, i)))
goto error;
break;

case Expression_kind:

case Interactive_kind:

case Suite_kind:

case FunctionType_kind:

For a module, PySymtable_Buildobject() will loop through each state-
ment in the module and call symtable_visit_stmt(). The symtable_-
visit_stmt() is a huge switch statement with a case for each statement
type (defined in Parser» Python.asdl).

For each statement type, there is specific logic to that statement type.
For example, a function definition (FunctionDef_kind) has particular
logic for:

1. The current recursion depth against the recursion limit. If it has
been exceeded a RecursionError is thrown.

2. The name of the function is added to the symbol table as a local

129

https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L261
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L1171
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L1171
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L1171

Symbol Tables

variable. In Python, functions are objects, so they can be passed
as parameters or references.

. Any non-literal default arguments to a function (non-keyword) are
resolved from the symbol table.

. Any non-literal default arguments to a function (keyword) are re-
solved from the symbol table.

. Any type annotations for the arguments or the return type are re-
solved from the symbol table.

. Any function decorators are resolved in sequence of definition.

. The code block with the contents of the function is visited by
symtable_enter_block().

. The arguments are visited and resolved.

. The body of the function is visited and resolved.

If you've ever wondered why Python’s default arguments are
mutable, the reason is in symtable_visit_stmt(). Argument de-
faults are a reference to the variable in the symtable. No extra
work is done to copy any values to an immutable type.

As a preview, the C code for those steps in building a symtable for a
function in symtable_visit_stmt():

Python» symtable.c line 1171

static int

symtable_visit_stmt(struct symtable *st, stmt_ty s)

if (++st->recursion_depth > st->recursion_limit) {
PyErr_SetString(PyExc_RecursionError,
"maximum recursion depth exceeded during compilation");

VISIT_QUIT(st, 0);

130

https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L968
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L1171

Symbol Tables

switch (s->kind) {
case FunctionDef_kind:

if (!symtable_add_def(st, s->v.FunctionDef.name, DEF_LOCAL))
VISIT_QUIT(st, 0);

if (s->v.FunctionDef.args->defaults)
VISIT_SEQ(st, expr, s->v.FunctionDef.args->defaults);

if (s->v.FunctionDef.args->kw_defaults)
VISIT_SEQ_WITH_NULL(st, expr,

s->v.FunctionDef.args->kw_defaults);
if (!symtable_visit_annotations(st, s, s->v.FunctionDef.args,
s->v.FunctionDef.returns))

VISIT_QUIT(st, 0);

if (s->v.FunctionDef.decorator_list)
VISIT_SEQ(st, expr, s->v.FunctionDef.decorator_list);

if (!symtable_enter_block(st, s->v.FunctionDef.name,

FunctionBlock, (void *)s, s->lineno,
s->col_offset))

VISIT_QUIT(st, 0);

VISIT(st, arguments, s->v.FunctionDef.args);

VISIT_SEQ(st, stmt, s->v.FunctionDef.body);

if (!symtable_exit_block(st, s))
VISIT_QUIT(st, 0);

break;

case (ClassDef_kind: {

3

case Return_kind:
case Delete_kind:
case Assign_kind:

case AnnAssign_kind:

Once the resulting symbol table has been created, it is passed on to
the compiler.

131

Core Compilation Process

Core Compilation Process

Now that the PyAST_CompileObject() has a compiler state, a symtable,
and a module in the form of the AST, the actual compilation can begin.

The purpose of the core compiler is to:
1. Convert the state, symtable, and AST into a Control-Flow-Graph

(CFG)

2. Protect the execution stage from runtime exceptions by catching
any logic and code errors

Accessing the Compiler From Python

You can call the compiler in Python by calling the built-in function
compile(). It returns a code object:

>>> compile('b+1', 'test.py', mode='eval')
<code object <module> at 0x10f222780, file "test.py", line 1>

The same as with the symtable() API, a simple expression should have
amode of 'eval', and a module, function, or class should have a mode

of 'exec'.

The compiled code can be found in the co_code property of the code
object:

>>> co.co_code
b'e\x00d\x00\x17\x00S\x00"

There is also a dis module in the standard library, which disassembles
the bytecode instructions. You can print them on the screen, or get a
list of Instruction instances.

The Instruction type in the dis module is a reflection of the instr
type in the C API.

132

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L318
https://en.wikipedia.org/wiki/Control-flow_graph
https://en.wikipedia.org/wiki/Control-flow_graph

Core Compilation Process

If you import dis and give the dis() function the code object’s co_code
property it disassembles it and prints the instructions on the REPL:

>>> import dis

>>> dis.dis(co.co_code)
0 LOAD_NAME 0 (0)
2 LOAD_CONST 0 (0)
4 BINARY_ADD
6 RETURN_VALUE

LOAD_NAME, LOAD_CONST, BINARY_ADD, and RETURN_VALUE are all bytecode
instructions. They're called bytecode because, in binary form, they
were a byte long. However, since Python 3.6 the storage format was
changed to a word, so now they’re technically wordcode, not bytecode.

The full list of bytecode instructions is available for each version of
Python, and it does change between versions. For example, in Python
3.7, some new bytecode instructions were introduced to speed up ex-
ecution of specific method calls.

In earlier chapters, you explored the instaviz package. This included
a visualization of the code object type by running the compiler. It also
displays the bytecode operations inside the code objects.

Execute instaviz again to see the code object and bytecode for a func-
tion defined on the REPL:

>>> import instaviz

>>> def example():

a=1
b=a+1
return b

>>> instaviz.show(example)

Compiler C API

The entry point for AST module compilation, compiler_mod(), switches
to different compiler functions depending on the module type. If
you assume that mod is a Module, the module is compiled into the

133

https://docs.python.org/3/library/dis.html#python-bytecode-instructions
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L1820

Core Compilation Process

c_stack property as compiler units. Then assemble() is run to create a
PyCodeObject from the compiler unit stack.

The new code object is returned back and sent on for execution by the
interpreter, or cached and stored on disk as a .pyc file:

Python» compile.c line 1820

static PyCodeObject *

compiler_mod(struct compiler *c, mod_ty mod)

{
PyCodeObject *co;
int addNone = 1;

static PyObject *module;

switch (mod->kind) {
case Module_kind:
if (!compiler_body(c, mod->v.Module.body)) {
compiler_exit_scope(c);
return O;

}
break;
case Interactive_kind:

case Expression_kind:

case Suite_kind:

co = assemble(c, addNone);
compiler_exit_scope(c);

return CO;,
The compiler_body() function loops over each statement in the module
and visits it:

Python» compile.c line 1782

134

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L6005
https://github.com/python/cpython/blob/v3.9.0b1/Include/code.h#L9
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L1782

Core Compilation Process

static int

compiler_body(struct compiler *c, asdl_seq *stmts)

{
int i = 0;
stmt_ty st;
PyObject *docstring;
for (; i < asdl_seq_LEN(stmts); i++)
VISIT(c, stmt, (stmt_ty)asdl_seq GET(stmts, i));
return 1;
3

The statement type is determined through a call to the asdl_seq_GET()
function, which looks at the AST node type.

Through a macro, visiT calls a function in Python » compile.c for each
statement type:

#define VISIT(C, TYPE, V) {\
if (!compiler_visit_ ## TYPE((C), (V))) \

return 0; \

For a stmt (the generic type for a statement) the compiler will then call
compiler_visit_stmt () and switch through all of the potential statement
types found in Parser» Python.asdl:

Python» compile.c line 3375

static int
compiler_visit_stmt(struct compiler *c, stmt_ty s)
{

Py_ssize_t i, n;

/* Always assign a lineno to the next instruction for a stmt. */
c->u->u_lineno = s->lineno;
c->u->u_col_offset = s->col_offset;

c->u->u_lineno_set = 0;

135

https://github.com/python/cpython/blob/v3.9.0b1/Include/asdl.h#L31
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L3375

Core Compilation Process

switch (s->kind) {
case FunctionDef_kind:

return compiler_function(c, s, 0);
case ClassDef_kind:

return compiler_class(c, s);

case For_kind:

return compiler_for(c, s);

return 1;

As an example, the For statement in Python is:

for i in iterable:
block
else: # optional if iterable is False

block

Or shown as a railroad diagram:

Ty Weny W prrTery Wey Wi pyor= A G ey D e P W W g

If the statement is a For type, compiler_visit_stmt() calls compiler_for().
There is an equivalent compiler_#() function for all of the statement
and expression types. The more straightforward types create the byte-
code instructions inline, some of the more complex statement types
call other functions.

Instructions

Many of the statements can have sub-statements. A for loop has a
body, but you can also have complex expressions in the assignment
and the iterator.

136

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L3375
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L2750

Core Compilation Process

The compiler emits blocks to the compiler state. These blocks con-
tain a sequence of instructions. The instruction data structure has an
opcode, arguments, the target block (if this is a jump instruction), and
the line number of the statement.

Instruction Type

The instruction type, instr, is defined as:

Field Type Purpose

i_jabs unsigned Flag to specify this is a absolute jump
instruction

i_jrel unsigned Flag to specify this is a relative jump instruction

i_opcode unsigned char Opcode number this instruction represents (see
Include» Opcode. h)

i_oparg int Opcode argument

i_target basicblock* Pointer to the basicblock target when i_jrel is
true

i_lineno int Line number this instruction was created for

Jump Instructions

Jump instructions can either be absolute or relative. Jump instruc-
tions are used to “jump” from one instruction to another. Absolute
jump instructions specify the exact instruction number in the com-
piled code object, whereas relative jump instructions specify the jump
target relative to another instruction.

Basic Frame Blocks

A basic frame block (of type basicblock), contains the following fields:

Field Type Purpose

b_list basicblock * Each basicblock in a compilation unit is linked
via b_list in the reverse order that the block
are allocated

b_iused int Number of instructions used (b_instr)
b_ialloc int Length of instruction array (b_instr)
b_instr instr * Pointer to an array of instructions, initially NuLL

137

Assembly

Field Type Purpose

b_next basicblock* If b_next is non-NULL, it is a pointer to the next
block reached by normal control flow

b_seen unsigned Used to perform a DFS of basicblocks. See
assembly

b_return unsigned Is true if block returns a value (a RETURN_VALUE
opcode is inserted)

b_- int Depth of stack upon entry of block, computed

startdepth by’stackdepth()

b_offset int Instruction offset for block, computed by

assemble_jump_offsets()

Operations and Arguments

Depending on the type of operation, there are different arguments
required. For example, appop_jaBs and ApDOP_JREL refer to “ADD
Operation with Jump to a RELative position” and “ADD Operation
with Jump to an ABSolute position”. The Appop_JREL and ADDOP_JABS
macros which call compiler_addop_j(struct compiler *c, int opcode,
basicblock *b, int absolute) and set the absolute argument to 0 and 1
respectively.

There are some other macros, like AppoP_I calls compiler_addop_i()
which add an operation with an integer argument, or appor_o calls
compiler_addop_o() which adds an operation with a Pyobject argument.

Assembly

Once these compilation stages have completed, the compiler has a list
of frame blocks, each containing a list of instructions and a pointer to
the next block. The assembler performs a “depth-first-search” of the
basic frame blocks and merges the instructions into a single bytecode
sequence.

Assembler Data Structure

The assembler state struct, assembler, is declared in Python» compile.c.

138

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L1370
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L1332

Assembly

Field Type Purpose

a_bytecode PyObject * (str) String containing bytecode
a_offset int Offset into bytecode
a_nblocks int Number of reachable blocks

a_postorder
a_lnotab
a_lnotab_-
off
a_lineno
a_lineno_-
off

basicblock **
PyObject * (str)

int

int

int

List of blocks in dfs postorder
String containing lnotab
Offset into 1notab

Last lineno of emitted instruction
Bytecode offset of last 1ineno

Assembler Depth-First-Search Algorithm

The assembler uses a Depth-First-Search to traverse the nodes in the
basic frame block graph. The DFS algorithm is not specific to CPython,
but is a commonly used algorithm in graph traversal.

The CST and AST were both tree structures, whereas the compiler
state is a graph structure, where the nodes are basic frame blocks con-
taining instructions.

The basic frame blocks are linked by two graphs, one is in reverse or-
der of creation (the b_1ist property of each block). A series of basic
frame blocks arbitrarily named A-P would look like this:

139

Assembly

(WA

))
N ()

(My———(N)—(0)—(P)

The graph created from the b_1ist is used to sequentially visit every
block in a compiler unit

The second graph uses the b_next property of each block. This list rep-
resents the control flow. Vertices in this graph are created by calls to
compiler_use_next_block(c, next), where next is the next block to draw
a vertex to from the current block (c->u->u_curblock).

The For loop node graph might look something like this:

End
FOR_LOOP
@ @ /C\ Start "¢
Body OrElse Cleanup
0 ‘
L M N @) P

140

Assembly

Both the sequential and control-flow graphs are used, but the control-
flow graph is the one used by the DFS implementation.

Assembler C API

The assembler API has an entry point assemble(). The assemble() func-
tion has a few responsibilities:
« Calculate the number of blocks for memory allocation

 Ensure that every block that falls off the end returns None (This is
why every function returns None, whether or not a return statement
exists)

« Resolve any jump statements offsets that were marked as relative
+ Call dfs() to perform a depth-first-search of the blocks
« Emit all the instructions to the compiler

+ Call makecode() with the compiler state to generate the PyCodeObject
Python?» compile.c line 6005

static PyCodeObject *
assemble(struct compiler *c, int addNone)

{
if (!c->u->u_curblock->b_return) {
NEXT_BLOCK(c) ;
if (addNone)
ADDOP_LOAD_CONST(c, Py_None);
ADDOP(c, RETURN_VALUE);

dfs(c, entryblock, &a, nblocks);

/* Can't modify the bytecode after computing jump offsets. */

assemble_jump_offsets(&a, c);

/* Emit code in reverse postorder from dfs. */

141

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L6005
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L5888

Assembly

for (i = a.a_nblocks - 1; i >=0; i--) {
b = a.a_postorder[i];
for (j = 0; j < b->b_iused; j++)
if (!assemble_emit(&a, &b->b_instr[j]))

goto error;

co = makecode(c, &a);
error:
assemble_free(&a);

return co;

Depth-First-Search

The depth-first-search is performed by the dfs() function in Python»
compile.c, which follows the the b_next pointers in each of the blocks,
marks them as seen by toggling b_seen and then adds them to the as-
semblers’ a_postorder list in reverse order.

The function loops back over the assembler’s post-order list and for
each block, if it has a jump operation, recursively call dfs() for that
jump:

Python» compile.c line 5436

static void
dfs(struct compiler *c, basicblock *b, struct assembler *a, int end)

{

int i, j;

/* Get rid of recursion for normal control flow.
Since the number of blocks is limited, unused space in a_postorder
(from a_nblocks to end) can be used as a stack for still not ordered
blocks. */

for (j = end; b & !'b->b_seen; b = b->b_next) {

b->b_seen = 1;

142

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L5436
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L5436

Creating a Code Object

assert(a->a_nblocks < j);
a->a_postorder[--j] = b;
}
while (j < end) {
b = a->a_postorder[j++];
for (i = 0; 1 < b->b_jused; i++) {
struct instr *instr = &b->b_instr[i];
if (instr->i_jrel || instr->i_jabs)
dfs(c, instr->i_target, a, j);
}
assert(a->a_nblocks < j);

a->a_postorder[a->a_nblocks++] = b;

Once the assembler has assembled the graph into a CFG using DFS,
the code object can be created.

Creating a Code Object

The task of makecode() is to go through the compiler state, some of the
assembler’s properties, and to put these into a PyCodeObject by calling
PyCode_New().

The variable names, constants are put as properties to the code object:
Python» compile.c line 5888

static PyCodeObject *
makecode(struct compiler *c, struct assembler *a)

{

consts = consts_dict_keys_inorder(c->u->u_consts);
names = dict_keys_inorder(c->u->u_names, 0);

varnames = dict_keys_inorder(c->u->u_varnames, 0);

cellvars = dict_keys_inorder(c->u->u_cellvars, 0);

143

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L5888
https://github.com/python/cpython/blob/v3.9.0b1/Objects/codeobject.c#L267

Using Instaviz to Show a Code Object

freevars = dict_keys_inorder(c->u->u_freevars,
PyTuple_GET_SIZE(cellvars));

flags = compute_code_flags(c);
if (flags < 0)

goto error;

bytecode = PyCode_Optimize(a->a_bytecode, consts,

names, a->a_lnotab);

co = PyCode_NewWithPosOnlyArgs(
posonlyargcount+posorkeywordargcount,
posonlyargcount, kwonlyargcount, nlocals_int,
maxdepth, flags, bytecode, consts, names,
varnames, freevars, cellvars, c->c_filename,

c->u->u_name, c->u->u_firstlineno, a->a_lnotab);

return co;

You may also notice that the bytecode is sent to PyCode_optimize() be-
fore it is sent to PyCode_NewlithPosOnlyArgs(). This function is part of
the bytecode optimization process in Python» peephole.c.

The peephole optimizer goes through the bytecode instructions and in
certain scenarios, replace them with other instructions. For example,
there is an optimizer that removes any unreachable instructions that
follow a return statement.

Using Instaviz to Show a Code Object

You can pull together all of the compiler stages with the instaviz mod-
ule:

import instaviz

def foo():

144

https://github.com/python/cpython/blob/v3.9.0b1/Python/peephole.c#L230
https://github.com/python/cpython/blob/v3.9.0b1/Objects/codeobject.c#L117

Using Instaviz to Show a Code Object

a = 2%%4
b=1+35
[1, 4, 6]

for i in c:

o]
1}

print(i)
else:
print(a)

return c

instaviz.show(foo)

Will produce a large and complex AST graph:

Carguments)
(FunctionDef)
Inclons
S
(ssign) (ssign) (Bssign) (For) (Retur) (Module)
; y
N i
L A _L . L L L L Yo s S
(Name) (Binop) (Name) (Binop) (Name) (List) (Name) (Name) CD) (Exr) (Name)
(Store, () (Pow) (Fum) (Num) (Add) (Num (Num) (Num (Num) (oad) (cai) (cai)
@ & & &) @ ¢ & ¢ @ @ @b ®
Gne G o)

You can see the bytecode instructions in sequence:

145

Using Instaviz to Show a Code Object

Disassembled Code
OpCode Operation Name Numeric Arg Resolved Arg Value Argument description Index Offset Starts Line Is Jump Target?
100 LOAD_CONST 1 16 16 0 3 False
125 STORE_FAST 0 a a 2 None False
100 LOAD_CONST 2 6 6 4 6 False
125 STORE_FAST 1 b b 6 None False
100 LOAD_CONST 3 1 1 8 7 False
100 LOAD_CONST 4 4 4 10 None False
100 LOAD_CONST 2 6 6 12 None False
103 BUILD_LIST 3 3 14 None False
125 STORE_FAST 2 0 c 16 None False
120 SETUP_LOOP 28 48 to 48 18 8 False
124 LOAD_FAST 2 < c 20 None False
68 GET_ITER None None e o) None False
93 FOR_ITER 12 38 to 38 24 None True
125 STORE_FAST 3 i i 26 None False
116 LOAD_GLOBAL 0 print print 28 9 False
124 LOAD_FAST 3 i i 30 None False
131 CALL_FUNCTION 1 1 32 None False
1 POP_TOP None None 34 None False
113 JUMP_ABSOLUTE 24 24 36 None False
87 POP_BLOCK None None 38 None True
116 LOAD_GLOBAL 0 print print 40 11 False
124 LOAD_FAST] a a 42 None False
131 CALL_FUNCTION 1 1 44 None False
1 POP_TOP None None 46 None False
124 LOAD_FAST 2 e e 48 12 True
83 RETURN_VALUE None None 50 None False

The code object with the variable names, constants, and binary co_-

code:

Code Object Properties

Field Value

co_argcount 0

co_cellvars 0

co_code 64017d0064027d0164036404640267037d02781¢7c¢0244005d0c7d0374007c03830101007118570074007c00830101007¢025300
co_consts (None, 16,6, 1,4)

co_filename test.py

co_firstlineno 4

co_freevars 0

co_kwonlyargcount 0

co_lnotab b\x00\x01\x04\x0 1\x04\x0 1\n\x0 1\n\x0 1\x0c\x02\x08\x01'
co_name foo

Co_names ('print',)

co_nlocals 4

co_stacksize 3

co_varnames (a','v','c",')

Try it out with some other, more complex code that you have to learn
more about CPython’s compiler and code objects.

146

Example: Implementing the “Almost-Equal” Operator

Example: Implementing the
“Almost-Equal” Operator

After covering the compiler, bytecode instructions and the assembler,
you can now modify CPython to support the “almost-equal” operator
you compiled into the grammar in the last chapter.

First you have to add an internal #define for the py_alE operator, so it
can be referenced inside the rich comparison functions for PyObject.

Open Include» object.h, and locate the following #define statements:

/* Rich comparison opcodes */
#define Py_LT 0O
#define Py_LE 1
#define Py_EQ 2
#define Py_NE 3
#define Py_GT 4
#define Py_GE 5

Add an additional value, pyalE with a value of 6:

/* New Almost Equal comparator */
#define Py_AlE 6

Just underneath this expression is a macro Py_RETURN_RICHCOMPARE. Up-
date this macro with a case statement for py_a1E:

Ve

* Macro for implementing rich comparisons

* Needs to be a macro because any (-comparable type can be used.
7
#define Py_RETURN_RICHCOMPARE(vall, val2, op)
do {
switch (op) {
case Py_EQ: if ((vall) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
case Py_NE: if ((vall) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;

147

Example: Implementing the “Almost-Equal” Operator

case Py_LT: if ((vall) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
case Py_GT: if ((vall) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
case Py_LE: if ((vall) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
case Py_GE: if ((vall) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
/* + */ case Py_AlE: if ((vall) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;
default:
Py_UNREACHABLE() ;

3
} while (0)

Inside objects» object.c there is a guard to check that the operator is
within the range 0-5, because you added the value 6 you have to up-
date that assertion:

Objects»object.c line 709

PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
{

PyThreadState *tstate = _PyThreadState_GET();

assert(Py_LT <= op && op <= Py_GE);
Change that last line to:
assert(Py_LT <= op && op <= Py_AlE);

Next, you need to update the coMPARE_OP opcode to support Py_AlE as a
value for the operator type.

First, edit objects» object.c and add Py_aAlE into the _Py_Swappedop list.
This list is used for matching whether a custom class has one operator
dunder method, but not the other.

For example, if you defined a class, Coordinate, you could define an
equality operator by implementing the __eq__ magic-method:

class Coordinate:

def __init_ (self, x, vy):

148

Example: Implementing the “Almost-Equal” Operator

self.x = x

self.y

n
<

def __eq__(self, other):
if isinstance(other, Coordinate):
return (self.x == other.x and self.y == other.y)

return super(self, other).__eq__(other)

Even though you haven’t implemented _ne _ (not equal) for
Coordinate, CPython assumes that the opposite of __eq__ can be used.

>>> Coordinate(l, 100) != Coordinate(2, 400)

True

Inside Objects» object.c, locate the _Py_Swappedop list and add py_AlE to
the end. Then add "~=" to the end of the opstrings list:

int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE, Py_AlE};

static const char * const opstrings[]

= e, e, Mest, MIST, ST, Mt taan)
Open Lib/opcode.py and edit the list of rich comparison operators:

emp_op = ('<’, '<=', '==", 'l=T, '>7, '>=)

Include the new operator at the end of the tuple:

U ' v ' '

cmp_op = ('<', '<=", '==", "'I=", '>', '>=', '~=')

The opstrings list is used for error messages, if rich comparison oper-
ators are not implemented on a class.

Next, you can update the compiler to handle the case of a pyCmp_AlE
property in a Binop node.

Open Python» compile.c and find the compiler_addcompare() function:

Python» compile.c line 2479

149

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L2479

Example: Implementing the “Almost-Equal” Operator

static int compiler_addcompare(struct compiler *c, cmpop_ty op)
{

int cmp;

switch (op) {

case Eq:
cmp = Py_EQ;
break;

case NotEq:
cmp = Py_NE;
break;

case Lt:
cmp = Py_IT;
break;

case LtE:
cmp = Py_LE;
break;

case Gt:
cmp = Py_GT;
break;

case GtE:
cmp = Py_GE;

break;

Next, add another case to this switch statement to pair the a1 AST
comp_op enumeration with the pycmp_A1E opcode comparison enumera-
tion:

Next, recompile CPython and open up a REPL. You should see the
almost-equal operator behave in the same way as the == operator:

$./python
>>> 1 ~= 2
False

>>> 1 ~= 1
True

>>> 1 ~= 1.01

False

150

Example: Implementing the “Almost-Equal” Operator

You can now program the behaviour of almost-equal to match the fol-
lowing scenario:

e 1 ~= 21S False

e 1 ~= 1.011S True, using floor-rounding

We can achieve this with some additional code. For now, you will cast
both floats into integers and compare them.

CPython’s API has many functions for dealing with PyLong (int) and
PyFloat (float) types. This will be covered in the chapter on Objects
and Types.

Locate the float_richcompare() in Objects» floatobject.c, and under the
Compare: goto definition add the following case:

Objects» floatobject.c line 358

static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)
{

case Py_GT:
P el Js
break;
/* New Code START */
case Py_AlE: {
double diff = fabs(i - j);
double rel_tol = le-9; // relative tolerance
double abs_tol = 0.1; // absolute tolerance
r = (((diff <= fabs(rel_tol * j)) ||
(diff <= fabs(rel_tol * i))) ||
(diff <= abs_tol));
3
break;
3
/* New Code END */

return PyBool_FromLong(r);

151

https://github.com/python/cpython/blob/v3.9.0b1/Objects/floatobject.c#L358

Conclusion

This code will handle comparison of floating point numbers where
the almost-equal operator has been used. It uses similar logic to
math.isclose(), defined in PEP485, but with a hardcoded absolute
tolerance of 0.1.

After recompiling CPython again, open a REPL and test it out:

$./python

>>> 1.0 ~= 1.01
True

>>> 1.02 ~= 1.01
True

>>> 1.02 ~= 2.01
False

>>> 1 ~=1.01
True

>>> 1 ~=1
True

>>> 1 ~= 2
False

>> 1 ~=1.9
False

>>> 1 ~= 2.0
False

>>> 1.1 ~= 1.101

True

In later chapters you will extend this implementation across other
types.
Conclusion

In this chapter, you've explored how a parsed Python module is con-
verted into a symbol table, a compilation state, and then a series of
bytecode operations.

152

https://www.python.org/dev/peps/pep-0485/

Conclusion

Parser

AST

Compiler

CFG

Assembler

Bytecode
—_—

Execution

It is now the job of the CPython interpreter’s core evaluation loop to
execute those modules.

In the next chapter, you will explore how code objects are executed.

Leave feedback on this section »

153

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiY0dlQTx5JCEpWF5TXkk4anhvS0ViajQ-N1Z-MmImIUBaQW41JTZNIyIsInQiOiJjaGFwdGVycy8zMC10aGUtY3B5dGhvbi1jb21waWxlci5tZCAoZjAxNGU1MTQ3ZDVhZTJjNSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi9mMDE0ZTUxNDdkNWFlMmM1ZjNmNzM3ZGQxYjFjYjc3ZTIwODE5YzZjL2NoYXB0ZXJzLzMwLXRoZS1jcHl0aG9uLWNvbXBpbGVyLm1kIn0=

The Evaluation Loop

So far, you have seen how Python code is parsed into an Abstract Syn-
tax Tree and compiled into code objects. These code objects contain
lists of discreet operations in the form of bytecode. There is one major
thing missing for these code objects to be executed and come to life.
They need input. In the case of Python, these inputs take the form of
local and global variables. In this chapter, you will be introduced to
a concept called a Value Stack, where variables are created, modified,

and used by the bytecode operations in your compiled code objects.

Execution of code in CPython happens within a central loop, called
the “evaluation loop.” The CPython interpreter will evaluate and exe-
cute a code object, either fetched from the marshaled .pyc file, or the

compiler:

Parser

In the evaluation loop, each of the bytecode instructions is taken and

AST

Compiler

CFG

Assembler

executed using a “Stack Frame” based system.

154

Bytecode
—_—

Execution

http://www.cs.uwm.edu/classes/cs315/Bacon/Lecture/HTML/ch10s07.html

Stack Frames

Stack Frames are a data type used by many runtimes, not just
Python. Stack Frames allow functions to be called and variables
to be returned between functions. Stack Frames also contain
arguments, local variables, and other stateful information.

A Stack Frame exists for every function call, and they are
stacked in sequence. You can see CPython’s frame stack
anytime an exception is unhandled:

Traceback (most recent call last):

File "example_stack.py", line 8, in <module> <--- Frame
functionl()

File "example_stack.py", line 5, in functionl <--- Frame
function2()

File "example_stack.py", line 2, in function2 <--- Frame

raise RuntimeError

RuntimeError

When exploring the CPython compiler, you broke out just before the
call to run_eval_code_obj(). In this next chapter, you will explore the
interpreter API:

155

https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1155

Important Terms

PyRun_FileExFlags()

File Pointer
v

‘ PyParser_ASTFromFileObject() ‘
[
AST Module
!
‘ PyAST_CompileObject()
[
Code Object
!
‘ run_eval_code()

Return Value

1

Related Source Files

The source files relating to the evaluation loop are:

File Purpose
Python» ceval.c The core evaluation loop implementation
Python)» ceval-gil.h The GIL definition and control algorithm

Important Terms

+ The evaluation loop will take a code object and convert it into a
series of frame objects

The interpreter has at least one thread

Each thread has a thread state

Frame Objects are executed in a stack, called the frame stack

Variables are referenced in a value stack

Constructing Thread State

Before a frame can be executed, it needs to be linked to a thread.
CPython can have many threads running at any one time within a

156

Constructing Thread State

single interpreter. The interpreter state includes a linked-list of
those threads.

CPython always has at least one thread and each thread has it’s own
state.

See Also

Threading is covered in more detail within the “Parallelism and
Concurrency” chapter.

Thread State Type

The thread state type, PyThreadstate has over 30 properties, including:

A unique identifier

A linked-list to the other thread states

The interpreter state it was spawned by

The currently executing frame

The current recursion depth

Optional tracing functions

The exception currently being handled

Any async exception currently being handled

A stack of exceptions raised, when multiple exceptions have been
raised (e.g. raise within an except block)

A GIL counter

Async generator counters

Related Source Files

The source files relating to the thread state are spread across many
files:

157

Constructing Frame Objects

File

Purpose

Python» thread.c

Include® threadstate.h

Include» pystate.h

Include» pythread.h

Include® cpython? pystate.h

The thread API implementation

Some of the thread state API and types
definition

The interpreter state API and types
definition

The threading API

Some of the thread and interpreter state
API

Constructing Frame Objects

Compiled code objects are inserted into frame objects. Frame objects
are a Python type, so they can be referenced from C, and from Python.
Frame objects also contain other runtime data that is required for ex-
ecuting the instructions in the code objects. This data includes the
local variables, global variables and builtin modules.

Frame Object Type

The frame object type is a Pyobject with the following additional prop-

erties:

Field Type Purpose

f_back PyFrameObject * Pointer to the previous in the stack, or NuLL if
first frame

f_code PyCodeObject * Code Object to be executed

f_builtins PyObject * (dict) Symbol table for the builtin module

f_globals PyObject * (dict) global symbol table (PyDictObject

f_locals PyObject * Local symbol table (any mapping)

f_valuestack PyObject ** Pointer to the last local

f_stacktop PyObject ** Next free slot in £_valuestack

f_trace PyObject * Pointer to a custom tracing function. See
section on frame tracing

f_trace_lines char Toggle for the custom tracing function to trace
at line-level

f_trace_- char Toggle for the custom tracing function to trace

opcodes at an opcode level

f_gen Pybject * Borrowed reference to a generator, or NULL

158

Constructing Frame Objects

Field Type Purpose

f_lasti int Last instruction, if called

f_lineno int Current line number

f_iblock int Index of this frame in f_blockstack
f_executing char Flag whether the frame is still executing
f_blockstack PyTryBlock[] Sequence of for, try, and loop blocks
f_localsplus PyObject *[] Union of locals + stack

Related Source Files

The source files relating to frame objects are:

File Purpose

Objects» frameobject.c The frame object implementation and
Python API

Include? frameobject.h The frame object API and type definition

Frame Object Initialization API

The API for Frame Object Initialization, pyEval_EvalCode() is the entry
point for evaluating a code object

PyEval_EvalCode() is a wrapper around the internal function _pyEval_-
EvalCode().

_PyEval_EvalCode() is a complex function that defines many be-
haviours of both frame objects and the interpreter loop. Itis an
important function to understand as it can also teach you some
principles of the CPython interpreter design.

In this section you will step through the logic in _pyEval_EvalCode().
The _pyEval_EvalCode() function specifies many arguments:

e tstate: a PyThreadState * pointing to the thread state of the thread
this code will be evaluated on

159

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L858
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L858
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101

Constructing Frame Objects

* _co: a PyCodeObject* containing the code to be put into the frame
object

* globals: a PyObject* (dict) with variable names as keys and their
values

* locals: a PyObject* (dict) with variable names as keys and their val-
ues

In Python, local and global variables stored as a dictionary. You
can access this dictionary with the builtin functions 1locals()
and globals():

>>> a =1
>>> print(locals()['a'])
1

The other arguments are optional, and not used for the basic API:
* args: a PyObject* (tuple) with positional argument values in order,
and argcount for the number of values
+ kwnames: a list of keyword argument names

* kwargs: a list of keyword argument values, and kwcount for the num-
ber of them

« defs: alist of default values for positional arguments, and defcount
for the length

+ kwdefs: a dictionary with the default values for keyword arguments

* closure: a tuple with strings to merge into the code objects co_-
freevars field

+ name: the name for this evaluation statement as a string

+ qualname: the qualified name for this evaluation statement as a
string

The call to _PyFrame_New_NoTrack() creates a new frame. This API is

160

https://github.com/python/cpython/blob/v3.9.0b1/Objects/frameobject.c#L872

Constructing Frame Objects

also available from the C API using pyFrame_New(). The _PyFrame_New_-
NoTrack() function will create a new pyFrameobject by following these
steps:

1.

2.

® N gk ®

0.

Set the frame f_back property to the thread state’s last frame

Load the current builtin functions by setting the f_builtins prop-
erty and loading the builtins module using pyModule_GetDict ()

Set the f_code property to the code object being evaluated
Set the f_valuestack property to the

Set the f_stacktop pointer to f_valuestack

Set the global property, f_globals, to the globals argument
Set the locals property, f_locals, to a new dictionary

Set the f_lineno to the code object’s co_firstlineno property so that
tracebacks contain line numbers

Set all the remaining properties to their default values

With the new pyFrameObject instance, the arguments to the frame ob-
ject can be constructed:

Previous

Frame Object

Builtins Code Object

‘ Instructions m

Globals

Locals

g

Values

161

https://github.com/python/cpython/blob/v3.9.0b1/Objects/frameobject.c#L935
https://github.com/python/cpython/blob/v3.9.0b1/Objects/frameobject.c#L872
https://github.com/python/cpython/blob/v3.9.0b1/Objects/frameobject.c#L872
https://github.com/python/cpython/blob/v3.9.0b1/Objects/moduleobject.c#L457

Constructing Frame Objects

Converting Keyword Parameters to a Dictionary

Function definitions can contain a **kwargs catch-all for keyword-
arguments, for example:

def example(arg, arg2=None, **kwargs):
print(kwargs['x'], kwargs['y']) # this would resolve to a dictionary key
example(1l, x=2, y=3) # 2 3

In this scenario, a new dictionary is created, and the unresolved argu-
ments are copied across. The kwargs name is then set as a variable in
the local scope of the frame.

Converting Positional Arguments Into Variables

Each of the positional arguments (if provided) are set as local vari-
ables: In Python, function arguments are already local variables
within the function body. When a positional argument is defined
with a value, it is available within the function scope:

def example(argl, arg2):
print(argl, arg2?)
example(1l, 2) # 1 2

The reference counter for those variables is incremented, so the
garbage collector won’t remove them until the frame has evaluated
(e.g. the function has finished and returned).

Packing Positional Arguments Into *args

Similar to **kwargs, a function argument prepended with a * can be set
to catch all remaining positional arguments. This argument is a tuple
and the *args name is set as a local variable:

def example(arg, *args):

print(arg, args[0], args[1])

example(1, 2, 3) # 1 2 3

162

Constructing Frame Objects

Loading Keyword Arguments

If the function was called with keyword arguments and values, a dic-
tionary is filled with any remaining keyword arguments passed by
the caller that doesn’t resolve to named arguments or positional ar-
guments.

For example, the e argument was neither positional or named, so it is
added to **remaining:

>>> def my_function(a, b, c=None, d=None, **remaining):

print(a, b, c, d, remaining)

>>> my_function(a=1, b=2, c=3, d=4, e=5)
1, 2, 3, 4, {'e': 5})

163

Constructing Frame Objects

Positional-only arguments are a new feature in Python 3.8.
Introduced in PEP570, positional-only arguments are a way of
stopping users of your API from using positional arguments
with a keyword syntax.

For example, this simple function converts Fahrenheit to
Celsius. Note, the use of / as a special argument separates
positional-only arguments from the other arguments.

def to_celsius(fahrenheit, /, options=None):

return (fahrenheit-32)%*5/9

All arguments to the left of / must be called only as a positional
argument, and arguments to the right can be called as either
positional or keyword arguments:

>>> to_celsius(110)

Calling the function using a keyword argument to a positional-
only argument will raise a TypeError:

>>> to_celsius(fahrenheit=110)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: to_celsius() got some positional-only arguments

passed as keyword arguments: 'fahrenheit'

The resolution of the keyword argument dictionary values comes af-
ter the unpacking of all other arguments. The PEP570 positional-only
arguments are shown by starting the keyword-argument loop at co_-
posonlyargcount. If the / symbol was used on the 3rd argument, the
value of co_posonlyargcount would be 2. PyDict_SetItem() is called for
each remaining argument for adding it to the 1ocals dictionary. When
executing, each of the keyword arguments become scoped local vari-
ables.

164

https://www.python.org/dev/peps/pep-0570/
https://github.com/python/cpython/blob/v3.9.0b1/Objects/dictobject.c#L1556

Constructing Frame Objects

If a keyword argument is defined with a value, that is available within
this scope:

def example(argl, arg2, example_kwarg=None):

print(example_kwarg) # example_kwarg is already a local variable.

Adding Missing Positional Arguments

Any positional arguments provided to a function call that are not in
the list of positional arguments are added to a *args tuple if this tuple
does not exist, an exception is raised.

Adding Missing Keyword Arguments

Any keyword arguments provided to a function call that are not in the
list of named keyword arguments are added to a **kwargs dictionary if
this dictionary does not exist, an exception is raised.

Collapsing Closures

Any closure names are added to the code object’s list of free variable
names.

Creating Generators, Coroutines, and Asynchronous
Generators

If the evaluated code object has a flag that it is a generator, corou-
tine, or async generator, then a new frame is created using one of the
unique methods in the Generator, Coroutine, or Async libraries and
the current frame is added as a property.

The APIs and implementation of generators, coroutines, and
async frames are covered in the chapter on parallelism and con-
currency

165

Frame Execution

The new frame is then returned, and the original frame is
not evaluated. The frame is only evaluated when the genera-
tor/coroutine/async method is called on to execute its target.

Lastly, _PyEval_EvalFrame() is called with the new frame.

Frame Execution

As covered earlier in the compiler and AST chapters, the code object
contains a binary encoding of the bytecode to be executed. It also con-
tains a list of variables and a symbol table.

The local and global variables are determined at runtime based on
how that function, module, or block was called. This information is
added to the frame by the _pyEval_EvalCode() function. There are other
uses of frames, like the coroutine decorator, which dynamically gen-
erates a frame with the target as a variable.

The public API, pyEval_EvalFrameEx() calls the interpreter’s configured
frame evaluation function in the eval_frame property. Frame evalua-
tion was made pluggable in Python 3.7 with PEP 523.

_PyEval_EvalFrameDefault() is the default function and the only option
bundled with CPython.

Frames are executed in the main execution loop inside _pyEval_-
EvalFrameDefault(). This central function brings everything together
and brings your code to life. It contains decades of optimization
since even a single line of code can have a significant impact on
performance for the whole of CPython.

Everything that gets executed in CPython goes through this function.

166

https://github.com/python/cpython/blob/v3.9.0b1/Include/internal/pycore_ceval.h#L38
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L880
https://www.python.org/dev/peps/pep-0523/
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L945
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L945
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L945

Frame Execution

Something you might notice when reading Python » ceval.c, is
how many times C macros have been used. C Macros are a way
of having reusable code without the overhead of making func-
tion calls. The compiler converts the macros into C code and
then compile the generated code.

If you want to see the expanded code, you can run gcc -E on
Linux and macOS:

$ gcc -E Python/ceval.c

In Visual Studio Code, inline macro expansion shows once you
have installed the official C/C++ extension:

e e e

1122 dtrace_function_entry(f);

1123

1124 co = f->f_code;

1125 names = co->co_names;

1126 consts = co->co_consts;

1127 fastlocals = f->f_localsplus;

1128 freevars = f->f_localsplus + co->co_nlocals;

1129 2sSertl yyefine _Py_IS_ALIGNED(p,a) (!((uintptr_t)(p) & (uintptr_t)((a) - 1))
1130 assert(

1131 assert(Check if pointer "p" is aligned to "a"-bytes boundary.

1132 assert(_Py_IS_ALIGNED(PyBytes_AS_STRING(co->co_code), sizeof(_Py_CODEUNIT)));
1133 first_instr = (_Py_CODEUNIT %) PyBytes_AS_STRING(co->co_code);

1134 /%

1135 f->f_lasti refers to the index of the last instruction,

1136 unless it's -1 in which case next_instr should be first_instr.

1137

1138 YIELD_FROM sets f_lasti to itself, in order to repeatedly yield

1139 multiple values.

1140

1141 When the PREDICT() macros are enabled. some oncode pairs follow in

In CLion, select a macro and press |Alt]+|Space| to peek into it’s
definition.

Frame Execution Tracing

You can step through frame execution in Python 3.7 and beyond by en-
abling the tracing attribute on the current thread. In the PyFrameoObject
type, there is a f_trace property, of type pyobject *. The value is ex-
pected to point to a Python function.

This code example sets the global tracing function to a function called

167

https://realpython.com/python-development-visual-studio-code/
https://www.jetbrains.com/help/clion/viewing-definition.html
https://www.jetbrains.com/help/clion/viewing-definition.html

Frame Execution

my_trace() that gets the stack from the current frame, prints the dis-
assembled opcodes to the screen, and some extra information for de-
bugging:

cpython-book-samples? 31 » my_trace.py

import sys
import dis
import traceback

import io

def my_trace(frame, event, args):
frame.f_trace_opcodes = True
stack = traceback.extract_stack(frame)
pad = " "#*len(stack) + "|"
if event == 'opcode':
with io.StringIO() as out:
dis.disco(frame.f_code, frame.f_lasti, file=out)
lines = out.getvalue().split('\n")
[print(£f"{pad}{1}") for 1 in lines]
elif event == 'call':
print(f"{pad}Calling {frame.f_code}")
elif event == 'return':
print(f"{pad}Returning {args}")
elif event == 'line':
print(f"{pad}Changing line to {frame.f_lineno}")
else:
print(f"{pad}{frame} ({event} - {args})")
print(f"{pad}--——-—--—----- ")
return my_trace

sys.settrace(my_trace)

Run some code for a demo

eval('"-".join([letter for letter in "hello"])')

The sys.settrace() function will set the current thread state default
tracing function to the one provided. Any new frames created after
this call will have f_trace set to this function.

168

The Value Stack

This code snippet prints the code within each stack and points to the
next operation before it is executed. When a frame returns a value,
the return statement is printed:

+ cpython git:(master) x ./python.exe my_trace.
Calling <code object <module> at 8x104cdc110, file "<string>", line 1>

Changing line to 1

1-— @ LOAD_CONST 0 ('-')
2 LOAD_METHOD @ (join)
4 LOAD_CONST 1 (<code object <listcomp> at 8x104cdceed, file "<string>", line 1)
6 LOAD_CONST 2 ('<listcomp>')
8 MAKE_FUNCTION]
10 LOAD_CONST 3 ('hello')
12 GET_ITER
14 CALL_FUNCTION 1
16 CALL_METHOD 1
18 RETURN_VALUE
|
|1 © LOAD_CONST 0 ('-)
— 2 LOAD_METHOD 0 (join)
4 LOAD_CONST 1 (<code object <listcomp> at @x104cdceed, file "<string>", line 1>)
6 LOAD_CONST 2 ('<listcomp>')
8 MAKE_FUNCTION [
10 LOAD_CONST 3 ('hello')
12 GET_ITER
14 CALL_FUNCTION 1
16 CALL_METHOD 1

18 RETURN_VALUE

The full list of possible bytecode instructions is available on the dis
module documentation.

The Value Stack

Inside the core evaluation loop, a value stack is created. This stack
is a list of pointers to pyobject instances. These could be values like
variables, references to functions (which are objects in Python), or
any other Python object.

Bytecode instructions in the evaluation loop will take input from the
value stack.

Example Bytecode Operation, BINARY_OR

The binary operations that you have been exploring in previous chap-
ters compile into a single instruction.

If you inserted an or statement in Python:

169

https://docs.python.org/3/library/dis.html#python-bytecode-instructions
https://docs.python.org/3/library/dis.html#python-bytecode-instructions

The Value Stack

if left or right:

pass

The or operation would be compiled into a BINARY_OR instruction by the
compiler:

static int
binop(struct compiler *c, operator_ty op)
{
switch (op) {
case Add:
return BINARY_ADD;

case BitOr:

return BINARY_OR;

In the evaluation loop, the case for a BINARY_OR will take two values
from the value stack, the left, and right operation, then call PyNumber_-
or against those 2 objects:

case TARGET(BINARY_OR): {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = PyNumber_Or(left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;

DISPATCHQ);

The result, res, is then set as the top of the stack, overriding the current
top value.

170

The Value Stack

Value Stack Simulations

To understand the evaluation loop, you have to understand the value
stack.

One way to think of the value stack is like a wooden peg on which you
can stack cylinders. You would only add or remove one item at a time.
This is done using the PusH(a) macro, where a is a pointer to a Pyobject.

For example, if you created a pyLong with the value 10 and pushed it
onto the value stack:

PyObject *a = PyLong_FromLong(10);
PUSH(a);

This action would have the following effect:

Before After

In the next operation, to fetch that value, you would use the por()
macro to take the top value from the stack:

PyObject *a = POP(); // a is PyLongObject with a value of 10

This action would return the top value and end up with an empty value
stack:

171

The Value Stack

result

==

Before After

If you were to add 2 values to the stack:

PyObject *a = PyLong_FromLong(10);
PyObject *b = PyLong_FromLong(20);
PUSH(a);
PUSH(b);

They would end up in the order in which they were added, so a would
be pushed to the second position in the stack:

S Y

Before After

If you were to fetch the top value in the stack, you would get a pointer
to b because it is at the top:

PyObject *val = POP(); // returns ptr to b

172

The Value Stack

result

Before After

If you need to fetch the pointer to the top value in the stack without
popping it, you can use the PEEK(v) operation, where v is the stack po-
sition:

PyObject *first = PEEK(0);

o represents the top of the stack, 1 would be the second position:

result
L" _L_"
—a S W —

Before After

The pup_two() macro can be used to clone the value at the top of the
stack:

DUP_TOP();

This action would copy the value at the top to form 2 pointers to the
same object:

173

The Value Stack

S

Before After

There is a rotation macro rRoT_Two that swaps the first and second val-
ues.

ROT_TWO() ;

Before After

Stack Effects

Each of the opcodes has a predefined stack effect, calculated by the
stack_effect() function inside Python» compile.c. This function returns
the delta in the number of values inside the stack for each opcode.
Stack effects can have a positive, negative, or zero value. Once the op-
eration has been executed, if the stack effect (e.g., +1) does not match
the delta in the value stack, an exception is raised to ensure there is
no corruption to objects on the value stack.

174

Example: Adding an Item to a List

Example: Adding an Item to a List

In Python, when you create a list, the .append() method is available on
the list object:

my_list = []
my_list.append(obj)

In this example, obj is an object that you want to append to the end of
the list.

There are 2 operations involved in this operation:

 LOAD_FAST, to load the object obj to the top of the value stack from
the list of 1ocals in the frame

 LIST_APPEND to add the object
First exploring LoAD_FAST, there are 5 steps:

1. The pointer to obj is loaded from GeTLOCAL(), where the variable
to load is the operation argument. The list of variable pointers is
stored in fastlocals, which is a copy of the PyFrame attribute f_-
localsplus. The operation argument is a number, pointing to the
index in the fastlocals array pointer. This means that the loading
of a local is simply a copy of the pointer instead of having to look
up the variable name.

2. If the variable no longer exists, an unbound local variable error is
raised.

3. The reference counter for value (in our case, obj) is increased by 1.
4. The pointer to obj is pushed to the top of the value stack.

5. The FAST_DISPATCH macro is called, if tracing is enabled, the loop
goes over again (with all the tracing). If tracing is not enabled, a
goto is called to fast_next_opcode. The goto jumps back to the top of
the loop for the next instruction.

175

Example: Adding an Item to a List

case TARGET(LOAD_FAST): {
PyObject *value = GETLOCAL(oparg); // 1.
if (value == NULL) {
format_exc_check_arg(
PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,

PyTuple_GetItem(co->co_varnames, oparg));

goto error; // 2.
3
Py_INCREF(value); // 3.
PUSH(value); // 4.
FAST_DISPATCH(); // 5.

The pointer to obj is now at the top of the value stack, and the next
instruction, LIST_APPEND, is executed.

Many of the bytecode operations are referencing the base types, like
PyUnicode, PyNumber. For example, LIST_APPEND appends an object to the
end of a list. To achieve this, it pops the pointer from the value stack
and returns the pointer to the last object in the stack. The macro is a
shortcut for:

PyObject *v = (*--stack_pointer);

Now the pointer to obj is stored as v. The list pointer is loaded from
PEEK(oparg).

Then the C API for Python lists is called for 1ist and v. The code for
this is inside objects» listobject.c, which you go into in the chapter
Objects and Types.

A call to prepICT is made, which guesses that the next operation will
be Jump_aABSOLUTE. The PREDICT macro has compiler-generated goto
statements for each of the potential operations’ case statements. This
means the CPU can jump to that instruction and not have to go
through the loop again:

176

Example: Adding an Item to a List

case TARGET(LIST_APPEND): {
PyObject *v = POP();
PyObject *1list = PEEK(oparg);
int err;
err = PyList_Append(list, v);
Py_DECREF(V);
if (err != 0)

goto error;

PREDICT (JUMP_ABSOLUTE) ;
DISPATCH();

177

Example: Adding an Item to a List

Opcode Predictions

Some opcodes come in pairs, making it possible to predict the
second code when the first is run. For example, COMPARE_OP is
often followed by PoP_JUMP_IF_FALSE Or POP_JUMP_IF_TRUE.

“Verifying the prediction costs a single high-speed test of a reg-
ister variable against a constant. If the pairing was good, then
the processor’s own internal branch prediction has a high likeli-
hood of success, resulting in a nearly zero-overhead transition
to the next opcode. A successful prediction saves a trip through
the eval-loop, including its unpredictable switch-case branch.
Combined with the processor’s internal branch prediction, a
successful PREDICT has the effect of making the two opcodes
run as if they were a single new opcode with the bodies com-
bined.”

If collecting opcode statistics, you have two choices:

1. Keep the predictions turned-on and interpret the results as
if some opcodes had been combined

2. Turn off predictions so that the opcode frequency counter

updates for both opcodes

Opcode prediction is disabled with threaded code since the lat-
ter allows the CPU to record separate branch prediction infor-
mation for each opcode.

Some of the operations, such as CALL_FUNCTION and CALL_METHOD, have an
operation argument referencing another compiled function. In these
cases, another frame is pushed to the frame stack in the thread. The
evaluation loop is then run for that function until the function com-
pletes. Each time a new frame is created and pushed onto the stack,
the value of the frame’s f_back is set to the current frame before the
new one is created.

178

Example: Adding an Item to a List

This nesting of frames is clear when you see a stack trace:
cpython-book-samples» 31» example_stack.py

def function2():

raise RuntimeError

def functionl():
function2()
if __name__ == '__main__':

functionl()
Calling this on the command-line will give you:

$./pvthon example_stack.py

Traceback (most recent call last):
File "example_stack.py", line 8, in <module>
functionl()
File "example_stack.py", line 5, in functionl
function2()
File "example_stack.py", line 2, in function2
raise RuntimeError

RuntimeError

In Lib» traceback.py, the walk_stack() function can be used to get trace
backs:

def walk_stack(f):

"""Walk a stack yielding the frame and line number for each frame.

This will follow f.f_back from the given frame. If no frame is given, the
current stack is used. Usually used with StackSummary.extract.
if f is None:
f = sys._getframe().f_back.f_back
while f is not None:

yield f, f.f lineno

179

Conclusion

f = f.f_back

The parent’s parent (sys._getframe().f_back.f_back) is set as the frame,
because you don’t want to see the call to walk_stack() or print_trace()
in the traceback. The f_back pointer is followed to the top of the call
stack.

sys._getframe() is the Python API to get the frame attribute of the cur-
rent thread.

Here is how that frame stack would look visually, with 3 frames each
with its code object and a thread state pointing to the current frame:

FRAME 0 #Code Object

f_back

FRAME 1 —1 Code Object

f_back
FRAME 2 kCode Object

Thread State rrone |

Conclusion

In this chapter, you’ve been introduced to the “brain” of CPython. The
core evaluation loop is the interface between compiled Python code
and the underlying C extension modules, libraries, and system calls.

Some parts in this chapter have been glossed over as you'll go into
them in upcoming chapters. For example, the CPython interpreter
has a core evaluation loop, you can have multiple loops running at the
same time. Whether that be in parallel or concurrently. CPython can
have multiple evaluation loops running multiple frames on a system.
In an upcoming chapter on Parallelism and Concurrency, you will see

180

Conclusion

how the frame stack system is used for CPython to run on multiple
core or CPUs. Also, CPython’s frame object API enables frames to be
paused and resumed in the form of asynchronous programming.

The loading of variables using a Value Stack needs memory allocation
and management. For CPython to run effectively, it has to have a
solid Memory Management process. In the next chapter, you'll ex-
plore that memory management process, and how it relates to the Py-
Object pointers used by the evaluation loop.

Leave feedback on this section »

181

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiLVEqJVk0eU9vJXFxPT8tUjUjZStocnNCTEp3MX1iLT9XMi1tcUxkdSIsInQiOiJjaGFwdGVycy8zMS10aGUtZXhlY3V0aW9uLWxvb3AubWQgKDU0M2RmMDRjYTg3MjI1MzgpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvNTQzZGYwNGNhODcyMjUzOGIzZmQ0MTRkZjcwZTA1YmI1ZGY1NjM4Zi9jaGFwdGVycy8zMS10aGUtZXhlY3V0aW9uLWxvb3AubWQifQ==

Memory Management

The two most important parts of your computer are the memory and
the CPU. They cannot work without the other, they must be utilized
well, and they must be performant.

When designing a programming language, the authors need to make
a vital trade-off:-

“How should the user manage computer memory?”

There are many solutions to this question. It depends on how simple
you want the interface to be, whether you want the language to be
cross-platform, whether you value performance over stability.

The authors of Python have made those decisions for you and left you
with some additional ones to make yourself. In this chapter, you will
explore how C manages memory, since CPython is written in C. You'll
look at two critical aspects to managing memory in Python - refer-
ence counting and garbage collection.

By the end of this chapter, you will understand how CPython allocates
memory on the Operating System, how object memory is allocated
and freed, and how CPython manages memory leaks.

Memory Allocation in C

In C, variables must have their memory allocated from the Operating
System before they can be used.

182

Memory Allocation in C

There are three memory allocation mechanisms in C:
1. Static memory allocation, where memory requirements are calcu-
lated at compile time and allocated by the executable when it starts

2. Automatic memory allocation, where memory requirements for a
scope (e.g., function) are allocated within the call stack when a
frame is entered and freed once the frame is terminated

3. Dynamic memory allocation, where memory can be requested and
allocated dynamically (i.e., at runtime) by calls to the memory al-
location API

Static Memory Allocation in C

Types in C have a fixed size. For global and static variables, the com-
piler will calculate the memory requirements for all global/static vari-
ables and compile that requirement into the application.

For example:
static int number = 0;

You can see the size of a type in Cby using the sizeof () function. On my
system, a 64-bit macOS running GCC, an int is 4 bytes. Basic types in
C can have different sizes depending on the architecture and compiler.

For cases of arrays, these are statically defined, for example, an array
of 10 integers:

static int numbers[10] = {0,1,2,3,4,5,6,7,8,9};

The C compiler converts this statement into an allocation of
sizeof(int) * 10 bytes of memory.

The C compiler uses system calls to allocate memory. These system
calls depend on the Operating System and are low-level functions to
the Kernel to allocate memory from the system memory pages.

183

Memory Allocation in C

Automatic Memory Allocation in C

Similar to static memory allocation, automatically memory allocation
will calculate the memory allocation requirements at compile-time.

This example application will calculate 100 degrees Fahrenheit in Cel-
sius:

cpython-book-samples» 32 » automatic.c

#include <stdio.h>
static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit){
double ¢ = (fahrenheit - 32) * five_ninths;

return c;

int main() {
double f = 100;
printf("%f F is %f Cn", £, celsius(f));

return 0;

Both static and dynamic memory allocation techniques are being used
in the last example:

+ The const value five_ninths is statically allocated because it has
the static keyword

 The variable c within the function celsius() is allocated automat-
ically when celsius() is called and freed when it is completed

» The variable f within the function main() is allocated automati-
cally when main() is called and freed when it is completed

+ The result of celsius(f) is implicitly allocated automatically

« The automatic memory requirements of main() are freed when the
function completes

184

Memory Allocation in C

Dynamic Memory Allocation in C

In many cases, neither static nor automatically memory allocation is
sufficient. For example- a program cannot calculate the size of the
memory required at compile-time because it is a user-input defined.

In such cases, memory is allocated dynamically. Dynamic memory
allocation works by calls to the C memory allocation APIs.

Operating Systems reserve a section of the system memory for dynam-
ically allocation to processes. This section of memory is called a heap.

In this example, you will allocate memory dynamically to an array of
Fahrenheit and celsius values.

The application takes some Fahrenheit values to print their celsius
values:

cpython-book-samples» 32 » dynamic.c

#include <stdio.h>
#include <stdlib.h>

static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit){
double ¢ = (fahrenheit - 32) * five_ninths;

return c;

int main(int argc, char** argv) {
if (argc != 2)
return -1;
int number = atoi(argv[1]);
double* c_values = (double*)calloc(number, sizeof(double));
double* f_values = (double*)calloc(number, sizeof(double));
for (int 1 = 0 ; i < number ; i++){
f _values[i] = (i + 10) * 10.0 ;

c_values[i] = celsius((double)f_values[i]);

185

Design of the Python Memory Management System

}
for (int i = 0 ; i < number ; i++){

printf("%f F is %f Cn", f values[i], c_values[i]);
}

free(c_values);

free(f_values);

return O;

3
If you execute this with the argument 4, it will print:

100.000000 F is 37.777778 C
110.000000 F is 43.333334 C
120.000000 F is 48.888888 C
130.000000 F is 54.444444 C

This example uses dynamic memory allocation to allocate a block of
memory from the heap and then free’s the memory back to the heap
upon completion.

If any memory that is dynamically allocated is not freed, it will cause
a memory leak.

Design of the Python Memory
Management System

Being built on top of C, CPython has to use the constraints of static,
automatic, and dynamic memory allocation.

There are some design aspects of the Python language that make those
constraints even more challenging:

1. Python is a dynamically typed language. The size of variables can-
not be calculated at compile-time

2. Most of Python’s core types are dynamically sized. The 1ist type
can be of any size, dict can have any number of keys, even int is

186

Design of the Python Memory Management System

dynamic. The user never has to specify the size of these types

3. Names in Python can be reused to values of different types, e.g.:

>>> a_value 1

>>> a_value = "Now I'm a string"

>>> a_value = ["Now" , "I'm" "a", "list"]

To overcome these constraints, CPython relies heavily on dynamic
memory allocation but adds safety-rails to automate the freeing
of memory using the garbage collection and reference counting
algorithms.

Instead of the Python developer having to allocate memory, Python
Object memory is allocated automatically via a single, unified API.

This design requires that the entire CPython standard library and core
modules (written in C) use this API.

Allocation Domains

CPython comes with three dynamic memory allocation domains:
1. Raw Domain - Used for allocation from the system heap. Used
for large, or non-object related memory allocation

2. Object Domain - Used for allocation of all Python Object-related
memory allocation

3. PyMem Domain - The same as PYMEM_DOMAIN_ORBJ, exists for legacy
API purposes
Each domain implements the same interface of functions:
» _Alloc(size_t size) - allocates memory of size, size, and returns a
pointer
e _Calloc(size_t nelem, size_t elsize) - allocates memory of size

* _Realloc(void *ptr, size_t new_size) - reallocates memory to a new
size

187

The CPython Memory Allocator

e _Free(void *ptr) - frees memory at ptr back to the heap

The PyMemAllocatorDomain enumeration represents the three domains
in CPython as PYMEM_DOMAIN_RAW, PYMEM_DOMAIN_OBJ, and PYMEM_DOMAIN_MEM.

Memory Allocators

CPython uses two memory allocators:
1. The Operating System allocator (malloc) for the Raw memory do-
main

2. The CPython allocator (pymalloc) for the PyMem and Object
Memory domains

The CPython allocator, pymalloc, is compiled into CPython by
default. You can remove it by recompiling CPython after setting
WITH_PYMALLOC = 0 in pyconfig.h. If you remove it, the PyMem and
Object memory domain APIs will use the system allocator.

If you compiled CPython with debugging (--with-pydebug on
macOS/Linux, or with the pebug target on Windows), then each
of the memory allocation functions will go to a Debug implementa-
tion. For example, with debugging enabled, your memory allocation
calls would execute _PyMem_DebugAlloc() instead of _PyMem_Alloc().

The CPython Memory Allocator

The CPython memory allocator sits atop the system memory allocator
and has its algorithm for allocation. This algorithm is similar to the
system allocator, except that it is customized to CPython:

+ Most of the memory allocation requests are small, fixed-
size because PyObject is 16 bytes, PyASCIIObject is 42 bytes,
PyCompactUnicodeObject is 72 bytes, and PyLongObject is 32 bytes.

188

The CPython Memory Allocator

« The pymalloc allocator only allocates memory blocks up to 256KB,
anything larger is sent to the system allocator

 The pymalloc allocator uses the GIL instead of the system thread-
safety check

To help explain this situation, we’re going to use a physical sports sta-
dium as our analogy.

This is the stadium of “CPython FC,” our fictional team.

To help manage crowds, CPython FC has implemented a system of
breaking the stadium up into sections A-E, each with seating rows 1-
40.

The rows at the front of the stadium (1-10) are the Premium seats,
each taking up more space. So there can only be 80 seats per row.

At the back, from rows 31-40 are the Economy seats. There are 150
seats per row:

Section A

(A\

Section D

Section E Section B

« Just like the stadium has seats, the pymalloc algorithm has mem-
ory “blocks”

189

The CPython Memory Allocator

Just like seats can either be Premium, Regular or Economy, blocks
are all of a range of fixed sizes. You can’t bring your deckchair

Just like seats of the same size are put into rows, blocks of the same
size are put into sized pools

A central register keeps a record of where blocks are and the num-
ber of blocks available in a pool, just as the stadium would allocate
seating

When a row in the stadium is full, the next row is used. When a
pool of blocks is full, the next pool is used

Pools are grouped into arenas, just like the stadium groups the
rows into sections

There are some advantages to this strategy:

. The algorithm is more performant for CPython’s main use case-
short-lived, small objects

. The algorithm uses the GIL instead of system thread lock detection

. The algorithm uses memory mapping (mmap) instead of heap al-
location

Related Source Files

Source files related to the memory allocator are:

File Purpose

Include» pymem.h PyMem Allocator API

Include » cpython) pymem.h PyMem Memory Allocator Configuration
API

Include» internal » pycore_mem.h GC data structure and internal APIs

Objects» obmalloc.c Domain allocator implementations, and the

pymalloc implementation

Important Terms

« Requested memory is matched to a block size

190

The CPython Memory Allocator

 Blocks of the same size are all put into the same pool of memory

« Pools are grouped into arenas

Blocks, Pools, and Arenas

The largest group of memory is an arena. CPython creates arenas of
256KB to align with the system page size. A system page boundary is
a fixed-length contiguous chunk of memory.

Even with modern, high-speed memory, contiguous memory will load
faster than fragmented. It is beneficial to have contiguous memory.

Arenas

Arenas are allocated against the system heap, and with mmap() on sys-
tems supporting anonymous memory mappings. Memory mapping
helps reduce heap fragmentation of the arenas.

This is the representation of 4 arenas within the system heap:

System Heap

Arena Arena Arena Arena

256KB 256KB 256KB 256KB

Arenas have the data struct arenaobject:

Field Type Purpose

address uintptr_t Memory address of the arena

pool_address block * Pointer to the next pool to be carved off for
allocation

nfreepools uint The number of available pools in the arena: free
pools + never-allocated pools

ntotalpools uint The total number of pools in the arena, whether

or not available

191

http://man7.org/linux/man-pages/man2/mmap.2.html

The CPython Memory Allocator

Field Type Purpose
freepools pool_header* Singly-linked list of available pools
nextarena arena_- Next arena (see note)
object*
prevarena arena_- Previous arena (see note)
object*

Arenas are linked together in a doubly-linked list inside the
arena data structure, using the nextarena and prevarena pointers.

If this arena is unallocated, the nextarena member is used. The
nextarena member links all unassociated arenas in the singly-
linked unused_arena_objects global variable.

When this arena is associated with an allocated arena, with at
least one available pool, both nextarena and prevarena are used
in the doubly-linked usable_arenas list. This list is maintained
in increasing order of nfreepools values.

192

The CPython Memory Allocator

Pools

Within an arena, pools are created for block sizes up to 512 bytes.

For 32-bit systems, the step is 8 bytes, so there are 64 classes:

For 64-bit systems, the step is 16 bytes, so there are 32 classes:

Request in bytes Size of allocated block Size class index
1-8 8 o]
9-16 16 1
17-24 24 2
25-32 32 3
497-504 504 62
505-512 512 63

Request in bytes Size of allocated block Size class index
1-16 16 o]
17-32 32 1
33-48 48 2
49-64 64 3
480-496 496 30
496-512 512 31

Pools are all 4096 bytes (4KB), so there are always 64 pools in an

arena.

System Heap

I
-0

bg
3
o
>
o

I
111

Arena

256KB

Arena

256KB

193

The CPython Memory Allocator

Pools are allocated on demand. When no available pools are available
for the requested class size index, a new one is provisioned. Arenas
have a “high water mark” to index how many pools have been provi-

sioned.

Pools have three possible states,

1. Full: all available blocks in that pool are allocated

2. Used: the pool is allocated, and some blocks have been set, but it
still has space

3. Empty: the pool is allocated, but no blocks have been set

Class:Status

[0 Full] [1 Used] [@ Used]
2 FUull] [S Used] [4 Used] .
[3 Full] [3 Used] [5 Used] .
4 Full] [8 Used] [7 Used] .
2 FULT] 1@ Used] [9 Empty] |
8 FULT] (2 Used] [2 Empty] |
[BITFULT] [2 Used| (10 Empty] |
2 FULT] (1 Used]| [1 Empty]

«——— Highwater mark

Arena
<— Unallocated Pool Area ——

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pools have the data structure poolp, which is a static allocation of the
struct pool_header. The pool_header type has the following properties:

Field Type Purpose

ref uint Number of currently allocated blocks in this pool
freeblock block * Pointer to this pool’s “free list” head

nextpool pool_header* Pointer to the next pool of this size class

prevpool pool_header* Pointer to the previous pool of this size class
arenaindex uint Singly-linked list of available pools

szidx uint Class size index of this pool

nextoffset uint Number of bytes to unused block

maxnextoffset uint Maximum number that nextoffset can be until

pool is full

Each pool of a certain class size will keep a doubly-linked list to the

194

The CPython Memory Allocator

next and previous pools of that class. When the allocation task hap-
pens, it is easy to jump between pools of the same class size within an
arena by following this list.

Pool Tables

A register of the pools within an arena is called a pool table.

A pool table is a headed, circular, doubly-linked list of partially-used
pools. The pool table is segmented by class size index, i. For an index
of i, usedpools[i + i] points to the header of a list of all partially-used
pools that have the size index for that class size.

Pool tables have some essential characteristics:

« When a pool becomes full, it is unlinked from its usedpools[] list.

« If a full block has a block freed, the pool back is put back in the
used state. The newly freed pool is linked in at the front of the
appropriate usedpools[] list so that the next allocation for its size
class will reuse the freed block.

« On transition to empty, a pool is unlinked from its usedpools[] list,
and linked to the front of its arena’s singly-linked freepools list.

Blocks

Within a pool, memory is allocated into blocks. Blocks have the fol-
lowing characteristics:
« Within a pool, blocks of fixed class size can be allocated and freed.

« Available blocks within a pool are listed in the singly-linked list,
freeblock.

« When a block is freed, it is inserted at the front of the freeblock list.

« When a pool is initialized, only the first two blocks are linked
within the freeblock list.

+ Aslong a pool is in the used state, there will be a block available
for allocating.

195

The CPython Memory Allocator

A partially allocated pool with a combination f used, freed, and avail-
able blocks:

freeblock Pool «— Clean Blocks —

Lo | | O

| | | | | | : :
L

Block Allocation API

When a block of memory is requested by a memory domain that uses
pymalloc, the pymalloc_alloc function will be called.

This function is a good place to insert a breakpoint and step through
the code to test your knowledge of the blocks, pools, and arenas.

Objects» obmalloc.c line 1590

static inline void*
pymalloc_alloc(void *ctx, size_t nbytes)

{

For a request of nbytes = 30, it is neither zero, nor below the sMALL_-
REQUEST_THRESHOLD of 512:

if (UNLIKELY(nbytes == 0)) {
return NULL;

}
if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {
return NULL;

For a 64-bit system, the size class index is calculated as 1. This corre-
lates to the 2nd class size index (17-32 bytes). The target pool is then
usedpools[1 + 1] (usedpools[Z]):

196

https://github.com/python/cpython/blob/v3.9.0b1/Objects/obmalloc.c#L1590

The CPython Memory Allocator

uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
poolp pool = usedpools[size + size];
block *bp;

Next, a check is done to see if there is an available ('used') pool for the
class size index. If the freeblock list is at the end of the pool, then there
are still clean blocks available in that pool. pymalloc_pool_extend() is
called to extend the freeblock list:

if (LIKELY(pool != pool->nextpool)) {

/%
* There is a used pool for this size class.
* Pick up the head block of its free 1list.
*/

++pool->ref.count;

bp = pool->freeblock;

assert(bp != NULL);

if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {
// Reached the end of the free list, try to extend it.

pymalloc_pool_extend(pool, size);

If there were no available pools, a new pool is created and the first
block is returned. The allocate_from_new_pool() function adds the new
pool to the usedpools list automatically:

else {
/* There isn't a pool of the right size class immediately
* available: use a free pool.
*/

bp = allocate_from_new_pool(size);

return (void *)bp;

Finally, the new block address is returned.

197

The Object and PyMem Memory Allocation Domains

Using the Python Debug API

The sys module contains an internal function, _debugmallocstats(), to
get the number of blocks in use for each of the class size pools. It will
also print the number of arenas allocated, reclaimed, and the total
number of blocks used.

You can use this function to see the running memory usage:
$./python -c "import sys; sys._debugmallocstats()"
Small block threshold = 512, in 32 size classes.

class size num pools blocks in use avail blocks

16 1 181 72

1 32 6 675 81

2 48 18 1441 71
2 free 18-sized PyTupleObjects * 168 bytes each = 336
3 free 19-sized PyTupleObjects * 176 bytes each = 528

The output shows the class index size table, the allocations, and some
additional statistics.

The Object and PyMem Memory
Allocation Domains

CPython’s object memory allocator is the first of the three domains
that you will explore.

The purpose of the Object memory allocator is to allocate memory re-
lated to Python Objects, such as:

» New Object Headers

+ Object data, such as dictionary keys and values, or list items

The allocator is also used for the compiler, AST, parser and evaluation

198

The Object and PyMem Memory Allocation Domains

loop.

An excellent example of the Object memory allocator being used is the
PyLongObject (int) type constructor, PyLong_New().

+ When a new int is constructed, memory is allocated from the Ob-
ject Allocator.

+ The size of the request is the size of the PyLongobject struct, plus
the amount of memory required to store the digits.

Python longs are not equivalent to C’s long type. They are a list of
digits.

The number 12378562834 in Python would be represented as the list of
digits 1,2,3,7,8,5,6,2,8,3,4].

This memory structure is how Python can deal with huge numbers
without having to worry about 32 or 64-bit integer constraints.

Take a look at the pPyLong constructor to see an example of object mem-
ory allocation:

%

PyLongObject
_PyLong_New(Py_ssize_t size)
{

PyLongObject *result;

if (size > (Py_ssize_t)MAX_LONG_DIGITS) {
PyErr_SetString (PyExc_OverflowError,
"too many digits in integer");
return NULL;
3
result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +
size*sizeof(digit));
if (!result) {
PyErr_NoMemory() ;
return NULL;

199

The Object and PyMem Memory Allocation Domains

return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);
}

If you were to call _PyLong_New(2), it would calculate:

Value Bytes
sizeof(digit) 4

size 2
header offset 26
Total 32

A call to pyobject_MaLLOC() would be made with a size_t value of 32.

On my system, the maximum number of digits in a long, MAX_LONG_-
DIGITS, iS 2305843009213693945 (a very, very big number). If you ran _-
PyLong_New(2305843009213693945) it would call Pyobject_MaLLOC() with a
size_t of 9223372036854775804 bytes, or 8,589,934,592 Gigabytes (more
RAM than I have available).

Using the tracemalloc Module

The tracemalloc in the standard library can be used to debug memory
allocation through the Object Allocator. It provides information on
where an object was allocated, and the number of memory blocks al-
located.

As a debug tool, it is beneficial to calculate the amount of memory
consumed by running your code or detect memory leaks.

To enable memory tracing, you should start Python with the -x
tracemalloc=1, where 1 is the number of frames deep you want to
trace. Alternatively, you can enable memory tracing using the
PYTHONTRACEMALLOC=1 environment variable. 1 is the number of frames
deep you want to trace and can be replaced with any integer.

You can use the take_snapshot () function to create a snapshot instance,
then compare multiple snapshots using compare_to().

200

The Object and PyMem Memory Allocation Domains

Create an example tracedemo.py file to see this in action:
cpython-book-samples» 32 » tracedemo.py

import tracemalloc
tracemalloc.start()

def to_celsius(fahrenheit, /, options=None):
return (fahrenheit-32)+%5/9

values = range(0, 100, 10) # values 0, 10, 20, ... 90

for v in values:

c = to_celsius(v)

after tracemalloc.take_snapshot ()

tracemalloc.stop()
after = after.filter_traces([tracemalloc.Filter(True, '**/tracedemo.py')])

stats = after.statistics('lineno')

for stat in stats:

print(stat)

Executing this will print a list of the memory used by line, from highest
to lowest:

$./python -X tracemalloc=2 tracedemo.py

/Users/.../tracedemo.py:5: size=712 B, count=2, average=356 B
/Users/.../tracedemo.py:13: size=512 B, count=1, average=512 B
/Users/.../tracedemo.py:11: size=480 B, count=1, average=480 B
/Users/.../tracedemo.py:8: size=112 B, count=2, average=56 B

/Users/.../tracedemo.py:6: size=24 B, count=1, average=24 B

The line with the highest memory consumption was return
(fahrenheit-32)*5/9 (the actual calculation).

201

The Raw Memory Allocation Domain

The Raw Memory Allocation Domain

The Raw Memory Allocation domain is used either directly, or when
the other two domains are called with a request size over 512 KB.

It takes the request size, in bytes, and calls malloc(size).

If the size argument is 0, some systems will return NULL for mal-
loc(0), which would be treated as an error.

Some platforms would return a pointer with no memory behind
it, which would break pymalloc. To solve these problems, _PyMem_-
RawMalloc() will add an extra byte before calling malloc().

By default, the PyMem Domain allocators will use the Object
Allocators. PyMem_Malloc() and PyObject_Malloc() will have the
same execution path.

Custom Domain Allocators

CPython also allows for the allocation implementation for any of the
three domains to be overridden. If your system environment required
bespoke memory checks or algorithms for memory allocation, then
you can plug a new set of allocation functions into the runtime.

PyMemAllocatorEx iS a typedef struct with members for all of the methods
you would need to implement to override the allocator:

typedef struct {
/* user context passed as the first argument to the 4 functions */

void *ctx;

/* allocate a memory block */

void* (*malloc) (void *ctx, size_t size);

/* allocate a memory block initialized by zeros */

202

Custom Memory Allocation Sanitizers

void* (*calloc) (void *ctx, size_t nelem, size_t elsize);

/* allocate or resize a memory block */

void* (*realloc) (void *ctx, void *ptr, size_t new_size);

/* release a memory block */
void (*free) (void *ctx, void *ptr);

} PyMemAllocatorEx;

The API method PyMem_GetAllocator() is available to get the existing
implementation:

%

PyMemAllocatorEx * existing_obj;
PyMem_GetAllocator (PYMEM_DOMAIN_OBJ, existing_obj);

Important

There are some important design tests for custom allocators:

+ The new allocator must return a distinct non-NULL pointer
when requesting zero bytes

o For the PYMEM_DOMAIN_RAW domain, the allocator
must be thread-safe

If you implemented functions My_Malloc, My_Calloc, My_Realloc and My_-
Free implementing the signatures in PyMemAllocatorEx, you could over-
ride the allocator for any domain, e.g., the pyMEM_DOMAIN_0BJ domain:

PyMemAllocatorEx my_allocators =
{NULL, My_Malloc, My_Calloc, My_Realloc, My_Free};
PyMem_SetAllocator (PYMEM_DOMAIN_OBJ, &my_allocators);

Custom Memory Allocation Sanitizers
Memory allocation sanitizers are an additional algorithm placed be-

tween the system call to allocate memory, and the kernel function to
allocate the memory on the system. They are used for environments

203

https://github.com/python/cpython/blob/v3.9.0b1/Objects/obmalloc.c#L520

Custom Memory Allocation Sanitizers

that require specific stability constraints, very high security, or for de-
bugging memory allocation bugs.

CPython can be compiled using several memory sanitizers. These are
part of the compiler libraries, not something developed for CPython.

They typically slow down CPython significantly and cannot be com-
bined. They generally are for use in debugging scenarios or systems
where preventing corrupt memory access is critical.

Address Sanitizer

Address Sanitizer is a “fast” memory error detector. It can detect
many runtime memory-related bugs:

« Out-of-bounds accesses to heap, stack, and globals
« Memory being used after it has been freed

+ Double-free, invalid free
It can be enabled by running;:

$./configure --with-address-sanitizer ...

Address Sanitizer would slow down applications by up to 2x and
consume up to 3x more memory.

Address Sanitizer is supported on:

» Linux

e macOS
NetBSD
FreeBSD

See the official documentation for more information.

204

https://clang.llvm.org/docs/AddressSanitizer.html

Custom Memory Allocation Sanitizers

Memory Sanitizer

Memory Sanitizer is a detector of uninitialized reads. If an address
space is addressed before it has been initialized (allocated), then the
process is stopped before the memory can be read.

It can be enabled by running:

$./configure --with-memory-sanitizer ...

Memory Sanitizer would slow down applications by up to 2x
and consume up to 2x more memory.

Memory Sanitizer is supported on:

e Linux
» NetBSD
e FreeBSD

See the official documentation for more information.

Undefined Behavior Sanitizer

Undefined Behavior Sanitizer is a “fast” undefined behavior detector.
It can catch various kinds of undefined behavior during execution, for
example:

« Using misaligned or null pointer

« Signed integer overflow

 Conversion to, from, or between floating-point types which would

overflow the destination

It can be enabled by running;:

205

https://clang.llvm.org/docs/MemorySanitizer.html

The PyArena Memory Arena

$./configure --with-undefined-behavior-sanitizer ...

Undefined Behavior Sanitizer is supported on:

» Linux

e macOS
« NetBSD
e FreeBSD

See the official documentation for more information.

The Undefined Behavior Sanitizer has many configurations, using
—-with-undefined-behavior-sanitizer will set the undefined profile. To
use another profile, e.g., nullability, run ./configure with the custom
CFLAGS:

$./configure CFLAGS="-fsanitize=nullability"
LDFLAGS="-fsanitize=nullability"

The PyArena Memory Arena

Throughout this book, you will see references to a pyarena object.

The PyArena is a separate arena allocation API used for the compiler,
frame evaluation, and other parts of the system not run from Python’s
Object allocation API. The PyArena also has its own list of allocated
objects within the arena structure. Memory allocated by the pyarena is
not a target of the garbage collector.

When memory is allocated in a pyarena instance, it will capture a run-
ning total of the number of blocks allocated, then call pyMem_al1oc.

Allocation requests to the pyarena use the Object Allocator for blocks
<= 512KB, or the Raw Allocator for blocks > 256KB.

Related Files

206

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/python/cpython/blob/v3.9.0b1/Include/pyarena.h#L12

Reference Counting

File Purpose

Includebpyarena.h The PyArena API and type definitions
Python» pyarena.c The PyArena implementation

Reference Counting

As you have explored so far in this chapter, CPython is built on C’s
Dynamic Memory Allocation system. Memory requirements are de-
termined at runtime, and memory is allocated on the system using
the pyMem APISs.

For the Python developer, this system has been abstracted and simpli-
fied. Developers don’t have to worry (too much) about allocating and
free’ing memory.

To achieve simple memory management, Python adopts two strate-
gies for managing the memory allocated by objects:

1. Reference Counting

2. Garbage Collection

Creating Variables in Python

To create a variable in Python, you have to assign a value to a uniquely
named variable. For example:

00

my_variable = ['a', 'b', 'c']

When a value is assigned to a variable in Python, the name of the
variable is checked within the locals and globals scope to see if it al-
ready exists.

In the example, my_variable is not already within any locals() or
globals() dictionary. A new list object is created, and a pointer is
stored in the locals() dictionary. There is now one reference to
my_variable. The list object’s memory should not be freed while there
are valid references to it. If memory were freed, the my_variable

207

Reference Counting

pointer would point to invalid memory space, and CPython would
crash.

Throughout the C source code for CPython, you will see calls to py_-
INCREF() and Py_DECREF().

These macros are the primary API for incrementing and decrement-
ing references to Python objects. Whenever something depends on
a value, the reference count increases, when that dependency is no
longer valid, the reference count decreases.

If a reference count reaches zero, it is assumed that it is no longer
needed, and it is automatically freed.

Incrementing References

Every instance of pyobject has a property ob_refent. This property is a
counter of the number of references to that object.

References to an object are incremented under many scenarios. In
the CPython code base, there are over 3000 calls to py_INCREF(). The
most frequent calls are when an object is:

« assigned to a variable name
« referenced as a function or method argument
« returned, or yielded from a function

The logic behind the py_INCREF macro is simple. It increments the ob_-
refent value by 1:

static inline void _Py_INCREF(PyObject *op)
{

_Py_INC_REFTOTAL;

op->ob_refcnt++;

}

If CPython is compiled in debug mode, _py_1Nc_REFTOTAL will increment
a global reference counter, _Py_RefTotal.

208

https://github.com/python/cpython/blob/v3.9.0b1/Include/object.h#L411
https://github.com/python/cpython/blob/v3.9.0b1/Include/object.h#L411
https://github.com/python/cpython/blob/v3.9.0b1/Include/object.h#L437

Reference Counting

You can see the global reference counter by adding the -x
showrefcount flag when running CPython:

$./python -X showrefcount -c "x=1; x+=1; print(f'x is {x}')"
X is 2

[18497 refs, 6470 blocks]

The first number in brackets is the number of references made
during the process, and the second is the number of allocated
blocks.

Decrementing References

References to an object are decremented when a variable falls outside
of the scope in which it was declared. Scope in Python can refer to a
function or method, a comprehension, or a lambda. These are some
of the more literal scopes, but there are many other implicit scopes,
like passing variables to a function call.

The py_bECREF() function is more complex than py_INCREF() because it
also handles the logic of a reference count reaching o, requiring the
object memory to be freed:

static inline void _Py_DECREF(
#ifdef Py_REF_DEBUG

const char *filename, int lineno,
#endif

PyObject *op)

_Py_DEC_REFTOTAL;
if (--op->ob_refcnt != 0) {
#ifdef Py_REF_DEBUG
if (op->ob_refcnt < 0) {

_Py_NegativeRefcount(filename, lineno, op);

#endif

209

Reference Counting

3

else {

_Py_Dealloc(op);

Inside py_DECREF(), when the reference counter (ob_refent) value be-
comes 0, the object destructor is called via _Py_Dealloc(op), and any
allocated memory is freed.

As with py_INCREF(), there are some additional functions when
CPython has been compiled in debug mode.

For an increment, there should be an equivalent decrement operation.

If a reference count becomes a negative number, this indicates an im-
balance in the C code. An attempt to decrement references to an object
that has no references will give this error message:

<file>:<line>: _Py_NegativeRefcount: Assertion failed:
object has negative ref count

Enable tracemalloc to get the memory block allocation traceback

object address : 0x109eaac50

object refcount : -1

object type : 0x109cadf60

object type name: <type>

object repr : <refcnt -1 at 0x109eaac50>

When making changes to the behavior of an operation, the Python
language, or the compiler, you must carefully consider the impact on
object references.

Reference Counting in Bytecode Operations

Alarge portion of the reference counting in the Python happens within
the bytecode operations in Python» ceval .c.

Take this example, how many references do you think there are to y?

210

Reference Counting

y = "hello"

def greet(message=y):

print(message.capitalize() + " " + vy)
messages = [y]
greet(*“messages)
At a glance, y is immediately referenced by:

1. yis a variable in the top-level scope
2. yisreferenced as a default value for the keyword argument message
3. vis referenced inside the greet () function

4. yis anitem in the messages list
Run this code with an additional snippet:

import sys

print(sys.getrefcount(y))

The total references to vy is 6.

Instead of the logic for incrementing and decrementing references sit-
ting within a central function that has to cater for all these cases (and
more!), the logic is split into small parts.

A bytecode operation should have a determining impact on the refer-
ence counter for the objects that it takes as arguments.

For example, in the frame evaluation loop, the LoAD_FAST operation
loads the object with a given name and pushes it to the top of the value
stack. Once the variable name, which is provided in the oparg, has
been resolved using GETLOCAL() the reference counter is incremented:

case TARGET(LOAD_FAST): {
PyObject *value = GETLOCAL(oparg);

211

Reference Counting

if (value == NULL) {
format_exc_check_arg(tstate, PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,
PyTuple_GetItem(co->co_varnames, oparg));
goto error;
}
Py_INCREF(value);
PUSH(value);
FAST_DISPATCH();

A LOAD_FAST operation is compiled by many AST nodes that have oper-
ations.

For example, if you were to assign two variables a and b, then create
third, ¢ from the result of multiplying them:

10
20

c=a%®*b

In the third operation, ¢ = a * b, the right-hand side expression, a *
b, would be assembled into three operations:

1. LOAD_FAST, resolving the variable a and pushing it to the value stack
then incrementing the references to a by 1

2. LOAD_FAST, resolving the variable b and pushing it to the value stack
then incrementing the references to b by 1

3. BINARY_MULTIPLY

The binary multiply operator, BINARY_MULTIPLY knows that references
to the left and right variables in the operation have been loaded to the
first and second positions in the value stack. It is also implied that the
LOAD_FAST operation incremented its reference counters.

In the implementation of the BINARY_MULTIPLY operation, the references
to both a (1eft) and b (right) are decremented once the result has been
calculated.

212

Reference Counting

case TARGET(BINARY_MULTIPLY): {

PyObject *right = POP();

PyObject *left = TOP();

PyObject *res = PyNumber_Multiply(left, right);
>>> Py_DECREF(left);
>>> Py_DECREF(right);

SET_TOP(res);

if (res == NULL)

goto error;

DISPATCH() ;

The resulting number, res, will have a reference count of 1 before it is
set as the top of the value stack.

Conclusion

CPython’s reference counter has the benefits of being simple, fast, and
efficient.

The biggest drawback of the reference counter is that it needs to cater
for, and carefully balance, the effect of every operation.

As you just saw, a bytecode operation increments the counter, and it
is assumed that an equivalent operation will decrement it properly.
What happens if there’s an unexpected error? Have all possible sce-
narios been tested?

Everything discussed so far is within the realm of the CPython run-
time. The Python developer has little to no control over this behavior.

There is also a significant flaw in the reference counting approach—
cyclical references.

Take this Python example:
x =[]

x.append(x)
del x

213

Garbage Collection

The reference count for x is still 1 because it referred to itself.

To cater to this complexity, and resolve some of these memory leaks,
CPython has a second memory management mechanism, Garbage
Collection.

Garbage Collection

How often does your garbage get collected? Weekly or fortnightly?

When you're finished with something, you discard it and throw it in
the trash. But that trash won’t get collected straight away. You need
to wait for the garbage trucks to come and pick it up.

CPython has the same principle, using a garbage collection algorithm.
CPython’s garbage collector is enabled by default, happens in the
background, and works to deallocate memory that’s been used for ob-
jects which no longer exist.

Because the garbage collection algorithm is a lot more complicated
than the reference counter, it doesn’t happen all the time. If it did, it
would consume a vast amount of CPU resources. The garbage collec-
tion runs periodically after a set number of operations.

Related Source Files

Source files related to the garbage collector are:

File Purpose
Modules » gcmodule. ¢ The Garbage Collection module and
algorithm implementation
Include» internal » pycore_mem.h The GC data structure and internal APIs
The GC Design

As you uncovered in the previous section, every Python object retains
a counter of the number of references to it. Once that counter reaches

214

Garbage Collection

0, the object is finalized, and the memory is freed.

Many of the Python container types, like lists, tuples, dictionaries,
and sets, could result in cyclical references. The reference counter is
an insufficient mechanism to ensure that objects which are no longer
required are freed. While creating cyclical references in containers
should be avoided, there are many examples within the standard li-
brary and the core interpreter.

Here is another common example, where a container type (class) can
refer to itself:

cpython-book-samples» 32 » user.py

_all__ = ['User']

class User(BaseUser):

[[

name: 'str' = ""

login: 'str' = ""

def __init_ (self, name, login):
self.name = name
self.login = login

super(User).__init__()

def __repr_ (self):

return ""

class BaseUser:
def __repr_ (self):
This creates a cyclical reference

return User._ repr_ (self)

In this example, the instance of user links to the BaseUser type, which
references back to the instance of user.

The goal of the garbage collector is to find unreachable objects and
mark them as garbage.

215

Garbage Collection

Some GC algorithms, like mark-and-sweep, or stop-and-copy start at
the root of the system and explore all reachable objects. This is hard
to do in CPython because C extension modules can define and store
their own objects. You could not easily determine all objects by simply
looking at 1ocals() and globals().

For long-running processes, or large data processing tasks, running
out of memory would cause a significant issue.

Instead, the CPython garbage collector leverages the existing refer-
ence counter and a custom garbage collector algorithm to find all un-
reachable objects. Because the reference counter is already in place,
the role of the CPython garbage collector is to look for cyclical refer-
ences in certain container types.

Container Types Included in GC

The Garbage Collector will look for types that have the flag py_-
TPFLAGS_HAVE_GC set in their type definition.
You will cover type definitions in the chapter Objects in CPython.

Types that are marked for garbage collection are:

« Class, Method and Function objects

+ Cell Objects

 Byte arrays, Byte, and Unicode strings
« Dictionaries

« Descriptor Objects, used in attributes
« Enumeration Objects

 Exceptions

« Frame Objects

« Lists, Tuples, Named Tuples and Sets
« Memory Objects

» Modules and Namespaces

216

Garbage Collection

» Type and Weak Reference Objects
« Iterators and Generators

« Pickle Buffers

Wondering what’s missing? Floats, Integers, Boolean, and NoneType
are not marked for garbage collection.

Custom types written with C extension models can be marked as re-
quiring GC using the GC C-API.

Untrackable Objects and Mutability

The GC will track certain types for changes in their properties to de-
termine which are unreachable.

Some container instances are not subject to change because they are
immutable, so the API provides a mechanism for “untracking.” The
fewer objects there are to be tracked by the GC, the faster and more
efficient the GC is.

An excellent example of untrackable objects is tuples. Tuples are im-
mutable. Once you create them, they cannot be changed. However,
tuples can contain mutable types, like lists and dictionaries.

This design in Python creates many side-effects, one of which is the
GC algorithm. When a tuple is created, unless it is empty, it is marked
for tracking. When the GC runs, every tuple looks at its contents to see
if it only contains immutable (untracked) instances. This step is com-
pleted in _pyTuple_MaybeUntrack(). If the tuple determines that it only
contains immutable types, like booleans and integers, it will remove
itself from the GC tracking by calling _Pyobject_GC_UNTRACK().

Dictionaries are empty when they are created and untracked. When
an item is added to a dictionary, if it is a tracked object, the dictionary
will request itself to be tracked by the GC.

You can see if any object is being tracked by calling gc.is_tracked(obj).

217

https://docs.python.org/3.8/c-api/gcsupport.html
https://github.com/python/cpython/blob/v3.9.0b1/Objects/tupleobject.c#L180
https://github.com/python/cpython/blob/v3.9.0b1/Include/internal/pycore_object.h#L79

Garbage Collection

Garbage Collection Algorithm

See Also

The CPython core development team has written a detailed
guide on the GC algorithm.

Initialization

The pPyGc_collect () entry-point follows five steps to start, and stop the
garbage collector.

1. Get the Garbage Collection state, Gcstate from the interpreter
2. Check to see if the GC is enabled

3. Check to see if the GC is already running

4. Run the collection function, collect() with progress callbacks
5

. Mark the GC as completed

When the collection stage is run and completed, callback methods
can be user-specified by the gc.callbacks list. Callbacks should have
a method signature f(stage: str, info: dict):

Python 3.9.0bl (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import gc
>>> def gc_callback(phase, info):
print(f"GC phase:{phase} with info:{info}")

>>> gc.callbacks.append(gc_callback)

>>> x = []

>>> x.append(x)

>>> del x

>>> gc.collect()

GC phase:start with info:{'generation': 2, 'collected': 0, 'uncollectable': 0}
GC phase:stop with info:{'generation': 2, 'collected': 1, 'uncollectable': 0}
1

218

https://devguide.python.org/garbage_collector/
https://devguide.python.org/garbage_collector/
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L2053
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170

Garbage Collection

The Collection Stage

In the main GC function, collect() targets a particular generation.
There are 3 generations in CPython. Before you understand the pur-
pose of the generations, it’s important to understand the collection
algorithm.

For each collection, the GC will use a doubly-linked list of type pyGc_-
HEAD.

So that the GC doesn’t have to “find” all container types, all container
types that are a target for the GC have an additional header. This
header links them all together in a doubly-linked list. When one of
these container types is created, it adds itself to the list, and when it
is destroyed, it removes itself.

You can see an example of this in the cellobject.c type:
Objects? cellobject.c line 7

PyObject *
PyCell_New(PyObject *obj)
{

PyCellObject *op;

op = (PyCellObject *)PyObject_GC_New(PyCellObject, &PyCell_Type);
if (op == NULL)
return NULL;
op->ob_ref = obj;
Py_XINCREF(obj);

>> _PyObject_GC_TRACK(op);
return (PyObject *)op;
}

Because cells are mutable, the object is marked to be tracked by a call
to _PyObject_GC_TRACK().

When cell objects are deleted, the cell_dealloc() function is called.
This function takes three steps:

219

https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0b1/Include/internal/pycore_object.h#L51
https://github.com/python/cpython/blob/v3.9.0b1/Objects/cellobject.c#L79

Garbage Collection

1. The destructor tells the GC to stop tracking this instance by calling
_PyObject_GC_UNTRACK(). Because it has been destroyed, it’s contents
don’t need to be checked for changes in subsequent collections.

2. Py_XDECREF is a standard call in any destructor to decrement the ref-
erence counter. The reference counter for an object is initialized
to 1, so this counters that operation.

3. The pyobject_Gc_pel() will remove this object from the GC linked-
list by calling gc_list_remove() and then free the memory with
PyObject_FREE().

Objects» cellobject.c line 79

static void
cell_dealloc(PyCellObject *op)
{
_PyObject_GC_UNTRACK(op);
Py_XDECREF (op->ob_ref);
PyObject_GC_Del(op);
}

When a collection starts, it will merge younger generations into the
current. For example, if you are collecting the second generation,
when it starts collecting, it will merge the first generation’s objects
into the GC list using gc_list_merge().

The GC will then determine unreachable objects in the young (currently
targeted) generation.

The logic for determining unreachable objects is located in deduce_-
unreachable(). It follows these stages:

1. For every object in the generation, copy the reference count value
ob->ob_refcnt tO ob->gc_ref.

2. For every object, subtract internal (cyclical) references from gc_-
refs to determine how many objects can be collected by the GC. If
gc_refs ends up equal to 0, that means it is unreachable.

3. Create a list of unreachable objects and add every object that met

220

https://github.com/python/cpython/blob/v3.9.0b1/Include/internal/pycore_object.h#L79
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L2314
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L254
https://github.com/python/cpython/blob/v3.9.0b1/Include/objimpl.h#L108
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L289

Garbage Collection

the criteria in (2) to it.

4. Remove every object that met the criteria in (2) from the genera-
tion list.

There is no single method for determining cyclical references. Each
type must define a custom function with signature traverseproc in the
tp_traverse slot. To complete task (2), the deduce_unreachable() func-
tion will call the traversal function for every object within a subtract_-
refs() function.

It is expected that the traversal function will run the callback visit_-
decref() for every item it contains:

Modules» gcmodule. c line 462

static void

subtract_refs(PyGC_Head *containers)

{
traverseproc traverse;
PyGC_Head *gc = GC_NEXT(containers);
for (; gc != containers; gc = GC_NEXT(gc)) {
PyObject *op = FROM_GC(gc);
traverse = Py_TYPE(op)->tp_traverse;
(void) traverse(FROM_GC(gc),
(visitproc)visit_decref,
op);
3
3

The traversal functions are kept within each object’s source code in
Objects. For example, the tuple type’s traversal, tupletraverse() calls
visit_decref() on all of it’s items. The dictionary type, will call visit_-
decref() on all keys and values.

Any object which did not end up being moved to the unreachable list
graduates to the next generation.

221

https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1084
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L462
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L462
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0b1/Objects/tupleobject.c#L625
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439

Garbage Collection

Freeing Objects

Once unreachable objects have been determined, they can be (care-
fully) freed following these stages.

The approach depends on whether the type implements the old or the
new finalizer slot:

1. Ifanobject has defined a finalizer in the legacy tp_de1 slot, it cannot
safely be deleted and is marked as uncollectable. These are added
to the gc.garbage list for the developer to destroy manually.

2. If an object has defined a finalizer in the tp_finalize slot, mark the
objects as finalized to avoid calling them twice.

3. Ifanobjectin (2) has been “resurrected” by being initialized again,
the GC reruns the collection cycle.

4. For all objects, call the tp_clear slot. This slot changes the refer-
ence count, ob_refcnt, to 0, triggering the freeing of memory.

Generational GC

Generational garbage collection is a technique based on the observa-
tion that most (80%+) objects are destroyed shortly after being cre-
ated.

CPython’s GC uses three generations that have thresholds to trigger
their collections. The youngest generation (0) has a high threshold
to avoid the collection loop being run too frequently. If an object sur-
vives the GC, it will move to the second generation, and then the third.

In the collection function, a single generation is targeted, and it
merges younger generations into it before execution. For this reason,
if you run collect() on generation 1, it will collect generation o.
Likewise, running collect on generation 2 will collect() generations 0
and 1.

When objects are instantiated, the generational counters are in-
cremented. When the counter reaches a user-defined threshold,

222

https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170

Garbage Collection

collect() is automatically run.

Using the GC API From Python

CPython’s standard library comes with a Python module to interface
with the arena and the garbage collector, the gc module. Here’s how
to use the gc module in debug mode:

>>> import gc

>>> gc.set_debug(gc.DEBUG_STATS)

This will print the statistics whenever the garbage collector is run:

gc: collecting generation 2...
gc: objects in each generation: 3 0 4477
gc: objects in permanent generation: 0

gc: done, O unreachable, 0 uncollectable, 0.0008s elapsed

You use the gc.DEBUG_COLLECTABLE to discover when items are collected
for garbage. When you combine this with the gc.DEBUG_SAVEALL debug
flag, it will move items to a list, gc.garbage once they have been col-
lected:

>>> import gc

>>> gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_SAVEALL)
>>> z = [0, 1, 2, 3]

>>> z.append(z)

>>> del z

>>> gc.collect()

gc: collectable <list 0x10d594a00>

>>> gc.garbage

L@, iy 2y 8y [oooll]

You can get the threshold after which the garbage collector is run by
calling get_threshold():

>>> gc.get_threshold()
(700, 10, 10)

223

https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170

Conclusion

You can also get the current threshold counts:

>>> gc.get_count()
(688, 1, 1)

Lastly, you can run the collection algorithm manually for a generation,
and it will return the collected total:

>>> gc.collect(0)
24

If you don’t specify a generation, it will default to 2, which merges
generations 0 and 1:

>>> gc.collect()
20

Conclusion

In this chapter, you've been shown how CPython allocates, manages,
and frees memory. These operations happen 1000s of times during
the lifecycle of even the simplest Python script. The reliability and
scalability of CPython’s Memory Management system are what en-
ables it to scale from a 2-line script all the way to run some of the
world’s biggest websites.

The Object and Raw Memory Allocation systems you've been shown in
this chapter will come in useful if you develop C extension modules. C
extension modules require an intimate knowledge of CPython’s Mem-
ory Management system. Even a single missing Py_INCREF() can cause
a memory leak or system crash.

When working with pure Python code, knowledge of the GC is useful
if you’re designing long-running Python code. For example, if you de-
signed a single function that executes over hours, days, or even longer.
This function would need to carefully manage its memory within the
constraints of the system on which it’s executing. You can use some
of the techniques learned in this chapter to control and tweak the GC

224

Conclusion

generations to better optimize your code and its memory footprint.

Leave feedback on this section »

225

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoia3koSyhZfSh7OTB-fHtaQyFfIytzdmc3SXAlODRVZHZFX0hSMUUrSCIsInQiOiJjaGFwdGVycy8zMi1tZW1vcnktbWFuYWdlbWVudC5tZCAoNWVmNDA1YTdmYmU3M2E0OSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi81ZWY0MDVhN2ZiZTczYTQ5NDU0Mjc4ODk0MzIzNDk4MWUwMzRkMWNhL2NoYXB0ZXJzLzMyLW1lbW9yeS1tYW5hZ2VtZW50Lm1kIn0=

Parallelism and
Concurrency

The first computers were designed to do one thing at a time. A lot of
their work was in the field of computational mathematics. As time
went on, computers are needed to process inputs from a variety of
sources. Some input as far away as distant galaxies. The consequence
of this is that computer applications spend a lot of time idly waiting
for responses. Whether they be from a bus, an input, memory, com-
putation, an API, or a remote resource.

Another progression in computing was the move in Operating Sys-
tems away from a single-user terminal, to a multitasking Operating
System. Applications needed to run in the background to listen and
respond on the network and process inputs such as the mouse cursor.
Multitasking was required way before modern multiple-core CPUs, so
Operating Systems long could to share the system resources between
multiple processes.

At the core of any Operating System is a registry of running processes.
Each process will have an owner, and it can request resources, like
memory or CPU. In the last chapter, you explored memory allocation.
For a CPU, the process will request CPU time in the form of opera-
tions to be executed. The Operating System controls which process is
using the CPU. It does this by allocating “CPU Time” and scheduling
processes by a priority:

226

Concurrent Model

Task A

E

Time

Task B -

|

A single process may need to do multiple things at once. For exam-
ple, if you use a word processor, it needs to check your spelling while
you're typing. Modern applications accomplish this by running mul-
tiple threads, concurrently, and handling their own resources.

Concurrency is an excellent solution to dealing with multitasking, but
CPUs have their limits. Some high-performance computers deploy ei-
ther multiple CPUs or multiple cores to spread tasks. Operating Sys-
tems provide a way of scheduling processes across multiple CPUs:

Parallel Model

Task A CPU @

Task B CPU 1

227

The Structure of a Process

In summary,

« To have parallelism, you need multiple computational units.
Computational units can be CPUs or Cores.

+ To have concurrency, you need a way of scheduling tasks so that
idle ones don’t lock the resources.

Many parts of CPython’s design abstract the complexity of Operating
Systems to provide a simple API for developers. CPython’s approach
to parallelism and concurrency is no exception.

Models of Parallelism and Concurrency

CPython offers many approaches to Parallelism and Concurrency.
Your choice depends on several factors. There are also overlapping
use cases across models as CPython has evolved.

You may find that for a particular problem, there are two or more con-
currency implementations to choose from. Each with their own pros
and cons.

The four bundled models with CPython are:

Approach Module Concurrent Parallel
Threading threading Yes No
Multiprocessing multiprocessing Yes Yes
Async asyncio Yes No
Subinterpreters subinterpreters Yes Yes

The Structure of a Process

One of the tasks for an Operating System, like Windows, macOS, or
Linux, is to control the running processes. These processes could be
Ul applications like a browser or IDE. They could also be background
processes, like network services or OS services.

228

The Structure of a Process

To control these processes, the OS provides an API to start a new pro-
cess. When a process is created, it is registered by the Operating Sys-
tem so that it knows which processes are running. Processes are given
a unique ID (PID). Depending on the Operating System, they have
other properties.

POSIX processes have a minimum set of properties, registered in the
Operating System:

« Controlling Terminal

 Current Working Directory

« Effective Group ID, Effective User ID

« File Descriptors, File Mode Creation Mask

 Process Group ID, Process ID

» Real Group ID, Real User ID

« Root Directory

You can see these attributes for running processes in macOS or Linux
by running the ps command.

The IEEE POSIX Standard (1003.1-2017) defines the interface
and standard behaviors for processes and threads.

Windows has a similar list of properties but sets its own standard. The
Windows file permissions, directory structures, and process registry
are very different from POSIX. Windows processes, represented by
Win32_Process, can be queried in WMI, the Windows Management In-
terface runtime, or by using the Task Manager.

Once a process is started on an Operating System, it is given:

« A Stack of memory for calling subroutines

« A Heap (see Dynamic Memory Allocation in C)

229

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap01.html
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-process

The Structure of a Process

« Access to Files, Locks, and Sockets on the Operating System

The CPU on your computer also keeps additional data when the pro-
cess is executing, such as :

+ Registers holding the current instruction being executed or any
other data needed by the process for that instruction

+ An Imstruction Pointer, or Program Counter indicating
which instruction in the program sequence is being executed

The CPython process comprises of the compiled CPython interpreter,
and the compiled modules. These modules are loaded at runtime and
converted into instructions by the CPython Evaluation Loop:

Process

Stack

Heap Instructions ‘ Files

Process Memory ’ CPython Runtime ‘
,
Python Objects m Compiled Modules ‘
Sockets

The program register and program counter point to a single instruc-
tion in the process. This means that only one instruction can be exe-
cuting at any one time.

For CPython, this means that only one Python bytecode instruction
can be executing at any one time.

There are two main approaches to allowing parallel execution of in-
structions in a process:

1. Fork another process

230

Multi-Process Parallelism

2. Spawn a thread

Now that you have reviewed what makes up a process. Next, you can
explore forking and spawning child processes.

Multi-Process Parallelism
POSIX systems provide an API for any process to fork a child process.

Forking processes is a low-level API call to the Operating System that
can be made by any running process.

When this call is made, the OS will clone all the attributes of the cur-
rently running process and create a new process.

This clone operation includes the heap, register, and counter position
of the parent process. The child process can read any variables from
the parent process at the time of forking.

Forking a Process in POSIX

As an example, take the Fahrenheit to Celcius example application
used at the beginning of Dynamic Memory Allocation in C. Adapt it to
spawn a child process for each Fahrenheit value instead of calculating
them in sequence.

This is accomplished by using the fork() function. Each child process
will continue operating from that point:

cpython-book-samples» 33» thread_celcius.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit){

231

Multi-Process Parallelism

return (fahrenheit - 32) * five_ninths;

int main(int argc, char** argv) {
if (argc != 2)
return -1;
int number = atoi(argv[1]);
for (int i = 1 ; i <= number ; i++) {
double f_value = 100 + (i*10);
pid_t child = fork();
if (child == 0) { // Is child process
double c_value = celsius(f_value);
printf("%f F is %f C (pid %d)n", f_value, c_value, getpid());
exit(0);

}
printf("Spawned %d processes from %dn", number, getpid());

return O;

Running this on the command-line would give an output similar to:

$./thread_celcius 4
110.000000 F is 43.333333 C (pid 57179)
120.000000 F is 48.888889 C (pid 57180)
Spawned 4 processes from 57178
130.000000 F is 54.444444 C (pid 57181)
140.000000 F is 60.000000 C (pid 57182)

The parent process (57178), spawned 4 processes. For each child pro-
cess, it continued at the line child = fork(), where the resulting value
of child is 0. It then completes the calculation, prints the value, and
exits the process.

Finally, the parent process outputs how many processes it spawned,
and it’s own PID.

The time taken for the 3rd and 4th child processes to complete was
longer than it took for the parent process to complete. This is why

232

Multi-Process Parallelism

the parent process prints the final output before the 3rd and 4th print
their own.

A parent process can exit, with its own exit code before a child process.
Child Processes will be added to a Process Group by the Operating
System, making it easier to control all related processes:

Process Group

Process

Stack

Heap Instructions I Files

Process Memory I CPython Runtime I
, ,
m Python ObjectsI m Compiled Modules I
Sockets

I I
| |
| |
| |
| |
I I
| |
| |
I I
| |
| |
| A |
| |
I I
| |
| |
I I
| |
| |
| |
| |
I I

Process
Stack | Parent Process
Heap Instructions I Files

Process Memory I CPython Runtime I
,

m Python Objects I m Compiled Modules I

Sockets

The biggest downside with this approach to parallelism is that the
child process is a complete copy of the parent process.

In the case of CPython, this means you would have 2 CPython inter-
preters running, and both would have to load the modules and all the

233

Multi-Process Parallelism

libraries. It creates significant overhead. Using multiple processes
makes sense when the overhead of forking a process is outweighed by
the size of the task being completed.

Another major downside of forked processes is that they have a sep-
arate, isolated, heap from the parent process. This means that the
child process cannot write to the memory space of the parent process.
When creating the child process, the parent’s heap becomes available
to the child process. To send information back to the parent, some
form of Inter-Process-Communication (IPC) must be used.

The os module offers a wrapper around the fork() function.

Multi-Processing in Windows

So far, you've been reading the POSIX model. Windows doesn’t pro-
vide an equivalent to fork(), and Python should (as best as possible)
have the same API across Linux, macOS, and Windows.

To overcome this, the CreateProcessw() API is used to spawn another
python.exe process with a -c command-line argument.

This step is known as “spawning,” a process and is also available on
POSIX. You'll see references to it throughout this chapter.

The multiprocessing Package

CPython provides an API on top of the Operating System process fork-
ing API. This API makes it simple to create multi-process parallelism
in Python.

This API is available from the multiprocessing package. This package
provides expansive capabilities for pooling processes, queues, forking,
creating shared memory heaps, connecting processes together, and
more.

234

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw

Multi-Process Parallelism

Related Source Files

Source files related to multiprocessing are:

File Purpose

Lib» multiprocessing Python Source for the multiprocessing
package

Modules» _posixsubprocess.c C extension module wrapping the POSIX
fork () syscall

Modules» _winapi.c | C extension module wrapping the Windows
Kernel APIs

Modules» _multiprocessing | C extension module used by the
multiprocessing package

PC» msvertmodule. ¢ A Python interface to the Microsoft Visual C
Runtime Library

Spawning and Forking Processes

The multiprocessing package offers three methods to start a new par-
allel process.

1. Forking an Interpreter (on POSIX only)

2. Spawning a new Interpreter process (on POSIX and Windows)

3. Running a Fork Server, where a new process is created which then
forks any number of processes (on POSIX only)

For Windows and macOS, the default start method is Spawning.
For Linux, the default is Forking. You can override the default
method using the multiprocessing.set_start_method() function.

The Python API for starting a new process takes a callable, target, and
a tuple of arguments, args.

Take this simple example of spawning a new process to convert
Fahrenheit to Celcius:

235

Multi-Process Parallelism

cpython-book-samples? 33 » spawn_process_celcius.py

import multiprocessing as mp

import os

def to_celcius(f):
c=(f -32) * (5/9)
pid = os.getpid()
print(£f"{f}F is {c}C (pid {pid})")

if __name__ == '__main__':
mp.set_start_method('spawn')
p = mp.Process(target=to_celcius, args=(110,))

p.start()

While you can start a single process, the multiprocessing API assumes
you want to start multiple. There are convenience methods for spawn-
ing multiple processes and feeding them sets of data. One of those
methods is the pool class.

The previous example can be expanded to calculate a range of values
in separate Python interpreters:

cpython-book-samples» 33 » pool_process_celcius.py

import multiprocessing as mp

import os

def to_celcius(f):

c = (f-32) % (5/9)

pid = os.getpid()

print(£f"{f}F is {c}C (pid {pid})")
if __name__ == '__main__':

mp.set_start_method('spawn')

with mp.Pool(4) as pool:

pool.map(to_celcius, range(110, 150, 10))

Note that the output shows the same PID. Because the CPython inter-

236

Multi-Process Parallelism

preter process has a signification overhead, the Poo1 will consider each
process in the pool a “worker.” If a worker has completed, it will be
reused. If you replace the line:

with mp.Pool(4) as pool:
with:
with mp.Pool(4, maxtasksperchild=1) as pool:
Thie previous multiprocessing examle will print something similar to:

$ python pool_process_celcius.py
110F is 43.333333333333336C (pid 5654)
120F is 48.88888888888889C (pid 5653)
130F is 54.44444444444445C (pid 5652)
140F is 60.0C (pid 5655)

The output shows the process IDs of the newly spawned processes and
the calculated values.
Creation of Child Processes

Both of these scripts will create a new Python interpreter process and
pass data to it using pickle.

See Also

The pickle module is a serialization package used for serializing
Python objects. Davide Mastromatteo has written a great write
up of the pickle module at realpython.com.

For POSIX systems, the creation of the subprocess by the
multiprocessing module is equivalent to this command:

$ python -c 'from multiprocessing.spawn import spawn_main;

spawn_main(tracker_fd=<i>, pipe_handle=<j>)' --multiprocessing-fork

Where <i> is the filehandle descriptor, and <j> is the pipe handle de-

237

https://realpython.com/python-pickle-module/

Multi-Process Parallelism

scriptor.

For Windows systems, the parent PID is used instead of a tracker file
descriptor:

> python.exe -c¢ 'from multiprocessing.spawn import spawn_main;

spawn_main(parent_pid=<k>, pipe_handle=<j>)' --multiprocessing-fork

Where <k> is the parent PID and <j> is the pipe handle descriptor.

Piping Data to the Child Process

When the new child process has been instantiated on the OS, it will
wait for initialization data from the parent process.

The parent process writes 2 objects to a pipe file stream. The pipe file
stream is a special 10 stream used to send data between processes on
the command line.

The first object written by the parent process is the prepara-
tion data object. This object is a dictionary containing some
information about the parent, such as the executing directory,
the start method, any special command-line arguments, and the
sys.path. You can see an example of what is generated by running

multiprocessing.spawn.get_preparation_data(name):

>>> import multiprocessing.spawn
>>> import pprint
>>> pprint.pprint(multiprocessing.spawn.get_preparation_data("example™))
{"authkey': b'x90xaa_x22[x18rixbcag]x93xfexf5xe5@[wIx99p#x00"
b'xcexd4)1j.xc3c',
'dir': '/Users/anthonyshaw',
'log_to_stderr': False,
'name': 'example',
'orig_dir': '/Users/anthonyshaw',
'start_method': 'spawn',
'sys_argv': [''],

'sys_path': [

238

Multi-Process Parallelism

' /Users/anthonyshaw"',

1}

The second object written is the BaseProcess child class instance. De-
pending on how multiprocessing was called and which Operating Sys-
tem is being used, one of the child classes of BaseProcess will be the
instance serialized.

Both the preparation data and process object are serialized using the
pickle module and written to the parent process’ pipe stream:

Parent Process

Preparation Data

Process Object

Worker Pool
oo fererPool
|
! I
| Worker @ !
010101010100011100 |
| (Waiting)
Pipe !
Worker 1

(Not Created)

The POSIX implementation of the child process spawning and
serialization process is located in Lib » multiprocessing » popen_-
spawn_posix.py. The Windows implementation is located in Lib»
multiprocessing » popen_spawn_win32.py.

Executing the Child Process

The entry point of the child process, multiprocessing.spawn.spawn_-
main() takes the argument pipe_handle and either parent_pid for
Windows or tracked_fd for POSIX:

239

Multi-Process Parallelism

def spawn_main(pipe_handle, parent_pid=None, tracker_fd=None):

rr

Run code specified by data received over pipe

rr

assert is_forking(sys.argv), "Not forking"

For Windows, the function will call the openProcess APT of the parent
PID.

This process object is used to create a filehandle, fd, of the parent pro-
cess pipe:

if sys.platform == 'win32':
import msvcrt

import _winapi

if parent_pid is not None:
source_process = _winapi.OpenProcess(
_winapi.SYNCHRONIZE | _winapi.PROCESS_DUP_HANDLE,
False, parent_pid)
else:
source_process = None
new_handle = reduction.duplicate(pipe_handle,
source_process=source_process)
fd = msvcrt.open_osfhandle(new_handle, os.0_RDONLY)

parent_sentinel = source_process

For POSIX, the pipe_handle becomes the file descriptor, fd, and is du-
plicated to become the parent_sentinel value:

else:
from . import resource_tracker
resource_tracker._resource_tracker._fd = tracker_fd
fd = pipe_handle

parent_sentinel = os.dup(pipe_handle)

Next, the _main() function is called with the parent pipe file handle,
fd, and the parent process sentinel, parent_sentinel. Whatever the re-
turn value of _main() is becomes the exit code for the process and the

240

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

Multi-Process Parallelism

interpreter is terminated:

exitcode = _main(fd, parent_sentinel)

sys.exit(exitcode)

The _main() function is called with the file descriptor of the parent pro-
cesses pipe and the parent sentinel for checking if the parent process
has exited whilst executing the child.

The main function deserialises the binary data on the fd byte stream.
Remember, this is the pipe file handle. The deserialization happens
using using same pickle library that the parent process used:

Parent Process

(Waiting)

Worker Pool

I

I

Preparation Data Worker @ i

010101010100011100 pickl !
P Object fs s

- rocess ?ec (Initializing) !

Pipe il |

e :
Worker 1

(Not Created)

The first value is a dict containing the preparation data. The second
value is an instance of SpawnProcess which is then used at the instance
to call _bootstrap() upon:

def _main(fd, parent_sentinel):
with os.fdopen(fd, 'rb', closefd=True) as from_parent:
process.current_process()._inheriting = True
try:
preparation_data = reduction.pickle.load(from_parent)
prepare(preparation_data)

self = reduction.pickle.load(from_parent)

241

Multi-Process Parallelism

finally:
del process.current_process()._inheriting

return self._bootstrap(parent_sentinel)

The _bootstrap() function handles the instantiation of a BaseProcess
instance from the deserialized data, and then the target function is
called with the arguments and keyword arguments. This final task is
completed by BaseProcess.run():

def run(self):

rrr

Method to be run in sub-process; can be overridden in sub-class

rrr

if self._target:
self._target(*self._args, **self._kwargs)

The exit code of self._bootstrap() is set as the exit code, and the child
process is terminated.

This process allows the parent process to serialize the module and the
executable function. It also allows the child process to deserialize that
instance, execute the function with arguments, and return.

It does not allow for the exchanging of data once the child process has
started. This task is done using the extension of the qQueue and pipe
objects.

If processes are being created in a pool, the first process will be ready
and in a waiting state. The parent process repeats the process and
sends the data to the next worker:

242

Multi-Process Parallelism

Parent Process

Preparation Data

Process Object

010101010100011100

Pipe

Worker Pool

Worker @

(Ready)

Worker 1

(Waiting)

The next worker receives the data and initializes its state and runs the

target function:

Parent Process

(Waiting)

010101010100011100 pickl

Pipe

Worker Pool

Worker @

(Ready)

Preparation Data

Process Object

Worker 1

(Initializing)

To share any data beyond initialization, queues and pipes must be

used.

Exchanging Data with Queues and Pipes

In the previous section you saw how child processes are spawned, and
then the pipe is used as a serialization stream to tell the child process
what function to call with arguments.

243

Multi-Process Parallelism

There is two types of communication between processes, depending
on the nature of the task.

Semaphores

Many of the mechanisms in multiprocessing use semaphores as a
way of signaling that resources are locked, being waited on, or not
used. Operating Systems use binary semaphores as a simple variable
type for locking resources, like files, sockets, and other resources.

If one process is writing to a file or a network socket, you don’t want
another process to suddenly start writing to the same file. The data
would become corrupt instantly. Instead, Operating Systems put a
“lock” on resources using a semaphore. Processes can also signal that
they are waiting for that lock to be released so that when it is, they get
a message to say it is ready and they can start using it.

Semaphores (in the real world) are a signaling method using flags, so

the states for a resource of waiting, locked and not-used would look
like:

-1 0 1

@ @

waiting locked

The semaphore API is different between Operating Systems, so
there is an abstraction class, multiprocessing.syncronize.Semaphore.

244

Multi-Process Parallelism

Semaphores are used by CPython for multiprocessing because they
are both thread-safe and process-safe. The Operating System handles
any potential deadlocks of reading or writing to the same semaphore.

The implementation of these semaphore API functions is located in
a C extension module Modules » _multiprocessing » semaphore.c. This ex-
tension module offers a single method for creating, locking, releasing
semaphores, and other operations.

The call to the Operating System is through a series of Macros, which
are compiled into different implementations depending on the Oper-
ating System platform. For Windows, the <winbase.h> API functions
for semaphores are used:

#define SEM_CREATE(name, val, max) CreateSemaphore(NULL, val, max, NULL)
#define SEM_CLOSE(sem) (CloseHandle(sem) ? 0 : -1)

#define SEM_GETVALUE(sem, pval) _GetSemaphoreValue(sem, pval)

#define SEM_UNLINK(name) O

For POSIX, the macros use the <semaphore.h> API is used:

#define SEM_CREATE(name, val, max) sem_open(name, O_CREAT | O_EXCL, 0600, val)
#define SEM_CLOSE(sem) sem_close(sem)

#define SEM_GETVALUE(sem, pval) sem_getvalue(sem, pval)

#define SEM_UNLINK(name) sem_unlink(name)

Queues

Queues are a great way of sending small data to and from multiple
processes.

If you adapt the multiprocessing example before to use a multiprocessing
Manager() instance, and create two queues:

1. inputs to hold the input Fahrenheit values

2. outputs to hold the resulting Celcius values

Change the pool size to 2 so that there are two workers:

245

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsemaphorea
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsemaphorea
http://man7.org/linux/man-pages/man3/sem_open.3.html

Multi-Process Parallelism

cpython-book-samples» 33» pool_queue_celcius.py

import multiprocessing as mp

def to_celcius(input: mp.Queue, output: mp.Queue):
f = input.get()
time-consuming task ...
c = (f-32) * (5/9)
output.put(c)

if __name__ == '__main__
mp.set_start_method('spawn')
pool_manager = mp.Manager ()
with mp.Pool(2) as pool:
inputs = pool_manager.Queue()
outputs = pool_manager.Queue()
input_values = list(range(110, 150, 10))
for i in input_values:
inputs.put(i)
pool.apply(to_celcius, (inputs, outputs))

for f in input_values:

print (outputs.get(block=False))

This would print the list of tuples returned to the results queue:

$ python pool_queue_celcius.py
43.333333333333336
48.88888888888889
54.44444444444445

60.0

The parent process first puts the input values onto the input queue.
The first worker then takes an item from the queue. Each time an
item is taken from the queue using .get(), a semaphore lock is used
on the queue object:

246

Multi-Process Parallelism

Worker Pool

Input Queue getO

|
|
el

Ll Rl ! Worker 0@
Parent Process o llwllo
SEIRSEIRS) S|,

110, 120, 130, 140
L110, ’ ’ 1 Output Queue

| Worker 1

While this worker is busy, the second worker then takes another value
from the queue:

Worker Pool

Input Queue

=
Parent Process : : Worker @
[110, 120, 130, 140] sllel\g0 |2 (Busy)
’ ’ ’ Output Queue :
S

Worker 1

The first worker has completed its calculation and puts the resulting
value onto the result queue:

Worker Pool

Input Queue

Parent Process : : Worker @
olle putQ),
[110, 120, 130, 140] s

Output Queue

=
Worker 1
b (Busy)

Two queues are in use to separate the input and output values. Even-
tually, all input values have been processed, and the output queue is
full. The values are then printed by the parent process:

247

Multi-Process Parallelism

Worker Pool

! I

Input Queue | |

Parent Process | Worker 0@ !

110, 120, 130, 140 i |
L110, ’ ’ 1 Output Queue !

RAREE | |

88 S | Worker 1 !

! I

! I

This example shows how a pool of workers could receive a queue of
small, discreet values and process them in parallel to send the result-
ing data back to the host process. In practice, converting Celcius to
Fahrenheit is a small, trivial calculation unsuited for parallel execu-
tion. If the worker process were doing another CPU-intensive calcu-
lation, this would provide significant performance improvement on a
multi-CPU or multi-core computer.

For streaming data instead of discreet queues, pipes can be used in-
stead.
Pipes

Within the multiprocessing package, there is a type pipe. Instantiating
a Pipe returns two connections, a parent and a child. Both can send
and receive data:

Worker Pool

Parent Pipe |

‘
. [recvQ] Worker @ :

Parent Process sl o0 0101010001120 —— (Busy) !
110, 120, 130, 140 — ! |
L » 130, 1401 Child Pipe ! |
recvQ [sendO] !

%:F‘ 100101111001110011 1&0'\ Worker 1 1

|

|

|

| (Busy)

In the queue example, a lock is implicitly placed on the queue when
datais sent and received. Pipes do not have that behavior, so you have

248

Multi-Process Parallelism

to be careful that two processes do not try and write to the same pipe
at the same time.

If you adapt the last example to work with a pipe, it will require chang-
ing the pool.apply() to pool.apply_async(). This changes the execution
of the next process to a non-blocking operation:

cpython-book-samples» 33» pool_pipe_celcius.py

import multiprocessing as mp

def to_celcius(child_pipe: mp.Pipe, parent_pipe: mp.Pipe):
f = parent_pipe.recv()
time-consuming task ...
c = (f -32) * (5/9)
child_pipe.send(c)

if __name__ == '__main__':
mp.set_start_method('spawn')
pool_manager = mp.Manager ()
with mp.Pool(2) as pool:
parent_pipe, child_pipe = mp.Pipe()
results = []
for i in range(110, 150, 10):
parent_pipe.send(i)
pool.apply_async(to_celcius, args=(child_pipe, parent_pipe))
print(child_pipe.recv())
parent_pipe.close()

child_pipe.close()

In this example, there is a risk of two or more processes trying to read
from the parent pipe at the same time on the line:

f = parent_pipe.recv()

There is also a risk of two or more processes trying to write to the child
pipe at the same time.

249

Multi-Process Parallelism

child_pipe.send(c)

If this situation occurs, data would be corrupted in either the receive
or send operations:

Worker Pool

Parent Pipe |

d Worker @ |

Parent Process sen Q 010101010100011100 orker !
(Busy) !

110, 120, 130, 140 - n !
t 1 Child Pipe |
recv() :

100101111011& Worker 1 |

(Busy) |

To avoid this, you can implement a semaphore lock on the Operating
System. Then all child processes will check with the Lock before read-
ing or writing to the same pipe.

There are two locks required, one on the receiving end of the parent
pipe, and another on the sending end of the child pipe:

cpython-book-samples? 33» pool_pipe_locks_celcius.py

import multiprocessing as mp

def to_celcius(child_pipe: mp.Pipe, parent_pipe: mp.Pipe,
child_write_lock: mp.Lock, parent_read_lock: mp.Lock):
parent_read_lock.acquire()
try:
f = parent_pipe.recv()
finally:
parent_read_lock.release()
time-consuming task ...

c = (f - 32) * (5/9)
child_write_lock.acquire()

try:
child_pipe.send(c)

250

Multi-Process Parallelism

finally:
child_write_lock.release()
if __name__ == '__main__':
mp.set_start_method('spawn')
pool_manager = mp.Manager ()
with mp.Pool(2) as pool:
parent_pipe, child_pipe = mp.Pipe()
parent_read_lock = mp.Lock()
child_write_lock = mp.Lock()
results = []
for i in range(110, 150, 10):
parent_pipe.send(i)
pool.apply_async(to_celcius, args=(child_pipe, parent_pipe,
child_write_lock,
parent_read_lock))
print(child_pipe.recv())
parent_pipe.close()

child_pipe.close()

Now the worker processes will wait to acquire a lock before receiving
data, and wait again to acquire another lock to send data:

Worker Pool

Parent Pipe | !

| Worker @ :

Parent Process 010101010100011100 ‘ L !
i (Waiting) !

110, 120, 130, 140 n n sen |
t] Child Pipe 1 I
recv() |

%:T:l 100101111001110011 i Worker 1 :

| (Busy) |

This example would suit situations where the data going over the pipe
is large because the chance of a collision is higher.

251

Multi-Process Parallelism

Shared State Between Processes

So far, you have seen how data can be shared between the child and
the parent process.

There may be scenarios where you want to share data between child
processes. In this situation, the multiprocessing package provides two
solutions:

1. A performant Shared Memory API using shared memory maps
and shared C types

2. A flexible Server Process API supporting complex types via the
Manager class

Example Application

As a demonstration application, throughout this chapter, you will be
refactoring a TCP port scanner for different concurrency and paral-
lelism techniques.

Over a network, a host can be contacted on ports, which are a number
from 1-65535. Common services have standard ports. For example,
HTTP operates on port 80 and HTTPS on 443. TCP port scanners are
used as a common network testing tool to check that packets can be
sent over a network.

This code example uses the queue interface, a thread-safe queue imple-
mentation similar to the one you use in the multiprocessing examples.
The code also uses the socket package to try connecting to a remote
port with a short timeout of 1 second.

The check_port () function will see if the host responds on the given port,
and if it does respond, it adds the port number to the results queue.

When the script is executed, the check_port() function is called in se-
quence for port numbers 80-100.

After this has completed, the results queue is emptied out, and the
results are printed on the command line.

252

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.sharedctypes
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.managers.SyncManager

Multi-Process Parallelism

So you can compare the difference, it will print the execution time at
the end:

cpython-book-samples? 33 » portscanner.py

from queue import Queue
import socket
import time

timeout = 1.0

def check_port(host: str, port: int, results: Queue):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout(timeout)
result = sock.connect_ex((host, port))
if result ==
results.put(port)

sock.close()

if __name__ == '__main__':
start = time.time()
host = "localhost" # replace with a host you own
results = Queue()
for port in range(80, 100):
check_port(host, port, results)
while not results.empty():
print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

The execution will print out the open ports and the time taken:

$ python portscanner.py
Port 80 is open

Completed scan in 19.623435020446777 seconds

This example can be refactored to use multiprocessing. The Queue in-
terface is swapped for multiprocessing.Queue and the ports are scanned
together using a pool executor:

cpython-book-samples» 33 » portscanner_mp_queue.py

253

Multi-Process Parallelism

import multiprocessing as mp

import time

import socket

timeout = 1

def check_port(host: str, port: int, results: mp.Queue):

if __name__ == '__main__':

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout (timeout)
result = sock.connect_ex((host, port))
if result ==
results.put(port)

sock.close()

1]

start = time.time()
processes = []
scan_range = range(80, 100)
host = "localhost" # replace with a host you own
mp.set_start_method('spawn')
pool_manager = mp.Manager()
with mp.Pool(len(scan_range)) as pool:
outputs = pool_manager.Queue()
for port in scan_range:
processes.append(pool.apply_async(check_port,
(host, port, outputs)))
for process in processes:
process.get()
while not outputs.empty():
print("Port {0} is open".format(outputs.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

As you might expect, this application is much faster because it is test-
ing each port in parallel:

$ python portscanner_mp_queue.py

Port 80 is open

Completed scan in 1.556523084640503 seconds

254

Multithreading

Conclusion

Multiprocessing offers a scalable, parallel execution API for Python.
Data can be shared between processes, and CPU-intensive work can
be broken into parallel tasks to take advantage of multiple core or CPU
computers.

Multiprocessing is not a suitable solution when the task to be com-
pleted is not CPU intensive, but instead I0-bound. For example, if
you spawned 4 worker processes to read and write to the same files,
one would do all the work, and the other 3 would wait for the lock to
be released.

Multiprocessing is also not suitable for short-lived tasks, because
of the time and processing overhead of starting a new Python
interpreter.

In both of those scenarios, you main find one of the next approaches
is more suited.

Multithreading

CPython provides a high-level and a low-level API for creating, spawn-
ing, and controlling threads from Python.

To understand Python threads, you should first understand how Oper-
ating System threads work. There are two implementations of thread-
ing in CPython.

1. pthreads - POSIX threads for Linux and macOS

2. nt threads - NT threads for Windows

In the section on The Structure of a Process, you saw how a process
has:

» A Stack of subroutines

« A Heap of memory

255

Multithreading

« Access to Files, Locks, and Sockets on the Operating System

The biggest limitation to scaling a single process is that the Operating
System will have a single Program Counter for that executable.

To get around this, modern Operating Systems allow processes to
signal the Operating System to branch their execution into multiple
threads.

Each thread will have its own Program Counter, but use the same re-
sources as the host process. Each thread also has it’s own call stack,
so it can be executing a different function.

Because multiple threads can read and write to the same memory
space, collisions could occur. The solution to this is thread safety
and involves making sure that memory space is locked by a single
thread before it is accessed.

A single process with 3 threads would have a structure:

Process

| Stack |

Heap

Process Memory

Instructions

‘ Files ‘

’ CPython Runtime ‘

Python Objects

M

Compiled Modules ‘

Sockets

r Thread 0

ar
[

Thread 1

ar
11

Thread 2 1

Stack |

Stack |

Stack |:
|

|| Program Counter |
|

| || Program Counter |||

| Program Counter |I
|

256

Multithreading

See Also

For a great introductory tutorial on the Python threading API,
check out Jim Anderson’s “Intro to Python Threading.”

The GIL

If you're familiar with NT threads or POSIX threads from C, or you've
used another high-level language, you may expect multithreading to
be parallel.

In CPython, the threads are based on the C APIs, but the threads are
Python threads. This means that every Python thread needs to exe-
cute Python bytecode through the evaluation loop.

The Python evaluation loop is not thread-safe. There are many parts
of the interpreter state, such as the Garbage Collector, which are
shared, and global.

To get around this, the CPython developers implemented a mega-lock,
called the Global Interpreter Lock (GIL). Before any opcode is ex-
ecuted in the frame-evaluation loop, the GIL is acquired by the thread,
then once the opcode has been executed, it is released.

Aside from providing a global thread-safety to every operation in
Python, this approach has a major drawback. Any operations which
take a long time to execute will leave other threads waiting for the
GIL to be released before they can execute.

This means that only 1 thread can be executing a Python bytecode op-
eration at any one time.

To acquire the GIL, a call is made to take_gi1() and then again to drop_-
gil() to release it. The GIL acquisition is made within the core frame
evaluation loop, _PyEval_EvalFrameDefault().

To stop a single frame execution from permanently holding the GIL,
the evaluation loop state stores a flag, gil_drop_request. After every

257

https://realpython.com/intro-to-python-threading/
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval_gil.h#L215
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval_gil.h#L144
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval_gil.h#L144

Multithreading

bytecode operation has completed in a frame, this flag is checked, and
the GIL is temporarily released and then reacquired:

if (_Py_atomic_load_relaxed(&ceval->gil_drop_request)) {

/* Give another thread a chance */

if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) {

Py_FatalError('ceval: tstate mix-up");

3

drop_gil(ceval, tstate);

/* Other threads may run now */

take_gil(ceval, tstate);

/* Check if we should make a quick exit. */

exit_thread_if_finalizing(tstate);

if (_PyThreadState_Swap(&runtime->gilstate, tstate) != NULL) {

Py_FatalError('ceval: orphan tstate");

Despite the limitations that the GIL enforces on parallel execution, it
means that multithreading in Python is very safe and ideal for running

I0-bound tasks concurrently.

Related Source Files

Source files related to threading are:

File

Purpose

Include? pythread.h
Lib» threading.py

Modules» _threadmodule.c |
Python» thread.c

Python» thread_nt.h |
Python» thread_pthread.h |

PyThread API and definition

High Level threading API and Standard
Library module

Low Level thread API and Standard Library
module

C extension for the thread module

Windows Threading APT

POSIX Threading API

258

Multithreading

File Purpose

Python» ceval_gil.h | GIL lock implementation

Starting Threads in Python

To demonstrate the performance gains of having multithreaded code
(in spite of the GIL), you can implement a simple network port scan-
ner in Python.

Now clone the previous script but change the logic to spawn a
thread for each port using threading.Thread(). This is similar to the
multiprocessing API, where it takes a callable, target, and a tuple, args.
Start the threads inside the loop, but don’t wait for them to complete.
Instead, append the thread instance to a list, threads:

for port in range(800, 100):
t = Thread(target=check_port, args=(host, port, results))
t.start()
threads.append(t)

Once all threads have been created, iterate through the thread list and
call .join() to wait for them to complete:

for t in threads:

t.join()

Next, exhaust all the items in the results queue and print them to the
screen:

while not results.empty():
print("Port {0} is open".format(results.get()))

The whole script is:
cpython-book-samples» 33 » portscanner_threads.py

from threading import Thread

from queue import Queue

259

Multithreading

import socket

import time

timeout = 1.0

def check_port(host: str, port: int, results: Queue):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout (timeout)
result = sock.connect_ex((host, port))
if result ==
results.put(port)

sock.close()

def main():
start = time.time()
host = "localhost" # replace with a host you own
threads = []

results = Queue()
for port in range(80, 100):
t = Thread(target=check_port, args=(host, port, results))
t.start()
threads.append(t)
for t in threads:
t.join()
while not results.empty():
print("Port {0} is open".format(results.get()))
print("Completed scan in {0} seconds".format(time.time() - start))
if __name__ == '__main__':

main()

When you call this threaded script at the command-line, it will execute
10+ times faster than the single-threaded example:

$ python portscanner_threads.py
Port 80 is open

Completed scan in 1.0101029872894287 seconds

This also runs 50-60% faster than the multiprocessing example. Re-

260

Multithreading

member that multiprocessing has an overhead for starting the new
processes, threading does have an overhead, but it is much smaller.

You may be wondering- if the GIL means that only a single operation
can execute at once, why is this faster?

The statement that takes 1-1000ms is:

result = sock.connect_ex((host, port))

In the C extension module, Modules » socketmodule.c, the function that
implements the connection is:

Modulesbsocketmodule.c1ine:3246

static int
internal_connect (PySocketSockObject *s, struct sockaddr *addr, int addrlen,

int raise)
int res, err, wait_connect;

Py_BEGIN_ALLOW_THREADS
res = connect(s->sock_fd, addr, addrlen);

Py_END_ALLOW_THREADS

Surrounding the system connect() call are the Py_BEGIN_ALLOW_THREADS
and Py_END_ALLOW_THREADS Macros.

These macros are defined in Includeb ceval.h as:

#define Py_BEGIN_ALLOW_THREADS {
PyThreadState *_save;
_save = PyEval_SaveThread();

#define Py_BLOCK_THREADS PyEval_RestoreThread(_save);

#define Py_UNBLOCK_THREADS _save = PyEval_SaveThread();

#define Py_END_ALLOW_THREADS PyEval_RestoreThread(_save);
}

So, when Py_BEGIN_ALLOW_THREADS is called, it calls PyEval_SaveThread().
This function changes the thread state to NuLL and drops the GIL:

261

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L480

Multithreading

Python? ceval.c line 480

PyThreadState *
PyEval_SaveThread(void)
{
PyThreadState *tstate = PyThreadState_Swap(NULL);
if (tstate == NULL)
Py_FatalError("PyEval_SaveThread: NULL tstate");
assert(gil_created());
drop_gil(tstate);

return tstate;

Because the GIL is dropped, it means any other executing thread can
continue. This thread will sit and wait for the system call without
blocking the evaluation loop.

Once the connect () function has succeeded or timed out, the py_END_-
ALLOW_THREADS runs the PyEval_RestoreThread() function with the origi-
nal thread state.

The thread state is recovered and the GIL is retaken. The call to take_-
gil() is a blocking call, waiting on a semaphore:

Python» ceval.c line 503

void
PyEval_RestoreThread(PyThreadState *tstate)
{
if (tstate == NULL)
Py_FatalError("PyEval_RestoreThread: NULL tstate");

assert(gil_created());

int err = errno;

take_gil(tstate);

/* _Py_Finalizing is protected by the GIL */

if (_Py_IsFinalizing() && !_Py_CURRENTLY_FINALIZING(tstate)) {
drop_gil(tstate);
PyThread_exit_thread();

262

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L503

Multithreading

Py_UNREACHABLE() ;
3

errno = err;

PyThreadState_Swap(tstate);
}

This is not the only system call wrapped by the non-GIL-blocking pair
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS. There are over 300
uses of it in the Standard Library. Including:

« Making HTTP requests

« Interacting with local hardware

« Encryption

» Reading and writing files

Thread State

CPython provides its own implementation of thread management. Be-
cause threads need to execute Python bytecode in the evaluation loop,
running a thread in CPython isn’t as simple as spawning an OS thread.
Python threads are called pyThread, and you covered them briefly on
the CPython Evaluation Loop chapter.

Python threads execute code objects and are spawned by the inter-
preter.

To recap:

+ CPython has a single runtime, which has its own runtime state
« CPython can have one or many interpreters
« An interpreter has a state, called the interpreter state

+ An interpreter will take a code object and convert it into a series
of frame objects

« An interpreter has at least one thread, each thread has a thread
state

263

Multithreading

« Frame Objects are executed in a stack, called the frame stack
« CPython references variables in a value stack

« The interpreter state includes a linked-list of its threads

A single-threaded, single-interpreter runtime would have the states:

i Runtime Instructions
Interpreter | e

GIL Compiled Modules Sockets

r ﬁrea 0_(pr;nar;) a

PyThread State
T
[Frae]

Previous Thread

The thread state type, PyThreadstate has over 30 properties, including:

A unique identifier

+ A linked-list to the other thread states

« The interpreter state it was spawned by
 The currently executing frame

« The current recursion depth

 Optional tracing functions

« The exception currently being handled
 Any async exception currently being handled
« A stack of exceptions raised

* A GIL counter

264

Multithreading

 Async generator counters

Similar to the multiprocessing preparation data, threads have a
boot state. However, threads share the same memory space, so there
is no need to serialize data and send it over a file stream.

Threads are instantiated with the threading.Thread type. This is a high-
level module that abstracts the pyThread type. PyThread instances are
managed by the C extension module _thread.

The _thread module has the entry point for executing a new thread,
thread_PyThread_start_new_thread(). start_new_thread() is a method
on an instance of the type Thread.

New threads are instantiated in this sequence:

1. Thebootstate is created, linking to the target, with arguments args
and kwargs

i

The bootstate is linked to the interpreter state
A new PyThreadstate is created, linking to the current interpreter

The GILis enabled, if not already with a call to pyEval_InitThreads()

o b w

The new thread is started on the Operating System-specific imple-
mentation of PyThread_start_new_thread

265

https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L338

Multithreading

Runtime State Runtime Instructions

Interpreter State Interpreter Heap

GIL Conpiled Modules J||[__Sockets]
r ﬁrea 0_(pr;nar7) a r _Thr:adT (I_nit)_ a
! l ! l
PyThread State		PyThread State
	Boot	
[state [P,	
I ! I !		
Next Thread } > Next Thread		
		Previous Thread
[A [
L - — — — — 4 L - — — — — 4

Thread bootstate has the properties:

Field Type Purpose

interp PyInterpreterState* Link to the interpreter managing this thread

func PyObject * Link to the callable to execute upon running
(callable) the thread

args PyObject * (tuple) Arguments to call func with

keyw PyObject * (dict) Keyword arguments to call func with

tstate PyThreadState * Thread state for the new thread

With the thread bootstate, there are two implementations PyThread -
POSIX threads for Linux and macOS, and NT threads for Windows.

Both of these implementations create the Operating System thread,
set it’s attribute and then execute the callback t_bootstrap() from
within the new thread. This function is called with the single
argument boot_raw, assigned to the bootstate constructed in thread_-
PyThread_start_new_thread().

The t_bootstrap() function is the interface between a low-level thread
and the Python runtime. The bootstrap will initiatilize the thread,
then execute the target callable using Pyobject_call(). Once the
callable target has been executed, the thread will exit:

266

https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1029
https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1029
https://github.com/python/cpython/blob/v3.9.0b1/Objects/call.c#L289

Multithreading

Inside Thread

0S Specific I)
‘ PyThread Thread Start |

|
t_bootstrap H PyObject_Call —P» target I
|
|

POSIX Threads

POSIX threads, named pthreads, have an implementation in Python »
thread_pthread.h. This implementation abstracts the <pthread.h> C API
with some additional safeguards and optimizations.

Threads can have a configured stack size. Python has it’s own stack
frame construct, as you explored in the chapter on the Evaluation
Loop. If there is an issue causing a recursive loop, and the frame exe-
cution hits the depth limit, Python will raise a RecursionError which
can be handled from a try..except block in Python code. Because
pthreads have their own stack size, the max depth of Python and the
stack size of the pthread might conflict.

If the thread stack size is smaller than the max frame depth in Python,
the entire Python process will crash before a RecursionError is raised.
Also, the max depth in Python can be configured at runtime using

sys.setrecursionlimit().

To avoid these crashes, the CPython pthread implementation sets the
stack size to the pythread_stacksize value of the Interpreter State.

Most modern POSIX-compliant Operating Systems support system
scheduling of pthreads. IfPTHREAD_SYSTEM_SCHED_SUPPORTED is defined in
pyconfig.h, the pthread is set to PTHREAD_SCOPE_SYSTEM, meaning that the
priority of the thread on the Operating System scheduler is decided
against the other threads on the system, not just the ones within the
Python process.

Once the thread properties have been configured, the thread is created
using the pthread_create() API. This runs the bootstrap function from
inside the new thread.

267

https://docs.python.org/3/library/sys.html#sys.setrecursionlimit

Asynchronous Programming

Lastly, the thread handle, pthread_t is cast into an unsigned long and
returned to become the thread ID.

Windows Threads

Windows threads implemented in Python» thread_nt.h follow a similar,
but simpler pattern.

The stack size of the new thread is configured to the interpreter
pythread_stacksize value (if set).

The thread is created using the _beginthreadex() Windows API using
the bootstrap function as the callback.

Lastly, the thread ID is returned.

Conclusion

This was not an exhaustive tutorial on Python threads. Python’s
thread implementation is extensive and offers many mechanisms for
sharing data between threads, locking objects, and resources.

Threads are a great, efficient way of improving the runtime of your
Python applications when they are 10-bound. In this section, you
have seen what the GIL is, why it exists and which parts of the stan-
dard library may be exempt from its constraints.

Asynchronous Programming

Python offers many ways of accomplishing concurrent programming
without using threads or multiprocessing. These features have been
added, expanded, and often replaced with better alternatives.

For the target version of this book, 3.9.0b1, the following asyn-
chronous systems are deprecated:

« The @coroutine decorator

268

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/beginthread-beginthreadex?view=vs-2019

Generators

The following systems are still available:

+ Creating futures from async keywords

+ Coroutines using the yield from keywords

Generators

Python Generators are functions that return a yield statement and can
be called continually to generate further values.

Generators are often used as a more memory efficient way of looping
through values in a large block of data, like a file, a database, or over
a network. Generator objects are returned in place of a value when
yield is used instead of return. The generator object is created from
the yield statement and returned to the caller.

This simple generator function will yield the letters a-z:
cpython-book-samples? 33» letter_generator.py

def letters():
i =97 # letter 'a' in ASCII
end = 97 + 26 # letter 'z' in ASCII
while i < end:
yield chr(i)

i+4=1

If you call letters(), it won’t return a value, but instead it returns a
generator object:

>>> from letter_generator import letters
>>> letters()

<generator object letters at 0x1004d39b0>

Built into the syntax of the for statement is the ability to iterate
through a generator object until it stops yielding values:

269

Generators

>>> for letter in letters():

print(letter)

[= 2]

[e]

This implementation uses the iterator protocol. Objects that have a
_next__() method can be looped over by for and while loops, or using
the next () builtin.

All container types (like lists, sets, tuples) in Python implement the
iterator protocol. Generators are unique because the implementation
of the __next__() method recalls the generator function from its last
state. Generators are not executing in the background, they are
paused. When you request another value, they resume execution.

Within the generator object structure is the frame object as it was at

the last yield statement.

Generator Structure

Generator objects are created by a template macro, _PyGenObject_-
HEAD(prefix).

This macro is used by the following types and prefixes:

1. PyGenObject - gi_ (Generator objects)
2. PyCoroObject - cr_ (Coroutine objects)

3. PyAsyncGenObject - ag_ (Async generator objects)

You will cover coroutine and async generator objects later in this chap-
ter.

The PyGenoObject type has the base properties:

270

Generators

Field Type Purpose

Field Type Purpose

[x]_frame PyFrameObject* Current frame object for the generator

[x]_running char Set to 0 or 1 if the generator is currently
running

[x]_code PyObject * Compiled function that yielded the

(PyCodeObject*) generator

[x]_- PyObject * (list) List of weak references to objects inside

weakreflist the generator function

[x]_name PyObject * (str) Name of the generator

[x]_qualname
[x]_exc_-

state

PyObject * (str)
_PyErr_StackItem

Qualified name of the generator
Exception data if the generator call raises
an exception

On top of the base properties, the PyCoroobject type has:

Field

Type

Purpose

cr_origin

PyObject * (tuple)

Tuple containing the originating frame and
caller

On top of the base properties, the PyAsyncGenobject type has:

Field Type Purpose

ag_finalizer PyObject * Link to the finalizer method

ag_hooks_inited int Flag to mark that the hooks have been
initialized

ag_closed int Flag to mark that the generator is closed

ag_running_async int Flag to mark that the generator is running

Related Source Files

Source files related to generators are:

File

Purpose

Include® genobject.h

Generator API and PyGenObject definition

271

Generators

File Purpose

Objects» genobject.c Generator Object implementation

Creating Generators

When a function containing a yield statement is compiled, the result-
ing code object has an additional flag, CO_GENERATOR.

In the chapter on the Execution Loop: Constructing Frames, you ex-
plored how a compiled code object is converted into a frame object
when it is executed.

In the process, there is a special case for generators, coroutines, and
async generators. The _pyEval_EvalCode() function checks the code ob-
ject for the CO_GENERATOR, CO_COROUTINE, and CO_ASYNC_GENERATOR flags.

Instead of evaluation a code object inline, the frame is created and
turned into a Generator, Coroutine or Async Generator Object. A
coroutine is created using PyCoro_New(), an async generator is created
with PyAsyncGen_New(), and a generator with PyGen_NewWithQualName():

PyObject *
_PyEval_EvalCode(PyObject *_co, PyObject *globals, PyObject *locals,

/* Handle generator/coroutine/asynchronous generator */

if (co->co_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
PyObject *gen;
PyObject *coro_wrapper = tstate->coroutine_wrapper;
int is_coro = co->co_flags & CO_COROUTINE;

/* Create a new generator that owns the ready to run frame
* and return that as the value. */

if (is_coro) {

>>> gen = PyCoro_New(f, name, qualname);

} else if (co->co_flags & CO_ASYNC_GENERATOR) {
>>> gen = PyAsyncGen_New(f, name, qualname);

} else {
>>> gen = PyGen_NewWithQualName(f, name, qualname);

272

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L1135
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L1414
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L810

Generators

return gen;

The generator factory, PyGen_NewwithQualName(), takes the frame and
completes some steps to populate the generator object fields:

1. Sets the gi_code property to the compiled code object
2. Sets the generator to not running (gi_running = 0)

3. Sets the exception and weakref lists to NULL

You can also see that gi_code is the compiled code object for the gen-
erator function by importing the dis module and disassembling the
bytecode inside:

>>> from letter_generator import letters
>>> gen = letters()
>>> import dis
>>> dis.disco(gen.gi_code)
2 0 LOAD_CONST 1 (97)
2 STORE_FAST 0 (1)

In the chapter on the Evaluation Loop, you explored the Frame Ob-
ject Type. Frame objects contain locals and globals, the last executed
instructions, and the code to be executed.

The builtin behavior and state of the frame object are how generators
can pause and be resumed on demand.

Executing Generators

Whenever __next__() is called on a generator object, gen_iternext() is
called with the generator instance, which immediately calls gen_send_-
ex() inside Objects» genobject.c.

273

https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L810
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L540
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L140
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L140

Generators

gen_send_ex() is the function that converts a generator object into the
next yielded result. You'll see many similarities with the way frames
are constructed from a code object as these functions have similar
tasks.

The gen_send_ex() function is shared with generators, coroutines, and
async generators and has the following steps:

1.

2.

10.

The current thread state is fetched

The frame object from the generator object is fetched

. If the generator is running when __next_ () was called, raise a

ValueError

If the frame inside the generator is at the top of the stack:
 Inthe case of a coroutine, if the coroutine is not already marked
as closing, a RuntimeError is raised

« If this is an async generator, raise a StopAsyncIteration

« For a standard generator, a StopIteration is raised.

. If the last instruction in the frame (f->f_lasti) is still -1 because

it has just been started, and this is a coroutine or async genera-
tor, then a non-None value can’t be passed as an argument, so an
exception is raised

Else, this is the first time it’s being called, and arguments are al-
lowed. The value of the argument is pushed to the frame’s value
stack

The £_back field of the frame is the caller to which return values are
sent, so this is set to the current frame in the thread. This means
that the return value is sent to the caller, not the creator of the
generator

. The generator is marked as running

. The last exception in the generator’s exception info is copied from

the last exception in the thread state

The thread state exception info is set to the address of the genera-
tor’s exception info. This means that if the caller enters a break-

274

https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L140
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L140

Coroutines

11.

12.

13.
14.

15.

point around the execution of a generator, the stack trace goes
through the generator and the offending code is clear

The frame inside the generator is executed within the Python »
ceval.c main execution loop, and the value returned

The thread state last exception is reset to the value before the
frame was called

The generator is marked as not running

The following cases then match the return value and any excep-
tions thrown by the call to the generator. Remember that gener-
ators should raise a StopIteration when they are exhausted, either
manually, or by not yielding a value. Coroutines and async gener-
ators should not:
« If no result was returned from the frame, raise a StopIteration
for generators and StopAsyncIteration for async generators

« IfaStopIteration was explicitly raised, but this is a coroutine or
an async generator, raise a RuntimeError as this is not allowed

+ If a stopAsyncIteration was explicitly raised and this is an async
generator, raise a RuntimeError, as this is not allowed

Lastly, the result is returned back to the caller of __next_ ()

Bringing this all together, you can see how the generator expression is
a powerful syntax where a single keyword, yield triggers a whole flow
to create a unique object, copy a compiled code object as a property,
set a frame, and store a list of variables in the local scope.

Coroutines

Generators have a big limitation. They can only yield values to their
immediate caller.

An additional syntax was added to Python to overcome this- the yield
from statement. Using this syntax, you can refactor generators into
utility functions and then yield fromthem.

275

Coroutines

For example, the letter generator can be refactored into a utility func-
tion where the starting letter is an argument. Using yield from, you
can choose which generator object to return:

cpython-book-samples? 33» letter_coroutines.py

def gen_letters(start, x):
i = start
end = start + x
while i < end:
yield chr(i)

i+=1

def letters(upper):
if upper:
yield from gen_letters(65, 26) # A-Z
else:

yield from gen_letters(97, 26) # a-z

for letter in letters(False):
Lower case a-z

print(letter)

for letter in letters(True):
Upper case A-Z

print(letter)

Generators are also great for lazy sequences, where they can be called
multiple times.

Building on the behaviors of generators, such as being able to pause
and resume execution, the concept of a coroutine was iterated
in Python over multiple APIs. Generators are a limited form of
coroutine because you can send data to them using the .send()
method.

It is possible to send messages bi-directionally between the caller and
the target. Coroutines also store the caller in the cr_origin attribute.

276

Coroutines

Coroutines were initially available via a decorator, but this has since
been deprecated in favor of “native” coroutines using the keywords
async and await.

To mark that a function returns a coroutine, it must be preceded with
the async keyword.

The async keyword makes it explicit (unlike generators) that this func-
tion returns a coroutine and not a value.

To create a coroutine, define a function with the keyword async def.
In this example, add a timer using the asyncio.sleep() function and
return a wake-up string;:

>>> import asyncio

>>> async def sleepy_alarm(time):
await asyncio.sleep(time)
return "wake up!"

>>> alarm = sleepy_alarm(10)

>>> alarm

<coroutine object sleepy_alarm at 0x1041de340>

When you call the function, it returns a coroutine object. There
are many ways to execute a coroutine. The easiest is using

asyncio.run(coro).

Run asyncio.run() with your coroutine object, then after 10 seconds it
will sound the alarm:

>>> asyncio.run(alarm)

'wake up'

So far, there is a small benefit over a regular function. The benefit of
coroutines is that you can run them concurrently. Because the corou-
tine object is a variable that you can pass to a function, these objects
can be linked together and chained, or created in a sequence.

For example, if you wanted to have 10 alarms with different intervals
and start them all at the same time, these coroutine objects can be

277

Coroutines

converted into tasks.

The task API is used to schedule and execute multiple coroutines con-
currently.

Before tasks are scheduled, an event loop must be running. The job
of the event loop is to schedule concurrent tasks and connect events
such as completion, cancellation, and exceptions with callbacks.

When you called asyncio.run(), the run function (in Lib » asyncio »
runners.py) did these tasks for you:

1. Started a new event loop

2. Wrapped the coroutine object in a task

3. Set a callback on the completion of the task
4. Looped over the task until it completed
5

. Returned the result

Related Source Files

Sourece files related to coroutines are:

File Purpose
Lib» asyncio Python standard library implementation for
asyncio

Event Loops

Event loops are the glue that holds async code together. Written in
pure Python, event loops are an object containing tasks.

When started, a loop can either run once or run forever. Any of the
tasks in the loop can have callbacks. The loop will run the callbacks if
a task completes or fails.

278

Coroutines

loop = asyncio.new_event_loop()

Inside a loop is a sequence of tasks, represented by the type
asyncio.Task, tasks are scheduled onto a loop, then once the loop is
running, it loops over all the tasks until they complete.

You can convert the single timer into a task loop:
cpython-book-samples» 33» sleepy_alarm.py

import asyncio

async def sleepy_alarm(person, time):
await asyncio.sleep(time)

print(f"{person} -- wake up!")

async def wake_up_gang():
tasks = [
asyncio.create_task(sleepy_alarm("Bob", 3), name="wake up Bob"),
asyncio.create_task(sleepy_alarm("Sanjeet"”, 4), name="wake up Sanjeet"),
asyncio.create_task(sleepy_alarm("Doris", 2), name="wake up Doris"),
asyncio.create_task(sleepy_alarm("Kim", 5), name="wake up Kim")

1

await asyncio.gather(*tasks)
asyncio.run(wake_up_gang())
This will print:

Doris -- wake up!
Bob -- wake up!
Sanjeet -- wake up!

Kim -- wake up!

In the event loop, it will run over each of the coroutines to see if they
are completed. Similar to how the yield keyword can return multiple
values from the same frame, the await keyword can return multiple
states. The event loop will execute the sleepy_alarm() coroutine objects
again and again until the await asyncio.sleep() yields a completed re-

279

Coroutines

sult, and the print() function is able to execute.

For this to work, asyncio.sleep() must be used instead of the blocking
(and not async-aware) time.sleep().

Example

You can convert the multithreaded port scanner example to asyncio
with these steps:

+ Change the check_port() function to use a socket connection from
asyncio.open_connection(), which creates a future instead of an im-
mediate connection

« Use the socket connection future in a timer event, with

asyncio.wait_for()
« Append the port to the results list if succeeded

« Add anew function, scan() to create the check_port() coroutines for
each port and add them to a list, tasks

« Merge all the tasks into a new coroutine using asyncio.gather()

« Run the scan using asyncio.run()

cpython-book-samples» 33 » portscanner_async.py

import time

import asyncio
timeout = 1.0

async def check_port(host: str, port: int, results: list):
try:
future = asyncio.open_connection(host=host, port=port)
r, w = await asyncio.wait_for(future, timeout=timeout)
results.append(port)
w.close()
except asyncio.TimeoutError:

pass # port is closed, skip-and-continue

280

Asynchronous Generators

async def scan(start, end, host):
tasks = []
results = []
for port in range(start, end):
tasks.append(check_port(host, port, results))
await asyncio.gather(*tasks)

return results

if __name__ == '__main__':
start = time.time()
host = "localhost" # pick a host you own
results = asyncio.run(scan(80, 100, host))
for result in results:
print("Port {0} is open".format(result))

print("Completed scan in {0} seconds".format(time.time() - start))

Finally, this scan completes in just over 1 second:

$ python portscanner_async.py
Port 80 is open
Completed scan in 1.0058400630950928 seconds

Asynchronous Generators

The concepts you have learned so far, generators and coroutines can
be combined into a type - asynchronous generators.

If a function is declared with both the async keyword and it contains
ayield statement, it is converted into an async generator object when
called.

Like generators, async generators must be executed by something that
understands the protocol. In place of __next_ (), async generators
have a method __anext__().

A regular for loop would not understand an async generator, so in-
stead, the async for statement is used.

281

Subinterpreters

You can refactor the check_port () function into an async generator that
yields the next open port until it hits the last port, or it has found a
specified number of open ports:

async def check_ports(host: str, start: int, end: int, max=10):
found = 0
for port in range(start, end):
try:
future = asyncio.open_connection(host=host, port=port)
r, w = await asyncio.wait_for(future, timeout=timeout)
yield port
found += 1
w.close()
if found >= max:
return
except asyncio.TimeoutError:

pass # closed

To execute this, use the async for statement:

async def scan(start, end, host):
results = []
async for port in check_ports(host, start, end, max=1):
results.append(port)

return results

See cpython-book-samples » 33 » portscanner_async_generators.py for the
full example.

Subinterpreters
So far, you have covered:

« Parallel execution with multiprocessing

+ Concurrent execution with threads and async

The downside of multiprocessing is that the inter-process communi-
cation using pipes and queues is slower than shared memory. Also

282

Subinterpreters

the overhead to start a new process is significant.

Threading and async have small overhead but don’t offer truly parallel
execution because of the thread-safety guarantees in the GIL.

The fourth option is subinterpreters, which have a smaller overhead
than multiprocessing, and allow a GIL per subinterpreter. After all, it
is the Global Interpreter Lock.

Within the CPython runtime, there is always 1 interpreter. The inter-
preter holds the interpreter state, and within an interpreter, you can
have 1 or many Python threads. The interpreter is the container for
the evaluation loop. the interpreter also manages its own memory,
reference counter, and garbage collection. CPython has low-level C
APIs for creating interpreters, like the py_NewInterpreter().

Runtine
Interpreter @ | Meor Interpreter n | Me
(primary) e s |

Interpreter State Interpreter State

GIL GIL

Thread @ (Primary) ! Threads 1-n
|

Thread @ (Primary) ! Threads 1-n
|

The subinterpreters module is still experimental in 3.9.0b1, so
the API is subject to change and the implementation is still

buggy.

Because Interpreter state contains the memory allocation arena, a col-
lection of all pointers to Python objects (local and global), subinter-
preters cannot access the global variables of other interpreters. Simi-

283

https://github.com/python/cpython/blob/v3.9.0b1/Python/pylifecycle.c#L1626

Subinterpreters

lar to multiprocessing, to share objects between interpreters you must
serialize them, or use ctypes, and use a form of IPC (network, disk or
shared memory).

Related Source Files

Source files related to subinterpreters are:

File Purpose
Lib» _xxsubinterpreters.c C implementation of the subinterpreters
module
Python» pylifecycle.c C implementation of the interpreter
management API
Example

In the final example application, the actual connection code has to be
captured in a string. In 3.9.0b1, subinterpreters can only be executed
with a string of code.

To start each of the subinterpreters, a list of threads is started, with a
callback to a function, run().

This function will:

o Create a communication channel
« Start a new subinterpreter

Send it the code to execute

« Receive data over the communication channel

If the port connection succeeded, add it to the thread-safe queue
cpython-book-samples? 33 » portscanner_subinterpreters.py
import time

import _xxsubinterpreters as subinterpreters

from threading import Thread

284

Subinterpreters

import textwrap as tw

from queue import Queue

timeout = 1 # in seconds. .

def run(host: str, port: int, results: Queue):
Create a communication channel
channel_id = subinterpreters.channel_create()
interpid = subinterpreters.create()
subinterpreters.run_string(
interpid,
tw.dedent(
import socket; import _xxsubinterpreters as subinterpreters
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout (timeout)
result = sock.connect_ex((host, port))
subinterpreters.channel_send(channel_id, result)
sock.close()
shared=dict(
channel_id=channel_id,
host=host,
port=port,
timeout=timeout
))
output = subinterpreters.channel_recv(channel_id)
subinterpreters.channel_release(channel_id)
if output ==
results.put(port)

if __name__ == '__main__':

start = time.time()

host = "127.0.0.1" # pick a host you own
[1

results = Queue()

threads

for port in range(80, 100):
t = Thread(target=run, args=(host, port, results))

285

Conclusion

t.start()
threads.append(t)
for t in threads:
t.join()
while not results.empty():
print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

Because of the reduced overheads compared with multiprocessing,
this example should execute 30-40% faster and with fewer memory
resources:

$ python portscanner_subinterpreters.py
Port 80 is open
Completed scan in 1.3474230766296387 seconds

Conclusion

Congratulations on getting through the biggest chapter in the book!
You've covered a lot of ground. Let us recap some of the concepts and
their applications.

For truly parallel execution, you need multiple CPUs or cores. You
also need to use either multiprocessing or subinterpreters pack-
ages so that the Python interpreter can be executed in parallel. Re-
member that startup time is significant, and each interpreter has a
big memory overhead. If the tasks that you want to execute are short-
lived, use a pool of workers and a queue of tasks.

If you have multiple I0-bound tasks and want them to run concur-
rently, you should use multithreading, or use coroutines with the
asyncio package.

All four of these approaches require an understanding of how to safely
and efficiently transfer data between processes or threads. The best
way to reinforce what you’ve learned is to look at an application you’ve
written and seen how it can be refactored to leverage these techniques.

286

Conclusion

Leave feedback on this section »

287

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiOURqWlUyKW9DZEZpVXg4KjhacUVgeGArSjNhWFElVWIyMTsldjtNQCIsInQiOiJjaGFwdGVycy8zMy1wYXJhbGxlbGlzbS1pbi1jcHl0aG9uLm1kICg0OThhNjI2ZWM1MDVkMTRiKSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iLzQ5OGE2MjZlYzUwNWQxNGI2NTcyODdjNTU5M2EzOTc0MGE4NzIyOTIvY2hhcHRlcnMvMzMtcGFyYWxsZWxpc20taW4tY3B5dGhvbi5tZCJ9

Objects and Types

CPython comes with a collection of basic types like strings, lists, tu-
ples, dictionaries, and objects.

All of these types are built-in. You don’t need to import any libraries,
even from the standard library.

For example, to create a new list, you can call:
Ist = 1list()

Or, you can use square brackets:

Ist = []

Strings can be instantiated from a string-literal by using either double
or single quotes. You explored the grammar definitions in the chap-
ter “The Python Language and Grammar” that cause the compiler to
interpret double quotes as a string literal.

All types in Python inherit from object, a built-in base type. Even
strings, tuples, and lists inherit from object.

In objects» object.c, the base implementation of object type is written
as pure C code. There are some concrete implementations of basic
logic, like shallow comparisons.

A simple way to think of a Python object is consisting of 2 things:

1. The core data model, with pointers to compiled functions

288

Examples in This Chapter

2. A dictionary with any custom attributes and methods

Much of the base object API is declared in objects» object.c, like the
implementation of the built-in repr () function, Pyobject_repr. You will
also find pPyobject_Hash() and other APIs.

All of these functions can be overridden in a custom object by imple-
menting “dunder” methods on a Python object. For example:

class MyObject(object):
def __init__(self, id, name):
self.id = id

self.name = name

def __repr_ (self):

return "<{0} id={1}>".format(self.name, self.id)

All of these built-in functions are called the Python Data Model.
Not all methods in a Python object are part of the Data Model, so
that a Python object can contain attributes (either class or instance
attributes) and methods.

See Also

One of the great resources for the Python Data Model is “Fluent
Python” by Luciano Ramalho.

Examples in This Chapter

Throughout this chapter, each type explanation will come with an ex-
ample. Inthe example, you will implement the almost-equal operator,
that was specified in earlier chapters.

If you haven’t yet implemented the changes in the Grammar and Com-
piler chapters, they will be required to implement the examples.

289

https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L389
https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L765
https://docs.python.org/3/reference/datamodel.html
https://www.oreilly.com/library/view/fluent-python/9781491946237/
https://www.oreilly.com/library/view/fluent-python/9781491946237/

Builtin Types

Builtin Types

The core data model is defined in the PyTypeobject, and the functions
are defined in:

Each of the source file will have a corresponding header in Include. For
example, Objects/rangeobject.c has a header file Include» rangeobject.h.

Source File Type

Objects» object.c Built in methods and base object

Objects?»boolobject.c bool type

Objects» bytearrayobject.c byte[] type

Objects» bytesobjects.c bytes type

Objects» cellobject.c cell type

Objects» classobject.c Abstract class type, used in
meta-programming

Objects» codeobject.c Built-in code object type

Objects» complexobject.c Complex numeric type

Objects»iterobject.c An iterator

Objects» listobject.c list type

Objects» longobject.c long numeric type

Objects » memoryobject.c Base memory type

Objects»methodobject.c Class method type

Objects»moduleobject.c Module type

Objects» namespaceobject.c Namespace type

Objects» odictobject.c Ordered dictionary type

Objects» rangeobject.c Range generator

Objects» setobject.c set type

Objects»sliceobject.c Slice reference type

Objects» structseq.c struct.Struct type

Objects?» tupleobject.c tuple type

Objects» typeobject.c type type

Objects» unicodeobject.c str type

Objects» weakrefobject.c weakref type

You will explore some of those types in this chapter.

200

Object and Variable Object Types

Object and Variable Object Types

Because C is not object-oriented like Python, objects in C don’t inherit
from one another. pyobject is the initial data segment for every Python
object and pyobject * represents a pointer to it.

When defining Python types, the typedef uses one of two macros:

* PyObject_HEAD (PyObject) for a simple type

 PyObject_VAR_HEAD (PyvarObject) for a container type

The simple type Pyobject has the fields:

Field Type Purpose
ob_refcnt Py_ssize_t Instance reference counter
ob_type _typeobject* The object type

For example, the cellobject declares 1 additional field, ob_ref, and the
base fields:

typedef struct {

PyObject_HEAD

PyObject *ob_ref; /* Content of the cell or NULL when empty */
} PyCellObject;

The variable type, Pyvarobject extends the pyobject type and also has
the fields:

Field Type Purpose
ob_base PyObject The base type
ob_size Py_ssize_t Number of items it contains

For example, the int type, PyLongObject, has the declaration:

struct _longobject {
PyObject_VAR_HEAD

201

https://realpython.com/python3-object-oriented-programming/

The type Type

digit ob_digit[1];
}; /* PyLongObject */

The type Type

In Python, objects have a property ob_type, you can get the value of
this property using the builtin function type():

>>> t = type("hello")
>>> t

<class 'str'>
The result from type() is an instance of a PyTypeObject:

>>> type(t)

<class 'type'>

Type objects are used to define the implementation of abstract base
classes.

For example, objects alway have the __repr__() method implemented:

>>> class example:
x =1

>>> i = example()

>>> repr(i)

'<__main__.example object at 0x10b418100>'

The implementation of the __repr__() method is always at the same
address in the type definition of any object. This position is known as
a type slot.

Type Slots

All of the type slots are defined in Include» cpython» object.h.

Each type slot has a property name and a function signature. The _-
_repr__() function for example is called tp_repr and has a signature

reprfunc:

202

The type Type

struct PyTypeObject

typedef struct _typeobject {
reprfunc tp_repr;
} PyTypeObject;

The signature reprfunc isdefined in Include» cpython?»object.has having
a single argument of pyObject* (self):

typedef PyObject *(*reprfunc)(PyObject *);

As an example, the cell object implements the tp_repr slot with the
function cell_repr:

PyTypeObject PyCell_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)

"cell",

sizeof (PyCellObject),

0,

(destructor)cell_dealloc, /* tp_dealloc */

0, /* tp_vectorcall_offset */
0, /* tp_getattr */

OF /* tp_setattr */

0, /* tp_as_async */
(reprfunc)cell_repr, /* tp_repr */

1

Beyond the basic PyTypeobject type slots, denoted with the tp_ prefix,
there are other type slot definitions:

* PyNumberMethods denoted with the prefix nb_

 PySequenceMethods denoted with the pI‘eﬁX sq_

* PyMappingMethods denoted with the prefix mp_

* PyAsyncMethods denoted with the prefix am_

* PyBufferProcs denoted with the prefi bf_

293

The type Type

All type slots are given a unique number, defined in Include »
typeslots.h.

When referring to, or fetching a type slot on an object, use these con-
stants.

For example, tp_repr has a constant position of 66, and the constant
Py_tp_repr always matches the type slot position. These constants are
useful when checking if an object implements a particular type slot
function.

Working with Types in C

Within C extension modules and the core CPython code, you will be
frequently working with the pyobject* type.

As an example, if you run x[n] on a subscriptable object like a list, or
string, it will call pyobject_GetItem() which looks at the object x to de-
termine how to subscript it:

Objects» abstract.c line 146

PyObject *
PyObject_GetItem(PyObject *o, PyObject *key)
{

PyMappingMethods *m;

PySequenceMethods *ms;

The Pyobject_GetItem() function serves both mapping types (like dic-
tionaries) as well as sequence types (like lists and tuples).

If the instance, o has sequence methods, then o->ob_type->tp_as_-
sequence will evaluate to true, also if the instance, o, has a sq_item slot
function defined, it is assumed that it has corrected implemented the
sequence protocol.

The value of key is evaluated to check that it is an integer, and the item
is requested from the sequence object using the PySequence_GetItem()

204

https://github.com/python/cpython/blob/v3.9.0b1/Objects/abstract.c#L146
https://github.com/python/cpython/blob/v3.9.0b1/Objects/abstract.c#L146
https://github.com/python/cpython/blob/v3.9.0b1/Objects/abstract.c#L1740

The type Type

function:

ms = o->ob_type->tp_as_sequence;
if (ms && ms->sq_item) {
if (PyIndex_Check(key)) {
Py_ssize_t key_value;
key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);
if (key_value == -1 && PyErr_Occurred())
return NULL;

return PySequence_GetItem(o, key_value);

}
else {
return type_error('sequence index must "
"be integer, not '%.200s'", key);
}

Type Property Dictionaries

Python supports defining new types with the c1ass keyword. User de-
fined types are created by type_new() in the type object module.

User defined types will have a property dictionary, accessed by __-
dict__(). Whenever a property is accessed on a custom class, the de-
fault __getattr__ implementation

looks in this property dictionary. Class methods, instance methods,
class properties and instance properties are located in this dictionary.

The PyObject_GenericGetDict() function implements the logic to fetch
the dictionary instance for a given object. The pyobject_GetAttr()
function implements the default __getattr__() implementation and
PyObject_SetAttr() implements __setattr__().

295

https://github.com/python/cpython/blob/v3.9.0b1/Objects/typeobject.c#L2410
https://github.com/python/cpython/blob/v3.9.0b1/Objects/dictobject.c#L4773
https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L879
https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L979

Bool and Long Integer Type

There are many layers to custom types, that have been exten-
sively documented in many Python books.

I could fill an entire book on metaclasses, but have decided to
stick to the implementation. If you want to learn more, check
out John Sturtz’ article on metaprogramming.

Bool and Long Integer Type

The bool type is the most straightforward implementation of the built-
in types. It inherits from long and has the predefined constants, py_-
True and Py_False. These constants are immutable instances, created
on the instantiation of the Python interpreter.

Inside objects»boolobject.c, you can see the helper function to create
a bool instance from a number:

Objects» boolobject.c line 28

PyObject *PyBool_FromLong(long ok)

{
PyObject *result;

if (ok)

result = Py_True;
else

result = Py_False;
Py_INCREF(result);

return result;

This function uses the C evaluation of a numeric type to assign py_True
or Py_False to a result and increment the reference counters.

The numeric functions for and, xor, and or are implemented, but ad-
dition, subtraction, and division are dereferenced from the base long
type since it would make no sense to divide two boolean values.

296

https://realpython.com/python-metaclasses/
https://github.com/python/cpython/blob/v3.9.0b1/Include/boolobject.h#L22
https://github.com/python/cpython/blob/v3.9.0b1/Include/boolobject.h#L22
https://github.com/python/cpython/blob/v3.9.0b1/Include/boolobject.h#L21

Bool and Long Integer Type

The implementation of and for a bool value first checks if a and b are
booleans. If they arent, they are cast as numbers, and the and opera-
tion is run on the two numbers:

Objects»boolobject.c line 61

static PyObject *
bool_and(PyObject *a, PyObject *b)

{
if (!PyBool_Check(a) || !PyBool_Check(b))
return PyLong Type.tp_as_number->nb_and(a, b);
return PyBool_FromLong((a == Py_True) & (b == Py_True));
}
Long Type

The 1ong type is a bit more complex than bool. In the transition from
Python 2 to 3, CPython dropped support for the int type and instead
used the 1ong type as the primary integer type. Python’s long type is
quite special in that it can store a variable-length number. The maxi-
mum length is set in the compiled binary.

The data structure of a Python 1ong consists of the pyobject variable
header and a list of digits. The list of digits, ob_digit is initially set to
have one digit, but it later expanded to a longer length when initial-
ized:

Include>1ongintrepr.h]ine 85

struct _longobject {
PyObject_VAR_HEAD
digit ob_digit[1];
};

For example, the number 1 would have the ob_digits [1], and 24601
would have the ob_digits [2, 4, 6, 0, 1].

Memory is allocated to a new long through _pyLong_New(). This function
takes a fixed length and makes sure it is smaller than MAX_LONG_DIGITS.

297

Bool and Long Integer Type

Then it reallocates the memory for ob_digit to match the length.

To convert a C long type to a Python 1ong type, the C 1ong is converted to
a list of digits, the memory for the Python long is assigned, and then
each of the digits is set. The long object is initialized with ob_digit
already being at a length of 1 if the number is less than 10 (1 digit).
Then, the value is set without the memory being allocated:

Objectsblongobject.cline 297

PyObject *

PyLong_FromLong(long ival)

{

PyLongObject *v;

unsigned long abs_ival;

unsigned long t; /* unsigned so >> doesn't propagate sign bit */
int ndigits = 0;

int sign;
CHECK_SMALL_INT(ival);

/* Fast path for single-digit ints */
if (!(abs_ival >> PyLong SHIFT)) {
v = _PyLong_New(1);
if (v) {
Py_SIZE(v) = sign;
v->0b_digit[0] = Py_SAFE_DOWNCAST(
abs_ival, unsigned long, digit);
}
return (PyObject*)v;

/* Larger numbers: loop to determine number of digits */
t = abs_ival;
while (t) {

++ndigits;

t >>= PyLong_SHIFT;

208

Bool and Long Integer Type

v = _PyLong_New(ndigits);
if (v != NULL) {
digit *p = v->ob_digit;
Py_SIZE(v) = ndigits*sign;
t = abs_ival;
while (t) {
*p++ = Py_SAFE_DOWNCAST(
t & PyLong_MASK, unsigned long, digit);
t >>= PyLong_SHIFT;

}
return (PyObject *)v;

To convert a double-point floating point to a Python long, PyLong_-
FromDouble() does the math for you.

The remainder of the implementation functions in oObjects »
longobject.c have utilities, such as converting a Unicode string
into a number with PyLong_FromUnicodeObject().

Example

The rich-comparison type slot for long is set to the long_richcompare.
This function wraps long_compare:

Objectsblongobject.c1ine:3031

static PyObject *
long_richcompare(PyObject *self, PyObject *other, int op)
{
Py_ssize_t result;
CHECK_BINOP(self, other);
if (self == other)
result = 0;
else
result = long_ compare((PyLongObject*)self, (PyLongObject*)other);
Py_RETURN_RICHCOMPARE (result, 0, op);

299

https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L417
https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L417
https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L2625
https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L3031
https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L3013

Bool and Long Integer Type

The long_compare function will first check whether the length (number
of digits) of the two variables a and b. If the lengths are the same, it
then loops through each digit to see if they are equal to each other.

long_compare() returns:

+ A negative number when a < b
« Owhena <b

A positive number when a > b

For example, when you execute 1 == 5, the result is -4. 5 == 1, the
result is 4.

You can implement the following code block before the py_RETURN_-
RICHCOMPARE macro to return True when the absolute value of result is
<=1 using the macro py_aBS(), which returns the absolute value of a
signed integer:

if (op == Py_AlE) {
if (Py_ABS(result) <= 1)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
Py_RETURN_RICHCOMPARE(result, 0, op);

After recompiling Python, you should see the effect of the change:

>>> 2 ==
False

>>> 2 ~=1
True

>>> 2 ~= 10

False

300

Unicode String Type

Unicode String Type

Python Unicode strings are complicated. Cross-platform Unicode
types in any platform are complicated.

The cause of this complexity is the number of encodings that are on
offer, and the different default configurations on the platforms that
Python supports.

The Python 2 string type was stored in C using the char type. The 1-
byte char type sufficiently stores any of the ASCII (American Standard
Code for Information Interchange) characters and has been used in
computer programming since the 1970s.

ASCII does not support the 1000’s of languages and character sets that
are in use across the world. Also, there are extended glyph character
sets like emojis, which it cannot support.

A standard system of coding and a database of characters was created,
known as the Unicode Standard. The modern Unicode Standard in-
cludes characters for all written languages, as well as extended glyphs
and characters. The Unicode Character Database (UCD) contains
137,929 at version 12.1 (compared with the 128 in ASCII).

The Unicode standard defines these characters in a character table
called the Universal Character Set (UCS). Each character has a
unique identifier known as a code point.

There are then many encodings that use the Unicode Standard and
convert the code-point into a binary value.

Python Unicode strings support three lengths of encodings:

+ 1-byte (8-bit)
« 2-byte (16-bit)
+ 4-byte (32-bit)

These variable-length encodings are referred to within the implemen-

301

Unicode String Type

tation as:

+ 1-byte py_ucsi, stored as 8-bit unsigned int type, uint8_t
+ 2-byte Py_ucs2, stored as 16-bit unsigned int type, uint16_t

+ 4-byte Py_ucs4, stored as 32-bit unsigned int type, uint32_t

Related Source Files

Source files related to strings are:

File Purpose

Include» unicodeobject.h Unicode String Object definition

Include® cpython® unicodeobject.h Unicode String Object definition

Objects» unicodeobject.c Unicode String Object implementation

Lib» encodings Encodings package containing all the
possible encodings

Lib» codecs.py Codecs module

Modules » _codecsmodule.c | Codecs module C extensions, implements
OS-specific encodings

Modules » _codecs | Codec implementations for a range of

alternative encodings

Processing Unicode Code Points

CPython does not contain a copy of the UCD, nor does it have to up-
date whenever scripts and characters are added to the Unicode stan-
dard. Unicode Strings in CPython only have to care about the en-
codings, the Operating System has the task of representing the code
points in the correct scripts.

The Unicode standard includes the UCD and is updated regularly with
new scripts, new Emojis, and new characters.

Operating Systems take on these updates to Unicode and update their
software via a patch. These patches include the new UCD code-points
and support the various Unicode encodings. The UCD is split into
sections called code blocks.

302

Unicode String Type

The Unicode Code charts are published on the Unicode Website.

Another point of support for Unicode is the Web Browser. Web
Browsers decode HTML binary data in the encoding marked HTTP
encoding headers. If you are working with CPython as a web server,
then your Unicode encodings must match the HTTP headers being
sent to your users.

UTF8 vs UTF16

Some common encodings are:
« UTF8, an 8-bit character encoding that supports all possible char-
acters in the UCD with either a 1-4 byte code point
+ UTF16, a 16-bit character encoding, similar to UTF8, but not com-
patible with 7 or 8-bit encodings like ASCII

UTF8 is the most commonly used Unicode encoding.

In all Unicode encodings, the code points can be represented using a
hexadecimal shorthand:

« U+00F7 for the division character '+

« U+0107 for the Latin Small Letter C with acute '¢'

In Python, Unicode code points can be encoded directly into the code
using the u escape symbol and the hexadecimal value of the code point:

>>> print("u0107")

¢

CPython does not attempt to pad this data, so if you tried u107, it would
give the following exception:

print("ul07™)
File "<stdin>", line 1
SyntaxError: (unicode error) 'unicodeescape' codec can't decode

bytes in position 0-4: truncated uXXXX escape

303

https://unicode.org/charts/

Unicode String Type

Both XML and HTML support unicode code points with a special es-
cape character &#val ;, where val is the decimal value of the code point.
If you need to encode Unicode code points into XML or HTML, you
can use the xmlcharrefreplace error-handler in the .encode() method:

>>> "u0107".encode('ascii', 'xmlcharrefreplace')
b'ć"

The output will contain HTML/XML-escaped code-points. All mod-
ern browsers will decode this escape sequence into the correct charac-
ter.

ASCII Compatibility

If you are working with ASCII-encoded text, it is important to under-
stand the difference between UTF7/8 and UTF16. UTF8 has a major
benefit of being compatible with ASCII encoded text. ASCII encoding
is a 7-bit encoding.

The first 128 code points on the Unicode Standard represent the ex-
isting 128 characters of the ASCII standard. For example, the Latin
letter 'a' is the 977th character in ASCII and the 97th character in Uni-
code. Decimal 97 is equivalent to 61 in hexadecimal, so the Unicode
code point is v+0061.

On the REPL, if you create the binary code for the letter 'a':

>>> letter_a = b'a’'
>>> letter_a.decode('utf8")

"
This can correctly be decoded into UTFS8.

UTF16 works with 2-4 byte code points. The 1-byte representation of
the letter 'a' will not decode:

>>> letter_a.decode('utfl6")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

304

Unicode String Type

UnicodeDecodeError: 'utf-16-le' codec can't decode

byte 0x61 in position 0: truncated data

This is important to note when you are selecting an encoding mech-
anism. UTFS8 is a safer option if you need to import ASCII encoded
data.

Wide Character Type

When handling Unicode string input in an unknown encoding within
the CPython source code, the wchar_t C type will be used. wchar_t is the
C standard for a wide-character string and is sufficient to store Uni-
code strings in memory. After PEP 393, the wchar_t type was selected
as the Unicode storage format.

The Unicode string object provides a utility function, PyUnicode -
FromWideChar (), that will convert a wchar_t constant to a string object.
For example, the pymain_run_command(), used by python -c converts the
-c argument into a Unicode string:

Modules»main.c line 226

static int
pymain_run_command (wchar_t *command, PyCompilerFlags *cf)
{

PyObject *unicode, *bytes;

int ret;

unicode = PyUnicode_FromWideChar(command, -1);

Byte Order Markers

When decoding an input, like a file, CPython can detect the byte-order
from a byte-order-marker (BOM). BOMs are a special character that
appears at the beginning of a Unicode byte stream. They tell the re-
ceiver which byte-order the data is stored in. Different computer sys-
tems can encode with different byte-orders. If the wrong byte-order
is used, even with the right encoding, the data will be garbled.

305

https://www.python.org/dev/peps/pep-0393/
https://github.com/python/cpython/blob/v3.9.0b1/Modules/main.c#L226

Unicode String Type

A big-endian ordering places the most significant byte first. A little-
endian ordering places the least significant byte first.

The UTFS8 specification does support a BOM, but it has no effect. The
UTF8 BOM can appear at the beginning of a UTF8-encoded data se-
quence, represented as b'\xef\xbb\xbf', and will indicate to CPython
that the data stream is most-likely UTF8. UTF16 and UTF32 support
little and big-endian BOMs.

The default byte-order in CPython is set by the sys.byteorder global
value:

>>> import sys; print(sys.byteorder)

little

The Encodings Package

The encodings package in Lib» encodings comes with over 100 builtin
supported encodings for CPython.

Whenever the .encode() or .decode() method is called on a string or
byte string, the encoding is looked up from this package.

Each encoding is defined as a separate module, e.g., 1502022_Jp, a
widely used encoding for Japanese email systems, is declared in Lib»
encodings» 1s02022_jp.py.

Every encoding module will define a function getregentry() and regis-
ter:

 Its unique name

Its encode and decode functions from a codec module
 Itsincremental encoder and decoder classes

Its stream reader and stream writer classes

Many of the encoding modules share the same codecs either from the
codecs module, or the _mulitbytecodec module. Some encoding mod-
ules use a separate codec module in C, from Modules» _codecs.

306

Unicode String Type

For example, the 1502022_37p encoding module imports a C extension
module, _codecs_is02022, from Modules» _codecs» _codecs_is02022.c

import _codecs_is02022, codecs

import _multibytecodec as mbc
codec = _codecs_1s02022.getcodec('is02022_jp")

class Codec(codecs.Codec):
encode = codec.encode

decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,
codecs.IncrementalEncoder):

codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,
codecs.IncrementalDecoder):

codec = codec

The encodings package also has a module, Lib» encodings » aliases.py,
containing a dictionary, aliases. This dictionary is used to map encod-
ings in the registry by alternative names. For example, utf8, utf-8 and
ug are all aliases of the utf_s encoding.

The Codecs Module

The codecs module handles the translation of data with a specific en-
coding.

The encode or decode function of a particular encoding can be fetched
using the getencoder() and getdecoder () functions respectively:

>>> 1502022_jp_encoder = codecs.getencoder('iso2022_jp')
>>> 1502022_jp_encoder('u3072u3068') # hi-to
(b'x1bBR$Hx1b(B', 2)

The encode function will return the binary result and the number of
bytes in the output as a tuple.

307

Unicode String Type

The codecs module also implements the builtin function open() for
opening file handles from the operating system.

Codec Implementations

In the Unicode Object (Objects » unicodeobject.c) implementation are
the encoding and decoding methods for:

Codec Encoder / Decoder

ascii PyUnicode_EncodeASCII() / PyUnicode_DecodeASCII()
latinl PyUnicode_EncodeLatinl() / PyUnicode_DecodeLatinl()
UTF7 PyUnicode_EncodeUTF7 () / PyUnicode_DecodeUTF7 ()
UTF8 PyUnicode_EncodeUTF8() / PyUnicode_DecodeUTF8()
UTF16 PyUnicode_EncodeUTF16() / PyUnicode_DecodeUTF16()
UTF32 PyUnicode_EncodeUTF32() / PyUnicode_DecodeUTF32()
unicode_escape PyUnicode_EncodeUnicodeEscape() /

PyUnicode_DecodeUnicodeEscape()
raw_unicode_- PyUnicode_EncodeRawUnicodeEscape() /

escape PyUnicode_DecodeRawUnicodeEscape()

The implementation of the other encodings is within Modules» _codecs
to avoid cluttering the main unicode string object implementation.

The unicode_escape and raw_unicode_escape codecs are internal to

CPython.

Internal Codecs

CPython comes with a number of internal encodings. These are
unique to CPython and useful for some of the standard library
functions, and when working with producing source code.

These text encodings can be used with any text input and output:

Codec Purpose

idna Implements RFC 3490

mbes (Windows only): Encode according to the ANSI codepage
raw_unicode_escape Convert to a string for raw literal in Python source code

308

Unicode String Type

Codec Purpose

string_escape Convert to a string literal for Python source code
undefined Try default system encoding

unicode_escape Convert to Unicode literal for Python source code
unicode_internal Return the internal CPython representation

These binary-only encodings need to be used with codecs.encode()/
codecs.decode() with byte string inputs, e.g., :

>>> codecs.encode(b'hello world', 'base64')

b'aGVsbG8gd29ybGQ=n"

Codec Aliases Purpose

base64_codec base64, base-64 Convert to MIME base64

bz2_codec bz2 Compress the string using bz2

hex_codec hex Convert to hexadecimal representation,
with two digits per byte

quopri_codec quoted-printable Convert operand to MIME quoted
printable

rot_13 rot13 Returns the Caesar-cypher encryption
(position 13)

uu_codec uu Convert using uuencode

z1ib_codec zip, z1ib Compress using gzip

Example

The tp_richcompare type slot is allocated to the PyUnicode_RichCompare()
function in the PyUnicode_Type. This function does the comparison of
strings and can be adapted to the ~= operator.

The behaviour you will implement is a case-insensitive comparison of
the two strings.

First, add an additional case statement to check when the left and
right strings have binary equivalence.

Objects» unicodeobject.c line 11350

309

Unicode String Type

PyObject *

PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)

{

>>>

if (left == right) {

switch (op) {

case Py_EQ:

case Py_LE:

case Py_AlE:

case Py_GE:
/* a string is equal to itself */
Py_RETURN_TRUE;

Then add a new else if block to handle the py_a1E operator. This will:

1.

2.

3
4.
5

Convert the left string to a new upper-case string

Convert the right string to a new upper-case string

Compare the two

Dereference both of the temporary strings so they get deallocated

Return the result

Your code should look like this:

else if (op == Py_EQ || op == Py_NE) {

3

/* Add these lines */

else if (op == Py_AlE){
PyObject* upper_left = case_operation(left, do_upper);
PyObject* upper_right = case_operation(right, do_upper);
result = unicode_compare_eq(upper_left, upper_right);
Py_DECREF (upper_left);
Py_DECREF (upper_right);

return PyBool_ FromLong(result);

After recompiling, your case-insensitive string matching should give
the following results on the REPL:

310

Dictionary Type

>>> "hello" ~= "HE11l0"
True
>>> "hello?" ~= "hello"
False
o L]
Dictionary Type

Dictionaries are a fast and flexible mapping type. They are used by
developers to store and map data, as well as by Python objects to store
properties and methods.

Python dictionaries are also used for local and global variables, for
keyword arguments and many other use cases.

Python dictionaries are compact, meaning the hash table only stores
mapped values.

The hashing algorithm that is part of all immutable builtin types is
fast, and what gives Python dictionaries their speed.

Hashing

All immutable builtin types provide a hashing function. This is de-
fined in the tp_hash type slot, or using the __hash__() magic-method
for custom types. Hash values are the same size as a pointer (64-bit
for 64-bit systems, 32 for 32-bit systems), but do not represent the
memory address of their values.

The resulting hash for any Python Object should not change during it’s
lifecycle. Hashes for two immutable instances with identical values
should be equal:

>>> "hello"._hash__() == ("hel" + "lo").__hash__()

True

There should be no hash collissions, two objects with different values
should not produce the same hash.

311

Dictionary Type

Some hashes are simple, like Python longs:

>>> (401).__hash__()
401

Long hashes get more complex for a longer value:

>>> (401123124389798989898) .__hash__()
2212283795829936375

Many of the builtin types use the Python» pyhash.c module, which pro-
vides a hashing helper function for:

. B}¢es__Py_HashBytes(const void*, Py_ssize_t)
« Double _pPy_HashDouble(double)
» Pointers _Py_HashPointer(void*)

Unicode strings for example, use _py_HashBytes() to hash the byte data
of the string:

>>> ("hello").__hash__()
4894421526362833592

Custom classes can define a hashing function by implementing
_hash__(). Instead of implementing a custom hash, custom classes
should use a unique property. Make sure it is immutable by making
it a read-only property, then use hash it using the builtin hash()
function:

class User:
def __init__(self, id: int, name: str, address: str):

self._id = id

def __hash__(self):

return hash(self._id)

def id(self):

return self._id

312

Dictionary Type

Instances of this class can now be hashed:

>>> bob = User(123884, "Bob Smith", "Townsville, QLD")
>>> hash(bob)
123884

This instance can now be used as a dictionary key:

>>> sally = User(123823, "Sally Smith", "Cairns, QLD")
>>> near_reef = {bob: False, sally: True}
>>> near_reef[bob]

False
Sets will reduce duplicate hashes of this instance:
>>> {bob, bob}

{<__main__.User object at 0x10df244b0>}

Related Source Files

Source files related to dictionaries are:

File Purpose

Include» dictobject.h Dictionary Object API definition

Include» cpython» dictobject.h Dictionary Object types definition

Objects» dictobject.c Dictionary Object implementation

Objects» dict-common.h Definition of key entry, and key objects

Python» pyhash.c Internal hashing algorithm
Dictionary Structure

Dictionary objects, PyDictObject are comprised of:

1. The Dictionary Object, PyDictObject, containing the size, a version
tag, the keys and values

2. A Dictionary Keys Object, containing the keys and hash values of
all entries

313

Dictionary Type

PyDictObject

Value Table
(split)

‘ Value (PyObject*)

Properties ‘ PyDictKeysObject

Lookup Function

UH Indices

Key Entries
‘ Key (PyObject*) ‘

‘ Value (PyObject*)

‘ Value (PyObject*)

‘ Value (PyObject*)

‘ Hash Value ‘

The PyDictobject has the properties:

Field Type Purpose
ma_used Py_ssize_t Number of items in the dictionary
ma_- uint64_t Version number of the dictionary
version_tag
ma_keys PyDictKeysObject Dictionary Key Table Object

*
ma_values PyObject ** Optional value array (see note)

Dictionaries can have two states- split or combined. When dic-
tionaries are combined, the pointers to the dictionary values are
stored in the keys object.

When the dictionary is split, the values are stored in an extra
property, ma_values, as a value table of pyobject*.

The dictionary key table, pyDictKeysObject, contains:

Field Type Purpose

dk_refent Py_ssize_t Reference counter

314

Dictionary Type

Field Type Purpose
dk_size Py_ssize_t The size of the hash table
dk_lookup dict_lookup_- The lookup function (See next section)
func
dk_usable Py_ssize_t The number of usable entries in the entry table,
when o, dictionary is resized
dk_- Py_ssize_t The number of used entries in the entry table
nentries
dk_- char[] Hash table and mapping to dk_entries
indices
dk_- PyDictKeyEntry[] Allocated array of dictionary key entries

entries

A dictionary key entry, PyDictKeyEntry contains:

Field Type Purpose

me_hash Py_ssize_t Cached hash code of me_key

me_key PyObject* Pointer to the key object

me_value PyObject* Pointer to the value object (if combined)
Lookups

For a given key object, there is a generic lookup function lookdict().
Dictionary lookups need to cater for three scenarios:

1. The memory address of the key exists in the key table
2. The hash value of the object exists in the key table

3. The key does not exist in the dictionary

The lookup function is based on Donald Knuth’s famous book,
“The art of Computer Programming”, chapter 6, section 4 on
hashing (ISBN 978-0201896855)

The sequence of the lookup function is:

315

https://github.com/python/cpython/blob/v3.9.0b1/Objects/dictobject.c#L779

Conclusion

1. Get the hash value of ob

. Lookup the hash value of ob in the dictionary keys and get the in-
dex, ix

N

3. If ix is empty, return bkIx_empTY (not found)
4. Get the key entry, ep for the given index

5. If the key values match because the object, ob is the same pointer
at the key value, return the result

6. If the key hashes match because the object, ob resolves to the same
hash value as ep->me_mash, return the result

The lookupdict() function is one of few “hot functions” in the
CPython source code.

“The hot attribute is used to inform the compiler that a function
is a hot spot of the compiled program. The function is optimized
more aggressively and on many target it is placed into special
subsection of the text section so all hot functions appears close
together improving locality.”

This is specific to GNUC compilers, but when compiled with
PGO, this function is likely to be optimized by the compiler au-
tomatically.

Conclusion

Now that you have seen the implementation of some built-in types,
you can explore others.

When exploring Python classes, it is important to remember there are
built-in types, written in C and classes inheriting from those types,
written in Python or C.

Some libraries have types written in C instead of inheriting from the

316

Conclusion

built-in types. One example is numpy, a library for numeric arrays. The
nparray type is written in C, is highly efficient and performant.

In the next chapter, you will explore the classes and functions defined
in the standard library.

Leave feedback on this section »

317

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiQm5vckYrZVhMazAoPEhYZk10Qi1sYGcpVmcxP2ZpdVApfjtKcFpnViIsInQiOiJjaGFwdGVycy80MC1vYmplY3RzLWluLWNweXRob24ubWQgKGExYTM1NWM4NGNlZDc5NTgpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvYTFhMzU1Yzg0Y2VkNzk1ODY0NzU1YTBiNWJhMGY5MjNlNzEwZTQzYi9jaGFwdGVycy80MC1vYmplY3RzLWluLWNweXRob24ubWQifQ==

The Standard Library

Python has always come “batteries included.” This statement means
that with a standard CPython distribution, there are libraries for work-
ing with files, threads, networks, web sites, music, keyboards, screens,
text, and a whole manner of utilities.

Some of the batteries that come with CPython are more like AA batter-
ies. They’re useful for everything, like the collections module and the
sys module. Some of them are a bit more obscure, like a small watch
battery that you never know when it might come in useful.

There are two types of modules in the CPython standard library:

1. Those written in pure Python that provide a utility

2. Those written in C with Python wrappers

You will explore both types in this chapter.

Python Modules

The modules written in pure Python are all located in the Lib directory
in the source code. Some of the larger modules have submodules in
subfolders, like the email module.

An easy module to look at would be the colorsys module. It’s only a
few hundred lines of Python code. You may not have come across it
before. The colorsys module has some utility functions for converting
color scales.

318

Python Modules

When you install a Python distribution from source, standard library
modules are copied from the Lib folder into the distribution folder.
This folder is always part of your path when you start Python, so you
can import the modules without having to worry about where they're
located.

For example:

>>> import colorsys
>>> colorsys

<module 'colorsys' from '/usr/shared/lib/python3.7/colorsys.py'>
>>> colorsys.rgb_to_hls(255,0,0)
(0.0, 127.5, -1.007905138339921)

We can see the source code of rgb_to_hls() inside Lib» colorsys.py:

HLS: Hue, Luminance, Saturation
H: position in the spectrum
L: color lightness

S: color saturation

def rgb_to_hls(r, g, b):
maxc = max(r, g, b)
minc = min(r, g, b)
XXX Can optimize (maxc+minc) and (maxc-minc)
1 = (minc+maxc)/2.0
if minc == maxc:
return 0.0, 1, 0.0
if 1 <= 0.5:

s (maxc-minc) / (maxc+minc)

else:
s = (maxc-minc) / (2.0-maxc-minc)
rc = (maxc-r) / (maxc-minc)
gc = (maxc-g) / (maxc-minc)
bc = (maxc-b) / (maxc-minc)
if r == maxc:

h = bc-gc

319

Python and C Modules

elif g == maxc:

h = 2.0+rc-bc
else:

h = 4.0+gc-rc
h = (h/6.0) % 1.0

return h, 1, s

There’s nothing special about this function, it’s just standard Python.
You'll find similar things with all of the pure Python standard library
modules. They’re just written in plain Python, well laid out and easy
to understand. You may even spot improvements or bugs, so you can
make changes to them and contribute it to the Python distribution.
You'll cover that toward the end of this book.

Python and C Modules

The remainder of modules are written in C, or a combination or
Python and C. The source code for these is in Lib for the Python com-
ponent, and Modules for the C component. There are two exceptions
to this rule, the sys module, found in Python » sysmodule.c and the
__builtins__ module, found in Python» bltinmodule.c.

Python will import * from __builtins__ when an interpreter is instanti-
ated, so all of the functions like print (), chr(), format (), etc. are found
within Python» bltinmodule. c.

Because the sys module is so specific to the interpreter and the inter-
nals of CPython, that is found inside the python directory. It is also
marked as an “implementation detail” of CPython and not found in
other distributions.

The built-in print () function was probably the first thing you learned
to do in Python. So what happens when you type print("hello
world!")?

1. The argument "hello world" was converted from a string constant
to a PyUnicodeObject by the compiler

320

Python and C Modules

2. builtin_print() was executed with 1 argument, and NULL kwnames
3. The file variable is set to PyId_stdout, the system’s stdout handle
4. Each argument is sent to file

5. Aline break, \n is sent to file

Python» bltinmodule.c line 1828

static PyObject
builtin_print(PyObject *self, PyObject *const *args,

Py_ssize_t nargs, PyObject *kwnames)

if (file == NULL || file == Py_None) {
file = _PySys_GetObjectId(&PyId_stdout);

for (i = 0; i < nargs; i++) {

if (A > 0) {
if (sep == NULL)
err = PyFile_WriteString(" ", file);
else
err = PyFile_WriteObject(sep, file,

Py_PRINT_RAW);
if (err)
return NULL;
3
err = PyFile_WriteObject(args[i], file, Py_PRINT_RAW);
if (err)

return NULL;

if (end == NULL)
err = PyFile_WriteString("\n", file);
else
PyFile_WriteObject(end, file, Py_PRINT_RAW);

err

321

https://github.com/python/cpython/blob/v3.9.0b1/Python/bltinmodule.c#L1828

Python and C Modules

Py_RETURN_NONE;

The contents of some modules written in C expose operating system
functions. Because the CPython source code needs to compile to
macOS, Windows, Linux, and other *nix-based operating systems,
there are some special cases.

The time module is a good example. The way that Windows keeps and
stores time in the Operating System is fundamentally different than
Linux and macOS. This is one of the reasons why the accuracy of the
clock functions differs between Operating Systems.

In Modules » timemodule.c, the Operating System time functions for
Unix-based systems are imported from <sys/times.h>:

#ifdef HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif

#ifdef MS_WINDOWS

#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include "pythread.h"
#endif /* MS_WINDOWS */

Later in the file, time_process_time_ns() is defined as a wrapper for _-
PyTime_GetProcessTimeWithInfo():

static PyObject *

time_process_time_ns(PyObject *self, PyObject *unused)

{
_PyTime_t t;
if (_PyTime_GetProcessTimeWithInfo(&t, NULL) < 0) {
return NULL;
}
return _PyTime_AsNanosecondsObject(t);
}

322

https://docs.python.org/3/library/time.html#time.clock_gettime_ns

Python and C Modules

_PyTime_GetProcessTimeWithInfo() is implemented multiple different
ways in the source code, but only certain parts are compiled into
the binary for the module depending on the operating system. Win-
dows systems will call GetProcessTimes() and Unix systems will call
clock_gettime().

Other modules that have multiple implementations for the same API
are the threading module, the file system module, and the network-
ing modules. Because the Operating Systems behave differently, the
CPython source code implements the same behavior as best as it can
and exposes it using a consistent, abstracted API.

Leave feedback on this section »

323

https://realpython.com/intro-to-python-threading/
https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiPzQzdFR1YTshPnk8OVBLZyg7bDJ4dk4odnlENXFXeDstYWFtN0xzUCIsInQiOiJjaGFwdGVycy81MC1zdGFuZGFyZC1saWJyYXJ5Lm1kIChhMjkzZjU5ZTE3ZjVmODUzKSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iL2EyOTNmNTllMTdmNWY4NTNhYWJjYTgxOGU2YjIyNDA5NDQyOTAyMGIvY2hhcHRlcnMvNTAtc3RhbmRhcmQtbGlicmFyeS5tZCJ9

The Test Suite

CPython has a robust and extensive test suite covering the core in-
terpreter, the standard library, the tooling, and distribution for Win-
dows, Linux, and macOS.

The test suite is located in Lib » test and written almost entirely in
Python.

The full test suite is a Python package, so it can be run using the
Python interpreter that you’ve compiled.

Running the Test Suite on Windows

On Windows use the rt.bat script inside the pcBuild folder.

For example, to run the “quick” mode against the Debug configuration
on an x64 architecture:

> cd PCbuild
> rt.bat -q -d -x64

== CPython 3.9.0bl

== Windows-10-10.0.17134-SP0 little-endian

== cwd: C:\repos\cpython\build\test_python_2784
== CPU count: 2

== encodings: locale=cpl252, FS=utf-8

Run tests sequentially

0:00:00 [1/420] test_grammar

324

Running the Test Suite on Linux/macOS

0:00:00 [2/420] test_opcodes
0:00:00 [3/420] test_dict
0:00:00 [4/420] test_builtin

To run the regression test suite against the Release configuration, re-
move the -d flag from the command-line

Running the Test Suite on Linux/macOS

On Linux or macOS run the test make target to compile and run the
tests:

$ make test

== CPython 3.9.0bl

== mac0S-10.14.3-x86_64-1386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_23399
== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

0:00:00 load avg: 2.14 [1/420] test_opcodes passed
0:00:00 load avg: 2.14 [2/420] test_grammar passed

Alternatively, use the python.exe compiled binary path with the test
package:

$./python.exe -m test

== (CPython 3.9.0bl

== mac0S-10.14.3-x86_64-1386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_23399
== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

0:00:00 load avg: 2.14 [1/420] test_opcodes passed
0:00:00 load avg: 2.14 [2/420] test_grammar passed

There are additional make targets for testing:

325

Test Flags

Target Purpose

test Run a basic set of regression tests

testall Run the full test suite twice - once without .pyc files, and
once with

quicktest Run a faster set of regression tests, excluding the tests
that take a long time

testuniversal Run the test suite for both architectures in a Universal
build on OSX

coverage Compile and run tests with gcov

coverage-lcov Create coverage HTML reports

Test Flags

Some tests require certain flags; otherwise they are skipped. For ex-
ample, many of the IDLE tests require a GUI.

To see alist of test suites in the configuration, use the --1ist-tests flag:

$./python -m test --list-tests

test_grammar
test_opcodes
test_dict

test_builtin

test_exceptions

Running Specific Tests

You can run specific tests by providing the test suite as the first argu-
ment:

On Linux or macOS:

$./python -m test test_webbrowser

Run tests sequentially

326

Running Specific Tests

0:00:00 load avg: 2.74 [1/1] test_webbrowser
== Tests result: SUCCESS ==
1 test OK.

Total duration: 117 ms
Tests result: SUCCESS

On Windows:

> rt.bat -q -d -x64 test_webbrowser

You can also see a detailed list of tests that were executed with the
result using the -v argument:

$./python -m test test_webbrowser -v

== CPython 3.9.0bl

== mac0S-10.14.3-x86_64-1386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_24562
== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

Run tests sequentially

0:00:00 load avg: 2.36 [1/1] test_webbrowser

test_open (test.test_webbrowser.BackgroundBrowserCommandTest) ... ok
test_register (test.test_webbrowser.BrowserRegistrationTest) ... ok
test_register_default (test.test_webbrowser.BrowserRegistrationTest) ... ok
test_register_preferred (test.test_webbrowser.BrowserRegistrationTest) ... ok
test_open (test.test_webbrowser.ChromeCommandTest) ... ok

test_open_new (test.test_webbrowser.ChromeCommandTest) ... ok
test_open_with_autoraise_false (test.test_webbrowser.OperaCommandTest) ... ok

Ran 34 tests in 0.056s

OK (skipped=2)

327

Testing Modules

== Tests result: SUCCESS ==
1 test OK.

Total duration: 134 ms

Tests result: SUCCESS

Understanding how to use the test suite and checking the state of
the version you have compiled is very important if you wish to make
changes to CPython. Before you start making changes, you should run
the whole test suite and make sure everything is passing.

Testing Modules

To test C extension or Python modules, they are imported and tested
using the unittest module. Tests are assembled by module or package.

For example, the Python Unicode string type has tests in Lib» test »
test_unicode.py. The asyncio package has a test package in Lib» test »

test_asyncio.

If you're new to the unittest module or testing in Python,
check out my Getting Started With Testing in Python article on
realpython.com

class UnicodeTest(string_tests.CommonTest,
string_tests.MixinStrUnicodeUserStringTest,
string_tests.MixinStrUnicodeTest,

unittest.TestCase):

def test_casefold(self):
self.assertEqual('hello’.casefold(), 'hello')
self.assertEqual('hELlo'.casefold(), 'hello')
self.assertEqual('R'.casefold(), 'ss')
self.assertEqual('fi'.casefold(), 'fi')

328

https://realpython.com/python-testing/

Test Utilities

You can extend the almost-equal operator that you implemented
for Python Unicode strings in earlier chapters by adding a new test
method inside the UnicodeTest class:

def test_almost_equals(self):

self.assertTrue('hello' ~= 'hello')
self.assertTrue('hELlo" ~= 'hello")
self.assertFalse('hELlo!" ~= 'hello")

You can run this particular test module on Windows:

> rt.bat -q -d -x64 test_unicode

Or macOS/Linux:

$./python -m test test_unicode -v

Test Utilities

By importing the test.support.script_helper module, you can access
some helper functions for testing the Python runtime:

* assert_python_ok(*args, **env_vars) executes a Python process with
the specified arguments and returns a (return code, stdout, stderr)
tuple

e assert_python_failure(*args, **env_vars) similar to assert_python_-
ok(), but asserts that is fails to execute

o make_script(script_dir, script_basename, source) makes a script in
script_dir with the script_basename and the source, then returns the
script path. Useful to combine withassert_python_ok()orassert_-
python_ failure()‘

If you want to create a test that is skipped if the module wasn’t built,
you can use the test.support.import_module() utﬂity function. It will
raise a SkipTest and signal the test runner to skip this test package, for
example:

329

Conclusion

import test.support
_multiprocessing = test.support.import_module('_multiprocessing')

Your tests...

Conclusion

The Python regression test suite is full of two decades of tests for
strange edge cases, bug fixes, and new features. Outside of this, there
is still a large part of the CPython standard library that has little or
no testing. If you want to get involved in the CPython project, writing
or extending unit tests is a great place to start.

If you're going to modify any part of CPython or add additional func-
tionality, you will need to have written, or extended tests as part of
your patch.

Leave feedback on this section »

330

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiUnxWOXRhNTkyYHUyX0dTI08zPXdXa3AwLUlyanJ1RD5VSGg0P1ZmdCIsInQiOiJjaGFwdGVycy82MC10ZXN0aW5nLm1kIChhMWEzNTVjODRjZWQ3OTU4KSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iL2ExYTM1NWM4NGNlZDc5NTg2NDc1NWEwYjViYTBmOTIzZTcxMGU0M2IvY2hhcHRlcnMvNjAtdGVzdGluZy5tZCJ9

Debugging

CPython comes with a builtin debugger for debugging Python applica-
tions, pdb. The pdb debugger is excellent for debugging crashes inside
a Python application, for writing tests and inspecting local variables.

When it comes to CPython, you need a second debugger, one that un-
derstands C.

In this chapter, you will learn how to:

+ Attach a debugger to the CPython interpreter

+ Use the debugger to see inside a running CPython process
There are two types of debugger, console and visual. Console debug-
gers (like pdb) give you a command prompt and custom commands

to explore variables and the stack. Visual debuggers are GUI applica-
tions that present the data for you in grids.

The following debuggers are covered in this chapter:

Debugger Type Platform

11db Console macOS

gdb Console Linux

Visual Studio Debugger Visual Windows

CLion Debugger Visual Windows, macOS, Linux
VS Code Debugger Visual Windows, macOS, Linux

331

Using the Crash Handler

Using the Crash Handler

In C, if an application tries to read or write to an area of memory that
it shouldn’t be, a segmentation fault is raised. This fault halts the run-
ning process immediately to stop it from doing any damage to other
applications.

Segmentation faults can also happen when you try to read from mem-
ory that contains no data, or an invalid pointer.

If CPython causes a segmentation fault, you get very little information
about what happened:

[1] 63476 segmentation fault ./python portscanner.py

CPython comes with a builtin fault handler. If you start CPython with
-X faulthandler, OT -X dev, instead of printing the system segmentation
fault message, the fault handler will print the running threads and the
Python stack trace to where the fault occurred:

Fatal Python error: Segmentation fault
Thread 0x0000000119021dc0 (most recent call first):
File "/cpython/Lib/threading.py", line 1039 in _wait_for_tstate_lock
File "/cpython/Lib/threading.py", line 1023 in join
File "/cpython/portscanner.py"”, line 26 in main
File "/cpython/portscanner.py", line 32 in <module>

[1] 63540 segmentation fault ./python -X dev portscanner.py

This feature is also helpful when developing and testing C extensions
for CPython.

Compiling Debug Support

To get meaningful information from the debugger, the debug sym-
bols must be compiled into CPython. Without these symbols, the
stack traces within a debug session won’t contain the correct function
names, the variable names, or file names.

332

Using Lldb for macOS

Windows

Following the same steps as you did in the chapter on Compiling
CPython (Windows), ensure that you have compiled in the Debug
configuration to get the debug symbols:

> build.bat -p x64 -c Debug

Remember, the Debug configuration produces the executable python_-
d.exe, so make sure you use this executable for debugging.

macOS/Linux

The steps in the chapter on Compiling CPython, specify to run the
./configure script with the --with-pydebug flag. If you did not include
this flag, go back now and run ./configure again with your original
options and the --with-pydebug flag. This will produce the correct exe-
cutable and symbols for debugging.

Using L1db for macOS

The 11db debugger comes with the Xcode developer tools, so by now
you, will have it installed.

Start 1ldb and load the CPython compiled binary as the target:

$ 11db ./python.exe
(11db) target create "./python.exe"
Current executable set to './python.exe' (x86_64).

You will now have a prompt where you can enter some commands for

debugging.

Creating Breakpoints

To create a breakpoint, use the break set command, with the file (rel-
ative to the root) and the line number:

333

Using Lldb for macOS

(11db) break set --file Objects/floatobject.c --line 532
Breakpoint 1: where = python.exe float_richcompare + 2276 at

floatobject.c:532:26, address = 0x000000010006a974

There is also a short-hand version of setting breakpoints,
€.g. (11db) b Objects/floatobject.c:532

You can add multiple breakpoints using the break set command. To
list the current breakpoints, use the break 1ist command:

(11db) break list

Current breakpoints:

1: file = 'Objects/floatobject.c', line = 532, exact_match = 0, locations = 1
1.1: where = python.exe float_richcompare + 2276 at floatobject.c:532:26,

address = python.exe[...], unresolved, hit count = 0

Starting CPython

To start CPython, use the process launch -- command with the
command-line options you would normally use for Python, e.g.:

To start python with a string, e.g. python -c¢ "print(1)", use:
(11db) process launch -- -c "print(1)"
To start python with a script, use:

(11db) process launch -- my_script.py

Attaching to a Running CPython Interpreter

If you have a CPython interpreter running already, you can attach to
it.

From inside the lldb session, run process attach --pid with the process
id:

334

Using Lldb for macOS

(11db) process attach --pid 123

You can get the process ID from the Activity Monitor, or using
os.getpid() in Python.

Any breakpoints setup before this point or afterward will halt the pro-
cess.

An Example of Handling a Breakpoint

To see how breakpoints are handled, set a breakpoint on the objects
» floatobject.c float_richcompare() function. Next run the process and
compare 2 float values using the almost-equal operator that you de-
veloped during this book:

(11db) process launch -- -c¢ "1.0~=1.1"
Process 64421 launched: '/cpython/python.exe' (x86_64)
Process 64421 stopped
* thread #1, queue = '...', stop reason = breakpoint 1.1
frame #0: 0x000000010006a974 python.exe float_richcompare(v=1.0,

w=1.1, op=6) at floatobject.c:532:26

529 break;
530 case Py_AlE: {
531 double diff = fabs(i - j);
-> 532 const double rel_tol = le-9;
533 const double abs_tol = 0.1;
534 r = (((diff <= fabs(rel_tol * j)) ||

Target 0: (python.exe) stopped.

1ldb will give you a prompt again. You can see the local variables by
using the command v:

(11db) v
(PyObject *) v
(PyObject *) w

0x000000010111b370 1.0
0x000000010111b340 1.1

(int) op = 6
(double) 1 = 1
(double) j = 1.1000000000000001

335

https://github.com/python/cpython/blob/v3.9.0b1/Objects/floatobject.c#L358

Using Lldb for macOS

(int) r =0

(double) diff = 0.10000000000000009

(const double) rel_tol = 2.1256294105914498E-314
(const double) abs_tol = 0

You can evaluate a C expression using the expr command with any
valid C command. The variables in scope can be used. For example,
to call fabs(rel_tol) and cast to a double, run:

(11db) expr (double)fabs(rel_tol)
(double) $1 = 2.1256294105914498E-314

This prints the resulting variable and assigns it an identifier ($1). You
can reuse this identifier as a temporary variable.

You may also want to explore Pyobject instances, e.g.:

(11db) expr v->ob_type->tp_name
(const char *) $6 = 0x000000010034fc26 "float"

To get a traceback from the breakpoint, use the command bt:

(11db) bt

thread #1, queue = '...', stop reason = breakpoint 1.1
* frame #0:
python.exe float_richcompare(...) at floatobject.c:532:26
frame #1:
python.exe do_richcompare(...) at object.c:796:15
frame #2:
python.exe PyObject_RichCompare(...) at object.c:846:21
frame #3:

python.exe cmp_outcome(...) at ceval.c:4998:16

To step-in, use the command step, or s.

To continue to the next statement (step-over), use the command next,
OT n.

To continue execution, use the command continue, or c.

336

Using Gdb

To exit the session, use the command quit, or g.

The LLVM Documentation Tutorial contains a more exhaustive
list of commands.

Using the Python-Lldb Extension

1ldb supports extensions, written in Python. There is an open-source
extension which prints additional information in the lldb session for
native CPython objects.

To install it, run these commands:

$ mkdir -p ~/.11db

$ cd ~/.11db && git clone https://github.com/malor/cpython-11db

$ echo "command script import ~/.11ldb/cpython-11db/cpython_11db.py"
>> ~/.11dbinit

$ chmod +x ~/.11dbinit

Now, whenever you see variables in lldb, there will be some additional
information to the right, such as the numeric value for ints and floats,
or the text for Unicode strings. Within a lldb console, there is now
an additional command, py-bt, that prints the stack trace for Python
frames.

Using Gdb

Gdb is a commonly-used debugger for C/C++ applications written on
Linux platforms. It is also very popular with the CPython core devel-
opment team.

When CPython is compiled, it generates a script, cpython-pdb.py. Don’t
execute this script directly. Instead, gdb will discover it and run it au-
tomatically once configured. To configure this stage, edit the .gdbinit
file inside your home path and add the line:

337

https://lldb.llvm.org/use/tutorial.html

Using Gdb

add-auto-load-safe-path /path/to/checkout
Where /path/to/checkout is the path to the cpython git checkout.

To start gdb, run it with the argument pointing to your compiled
CPython binary.

$ gdb ./python

Gdb will load the symbols for the compiled binary and give you a com-
mand prompt. Gdb has a set of built-in commands, and the CPython
extensions bundle some additional commands.

Creating Breakpoints

To set a breakpoint, use the b <file>:<line> command, relative to the
path of the executable:

(gdb) b Objects/floatobject.c:532
Breakpoint 1 at 0x10006a974: file Objects/floatobject.c, line 532.

You can set as many breakpoints as you wish.

Starting CPython

To start the process, use the run command followed by arguments to
start the Python interpreter.

For example, to start with a string:
(gdb) run -c "print(1)"

To start python with a script, use:

338

Using Gdb

(gdb) run my_script.py

Attaching to a Running CPython Interpreter

If you have a CPython interpreter running already, you can attach to
it.

From inside the gdb session, run attach with the process id:

(gdb) attach 123

You can get the process ID from the Activity Monitor, or using
os.getpid() in Python.

Any breakpoints setup before this point or afterward will halt the pro-
cess.

Handling a Breakpoint

When a breakpoint is hit, you can use the print, or p command to print
a variable:

(gdb) p *(PyLongObject*)v
$1 = {ob_base = {ob_base = {ob_refcnt = 8, ob_type = ...}, ob_size = 1},
ob_digit = {42}}

To step into the next statement, use the command step, or s. To step
over the next statement, use the command next, or n.

Using the Python-Gdb Extension

The python-gdb extension will load an additional command set into
the gdb console:

Command Purpose

py-print Looks up a Python variable and prints it
py-bt Prints a Python stack trace
py-locals Prints the result of locals()
py-up Go down one Python frame

339

Using Visual Studio Debugger

Command Purpose

py-down Go up one Python frame
py-list Print the Python source code for the current frame

Using Visual Studio Debugger

Microsoft Visual Studio comes bundled with a visual debugger. This
debugger is powerful, supports a frame stack visualizer, a watch list,
and the ability to evaluate expressions.

Open Visual Studio and the PCBuild» pcbuild.sln solution file.

Adding Breakpoints

To add a new breakpoint, navigate to the file you want in the solution
window, then click in the gutter to the left of the line number.

This adds a red circle to indicate a breakpoint has been set on this line:

354 */

356 static PyObject*
357 =Ifloat_richcompare(PyObject *v, PyObject *w, int op)

359 double i, j;
360 int r = 0;

@ 362 assert(PyFloat_Check(v));
363 i = PyFloat_AS_DOUBLE(V);
365 = /* Switch on the type of w. Set i and j to doubles to be compared,
366 * and op to the richcomp to use.
367 */
368 if (PyFloat_Check(w))
369 j = PyFloat_AS_DOUBLE(w);

371 = else if (IPy_IS_FINITE(i)) {

When you hover over the red circle, a cog appears. Click on this cog
to configure conditional breakpoints. Add one or more conditional
expressions which must evaluate before this breakpoint hits:

340

Using Visual Studio Debugger

365 = /* Switch on the type of w. Set i and j to doubles to be compared,
366 * and op to the richcomp to use.
367 */

© 368 if (PyFloat_Check(w))

Location: floatobject.c, Line: 368, Must match source

Conditions
Conditional Expression v Istrue v i>=100 X Saved
Add condition
D Actions
Close
369 j = PyFloat_AS_DOUBLE(w);
370
371 @ else if (IPy IS FINITE(i)) {
>7n SE IR ane Caasl 0NN
.
Starting the Debugger

From the top menu, select Debug)) Start Debugger|, or press|F5).

Visual Studio will start a new Python runtime and REPL.

Handling a Breakpoint

When your breakpoint is hit, you can step forward and into statements
using the navigation buttons, or the shortcuts:

+ Step Into
« Step Over
« Step Out [Shift|+[F11]

At the bottom, a call stack will be shown. You can select frames in the
stack to change the navigation and inspect variables in other frames:

341

Using CLion Debugger

Call Stack v I x

Name Langi ~
© python39_d.dllifloat_richcompare(_object * v, _object * w, int op) Line 368

python39_d.dllldo_richcompare(_ts * tstate, _object * v, _object * w, int op) Line 796

python39_d.dlI!PyObject_RichCompare(_object * v, _object * w, int op) Line 846

python39_d.dlllcmp_outcome(_ts * tstate, int op, _object * v, _object * w) Line 4998

python39_d.dll!_PyEval_EvalFrameDefault(_frame * f, int throwflag) Line 2902

[Inline Frame] python39_d.dll!_PyEval_EvalFrame(_ts *) Line 43

python39_d.dll!_PyEval_EvalCode(_ts * tstate, _object * _co, _object * globals, _object * locals, _object * const * args, _int64 argcou...

python39_d.dll!_PyFunction_Vectorcall(_object * func, _object * const * stack, unsigned __int64 nargsf, _object * kwnames) Line 401

python39_d.dll!_PyObject_VectorcallTstate(_ts * tstate, _object * callable, _object * const * args, unsigned __int64 nargsf, _object * k...

[Inline Frame] python39_d.dll!_PyObject_Vectorcall(_object *) Line 120

python39_d.dll!call_function(_ts * tstate, _object * * * pp_stack, __int64 oparg, _object * kwnames) Line 4853

python39_d.dll!_PyEval_EvalFrameDefault(_frame * f, int throwflag) Line 3324

[Inline Frame] python39_d.dll!_PyEval_EvalFrame(_ts *) Line 43

python39_d.dll!_PyEval_EvalCode(_ts * tstate, _object * _co, _object * globals, _object * locals, _object * const * args,

> B > i i ioct *

[alialalaN el ool ol ool ol alal

nvthon n ectorca n on ack un
[€1BSEIg Breakpoints Exception Settings Command Window = Immediate Window = Output

In the code editor, you can highlight any variable or expression to see
its value. You can also right-click and choose “Add Watch.” This adds
the variable to a list called the Watchlist, where you can quickly see
the values of variables you need to help you debug:

Watch 1 v X
Search (Ctrl+E) P~ Search Depth: 3~
Name Value Type =
@ tp_free 0x00007ffdf70d33a5 {python39_d.dlI!PyObject_Free} void(*)(void *)
@ tp_is_gc 0x0000000000000000 int(*)(_object *)
> @ tp_bases 0x00000224abfe6050 {ob_refcnt=1 ob_type=0x00007ffdf7882430 {... _object *
> @ tp_mro 0x00000224abfe60a0 {ob_refcnt=1 ob_type=0x00007ffdf7882430 {... _object *
> @ tp_cache 0x0000000000000000 <NULL> _object *
> @ tp_subclasses 0x0000000000000000 <NULL> _object *
> @ tp_weaklist 0x00000224abfe79b0 {ob_refcnt=1 ob_type=0x00007ffdf7887440 {... _object *
@ tp_del 0x0000000000000000 void(*)(_object *)
@ tp_version_tag 0 unsigned int
@ tp_finalize 0x0000000000000000 void(*)(_object *)
@ tp_vectorcall 0x0000000000000000 _object *(*)(_object *...

» @ v->ob_type->tp_name

Add item to watch

0x00007ffdf778335c¢ “float"

Q ~ const char *

v

Autos | Locals JIEVEN

Using CLion Debugger

The CLion IDE comes with a powerful visual debugger bundled. It
works with 1ldb on macOS, and gdb on macOS, Windows, and Linux.

To configure the debugger, go to Preferences and select|Build, Execution, Deploymen

Toolchains|:

342

Using CLion Debugger

[JeN) Preferences
o Build, i >
Appearance & Behavior + - B Name: Default
keyma
Editor CMake: Bundled M
Plugins + Version: 3.16.0

Version Control Make: Detected: /usr/bin/make v [

Build, Execution, Deployment

C Compiler: Detected: /Library/Developer/CommandLineTools/usr/bin | v | | ...

CMake C++ Compiler: | Detected: /Library/Developer/CommandLineTools/usr/bin | ¥ | | ...
Compilation Database

Custom Build Targets

Build Tools Debugger: Bundled LLDB vil..
Gradle + Version: 9.0.1
Make

Debugger

Python Debugger
Python Interpreter
Deployment
Console
Coverage
Dynamic Analysis Tools
Sanitizers
Valgrind
Profiler
Embedded Development

Required Plugins

? Cancel Apply “

There is a selection box for the target debugger. Select one of the op-
tions:

« For macOS use the “Bundled LLDB”
« For Windows or Linux, use the “Bundled GDB”

Both the LLDB and GDB support benefit from the cpython-11db
and python-gdb extensions, respectively. Read the LLDB and
GDB sections in this chapter for information on how to install
and enable these extensions.

Configuring the Custom Build Targets

With your toolchain configured, you can now create Custom Build Tar-
gets to enable debugging.

343

Using CLion Debugger

To configure the debugger, go to Preferences and select
’Build, Execution, Deployment> Toolchains‘:

Create a new custom build profile called cpython_build, and set the

toolchain as Use Default to ensure it uses the debugger you just speci-
fied.

Select the E next to the Build drop-down to show the |External Tools

window and select to create a new External Tool.
The first external tool will run make

» Set the Name as make_all
+ Set the Program as make

+ Set the Arguments as those you have previously used to run
make, e.g., all -j2 -s

+ Set the Working Directory as $pProjectFileDir$

344

Using CLion Debugger

[BON) Create Tool
Name: make_all Group: External Tools v
Description:

Tool Settings
Program: make
Arguments: all -j2 —s|

Working directory: | $ProjectFileDir$

v Advanced Options
Synchronize files after execution
Open console for tool output
Make console active on message in stdout
Make console active on message in stderr
Output filters:

Each line is a regex, available macros: $FILE_PATH$, $LINES$..

Click ok to add the tool, then add a second for cleaning the project:

Set the Name as clean

Set the Program as make

Set the Arguments as those you have previously used to run
make, e.g., clean

Set the Working Directory as $ProjectFileDir$

345

Using CLion Debugger

[BON) Create Tool
Name: clean Group: External Tools v
Description:

Tool Settings
Program: make
Arguments: clean

Working directory: | $ProjectFileDir$|

v Advanced Options
Synchronize files after execution
Open console for tool output
Make console active on message in stdout
Make console active on message in stderr
Output filters:

Each line is a regex, available macros: $FILE_PATH$, $LINES$..

Close the External tools window and select your make_al1 tool as the
Build tool and clean as the Clean tool:

346

Using CLion Debugger

@ o Preferences
Build, Execution, Deployment > Custom Build Targets or current project Reset
+ - B
Build, Execution, Deployment . Name: cpython_build
= cpython_build Py
CMake
Compilation Database . .
- - Toolchain: Use Default

Custom Build Targets ®
Bl e Build: make_all -
Debugger

Clean: clean -

Python Debugger
Python Interpreter
Deployment
Console
Coverage
Dynamic Analysis Tools
Embedded Development
Required Plugins
Languages & Frameworks
Tools
Web Browsers
External Tools
Terminal
Database
SSH Configurations
SSH Terminal
Diagrams
Diff & Merge
Python External Documentation

2 cancel | ooy | [

Once this task is completed, you can build, rebuild and clean from the

Build| menu.

Configuring the Custom Debug Target

To debug the compiled CPython executable from the Run/Debug Con-
figurations, open the configuration panel from Run) Edit Configurations...],

Add a new configuration by selecting Custom Build Application :

« Set the Target as cpython_build, the Custom Build Target you just
created

« Set the Executable as python for Linux and python. exe for macOS

+ Set the Working Directory as $ProjectFileDir$

347

Using CLion Debugger

+ - B F L3
Custom Build Application
cpython_build
' GDB Remote Debug
7 Makefile
/ Templates

Run/Debug Configurations

Name: cpython_build

Target: cpython_build

Executable: python.exe

Program arguments:

Working directory: $ProjectFileDir$

Environment variables:

~

o

Redirect input from:

Before launch
Build

Show this page [Activate tool window

Allow parallel run Store as project file

Configure Custom Build Targets

Cancel ooy | D

With this Run/Debug Configuration, you can now debug directly from

the menu.

Alternatively, you can attach the debugger to a running CPython pro-

cess.

Attaching the Debugger

To attach the CLion debugger to a running CPython process, select

[Run >Attach to Process],

A list of running processes will pop-up. Find the python process you
want to attach to and select [Attach|. The debugging session will begin.

348

Using CLion Debugger

Important

If you have the Python plugin installed, it will show the python
process at the top. Don’t select this one!

This uses the Python debugger, not the C debugger.

Attach with Python 3.9.0a2+ (/Users/anthonyshaw/CLionPr...
Python
Native
1 launchd

port, args=(host, port, results)) 101 syslogd

102 UserEventAgent

105 uninstalld

106 kextd

107 fseventsd

108 mediaremoted

111 systemstats

112 configd

-format(results.get())) 113 endpointsecurityd

nnnnn Aell £anmatl+ima +imal) _ cta

Instead, scroll further down into the “Native” list and find the
correct python process.

Creating Breakpoints

To create a breakpoint, navigate to the file and line you want, then
click in the gutter between the line number and the code. A red circle
will appear to indicate the breakpoint is set:

529 break;

530 case Py_AlE: {

531 double diff = fabs(i - j);

532 const double rel_tol = le-9;

533 @ const double abs_tol = 0.1;

534 r = (((diff <= fabs(rel_tol x j)) ||
535 (diff <= fabs(rel_tol % i))) ||
536 (diff <= abs_tol));

537 +

538 break;

539 }

540 return PyBool_FromLong(r);

541

542 Unimplemented:

543 Py_RETURN_NOTIMPLEMENTED;

544 }

545

Right-click on the breakpoint to attach a condition:

349

Using CLion Debugger

rm.o N
ne break;

no case Py_AlE: {

° double diff = fabs(i - j);

¢ const double rel_tol = le-9;
— " const double abs_tol = 0.1;

(diff <= fabs(rel_tol * j)) ||
(diff <= fabs(rel_tol * i))) ||
(diff <= abs_tol));

floatobject.c:533
B Enabled
Object @ Suspend
npi(Py Condition:

St4 Py diff > 0.1 -

Object

/T:/pes More (03F8) pone FromLong(r);
ot

ct *, PyObject *) : PyObject *

tObject *) : PyObject * Unimplemented:

*(PyObject *, PyObject *,int) : Py_RETURN_NOTIMPLEMENTED;

ct *, PyObject *) : PyObject *
N(PyTypeObiject *, PyObject *)

To see and manage all current breakpoints, navigate from the top
menu to[Run> View Breakpoints‘:

[] [) Breakpoints
+ - @ boolobject.c:48
® Line Breakpoints Enebled
® floatobject.c:533
9
® boolobject.c:48 [Suspend
% Exception Breakpoints Condition:
4 n any is thrown
5 eption Breakpoints
& Any exception Log: | | "Breakpoint hit" message | | Stack trace
% Python Exception Breakpoint Evaluate and log:

% Any exception

Remove once hit
Disable until hitting the following breakpoint:
<None> -
or hit Disable agair ORI
PyObject *x = Py_False;
long ok;
[] if (!_PyArg_NoKeywords(funcname: "bool", kwds))
return NULL;
if (!PyArg_UnpackTuple(args, "bool", 8, 1, &x))
return NULL;

ok = PyObject_IsTrue(x);
if (ok < 0)

You can enable and disable breakpoints, as well as disable them once
another breakpoint has been hit.

Handling Breakpoints

Once a breakpoint has been hit, CLion will set up the Debug panel.
Inside the Debug panel is a call stack, showing where the breakpoint
hit. You can select other frames in the call stack to switch between
them.

350

Using CLion Debugger

Next to the call stack are the local variables. The properties of pointers
and type structures can be expanded, and the value of simple types is

shown:

Debug: #; python
I> Debugger ElConsole = & + ¥ t ¥ H
Frames

L Thread-1-<com.apple.main-thread> v N3

float_richcompare floatobject.c:533

I0 do_richcompare object.c:796

[0 PyObject_RichCompare object.c:846

u] cmp_outcome ceval.c:4998

[0 _PyEval_EvalFrameDefault ceval c:2907
[0 _PyEval_EvalFrame pycore ceval h:43

[0l _PyEval_EvalCode ceval.c:4742

IO _PyEval_EvalCodeWithName ceval.c:4774
I01 PyEval_EvalCodeEx ceval.c:4790

[F1 DuFval FualCada raval r-717

» & N o

Variables Bl LLDB Memory View

v = {PyObject * | 0x107f957c0} 1.0
o1 ob_refcnt = {Py_ssize_t}3

ob_type = {_typeobject * | 0x107da3920} 0x000000010
ob_base = {PyVarObject}
tp_name = {const char * | 0x107cfac26} "float"
i tp_basicsize = {Py_ssize_t} 24
o1 tp_itemsize = {Py_ssize_t} 0
tp_dealloc = {destructor | 0x107a14f50} (python.exe
bi tp_vectorcall_offset = {Py_ssize_t} 0
o1 tp_getattr = {getattrfunc | 0x0} NULL
bl tp_setattr = {setattrfunc | 0x0} NULL

Within a break, you can evaluate expressions to get more information
about the local variables. The Evaluation Window can be located in
[Run>> Debugging Actions>> Evaluate Expression], or in a shortcut icon in
the Debug Window.

Inside the Evaluate window, you can type expressions and CLion will
type-ahead with the property names and types:

e o Evaluate
Expression:
Set i and j to doubles to be |V->Ob_type->
r ob_base
Result: £ tp_alloc
¢ tp_as_async

PyVarObject
allocfunc
PyAsyncMethods *

use.

¢ tp_as_buffer PyBufferProcs *
¢ tp_as_mapping PyMappingMethods *
tp_as_number PyNumberMethods *
¢ tp_as_sequence PySequenceMethods *
& +n haca ctrunt tunanhiant

You can also cast expressions, which is useful for casting Pyobject+* into
the actual type, for example into a PyFloatObject*:

SUEL_WUL * 1)) 11

to1)); e o Evaluate
Expression:
((PyFloatObject*)v)->ob_fvall =
Use 0% to add to Watches
Result:
Bi result = {double} 1

351

Conclusion

Conclusion

In this chapter, you've seen how to set up a debugger on all the major
Operating Systems. While the initial setup is time-consuming, the re-
ward is great. Being able to set breakpoints, explore variables, and
memory for a running CPython process will give you superpowers.
You can use this skill to extend CPython, optimize existing parts of
the codebase, or track down nasty bugs.

Leave feedback on this section »

352

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiVihnN3gjczZxbGFZXzcmRiFUTWo0cXZjTV5fdypSZCFUaUBUOSkqUSIsInQiOiJjaGFwdGVycy82MS1kZWJ1Z2dpbmcubWQgKDE4YmJjMjg5ZDQ5MGRkMzMpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvMThiYmMyODlkNDkwZGQzM2I5YWJiNTYyYTcwMzhhODdmNDI2Mjk0MC9jaGFwdGVycy82MS1kZWJ1Z2dpbmcubWQifQ==

Benchmarking, Profiling,
and Tracing

When making changes to CPython, you need to verify that your
changes do not have a significant detrimental impact on perfor-
mance.

You may want to make changes to CPython that improve perfor-
mance.

There are solutions for profiling that you will cover in this chapter:
1. Using the timeit module to check a simple Python statement thou-

sands of times for the median execution speed

2. Running the Python Benchmark suite to compare multiple ver-
sions of Python

3. Using cProfile to analyze execution times of frames

4. Profiling the CPython execution with probes
The choice of solution depends on the type of task:

« Abenchmark will produce an average/median runtime of a fixed
code snippet so that you can compare multiple versions of Python
runtime

« A profiler will produce a call graph, with execution times so that
you can understand which function is the slowest

353

Using Timeit for Micro-Benchmarks

Profilers are available at a C or Python level. If you are profiling a func-
tion, module, or script written in Python, you want to use a Python
profiler. If you are profiling a C extension module or a modification to
the C code in CPython, you need to use a C profiler (or a combination).

Here is a summary of some of the tools available:

oS
Tool Category Level Support
timeit Benchmarking Python All
pyperformance Benchmarking Python All
cProfile Profiling Python All
dtrace Tracing/Profiling C Linux/
macOS

Before you run any benchmarks, it is best to close down all appli-
cations on your computer so the CPU is dedicated to the bench-
mark.

Using Timeit for Micro-Benchmarks

The Python Benchmark suite is a thorough test of CPython’s runtime
with multiple iterations. If you want to run a quick, simple compari-
son of a specific snippet, use the timeit module.

To run timeit for a short script, run the compiled CPython with the -m
timeit module and a script in quotes:

$./python -m timeit -c "x=1; x+=1; x**x"

1000000 loops, best of 5: 258 nsec per loop

To run a smaller number of loops, use the -n flag:

$./python -m timeit -n 1000 "x=1; x+=1; x**x"
1000 loops, best of 5: 227 nsec per loop

354

Using Timeit for Micro-Benchmarks

Example

In this book, you have introduced changes to the float type by sup-
porting the almost-equal operator.

Try this test to see the current performance of comparing two float
values:

$./python -m timeit -n 1000 "x=1.0001; y=1.0000; x~=y"
1000 loops, best of 5: 177 nsec per loop

The implementation of this comparison is in float_richcompare(), in-
side Objects» floatobject.c:

Objects» floatobject.c line 358

static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)
{

case Py_AlE: {
double diff = fabs(i - j);
double rel_tol = le-9;
double abs_tol = 0.1;
r = (((diff <= fabs(rel_tol * j)) ||
(diff <= fabs(rel_tol * i))) ||
(diff <= abs_tol));

break;

Notice that the rel_tol and abs_tol values are constant, but haven’t
been marked as constant. Change them to:

const double rel_tol = le-9;

const double abs_tol = 0.1;

Now, compile CPython again and re-run the test:

355

https://github.com/python/cpython/blob/v3.9.0b1/Objects/floatobject.c#L358

Using the Python Benchmark Suite for Runtime Benchmarks

$./python -m timeit -n 1000 "x=1.0001; y=1.0000; x~=y"
1000 loops, best of 5: 172 nsec per loop

You might notice a minor (1-5%) improvement in performance.

Experiment with different implementations of the comparison to see
if you can improve it further.

Using the Python Benchmark Suite for
Runtime Benchmarks

The benchmark suite is the tool to use when comparing the complete
performance of Python. The Python Benchmark suite is a collection
of Python applications designed to test multiple aspects of the Python
runtime under load. The Benchmark suite tests are pure-Python, so
they can be used to test multiple runtimes, like PyPy and Jython. They
are also compatible with Python 2.7 through to the latest version.

Any commits to the master branch on github.com/python/cpython
will be tested using the benchmark tool, and the results uploaded to
the Python Speed Center at speed.python.org:

356

https://github.com/python/cpython
https://speed.python.org

Using the Python Benchmark Suite for Runtime Benchmarks

@ puthon SPEED CENTER

Changes Timeline Comparison
Chart type: normalbars [~ Normalization: None B horizontal
speed-python
Broadwell-EP
Time
2.0

| lto-pgo latest in branch ‘master’ @ speed-python

call_method

call_method_slots 02
call_method_unknown 0.0
call_simple
chameleon
chaos 2 e’ "y

crypto_pyaes e 5 & @502 e R
deltablue @ o R S

™ diannn tamnlata

CPython 8 lto-pgo latest in branch ‘master’ @ Broadwell-EP
lto-pgo Iétest in branch 1.6 lto-pgo latest in branch '3.5' @ speed-python
'master' M| lto-pgo latest in branch 3.5' @ Broadwell-EP
Ito-pgo latest in branch '3.5' o 14 M lto-pgo latest in branch '3.6' @ speed-python
Ito-pgo latest in branch % M lto-pgo latest in branch '3.6' @ Broadwell-EP
3.6 2 1.2 M lto-pgo latest in branch 2.7' @ speed-python
Ito-pgo latest in branch '2.7* a 10 M lto-pgo latest in branch 2.7' @ Broadwell-EP |
g 1
4 08 |
c
]
g 06 |
Time
2to3 0.4

| ‘ I

AN

il J».u‘H.lu |

ARV 20

|

o

You can compare commits, branches, and tags side by side on the
speed center. The benchmarks use both the Profile Guided Optimiza-
tion and regular builds with a fixed hardware configuration to produce
stable comparisons.

To install the Python benchmark suite, install it from PyPi using a
Python runtime (not the one you are testing) in a virtual environment:

(venv) $ pip install performance

Next, you need to create a configuration file and an output directory
for the test profile. It is recommended to create this directory outside
of your Git working directory. This also allows you to checkout multi-
ple versions.

In the configuration file, e.g., ~/benchmarks/benchmark.cfg, put the fol-
lowing contents:

cpython-book-samples» 62 » benchmark.cfg

357

Using the Python Benchmark Suite for Runtime Benchmarks

[config]
Path to output json files

json_dir = ~/benchmarks/json

If True, compile CPython is debug mode (LTO and PGO disabled),
run benchmarks with --debug-single-sample, and disable upload.
#

Use this option used to quickly test a configuration.

debug = False

[scm]
Directory of CPython source code (Git repository)

repo_dir = ~/cpython

Update the Git repository (git fetch)?
update = False

Name of the Git remote, used to create revision of
the Git branch.

git_remote = remotes/origin
[compile]
Create files into bench_dir:

bench_dir = ~/benchmarks/tmp

Link Time Optimization (LTO)?

1to = True

Profiled Guided Optimization (PGO)?

pgo = True

The space-separated list of libraries that are package-only

pkg_only =

Install Python? If false, run Python from the build directory

install = True

[run_benchmark]

358

Using the Python Benchmark Suite for Runtime Benchmarks

Run "sudo python3 -m pyperf system tune" before running benchmarks?

system_tune = True

--benchmarks option for 'pyperformance run'

benchmarks =

—-affinity option for 'pyperf system tune' and 'pyperformance run'

affinity =

Upload generated JSON file?
upload = False

Configuration to upload results to a Codespeed website
[upload]

url =

environment =

executable =

project =

[compile_all]
List of CPython Git branches
branches = default 3.6 3.5 2.7

List of revisions to benchmark by compile_all
[compile_all revisions]
1list of 'shal=' (default branch: 'master') or 'shal=branch'

used by the "pyperformance compile_all" command

Executing the Benchmark

To run the benchmark, then run:

$ pyperformance compile -U ~/benchmarks/benchmark.cfg HEAD

This will compile CPython in the directory you specified and create
the JSON output with the benchmark data in the directory specified
in the config file.

359

Using the Python Benchmark Suite for Runtime Benchmarks

Comparing Benchmarks

If you want to compare JSON results, the Python Benchmark suite
doesn’t come with a graphing solution. Instead, you can use this script
from within a virtual environment.

To install the dependencies, run:

$ pip install seaborn pandas performance

Then create a script profile.py:
cpython-book-samples? 62» profile.py

import argparse
from pathlib import Path

from perf._bench import BenchmarkSuite

import seaborn as sns

import pandas as pd
sns.set(style="whitegrid")

parser = argparse.ArgumentParser()
parser.add_argument('files', metavar='N', type=str, nargs='+',
help="files to compare')

args = parser.parse_args()

benchmark_names = []
records = []
first = True
for f in args.files:
benchmark_suite = BenchmarkSuite.load(f)
if first:
Initialise the dictionary keys to the benchmark names
benchmark_names = benchmark_suite.get_benchmark_names()
first = False
bench_name = Path(benchmark_suite.filename).name

for name in benchmark_names:

360

Using the Python Benchmark Suite for Runtime Benchmarks

try:
benchmark = benchmark_suite.get_benchmark(name)
if benchmark is not None:
records.append({
"test': name,
'runtime': bench_name.replace('.json', ''),
'stdev': benchmark.stdev(),
'mean': benchmark.mean(),
'median': benchmark.median()
b
except KeyError:
Bonus benchmark! ignore.

pass
df = pd.DataFrame(records)

for test in benchmark_names:
g = sns.factorplot(
x="runtime",
y="mean",
data=df[df['test'] == test],
palette="Y1GnBu_d",
size=12,
aspect=1,
kind="bar")
g.despine(left=True)
g.savefig("png/{}-result.png".format(test))

Then, to create a graph, run the script from the interpreter with the
JSON files you have created:

$ python profile.py ~/benchmarks/json/HEAD.json ...

This will produce a series of graphs for each executed benchmark, in
the subdirectory png/.

361

Profiling Python Code with cProfile

Profiling Python Code with cProfile

The standard library comes with two profilers for profiling Python
code. The first is profile, a pure-Python profiler, and the second,
cProfile, a faster profiler written in C. In most cases, cProfile is the
best module to use.

The cProfile profiler is used for analyzing a running application and
collecting deterministic profiles on the frames evaluated. The output
from cProfile can be summarized on the command-line, or saved into
a .pstat file for analysis in an external tool.

In the Parallelism and Concurrency chapter, you wrote a port scanner
application in Python. Try profiling that application in cProfile.

Run python at the command-line with the -m cProfile argument to run
the cProfile module. The second argument is the script to execute:

$ python -m cProfile portscanner_multithreaded.py
Port 80 is open
Completed scan in 19.8901150226593 seconds
6833 function calls (6787 primitive calls) in 19.971 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 ...

The output will print a table with the columns:

Column Purpose

ncalls Number of calls

tottime Total time spent in the function (minus subfunctions
percall Quotient of tottime divided by ncalls

cumtime Total time spent in this (and subfunctions)

percall Quotient of cumtime divided by primitive calls

filename:1lineno(function) Data of each function

362

Profiling Python Code with cProfile

You can add the -s argument and the column name to sort the output.
E.g.:

$ python -m cProfile -s tottime portscanner_multithreaded.py

Will sort by the total time spent in each function.

Exporting Profiles

You can run the cProfile module again with the -o argument specifying
an output file path:

$ python -m cProfile -o out.pstat portscanner_multithreaded.py

This will create a file, out.pstat, that you can load and analyze with the
Stats class or with an external tool.

Visualizing with Snakeviz

Snakevizis a free Python package for visualizing the profile data inside
a web browser.

To install snakeviz, use pip:
$ python -m pip install snakeviz

Then execute snakeviz on the command line with the path to the stats
file you created:

$ python -m snakeviz out.pstat

This will open up your browser and allow you to explore and analyze
the data:

363

https://docs.python.org/3.9/library/profile.html#the-stats-class

Profiling Python Code with cProfile

o\
‘\\

style: Sunburst §
peptn: | 10 §

cutofe: |1 ~ 10004

—— -\\

\\\

Search:
ncalls tottime percall cumtime percall filename:lineno(function)

103 1.024 0.009942 1.024 0.009942 ~:0(<method 'acquire’ of '_thread.lock' objects>)

Visualizing with PyCharm

PyCharm has a builtin tool for running cProfile and visualizing the
results. To execute this, you need to have a Python target configured.

To run the profiler, select your run target, then on the top menu select
[Run) Profile (target)|. This will execute the run target with cProfile and
open a visualization window with the tabular data and a call graph:

| | N

fetch_url times;20 _init_ times;1720 draw times;1720 write_to_png times;10
Total: 36ms 3.5% Total: 88ms 8.6% Total: 514ms 50.0% Total: 51ms 5.0%
Own:oms 0.0% Own: 24ms 2.3% Own: s9ms 57% | Own: §1ms 5.0%

I

init times;20 _init_ times;20 finish times;10

Total: 188ms 18 3% Total: 519ms 50.5% Total: §1ms 5.0%

own: oms 0.0% Own: Oms 0.0% Own: Oms 0.0%

)

convert times;20
Total: 774ms 75.3%
Own: Oms 0.0%

P

svg2pdf times;10 svg2png times;10

Total: 342ms 33.3% Total: 432ms 42.0%

Own: Oms 00% Own: Oms 00%
A A

main times;1
Total: 791ms 76.9%
Own: ms 01%

I ‘
surface.py times;1 defs.py timesi1 Image.py times;1
Total:223ms 217% Total:68ms 6.6% Total: 41ms 4.0%
Own: Oms 00% Own: Oms 00% Own: Oms 00%

364

Profiling C Code with Dtrace

Profiling C Code with Dtrace

The CPython source code has several markers for a tracing tool called
dtrace. dtrace executes a compiled C/C++ binary, then catches and
handles events within it using probes.

For dtrace to provide any meaningful data, the compiled application
must have custom markers compiled into the application. These are
events raised during the runtime. The markers can attach arbitrary
data to help with tracing.

For example, inside the frame evaluation function, in Python» ceval.c,
there is a call to dtrace_function_entry():

if (PyDTrace_FUNCTION_ENTRY_ENABLED())

dtrace_function_entry(f);

This raises a marker called function__entry in dtrace every time a func-
tion is entered.

CPython has builtin markers for:

« Line execution

« Function entry and return (frame execution)

Garbage collection start and completion

Module import start and completion

Audit hook events from sys.audit()

Each of these markers has arguments with more information. The
function__entry marker has arguments for:

 File name
» Fuction name

o Line number

The static marker arguments are defined in the Official Documenta-
tion

365

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L5642
https://docs.python.org/3/howto/instrumentation.html#available-static-markers
https://docs.python.org/3/howto/instrumentation.html#available-static-markers

Profiling C Code with Dtrace

dtrace can execute a script file, written in D to execute custom code
when probes are triggered. You can also filter out probes based on
their attributes.

Related Source Files

Source files related to dtrace are:

File Purpose

Include» pydtrace.h API definition for dtrace markers

Include» pydtrace.d Metadata the python provider that dtrace
uses

Include) pydtrace_probes.h Auto-generated headers for handling
probes

Installing Dtrace

dtrace comes pre-installed on macOS, and can be installed in Linux
using one of the packaging tools:

For yum based systems:
$ yum install systemtap-sdt-devel
Or, for apt based systems:

$ apt-get install systemtap-sdt-dev

Compiling Dtrace Support

dtrace support must be compiled into CPython. This is done by the
./configuration script.

Run . /configure again with the same arguments you used in Compiling
CPython and add the flag --with-dtrace. Once this is complete, you
need to run make clean & make to rebuild the binary.

Check that the probe header was created by the configuration tool:

366

Profiling C Code with Dtrace

$ 1s Include/pydtrace_probes.h

Include/pydtrace_probes.h

Important

Newer versions of macOS have kernel-level protection that in-
terferes with dtrace called System Integrity Protection.

The examples in this chapter use the CPython probes. If you
want to include libc or syscall probes to get extra information,
you will need to disable SIP.

Using Dtrace From CLion

The CLion IDE comes bundled with dtrace support. To start tracing,

select |Run)) Attach Profiler to Process..| and select the running Python

process.

The profiler window will prompt you to start and then stop the tracing
session. Once tracing is complete, it provides you with a flame graph
showing execution stacks and call times, a Call Tree and a Method

List:

profiler: python python

|2 Flame Graph Call Tree Method List

All threads merged
id=3805513

% Z: Structure

ites

tem_kernel.dylib'fstat$INODE64
n.exe'_io_FilelO_readall_impl
n.exe'_io_FilelO_readall
n.exe'cfunction_vectorcall NOARGS
n.exe'_PyObject VectorcallTstate
n.exe’_PyObject_CallNoArg
n.exe'_bufferedreader_read_all
n.exe’_io_Buffered_read_impl
n.exe'_io_Buffered_read

n.exe method_vectorcall FASTCALL
n.exe'_PyObject_VectorcallTstate
n.exe'_PyObject Vectorcall

n.exe call_function
n.exe'_PyEval_EvalFrameDefault
n.exe'_PyEval EvalFrame
n.exe'function_code fastcall

python.exe'_PyEval_EvalFrameDefault

python.exe'_PyEval_EvalFrame
python.exe function_code_fastcall
python.exe’_PyFunction_Vectorcall

python.exe’_PyMem_DebugRawFree

python.exe'_PyMem_DebugFree
python.exe’ PyObject_Free
python.exe ' unicode_dealloc

367

Profiling C Code with Dtrace

Example

In this example, you will test the multithreaded port scanner created
in the chapter on Parallelism and Concurrency.

Create a profile script in D, profile_compare.d. This profiler will start
when portscanner_multithreaded.py:main() is entered, to reduce the
noise from the interpreter startup.

cpython-book-samples» 62» profile_compare.d

#pragma D option quiet

self int indent;

python$target: : :function-entry
/basename(copyinstr(arg0)) == "portscanner_multithreaded.py"
&& copyinstr(argl) == "main"/
{
self->trace = 1;

self->last = timestamp;

python$target:: :function-entry
/self->trace/
{
this->delta = (timestamp - self->last) / 1000;
printf("%dt%*s:", this->delta, 15, probename);
printf("%*s", self->indent, "");
printf("%s:%s:%dn", basename(copyinstr(arg0)), copyinstr(argl), arg2);
self->indent++;

self->last = timestamp;

pyvthon$target:: :function-return

/self->trace/

{
this->delta = (timestamp - self->last) / 1000;
self->indent--;

printf("%dt%*s:", this->delta, 15, probename);

368

Profiling C Code with Dtrace

printf("%*s", self->indent, "");
printf("%s:%s:%dn", basename(copyinstr(arg0)), copyinstr(argl), arg2);

self->last = timestamp;

python$target:: : function-return

/basename(copyinstr(arg0)) == "portscanner_multithreaded.py"
&& copyinstr(argl) == "main"/

{

self->trace = 0;

This script will print a line every time a function is executed and time
the delta between the function starting and exiting.

You need to execute with the script argument, -s profile_compare and
the command argument, -c¢ './python portscanner_multithreaded.py:

$ sudo dtrace -s profile_compare.d -c './python portscanner_multithreaded.py'
0 function-entry:portscanner_multithreaded.py:main:16

28 function-entry: queue.py:__init_ :33

18 function-entry: queue.py:_init:205

29 function-return: queue.py:_init:206

46 function-entry: threading.py:__init__:223

33 function-return: threading.py:__init__:245

27 function-entry: threading.py:__init__:223

26 function-return: threading.py:__init_ :245

26 function-entry: threading.py:__init__:223

25 function-return: threading.py:__init_ :245

In the output, the first column is the time-delta in microseconds since
the last event, then the event name, the filename and line number.
When function calls are nested, the filename will be increasingly in-
dented to the right.

369

Conclusion

Conclusion

In this chapter, you have explored benchmarking, profiling, and trac-
ing using a number of tools designed for CPython.

With the right tooling, you can find bottlenecks, compare perfor-
mance of multiple builds and identify improvements.

Leave feedback on this section »

370

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiWUt1Q3VmaCFgNytzfnJjQTB7e2M9d2l1TVczazhLeHFiZCF2SyVHdSIsInQiOiJjaGFwdGVycy82Mi1wcm9maWxpbmcubWQgKGExYTM1NWM4NGNlZDc5NTgpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvYTFhMzU1Yzg0Y2VkNzk1ODY0NzU1YTBiNWJhMGY5MjNlNzEwZTQzYi9jaGFwdGVycy82Mi1wcm9maWxpbmcubWQifQ==

Conclusion

Congratulations! You've made it to all the way to the end of this book.
There are three main uses of the knowledge you’ve learned:

1. Writing C extensions

2. Improving your Python applications

3. Contributing to the CPython Project

As a conclusion and summary of the topics, lets explore those.

Writing C Extensions for CPython

There are several ways in which you can extend the functionality of
Python. One of these is to write your Python module in C or C++.
This process can lead to improved performance and better access to
C library functions and system calls.

If you want to write a C extension module, there are some essential
things you’ll need to know that this book has prepared you for:

» How to set up a C compiler and compile C modules. See the chap-
ter on Compiling CPython.

« How to set up your development environment for C. See the Set-
ting up Your Development Environment chapter.

» How to increment and decrement references to generated objects.
See Reference Counting in the Memory Management chapter.

371

Using This Knowledge to Improve Your Python Applications

What pyobject= is and its interfaces. See the Object and Variable
Object Types section in the Objects and Types chapter.

What type slots are and how to access Python type APIs from C.
See the Type Slots section in the Objects and Types chapter.

How to add breakpoints to C source files for your extension mod-
ule and debug them. See the Debugging chapter.

Over at realpython.com, Danish Prakash has written a great tu-
torial on Building a C Extension Module. This tutorial includes
a concrete example of building, compiling and testing an exten-
sion module.

Using This Knowledge to Improve Your

Python Applications

There are several important topics covered in this book that can help
you improve your applications. Here are some examples:

Using Parallelism and Concurrency techniques to reduce the exe-
cution time of your applications. See the Parallelism and Concur-
rency chapter.

Customizing the Garbage Collector algorithm to collect at the end
of a task in your application to better handle memory. See the
Garbage Collection section in the Memory Management chapter.

Using the debuggers to debug C extensions and triage issues. See
the Debugging chapter.

Using profilers to profile the execution time of your code. See the
Profiling Python Code with cProfile section of the Benchmarking,
Profiling, and Tracing chapter.

Analyzing frame execution to inspect and debug complex issues.
See the Frame Execution Tracing section in The Evaluation Loop
chapter.

372

https://realpython.com/build-python-c-extension-module

Using This Knowledge to Contribute to the CPython Project

Using This Knowledge to Contribute to
the CPython Project

While writing this book, CPython had 12 new minor releases, 100’s of
changes, bug reports, and 1000’s of commits to the source code.

CPython is one of the biggest, most vibrant, and open software
projects out there. So what sets apart the developers who work on
CPython and you, the reader?

Nothing.

That’s right; the only thing stopping you from submitting a change,
improvement, or fix to CPython is knowing where to start. The
CPython community is eager for more contributors. Here are some
places you could start:

1. Triaging issues raised by developers on bugs.python.org

2. Fixing small, easy issues

Let’s explore each of those in a bit more detail.

Triaging Issues

All bug reports and change requests are first submitted to
bugs.python.org. This website is the bug tracker for the CPython
Project. Even if you want to submit a pull request on GitHub, you
first need a “BPO Number,” which is the issue number created by
BPO (bugs.python.org).

To get started, register yourself as a user by going to on

the left menu.

The default view is not particularly productive and shows both issues
raised by users and those raised by core developers (which likely al-
ready have a fix).

Instead, after logging in, go to |Your Queries)) Edit| on the left menu.

373

https://bugs.python.org
https://bugs.python.org

Using This Knowledge to Contribute to the CPython Project

This page will give you a list of queries for the bug index that you can

bookmark:

Patches

pending issues
serverhorror's Reports
Easy Tasks
Showstoppers
Latest issues
Release Blockers
Critical

py3k-open

Needs review
Crashers

Open Doc Bugs 2.6

i A nmbabinn ina

Change the

Query
leave out [
leave out)
leave out (o)
leave out o)
leave out |9
include [
leave out [
leave out [
leave out [
leave out (o)
leave in [
leave out |5
leave out (o)

Figure 0.1: bpo-screenshot

value to “leave in” to include these queries in the

Your Queries menu.

Some of the queries I find useful are:

« Easy Documentation Issues - showing some documentation
improvements that haven’t been made

« Easy Tasks - showing some tasks that have been identified as
good for beginners

+ Recently Created - recently created issues

+ Reports without replies - bug reports that never got a reply

« Unread - bug reports that never got read

« 50 latest issues - the 50 most recently updated issues

With these views, you can follow the Triaging an Issue guide for the
latest process on commenting on issues.

Raising a Pull Request to Fix an Issue

With an issue to fix, you can get started on creating a fix and submit-
ting that fix to the CPython project.

374

https://devguide.python.org/triaging/

Using This Knowledge to Contribute to the CPython Project

1. Make sure you have a BPO number.

2. Create a branch on your fork of CPython. See the Getting the
Source Code chapter for steps on downloading the source code.

3. Create a test to reproduce the issue. See the Testing Modules sec-
tion of The Test Suite chapter for steps.

4. Make your change following the PEP7 and PEPS style guides.

5. Run the Regression Test suite to check all the tests are passing.
The regression test suite will automatically run on GitHub when
you submit the Pull-Request, but it is better to check it locally first.
See The Test Suite chapter for steps.

6. Commit and push your changes to GitHub.

7. Go to github.com/python/cpython and create a pull request for
your branch

After submitting your pull request it will be triaged by one of the triage
teams and assigned to a Core Developer or team for review.

As mentioned earlier, the CPython project needs more contributors.
The time between submitting your change can be an hour, a week,
or many months. Don’t be dismayed if you don’t get an immediate
response. All of the Core Developers are volunteers and tend to review
and merge pull requests in batches.

It is important only to fix one thing in one pull request. If you
see a separate (unrelated) issue in some code while writing your
patch, make a note and submit it as a second pull request.

To help get your change merged quickly, a good explanation of the
problem, the solution, and the fix go a long way.

375

https://github.com/python/cpython

Keep Learning

Other Contributions

Other than bug fixes, there are some different types of improvements
you can make to the CPython project:

« Many of the standard library functions and modules are missing
unit tests. You can write some tests and submit them to the
project.

+ Many of the standard library functions don’t have up-to-date
documentation. You can update the documentation and submit a
change.

Leave feedback on this section »

Keep Learning

Part of what makes Python so great is the community. Know someone
learning Python? Help them out! The only way to know you’ve really
mastered a concept is to explain it to someone else.

Come visit us on the web and continue your Python journey on the
realpython.com website and the @realpython Twitter account.

Weekly Tips for Python Developers

Are you looking for a weekly dose of Python development tips to im-
prove your productivity and streamline your workflows? Good news:
we’re running a free email newsletter for Python developers just like
you.

The newsletter emails we send out are not just your typical list of pop-
ular articles. Instead, we aim to share at least one original thought
per week in a (short) essay-style format.

If you'd like to see what all the fuss is about, then head on over
to realpython.com/newsletter and enter your email address in the
signup form. We’re looking forward to meeting you!

376

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiNC0yMlkpRmE7ejNQTFRTYnVmUFBzcUVwNzgrdEtDdEE2fjY2WFBLdyIsInQiOiJjaGFwdGVycy84MC1jb25jbHVzaW9uLm1kIChmMDE0ZTUxNDdkNWFlMmM1KSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iL2YwMTRlNTE0N2Q1YWUyYzVmM2Y3MzdkZDFiMWNiNzdlMjA4MTljNmMvY2hhcHRlcnMvODAtY29uY2x1c2lvbi5tZCJ9
https://realpython.com/
https://twitter.com/realpython
https://realpython.com/newsletter?utm_source=cpython-book&utm_medium=pdf

Keep Learning

The Real Python Video Course Library

Become a well-rounded Pythonista with the large (and growing) col-
lection of Python tutorials and in-depth training materials at Real
Python. With new content published weekly, you’ll always find some-
thing to boost your skills:

Master practical, real-world Python skills: Our tutorials are
created, curated, and vetted by a community of expert Pythonistas.
At Real Python, you’ll get the trusted resources you need on your
path to Python mastery.

Meet other Pythonistas: Join the Real Python Slack chat and
meet the Real Python Team and other subscribers. Discuss your
coding and career questions, vote on upcoming tutorial topics, or
just hang out with us at this virtual water cooler.

Interactive quizzes & Learning Paths: See where you stand
and practice what you learn with interactive quizzes, hands-on
coding challenges, and skill-focused learning paths.

Track your learning progress: Mark lessons as completed or
in-progress and learn at your own pace. Bookmark interesting
lessons and review them later to boost long-term retention.

Completion certificates: For each course you complete, you re-
ceive a shareable (and printable) Certificate of Completion, hosted
privately on the Real Python website. Embed your certificates in
your portfolio, LinkedIn resume, and other websites to show the
world that you’re a dedicated Pythonista.

Regularly updated: Keep your skills fresh and keep up with
technology. We’re constantly releasing new members-only tuto-
rials and update our content regularly.

See what’s available at realpython.com/courses

377

https://realpython.com/courses/

Appendix 1 : Introduction to
C for Python Programmers

This introduction is intended to get an experienced Python program-
mer up to speed with the basics of the C language and how it’s used in
the CPython source code. It assumes you've already got an intermedi-
ate understanding of Python syntax.

That said, C is a fairly limited language and most of it’s usage in
CPython falls into a small set of syntax. Getting to the point where
you understand the code is a much smaller step than being able to
write C effectively. This tutorial is aimed at the first goal but not the
second.

One of the first things that stand out as a big difference between
Python and C is the C preprocessor. Let’s look at that first.

C Preprocessor

The preprocessor, as the name suggests, is run on your source files
before the compiler runs. It has very limited abilities, but these can
be used to great advantage in building C programs. The preprocessor
produces a new file which is what the compiler will actually process.
All of the commands to the preprocess start at the beginning of a line
with a # symbol as the first non-whitespace character.

The main purpose of the preprocessor is to do text substitution in the
source file, but it will also do some basic conditional code if #if state-

378

C Preprocessor

ments.

Let’s start with the most frequent preprocessor directive, #include.

#include

#include is used to pull the contents of one file into the current source
file. There is nothing sophisticated about this, it reads that file from
the file system, runs the preprocessor on that file and puts the results
of that into the output file. This is done recursively for each #include
directive found.

For example, if you look at the Modules/_multiprocessing/semaphore.c
file, near the top you'll see:

#include "multiprocessing.h"

This tells the preprocessor to pull in the entire contents of
multiprocessing.h and put it into the output file at this position.

You will notice two different forms for the include statement. One
of them uses quotes to specify the name of the include file, the other
uses angle brackets (<>). The difference comes from which paths are
searched when looking for the file on the file system. If you use <> for
the filename, the preprocessor will only look on “system” include files.
Using quotes around the filename instead will force the preprocessor
to look in the local directory first and then fall back to the system di-
rectories.

#define

#define allows you to do simple text substitution and also plays into
the #if directives we’ll see below.

At it’s most basic, #define let’s you define a new symbol that gets re-
placed with a text string in the preprocessor output.

Continuing in semphore.c you’ll find this line:

379

C Preprocessor

#define SEM_FAILED NULL

This tells the preprocessor to replace every instance of SEM_FAILED be-
low this point with the literal string NnuLL before the code is sent to the
compiler.

#define items can also take parameters as in this Windows-specific ver-
sion of SEM_CREATE:

#define SEM_CREATE(name, val, max) CreateSemaphore(NULL, val, max, NULL)

In this case and preprocessor will expect SEM_CREATE() to look like a
function call and have three parameters. This is generally referred to
as a macro. It will directly replace the text of the three parameters
into the output code, For example, on line 459, the SEM_CREATE macro
is used like this:

handle = SEM_CREATE(name, value, maxvalue);

When compiling for Windows, this macro will be expanded so that
line is:

handle = CreateSemaphore(NULL, value, max, NULL);

We'll see below how this macro is defined differently on Windows and
other operating systems.

#undef

This directive erases any previous preprocessor definition from
#define. This makes it possible to have a #define in effect for only part
of a file.

#if

The preprocessor also allows conditional statements, allowing you to
either include or exclude sections of text based on certain conditions.
Conditional statements are closed with the #endif directive and also
can make use of #elif and #else for fine-tuned adjustments.

380

Basic C Syntax

There are three basic forms of #if that you’ll see in the CPython
source:

 #ifdef <macro> : includes the following block of text if the specified
macro is defined
e #if defined(<macro>): Same as #ifdef

» #ifundef <macro>: includes the following block of text if the speci-
fied macro is not defined

 #if <macro>: includes the following text if the macro is defined and

it evaluates to True

Note the use of “text” instead of “code” to describe what is included or
excluded from the file. The preprocessor knows nothing of C syntax
and does not care what the specified text is.

#pragma

Pragmas are instructions or hints to the compiler. In general you can
ignore these while reading the code as they usually deal with how the
code is compiled, not how the code runs.

#error

Finally, #error displays a message and causes the preprocessor to stop
executing. Again, you can safely ignore these for reading the CPython
source code.

Basic C Syntax

This section will not cover ALL aspects of C nor, again, is it intended
to teach you how to write C. It will focus on things that are different
or confusing for Python developers the first time they see them.

381

Basic C Syntax

General

Unlike in Python, whitespace is not important to the C compiler. It
does not care if you split statements across lines or jam your entire
program onto a single, verylongline. This is because it uses delimiters
for all statements and blocks.

There are, of course, very specific rules for the parser, but in general
you’ll understand the CPython source just knowing that each state-
ment ends with a semicolon (;) and all blocks of code are surrounded
by curly braces ({3}).

The exception to this rule is that if a block has only a single statement,
the curly braces can be omitted.

Allvariables in C must be declared meaning there needs to be a single
statement giving the type of that variable. Note that, unlike Python,
the data type that a single variable can hold cannot change.

Let’s look at some examples:

/* comments are included between slash-asterisk and asterisk-slash */
/* This style of comment can span several lines -

so this part is still a comment. */

// OR comments can be after two slashes
// This type of comments only go until the end of the line, so new

// lines must have //s again.
int x = 0; // declares x to be of type 'int' and initializes it to O
if (x == 0) {

// this is a block of code

int vy = 1; // vy is only a valid variable name until the closing }

// more statements here

printf("x is %d y is %dn", x, Vy);

// single line blocks do not require curly brackets

382

Basic C Syntax

if (x == 13)
printf("x is 13!n");
printf("past the if blockn");

In general you’ll see that the CPython code is very cleanly formatted
and generally sticks to a single style within a given module.

if Statements

In C, if works generally like it does in Python. If the condition is
true then the following block is executing. The else and else if syn-
tax should be familiar enough to Python programmers to understand.
Note that C if statements do not need and endif because blocks are
delimited by {3}.

There is a shorthand in C for short if/else statements call the ternary
operator:

You can find it in semaphore.c where, for Windows, it defines a macro
for SEM_CLOSE():

#define SEM_CLOSE(sem) (CloseHandle(sem) ? 0 : -1)

The return value of this macro will be o if the function CloseHandle()
returns true and -1 otherwise.

Just a note about true in C. Boolean variable types are supported and
used in parts of the CPython source, but they were not a part of the
original language. C interprets binary conditions using a simple rule:
0 or NULL is false, everything else is true.

switch Statements

Unlike Python, C also supports switch. Using switch can be viewed
as a shortcut for extended if/elseif chains. This example is from

semaphore.c:

383

Basic C Syntax

switch (WaitForSingleObjectEx(handle, 0, FALSE)) {
case WAIT_OBJECT_O:
if (!ReleaseSemaphore(handle, 1, &previous))
return MP_STANDARD_ERROR;
*value = previous + 1;
return 0;
case WAIT_TIMEOUT:
*value = 0;
return O;
default:
return MP_STANDARD_ERROR;

This performs a switch on the return value from waitForSingleObjectEx().
If the value is wAIT_OBJECT_0, the first block is executed. The waIrT_-
TIMEOUT value results in the second block, and anything else matches
the default block.

Note that the value being tested, in this case the return value from
WaitForSingleObjectEx(), must be an integral value or an enumerated
type and that each case must be a constant value.

Loops

There are three looping structures in C:

« for loops
+ while loops

* do..while loops
Let’s look at each of these in turn.
for loops have syntax that is quite different than Python:

for (<initialization>; <condition>; <increment>) {

<code to be looped over>

384

Basic C Syntax

In addition to the code to be executed in the loop, there are three
blocks of code which control the for loop.

The <initialization> section is run exactly one time when the loop is
started. It traditionally is used to set a loop counter to an initial value
(and possibly declare the loop counter). The <increment> code is run
immediately after each pass through the main block of the loop. Tra-
ditionally this will increment the loop counter. Finally, the <condition>
is run after the <increment>. The return value of this code will be eval-
uated and the loop breaks when this condition returns false.

Here’s an example from Modules/sha512module.c:

for (i = 0; i < 8; ++i) {
S[i] = sha_info->digest[i];

}

This loop will run 8 times, with i going from 0 to 7, terminating when
the condition is check and i is 8.

while loops are virtually identical to their Python counterparts. The
do..while() syntax is a little different, however. The condition on a
do...while() loop is not checked until after the first time the body of
the loop is executed.

There are many instances of for loops and while loops in the CPython

code base, but do. .while() is unused.

Functions

The syntax for functions in C is similar to that in Python, with the
addition that the return type and parameter types must be specified.
The C syntax looks like this:

<return_type> function_name(<parameters>) {
<function_body>

3

The return type can be any valid type in C, including both built-in

385

Basic C Syntax

types like int and double as well as custom types like pyobject like in
this example from semaphore.c:

static PyObject *
semlock_release(SemLockObject *self, PyObject *args)
{

<statements of function body here>

3

Here you see a couple of C-specific things in play. First off, remember
that whitespace does not matter. Much of the CPython source code
puts the return type of a function on the line above the rest of that
function declaration. That’s the pyobject * part. We’ll talk about the *
aspect of this a little later, but here we should point out that there are
several modifiers you can place on functions and variables.

static is one of these modifiers. Unfortunately these modifiers have
some complex rules governing how they operate. For instance, the
static modifier here means something very different than placing it
in front of a variable declarations.

Fortunately, these modifiers can generally be ignored while trying to
read and understand the CPython source code.

The parameter list for functions is a comma-separated list of variables,
similar to Python. Again, C requires specific types for each parameter,
so the SemLockObject *self says that the first parameter (all parameters
in C are positional) is a pointer to a SemLockObject and is called self.

Let’s look at what the pointer part of that statement means.

To give some context, the parameters that are passed to C are all
passed by value, meaning the function operates on a copy of the value
and not the original in the calling function. To work around this,
functions will frequently pass in the address of some data that the
function can modify. These addresses are called pointers and have
types, so int * is a pointer to an int value and is of a different type
than double * which is a pointer to a double.

386

Basic C Syntax

Pointers

As mentioned above, pointers are variables that hold the address of a
value. These are used frequently in C as seen in the example above:

static PyObject *
semlock_release(SemLockObject *self, PyObject *args)
{

<statements of function body here>

3

Here the self parameter will hold the address of (usually called “a
pointer to”) a SemLockObject value. Also note that the function will re-
turn a pointer to a Pyobject value.

There is a special value in C to indicate that a pointer does not point to
anything, called NuLL. You’ll see pointers assigned to NuLL and checked
against NULL throughout the CPython source. This is important as
there are very few limitations as to what values a pointer can have
and access a memory location that is not officially part of your pro-
gram can cause very strange behavior.

If you try to access the memory at NULL, on the other hand, your pro-
gram will exit immediately. This may not seem better, but it’s gen-
erally easier to figure out a memory bug if NULL is accessed than if a
random memory address is modified.

Strings

In C there is not a string type. There is a convention around which
many standard library functions are written, but there is not an ac-
tual type. Rather, strings in C are stored as arrays of char or wchar val-
ues, each of which holds a single character. Strings are marked with
a null-terminator which has a value o0 and is usually shown in code
as 0.

Basic string operations like strlen() rely on this null-terminator to
mark the end of the string.

387

Basic C Syntax

Because strings are just arrays of values, they cannot be directly
copied or compared. The standard library has the strcpy() and stremp
functions (and their wchar cousins) for doing these operations and
more.

Structs

Your final stop on this mini-tour of C is how you can create new types
in C: structs. The struct keyword allows you to group a set of differ-
ent data types together into a new, custom data type:

struct <struct_name> {
<type> <member_name>;

<type> <member_name>;
};

This partial example from Modules/arraymodule.c shows a struct decla-
ration:

struct arraydescr {
char typecode;

int itemsize;

This creates a new data type called struct arraydescr which has many
members, the first two of which are a char typecode and an int itemsize.

Frequently structs will be used as part of a typedef which provides a
simple alias for the name. In the example above, all variables of the
new type must be declared with the full name struct arraydescr x;.

You'll frequently see syntax like this:

typedef struct {
PyObject_HEAD
SEM_HANDLE handle;

388

Conclusion

unsigned long last_tid;
int count;

int maxvalue;

int kind;

char *name;

} SemLockObject;

This creates a new, custom struct type and gives it a name
SemLockObject. To declare a variable of this type, you can simply
use the alias SemLockObject x;.

Conclusion

This wraps up the quick walk through C syntax. There were many
corners that were cut in this description, but it should be sufficient to
read the CPython source code.

Leave feedback on this section »

389

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoie28ha2ooOEM1VG83fkdRP0RXTUdzcEVnaitmYTY4PjVMe0RCbVBkaiIsInQiOiJjaGFwdGVycy85MC1hcHBlbmRpeC1jLXByaW1lci5tZCAoZjg1M2I5MzdlZjUwYWQyNCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi9mODUzYjkzN2VmNTBhZDI0ZjA5ZTg5MDFiMWM1NWRhYjRjZDY0NmYzL2NoYXB0ZXJzLzkwLWFwcGVuZGl4LWMtcHJpbWVyLm1kIn0=

This is an Early Access version of “CPython
Internals: Your Guide to the Python 3
Interpreter”

With your help we can make this book even better:

At the end of each section of the book you’ll find a “magical” feedback
link. Clicking the link takes you to an online feedback form where
you can share your thoughts with us.

Please feel free to be as terse or detailed as you see fit. All feedback
is stored anonymously, but you can choose to leave your name and
contact information so we can follow up or mention you on our “Thank
You” page.

We use a different feedback link for each section, so we’ll always know
which part of the book your notes refer to.

Thank you for helping us make this book an even more valuable learn-
ing resource for the Python community.

— Anthony Shaw

	Contents
	Foreword
	Introduction
	How to Use This Book
	Bonus Material & Learning Resources

	Getting the CPython Source Code
	Setting up Your Development Environment
	IDE or Editor?
	Setting up Visual Studio
	Setting up Visual Studio Code
	Setting up JetBrains CLion
	Setting up Vim
	Conclusion

	Compiling CPython
	Compiling CPython on macOS
	Compiling CPython on Linux
	Installing a Custom Version
	A Quick Primer on Make
	CPython's Make Targets
	Compiling CPython on Windows
	Profile Guided Optimization
	Conclusion

	The Python Language and Grammar
	Why CPython Is Written in C and Not Python
	The Python Language Specification
	Using the Parser Generator
	The Parser Generator
	Regenerating Grammar
	A More Complex Example
	Conclusion

	Configuration and Input
	Configuration State
	Build Configuration
	Building a Module From Input
	Conclusion

	Lexing and Parsing with Syntax Trees
	Concrete Syntax Tree Generation
	The CPython Parser-Tokenizer
	Abstract Syntax Trees
	Important Terms to Remember
	Example: Adding an Almost Equal Comparison Operator
	Conclusion

	The Compiler
	Related Source Files
	Important Terms
	Instantiating a Compiler
	Future Flags and Compiler Flags
	Symbol Tables
	Core Compilation Process
	Assembly
	Creating a Code Object
	Using Instaviz to Show a Code Object
	Example: Implementing the ``Almost-Equal'' Operator
	Conclusion

	The Evaluation Loop
	Stack Frames
	Related Source Files
	Important Terms
	Constructing Thread State
	Constructing Frame Objects
	Frame Execution
	The Value Stack
	Example: Adding an Item to a List
	Conclusion

	Memory Management
	Memory Allocation in C
	Design of the Python Memory Management System
	The CPython Memory Allocator
	The Object and PyMem Memory Allocation Domains
	The Raw Memory Allocation Domain
	Custom Domain Allocators
	Custom Memory Allocation Sanitizers
	The PyArena Memory Arena
	Reference Counting
	Garbage Collection
	Conclusion

	Parallelism and Concurrency
	Models of Parallelism and Concurrency
	The Structure of a Process
	Multi-Process Parallelism
	Multithreading
	Asynchronous Programming
	Generators
	Coroutines
	Asynchronous Generators
	Subinterpreters
	Conclusion

	Objects and Types
	Examples in This Chapter
	Builtin Types
	Object and Variable Object Types
	The type Type
	Bool and Long Integer Type
	Unicode String Type
	Dictionary Type
	Conclusion

	The Standard Library
	Python Modules
	Python and C Modules

	The Test Suite
	Running the Test Suite on Windows
	Running the Test Suite on Linux/macOS
	Test Flags
	Running Specific Tests
	Testing Modules
	Test Utilities
	Conclusion

	Debugging
	Using the Crash Handler
	Compiling Debug Support
	Using Lldb for macOS
	Using Gdb
	Using Visual Studio Debugger
	Using CLion Debugger
	Conclusion

	Benchmarking, Profiling, and Tracing
	Using Timeit for Micro-Benchmarks
	Using the Python Benchmark Suite for Runtime Benchmarks
	Profiling Python Code with cProfile
	Profiling C Code with Dtrace
	Conclusion

	Conclusion
	Writing C Extensions for CPython
	Using This Knowledge to Improve Your Python Applications
	Using This Knowledge to Contribute to the CPython Project
	Keep Learning

	Appendix 1 : Introduction to C for Python Programmers
	C Preprocessor
	Basic C Syntax
	Conclusion

