

CPython Internals: Your Guide to thePython 3 Interpreter
Anthony Shaw

CPython Internals: Your Guide to the Python 3 Interpreter
Anthony Shaw
Copyright © Real Python (realpython.com), 2012–2020
For online information and ordering of this and other books by RealPython, please visit realpython.com. For more information, pleasecontact us at info@realpython.com.
ISBN: 9781775093343 (paperback)
ISBN: 9781775093350 (electronic)
Cover design by Aldren Santos
“Python” and the Python logos are trademarks or registered trade-marks of the Python Software Foundation, used by Real Python withpermission from the Foundation.
Thank you for downloading this ebook. This ebook is licensed foryour personal enjoyment only. This ebook may not be re-sold orgiven away to other people. If you would like to share this bookwith another person, please purchase an additional copy for eachrecipient. If you’re reading this book and did not purchase it,or it was not purchased for your use only, then please return torealpython.com/cpython-internals and purchase your own copy.Thank you for respecting the hard work behind this book.
Updated 2020-05-29We would like to thank our early access readersfor their excellent feedback: JimAnderson,Michal Porteš, DanBader,Florian Dahlitz, Mateusz Stawiarski, Evance Soumaoro, Fletcher Gra-ham, André Roberge, Daniel Hao, Kimia. Thank you all!

https://realpython.com/
https://realpython.com/
https://realpython.com/cpython-internals

This is an Early Access version of “CPythonInternals: Your Guide to the Python 3Interpreter”
With your help we can make this book even better:
At the end of each section of the book you’ll find a “magical” feedbacklink. Clicking the link takes you to an online feedback formwhereyou can share your thoughts with us.
Please feel free to be as terse or detailed as you see fit. All feedbackis stored anonymously, but you can choose to leave your name andcontact information sowe can followupormention youonour “ThankYou” page.
We use a different feedback link for each section, so we’ll always knowwhich part of the book your notes refer to.
Thank you for helping usmake this book an evenmore valuable learn-ing resource for the Python community.
— Anthony Shaw

What Readers Say About CPython Internals: Your Guide tothe Python 3 Interpreter

“A comprehensive walkthrough of the Python internals, a topic whichsurprisingly has almost no good resource, in an easy-to-understandmanner for both beginners as well as advanced Python users.”
— Abhishek Sharma, Data Scientist

“The ‘Parallelism and Concurrency’ chapter is one of my favorites. Ihad been looking to get an in depth understanding around this topicand I found your book extremely helpful.
Of course, after going over that chapter I couldn’t resist the rest. I ameagerly looking forward to have my own printed copy once it’s out!
I had gone through your ‘Guide to CPython Source code’ article previ-ously which got me interested in finding out more about the internals.
There are a ton of books on Python which teach the language, but Ihaven’t really come across anything that would go about explainingthe internals to those curious minded.
And while I teach Python to my daughter currently, I have this bookadded in hermust-read list. She’s currently studying Information Sys-tems at Georgia State University.”
—Milan Patel, Vice President at (a major investment bank)

“What impresses me the most about Anthony’s book is how it puts allthe steps for making changes to the CPython code base in an easy tofollow sequence. It really feels like a ‘missing manual’ of sorts.
Diving into the C underpinnings of Python was a lot of fun and itcleared up some longstanding questions marks for me. I found thechapter about CPython’s memory allocator especially enlightening.
CPython Internals is a great (and unique) resource for anybody look-ing to take their knowledge of Python to a deeper level.”
— Dan Bader, Author of Python Tricks and Editor-in-Chief atReal Python

“This book helped me to better understand how lexing and parsingworks in Python. It’s my recommended source if you want to under-stand it.”
— Florian Dahlitz, Pythonista

Acknowledgements
Thank you to my wife, Verity, for her support and patience. Withouther this wouldn’t be possible.
Thank you to everyone who has supported me on this journey.
– Anthony Shaw

6

About the Author
Anthony Shaw is an avid Pythonista and Fellow of the Python Soft-ware Foundation.
Anthony has been programming since the age of 12 and found a lovefor Python while trapped inside a hotel in Seattle, Washington, 15years later. After ditching the other languages he’d learned, Anthonyhas been researching, writing about, and creating courses for Pythonever since.
Anthony also contributes to small and large Open Source projects, in-cluding CPython, as well as being a member of the Apache SoftwareFoundation.
Anthony’s passion lies in understanding complex systems, then sim-plifying them, and teaching them to people.
About the Review Team
Jim Anderson has been programming for a long time in a varietyof languages. He has worked on embedded systems, built distributedbuild systems, done off-shore vendor management, and sat in many,many meetings.

Contents
Contents 8
Foreword 13
Introduction 15How to Use This Book . 16Bonus Material & Learning Resources 17
Getting the CPython Source Code 21
Setting up Your Development Environment 24IDE or Editor? . 24Setting up Visual Studio 26Setting up Visual Studio Code 28Setting up JetBrains CLion 33Setting up Vim . 37Conclusion . 41
Compiling CPython 43Compiling CPython on macOS 44Compiling CPython on Linux 46Installing a Custom Version 48A Quick Primer on Make 48CPython’s Make Targets 50Compiling CPython on Windows 52Profile Guided Optimization 58Conclusion . 60

8

Contents
The Python Language and Grammar 61Why CPython Is Written in C and Not Python 62The Python Language Specification 64Using the Parser Generator 69The Parser Generator . 69Regenerating Grammar 70A More Complex Example 75Conclusion . 78
Con guration and Input 80Configuration State . 83Build Configuration . 86Building a Module From Input 87Conclusion . 93
Lexing and Parsing with Syntax Trees 94Concrete Syntax Tree Generation 95The CPython Parser-Tokenizer 98Abstract Syntax Trees . 103Important Terms to Remember 113Example: Adding an Almost Equal Comparison Operator . 113Conclusion . 118
The Compiler 119Related Source Files . 121Important Terms . 121Instantiating a Compiler 122Future Flags and Compiler Flags 123Symbol Tables . 125Core Compilation Process 132Assembly . 138Creating a Code Object 143Using Instaviz to Show a Code Object 144Example: Implementing the “Almost-Equal” Operator . . . 147Conclusion . 152

9

Contents
The Evaluation Loop 154Stack Frames . 155Related Source Files . 156Important Terms . 156Constructing Thread State 156Constructing Frame Objects 158Frame Execution . 166The Value Stack . 169Example: Adding an Item to a List 175Conclusion . 180
Memory Management 182Memory Allocation in C 182Design of the Python Memory Management System 186The CPython Memory Allocator 188The Object and PyMem Memory Allocation Domains . . . 198The Raw Memory Allocation Domain 202Custom Domain Allocators 202Custom Memory Allocation Sanitizers 203The PyArena Memory Arena 206Reference Counting . 207Garbage Collection . 214Conclusion . 224
Parallelism and Concurrency 226Models of Parallelism and Concurrency 228The Structure of a Process 228Multi-Process Parallelism 231Multithreading . 255Asynchronous Programming 268Generators . 269Coroutines . 275Asynchronous Generators 281Subinterpreters . 282Conclusion . 286

10

Contents
Objects and Types 288Examples in This Chapter 289Builtin Types . 290Object and Variable Object Types 291The type Type . 292Bool and Long Integer Type 296Unicode String Type . 301Dictionary Type . 311Conclusion . 316
The Standard Library 318Python Modules . 318Python and C Modules 320
The Test Suite 324Running the Test Suite on Windows 324Running the Test Suite on Linux/macOS 325Test Flags . 326Running Specific Tests 326Testing Modules . 328Test Utilities . 329Conclusion . 330
Debugging 331Using the Crash Handler 332Compiling Debug Support 332Using Lldb for macOS . 333Using Gdb . 337Using Visual Studio Debugger 340Using CLion Debugger 342Conclusion . 352

11

Contents
Benchmarking, Pro ling, and Tracing 353Using Timeit for Micro-Benchmarks 354Using the Python Benchmark Suite for Runtime Benchmarks 356Profiling Python Code with cProfile 362Profiling C Code with Dtrace 365Conclusion . 370
Conclusion 371Writing C Extensions for CPython 371Using This Knowledge to Improve Your Python Applications 372Using This Knowledge to Contribute to the CPython Project 373Keep Learning . 376
Appendix 1 : Introduction to C for Python Programmers 378C Preprocessor . 378Basic C Syntax . 381Conclusion . 389

12

Foreword
“A programming language created by a community fos-ters happiness in its users around the world.”
— Guido van Rossum, King’s Day Speech 2016

I love building tools that help us learn, empower us to create, andmove us to share knowledge and ideas with others. I feel humbled,thankful, and proud when I hear how these tools and Python arehelping you to solve real-world problems, like climate change orAlzheimer’s.
Throughmy “four decades” love of programming andproblemsolving,I have spent time learning, writing a lot of code, and sharing my ideaswith others. I’ve seen profound changes in technology as the worldprogressed frommainframes to cell phone service to thewide-rangingwonders of the web and cloud computing. All of these technologies,including Python, have one thing in common.
At onemoment, these successful innovations were nothingmore thanan idea. The creators, like Guido, had to take risks and leaps of faithto move forward. Dedication, learning through trial and error andworking through many failures together built a solid foundation forsuccess and growth.
CPython Internalswill take you on a journey to explore the wildly suc-cessful language, Python. The book serves as a guidebook for learn-ing how CPython is created under the hood. It will give you a glimpseof how the core developers crafted the language. Python’s strengths

13

http://neopythonic.blogspot.com/2016/04/

Contents
include its readability and a welcoming community dedicated to edu-cation. Anthony embraces these strengths when explaining CPython,encouraging you to read the source, and sharing the building blocksof the language with you.
Whydo Iwant to shareAnthony’sCPython Internalswith you? It’s thebook that I wish existed years ago when I started my Python journey.More importantly, I believe we, as members of the Python commu-nity, have a unique opportunity – to put our expertise to work to helpsolve the complex real-world problems facing us. I’m confident afterreading this book your skills will grow and you will be able solve evenmore complex problems that can improve our world.
It’s my hope that Anthony motivates you to learn more about Python,inspire you to build innovative things, and give you confidence toshare your creations with the world.

“Now is better than Never.”
— Tim Peters, The Zen of Python

Let’s follow Tim’s wisdom and get started now.
Warmly,
—CarolWilling, CPythonCoreDeveloper &Member of the CPythonSteering Council

14

Introduction
Are there certain parts of Python that just seem magic? Like how dic-tionaries are so much faster than looping over a list to find an item.How does a generator remember the state of the variables each timeit yields a value, and why do you never have to allocate memory likeother languages? It turns out, CPython, themost popular Python run-time is written in human-readable C and Python code.
CPython abstracts the complexities of the underlying C platformand your Operating System. It makes threading cross-platformand straightfoward. It takes the pain of memory management in Cand makes it simple. CPython gives the developer writing Pythoncode the platform to write scalable and performant applications. Atsome stage in your progression as a Python developer, you need tounderstand how CPython works. These abstractions are not perfect,and they are leaky.
Once you understand how CPython works, you can optimize your ap-plications and fully leverage its power. This book will explain the con-cepts, ideas, and technicalities of CPython.
In this book you’ll cover the major concepts behind the internals ofCPython, and learn how to:
• Read and navigate the source code
• Compile CPython from source code
• Make changes to the Python syntax and compile them into yourversion of CPython

15

How to Use This Book
• Navigate and comprehend the innerworkings of concepts like lists,dictionaries, and generators
• Master CPython’s memory management capabilities
• Scale your Python code with parallelism and concurrency
• Modify the core types with new functionality
• Run the test suite
• Profile and benchmark the performance of your Python code andruntime
• Debug C and Python code like a professional
• Modify or upgrade components of the CPython library to con-tribute them to future versions

Take your time for each chapter and make sure you try out the de-mos and the interactive elements. You can feel a sense of achievementthat you grasp the core concepts of Python that can make you a betterPython programmer.

How to Use This Book
This book is all about learning by doing, so be sure to set up your IDEearly in the book using the instructions, downloading the code, andwriting the examples.
For the best results, we recommend that you avoid copying and past-ing the code examples. The examples in this book took many itera-tions to get right, and they may also contain bugs.
Making mistakes and learning how to fix them is part of the learningprocess. You might discover better ways to implement the examples,try changing them, and seeing what effect it has.
With enough practice, you will master this material—and have funalong the way!
How skilled do I need to be in Python to use this book? This

16

Bonus Material & Learning Resources
book is aimed at Intermediate to Advanced Python developers. Everyeffort has been taken to show code examples, but some intermediatePython techniques will be used throughout the book.
Do I need to know C to use this book? You do not need to beproficient inC to use this book. If you are new toC, check outAppendix1: Introduction to C for Python Programmers at the back of this bookfor a quick introduction.
How long will it take to nish this book? I don’t recommendrushing this book, try reading a chapter at a time, trying the exam-ples after each chapter and exploring the code simultaneously. Onceyou’ve finished the book, it will make a great reference guide for youto come back to in time.
Won’t the content in this book be out of date really quickly?Python has been around for over 20 years. Some parts of the CPythoncode haven’t been touched since they were originally written. Many ofthe principles in this book have been the same for ten or more years.In fact, whilst writing this book, I discovered many lines of code writ-ten by Guido van Rossum (the author of Python) and untouched sinceversion 1.
The skills you’ll learn in this book will help you read and understandcurrent and future versions of CPython. Change is constant, and yourexpertise is something you can develop along the way.
Someof the concepts in this book are brand-new; someare even exper-imental. While writing this book, I came across issues in the sourcecode and bugs in CPython. Then, they got fixed or improved. That’spart of the wonder of CPython as a flourishing open-source project.

Bonus Material & Learning Resources
Online Resources
This book comes with a number of free bonus resources that you canaccess at realpython.com/cpython-internals/resources/. On this web

17

https://github.com/python/cpython/pulls?q=is%3Apr+author%3Atonybaloney+is%3Amerged+
https://realpython.com/cpython-internals/resources/

Bonus Material & Learning Resources
page, you can also find an errata list with corrections maintained bythe Real Python team.
Code Samples
The examples and sample configurations throughout this book willbe marked with a header denoting them as part of the cpython-book-

samples folder.
cpython-book-samples 01 example.py

import this

You can download the code samples at realpython.com/cpython-internals/resources/.
Code Licenses
The example Python scripts associated with this book are licensed un-der a Creative Commons Public Domain (CC0) License. This meansthat you’re welcome to use any portion of the code for any purpose inyour own programs.
CPython is licensed under the PSF 2 license. Snippets and samples ofCPython source code used in this book are done so under the licenseof the PSF 2.0 license terms.

Note
The code found in this book has been testedwith Python 3.9.0b1on Windows 10, macOS 10.15, and Linux.

Formatting Conventions
Code blocks will be used to present example code:
This is Python code:

print("Hello world!")

18

https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/python/cpython/blob/master/LICENSE

Bonus Material & Learning Resources
Operating System agnostic commands follow the Unix-style format:
$ # This is a terminal command:

$ python hello-world.py

The $ is not part of the command.
Windows-specific commands have the Windows command line for-mat:
> python hello-world.py

The > is not part of the command.
Bold text will be used to denote a new or important term.
Notes and Warning boxes appear as follows:

Note
This is a note filled in with placeholder text. The quick brownfox jumps over the lazy dog. The quick brown Python slithersover the lazy hog.
Important
This is a warning also filled in with placeholder text. The quickbrown fox jumps over the lazy dog. The quick brown Pythonslithers over the lazy hog.

Any references to a file within the CPython source code will be shownlike this:
path to file.py

Shortcuts or menu commands will be given in sequence, like this:
File Other Option

Keyboard commands and shortcuts will be given for both macOS and
19

Bonus Material & Learning Resources
Windows:
CTRL + SPACE

Feedback & Errata
We welcome ideas, suggestions, feedback, and the occasional rant.Did you find a topic confusing? Did you find an error in the text orcode? Did we leave out a topic you would love to know more about?
We’re always looking to improve our teaching materials. Whateverthe reason, please send in your feedback at the link below:
realpython.com/cpython-internals/feedback
About Real Python
At Real Python, you’ll learn real-world programming skills from acommunity of professional Pythonistas from all around the world.
The realpython.com website launched in 2012 and currently helpsmore than two million Python developers each month with books,programming tutorials, and other in-depth learning resources.
Here’s where you can find Real Python on the web:
• realpython.com
• @realpython on Twitter
• The Real Python Email Newsletter

Leave feedback on this section »

20

https://realpython.com/cpython-internals/feedback
https://realpython.com
https://realpython.com
https://realpython.com
https://twitter.com/realpython
https://realpython.com/newsletter/
https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoicDskYkEhKGZCZVotP3ZXTjBtYnRsajB0fGR9bGBnUittPlJgOHA-NSIsInQiOiJjaGFwdGVycy8wMC1pbnRyb2R1Y3Rpb24ubWQgKGYwMTRlNTE0N2Q1YWUyYzUpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvZjAxNGU1MTQ3ZDVhZTJjNWYzZjczN2RkMWIxY2I3N2UyMDgxOWM2Yy9jaGFwdGVycy8wMC1pbnRyb2R1Y3Rpb24ubWQifQ==

Getting the CPython SourceCode
When you type python at the console or install a Python distributionfrom python.org, you are running CPython. CPython is one ofmany Python implementations, maintained and written by differentteams of developers. Some alternatives you may have heard are PyPy,Cython, and Jython.
The unique thing about CPython is that it contains both a runtimeand the shared language specification that all other Python implemen-tations use. CPython is the “official” or reference implementation ofPython.
The Python language specification is the document that describes thePython language. For example, it says that assert is a reserved key-word, and that [] is used for indexing, slicing, and creating empty lists.
Think about what you expect to be inside the Python distribution:
• When you type python without a file or module, it gives an interac-tive prompt (REPL).
• You can import built-in modules from the standard library like

json, csv, and collections.
• You can install packages from the internet using pip.
• You can test your applications using the built-in unittest library.

These are all part of the CPython distribution. There’s a lot more than
21

https://www.python.org
https://www.python.org/download/alternatives/
https://pypy.org/
https://cython.org/
https://www.jython.org/

just a compiler.
In this book, we’ll explore the different parts of the CPython distribu-tion:
• The language specification
• The compiler
• The standard library modules
• The core types
• The test suite
What’s in the Source Code?

Note
This book targets version 3.9.0b1 of the CPython source code.

The CPython source distribution comes with a whole range of tools,libraries, and components. We’ll explore those in this book.
To download a copy of the CPython source code, you can use git topull the latest version:
$ git clone https://github.com/python/cpython

$ cd cpython

We are using version 3.9.0b1 throughout this book. Check out thatversion and create a local branch from it:
$ git checkout tags/v3.9.0b1 -b v3.9.0b1

22

https://github.com/python/cpython/tree/v3.9.0b1
https://git-scm.com/

Note
If you don’t have Git available, you can install it from git-scm.com. Alternatively, you can download the CPython sourcein a ZIP file directly from the GitHub website.
If you download the source as a ZIP file, it won’t contain anyhistory, tags or branches.

Inside of the newly downloaded cpython directory, you will find thefollowing subdirectories:

cpython/

Doc

Grammar

Include

Lib

Mac

Misc

Modules

Objects

Parser

PC

PCBuild

Programs

Python

Tools

Source for the documentation

The computer-readable language definition

The C header files

Standard library modules written in Python

macOS support files

Miscellaneous files

Standard library modules written in C

Core types and the object model

The Python parser source code

Windows build suppport files for older versions of Windows

Windows build support files

Source code for the ‘python’ executable and other binaries

The CPython interpreter source code

Standalone tools useful for building or extending CPython

m4 Custom scripts to automate configuration of the makefile

Next, you can set up your environment ready for development.
Leave feedback on this section »

23

https://git-scm.com/
https://git-scm.com/
https://github.com/python/cpython/archive/v3.9.0b1.zip
https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiJklHfV5UWW1TVV5-KGJGWDBoPn5FZlJQZ1JuYGF8e2J1fFliMzY3fCIsInQiOiJjaGFwdGVycy8xMC1zZXR1cC1hbmQtaW5zdGFsbGF0aW9uLm1kIChmMDE0ZTUxNDdkNWFlMmM1KSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iL2YwMTRlNTE0N2Q1YWUyYzVmM2Y3MzdkZDFiMWNiNzdlMjA4MTljNmMvY2hhcHRlcnMvMTAtc2V0dXAtYW5kLWluc3RhbGxhdGlvbi5tZCJ9

Setting up YourDevelopment Environment
Throughout this book, you’ll be working with C and Python code. It’sgoing to be essential to have your development environment config-ured to support both languages.
The CPython source code is about 65% Python (the tests are a signifi-cant part), 24% C, and the remainder a mix of other languages.

IDE or Editor?
If you haven’t yet decided which development environment to use,there is one decision to make first, whether to use an Integrated De-velopment Environment (IDE) or code editor.
• An IDE targets a specific language and toolchain. Most IDEs haveintegrated testing, syntax checking, version control, and compila-tion.
• A code editor enables you to edit code files, regardless of lan-guage. Most code editors are simple text editors with syntax high-lighting.

Because of their full-featured nature, IDEs often consumemore hard-ware resources. So if you have limited RAM (less than 8GB), a codeeditor is recommended. IDEs also take longer to start-up. If you wantto edit a file quickly, a code editor is a better choice.

24

IDE or Editor?
There are 100’s of editors and IDEs available for free or at a cost, hereare some commonly used IDEs and Editors that would suit CPythondevelopment:
Application Style Supports
Microsoft VS Code Editor Windows,macOS andLinuxAtom Editor Windows,macOS andLinuxSublime Text Editor Windows,macOS andLinuxVim Editor Windows,macOS andLinuxEmacs Editor Windows,macOS andLinuxMicrosoft Visual Studio IDE (C, Python,and others) Windows*
PyCharm by JetBrains IDE (Python andothers) Windows,macOS andLinuxCLion by JetBrains IDE (C andothers) Windows,macOS andLinux

* A version of Visual Studio is available for Mac, but does not supportPython Tools for Visual Studio, nor C compilation.
To aid the development of CPython, you will explore the setup stepsfor:
• Microsoft Visual Studio
• Microsoft Visual Studio Code
• JetBrains CLion
• Vim

25

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.vim.org/
https://www.gnu.org/s/emacs/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/clion/
https://visualstudio.microsoft.com/vs/mac/

Setting up Visual Studio
Skip ahead to the section for your chosen application, or read all ofthem if you want to compare.

Setting up Visual Studio
The newest version of Visual Studio, Visual Studio 2019, has builtinsupport for Python and the C source code onWindows. I recommendit for this book. If you already have Visual Studio 2017 installed, thatwould also work.

Note
None of the paid features are required for compiling CPythonor this book. You can use the free, Community edition of VisualStudio.
The Profile-Guided-Optimization build profile requires the Pro-fessional Edition or higher.

Visual Studio is available for free fromMicrosoft’s Visual Studio web-site.
Once you’ve downloaded the Visual Studio installer, you’ll be asked toselect which components you want to install. The bare minimum forthis book is:
• The Python Development workload
• The optional Python native development tools
• Python 3 64-bit (3.7.2) (can be deselected if you already havePython 3.7 installed)

Deselect any other optional features if you want to be more conscien-tious with disk space.
The installer will then download and install all of the required compo-nents. The installation could take an hour, so you may want to readon and come back to this section.

26

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/

Setting up Visual Studio
Once the installer has completed, click the Launch button to start Vi-sual Studio. You will be prompted to sign in. If you have a Microsoftaccount, you can log in, or skip that step.
You will now be prompted to Open a Project. You can cloneCPython’s Git repository directly from Visual Studio by choosing the
Clone or check out code option.
For the Repository Location, enter https://github.com/python/cpython,chose your Local path, and select Clone .
Visual Studio will then download a copy of CPython from GitHub us-ing the version of Git bundled with Visual Studio. This step also savesyou the hassle of having to install Git onWindows. The downloadmaytake 10 minutes.
Once the project has downloaded, you need to point VisualStudio to the PCBuild pcbuild.sln Solution file, by clicking on
Solutions and Projects pcbuild.sln :

Now that you have Visual Studio configured and the source code
27

Setting up Visual Studio Code
downloaded, you can compile CPython on Windows by following thesteps in the next chapter.

Setting up Visual Studio Code
Microsoft Visual Studio Code is an extensible code-editor with an on-line marketplace of plugins.
It makes an excellent choice for working with CPython as it supportsboth C and Python, with an integrated Git interface.
Installing
Visual Studio Code, or sometimes known as “VS Code,” is availablewith a simple installer at code.visualstudio.com.
Out-of-the-box, VS Code will have required code editing capabilitiesbut becomes more powerful once you have installed extensions.
The Extensions panel is available by selecting View Extensions fromthe top menu:

28

https://code.visualstudio.com/

Setting up Visual Studio Code

Inside the extensions panel, you can search for extensions by nameor by their unique identifier, e.g., ‘ms-vscode.cpptools.’ In some cases,there are many plugins with similar names, so to be sure you’re in-stalling the right one, use the unique identifier.
Recommended Extensions for This Book
• C/C++ (ms-vscode.cpptools) Provides support for C/C++, includingIntelliSense, debugging and code highlighting.
• Python (ms-python.python) Provides rich Python support for editing,debugging, and reading Python code.
• Restructured Text (lextudio.restructuredtext) Provides richsupport for reStructuredText, the format used in the CPythondocumentation.
• Task Explorer (spmeesseman.vscode-taskexplorer) Adds a “Task Ex-plorer” panel inside the Explorer tab, making it easier to launchmake tasks.

29

https://github.com/Microsoft/vscode-cpptools
https://github.com/Microsoft/vscode-python
https://github.com/vscode-restructuredtext/vscode-restructuredtext
https://github.com/spmeesseman/vscode-taskexplorer

Setting up Visual Studio Code
Once you have installed these extensions, you will need to reload theeditor.
Because many of the tasks in this book require a command-line, youcan add an integrated Terminal into VS Code by selecting Terminal

New Terminal and a terminal will appear below the code editor:

Using the Advanced Code Navigation(IntelliSense)
With the plugins installed, you can perform some advanced code nav-igation.
For example, if you right-click on a function call in a C file and select
Go to References it will find other references in the codebase to thatfunction:

30

Setting up Visual Studio Code
Go to References is very useful for discovering the proper calling formfor a function.
By clicking or hovering over a C Macro, the editor will expand thatMacro to the compiled code:

To jump to the definition of a function, hover over any call to it andpress cmd + click on macOS and ctrl + click on Linux and Windows.
Con guring the Task and Launch Files
VS Code creates a folder, .vscode in the Workspace Directory. Insidethis folder, you can create:
• tasks.json for shortcuts to commands that execute your project
• launch.json to configure the debugger (see the chapter on Debug-ging)
• other plugin-specific files

Create a tasks.json file inside the .vscode directory. If it doesn’t exist,create it now. This tasks.json will get you started:
cpython-book-samples 11 tasks.json

31

Setting up Visual Studio Code
{

"version": "2.0.0",

"tasks": [

{

"label": "build",

"type": "shell",

"group": {

"kind": "build",

"isDefault": true

},

"windows":{

"command": "PCBuild\build.bat",

"args": ["-p x64 -c Debug"]

},

"linux":{

"command": "make -j2 -s"

},

"osx":{

"command": "make -j2 -s"

}

}

]

}

With the Task Explorer plugin, you will see a list of your configuredtasks inside the vscode group:

In the next chapter, you will learn more about the build process for
32

Setting up JetBrains CLion
compiling CPython.

Setting up JetBrains CLion
JetBrains make an IDE for Python, called PyCharm, as well as an IDEfor C/C++ development called CLion.
CPython has both C and Python code. You cannot install C/C++ sup-port into PyCharm, but CLion comes bundled with Python support.
To setup CPython in CLion, install the following plugins:
• Makefile support

CLion is fully integrated with the CMake system. However, CPythonuses GNU Make. CLion will give an error saying it cannot locate a
CMakeLists.txt file when you open the CPython source code directory.There is a workaround to create a compile_commands.json file from thecompilation steps inside the CPython Makefile.

Important
This step assumes you can compile CPython, please read Com-piling CPython for your Operating System and return to thischapter.

Weneed to create a “CompileDatabase” using a utility called compiledb.At the command line, within the CPython repository:
$ pip install compiledb

$ compiledb make

Then open CLion and open the compile_commands.json file, you will beasked to open file or “Open as Project,” select Open as Project :

33

https://plugins.jetbrains.com/plugin/9333-makefile-support/

Setting up JetBrains CLion

CLion will then open up the CPython source directory as a Project.

34

Setting up JetBrains CLion
Note
For versions of CLion before 2020.1, you need to link thecompile commands and the project together. Go to CLionSettings,
Build, Execution, Deployment Compilation Database and checkthe “Use auto-import” box:

When you open this project in the future, it will have intelligentcode navigation based on the compiled version of CPython.
Within the code editor, the shortcut cmd + click on macOS, and ctrl +

click on Windows and Linux will give in-editor navigation features:

35

Setting up JetBrains CLion

You can use the Makefile plugin to create shortcuts for compilingCPython. Select Run Edit Configurations... to open the “Run/DebugConfigurations” window. Inside this window select + Makefile toadd a Makefile configuration. Set Make all as the name, all as thetarget, and -s j2 as the arguments. Ensure the Working Directory isset to the directory where you have downloaded the source code:

ClickApply to add this configuration. You can repeat this step asmanytimes as you like for any of the CPython make targets. See CPython’sMake Targets for a full reference.
36

Setting up Vim
The Make all build configuration will now be available in the top-rightof the CLion window:

Now that CLion is set up follow the steps for compiling CPython.

Setting up Vim
Vim is a powerful console-based text editor. Use Vimwith your handsresting on the keyboard home keys. The shortcuts and commands arewithin reach for fast development.

Note
On most Linux distributions and within the macOS Terminal,
vi is an alias for vim. I’ll use the vim command, but if you havethe alias, vi will also work.

Out of the box, Vim has only basic functionality, littlemore than a texteditor like Notepad. With some configuration and extensions, Vimcan become powerful for both Python and C editing. Vim’s extensionsare in various locations, like GitHub. To ease the configuration andinstallation of plugins from GitHub, you can install a plugin manager,like Vundle.
To install Vundle, run this command at the terminal:

37

https://github.com/VundleVim/Vundle.vim

Setting up Vim
$ git clone https://github.com/VundleVim/Vundle.vim.git \

~/.vim/bundle/Vundle.vim

Once Vundle is downloaded, you need to configure Vim to load theVundle engine.
We will install two plugins:
• vim-fugitive A status bar for Git with shortcuts for many Git tasks.
• tagbar A pane for making it easier to jump to functions, methods,and classes.

To install these plugins, first change the contents of your vim configu-ration file, (normally HOME .vimrc) to include the following lines:
cpython-book-samples 11 .vimrc

syntax on

set nocompatible " be iMproved, required

filetype off " required

" set the runtime path to include Vundle and initialize

set rtp+=~/.vim/bundle/Vundle.vim

call vundle#begin()

" let Vundle manage Vundle, required

Plugin 'VundleVim/Vundle.vim'

" The following are examples of different formats supported.

" Keep Plugin commands between vundle#begin/end.

" plugin on GitHub repo

Plugin 'tpope/vim-fugitive'

Plugin 'majutsushi/tagbar'

" All of your Plugins must be added before this line

call vundle#end() " required

filetype plugin indent on " required

" Open tagbar automatically in C files, optional

38

https://github.com/tpope/vim-fugitive
http://vimcasts.org/episodes/fugitive-vim---a-complement-to-command-line-git/
https://github.com/majutsushi/tagbar

Setting up Vim
autocmd FileType c call tagbar#autoopen(0)

" Open tagbar automatically in Python files, optional

autocmd FileType python call tagbar#autoopen(0)

" Show status bar, optional

set laststatus=2

" Set status as git status (branch), optional

set statusline=%{FugitiveStatusline()}

To download and install these plugins, run:
$ vim +PluginInstall +qall

You should see output for the download and installation of the pluginsspecified in the configuration file.
When editing or exploring the CPython source code, you will want tojump between methods, functions, and macros quickly. Only usingtext search won’t determine a call to a function, or its definition, ver-sus the implementation. An application called ctags will index sourcefiles across a multitude of languages into a plaintext database.
To index CPython’s headers for all the C files, and Python files in thestandard library, run:
$ make tags

When you open vim now, for example editing the Python ceval.c file:
$ vim Python/ceval.c

You will see the Git status at the bottom and the functions, macros,and variables on the right-hand pane:

39

http://ctags.sourceforge.net/

Setting up Vim

When editing Python files, such as the Lib subprocess.py:
$ vim Lib/subprocess.py

The tagbar will show imports, classes, methods, and functions:

40

Conclusion

Within vim you can switch between tabs as CTRL + W , L to moveto the right-hand pane, using the arrow keys to move up and downbetween the tagged functions. Press enter to skip to any function im-plementation. Tomove back to the editor pane press CTRL + W , H

See Also
Check out vim adventures for a fun way to learn and memorizethe vim commands.

Conclusion
If you’re still undecided about which environment to use, you don’tneed to make a decision right here and now. I used multiple environ-ments while writing this book and working on changes to CPython. Acritical feature for productivity is debugging, so having a reliable de-bugger that you can use to explore the runtime and understand bugswill save a lot of time. Especially if you’re used to relying on print()

41

https://vim-adventures.com/

Conclusion
functions for debugging in Python, that approach doesn’t work in C.You will cover Debugging in full later in this book.
Leave feedback on this section »

42

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiTyNqRzAxTDMyaEEhdU5HTXRzfEhxSX5pSzZWdGoqc3d-TVgrUUFpayIsInQiOiJjaGFwdGVycy8xMS1lbnZpcm9ubWVudC1zZXR1cC5tZCAoMThiYmMyODlkNDkwZGQzMykiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi8xOGJiYzI4OWQ0OTBkZDMzYjlhYmI1NjJhNzAzOGE4N2Y0MjYyOTQwL2NoYXB0ZXJzLzExLWVudmlyb25tZW50LXNldHVwLm1kIn0=

Compiling CPython
Now that you have CPython downloaded a development environmentand configured it, you can compile the CPython source code into anexecutable interpreter.
Unlike Python files, C source code must be recompiled each time itchanges. So you’ll probably want to bookmark this chapter and mem-orize some of the steps because you’ll be repeating them a lot.
In the previous chapter, you saw how to set up your developmentenvironment, with an option to run the “Build” stage, which recom-piles CPython. Before the build steps work, you require a C compiler,and some build tools. The tools used depend on the operating systemyou’re using, so skip ahead to the section for your Operating System.

Note
If you’re concerned that any of these steps will interfere withyour existing CPython installations, don’t worry. The CPythonsource directory behaves like a virtual environment.
For compiling CPython,modifying the source, and the standardlibrary, this all stays within the sandbox of the source directory.
If you want to install your custom version, this step is coveredin this chapter.

43

Compiling CPython on macOS
Compiling CPython on macOS
Compiling CPython on macOS requires some additional applicationsand libraries. You will first need the essential C compiler toolkit.“Command Line Development Tools” is an app that you can updatein macOS through the App Store. You need to perform the initialinstallation on the terminal.

Note
To open up a terminal in macOS, go to Applications Other

Terminal . You will want to save this app to your Dock, so right-click the Icon and select Keep in Dock

Within the terminal, install the C compiler and toolkit by running thefollowing:
$ xcode-select --install

This command will pop up with a prompt to download and install aset of tools, including Git, Make, and the GNU C compiler.
Youwill also need aworking copy of OpenSSL to use for fetching pack-ages from the PyPi.org website. If you later plan on using this buildto install additional packages, SSL validation is required.
The simplest way to install OpenSSL onmacOS is by usingHomebrew.

Note
If you don’t have Homebrew, you can download and installHomebrew directly from GitHub with the following command:
$ /usr/bin/ruby -e "$(curl -fsSL \

https://raw.githubusercontent.com/Homebrew/install/master/install)"

Once you have Homebrew installed, you can install the dependenciesfor CPython with the brew install command:

44

https://www.openssl.org/
https://brew.sh

Compiling CPython on macOS
$ brew install openssl xz zlib gdbm sqlite

Now that you have the dependencies, you can run the configure script.Homebrew has a command brew --prefix [package] that will give thedirectory where the package is installed. You will enable support forSSL by compiling the location that Homebrew uses.
The flag --with-pydebug enables debug hooks. Add this if you intend ondebugging for development or testing purposes. Debugging CPythonis covered extensively in the Debugging chapter.
The configuration stage only needs to be run once, also specifying thelocation of the zlib package:
$ CPPFLAGS="-I$(brew --prefix zlib)/include" \

LDFLAGS="-L$(brew --prefix zlib)/lib" \

./configure --with-openssl=$(brew --prefix openssl) --with-pydebug

Running configurewill generate a Makefile in the root of the repositorythat you can use to automate the build process.
You can now build the CPython binary by running:
$ make -j2 -s

See Also
For more help on the options for make, see section A QuickPrimer on Make.

During the build, you may receive some errors. In the build the sum-mary, make will notify you that not all packages were built. For exam-ple, ossaudiodev, spwd, and _tkinter would fail to build with this set ofinstructions. That’s okay if you aren’t planning on developing againstthose packages. If you are, then check out the official dev guide web-site for more information.
The build will take a few minutes and generate a binary called
python.exe. Every time you make changes to the source code, you will

45

https://devguide.python.org/

Compiling CPython on Linux
need to rerun make with the same flags. The python.exe binary is thedebug binary of CPython. Execute python.exe to see a working REPL:
$./python.exe

Python 3.9.0b1 (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Important
Yes, that’s right, the macOS build has a file extension for .exe.This extension is not because it’s a Windows binary! BecausemacOShas a case-insensitive filesystemandwhenworkingwiththe binary, the developers didn’t want people to accidentally re-fer to the directory Python/ so .exe was appended to avoid am-biguity. If you later run make install or make altinstall, it willrename the file back to python before installing it into your sys-tem.

Compiling CPython on Linux
To compile CPython on Linux, you first need to download and install
make, gcc, configure, and pkgconfig.
For Fedora Core, RHEL, CentOS, or other yum-based systems:
$ sudo yum install yum-utils

For Debian, Ubuntu, or other apt-based systems:
$ sudo apt install build-essential

Then install some additional required packages.
For Fedora Core, RHEL, CentOS or other yum-based systems:

46

Compiling CPython on Linux
$ sudo yum-builddep python3

For Debian, Ubuntu, or other apt-based systems:
$ sudo apt install libssl-dev zlib1g-dev libncurses5-dev \

libncursesw5-dev libreadline-dev libsqlite3-dev libgdbm-dev \

libdb5.3-dev libbz2-dev libexpat1-dev liblzma-dev libffi-dev

Now that you have the dependencies, you can run the configure script,optionally enabling the debug hooks --with-pydebug:
$./configure --with-pydebug

Next, you can build the CPython binary by running the generated
Makefile:
$ make -j2 -s

See Also
For more help on the options for make, see section A QuickPrimer on Make.

Review the output to ensure that there weren’t issues compiling the
_ssl module. If there were, check with your distribution for instruc-tions on installing the headers for OpenSSL.
During the build, you may receive some errors. In the build the sum-mary, makewill notify you that not all packages were built. That’s okayif you aren’t planning on developing against those packages. If youare, then check out the package details for required libraries.
The build will take a few minutes and generate a binary called python.This is the debug binary of CPython. Execute ./python to see a workingREPL:
$./python

Python 3.9.0b1 (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on Linux

47

Installing a Custom Version
Type "help", "copyright", "credits" or "license" for more information.

>>>

Installing a Custom Version
From your source repository, if you’re happy with your changes andwant to use them inside your system, you can install it as a customversion.
For macOS and Linux, you can use the altinstall command, whichwon’t create symlinks for python3 and install a standalone version:
$ make altinstall

For Windows, you have to change the build configuration from Debugto Release, then copy the packaged binaries to a directory on your com-puter which is part of the system path.

A Quick Primer on Make
As a Python developer, you might not have come across make before,or perhaps you have but haven’t spent much time with it. For C, C++,and other compiled languages, the number of commands you needto execute to load, link, and compile your code in the right order canbe exhaustive. When compiling applications from source, you needto link any external libraries in the system. It would be unrealisticto expect the developer to know the locations of all of these librariesand copy+paste them into the command line, so make and configureare commonly used in C/C++ projects to automate the creation of abuild script. When you executed ./configure, autoconf searched yoursystem for the libraries that CPython requires and copied their pathsinto Makefile.
The generated Makefile is similar to a shell script, broken into sectionscalled “targets.”

48

A Quick Primer on Make
Take the docclean target as an example. This target deletes some gen-erated documentation files using the rm command.
docclean:

-rm -rf Doc/build

-rm -rf Doc/tools/sphinx Doc/tools/pygments Doc/tools/docutils

To execute this target, run make docclean. docclean is a simple target asit only runs two commands.
The convention for executing any make target is:
$ make [options] [target]

If you call make without specifying a target. make will run the defaulttarget, which is the first specified in the Makefile. For CPython, this isthe all target which compiles all parts of CPython.
Make has many options, so here are the ones I think you’ll find usefulthroughout this book:
Option Use
-d, --debug[=FLAGS] Print various types of debugging information
-e, --environment-overrides Environment variables override makefiles
-i, --ignore-errors Ignore errors from commands
-j [N], --jobs[=N] Allow N jobs at once (infinite jobs otherwise)
-k, --keep-going Keep going when some targets can’t be made
-l [N], --load-average[=N]
--max-load[=N]

Only start multiple jobs if load < N
-n, --dry-run Print commands instead of running them.
-s, --silent Don’t echo commands.
-S, --stop Turns off -k.

In the next section and throughout the book, I’m going to ask you torun make with the options:
$ make -j2 -s [target]

The -j2 flag allows make to run 2 jobs simultaneously. If you have 4
49

CPython’s Make Targets
or more cores, you can change this to 4 or larger and the compilationwill complete faster. The -s flag stops the Makefile from printing everycommand it runs to the console. If you want to see what is happening,remove the -s flag.

CPython’s Make Targets
For both Linux and macOS, you will find yourself needing to clean upfiles, build, or to refresh configuration.
There are a number of useful make targets built into CPython’s Make-file:
Build Targets
Target Purpose
all (default) Build the compiler, libraries and modules
profile-opt Compile the Python binary with profile guidedoptimization
clinic Run “Argument Clinic” over all source files)
sharedmods Build the shared modules
regen-all Regenerate all generated files

Test Targets
Target Purpose
test Run a basic set of regression tests
testall Run the full test suite twice - once without .pyc files, andonce with
quicktest Run a faster set of regression tests, excluding the teststhat take a long time
testuniversal Run the test suite for both architectures in a Universalbuild on OSX
coverage Compile and run tests with gcov
coverage-lcov Create coverage HTML reports

50

CPython’s Make Targets
Cleaning Targets
The primary clean targets are clean, clobber and distclean. The cleantarget is for generally removing compiled and cached libraries andpyc files. If you find that clean doesn’t do the job, try clobber. Forcompletely cleaning out an environment before distribution, run the
distclean target.
Target Purpose
check-clean-src Check that the source is clean when building out ofsource
cleantest Remove ”test_python_*” directories of previous failedtest jobs
clean Remove pyc files, compiled libraries and profiles
pycremoval Remove pyc files
docclean Remove built documentation in Doc/
profile-removal Remove any optimization profiles
clobber Same as clean, but also removes libraries, tags,configurations and builds
distclean Same as clobber, but also removes anything generatedfrom source, e.g. Makefile

Installation Targets
There are two flavors for the installation targets, the default version,e.g. install and the alt version, e.g. altinstall. If you want to installthe compiled version onto your computer, but don’t want it to becomethe default Python 3 installation, use the alt version of the commands.
After installing using make install, the command python3 will now linkto your compiled binary.Whereas, using make altinstall, only python$(VERSION) will be installedand the existing link for python3 will remain intact.
Target Purpose
install Installs shared libraries, binaries and documentation.Will run commoninstall, bininstall and maninstall

bininstall Installs all the binaries, e.g. python, idle, 2to3
altinstall Installs shared libraries, binaries and documentationwith the version suffix

51

Compiling CPython on Windows
Target Purpose
maninstall Install the manuals
altmaninstall Install the versioned manuals
altbininstall Install the python interpreter, with the version affixed,e.g. python3.9
commoninstall Install shared libraries and modules
libinstall Install shared libraries
sharedinstall Dynamically loaded modules

Miscellaneous Targets
Target Purpose
python-config Generate the python-config script
recheck Rerun configure with the same options as it was run lasttime
autoconf Regenerate configure and pyconfig.h.in
tags Create a tags file for vi
TAGS Create a tags file for emacs
smelly Check that exported symbols start Py or _Py (see PEP7)

Compiling CPython onWindows
There are twoways to compile theCPython binaries and libraries fromWindows.
The first is to compile from the command line, this still requires theMicrosoft Visual C++ compiler, which comes with Visual Studio. Thesecond is to open the PCBuild pcbuild.sln fromVisual Studio and builddirectly.
Installing the Dependencies
For either the command line compile script or the Visual Studio solu-tion, you need to install several external tools, libraries, and C head-ers.
Inside the PCBuild folder there is a .bat file that automates this for you.

52

Compiling CPython on Windows
Open up a command-line prompt inside PCBuild and execute PCBuild

get_externals.bat:
> get_externals.bat

Using py -3.7 (found 3.7 with py.exe)

Fetching external libraries...

Fetching bzip2-1.0.6...

Fetching sqlite-3.28.0.0...

Fetching xz-5.2.2...

Fetching zlib-1.2.11...

Fetching external binaries...

Fetching openssl-bin-1.1.1d...

Fetching tcltk-8.6.9.0...

Finished.

Now you can compile from the command line or Visual Studio.
Compiling From the Command Line
To compile from the command line, you need to select the CPU ar-chitecture you want to compile against. The default is win32, but thechances are you want a 64-bit (amd64) binary.
If you do any debugging, the debug build comes with the ability toattach breakpoints in the source code. To enable the debug build, youadd -c Debug to specify the Debug configuration.
By default, build.bat will fetch external dependencies, but becausewe’ve already done that step, it will print a message skipping down-loads:
> build.bat -p x64 -c Debug

This commandwill produce the Python binary PCbuild amd64 python_-

d.exe. Start that binary directly from the command line:
> amd64\python_d.exe

Python 3.9.0b1 (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)

53

Compiling CPython on Windows
[MSC v.1922 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

You are now inside the REPL of your compiled CPython binary.
To compile a release binary:
> build.bat -p x64 -c Release

This command will produce the binary PCbuild amd64 python.exe.
Note
The suffix _d specifies that CPython was built in the Debug con-figuration.
The released binaries on python.org are compiled in theProfile-Guided-Optimization (PGO) configuration. See theProfile-Guided-Optimization (PGO) section at the end of thischapter for more details on PGO.

Arguments
The following arguments are available in build.bat:
Flag Purpose Expected Value
-p Build platform CPUarchitecture x64, Win32 (default), ARM, ARM64
-c Build configuration Release (default), Debug, PGInstrumentor PGUpdate
-t Build target Build (default), Rebuild, Clean,

CleanAll

Flags
Here are some optional flags you can use for build.bat. For a full list,run build.bat -h.

54

Compiling CPython on Windows
Flag Purpose
-v Verbose mode. Show informational messages during build
-vv Very verbose mode. Show detailed messages during build
-q Quiet mode. Only show warning and errors during build
-e Download and install external dependencies (default)
-E Don’t download and install external dependencies
--pgo Build with profile-guided-optimization
--regen Regenerate all grammar and tokens, used when you updatethe language

Compiling From Visual Studio
Inside the PCBuild folder is a Visual Studio project file, PCBuild

pcbuild.sln, for building and exploring CPython source code.
When the Solution is loaded, it will prompt you to retarget theproject’s inside the Solution to the version of the C/C++ compileryou have installed. Visual Studio will also target the release of theWindows SDK you have installed.
Ensure that you change the Windows SDK version to the newest in-stalled version and the platform toolset to the latest version. If youmissed this window, you can right-click on the Solution in the Solu-tions and Projects window and click Retarget Solution.
Navigate to Build Configuration Manager and ensure the “Active solu-tion configuration” is set to Debug, and the “Active Solution Platform”is set to x64 for 64-bit CPU architecture or win32 for 32-bit.
Next, build CPython by pressing CTRL + SHIFT + B , or choosing
Build Build Solution . If you receive any errors about the WindowsSDK being missing, make sure you set the right targeting settings inthe Retarget Solution window. You should also see Windows Kits in-side your Start Menu, andWindows Software Development Kit insideof that menu.
The build stage could take 10minutes ormore the first time. Once thebuild completes, you may see a few warnings that you can ignore.

55

Compiling CPython on Windows
To start the debug version of CPython, press F5 and CPython willstart in Debug mode straight into the REPL:

You can run the Release build by changing the build configurationfrom Debug to Release on the top menu bar and rerunning Build
Build Solution . You now have both Debug and Release versions ofthe CPython binary within PCBuild amd64.

You can set up Visual Studio to be able to open a REPL witheither the Release or Debug build by choosing Tools Python
Python Environments from the top menu:

In the Python Environments panel, click Add Environment and thentarget the Debug or Release binary. The Debug binary will end in
_d.exe. For example, python_d.exe and pythonw_d.exe. You will mostlikely want to use the debug binary as it comes with Debugging sup-port in Visual Studio and will be useful for this book.
In the Add Environment window, target the python_d.exe file as the in-terpreter inside PCBuild amd64 and the pythonw_d.exe as the windowedinterpreter:

56

Compiling CPython on Windows

Start a REPL session by clicking Open Interactive Window in the PythonEnvironments window and you will see the REPL for the compiledversion of Python:

During this book, there will be REPL sessions with example com-mands. I encourage you to use the Debug binary to run these REPLsessions in case you want to put in any breakpoints within the code.

57

Profile Guided Optimization
To make it easier to navigate the code, in the Solution View, click onthe toggle button next to the Home icon to switch to Folder view:

Pro le Guided Optimization
The macOS, Linux, and Windows build processes have flags for“PGO,” or “Profile Guided Optimization.” PGO is not something cre-ated by the Python team, but a feature of many compilers, includingthose used by CPython.
PGOworks by doing an initial compilation, then profiling the applica-tion by running a series of tests. The profile created is then analyzed,and the compiler will make changes to the binary that would improveperformance.
For CPython, the profiling stage runs python -m test --pgo, which ex-ecutes the regression tests specified in Lib test libregrtest pgo.py.These tests have been specifically selected because they use a com-monly used C extension module or type.

58

Profile Guided Optimization
Note
The PGO process is time-consuming, so throughout this bookI’ve excluded it from the list of recommended steps to keepyour compilation time short. If you want to distribute a customcompiled version of CPython into a production environment,you should run ./configure with the --with-pgo flag in Linuxand macOS, and use the --pgo flag in build.bat on Windows.

Because the optimizations are specific to the platform and architec-ture that the profile was executed on, PGO profiles cannot be sharedbetween operating systems or CPU architectures. The distributionsof CPython on python.org have already been through PGO, so if yourun a benchmark on a vanilla-compiled binary it will be slower thanone downloaded from python.org.
TheWindows,macOS andLinux profile-guided optimizations includethese checks and improvements:
• Function Inlining - If a function is regularly called from anotherfunction, then it will be “inlined” to reduce the stack-size.
• Virtual Call Speculation and Inlining - If a virtual functioncall frequently targets a certain function, PGO can insert a condi-tionally executed direct call to that function. The direct call canthen be inlined.
• Register Allocation Optimization - Based on profile data re-sults, the PGO will optimize register allocation.
• Basic Block Optimization - Basic block optimization allowscommonly executed basic blocks that temporally execute withina given frame to be placed in the same set of pages (locality). Itminimizes the number of pages used, which minimizes memoryoverhead.
• Hot-Spot Optimization - Functions where the program spendsthe most execution time can be optimized for speed.
• FunctionLayoutOptimization - After analyzing the call graph,

59

Conclusion
functions that tend to be along the same execution path aremovedto the same section of the compiled application.

• Conditional Branch Optimization - PGO can look at a deci-sion branch, like an if..else if or switch statement and spot themost commonly used path. For example, if there are 10 cases ina switch statement and one is used 95% of the time, then it willbe moved to the top so that it will be executed immediately in thecode path.
• Dead-Spot Separation - Code that isn’t called during PGO ismoved to a separate section of the application.

Conclusion
In this chapter, you’ve seen how to compile CPython source code intoa working interpreter. You can use this knowledge throughout thebook as you explore and adapt the source code.
Youmight need to repeat the compilation steps tens, or evenhundredsof times when working with CPython. If you can adapt your develop-ment environment to create shortcuts for recompilation, it is better todo that now and save yourself a lot of time.
Leave feedback on this section »

60

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiO21rOyUkd31pYnQyKkZVOy1zYStVSG8lLXJEdEhwNyYqUXNkYXQkJSIsInQiOiJjaGFwdGVycy8xMi1jb21waWxpbmctY3B5dGhvbi5tZCAoMzZmMmJlNmEzOTUyMmMxYykiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi8zNmYyYmU2YTM5NTIyYzFjYTFlYjkyMDU0MzM2NmIzOTZjNjBmYjkxL2NoYXB0ZXJzLzEyLWNvbXBpbGluZy1jcHl0aG9uLm1kIn0=

The Python Language andGrammar
The purpose of a compiler is to convert one language into another.Think of a compiler like a translator. You would hire a translator tolisten to you speaking in English and then speak in Japanese.
To accomplish this, the translator must understand the grammaticalstructures of the source and target languages.
Some compilers will compile into a low-levelmachine code, which canbe executed directly on a system. Other compilers will compile intoan intermediary language, to be executed by a virtual machine.
A consideration when choosing a compiler is the system portabilityrequirements. Java and .NET CLR will compile into an Intermedi-ary Language so that the compiled code is portable across multiplesystems architectures. C, Go, C++, and Pascal will compile into an ex-ecutable binary. This binary is built for the platform on which it wascompiled.
Python applications are typically distributed as source code. The roleof the Python interpreter is to convert the Python source code andexecute it in one step. The CPython runtime does compile your codewhen it runs for the first time. This step is invisible to the regular user.
Python code is not compiled into machine code; it is compiled intoa low-level intermediary language called bytecode. This bytecodeis stored in .pyc files and cached for execution. If you run the same

61

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Common_Language_Runtime

Why CPython Is Written in C and Not Python
Python application twice without changing the source code, it will befaster on the second execution. This is because it loads the compiledbytecode instead of recompiling each time.

Why CPython Is Written in C and NotPython
The C in CPython is a reference to the C programming language, im-plying that this Python distribution is written in the C language.
This statement is mostly true: the compiler in CPython is written inpure C. However, many of the standard library modules are writtenin pure Python or a combination of C and Python.
SoWhy Is the CPython Compiler Written in Cand Not Python?
The answer is located in how compilers work. There are two types ofcompilers:
1. Self-hosted compilers are compilers written in the languagethey compile, such as the Go compiler. This is done by a processknown as bootstrapping.
2. Source-to-source compilers are compilers written in anotherlanguage that already has a compiler.
If you’re writing a new programming language from scratch, youneed an executable application to compile your compiler! You need acompiler to execute anything, so when new languages are developed,they’re often written first in an older, more established language.
There are also tools available that can take a language specificationand create a parser (topics you will cover in this chapter). Popularcompiler-compilers include GNU Bison, Yacc, and ANTLR.

62

https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Source-to-source_compiler

Why CPython Is Written in C and Not Python
See Also
If you want to learn more about parsers, check out the larkproject. Lark is a parser for context-free grammar written inPython.

An excellent example of compiler bootstrapping is the Go program-ming language. The first Go compiler was written in C, then once Gocould be compiled, the compiler was rewritten in Go.
CPython kept its C heritage; many of the standard library modules,like the ssl module or the sockets module, are written in C to accesslow-level operating system APIs. The APIs in theWindows and Linuxkernels for creating network sockets, working with the filesystem, orinteracting with the display are all written in C.It made sense for Python’s extensibility layer to be focused on the Clanguage. Later in this book, you will cover the Python Standard Li-brary and the C modules.
There is a Python compiler written in Python called PyPy. PyPy’s logois an Ouroboros to represent the self-hosting nature of the compiler.
Another example of a cross-compiler for Python is Jython. Jythonis written in Java and compiles from Python source code into Javabytecode. In the same way that CPython makes it easy to import Clibraries and use them from Python, Jython makes it easy to importand reference Java modules and classes.
The first step of creating a compiler is to define the language. Forexample, this is not valid Python:
def my_example() <str> :

{

void* result = ;

}

The compiler needs strict rules of the grammatical structure for thelanguage before it tries to execute it.

63

https://github.com/lark-parser/lark
https://realpython.com/python-sockets/
https://realpython.com/working-with-files-in-python/
https://realpython.com/python-gui-with-wxpython/
https://pypy.org/
https://en.wikipedia.org/wiki/Ouroboros
https://www.jython.org/

The Python Language Specification
Note
For the rest of this tutorial, ./python will refer to the compiledversion of CPython. However, the actual command will dependon your Operating System.
For Windows:
> python.exe

For Linux:
$./python

For macOS:
$./python.exe

The Python Language Speci cation
Contained within the CPython source code is the definition of thePython language. This document is the reference specification usedby all the Python interpreters.
The specification is in both a human-readable and machine-readableformat. Inside the documentation is a detailed explanation of thePython language. What is allowed and how each statement shouldbehave.
Language Documentation
Located inside the Doc reference directory are reStructured-Text explanations of each of the features in the Python lan-guage. These files form the official Python reference guide atdocs.python.org/3/reference.
Inside the directory are the files you need to understand the wholelanguage, structure, and keywords:

64

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
https://docs.python.org/3/reference/

The Python Language Specification

cpython/Doc/reference

compound_stmts.rst

datamodel.rst

executionmodel.rst

expressions.rst

grammar.rst

import.rst

index.rst

introduction.rst

lexical_analysis.rst

simple_stmts.rst

toplevel_components.rst

Compound statements like if, while, for and function definitions

Objects, values and types

The structure of Python programs

The elements of Python expressions

Python’s core grammar (referencing Grammar/Grammar)

The import system

Index for the language reference

Introduction to the reference documentation

Lexical structure like lines, indentation, tokens and keywords

Simple statements like assert, import, return and yield

Description of the ways to execute Python, like scripts and modules

An Example
Inside Doc reference compound_stmts.rst, you can see a simple exampledefining the with statement.
The with statement has many forms, the simplest being the instantia-tion of a context-manager, and a nested block of code:
with x():

...

You can assign the result to a variable using the as keyword:
with x() as y:

...

You can also chain context managers together with a comma:
with x() as y, z() as jk:

...

The documentation contains the human-readable specification of thelanguage, and themachine-readable specification is housed in a singlefile, Grammar Grammar.

65

https://dbader.org/blog/python-context-managers-and-with-statement
https://dbader.org/blog/python-context-managers-and-with-statement

The Python Language Specification
The Grammar File

Important
This section refers to the grammar file used by the “old parser”.At the time of publishing, the “new parser” (the PEG parser) isexperimental and unfinished.
For releases of CPythonup to and including 3.8, the pgen parseris the default. For releases of CPython 3.9 and above, the PEGparser is the default. The old parser can be enabled with -X

oldparser on the command line.
The Tokens file is used by both parsers.

The Grammar file is written in a context-notation called Backus-NaurForm (BNF). BNF is not specific to Python and is often used as thenotation for grammar in many other languages.
The concept of grammatical structure in a programming languageis inspired by Noam Chomsky’s work on Syntactic Structures in the1950s!
Python’s grammar file uses the Extended-BNF (EBNF) specificationwith regular-expression syntax. So, in the grammar file you can use:
• * for repetition
• + for at-least-once repetition
• [] for optional parts
• | for alternatives
• () for grouping

As an example, think about how you would define a cup of coffee:
• It must have a cup
• It must include at least one shot of espresso and can contain mul-tiple

66

https://en.m.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.m.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Syntactic_Structures

The Python Language Specification
• It can have milk, but it is optional
• There are many types of milk you can put into coffee, like full fat,skimmed and soy

Defined in EBNF, a coffee order could look like this:
coffee: 'cup' ('espresso')+ ['water'] [milk]

milk: 'full-fat' | 'skimmed' | 'soy'

In this chapter, grammar is visualized with railroad diagrams. Thisdiagram is the railroad diagram for the coffee statement:

cup espresso

<

water full-fat

skimmed

soy

In a railroad diagram, each possible combination must go in a linefrom left to right. Optional statements can be bypassed, and somestatements can be formed as loops.
If you search for with_stmt in the grammar file, you can see the defini-tion:
with_stmt: 'with' with_item (',' with_item)* ':' suite

with_item: test ['as' expr]

Anything in quotes is a string literal, known as a terminal. Terminalsare how keywords are recognized. The with_stmt is specified as:
1. Starting with the word with

2. Followed by a with_item, which is a test and (optionally), the word
as, and an expression

3. Following one or many with_item, each separated by a comma
67

The Python Language Specification
4. Ending with a :

5. Followed by a suite

There are references to three other definitions in these two lines:
• suite refers to a block of code with one or multiple statements
• test refers to a simple statement that is evaluated
• expr refers to a simple expression

Visualized in a Railroad Diagram, the with statement looks like this:

withwith test as expr , test as expr

<

: suite

As a more complex example, the try statement is defined as:
try_stmt: ('try' ':' suite

((except_clause ':' suite)+

['else' ':' suite]

['finally' ':' suite] |

'finally' ':' suite))

except_clause: 'except' [test ['as' NAME]]

There are two uses of the try statement:
1. try with one or many except clauses, followed by an optional else,then an optional finally
2. try with only a finally statement
Or, visualized in a Railroad Diagram:

trytry : suite except test as NAME : suite

<

else : suite finally : suite

finally : suite

68

Using the Parser Generator
The try statement is a good example of a more complex structure.
If you want to understand the Python language in detail, the grammaris defined in Grammar Grammar.

Using the Parser Generator
The grammar file itself is never used by the Python compiler. Instead,a parser table is created by a parser generator. If youmake changes tothe grammar file, youmust regenerate the parser table and recompileCPython.
Parser Tables are a list of potential parser states. When parse treesbecome complex, they ensure that grammar cannot be ambiguous.

The Parser Generator
A parser generator works by converting the EBNF statements into aNon-deterministic Finite Automaton (NFA). TheNFA states and tran-sitions are resolved and consolidated into a Deterministic Finite Au-tomaton (DFA).
TheDFAs are used by the parser as parsing tables. This techniquewasformed at Stanford University and developed in the 1980s, just beforethe advent of Python. CPython’s parser generator, pgen, is unique tothe CPython project.
The pgen application is was rewritten in Python 3.8 from C to Pythonas Parser pgen pgen.py.
It is executed as :
$./python -m Parser.pgen [grammar] [tokens] [graminit.h] [graminit.c]

It is normally executed from the build scripts, not directly.
The DFA and NFA don’t have a visual output, but there is a branch ofCPython with a directed graph output. decorator grammar is defined

69

http://infolab.stanford.edu/~ullman/dragon/slides1.pdf
https://github.com/tonybaloney/cpython/tree/dot_pgen
https://github.com/tonybaloney/cpython/tree/dot_pgen

Regenerating Grammar
in Grammar/Grammar as:
decorator: '@' dotted_name ['(' [arglist] ')'] NEWLINE

The parser generator creates a complex NFA graph of 11 states. Eachof the states is numerically represented (with hints on their name inthe grammar). The transitions are referred to as ‘arcs.’
The DFA is simpler than the NFA, with the paths reduced:

The NFA and DFA graphs are only useful for debugging the design ofcomplex grammars.
We will use Railroad Diagrams for representing grammar instead ofDFA or NFA graphs.
As an example, this diagram represents the paths that can be takenfor the decorator statement:

@ dotted_name (arglist) NEWLINE

Regenerating Grammar
To see pgen in action, let’s change part of the Python grammar. Search
Grammar Grammar for pass_stmt to see the definition of a pass statement:
pass_stmt: 'pass'

70

Regenerating Grammar

pass

Change that line to accept the terminal (keyword) 'pass' or 'proceed'as keywords by adding a choice, |, and the proceed literal:
pass_stmt: 'pass' | 'proceed'

pass

proceed

Next, rebuild the grammar files by running pgen. CPython comes withscripts to automate pgen.
On macOS and Linux, run the make regen-grammar target:
$ make regen-grammar

ForWindows, bring up a command line from the PCBuild directory andrun build.bat with the --regen flag:
> build.bat --regen

You should see an output showing that the new Include graminit.h and
Python graminit.c files have been regenerated.
With the regenerated parser tables, when you recompile CPython, itwill use the new syntax. Use the same compilation steps you used inthe last chapter for your operating system.
If the code compiled successfully, you can execute your new CPythonbinary and start a REPL.

71

Regenerating Grammar
In the REPL, you can now try defining a function. Instead of using the
pass statement, use the proceed keyword alternative that you compiledinto the Python grammar:
$./python -X oldparser

Python 3.9.0b1 (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> def example():

... proceed

...

>>> example()

Congratulations, you’ve changed the CPython syntax and compiledyour own version of CPython.
Next, we’ll explore tokens and their relationship to grammar.
Tokens
Alongside the grammar file in the Grammar folder is the Grammar Tokensfile, which contains each of the unique types found as leaf nodes in aparse tree. Each token also has a name and a generated unique ID.The names are used to make it simpler to refer to in the tokenizer.

Note
The Grammar Tokens file is a new feature in Python 3.8.

For example, the left parenthesis is called LPAR, and semicolons arecalled SEMI. You’ll see these tokens later in the book:
LPAR '('

RPAR ')'

LSQB '['

RSQB ']'

COLON ':'

72

Regenerating Grammar
COMMA ','

SEMI ';'

As with the Grammar file, if you change the Grammar Tokens file, you needto rerun pgen.
To see tokens in action, you can use the tokenize module in CPython.

Note
There are two tokenizers in the CPython source code. One tok-enizer written in Python demonstrated here, and another writ-ten in C. The tokenizer written in Python is a utility, and thePython interpreter uses the one written in C. They have identi-cal output and behavior. The version written in C is designedfor performance, and the module in Python is designed for de-bugging.

Create a simple Python script called test_tokens.py:
cpython-book-samples 13 test_tokens.py

Demo application

def my_function():

proceed

Input the test_tokens.py file to amodule built into the standard librarycalled tokenize. You will see the list of tokens by line and character.Use the -e flag to output the exact token name:
$./python -m tokenize -e test_tokens.py

0,0-0,0: ENCODING 'utf-8'

1,0-1,14: COMMENT '# Demo application'

1,14-1,15: NL '\n'

2,0-2,3: NAME 'def'

2,4-2,15: NAME 'my_function'

2,15-2,16: LPAR '('

73

Regenerating Grammar
2,16-2,17: RPAR ')'

2,17-2,18: COLON ':'

2,18-2,19: NEWLINE '\n'

3,0-3,3: INDENT ' '

3,3-3,7: NAME 'proceed'

3,7-3,8: NEWLINE '\n'

4,0-4,0: DEDENT ''

4,0-4,0: ENDMARKER ''

In the output, the first column is the range of the line/column coor-dinates, the second column is the name of the token, and the finalcolumn is the value of the token.
In the output, the tokenize module has implied some tokens:
• The ENCODING token for utf-8
• A blank line at the end
• A DEDENT to close the function declaration
• An ENDMARKER to end the file

It is best practice to have a blank line at the end of your Python sourcefiles. If you omit it, CPython adds it for you.
The tokenize module is written in pure Python and is located in Lib

tokenize.py.
To see a verbose readout of the C tokenizer, you can run Python withthe -d flag. Using the test_tokens.py script you created earlier, run itwith the following:
$./python -d test_tokens.py

Token NAME/'def' ... It's a keyword

DFA 'file_input', state 0: Push 'stmt'

DFA 'stmt', state 0: Push 'compound_stmt'

...

Token NEWLINE/'' ... It's a token we know

74

A More Complex Example
DFA 'funcdef', state 5: [switch func_body_suite to suite] Push 'suite'

DFA 'suite', state 0: Shift.

Token INDENT/'' ... It's a token we know

DFA 'suite', state 1: Shift.

Token NAME/'proceed' ... It's a keyword

DFA 'suite', state 3: Push 'stmt'

...

ACCEPT.

In the output, you can see that it highlighted proceed as a keyword. Inthe next chapter, we’ll see how executing the Python binary gets to thetokenizer and what happens from there to execute your code.
Note
To clean up your code, revert the change in Grammar Grammar, re-generate the grammar again, then clean the build, and recom-pile:
For macOS or Linux:
$ git checkout -- Grammar/Grammar

$ make regen-grammar

$ make clobber

$ make -j2 -s

Or for Windows:
> git checkout -- Grammar/Grammar

> build.bat --regen

> build.bat -t CleanAll

> build.bat -t Build

AMore Complex Example
Adding proceed as an alternate keyword for pass is a simple change, theparser generator does the work of matching 'proceed' as a literal forthe pass_stmt token. This new keyword works without any changes to

75

A More Complex Example
the compiler.
In practice, most changes to the grammar are more complicated.
Python 3.8 introduced assignment expressions, with the format :=.An assignment expression both assigns a value to a name and returnsthe value of the named variable.
One of the statements impacted by the addition of assignment expres-sions to the Python language was the if statement.
Prior to 3.8, the if statement was defined as:
• The keyword if followed by a test, then a :

• A nested series of statements (suite)
• Zero-or-more elif statements, which are followed by a test, a : anda suite

• An optional else statement, which is followed by a : and a suite

In the grammar this was represented as:
if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]

Visualized, this looks like:

ifif test : suite elif test : suite

<

else : suite

To support assignment expressions, the change needed to be back-ward compatible. The use of := in an if statement, therefore, had tobe optional.
The test token type used in the if statement is generic between manystatements. For example, the assert statement is followed by a test(and then optionally a second test).

76

A More Complex Example
assert_stmt: 'assert' test [',' test]

An alternate test token type was added in 3.8, so that the grammarcould be prescriptive about which statements should support assign-ment expressions and which should not.
This is called namedexpr_test and is defined in the Grammar as:
namedexpr_test: test [':=' test]

Or, visualized in a Railroad Diagram:

test := test

The new syntax for the if statement was changed to replace test with
namedexpr_test:
if_stmt: 'if' namedexpr_test ':' suite ('elif' namedexpr_test ':' suite)

['else' ':' suite]

Visualized in a Railroad Diagram:

ifif namedexpr_test : suite elif namedexpr_test : suite

<

else : suite

To distinguish between := and the existing COLON (:) and EQUAL (=)token, the following token was then added to Grammar Tokens

COLONEQUAL ':='

This is not the only change required to support assignment expres-sions. The change altered many parts of the CPython compiler, asseen in the Pull Request.
77

https://github.com/python/cpython/pull/10497

Conclusion
See Also
For more information on CPython’s parser generator, the au-thor of pgen has recorded a presentation on the implementationand design: “The soul of the beast” at PyCon Europe 2019.

Conclusion
In this chapter, you’ve been introduced to the Python grammar defini-tions and parser generator. In the next chapter, you’ll expand on thatknowledge to build amore complex syntax feature, an “almost-equals”operator.
In practice, changes to the Python grammar have to be carefully con-sidered and discussed. There are two reasons for the level of scrutiny:
1. Having “too many” language features, or a complex grammarwould change the ethos of Python being a simple and readablelanguage
2. Changes to grammar introduce backward-incompatibilities,which create work for all developers
If a PythonCoreDeveloper proposes a change to the grammar, itmustbe proposed as a Python Enhancement Proposal (PEP). All PEPs arenumbered and indexed on the PEP index. PEP 5 documents the guide-lines for evolving the language and specifies that changesmust be pro-posed in PEPs.
Members can also suggest changes to the language outside of the coredevelopment group through the python-ideas mailing list.
You can see the drafted, rejected, and accepted PEPs for future ver-sions of CPython in the PEP index. Once a PEP has consensus, andthe draft has been finalized, the Steering Council must accept or rejectit. Themandate of the Steering Council, defined in PEP 13, states thatthey shall work to “Maintain the quality and stability of the Pythonlanguage and CPython interpreter.”

78

https://www.youtube.com/watch?v=1_23AVsiQEc
https://www.python.org/dev/peps/pep-0005/
https://www.python.org/community/lists/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0013/

Conclusion
Leave feedback on this section »

79

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiM2xnSSZ5UCVFQGZPTVJJUEZJTjxGcSNuP2ZYVCZPJUxlUzQ_M1NoLSIsInQiOiJjaGFwdGVycy8xMy1jb21waWxlci1hbmQtZ3JhbW1hci5tZCAoZGE3NWQzZWU3YTZmMTFhZSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi9kYTc1ZDNlZTdhNmYxMWFlNTRlYTIwNzIzYzA4YjAzOGE2ZjU1MzhkL2NoYXB0ZXJzLzEzLWNvbXBpbGVyLWFuZC1ncmFtbWFyLm1kIn0=

Con guration and Input
Now that you’ve seen the Python grammar, its time to explore howcode gets input into a state that can be executed.
There are many ways Python code can be run in CPython. Here aresome of the most commonly used:
1. By running python -c and a Python string
2. By running python -m and the name of a module
3. By running python [file] with the path to a file that containsPython code
4. By piping Python code into the python executable over stdin, e.g.,

cat [file] | python

5. By starting a REPL and executing commands one at a time
6. By using the CAPI and using Python as an embedded environment

See Also
Python has so many ways to execute scripts; it can be a littleoverwhelming. Darren Jones has put together a great course atrealpython.com on running Python scripts if you want to learnmore.

80

https://realpython.com/courses/running-python-scripts/
https://realpython.com/courses/running-python-scripts/

To execute any Python code, the interpreter needs:
• A module to execute
• A state to hold information such as variables
• Configuration, such as which options are enabled

With these three components, the interpreter can execute code andprovide an output:

Configuration State Modules

Runtime

Input

Output

81

Note
Similar to the PEP8 style guide for Python code, there is PEP7for the CPython C code.
There are some naming standards for C source code:
• Use a Pyprefix for public functions, never for static functions.The Py_ prefix is reserved for global service routines like Py_-

FatalError. Specific groups of routines (like specific objecttype APIs) use a longer prefix, such as PyString_ for stringfunctions.
• Public functions and variables use MixedCase with under-scores, like this: PyObject_GetAttr(), Py_BuildValue(), PyExc_-

TypeError().
• Occasionally an “internal” function has to be visible to theloader. Use the _Py prefix for this, for example, _PyObject_-

Dump().
• Macros should have a MixedCase prefix and then use uppercase, for example PyString_AS_STRING, Py_PRINT_RAW.

Unlike PEP8, there are few tools for checking the compliance ofPEP7. This task is instead done by the core developers as partof code reviews. As with any human-operated process, it isn’tperfect so you will likely find code that does not adhere to PEP7.
The only bundled tool is a script called smelly.py, which you canexecute using the make smelly target on Linux or macOS, or viathe command line:
$./python Tools/scripts/smelly.py

This will raise an error for any symbols that are in libpython (theshared CPython library) that do not start Py, or _Py.

82

https://realpython.com/courses/writing-beautiful-python-code-pep-8/
https://www.python.org/dev/peps/pep-0007/

Configuration State
Con guration State
Before any Python code is executed, the CPython runtime first estab-lishes the configuration of the runtime and any user-provided options.
The configuration of the runtime is in three data structures, definedin PEP587:
1. PyPreConfig, used for pre-initialization configuration
2. PyConfig, used for the runtime configuration
3. The compiled configuration of the CPython interpreter
Both data structures are defined in Include cpython initconfig.h.
Pre-Initialization Con guration
The pre-initialization configuration is separate to the runtime config-uration as it’s properties relate to the Operating System or user envi-ronment.
The three primary functions of the PyPreConfig are:
• Setting the Python memory allocator
• Configuring the LC_CTYPE locale
• Setting the UTF-8 mode (PEP540)

The PyPreConfig type contains the following fields; all of type int:
Name Purpose
allocator Name of the memory allocator (e.g. PYMEM_ALLOCATOR_MALLOC).Run ./configure --help for more information on the memoryallocator
configure_-

locale

Set the LC_CTYPE locale to the user preferred locale. If equalto 0, set coerce_c_locale and coerce_c_locale_warn to 0
coerce_c_-

locale

If equal to 2, coerce the C locale; if equal to 1, read theLC_CTYPE locale to decide if it should be coerced
coerce_c_-

locale_warn

If non-zero, emit a warning if the C locale is coerced
dev_mode See PyConfig.dev_mode

83

https://www.python.org/dev/peps/pep-0587/
https://github.com/python/cpython/blob/v3.9.0b1/Include/cpython/initconfig.h#L125
https://github.com/python/cpython/blob/v3.9.0b1/Include/cpython/initconfig.h#L416
https://www.python.org/dev/peps/pep-0540/

Configuration State
Name Purpose
isolated Enable isolated mode: sys.path contains neither the script’sdirectory nor the user’s site-packages directory
legacy_-

windows_fs_-

encoding

(_Windows only_) If non-zero, disable UTF-8 Mode, set thePython filesystem encoding tombcs
parse_argv If non-zero, Py_PreInitializeFromArgs() andPy_PreInitializeFromBytesArgs() parse from command linearguments
use_-

environment

See PyConfig.use_environment
utf8_mode If non-zero, enable the UTF-8 mode

Related Source Files
The source files relating to PyPreConfig are:
File Purpose
Python initconfig.c Loads the configuration from the systemenvironment and merges it with any command lineflags
Include cpython

initconfig.h

Defines the initialization configuration datastructure

Runtime Con guration Data Structure
The second stage configuration is the runtime configuration. The run-time configuration data structure in PyConfig includes values, such as:
• Runtime flags for modes like debug and optimized
• The mode of execution, e.g. script file, stdin or a module
• Extended options, specified by -X <option>

• Environment variables for runtime settings
The configuration data is used by the CPython runtime to enable anddisable features.

84

https://github.com/python/cpython/blob/v3.9.0b1/Include/cpython/initconfig.h#L416

Configuration State
Setting Runtime Con guration with theCommand Line
Python also comes with several Command Line Interface Options.
As an example, CPython has a mode called verbose mode. This isprimarily aimed at developers for debugging CPython.
In Python you can enable verbose mode with the -v flag. In verbosemode, Python will print messages to the screen when modules areloaded:
$./python -v -c "print('hello world')"

installing zipimport hook

import zipimport # builtin

installed zipimport hook

...

You will see a hundred lines or more with all the imports of your usersite-packages and anything else in the system environment.
Because runtime configuration can be set in several ways, configura-tion settings have levels of precedence over each other. The order ofprecedence for verbose mode is:
1. The default value for config->verbose is hardcoded to -1 in thesource code.
2. The environment variable PYTHONVERBOSE is used to set the value of

config->verbose.
3. If the environment variable does not exist, then the default valueof -1 will remain.
4. In config_parse_cmdline() within Python initconfig.c, the com-mand line flag is used to set the value, if provided.
5. This value is copied to a global variable, Py_VerboseFlag by _Py_-

GetGlobalVariablesAsDict().
All PyConfig values follow the same sequence and order of precedence:

85

https://docs.python.org/3/using/cmdline.html
https://github.com/python/cpython/blob/v3.9.0b1/Python/initconfig.c#L1875
https://github.com/python/cpython/blob/v3.9.0b1/Python/initconfig.c#L167
https://github.com/python/cpython/blob/v3.9.0b1/Python/initconfig.c#L167

Build Configuration

Environment
Variables

Command Line
Arguments

System
Configuration

PyConfig

PyPreConfig

Runtime

Viewing Runtime Flags
CPython interpreters have a set of runtime flags. These flags are ad-vanced features used for toggling CPython specific behaviors. Withina Python session, you can access the runtime flags, like verbose modeand quiet mode, by using the sys.flags named tuple. All -X flags areavailable inside the sys._xoptions dictionary:
$./python -X dev -q

>>> import sys

>>> sys.flags

sys.flags(debug=0, inspect=0, interactive=0, optimize=0,

dont_write_bytecode=0, no_user_site=0, no_site=0,

ignore_environment=0, verbose=0, bytes_warning=0,

quiet=1, hash_randomization=1, isolated=0,

dev_mode=True, utf8_mode=0)

>>> sys._xoptions

{'dev': True}

Build Con guration
As well as the runtime configuration in Python cpython initconfig.h,there is also a build configuration. This is located inside pyconfig.h in

86

Building a Module From Input
the root folder. This file is created dynamically in the ./configure stepin the build process for macOS/Linux, or by build.bat in Windows.
You can see the build configuration by running:
$./python -m sysconfig

Platform: "macosx-10.15-x86_64"

Python version: "3.9"

Current installation scheme: "posix_prefix"

Paths:

data = "/usr/local"

include = "/Users/anthonyshaw/CLionProjects/cpython/Include"

platinclude = "/Users/anthonyshaw/CLionProjects/cpython"

...

Build configuration properties are compile-time values used to selectadditional modules to be linked into the binary. For example, debug-gers, instrumentation libraries, and memory allocators are all set atcompile time.
With the three configuration stages, the CPython interpreter can nowtake input and process text into executable code.

Building a Module From Input
Before any code can be executed, it must be compiled into a modulefrom an input. As discussed before, inputs can vary in type:
• Local files and packages
• I/O Streams, e.g., stdin or a memory pipe
• Strings

Inputs are read and then passed to the parser, and then the compiler.

87

Building a Module From Input

File Input

IO Stream
Input

String Input

CompilerReader Parser

Due to this flexibility, a large portion of the CPython source code isdedicated to processing inputs to the CPython parser.
Related Source Files
There are two main files dealing with the command line interface:
File Purpose
Lib runpy.py Standard Library module for importing Pythonmodules and executing them
Modules main.c Functions wrapping the execution of external code,e.g. from a file, module, or input stream
Programs python.c The entry point for the python executable forWindows, Linux and macOS. Only serves as awrapper for Modules/main.c.
Python pythonrun.c Functions wrapping the internal C APIs forprocessing inputs from the command line

Reading Files/Input
Once CPython has the runtime configuration and the command linearguments, it can load the code it needs to execute.This task is handled by the pymain_main() function inside Modules

main.c.
Depending on the newly created PyConfig instance, CPython will now

88

https://github.com/python/cpython/blob/v3.9.0b1/Modules/main.c#L651

Building a Module From Input
execute code provided via several options.
Input String From the Command Line
CPython can execute a small Python application at the command linewith the -c option. For example to execute print(2 ** 2):
$./python -c "print(2 ** 2)"

4

The pymain_run_command() function is executed inside Modules main.ctaking the command passed in -c as an argument in the C type wchar_-

t*.
Note
The wchar_t* type is often used as a low-level storage type forUnicode data across CPython as the size of the type can storeUTF8 characters.
When converting the wchar_t* to a Python string, the Objects

unicodeobject.c file has a helper function PyUnicode_-

FromWideChar() that returns Unicode string. The encodingto UTF8 is then done by PyUnicode_AsUTF8String().
Python Unicode Strings are covered in depth in the UnicodeString Type section of the Objects and Types chapter.

Once this is complete, pymain_run_command() will then pass the Pythonbytes object to PyRun_SimpleStringFlags() for execution.
The PyRun_SimpleStringFlags() function is part of Python pythonrun.c.Its purpose is to turn a string into a Python module and thensend it on to be executed. A Python module needs to have anentry-point, (__main__), to be executed as a standalone module.
PyRun_SimpleStringFlags() creates the entry point implicitly.
Once PyRun_SimpleStringFlags() has created a module and a dictionary,

89

https://github.com/python/cpython/blob/v3.9.0b1/Modules/main.c#L226
https://github.com/python/cpython/blob/v3.9.0b1/Objects/unicodeobject.c#L2183
https://github.com/python/cpython/blob/v3.9.0b1/Objects/unicodeobject.c#L2183
https://github.com/python/cpython/blob/v3.9.0b1/Modules/main.c#L226
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463

Building a Module From Input
it calls PyRun_StringFlags(). PyRun_SimpleStringFlags() creates a fakefilename and then calls the Python parser to create an AST from thestring and return a module.

Note
Python modules are the data structure used to hand parsedcode onto the compiler. The C structure for a Python moduleis mod_ty and is defined in Include Python-ast.h.

Input with a Local Module
Another way to execute Python commands is by using the -m optionwith the name of a module. A typical example is python -m unittest torun the unittest module in the standard library.
Being able to execute modules as scripts was initially proposed inPEP 338. The standard for explicit relative imports was defined inPEP366.
The use of the “-m” flag implies that within the module package, youwant to execute whatever is inside the entry point (__main__). It alsoimplies that you want to search sys.path for the named module.
This search mechanism in the import library (importlib) is why youdon’t need to remember where the unittest module is stored on yourfilesystem.
CPython imports a standard library module, runpy and executes itusing PyObject_Call(). The import is done using the C API function
PyImport_ImportModule(), found within the Python import.c file.

90

https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1054
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://www.python.org/dev/peps/pep-0338
https://www.python.org/dev/peps/pep-0366
https://realpython.com/python-main-function/
https://github.com/python/cpython/blob/v3.9.0b1/Objects/call.c#L289
https://github.com/python/cpython/blob/v3.9.0b1/Python/import.c#L1477

Building a Module From Input
Note
In Python, if you had an object and wanted to get an attribute,you could call getattr(). In the C API, this call is PyObject_-

GetAttrString(), which is found in Objects object.c. If youwanted to run a callable, you would give it parentheses, or youcan run the __call__() property on any Python object. The
__call__() method is implemented inside Objects object.c:
>>> my_str = "hello world!"

>>> my_str.upper()

'HELLO WORLD!'

>>> my_str.upper.__call__()

'HELLO WORLD!'

The runpy module is written in pure Python and located in Lib

runpy.py.
Executing python -m <module> is equivalent to running python -m runpy

<module>. The runpy module was created to abstract the process of lo-cating and executing modules on an Operating System.
runpy does a few things to run the target module:
• Calls __import__() for the module name you provided
• Sets __name__ (the module name) to a namespace called __main__

• Executes the module within the __main__ namespace
The runpy module also supports executing directories and zip files.
Input From a Script File or Standard Input
If the first argument to python was a filename, such as python test.py,then CPython will open a filehandle, and pass the handle to PyRun_-

SimpleFileExFlags(), inside Python pythonrun.c.
There are three paths this function can take:

91

https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L786
https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L786
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L382
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L382

Building a Module From Input
1. If the file path is a .pyc file, it will call run_pyc_file().
2. If the file path is a script file (.py) it will run PyRun_FileExFlags().
3. If the file path is stdin because the user ran command | python, thentreat stdin as a filehandle and run PyRun_FileExFlags().
For stdin and basic script files, CPython will pass the filehandle to
PyRun_FileExFlags() located in the Python pythonrun.c file.
Thepurpose of PyRun_FileExFlags() is similar to PyRun_SimpleStringFlags().CPython will load the filehandle into PyParser_ASTFromFileObject().
Identical to PyRun_SimpleStringFlags(), once PyRun_FileExFlags() hascreated a Python module from the file, it sent it to run_mod() to beexecuted.
Input From Compiled Bytecode
If the user runs pythonwith a path to a .pyc file, then instead of loadingthe file as a plain text file and parsing it, CPython will assume that the
.pyc file contains a code object written to disk.
In PyRun_SimpleFileExFlags() there is a clause for the user providing afile path to a .pyc file.
The run_pyc_file() function inside Python pythonrun.c marshals thecode object from the .pyc file by using a filehandle. The code objectdata structure on the disk is the CPython compiler’s way to cachecompiled code so that it doesn’t need to parse it every time the scriptis called.

Note
Marshaling is a term for copying the contents of a file intomemory and converting them to a specific data structure.

Once the code object has beenmarshaled tomemory, it is sent to run_-

eval_code_obj(), which calls Python ceval.c to execute the code.

92

https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1205
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1442
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L463
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1085
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1186
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L382
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1205
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1155
https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1155

Conclusion
Conclusion
In this chapter, you’ve uncovered how Python’s many configura-tion options are loaded and how code is input into the interpreter.Python’s flexibility of input makes it a great tool for a range ofapplications, such as:
• Command-line utilities
• Long-running network applications, like web servers
• Short, composable scripts

Python’s ability to set configuration properties in many ways causescomplexity. For example, if you tested aPython application onPython3.8, and it executed correctly. But in a different environment, it failed,you need to understand what settings were different in that environ-ment. This means you’d need to inspect environment variables, run-time flags, and even the sys config properties. The compile-time prop-erties found in sys config can be different amongst distributions ofPython. For example, Python 3.8 downloaded from python.org formacOS has different default values than the Python 3.8 distributionfound on Homebrew or the one found on the Anaconda distribution.
All of these input methods have an output of a Python module. Inthe next chapter, you will uncover how modules are created from theinput.
Leave feedback on this section »

93

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiKj9vfXN2fTJLIUZzaVMlSiR5bWBKdHYkX3JSUCE3cVBjbU9pO2doUiIsInQiOiJjaGFwdGVycy8yMC1jb25maWd1cmF0aW9uLWFuZC1pbnB1dC5tZCAoN2JjMzc1Y2JmY2U0ZjQ3NCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi83YmMzNzVjYmZjZTRmNDc0ZDAzZWViM2UwMTI4MTkwYTExMmFiMTZhL2NoYXB0ZXJzLzIwLWNvbmZpZ3VyYXRpb24tYW5kLWlucHV0Lm1kIn0=

Lexing and Parsing withSyntax Trees
In the previous chapter, you explored how Python text is read fromvarious sources. It needs to be converted into a structure that the com-piler can use.
This stage is parsing:

File Input

IO Stream
Input

String Input

CompilerReader Parser

In this chapter, you will explore how the text is parsed into logicalstructures that can be compiled.
There are two structures used to parse code inCPython, theConcreteSyntax Tree and the Abstract Syntax Tree.

94

Concrete Syntax Tree Generation

CompilerReader
Text AST

Lexer Parser
CST

The two parts of the parsing process are:
1. Creating a Concrete Syntax Tree using a Parser-Tokenizer(Lexer)
2. Creating an Abstract Syntax Tree from a Concrete Syntax Tree us-ing a Parser
These two steps are common paradigms used in many programminglanguages.

Concrete Syntax Tree Generation
The Concrete Syntax Tree (CST) (or sometimes known as a parse-tree), is an ordered, rooted tree structure that represents code in acontext-free grammar.
The CST is created from a tokenizer and parser. You explored theparser-generator in the chapter on The Python Language andGrammar. The output from the parser-generator is a DeterministicFinite Automaton (DFA) parsing table, describing the possible statesof context-free grammar.

See Also
The original author of Python, Guido van Rossum is currentlyworking on a contextual-grammar as an alternative to LL(1), thegrammar used in CPython. The alternative is called Parser Ex-pression Grammar, or PEG.
This will be available as an experimental feature in Python 3.9

95

Concrete Syntax Tree Generation
In the grammar chapter, you explored some expression types, such as
if_stmt and with_stmt. The Concrete Syntax Tree represents grammarsymbols (like if_stmt) as branches, with tokens and terminals as leafnodes.
For example, the arithmetic expression “a + 1” becomes the CST:

arith_expr

term

factor

power

atom_expr

atom

NAME ‘a’

PLUS

‘+’

term

factor

power

atom_expr

atom

NUMBER 1

An arithmetic expression is represented here with three majorbranches, the left, operator, and right.
The parser iterates through tokens from an input stream andmatchesit against the possible states and tokens in the grammar to build a CST.
In Grammar Grammar, all of the symbols shown in the CST above are de-fined:
arith_expr: term (('+'|'-') term)*

term: factor (('*'|'@'|'/'|'%'|'//') factor)*

factor: ('+'|'-'|'~') factor | power

power: atom_expr ['**' factor]

atom_expr: [AWAIT] atom trailer*

atom: ('(' [yield_expr|testlist_comp] ')' |

'[' [testlist_comp] ']' |

96

Concrete Syntax Tree Generation
'{' [dictorsetmaker] '}' |

NAME | NUMBER | STRING+ | '...' | 'None' | 'True' | 'False')

In Grammar Tokens, the tokens are also defined:
ENDMARKER

NAME

NUMBER

STRING

NEWLINE

INDENT

DEDENT

LPAR '('

RPAR ')'

LSQB '['

RSQB ']'

COLON ':'

COMMA ','

SEMI ';'

PLUS '+'

MINUS '-'

STAR '*'

...

A NAME token represents the name of a variable, function, class, ormod-ule. Python’s syntax doesn’t allow a NAME to be:
• One of the reserved keywords, like await and async

• A numeric or other literal type
For example, if you tried to define a function named 1, Python wouldraise a SyntaxError:
>>> def 1():

File "<stdin>", line 1

def 1():

^

SyntaxError: invalid syntax

97

The CPython Parser-Tokenizer
A NUMBER is a particular token type to represent one of Python’s manynumeric values. Python has a special grammar for numbers, includ-ing:
• Octal values, e.g., 0o20
• Hexadecimal values, e.g., 0x10
• Binary values, e.g., 0b10000
• Complex numbers, e.g., 10j
• Floating-point numbers, e.g., 1.01
• Underscores as commas, e.g., 1_000_000

You can see compiled symbols and tokens using the symbol and tokenmodules in Python:
$./python

>>> import symbol

>>> dir(symbol)

['__builtins__', '__cached__', '__doc__', '__file__', '__loader__',

'__name__', '__package__', '__spec__', '_main', '_name', '_value',

'and_expr', 'and_test', 'annassign', 'arglist', 'argument',

'arith_expr', 'assert_stmt', 'async_funcdef', 'async_stmt',

'atom', 'atom_expr',

...

>>> import token

>>> dir(token)

['AMPER', 'AMPEREQUAL', 'AT', 'ATEQUAL', 'CIRCUMFLEX',

'CIRCUMFLEXEQUAL', 'COLON', 'COMMA', 'COMMENT', 'DEDENT', 'DOT',

'DOUBLESLASH', 'DOUBLESLASHEQUAL', 'DOUBLESTAR', 'DOUBLESTAREQUAL',

...

The CPython Parser-Tokenizer
Programming languages have different implementations for theLexer. Some use a Lexer-Generator, as a complement to theParser-Generator.

98

The CPython Parser-Tokenizer
CPython has a Parser/Tokenizer module, written in C.
Related Source Files
The source files relating to the parser-tokenizer are:
File Purpose
Python pythonrun.c Executes the parser and the compiler from an input
Parser parsetok.c The Parser and Tokenizer implementation
Parser tokenizer.c Tokenizer implementation
Parser tokenizer.h Header file for the Tokenizer Implementation,describes data models like token state
Include token.h Declaration of token types, generated by Tools

scripts generate_token.py

Include node.h Parse tree node interface and macros for thetokenizer

Inputting Data Into the Parser From a File
The entry point for the parser-tokenizer, PyParser_ASTFromFileObject(),takes a file handle, compiler flags and a PyArena instance and convertsthe file object into a module. There are two steps:
1. Convert to a CST using PyParser_ParseFileObject()

2. Convert into a AST/module, using the AST function PyAST_-

FromNodeObject()

The PyParser_ParseFileObject() function has two important tasks:
1. Instantiate a tokenizer state tok_state using PyTokenizer_FromFile()

2. Convert the tokens into a CST (a list of node) using parsetok()

Parser-Tokenizer Flow
The parser-tokenizer takes text input and executes the tokenizer andparser in a loop until the cursor is at the end of the text (or a syntaxerror occurred).

99

https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1442
https://github.com/python/cpython/blob/v3.9.0b1/Parser/parsetok.c#L165
https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L741
https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L741
https://github.com/python/cpython/blob/v3.9.0b1/Parser/parsetok.c#L165
https://github.com/python/cpython/blob/v3.9.0b1/Parser/tokenizer.c#L779
https://github.com/python/cpython/blob/v3.9.0b1/Parser/parsetok.c#L216

The CPython Parser-Tokenizer
Before execution, the parser-tokenizer establishes tok_state, a tempo-rary data structure to store all state used by the tokenizer. The tok-enizer state contains information such as the current cursor positionand line.
The parser-tokenizer calls tok_get() to get the next token. The parser-tokenizer passes the resulting token ID to the parser, which uses theparser-generator DFA to create a node on the Concrete Syntax Tree.
tok_get() is one of the most complex functions in the whole CPythoncodebase. It has over 640 lines and includes decades of heritage withedge cases, new language features, and syntax.
The process of calling the tokenizer and parser in a loop can be shownas:

Init Tokenizer

State

Get next token

P
a
r
s
e
r
-
T
o
k
e
n
i
z
e
r

T
o
k
e
n
i
z
e
r

Parse Token

Add node

to CST

P
a
r
s
e
r

Text

CST

ID

Node

The CST root node returned by PyParser_ParseFileObject() is going to beessential for the next stage, converting a CST into an Abstract-Syntax-Tree (AST). The node type is defined in Include node.h as:
typedef struct _node {

short n_type;

char *n_str;

100

https://github.com/python/cpython/blob/v3.9.0b1/Parser/tokenizer.c#L1178
https://github.com/python/cpython/blob/v3.9.0b1/Parser/parsetok.c#L165

The CPython Parser-Tokenizer
int n_lineno;

int n_col_offset;

int n_nchildren;

struct _node *n_child;

int n_end_lineno;

int n_end_col_offset;

} node;

Since the CST is a tree of syntax, token IDs, and symbols, it would bedifficult for the compiler tomake quick decisions based on the Pythonlanguage.
Before you jump into the AST, there is a way to access the output fromthe parser stage. CPython has a standard librarymodule parser, whichexposes the C functions with a Python API.
The output will be in the numeric form, using the token and symbolnumbers generated by the make regen-grammar stage, stored in Include

token.h:
>>> from pprint import pprint

>>> import parser

>>> st = parser.expr('a + 1')

>>> pprint(parser.st2list(st))

[258,

[332,

[306,

[310,

[311,

[312,

[313,

[316,

[317,

[318,

[319,

[320,

[321, [322, [323, [324, [325, [1, 'a']]]]]],

[14, '+'],

[321, [322, [323, [324, [325, [2, '1']]]]]]]]]]]]]]]]],

101

The CPython Parser-Tokenizer
[4, ''],

[0, '']]

To make it easier to understand, you can take all the numbers in the
symbol and token modules, put them into a dictionary and recursivelyreplace the values in the output of parser.st2list() with the names ofthe tokens:
cpython-book-samples 21 lex.py

import symbol

import token

import parser

def lex(expression):

symbols = {v: k for k, v in symbol.__dict__.items()

if isinstance(v, int)}

tokens = {v: k for k, v in token.__dict__.items()

if isinstance(v, int)}

lexicon = {**symbols, **tokens}

st = parser.expr(expression)

st_list = parser.st2list(st)

def replace(l: list):

r = []

for i in l:

if isinstance(i, list):

r.append(replace(i))

else:

if i in lexicon:

r.append(lexicon[i])

else:

r.append(i)

return r

return replace(st_list)

You can run lex() with a simple expression, like a + 1 to see how thisis represented as a parser-tree:

102

Abstract Syntax Trees
>>> from pprint import pprint

>>> pprint(lex('a + 1'))

['eval_input',

['testlist',

['test',

['or_test',

['and_test',

['not_test',

['comparison',

['expr',

['xor_expr',

['and_expr',

['shift_expr',

['arith_expr',

['term',

['factor', ['power', ['atom_expr', ['atom',

['NAME', 'a']]]]]],

['PLUS', '+'],

['term',

['factor',

['power', ['atom_expr', ['atom', ['NUMBER',

'1']]]]]]]]]]]]]]]]],

['NEWLINE', ''],

['ENDMARKER', '']]

In the output, you can see the symbols in lowercase, such as 'arith_-

expr' and the tokens in uppercase, such as 'NUMBER'.

Abstract Syntax Trees
The next stage in the CPython interpreter is to convert the CST gener-ated by the parser into something more logical that can be executed.
Concrete Syntax Trees are a very literal representation of the text inthe code file. At this stage, it could be a number of languages. Python’sbasic grammatical structure has been interpreted, but you could notuse the CST to establish functions, scopes, loops or any of the core

103

Abstract Syntax Trees
Python language features.
Before code is compiled, the CST needs to be converted into a higher-level structure that represents actual Python constructs. The struc-ture is a representation of the CST, called an Abstract Syntax Tree(AST).
As an example, a binary operation in the AST is called a BinOp and isdefined as a type of expression. It has three components:
• left - The left-hand part of the operation
• op - The operator, e.g., +, -, *
• right - The right-hand part of the expression

The AST for a + 1 can be represented in an AST as:

Expr

BinOp

Name Add Num

Left Op Right

ASTs are produced by the CPython parser process, but you can alsogenerate them fromPython code using the astmodule in the StandardLibrary.
Before diving into the implementation of the AST, it would be usefulto understand what an AST looks like for a simple piece of Pythoncode.
Related Source Files
The source files relating to Abstract Syntax Trees are:

104

Abstract Syntax Trees
File Purpose
Include Python-ast.h Declaration of AST Node types, generated by Parser

asdl_c.py

Parser Python.asdl A list of AST Node Types and Properties in adomain-specific-language, ASDL 5
Python ast.c The AST implementation

Using Instaviz to View Abstract Syntax Trees
Instaviz is a Python package written for this book. It displays ASTsand compiled code in a web interface.
To install instaviz, install the instaviz package from pip:
$ pip install instaviz

Then, open up a REPL by running python at the command line withno arguments. The function instaviz.show() takes a single argumentof type code object.You will cover code objects in the next chapter. For this example,define a function and use the name of the function as the argumentvalue:
$ python

>>> import instaviz

>>> def example():

a = 1

b = a + 1

return b

>>> instaviz.show(example)

You’ll see a notification on the command-line that a web server hasstarted on port 8080. If you were using that port for something else,you could change it by calling instaviz.show(example, port=9090) or an-other port number.
In the web browser, you can see the detailed breakdown of your func-tion:

105

Abstract Syntax Trees

The bottom left graph is the function you declared in REPL, repre-sented as an Abstract Syntax Tree. Each node in the tree is an ASTtype. They are found in the ast module, and all inherit from _ast.AST.
Some of the nodes have properties that link them to child nodes, un-like the CST, which has a generic child node property.
For example, if you click on the Assign node in the center, this linksto the line b = a + 1:

106

Abstract Syntax Trees

The assign node has two properties:
1. targets is a list of names to assign. It is a list because you can assignto multiple variables with a single expression using unpacking
2. value is the value to assign, which in this case is a BinOp statement,

a + 1.
If you click on the BinOp statement, it shows the properties of rele-vance:
• left: the node to the left of the operator
• op: the operator, in this case, an Add node (+) for addition
• right: the node to the right of the operator

107

Abstract Syntax Trees

AST Compilation
Compiling an AST in C is not a straightforward task. The Python ast.cmodule has over 5000 lines of code.
There are a few entry points, forming part of the AST’s public API. TheAST API takes a node tree (CST), a filename, the compiler flags, and amemory storage area. The result type is mod_ty representing a Pythonmodule, defined in Include Python-ast.h.
mod_ty is a container structure for one of the five module types inPython:
1. Module

2. Interactive

3. Expression

4. FunctionType

5. Suite

The module types are all listed in Parser Python.asdl. You will see themodule types, statement types, expression types, operators, and com-prehensions all defined in this file. The names of the types in Parser

Python.asdl relate to the classes generated by the AST and the same
108

https://github.com/python/cpython/blob/v3.9.0b1/Include/Python#L14

Abstract Syntax Trees
classes named in the ast standard module library:
-- ASDL's 5 builtin types are:

-- identifier, int, string, object, constant

module Python

{

mod = Module(stmt* body, type_ignore *type_ignores)

| Interactive(stmt* body)

| Expression(expr body)

| FunctionType(expr* argtypes, expr returns)

The ASTmodule imports Include Python-ast.h, a file created automat-ically from Parser Python.asdl when regenerating grammar. The pa-rameters and names in Include Python-ast.h correlate directly to thosespecified in Parser Python.asdl.
The mod_ty type is generated into Include Python-ast.h from the Moduledefinition in Parser Python.asdl:
enum _mod_kind {Module_kind=1, Interactive_kind=2, Expression_kind=3,

FunctionType_kind=4, Suite_kind=5};

struct _mod {

enum _mod_kind kind;

union {

struct {

asdl_seq *body;

asdl_seq *type_ignores;

} Module;

struct {

asdl_seq *body;

} Interactive;

struct {

expr_ty body;

} Expression;

109

Abstract Syntax Trees
struct {

asdl_seq *argtypes;

expr_ty returns;

} FunctionType;

struct {

asdl_seq *body;

} Suite;

} v;

};

The C header file and structures are there so that the Python ast.c pro-gram can quickly generate the structures with pointers to the relevantdata.
The AST entry-point, PyAST_FromNodeObject(), is essentially a switchstatement around the result from TYPE(n). TYPE() is a macro used bythe AST to determine what type a node in the concrete syntax tree is.The result of TYPE() will be either a symbol or token type. By startingat the root node, it can only be one of the module types defined as
Module, Interactive, Expression, FunctionType.
• For file_input, the type should be a Module

• For eval_input, such as from a REPL, the type should be an
Expression

For each type of statement, there is a corresponding ast_for_xxx Cfunction in Python ast.c, which will look at the CST nodes to completethe properties for that statement.
One of the simpler examples is the power expression, i.e., 2**4 is 2 tothe power of 4.
The ast_for_power() function will return a BinOp (binary operation)with the operator as Pow (power), the left hand of e (2), and the righthand of f (4):

110

https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L741
https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L2694

Abstract Syntax Trees
Python ast.c line 2694
static expr_ty

ast_for_power(struct compiling *c, const node *n)

{

/* power: atom trailer* ('**' factor)*

*/

expr_ty e;

REQ(n, power);

e = ast_for_atom_expr(c, CHILD(n, 0));

if (!e)

return NULL;

if (NCH(n) == 1)

return e;

if (TYPE(CHILD(n, NCH(n) - 1)) == factor) {

expr_ty f = ast_for_expr(c, CHILD(n, NCH(n) - 1));

if (!f)

return NULL;

e = BinOp(e, Pow, f, LINENO(n), n->n_col_offset,

n->n_end_lineno, n->n_end_col_offset, c->c_arena);

}

return e;

}

You can see the result of this if you send a short function to the instavizmodule:
>>> def foo():

2**4

>>> import instaviz

>>> instaviz.show(foo)

111

Abstract Syntax Trees

In the UI, you can also see the corresponding properties:

In summary, each statement type and expression has a corresponding
ast_for_*() function to create it. The arguments are defined in Parser

Python.asdl and exposed via the ast module in the standard library.If an expression or statement has children, then it will call the corre-sponding ast_for_* child function in a depth-first traversal.

112

Important Terms to Remember
Important Terms to Remember
• Concrete Syntax Tree CST A non-contextual tree representa-tion of tokens and symbols
• Parse-Tree Another term for Concrete Syntax Tree
• Abstract Syntax Tree A contextual tree representation ofPython’s grammar and statements
• Token A type of symbol, e.g., “+”
• Tokenizer The process of converting text into tokens
• ParserA generic term of the process in converting text into a CSTor AST

Example: Adding an Almost EqualComparison Operator
To bring all this together, you can add a new piece of syntax to thePython language and recompile CPython to understand it.
A comparison expression will compare the values of two or morevalues. For example,
>>> a = 1

>>> b = 2

>>> a == b

False

The operator used in the comparison expression is called the com-parison operator. Here are some comparison operators you mayrecognize:
• < Less than
• > Greater than
• == Equal to
• != Not equal to

113

Example: Adding an Almost Equal Comparison Operator
See Also
Rich comparisons in the data model were proposed for Python2.1 in PEP207. The PEP contains context, history, and justifica-tion for custom Python types to implement comparison meth-ods.

We will now add another comparison operator, called almost equal,represented by ~= with the following behaviors:
• If you compare a float and an integer, it will cast the float into aninteger and compare the result.
• If you compare two integers, it will use the normal equality opera-tors.

Once implemented, this new operator should return the following ina REPL:
>>> 1 ~= 1

True

>>> 1 ~= 1.0

True

>>> 1 ~= 1.01

True

>>> 1 ~= 1.9

False

To add the new operator, you first need to update the CPython gram-mar.
In Grammar Grammar, the comparison operators are defined as a symbol,
comp_op:
comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not'

'in'|'is'|'is' 'not'

Change this line to include the ~= comparison operator in between
'!-'| and |'in':

114

https://www.python.org/dev/peps/pep-0207/

Example: Adding an Almost Equal Comparison Operator
comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'~='|'in'|'not'

'in'|'is'|'is' 'not'

To update the grammar and tokens in C, you now have to regeneratethe headers:
On macOS/Linux:
$ make regen-all

On Windows, within the PCBuild directory:
> build.bat --regen

The tokenizer will be automatically updated by these steps. For exam-ple, open the Parser/token.c source and see how a case in the PyToken_-

TwoChars() function has changed:
case '~':

switch (c2) {

case '=': return ALMOSTEQUAL;

}

break;

}

If you recompile CPython at this stage and open a REPL, you can seethat the tokenizer can successfully recognise the token, but the ASTdoes not know how to handle it:
$./python

>>> 1 ~= 2

SystemError: invalid comp_op: ~=

This exception is raised by ast_for_comp_op() inside Python ast.c be-cause it does not recognise ALMOSTEQUAL as a valid operator for a com-parison statement.
Compare is an expression type defined in Parser Python.asdl, it has prop-erties for the left expression, a list of operators, ops, and a list of expres-sions to compare to, comparators:

115

https://github.com/python/cpython/blob/v3.9.0b1/Parser/token.c#L109
https://github.com/python/cpython/blob/v3.9.0b1/Parser/token.c#L109
https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L1199

Example: Adding an Almost Equal Comparison Operator
| Compare(expr left, cmpop* ops, expr* comparators)

Inside the Compare definition is a reference to the cmpop enumeration:
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn

This is a list of possible AST leaf nodes that can act as comparisonoperators. Ours is missing and needs to be added. Update the list ofoptions to include a new type, AlE (Almost Equal):
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn | AlE

Next, regenerate the AST again to update the AST C header files:
$ make regen-ast

This will have updated the comparison operator, _cmpop, enum inside
Include/Python-ast.h to include the AlE option:
typedef enum _cmpop { Eq=1, NotEq=2, Lt=3, LtE=4, Gt=5, GtE=6, Is=7,

IsNot=8, In=9, NotIn=10, AlE=11 } cmpop_ty;

The AST has no knowledge that the ALMOSTEQUAL token is equivalent tothe AlE comparison operator. So you need to update the C code for theAST.
Navigate to ast_for_comp_op() in Python ast.c. Find the switch state-ment for the operator tokens. This returns one of the _cmpop enumer-ation values.
Add two lines, to catch the ALMOSTEQUAL token and return the AlE com-parison operator:
Python ast.c line 1199
static cmpop_ty

ast_for_comp_op(struct compiling *c, const node *n)

{

/* comp_op: '<'|'>'|'=='|'>='|'<='|'!='|'in'|'not' 'in'|'is'

116

https://github.com/python/cpython/blob/v3.9.0b1/Python/ast.c#L1199

Example: Adding an Almost Equal Comparison Operator
|'is' 'not'

*/

REQ(n, comp_op);

if (NCH(n) == 1) {

n = CHILD(n, 0);

switch (TYPE(n)) {

case LESS:

return Lt;

case GREATER:

return Gt;

case ALMOSTEQUAL: // Add this line to catch the token

return AlE; // And this one to return the AST node

Now recompile CPython and open up a REPL to test the command:
>>> a = 1

>>> b = 1.0

>>> a ~= b

True

At this stage, the tokenizer and the AST can parse this code, but thecompiler won’t know how to handle the operator. To test the AST rep-resentation, use the ast.parse() function and explore the first operatorin the expression:
>>> import ast

>>> m = ast.parse('1 ~= 2')

>>> m.body[0].value.ops[0]

<_ast.AlE object at 0x10a8d7ee0>

This is an instance of our AlE comparison operator type, so the ASThas correctly parsed the code.
In the next chapter, you will learn about how the CPython compilerworks, and revisit the almost-equal operator to build out its behavior.

117

Conclusion
Conclusion
CPython’s versatility and low-level execution API make it the idealcandidate for an embedded scripting engine. You will see CPythonused inmanyUI applications, such as GameDesign, 3D graphics, andsystem automation.
The interpreter process is flexible and efficient, and now you have anunderstanding of how it works you’re ready to understand the com-piler.
Leave feedback on this section »

118

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiZDZVU2p5eXNWQjVqZzsjMG1AcUtnVj9gSjRuODwxYHhGcn1eYWxrPSIsInQiOiJjaGFwdGVycy8yMS1sZXhpbmctYW5kLXBhcnNpbmcubWQgKDE4YmJjMjg5ZDQ5MGRkMzMpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvMThiYmMyODlkNDkwZGQzM2I5YWJiNTYyYTcwMzhhODdmNDI2Mjk0MC9jaGFwdGVycy8yMS1sZXhpbmctYW5kLXBhcnNpbmcubWQifQ==

The Compiler
After completing the task of parsing, the interpreter has an AST withthe operations, functions, classes, and namespaces of the Python code.The job of the compiler is to turn the AST into instructions the CPUcould understand.

File Input

IO Stream
Input

String Input

CompilerReader Parser

This compilation task is split into two components:
1. Compiler - Traverse the AST and create a control- ow-graph(CFG), which represents the logical sequence for execution
2. Assembler - Convert the nodes in the CFG to sequential, exe-cutable statements, known as bytecode

119

ExecutionParser
AST Bytecode

Compiler Assembler
CFG

Important
Throughout this chapter, it is important to remember that theunit of compilation for CPython is a module. The compilationsteps and process indicated in this chapter will happen once foreach module in your project.

In this chapter, you will focus on the compilation of an AST moduleinto a code object:

PyRun_FileExFlags()

PyParser_ASTFromFileObject()

File Pointer

PyAST_CompileObject()

run_eval_code()

AST Module

Code Object

Return Value

The PyAST_CompileObject() function is the main entry point to theCPython compiler. It takes a Python AST module as its primaryargument, along with the name of the file, the globals, locals, and the
PyArena all created earlier in the interpreter process.

120

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L318

Important Terms
Note
We’re starting to get into the guts of the CPython compiler now,with decades of development and Computer Science theory be-hind it. Don’t be put off by the size of it. Once you break downthe compiler into logical steps, it is easier to understand.

Related Source Files
The source files relating to the compiler are:
File Purpose
Python pythonrun.c Executes the parser and the compiler froman input
Python compile.c The compiler implementation
Include compile.h The compiler API and type definitions

Important Terms
This chapter refers to many terms that may be new to you:
• The container type is the compiler state, which contains onesymbol table
• The Symbol Table contains many variable names and can op-tionally contain child symbol tables
• The compiler type contains many compiler units
• Each compiler unit can contain many names, variable names, con-stants and cell variables
• A compiler unit contains many basic frame blocks
• Basic frame blocks many bytecode instructions

The compiler state container and its components can be shown as:

121

Instantiating a Compiler

Symbol Table

Compiler State

Compiler Unit

Constant

Name

Variable Name

CellVar

Symtable Entry

Symtable Entry

Name

Variable Name

Basic Frame Block

Instruction

Instantiating a Compiler
Before the compiler starts, a global compiler state is created. The com-piler state, (compiler), struct contains properties used by the compilerto such as compiler flags, the stack, and the PyArena. It also containslinks to other data structures, like the symbol table.
Field Type Purpose
c_filename PyObject * (str) A string of the filename beingcompiled
c_st symtable * The compiler’s symbol table
c_future PyFutureFeatures * A pointer to module’s __future__

c_flags PyCompilerFlags * Inherited compiler flags (Seecompiler flags)
c_optimize int Optimization level
c_interactive int 1 if in interactive mode
c_nestlevel int Current nesting level
c_do_not_emit_-

bytecode

int The compiler won’t emit anybytecode if this value is differentfrom zero. This setting can be usedto temporarily visit nodes withoutemitting bytecode to check onlyerrors
c_const_cache PyObject * (dict) Python dict holding all constants,including names tuple

122

Future Flags and Compiler Flags
Field Type Purpose
u compiler_unit* Compiler state for current block
c_stack PyObject * (list) Python list holding compiler_unitptrs
c_arena PyArena * A pointer to the memory allocationarena

Inside PyAST_CompileObject(), the compiler state is instantiated:
• If the module does not have a docstring (__doc__) property, anempty one is created here, as with the __annotations__ property.
• PyAST_CompileObject() sets the filename in the compiler state to thevalue passed. This function is later used for stack traces and ex-ception handling.
• Thememory allocation arena for the compiler is set to the one usedby the interpreter. See the Custom Memory Allocators section inthe Memory Management chapter for more information on mem-ory allocators.
• Any future flags are configured before the code is compiled.

Future Flags and Compiler Flags
Before the compiler runs, there are two types of flags to toggle thefeatures inside the compiler. These come from two places:
1. The configuration state, which contains environment variablesand command-line flags. See the chapter on Configuration State.
2. The use of __future__ statements inside the source code of themod-ule.
Future Flags
Future flags are required because of the syntax or features in that spe-cific module. For example, Python 3.7 introduced delayed evaluationof type hints through the annotations future flag:

123

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L318
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L318

Future Flags and Compiler Flags
from __future__ import annotations

The code after this statement might use unresolved type hints, so the
__future__ statement is required. Otherwise, the module wouldn’t im-port.
Reference of Future Flags in 3.9.0b1
As of 3.9.0b1, all but two of the future flags aremandatory and enabledautomatically:
Import MandatorySince Purpose
nested_-

scopes

2.2 Statically nested scopes (PEP227)
generators 2.3 Simple generators (PEP255)
division 3.0 Use the “true” division operator (PEP238)
absolute_-

import

3.0 Enable absolute imports (PEP328)
with_-

statement

2.6 Enable the with statement (PEP343)
print_-

function

3.0 Make print a function (PEP3105)
unicode_-

literals

3.0 Make str literals Unicode instead of bytes (PEP3112)
barry_as_-

FLUFL

N/A Easter Egg (PEP401)
generator_-

stop

3.7 Enable StopIteration inside generators (PEP479)
annotations 4.0 Postponed evaluation of type annotations (PEP563)

Note
Many of the __future__ flags were used to aid portability be-tween Python 2 and 3. As Python 4.0 approaches, you may seemore future flags added.

124

https://www.python.org/dev/peps/pep-0227
https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-3105
https://www.python.org/dev/peps/pep-3112
https://www.python.org/dev/peps/pep-0401
https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0563

Symbol Tables
Compiler Flags
The other compiler flags are specific to the environment, so theymightchange the way the code executes or the way the compiler runs, butthey shouldn’t link to the source in the same way that __future__ state-ments do.
One example of a compiler flag would be the -O flag for optimizingthe use of assert statements. This flag disables any assert statements,which may have been put in the code for debugging purposes. It canalso be enabled with the PYTHONOPTIMIZE=1 environment variable set-ting.

Symbol Tables
Before the code is compiled, a symbol table is created by the
PySymtable_BuildObject() API.
The purpose of the symbol table is to provide a list of namespaces,globals, and locals for the compiler to use for referencing and resolv-ing scopes.
Related Source Files
The source files relating to the symbol table are:
File Purpose
Python symtable.c The symbol table implementation
Include symtable.h The symbol table API definition and typedefinitions
Lib symtable.py The symtable standard library module

Symbol Table Data Structure
The symtable structure should be one symtable instance for the com-piler, so namespacing becomes essential.

125

https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://docs.python.org/3/using/cmdline.html#cmdoption-o
https://realpython.com/python-debugging-pdb/
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L261

Symbol Tables
For example, if you create amethod called resolve_names() in one classand declare another method with the same name in another class. In-side the module, you want to be sure which one is called.
The symtable serves this purpose, as well as ensuring that variablesdeclared within a narrow scope don’t automatically become globals.
The symbol table struct, (symtable), has the following fields:
Field Type Purpose
st_filename PyObject * (str) Name of file being compiled
st_cur _symtable_entry

*

Current symbol table entry
st_top _symtable_entry

*

Symbol table entry for the module
st_blocks PyObject * (dict) Map of AST node addresses to symbol tableentries
st_stack PyObject * (list) Stack of namespace info
st_global PyObject * (dict) Reference to the symbols in st_top(st_top->ste_symbols)
st_nblocks int Number of blocks used
st_private PyObject * (str) Name of current class or NULL
st_future PyFutureFeatures

*

Module’s future features that affect thesymbol table
recursion_-

depth

int Current recursion depth
recursion_-

limit

int Recursion limit before RecursionError israised. Set by Py_SetRecursionLimit()

Using the symtable Standard Library Module
Some of the symbol table C API is exposed in Python via the symtablemodule in the standard library.
Using another module called tabulate (available on PyPi), you can cre-ate a script to print a symbol table. Symbol tables can be nested, so ifa module contains a function or class, that will have a symbol table.
Create a script called symviz.py with a recursive show() function:

126

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L799
https://docs.python.org/3/library/symtable.html
https://docs.python.org/3/library/symtable.html
https://pypi.org/project/tabulate/

Symbol Tables
cpython-book-samples 30 symviz.py

import tabulate

import symtable

code = """

def calc_pow(a, b):

return a ** b

a = 1

b = 2

c = calc_pow(a,b)

"""

_st = symtable.symtable(code, "example.py", "exec")

def show(table):

print("Symtable {0} ({1})".format(table.get_name(),

table.get_type()))

print(

tabulate.tabulate(

[

(

symbol.get_name(),

symbol.is_global(),

symbol.is_local(),

symbol.get_namespaces(),

)

for symbol in table.get_symbols()

],

headers=["name", "global", "local", "namespaces"],

tablefmt="grid",

)

)

if table.has_children():

[show(child) for child in table.get_children()]

show(_st)

127

Symbol Tables
Run symviz.py at the command-line to see the symbol tables for theexample code:

Symbol Table Implementation
The implementation of symbol tables is in Python symtable.c and theprimary interface is the PySymtable_BuildObject() function.
Similar to AST compilation covered in the last chapter, the
PySymtable_BuildObject() function switches between the mod_ty pos-sible types (Module, Expression, Interactive, Suite, FunctionType),and visits each of the statements inside them.
The Symbol Table will recursively explore the nodes and branches ofthe AST (of type mod_ty) and add entries to the symtable:
Python symtable.c line 261
struct symtable *

PySymtable_BuildObject(mod_ty mod, PyObject *filename,

PyFutureFeatures *future)

{

struct symtable *st = symtable_new();

128

https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L261
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L261

Symbol Tables
asdl_seq *seq;

int i;

PyThreadState *tstate;

int recursion_limit = Py_GetRecursionLimit();

...

st->st_top = st->st_cur;

switch (mod->kind) {

case Module_kind:

seq = mod->v.Module.body;

for (i = 0; i < asdl_seq_LEN(seq); i++)

if (!symtable_visit_stmt(st,

(stmt_ty)asdl_seq_GET(seq, i)))

goto error;

break;

case Expression_kind:

...

case Interactive_kind:

...

case Suite_kind:

...

case FunctionType_kind:

...

}

...

}

For a module, PySymtable_BuildObject() will loop through each state-ment in the module and call symtable_visit_stmt(). The symtable_-

visit_stmt() is a huge switch statement with a case for each statementtype (defined in Parser Python.asdl).
For each statement type, there is specific logic to that statement type.For example, a function definition (FunctionDef_kind) has particularlogic for:
1. The current recursion depth against the recursion limit. If it hasbeen exceeded a RecursionError is thrown.
2. The name of the function is added to the symbol table as a local

129

https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L261
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L1171
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L1171
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L1171

Symbol Tables
variable. In Python, functions are objects, so they can be passedas parameters or references.

3. Any non-literal default arguments to a function (non-keyword) areresolved from the symbol table.
4. Any non-literal default arguments to a function (keyword) are re-solved from the symbol table.
5. Any type annotations for the arguments or the return type are re-solved from the symbol table.
6. Any function decorators are resolved in sequence of definition.
7. The code block with the contents of the function is visited by

symtable_enter_block().
8. The arguments are visited and resolved.
9. The body of the function is visited and resolved.

Important
If you’ve ever wondered why Python’s default arguments aremutable, the reason is in symtable_visit_stmt(). Argument de-faults are a reference to the variable in the symtable. No extrawork is done to copy any values to an immutable type.

As a preview, the C code for those steps in building a symtable for afunction in symtable_visit_stmt():
Python symtable.c line 1171
static int

symtable_visit_stmt(struct symtable *st, stmt_ty s)

{

if (++st->recursion_depth > st->recursion_limit) {

PyErr_SetString(PyExc_RecursionError,

"maximum recursion depth exceeded during compilation");

VISIT_QUIT(st, 0);

}

130

https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L968
https://github.com/python/cpython/blob/v3.9.0b1/Python/symtable.c#L1171

Symbol Tables
switch (s->kind) {

case FunctionDef_kind:

if (!symtable_add_def(st, s->v.FunctionDef.name, DEF_LOCAL))

VISIT_QUIT(st, 0);

if (s->v.FunctionDef.args->defaults)

VISIT_SEQ(st, expr, s->v.FunctionDef.args->defaults);

if (s->v.FunctionDef.args->kw_defaults)

VISIT_SEQ_WITH_NULL(st, expr,

s->v.FunctionDef.args->kw_defaults);

if (!symtable_visit_annotations(st, s, s->v.FunctionDef.args,

s->v.FunctionDef.returns))

VISIT_QUIT(st, 0);

if (s->v.FunctionDef.decorator_list)

VISIT_SEQ(st, expr, s->v.FunctionDef.decorator_list);

if (!symtable_enter_block(st, s->v.FunctionDef.name,

FunctionBlock, (void *)s, s->lineno,

s->col_offset))

VISIT_QUIT(st, 0);

VISIT(st, arguments, s->v.FunctionDef.args);

VISIT_SEQ(st, stmt, s->v.FunctionDef.body);

if (!symtable_exit_block(st, s))

VISIT_QUIT(st, 0);

break;

case ClassDef_kind: {

...

}

case Return_kind:

...

case Delete_kind:

...

case Assign_kind:

...

case AnnAssign_kind:

...

Once the resulting symbol table has been created, it is passed on tothe compiler.

131

Core Compilation Process
Core Compilation Process
Now that the PyAST_CompileObject() has a compiler state, a symtable,and amodule in the form of the AST, the actual compilation can begin.
The purpose of the core compiler is to:
1. Convert the state, symtable, and AST into a Control-Flow-Graph(CFG)
2. Protect the execution stage from runtime exceptions by catchingany logic and code errors
Accessing the Compiler From Python
You can call the compiler in Python by calling the built-in function
compile(). It returns a code object:
>>> compile('b+1', 'test.py', mode='eval')

<code object <module> at 0x10f222780, file "test.py", line 1>

The same as with the symtable() API, a simple expression should haveamode of 'eval', and amodule, function, or class should have amodeof 'exec'.
The compiled code can be found in the co_code property of the codeobject:
>>> co.co_code

b'e\x00d\x00\x17\x00S\x00'

There is also a dismodule in the standard library, which disassemblesthe bytecode instructions. You can print them on the screen, or get alist of Instruction instances.
Note
The Instruction type in the dismodule is a reflection of the instrtype in the C API.

132

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L318
https://en.wikipedia.org/wiki/Control-flow_graph
https://en.wikipedia.org/wiki/Control-flow_graph

Core Compilation Process
If you import dis and give the dis() function the code object’s co_codeproperty it disassembles it and prints the instructions on the REPL:
>>> import dis

>>> dis.dis(co.co_code)

0 LOAD_NAME 0 (0)

2 LOAD_CONST 0 (0)

4 BINARY_ADD

6 RETURN_VALUE

LOAD_NAME, LOAD_CONST, BINARY_ADD, and RETURN_VALUE are all bytecodeinstructions. They’re called bytecode because, in binary form, theywere a byte long. However, since Python 3.6 the storage format waschanged to a word, so now they’re technically wordcode, not bytecode.
The full list of bytecode instructions is available for each version ofPython, and it does change between versions. For example, in Python3.7, some new bytecode instructions were introduced to speed up ex-ecution of specific method calls.
In earlier chapters, you explored the instaviz package. This includeda visualization of the code object type by running the compiler. It alsodisplays the bytecode operations inside the code objects.
Execute instaviz again to see the code object and bytecode for a func-tion defined on the REPL:
>>> import instaviz

>>> def example():

a = 1

b = a + 1

return b

>>> instaviz.show(example)

Compiler C API
The entry point for AST module compilation, compiler_mod(), switchesto different compiler functions depending on the module type. Ifyou assume that mod is a Module, the module is compiled into the

133

https://docs.python.org/3/library/dis.html#python-bytecode-instructions
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L1820

Core Compilation Process
c_stack property as compiler units. Then assemble() is run to create a
PyCodeObject from the compiler unit stack.
The new code object is returned back and sent on for execution by theinterpreter, or cached and stored on disk as a .pyc file:
Python compile.c line 1820
static PyCodeObject *

compiler_mod(struct compiler *c, mod_ty mod)

{

PyCodeObject *co;

int addNone = 1;

static PyObject *module;

...

switch (mod->kind) {

case Module_kind:

if (!compiler_body(c, mod->v.Module.body)) {

compiler_exit_scope(c);

return 0;

}

break;

case Interactive_kind:

...

case Expression_kind:

...

case Suite_kind:

...

...

co = assemble(c, addNone);

compiler_exit_scope(c);

return co;

}

The compiler_body() function loops over each statement in the moduleand visits it:
Python compile.c line 1782

134

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L6005
https://github.com/python/cpython/blob/v3.9.0b1/Include/code.h#L9
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L1782

Core Compilation Process
static int

compiler_body(struct compiler *c, asdl_seq *stmts)

{

int i = 0;

stmt_ty st;

PyObject *docstring;

...

for (; i < asdl_seq_LEN(stmts); i++)

VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));

return 1;

}

The statement type is determined through a call to the asdl_seq_GET()function, which looks at the AST node type.
Through a macro, VISIT calls a function in Python compile.c for eachstatement type:
#define VISIT(C, TYPE, V) {\

if (!compiler_visit_ ## TYPE((C), (V))) \

return 0; \

}

For a stmt (the generic type for a statement) the compiler will then call
compiler_visit_stmt() and switch through all of the potential statementtypes found in Parser Python.asdl:
Python compile.c line 3375
static int

compiler_visit_stmt(struct compiler *c, stmt_ty s)

{

Py_ssize_t i, n;

/* Always assign a lineno to the next instruction for a stmt. */

c->u->u_lineno = s->lineno;

c->u->u_col_offset = s->col_offset;

c->u->u_lineno_set = 0;

135

https://github.com/python/cpython/blob/v3.9.0b1/Include/asdl.h#L31
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L3375

Core Compilation Process
switch (s->kind) {

case FunctionDef_kind:

return compiler_function(c, s, 0);

case ClassDef_kind:

return compiler_class(c, s);

...

case For_kind:

return compiler_for(c, s);

...

}

return 1;

}

As an example, the For statement in Python is:
for i in iterable:

block

else: # optional if iterable is False

block

Or shown as a railroad diagram:

for exprlist in testlist : TYPE_COMMENT suite else : suite

If the statement is a For type, compiler_visit_stmt() calls compiler_for().There is an equivalent compiler_*() function for all of the statementand expression types. Themore straightforward types create the byte-code instructions inline, some of the more complex statement typescall other functions.
Instructions
Many of the statements can have sub-statements. A for loop has abody, but you can also have complex expressions in the assignmentand the iterator.

136

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L3375
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L2750

Core Compilation Process
The compiler emits blocks to the compiler state. These blocks con-tain a sequence of instructions. The instruction data structure has anopcode, arguments, the target block (if this is a jump instruction), andthe line number of the statement.
Instruction Type
The instruction type, instr, is defined as:
Field Type Purpose
i_jabs unsigned Flag to specify this is a absolute jumpinstruction
i_jrel unsigned Flag to specify this is a relative jump instruction
i_opcode unsigned char Opcode number this instruction represents (see

Include Opcode.h)
i_oparg int Opcode argument
i_target basicblock* Pointer to the basicblock target when i_jrel istrue
i_lineno int Line number this instruction was created for

Jump Instructions
Jump instructions can either be absolute or relative. Jump instruc-tions are used to “jump” from one instruction to another. Absolutejump instructions specify the exact instruction number in the com-piled code object, whereas relative jump instructions specify the jumptarget relative to another instruction.
Basic Frame Blocks
A basic frame block (of type basicblock), contains the following fields:
Field Type Purpose
b_list basicblock * Each basicblock in a compilation unit is linkedvia b_list in the reverse order that the blockare allocated
b_iused int Number of instructions used (b_instr)
b_ialloc int Length of instruction array (b_instr)
b_instr instr * Pointer to an array of instructions, initially NULL

137

Assembly
Field Type Purpose
b_next basicblock* If b_next is non-NULL, it is a pointer to the nextblock reached by normal control flow
b_seen unsigned Used to perform a DFS of basicblocks. Seeassembly
b_return unsigned Is true if block returns a value (a RETURN_VALUEopcode is inserted)
b_-

startdepth

int Depth of stack upon entry of block, computedby stackdepth()

b_offset int Instruction offset for block, computed by
assemble_jump_offsets()

Operations and Arguments
Depending on the type of operation, there are different argumentsrequired. For example, ADDOP_JABS and ADDOP_JREL refer to “ADDOperation with Jump to a RELative position” and “ADD Operationwith Jump to an ABSolute position”. The ADDOP_JREL and ADDOP_JABSmacros which call compiler_addop_j(struct compiler *c, int opcode,

basicblock *b, int absolute) and set the absolute argument to 0 and 1respectively.
There are some other macros, like ADDOP_I calls compiler_addop_i()which add an operation with an integer argument, or ADDOP_O calls
compiler_addop_o() which adds an operation with a PyObject argument.

Assembly
Once these compilation stages have completed, the compiler has a listof frame blocks, each containing a list of instructions and a pointer tothe next block. The assembler performs a “depth-first-search” of thebasic frame blocks and merges the instructions into a single bytecodesequence.
Assembler Data Structure
The assembler state struct, assembler, is declared in Python compile.c.

138

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L1370
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L1332

Assembly
Field Type Purpose
a_bytecode PyObject * (str) String containing bytecode
a_offset int Offset into bytecode
a_nblocks int Number of reachable blocks
a_postorder basicblock ** List of blocks in dfs postorder
a_lnotab PyObject * (str) String containing lnotab

a_lnotab_-

off

int Offset into lnotab

a_lineno int Last lineno of emitted instruction
a_lineno_-

off

int Bytecode offset of last lineno

Assembler Depth-First-Search Algorithm
The assembler uses a Depth-First-Search to traverse the nodes in thebasic frameblock graph. TheDFS algorithm is not specific toCPython,but is a commonly used algorithm in graph traversal.
The CST and AST were both tree structures, whereas the compilerstate is a graph structure, where the nodes are basic frame blocks con-taining instructions.
The basic frame blocks are linked by two graphs, one is in reverse or-der of creation (the b_list property of each block). A series of basicframe blocks arbitrarily named A-P would look like this:

139

Assembly

A B C E F

G H I J K

L M N O P

The graph created from the b_list is used to sequentially visit everyblock in a compiler unit
The second graph uses the b_next property of each block. This list rep-resents the control flow. Vertices in this graph are created by calls to
compiler_use_next_block(c, next), where next is the next block to drawa vertex to from the current block (c->u->u_curblock).
The For loop node graph might look something like this:

A B C E F

G H I J K

L M N O P

FOR_LOOP

End

Start

CleanupBody
OrElse

140

Assembly
Both the sequential and control-flow graphs are used, but the control-flow graph is the one used by the DFS implementation.
Assembler C API
The assembler API has an entry point assemble(). The assemble() func-tion has a few responsibilities:
• Calculate the number of blocks for memory allocation
• Ensure that every block that falls off the end returns None (This iswhy every function returns None, whether or not a return statementexists)
• Resolve any jump statements offsets that were marked as relative
• Call dfs() to perform a depth-first-search of the blocks
• Emit all the instructions to the compiler
• Call makecode()with the compiler state to generate the PyCodeObject

Python compile.c line 6005
static PyCodeObject *

assemble(struct compiler *c, int addNone)

{

...

if (!c->u->u_curblock->b_return) {

NEXT_BLOCK(c);

if (addNone)

ADDOP_LOAD_CONST(c, Py_None);

ADDOP(c, RETURN_VALUE);

}

...

dfs(c, entryblock, &a, nblocks);

/* Can't modify the bytecode after computing jump offsets. */

assemble_jump_offsets(&a, c);

/* Emit code in reverse postorder from dfs. */

141

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L6005
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L5888

Assembly
for (i = a.a_nblocks - 1; i >= 0; i--) {

b = a.a_postorder[i];

for (j = 0; j < b->b_iused; j++)

if (!assemble_emit(&a, &b->b_instr[j]))

goto error;

}

...

co = makecode(c, &a);

error:

assemble_free(&a);

return co;

}

Depth-First-Search
The depth-first-search is performed by the dfs() function in Python

compile.c, which follows the the b_next pointers in each of the blocks,marks them as seen by toggling b_seen and then adds them to the as-semblers’ a_postorder list in reverse order.
The function loops back over the assembler’s post-order list and foreach block, if it has a jump operation, recursively call dfs() for thatjump:
Python compile.c line 5436
static void

dfs(struct compiler *c, basicblock *b, struct assembler *a, int end)

{

int i, j;

/* Get rid of recursion for normal control flow.

Since the number of blocks is limited, unused space in a_postorder

(from a_nblocks to end) can be used as a stack for still not ordered

blocks. */

for (j = end; b && !b->b_seen; b = b->b_next) {

b->b_seen = 1;

142

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L5436
https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L5436

Creating a Code Object
assert(a->a_nblocks < j);

a->a_postorder[--j] = b;

}

while (j < end) {

b = a->a_postorder[j++];

for (i = 0; i < b->b_iused; i++) {

struct instr *instr = &b->b_instr[i];

if (instr->i_jrel || instr->i_jabs)

dfs(c, instr->i_target, a, j);

}

assert(a->a_nblocks < j);

a->a_postorder[a->a_nblocks++] = b;

}

}

Once the assembler has assembled the graph into a CFG using DFS,the code object can be created.

Creating a Code Object
The task of makecode() is to go through the compiler state, some of theassembler’s properties, and to put these into a PyCodeObject by calling
PyCode_New().
The variable names, constants are put as properties to the code object:
Python compile.c line 5888
static PyCodeObject *

makecode(struct compiler *c, struct assembler *a)

{

...

consts = consts_dict_keys_inorder(c->u->u_consts);

names = dict_keys_inorder(c->u->u_names, 0);

varnames = dict_keys_inorder(c->u->u_varnames, 0);

...

cellvars = dict_keys_inorder(c->u->u_cellvars, 0);

143

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L5888
https://github.com/python/cpython/blob/v3.9.0b1/Objects/codeobject.c#L267

Using Instaviz to Show a Code Object
...

freevars = dict_keys_inorder(c->u->u_freevars,

PyTuple_GET_SIZE(cellvars));

...

flags = compute_code_flags(c);

if (flags < 0)

goto error;

bytecode = PyCode_Optimize(a->a_bytecode, consts,

names, a->a_lnotab);

...

co = PyCode_NewWithPosOnlyArgs(

posonlyargcount+posorkeywordargcount,

posonlyargcount, kwonlyargcount, nlocals_int,

maxdepth, flags, bytecode, consts, names,

varnames, freevars, cellvars, c->c_filename,

c->u->u_name, c->u->u_firstlineno, a->a_lnotab);

...

return co;

}

You may also notice that the bytecode is sent to PyCode_Optimize() be-fore it is sent to PyCode_NewWithPosOnlyArgs(). This function is part ofthe bytecode optimization process in Python peephole.c.
The peephole optimizer goes through the bytecode instructions and incertain scenarios, replace them with other instructions. For example,there is an optimizer that removes any unreachable instructions thatfollow a return statement.

Using Instaviz to Show a Code Object
You can pull together all of the compiler stages with the instaviz mod-ule:
import instaviz

def foo():

144

https://github.com/python/cpython/blob/v3.9.0b1/Python/peephole.c#L230
https://github.com/python/cpython/blob/v3.9.0b1/Objects/codeobject.c#L117

Using Instaviz to Show a Code Object
a = 2**4

b = 1 + 5

c = [1, 4, 6]

for i in c:

print(i)

else:

print(a)

return c

instaviz.show(foo)

Will produce a large and complex AST graph:

You can see the bytecode instructions in sequence:

145

Using Instaviz to Show a Code Object

The code object with the variable names, constants, and binary co_-

code:

Try it out with some other, more complex code that you have to learnmore about CPython’s compiler and code objects.

146

Example: Implementing the “Almost-Equal” Operator
Example: Implementing the“Almost-Equal” Operator
After covering the compiler, bytecode instructions and the assembler,you can now modify CPython to support the “almost-equal” operatoryou compiled into the grammar in the last chapter.
First you have to add an internal #define for the Py_AlE operator, so itcan be referenced inside the rich comparison functions for PyObject.
Open Include object.h, and locate the following #define statements:
/* Rich comparison opcodes */

#define Py_LT 0

#define Py_LE 1

#define Py_EQ 2

#define Py_NE 3

#define Py_GT 4

#define Py_GE 5

Add an additional value, PyAlE with a value of 6:
/* New Almost Equal comparator */

#define Py_AlE 6

Just underneath this expression is a macro Py_RETURN_RICHCOMPARE. Up-date this macro with a case statement for Py_AlE:
/*

* Macro for implementing rich comparisons

*

* Needs to be a macro because any C-comparable type can be used.

*/

#define Py_RETURN_RICHCOMPARE(val1, val2, op)

do {

switch (op) {

case Py_EQ: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;

case Py_NE: if ((val1) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;

147

Example: Implementing the “Almost-Equal” Operator
case Py_LT: if ((val1) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;

case Py_GT: if ((val1) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;

case Py_LE: if ((val1) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;

case Py_GE: if ((val1) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;

/* + */ case Py_AlE: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE;

default:

Py_UNREACHABLE();

}

} while (0)

Inside Objects object.c there is a guard to check that the operator iswithin the range 0-5, because you added the value 6 you have to up-date that assertion:
Objects object.c line 709
PyObject *

PyObject_RichCompare(PyObject *v, PyObject *w, int op)

{

PyThreadState *tstate = _PyThreadState_GET();

assert(Py_LT <= op && op <= Py_GE);

Change that last line to:
assert(Py_LT <= op && op <= Py_AlE);

Next, you need to update the COMPARE_OP opcode to support Py_AlE as avalue for the operator type.
First, edit Objects object.c and add Py_AlE into the _Py_SwappedOp list.This list is used for matching whether a custom class has one operatordunder method, but not the other.
For example, if you defined a class, Coordinate, you could define anequality operator by implementing the __eq__ magic-method:
class Coordinate:

def __init__(self, x, y):

148

Example: Implementing the “Almost-Equal” Operator
self.x = x

self.y = y

def __eq__(self, other):

if isinstance(other, Coordinate):

return (self.x == other.x and self.y == other.y)

return super(self, other).__eq__(other)

Even though you haven’t implemented __ne__ (not equal) for
Coordinate, CPython assumes that the opposite of __eq__ can be used.
>>> Coordinate(1, 100) != Coordinate(2, 400)

True

Inside Objects object.c, locate the _Py_SwappedOp list and add Py_AlE tothe end. Then add "~=" to the end of the opstrings list:
int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE, Py_AlE};

static const char * const opstrings[]

= {"<", "<=", "==", "!=", ">", ">=", "~="};

Open Lib/opcode.py and edit the list of rich comparison operators:
cmp_op = ('<', '<=', '==', '!=', '>', '>=')

Include the new operator at the end of the tuple:
cmp_op = ('<', '<=', '==', '!=', '>', '>=', '~=')

The opstrings list is used for error messages, if rich comparison oper-ators are not implemented on a class.
Next, you can update the compiler to handle the case of a PyCmp_AlEproperty in a BinOp node.
Open Python compile.c and find the compiler_addcompare() function:
Python compile.c line 2479

149

https://github.com/python/cpython/blob/v3.9.0b1/Python/compile.c#L2479

Example: Implementing the “Almost-Equal” Operator
static int compiler_addcompare(struct compiler *c, cmpop_ty op)

{

int cmp;

switch (op) {

case Eq:

cmp = Py_EQ;

break;

case NotEq:

cmp = Py_NE;

break;

case Lt:

cmp = Py_LT;

break;

case LtE:

cmp = Py_LE;

break;

case Gt:

cmp = Py_GT;

break;

case GtE:

cmp = Py_GE;

break;

Next, add another case to this switch statement to pair the AlE AST
comp_op enumeration with the PyCmp_AlE opcode comparison enumera-tion:

Next, recompile CPython and open up a REPL. You should see thealmost-equal operator behave in the same way as the == operator:
$./python

>>> 1 ~= 2

False

>>> 1 ~= 1

True

>>> 1 ~= 1.01

False

150

Example: Implementing the “Almost-Equal” Operator
You can now program the behaviour of almost-equal to match the fol-lowing scenario:
• 1 ~= 2 is False

• 1 ~= 1.01 is True, using floor-rounding
We can achieve this with some additional code. For now, you will castboth floats into integers and compare them.
CPython’s API has many functions for dealing with PyLong (int) and
PyFloat (float) types. This will be covered in the chapter on Objectsand Types.
Locate the float_richcompare() in Objects floatobject.c, and under the
Compare: goto definition add the following case:
Objects floatobject.c line 358
static PyObject*

float_richcompare(PyObject *v, PyObject *w, int op)

{

...

case Py_GT:

r = i > j;

break;

/* New Code START */

case Py_AlE: {

double diff = fabs(i - j);

double rel_tol = 1e-9; // relative tolerance

double abs_tol = 0.1; // absolute tolerance

r = (((diff <= fabs(rel_tol * j)) ||

(diff <= fabs(rel_tol * i))) ||

(diff <= abs_tol));

}

break;

}

/* New Code END */

return PyBool_FromLong(r);

151

https://github.com/python/cpython/blob/v3.9.0b1/Objects/floatobject.c#L358

Conclusion
This code will handle comparison of floating point numbers wherethe almost-equal operator has been used. It uses similar logic to
math.isclose(), defined in PEP485, but with a hardcoded absolutetolerance of 0.1.
After recompiling CPython again, open a REPL and test it out:
$./python

>>> 1.0 ~= 1.01

True

>>> 1.02 ~= 1.01

True

>>> 1.02 ~= 2.01

False

>>> 1 ~= 1.01

True

>>> 1 ~= 1

True

>>> 1 ~= 2

False

>>> 1 ~= 1.9

False

>>> 1 ~= 2.0

False

>>> 1.1 ~= 1.101

True

In later chapters you will extend this implementation across othertypes.

Conclusion
In this chapter, you’ve explored how a parsed Python module is con-verted into a symbol table, a compilation state, and then a series ofbytecode operations.

152

https://www.python.org/dev/peps/pep-0485/

Conclusion

ExecutionParser
AST Bytecode

Compiler Assembler
CFG

It is now the job of the CPython interpreter’s core evaluation loop toexecute those modules.
In the next chapter, you will explore how code objects are executed.
Leave feedback on this section »

153

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiY0dlQTx5JCEpWF5TXkk4anhvS0ViajQ-N1Z-MmImIUBaQW41JTZNIyIsInQiOiJjaGFwdGVycy8zMC10aGUtY3B5dGhvbi1jb21waWxlci5tZCAoZjAxNGU1MTQ3ZDVhZTJjNSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi9mMDE0ZTUxNDdkNWFlMmM1ZjNmNzM3ZGQxYjFjYjc3ZTIwODE5YzZjL2NoYXB0ZXJzLzMwLXRoZS1jcHl0aG9uLWNvbXBpbGVyLm1kIn0=

The Evaluation Loop
So far, you have seen how Python code is parsed into an Abstract Syn-tax Tree and compiled into code objects. These code objects containlists of discreet operations in the form of bytecode. There is onemajorthing missing for these code objects to be executed and come to life.They need input. In the case of Python, these inputs take the form oflocal and global variables. In this chapter, you will be introduced toa concept called a Value Stack, where variables are created, modified,and used by the bytecode operations in your compiled code objects.
Execution of code in CPython happens within a central loop, calledthe “evaluation loop.” The CPython interpreter will evaluate and exe-cute a code object, either fetched from the marshaled .pyc file, or thecompiler:

ExecutionParser
AST Bytecode

Compiler Assembler
CFG

In the evaluation loop, each of the bytecode instructions is taken andexecuted using a “Stack Frame” based system.

154

http://www.cs.uwm.edu/classes/cs315/Bacon/Lecture/HTML/ch10s07.html

Note
Stack Frames
Stack Frames are a data type used by many runtimes, not justPython. Stack Frames allow functions to be called and variablesto be returned between functions. Stack Frames also containarguments, local variables, and other stateful information.
A Stack Frame exists for every function call, and they arestacked in sequence. You can see CPython’s frame stackanytime an exception is unhandled:
Traceback (most recent call last):

File "example_stack.py", line 8, in <module> <--- Frame

function1()

File "example_stack.py", line 5, in function1 <--- Frame

function2()

File "example_stack.py", line 2, in function2 <--- Frame

raise RuntimeError

RuntimeError

When exploring the CPython compiler, you broke out just before thecall to run_eval_code_obj(). In this next chapter, you will explore theinterpreter API:

155

https://github.com/python/cpython/blob/v3.9.0b1/Python/pythonrun.c#L1155

Important Terms

PyRun_FileExFlags()

PyParser_ASTFromFileObject()

File Pointer

PyAST_CompileObject()

run_eval_code()

AST Module

Code Object

Return Value

Related Source Files
The source files relating to the evaluation loop are:
File Purpose
Python ceval.c The core evaluation loop implementation
Python ceval-gil.h The GIL definition and control algorithm

Important Terms
• The evaluation loop will take a code object and convert it into aseries of frame objects
• The interpreter has at least one thread
• Each thread has a thread state
• Frame Objects are executed in a stack, called the frame stack
• Variables are referenced in a value stack

Constructing Thread State
Before a frame can be executed, it needs to be linked to a thread.CPython can have many threads running at any one time within a

156

Constructing Thread State
single interpreter. The interpreter state includes a linked-list ofthose threads.
CPython always has at least one thread and each thread has it’s ownstate.

See Also
Threading is covered inmore detail within the “Parallelism andConcurrency” chapter.

Thread State Type
The thread state type, PyThreadState has over 30 properties, including:
• A unique identifier
• A linked-list to the other thread states
• The interpreter state it was spawned by
• The currently executing frame
• The current recursion depth
• Optional tracing functions
• The exception currently being handled
• Any async exception currently being handled
• A stack of exceptions raised, when multiple exceptions have beenraised (e.g. raise within an except block)
• A GIL counter
• Async generator counters
Related Source Files
The source files relating to the thread state are spread across manyfiles:

157

Constructing Frame Objects
File Purpose
Python thread.c The thread API implementation
Include threadstate.h Some of the thread state API and typesdefinition
Include pystate.h The interpreter state API and typesdefinition
Include pythread.h The threading API
Include cpython pystate.h Some of the thread and interpreter stateAPI

Constructing Frame Objects
Compiled code objects are inserted into frame objects. Frame objectsare a Python type, so they can be referenced from C, and from Python.Frame objects also contain other runtime data that is required for ex-ecuting the instructions in the code objects. This data includes thelocal variables, global variables and builtin modules.
Frame Object Type
The frame object type is a PyObject with the following additional prop-erties:
Field Type Purpose
f_back PyFrameObject * Pointer to the previous in the stack, or NULL iffirst frame
f_code PyCodeObject * Code Object to be executed
f_builtins PyObject * (dict) Symbol table for the builtin module
f_globals PyObject * (dict) global symbol table (PyDictObject
f_locals PyObject * Local symbol table (any mapping)
f_valuestack PyObject ** Pointer to the last local
f_stacktop PyObject ** Next free slot in f_valuestack

f_trace PyObject * Pointer to a custom tracing function. Seesection on frame tracing
f_trace_lines char Toggle for the custom tracing function to traceat line-level
f_trace_-

opcodes

char Toggle for the custom tracing function to traceat an opcode level
f_gen Pybject * Borrowed reference to a generator, or NULL

158

Constructing Frame Objects
Field Type Purpose
f_lasti int Last instruction, if called
f_lineno int Current line number
f_iblock int Index of this frame in f_blockstack

f_executing char Flag whether the frame is still executing
f_blockstack PyTryBlock[] Sequence of for, try, and loop blocks
f_localsplus PyObject *[] Union of locals + stack

Related Source Files
The source files relating to frame objects are:
File Purpose
Objects frameobject.c The frame object implementation andPython API
Include frameobject.h The frame object API and type definition

Frame Object Initialization API
The API for Frame Object Initialization, PyEval_EvalCode() is the entrypoint for evaluating a code object
PyEval_EvalCode() is a wrapper around the internal function _PyEval_-

EvalCode().
Note
_PyEval_EvalCode() is a complex function that defines many be-haviours of both frame objects and the interpreter loop. It is animportant function to understand as it can also teach you someprinciples of the CPython interpreter design.

In this section you will step through the logic in _PyEval_EvalCode().
The _PyEval_EvalCode() function specifies many arguments:
• tstate: a PyThreadState * pointing to the thread state of the threadthis code will be evaluated on

159

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L858
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L858
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101

Constructing Frame Objects
• _co: a PyCodeObject* containing the code to be put into the frameobject
• globals: a PyObject* (dict) with variable names as keys and theirvalues
• locals: a PyObject* (dict) with variable names as keys and their val-ues
Note
In Python, local and global variables stored as a dictionary. Youcan access this dictionary with the builtin functions locals()and globals():
>>> a = 1

>>> print(locals()['a'])

1

The other arguments are optional, and not used for the basic API:
• args: a PyObject* (tuple) with positional argument values in order,and argcount for the number of values
• kwnames: a list of keyword argument names
• kwargs: a list of keyword argument values, and kwcount for the num-ber of them
• defs: a list of default values for positional arguments, and defcountfor the length
• kwdefs: a dictionary with the default values for keyword arguments
• closure: a tuple with strings to merge into the code objects co_-

freevars field
• name: the name for this evaluation statement as a string
• qualname: the qualified name for this evaluation statement as astring

The call to _PyFrame_New_NoTrack() creates a new frame. This API is

160

https://github.com/python/cpython/blob/v3.9.0b1/Objects/frameobject.c#L872

Constructing Frame Objects
also available from the C API using PyFrame_New(). The _PyFrame_New_-

NoTrack() function will create a new PyFrameObject by following thesesteps:
1. Set the frame f_back property to the thread state’s last frame
2. Load the current builtin functions by setting the f_builtins prop-erty and loading the builtins module using PyModule_GetDict()

3. Set the f_code property to the code object being evaluated
4. Set the f_valuestack property to the
5. Set the f_stacktop pointer to f_valuestack

6. Set the global property, f_globals, to the globals argument
7. Set the locals property, f_locals, to a new dictionary
8. Set the f_lineno to the code object’s co_firstlineno property so thattracebacks contain line numbers
9. Set all the remaining properties to their default values
With the new PyFrameObject instance, the arguments to the frame ob-ject can be constructed:

161

https://github.com/python/cpython/blob/v3.9.0b1/Objects/frameobject.c#L935
https://github.com/python/cpython/blob/v3.9.0b1/Objects/frameobject.c#L872
https://github.com/python/cpython/blob/v3.9.0b1/Objects/frameobject.c#L872
https://github.com/python/cpython/blob/v3.9.0b1/Objects/moduleobject.c#L457

Constructing Frame Objects
Converting Keyword Parameters to a Dictionary
Function definitions can contain a **kwargs catch-all for keyword-arguments, for example:
def example(arg, arg2=None, **kwargs):

print(kwargs['x'], kwargs['y']) # this would resolve to a dictionary key

example(1, x=2, y=3) # 2 3

In this scenario, a new dictionary is created, and the unresolved argu-ments are copied across. The kwargs name is then set as a variable inthe local scope of the frame.
Converting Positional Arguments Into Variables
Each of the positional arguments (if provided) are set as local vari-ables: In Python, function arguments are already local variableswithin the function body. When a positional argument is definedwith a value, it is available within the function scope:
def example(arg1, arg2):

print(arg1, arg2)

example(1, 2) # 1 2

The reference counter for those variables is incremented, so thegarbage collector won’t remove them until the frame has evaluated(e.g. the function has finished and returned).
Packing Positional Arguments Into *args

Similar to **kwargs, a function argument prepended with a * can be setto catch all remaining positional arguments. This argument is a tupleand the *args name is set as a local variable:
def example(arg, *args):

print(arg, args[0], args[1])

example(1, 2, 3) # 1 2 3

162

Constructing Frame Objects
Loading Keyword Arguments
If the function was called with keyword arguments and values, a dic-tionary is filled with any remaining keyword arguments passed bythe caller that doesn’t resolve to named arguments or positional ar-guments.
For example, the e argument was neither positional or named, so it isadded to **remaining:
>>> def my_function(a, b, c=None, d=None, **remaining):

print(a, b, c, d, remaining)

>>> my_function(a=1, b=2, c=3, d=4, e=5)

(1, 2, 3, 4, {'e': 5})

163

Constructing Frame Objects
Note
Positional-only arguments are a new feature in Python 3.8.Introduced in PEP570, positional-only arguments are a way ofstopping users of your API from using positional argumentswith a keyword syntax.
For example, this simple function converts Fahrenheit toCelsius. Note, the use of / as a special argument separatespositional-only arguments from the other arguments.
def to_celsius(fahrenheit, /, options=None):

return (fahrenheit-32)*5/9

All arguments to the left of /must be called only as a positionalargument, and arguments to the right can be called as eitherpositional or keyword arguments:
>>> to_celsius(110)

Calling the function using a keyword argument to a positional-only argument will raise a TypeError:
>>> to_celsius(fahrenheit=110)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: to_celsius() got some positional-only arguments

passed as keyword arguments: 'fahrenheit'

The resolution of the keyword argument dictionary values comes af-ter the unpacking of all other arguments. The PEP570 positional-onlyarguments are shown by starting the keyword-argument loop at co_-
posonlyargcount. If the / symbol was used on the 3rd argument, thevalue of co_posonlyargcount would be 2. PyDict_SetItem() is called foreach remaining argument for adding it to the locals dictionary. Whenexecuting, each of the keyword arguments become scoped local vari-ables.

164

https://www.python.org/dev/peps/pep-0570/
https://github.com/python/cpython/blob/v3.9.0b1/Objects/dictobject.c#L1556

Constructing Frame Objects
If a keyword argument is defined with a value, that is available withinthis scope:
def example(arg1, arg2, example_kwarg=None):

print(example_kwarg) # example_kwarg is already a local variable.

Adding Missing Positional Arguments
Any positional arguments provided to a function call that are not inthe list of positional arguments are added to a *args tuple if this tupledoes not exist, an exception is raised.
Adding Missing Keyword Arguments
Any keyword arguments provided to a function call that are not in thelist of named keyword arguments are added to a **kwargs dictionary ifthis dictionary does not exist, an exception is raised.
Collapsing Closures
Any closure names are added to the code object’s list of free variablenames.
Creating Generators, Coroutines, and AsynchronousGenerators
If the evaluated code object has a flag that it is a generator, corou-tine, or async generator, then a new frame is created using one of theunique methods in the Generator, Coroutine, or Async libraries andthe current frame is added as a property.

See Also
The APIs and implementation of generators, coroutines, andasync frames are covered in the chapter on parallelism and con-currency

165

Frame Execution
The new frame is then returned, and the original frame isnot evaluated. The frame is only evaluated when the genera-tor/coroutine/async method is called on to execute its target.
Lastly, _PyEval_EvalFrame() is called with the new frame.

Frame Execution
As covered earlier in the compiler and AST chapters, the code objectcontains a binary encoding of the bytecode to be executed. It also con-tains a list of variables and a symbol table.
The local and global variables are determined at runtime based onhow that function, module, or block was called. This information isadded to the frame by the _PyEval_EvalCode() function. There are otheruses of frames, like the coroutine decorator, which dynamically gen-erates a frame with the target as a variable.
The public API, PyEval_EvalFrameEx() calls the interpreter’s configuredframe evaluation function in the eval_frame property. Frame evalua-tion was made pluggable in Python 3.7 with PEP 523.
_PyEval_EvalFrameDefault() is the default function and the only optionbundled with CPython.
Frames are executed in the main execution loop inside _PyEval_-

EvalFrameDefault(). This central function brings everything togetherand brings your code to life. It contains decades of optimizationsince even a single line of code can have a significant impact onperformance for the whole of CPython.
Everything that gets executed in CPython goes through this function.

166

https://github.com/python/cpython/blob/v3.9.0b1/Include/internal/pycore_ceval.h#L38
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L880
https://www.python.org/dev/peps/pep-0523/
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L945
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L945
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L945

Frame Execution
Note
Something you might notice when reading Python ceval.c, ishow many times C macros have been used. C Macros are a wayof having reusable code without the overhead of making func-tion calls. The compiler converts the macros into C code andthen compile the generated code.
If you want to see the expanded code, you can run gcc -E onLinux and macOS:
$ gcc -E Python/ceval.c

In Visual Studio Code, inline macro expansion shows once youhave installed the official C/C++ extension:

In CLion, select a macro and press Alt + Space to peek into it’sdefinition.

Frame Execution Tracing
You can step through frame execution in Python 3.7 and beyond by en-abling the tracing attribute on the current thread. In the PyFrameObjecttype, there is a f_trace property, of type PyObject *. The value is ex-pected to point to a Python function.
This code example sets the global tracing function to a function called

167

https://realpython.com/python-development-visual-studio-code/
https://www.jetbrains.com/help/clion/viewing-definition.html
https://www.jetbrains.com/help/clion/viewing-definition.html

Frame Execution
my_trace() that gets the stack from the current frame, prints the dis-assembled opcodes to the screen, and some extra information for de-bugging:
cpython-book-samples 31 my_trace.py

import sys

import dis

import traceback

import io

def my_trace(frame, event, args):

frame.f_trace_opcodes = True

stack = traceback.extract_stack(frame)

pad = " "*len(stack) + "|"

if event == 'opcode':

with io.StringIO() as out:

dis.disco(frame.f_code, frame.f_lasti, file=out)

lines = out.getvalue().split('\n')

[print(f"{pad}{l}") for l in lines]

elif event == 'call':

print(f"{pad}Calling {frame.f_code}")

elif event == 'return':

print(f"{pad}Returning {args}")

elif event == 'line':

print(f"{pad}Changing line to {frame.f_lineno}")

else:

print(f"{pad}{frame} ({event} - {args})")

print(f"{pad}----------------------------------")

return my_trace

sys.settrace(my_trace)

Run some code for a demo

eval('"-".join([letter for letter in "hello"])')

The sys.settrace() function will set the current thread state defaulttracing function to the one provided. Any new frames created afterthis call will have f_trace set to this function.

168

The Value Stack
This code snippet prints the code within each stack and points to thenext operation before it is executed. When a frame returns a value,the return statement is printed:

The full list of possible bytecode instructions is available on the dismodule documentation.

The Value Stack
Inside the core evaluation loop, a value stack is created. This stackis a list of pointers to PyObject instances. These could be values likevariables, references to functions (which are objects in Python), orany other Python object.
Bytecode instructions in the evaluation loop will take input from thevalue stack.
Example Bytecode Operation, BINARY_OR
The binary operations that you have been exploring in previous chap-ters compile into a single instruction.
If you inserted an or statement in Python:

169

https://docs.python.org/3/library/dis.html#python-bytecode-instructions
https://docs.python.org/3/library/dis.html#python-bytecode-instructions

The Value Stack
if left or right:

pass

The or operation would be compiled into a BINARY_OR instruction by thecompiler:
static int

binop(struct compiler *c, operator_ty op)

{

switch (op) {

case Add:

return BINARY_ADD;

...

case BitOr:

return BINARY_OR;

In the evaluation loop, the case for a BINARY_OR will take two valuesfrom the value stack, the left, and right operation, then call PyNumber_-
Or against those 2 objects:

...

case TARGET(BINARY_OR): {

PyObject *right = POP();

PyObject *left = TOP();

PyObject *res = PyNumber_Or(left, right);

Py_DECREF(left);

Py_DECREF(right);

SET_TOP(res);

if (res == NULL)

goto error;

DISPATCH();

}

The result, res, is then set as the top of the stack, overriding the currenttop value.

170

The Value Stack
Value Stack Simulations
To understand the evaluation loop, you have to understand the valuestack.
One way to think of the value stack is like a wooden peg on which youcan stack cylinders. You would only add or remove one item at a time.This is done using the PUSH(a)macro, where a is a pointer to a PyObject.
For example, if you created a PyLong with the value 10 and pushed itonto the value stack:
PyObject *a = PyLong_FromLong(10);

PUSH(a);

This action would have the following effect:

a

a

Before After

In the next operation, to fetch that value, you would use the POP()macro to take the top value from the stack:
PyObject *a = POP(); // a is PyLongObject with a value of 10

This actionwould return the top value and end upwith an empty valuestack:

171

The Value Stack

a

Before After

a

result

If you were to add 2 values to the stack:
PyObject *a = PyLong_FromLong(10);

PyObject *b = PyLong_FromLong(20);

PUSH(a);

PUSH(b);

They would end up in the order in which they were added, so a wouldbe pushed to the second position in the stack:

a

a

Before After

b

b

If you were to fetch the top value in the stack, you would get a pointerto b because it is at the top:
PyObject *val = POP(); // returns ptr to b

172

The Value Stack

a

Before After

result

a

b b

If you need to fetch the pointer to the top value in the stack withoutpopping it, you can use the PEEK(v) operation, where v is the stack po-sition:
PyObject *first = PEEK(0);

0 represents the top of the stack, 1 would be the second position:

a

Before After

a

result

a

The DUP_TWO() macro can be used to clone the value at the top of thestack:
DUP_TOP();

This action would copy the value at the top to form 2 pointers to thesame object:

173

The Value Stack

Before After

a a

a

There is a rotation macro ROT_TWO that swaps the first and second val-ues.
ROT_TWO();

a

Before After

b

b

a

Stack E ects
Each of the opcodes has a predefined stack e ect, calculated by the
stack_effect() function inside Python compile.c. This function returnsthe delta in the number of values inside the stack for each opcode.Stack effects can have a positive, negative, or zero value. Once the op-eration has been executed, if the stack effect (e.g., +1) does not matchthe delta in the value stack, an exception is raised to ensure there isno corruption to objects on the value stack.

174

Example: Adding an Item to a List
Example: Adding an Item to a List
In Python, when you create a list, the .append()method is available onthe list object:
my_list = []

my_list.append(obj)

In this example, obj is an object that you want to append to the end ofthe list.
There are 2 operations involved in this operation:
• LOAD_FAST, to load the object obj to the top of the value stack fromthe list of locals in the frame
• LIST_APPEND to add the object

First exploring LOAD_FAST, there are 5 steps:
1. The pointer to obj is loaded from GETLOCAL(), where the variableto load is the operation argument. The list of variable pointers isstored in fastlocals, which is a copy of the PyFrame attribute f_-

localsplus. The operation argument is a number, pointing to theindex in the fastlocals array pointer. This means that the loadingof a local is simply a copy of the pointer instead of having to lookup the variable name.
2. If the variable no longer exists, an unbound local variable error israised.
3. The reference counter for value (in our case, obj) is increased by 1.
4. The pointer to obj is pushed to the top of the value stack.
5. The FAST_DISPATCH macro is called, if tracing is enabled, the loopgoes over again (with all the tracing). If tracing is not enabled, a

goto is called to fast_next_opcode. The goto jumps back to the top ofthe loop for the next instruction.

175

Example: Adding an Item to a List
...

case TARGET(LOAD_FAST): {

PyObject *value = GETLOCAL(oparg); // 1.

if (value == NULL) {

format_exc_check_arg(

PyExc_UnboundLocalError,

UNBOUNDLOCAL_ERROR_MSG,

PyTuple_GetItem(co->co_varnames, oparg));

goto error; // 2.

}

Py_INCREF(value); // 3.

PUSH(value); // 4.

FAST_DISPATCH(); // 5.

}

...

The pointer to obj is now at the top of the value stack, and the nextinstruction, LIST_APPEND, is executed.
Many of the bytecode operations are referencing the base types, like
PyUnicode, PyNumber. For example, LIST_APPEND appends an object to theend of a list. To achieve this, it pops the pointer from the value stackand returns the pointer to the last object in the stack. The macro is ashortcut for:
PyObject *v = (*--stack_pointer);

Now the pointer to obj is stored as v. The list pointer is loaded from
PEEK(oparg).
Then the C API for Python lists is called for list and v. The code forthis is inside Objects listobject.c, which you go into in the chapterObjects and Types.
A call to PREDICT is made, which guesses that the next operation willbe JUMP_ABSOLUTE. The PREDICT macro has compiler-generated gotostatements for each of the potential operations’ case statements. Thismeans the CPU can jump to that instruction and not have to gothrough the loop again:

176

Example: Adding an Item to a List
...

case TARGET(LIST_APPEND): {

PyObject *v = POP();

PyObject *list = PEEK(oparg);

int err;

err = PyList_Append(list, v);

Py_DECREF(v);

if (err != 0)

goto error;

PREDICT(JUMP_ABSOLUTE);

DISPATCH();

}

...

177

Example: Adding an Item to a List
Note
Opcode Predictions
Some opcodes come in pairs, making it possible to predict thesecond code when the first is run. For example, COMPARE_OP isoften followed by POP_JUMP_IF_FALSE or POP_JUMP_IF_TRUE.
“Verifying the prediction costs a single high-speed test of a reg-ister variable against a constant. If the pairing was good, thenthe processor’s own internal branch prediction has a high likeli-hood of success, resulting in a nearly zero-overhead transitionto the next opcode. A successful prediction saves a trip throughthe eval-loop, including its unpredictable switch-case branch.Combined with the processor’s internal branch prediction, asuccessful PREDICT has the effect of making the two opcodesrun as if they were a single new opcode with the bodies com-bined.”
If collecting opcode statistics, you have two choices:
1. Keep the predictions turned-on and interpret the results asif some opcodes had been combined
2. Turn off predictions so that the opcode frequency counterupdates for both opcodes
Opcode prediction is disabled with threaded code since the lat-ter allows the CPU to record separate branch prediction infor-mation for each opcode.

Some of the operations, such as CALL_FUNCTION and CALL_METHOD, have anoperation argument referencing another compiled function. In thesecases, another frame is pushed to the frame stack in the thread. Theevaluation loop is then run for that function until the function com-pletes. Each time a new frame is created and pushed onto the stack,the value of the frame’s f_back is set to the current frame before thenew one is created.
178

Example: Adding an Item to a List
This nesting of frames is clear when you see a stack trace:
cpython-book-samples 31 example_stack.py

def function2():

raise RuntimeError

def function1():

function2()

if __name__ == '__main__':

function1()

Calling this on the command-line will give you:
$./python example_stack.py

Traceback (most recent call last):

File "example_stack.py", line 8, in <module>

function1()

File "example_stack.py", line 5, in function1

function2()

File "example_stack.py", line 2, in function2

raise RuntimeError

RuntimeError

In Lib traceback.py, the walk_stack() function can be used to get tracebacks:
def walk_stack(f):

"""Walk a stack yielding the frame and line number for each frame.

This will follow f.f_back from the given frame. If no frame is given, the

current stack is used. Usually used with StackSummary.extract.

"""

if f is None:

f = sys._getframe().f_back.f_back

while f is not None:

yield f, f.f_lineno

179

Conclusion
f = f.f_back

The parent’s parent (sys._getframe().f_back.f_back) is set as the frame,because you don’t want to see the call to walk_stack() or print_trace()in the traceback. The f_back pointer is followed to the top of the callstack.
sys._getframe() is the Python API to get the frame attribute of the cur-rent thread.
Here is how that frame stack would look visually, with 3 frames eachwith its code object and a thread state pointing to the current frame:

FRAME 0

FRAME 1

FRAME 2

Code Object

Code Object

Code Object

f_back

f_back

Thread State
frame

Conclusion
In this chapter, you’ve been introduced to the “brain” of CPython. Thecore evaluation loop is the interface between compiled Python codeand the underlying C extension modules, libraries, and system calls.
Some parts in this chapter have been glossed over as you’ll go intothem in upcoming chapters. For example, the CPython interpreterhas a core evaluation loop, you can havemultiple loops running at thesame time. Whether that be in parallel or concurrently. CPython canhave multiple evaluation loops running multiple frames on a system.In an upcoming chapter on Parallelism and Concurrency, you will see

180

Conclusion
how the frame stack system is used for CPython to run on multiplecore or CPUs. Also, CPython’s frame object API enables frames to bepaused and resumed in the form of asynchronous programming.
The loading of variables using a Value Stack needs memory allocationand management. For CPython to run effectively, it has to have asolid Memory Management process. In the next chapter, you’ll ex-plore that memory management process, and how it relates to the Py-Object pointers used by the evaluation loop.
Leave feedback on this section »

181

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiLVEqJVk0eU9vJXFxPT8tUjUjZStocnNCTEp3MX1iLT9XMi1tcUxkdSIsInQiOiJjaGFwdGVycy8zMS10aGUtZXhlY3V0aW9uLWxvb3AubWQgKDU0M2RmMDRjYTg3MjI1MzgpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvNTQzZGYwNGNhODcyMjUzOGIzZmQ0MTRkZjcwZTA1YmI1ZGY1NjM4Zi9jaGFwdGVycy8zMS10aGUtZXhlY3V0aW9uLWxvb3AubWQifQ==

Memory Management
The two most important parts of your computer are the memory andthe CPU. They cannot work without the other, they must be utilizedwell, and they must be performant.
When designing a programming language, the authors need to makea vital trade-off:-
“How should the user manage computer memory?”
There are many solutions to this question. It depends on how simpleyou want the interface to be, whether you want the language to becross-platform, whether you value performance over stability.
The authors of Python have made those decisions for you and left youwith some additional ones to make yourself. In this chapter, you willexplore how Cmanages memory, since CPython is written in C. You’lllook at two critical aspects to managing memory in Python - refer-ence counting and garbage collection.
By the end of this chapter, you will understand howCPython allocatesmemory on the Operating System, how object memory is allocatedand freed, and how CPython manages memory leaks.

Memory Allocation in C
In C, variables must have their memory allocated from the OperatingSystem before they can be used.

182

Memory Allocation in C
There are three memory allocation mechanisms in C:
1. Static memory allocation, where memory requirements are calcu-lated at compile time and allocated by the executablewhen it starts
2. Automatic memory allocation, where memory requirements for ascope (e.g., function) are allocated within the call stack when aframe is entered and freed once the frame is terminated
3. Dynamicmemory allocation, wherememory can be requested andallocated dynamically (i.e., at runtime) by calls to the memory al-location API
Static Memory Allocation in C
Types in C have a fixed size. For global and static variables, the com-piler will calculate the memory requirements for all global/static vari-ables and compile that requirement into the application.
For example:
static int number = 0;

You can see the size of a type inCbyusing the sizeof() function. Onmysystem, a 64-bit macOS running GCC, an int is 4 bytes. Basic types inC can have different sizes depending on the architecture and compiler.
For cases of arrays, these are statically defined, for example, an arrayof 10 integers:
static int numbers[10] = {0,1,2,3,4,5,6,7,8,9};

The C compiler converts this statement into an allocation of
sizeof(int) * 10 bytes of memory.
The C compiler uses system calls to allocate memory. These systemcalls depend on the Operating System and are low-level functions tothe Kernel to allocate memory from the system memory pages.

183

Memory Allocation in C
Automatic Memory Allocation in C
Similar to static memory allocation, automatically memory allocationwill calculate the memory allocation requirements at compile-time.
This example application will calculate 100 degrees Fahrenheit in Cel-sius:
cpython-book-samples 32 automatic.c

#include <stdio.h>

static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit){

double c = (fahrenheit - 32) * five_ninths;

return c;

}

int main() {

double f = 100;

printf("%f F is %f Cn", f, celsius(f));

return 0;

}

Both static and dynamicmemory allocation techniques are being usedin the last example:
• The const value five_ninths is statically allocated because it hasthe static keyword
• The variable cwithin the function celsius() is allocated automat-ically when celsius() is called and freed when it is completed
• The variable f within the function main() is allocated automati-cally when main() is called and freed when it is completed
• The result of celsius(f) is implicitly allocated automatically
• The automatic memory requirements of main() are freed when thefunction completes

184

Memory Allocation in C
Dynamic Memory Allocation in C
In many cases, neither static nor automatically memory allocation issufficient. For example- a program cannot calculate the size of thememory required at compile-time because it is a user-input defined.
In such cases, memory is allocated dynamically. Dynamic memoryallocation works by calls to the C memory allocation APIs.
Operating Systems reserve a section of the systemmemory for dynam-ically allocation to processes. This section ofmemory is called aheap.
In this example, you will allocate memory dynamically to an array ofFahrenheit and celsius values.
The application takes some Fahrenheit values to print their celsiusvalues:
cpython-book-samples 32 dynamic.c

#include <stdio.h>

#include <stdlib.h>

static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit){

double c = (fahrenheit - 32) * five_ninths;

return c;

}

int main(int argc, char** argv) {

if (argc != 2)

return -1;

int number = atoi(argv[1]);

double* c_values = (double*)calloc(number, sizeof(double));

double* f_values = (double*)calloc(number, sizeof(double));

for (int i = 0 ; i < number ; i++){

f_values[i] = (i + 10) * 10.0 ;

c_values[i] = celsius((double)f_values[i]);

185

Design of the Python Memory Management System
}

for (int i = 0 ; i < number ; i++){

printf("%f F is %f Cn", f_values[i], c_values[i]);

}

free(c_values);

free(f_values);

return 0;

}

If you execute this with the argument 4, it will print:
100.000000 F is 37.777778 C

110.000000 F is 43.333334 C

120.000000 F is 48.888888 C

130.000000 F is 54.444444 C

This example uses dynamic memory allocation to allocate a block ofmemory from the heap and then free’s the memory back to the heapupon completion.
If any memory that is dynamically allocated is not freed, it will causea memory leak.

Design of the Python MemoryManagement System
Being built on top of C, CPython has to use the constraints of static,automatic, and dynamicmemory allocation.
There are somedesign aspects of the Python language thatmake thoseconstraints even more challenging:
1. Python is a dynamically typed language. The size of variables can-not be calculated at compile-time
2. Most of Python’s core types are dynamically sized. The list typecan be of any size, dict can have any number of keys, even int is

186

Design of the Python Memory Management System
dynamic. The user never has to specify the size of these types

3. Names in Python can be reused to values of different types, e.g.:
>>> a_value = 1

>>> a_value = "Now I'm a string"

>>> a_value = ["Now" , "I'm" "a", "list"]

To overcome these constraints, CPython relies heavily on dynamicmemory allocation but adds safety-rails to automate the freeingof memory using the garbage collection and reference countingalgorithms.
Instead of the Python developer having to allocate memory, PythonObject memory is allocated automatically via a single, unified API.
This design requires that the entire CPython standard library and coremodules (written in C) use this API.
Allocation Domains
CPython comes with three dynamic memory allocation domains:
1. Raw Domain - Used for allocation from the system heap. Usedfor large, or non-object related memory allocation
2. ObjectDomain - Used for allocation of all PythonObject-relatedmemory allocation
3. PyMemDomain - The same as PYMEM_DOMAIN_OBJ, exists for legacyAPI purposes
Each domain implements the same interface of functions:
• _Alloc(size_t size) - allocates memory of size, size, and returns apointer
• _Calloc(size_t nelem, size_t elsize) - allocates memory of size
• _Realloc(void *ptr, size_t new_size) - reallocates memory to a newsize

187

The CPython Memory Allocator
• _Free(void *ptr) - frees memory at ptr back to the heap

The PyMemAllocatorDomain enumeration represents the three domainsin CPython as PYMEM_DOMAIN_RAW, PYMEM_DOMAIN_OBJ, and PYMEM_DOMAIN_MEM.
Memory Allocators
CPython uses two memory allocators:
1. The Operating System allocator (malloc) for the Raw memory do-main
2. The CPython allocator (pymalloc) for the PyMem and ObjectMemory domains

Note
The CPython allocator, pymalloc, is compiled into CPython bydefault. You can remove it by recompiling CPython after setting
WITH_PYMALLOC = 0 in pyconfig.h. If you remove it, the PyMemandObject memory domain APIs will use the system allocator.

If you compiled CPython with debugging (--with-pydebug onmacOS/Linux, or with the Debug target on Windows), then eachof the memory allocation functions will go to a Debug implementa-tion. For example, with debugging enabled, your memory allocationcalls would execute _PyMem_DebugAlloc() instead of _PyMem_Alloc().

The CPython Memory Allocator
The CPythonmemory allocator sits atop the systemmemory allocatorand has its algorithm for allocation. This algorithm is similar to thesystem allocator, except that it is customized to CPython:
• Most of the memory allocation requests are small, fixed-size because PyObject is 16 bytes, PyASCIIObject is 42 bytes,

PyCompactUnicodeObject is 72 bytes, and PyLongObject is 32 bytes.

188

The CPython Memory Allocator
• The pymalloc allocator only allocatesmemory blocks up to 256KB,anything larger is sent to the system allocator
• The pymalloc allocator uses the GIL instead of the system thread-safety check

To help explain this situation, we’re going to use a physical sports sta-dium as our analogy.
This is the stadium of “CPython FC,” our fictional team.
To help manage crowds, CPython FC has implemented a system ofbreaking the stadium up into sections A-E, each with seating rows 1-40.
The rows at the front of the stadium (1-10) are the Premium seats,each taking up more space. So there can only be 80 seats per row.
At the back, from rows 31-40 are the Economy seats. There are 150seats per row:

Section A

Section BSection E

Section D Section C

rows 1-10

rows 11-20

rows 21-30

rows 31-40

• Just like the stadium has seats, the pymalloc algorithm has mem-ory “blocks”

189

The CPython Memory Allocator
• Just like seats can either be Premium, Regular or Economy, blocksare all of a range of fixed sizes. You can’t bring your deckchair
• Just like seats of the same size are put into rows, blocks of the samesize are put into sized pools
• A central register keeps a record of where blocks are and the num-ber of blocks available in a pool, just as the stadiumwould allocateseating
• When a row in the stadium is full, the next row is used. When apool of blocks is full, the next pool is used
• Pools are grouped into arenas, just like the stadium groups therows into sections

There are some advantages to this strategy:
1. The algorithm is more performant for CPython’s main use case-short-lived, small objects
2. The algorithmuses theGIL instead of system thread lock detection
3. The algorithm uses memory mapping (mmap) instead of heap al-location
Related Source Files
Source files related to the memory allocator are:
File Purpose
Include pymem.h PyMem Allocator API
Include cpython pymem.h PyMem Memory Allocator ConfigurationAPI
Include internal pycore_mem.h GC data structure and internal APIs
Objects obmalloc.c Domain allocator implementations, and the

pymalloc implementation

Important Terms
• Requested memory is matched to a block size

190

The CPython Memory Allocator
• Blocks of the same size are all put into the same pool of memory
• Pools are grouped into arenas
Blocks, Pools, and Arenas
The largest group of memory is an arena. CPython creates arenas of256KB to align with the system page size. A system page boundary isa fixed-length contiguous chunk of memory.
Evenwithmodern, high-speedmemory, contiguousmemorywill loadfaster than fragmented. It is beneficial to have contiguous memory.
Arenas
Arenas are allocated against the system heap, and with mmap() on sys-tems supporting anonymous memory mappings. Memory mappinghelps reduce heap fragmentation of the arenas.
This is the representation of 4 arenas within the system heap:

System Heap

Arena Arena Arena Arena

256KB 256KB 256KB 256KB

Arenas have the data struct arenaobject:
Field Type Purpose
address uintptr_t Memory address of the arena
pool_address block * Pointer to the next pool to be carved off forallocation
nfreepools uint The number of available pools in the arena: freepools + never-allocated pools
ntotalpools uint The total number of pools in the arena, whetheror not available

191

http://man7.org/linux/man-pages/man2/mmap.2.html

The CPython Memory Allocator
Field Type Purpose
freepools pool_header* Singly-linked list of available pools
nextarena arena_-

object*

Next arena (see note)
prevarena arena_-

object*

Previous arena (see note)

Note
Arenas are linked together in a doubly-linked list inside thearena data structure, using the nextarena and prevarena pointers.
If this arena isunallocated, the nextarenamember is used. The
nextarena member links all unassociated arenas in the singly-linked unused_arena_objects global variable.
When this arena is associated with an allocated arena, with atleast one available pool, both nextarena and prevarena are usedin the doubly-linked usable_arenas list. This list is maintainedin increasing order of nfreepools values.

192

The CPython Memory Allocator
Pools
Within an arena, pools are created for block sizes up to 512 bytes.
For 32-bit systems, the step is 8 bytes, so there are 64 classes:

Request in bytes Size of allocated block Size class index
1-8 8 09-16 16 117-24 24 225-32 32 3… … …497-504 504 62505-512 512 63

For 64-bit systems, the step is 16 bytes, so there are 32 classes:
Request in bytes Size of allocated block Size class index

1-16 16 017-32 32 133-48 48 249-64 64 3… … …480-496 496 30496-512 512 31

Pools are all 4096 bytes (4KB), so there are always 64 pools in anarena.

System Heap

Arena Arena Arena Arena

256KB 256KB

...

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

...

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Pool

193

The CPython Memory Allocator
Pools are allocated on demand. When no available pools are availablefor the requested class size index, a new one is provisioned. Arenashave a “high water mark” to index how many pools have been provi-sioned.
Pools have three possible states,
1. Full: all available blocks in that pool are allocated
2. Used: the pool is allocated, and some blocks have been set, but itstill has space
3. Empty: the pool is allocated, but no blocks have been set

Arena

Full

Full

Full

Highwater mark

Full

Full

Full

Full

Full

Used

Used

Used

Used

Used

Used

Used

Used

Used

Used

Used

Used

Empty

Empty

Empty

Empty

0

2

3

4

2

8

8

2

Class:Status

1

5

3

8

10

2

2

1

0

4

5

7

9

2

10

1

Unallocated Pool Area

Pools have the data structure poolp, which is a static allocation of thestruct pool_header. The pool_header type has the following properties:
Field Type Purpose
ref uint Number of currently allocated blocks in this pool
freeblock block * Pointer to this pool’s “free list” head
nextpool pool_header* Pointer to the next pool of this size class
prevpool pool_header* Pointer to the previous pool of this size class
arenaindex uint Singly-linked list of available pools
szidx uint Class size index of this pool
nextoffset uint Number of bytes to unused block
maxnextoffset uint Maximum number that nextoffset can be untilpool is full

Each pool of a certain class size will keep a doubly-linked list to the
194

The CPython Memory Allocator
next and previous pools of that class. When the allocation task hap-pens, it is easy to jump between pools of the same class size within anarena by following this list.
Pool Tables
A register of the pools within an arena is called a pool table.
A pool table is a headed, circular, doubly-linked list of partially-usedpools. The pool table is segmented by class size index, i. For an indexof i, usedpools[i + i] points to the header of a list of all partially-usedpools that have the size index for that class size.
Pool tables have some essential characteristics:
• When a pool becomes full, it is unlinked from its usedpools[] list.
• If a full block has a block freed, the pool back is put back in theused state. The newly freed pool is linked in at the front of theappropriate usedpools[] list so that the next allocation for its sizeclass will reuse the freed block.
• On transition to empty, a pool is unlinked from its usedpools[] list,and linked to the front of its arena’s singly-linked freepools list.

Blocks
Within a pool, memory is allocated into blocks. Blocks have the fol-lowing characteristics:
• Within a pool, blocks of fixed class size can be allocated and freed.
• Available blocks within a pool are listed in the singly-linked list,

freeblock.
• When a block is freed, it is inserted at the front of the freeblock list.
• When a pool is initialized, only the first two blocks are linkedwithin the freeblock list.
• As long a pool is in the used state, there will be a block availablefor allocating.

195

The CPython Memory Allocator
A partially allocated pool with a combination f used, freed, and avail-able blocks:

Poolfreeblock Clean Blocks

Block Allocation API
When a block of memory is requested by a memory domain that uses
pymalloc, the pymalloc_alloc function will be called.
This function is a good place to insert a breakpoint and step throughthe code to test your knowledge of the blocks, pools, and arenas.
Objects obmalloc.c line 1590
static inline void*

pymalloc_alloc(void *ctx, size_t nbytes)

{

...

For a request of nbytes = 30, it is neither zero, nor below the SMALL_-

REQUEST_THRESHOLD of 512:
if (UNLIKELY(nbytes == 0)) {

return NULL;

}

if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {

return NULL;

}

For a 64-bit system, the size class index is calculated as 1. This corre-lates to the 2nd class size index (17-32 bytes). The target pool is then
usedpools[1 + 1] (usedpools[2]):

196

https://github.com/python/cpython/blob/v3.9.0b1/Objects/obmalloc.c#L1590

The CPython Memory Allocator
uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;

poolp pool = usedpools[size + size];

block *bp;

Next, a check is done to see if there is an available ('used') pool for theclass size index. If the freeblock list is at the end of the pool, then thereare still clean blocks available in that pool. pymalloc_pool_extend() iscalled to extend the freeblock list:
if (LIKELY(pool != pool->nextpool)) {

/*

* There is a used pool for this size class.

* Pick up the head block of its free list.

*/

++pool->ref.count;

bp = pool->freeblock;

assert(bp != NULL);

if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {

// Reached the end of the free list, try to extend it.

pymalloc_pool_extend(pool, size);

}

}

If there were no available pools, a new pool is created and the firstblock is returned. The allocate_from_new_pool() function adds the newpool to the usedpools list automatically:
else {

/* There isn't a pool of the right size class immediately

* available: use a free pool.

*/

bp = allocate_from_new_pool(size);

}

return (void *)bp;

}

Finally, the new block address is returned.

197

The Object and PyMem Memory Allocation Domains
Using the Python Debug API
The sys module contains an internal function, _debugmallocstats(), toget the number of blocks in use for each of the class size pools. It willalso print the number of arenas allocated, reclaimed, and the totalnumber of blocks used.
You can use this function to see the running memory usage:
$./python -c "import sys; sys._debugmallocstats()"

Small block threshold = 512, in 32 size classes.

class size num pools blocks in use avail blocks

----- ---- --------- ------------- ------------

0 16 1 181 72

1 32 6 675 81

2 48 18 1441 71

...

2 free 18-sized PyTupleObjects * 168 bytes each = 336

3 free 19-sized PyTupleObjects * 176 bytes each = 528

The output shows the class index size table, the allocations, and someadditional statistics.

The Object and PyMemMemoryAllocation Domains
CPython’s object memory allocator is the first of the three domainsthat you will explore.
The purpose of the Object memory allocator is to allocate memory re-lated to Python Objects, such as:
• New Object Headers
• Object data, such as dictionary keys and values, or list items

The allocator is also used for the compiler, AST, parser and evaluation
198

The Object and PyMem Memory Allocation Domains
loop.
An excellent example of the Objectmemory allocator being used is the
PyLongObject (int) type constructor, PyLong_New().
• When a new int is constructed, memory is allocated from the Ob-ject Allocator.
• The size of the request is the size of the PyLongObject struct, plusthe amount of memory required to store the digits.

Python longs are not equivalent to C’s long type. They are a list ofdigits.
The number 12378562834 in Python would be represented as the list ofdigits [1,2,3,7,8,5,6,2,8,3,4].
This memory structure is how Python can deal with huge numberswithout having to worry about 32 or 64-bit integer constraints.
Take a look at the PyLong constructor to see an example of object mem-ory allocation:
PyLongObject *

_PyLong_New(Py_ssize_t size)

{

PyLongObject *result;

...

if (size > (Py_ssize_t)MAX_LONG_DIGITS) {

PyErr_SetString(PyExc_OverflowError,

"too many digits in integer");

return NULL;

}

result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +

size*sizeof(digit));

if (!result) {

PyErr_NoMemory();

return NULL;

}

199

The Object and PyMem Memory Allocation Domains
return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);

}

If you were to call _PyLong_New(2), it would calculate:
Value Bytes
sizeof(digit) 4size 2header offset 26Total 32

A call to PyObject_MALLOC() would be made with a size_t value of 32.
On my system, the maximum number of digits in a long, MAX_LONG_-
DIGITS, is 2305843009213693945 (a very, very big number). If you ran _-

PyLong_New(2305843009213693945) it would call PyObject_MALLOC() with a
size_t of 9223372036854775804 bytes, or 8,589,934,592 Gigabytes (moreRAM than I have available).
Using the tracemalloc Module
The tracemalloc in the standard library can be used to debug memoryallocation through the Object Allocator. It provides information onwhere an object was allocated, and the number of memory blocks al-located.
As a debug tool, it is beneficial to calculate the amount of memoryconsumed by running your code or detect memory leaks.
To enable memory tracing, you should start Python with the -X

tracemalloc=1, where 1 is the number of frames deep you want totrace. Alternatively, you can enable memory tracing using the
PYTHONTRACEMALLOC=1 environment variable. 1 is the number of framesdeep you want to trace and can be replaced with any integer.
You can use the take_snapshot() function to create a snapshot instance,then compare multiple snapshots using compare_to().

200

The Object and PyMem Memory Allocation Domains
Create an example tracedemo.py file to see this in action:
cpython-book-samples 32 tracedemo.py

import tracemalloc

tracemalloc.start()

def to_celsius(fahrenheit, /, options=None):

return (fahrenheit-32)*5/9

values = range(0, 100, 10) # values 0, 10, 20, ... 90

for v in values:

c = to_celsius(v)

after = tracemalloc.take_snapshot()

tracemalloc.stop()

after = after.filter_traces([tracemalloc.Filter(True, '**/tracedemo.py')])

stats = after.statistics('lineno')

for stat in stats:

print(stat)

Executing thiswill print a list of thememory usedby line, fromhighestto lowest:
$./python -X tracemalloc=2 tracedemo.py

/Users/.../tracedemo.py:5: size=712 B, count=2, average=356 B

/Users/.../tracedemo.py:13: size=512 B, count=1, average=512 B

/Users/.../tracedemo.py:11: size=480 B, count=1, average=480 B

/Users/.../tracedemo.py:8: size=112 B, count=2, average=56 B

/Users/.../tracedemo.py:6: size=24 B, count=1, average=24 B

The line with the highest memory consumption was return

(fahrenheit-32)*5/9 (the actual calculation).

201

The Raw Memory Allocation Domain
The RawMemory Allocation Domain
The Raw Memory Allocation domain is used either directly, or whenthe other two domains are called with a request size over 512 KB.
It takes the request size, in bytes, and calls malloc(size).
If the size argument is 0, some systems will return NULL for mal-loc(0), which would be treated as an error.Some platforms would return a pointer with no memory behindit, which would break pymalloc. To solve these problems, _PyMem_-
RawMalloc() will add an extra byte before calling malloc().

Important
By default, the PyMem Domain allocators will use the ObjectAllocators. PyMem_Malloc() and PyObject_Malloc() will have thesame execution path.

Custom Domain Allocators
CPython also allows for the allocation implementation for any of thethree domains to be overridden. If your system environment requiredbespoke memory checks or algorithms for memory allocation, thenyou can plug a new set of allocation functions into the runtime.
PyMemAllocatorEx is a typedef structwithmembers for all of themethodsyou would need to implement to override the allocator:
typedef struct {

/* user context passed as the first argument to the 4 functions */

void *ctx;

/* allocate a memory block */

void* (*malloc) (void *ctx, size_t size);

/* allocate a memory block initialized by zeros */

202

Custom Memory Allocation Sanitizers
void* (*calloc) (void *ctx, size_t nelem, size_t elsize);

/* allocate or resize a memory block */

void* (*realloc) (void *ctx, void *ptr, size_t new_size);

/* release a memory block */

void (*free) (void *ctx, void *ptr);

} PyMemAllocatorEx;

The API method PyMem_GetAllocator() is available to get the existingimplementation:
PyMemAllocatorEx * existing_obj;

PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, existing_obj);

Important
There are some important design tests for custom allocators:
• The new allocator must return a distinct non-NULL pointerwhen requesting zero bytes
• For the PYMEM_DOMAIN_RAW domain, the allocatormust be thread-safe

If you implemented functions My_Malloc, My_Calloc, My_Realloc and My_-

Free implementing the signatures in PyMemAllocatorEx, you could over-ride the allocator for any domain, e.g., the PYMEM_DOMAIN_OBJ domain:
PyMemAllocatorEx my_allocators =

{NULL, My_Malloc, My_Calloc, My_Realloc, My_Free};

PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &my_allocators);

CustomMemory Allocation Sanitizers
Memory allocation sanitizers are an additional algorithm placed be-tween the system call to allocate memory, and the kernel function toallocate the memory on the system. They are used for environments

203

https://github.com/python/cpython/blob/v3.9.0b1/Objects/obmalloc.c#L520

Custom Memory Allocation Sanitizers
that require specific stability constraints, very high security, or for de-bugging memory allocation bugs.
CPython can be compiled using several memory sanitizers. These arepart of the compiler libraries, not something developed for CPython.
They typically slow down CPython significantly and cannot be com-bined. They generally are for use in debugging scenarios or systemswhere preventing corrupt memory access is critical.
Address Sanitizer
Address Sanitizer is a “fast” memory error detector. It can detectmany runtime memory-related bugs:
• Out-of-bounds accesses to heap, stack, and globals
• Memory being used after it has been freed
• Double-free, invalid free

It can be enabled by running:
$./configure --with-address-sanitizer ...

Important
Address Sanitizerwould slowdown applications by up to 2x andconsume up to 3x more memory.

Address Sanitizer is supported on:
• Linux
• macOS
• NetBSD
• FreeBSD

See the official documentation for more information.

204

https://clang.llvm.org/docs/AddressSanitizer.html

Custom Memory Allocation Sanitizers
Memory Sanitizer
Memory Sanitizer is a detector of uninitialized reads. If an addressspace is addressed before it has been initialized (allocated), then theprocess is stopped before the memory can be read.
It can be enabled by running:
$./configure --with-memory-sanitizer ...

Important
Memory Sanitizer would slow down applications by up to 2xand consume up to 2x more memory.

Memory Sanitizer is supported on:
• Linux
• NetBSD
• FreeBSD

See the official documentation for more information.
Unde ned Behavior Sanitizer
Undefined Behavior Sanitizer is a “fast” undefined behavior detector.It can catch various kinds of undefined behavior during execution, forexample:
• Using misaligned or null pointer
• Signed integer overflow
• Conversion to, from, or between floating-point types which wouldoverflow the destination

It can be enabled by running:

205

https://clang.llvm.org/docs/MemorySanitizer.html

The PyArena Memory Arena
$./configure --with-undefined-behavior-sanitizer ...

Undefined Behavior Sanitizer is supported on:
• Linux
• macOS
• NetBSD
• FreeBSD

See the official documentation for more information.
The Undefined Behavior Sanitizer has many configurations, using
--with-undefined-behavior-sanitizer will set the undefined profile. Touse another profile, e.g., nullability, run ./configure with the customCFLAGS:
$./configure CFLAGS="-fsanitize=nullability"

LDFLAGS="-fsanitize=nullability"

The PyArena Memory Arena
Throughout this book, you will see references to a PyArena object.
The PyArena is a separate arena allocation API used for the compiler,frame evaluation, and other parts of the system not run fromPython’sObject allocation API. The PyArena also has its own list of allocatedobjects within the arena structure. Memory allocated by the PyArena isnot a target of the garbage collector.
When memory is allocated in a PyArena instance, it will capture a run-ning total of the number of blocks allocated, then call PyMem_Alloc.
Allocation requests to the PyArena use the Object Allocator for blocks<= 512KB, or the Raw Allocator for blocks > 256KB.
Related Files

206

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/python/cpython/blob/v3.9.0b1/Include/pyarena.h#L12

Reference Counting
File Purpose
Include pyarena.h The PyArena API and type definitions
Python pyarena.c The PyArena implementation

Reference Counting
As you have explored so far in this chapter, CPython is built on C’sDynamic Memory Allocation system. Memory requirements are de-termined at runtime, and memory is allocated on the system usingthe PyMem APIs.
For the Python developer, this system has been abstracted and simpli-fied. Developers don’t have to worry (too much) about allocating andfree’ing memory.
To achieve simple memory management, Python adopts two strate-gies for managing the memory allocated by objects:
1. Reference Counting
2. Garbage Collection
Creating Variables in Python
To create a variable in Python, you have to assign a value to a uniquelynamed variable. For example:
my_variable = ['a', 'b', 'c']

When a value is assigned to a variable in Python, the name of thevariable is checked within the locals and globals scope to see if it al-ready exists.
In the example, my_variable is not already within any locals() or
globals() dictionary. A new list object is created, and a pointer isstored in the locals() dictionary. There is now one reference to
my_variable. The list object’s memory should not be freed while thereare valid references to it. If memory were freed, the my_variable

207

Reference Counting
pointer would point to invalid memory space, and CPython wouldcrash.
Throughout the C source code for CPython, you will see calls to Py_-

INCREF() and Py_DECREF().
These macros are the primary API for incrementing and decrement-ing references to Python objects. Whenever something depends ona value, the reference count increases, when that dependency is nolonger valid, the reference count decreases.If a reference count reaches zero, it is assumed that it is no longerneeded, and it is automatically freed.
Incrementing References
Every instance of PyObject has a property ob_refcnt. This property is acounter of the number of references to that object.
References to an object are incremented under many scenarios. Inthe CPython code base, there are over 3000 calls to Py_INCREF(). Themost frequent calls are when an object is:
• assigned to a variable name
• referenced as a function or method argument
• returned, or yielded from a function

The logic behind the Py_INCREFmacro is simple. It increments the ob_-

refcnt value by 1:
static inline void _Py_INCREF(PyObject *op)

{

_Py_INC_REFTOTAL;

op->ob_refcnt++;

}

If CPython is compiled in debugmode, _Py_INC_REFTOTALwill incrementa global reference counter, _Py_RefTotal.

208

https://github.com/python/cpython/blob/v3.9.0b1/Include/object.h#L411
https://github.com/python/cpython/blob/v3.9.0b1/Include/object.h#L411
https://github.com/python/cpython/blob/v3.9.0b1/Include/object.h#L437

Reference Counting
Note
You can see the global reference counter by adding the -X

showrefcount flag when running CPython:
$./python -X showrefcount -c "x=1; x+=1; print(f'x is {x}')"

x is 2

[18497 refs, 6470 blocks]

The first number in brackets is the number of references madeduring the process, and the second is the number of allocatedblocks.

Decrementing References
References to an object are decremented when a variable falls outsideof the scope in which it was declared. Scope in Python can refer to afunction or method, a comprehension, or a lambda. These are someof the more literal scopes, but there are many other implicit scopes,like passing variables to a function call.
The Py_DECREF() function is more complex than Py_INCREF() because italso handles the logic of a reference count reaching 0, requiring theobject memory to be freed:
static inline void _Py_DECREF(

#ifdef Py_REF_DEBUG

const char *filename, int lineno,

#endif

PyObject *op)

{

_Py_DEC_REFTOTAL;

if (--op->ob_refcnt != 0) {

#ifdef Py_REF_DEBUG

if (op->ob_refcnt < 0) {

_Py_NegativeRefcount(filename, lineno, op);

}

#endif

209

Reference Counting
}

else {

_Py_Dealloc(op);

}

}

Inside Py_DECREF(), when the reference counter (ob_refcnt) value be-comes 0, the object destructor is called via _Py_Dealloc(op), and anyallocated memory is freed.
As with Py_INCREF(), there are some additional functions whenCPython has been compiled in debug mode.
For an increment, there should be an equivalent decrement operation.
If a reference count becomes a negative number, this indicates an im-balance in theC code. An attempt to decrement references to an objectthat has no references will give this error message:
<file>:<line>: _Py_NegativeRefcount: Assertion failed:

object has negative ref count

Enable tracemalloc to get the memory block allocation traceback

object address : 0x109eaac50

object refcount : -1

object type : 0x109cadf60

object type name: <type>

object repr : <refcnt -1 at 0x109eaac50>

When making changes to the behavior of an operation, the Pythonlanguage, or the compiler, you must carefully consider the impact onobject references.
Reference Counting in Bytecode Operations
A large portion of the reference counting in thePythonhappenswithinthe bytecode operations in Python ceval.c.
Take this example, how many references do you think there are to y?

210

Reference Counting
y = "hello"

def greet(message=y):

print(message.capitalize() + " " + y)

messages = [y]

greet(*messages)

At a glance, y is immediately referenced by:
1. y is a variable in the top-level scope
2. y is referenced as a default value for the keyword argument message
3. y is referenced inside the greet() function
4. y is an item in the messages list
Run this code with an additional snippet:
import sys

print(sys.getrefcount(y))

The total references to y is 6.
Instead of the logic for incrementing and decrementing references sit-ting within a central function that has to cater for all these cases (andmore!), the logic is split into small parts.
A bytecode operation should have a determining impact on the refer-ence counter for the objects that it takes as arguments.
For example, in the frame evaluation loop, the LOAD_FAST operationloads the object with a given name and pushes it to the top of the valuestack. Once the variable name, which is provided in the oparg, hasbeen resolved using GETLOCAL() the reference counter is incremented:

case TARGET(LOAD_FAST): {

PyObject *value = GETLOCAL(oparg);

211

Reference Counting
if (value == NULL) {

format_exc_check_arg(tstate, PyExc_UnboundLocalError,

UNBOUNDLOCAL_ERROR_MSG,

PyTuple_GetItem(co->co_varnames, oparg));

goto error;

}

Py_INCREF(value);

PUSH(value);

FAST_DISPATCH();

}

A LOAD_FAST operation is compiled by many AST nodes that have oper-ations.
For example, if you were to assign two variables a and b, then createthird, c from the result of multiplying them:
a = 10

b = 20

c = a * b

In the third operation, c = a * b, the right-hand side expression, a *

b, would be assembled into three operations:
1. LOAD_FAST, resolving the variable a and pushing it to the value stackthen incrementing the references to a by 1
2. LOAD_FAST, resolving the variable b and pushing it to the value stackthen incrementing the references to b by 1
3. BINARY_MULTIPLY

The binary multiply operator, BINARY_MULTIPLY knows that referencesto the left and right variables in the operation have been loaded to thefirst and second positions in the value stack. It is also implied that the
LOAD_FAST operation incremented its reference counters.
In the implementation of the BINARY_MULTIPLY operation, the referencesto both a (left) and b (right) are decremented once the result has beencalculated.

212

Reference Counting
case TARGET(BINARY_MULTIPLY): {

PyObject *right = POP();

PyObject *left = TOP();

PyObject *res = PyNumber_Multiply(left, right);

>>> Py_DECREF(left);

>>> Py_DECREF(right);

SET_TOP(res);

if (res == NULL)

goto error;

DISPATCH();

}

The resulting number, res, will have a reference count of 1 before it isset as the top of the value stack.
Conclusion
CPython’s reference counter has the benefits of being simple, fast, andefficient.
The biggest drawback of the reference counter is that it needs to caterfor, and carefully balance, the effect of every operation.
As you just saw, a bytecode operation increments the counter, and itis assumed that an equivalent operation will decrement it properly.What happens if there’s an unexpected error? Have all possible sce-narios been tested?
Everything discussed so far is within the realm of the CPython run-time. The Python developer has little to no control over this behavior.
There is also a significant flaw in the reference counting approach–cyclical references.
Take this Python example:
x = []

x.append(x)

del x

213

Garbage Collection
The reference count for x is still 1 because it referred to itself.
To cater to this complexity, and resolve some of these memory leaks,CPython has a second memory management mechanism, GarbageCollection.

Garbage Collection
How often does your garbage get collected? Weekly or fortnightly?
When you’re finished with something, you discard it and throw it inthe trash. But that trash won’t get collected straight away. You needto wait for the garbage trucks to come and pick it up.
CPython has the same principle, using a garbage collection algorithm.CPython’s garbage collector is enabled by default, happens in thebackground, and works to deallocate memory that’s been used for ob-jects which no longer exist.
Because the garbage collection algorithm is a lot more complicatedthan the reference counter, it doesn’t happen all the time. If it did, itwould consume a vast amount of CPU resources. The garbage collec-tion runs periodically after a set number of operations.
Related Source Files
Source files related to the garbage collector are:
File Purpose
Modules gcmodule.c The Garbage Collection module andalgorithm implementation
Include internal pycore_mem.h The GC data structure and internal APIs

The GC Design
As you uncovered in the previous section, every Python object retainsa counter of the number of references to it. Once that counter reaches

214

Garbage Collection
0, the object is finalized, and the memory is freed.
Many of the Python container types, like lists, tuples, dictionaries,and sets, could result in cyclical references. The reference counter isan insufficient mechanism to ensure that objects which are no longerrequired are freed. While creating cyclical references in containersshould be avoided, there are many examples within the standard li-brary and the core interpreter.
Here is another common example, where a container type (class) canrefer to itself:
cpython-book-samples 32 user.py

__all__ = ['User']

class User(BaseUser):

name: 'str' = ""

login: 'str' = ""

def __init__(self, name, login):

self.name = name

self.login = login

super(User).__init__()

def __repr__(self):

return ""

class BaseUser:

def __repr__(self):

This creates a cyclical reference

return User.__repr__(self)

In this example, the instance of User links to the BaseUser type, whichreferences back to the instance of User.
The goal of the garbage collector is to find unreachable objects andmark them as garbage.

215

Garbage Collection
Some GC algorithms, like mark-and-sweep, or stop-and-copy start atthe root of the system and explore all reachable objects. This is hardto do in CPython because C extension modules can define and storetheir own objects. You could not easily determine all objects by simplylooking at locals() and globals().
For long-running processes, or large data processing tasks, runningout of memory would cause a significant issue.
Instead, the CPython garbage collector leverages the existing refer-ence counter and a custom garbage collector algorithm to find all un-reachable objects. Because the reference counter is already in place,the role of the CPython garbage collector is to look for cyclical refer-ences in certain container types.
Container Types Included in GC
The Garbage Collector will look for types that have the flag Py_-

TPFLAGS_HAVE_GC set in their type definition.You will cover type definitions in the chapter Objects in CPython.
Types that are marked for garbage collection are:
• Class, Method and Function objects
• Cell Objects
• Byte arrays, Byte, and Unicode strings
• Dictionaries
• Descriptor Objects, used in attributes
• Enumeration Objects
• Exceptions
• Frame Objects
• Lists, Tuples, Named Tuples and Sets
• Memory Objects
• Modules and Namespaces

216

Garbage Collection
• Type and Weak Reference Objects
• Iterators and Generators
• Pickle Buffers

Wondering what’s missing? Floats, Integers, Boolean, and NoneTypeare not marked for garbage collection.
Custom types written with C extension models can be marked as re-quiring GC using the GC C-API.
Untrackable Objects and Mutability
The GC will track certain types for changes in their properties to de-termine which are unreachable.
Some container instances are not subject to change because they areimmutable, so the API provides a mechanism for “untracking.” Thefewer objects there are to be tracked by the GC, the faster and moreefficient the GC is.
An excellent example of untrackable objects is tuples. Tuples are im-mutable. Once you create them, they cannot be changed. However,tuples can contain mutable types, like lists and dictionaries.
This design in Python creates many side-effects, one of which is theGC algorithm. When a tuple is created, unless it is empty, it is markedfor tracking. When theGC runs, every tuple looks at its contents to seeif it only contains immutable (untracked) instances. This step is com-pleted in _PyTuple_MaybeUntrack(). If the tuple determines that it onlycontains immutable types, like booleans and integers, it will removeitself from the GC tracking by calling _PyObject_GC_UNTRACK().
Dictionaries are empty when they are created and untracked. Whenan item is added to a dictionary, if it is a tracked object, the dictionarywill request itself to be tracked by the GC.
You can see if any object is being tracked by calling gc.is_tracked(obj).

217

https://docs.python.org/3.8/c-api/gcsupport.html
https://github.com/python/cpython/blob/v3.9.0b1/Objects/tupleobject.c#L180
https://github.com/python/cpython/blob/v3.9.0b1/Include/internal/pycore_object.h#L79

Garbage Collection
Garbage Collection Algorithm

See Also
The CPython core development team has written a detailedguide on the GC algorithm.

Initialization
The PyGC_Collect() entry-point follows five steps to start, and stop thegarbage collector.
1. Get the Garbage Collection state, GCState from the interpreter
2. Check to see if the GC is enabled
3. Check to see if the GC is already running
4. Run the collection function, collect() with progress callbacks
5. Mark the GC as completed
When the collection stage is run and completed, callback methodscan be user-specified by the gc.callbacks list. Callbacks should havea method signature f(stage: str, info: dict):
Python 3.9.0b1 (tags/v3.9.0b1:97fe9cf, May 19 2020, 10:00:00)

[Clang 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import gc

>>> def gc_callback(phase, info):

... print(f"GC phase:{phase} with info:{info}")

...

>>> gc.callbacks.append(gc_callback)

>>> x = []

>>> x.append(x)

>>> del x

>>> gc.collect()

GC phase:start with info:{'generation': 2, 'collected': 0, 'uncollectable': 0}

GC phase:stop with info:{'generation': 2, 'collected': 1, 'uncollectable': 0}

1

218

https://devguide.python.org/garbage_collector/
https://devguide.python.org/garbage_collector/
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L2053
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170

Garbage Collection
The Collection Stage
In the main GC function, collect() targets a particular generation.There are 3 generations in CPython. Before you understand the pur-pose of the generations, it’s important to understand the collectionalgorithm.
For each collection, the GC will use a doubly-linked list of type PyGC_-

HEAD.
So that the GC doesn’t have to “find” all container types, all containertypes that are a target for the GC have an additional header. Thisheader links them all together in a doubly-linked list. When one ofthese container types is created, it adds itself to the list, and when itis destroyed, it removes itself.
You can see an example of this in the cellobject.c type:
Objects cellobject.c line 7
PyObject *

PyCell_New(PyObject *obj)

{

PyCellObject *op;

op = (PyCellObject *)PyObject_GC_New(PyCellObject, &PyCell_Type);

if (op == NULL)

return NULL;

op->ob_ref = obj;

Py_XINCREF(obj);

>> _PyObject_GC_TRACK(op);

return (PyObject *)op;

}

Because cells are mutable, the object is marked to be tracked by a callto _PyObject_GC_TRACK().
When cell objects are deleted, the cell_dealloc() function is called.This function takes three steps:

219

https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0b1/Include/internal/pycore_object.h#L51
https://github.com/python/cpython/blob/v3.9.0b1/Objects/cellobject.c#L79

Garbage Collection
1. The destructor tells the GC to stop tracking this instance by calling

_PyObject_GC_UNTRACK(). Because it has been destroyed, it’s contentsdon’t need to be checked for changes in subsequent collections.
2. Py_XDECREF is a standard call in any destructor to decrement the ref-erence counter. The reference counter for an object is initializedto 1, so this counters that operation.
3. The PyObject_GC_Del() will remove this object from the GC linked-list by calling gc_list_remove() and then free the memory with

PyObject_FREE().
Objects cellobject.c line 79
static void

cell_dealloc(PyCellObject *op)

{

_PyObject_GC_UNTRACK(op);

Py_XDECREF(op->ob_ref);

PyObject_GC_Del(op);

}

When a collection starts, it will merge younger generations into thecurrent. For example, if you are collecting the second generation,when it starts collecting, it will merge the first generation’s objectsinto the GC list using gc_list_merge().
TheGCwill then determine unreachable objects in the young (currentlytargeted) generation.
The logic for determining unreachable objects is located in deduce_-

unreachable(). It follows these stages:
1. For every object in the generation, copy the reference count value

ob->ob_refcnt to ob->gc_ref.
2. For every object, subtract internal (cyclical) references from gc_-

refs to determine how many objects can be collected by the GC. If
gc_refs ends up equal to 0, that means it is unreachable.

3. Create a list of unreachable objects and add every object that met
220

https://github.com/python/cpython/blob/v3.9.0b1/Include/internal/pycore_object.h#L79
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L2314
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L254
https://github.com/python/cpython/blob/v3.9.0b1/Include/objimpl.h#L108
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L289

Garbage Collection
the criteria in (2) to it.

4. Remove every object that met the criteria in (2) from the genera-tion list.
There is no single method for determining cyclical references. Eachtype must define a custom function with signature traverseproc in the
tp_traverse slot. To complete task (2), the deduce_unreachable() func-tion will call the traversal function for every object within a subtract_-

refs() function.It is expected that the traversal function will run the callback visit_-

decref() for every item it contains:
Modules gcmodule.c line 462
static void

subtract_refs(PyGC_Head *containers)

{

traverseproc traverse;

PyGC_Head *gc = GC_NEXT(containers);

for (; gc != containers; gc = GC_NEXT(gc)) {

PyObject *op = FROM_GC(gc);

traverse = Py_TYPE(op)->tp_traverse;

(void) traverse(FROM_GC(gc),

(visitproc)visit_decref,

op);

}

}

The traversal functions are kept within each object’s source code in
Objects. For example, the tuple type’s traversal, tupletraverse() calls
visit_decref() on all of it’s items. The dictionary type, will call visit_-
decref() on all keys and values.
Any object which did not end up being moved to the unreachable listgraduates to the next generation.

221

https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1084
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L462
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L462
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0b1/Objects/tupleobject.c#L625
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L439

Garbage Collection
Freeing Objects
Once unreachable objects have been determined, they can be (care-fully) freed following these stages.
The approach depends on whether the type implements the old or thenew finalizer slot:
1. If an object has defined a finalizer in the legacy tp_del slot, it cannotsafely be deleted and is marked as uncollectable. These are addedto the gc.garbage list for the developer to destroy manually.
2. If an object has defined a finalizer in the tp_finalize slot, mark theobjects as finalized to avoid calling them twice.
3. If an object in (2) has been “resurrected” by being initialized again,the GC reruns the collection cycle.
4. For all objects, call the tp_clear slot. This slot changes the refer-ence count, ob_refcnt, to 0, triggering the freeing of memory.
Generational GC
Generational garbage collection is a technique based on the observa-tion that most (80%+) objects are destroyed shortly after being cre-ated.
CPython’s GC uses three generations that have thresholds to triggertheir collections. The youngest generation (0) has a high thresholdto avoid the collection loop being run too frequently. If an object sur-vives the GC, it will move to the second generation, and then the third.
In the collection function, a single generation is targeted, and itmerges younger generations into it before execution. For this reason,if you run collect() on generation 1, it will collect generation 0.Likewise, running collect on generation 2 will collect() generations 0and 1.
When objects are instantiated, the generational counters are in-cremented. When the counter reaches a user-defined threshold,

222

https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170
https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170

Garbage Collection
collect() is automatically run.
Using the GC API From Python
CPython’s standard library comes with a Python module to interfacewith the arena and the garbage collector, the gc module. Here’s howto use the gc module in debug mode:
>>> import gc

>>> gc.set_debug(gc.DEBUG_STATS)

This will print the statistics whenever the garbage collector is run:
gc: collecting generation 2...

gc: objects in each generation: 3 0 4477

gc: objects in permanent generation: 0

gc: done, 0 unreachable, 0 uncollectable, 0.0008s elapsed

You use the gc.DEBUG_COLLECTABLE to discover when items are collectedfor garbage. When you combine this with the gc.DEBUG_SAVEALL debugflag, it will move items to a list, gc.garbage once they have been col-lected:
>>> import gc

>>> gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_SAVEALL)

>>> z = [0, 1, 2, 3]

>>> z.append(z)

>>> del z

>>> gc.collect()

gc: collectable <list 0x10d594a00>

>>> gc.garbage

[[0, 1, 2, 3, [...]]]

You can get the threshold after which the garbage collector is run bycalling get_threshold():
>>> gc.get_threshold()

(700, 10, 10)

223

https://github.com/python/cpython/blob/v3.9.0b1/Modules/gcmodule.c#L1170

Conclusion
You can also get the current threshold counts:
>>> gc.get_count()

(688, 1, 1)

Lastly, you can run the collection algorithmmanually for a generation,and it will return the collected total:
>>> gc.collect(0)

24

If you don’t specify a generation, it will default to 2, which mergesgenerations 0 and 1:
>>> gc.collect()

20

Conclusion
In this chapter, you’ve been shown how CPython allocates, manages,and frees memory. These operations happen 1000s of times duringthe lifecycle of even the simplest Python script. The reliability andscalability of CPython’s Memory Management system are what en-ables it to scale from a 2-line script all the way to run some of theworld’s biggest websites.
TheObject andRawMemoryAllocation systems you’ve been shown inthis chapter will come in useful if you develop C extensionmodules. Cextensionmodules require an intimate knowledge of CPython’s Mem-ory Management system. Even a single missing Py_INCREF() can causea memory leak or system crash.
When working with pure Python code, knowledge of the GC is usefulif you’re designing long-running Python code. For example, if you de-signed a single function that executes over hours, days, or even longer.This function would need to carefully manage its memory within theconstraints of the system on which it’s executing. You can use someof the techniques learned in this chapter to control and tweak the GC

224

Conclusion
generations to better optimize your code and its memory footprint.
Leave feedback on this section »

225

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoia3koSyhZfSh7OTB-fHtaQyFfIytzdmc3SXAlODRVZHZFX0hSMUUrSCIsInQiOiJjaGFwdGVycy8zMi1tZW1vcnktbWFuYWdlbWVudC5tZCAoNWVmNDA1YTdmYmU3M2E0OSkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi81ZWY0MDVhN2ZiZTczYTQ5NDU0Mjc4ODk0MzIzNDk4MWUwMzRkMWNhL2NoYXB0ZXJzLzMyLW1lbW9yeS1tYW5hZ2VtZW50Lm1kIn0=

Parallelism andConcurrency
The first computers were designed to do one thing at a time. A lot oftheir work was in the field of computational mathematics. As timewent on, computers are needed to process inputs from a variety ofsources. Some input as far away as distant galaxies. The consequenceof this is that computer applications spend a lot of time idly waitingfor responses. Whether they be from a bus, an input, memory, com-putation, an API, or a remote resource.
Another progression in computing was the move in Operating Sys-tems away from a single-user terminal, to a multitasking OperatingSystem. Applications needed to run in the background to listen andrespond on the network and process inputs such as the mouse cursor.Multitaskingwas requiredway beforemodernmultiple-core CPUs, soOperating Systems long could to share the system resources betweenmultiple processes.
At the core of any Operating System is a registry of running processes.Each process will have an owner, and it can request resources, likememory or CPU. In the last chapter, you explored memory allocation.For a CPU, the process will request CPU time in the form of opera-tions to be executed. The Operating System controls which process isusing the CPU. It does this by allocating “CPU Time” and schedulingprocesses by a priority:

226

Concurrent Model

Time

Task A

Task B

Executing Waiting

A single process may need to do multiple things at once. For exam-ple, if you use a word processor, it needs to check your spelling whileyou’re typing. Modern applications accomplish this by running mul-tiple threads, concurrently, and handling their own resources.
Concurrency is an excellent solution to dealing withmultitasking, butCPUs have their limits. Some high-performance computers deploy ei-ther multiple CPUs or multiple cores to spread tasks. Operating Sys-tems provide a way of scheduling processes across multiple CPUs:

Parallel Model

Task A

Task B

Executing Waiting

CPU 0

CPU 1

227

The Structure of a Process
In summary,
• To have parallelism, you need multiple computational units.Computational units can be CPUs or Cores.
• To have concurrency, you need a way of scheduling tasks so thatidle ones don’t lock the resources.

Many parts of CPython’s design abstract the complexity of OperatingSystems to provide a simple API for developers. CPython’s approachto parallelism and concurrency is no exception.

Models of Parallelism and Concurrency
CPython offers many approaches to Parallelism and Concurrency.Your choice depends on several factors. There are also overlappinguse cases across models as CPython has evolved.
Youmay find that for a particular problem, there are two or more con-currency implementations to choose from. Each with their own prosand cons.
The four bundled models with CPython are:

Approach Module Concurrent Parallel
Threading threading Yes NoMultiprocessing multiprocessing Yes YesAsync asyncio Yes NoSubinterpreters subinterpreters Yes Yes

The Structure of a Process
One of the tasks for an Operating System, like Windows, macOS, orLinux, is to control the running processes. These processes could beUI applications like a browser or IDE. They could also be backgroundprocesses, like network services or OS services.

228

The Structure of a Process
To control these processes, the OS provides an API to start a new pro-cess. When a process is created, it is registered by the Operating Sys-tem so that it knowswhich processes are running. Processes are givena unique ID (PID). Depending on the Operating System, they haveother properties.
POSIX processes have a minimum set of properties, registered in theOperating System:
• Controlling Terminal
• Current Working Directory
• Effective Group ID, Effective User ID
• File Descriptors, File Mode Creation Mask
• Process Group ID, Process ID
• Real Group ID, Real User ID
• Root Directory

You can see these attributes for running processes in macOS or Linuxby running the ps command.
See Also
The IEEE POSIX Standard (1003.1-2017) defines the interfaceand standard behaviors for processes and threads.

Windows has a similar list of properties but sets its own standard. TheWindows file permissions, directory structures, and process registryare very different from POSIX. Windows processes, represented by
Win32_Process, can be queried in WMI, the Windows Management In-terface runtime, or by using the Task Manager.
Once a process is started on an Operating System, it is given:
• A Stack of memory for calling subroutines
• A Heap (see Dynamic Memory Allocation in C)

229

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap01.html
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-process

The Structure of a Process
• Access to Files, Locks, and Sockets on the Operating System

The CPU on your computer also keeps additional data when the pro-cess is executing, such as :
• Registers holding the current instruction being executed or anyother data needed by the process for that instruction
• An Instruction Pointer, or Program Counter indicatingwhich instruction in the program sequence is being executed

The CPython process comprises of the compiled CPython interpreter,and the compiled modules. These modules are loaded at runtime andconverted into instructions by the CPython Evaluation Loop:

Heap

Python Objects

Process Memory

Process

CPython Runtime

Files

Locks

Sockets

Compiled Modules

Instructions

Stack

The program register and program counter point to a single instruc-tion in the process. This means that only one instruction can be exe-cuting at any one time.
For CPython, this means that only one Python bytecode instructioncan be executing at any one time.
There are two main approaches to allowing parallel execution of in-structions in a process:
1. Fork another process

230

Multi-Process Parallelism
2. Spawn a thread
Now that you have reviewed what makes up a process. Next, you canexplore forking and spawning child processes.

Multi-Process Parallelism
POSIX systems provide an API for any process to fork a child process.
Forking processes is a low-level API call to the Operating System thatcan be made by any running process.
When this call is made, the OS will clone all the attributes of the cur-rently running process and create a new process.
This clone operation includes the heap, register, and counter positionof the parent process. The child process can read any variables fromthe parent process at the time of forking.
Forking a Process in POSIX
As an example, take the Fahrenheit to Celcius example applicationused at the beginning of DynamicMemory Allocation in C. Adapt it tospawn a child process for each Fahrenheit value instead of calculatingthem in sequence.
This is accomplished by using the fork() function. Each child processwill continue operating from that point:
cpython-book-samples 33 thread_celcius.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

static const double five_ninths = 5.0/9.0;

double celsius(double fahrenheit){

231

Multi-Process Parallelism
return (fahrenheit - 32) * five_ninths;

}

int main(int argc, char** argv) {

if (argc != 2)

return -1;

int number = atoi(argv[1]);

for (int i = 1 ; i <= number ; i++) {

double f_value = 100 + (i*10);

pid_t child = fork();

if (child == 0) { // Is child process

double c_value = celsius(f_value);

printf("%f F is %f C (pid %d)n", f_value, c_value, getpid());

exit(0);

}

}

printf("Spawned %d processes from %dn", number, getpid());

return 0;

}

Running this on the command-line would give an output similar to:
$./thread_celcius 4

110.000000 F is 43.333333 C (pid 57179)

120.000000 F is 48.888889 C (pid 57180)

Spawned 4 processes from 57178

130.000000 F is 54.444444 C (pid 57181)

140.000000 F is 60.000000 C (pid 57182)

The parent process (57178), spawned 4 processes. For each child pro-cess, it continued at the line child = fork(), where the resulting valueof child is 0. It then completes the calculation, prints the value, andexits the process.
Finally, the parent process outputs how many processes it spawned,and it’s own PID.
The time taken for the 3rd and 4th child processes to complete waslonger than it took for the parent process to complete. This is why

232

Multi-Process Parallelism
the parent process prints the final output before the 3rd and 4th printtheir own.
A parent process can exit, with its own exit code before a child process.Child Processes will be added to a Process Group by the OperatingSystem, making it easier to control all related processes:

Process Group

Parent Process

Heap

Python Objects

Process Memory

Process

CPython Runtime

Files

Locks

Sockets

Compiled Modules

Instructions

Stack

Heap

Python Objects

Process Memory

Process

CPython Runtime

Files

Locks

Sockets

Compiled Modules

Instructions

Stack

The biggest downside with this approach to parallelism is that thechild process is a complete copy of the parent process.
In the case of CPython, this means you would have 2 CPython inter-preters running, and both would have to load the modules and all the

233

Multi-Process Parallelism
libraries. It creates significant overhead. Using multiple processesmakes sense when the overhead of forking a process is outweighed bythe size of the task being completed.
Another major downside of forked processes is that they have a sep-arate, isolated, heap from the parent process. This means that thechild process cannot write to the memory space of the parent process.When creating the child process, the parent’s heap becomes availableto the child process. To send information back to the parent, someform of Inter-Process-Communication (IPC) must be used.

Note
The os module offers a wrapper around the fork() function.

Multi-Processing inWindows
So far, you’ve been reading the POSIX model. Windows doesn’t pro-vide an equivalent to fork(), and Python should (as best as possible)have the same API across Linux, macOS, and Windows.
To overcome this, the CreateProcessW() API is used to spawn another
python.exe process with a -c command-line argument.
This step is known as “spawning,” a process and is also available onPOSIX. You’ll see references to it throughout this chapter.
The multiprocessing Package
CPython provides an API on top of the Operating System process fork-ing API. This API makes it simple to create multi-process parallelismin Python.
This API is available from the multiprocessing package. This packageprovides expansive capabilities for pooling processes, queues, forking,creating shared memory heaps, connecting processes together, andmore.

234

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessw

Multi-Process Parallelism
Related Source Files
Source files related to multiprocessing are:
File Purpose
Lib multiprocessing Python Source for the multiprocessingpackage
Modules _posixsubprocess.c | C extension module wrapping the POSIX

fork() syscall
Modules _winapi.c | C extension module wrapping the WindowsKernel APIs
Modules _multiprocessing | C extension module used by the

multiprocessing package
PC msvcrtmodule.c A Python interface to the Microsoft Visual CRuntime Library

Spawning and Forking Processes
The multiprocessing package offers three methods to start a new par-allel process.
1. Forking an Interpreter (on POSIX only)
2. Spawning a new Interpreter process (on POSIX and Windows)
3. Running a Fork Server, where a new process is created which thenforks any number of processes (on POSIX only)

Note
ForWindows andmacOS, the default startmethod is Spawning.For Linux, the default is Forking. You can override the defaultmethod using the multiprocessing.set_start_method() function.

The Python API for starting a new process takes a callable, target, anda tuple of arguments, args.
Take this simple example of spawning a new process to convertFahrenheit to Celcius:

235

Multi-Process Parallelism
cpython-book-samples 33 spawn_process_celcius.py

import multiprocessing as mp

import os

def to_celcius(f):

c = (f - 32) * (5/9)

pid = os.getpid()

print(f"{f}F is {c}C (pid {pid})")

if __name__ == '__main__':

mp.set_start_method('spawn')

p = mp.Process(target=to_celcius, args=(110,))

p.start()

While you can start a single process, the multiprocessing API assumesyouwant to startmultiple. There are conveniencemethods for spawn-ing multiple processes and feeding them sets of data. One of thosemethods is the Pool class.
The previous example can be expanded to calculate a range of valuesin separate Python interpreters:
cpython-book-samples 33 pool_process_celcius.py

import multiprocessing as mp

import os

def to_celcius(f):

c = (f - 32) * (5/9)

pid = os.getpid()

print(f"{f}F is {c}C (pid {pid})")

if __name__ == '__main__':

mp.set_start_method('spawn')

with mp.Pool(4) as pool:

pool.map(to_celcius, range(110, 150, 10))

Note that the output shows the same PID. Because the CPython inter-

236

Multi-Process Parallelism
preter process has a signification overhead, the Poolwill consider eachprocess in the pool a “worker.” If a worker has completed, it will bereused. If you replace the line:

with mp.Pool(4) as pool:

with:
with mp.Pool(4, maxtasksperchild=1) as pool:

Thie previous multiprocessing examle will print something similar to:
$ python pool_process_celcius.py

110F is 43.333333333333336C (pid 5654)

120F is 48.88888888888889C (pid 5653)

130F is 54.44444444444445C (pid 5652)

140F is 60.0C (pid 5655)

The output shows the process IDs of the newly spawned processes andthe calculated values.
Creation of Child Processes
Both of these scripts will create a new Python interpreter process andpass data to it using pickle.

See Also
The picklemodule is a serialization package used for serializingPython objects. Davide Mastromatteo has written a great writeup of the pickle module at realpython.com.

For POSIX systems, the creation of the subprocess by the
multiprocessing module is equivalent to this command:
$ python -c 'from multiprocessing.spawn import spawn_main;

spawn_main(tracker_fd=<i>, pipe_handle=<j>)' --multiprocessing-fork

Where <i> is the filehandle descriptor, and <j> is the pipe handle de-

237

https://realpython.com/python-pickle-module/

Multi-Process Parallelism
scriptor.
For Windows systems, the parent PID is used instead of a tracker filedescriptor:
> python.exe -c 'from multiprocessing.spawn import spawn_main;

spawn_main(parent_pid=<k>, pipe_handle=<j>)' --multiprocessing-fork

Where <k> is the parent PID and <j> is the pipe handle descriptor.
Piping Data to the Child Process
When the new child process has been instantiated on the OS, it willwait for initialization data from the parent process.
The parent process writes 2 objects to a pipe file stream. The pipe filestream is a special IO stream used to send data between processes onthe command line.
The first object written by the parent process is the prepara-tion data object. This object is a dictionary containing someinformation about the parent, such as the executing directory,the start method, any special command-line arguments, and the
sys.path. You can see an example of what is generated by running
multiprocessing.spawn.get_preparation_data(name):
>>> import multiprocessing.spawn

>>> import pprint

>>> pprint.pprint(multiprocessing.spawn.get_preparation_data("example"))

{'authkey': b'x90xaa_x22[x18rixbcag]x93xfexf5xe5@[wJx99p#x00'

b'xcexd4)1j.xc3c',

'dir': '/Users/anthonyshaw',

'log_to_stderr': False,

'name': 'example',

'orig_dir': '/Users/anthonyshaw',

'start_method': 'spawn',

'sys_argv': [''],

'sys_path': [

238

Multi-Process Parallelism
'/Users/anthonyshaw',

]}

The second object written is the BaseProcess child class instance. De-pending on howmultiprocessing was called and which Operating Sys-tem is being used, one of the child classes of BaseProcess will be theinstance serialized.
Both the preparation data and process object are serialized using the
pickle module and written to the parent process’ pipe stream:

Parent Process

Worker Pool

Worker 0

Worker 1

Pipe

010101010100011100

(Waiting)

(Not Created)

pickle

write()

Preparation Data

Process Object

Note
The POSIX implementation of the child process spawning andserialization process is located in Lib multiprocessing popen_-

spawn_posix.py. The Windows implementation is located in Lib

multiprocessing popen_spawn_win32.py.

Executing the Child Process
The entry point of the child process, multiprocessing.spawn.spawn_-

main() takes the argument pipe_handle and either parent_pid forWindows or tracked_fd for POSIX:

239

Multi-Process Parallelism
def spawn_main(pipe_handle, parent_pid=None, tracker_fd=None):

'''

Run code specified by data received over pipe

'''

assert is_forking(sys.argv), "Not forking"

For Windows, the function will call the OpenProcess API of the parentPID.
This process object is used to create a filehandle, fd, of the parent pro-cess pipe:

if sys.platform == 'win32':

import msvcrt

import _winapi

if parent_pid is not None:

source_process = _winapi.OpenProcess(

_winapi.SYNCHRONIZE | _winapi.PROCESS_DUP_HANDLE,

False, parent_pid)

else:

source_process = None

new_handle = reduction.duplicate(pipe_handle,

source_process=source_process)

fd = msvcrt.open_osfhandle(new_handle, os.O_RDONLY)

parent_sentinel = source_process

For POSIX, the pipe_handle becomes the file descriptor, fd, and is du-plicated to become the parent_sentinel value:
else:

from . import resource_tracker

resource_tracker._resource_tracker._fd = tracker_fd

fd = pipe_handle

parent_sentinel = os.dup(pipe_handle)

Next, the _main() function is called with the parent pipe file handle,
fd, and the parent process sentinel, parent_sentinel. Whatever the re-turn value of _main() is becomes the exit code for the process and the

240

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

Multi-Process Parallelism
interpreter is terminated:

exitcode = _main(fd, parent_sentinel)

sys.exit(exitcode)

The _main() function is called with the file descriptor of the parent pro-cesses pipe and the parent sentinel for checking if the parent processhas exited whilst executing the child.
The main function deserialises the binary data on the fd byte stream.Remember, this is the pipe file handle. The deserialization happensusing using same pickle library that the parent process used:

Parent Process

Worker Pool

Worker 0

Worker 1

Pipe

010101010100011100

(Initializing)

(Not Created)

read()
Preparation Data

Process Object
pickle

(Waiting)

The first value is a dict containing the preparation data. The secondvalue is an instance of SpawnProcess which is then used at the instanceto call _bootstrap() upon:
def _main(fd, parent_sentinel):

with os.fdopen(fd, 'rb', closefd=True) as from_parent:

process.current_process()._inheriting = True

try:

preparation_data = reduction.pickle.load(from_parent)

prepare(preparation_data)

self = reduction.pickle.load(from_parent)

241

Multi-Process Parallelism
finally:

del process.current_process()._inheriting

return self._bootstrap(parent_sentinel)

The _bootstrap() function handles the instantiation of a BaseProcessinstance from the deserialized data, and then the target function iscalled with the arguments and keyword arguments. This final task iscompleted by BaseProcess.run():
def run(self):

'''

Method to be run in sub-process; can be overridden in sub-class

'''

if self._target:

self._target(*self._args, **self._kwargs)

The exit code of self._bootstrap() is set as the exit code, and the childprocess is terminated.
This process allows the parent process to serialize the module and theexecutable function. It also allows the child process to deserialize thatinstance, execute the function with arguments, and return.
It does not allow for the exchanging of data once the child process hasstarted. This task is done using the extension of the Queue and Pipeobjects.
If processes are being created in a pool, the first process will be readyand in a waiting state. The parent process repeats the process andsends the data to the next worker:

242

Multi-Process Parallelism

Parent Process

Worker Pool

Worker 0

Worker 1

Pipe

010101010100011100

(Ready)

(Waiting)

pickle

write()

Preparation Data

Process Object

The next worker receives the data and initializes its state and runs thetarget function:

Parent Process

Worker Pool

Worker 0

Worker 1

Pipe

010101010100011100

(Ready)

(Initializing)

read()
Preparation Data

Process Object
pickle

(Waiting)

To share any data beyond initialization, queues and pipes must beused.
Exchanging Data with Queues and Pipes
In the previous section you saw how child processes are spawned, andthen the pipe is used as a serialization stream to tell the child processwhat function to call with arguments.

243

Multi-Process Parallelism
There is two types of communication between processes, dependingon the nature of the task.
Semaphores
Many of the mechanisms in multiprocessing use semaphores as away of signaling that resources are locked, being waited on, or notused. Operating Systems use binary semaphores as a simple variabletype for locking resources, like files, sockets, and other resources.
If one process is writing to a file or a network socket, you don’t wantanother process to suddenly start writing to the same file. The datawould become corrupt instantly. Instead, Operating Systems put a“lock” on resources using a semaphore. Processes can also signal thatthey are waiting for that lock to be released so that when it is, they geta message to say it is ready and they can start using it.
Semaphores (in the real world) are a signaling method using flags, sothe states for a resource of waiting, locked and not-used would looklike:

-1 10

waiting locked

The semaphore API is different between Operating Systems, sothere is an abstraction class, multiprocessing.syncronize.Semaphore.
244

Multi-Process Parallelism
Semaphores are used by CPython for multiprocessing because theyare both thread-safe and process-safe. The Operating System handlesany potential deadlocks of reading or writing to the same semaphore.
The implementation of these semaphore API functions is located ina C extension module Modules _multiprocessing semaphore.c. This ex-tension module offers a single method for creating, locking, releasingsemaphores, and other operations.
The call to the Operating System is through a series of Macros, whichare compiled into different implementations depending on the Oper-ating System platform. For Windows, the <winbase.h> API functionsfor semaphores are used:
#define SEM_CREATE(name, val, max) CreateSemaphore(NULL, val, max, NULL)

#define SEM_CLOSE(sem) (CloseHandle(sem) ? 0 : -1)

#define SEM_GETVALUE(sem, pval) _GetSemaphoreValue(sem, pval)

#define SEM_UNLINK(name) 0

For POSIX, the macros use the <semaphore.h> API is used:
#define SEM_CREATE(name, val, max) sem_open(name, O_CREAT | O_EXCL, 0600, val)

#define SEM_CLOSE(sem) sem_close(sem)

#define SEM_GETVALUE(sem, pval) sem_getvalue(sem, pval)

#define SEM_UNLINK(name) sem_unlink(name)

Queues
Queues are a great way of sending small data to and from multipleprocesses.
If you adapt themultiprocessing example before to use a multiprocessing

Manager() instance, and create two queues:
1. inputs to hold the input Fahrenheit values
2. outputs to hold the resulting Celcius values
Change the pool size to 2 so that there are two workers:

245

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsemaphorea
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsemaphorea
http://man7.org/linux/man-pages/man3/sem_open.3.html

Multi-Process Parallelism
cpython-book-samples 33 pool_queue_celcius.py

import multiprocessing as mp

def to_celcius(input: mp.Queue, output: mp.Queue):

f = input.get()

time-consuming task ...

c = (f - 32) * (5/9)

output.put(c)

if __name__ == '__main__':

mp.set_start_method('spawn')

pool_manager = mp.Manager()

with mp.Pool(2) as pool:

inputs = pool_manager.Queue()

outputs = pool_manager.Queue()

input_values = list(range(110, 150, 10))

for i in input_values:

inputs.put(i)

pool.apply(to_celcius, (inputs, outputs))

for f in input_values:

print(outputs.get(block=False))

This would print the list of tuples returned to the results queue:
$ python pool_queue_celcius.py

43.333333333333336

48.88888888888889

54.44444444444445

60.0

The parent process first puts the input values onto the input queue.The first worker then takes an item from the queue. Each time anitem is taken from the queue using .get(), a semaphore lock is usedon the queue object:

246

Multi-Process Parallelism

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Input Queue

Output Queue

1
2
0

1
3
0

1
4
0

1
1
0

get()

While this worker is busy, the second worker then takes another valuefrom the queue:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Input Queue

Output Queue

1
3
0

1
4
0

1
2
0

(Busy)get()

1
1
0

The first worker has completed its calculation and puts the resultingvalue onto the result queue:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Input Queue

Output Queue

1
3
0

1
4
0

(Busy)

4
3
.
3
3

put()

1
2
0

Two queues are in use to separate the input and output values. Even-tually, all input values have been processed, and the output queue isfull. The values are then printed by the parent process:
247

Multi-Process Parallelism

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Input Queue

Output Queue

4
3
.
3
3

4
8
.
8
8

5
4
.
4
4

6
0
.
0
0

This example shows how a pool of workers could receive a queue ofsmall, discreet values and process them in parallel to send the result-ing data back to the host process. In practice, converting Celcius toFahrenheit is a small, trivial calculation unsuited for parallel execu-tion. If the worker process were doing another CPU-intensive calcu-lation, this would provide significant performance improvement on amulti-CPU or multi-core computer.
For streaming data instead of discreet queues, pipes can be used in-stead.
Pipes
Within the multiprocessing package, there is a type Pipe. Instantiatinga Pipe returns two connections, a parent and a child. Both can sendand receive data:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Parent Pipe

Child Pipe

send() recv()

010101010100011100

100101111001110011
recv() send()

(Busy)

(Busy)

In the queue example, a lock is implicitly placed on the queue whendata is sent and received. Pipes do not have that behavior, so you have

248

Multi-Process Parallelism
to be careful that two processes do not try and write to the same pipeat the same time.
If you adapt the last example to work with a pipe, it will require chang-ing the pool.apply() to pool.apply_async(). This changes the executionof the next process to a non-blocking operation:
cpython-book-samples 33 pool_pipe_celcius.py

import multiprocessing as mp

def to_celcius(child_pipe: mp.Pipe, parent_pipe: mp.Pipe):

f = parent_pipe.recv()

time-consuming task ...

c = (f - 32) * (5/9)

child_pipe.send(c)

if __name__ == '__main__':

mp.set_start_method('spawn')

pool_manager = mp.Manager()

with mp.Pool(2) as pool:

parent_pipe, child_pipe = mp.Pipe()

results = []

for i in range(110, 150, 10):

parent_pipe.send(i)

pool.apply_async(to_celcius, args=(child_pipe, parent_pipe))

print(child_pipe.recv())

parent_pipe.close()

child_pipe.close()

In this example, there is a risk of two or more processes trying to readfrom the parent pipe at the same time on the line:
f = parent_pipe.recv()

There is also a risk of two ormore processes trying to write to the childpipe at the same time.

249

Multi-Process Parallelism
child_pipe.send(c)

If this situation occurs, data would be corrupted in either the receiveor send operations:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Parent Pipe

Child Pipe

send()
010101010100011100

100101111011
recv() send()

(Busy)

(Busy)

send()

To avoid this, you can implement a semaphore lock on the OperatingSystem. Then all child processes will check with the Lock before read-ing or writing to the same pipe.
There are two locks required, one on the receiving end of the parentpipe, and another on the sending end of the child pipe:
cpython-book-samples 33 pool_pipe_locks_celcius.py

import multiprocessing as mp

def to_celcius(child_pipe: mp.Pipe, parent_pipe: mp.Pipe,

child_write_lock: mp.Lock, parent_read_lock: mp.Lock):

parent_read_lock.acquire()

try:

f = parent_pipe.recv()

finally:

parent_read_lock.release()

time-consuming task ...

c = (f - 32) * (5/9)

child_write_lock.acquire()

try:

child_pipe.send(c)

250

Multi-Process Parallelism
finally:

child_write_lock.release()

if __name__ == '__main__':

mp.set_start_method('spawn')

pool_manager = mp.Manager()

with mp.Pool(2) as pool:

parent_pipe, child_pipe = mp.Pipe()

parent_read_lock = mp.Lock()

child_write_lock = mp.Lock()

results = []

for i in range(110, 150, 10):

parent_pipe.send(i)

pool.apply_async(to_celcius, args=(child_pipe, parent_pipe,

child_write_lock,

parent_read_lock))

print(child_pipe.recv())

parent_pipe.close()

child_pipe.close()

Now the worker processes will wait to acquire a lock before receivingdata, and wait again to acquire another lock to send data:

Parent Process

Worker Pool

Worker 0

Worker 1

[110, 120, 130, 140]

Parent Pipe

Child Pipe

010101010100011100

100101111001110011
recv() send()

(Waiting)

(Busy)

send()

This example would suit situations where the data going over the pipeis large because the chance of a collision is higher.

251

Multi-Process Parallelism
Shared State Between Processes
So far, you have seen how data can be shared between the child andthe parent process.
There may be scenarios where you want to share data between childprocesses. In this situation, the multiprocessing package provides twosolutions:
1. A performant Shared Memory API using shared memory mapsand shared C types
2. A flexible Server Process API supporting complex types via the

Manager class
Example Application
As a demonstration application, throughout this chapter, you will berefactoring a TCP port scanner for different concurrency and paral-lelism techniques.
Over a network, a host can be contacted on ports, which are a numberfrom 1-65535. Common services have standard ports. For example,HTTP operates on port 80 and HTTPS on 443. TCP port scanners areused as a common network testing tool to check that packets can besent over a network.
This code example uses the Queue interface, a thread-safe queue imple-mentation similar to the one you use in themultiprocessing examples.The code also uses the socket package to try connecting to a remoteport with a short timeout of 1 second.
The check_port() functionwill see if the host responds on the given port,and if it does respond, it adds the port number to the results queue.
When the script is executed, the check_port() function is called in se-quence for port numbers 80-100.
After this has completed, the results queue is emptied out, and theresults are printed on the command line.

252

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.sharedctypes
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.managers.SyncManager

Multi-Process Parallelism
So you can compare the difference, it will print the execution time atthe end:
cpython-book-samples 33 portscanner.py

from queue import Queue

import socket

import time

timeout = 1.0

def check_port(host: str, port: int, results: Queue):

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.settimeout(timeout)

result = sock.connect_ex((host, port))

if result == 0:

results.put(port)

sock.close()

if __name__ == '__main__':

start = time.time()

host = "localhost" # replace with a host you own

results = Queue()

for port in range(80, 100):

check_port(host, port, results)

while not results.empty():

print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

The execution will print out the open ports and the time taken:
$ python portscanner.py

Port 80 is open

Completed scan in 19.623435020446777 seconds

This example can be refactored to use multiprocessing. The Queue in-terface is swapped for multiprocessing.Queue and the ports are scannedtogether using a pool executor:
cpython-book-samples 33 portscanner_mp_queue.py

253

Multi-Process Parallelism
import multiprocessing as mp

import time

import socket

timeout = 1

def check_port(host: str, port: int, results: mp.Queue):

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.settimeout(timeout)

result = sock.connect_ex((host, port))

if result == 0:

results.put(port)

sock.close()

if __name__ == '__main__':

start = time.time()

processes = []

scan_range = range(80, 100)

host = "localhost" # replace with a host you own

mp.set_start_method('spawn')

pool_manager = mp.Manager()

with mp.Pool(len(scan_range)) as pool:

outputs = pool_manager.Queue()

for port in scan_range:

processes.append(pool.apply_async(check_port,

(host, port, outputs)))

for process in processes:

process.get()

while not outputs.empty():

print("Port {0} is open".format(outputs.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

As you might expect, this application is much faster because it is test-ing each port in parallel:
$ python portscanner_mp_queue.py

Port 80 is open

Completed scan in 1.556523084640503 seconds

254

Multithreading
Conclusion
Multiprocessing offers a scalable, parallel execution API for Python.Data can be shared between processes, and CPU-intensive work canbe broken into parallel tasks to take advantage ofmultiple core or CPUcomputers.
Multiprocessing is not a suitable solution when the task to be com-pleted is not CPU intensive, but instead IO-bound. For example, ifyou spawned 4 worker processes to read and write to the same files,one would do all the work, and the other 3 would wait for the lock tobe released.
Multiprocessing is also not suitable for short-lived tasks, becauseof the time and processing overhead of starting a new Pythoninterpreter.
In both of those scenarios, you main find one of the next approachesis more suited.

Multithreading
CPython provides a high-level and a low-level API for creating, spawn-ing, and controlling threads from Python.
To understand Python threads, you should first understand howOper-ating System threads work. There are two implementations of thread-ing in CPython.
1. pthreads - POSIX threads for Linux and macOS
2. nt threads - NT threads for Windows
In the section on The Structure of a Process, you saw how a processhas:
• A Stack of subroutines
• A Heap of memory

255

Multithreading
• Access to Files, Locks, and Sockets on the Operating System

The biggest limitation to scaling a single process is that the OperatingSystem will have a single Program Counter for that executable.
To get around this, modern Operating Systems allow processes tosignal the Operating System to branch their execution into multiplethreads.
Each thread will have its own Program Counter, but use the same re-sources as the host process. Each thread also has it’s own call stack,so it can be executing a different function.
Because multiple threads can read and write to the same memoryspace, collisions could occur. The solution to this is thread safetyand involves making sure that memory space is locked by a singlethread before it is accessed.
A single process with 3 threads would have a structure:

Heap

Python Objects

Process Memory

Process

CPython Runtime

Files

Locks

Sockets

Compiled Modules

Instructions

Stack

Program Counter

Thread 0

Stack

Program Counter

Thread 1

Stack

Program Counter

Thread 2

Stack

256

Multithreading
See Also
For a great introductory tutorial on the Python threading API,check out Jim Anderson’s “Intro to Python Threading.”

The GIL
If you’re familiar with NT threads or POSIX threads from C, or you’veused another high-level language, you may expect multithreading tobe parallel.
In CPython, the threads are based on the C APIs, but the threads arePython threads. This means that every Python thread needs to exe-cute Python bytecode through the evaluation loop.
The Python evaluation loop is not thread-safe. There are many partsof the interpreter state, such as the Garbage Collector, which areshared, and global.
To get around this, the CPython developers implemented amega-lock,called theGlobal Interpreter Lock (GIL). Before any opcode is ex-ecuted in the frame-evaluation loop, the GIL is acquired by the thread,then once the opcode has been executed, it is released.
Aside from providing a global thread-safety to every operation inPython, this approach has a major drawback. Any operations whichtake a long time to execute will leave other threads waiting for theGIL to be released before they can execute.
This means that only 1 thread can be executing a Python bytecode op-eration at any one time.
To acquire theGIL, a call ismade to take_gil() and then again to drop_-

gil() to release it. The GIL acquisition is made within the core frameevaluation loop, _PyEval_EvalFrameDefault().
To stop a single frame execution from permanently holding the GIL,the evaluation loop state stores a flag, gil_drop_request. After every

257

https://realpython.com/intro-to-python-threading/
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval_gil.h#L215
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval_gil.h#L144
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval_gil.h#L144

Multithreading
bytecode operation has completed in a frame, this flag is checked, andthe GIL is temporarily released and then reacquired:

if (_Py_atomic_load_relaxed(&ceval->gil_drop_request)) {

/* Give another thread a chance */

if (_PyThreadState_Swap(&runtime->gilstate, NULL) != tstate) {

Py_FatalError("ceval: tstate mix-up");

}

drop_gil(ceval, tstate);

/* Other threads may run now */

take_gil(ceval, tstate);

/* Check if we should make a quick exit. */

exit_thread_if_finalizing(tstate);

if (_PyThreadState_Swap(&runtime->gilstate, tstate) != NULL) {

Py_FatalError("ceval: orphan tstate");

}

}

...

Despite the limitations that the GIL enforces on parallel execution, itmeans thatmultithreading in Python is very safe and ideal for runningIO-bound tasks concurrently.
Related Source Files
Source files related to threading are:
File Purpose
Include pythread.h PyThread API and definition
Lib threading.py High Level threading API and StandardLibrary module
Modules _threadmodule.c | Low Level thread API and Standard Librarymodule
Python thread.c C extension for the thread module
Python thread_nt.h | Windows Threading API
Python thread_pthread.h | POSIX Threading API

258

Multithreading
File Purpose
Python ceval_gil.h | GIL lock implementation

Starting Threads in Python
To demonstrate the performance gains of having multithreaded code(in spite of the GIL), you can implement a simple network port scan-ner in Python.
Now clone the previous script but change the logic to spawn athread for each port using threading.Thread(). This is similar to the
multiprocessing API, where it takes a callable, target, and a tuple, args.Start the threads inside the loop, but don’t wait for them to complete.Instead, append the thread instance to a list, threads:

for port in range(800, 100):

t = Thread(target=check_port, args=(host, port, results))

t.start()

threads.append(t)

Once all threads have been created, iterate through the thread list andcall .join() to wait for them to complete:
for t in threads:

t.join()

Next, exhaust all the items in the results queue and print them to thescreen:
while not results.empty():

print("Port {0} is open".format(results.get()))

The whole script is:
cpython-book-samples 33 portscanner_threads.py

from threading import Thread

from queue import Queue

259

Multithreading
import socket

import time

timeout = 1.0

def check_port(host: str, port: int, results: Queue):

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.settimeout(timeout)

result = sock.connect_ex((host, port))

if result == 0:

results.put(port)

sock.close()

def main():

start = time.time()

host = "localhost" # replace with a host you own

threads = []

results = Queue()

for port in range(80, 100):

t = Thread(target=check_port, args=(host, port, results))

t.start()

threads.append(t)

for t in threads:

t.join()

while not results.empty():

print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

if __name__ == '__main__':

main()

When you call this threaded script at the command-line, it will execute10+ times faster than the single-threaded example:
$ python portscanner_threads.py

Port 80 is open

Completed scan in 1.0101029872894287 seconds

This also runs 50-60% faster than the multiprocessing example. Re-

260

Multithreading
member that multiprocessing has an overhead for starting the newprocesses, threading does have an overhead, but it is much smaller.
You may be wondering- if the GIL means that only a single operationcan execute at once, why is this faster?
The statement that takes 1-1000ms is:

result = sock.connect_ex((host, port))

In the C extension module, Modules socketmodule.c, the function thatimplements the connection is:
Modules socketmodule.c line 3246
static int

internal_connect(PySocketSockObject *s, struct sockaddr *addr, int addrlen,

int raise)

{

int res, err, wait_connect;

Py_BEGIN_ALLOW_THREADS

res = connect(s->sock_fd, addr, addrlen);

Py_END_ALLOW_THREADS

Surrounding the system connect() call are the Py_BEGIN_ALLOW_THREADSand Py_END_ALLOW_THREADS macros.
These macros are defined in Include ceval.h as:
#define Py_BEGIN_ALLOW_THREADS {

PyThreadState *_save;

_save = PyEval_SaveThread();

#define Py_BLOCK_THREADS PyEval_RestoreThread(_save);

#define Py_UNBLOCK_THREADS _save = PyEval_SaveThread();

#define Py_END_ALLOW_THREADS PyEval_RestoreThread(_save);

}

So, when Py_BEGIN_ALLOW_THREADS is called, it calls PyEval_SaveThread().This function changes the thread state to NULL and drops the GIL:

261

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L480

Multithreading
Python ceval.c line 480
PyThreadState *

PyEval_SaveThread(void)

{

PyThreadState *tstate = PyThreadState_Swap(NULL);

if (tstate == NULL)

Py_FatalError("PyEval_SaveThread: NULL tstate");

assert(gil_created());

drop_gil(tstate);

return tstate;

}

Because the GIL is dropped, it means any other executing thread cancontinue. This thread will sit and wait for the system call withoutblocking the evaluation loop.
Once the connect() function has succeeded or timed out, the Py_END_-

ALLOW_THREADS runs the PyEval_RestoreThread() function with the origi-nal thread state.The thread state is recovered and the GIL is retaken. The call to take_-

gil() is a blocking call, waiting on a semaphore:
Python ceval.c line 503
void

PyEval_RestoreThread(PyThreadState *tstate)

{

if (tstate == NULL)

Py_FatalError("PyEval_RestoreThread: NULL tstate");

assert(gil_created());

int err = errno;

take_gil(tstate);

/* _Py_Finalizing is protected by the GIL */

if (_Py_IsFinalizing() && !_Py_CURRENTLY_FINALIZING(tstate)) {

drop_gil(tstate);

PyThread_exit_thread();

262

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L503

Multithreading
Py_UNREACHABLE();

}

errno = err;

PyThreadState_Swap(tstate);

}

This is not the only system call wrapped by the non-GIL-blocking pair
Py_BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS. There are over 300uses of it in the Standard Library. Including:
• Making HTTP requests
• Interacting with local hardware
• Encryption
• Reading and writing files
Thread State
CPython provides its own implementation of threadmanagement. Be-cause threads need to execute Python bytecode in the evaluation loop,running a thread in CPython isn’t as simple as spawning anOS thread.Python threads are called PyThread, and you covered them briefly onthe CPython Evaluation Loop chapter.
Python threads execute code objects and are spawned by the inter-preter.
To recap:
• CPython has a single runtime, which has its own runtime state
• CPython can have one or many interpreters
• An interpreter has a state, called the interpreter state
• An interpreter will take a code object and convert it into a seriesof frame objects
• An interpreter has at least one thread, each thread has a threadstate

263

Multithreading
• Frame Objects are executed in a stack, called the frame stack
• CPython references variables in a value stack
• The interpreter state includes a linked-list of its threads

A single-threaded, single-interpreter runtime would have the states:

Stack

Program Counter

Thread 0 (primary)

Interpreter State

PyThread State

ID

Frame

Exceptions

Current Depth

Next Thread

Previous Thread

...

Runtime

Interpreter

Runtime State

Heap

CPython Runtime Files

Locks

SocketsCompiled Modules

Instructions

GIL

The thread state type, PyThreadState has over 30 properties, including:
• A unique identifier
• A linked-list to the other thread states
• The interpreter state it was spawned by
• The currently executing frame
• The current recursion depth
• Optional tracing functions
• The exception currently being handled
• Any async exception currently being handled
• A stack of exceptions raised
• A GIL counter

264

Multithreading
• Async generator counters

Similar to the multiprocessing preparation data, threads have aboot state. However, threads share the same memory space, so thereis no need to serialize data and send it over a file stream.
Threads are instantiated with the threading.Thread type. This is a high-level module that abstracts the PyThread type. PyThread instances aremanaged by the C extension module _thread.
The _thread module has the entry point for executing a new thread,
thread_PyThread_start_new_thread(). start_new_thread() is a methodon an instance of the type Thread.
New threads are instantiated in this sequence:
1. The bootstate is created, linking to the target, with arguments argsand kwargs

2. The bootstate is linked to the interpreter state
3. A new PyThreadState is created, linking to the current interpreter
4. TheGIL is enabled, if not alreadywith a call to PyEval_InitThreads()

5. The new thread is started on the Operating System-specific imple-mentation of PyThread_start_new_thread

265

https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L338

Multithreading

Interpreter State

Stack

Program Counter

Thread 0 (primary)

PyThread State

ID

Frame

Exceptions

Current Depth

Next Thread

Previous Thread

...

Runtime

Interpreter

Runtime State

Heap

CPython Runtime Files

Locks

SocketsCompiled Modules

Instructions

GIL

Stack

Program Counter

Thread 1 (Init)

PyThread State

ID

Frame

Exceptions

Current Depth

Next Thread

Previous Thread

...

Boot
State

Thread bootstate has the properties:
Field Type Purpose
interp PyInterpreterState* Link to the interpreter managing this thread
func PyObject *(callable) Link to the callable to execute upon runningthe thread
args PyObject * (tuple) Arguments to call func with
keyw PyObject * (dict) Keyword arguments to call func with
tstate PyThreadState * Thread state for the new thread

With the thread bootstate, there are two implementations PyThread -POSIX threads for Linux and macOS, and NT threads for Windows.
Both of these implementations create the Operating System thread,set it’s attribute and then execute the callback t_bootstrap() fromwithin the new thread. This function is called with the singleargument boot_raw, assigned to the bootstate constructed in thread_-

PyThread_start_new_thread().
The t_bootstrap() function is the interface between a low-level threadand the Python runtime. The bootstrap will initiatilize the thread,then execute the target callable using PyObject_Call(). Once thecallable target has been executed, the thread will exit:

266

https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1029
https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1063
https://github.com/python/cpython/blob/v3.9.0b1/Modules/_threadmodule.c#L1029
https://github.com/python/cpython/blob/v3.9.0b1/Objects/call.c#L289

Multithreading

PyThread
OS Specific
Thread Start

Inside Thread

t_bootstrap PyObject_Call target

POSIX Threads
POSIX threads, named pthreads, have an implementation in Python

thread_pthread.h. This implementation abstracts the <pthread.h> C APIwith some additional safeguards and optimizations.
Threads can have a configured stack size. Python has it’s own stackframe construct, as you explored in the chapter on the EvaluationLoop. If there is an issue causing a recursive loop, and the frame exe-cution hits the depth limit, Python will raise a RecursionError whichcan be handled from a try..except block in Python code. Becausepthreads have their own stack size, the max depth of Python and thestack size of the pthread might conflict.
If the thread stack size is smaller than themax frame depth in Python,the entire Python process will crash before a RecursionError is raised.Also, the max depth in Python can be configured at runtime using
sys.setrecursionlimit().
To avoid these crashes, the CPython pthread implementation sets thestack size to the pythread_stacksize value of the Interpreter State.
Most modern POSIX-compliant Operating Systems support systemscheduling of pthreads. IfPTHREAD_SYSTEM_SCHED_SUPPORTED is defined in
pyconfig.h, the pthread is set to PTHREAD_SCOPE_SYSTEM, meaning that thepriority of the thread on the Operating System scheduler is decidedagainst the other threads on the system, not just the ones within thePython process.
Once the thread properties have been configured, the thread is createdusing the pthread_create() API. This runs the bootstrap function frominside the new thread.

267

https://docs.python.org/3/library/sys.html#sys.setrecursionlimit

Asynchronous Programming
Lastly, the thread handle, pthread_t is cast into an unsigned long andreturned to become the thread ID.
Windows Threads
Windows threads implemented in Python thread_nt.h follow a similar,but simpler pattern.
The stack size of the new thread is configured to the interpreter
pythread_stacksize value (if set).
The thread is created using the _beginthreadex() Windows API usingthe bootstrap function as the callback.
Lastly, the thread ID is returned.
Conclusion
This was not an exhaustive tutorial on Python threads. Python’sthread implementation is extensive and offers many mechanisms forsharing data between threads, locking objects, and resources.
Threads are a great, efficient way of improving the runtime of yourPython applications when they are IO-bound. In this section, youhave seen what the GIL is, why it exists and which parts of the stan-dard library may be exempt from its constraints.

Asynchronous Programming
Python offers many ways of accomplishing concurrent programmingwithout using threads or multiprocessing. These features have beenadded, expanded, and often replaced with better alternatives.
For the target version of this book, 3.9.0b1, the following asyn-chronous systems are deprecated:
• The @coroutine decorator

268

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/beginthread-beginthreadex?view=vs-2019

Generators
The following systems are still available:
• Creating futures from async keywords
• Coroutines using the yield from keywords

Generators
PythonGenerators are functions that return a yield statement and canbe called continually to generate further values.
Generators are often used as a more memory efficient way of loopingthrough values in a large block of data, like a file, a database, or overa network. Generator objects are returned in place of a value when
yield is used instead of return. The generator object is created fromthe yield statement and returned to the caller.
This simple generator function will yield the letters a-z:
cpython-book-samples 33 letter_generator.py

def letters():

i = 97 # letter 'a' in ASCII

end = 97 + 26 # letter 'z' in ASCII

while i < end:

yield chr(i)

i += 1

If you call letters(), it won’t return a value, but instead it returns agenerator object:
>>> from letter_generator import letters

>>> letters()

<generator object letters at 0x1004d39b0>

Built into the syntax of the for statement is the ability to iteratethrough a generator object until it stops yielding values:

269

Generators
>>> for letter in letters():

... print(letter)

a

b

c

d

...

This implementation uses the iterator protocol. Objects that have a
__next__() method can be looped over by for and while loops, or usingthe next() builtin.
All container types (like lists, sets, tuples) in Python implement theiterator protocol. Generators are unique because the implementationof the __next__() method recalls the generator function from its laststate. Generators are not executing in the background, they arepaused. When you request another value, they resume execution.
Within the generator object structure is the frame object as it was atthe last yield statement.
Generator Structure
Generator objects are created by a template macro, _PyGenObject_-

HEAD(prefix).
This macro is used by the following types and prefixes:
1. PyGenObject - gi_ (Generator objects)
2. PyCoroObject - cr_ (Coroutine objects)
3. PyAsyncGenObject - ag_ (Async generator objects)
Youwill cover coroutine and async generator objects later in this chap-ter.
The PyGenObject type has the base properties:

270

Generators
Field Type Purpose

Field Type Purpose
[x]_frame PyFrameObject* Current frame object for the generator
[x]_running char Set to 0 or 1 if the generator is currentlyrunning
[x]_code PyObject *(PyCodeObject*) Compiled function that yielded thegenerator
[x]_-

weakreflist

PyObject * (list) List of weak references to objects insidethe generator function
[x]_name PyObject * (str) Name of the generator
[x]_qualname PyObject * (str) Qualified name of the generator
[x]_exc_-

state

_PyErr_StackItem Exception data if the generator call raisesan exception

On top of the base properties, the PyCoroObject type has:
Field Type Purpose
cr_origin PyObject * (tuple) Tuple containing the originating frame andcaller

On top of the base properties, the PyAsyncGenObject type has:
Field Type Purpose
ag_finalizer PyObject * Link to the finalizer method
ag_hooks_inited int Flag to mark that the hooks have beeninitialized
ag_closed int Flag to mark that the generator is closed
ag_running_async int Flag to mark that the generator is running

Related Source Files
Source files related to generators are:
File Purpose
Include genobject.h Generator API and PyGenObject definition

271

Generators
File Purpose
Objects genobject.c Generator Object implementation

Creating Generators
When a function containing a yield statement is compiled, the result-ing code object has an additional flag, CO_GENERATOR.
In the chapter on the Execution Loop: Constructing Frames, you ex-plored how a compiled code object is converted into a frame objectwhen it is executed.In the process, there is a special case for generators, coroutines, andasync generators. The _PyEval_EvalCode() function checks the code ob-ject for the CO_GENERATOR, CO_COROUTINE, and CO_ASYNC_GENERATOR flags.
Instead of evaluation a code object inline, the frame is created andturned into a Generator, Coroutine or Async Generator Object. Acoroutine is created using PyCoro_New(), an async generator is createdwith PyAsyncGen_New(), and a generator with PyGen_NewWithQualName():
PyObject *

_PyEval_EvalCode(PyObject *_co, PyObject *globals, PyObject *locals, ...

...

/* Handle generator/coroutine/asynchronous generator */

if (co->co_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {

PyObject *gen;

PyObject *coro_wrapper = tstate->coroutine_wrapper;

int is_coro = co->co_flags & CO_COROUTINE;

...

/* Create a new generator that owns the ready to run frame

* and return that as the value. */

if (is_coro) {

>>> gen = PyCoro_New(f, name, qualname);

} else if (co->co_flags & CO_ASYNC_GENERATOR) {

>>> gen = PyAsyncGen_New(f, name, qualname);

} else {

>>> gen = PyGen_NewWithQualName(f, name, qualname);

272

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L4101
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L1135
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L1414
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L810

Generators
}

...

return gen;

}

...

The generator factory, PyGen_NewWithQualName(), takes the frame andcompletes some steps to populate the generator object fields:
1. Sets the gi_code property to the compiled code object
2. Sets the generator to not running (gi_running = 0)
3. Sets the exception and weakref lists to NULL

You can also see that gi_code is the compiled code object for the gen-erator function by importing the dis module and disassembling thebytecode inside:
>>> from letter_generator import letters

>>> gen = letters()

>>> import dis

>>> dis.disco(gen.gi_code)

2 0 LOAD_CONST 1 (97)

2 STORE_FAST 0 (i)

...

In the chapter on the Evaluation Loop, you explored the Frame Ob-ject Type. Frame objects contain locals and globals, the last executedinstructions, and the code to be executed.
The builtin behavior and state of the frame object are how generatorscan pause and be resumed on demand.
Executing Generators
Whenever __next__() is called on a generator object, gen_iternext() iscalled with the generator instance, which immediately calls gen_send_-
ex() inside Objects genobject.c.

273

https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L810
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L540
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L140
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L140

Generators
gen_send_ex() is the function that converts a generator object into thenext yielded result. You’ll see many similarities with the way framesare constructed from a code object as these functions have similartasks.
The gen_send_ex() function is shared with generators, coroutines, andasync generators and has the following steps:
1. The current thread state is fetched
2. The frame object from the generator object is fetched
3. If the generator is running when __next__() was called, raise a

ValueError

4. If the frame inside the generator is at the top of the stack:• In the case of a coroutine, if the coroutine is not alreadymarkedas closing, a RuntimeError is raised
• If this is an async generator, raise a StopAsyncIteration

• For a standard generator, a StopIteration is raised.
5. If the last instruction in the frame (f->f_lasti) is still -1 becauseit has just been started, and this is a coroutine or async genera-tor, then a non-None value can’t be passed as an argument, so anexception is raised
6. Else, this is the first time it’s being called, and arguments are al-lowed. The value of the argument is pushed to the frame’s valuestack
7. The f_back field of the frame is the caller to which return values aresent, so this is set to the current frame in the thread. This meansthat the return value is sent to the caller, not the creator of thegenerator
8. The generator is marked as running
9. The last exception in the generator’s exception info is copied fromthe last exception in the thread state
10. The thread state exception info is set to the address of the genera-tor’s exception info. This means that if the caller enters a break-

274

https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L140
https://github.com/python/cpython/blob/v3.9.0b1/Objects/genobject.c#L140

Coroutines
point around the execution of a generator, the stack trace goesthrough the generator and the offending code is clear

11. The frame inside the generator is executed within the Python

ceval.c main execution loop, and the value returned
12. The thread state last exception is reset to the value before theframe was called
13. The generator is marked as not running
14. The following cases then match the return value and any excep-tions thrown by the call to the generator. Remember that gener-ators should raise a StopIteration when they are exhausted, eithermanually, or by not yielding a value. Coroutines and async gener-ators should not:• If no result was returned from the frame, raise a StopIterationfor generators and StopAsyncIteration for async generators

• If a StopIterationwas explicitly raised, but this is a coroutine oran async generator, raise a RuntimeError as this is not allowed
• If a StopAsyncIterationwas explicitly raised and this is an asyncgenerator, raise a RuntimeError, as this is not allowed

15. Lastly, the result is returned back to the caller of __next__()
Bringing this all together, you can see how the generator expression isa powerful syntax where a single keyword, yield triggers a whole flowto create a unique object, copy a compiled code object as a property,set a frame, and store a list of variables in the local scope.

Coroutines
Generators have a big limitation. They can only yield values to theirimmediate caller.
An additional syntax was added to Python to overcome this- the yield

from statement. Using this syntax, you can refactor generators intoutility functions and then yield from them.

275

Coroutines
For example, the letter generator can be refactored into a utility func-tion where the starting letter is an argument. Using yield from, youcan choose which generator object to return:
cpython-book-samples 33 letter_coroutines.py

def gen_letters(start, x):

i = start

end = start + x

while i < end:

yield chr(i)

i += 1

def letters(upper):

if upper:

yield from gen_letters(65, 26) # A-Z

else:

yield from gen_letters(97, 26) # a-z

for letter in letters(False):

Lower case a-z

print(letter)

for letter in letters(True):

Upper case A-Z

print(letter)

Generators are also great for lazy sequences, where they can be calledmultiple times.
Building on the behaviors of generators, such as being able to pauseand resume execution, the concept of a coroutine was iteratedin Python over multiple APIs. Generators are a limited form ofcoroutine because you can send data to them using the .send()method.
It is possible to sendmessages bi-directionally between the caller andthe target. Coroutines also store the caller in the cr_origin attribute.

276

Coroutines
Coroutines were initially available via a decorator, but this has sincebeen deprecated in favor of “native” coroutines using the keywords
async and await.
To mark that a function returns a coroutine, it must be preceded withthe async keyword.
The async keyword makes it explicit (unlike generators) that this func-tion returns a coroutine and not a value.
To create a coroutine, define a function with the keyword async def.In this example, add a timer using the asyncio.sleep() function andreturn a wake-up string:
>>> import asyncio

>>> async def sleepy_alarm(time):

... await asyncio.sleep(time)

... return "wake up!"

>>> alarm = sleepy_alarm(10)

>>> alarm

<coroutine object sleepy_alarm at 0x1041de340>

When you call the function, it returns a coroutine object. Thereare many ways to execute a coroutine. The easiest is using
asyncio.run(coro).
Run asyncio.run() with your coroutine object, then after 10 seconds itwill sound the alarm:
>>> asyncio.run(alarm)

'wake up'

So far, there is a small benefit over a regular function. The benefit ofcoroutines is that you can run them concurrently. Because the corou-tine object is a variable that you can pass to a function, these objectscan be linked together and chained, or created in a sequence.
For example, if you wanted to have 10 alarms with different intervalsand start them all at the same time, these coroutine objects can be

277

Coroutines
converted into tasks.
The task API is used to schedule and execute multiple coroutines con-currently.
Before tasks are scheduled, an event loop must be running. The jobof the event loop is to schedule concurrent tasks and connect eventssuch as completion, cancellation, and exceptions with callbacks.
When you called asyncio.run(), the run function (in Lib asyncio

runners.py) did these tasks for you:
1. Started a new event loop
2. Wrapped the coroutine object in a task
3. Set a callback on the completion of the task
4. Looped over the task until it completed
5. Returned the result
Related Source Files
Source files related to coroutines are:
File Purpose
Lib asyncio Python standard library implementation forasyncio

Event Loops
Event loops are the glue that holds async code together. Written inpure Python, event loops are an object containing tasks.
When started, a loop can either run once or run forever. Any of thetasks in the loop can have callbacks. The loop will run the callbacks ifa task completes or fails.

278

Coroutines
loop = asyncio.new_event_loop()

Inside a loop is a sequence of tasks, represented by the type
asyncio.Task, tasks are scheduled onto a loop, then once the loop isrunning, it loops over all the tasks until they complete.
You can convert the single timer into a task loop:
cpython-book-samples 33 sleepy_alarm.py

import asyncio

async def sleepy_alarm(person, time):

await asyncio.sleep(time)

print(f"{person} -- wake up!")

async def wake_up_gang():

tasks = [

asyncio.create_task(sleepy_alarm("Bob", 3), name="wake up Bob"),

asyncio.create_task(sleepy_alarm("Sanjeet", 4), name="wake up Sanjeet"),

asyncio.create_task(sleepy_alarm("Doris", 2), name="wake up Doris"),

asyncio.create_task(sleepy_alarm("Kim", 5), name="wake up Kim")

]

await asyncio.gather(*tasks)

asyncio.run(wake_up_gang())

This will print:
Doris -- wake up!

Bob -- wake up!

Sanjeet -- wake up!

Kim -- wake up!

In the event loop, it will run over each of the coroutines to see if theyare completed. Similar to how the yield keyword can return multiplevalues from the same frame, the await keyword can return multiplestates. The event loopwill execute the sleepy_alarm() coroutine objectsagain and again until the await asyncio.sleep() yields a completed re-

279

Coroutines
sult, and the print() function is able to execute.
For this to work, asyncio.sleep() must be used instead of the blocking(and not async-aware) time.sleep().
Example
You can convert the multithreaded port scanner example to asynciowith these steps:
• Change the check_port() function to use a socket connection from

asyncio.open_connection(), which creates a future instead of an im-mediate connection
• Use the socket connection future in a timer event, with

asyncio.wait_for()

• Append the port to the results list if succeeded
• Add a new function, scan() to create the check_port() coroutines foreach port and add them to a list, tasks
• Merge all the tasks into a new coroutine using asyncio.gather()

• Run the scan using asyncio.run()

cpython-book-samples 33 portscanner_async.py

import time

import asyncio

timeout = 1.0

async def check_port(host: str, port: int, results: list):

try:

future = asyncio.open_connection(host=host, port=port)

r, w = await asyncio.wait_for(future, timeout=timeout)

results.append(port)

w.close()

except asyncio.TimeoutError:

pass # port is closed, skip-and-continue

280

Asynchronous Generators

async def scan(start, end, host):

tasks = []

results = []

for port in range(start, end):

tasks.append(check_port(host, port, results))

await asyncio.gather(*tasks)

return results

if __name__ == '__main__':

start = time.time()

host = "localhost" # pick a host you own

results = asyncio.run(scan(80, 100, host))

for result in results:

print("Port {0} is open".format(result))

print("Completed scan in {0} seconds".format(time.time() - start))

Finally, this scan completes in just over 1 second:
$ python portscanner_async.py

Port 80 is open

Completed scan in 1.0058400630950928 seconds

Asynchronous Generators
The concepts you have learned so far, generators and coroutines canbe combined into a type - asynchronous generators.
If a function is declared with both the async keyword and it containsa yield statement, it is converted into an async generator object whencalled.
Like generators, async generatorsmust be executed by something thatunderstands the protocol. In place of __next__(), async generatorshave a method __anext__().
A regular for loop would not understand an async generator, so in-stead, the async for statement is used.

281

Subinterpreters
You can refactor the check_port() function into an async generator thatyields the next open port until it hits the last port, or it has found aspecified number of open ports:
async def check_ports(host: str, start: int, end: int, max=10):

found = 0

for port in range(start, end):

try:

future = asyncio.open_connection(host=host, port=port)

r, w = await asyncio.wait_for(future, timeout=timeout)

yield port

found += 1

w.close()

if found >= max:

return

except asyncio.TimeoutError:

pass # closed

To execute this, use the async for statement:
async def scan(start, end, host):

results = []

async for port in check_ports(host, start, end, max=1):

results.append(port)

return results

See cpython-book-samples 33 portscanner_async_generators.py for thefull example.

Subinterpreters
So far, you have covered:
• Parallel execution with multiprocessing
• Concurrent execution with threads and async

The downside of multiprocessing is that the inter-process communi-cation using pipes and queues is slower than shared memory. Also

282

Subinterpreters
the overhead to start a new process is significant.
Threading and async have small overhead but don’t offer truly parallelexecution because of the thread-safety guarantees in the GIL.
The fourth option is subinterpreters, which have a smaller overheadthan multiprocessing, and allow a GIL per subinterpreter. After all, itis the Global Interpreter Lock.
Within the CPython runtime, there is always 1 interpreter. The inter-preter holds the interpreter state, and within an interpreter, you canhave 1 or many Python threads. The interpreter is the container forthe evaluation loop. the interpreter also manages its own memory,reference counter, and garbage collection. CPython has low-level CAPIs for creating interpreters, like the Py_NewInterpreter().

Interpreter State

Runtime

Interpreter 0
(primary)

Runtime State

Heap

CPython Runtime Files

Locks

SocketsCompiled Modules

Instructions

GIL

Thread 0 (Primary) Threads 1-n

Interpreter State

Interpreter n Heap

CPython Runtime Files

Locks

SocketsCompiled Modules

Instructions

GIL

Thread 0 (Primary) Threads 1-n

Note
The subinterpreters module is still experimental in 3.9.0b1, sothe API is subject to change and the implementation is stillbuggy.

Because Interpreter state contains thememory allocation arena, a col-lection of all pointers to Python objects (local and global), subinter-preters cannot access the global variables of other interpreters. Simi-
283

https://github.com/python/cpython/blob/v3.9.0b1/Python/pylifecycle.c#L1626

Subinterpreters
lar tomultiprocessing, to share objects between interpreters youmustserialize them, or use ctypes, and use a form of IPC (network, disk orshared memory).
Related Source Files
Source files related to subinterpreters are:
File Purpose
Lib _xxsubinterpreters.c | C implementation of the subinterpretersmodule
Python pylifecycle.c C implementation of the interpretermanagement API

Example
In the final example application, the actual connection code has to becaptured in a string. In 3.9.0b1, subinterpreters can only be executedwith a string of code.
To start each of the subinterpreters, a list of threads is started, with acallback to a function, run().
This function will:
• Create a communication channel
• Start a new subinterpreter
• Send it the code to execute
• Receive data over the communication channel
• If the port connection succeeded, add it to the thread-safe queue

cpython-book-samples 33 portscanner_subinterpreters.py

import time

import _xxsubinterpreters as subinterpreters

from threading import Thread

284

Subinterpreters
import textwrap as tw

from queue import Queue

timeout = 1 # in seconds..

def run(host: str, port: int, results: Queue):

Create a communication channel

channel_id = subinterpreters.channel_create()

interpid = subinterpreters.create()

subinterpreters.run_string(

interpid,

tw.dedent(

"""

import socket; import _xxsubinterpreters as subinterpreters

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.settimeout(timeout)

result = sock.connect_ex((host, port))

subinterpreters.channel_send(channel_id, result)

sock.close()

"""),

shared=dict(

channel_id=channel_id,

host=host,

port=port,

timeout=timeout

))

output = subinterpreters.channel_recv(channel_id)

subinterpreters.channel_release(channel_id)

if output == 0:

results.put(port)

if __name__ == '__main__':

start = time.time()

host = "127.0.0.1" # pick a host you own

threads = []

results = Queue()

for port in range(80, 100):

t = Thread(target=run, args=(host, port, results))

285

Conclusion
t.start()

threads.append(t)

for t in threads:

t.join()

while not results.empty():

print("Port {0} is open".format(results.get()))

print("Completed scan in {0} seconds".format(time.time() - start))

Because of the reduced overheads compared with multiprocessing,this example should execute 30-40% faster and with fewer memoryresources:
$ python portscanner_subinterpreters.py

Port 80 is open

Completed scan in 1.3474230766296387 seconds

Conclusion
Congratulations on getting through the biggest chapter in the book!You’ve covered a lot of ground. Let us recap some of the concepts andtheir applications.
For truly parallel execution, you needmultiple CPUs or cores. Youalso need to use eithermultiprocessing or subinterpreters pack-ages so that the Python interpreter can be executed in parallel. Re-member that startup time is significant, and each interpreter has abig memory overhead. If the tasks that you want to execute are short-lived, use a pool of workers and a queue of tasks.
If you have multiple IO-bound tasks and want them to run concur-rently, you should use multithreading, or use coroutines with theasyncio package.
All four of these approaches require an understanding of how to safelyand efficiently transfer data between processes or threads. The bestway to reinforcewhat you’ve learned is to look at an application you’vewritten and seen how it can be refactored to leverage these techniques.

286

Conclusion
Leave feedback on this section »

287

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiOURqWlUyKW9DZEZpVXg4KjhacUVgeGArSjNhWFElVWIyMTsldjtNQCIsInQiOiJjaGFwdGVycy8zMy1wYXJhbGxlbGlzbS1pbi1jcHl0aG9uLm1kICg0OThhNjI2ZWM1MDVkMTRiKSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iLzQ5OGE2MjZlYzUwNWQxNGI2NTcyODdjNTU5M2EzOTc0MGE4NzIyOTIvY2hhcHRlcnMvMzMtcGFyYWxsZWxpc20taW4tY3B5dGhvbi5tZCJ9

Objects and Types
CPython comes with a collection of basic types like strings, lists, tu-ples, dictionaries, and objects.
All of these types are built-in. You don’t need to import any libraries,even from the standard library.
For example, to create a new list, you can call:
lst = list()

Or, you can use square brackets:
lst = []

Strings can be instantiated from a string-literal by using either doubleor single quotes. You explored the grammar definitions in the chap-ter “The Python Language and Grammar” that cause the compiler tointerpret double quotes as a string literal.
All types in Python inherit from object, a built-in base type. Evenstrings, tuples, and lists inherit from object.
In Objects object.c, the base implementation of object type is writtenas pure C code. There are some concrete implementations of basiclogic, like shallow comparisons.
A simple way to think of a Python object is consisting of 2 things:
1. The core data model, with pointers to compiled functions

288

Examples in This Chapter
2. A dictionary with any custom attributes and methods
Much of the base object API is declared in Objects object.c, like theimplementation of the built-in repr() function, PyObject_Repr. You willalso find PyObject_Hash() and other APIs.
All of these functions can be overridden in a custom object by imple-menting “dunder” methods on a Python object. For example:
class MyObject(object):

def __init__(self, id, name):

self.id = id

self.name = name

def __repr__(self):

return "<{0} id={1}>".format(self.name, self.id)

All of these built-in functions are called the Python Data Model.Not all methods in a Python object are part of the Data Model, sothat a Python object can contain attributes (either class or instanceattributes) and methods.
See Also
One of the great resources for the Python DataModel is “FluentPython” by Luciano Ramalho.

Examples in This Chapter
Throughout this chapter, each type explanation will come with an ex-ample. In the example, youwill implement the almost-equal operator,that was specified in earlier chapters.
If you haven’t yet implemented the changes in the Grammar and Com-piler chapters, they will be required to implement the examples.

289

https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L389
https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L765
https://docs.python.org/3/reference/datamodel.html
https://www.oreilly.com/library/view/fluent-python/9781491946237/
https://www.oreilly.com/library/view/fluent-python/9781491946237/

Builtin Types
Builtin Types
The core data model is defined in the PyTypeObject, and the functionsare defined in:
Each of the source filewill have a corresponding header in Include. Forexample, Objects/rangeobject.c has a header file Include rangeobject.h.
Source File Type
Objects object.c Built in methods and base object
Objects boolobject.c bool type
Objects bytearrayobject.c byte[] type
Objects bytesobjects.c bytes type
Objects cellobject.c cell type
Objects classobject.c Abstract class type, used inmeta-programming
Objects codeobject.c Built-in code object type
Objects complexobject.c Complex numeric type
Objects iterobject.c An iterator
Objects listobject.c list type
Objects longobject.c long numeric type
Objects memoryobject.c Base memory type
Objects methodobject.c Class method type
Objects moduleobject.c Module type
Objects namespaceobject.c Namespace type
Objects odictobject.c Ordered dictionary type
Objects rangeobject.c Range generator
Objects setobject.c set type
Objects sliceobject.c Slice reference type
Objects structseq.c struct.Struct type
Objects tupleobject.c tuple type
Objects typeobject.c type type
Objects unicodeobject.c str type
Objects weakrefobject.c weakref type

You will explore some of those types in this chapter.

290

Object and Variable Object Types
Object and Variable Object Types
Because C is not object-oriented like Python, objects in C don’t inheritfromone another. PyObject is the initial data segment for every Pythonobject and PyObject * represents a pointer to it.
When defining Python types, the typedef uses one of two macros:
• PyObject_HEAD (PyObject) for a simple type
• PyObject_VAR_HEAD (PyVarObject) for a container type

The simple type PyObject has the fields:
Field Type Purpose
ob_refcnt Py_ssize_t Instance reference counter
ob_type _typeobject* The object type

For example, the cellobject declares 1 additional field, ob_ref, and thebase fields:
typedef struct {

PyObject_HEAD

PyObject *ob_ref; /* Content of the cell or NULL when empty */

} PyCellObject;

The variable type, PyVarObject extends the PyObject type and also hasthe fields:
Field Type Purpose
ob_base PyObject The base type
ob_size Py_ssize_t Number of items it contains

For example, the int type, PyLongObject, has the declaration:
struct _longobject {

PyObject_VAR_HEAD

291

https://realpython.com/python3-object-oriented-programming/

The type Type
digit ob_digit[1];

}; /* PyLongObject */

The type Type
In Python, objects have a property ob_type, you can get the value ofthis property using the builtin function type():
>>> t = type("hello")

>>> t

<class 'str'>

The result from type() is an instance of a PyTypeObject:
>>> type(t)

<class 'type'>

Type objects are used to define the implementation of abstract baseclasses.
For example, objects alway have the __repr__()method implemented:
>>> class example:

... x = 1

>>> i = example()

>>> repr(i)

'<__main__.example object at 0x10b418100>'

The implementation of the __repr__() method is always at the sameaddress in the type definition of any object. This position is known asa type slot.
Type Slots
All of the type slots are defined in Include cpython object.h.
Each type slot has a property name and a function signature. The _-

_repr__() function for example is called tp_repr and has a signature
reprfunc:

292

The type Type
struct PyTypeObject

typedef struct _typeobject {

...

reprfunc tp_repr;

...

} PyTypeObject;

The signature reprfunc is defined in Include cpython object.h as havinga single argument of PyObject* (self):
typedef PyObject *(*reprfunc)(PyObject *);

As an example, the cell object implements the tp_repr slot with thefunction cell_repr:
PyTypeObject PyCell_Type = {

PyVarObject_HEAD_INIT(&PyType_Type, 0)

"cell",

sizeof(PyCellObject),

0,

(destructor)cell_dealloc, /* tp_dealloc */

0, /* tp_vectorcall_offset */

0, /* tp_getattr */

0, /* tp_setattr */

0, /* tp_as_async */

(reprfunc)cell_repr, /* tp_repr */

...

};

Beyond the basic PyTypeObject type slots, denoted with the tp_ prefix,there are other type slot definitions:
• PyNumberMethods denoted with the prefix nb_

• PySequenceMethods denoted with the prefix sq_

• PyMappingMethods denoted with the prefix mp_

• PyAsyncMethods denoted with the prefix am_

• PyBufferProcs denoted with the prefi bf_

293

The type Type
All type slots are given a unique number, defined in Include

typeslots.h.
When referring to, or fetching a type slot on an object, use these con-stants.
For example, tp_repr has a constant position of 66, and the constant
Py_tp_repr always matches the type slot position. These constants areuseful when checking if an object implements a particular type slotfunction.
Working with Types in C
Within C extension modules and the core CPython code, you will befrequently working with the PyObject* type.
As an example, if you run x[n] on a subscriptable object like a list, orstring, it will call PyObject_GetItem() which looks at the object x to de-termine how to subscript it:
Objects abstract.c line 146
PyObject *

PyObject_GetItem(PyObject *o, PyObject *key)

{

PyMappingMethods *m;

PySequenceMethods *ms;

...

The PyObject_GetItem() function serves both mapping types (like dic-tionaries) as well as sequence types (like lists and tuples).
If the instance, o has sequence methods, then o->ob_type->tp_as_-

sequence will evaluate to true, also if the instance, o, has a sq_item slotfunction defined, it is assumed that it has corrected implemented thesequence protocol.
The value of key is evaluated to check that it is an integer, and the itemis requested from the sequence object using the PySequence_GetItem()

294

https://github.com/python/cpython/blob/v3.9.0b1/Objects/abstract.c#L146
https://github.com/python/cpython/blob/v3.9.0b1/Objects/abstract.c#L146
https://github.com/python/cpython/blob/v3.9.0b1/Objects/abstract.c#L1740

The type Type
function:

ms = o->ob_type->tp_as_sequence;

if (ms && ms->sq_item) {

if (PyIndex_Check(key)) {

Py_ssize_t key_value;

key_value = PyNumber_AsSsize_t(key, PyExc_IndexError);

if (key_value == -1 && PyErr_Occurred())

return NULL;

return PySequence_GetItem(o, key_value);

}

else {

return type_error("sequence index must "

"be integer, not '%.200s'", key);

}

}

Type Property Dictionaries
Python supports defining new types with the class keyword. User de-fined types are created by type_new() in the type object module.
User defined types will have a property dictionary, accessed by __-

dict__(). Whenever a property is accessed on a custom class, the de-fault __getattr__ implementationlooks in this property dictionary. Class methods, instance methods,class properties and instance properties are located in this dictionary.
The PyObject_GenericGetDict() function implements the logic to fetchthe dictionary instance for a given object. The PyObject_GetAttr()function implements the default __getattr__() implementation and
PyObject_SetAttr() implements __setattr__().

295

https://github.com/python/cpython/blob/v3.9.0b1/Objects/typeobject.c#L2410
https://github.com/python/cpython/blob/v3.9.0b1/Objects/dictobject.c#L4773
https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L879
https://github.com/python/cpython/blob/v3.9.0b1/Objects/object.c#L979

Bool and Long Integer Type
See Also
There are many layers to custom types, that have been exten-sively documented in many Python books.I could fill an entire book on metaclasses, but have decided tostick to the implementation. If you want to learn more, checkout John Sturtz’ article on metaprogramming.

Bool and Long Integer Type
The bool type is the most straightforward implementation of the built-in types. It inherits from long and has the predefined constants, Py_-
True and Py_False. These constants are immutable instances, createdon the instantiation of the Python interpreter.
Inside Objects boolobject.c, you can see the helper function to createa bool instance from a number:
Objects boolobject.c line 28
PyObject *PyBool_FromLong(long ok)

{

PyObject *result;

if (ok)

result = Py_True;

else

result = Py_False;

Py_INCREF(result);

return result;

}

This function uses the C evaluation of a numeric type to assign Py_Trueor Py_False to a result and increment the reference counters.
The numeric functions for and, xor, and or are implemented, but ad-dition, subtraction, and division are dereferenced from the base longtype since it would make no sense to divide two boolean values.

296

https://realpython.com/python-metaclasses/
https://github.com/python/cpython/blob/v3.9.0b1/Include/boolobject.h#L22
https://github.com/python/cpython/blob/v3.9.0b1/Include/boolobject.h#L22
https://github.com/python/cpython/blob/v3.9.0b1/Include/boolobject.h#L21

Bool and Long Integer Type
The implementation of and for a bool value first checks if a and b arebooleans. If they arent, they are cast as numbers, and the and opera-tion is run on the two numbers:
Objects boolobject.c line 61
static PyObject *

bool_and(PyObject *a, PyObject *b)

{

if (!PyBool_Check(a) || !PyBool_Check(b))

return PyLong_Type.tp_as_number->nb_and(a, b);

return PyBool_FromLong((a == Py_True) & (b == Py_True));

}

Long Type
The long type is a bit more complex than bool. In the transition fromPython 2 to 3, CPython dropped support for the int type and insteadused the long type as the primary integer type. Python’s long type isquite special in that it can store a variable-length number. The maxi-mum length is set in the compiled binary.
The data structure of a Python long consists of the PyObject variableheader and a list of digits. The list of digits, ob_digit is initially set tohave one digit, but it later expanded to a longer length when initial-ized:
Include longintrepr.h line 85
struct _longobject {

PyObject_VAR_HEAD

digit ob_digit[1];

};

For example, the number 1 would have the ob_digits [1], and 24601would have the ob_digits [2, 4, 6, 0, 1].
Memory is allocated to anew long through _PyLong_New(). This functiontakes a fixed length and makes sure it is smaller than MAX_LONG_DIGITS.

297

Bool and Long Integer Type
Then it reallocates the memory for ob_digit to match the length.
To convert a C long type to a Python long type, the C long is converted toa list of digits, the memory for the Python long is assigned, and theneach of the digits is set. The long object is initialized with ob_digitalready being at a length of 1 if the number is less than 10 (1 digit).Then, the value is set without the memory being allocated:
Objects longobject.c line 297
PyObject *

PyLong_FromLong(long ival)

{

PyLongObject *v;

unsigned long abs_ival;

unsigned long t; /* unsigned so >> doesn't propagate sign bit */

int ndigits = 0;

int sign;

CHECK_SMALL_INT(ival);

...

/* Fast path for single-digit ints */

if (!(abs_ival >> PyLong_SHIFT)) {

v = _PyLong_New(1);

if (v) {

Py_SIZE(v) = sign;

v->ob_digit[0] = Py_SAFE_DOWNCAST(

abs_ival, unsigned long, digit);

}

return (PyObject*)v;

}

...

/* Larger numbers: loop to determine number of digits */

t = abs_ival;

while (t) {

++ndigits;

t >>= PyLong_SHIFT;

}

298

Bool and Long Integer Type
v = _PyLong_New(ndigits);

if (v != NULL) {

digit *p = v->ob_digit;

Py_SIZE(v) = ndigits*sign;

t = abs_ival;

while (t) {

*p++ = Py_SAFE_DOWNCAST(

t & PyLong_MASK, unsigned long, digit);

t >>= PyLong_SHIFT;

}

}

return (PyObject *)v;

}

To convert a double-point floating point to a Python long, PyLong_-

FromDouble() does the math for you.
The remainder of the implementation functions in Objects

longobject.c have utilities, such as converting a Unicode stringinto a number with PyLong_FromUnicodeObject().
Example
The rich-comparison type slot for long is set to the long_richcompare.This function wraps long_compare:
Objects longobject.c line 3031
static PyObject *

long_richcompare(PyObject *self, PyObject *other, int op)

{

Py_ssize_t result;

CHECK_BINOP(self, other);

if (self == other)

result = 0;

else

result = long_compare((PyLongObject*)self, (PyLongObject*)other);

Py_RETURN_RICHCOMPARE(result, 0, op);

}

299

https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L417
https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L417
https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L2625
https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L3031
https://github.com/python/cpython/blob/v3.9.0b1/Objects/longobject.c#L3013

Bool and Long Integer Type
The long_compare function will first check whether the length (numberof digits) of the two variables a and b. If the lengths are the same, itthen loops through each digit to see if they are equal to each other.
long_compare() returns:
• A negative number when a < b

• 0 when a < b

• A positive number when a > b

For example, when you execute 1 == 5, the result is -4. 5 == 1, theresult is 4.
You can implement the following code block before the Py_RETURN_-

RICHCOMPARE macro to return True when the absolute value of result is
<=1 using the macro Py_ABS(), which returns the absolute value of asigned integer:

if (op == Py_AlE) {

if (Py_ABS(result) <= 1)

Py_RETURN_TRUE;

else

Py_RETURN_FALSE;

}

Py_RETURN_RICHCOMPARE(result, 0, op);

}

After recompiling Python, you should see the effect of the change:
>>> 2 == 1

False

>>> 2 ~= 1

True

>>> 2 ~= 10

False

300

Unicode String Type
Unicode String Type
Python Unicode strings are complicated. Cross-platform Unicodetypes in any platform are complicated.
The cause of this complexity is the number of encodings that are onoffer, and the different default configurations on the platforms thatPython supports.
The Python 2 string type was stored in C using the char type. The 1-byte char type sufficiently stores any of the ASCII (American StandardCode for Information Interchange) characters and has been used incomputer programming since the 1970s.
ASCII does not support the 1000’s of languages and character sets thatare in use across the world. Also, there are extended glyph charactersets like emojis, which it cannot support.
A standard system of coding and a database of characters was created,known as the Unicode Standard. The modern Unicode Standard in-cludes characters for all written languages, as well as extended glyphsand characters. TheUnicodeCharacterDatabase (UCD) contains137,929 at version 12.1 (compared with the 128 in ASCII).
The Unicode standard defines these characters in a character tablecalled the Universal Character Set (UCS). Each character has aunique identifier known as a code point.
There are then many encodings that use the Unicode Standard andconvert the code-point into a binary value.
Python Unicode strings support three lengths of encodings:
• 1-byte (8-bit)
• 2-byte (16-bit)
• 4-byte (32-bit)

These variable-length encodings are referred to within the implemen-

301

Unicode String Type
tation as:
• 1-byte Py_UCS1, stored as 8-bit unsigned int type, uint8_t
• 2-byte Py_UCS2, stored as 16-bit unsigned int type, uint16_t
• 4-byte Py_UCS4, stored as 32-bit unsigned int type, uint32_t
Related Source Files
Source files related to strings are:
File Purpose
Include unicodeobject.h Unicode String Object definition
Include cpython unicodeobject.h Unicode String Object definition
Objects unicodeobject.c Unicode String Object implementation
Lib encodings Encodings package containing all thepossible encodings
Lib codecs.py Codecs module
Modules _codecsmodule.c | Codecs module C extensions, implementsOS-specific encodings
Modules _codecs | Codec implementations for a range ofalternative encodings

Processing Unicode Code Points
CPython does not contain a copy of the UCD, nor does it have to up-date whenever scripts and characters are added to the Unicode stan-dard. Unicode Strings in CPython only have to care about the en-codings, the Operating System has the task of representing the codepoints in the correct scripts.
TheUnicode standard includes theUCD and is updated regularly withnew scripts, new Emojis, and new characters.
Operating Systems take on these updates to Unicode and update theirsoftware via a patch. These patches include the newUCD code-pointsand support the various Unicode encodings. The UCD is split intosections called code blocks.

302

Unicode String Type
The Unicode Code charts are published on the Unicode Website.
Another point of support for Unicode is the Web Browser. WebBrowsers decode HTML binary data in the encoding marked HTTPencoding headers. If you are working with CPython as a web server,then your Unicode encodings must match the HTTP headers beingsent to your users.
UTF8 vs UTF16
Some common encodings are:
• UTF8, an 8-bit character encoding that supports all possible char-acters in the UCD with either a 1-4 byte code point
• UTF16, a 16-bit character encoding, similar toUTF8, but not com-patible with 7 or 8-bit encodings like ASCII

UTF8 is the most commonly used Unicode encoding.
In all Unicode encodings, the code points can be represented using ahexadecimal shorthand:
• U+00F7 for the division character '÷'
• U+0107 for the Latin Small Letter C with acute 'ć'

In Python, Unicode code points can be encoded directly into the codeusing the u escape symbol and the hexadecimal value of the code point:
>>> print("u0107")

ć

CPython does not attempt to pad this data, so if you tried u107, it wouldgive the following exception:
print("u107")

File "<stdin>", line 1

SyntaxError: (unicode error) 'unicodeescape' codec can't decode

bytes in position 0-4: truncated uXXXX escape

303

https://unicode.org/charts/

Unicode String Type
Both XML and HTML support unicode code points with a special es-cape character &#val;, where val is the decimal value of the code point.If you need to encode Unicode code points into XML or HTML, youcan use the xmlcharrefreplace error-handler in the .encode() method:
>>> "u0107".encode('ascii', 'xmlcharrefreplace')

b'ć'

The output will contain HTML/XML-escaped code-points. All mod-ern browsers will decode this escape sequence into the correct charac-ter.
ASCII Compatibility
If you are working with ASCII-encoded text, it is important to under-stand the difference between UTF7/8 and UTF16. UTF8 has a majorbenefit of being compatible with ASCII encoded text. ASCII encodingis a 7-bit encoding.
The first 128 code points on the Unicode Standard represent the ex-isting 128 characters of the ASCII standard. For example, the Latinletter 'a' is the 97th character in ASCII and the 97th character in Uni-code. Decimal 97 is equivalent to 61 in hexadecimal, so the Unicodecode point is U+0061.
On the REPL, if you create the binary code for the letter 'a':
>>> letter_a = b'a'

>>> letter_a.decode('utf8')

'a'

This can correctly be decoded into UTF8.
UTF16 works with 2-4 byte code points. The 1-byte representation ofthe letter 'a' will not decode:
>>> letter_a.decode('utf16')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

304

Unicode String Type
UnicodeDecodeError: 'utf-16-le' codec can't decode

byte 0x61 in position 0: truncated data

This is important to note when you are selecting an encoding mech-anism. UTF8 is a safer option if you need to import ASCII encodeddata.
Wide Character Type
When handling Unicode string input in an unknown encoding withinthe CPython source code, the wchar_t C type will be used. wchar_t is theC standard for a wide-character string and is sufficient to store Uni-code strings in memory. After PEP 393, the wchar_t type was selectedas the Unicode storage format.
The Unicode string object provides a utility function, PyUnicode_-

FromWideChar(), that will convert a wchar_t constant to a string object.For example, the pymain_run_command(), used by python -c converts the
-c argument into a Unicode string:
Modules main.c line 226
static int

pymain_run_command(wchar_t *command, PyCompilerFlags *cf)

{

PyObject *unicode, *bytes;

int ret;

unicode = PyUnicode_FromWideChar(command, -1);

Byte Order Markers
When decoding an input, like a file, CPython can detect the byte-orderfrom a byte-order-marker (BOM). BOMs are a special character thatappears at the beginning of a Unicode byte stream. They tell the re-ceiver which byte-order the data is stored in. Different computer sys-tems can encode with different byte-orders. If the wrong byte-orderis used, even with the right encoding, the data will be garbled.

305

https://www.python.org/dev/peps/pep-0393/
https://github.com/python/cpython/blob/v3.9.0b1/Modules/main.c#L226

Unicode String Type
A big-endian ordering places themost significant byte first. A little-endian ordering places the least significant byte first.
The UTF8 specification does support a BOM, but it has no effect. TheUTF8 BOM can appear at the beginning of a UTF8-encoded data se-quence, represented as b'\xef\xbb\xbf', and will indicate to CPythonthat the data stream is most-likely UTF8. UTF16 and UTF32 supportlittle and big-endian BOMs.
The default byte-order in CPython is set by the sys.byteorder globalvalue:
>>> import sys; print(sys.byteorder)

little

The Encodings Package
The encodings package in Lib encodings comes with over 100 builtinsupported encodings for CPython.
Whenever the .encode() or .decode() method is called on a string orbyte string, the encoding is looked up from this package.
Each encoding is defined as a separate module, e.g., ISO2022_JP, awidely used encoding for Japanese email systems, is declared in Lib

encodings iso2022_jp.py.
Every encoding module will define a function getregentry() and regis-ter:
• Its unique name
• Its encode and decode functions from a codec module
• Its incremental encoder and decoder classes
• Its stream reader and stream writer classes

Many of the encoding modules share the same codecs either from the
codecs module, or the _mulitbytecodec module. Some encoding mod-ules use a separate codec module in C, from Modules _codecs.

306

Unicode String Type
For example, the ISO2022_JP encoding module imports a C extensionmodule, _codecs_iso2022, from Modules _codecs _codecs_iso2022.c:
import _codecs_iso2022, codecs

import _multibytecodec as mbc

codec = _codecs_iso2022.getcodec('iso2022_jp')

class Codec(codecs.Codec):

encode = codec.encode

decode = codec.decode

class IncrementalEncoder(mbc.MultibyteIncrementalEncoder,

codecs.IncrementalEncoder):

codec = codec

class IncrementalDecoder(mbc.MultibyteIncrementalDecoder,

codecs.IncrementalDecoder):

codec = codec

The encodings package also has a module, Lib encodings aliases.py,containing a dictionary, aliases. This dictionary is used tomap encod-ings in the registry by alternative names. For example, utf8, utf-8 and
u8 are all aliases of the utf_8 encoding.
The Codecs Module
The codecs module handles the translation of data with a specific en-coding.
The encode or decode function of a particular encoding can be fetchedusing the getencoder() and getdecoder() functions respectively:
>>> iso2022_jp_encoder = codecs.getencoder('iso2022_jp')

>>> iso2022_jp_encoder('u3072u3068') # hi-to

(b'x1bBR$Hx1b(B', 2)

The encode function will return the binary result and the number ofbytes in the output as a tuple.
307

Unicode String Type
The codecs module also implements the builtin function open() foropening file handles from the operating system.
Codec Implementations
In the Unicode Object (Objects unicodeobject.c) implementation arethe encoding and decoding methods for:
Codec Encoder / Decoder
ascii PyUnicode_EncodeASCII() / PyUnicode_DecodeASCII()

latin1 PyUnicode_EncodeLatin1() / PyUnicode_DecodeLatin1()

UTF7 PyUnicode_EncodeUTF7() / PyUnicode_DecodeUTF7()

UTF8 PyUnicode_EncodeUTF8() / PyUnicode_DecodeUTF8()

UTF16 PyUnicode_EncodeUTF16() / PyUnicode_DecodeUTF16()

UTF32 PyUnicode_EncodeUTF32() / PyUnicode_DecodeUTF32()

unicode_escape PyUnicode_EncodeUnicodeEscape() /
PyUnicode_DecodeUnicodeEscape()

raw_unicode_-

escape

PyUnicode_EncodeRawUnicodeEscape() /
PyUnicode_DecodeRawUnicodeEscape()

The implementation of the other encodings is within Modules _codecsto avoid cluttering the main unicode string object implementation.
The unicode_escape and raw_unicode_escape codecs are internal toCPython.
Internal Codecs
CPython comes with a number of internal encodings. These areunique to CPython and useful for some of the standard libraryfunctions, and when working with producing source code.
These text encodings can be used with any text input and output:
Codec Purpose
idna Implements RFC 3490
mbcs (Windows only): Encode according to the ANSI codepage
raw_unicode_escape Convert to a string for raw literal in Python source code

308

Unicode String Type
Codec Purpose
string_escape Convert to a string literal for Python source code
undefined Try default system encoding
unicode_escape Convert to Unicode literal for Python source code
unicode_internal Return the internal CPython representation

These binary-only encodings need to be used with codecs.encode()/
codecs.decode() with byte string inputs, e.g., :
>>> codecs.encode(b'hello world', 'base64')

b'aGVsbG8gd29ybGQ=n'

Codec Aliases Purpose
base64_codec base64, base-64 Convert to MIME base64
bz2_codec bz2 Compress the string using bz2
hex_codec hex Convert to hexadecimal representation,with two digits per byte
quopri_codec quoted-printable Convert operand to MIME quotedprintable
rot_13 rot13 Returns the Caesar-cypher encryption(position 13)
uu_codec uu Convert using uuencode
zlib_codec zip, zlib Compress using gzip

Example
The tp_richcompare type slot is allocated to the PyUnicode_RichCompare()function in the PyUnicode_Type. This function does the comparison ofstrings and can be adapted to the ~= operator.
The behaviour you will implement is a case-insensitive comparison ofthe two strings.
First, add an additional case statement to check when the left andright strings have binary equivalence.
Objects unicodeobject.c line 11350

309

Unicode String Type
PyObject *

PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)

{

...

if (left == right) {

switch (op) {

case Py_EQ:

case Py_LE:

>>> case Py_AlE:

case Py_GE:

/* a string is equal to itself */

Py_RETURN_TRUE;

Then add a new else if block to handle the Py_AlE operator. This will:
1. Convert the left string to a new upper-case string
2. Convert the right string to a new upper-case string
3. Compare the two
4. Dereference both of the temporary strings so they get deallocated
5. Return the result
Your code should look like this:

else if (op == Py_EQ || op == Py_NE) {

...

}

/* Add these lines */

else if (op == Py_AlE){

PyObject* upper_left = case_operation(left, do_upper);

PyObject* upper_right = case_operation(right, do_upper);

result = unicode_compare_eq(upper_left, upper_right);

Py_DECREF(upper_left);

Py_DECREF(upper_right);

return PyBool_FromLong(result);

}

After recompiling, your case-insensitive string matching should givethe following results on the REPL:
310

Dictionary Type
>>> "hello" ~= "HEllO"

True

>>> "hello?" ~= "hello"

False

Dictionary Type
Dictionaries are a fast and flexible mapping type. They are used bydevelopers to store andmap data, as well as by Python objects to storeproperties and methods.
Python dictionaries are also used for local and global variables, forkeyword arguments and many other use cases.
Python dictionaries are compact, meaning the hash table only storesmapped values.
The hashing algorithm that is part of all immutable builtin types isfast, and what gives Python dictionaries their speed.
Hashing
All immutable builtin types provide a hashing function. This is de-fined in the tp_hash type slot, or using the __hash__() magic-methodfor custom types. Hash values are the same size as a pointer (64-bitfor 64-bit systems, 32 for 32-bit systems), but do not represent thememory address of their values.
The resulting hash for anyPythonObject should not change during it’slifecycle. Hashes for two immutable instances with identical valuesshould be equal:
>>> "hello".__hash__() == ("hel" + "lo").__hash__()

True

There should be no hash collissions, two objects with different valuesshould not produce the same hash.

311

Dictionary Type
Some hashes are simple, like Python longs:
>>> (401).__hash__()

401

Long hashes get more complex for a longer value:
>>> (401123124389798989898).__hash__()

2212283795829936375

Many of the builtin types use the Python pyhash.c module, which pro-vides a hashing helper function for:
• Bytes _Py_HashBytes(const void*, Py_ssize_t)

• Double _Py_HashDouble(double)

• Pointers _Py_HashPointer(void*)

Unicode strings for example, use _Py_HashBytes() to hash the byte dataof the string:
>>> ("hello").__hash__()

4894421526362833592

Custom classes can define a hashing function by implementing
__hash__(). Instead of implementing a custom hash, custom classesshould use a unique property. Make sure it is immutable by makingit a read-only property, then use hash it using the builtin hash()function:
class User:

def __init__(self, id: int, name: str, address: str):

self._id = id

def __hash__(self):

return hash(self._id)

@property

def id(self):

return self._id

312

Dictionary Type
Instances of this class can now be hashed:
>>> bob = User(123884, "Bob Smith", "Townsville, QLD")

>>> hash(bob)

123884

This instance can now be used as a dictionary key:
>>> sally = User(123823, "Sally Smith", "Cairns, QLD")

>>> near_reef = {bob: False, sally: True}

>>> near_reef[bob]

False

Sets will reduce duplicate hashes of this instance:
>>> {bob, bob}

{<__main__.User object at 0x10df244b0>}

Related Source Files
Source files related to dictionaries are:
File Purpose
Include dictobject.h Dictionary Object API definition
Include cpython dictobject.h Dictionary Object types definition
Objects dictobject.c Dictionary Object implementation
Objects dict-common.h Definition of key entry, and key objects
Python pyhash.c Internal hashing algorithm

Dictionary Structure
Dictionary objects, PyDictObject are comprised of:
1. The Dictionary Object, PyDictObject, containing the size, a versiontag, the keys and values
2. A Dictionary Keys Object, containing the keys and hash values ofall entries

313

Dictionary Type

PyDictObject

PyDictKeysObject Value Table
(split)

Indices

Lookup Function

Key Entries

Key (PyObject*)

Value (PyObject*)

Hash Value

Value (PyObject*)

Value (PyObject*)

Value (PyObject*)

Properties

The PyDictObject has the properties:
Field Type Purpose
ma_used Py_ssize_t Number of items in the dictionary
ma_-

version_tag

uint64_t Version number of the dictionary
ma_keys PyDictKeysObject

*

Dictionary Key Table Object
ma_values PyObject ** Optional value array (see note)

Note
Dictionaries can have two states- split or combined. When dic-tionaries are combined, the pointers to the dictionary values arestored in the keys object.
When the dictionary is split, the values are stored in an extraproperty, ma_values, as a value table of PyObject*.

The dictionary key table, PyDictKeysObject, contains:
Field Type Purpose
dk_refcnt Py_ssize_t Reference counter

314

Dictionary Type
Field Type Purpose
dk_size Py_ssize_t The size of the hash table
dk_lookup dict_lookup_-

func

The lookup function (See next section)
dk_usable Py_ssize_t The number of usable entries in the entry table,when 0, dictionary is resized
dk_-

nentries

Py_ssize_t The number of used entries in the entry table
dk_-

indices

char[] Hash table and mapping to dk_entries

dk_-

entries

PyDictKeyEntry[] Allocated array of dictionary key entries

A dictionary key entry, PyDictKeyEntry contains:
Field Type Purpose
me_hash Py_ssize_t Cached hash code of me_key
me_key PyObject* Pointer to the key object
me_value PyObject* Pointer to the value object (if combined)

Lookups
For a given key object, there is a generic lookup function lookdict().
Dictionary lookups need to cater for three scenarios:
1. The memory address of the key exists in the key table
2. The hash value of the object exists in the key table
3. The key does not exist in the dictionary

See Also
The lookup function is based on Donald Knuth’s famous book,“The art of Computer Programming”, chapter 6, section 4 onhashing (ISBN 978-0201896855)

The sequence of the lookup function is:
315

https://github.com/python/cpython/blob/v3.9.0b1/Objects/dictobject.c#L779

Conclusion
1. Get the hash value of ob
2. Lookup the hash value of ob in the dictionary keys and get the in-dex, ix
3. If ix is empty, return DKIX_EMPTY (not found)
4. Get the key entry, ep for the given index
5. If the key values match because the object, ob is the same pointerat the key value, return the result
6. If the key hashes match because the object, ob resolves to the samehash value as ep->me_mash, return the result

Note
The lookupdict() function is one of few “hot functions” in theCPython source code.
“The hot attribute is used to inform the compiler that a functionis a hot spot of the compiled program. The function is optimizedmore aggressively and on many target it is placed into specialsubsection of the text section so all hot functions appears closetogether improving locality.”
This is specific to GNUC compilers, but when compiled withPGO, this function is likely to be optimized by the compiler au-tomatically.

Conclusion
Now that you have seen the implementation of some built-in types,you can explore others.
When exploring Python classes, it is important to remember there arebuilt-in types, written in C and classes inheriting from those types,written in Python or C.
Some libraries have types written in C instead of inheriting from the

316

Conclusion
built-in types. One example is numpy, a library for numeric arrays. The
nparray type is written in C, is highly efficient and performant.
In the next chapter, you will explore the classes and functions definedin the standard library.
Leave feedback on this section »

317

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiQm5vckYrZVhMazAoPEhYZk10Qi1sYGcpVmcxP2ZpdVApfjtKcFpnViIsInQiOiJjaGFwdGVycy80MC1vYmplY3RzLWluLWNweXRob24ubWQgKGExYTM1NWM4NGNlZDc5NTgpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvYTFhMzU1Yzg0Y2VkNzk1ODY0NzU1YTBiNWJhMGY5MjNlNzEwZTQzYi9jaGFwdGVycy80MC1vYmplY3RzLWluLWNweXRob24ubWQifQ==

The Standard Library
Python has always come “batteries included.” This statement meansthatwith a standardCPythondistribution, there are libraries forwork-ing with files, threads, networks, web sites, music, keyboards, screens,text, and a whole manner of utilities.
Some of the batteries that comewith CPython aremore like AA batter-ies. They’re useful for everything, like the collectionsmodule and the
sys module. Some of them are a bit more obscure, like a small watchbattery that you never know when it might come in useful.
There are two types of modules in the CPython standard library:
1. Those written in pure Python that provide a utility
2. Those written in C with Python wrappers
You will explore both types in this chapter.

Python Modules
Themodules written in pure Python are all located in the Lib directoryin the source code. Some of the larger modules have submodules insubfolders, like the email module.
An easy module to look at would be the colorsys module. It’s only afew hundred lines of Python code. You may not have come across itbefore. The colorsysmodule has some utility functions for convertingcolor scales.

318

Python Modules
When you install a Python distribution from source, standard librarymodules are copied from the Lib folder into the distribution folder.This folder is always part of your path when you start Python, so youcan import the modules without having to worry about where they’relocated.
For example:
>>> import colorsys

>>> colorsys

<module 'colorsys' from '/usr/shared/lib/python3.7/colorsys.py'>

>>> colorsys.rgb_to_hls(255,0,0)

(0.0, 127.5, -1.007905138339921)

We can see the source code of rgb_to_hls() inside Lib colorsys.py:
HLS: Hue, Luminance, Saturation

H: position in the spectrum

L: color lightness

S: color saturation

def rgb_to_hls(r, g, b):

maxc = max(r, g, b)

minc = min(r, g, b)

XXX Can optimize (maxc+minc) and (maxc-minc)

l = (minc+maxc)/2.0

if minc == maxc:

return 0.0, l, 0.0

if l <= 0.5:

s = (maxc-minc) / (maxc+minc)

else:

s = (maxc-minc) / (2.0-maxc-minc)

rc = (maxc-r) / (maxc-minc)

gc = (maxc-g) / (maxc-minc)

bc = (maxc-b) / (maxc-minc)

if r == maxc:

h = bc-gc

319

Python and C Modules
elif g == maxc:

h = 2.0+rc-bc

else:

h = 4.0+gc-rc

h = (h/6.0) % 1.0

return h, l, s

There’s nothing special about this function, it’s just standard Python.You’ll find similar things with all of the pure Python standard librarymodules. They’re just written in plain Python, well laid out and easyto understand. You may even spot improvements or bugs, so you canmake changes to them and contribute it to the Python distribution.You’ll cover that toward the end of this book.

Python and CModules
The remainder of modules are written in C, or a combination orPython and C. The source code for these is in Lib for the Python com-ponent, and Modules for the C component. There are two exceptionsto this rule, the sys module, found in Python sysmodule.c and the
__builtins__ module, found in Python bltinmodule.c.
Python will import * from __builtins__ when an interpreter is instanti-ated, so all of the functions like print(), chr(), format(), etc. are foundwithin Python bltinmodule.c.
Because the sys module is so specific to the interpreter and the inter-nals of CPython, that is found inside the Python directory. It is alsomarked as an “implementation detail” of CPython and not found inother distributions.
The built-in print() function was probably the first thing you learnedto do in Python. So what happens when you type print("hello

world!")?
1. The argument "hello world" was converted from a string constantto a PyUnicodeObject by the compiler

320

Python and C Modules
2. builtin_print() was executed with 1 argument, and NULL kwnames

3. The file variable is set to PyId_stdout, the system’s stdout handle
4. Each argument is sent to file

5. A line break, \n is sent to file

Python bltinmodule.c line 1828
static PyObject *

builtin_print(PyObject *self, PyObject *const *args,

Py_ssize_t nargs, PyObject *kwnames)

{

...

if (file == NULL || file == Py_None) {

file = _PySys_GetObjectId(&PyId_stdout);

...

}

...

for (i = 0; i < nargs; i++) {

if (i > 0) {

if (sep == NULL)

err = PyFile_WriteString(" ", file);

else

err = PyFile_WriteObject(sep, file,

Py_PRINT_RAW);

if (err)

return NULL;

}

err = PyFile_WriteObject(args[i], file, Py_PRINT_RAW);

if (err)

return NULL;

}

if (end == NULL)

err = PyFile_WriteString("\n", file);

else

err = PyFile_WriteObject(end, file, Py_PRINT_RAW);

...

321

https://github.com/python/cpython/blob/v3.9.0b1/Python/bltinmodule.c#L1828

Python and C Modules
Py_RETURN_NONE;

}

The contents of some modules written in C expose operating systemfunctions. Because the CPython source code needs to compile tomacOS, Windows, Linux, and other *nix-based operating systems,there are some special cases.
The timemodule is a good example. The way that Windows keeps andstores time in the Operating System is fundamentally different thanLinux and macOS. This is one of the reasons why the accuracy of theclock functions differs between Operating Systems.
In Modules timemodule.c, the Operating System time functions forUnix-based systems are imported from <sys/times.h>:
#ifdef HAVE_SYS_TIMES_H

#include <sys/times.h>

#endif

...

#ifdef MS_WINDOWS

#define WIN32_LEAN_AND_MEAN

#include <windows.h>

#include "pythread.h"

#endif /* MS_WINDOWS */

...

Later in the file, time_process_time_ns() is defined as a wrapper for _-

PyTime_GetProcessTimeWithInfo():
static PyObject *

time_process_time_ns(PyObject *self, PyObject *unused)

{

_PyTime_t t;

if (_PyTime_GetProcessTimeWithInfo(&t, NULL) < 0) {

return NULL;

}

return _PyTime_AsNanosecondsObject(t);

}

322

https://docs.python.org/3/library/time.html#time.clock_gettime_ns

Python and C Modules
_PyTime_GetProcessTimeWithInfo() is implemented multiple differentways in the source code, but only certain parts are compiled intothe binary for the module depending on the operating system. Win-dows systems will call GetProcessTimes() and Unix systems will call
clock_gettime().
Other modules that have multiple implementations for the same APIare the threading module, the file system module, and the network-ing modules. Because the Operating Systems behave differently, theCPython source code implements the same behavior as best as it canand exposes it using a consistent, abstracted API.
Leave feedback on this section »

323

https://realpython.com/intro-to-python-threading/
https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiPzQzdFR1YTshPnk8OVBLZyg7bDJ4dk4odnlENXFXeDstYWFtN0xzUCIsInQiOiJjaGFwdGVycy81MC1zdGFuZGFyZC1saWJyYXJ5Lm1kIChhMjkzZjU5ZTE3ZjVmODUzKSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iL2EyOTNmNTllMTdmNWY4NTNhYWJjYTgxOGU2YjIyNDA5NDQyOTAyMGIvY2hhcHRlcnMvNTAtc3RhbmRhcmQtbGlicmFyeS5tZCJ9

The Test Suite
CPython has a robust and extensive test suite covering the core in-terpreter, the standard library, the tooling, and distribution for Win-dows, Linux, and macOS.
The test suite is located in Lib test and written almost entirely inPython.
The full test suite is a Python package, so it can be run using thePython interpreter that you’ve compiled.

Running the Test Suite onWindows
On Windows use the rt.bat script inside the PCBuild folder.
For example, to run the “quick”mode against theDebug configurationon an x64 architecture:
> cd PCbuild

> rt.bat -q -d -x64

== CPython 3.9.0b1

== Windows-10-10.0.17134-SP0 little-endian

== cwd: C:\repos\cpython\build\test_python_2784

== CPU count: 2

== encodings: locale=cp1252, FS=utf-8

Run tests sequentially

0:00:00 [1/420] test_grammar

324

Running the Test Suite on Linux/macOS
0:00:00 [2/420] test_opcodes

0:00:00 [3/420] test_dict

0:00:00 [4/420] test_builtin

...

To run the regression test suite against the Release configuration, re-move the -d flag from the command-line

Running the Test Suite on Linux/macOS
On Linux or macOS run the test make target to compile and run thetests:
$ make test

== CPython 3.9.0b1

== macOS-10.14.3-x86_64-i386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_23399

== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

0:00:00 load avg: 2.14 [1/420] test_opcodes passed

0:00:00 load avg: 2.14 [2/420] test_grammar passed

...

Alternatively, use the python.exe compiled binary path with the testpackage:
$./python.exe -m test

== CPython 3.9.0b1

== macOS-10.14.3-x86_64-i386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_23399

== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

0:00:00 load avg: 2.14 [1/420] test_opcodes passed

0:00:00 load avg: 2.14 [2/420] test_grammar passed

...

There are additional make targets for testing:

325

Test Flags
Target Purpose
test Run a basic set of regression tests
testall Run the full test suite twice - once without .pyc files, andonce with
quicktest Run a faster set of regression tests, excluding the teststhat take a long time
testuniversal Run the test suite for both architectures in a Universalbuild on OSX
coverage Compile and run tests with gcov
coverage-lcov Create coverage HTML reports

Test Flags
Some tests require certain flags; otherwise they are skipped. For ex-ample, many of the IDLE tests require a GUI.
To see a list of test suites in the configuration, use the --list-tests flag:
$./python -m test --list-tests

test_grammar

test_opcodes

test_dict

test_builtin

test_exceptions

...

Running Speci c Tests
You can run specific tests by providing the test suite as the first argu-ment:
On Linux or macOS:
$./python -m test test_webbrowser

Run tests sequentially

326

Running Specific Tests
0:00:00 load avg: 2.74 [1/1] test_webbrowser

== Tests result: SUCCESS ==

1 test OK.

Total duration: 117 ms

Tests result: SUCCESS

On Windows:
> rt.bat -q -d -x64 test_webbrowser

You can also see a detailed list of tests that were executed with theresult using the -v argument:
$./python -m test test_webbrowser -v

== CPython 3.9.0b1

== macOS-10.14.3-x86_64-i386-64bit little-endian

== cwd: /Users/anthonyshaw/cpython/build/test_python_24562

== CPU count: 4

== encodings: locale=UTF-8, FS=utf-8

Run tests sequentially

0:00:00 load avg: 2.36 [1/1] test_webbrowser

test_open (test.test_webbrowser.BackgroundBrowserCommandTest) ... ok

test_register (test.test_webbrowser.BrowserRegistrationTest) ... ok

test_register_default (test.test_webbrowser.BrowserRegistrationTest) ... ok

test_register_preferred (test.test_webbrowser.BrowserRegistrationTest) ... ok

test_open (test.test_webbrowser.ChromeCommandTest) ... ok

test_open_new (test.test_webbrowser.ChromeCommandTest) ... ok

...

test_open_with_autoraise_false (test.test_webbrowser.OperaCommandTest) ... ok

--

Ran 34 tests in 0.056s

OK (skipped=2)

327

Testing Modules

== Tests result: SUCCESS ==

1 test OK.

Total duration: 134 ms

Tests result: SUCCESS

Understanding how to use the test suite and checking the state ofthe version you have compiled is very important if you wish to makechanges to CPython. Before you startmaking changes, you should runthe whole test suite and make sure everything is passing.

Testing Modules
To test C extension or Python modules, they are imported and testedusing the unittestmodule. Tests are assembled bymodule or package.
For example, the Python Unicode string type has tests in Lib test

test_unicode.py. The asyncio package has a test package in Lib test

test_asyncio.
See Also
If you’re new to the unittest module or testing in Python,check out my Getting Started With Testing in Python article onrealpython.com

class UnicodeTest(string_tests.CommonTest,

string_tests.MixinStrUnicodeUserStringTest,

string_tests.MixinStrUnicodeTest,

unittest.TestCase):

...

def test_casefold(self):

self.assertEqual('hello'.casefold(), 'hello')

self.assertEqual('hELlo'.casefold(), 'hello')

self.assertEqual('ß'.casefold(), 'ss')

self.assertEqual('fi'.casefold(), 'fi')

328

https://realpython.com/python-testing/

Test Utilities
You can extend the almost-equal operator that you implementedfor Python Unicode strings in earlier chapters by adding a new testmethod inside the UnicodeTest class:

def test_almost_equals(self):

self.assertTrue('hello' ~= 'hello')

self.assertTrue('hELlo' ~= 'hello')

self.assertFalse('hELlo!' ~= 'hello')

You can run this particular test module on Windows:
> rt.bat -q -d -x64 test_unicode

Or macOS/Linux:
$./python -m test test_unicode -v

Test Utilities
By importing the test.support.script_helper module, you can accesssome helper functions for testing the Python runtime:
• assert_python_ok(*args, **env_vars) executes a Python process withthe specified arguments and returns a (return code, stdout, stderr)tuple
• assert_python_failure(*args, **env_vars) similar to assert_python_-

ok(), but asserts that is fails to execute
• make_script(script_dir, script_basename, source) makes a script in

script_dirwith the script_basename and the source, then returns the

script path. Useful to combine withassert_python_ok()orassert_-python_failure()‘
If you want to create a test that is skipped if the module wasn’t built,you can use the test.support.import_module() utility function. It willraise a SkipTest and signal the test runner to skip this test package, forexample:

329

Conclusion
import test.support

_multiprocessing = test.support.import_module('_multiprocessing')

Your tests...

Conclusion
The Python regression test suite is full of two decades of tests forstrange edge cases, bug fixes, and new features. Outside of this, thereis still a large part of the CPython standard library that has little orno testing. If you want to get involved in the CPython project, writingor extending unit tests is a great place to start.
If you’re going to modify any part of CPython or add additional func-tionality, you will need to have written, or extended tests as part ofyour patch.
Leave feedback on this section »

330

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiUnxWOXRhNTkyYHUyX0dTI08zPXdXa3AwLUlyanJ1RD5VSGg0P1ZmdCIsInQiOiJjaGFwdGVycy82MC10ZXN0aW5nLm1kIChhMWEzNTVjODRjZWQ3OTU4KSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iL2ExYTM1NWM4NGNlZDc5NTg2NDc1NWEwYjViYTBmOTIzZTcxMGU0M2IvY2hhcHRlcnMvNjAtdGVzdGluZy5tZCJ9

Debugging
CPython comes with a builtin debugger for debugging Python applica-tions, pdb. The pdb debugger is excellent for debugging crashes insidea Python application, for writing tests and inspecting local variables.
When it comes to CPython, you need a second debugger, one that un-derstands C.
In this chapter, you will learn how to:
• Attach a debugger to the CPython interpreter
• Use the debugger to see inside a running CPython process

There are two types of debugger, console and visual. Console debug-gers (like pdb) give you a command prompt and custom commandsto explore variables and the stack. Visual debuggers are GUI applica-tions that present the data for you in grids.
The following debuggers are covered in this chapter:

Debugger Type Platform
lldb Console macOSgdb Console LinuxVisual Studio Debugger Visual WindowsCLion Debugger Visual Windows, macOS, LinuxVS Code Debugger Visual Windows, macOS, Linux

331

Using the Crash Handler
Using the Crash Handler
In C, if an application tries to read or write to an area of memory thatit shouldn’t be, a segmentation fault is raised. This fault halts the run-ning process immediately to stop it from doing any damage to otherapplications.
Segmentation faults can also happen when you try to read frommem-ory that contains no data, or an invalid pointer.
If CPython causes a segmentation fault, you get very little informationabout what happened:
[1] 63476 segmentation fault ./python portscanner.py

CPython comes with a builtin fault handler. If you start CPython with
-X faulthandler, or -X dev, instead of printing the system segmentationfault message, the fault handler will print the running threads and thePython stack trace to where the fault occurred:
Fatal Python error: Segmentation fault

Thread 0x0000000119021dc0 (most recent call first):

File "/cpython/Lib/threading.py", line 1039 in _wait_for_tstate_lock

File "/cpython/Lib/threading.py", line 1023 in join

File "/cpython/portscanner.py", line 26 in main

File "/cpython/portscanner.py", line 32 in <module>

[1] 63540 segmentation fault ./python -X dev portscanner.py

This feature is also helpful when developing and testing C extensionsfor CPython.

Compiling Debug Support
To get meaningful information from the debugger, the debug sym-bols must be compiled into CPython. Without these symbols, thestack traces within a debug session won’t contain the correct functionnames, the variable names, or file names.

332

Using Lldb for macOS
Windows
Following the same steps as you did in the chapter on CompilingCPython (Windows), ensure that you have compiled in the Debugconfiguration to get the debug symbols:
> build.bat -p x64 -c Debug

Remember, theDebug configuration produces the executable python_-

d.exe, so make sure you use this executable for debugging.
macOS/Linux
The steps in the chapter on Compiling CPython, specify to run the
./configure script with the --with-pydebug flag. If you did not includethis flag, go back now and run ./configure again with your originaloptions and the --with-pydebug flag. This will produce the correct exe-cutable and symbols for debugging.

Using Lldb for macOS
The lldb debugger comes with the Xcode developer tools, so by nowyou, will have it installed.
Start lldb and load the CPython compiled binary as the target:
$ lldb ./python.exe

(lldb) target create "./python.exe"

Current executable set to './python.exe' (x86_64).

You will now have a prompt where you can enter some commands fordebugging.
Creating Breakpoints
To create a breakpoint, use the break set command, with the file (rel-ative to the root) and the line number:

333

Using Lldb for macOS
(lldb) break set --file Objects/floatobject.c --line 532

Breakpoint 1: where = python.exe`float_richcompare + 2276 at

floatobject.c:532:26, address = 0x000000010006a974

Note
There is also a short-hand version of setting breakpoints,e.g. (lldb) b Objects/floatobject.c:532

You can add multiple breakpoints using the break set command. Tolist the current breakpoints, use the break list command:
(lldb) break list

Current breakpoints:

1: file = 'Objects/floatobject.c', line = 532, exact_match = 0, locations = 1

1.1: where = python.exe`float_richcompare + 2276 at floatobject.c:532:26,

address = python.exe[...], unresolved, hit count = 0

Starting CPython
To start CPython, use the process launch -- command with thecommand-line options you would normally use for Python, e.g.:
To start python with a string, e.g. python -c "print(1)", use:
(lldb) process launch -- -c "print(1)"

To start python with a script, use:
(lldb) process launch -- my_script.py

Attaching to a Running CPython Interpreter
If you have a CPython interpreter running already, you can attach toit.
From inside the lldb session, run process attach --pidwith the processid:

334

Using Lldb for macOS
(lldb) process attach --pid 123

You can get the process ID from the Activity Monitor, or using
os.getpid() in Python.
Any breakpoints setup before this point or afterward will halt the pro-cess.
An Example of Handling a Breakpoint
To see how breakpoints are handled, set a breakpoint on the Objects

floatobject.c float_richcompare() function. Next run the process andcompare 2 float values using the almost-equal operator that you de-veloped during this book:
(lldb) process launch -- -c "1.0~=1.1"

Process 64421 launched: '/cpython/python.exe' (x86_64)

Process 64421 stopped

* thread #1, queue = '...', stop reason = breakpoint 1.1

frame #0: 0x000000010006a974 python.exe`float_richcompare(v=1.0,

w=1.1, op=6) at floatobject.c:532:26

529 break;

530 case Py_AlE: {

531 double diff = fabs(i - j);

-> 532 const double rel_tol = 1e-9;

533 const double abs_tol = 0.1;

534 r = (((diff <= fabs(rel_tol * j)) ||

Target 0: (python.exe) stopped.

lldb will give you a prompt again. You can see the local variables byusing the command v:
(lldb) v

(PyObject *) v = 0x000000010111b370 1.0

(PyObject *) w = 0x000000010111b340 1.1

(int) op = 6

(double) i = 1

(double) j = 1.1000000000000001

335

https://github.com/python/cpython/blob/v3.9.0b1/Objects/floatobject.c#L358

Using Lldb for macOS
(int) r = 0

(double) diff = 0.10000000000000009

(const double) rel_tol = 2.1256294105914498E-314

(const double) abs_tol = 0

You can evaluate a C expression using the expr command with anyvalid C command. The variables in scope can be used. For example,to call fabs(rel_tol) and cast to a double, run:
(lldb) expr (double)fabs(rel_tol)

(double) $1 = 2.1256294105914498E-314

This prints the resulting variable and assigns it an identifier ($1). Youcan reuse this identifier as a temporary variable.
You may also want to explore PyObject instances, e.g.:
(lldb) expr v->ob_type->tp_name

(const char *) $6 = 0x000000010034fc26 "float"

To get a traceback from the breakpoint, use the command bt:
(lldb) bt

* thread #1, queue = '...', stop reason = breakpoint 1.1

* frame #0: ...

python.exe`float_richcompare(...) at floatobject.c:532:26

frame #1: ...

python.exe`do_richcompare(...) at object.c:796:15

frame #2: ...

python.exe`PyObject_RichCompare(...) at object.c:846:21

frame #3: ...

python.exe`cmp_outcome(...) at ceval.c:4998:16

To step-in, use the command step, or s.
To continue to the next statement (step-over), use the command next,or n.
To continue execution, use the command continue, or c.

336

Using Gdb
To exit the session, use the command quit, or q.

See Also
The LLVMDocumentation Tutorial contains amore exhaustivelist of commands.

Using the Python-Lldb Extension
lldb supports extensions, written in Python. There is an open-sourceextension which prints additional information in the lldb session fornative CPython objects.
To install it, run these commands:
$ mkdir -p ~/.lldb

$ cd ~/.lldb && git clone https://github.com/malor/cpython-lldb

$ echo "command script import ~/.lldb/cpython-lldb/cpython_lldb.py"

>> ~/.lldbinit

$ chmod +x ~/.lldbinit

Now, whenever you see variables in lldb, there will be some additionalinformation to the right, such as the numeric value for ints and floats,or the text for Unicode strings. Within a lldb console, there is nowan additional command, py-bt, that prints the stack trace for Pythonframes.

Using Gdb
Gdb is a commonly-used debugger for C/C++ applications written onLinux platforms. It is also very popular with the CPython core devel-opment team.
When CPython is compiled, it generates a script, cpython-pdb.py. Don’texecute this script directly. Instead, gdb will discover it and run it au-tomatically once configured. To configure this stage, edit the .gdbinitfile inside your home path and add the line:

337

https://lldb.llvm.org/use/tutorial.html

Using Gdb
add-auto-load-safe-path /path/to/checkout

Where /path/to/checkout is the path to the cpython git checkout.
To start gdb, run it with the argument pointing to your compiledCPython binary.
$ gdb ./python

Gdbwill load the symbols for the compiled binary and give you a com-mand prompt. Gdb has a set of built-in commands, and the CPythonextensions bundle some additional commands.
Creating Breakpoints
To set a breakpoint, use the b <file>:<line> command, relative to thepath of the executable:
(gdb) b Objects/floatobject.c:532

Breakpoint 1 at 0x10006a974: file Objects/floatobject.c, line 532.

You can set as many breakpoints as you wish.
Starting CPython
To start the process, use the run command followed by arguments tostart the Python interpreter.
For example, to start with a string:
(gdb) run -c "print(1)"

To start python with a script, use:

338

Using Gdb
(gdb) run my_script.py

Attaching to a Running CPython Interpreter
If you have a CPython interpreter running already, you can attach toit.
From inside the gdb session, run attach with the process id:
(gdb) attach 123

You can get the process ID from the Activity Monitor, or using
os.getpid() in Python.
Any breakpoints setup before this point or afterward will halt the pro-cess.
Handling a Breakpoint
When a breakpoint is hit, you can use the print, or p command to printa variable:
(gdb) p *(PyLongObject*)v

$1 = {ob_base = {ob_base = {ob_refcnt = 8, ob_type = ...}, ob_size = 1},

ob_digit = {42}}

To step into the next statement, use the command step, or s. To stepover the next statement, use the command next, or n.
Using the Python-Gdb Extension
The python-gdb extension will load an additional command set intothe gdb console:

Command Purpose
py-print Looks up a Python variable and prints it
py-bt Prints a Python stack trace
py-locals Prints the result of locals()
py-up Go down one Python frame

339

Using Visual Studio Debugger
Command Purpose
py-down Go up one Python frame
py-list Print the Python source code for the current frame

Using Visual Studio Debugger
Microsoft Visual Studio comes bundled with a visual debugger. Thisdebugger is powerful, supports a frame stack visualizer, a watch list,and the ability to evaluate expressions.
Open Visual Studio and the PCBuild pcbuild.sln solution file.
Adding Breakpoints
To add a new breakpoint, navigate to the file you want in the solutionwindow, then click in the gutter to the left of the line number.
This adds a red circle to indicate a breakpoint has been set on this line:

When you hover over the red circle, a cog appears. Click on this cogto configure conditional breakpoints. Add one or more conditionalexpressions which must evaluate before this breakpoint hits:

340

Using Visual Studio Debugger

Starting the Debugger
From the top menu, select Debug Start Debugger , or press F5 .
Visual Studio will start a new Python runtime and REPL.
Handling a Breakpoint
When your breakpoint is hit, you can step forward and into statementsusing the navigation buttons, or the shortcuts:
• Step Into F11

• Step Over F10

• Step Out Shift + F11

At the bottom, a call stack will be shown. You can select frames in thestack to change the navigation and inspect variables in other frames:

341

Using CLion Debugger

In the code editor, you can highlight any variable or expression to seeits value. You can also right-click and choose “AddWatch.” This addsthe variable to a list called the Watchlist, where you can quickly seethe values of variables you need to help you debug:

Using CLion Debugger
The CLion IDE comes with a powerful visual debugger bundled. Itworks with lldb on macOS, and gdb on macOS, Windows, and Linux.
To configure the debugger, go toPreferences and select Build, Execution, Deployment

Toolchains :

342

Using CLion Debugger

There is a selection box for the target debugger. Select one of the op-tions:
• For macOS use the “Bundled LLDB”
• For Windows or Linux, use the “Bundled GDB”
Important
Both the LLDB and GDB support benefit from the cpython-lldband python-gdb extensions, respectively. Read the LLDB andGDB sections in this chapter for information on how to installand enable these extensions.

Con guring the Custom Build Targets
With your toolchain configured, you can now create CustomBuild Tar-gets to enable debugging.

343

Using CLion Debugger
To configure the debugger, go to Preferences and select
Build, Execution, Deployment Toolchains :
Create a new custom build profile called cpython_build, and set thetoolchain as Use Default to ensure it uses the debugger you just speci-fied.
Select the ... next to the Build drop-down to show the External Tools
window and select + to create a new External Tool.
The first external tool will run make
• Set theName as make_all

• Set the Program as make

• Set the Arguments as those you have previously used to runmake, e.g., all -j2 -s

• Set theWorking Directory as $ProjectFileDir$

344

Using CLion Debugger

Click OK to add the tool, then add a second for cleaning the project:
• Set theName as clean

• Set the Program as make

• Set the Arguments as those you have previously used to runmake, e.g., clean
• Set theWorking Directory as $ProjectFileDir$

345

Using CLion Debugger

Close the External tools window and select your make_all tool as theBuild tool and clean as the Clean tool:

346

Using CLion Debugger

Once this task is completed, you can build, rebuild and clean from the
Build menu.
Con guring the Custom Debug Target
To debug the compiled CPython executable from the Run/Debug Con-figurations, open the configurationpanel from Run Edit Configurations... .
Add a new configuration by selecting + Custom Build Application :
• Set the Target as cpython_build, the Custom Build Target you justcreated
• Set the Executable as python for Linux and python.exe for macOS
• Set theWorking Directory as $ProjectFileDir$

347

Using CLion Debugger

With this Run/Debug Configuration, you can nowdebug directly fromthe Run Debug menu.
Alternatively, you can attach the debugger to a running CPython pro-cess.
Attaching the Debugger
To attach the CLion debugger to a running CPython process, select
Run Attach to Process .
A list of running processes will pop-up. Find the python process youwant to attach to and select Attach . The debugging session will begin.

348

Using CLion Debugger
Important
If you have the Python plugin installed, it will show the pythonprocess at the top. Don’t select this one!
This uses the Python debugger, not the C debugger.

Instead, scroll further down into the “Native” list and find thecorrect python process.

Creating Breakpoints
To create a breakpoint, navigate to the file and line you want, thenclick in the gutter between the line number and the code. A red circlewill appear to indicate the breakpoint is set:

Right-click on the breakpoint to attach a condition:

349

Using CLion Debugger

To see and manage all current breakpoints, navigate from the topmenu to Run View Breakpoints :

You can enable and disable breakpoints, as well as disable them onceanother breakpoint has been hit.
Handling Breakpoints
Once a breakpoint has been hit, CLion will set up the Debug panel.Inside the Debug panel is a call stack, showing where the breakpointhit. You can select other frames in the call stack to switch betweenthem.

350

Using CLion Debugger
Next to the call stack are the local variables. The properties of pointersand type structures can be expanded, and the value of simple types isshown:

Within a break, you can evaluate expressions to get more informationabout the local variables. The Evaluation Window can be located in
Run Debugging Actions Evaluate Expression , or in a shortcut icon inthe Debug Window.
Inside the Evaluate window, you can type expressions and CLion willtype-ahead with the property names and types:

You can also cast expressions, which is useful for casting PyObject* intothe actual type, for example into a PyFloatObject*:

351

Conclusion
Conclusion
In this chapter, you’ve seen how to set up a debugger on all the majorOperating Systems. While the initial setup is time-consuming, the re-ward is great. Being able to set breakpoints, explore variables, andmemory for a running CPython process will give you superpowers.You can use this skill to extend CPython, optimize existing parts ofthe codebase, or track down nasty bugs.
Leave feedback on this section »

352

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiVihnN3gjczZxbGFZXzcmRiFUTWo0cXZjTV5fdypSZCFUaUBUOSkqUSIsInQiOiJjaGFwdGVycy82MS1kZWJ1Z2dpbmcubWQgKDE4YmJjMjg5ZDQ5MGRkMzMpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvMThiYmMyODlkNDkwZGQzM2I5YWJiNTYyYTcwMzhhODdmNDI2Mjk0MC9jaGFwdGVycy82MS1kZWJ1Z2dpbmcubWQifQ==

Benchmarking, Pro ling,and Tracing
When making changes to CPython, you need to verify that yourchanges do not have a significant detrimental impact on perfor-mance.
You may want to make changes to CPython that improve perfor-mance.
There are solutions for profiling that you will cover in this chapter:
1. Using the timeitmodule to check a simple Python statement thou-sands of times for the median execution speed
2. Running the Python Benchmark suite to compare multiple ver-sions of Python
3. Using cProfile to analyze execution times of frames
4. Profiling the CPython execution with probes
The choice of solution depends on the type of task:
• A benchmarkwill produce an average/median runtime of a fixedcode snippet so that you can compare multiple versions of Pythonruntime
• A pro ler will produce a call graph, with execution times so thatyou can understand which function is the slowest

353

Using Timeit for Micro-Benchmarks
Profilers are available at a C or Python level. If you are profiling a func-tion, module, or script written in Python, you want to use a Pythonprofiler. If you are profiling a C extensionmodule or amodification tothe C code in CPython, you need to use a C profiler (or a combination).
Here is a summary of some of the tools available:
Tool Category Level OSSupport
timeit Benchmarking Python Allpyperformance Benchmarking Python AllcProfile Profiling Python Alldtrace Tracing/Profiling C Linux/macOS

Important
Before you run anybenchmarks, it is best to close downall appli-cations on your computer so the CPU is dedicated to the bench-mark.

Using Timeit for Micro-Benchmarks
The Python Benchmark suite is a thorough test of CPython’s runtimewith multiple iterations. If you want to run a quick, simple compari-son of a specific snippet, use the timeit module.
To run timeit for a short script, run the compiled CPython with the -m

timeit module and a script in quotes:
$./python -m timeit -c "x=1; x+=1; x**x"

1000000 loops, best of 5: 258 nsec per loop

To run a smaller number of loops, use the -n flag:
$./python -m timeit -n 1000 "x=1; x+=1; x**x"

1000 loops, best of 5: 227 nsec per loop

354

Using Timeit for Micro-Benchmarks
Example
In this book, you have introduced changes to the float type by sup-porting the almost-equal operator.
Try this test to see the current performance of comparing two floatvalues:
$./python -m timeit -n 1000 "x=1.0001; y=1.0000; x~=y"

1000 loops, best of 5: 177 nsec per loop

The implementation of this comparison is in float_richcompare(), in-side Objects floatobject.c:
Objects floatobject.c line 358
static PyObject*

float_richcompare(PyObject *v, PyObject *w, int op)

{

...

case Py_AlE: {

double diff = fabs(i - j);

double rel_tol = 1e-9;

double abs_tol = 0.1;

r = (((diff <= fabs(rel_tol * j)) ||

(diff <= fabs(rel_tol * i))) ||

(diff <= abs_tol));

}

break;

}

Notice that the rel_tol and abs_tol values are constant, but haven’tbeen marked as constant. Change them to:
const double rel_tol = 1e-9;

const double abs_tol = 0.1;

Now, compile CPython again and re-run the test:

355

https://github.com/python/cpython/blob/v3.9.0b1/Objects/floatobject.c#L358

Using the Python Benchmark Suite for Runtime Benchmarks
$./python -m timeit -n 1000 "x=1.0001; y=1.0000; x~=y"

1000 loops, best of 5: 172 nsec per loop

You might notice a minor (1-5%) improvement in performance.
Experiment with different implementations of the comparison to seeif you can improve it further.

Using the Python Benchmark Suite forRuntime Benchmarks
The benchmark suite is the tool to use when comparing the completeperformance of Python. The Python Benchmark suite is a collectionof Python applications designed to test multiple aspects of the Pythonruntime under load. The Benchmark suite tests are pure-Python, sothey can be used to testmultiple runtimes, like PyPy and Jython. Theyare also compatible with Python 2.7 through to the latest version.
Any commits to the master branch on github.com/python/cpythonwill be tested using the benchmark tool, and the results uploaded tothe Python Speed Center at speed.python.org:

356

https://github.com/python/cpython
https://speed.python.org

Using the Python Benchmark Suite for Runtime Benchmarks

You can compare commits, branches, and tags side by side on thespeed center. The benchmarks use both the Profile Guided Optimiza-tion and regular buildswith a fixedhardware configuration to producestable comparisons.
To install the Python benchmark suite, install it from PyPi using aPython runtime (not the one you are testing) in a virtual environment:
(venv) $ pip install performance

Next, you need to create a configuration file and an output directoryfor the test profile. It is recommended to create this directory outsideof your Git working directory. This also allows you to checkout multi-ple versions.
In the configuration file, e.g., ~/benchmarks/benchmark.cfg, put the fol-lowing contents:
cpython-book-samples 62 benchmark.cfg

357

Using the Python Benchmark Suite for Runtime Benchmarks
[config]

Path to output json files

json_dir = ~/benchmarks/json

If True, compile CPython is debug mode (LTO and PGO disabled),

run benchmarks with --debug-single-sample, and disable upload.

#

Use this option used to quickly test a configuration.

debug = False

[scm]

Directory of CPython source code (Git repository)

repo_dir = ~/cpython

Update the Git repository (git fetch)?

update = False

Name of the Git remote, used to create revision of

the Git branch.

git_remote = remotes/origin

[compile]

Create files into bench_dir:

bench_dir = ~/benchmarks/tmp

Link Time Optimization (LTO)?

lto = True

Profiled Guided Optimization (PGO)?

pgo = True

The space-separated list of libraries that are package-only

pkg_only =

Install Python? If false, run Python from the build directory

install = True

[run_benchmark]

358

Using the Python Benchmark Suite for Runtime Benchmarks
Run "sudo python3 -m pyperf system tune" before running benchmarks?

system_tune = True

--benchmarks option for 'pyperformance run'

benchmarks =

--affinity option for 'pyperf system tune' and 'pyperformance run'

affinity =

Upload generated JSON file?

upload = False

Configuration to upload results to a Codespeed website

[upload]

url =

environment =

executable =

project =

[compile_all]

List of CPython Git branches

branches = default 3.6 3.5 2.7

List of revisions to benchmark by compile_all

[compile_all_revisions]

list of 'sha1=' (default branch: 'master') or 'sha1=branch'

used by the "pyperformance compile_all" command

Executing the Benchmark
To run the benchmark, then run:
$ pyperformance compile -U ~/benchmarks/benchmark.cfg HEAD

This will compile CPython in the directory you specified and createthe JSON output with the benchmark data in the directory specifiedin the config file.

359

Using the Python Benchmark Suite for Runtime Benchmarks
Comparing Benchmarks
If you want to compare JSON results, the Python Benchmark suitedoesn’t comewith a graphing solution. Instead, you can use this scriptfrom within a virtual environment.
To install the dependencies, run:
$ pip install seaborn pandas performance

Then create a script profile.py:
cpython-book-samples 62 profile.py

import argparse

from pathlib import Path

from perf._bench import BenchmarkSuite

import seaborn as sns

import pandas as pd

sns.set(style="whitegrid")

parser = argparse.ArgumentParser()

parser.add_argument('files', metavar='N', type=str, nargs='+',

help='files to compare')

args = parser.parse_args()

benchmark_names = []

records = []

first = True

for f in args.files:

benchmark_suite = BenchmarkSuite.load(f)

if first:

Initialise the dictionary keys to the benchmark names

benchmark_names = benchmark_suite.get_benchmark_names()

first = False

bench_name = Path(benchmark_suite.filename).name

for name in benchmark_names:

360

Using the Python Benchmark Suite for Runtime Benchmarks
try:

benchmark = benchmark_suite.get_benchmark(name)

if benchmark is not None:

records.append({

'test': name,

'runtime': bench_name.replace('.json', ''),

'stdev': benchmark.stdev(),

'mean': benchmark.mean(),

'median': benchmark.median()

})

except KeyError:

Bonus benchmark! ignore.

pass

df = pd.DataFrame(records)

for test in benchmark_names:

g = sns.factorplot(

x="runtime",

y="mean",

data=df[df['test'] == test],

palette="YlGnBu_d",

size=12,

aspect=1,

kind="bar")

g.despine(left=True)

g.savefig("png/{}-result.png".format(test))

Then, to create a graph, run the script from the interpreter with theJSON files you have created:
$ python profile.py ~/benchmarks/json/HEAD.json ...

This will produce a series of graphs for each executed benchmark, inthe subdirectory png/.

361

Profiling Python Code with cProfile
Pro ling Python Code with cPro le
The standard library comes with two profilers for profiling Pythoncode. The first is profile, a pure-Python profiler, and the second,
cProfile, a faster profiler written in C. In most cases, cProfile is thebest module to use.
The cProfile profiler is used for analyzing a running application andcollecting deterministic profiles on the frames evaluated. The outputfrom cProfile can be summarized on the command-line, or saved intoa .pstat file for analysis in an external tool.
In the Parallelism and Concurrency chapter, you wrote a port scannerapplication in Python. Try profiling that application in cProfile.
Run python at the command-line with the -m cProfile argument to runthe cProfile module. The second argument is the script to execute:
$ python -m cProfile portscanner_multithreaded.py

Port 80 is open

Completed scan in 19.8901150226593 seconds

6833 function calls (6787 primitive calls) in 19.971 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

2 0.000 0.000 0.000 0.000 ...

The output will print a table with the columns:
Column Purpose
ncalls Number of calls
tottime Total time spent in the function (minus subfunctions
percall Quotient of tottime divided by ncalls

cumtime Total time spent in this (and subfunctions)
percall Quotient of cumtime divided by primitive calls
filename:lineno(function) Data of each function

362

Profiling Python Code with cProfile
You can add the -s argument and the column name to sort the output.E.g.:
$ python -m cProfile -s tottime portscanner_multithreaded.py

Will sort by the total time spent in each function.
Exporting Pro les
You can run the cProfilemodule againwith the -o argument specifyingan output file path:
$ python -m cProfile -o out.pstat portscanner_multithreaded.py

This will create a file, out.pstat, that you can load and analyze with theStats class or with an external tool.
Visualizing with Snakeviz
Snakeviz is a free Pythonpackage for visualizing the profile data insidea web browser.
To install snakeviz, use pip:
$ python -m pip install snakeviz

Then execute snakeviz on the command line with the path to the statsfile you created:
$ python -m snakeviz out.pstat

This will open up your browser and allow you to explore and analyzethe data:

363

https://docs.python.org/3.9/library/profile.html#the-stats-class

Profiling Python Code with cProfile

Visualizing with PyCharm
PyCharm has a builtin tool for running cProfile and visualizing theresults. To execute this, you need to have a Python target configured.
To run the profiler, select your run target, then on the topmenu select
Run Profile (target) . This will execute the run target with cProfile andopen a visualization window with the tabular data and a call graph:

364

Profiling C Code with Dtrace
Pro ling C Code with Dtrace
The CPython source code has several markers for a tracing tool calleddtrace. dtrace executes a compiled C/C++ binary, then catches andhandles events within it using probes.
For dtrace to provide any meaningful data, the compiled applicationmust have custommarkers compiled into the application. These areevents raised during the runtime. The markers can attach arbitrarydata to help with tracing.
For example, inside the frame evaluation function, in Python ceval.c,there is a call to dtrace_function_entry():

if (PyDTrace_FUNCTION_ENTRY_ENABLED())

dtrace_function_entry(f);

This raises a marker called function__entry in dtrace every time a func-tion is entered.
CPython has builtin markers for:
• Line execution
• Function entry and return (frame execution)
• Garbage collection start and completion
• Module import start and completion
• Audit hook events from sys.audit()

Each of these markers has arguments with more information. The
function__entry marker has arguments for:
• File name
• Fuction name
• Line number

The static marker arguments are defined in the Official Documenta-tion
365

https://github.com/python/cpython/blob/v3.9.0b1/Python/ceval.c#L5642
https://docs.python.org/3/howto/instrumentation.html#available-static-markers
https://docs.python.org/3/howto/instrumentation.html#available-static-markers

Profiling C Code with Dtrace
dtrace can execute a script file, written in D to execute custom codewhen probes are triggered. You can also filter out probes based ontheir attributes.
Related Source Files
Source files related to dtrace are:
File Purpose
Include pydtrace.h API definition for dtrace markers
Include pydtrace.d Metadata the python provider that dtraceuses
Include pydtrace_probes.h Auto-generated headers for handlingprobes

Installing Dtrace
dtrace comes pre-installed on macOS, and can be installed in Linuxusing one of the packaging tools:
For yum based systems:
$ yum install systemtap-sdt-devel

Or, for apt based systems:
$ apt-get install systemtap-sdt-dev

Compiling Dtrace Support
dtrace support must be compiled into CPython. This is done by the
./configuration script.
Run ./configure againwith the samearguments youused inCompilingCPython and add the flag --with-dtrace. Once this is complete, youneed to run make clean && make to rebuild the binary.
Check that the probe header was created by the configuration tool:

366

Profiling C Code with Dtrace
$ ls Include/pydtrace_probes.h

Include/pydtrace_probes.h

Important
Newer versions of macOS have kernel-level protection that in-terferes with dtrace called System Integrity Protection.
The examples in this chapter use the CPython probes. If youwant to include libc or syscall probes to get extra information,you will need to disable SIP.

Using Dtrace From CLion
The CLion IDE comes bundled with dtrace support. To start tracing,select Run Attach Profiler to Process.. and select the running Pythonprocess.
The profiler windowwill prompt you to start and then stop the tracingsession. Once tracing is complete, it provides you with a flame graphshowing execution stacks and call times, a Call Tree and a MethodList:

367

Profiling C Code with Dtrace
Example
In this example, you will test the multithreaded port scanner createdin the chapter on Parallelism and Concurrency.
Create a profile script in D, profile_compare.d. This profiler will startwhen portscanner_multithreaded.py:main() is entered, to reduce thenoise from the interpreter startup.
cpython-book-samples 62 profile_compare.d

#pragma D option quiet

self int indent;

python$target:::function-entry

/basename(copyinstr(arg0)) == "portscanner_multithreaded.py"

&& copyinstr(arg1) == "main"/

{

self->trace = 1;

self->last = timestamp;

}

python$target:::function-entry

/self->trace/

{

this->delta = (timestamp - self->last) / 1000;

printf("%dt%*s:", this->delta, 15, probename);

printf("%*s", self->indent, "");

printf("%s:%s:%dn", basename(copyinstr(arg0)), copyinstr(arg1), arg2);

self->indent++;

self->last = timestamp;

}

python$target:::function-return

/self->trace/

{

this->delta = (timestamp - self->last) / 1000;

self->indent--;

printf("%dt%*s:", this->delta, 15, probename);

368

Profiling C Code with Dtrace
printf("%*s", self->indent, "");

printf("%s:%s:%dn", basename(copyinstr(arg0)), copyinstr(arg1), arg2);

self->last = timestamp;

}

python$target:::function-return

/basename(copyinstr(arg0)) == "portscanner_multithreaded.py"

&& copyinstr(arg1) == "main"/

{

self->trace = 0;

}

This script will print a line every time a function is executed and timethe delta between the function starting and exiting.
You need to execute with the script argument, -s profile_compare andthe command argument, -c './python portscanner_multithreaded.py:
$ sudo dtrace -s profile_compare.d -c './python portscanner_multithreaded.py'

0 function-entry:portscanner_multithreaded.py:main:16

28 function-entry: queue.py:__init__:33

18 function-entry: queue.py:_init:205

29 function-return: queue.py:_init:206

46 function-entry: threading.py:__init__:223

33 function-return: threading.py:__init__:245

27 function-entry: threading.py:__init__:223

26 function-return: threading.py:__init__:245

26 function-entry: threading.py:__init__:223

25 function-return: threading.py:__init__:245

In the output, the first column is the time-delta inmicroseconds sincethe last event, then the event name, the filename and line number.When function calls are nested, the filename will be increasingly in-dented to the right.

369

Conclusion
Conclusion
In this chapter, you have explored benchmarking, profiling, and trac-ing using a number of tools designed for CPython.
With the right tooling, you can find bottlenecks, compare perfor-mance of multiple builds and identify improvements.
Leave feedback on this section »

370

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiWUt1Q3VmaCFgNytzfnJjQTB7e2M9d2l1TVczazhLeHFiZCF2SyVHdSIsInQiOiJjaGFwdGVycy82Mi1wcm9maWxpbmcubWQgKGExYTM1NWM4NGNlZDc5NTgpIiwidSI6Imh0dHBzOi8vZ2l0aHViLmNvbS9kYmFkZXIvY3B5dGhvbi1ib29rL2Jsb2IvYTFhMzU1Yzg0Y2VkNzk1ODY0NzU1YTBiNWJhMGY5MjNlNzEwZTQzYi9jaGFwdGVycy82Mi1wcm9maWxpbmcubWQifQ==

Conclusion
Congratulations! You’ve made it to all the way to the end of this book.There are three main uses of the knowledge you’ve learned:
1. Writing C extensions
2. Improving your Python applications
3. Contributing to the CPython Project
As a conclusion and summary of the topics, lets explore those.

Writing C Extensions for CPython
There are several ways in which you can extend the functionality ofPython. One of these is to write your Python module in C or C++.This process can lead to improved performance and better access toC library functions and system calls.
If you want to write a C extension module, there are some essentialthings you’ll need to know that this book has prepared you for:
• How to set up a C compiler and compile C modules. See the chap-ter on Compiling CPython.
• How to set up your development environment for C. See the Set-ting up Your Development Environment chapter.
• How to increment and decrement references to generated objects.See Reference Counting in the Memory Management chapter.

371

Using This Knowledge to Improve Your Python Applications
• What PyObject* is and its interfaces. See the Object and VariableObject Types section in the Objects and Types chapter.
• What type slots are and how to access Python type APIs from C.See the Type Slots section in the Objects and Types chapter.
• How to add breakpoints to C source files for your extension mod-ule and debug them. See the Debugging chapter.
See Also
Over at realpython.com, Danish Prakash has written a great tu-torial on Building a C Extension Module. This tutorial includesa concrete example of building, compiling and testing an exten-sion module.

Using This Knowledge to Improve YourPython Applications
There are several important topics covered in this book that can helpyou improve your applications. Here are some examples:
• Using Parallelism and Concurrency techniques to reduce the exe-cution time of your applications. See the Parallelism and Concur-rency chapter.
• Customizing the Garbage Collector algorithm to collect at the endof a task in your application to better handle memory. See theGarbage Collection section in the Memory Management chapter.
• Using the debuggers to debug C extensions and triage issues. Seethe Debugging chapter.
• Using profilers to profile the execution time of your code. See theProfiling Python Code with cProfile section of the Benchmarking,Profiling, and Tracing chapter.
• Analyzing frame execution to inspect and debug complex issues.See the Frame Execution Tracing section in The Evaluation Loopchapter.

372

https://realpython.com/build-python-c-extension-module

Using This Knowledge to Contribute to the CPython Project
Using This Knowledge to Contribute tothe CPython Project
While writing this book, CPython had 12 newminor releases, 100’s ofchanges, bug reports, and 1000’s of commits to the source code.
CPython is one of the biggest, most vibrant, and open softwareprojects out there. So what sets apart the developers who work onCPython and you, the reader?
Nothing.
That’s right; the only thing stopping you from submitting a change,improvement, or fix to CPython is knowing where to start. TheCPython community is eager for more contributors. Here are someplaces you could start:
1. Triaging issues raised by developers on bugs.python.org
2. Fixing small, easy issues
Let’s explore each of those in a bit more detail.
Triaging Issues
All bug reports and change requests are first submitted tobugs.python.org. This website is the bug tracker for the CPythonProject. Even if you want to submit a pull request on GitHub, youfirst need a “BPO Number,” which is the issue number created byBPO (bugs.python.org).
To get started, register yourself as a user by going to User Register onthe left menu.
The default view is not particularly productive and shows both issuesraised by users and those raised by core developers (which likely al-ready have a fix).
Instead, after logging in, go to Your Queries Edit on the left menu.

373

https://bugs.python.org
https://bugs.python.org

Using This Knowledge to Contribute to the CPython Project
This page will give you a list of queries for the bug index that you canbookmark:

Figure 0.1: bpo-screenshot
Change the value to “leave in” to include these queries in the
Your Queries menu.
Some of the queries I find useful are:
• Easy Documentation Issues - showing some documentationimprovements that haven’t been made
• Easy Tasks - showing some tasks that have been identified asgood for beginners
• Recently Created - recently created issues
• Reports without replies - bug reports that never got a reply
• Unread - bug reports that never got read
• 50 latest issues - the 50 most recently updated issues

With these views, you can follow the Triaging an Issue guide for thelatest process on commenting on issues.
Raising a Pull Request to Fix an Issue
With an issue to fix, you can get started on creating a fix and submit-ting that fix to the CPython project.

374

https://devguide.python.org/triaging/

Using This Knowledge to Contribute to the CPython Project
1. Make sure you have a BPO number.
2. Create a branch on your fork of CPython. See the Getting theSource Code chapter for steps on downloading the source code.
3. Create a test to reproduce the issue. See the Testing Modules sec-tion of The Test Suite chapter for steps.
4. Make your change following the PEP7 and PEP8 style guides.
5. Run the Regression Test suite to check all the tests are passing.The regression test suite will automatically run on GitHub whenyou submit the Pull-Request, but it is better to check it locally first.See The Test Suite chapter for steps.
6. Commit and push your changes to GitHub.
7. Go to github.com/python/cpython and create a pull request foryour branch
After submitting your pull request it will be triaged by one of the triageteams and assigned to a Core Developer or team for review.
As mentioned earlier, the CPython project needs more contributors.The time between submitting your change can be an hour, a week,or many months. Don’t be dismayed if you don’t get an immediateresponse. All of the CoreDevelopers are volunteers and tend to reviewand merge pull requests in batches.

Important
It is important only to fix one thing in one pull request. If yousee a separate (unrelated) issue in some codewhile writing yourpatch, make a note and submit it as a second pull request.

To help get your change merged quickly, a good explanation of theproblem, the solution, and the fix go a long way.

375

https://github.com/python/cpython

Keep Learning
Other Contributions
Other than bug fixes, there are some different types of improvementsyou can make to the CPython project:
• Many of the standard library functions and modules are missingunit tests. You can write some tests and submit them to theproject.
• Many of the standard library functions don’t have up-to-datedocumentation. You can update the documentation and submit achange.

Leave feedback on this section »

Keep Learning
Part of whatmakes Python so great is the community. Know someonelearning Python? Help them out! The only way to know you’ve reallymastered a concept is to explain it to someone else.
Come visit us on the web and continue your Python journey on therealpython.com website and the @realpython Twitter account.
Weekly Tips for Python Developers
Are you looking for a weekly dose of Python development tips to im-prove your productivity and streamline your workflows? Good news:we’re running a free email newsletter for Python developers just likeyou.
The newsletter emails we send out are not just your typical list of pop-ular articles. Instead, we aim to share at least one original thoughtper week in a (short) essay-style format.
If you’d like to see what all the fuss is about, then head on overto realpython.com/newsletter and enter your email address in thesignup form. We’re looking forward to meeting you!

376

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoiNC0yMlkpRmE7ejNQTFRTYnVmUFBzcUVwNzgrdEtDdEE2fjY2WFBLdyIsInQiOiJjaGFwdGVycy84MC1jb25jbHVzaW9uLm1kIChmMDE0ZTUxNDdkNWFlMmM1KSIsInUiOiJodHRwczovL2dpdGh1Yi5jb20vZGJhZGVyL2NweXRob24tYm9vay9ibG9iL2YwMTRlNTE0N2Q1YWUyYzVmM2Y3MzdkZDFiMWNiNzdlMjA4MTljNmMvY2hhcHRlcnMvODAtY29uY2x1c2lvbi5tZCJ9
https://realpython.com/
https://twitter.com/realpython
https://realpython.com/newsletter?utm_source=cpython-book&utm_medium=pdf

Keep Learning
The Real Python Video Course Library
Become a well-rounded Pythonista with the large (and growing) col-lection of Python tutorials and in-depth training materials at RealPython. With new content published weekly, you’ll always find some-thing to boost your skills:
• Master practical, real-worldPython skills: Our tutorials arecreated, curated, and vetted by a community of expert Pythonistas.At Real Python, you’ll get the trusted resources you need on yourpath to Python mastery.
• Meet other Pythonistas: Join the Real Python Slack chat andmeet the Real Python Team and other subscribers. Discuss yourcoding and career questions, vote on upcoming tutorial topics, orjust hang out with us at this virtual water cooler.
• Interactive quizzes & Learning Paths: See where you standand practice what you learn with interactive quizzes, hands-oncoding challenges, and skill-focused learning paths.
• Track your learning progress: Mark lessons as completed orin-progress and learn at your own pace. Bookmark interestinglessons and review them later to boost long-term retention.
• Completion certi cates: For each course you complete, you re-ceive a shareable (and printable) Certificate of Completion, hostedprivately on the Real Python website. Embed your certificates inyour portfolio, LinkedIn resume, and other websites to show theworld that you’re a dedicated Pythonista.
• Regularly updated: Keep your skills fresh and keep up withtechnology. We’re constantly releasing new members-only tuto-rials and update our content regularly.

See what’s available at realpython.com/courses

377

https://realpython.com/courses/

Appendix 1 : Introduction toC for Python Programmers
This introduction is intended to get an experienced Python program-mer up to speed with the basics of the C language and how it’s used inthe CPython source code. It assumes you’ve already got an intermedi-ate understanding of Python syntax.
That said, C is a fairly limited language and most of it’s usage inCPython falls into a small set of syntax. Getting to the point whereyou understand the code is a much smaller step than being able towrite C effectively. This tutorial is aimed at the first goal but not thesecond.
One of the first things that stand out as a big difference betweenPython and C is the C preprocessor. Let’s look at that first.

C Preprocessor
The preprocessor, as the name suggests, is run on your source filesbefore the compiler runs. It has very limited abilities, but these canbe used to great advantage in building C programs. The preprocessorproduces a new file which is what the compiler will actually process.All of the commands to the preprocess start at the beginning of a linewith a # symbol as the first non-whitespace character.
The main purpose of the preprocessor is to do text substitution in thesource file, but it will also do some basic conditional code if #if state-

378

C Preprocessor
ments.
Let’s start with the most frequent preprocessor directive, #include.
#include

#include is used to pull the contents of one file into the current sourcefile. There is nothing sophisticated about this, it reads that file fromthe file system, runs the preprocessor on that file and puts the resultsof that into the output file. This is done recursively for each #includedirective found.
For example, if you look at the Modules/_multiprocessing/semaphore.cfile, near the top you’ll see:
#include "multiprocessing.h"

This tells the preprocessor to pull in the entire contents of
multiprocessing.h and put it into the output file at this position.
You will notice two different forms for the include statement. Oneof them uses quotes to specify the name of the include file, the otheruses angle brackets (<>). The difference comes from which paths aresearched when looking for the file on the file system. If you use <> forthe filename, the preprocessor will only look on “system” include files.Using quotes around the filename instead will force the preprocessorto look in the local directory first and then fall back to the system di-rectories.
#define

#define allows you to do simple text substitution and also plays intothe #if directives we’ll see below.
At it’s most basic, #define let’s you define a new symbol that gets re-placed with a text string in the preprocessor output.
Continuing in semphore.c you’ll find this line:

379

C Preprocessor
#define SEM_FAILED NULL

This tells the preprocessor to replace every instance of SEM_FAILED be-low this point with the literal string NULL before the code is sent to thecompiler.
#define items can also take parameters as in thisWindows-specific ver-sion of SEM_CREATE:
#define SEM_CREATE(name, val, max) CreateSemaphore(NULL, val, max, NULL)

In this case and preprocessor will expect SEM_CREATE() to look like afunction call and have three parameters. This is generally referred toas a macro. It will directly replace the text of the three parametersinto the output code, For example, on line 459, the SEM_CREATE macrois used like this:
handle = SEM_CREATE(name, value, maxvalue);

When compiling for Windows, this macro will be expanded so thatline is:
handle = CreateSemaphore(NULL, value, max, NULL);

We’ll see below how this macro is defined differently onWindows andother operating systems.
#undef

This directive erases any previous preprocessor definition from
#define. This makes it possible to have a #define in effect for only partof a file.
#if

The preprocessor also allows conditional statements, allowing you toeither include or exclude sections of text based on certain conditions.Conditional statements are closed with the #endif directive and alsocan make use of #elif and #else for fine-tuned adjustments.
380

Basic C Syntax
There are three basic forms of #if that you’ll see in the CPythonsource:
• #ifdef <macro> : includes the following block of text if the specifiedmacro is defined
• #if defined(<macro>): same as #ifdef

• #ifundef <macro>: includes the following block of text if the speci-fied macro is not defined
• #if <macro>: includes the following text if themacro is defined andit evaluates to True

Note the use of “text” instead of “code” to describe what is included orexcluded from the file. The preprocessor knows nothing of C syntaxand does not care what the specified text is.
#pragma

Pragmas are instructions or hints to the compiler. In general you canignore these while reading the code as they usually deal with how thecode is compiled, not how the code runs.
#error

Finally, #error displays amessage and causes the preprocessor to stopexecuting. Again, you can safely ignore these for reading the CPythonsource code.

Basic C Syntax
This section will not cover ALL aspects of C nor, again, is it intendedto teach you how to write C. It will focus on things that are differentor confusing for Python developers the first time they see them.

381

Basic C Syntax
General
Unlike in Python, whitespace is not important to the C compiler. Itdoes not care if you split statements across lines or jam your entireprogramonto a single, very long line. This is because it uses delimitersfor all statements and blocks.
There are, of course, very specific rules for the parser, but in generalyou’ll understand the CPython source just knowing that each state-ment ends with a semicolon (;) and all blocks of code are surroundedby curly braces ({}).
The exception to this rule is that if a block has only a single statement,the curly braces can be omitted.
All variables inCmust bedeclaredmeaning there needs to be a singlestatement giving the type of that variable. Note that, unlike Python,the data type that a single variable can hold cannot change.
Let’s look at some examples:
/* comments are included between slash-asterisk and asterisk-slash */

/* This style of comment can span several lines -

so this part is still a comment. */

// OR comments can be after two slashes

// This type of comments only go until the end of the line, so new

// lines must have //s again.

int x = 0; // declares x to be of type 'int' and initializes it to 0

if (x == 0) {

// this is a block of code

int y = 1; // y is only a valid variable name until the closing }

// more statements here

printf("x is %d y is %dn", x, y);

}

// single line blocks do not require curly brackets

382

Basic C Syntax
if (x == 13)

printf("x is 13!n");

printf("past the if blockn");

In general you’ll see that the CPython code is very cleanly formattedand generally sticks to a single style within a given module.
if Statements
In C, if works generally like it does in Python. If the condition istrue then the following block is executing. The else and else if syn-tax should be familiar enough to Python programmers to understand.Note that C if statements do not need and endif because blocks aredelimited by {}.
There is a shorthand in C for short if/else statements call the ternaryoperator:

You can find it in semaphore.c where, for Windows, it defines a macrofor SEM_CLOSE():
#define SEM_CLOSE(sem) (CloseHandle(sem) ? 0 : -1)

The return value of this macro will be 0 if the function CloseHandle()returns true and -1 otherwise.
Just a note about true in C. Boolean variable types are supported andused in parts of the CPython source, but they were not a part of theoriginal language. C interprets binary conditions using a simple rule:
0 or NULL is false, everything else is true.
switch Statements
Unlike Python, C also supports switch. Using switch can be viewedas a shortcut for extended if/elseif chains. This example is from
semaphore.c:

383

Basic C Syntax
switch (WaitForSingleObjectEx(handle, 0, FALSE)) {

case WAIT_OBJECT_0:

if (!ReleaseSemaphore(handle, 1, &previous))

return MP_STANDARD_ERROR;

*value = previous + 1;

return 0;

case WAIT_TIMEOUT:

*value = 0;

return 0;

default:

return MP_STANDARD_ERROR;

}

This performs a switch on the return value from WaitForSingleObjectEx().If the value is WAIT_OBJECT_0, the first block is executed. The WAIT_-

TIMEOUT value results in the second block, and anything else matchesthe default block.
Note that the value being tested, in this case the return value from
WaitForSingleObjectEx(), must be an integral value or an enumeratedtype and that each case must be a constant value.
Loops
There are three looping structures in C:
• for loops
• while loops
• do..while loops

Let’s look at each of these in turn.
for loops have syntax that is quite different than Python:
for (<initialization>; <condition>; <increment>) {

<code to be looped over>

}

384

Basic C Syntax
In addition to the code to be executed in the loop, there are threeblocks of code which control the for loop.
The <initialization> section is run exactly one time when the loop isstarted. It traditionally is used to set a loop counter to an initial value(and possibly declare the loop counter). The <increment> code is runimmediately after each pass through the main block of the loop. Tra-ditionally this will increment the loop counter. Finally, the <condition>is run after the <increment>. The return value of this code will be eval-uated and the loop breaks when this condition returns false.
Here’s an example from Modules/sha512module.c:
for (i = 0; i < 8; ++i) {

S[i] = sha_info->digest[i];

}

This loop will run 8 times, with i going from 0 to 7, terminating whenthe condition is check and i is 8.
while loops are virtually identical to their Python counterparts. The
do..while() syntax is a little different, however. The condition on a
do...while() loop is not checked until after the first time the body ofthe loop is executed.
There are many instances of for loops and while loops in the CPythoncode base, but do..while() is unused.
Functions
The syntax for functions in C is similar to that in Python, with theaddition that the return type and parameter types must be specified.The C syntax looks like this:
<return_type> function_name(<parameters>) {

<function_body>

}

The return type can be any valid type in C, including both built-in
385

Basic C Syntax
types like int and double as well as custom types like PyObject like inthis example from semaphore.c:
static PyObject *

semlock_release(SemLockObject *self, PyObject *args)

{

<statements of function body here>

}

Here you see a couple of C-specific things in play. First off, rememberthat whitespace does not matter. Much of the CPython source codeputs the return type of a function on the line above the rest of thatfunction declaration. That’s the PyObject * part. We’ll talk about the *aspect of this a little later, but here we should point out that there areseveral modifiers you can place on functions and variables.
static is one of these modifiers. Unfortunately these modifiers havesome complex rules governing how they operate. For instance, the
static modifier here means something very different than placing itin front of a variable declarations.
Fortunately, these modifiers can generally be ignored while trying toread and understand the CPython source code.
The parameter list for functions is a comma-separated list of variables,similar to Python. Again, C requires specific types for each parameter,so the SemLockObject *self says that the first parameter (all parametersin C are positional) is a pointer to a SemLockObject and is called self.
Let’s look at what the pointer part of that statement means.
To give some context, the parameters that are passed to C are allpassed by value, meaning the function operates on a copy of the valueand not the original in the calling function. To work around this,functions will frequently pass in the address of some data that thefunction can modify. These addresses are called pointers and havetypes, so int * is a pointer to an int value and is of a different typethan double * which is a pointer to a double.

386

Basic C Syntax
Pointers
As mentioned above, pointers are variables that hold the address of avalue. These are used frequently in C as seen in the example above:
static PyObject *

semlock_release(SemLockObject *self, PyObject *args)

{

<statements of function body here>

}

Here the self parameter will hold the address of (usually called “apointer to”) a SemLockObject value. Also note that the function will re-turn a pointer to a PyObject value.
There is a special value in C to indicate that a pointer does not point toanything, called NULL. You’ll see pointers assigned to NULL and checkedagainst NULL throughout the CPython source. This is important asthere are very few limitations as to what values a pointer can haveand access a memory location that is not officially part of your pro-gram can cause very strange behavior.
If you try to access the memory at NULL, on the other hand, your pro-gram will exit immediately. This may not seem better, but it’s gen-erally easier to figure out a memory bug if NULL is accessed than if arandom memory address is modified.
Strings
In C there is not a string type. There is a convention around whichmany standard library functions are written, but there is not an ac-tual type. Rather, strings in C are stored as arrays of char or wchar val-ues, each of which holds a single character. Strings are marked witha null-terminator which has a value 0 and is usually shown in codeas 0.
Basic string operations like strlen() rely on this null-terminator tomark the end of the string.

387

Basic C Syntax
Because strings are just arrays of values, they cannot be directlycopied or compared. The standard library has the strcpy() and strcmpfunctions (and their wchar cousins) for doing these operations andmore.
Structs
Your final stop on this mini-tour of C is how you can create new typesin C: structs. The struct keyword allows you to group a set of differ-ent data types together into a new, custom data type:
struct <struct_name> {

<type> <member_name>;

<type> <member_name>;

...

};

This partial example from Modules/arraymodule.c shows a struct decla-ration:
struct arraydescr {

char typecode;

int itemsize;

...

};

This creates a new data type called struct arraydescr which has manymembers, the first two of which are a char typecode and an int itemsize.
Frequently structs will be used as part of a typedef which provides asimple alias for the name. In the example above, all variables of thenew type must be declared with the full name struct arraydescr x;.
You’ll frequently see syntax like this:
typedef struct {

PyObject_HEAD

SEM_HANDLE handle;

388

Conclusion
unsigned long last_tid;

int count;

int maxvalue;

int kind;

char *name;

} SemLockObject;

This creates a new, custom struct type and gives it a name
SemLockObject. To declare a variable of this type, you can simplyuse the alias SemLockObject x;.

Conclusion
This wraps up the quick walk through C syntax. There were manycorners that were cut in this description, but it should be sufficient toread the CPython source code.
Leave feedback on this section »

389

https://feedback.realpython.com/cpython-book/?d=eyJwIjoiY3B5dGhvbi1ib29rIiwic2lnIjoie28ha2ooOEM1VG83fkdRP0RXTUdzcEVnaitmYTY4PjVMe0RCbVBkaiIsInQiOiJjaGFwdGVycy85MC1hcHBlbmRpeC1jLXByaW1lci5tZCAoZjg1M2I5MzdlZjUwYWQyNCkiLCJ1IjoiaHR0cHM6Ly9naXRodWIuY29tL2RiYWRlci9jcHl0aG9uLWJvb2svYmxvYi9mODUzYjkzN2VmNTBhZDI0ZjA5ZTg5MDFiMWM1NWRhYjRjZDY0NmYzL2NoYXB0ZXJzLzkwLWFwcGVuZGl4LWMtcHJpbWVyLm1kIn0=

This is an Early Access version of “CPythonInternals: Your Guide to the Python 3Interpreter”
With your help we can make this book even better:
At the end of each section of the book you’ll find a “magical” feedbacklink. Clicking the link takes you to an online feedback formwhereyou can share your thoughts with us.
Please feel free to be as terse or detailed as you see fit. All feedbackis stored anonymously, but you can choose to leave your name andcontact information sowe can followupormention youonour “ThankYou” page.
We use a different feedback link for each section, so we’ll always knowwhich part of the book your notes refer to.
Thank you for helping usmake this book an evenmore valuable learn-ing resource for the Python community.
— Anthony Shaw

	Contents
	Foreword
	Introduction
	How to Use This Book
	Bonus Material & Learning Resources

	Getting the CPython Source Code
	Setting up Your Development Environment
	IDE or Editor?
	Setting up Visual Studio
	Setting up Visual Studio Code
	Setting up JetBrains CLion
	Setting up Vim
	Conclusion

	Compiling CPython
	Compiling CPython on macOS
	Compiling CPython on Linux
	Installing a Custom Version
	A Quick Primer on Make
	CPython's Make Targets
	Compiling CPython on Windows
	Profile Guided Optimization
	Conclusion

	The Python Language and Grammar
	Why CPython Is Written in C and Not Python
	The Python Language Specification
	Using the Parser Generator
	The Parser Generator
	Regenerating Grammar
	A More Complex Example
	Conclusion

	Configuration and Input
	Configuration State
	Build Configuration
	Building a Module From Input
	Conclusion

	Lexing and Parsing with Syntax Trees
	Concrete Syntax Tree Generation
	The CPython Parser-Tokenizer
	Abstract Syntax Trees
	Important Terms to Remember
	Example: Adding an Almost Equal Comparison Operator
	Conclusion

	The Compiler
	Related Source Files
	Important Terms
	Instantiating a Compiler
	Future Flags and Compiler Flags
	Symbol Tables
	Core Compilation Process
	Assembly
	Creating a Code Object
	Using Instaviz to Show a Code Object
	Example: Implementing the ``Almost-Equal'' Operator
	Conclusion

	The Evaluation Loop
	Stack Frames
	Related Source Files
	Important Terms
	Constructing Thread State
	Constructing Frame Objects
	Frame Execution
	The Value Stack
	Example: Adding an Item to a List
	Conclusion

	Memory Management
	Memory Allocation in C
	Design of the Python Memory Management System
	The CPython Memory Allocator
	The Object and PyMem Memory Allocation Domains
	The Raw Memory Allocation Domain
	Custom Domain Allocators
	Custom Memory Allocation Sanitizers
	The PyArena Memory Arena
	Reference Counting
	Garbage Collection
	Conclusion

	Parallelism and Concurrency
	Models of Parallelism and Concurrency
	The Structure of a Process
	Multi-Process Parallelism
	Multithreading
	Asynchronous Programming
	Generators
	Coroutines
	Asynchronous Generators
	Subinterpreters
	Conclusion

	Objects and Types
	Examples in This Chapter
	Builtin Types
	Object and Variable Object Types
	The type Type
	Bool and Long Integer Type
	Unicode String Type
	Dictionary Type
	Conclusion

	The Standard Library
	Python Modules
	Python and C Modules

	The Test Suite
	Running the Test Suite on Windows
	Running the Test Suite on Linux/macOS
	Test Flags
	Running Specific Tests
	Testing Modules
	Test Utilities
	Conclusion

	Debugging
	Using the Crash Handler
	Compiling Debug Support
	Using Lldb for macOS
	Using Gdb
	Using Visual Studio Debugger
	Using CLion Debugger
	Conclusion

	Benchmarking, Profiling, and Tracing
	Using Timeit for Micro-Benchmarks
	Using the Python Benchmark Suite for Runtime Benchmarks
	Profiling Python Code with cProfile
	Profiling C Code with Dtrace
	Conclusion

	Conclusion
	Writing C Extensions for CPython
	Using This Knowledge to Improve Your Python Applications
	Using This Knowledge to Contribute to the CPython Project
	Keep Learning

	Appendix 1 : Introduction to C for Python Programmers
	C Preprocessor
	Basic C Syntax
	Conclusion

