

Copyright © 2020 Ahmad Shadeed

All Rights Reserved

Editor: Andrew Lobo

Proofreader: Geo`rey Crofte

Foreword

I've been using, and a big advocate for CSS since before it was even a

standard, nearly 25 years.

It's hard to convey what a profound change it brought in developing for the web

when introduced, although its widespread adoption took years of the technology

maturing in browsers, and of advocacy, changing the long established use of tables

for page layout, font elements, and other hacks web developers came up with to

design for the Web.

Since then, CSS has matured in ways its originators and early adopters could barely

imagine and brings developers incredible power. But this power and complexity

come at a cost.

When developing with CSS, I sometimes think of the story of "]e

Sorcerer's Apprentice" (originally a poem by German Romantic poet Goethe, but

made famous by Mickey Mouse in the Disney ^lm Fantasia).]e

Sorcerer's Apprentice gains access to his wizard master's powers, but unable to

wield them correctly, causes mayhem.

Which sounds like a lot of developing with CSS to me!

]e Cascade, Speci^city, Inheritance are all powerful features of CSS, but also

cause many of the problems we associate with the language.

Which is why I'm surprised it's taken so long for someone to really address the

signi^cant challenges of debugging CSS. And why I'm excited for Ahmad's new

book, which addresses this important topic in detail.

I really recommend this to any web developer, it's long over due!

John Allsopp — Web Directions

Table of Contents

Introduction and Overview.. 1
◦]e History of Debugging CSS...2

◦ What Has Changed Today? ..5

◦ What Does Debugging CSS Mean? ..5

◦ Why Debugging Should Be Taught..6

◦]e Debugging Mindset ...6

◦ Why Debugging Needs Time..8

◦ Write Code]at Is Easy To Debug ..9

◦ Who Is]is Book For? ..9

◦ Why I Wrote]is Book? ...10

◦ An Overview of the Book Chapters ..10

Introduction to CSS Bugs ... 11
◦ What Is a Bug? ...12

◦ How to Fix a CSS Bug..12

◦ CSS Bug Types..14

◦]e Debugging Process ...23

◦ Wrapping Up..25

Debugging Environments and Tools .. 26
◦ Toggling a CSS Declaration ..28

◦ Using the Keyboard to Increment and Decrement Values.........................30

◦ CSS Errors ..31

◦ DevTools Mobile Mode...32

◦ Mobile Mode Doesn’t Show a Horizontal Scrollbar33

◦ Scroll Into View ...34

◦ Screenshotting Design Elements ..34

◦ Device Pixel Ratio ...35

◦ Switching the User Agent ..36

◦ Debugging Media Queries..38

◦ Box Model ..47

◦ Computed CSS Values...50

◦ Grayed-Out Properties..52

◦ Firefox’s Style Editor ...54

◦ CSS Properties]at Don’t Have an E`ect ..55

◦ Compatibility Support in Firefox ..56

◦ Getting the Computed Value While Resizing the Browser56

◦ Getting the Computed Value With JavaScript ...57

◦ Reordering HTML Elements ..59

◦ Editing Elements in the DevTools...62

◦]e H Key..67

◦ Forcing an Element’s State...67

◦ Debug an Element Shown Via JavaScript ...71

◦ Break JavaScript...74

◦ Using the Debugger Keyword..75

◦ Formatting the Source Code to Be Easier to Read.......................................76

◦ Copying an Element’s HTML Along With Its CSS77

◦ Rendered Fonts ...78

◦ Checking for Unused CSS ..79

◦ Color-Switching With the DevTools ...80

◦ Copying CSS From the DevTools to the Source Code81

◦ Debugging Source-Map Files ...83

◦ Debugging Accessibility Issues Caused by CSS ...84

◦ Debugging CSS Performance..88

◦ Multiple Browser Pro^les...90

◦ Rendering and Emulation..91

◦ Virtual Machines...94

◦ Online Services ...95

◦ Mobile Devices ..95

◦ Mobile Browsers..96

◦ Inspecting Your Mobile Browser ...96

◦ Mobile Simulators...96

◦ Browser Support..97

◦ Can I Use..97

◦ Vendor Pre^xes..98

◦ Wrapping Up..99

CSS Properties 8at Commonly Lead to Bugs.. 100
◦ Box Sizing...101

◦ Display Type ..102

◦ Margin ..114

◦ Padding...117

◦ Width Property..121

◦ Height Property...126

◦ Setting a Minimum or Maximum Width..132

◦ Shorthand vs. Longhand Properties ...145

◦ Positioning...148

◦]e Z-Index Property ..151

◦]e calc() Function ...157

◦ Text Alignment..157

◦ Viewport Units ..158

◦ Pseudo-Elements ..159

◦ Color ...163

◦ CSS Backgrounds...165

◦ CSS Selectors ...167

◦ CSS Borders..172

◦ Box Shadow..179

◦ CSS Transforms ...186

◦ CSS Custom Properties (Variables) ...192

◦ Horizontal Scrolling..196

◦ Transition...207

◦ Over_ow...210

◦ Text Over_ow ..214

◦]e !important Rule..215

◦ Flexbox ...216

◦ CSS Grid ...235

◦ Handling Long and Unexpected Content ..243

◦ Wrapping Up..99

Breaking a Layout Intentionally... 247
◦ Add Long Text Content ..248

◦ Try Content in Di`erent Languages ...251

◦ Resize the Browser’s Window..252

◦ Avoid Placeholder Images ..254

◦ Open in Internet Explorer..256

◦ Rotate Between Portrait and Landscape Orientation257

◦ Wrapping Up..99

Browser Inconsistencies and Implementation Bugs................................... 259
◦ Using a CSS Reset File ..260

◦ Using Normalize.css ...261

◦ Browser Implementation Bugs..226

◦ Test-Case Reduction ...263

◦ Make It Fail ..267

◦ Back Up Your Work ...268

◦ Document Everything ..268

◦ Test and Iterate ...269

◦ Research the Issue ..269

◦ Report to Browser Vendors ..270

◦ Never]row Away a Debugging Demo ..270

◦ Regression Testing ..271

◦ Wrapping Up..99

General Tips and Tricks... 275
◦ Debugging Multilingual Websites ...276

◦ Using @supports ..278

◦ Browser Extensions ..280

◦ Mocking Up in the Browser...282

◦ Hover for Touch Screens ..289

◦ Using CSS to Show Potential Errors..290

Let’s face it:]e process of debugging CSS is not straightforward, because there

is no direct or clear way to debug a CSS problem. In this book, you will learn

how to sharpen your debugging CSS skills.

For traditional programming languages, such as Java, C, and PHP, the

techniques of debugging have evolved over the years.]at is not the case with

CSS. Debugging CSS is not like debugging a programing language because you

won’t be alerted to errors at compilation time. You would get silent errors,

which are not helpful.

Before debugging a CSS error, you need to spot it ^rst. In some cases, you

might receive a report from a colleague that there is a bug to be solved. Finding

a CSS bug can be hard because there is no direct way to do it. Even for an

experienced CSS developer, debugging and ^nding CSS issues can be hard and

confusing.

]is chapter will discuss:

• the history of debugging CSS,

• what has changed today,

• what debugging CSS means,

• the debugging mindset,

• why debugging needs time,

• an overview of this book’s topics.

The History of Debugging CSS

Because this book is about debugging and ^nding CSS issues, you should be

aware of a bit of the history of how debugging tools for CSS have developed

over the years.

1. Introduction and Overview

2 Debugging CSS

Style Master

You might be surprised to hear that the ^rst CSS debugging tool was released

in 1998 — 22 years ago! Its creators, John Allsopp and Maxine Sherrin, named

it Style Master. As they described it:

Style Master is the leading cross-platform CSS development tool. Much

more than just a text editor, Style Master supports your work_ow —

including: creating style sheets based on your HTML; live CSS editing of

PHP, ASP.NET, Ruby and other dynamically generated sites; editing CSS

via ftp; and much, much more.

]e goal of Style Master was to make working with CSS more eacient, more

productive, and more enjoyable. As you can see, then, debugging CSS has been

a topic of interest to developers for a long time.

1. Introduction and Overview

Debugging CSS 3

http://westciv.com/style_master/index.html

Firebug Browser Extension

In 2006, Joe Hewitt released the ^rst version of the Firebug browser extension.

Firebug is a discontinued free and open-source web browser extension

for Mozilla Firefox that facilitated the live debugging, editing, and

monitoring of any website’s CSS, HTML, DOM, XHR, and JavaScript. —

[Wikipedia](https://en.wikipedia.org/wiki/Firebug_(software)

]e main features of Firebug were very similar to what we have in the

developer tools (DevTools) of today’s browsers:

• inspecting HTML and CSS,

• reviewing the JavaScript console,

• testing web performance.

Without the e`ort of the folks who created these great tools, Style Master and

1. Introduction and Overview

4 Debugging CSS

https://getfirebug.com/

Firebug, we might not have the DevTools we use today. We couldn’t be more

thankful to them.

What Has Changed Today?

]e scene today is dramatically di`erent. Every browser these days has built-

in DevTools that make it easy for a developer to inspect and edit the HTML,

CSS, and JavaScript of a web page. In this book, we’re interested in CSS.

Not to mention, when Style Master and Firebug were released so long ago,

websites were very simple, and we had only one screen size to test on. Today, a

website can be accessed by hundreds of smartwatches, mobile phones, tablets,

laptops, and desktop computers. Debugging for all of these types of devices

is not an easy task. You could ^x something for mobile and break it

unintentionally for the desktop.

It’s not only about screen sizes.]e size of web projects has gotten much

bigger in the last 10 years. For example, the developers of a large-scale front-

end project like Facebook or Twitter need a systematic way to test and debug.

All of these changes to the work of web development are clear evidence that

debugging must be taken care of from day one and that developers must learn

it as a core skill.

What Does Debugging CSS Mean?

Debugging is the process of ^nding and resolving bugs (defects or

problems that prevent correct operation) within computer programs,

software, or systems. — Wikipedia

We can use the same de^nition. Finding and resolving CSS bugs is an essential

1. Introduction and Overview

Debugging CSS 5

https://en.wikipedia.org/wiki/Debugging%23Debugging_process

skill. Regardless of the programming language you are used to working with,

the debugging steps are almost the same for CSS. Later in this chapter, we’ll go

over a clear strategy for debugging that you can use right away.

When I refer to a “CSS bug” throughout this book, I mean a bug that was caused

by the developer, not a bug implanted by the browser. But we will address both

types.

Why Debugging Should Be Taught

]e fast development of browser DevTools makes it hard to catch up with all

of the techniques and methods of debugging CSS. Not to mention the lack of

an organized resource that is easy for a beginner to follow.

The Debugging Mindset

According to Devon H. O’Dell, in his paper “]e Debugging Mindset”:

Software developers spend 35-50 percent of their time validating and

debugging software.]e cost of debugging, testing, and veri^cation is

estimated to account for 50-75 percent of the total budget of software

development projects, amounting to more than $100 billion annually.

If you need to ^x a bug quickly, you might feel a bit stressed, which could

lead you to rush a solution without a clear strategy.]at could easily result in

confusion and time wasted on things that don’t matter.

Any programming language has logical and illogical errors. Take JavaScript.

When there is an error in your JavaScript, you can see by checking the

browser’s console. At least you will have evidence that there is an error, with

1. Introduction and Overview

6 Debugging CSS

https://queue.acm.org/detail.cfm?id=3068754

the reason for why it happened.

CSS is completely di`erent. You won’t get any kind of alert when you’ve made

an error.]at alone can make the simplest CSS bug very hard to ^x, if you

don’t think clearly and follow a sensible strategy. A CSS bug could be caused

either by the developer, as when a CSS property is improperly used, or by

inconsistencies between web browsers.

Moreover, you might be the one responsible for testing a website and

uncovering the bugs. So, we’re dealing not only with ^xing bugs, but with

^nding them as well.

Identifying CSS Bugs

Before a customer or someone on your team discovers something broken on

the website, you can do some testing and try to break the design intentionally.

In the ^fth chapter, you will learn some methods of intentionally breaking a

CSS layout.

Explaining a Bug to Someone

Have you ever spent hours trying to solve a CSS issue, only to explain it to a

friend or colleague and gotten that spark of an idea of how to ^x it?]at is

the e`ect of explaining a bug to a friend. You got stuck because you didn’t take

enough time to think deeply about the problem.

When you ^nd yourself going in circles like that, take a break and come back

to it later. Fixing issues needs intense focus. If you’re working on a solution

while your mind is exhausted, you might unintentionally break something

else. Avoid that with a break.

1. Introduction and Overview

Debugging CSS 7

Why Debugging Needs Time

In his excellent blog post, “You’ve Only Added Two Lines — Why Did]at Take

Two Days!”, Matt Lacey presents some solid reasons for why debugging takes

time. Let’s go through them.

An Issue Is Not Clear

Don’t expect someone to report an issue in full detail. A vague description

is ^ne. Before asking for more detail, try to understand the issue as fully as

possible. Once you’ve done that, you’ll need to reproduce the bug on your

machine, and then you’ll have a starting point.

The Symptoms Are Easier to Treat Than the Cause

When working on an issue, it’s important to investigate the cause of it, not

only the symptoms. As Lacey says:

If some code is throwing an error, you could just wrap it in a try..catch

statement and suppress the error. No error, no problem. Right? Sorry, for

me, making the problem invisible isn’t the same as ^xing it.

Making a bug invisible with a “quick ^x” might introduce some unexpected

side e`ects. You have a chance to ^x the issue, not to create more problems!

Focusing on One Path to the Problem

Some issues can be reproduced in multiple ways, not just the reported one.

Finding those ways is not only useful to thoroughly solving the issue, but also

can provide great insight into how the CSS is written, and whether there are

1. Introduction and Overview

8 Debugging CSS

https://www.mrlacey.com/2020/07/youve-only-added-two-lines-why-did-that.html
https://www.mrlacey.com/2020/07/youve-only-added-two-lines-why-did-that.html

other spots in the code base where the same issue can be expected to crop up.

]is can be very helpful for ^xing bugs before they reach users.

Ignoring Side Effects

Fixing an issue is one thing; avoiding side e`ects from ^xing it is another.

]at’s why it’s best to ^x an issue with the least amount of CSS possible, and

with a thorough understanding of possible side e`ects.

Write Code That Is Easy To Debug

Poorly organized code can make debugging much harder. For a large web

project, the CSS should be divided into components and partial ^les, which

would then be complied with a CSS preprocessor such as Sass, LESS, or

PostCSS.

If you decide to write all of you CSS to a single ^le, don’t expect debugging to

be easy. You will end up scrolling the large ^le up and down endlessly.]is

approach is confusing and not ideal. More bugs tend to crop up in a single-^le

CSS.

In the next chapter, we’ll go through di`erent types of CSS issues, get into

details about debugging in the browser, and much more.

Who Is This Book For?

]is book is intended for designers and front-end and back-end developers

who are interested in improving their skills in ^nding and ^xing CSS bugs. You

should have an intermediate level of knowledge of HTML and CSS.

1. Introduction and Overview

Debugging CSS 9

In some sections, you will need to follow the steps of installing an npm

package. Don’t worry, that won’t require extensive Node.js experience. You’ll

be able to follow along easily.

Why I Wrote This Book?

]e lack of resources for learning how to ^nd and ^x CSS bugs is the primary

reason why I wrote this book. As soon as I began researching the topic, I

discovered that this topic has been overlooked.]ere should be a guide that

discusses in an easy and straightforward way all of the details related to

debugging.

An Overview of the Book Chapters

Here is an overview of the chapters you’ll ^nd in this book:

• Introduction to CSS bugs

• Debugging environments and tools: Browser DevTools, virtual machines,

mobile browsers

• CSS properties that commonly lead to bugs

• Breaking a layout intentionally

• Browser inconsistencies and implementation bugs

• General tips and tricks

Now that we’re done with introducing the book, let’s start debugging CSS!

1. Introduction and Overview

10 Debugging CSS

What Is a Bug?

When something is di`erent from what you expect, that is a bug. For example,

an icon might not be aligned with its sibling elements, or an image might

look weird because it’s stretched (its width and height are not proportional to

each other). In some cases, what you view as a bug might actually be what is

expected. It could be a feature request, or someone has done it on purpose. For

this reason, it’s worth checking and asking the person about the bug in detail.

Browsers Are Different

Web browsers are di`erent, and not all browsers support everything in CSS.

In the course of your work, you might encounter something that looks like a

bug in browser X, whereas in browser Y, it works perfectly.]at doesn’t mean

that browser X is rendering it incorrectly. Sometimes, an issue occurs because

a browser vendor has implemented a feature according to the speci^cation,

whereas it works in another browser because that vendor didn’t implement it

incorrectly.

How to Fix a CSS Bug

Let’s walk through the basic steps of what to do when you ^nd a CSS bug or

someone on your team points out something that is broken on a page you’ve

worked on.

Check the CSS

First, check the CSS that is being used. Are you using some cutting-edge

2. Introduction to CSS Bugs

12 Debugging CSS

property that is supported only in modern browsers? Or is it something old

that would be expected to work in the browser showing the bug?

Is it working in the browser you’re building with? Or perhaps someone else

built the website, and you don’t know whether it works? Well, you’ll need to

check whether the issue is reproducible in your browser.

Check Browser Support

Go to Can I Use and check for browser support of the CSS property. If you see

that the property is not supported in the browser where the bug appears or

that the property is supported only with a vendor pre^x, then that might be

your answer. Make sure that vendor pre^xes are added (if any) and that the

browser you are testing supports the CSS property.

Use the Browser’s Developer Tools

Once you establish that the CSS property can be expected to work in the

browser that is showing the bug, then it’s time to dig into the browser’s

developer tools (DevTools). Before inspecting the element, you will need to

determine what type of issue it is. For example:

• Is it a visual issue, such as a misaligned icon?

• Is it happening within a distinct section or across pages? (]e issue could

be related to the CSS layout.)

In the next section, we will dig into the details of the types of CSS issues we

^nd and how to debug them using the browser’s DevTools.

2. Introduction to CSS Bugs

Debugging CSS 13

https://caniuse.com/

CSS Bug Types

Categorizing bugs by type is helpful. For example, is the issue design-related or

related to a syntax error? In this chapter, we will go through each type, along

with a basic example.

Visual Design Bug Types

When you implement a design in HTML and CSS, any obvious inconsistencies

between the design and the code can be considered bugs. For instance, have

you ever noticed an icon misaligned with its text label, or that the page

container is either wider or narrower than the one the proposed in the design?

All of these can be considered visual design issues that the developer did

unintentionally.

]e designer might not know CSS, in which case they would probably take

screenshots of the issues and send them back to the developer with notes.

If the developer has a design background, then they might be able to easily

notice those inconsistencies reported by the designer.

Consider the following ^gure:

2. Introduction to CSS Bugs

14 Debugging CSS

In the navigation design shown above, the ^rst one is the original design,

and the second one is the code implementation.]e developer put e`ort into

implementing it, but it’s still far from the original design, for a couple of

reasons:

•]e height is shorter.

•]e font size is smaller.

•]e border radius is less.

•]e border color is di`erent.

•]e shadow is too light.

We’ve already spotted ^ve ways in which the implementation is not similar to

the design. On a larger scale, a lot of components and sections will need to be

crafted carefully to make the implementation look similar to the design. Not

all developers notice these design details.

Moreover, issues with visual design include anything that poses an obstacle to

the user without being an actual bug. Some examples are an inaccessible color,

a confusing organization of content, a misaligned button, text that makes the

layout look weird, and inconsistent behavior between website pages. All of

these lead to visual design issues and, by extension, accessibility issues.

2. Introduction to CSS Bugs

Debugging CSS 15

Technical Bug Types

Not all issues are noticeable just by looking at a web page. Sometimes you’re

dealing with a syntax error or an incorrect value for a CSS property. Let’s

explore the causes of technical issues.

Calling an Incorrect File Path

Many a developer have spent hours trying to ^gure out why some CSS is not

working at all, only to realize that the cause is an incorrect path for a CSS ^le.

It could happen because you’re using a CSS preprocessor such as Sass or LESS,

which will render a .css ^le. Sometimes, the rendered ^le’s name is di`erent

from the source’s. Always be sure that the linked CSS ^le is the correct one,

especially if you have multiple CSS ^les.

Misnaming a Property

When you make a typo in a CSS property’s name, the browser won’t tell you

that directly. CSS doesn’t throw an error when something is wrong. You need

to ^gure it out by using the browser’s DevTools. If you inspect the element,

the browser will show the invalid property with a warning triangle and a strike

through the name.

I remember working on a simple demo for an article, and I scratched my head

trying to ^gure out why something wasn’t working? It turned out that I had a

typo when declaring the opacity property.

.element {
opaciy: 0.5;

}

2. Introduction to CSS Bugs

16 Debugging CSS

]e reason I didn’t notice this trivial mistake is that I was so distracted and

didn’t think quietly about the reason for the bug. Most code editors will warn

you when a property name is mistyped. Here is an example from Visual Studio

Code:

Using an Invalid Value for a Property

Similar to the last issue, this one happens when you give an invalid value to

a CSS property.]e value could be a typo or one that doesn’t work with the

given property. Consider the following example:

.element {
opacity: 50;

}

]e opacity property accepts values from 0 to 1.]e author here wants 50%

opacity but expresses it as a percentage while forgetting the percentage sign.

]e browser would ignore this opacity property.

Using a Property That Depends on Another

Not all properties work on their own. A property might depend on a certain

rule, applied either to the element itself or to a parent or child. Consider this:

2. Introduction to CSS Bugs

Debugging CSS 17

.element {
z-index: 1;

}

]e z-index property won’t work, because it needs a position value other

than static .]e browser wouldn’t mark this as invalid, and you’d need to

guess why it doesn’t work.

Let’s consider when a rule must be applied to a parent or child:

.child {
position: absolute;

}

We want the child element to be positioned absolutely to its parent. However,

the parent doesn’t have position: relative .]is will cause the child to be

positioned according to the closest parent that is relatively positioned or to

the body element.

Overriding One Property With Another

Sometimes there is no typo or mistake, but you are overriding one property

with another. It’s just how CSS works, but some developers might think a bug

occurred. For example, CSS’ minimum and maximum sizing properties can be

confusing.

.element {
width: 100px;
min-width: 50%;
max-width: 100%;

}

2. Introduction to CSS Bugs

18 Debugging CSS

Here, the width of the element would be 50% of its parent. If you haven’t read

the CSS speci^cation carefully, you might think this is an issue, but it’s not.

Duplicating a Property

Sometimes you’ll declare a property, and for some reason it doesn’t have an

e`ect on the element. You keep trying and testing with no result. Eventually,

you realize that the property is duplicated, and you’re editing the ^rst

declaration of it, which is being overridden by the second one.

.element {
display: block;
width: 50%;
opacity: 1;
border: 1px solid #ccc;
opacity: 0;

}

]e opacity property is de^ned twice here.]is is a mistake, and it can

happen for various reasons:

• Maybe you copied some styles to test them quickly and forgot to remove

the duplicate.

• It could simply mean that you’re tired and need to take a break.

Whatever the reason is, it’s a bug.

Incorrectly Typing a Class Name

Your CSS could be 100% correct and valid, but one typo in a class name could

lead to styles not being applied to the element. As simple as this is, when we

are working for eight hours a day, we tend to focus on big problems and might

2. Introduction to CSS Bugs

Debugging CSS 19

overlook such a small mistake.

Neglecting the Cascade

CSS stands for Cascading Style Sheets. As indicated by the name, a website’s

styles cascade, and their order matters. If you de^ne a CSS rule for an element

and then rede^ne it at the end of the CSS ^le, the latter will override the

former.

.element { color: #000; }
/* 500 lines later… */
.element { color: #222; }

]is is a very simple example of what can happen. You might face a trickier

issue than this. Consider an element that should switch colors on mobile and

desktop:

@media (min-width: 500px) {
.element {
background: #ccc;

}
}

.element {
background: #000;

}

]e background color of .element would be #000 because it comes after (and,

thus, overrides) the rule in the media query.

2. Introduction to CSS Bugs

20 Debugging CSS

Forgetting to Bust the Cache

CSS caching happens on the server, not on the local machine. A common

problem is pushing an update, and when you refresh the web page, the CSS

updates don’t appear. In this case, the CSS ^le might be cached, and you’ll need

to clear the browser’s cache or rename the ^le after each push.

]ere are multiple solutions to this problem, the simplest being to add a query

string:

<link rel="stylesheet" href="app.css?v=1.0.0">

And when you make a change, you would also change the version:

<link rel="stylesheet" href="app.css?v=1.0.1">

]en, the browser would download the latest CSS ^le. For more information,

CSS-Tricks has a great article.

Neglecting Performance

Using the wrong property for the job can easily impair performance. For

example, when animating an element from left to right, the left property is

a performance killer, because it forces the browser to repaint the layout with

each pixel moved.

.element:hover {
left: 100px;

}

2. Introduction to CSS Bugs

Debugging CSS 21

https://css-tricks.com/strategies-for-cache-busting-css/

A better solution would be to use the CSS transform property. It won’t a`ect

performance, and everything will run smoothly. A simple choice of property

can signi^cantly improve performance!

.element:hover {
transform: translateX(100px);

}

Ignoring Specificity

If a CSS rule is not working as expected, the reason could be that its speci^city

is higher than another’s.

.title {
color: #222;

}

.card .title {
color: #000;

}

]e speci^city of .card .title is higher than that of .title . As a result,

the former would be overridden. To ^x this, we can add a variant class to the

element, and apply the new color to that.

.card-title {
color: #000;

}

Another possibility is using !important . Avoid using this in general because it

makes maintaining CSS at scale much harder. Use it judiciously and only when

needed.

2. Introduction to CSS Bugs

22 Debugging CSS

The Debugging Process

As we’ve seen, there are many categories of CSS issues. Some are visual, and

others non-visual. Now that we’ve ^nished listing the common types, the next

step is to ^gure out how to debug, using the various tools and techniques at

our disposal.

Getting Browser Information From Non-Technical People

Suppose that a user reports an issue on your website. As the front-end

developer, you’ve checked your own browser, and everything is OK. So, the

issue is appearing only in the user’s browser. In such a case, what’s the best

way to ask a non-technical person for more details? Here are the steps you

would normally take:

1. Ask for the browser’s name.

2. Ask for the browser version, and explain how the user can get it (for

example, “Click on the settings icon, then on ‘About’, and copy the

number at the bottom).

3. Ask for a full-page screenshot. If the user does not know how to do that,

recommend to them a browser extension that is easy to use.

A great tool for retrieving browser information is mybrowser.fyi by Andy Bell.

]e great part is that the user can share an auto-generated link of their

browser’s information.]e following ^gure shows the visual result:

2. Introduction to CSS Bugs

Debugging CSS 23

https://mybrowser.fyi/

Once you have the browser’s name and version and gotten a visual of the issue,

you can start to debug. If you don’t have the browser that you need to debug

on, then you can either install it on your machine or use an online service,

such as BrowserStack.

Debugging Techniques

When it comes to testing a web page in order to debug CSS, there are a lot of

techniques and tools we can use, the most common being these:

• browser’s DevTools;

• mobile devices;

• mobile emulators (such as an iOS simulator);

• virtual machines (such as VirtualBox);

• online services (such as BrowserStack and CrossBrowserTesting).

2. Introduction to CSS Bugs

24 Debugging CSS

Wrapping Up

In this chapter, we’ve de^ned what a bug is, gone over the di`erent types of

CSS bugs, and summarized the debugging process. In the next chapter, we’ll

dig into the browser’s DevTools and learn how to leverage them when ^xing

CSS issues.

2. Introduction to CSS Bugs

Debugging CSS 25

Every modern web browser has development tools, or DevTools, built in. In

the history section, I explained a bit about the tools Style Master and Firebug.

Browser DevTools are based on these projects. To open yours, right-click and

select “Inspect element” from the menu. If you’re a keyboard person, here are

the shortcuts for each browser:

• Chrome: ⌥ + ⌘ + I on a Mac, and Ctrl + Shift + I on Windows

• Firefox: ⌥ + ⌘ + C on a Mac, and Ctrl + Shift + I on Windows

• Safari: ⌥ + ⌘ + I

• Edge: ⌥ + ⌘ + I on a Mac, and Ctrl + Shift + I on Windows

I will be using Google Chrome in this book, unless I mention another web

browser.

You can inspect any element and toggle its CSS properties. To select an

element, right-click and choose “Inspect” from the menu.

When you select “Inspect”, the browser’s DevTools will open at the bottom of

the screen.]at’s the default position for it. You can pin it to the right or left

side of the screen by clicking on the dots icon in the top right.

3. Debugging Environments and Tools

Debugging CSS 27

With the dots clicked, a little dropdown menu will open. You can choose where

to pin the DevTools.]ere is no right place; choose based on your preference.

However, you will need to dock it to the right when you are testing at mobile

and tablet sizes.]is is how it looks:

Toggling a CSS Declaration

We’ve opened the DevTools and know how to access them. Let’s inspect an

3. Debugging Environments and Tools

28 Debugging CSS

element and play with its CSS at a basic level. With an element inspected, we

can toggle its styles with a checkbox (the checkbox is not visible by default).

With an element inspected, look over at the “Styles” tab. You’ll notice that

when you hover over a CSS property, a checkbox appears before the CSS

declaration. When this box is unchecked, the style will be disabled and won’t

be applied to the element.

When you toggle a style o`, the checkbox will be visible, to give you a visual

hint that it is disabled.

3. Debugging Environments and Tools

Debugging CSS 29

Turning a CSS declaration on and o` is similar to commenting CSS. In fact, if

you copy a CSS rule with one of its styles toggled o` and paste it somewhere,

the editor will disable the style by commenting it out with /* */ . Here is how

the CSS will look when copied:

.menu {
/* display: block; */

}

Using the Keyboard to Increment and Decrement
Values

In the “Elements” panel, you can select a CSS declaration that has a number,

and increment or decrement the value by using the up and down arrow keys.

You can also type a value manually.

You can also hold the Shift , Command , or Alt keys with the up and down

arrow keys to change numbers with set intervals:

3. Debugging Environments and Tools

30 Debugging CSS

• Shift + up/down: ±10

• Command + up/down: ±100

• Alt + up/down: ±0.1

]is is faster than changing one number at a time with the up and down

arrows.

When you change a value and want to exit editing mode, you can do one of the

following:

• Click on white space next to the CSS declaration.

• Press the Escape key.

• Press the Enter key (although this will move to the next declaration in

the CSS rule).

CSS Errors

Given the nature of CSS, debugging is harder when a typo is made or an

incorrect value is used for a property. You won’t know that a property has a

mistyped name until you inspect the element that is showing the bug.]e way

CSS works is that the browser will parse all declarations and ignore the invalid

ones. Compare this to JavaScript, in which an error will break the whole script,

and opening the browser’s console will make it obvious that something is

wrong.

]ankfully, Firefox has a great feature that shows a warning when you use a

CSS property that has no e`ect. At the time of writing, this feature is available

only in Firefox.

3. Debugging Environments and Tools

Debugging CSS 31

Hopefully, more browsers will follow!

DevTools Mobile Mode

With the browser’s DevTools, you can test di`erent viewport sizes of the

website you’re working on. In this section, we will look at mobile testing topics

related to modern browsers (Chrome, Firefox, Safari, Edge).

Suppose you get a message from a client or colleague saying, “Hey, the font

size on page X is too small to read on mobile. Can we do something about it?”

From their message, we can determine that:

• the font size is too small to read,

• we need to test in a mobile viewport.

]e ^rst thing we’ll need to do is ^re up the DevTools in the browser, and

switch to the device toolbar (in Chrome). You can access the device toolbar by

clicking on the mobile icon in the top-left corner of the DevTools or by using

the keyboard shortcut (Command + Shift + M). From there, we can start testing

di`erent sizes and, eventually, ^nd the source of the issue.

3. Debugging Environments and Tools

32 Debugging CSS

Other browsers, such as Firefox and Safari, have a device mode but call it

“responsive design mode”. Here is how to access it:

• Firefox: Tools > Web Developer > Responsive Design Mode

• Safari: Develop > Enter Responsive Design Mode

Let’s go over some things to keep in mind while testing.

Mobile Mode Doesn’t Show a Horizontal Scrollbar

If an element has a width bigger than the viewport, then horizontal scrolling

will take e`ect. Try to scroll randomly to the left or right.]is can reveal any

unwanted scrolling issues. Note:]is book has a whole chapter on how to

break a layout.

3. Debugging Environments and Tools

Debugging CSS 33

Scroll Into View

While testing a website in mobile mode, the page will usually be very long,

and it wouldn’t be practical to have to keep scrolling to reach the element

you want to inspect. Luckily, Chrome has a feature named “Scroll Into View”,

which scrolls the page to the section you’ve selected.

Screenshotting Design Elements

]ere will be times when you need to take a screenshot of a page.]e tools

available online are not all great. Chrome and Firefox have a feature to take

screenshots. I particularly like Firefox’s feature, named “Screenshot Node”,

which simply takes a screenshot of the selected HTML element. It’s very

helpful and a time-saver.

For Chromium-based browsers (Chrome and Edge), the process is:

1. select the element;

2. hit Shift + Command + P (make sure no browser extension uses this

command);

3. Debugging Environments and Tools

34 Debugging CSS

3. Type “capture node screenshot” and hit “Enter”.

At the time of writing, Chrome Canary 86 supports “capture node screenshot”

in the inspector. It will be soon available oacially in Chrome.

To take a screenshot in Firefox:

1. open Firefox’s DevTools,

2. right-click on an element,

3. select “Screenshot Node”.

Device Pixel Ratio

]e device pixel ratio (DPR) is the ratio between physical pixels and logical

pixels. For example, the iPhone 5 reports a DPR of 2, because the physical

resolution is double the logical resolution.

• Physical resolution: 960 × 640

• Logical resolution: 480 × 320

In mobile mode in Chrome’s DevTools, you will ^nd a dropdown menu for the

DPR.]ere are two basic types of screens: standard and “retina”. A 1x image

will look OK on a standard screen but will look pixelated on a retina screen.

]e DPR has three ratios: 1x , 2x , and 3x . Chrome names it as “device pixel

ratio”, while Firefox and Safari list the ratios mentioned.]e bene^t here is

that we can test images and simulate how they look at di`erent resolutions.

As Google Developers states:

To simulate this e`ect on a standard display, set the DPR to 2 and scale

3. Debugging Environments and Tools

Debugging CSS 35

https://developers.google.com/web/tools/chrome-devtools/device-mode/emulate-mobile-viewports%23device_pixel_ratio_dpr

the viewport by zooming. A 2x asset will continue to look sharp, while a

1x one will look pixelated.

If you have a standard screen and a 1x image looks good to you, it’s possible

to simulate how it would look on a 2x screen by setting the DPR to 2 or by

choosing 2x as an option and then zooming in once.

In general, use SVG wherever possible.]is can’t always be done, so if you use

images, provide di`erent resolutions for them. For example, you can use the

HTML <picture> element to load di`erent resolutions and sizes of the same

image.]e browser will then serve a resolution suitable to the screen’s size.

Switching the User Agent

According to Mozilla Developer Network (MDN):

]e User-Agent request header is a characteristic string that lets servers

and network peers identify the application, operating system, vendor,

and/or version of the requesting user agent.

]e user agent enables the server to identify the browser that the visitor is

3. Debugging Environments and Tools

36 Debugging CSS

using. Each browser has its own user agent.

Each browser also allows you to test di`erent user agents. If you’re on

Windows and using Chrome, you can switch the browser to “Safari on macOS”.

]e web server will identify the user agent you’re browsing with.

To debug and check the user agent of your current browser, open the DevTools’

console and type the following:

console.log(navigator);

I’m using Chrome on macOS.]e log shows this string:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_2) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/80.0.3987.163 Safari/537.36

Why debug this at all? Well, there are some important use cases. Consider this

^gure:

We have a download button for an application, which should change according

to the user’s operating system.

Another use case is a browser extension that is available in both Chrome and

Firefox browsers:

3. Debugging Environments and Tools

Debugging CSS 37

]e process of changing the user agent will depend on the browser you’re

using:

• Chrome: Network Conditions > Uncheck “Select Automatically” > select

the user agent

• Safari: Develop > User Agent

• Firefox: I’ve found it’s a bit complex, so I recommend using an extension

instead.

Debugging Media Queries

Media queries are the foundation of responsive web design. Without them, the

web wouldn’t look as it does today. To debug media queries, we need the power

of the DevTools.

First, inspect the CSS you’re debugging (in case you didn’t write it). Does the

code use min-width media queries more than max-width ? Do you see any

max-width media queries at all?]is matters because of mobile-^rst design,

which you’ve probably heard of. It entails writing CSS for small screens ^rst,

and then enhancing the experience for bigger screens such as tablets and

desktop devices.

3. Debugging Environments and Tools

38 Debugging CSS

Here, we have a navigation toggle, shown by default on small screens. When

the viewport is large enough to display the navigation items, the toggle

disappears.

.nav__toggle {
/* Shown by default */

}

.nav__menu {
/* Hidden for mobile */
visibility: hidden;
opacity: 0;

}

@media (min-width: 900px) {
.nav__toggle {

display: none;
}

.nav__menu {
visibility: visible;
opacity: 1;

}
}

However, if this wasn’t built mobile-^rst, then the menu toggle would be

hidden by default and shown via a max-width media query:

3. Debugging Environments and Tools

Debugging CSS 39

.nav__toggle {
display: none;

}

@media (max-width: 900px) {
.nav__toggle {

display: block;
}

.nav__menu {
visibility: hidden;
opacity: 0;

}
}

When debugging a project, you need to get your hands dirty with such details

to know what you’re dealing with.]is will help you to ^x issues more quickly

and reduce unwanted side e`ects.

To view a media query in Chrome’s DevTools, you need to select the element

that is being a`ected by it:

3. Debugging Environments and Tools

40 Debugging CSS

Notice that when we select an element, we see the media query for it.]e

handy thing is that we can edit the media query and test right in the DevTools.

]e ^gure above shows a normal case, without any issue. Let’s explore the

most common bugs related to media queries.

Don’t Forget the Meta Viewport Tag

]e viewport meta tag tells the browsers, “Hey, please take into consideration

that this website should be responsive?” Add the following to the HTML’s

head element:

<meta name="viewport" content="width=device-width, initial-scale=1">

3. Debugging Environments and Tools

Debugging CSS 41

The Order of Media Queries Matters

Consistent ordering of media queries is important.

@media (min-width: 500px) {
.nav__toggle {
display: none;

}
}

.nav__toggle {
display: block;

}

Can you guess whether the .nav__toggle element will be visible in viewports

wider than 500 pixels?]e answer is yes, because the second declaration of

.nav__toggle overrides the one in the media query.

3. Debugging Environments and Tools

42 Debugging CSS

]e DevTools will show something similar to the ^gure above.]e style in

the media query would be struck through, meaning it’s been canceled or

overridden.]e solution, then, is to order them correctly:

.nav__toggle {
display: block;

}

@media (min-width: 500px) {
.nav__toggle {
display: none;

}
}

What If a Media Query Doesn’t Work?

When someone is reporting a bug, saying that a media query is not working is

not enough. However, we can check whether a media query is working with a

simple test. Suppose we have this:

@media (min-width: 500px) {
.element {

background: #000;
}

}

To test the media query, we can add a background color to the body :

@media (min-width: 500px) {
body {

background: red;
}

}

3. Debugging Environments and Tools

Debugging CSS 43

Still not working?]en check whether:

• the cached CSS is cleared,

• the CSS ^le is linked to correctly,

• the media query doesn’t have a typo and is not missing the closing brace.

Avoid Double-Breakpoint Media Queries

A common mistake is to use the same value in two media queries, one with

a min-width and the other with a max-width .]is typically happens with

mobile navigation.

@media (max-width: 500px) {
.nav {
display: none;

}
}

@media (min-width: 500px) {
.nav__toggle {
display: none;

}
}

At a glance, these media queries might look good to you. However, 99% of

the time, you’ll forget to test an important breakpoint: 500px , that 1-pixel gap

between the two breakpoints. At this breakpoint, neither the navigation nor

the toggle would be visible.

3. Debugging Environments and Tools

44 Debugging CSS

]is 1 pixel is hard to debug without manually entering a value for a 500px

media query in mobile mode. To prevent this issue, avoid using the same value

in two media queries.

@media (max-width: 499px) {
.nav {
display: none;

}
}

@media (min-width: 500px) {
.nav__toggle {
display: none;

}
}

3. Debugging Environments and Tools

Debugging CSS 45

List Media Queries

In Chrome, you can view a page according to the media queries de^ned in the

CSS, rather than according to the list of devices available in the browser.

As you can see, we have two bars, the blue bar for min-width queries, and the

orange for max-width queries. Having a broader view of all media queries is

useful for testing multiple query sizes. Conveniently, we can reveal a media

query in the source code. Right-click on a media query, select “Reveal in source

code”, and you’ll be taken to the line of code for that media query.

Vertical Media Queries Are Important

A common mistake with responsive web design is to test only by resizing the

browser’s width or by viewing multiple mobile sizes. However, decreasing and

increasing the height of the viewport are equally important.

Just as we have media queries tailored to the width of the viewport, the same

thing applies to height as well. Consider the following example:

3. Debugging Environments and Tools

46 Debugging CSS

After reducing the viewport’s height, we ^nd that the ^xed header is taking up

a lot of the screen’s vertical space. Notice how small the area available for the

content is. Users will be annoyed and won’t be able to easily use the website. A

simple solution would be to ^x the header only when there is enough vertical

space.

/* If the height is 800 pixel or more, the header should be fixed. */
@media (min-height: 800px) {

.header {
position: fixed;
/* Other styles */

}
}

Don’t Depend on Browser Resizing Alone

Resizing the browser to test responsiveness is not enough. For instance,

Chrome’s window narrows to a width of 500 pixels.]is is not enough. You’ll

need to test below that (320 pixels, at least). Instead, test the website in the

DevTools’ device mode.

Box Model

If we remember anything about the box model, it should be that every element

3. Debugging Environments and Tools

Debugging CSS 47

on a web page is a rectangular box containing one or more of the following:

position, margin, border, padding, and content.

If padding and a border are applied to an element, they will be added to

its content box, unless the box-sizing property for that element is set to

border-box . Make this change to avoid any issues.

html {
box-sizing: border-box;

}

*, *::before, *::after {
box-sizing: inherit;

}

I inspected a website’s logo to see its box model. Notice that you need to open

the “Computed” tab to see the box model. All boxes are labeled, except the one

3. Debugging Environments and Tools

48 Debugging CSS

for width and height. When debugging an element, looking at the box model

is extremely useful because it will show you all of the inner and outer spacings

of an element.

Sometimes, we might build a web page without a CSS reset ^le, and we’ll

wonder why some elements have certain spacing. Looking at the box model is

the best way to get an idea of what’s happening.

Everything in CSS Is a Box

Every single element on a web page is a square or a rectangle. Even if an

element appears as a circle or has rounded edges, it is still a rectangular box.

When debugging, keep that in mind.

]e simplest way to see this for yourself is by going to your favorite website

and applying the outline property to everything:

3. Debugging Environments and Tools

Debugging CSS 49

*, *:before, *:after {
outline: solid 1px;

}

We’ve tagged every element on the page, including pseudo-elements (:before

and :after).]is way, we can see that the page is essentially some rectangles

painted here and there.

Computed CSS Values

In CSS, everything computes to a pixel value, regardless of whether you’re

using rem , em , % , or viewport units. Even the unit-less line-height

property computes to a pixel value. In some cases, it’s important to see the

computed value of an element.

.element {
width: 50%;

}

]e width of .element is 50% , but how do we see its computed value? Well,

thanks to the DevTools, we can do that. Let’s dig into the “Computed” tab.

3. Debugging Environments and Tools

50 Debugging CSS

You’ll see that numbers have been assigned to various parts, to make it easier

to explain this area of the DevTools.

1.]is is the property’s name. Usually, it’s colored di`erently from the value.

2.]is is the value of the CSS property.

3. We can expand a property to see its inherited styles.]is element has

font-size: 1.125rem , and it inherits a 1em font size from the html

element.

4.]is is the pre-computed value, along with the element that the value is

attached to.

5.]is is the name of the CSS ^le, and the line number of the CSS rule.

6. When hovering over the value of a property, an arrow will appear. Clicking

on it will take you to the source CSS ^le and the line number.

7.]is ^lter helps with searching for a property. Note that you can only

search by a property’s longhand name. For example, searching for grid-

3. Debugging Environments and Tools

Debugging CSS 51

gap won’t show anything, whereas searching for grid-column-gap would

return a result.

8. By default, not all CSS properties are shown in the “Computed” tab. You

will need to check this box to see them all.

Grayed-Out Properties

You will notice that elements without an explicit height set might have a

grayed-out height property.

.nav__item a {
padding: 1rem 2rem;

}

]e <a> element doesn’t have a height set, but in reality, its height is the sum

of the content and padding, which is an alternative to an explicit height.

]is doesn’t happen only for padding.]e example below has two elements,

one of which is empty.

3. Debugging Environments and Tools

52 Debugging CSS

<div class="wrapper">
<div class="element">content</div>
<div class="element"></div>

</div>

.wrapper {
display: flex;

}

.element {
width: 100px;
padding: 1rem;

}

Flexbox stretches child items by default. As a result, the height of the items

will be equal, even the empty one. If you inspect that element and check the

computed value of its height property, you will notice that it’s grayed out.

Tip: A property that is grayed out means that its value hasn’t been set

explicitly. Rather, it’s being a`ected by other things, such as the element’s

content or padding or by being a _exbox child.

3. Debugging Environments and Tools

Debugging CSS 53

Firefox’s Style Editor

]e style editor in Mozilla’s Firefox browser is a kind of a design app in the

browser. Here are some of the great things you can do with it:

1. Create new style sheets and append them to the document.

2. Import a CSS ^le.

3. List all of the CSS ^les for a document, with the ability to activate and

deactivate them by clicking an eye icon (similar to showing and hiding

layers in a design app).

4. Save a ^le from the list.

5. List all media queries in the selected CSS ^le.]e active one will be

highlighted in a dark color, and the inactive ones will be dimmed. You can

jump to the part of the code has the media query.

6. Click a media query.

What I particularly like about this is that you can hide all of the CSS ^les,

which is the equivalent of disabling CSS.

Also, being able to import a CSS ^le into a page is useful, opening up a lot of

possibilities. Imagine that you’re working on a layout for a web page and want

to change a few things here and there but without losing your work. You can

3. Debugging Environments and Tools

54 Debugging CSS

import a new CSS ^le, copy the current CSS to it, and then edit it as much as

you want. When you’re done, you can switch between the old and new CSS to

see the completely di`erent layouts.

CSS Properties That Don’t Have an Effect

Some CSS properties have dependencies. Take the following:

.element {
z-index: 1;

}

If you haven’t changed the position of the element to anything other than

static , then it won’t a`ect the element at all. It’s not easy to spot these issues

while debugging because they don’t break the layout.]ey are silent.

Firefox has a very useful feature for this, showing a warning when a CSS

property doesn’t a`ect the element it’s being applied to.

]is is very helpful and, at the time of writing, available only in Firefox.

3. Debugging Environments and Tools

Debugging CSS 55

Compatibility Support in Firefox

While inspecting an element’s CSS, you can see the browsers that support a

particular feature, along with the browser versions. You can view details by

hovering over one of them. I like this feature a lot because it gives you hints

on which browsers to test more carefully.

Getting the Computed Value While Resizing the
Browser

It’s not enough to look at the computed value of an element. What’s more

useful is to ^lter a speci^c property that you need to check, and then resize

the responsive view wrapper to see the value change.

.title {
font-size: calc(14px + 2vw);

}

Here, we have a title with a base 14px font size plus 2vw (2% of the

3. Debugging Environments and Tools

56 Debugging CSS

viewport’s width). Here is an explainer:

I searched for font-size and then started to resize the view on the left.]is

is a very helpful way to keep yourself aligned with what’s happening in the

background.

Getting the Computed Value With JavaScript

By using JavaScript’s getComputedStyle method, it’s possible to get the value

of a speci^c property. Consider the following example:

.element {
font-size: 1.5rem;

}

We’ve set the font size using the rem unit. To get the computed pixel value,

we would do this.

let elem = document.querySelector('.element'); /* [1] */
const style = getComputedStyle(elem); /* [2] */
const fontSize = style.fontSize; /* [3] */

3. Debugging Environments and Tools

Debugging CSS 57

Here is what the code is doing:

1. It selects the element.

2. It stores the element’s style in the style variable.

3. Now that the style variable is an object, holding all of the element’s

style, we can get the computed value of the property.

Cool! What if the property we want to check has a viewport- or percentage-

based value (for example, font-size: calc(14px + 2vw))?]e value of that

font size would change with every viewport resize.

let elem = document.querySelector('h1');

window.addEventListener('resize', checkOnResize);

function checkOnResize() {
const style = getComputedStyle(elem);
console.log(style.fontSize);

}

checkOnResize();

As you can see, this is the same concept, but with a resize event used this

time.]is can be very useful for tracking things, and you can even render the

value on the page itself:

3. Debugging Environments and Tools

58 Debugging CSS

Reordering HTML Elements

In Chrome’s DevTools, you can click and drag an element to reorder it.]is can

be useful for changing the structure of an entire page or component. Once it’s

reordered, we can start testing various things, such as:

• the _exbox order property,

• the adjacent-sibling combinator (.item + .item),

• an element with margin-bottom or margin-top .

Let’s dig in more and learn how reordering works.

1. Open up the DevTools.

2. Select the element you want to reorder.

3. Click and drag the element wherever you want.

3. Debugging Environments and Tools

Debugging CSS 59

]is is how you would drag a section element along with its sibling:

We can also reorder child items. Suppose each section has a title and

description. We can reorder them inside their parent.

3. Debugging Environments and Tools

60 Debugging CSS

A child element can be dragged in multiple ways:

• inside its parent (this will just reorder it at the same level),

• between other parent elements,

• inside another parent element.

3. Debugging Environments and Tools

Debugging CSS 61

Editing Elements in the DevTools

]ere are multiple ways to edit an HTML element in the DevTools.]ey’re very

useful in cases where you want to add a class or attribute or maybe delete the

whole element. Here are the ways to do it:

• add or delete a CSS class,

• change the element type (for example, <div> to <h2>),

• add or remove an attribute,

• delete the element.

CSS Classes

To add, edit, or remove a CSS class, you could double-click the class name of

3. Debugging Environments and Tools

62 Debugging CSS

the element, and it will become editable. But this is the less recommended

way to do it.]e better way is to select the element, and then click the .cls

label with the DevTools opened. Being clicked, it will show all of the classes

associated with the selected element, and we can add or remove them by

checking and unchecking the boxes.

Utility-Based CSS Websites

If the website you’re working on was built with utility-based CSS, debugging

its CSS in the browser would be di`erent than debugging a website with

regular class names.

Here is an element with a class name:

3. Debugging Environments and Tools

Debugging CSS 63

<div class="card"></div>

And here is the same element with utility-based CSS:

<div class="d-flex flex-column p-2 b-2 rounded hidden"></div>

When the whole website is built with utility classes, debugging will be a little

di`erent. Let’s say we want to inspect an element and remove display: flex

by unchecking the box in the DevTools. If we do this, any element that uses

the d-flex class will break.]e reason, of course, is that we’ve removed the

display property from all of those other elements.

Using the .cls option would be better because it will list all of the CSS classes

for that element:

Another option would be to add inline CSS styles, which would override the

3. Debugging Environments and Tools

64 Debugging CSS

ones added in the CSS ^les. Or you could double-click on the element’s class

attribute and manually remove the class that you don’t want.

Changing an Element’s Type

Say you have a div element but want to change its type without leaving the

DevTools. Well, this is possible. To change it, double-click the element type

and then edit the opening tag.

Note:]ere is no needed to edit the closing tag.]e DevTools will do that

automatically.

Adding or Removing an Attribute

When you need to add an attribute, select the element, right-click, and select

“Add Attribute”. It’s that easy. Note that you can also add it by double-clicking

on the element itself.

3. Debugging Environments and Tools

Debugging CSS 65

Deleting an Element

To delete an element, hit the Function + Backspace keys.]is will work in all

browsers and on all platforms. If you are using Chrome, hit the Backspace key

only.]e mouse is an alternative: Right-click the selected element, and choose

“Delete” from the list.

Keyboard Goodness

Some keyboard shortcuts are very useful and increase productivity:

3. Debugging Environments and Tools

66 Debugging CSS

• Navigate between elements with the up and down arrow keys.

• Hit the right arrow key to expand an element and the left arrow key to

collapse it.

• When an element is selected, hit Enter to edit the CSS class name.

The H Key

]e fastest way to hide an element in the DevTools is by hitting the H key,

which will add visibility: hidden to the element.]e space taken up by the

element will be preserved.

What’s the bene^t of hiding an element in this way? Here are a couple of uses:

• If you have a child of an element that doesn’t appear as expected, we can

use H to investigate it.

• If you need to screenshot an element or section, and you don’t want all

of its details to be in the image, simply use H to hide the unwanted

elements.

Forcing an Element’s State

In CSS, an element can take one of four states (pseudo-classes): :visited ,

:focus , :hover , :active .]ankfully, we can debug all of them using the

DevTools.

Before digging into how to debug them, let’s review the pseudo-classes.

• :visited is the state when a link is clicked. When a user revisits a web

page, that link should have a di`erent state, so that the user can tell

3. Debugging Environments and Tools

Debugging CSS 67

they’ve visited it.

• :focus is the state that shows up when the user navigates the page by

keyboard. A button or link should take a style that clearly indicates it is in

focus.

• :hover is the state when an element is hovered over by the mouse.

• :active is the state when an element is being pressed from a click by the

mouse.

In CSS, the order of pseudo-classes matters. It should be as follows:

a:visited {
color: pink;

}

a:focus {
outline: solid 1px dotted;

}

a:hover {
background: grey;

}

a:active {
background: darkgrey;

}

If this order is not followed, some styles will get overridden. Order the styles

correctly to avoid issues.

Let’s get to the interesting part. How do we debug these pseudo-classes in the

DevTools? Well, there are two ways.

3. Debugging Environments and Tools

68 Debugging CSS

Select an Element

Right-click an element or click on the dots icon on the left, and then choose

“Force State”. From the options list, choose the state you want to activate. See

the ^gure below:

Checking the box adds a blue dot to the element on the left side.]is visual

indicator shows that the element has a forced state.

Use the Panel

Another way to force an element’s state is by using the DevTools panel.

Clicking on :hov will expand a list with all pseudo-classes. Each one has a

checkbox, which makes it easy to activate or deactivate a state while testing.

3. Debugging Environments and Tools

Debugging CSS 69

Toggle the State of an Element

We can also add a pseudo-class manually:

1. Select an element.

2. Click on the + button in the panel.

3. A new rule will be added in the styles panel. All you need to do now is edit

it and add the pseudo-class you want.

3. Debugging Environments and Tools

70 Debugging CSS

Debug an Element Shown Via JavaScript

In some cases, hovering over an element will add a child to the DOM.

Debugging these elements is tricky.]ey will be hidden in the inspector

because you are not actively hovering over them.

]e question is how to debug a hidden element? Well, there are a couple of

ways.

Is the Element in the HTML?

In this case, the element we want to debug is already in the HTML but hidden

via CSS and only shown once its parent is hovered over. To debug this, the ^rst

thing we need to do is inspect the parent element. What’s the parent, you ask?

]is should clarify:

3. Debugging Environments and Tools

Debugging CSS 71

In this example, we have a dropdown menu that is toggled on hover via

JavaScript. To debug the dropdown itself, we would inspect the “Products”

menu item, and the dropdown element should be inside it. From there, we can

add display: block to the element and start the debugging process.

Is the Element Added to the HTML on Hover?

]is is more challenging. In this case, an element is added to the HTML only

when its parent is hovered over, and it’s removed completely from the HTML

when the user stops hovering. We’ll need help from the DevTools for this. To

debug, we need to freeze the website once the thing we want to debug has

become visible.]e best way to do that is to pause the JavaScript’s execution.

When JavaScript execution is paused, it’s possible to follow the code that

toggles the menu.]is way, we can catch the element once it appears, and

inspect it from there.

One important clue that indicates an element is being added to the DOM on

hover is that its parent element _ashes red.]e _ashing means that this DOM

element is being edited through the addition or removal of a child item or

maybe the modi^cation of attributes.

3. Debugging Environments and Tools

72 Debugging CSS

How do we pause JavaScript execution? Easy:

1. Go to the “Sources” panel.

2. Expand “Event Listener Breakpoints”.

3. Add an event listener to “Keyboard”.

Now, hover over the element that you want to debug. Once you do, press any

key on the keyboard, and you will notice that the application freezes, and the

thing you want to inspect won’t disappear. Feel free to dig in and inspect!

3. Debugging Environments and Tools

Debugging CSS 73

Break JavaScript

In Chrome and Firefox’s DevTools, you can break the execution of JavaScript

with any of the following:

• subtree modi^cation,

• attribute modi^cation,

• node removal.

Let’s get into each one.

Subtree Modification

]is targets child items of the selected parent. If any addition or deletion of

an HTML element happens, this is considered a modi^cation. In this case, the

browser will add a breakpoint.

3. Debugging Environments and Tools

74 Debugging CSS

Attribute Modification

]is watches for any modi^cations to the attributes of the selected element,

such as class names and HTML attributes. For example, a change to a class or

style attribute would cause the browser to add a breakpoint, and a menu would

then be shown via JavaScript.

Node Removal

]is is fairly obvious. Once an element is removed from the HTML, the

JavaScript execution would be paused.

Using the Debugger Keyword

Sometimes, a CSS bug will appear while a certain JavaScript function is

running. For example, you might need to debug the mobile menu once it’s

toggled. In this case, the debugger keyword can be useful.

In the JavaScript for the toggle button, you would add the following:

function showNav() {
debugger;
// Add a breakpoint once this function is called.

}

Once this function is called, the browser will add a breakpoint.]en, you can

start debugging.

Note that if the browser doesn’t support the debugger keyword, this won’t

have an e`ect.

3. Debugging Environments and Tools

Debugging CSS 75

Formatting the Source Code to Be Easier to Read

When you inspect an element and want to check its CSS ^le from the

DevTools, you might ^nd that the ^le has been mini^ed.]is makes it hard

to read.]ankfully, we have the little “Format Code” feature, which quickly

formats the mini^ed code.

Notice the opening and closing braces icon. One click on it and all of the code

will be formatted and easy to read.

3. Debugging Environments and Tools

76 Debugging CSS

Copying an Element’s HTML Along With Its CSS

]e only browser that allows you to copy the CSS styles of an element is

Chrome, even though it isn’t perfect.]e latest version at the time of writing,

Chrome 81, has that feature. Here is how to do it:

1. Right-click on a element.

2. Select “Copy”.

3.]en, select “Copy styles”.]at’s it!

In the ^gure above, notice the di`erence between the original CSS and the

one copied from the browser’s DevTools.]e copied one has inherited styles

such as box-sizing and font-family . Also, weirdly, it copied all of the CSS

properties in the document!

3. Debugging Environments and Tools

Debugging CSS 77

Rendered Fonts

Rendered fonts are the ones currently being used for a web page. To debug

them, inspect any text element, such as a heading or paragraph. At the bottom

of the “Computed” tab, there will be a section named “Rendered Fonts”.]ere,

you can check the font applied to the element.

Also, as mentioned in the “Computed” section, you can search for font-

3. Debugging Environments and Tools

78 Debugging CSS

family and see the computed value of it. In addition, you can expand the

arrow next to it and see the CSS responsible for the addition of the font.

Checking for Unused CSS

One useful feature in Chrome’s DevTools enables you to check for unused CSS.

It’s called “Coverage”. Here is how to use it:

1. Open up the DevTools.

2. Click on the dots icon, and select “More”.

3. Open the “Coverage” panel and hit the reload icon.

Once it’s reloaded, you will see something like the following:

3. Debugging Environments and Tools

Debugging CSS 79

]e code blocks highlighted in red are the ones that are not used on the page,

while the ones in blue are being used. Also, it shows you the percentage of

the used CSS.]at feature is extremely useful for refactoring CSS and checking

whether you have unused styles.

Color-Switching With the DevTools

Chrome’s DevTools provide three types of color systems: hex, RGBa, HSLa.

When you pick a color for an element, it’s usually added as a hex color. What if

you want the RGBa value of that color without having to use a converter tool?

Well, that feature is available in the color inspector.

3. Debugging Environments and Tools

80 Debugging CSS

If you want a particular blue, and the design requires you to use it with

50% opacity, add the color as a hex value to the element and, with the color

inspector still open, click on the double-arrow icon on the right.]is will

switch between hex, RGBa, and HSLa, very handy for quickly coverting a color

from one type to another.

Copying CSS From the DevTools to the Source
Code

When you edit the CSS of an element, you’ll probably want to copy and paste

it back in your code editor, instead of having to write it again.]ere is more

than one way to do this.

Copy Directly From the Inline Inspector

In the following ^gure, I’ve added some inline styles to an element. Notice

how they’re added to the element.style selector in the DevTools.]is feature

is the same for Chrome, Firefox, and Safari.

3. Debugging Environments and Tools

Debugging CSS 81

Now that we’ve added these inline styles, it’s possible to copy and paste them

into our code editor.

Use the changes Feature in Firefox Browser

Firefox has a useful feature named “Changes” that shows the changes we’ve

made in the DevTools. It’s not unlike how version control shows the di`erence

between two changes. Here is how to use it:

1. Inspect the element you want to edit.

2. Edit the styles.

3. Go to the “Changes” tab, and you will see the edits you’ve made.

3. Debugging Environments and Tools

82 Debugging CSS

Debugging Source-Map Files

When using a preprocessor such as Sass, the rendered CSS ^le might contain

instructions for a linked source-map ^le. When you inspect an element’s CSS

in the DevTools, you will notice that the CSS is in a ^le with the extension

.scss .]is can be confusing.

To remove that .scss ^le from the DevTools, you will have to turn o` the

source-map feature; or you can open the “Sources” panel in the browser and

select the CSS ^le.]en, you will ^nd something like this:

/*# sourceMappingURL=index.css.map */

]is is an instruction that makes the browser load the Sass ^le. Removing it

will hide the source-map ^le completely.

3. Debugging Environments and Tools

Debugging CSS 83

Debugging Accessibility Issues Caused by CSS

Even though most accessibility issues are caused by misused HTML, CSS plays

a role in accessibility, too. In this section, you will learn some things to keep

in mind when debugging CSS.

Give the Text Sufficient Color Contrast

A color that is too faint to read will be a problem for users. According to

the Web Content Accessibility Guidelines (WCAG) 2.0, the foreground and

background colors should have a 4.5:1 contrast ratio at Level AA and a 7:1

contrast ratio at Level AAA.

To achieve this, use colors that are well tested. Great tools are out there to

make our job easier. To check whether a text color is accessible, inspect the

element, and click on the little color square. You will see a contrast number.

3. Debugging Environments and Tools

84 Debugging CSS

Think Twice Before Hiding With display: none

Using display: none incorrectly is a hindrance to accessibility. It can easily

upset an experience. Suppose you have a search input and button, and the

design calls for the label element to be hidden.

<label class="visually-hidden" for="search">Search</label>
<input type="search" id="search"/>
<button>Show results</button>

]e label should be hidden visually but not with display: none . Why?

1. You wouldn’t be able to tie the label to the input using the for

attribute.

2. A screen reader wouldn’t be able to read the input’s label. If you’re lucky,

it might read the placeholder, if one has been added.

]e correct way is to add a class of visually-hidden to the label.]is will only

hide it visually and, as a result, won’t be an accessibility issue.

]is snippet comes from]e Accessibility Project:

3. Debugging Environments and Tools

Debugging CSS 85

https://a11yproject.com/posts/how-to-hide-content/

.visually-hidden {
position: absolute !important;
height: 1px;
width: 1px;
overflow: hidden;
clip: rect(1px 1px 1px 1px); /* IE6, IE7 */
clip: rect(1px, 1px, 1px, 1px);
white-space: nowrap; /* added line */

}

Use the Accessibility Tree

]e accessibility panel in the DevTools is a beautiful one. It give us clues on

how an element will be exposed to screen readers. For instance, if we select

an input ^eld and check the accessibility tree, it will show us the label (if

available) and the placeholder.

Fixing small issues related to this can have a huge impact, and you don’t need

to be an accessibility expert to do it. Here is a realistic example:

<label class="visually-hidden" for="email">Email address</label>
<input type="search" placeholder="Email address" id="email"/>

We have an email input , without a label associated with it. If we inspect the

input and go to the accessibility panel, we will see something like this:

3. Debugging Environments and Tools

86 Debugging CSS

Notice that it says “textbox: Email address”, and it reads what’s inside the

input s placeholder. Without it, the ^eld would be empty, and that would be a

problem. Make sure to debug using the accessibility tree when you’re working

with web forms.

Of course, it’s not only about forms.]ere are elements that shouldn’t be

exposed to users of screen readers — for example, a menu item with an

accompanying arrow.

]e arrow is an HTML symbol inside a span. When inspected, it shows the

text as “Services ▼”, which is not correct. A screen reader would read this

as: “Services down pointing black pointer”. Very confusing. Debugging such

3. Debugging Environments and Tools

Debugging CSS 87

issues as early as possible is highly recommended.]e solution is to use aria-

hidden=true for the span element.

Fix Unclickable Elements

Interaction with buttons and links is vital. When an element is expected to be

clickable but is not, that is a problem. Misuse of a CSS property can prevent an

element from being interactive. Consider this example:

.element {
pointer-events: none;

}

CSS pointer-events prevent, for example, an event on a button from

happening. In this case, when the user hovers over it:

• the cursor won’t change,

• clicking on it does nothing.

A simple CSS property can prevent a button from being clickable. Misusing

properties can ruin the experience, resulting in the loss of users.

Debugging CSS Performance

Some CSS properties can cause performance issues when used incorrectly for

animation.]e properties that any browser can animate cheaply are:

• transforms (translate , scale , rotate);

• opacity.

3. Debugging Environments and Tools

88 Debugging CSS

Using other properties for animation is risky and could impair performance.

Let’s go over how the browser calculates its styles. Here are the steps that the

browser takes:

1. Recalculate styles: Calculate the styles that are being applied to each

element.

2. Layout: Assign the width, height, and position of each element.

3. Paint: Paint all elements to layers.

4. Composite layers: Draw the layers to the screen.

]e least-heavy step is composition. To achieve good performance, use only

the transform and opacity properties.]e ^gure below compares left and

transform: translateX for animation.

Notice how busy the left timeline is.]e browser keeps recalculating the

styles while the animation is happening. Meanwhile, translateX is very

di`erent; the browser’s work is light.

To check the performance of your web page, open up the DevTools, and select

the “Performance” tab. From there, you can start pro^ling and doing a test. A

pro^le is like a test that runs on the page for some time (usually seconds).

When it’s done, you can see a timeline with all of the details on how the

browser calculated the styles.

3. Debugging Environments and Tools

Debugging CSS 89

Our concern with the CSS is the recalculating and compositing. Avoid using

heavy CSS properties for animation.

Multiple Browser Profiles

You likely use di`erent browsers, each of which stores the history and private

information of your browsing. Debugging and testing websites in a browser

you use every day might not make sense. You’ll need something fresh, without

a history or cache, so that you can test without any unwanted issues, like CSS

caching, and to avoid extensions that might cause bugs.

For this reason, a dedicated browser pro^le for testing is recommended. Here

is how to create one in Chrome:

1. In the top-right corner, click on the user avatar.

2. Click “Add +”.

3. Name the pro^le (for example, “Dev”), and click “Add”.

In Firefox, it’s a bit di`erent:

1. Open about:profiles in the browser’s URL ^eld.

2. Click on “Create a new pro^le”.

3. Choose a name and click “Done”.

4. On the same page, scroll down to ^nd the pro^le that you created, and

click on “Launch pro^le in a new browser”.

Done! You’ve created a pro^le especially for testing and debugging.

3. Debugging Environments and Tools

90 Debugging CSS

Rendering and Emulation

In Chrome, we can emulate di`erent rendering and emulation media queries,

to help us debug for the CSS query @media print . We can also debug the light-

and dark-mode versions of a website with the prefer-color-scheme media

query.

To access the rendering and emulation settings, follow these steps:

1. Open the DevTools, and click the vertical dots menu.

2. Choose “More tools” and then “Rendering”.

3. Scroll down and you will ^nd the emulation options.

CSS Print Styles

We can use a media query to edit the CSS styles and tailor the page to be

printed. To debug and emulate how a web page will look when it’s printed, we

can either print the page and save it as a PDF ^le or use the emulation feature

in Chrome.

3. Debugging Environments and Tools

Debugging CSS 91

@media print {
/* All of your print styles go here. */

.header, .footer {
display: none;

}
}

]e header and footer of a website might not need to be printed, so they can

be hidden with the print media query.

CSS Media prefer-color-scheme

With iOS oacially supporting them, dark-mode user interfaces are rising in

popularity and becoming supported on the web as well. In CSS, we can use the

following to detect whether the user prefers dark or light mode:

.element {
/* Light-mode styles (the default) */

}

@media (prefer-color-scheme: dark) {
/* Dark-mode styles */

}

3. Debugging Environments and Tools

92 Debugging CSS

On macOS, you can switch between the dark and light mode of a website by

changing the system preferences.

While this works, it might not be practical when you’re working on a lot of

changes.]ankfully, it’s possible to test that in the rendering settings. We

can emulate the media query prefer-color-scheme: dark or prefer-color-

scheme: light .

CSS Media prefers-reduced-motion

You can’t assume that all users will be ^ne with animation playing here and

3. Debugging Environments and Tools

Debugging CSS 93

there on your website. Some people prefer not to see animation on a page

because it can a`ect accessibility. A media query checks whether the user has

requested that the system minimize non-essential motion.

.element {
animation: pulse 1s linear infinite both;

}

@media (prefers-reduced-motion) {
.element {
animation: none;

}
}

Better yet, you can have simpler animation for users who prefer reduced

motion.

@media (prefers-reduced-motion) {
.element {
animation-name: simple;

}
}

With that, we’re done going over the browser’s DevTools. Let’s go over the

other methods we can use to test and debug CSS.

Virtual Machines

In the course of your work as a web developer, you will need to test in

browsers and on operating systems other than the ones you normally use.

For instance, you might use macOS but want to test on Chrome for Windows.

In this case, the cheapest solution is to use a virtual machine. I recommend

3. Debugging Environments and Tools

94 Debugging CSS

using VirtualBox because it’s free, easy to use, and works on both macOS and

Windows.

Also, Microsoft o`ers free copies of Windows to test in Edge and Internet

Explorer 11 browsers.

Online Services

Similar to a virtual machine, some online services enable you to test on

hundreds of types of devices. However, they’re not free, and they depend on a

fast internet connection.

Mobile Devices

Testing on real mobile devices can’t be compared to testing with the browser’s

DevTools.]e reason is that it’s not possible to emulate a real device in the

DevTools.]e touch screen itself plays a huge role in testing a website.

I recommend, if feasible, buying two Android phones to keep as test devices.

Don’t invest more than $150 per device. Another solution would be to use

your family’s phones. I always borrow my mom’s phone to double-check things

on Android.

Tip: If your web project is run on localhost , you can open its link on any

mobile devices that are connected to the same Wi-Fi network. For example, if

the project is running on localhost:3000 , here is how macOS users can get

the full IP address:

1. Go to “System Preferences”, then “Network”.

2. In the “Connected” section, note the IP address (mine is 192.168.1.252).

3. Debugging Environments and Tools

Debugging CSS 95

3. On your mobile device, type the address with the port number (mine

would be 192.168.1.252:3000).

]en, you can access the project on your mobile device. From there, you can

update and edit the CSS to test it.

Mobile Browsers

]e browsers on mobile devices are di`erent from the ones we use on the

desktop.]ey are simpler and more lightweight. On iOS, the default browser

is Safari. On Android, it depends on the phone’s manufacturer. For example,

Samsung phones have a preinstalled browser named Samsung Internet.

Inspecting Your Mobile Browser

By connecting your phone to your computer via USB or USB-C, you can inspect

the code. For iOS, we can connect an iPhone and then inspect it with Safari on

the computer.]is makes checking and testing faster. For Android devices, the

process is more complex. Follow along with this great resource from Chrome

DevTools blog.

Mobile Simulators

macOS developers can access the iOS simulator, where they can test on

multiple iOS device sizes (iPhone, iPad). Also, it’s possible to open the

DevTools for each device you test.

3. Debugging Environments and Tools

96 Debugging CSS

https://developers.google.com/web/tools/chrome-devtools/remote-debugging

Browser Support

When starting a new front-end project, decide on the browsers you want to

support. For example, will you support Internet Explorer 11? Or an old version

of Firefox? Answer these questions ahead of time in order to prepare for what

is coming.

During the development process, you might accidentally use a CSS feature

that is not supported in the browsers you want to support. Because you

are designing according to progressive enhancement, you’ll need to check

whether the CSS feature is supported, and, if so, then you would apply the

feature as an enhancement.

Tools such as doiuse can be installed in your project via npm. Tell it the

minimum browsers to support.]e sample command below would run in the

command line:

doiuse --browsers "ie >= 9, > 1%, last 2 versions" main.css

]e output would list the CSS features, along with warnings — for example,

that property X is supported only in Internet Explorer 11 and above.

Can I Use

Can I Use is a tool that is very useful for searching for speci^c CSS features. It

will tell you the history of the feature’s support. Sometimes, the support table

for a property will save you hours of trial and error when ^xing an issue.

3. Debugging Environments and Tools

Debugging CSS 97

https://github.com/anandthakker/doiuse

Vendor Prefixes

Browser vendors add pre^xes for experimental web features that are still not

^nalized. In theory, developers shouldn’t use those properties on production

websites until they are 100% supported; then, they can use the unpre^xed

versions. However, many developers are not patient enough to wait years for a

property to be fully supported.

According to MDN:

Browser vendors are working to stop using vendor pre^xes for

experimental features. Web developers have been using them on

production Web sites, despite their experimental nature.]is has made

it more diacult for browser vendors to ensure compatibility and to work

on new features; it’s also been harmful to smaller browsers who wind up

forced to add other browsers’ pre^xes in order to load popular web sites.

]at means you won’t see any vendor pre^xes for future CSS features.]at is

great; it will make new features much faster to ship.

MDN adds:

Lately, the trend is to add experimental features behind user-controlled

_ags or preferences, and to create smaller speci^cations which can reach

a stable state much more quickly.

MDN lists the pre^xes for all major browsers:

• -webkit- : Chrome; Safari; recent versions of Opera; almost all iOS

browsers, including Firefox for iOS; basically, any WebKit-based browser

• -moz- : Firefox

3. Debugging Environments and Tools

98 Debugging CSS

• -o- : old pre-WebKit versions of Opera

• -ms- : Internet Explorer and Microsoft Edge

Here is sample usage of vendor pre^xes:

-webkit-transition: all 4s ease;
-moz-transition: all 4s ease;
-ms-transition: all 4s ease;
-o-transition: all 4s ease;
transition: all 4s ease;

Adding those pre^xes manually while developing a website is not practical. A

tool named Autopre^xer will do it automatically for you. Specify the browsers

to support, and it does the rest.

Wrapping Up

In this chapter, we’ve covered debugging environments (such as the

DevTools), virtual machines, mobile devices, and online services. Mastering

every detail of the DevTools will substantially reduce the time you spend on

solving and debugging CSS.

Next, we’ll explore some common CSS issues and learn how to solve them.

Ready?

3. Debugging Environments and Tools

Debugging CSS 99

Web browsers have evolved a lot in the last few years, which has resulted

in more consistent websites. Nevertheless, they’re still not perfect, and some

issues can confuse developers. Compounding the challenge are di`erent

screen sizes, multilingual websites, and human error.

As you implement a design, you might encounter CSS bugs for various reasons,

both visual and non-visual, which I covered in Chapter 2. Some of them are

hard to track.

In this chapter, we’ll dive deep into CSS properties and their issues. Our goal is

to get a detailed understanding of common bugs with certain properties, and

to learn how to solve them properly.

Box Sizing

]e box-sizing property controls how the total width and height of an

element are calculated. By default, the width and height of an element are

assigned only to the content box, which means that border and padding are

added to that width.

If you’re not using a CSS reset ^le, you might forget to reset the box-sizing

property, which could cause one of the following:

• Horizontal scrolling
A block element takes up the full width of its parent. If it has a border

or padding, this will add to its width, which will result in horizontal

scrolling.

• Oversized elements
An element’s size can be bigger than you want it to be.

To avoid this, make sure that the property is reset properly:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 101

html {
box-sizing: border-box;

}

*, *:before, *:after {
box-sizing: inherit;

}

With that, we can be sure that the most important CSS property works as

expected. It’s worth mentioning that making box-sizing to be inherited is

better because it will enable all elements to inherit this box-sizing property

from the html element by default.

Display Type

]e display CSS property controls whether an element is a block or inline

element. It also determines the layout type applied to its child items, such as

grid or _ex.

When used incorrectly, the display type can cause confusion for developers.

In this section, we’ll go through some ways in which the display property

can go wrong.

Inline Elements

Elements such as span and a are inline by default. Suppose we want to add

vertical padding to a span :

4. CSS Properties That Commonly Lead to Bugs

102 Debugging CSS

https://css-tricks.com/inheriting-box-sizing-probably-slightly-better-best-practice/
https://css-tricks.com/inheriting-box-sizing-probably-slightly-better-best-practice/

span {
padding-top: 1rem;
padding-bottom: 1rem;

}

]is won’t work. Vertical padding doesn’t work for inline elements. You would

have to change the element’s display property to inline-block or block .

]e same goes for margin :

span {
margin-top: 1rem;
margin-bottom: 1rem;

}

]is margin won’t have an e`ect. You would have to change the display type

to inline-block or block .

Spacing and Inline Elements

Each inline element is treated as a word. Take the following:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 103

Hello
World

]is will render Hello World . Notice the spacing between the two words.

Where did this come from? Well, because an inline element is treated as a

word, the browser automatically adds a space between words — just like there

is a space between each word when you type a sentence.

]is gets more interesting when we have a group of links:

]e links are next to each other, with a space between them.]ose spaces

might cause confusion when you’re dealing with inline or inline-block

elements because they are not from the CSS — the spaces appear because the

links are inline elements.

Suppose we have an inline list of category tags, and we want a space of 8 pixels

between them.

<li class="tag">Food
<li class="tag">Technology
<li class="tag">Design

In the CSS, we would add the spacing like this:

4. CSS Properties That Commonly Lead to Bugs

104 Debugging CSS

.tag {
display: inline-block;
margin-right: 8px;

}

You would expect that the space between them would equal 8 pixels, right?

]is is not the case.]e spacing would be 8 pixels plus an additional 1 pixel
from the character spacing mentioned previously. Here is how to solve this

issue:

ul {
display: flex;
flex-wrap: wrap;

}

By adding display: flex the the parent, the additional spacing will be gone.

Block Elements

]e block display type is the default for certain HTML elements, such as div ,

p , section , and article . In some cases, we might need to apply the block

display type because an element is inline, such as:

• form labels and inputs,

• span and a elements.

When display: block is applied to span or a , it will work ^ne. However,

when it’s applied to an input, it won’t a`ect the element as expected.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 105

input[type="email"] {
display: block; /* The element does not take up the full width. */

}

]e reason is that form elements are replaced elements. What is a replaced

element? It’s an HTML element whose width and height are prede^ned,

without CSS.

To override that behavior, we need to force a full width on the form element.

input[type="email"] {
display: block;
width: 100%;

}

]ere are replaced elements other than form inputs, including video , img ,

iframe , br , and hr . Here are some interesting facts about replaced

elements:

• It’s not possible to use pseudo-elements with replaced elements. For

example, adding an :after pseudo-element to an input is not possible.

•]e default size of a replaced element is 300 by 150 pixels. If your page

has an img or an iframe and it doesn’t load for some reason, the browser

will give it this default size.

Consider the following example:

4. CSS Properties That Commonly Lead to Bugs

106 Debugging CSS

img { display: block }

We have an image with display: block . Do you expect that it will take up

the full width of its container? It won’t. You need to force that by adding the

following:

img {
display: block;
width: auto;
max-width: 100%;

}

It’s worth mentioning that when an image fails to load, it’s not considered

a replaced element. You can actually add ::before and ::after pseudo-

elements to it:

img::after {
content: "The image didn’t load";

}

Spacing Below an Image

Have you ever noticed a little bit of space below an img that you’ve added?

You didn’t add a margin or anything.]e space is there because the img is

treated as an inline element, which is similar to having a character with some

space below it.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 107

https://bitsofco.de/styling-broken-images/

To ^x this, add display: block to the image.]e spacing will be removed.

The legend Element

If you are using fieldset to group form inputs, add a legend element. By

default, it won’t take up the full width of its parent unless you force it.

<fieldset>
<legend>What’s your favorite meal?</legend>

<input type="radio" id="chicken" name="meal">
<label for="chicken">Chicken</label>

<input type="radio" id="meat" name="meal">
<label for="meat">Meat</label>

</fieldset>

]e legend element is block-level, but its width will stay the same because it

has min-width: max-content by default, which means it has the width of its

text content. To make it full width, do this:

4. CSS Properties That Commonly Lead to Bugs

108 Debugging CSS

legend {
width: 100%;

}

Notice that the legend element doesn’t accept inline or inline-block . If

you use them as the display type, the computed display will be block .

Using display With Positioned Elements

When an element has a position value of absolute , it becomes a block-level

element by default.]is means that adding inline-block or block as the

display type won’t a`ect it at all.

.element {
position: absolute;
left: 0;
top: 0;
width: 100px;
display: block; /* Not necessary */

}

]e only exception to using the display property with an absolutely positioned

element is in the following example:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 109

.element {
position: absolute;
left: 0;
top: 0;
display: none;

}

@media (min-width: 800px) {
.element {

display: block;
}

}

In this case, the element is hidden for small views and shown for large ones.

Using display: block in this way is OK.

Alignment of Inline Elements

A common issue in CSS comes up when you try to align an icon and text. Right

away, you notice that they are not aligned vertically. Either the icon or the text

is o` by a few pixels.

]ankfully, we can use the vertical-align property to ^x that alignment

issue.]is works with the inline , inline-block , inline-flex , inline-

grid , inline-table and table-cell display type.

4. CSS Properties That Commonly Lead to Bugs

110 Debugging CSS

.icon {
vertical-align: middle;

}

An Inline Display Overriding One in a CSS File

Suppose you’re working on a layout, and you add an inline CSS style to hide an

element. Later on, you forget about it, and you head over to the CSS ^le to try

to make the element visible, and you add display: block .]is won’t work,

because inline styles have a higher speci^city than rules in a CSS ^le.

<p style="display: none;">Debugging CSS</p>

p {
display: block;

}

Float and Block Display

If an element has float applied to it, then the browser will display it as a

block-level element, regardless of its type.

img { float: left; }

An image is not a block-level element. In the third chapter of this book, I

explained about greyed-out properties in the “Computed” panel. If you inspect

an element that has float: left applied to it, you will notice that the

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 111

display: block property is greyed out.]is means the display type is being

de^ned by the browser, not by us.

Float and Flex Display

It’s worth mentioning that when you apply a float to an element with a

display type of flex or inline-flex , it won’t a`ect the element at all.

.element {
display: flex;
float: left; /* Has no effect! */

}

Showing and Hiding the br Element

]e br element produces a line break in the text, which is equivalent to

hitting the Enter key while typing on a keyboard. It’s useful to use in a

paragraph in which you want two lines.

A less commonly known tip is that you can hide the br element with CSS. Say

you want two lines on mobile, and three on desktop.]is can be easily done!

@media (min-width: 800px) {
br {

display: none;
}

}

Situations to Avoid the Display Type

If you want to hide an element on the page, you might be tempted to use

4. CSS Properties That Commonly Lead to Bugs

112 Debugging CSS

display: none because it’s easy and quick. But in doing so, the element will

be completely hidden from screen readers. Let’s look at a couple of cases in

which you shouldn’t use the display property.

To Hide a Form’s Input Label

Using only an input ’s placeholder as the label is a common UI pattern. It’s

tempting to just hide the label with CSS.]is is bad for accessibility. Hide

the label only visually, using the method discussed in the third chapter.

To Style a Checkbox

Styling a checkbox is possible in CSS. But you might run into an issue if you use

display incorrectly. Hiding the input completely from the page will impair

accessibility. Hide it visually only.

<input type="checkbox" id="food" class="visually-hidden"/>
<label for="food">Are you hungry?</label>

Here is a great article about styling a custom checkbox by Geo`rey Crofte.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 113

https://www.creativejuiz.fr/blog/en/tutorials/customize-checkbox-and-radio-button-with-css

Margin

If two or more elements are close to each other on the page, the user will

assume that they are related to each other.]e margin CSS property is

important in helping us make a design look more ordered and consistent.

Margin Collapse

]is is one of the most common issues with margins. Say you have two

elements, the one above with margin-bottom , and the one below with margin-

top .]e greater of the two values will be used as the margin between the

elements, and the other will be ignored by the browser.

<div class="item-1"></div>
<div class="item-2"></div>

.item-1 { margin-bottom: 50px; }

.item-2 { margin-top: 30px; }

Mixing top and bottom margins leads to problems. To avoid this, use one-

4. CSS Properties That Commonly Lead to Bugs

114 Debugging CSS

directional margins — for example, adding margin-bottom to all elements.

Note that if an element is a part of a _exbox or grid container, then the

margins won’t collapse.

Margin and Inline Elements

As mentioned in the display section, inline elements such as span don’t

accept vertical margins until their display type is changed. Make sure vertical

margins are added to the correct type of element.

Just-in-Case Margin

I call this a “just-in-case” margin because that’s what it is. Suppose we have

two elements:

We add a margin to the right or left side of one of the elements (in this case,

to the right of the title), just in case its content becomes too long and brings

the element too close to the adjacent one. If the title runs too long, the margin

prevents it from sticking to the icon.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 115

Centering an Element

Because margin: auto is a popular way to center an element, it’s important to

mention that it only works with block-level elements.

span {
width: 500px;
margin: 0 auto;

}

]is won’t work unless the span is changed to a block-level element.

Auto Margin and Positioning

When an element is positioned absolutely, it’s possible to use margin: auto

to center it horizontally and vertically, without using transforms or other CSS

techniques such as _exbox.

.element {
position: absolute;

left: 0; top: 0; bottom: 0; right: 0;
width: 120px;
height: 120px;
margin: auto;

}

4. CSS Properties That Commonly Lead to Bugs

116 Debugging CSS

Setting a width and height on the element makes it possible to center the

item with margin: auto only.

Auto Margin and Flexbox

With _exbox, we can use an auto margin to push an element all the way over

in one direction.

]e button has the rule margin-left: auto , which pushes it to the far right.

Flexbox and auto margins work great together for such purposes. We can use

this technique to align an element without additional markup.

Padding

]e padding property adds space inside an element.]at’s what di`erentiates

it from margin .]ere are some misconceptions about padding. Let’s explore

them.

Using Padding With Height

Suppose you have an element with a ^xed height, such as a button. Controlling

the vertical spacing within the element can be confusing because large

padding values might push the text downwards and break the button.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 117

In the button on the left, notice how the text is pushed too far down.]e

reason is because of this in the CSS:

.button {
height: 40px;
padding-bottom: 10px;

}

A button element should never be given a ^xed height. It will make things

complex and controlling the button will be harder. Instead, you should use

vertical padding .

You might encounter a case when dealing with a web font that has additional

spacing in its characters. In this case, you might need to tweak the top or

bottom padding in order to center the button’s text vertically.

.button {
padding: 3px 16px 8px 16px;

}

4. CSS Properties That Commonly Lead to Bugs

118 Debugging CSS

Here, we’ve tweaked the padding so that the text can be centered vertically in

the button.

Padding and Inline Elements

As mentioned in the display section, vertical padding won’t work unless an

element’s display type is something other than inline .

The Padding Shorthand

]e shorthand for padding is ordered as top, right, bottom, left. It’s sometimes

confusing to use, and the same applies for margin as well. You could end up

doing the following:

.element {
padding-top: 20px 20px 0 20px;
/* … instead of: */
padding: 20px 20px 0 20px;

}

]is would be an error.]e padding-top property takes only one value, so

writing four values would make the rule invalid. It could be a reason why the

padding is not working as you intended. Make sure to type the correct property

name.

Remembering the correct order of the padding and margin shorthand is

confusing, even for an experienced front-end developer. A clock is a simple

way to remember it:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 119

Remember to start from the top , and the rest will follow.

Percentage-Based Padding

Using a percentage for padding is OK, but to make it work as you expect,

remember that it works based on the element’s width.

.element {
width: 200px;
padding-top: 10%;

}

]e computed value of this element’s padding-top is 20px . Remember how

it’s calculated when you’re debugging an element with percentage-based

padding.

It’s worth mentioning that percentage-based padding for top and bottom was

treated di`erently for _ex items in old versions of Firefox. Firefox used the

height, rather than the width, of an element to determine the padding’s value.

]is issue got ^xed in Firefox 61.

4. CSS Properties That Commonly Lead to Bugs

120 Debugging CSS

https://www.bram.us/2017/07/30/vertical-marginspaddings-and-flexbox-a-quirky-combination/

Width Property

Setting width is one of the most important things in web design. We can set

a width explicitly or implicitly. In this section, we’ll go over cases in which

width might be confusing.

Inline Elements Don’t Accept a Width or Height

An inline element such as span won’t accept the width or height property.

]is can be confusing. An element accepts width and height only if its

display is set to something other than inline (such as inline-block or

block).

Fixed Width Is Not Recommended

When a ^xed width is used on an element, there is a high probability that it

will cause horizontal scrolling on mobile. Using max-width is better because it

will prevent the element from being wider than the viewport.

Here we have a list of headings, along with a description.]e description

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 121

needs to have a maximum width to keep the number of characters per line

easy to read. If you use a ^xed width for the text, you’ll notice horizontal

scrolling on mobile. I spent ^ve minutes wondering about the reason for the

issue, before identifying a ^xed width as the culprit.

Full Width for Image

By default, an HTML img will be sized according to its content. To prevent an

image from being larger than the viewport, we can set the width property.

img {
width: 100%;

}

With width: 100% , an img ’s width will be equal to its parent’s width.

However, sometimes we don’t want that behavior.]ere is a better alternative,

which is to set max-width .

img {
max-width: 100%;
height: auto;

}

]e method above ensures the following:

• A small image (say, 650 by 250 pixels) won’t take up the full width of

a wide parent (say, 1500 pixels). Imagine such an image taking up that

container! It would look pixelated.

• On the other hand, if an image is wider than the viewport, then its width

would be equal to 100% of its parent.

4. CSS Properties That Commonly Lead to Bugs

122 Debugging CSS

Using 100% vs. auto for Width

]e initial width of block-level elements such as div and p is auto , which

lets the elements take up the full width of their parent. In some cases, you

might need a div not to take up the full width.

div {
width: 50%;
margin: 20px;

}

@media (min-width: 800px) {
div {

width: 100%;
}

}

]is element’s width is 50% of its parent. And when the viewport is big

enough, we want it to take up the full width. Setting the width to 100% would

cause its contents to take up the full width of its parent without the margin

being calculated.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 123

]is is a problem. To solve it, we should use auto instead of 100% . According

to the CSS speci^cation:

‘margin-left’ + ‘border-left-width’ + ‘padding-left’ + ‘width’ + ‘padding-

right’ + ‘border-right-width’ + ‘margin-right’ = width of containing block

Notice that when box-sizing: border-box is used, padding-left and

padding-right are not included in the calculation.

Setting the width to auto would result in the width of the content box being

the content itself minus the margin, padding, and border.

@media (min-width: 800px) {
div {

width: auto;
}

}

I’ve written a detailed article about auto in CSS that is worth checking out if

you want to dig more into the topic.

4. CSS Properties That Commonly Lead to Bugs

124 Debugging CSS

https://ishadeed.com/article/auto-css/

An Image With position: absolute Doesn’t Need Width or
Height

You might not think about this, but it’s interesting to know. Consider the

following:

<div class="media">

</div>

.media {
position: relative;
width: 300px;
height: 200px;

}

.media img {
position: absolute;
left: 0; top: 0; right: 0; bottom: 0;

}

You might expect that the image will take up the full width of its parent

because it is absolutely positioned against the four sides. Well, that would be

wrong. If the image is large enough, it will break out of its parent.

To prevent this from happening, set a width and height for the image.

.media img {
position: absolute;
left: 0; top: 0; right: 0; bottom: 0;
width: 100%;
height: 100%;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 125

Height Property

Full Percentage-Based Height

Setting a percentage-based height in CSS might seem intuitive at ^rst, but it’s

not. You can’t set a percentage-based height for an element unless the height

of its parent is explicitly de^ned.

.parent {
padding: 2rem;

}

.child {
height: 100%;

}

]e child won’t take up the 100% of its parent. Here is how to make it take up

the full height:

.parent {
height: 200px;
padding: 2rem;

}

]is way, the percentage-based height value of the child will be based on

something, and it will work as expected, even if using an absolute height

value is not recommended.

Filling the Height of the Remaining Space Available

Let's suppose that we have a grid of cards, and we're using CSS grid to lay them

4. CSS Properties That Commonly Lead to Bugs

126 Debugging CSS

out.

<div class="media-list">
<div class="card">

<div class="card__content">

<h2><!-- Title --></h2>
<p class="card__author"><!-- Author --><p>

</div>
</div>
<div class="card"></div>

</div>

.media-list {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(265px, 1fr));
grid-gap: 1rem;

}

By default, CSS grid will make the height of the cards equal, and that's useful.

But there is a problem, when one card has a longer title than the other, the

.card__content element height will be di`erent.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 127

To solve this, we need to make the card as a _ex container, and then force the

.card__content to ^ll the available space.

.card {
display: flex;
flex-direction: column;

}

.card__content {
flex-grow: 1;

}

Now, we want to make the .card__content element as a _ex container.

Finally, the .card__author element will be given margin-top: auto so it can

always be at the baseline of the card.

.card__content {
flex-grow: 1;
display: flex;
flex-direction: column;

}

.card__author {
margin-top: auto;

}

4. CSS Properties That Commonly Lead to Bugs

128 Debugging CSS

Percentage-Based Width and No Height

Sometimes, you need a way to resize an element without having to change

both the width and height. I like a pattern that I found on Twitter’s website,

which resizes the avatar by changing only the width property.

<div class="avatar-aspect-ratio"></div>

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 129

.avatar {
position: relative;
width: 25%;
display: block;

}

.avatar-aspect-ratio {
width: 100%;
padding-bottom: 100%;

}

.avatar img {
position: absolute;
top: 0;
right: 0;
bottom: 0;
left: 0;
width: 100%;
height: 100%;

}

By adding an element (.avatar-aspect-ratio) with a rule of padding-bottom:

100% , which ends up being equal to the width of the avatar, the result will be

a square.]e image itself is positioned absolutely.

4. CSS Properties That Commonly Lead to Bugs

130 Debugging CSS

Notice that only the width property is being resized; the height will follow.

For more details about the technique, here is a great article on CSS Tricks.

Height and Viewport Units

We can use a viewport unit with width or height to make an element take

up the full width or height of the viewport. We’ll deal here with the viewport-

height unit.

body {
height: 100vh;

}

]is will make the body element take up the full height of the viewport.

However, Safari on mobile has a problem because it doesn't include the

address bar in its calculation, which results in a higher value for the height .

One solution is to get help from JavaScript by using the innerHeight method.

// Get the viewport height and multiply it by 1% to get the vh value.
let vh = window.innerHeight * 0.01;
// Set the vh value in the CSS property
document.documentElement.style.setProperty('--vh', `${vh}px`);

]en, we use that in CSS:

.my-element {
height: 100vh; /* Fallback for browsers that do not support custom

properties */
height: calc(var(--vh, 1vh) * 100);

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 131

https://css-tricks.com/fluid-width-video/
https://css-tricks.com/the-trick-to-viewport-units-on-mobile/

By getting the innerHeight of the browser, we can use that value in the

height property.

]ere is a solution that doesn’t use JavaScript, which I learned from

@All]ingsSmitty.

.my-element {
height: 100vh;
height: -webkit-fill-available;

}

By using an intrinsic value for the height , the browser will ^ll only the

available vertical space.]e downside is that this breaks in Chrome because

that browser also understands -webkit-fill-available and won’t ignore it.

My advice is not to use this solution until its behaviour is consistent in

browsers.

Setting a Minimum or Maximum Width

In CSS, we have the min-width and max-width properties. Let’s explore the

common mistakes and points of confusion that happen with them.

Minimum Width

Minimum Width for Buttons

When setting a minimum width for a button element, keep in mind that it

should work across multilingual layouts.

4. CSS Properties That Commonly Lead to Bugs

132 Debugging CSS

https://twitter.com/AllThingsSmitty/status/1254151507412496384
https://twitter.com/AllThingsSmitty/status/1254151507412496384

Here, we have a button with min-width: 40px . It works perfectly for English

layouts. However, when translated to Arabic, it becomes very small because of

its minimum width.]is example is from Twitter’s website.]e issue here is

having a very short width for a button, it will make it harder to the user to

notice it.

To prevent such an issue, always test with multiple kinds of content. Even if

the website is for one language only, testing with di`erent content won’t hurt.

Minimum Width and Padding

Another point of confusion is when we depend only on min-width . For

example, a button with min-width might look good because the content suits

the size. However, when the button’s text gets a bit long, the text will run close

to the edges.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 133

]e reason for this is that the author is blindly depending on min-width and

has not considered whether the content might be longer.

Which Has Higher Priority: min-width or max-width ?

When using both min-width and max-width for an element, it might be

confusing to know which of them is active. Let’s clarify this.

If the value of min-width is greater than that of max-width , then it will be

taken as a width.

4. CSS Properties That Commonly Lead to Bugs

134 Debugging CSS

.element {
width: 100px;
min-width: 50%;
max-width: 100%;

}

Resetting min-width

Let’s explore ways to reset the min-width property in CSS.

Setting to 0

]e default value of min-width is 0 , but this is di`erent for _ex child items.

]e min-width of _ex child items is auto , as explained previously.

Setting to initial

]e initial value will reset to the browser’s initial value, which would be

either 0 or auto , depending on whether the item is a _ex child.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 135

Generally, I recommend using initial to reset. However, depending on the

use case, you might need to use min-width: 0 for _ex child items.

Max Width

Max Width for Page Wrappers

A common use case for the max-width property is to add it as a constraint on

an element, such as a page wrapper or container.

.wrapper {
max-width: 1200px;
margin: 0 auto;

}

]is might seem OK, until you resize the screen to be narrower than 1200

pixels.]en you’ll notice that the child elements of .wrapper are stuck to the

left and right edges, which is not want we want. Make sure to add padding to

the page container so that it has a horizontal o`set on mobile.

4. CSS Properties That Commonly Lead to Bugs

136 Debugging CSS

.wrapper {
max-width: 1200px;
margin: 0 auto;
padding-left: 16px;
padding-right: 16px;

}

Percentage for Maximum Width

When using a percentage value for the maximum width, it’s common to forget

about it on mobile.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 137

.element {
max-width: 50%;

}

]is might work smoothly on laptops or desktops. However, on mobile, the

50% could be 150 or 200 pixels, depending on the viewport’s width. Whatever

it is, the computed pixel value will be very small, so it’s important to consider

mobile sizes.

@media (min-width: 800px) {
.element {

max-width: 50%;
}

}

Much better.]e media query will activate the 50% width once there is

enough space.

Setting a Maximum Width Based on the Content

]is could be regarded as either a common mistake or a common need, so I

4. CSS Properties That Commonly Lead to Bugs

138 Debugging CSS

will try to address them as both. Sometimes, you need to set a maximum width

based on the content you have.]is can be tricky when the content varies.]e

mistake is setting the width based on the content.

We have a section with a heading and a description. We want the wrapper to

be as wide as the content, so we’ll try setting it in pixels.

.wrapper {
max-width: 567px;

}

Using a hardcoded value like 567px in CSS is not a good practice because this

fails easily when the content changes.]e solution is to use an intrinsic CSS

value.

.wrapper {
max-width: max-content;

}

]is way, the width of the wrapper will adjust to the content, without our

having to hardcode the value.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 139

Constraining an Image in a Wrapper

A common use case for max-width is to constrain an img not to be bigger than

its container. Because the img element is a replaced element, its size is based

on its content.

Sometimes, a large image could extend beyond its container.]e solution is

simply to use the previously mentioned technique:

img {
max-width: 100%;
height: auto;

}

Resetting max-width

Suppose we need to reset a CSS property for a particular viewport size or

condition.]ere are a couple of ways to reset max-width in CSS.

The none Keyword Value

]e none value sets no limit on the size, which is exactly the goal of resetting

the property.

The initial Keyword Value

]is sets the property to its initial default value, which is none .

The unset Keyword Value

]e unset keyword resets the value to the inherited value if the property

4. CSS Properties That Commonly Lead to Bugs

140 Debugging CSS

inherits from its parent. If not, the value will be initial .

I recommend using the none keyword because it’s the clearest, and you won’t

have to think through the consequences.

Minimum Height

Setting a Minimum Height for Variable Content

A common challenge in CSS is setting a ^xed height for a section with content

that will change or that is inputted by the user. Setting a ^xed height might

break the section if the content goes too long.

Using min-height ^xes this. We set a value that would be the minimum

height, and if the content grows longer, the height of the section will expand.

Notice how the content over_ows the section vertically.]is is because it has

a ^xed height.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 141

section {
min-height: 450px;
/* … instead of… */
/* height: 450px; */

}

]is ^xes the issue.

Setting a Minimum Height for Positioned Elements

Usually, a modal component contains content such as form elements, text, an

image, etc. In case the content is too short, the modal height will collapse and

the layout will look bad.

Setting min-height is better so that the modal can’t go below that value.]us,

we’ll prevent any unwanted behavior.

.modal-body {
min-height: 250px; /* 250px is just an example. Tweak according to

your project’s needs. */
padding: 16px;

}

4. CSS Properties That Commonly Lead to Bugs

142 Debugging CSS

Maximum Height

Setting a Maximum Height for Positioned Elements

Let’s start with this issue because it’s related to the previous one about modal

content. What if the modal’s content is too tall?]e height of the modal will

become equal to the viewport’s height, which is not good.

So, we should use not only min-height , but also max-height , so that however

tall the content is, it won’t exceed the value we’ve set.

.modal-body {
min-height: 250px;
max-height: 600px;
overflow-y: auto;

}

Don’t forget to make the modal scrollable by adding overflow-y: auto .

Without it, the content will exceed its parent.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 143

Setting a Percentage-Based Maximum Height

]is one is also related. We set the maximum height in pixels, remember?]is

will work, but it has a pitfall. What if the viewport’s height is too short and the

value of max-height is greater than it?

A better solution would be to use a percentage for max-height .]is way,

whatever the length of the content, the height of the modal won’t exceed that

value.

.modal-body {
min-height: 250px;
max-height: 90%;
overflow-y: auto;

}

Transitioning an Element’s Height

A common question I hear is how to transition the height property of an

element. Unfortunately, the property is not animatable because often times,

we want to animate the height from 0 to auto , and the value auto is not

valid for animation. It’s possible to use JavaScript, by adding height as an

inline style and incrementing it.

]ere is a CSS solution that is kind of a hack, but it works. By using the max-

height , we can set a maximum value, and it will transition.

4. CSS Properties That Commonly Lead to Bugs

144 Debugging CSS

.element {
max-height: 0;
overflow: hidden; /* This prevents child elements from appearing

while the element’s height is 0. */
transition: max-height 0.25s ease-out;

}

.element.is-active {
max-height: 200px;

}

Maximum Height Depending on the Element’s Defined Height

If an element has max-height: 90% , then it needs one of the following to work:

• a parent or containing block with an explicitly de^ned height ,

• an absolutely positioned element.

When you apply max-height with a percentage value, make sure one of the

conditions above is met. Otherwise, the computed value will be none .

Shorthand vs. Longhand Properties

As you can guess, a shorthand is the short version of a CSS property, and a

longhand is the long one.

.element {
padding: 10px;

}

]is is a shorthand property.]is padding has four values, all of them being

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 145

10px . We could write the four values like so:

.element {
padding: 10px 10px 10px 10px;

}

But because they are all equal, there is no need to write them out.]e

longhand version looks like this:

.element {
padding-top: 10px;
padding-right: 10px;
padding-bottom: 10px;
padding-left: 10px;

}

When setting a background for an element, it will be either a solid color or an

image. We have to be mindful of how we write it. Suppose we write this:

.element {
background: green;

}

We’ll get a green color, but actually we’re doing this:

4. CSS Properties That Commonly Lead to Bugs

146 Debugging CSS

.btn {
background-image: initial;
background-position-x: initial;
background-position-y: initial;
background-size: initial;
background-repeat-x: initial;
background-repeat-y: initial;
… and so on…
background-color: green;

}

Because background is a shorthand property, it will reset all other background

properties to their initial values when added.]is will introduce some

confusing bugs to your layout. Use the longhand properties in such situations.

A similar case happened to me multiple times using margin .

.wrapper {
margin: 0 auto;

}

What if we de^ned margin-top and margin-bottom for the wrapper earlier?

Our new CSS declaration will reset them to 0 . Believe me, when you’ve been

working all day and make a mistake like this, you could spend an hour before

realizing why this is happening. Use the shorthand properties only when

needed, as CSS Wizardy advises. Here is a proper use:

.button {
padding: 10px 12px 15px 10px;

}

We might set the padding for a button in this way because it has a weird font

that is causing some alignment issues.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 147

https://csswizardry.com/2016/12/css-shorthand-syntax-considered-an-anti-pattern/

Positioning

CSS positioning issues often happen because of incorrect use of the position

property, whether because the author doesn’t completely understand it or

because of a plain old bug.

Using the Positioning Offset Properties

When using one of the properties top , right , bottom , or left , make sure

that the position is not static , the default value. If it is, then the o`set

properties won’t have any e`ect on the element.

Icon Alignment

Sometimes, aligning an icon to the text beside it is a challenge. Even with

properties like vertical-align and _exbox, it’s still not easy.]e reasons for

such issues vary, but the most annoying reason is having a font with space

above and below its characters. In this case, using position is a good ^x.

.icon {
position: relative;
top: 3px;

}

4. CSS Properties That Commonly Lead to Bugs

148 Debugging CSS

We push the icon 3 pixels towards the bottom. Granted, we are hardcoding the

value here, but in this case it’s a valid use.]e downside is that when the font

changes, the icon’s alignment might break, so be aware of that.

Using the width and height Properties

I have come to notice an unnecessary pattern of using the width or height

properties for positioned elements.

.element {
position: absolute;
left: 0; top: 0; right: 0; bottom: 0;
width: 100%;
height: 100%;

}

]is element is already positioned to the four sides. It’s already taking up the

full space, so setting the width and height is not needed.

Reminder:]is doesn’t apply to HTML replaced elements such as img . If the

element above was a large image, then the width and height would be needed,

otherwise you could expect horizontal scrolling.

How Padding Works for Positioned Elements

A positioned element can have spacing that o`sets it from the four sides of

its parent element. If we want an element to have a 10-pixel o`set, then each

property of top , right , bottom , and left should have a value of 10px .

]ere are some tricky situations involving the padding and o`set properties.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 149

Here we have a card with a footer that is o`set from the left, right, and bottom

sides by 12 pixels. How would we do that in CSS?

.card-footer {
position: absolute;
top: 0; right: 0; bottom: 0; left: 0;
padding: 0 12px 12px 12px;

}

We position the footer to the four sides, and we rely on padding instead of the

o`set properties for the 12 pixels.]is way, it’s easier to control when testing.

You might need to tweak the padding value.

Using z-index

]e z-index property is responsible for setting the order of positioned

elements and their descendants on the z-axis. It doesn’t work unless

position is set to something other than static or if the element has

properties that trigger a new stacking context like: transform , opacity less

4. CSS Properties That Commonly Lead to Bugs

150 Debugging CSS

than one, and others. We will get into that later.

Resetting the Position

Resetting the position of an element from absolute or fixed to another

value can get confusing. For instance, if we have an element that should be

absolute only on mobile, we could do the following:

.element {
position: absolute;
top: 0; right: 0; bottom: 0; left: 0;

}

@media (min-width: 700px) {
position: static;

}

Setting the value to static will reset the value of position . When that is

done, keeping the values of top , right , bottom , left is ^ne because they

won’t have any e`ect.

The Z-Index Property

]e z-index property enables us to control how HTML elements are

positioned on top of each other, using numeric values. At ^rst, it might seem

that positioning an element on top of its siblings or parent is as simple as

setting z-index to 999999 .]at’s not always the case — z-index has certain

rules to be followed. Let’s explore the most common issues with it.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 151

Forgetting to Set the Position

]e z-index property won’t work with position ’s default value of static .

]e value must be relative , absolute , fixed , or sticky . Make sure to set a

position or to double check that stacking context exists.

Default Stacking Order

In HTML, an element that sits at the bottom of a container will be positioned

above the preceding elements.

<div class="home">
<!-- ::before element -->
<div class="floor"></div>
<div class="desk"></div>
<div class="laptop"></div>
<!-- ::after element -->

</div>

Hopefully, this real-life example makes it clearer.]e laptop is on the desk,

4. CSS Properties That Commonly Lead to Bugs

152 Debugging CSS

and the desk is on the _oor.]at is, the last child will be positioned on

top of its siblings by default. Without understanding this, things might get

confusing.

]e same goes for pseudo-elements. In the HTML markup, notice how the

::before and ::after pseudo-elements are added to the .home element.

]e ::after element will appear in the layout on top by default, and the

::before element will appear under everything else in a normal stacking

context.

CSS Properties That Create a Stacking Context

Some properties will trigger a new stacking context.]e CSS speci^cation lists

the properties that trigger a stacking context.]ey include a position value

other than static , opacity , transform , filter , perspective , clip-path ,

mask , and isolation .

<div class="elem-1"></div>
<div class="elem-2"></div>

.elem-1 {
position: absolute;

left: 10px;
top: 20px;

}

.elem-2 {
opacity: 0.99;

}

Which element will appear on top of the other? In this case, elem-2 will be

on top, because adding the opacity value will trigger a new stacking context,

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 153

thus putting elem-2 on top of elem-1 , even though elem-1 is absolutely

positioned.

When z-index is not behaving as expected, check whether any properties

have triggered a new stacking context.

An Element Can’t Appear Above Its Parent’s Siblings

For this issue, let’s start with the HTML ^rst, so that you can imagine it better.

<div class="wrapper">
<!-- other content -->
<div class="modal"></div>

</div>

<div class="help-widget"></div>

4. CSS Properties That Commonly Lead to Bugs

154 Debugging CSS

.wrapper {
position: relative;
z-index: 1;

}

.modal {
position: fixed;
z-index: 100;

}

.help-widget {
position: fixed;
z-index: 10;

}

From the markup, can you tell which element will be on top? It’s tempting to

think that the .modal element will be on top because it has a higher z-index ,

right?

Wrong.]e .modal element is a child of .wrapper , and the .help-widget

element is a sibling of .wrapper . Positioning .modal above .help-widget is

not possible unless we change the markup:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 155

<div class="wrapper">
<!-- other content -->

</div>

<div class="modal"></div>

<div class="help-widget"></div>

]us, we can position .modal . As a rule of thumb, if you have an element such

as a modal or popup, keep it outside of the page’s main wrapper, to avoid such

confusion.

An Element Floating Above Its Siblings

One tricky case is when an element has a higher z-index than a ^xed header.

]is issue can easily trip us up because it isn’t easy to notice.

]ese cards have a blue element positioned absolutely in the top-left corner

(they might indicate the category of the card). When the user scrolls down,

the category will scroll above the ^xed header. Fixing this is simple: You just

4. CSS Properties That Commonly Lead to Bugs

156 Debugging CSS

need to set an appropriate z-index value.

The calc() Function

CSS’ calc() function allows us to calculate the values of certain CSS

properties. A common mistake with writing calc() is omitting spaces.

.element {
width: calc(100%-30px); /* Invalid */

}

]is value is invalid. You must add spaces around the subtraction symbol.

.element {
width: calc(100% - 30px); /* Valid */

}

Text Alignment

Forgetting to Center a Button’s Content

Suppose you would like to add some CSS classes to an HTML button or to an

a link that is functioning like a button. A button ’s content is centered by

default, but an a element is not. So, you should center the latter manually.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 157

<button class="button" type="submit">Submit</button>
Read more

.button {
/* Other styles */
text-align: center;

}

Without doing this, you might be surprised to ^nd later that some buttons on

your website are left-aligned!

Viewport Units

Using height: 100vh Is Risky

When you add height: 100vh to, say, a hero element, the elements within

it might look ^ne when the viewport is tall enough. I was once browsing

someone’s website on a 15-inch laptop.]e hero section took up 100% of the

viewport’s height. It looked great!

I got curious and opened up the DevTools to see how it’s built, and — boom!

— the hero section broke.]e elements within it overlapped the next section.

]e elements in the hero section didn’t ^t the available height once I opened

4. CSS Properties That Commonly Lead to Bugs

158 Debugging CSS

the DevTools. Why? It’s because when 100vh is used, opening the DevTools or

shrinking the browser’s height will reduce the height.

Speaking of which, the DevTools can be annoying when you’re testing for the

viewport’s height. I usually unlock the DevTools to a separate window when

debugging for the viewport’s height.

Pseudo-Elements

CSS pseudo-elements are one of the most useful additions to CSS. Misusing

them can be confusing, so let’s explore some common issues with them.

Forgetting the content Property

]e core of a pseudo-element is the content property. We often forget about

it and set the following:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 159

.element::before {
display: block;
background: #ccc;

}

]en, we wonder why the element does not appear. I’ve spent some time ^xing

such a bug. To avoid this, make sure that the content property is the ^rst

thing you add when creating a pseudo-element, before rushing on to other

properties.

Using Width or Height

]e default display value of a pseudo-element is inline . So, when you add

a width, height, vertical padding or vertical margin, it won’t work unless the

display type is changed to a value other than inline .

.element::before {
content: "";
background: #ccc;
width: 100px;
height: 100px; /* Neither the width nor height will work. */

}

Using Pseudo-Elements With Grid or Flexbox

When you apply _exbox or grid to a container, any pseudo-element within it

will be treated as a normal element.]at might be confusing and could cause

unexpected issues.

One common issue I remember is applying _exbox to the .row element in

Bootstrap 3. Because the columns were built with the float property, the

4. CSS Properties That Commonly Lead to Bugs

160 Debugging CSS

.row element had ::before and ::after pseudo-elements:

.row::before,

.row::after {
content: "";
display: table;

}

]is is the “clear^x” hack, which ^xes the layout of _oated elements without

the addition of presentational markup.

When _exbox is applied to the .row element, the two pseudo-elements will

be treated as normal elements, and that can create some weird spaces in the

layout. In such a case, the pseudo-elements wouldn’t have any bene^t, so they

should be hidden.

.row::before,

.row::after {
display: none;

}

When to Use ::before and When to Use ::after

]e ::before pseudo-element becomes the ^rst child of its parent, whereas

::after is added as the last child. You might wonder whether this is useful?

]ere is a common use case for pseudo-elements, which is to absolutely

position an overlay on top of a card component. In this case, it would matter

whether you use ::before or ::after , because one of them will be easier to

deal with. Can you guess which? Consider the following example:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 161

<article class="card">

<h2>Title here</h2>

</article>

We need to add a gradient overlay to make the text easy to read.]e stacking

order of absolutely positioned elements (]e title and the ::after element)

starts from bottom to top.]e element at the very bottom, the h2 , will appear

on top of the image. If we use ::after for the gradient overlay, it will be the

last element, which will put it on top of everything, so we would need to use

z-index: -1 to move it below the title.

However, if we use ::before , then the gradient would appear below the title

by default, without any adjustment to the z-index .]us, we save additional

work and avoid a bug.

.card::before {
content: "";
/* The CSS for the gradient overlay */

}

4. CSS Properties That Commonly Lead to Bugs

162 Debugging CSS

Color

]e color property is an important one in CSS because it sets the color of text

elements. It might sound simple, but it’s not. Using it incorrectly can cause

problems and additional work.

The transparent Keyword

]e transparent keyword is a shortcut for rgba(0, 0, 0, 0) . Some browsers

compute it as black with an alpha value of 0 .]is can make a transparent

gradient look a bit black-ish.

]is behavior was seen in old versions of browsers such as Chrome and Safari.

To prevent this, avoid using the transparent keyword, especially with CSS

gradients. To solve the issue, it's recommend to use the following:

.element {
background: linear-gradient(to top, #fff, rgba(0, 0, 0, 0));

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 163

Not Taking Advantage of the Cascade

By default, the color property is inherited by child elements such as p and

span . Instead of setting the color property on each element, add it to the

body element, and then all p and span elements will inherit that color,

unless you override it.

body {
color: #222;
/* All elements will inherit this color. */

}

However, the a element doesn’t inherit color by default. You can override

its color or use the inherit keyword.

a {
color: #222; /* … or… */
color: inherit;

}

I consider a developer not taking advantage of the cascade to be a bug because

it’s so important. Why add more CSS than you need to?

Forgetting the Hash Notation

]e hash notation that comes before a color’s hex value is important. I’ll

often copy and paste a color from a design app such as Adobe Experience

Design (XD) or Sketch. When coping from Sketch, the color is copied like

275ED5 , whereas Adobe XD adds the hash: #275ED5 .]is di`erence can lead

to unexpected results if you are not 100% focused.

4. CSS Properties That Commonly Lead to Bugs

164 Debugging CSS

a {
color: 275ed5; /* Forgetting the hash */
color: ##275ed5; /* Doubling the hash */

}

Notice the hash incorrectly doubled in the second rule. While working on a

project, you might paste the color value with the hash, and then, after editing

the color in another app, you might double-click on the value (including the

hash) and blindly paste it back in the CSS, leading to a double hash.

Avoiding such an issue is possible with a style linter, of course. However, it’s

important to train ourselves to keep an eye when copying and pasting things

into a code editor.

CSS Backgrounds

Backgrounds in CSS are commonly used to add a background color, to add an

image, or for decoration. Let’s explore some issues with them.

The Order of the Background’s Size and Position

In the shorthand of the background property, writing out the background size

and position can be confusing.]ey have a certain order, separated by a slash.

If the order is missed, the background ’s entire de^nition will become invalid.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 165

According to Mozilla Developer Network (MDN):

]e <bg-size> value may only be included immediately after

<position> , separated with the '/' character, like this: "center/80%".

background: url("image.png") center/50px 80px no-repeat;

Notice the center/50px 80px .]e ^rst one is for background-size , and the

second is for position .]e order can’t be reversed. Spaces around the slash

are ^ne.

Don’t Use the Shorthand to Set a Color Only

It might be tempting to use the shorthand of background to add a background

color, but it’s not advisable because this will reset all other background-related

properties with it.

Dynamic Background

If the background is being set with JavaScript, use the dedicated properties for

background-size , position , and repeat .]e background-image is the only

property that needs to be set dynamically with JavaScript. If you set the whole

background with JavaScript, that will be a lot of unnecessary work.

Forgetting About background-repeat

When setting a background, we can easily forget about background-repeat .

For instance, the background of a section might look good on a 15-inch laptop,

but it might repeat on a 27-inch desktop. Remember to specify whether the

background should repeat.

4. CSS Properties That Commonly Lead to Bugs

166 Debugging CSS

.element {
background: url("image.png") cover/center no-repeat;

}

Generally speaking, I recommend to combine both the longhand and

shorthand properties. See below:

.element {
background: url("image.png") center no-repeat;
background-size: cover;

}

Printing CSS and Backgrounds

CSS backgrounds are not included in print by default. We can override that

behaviour and force backgrounds to be included in print by using the following

CSS property:

.element {
background: url('cheesecake.png') center/cover no-repeat;
-webkit-print-color-adjust: exact; /* Forces the browser to render

the background in print mode */
}

CSS Selectors

Targeting and styling HTML elements is a core skill of web developers. If we

don’t learn how to properly use CSS selectors, we will run into bugs.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 167

Forgetting the Dot Notation for Classes

Selecting an element by class name won’t work without the dot notation.]is

often happens when we are not focused.

button-primary {
/* The styles won’t work. */

}

Grouping Selectors

Here is an interesting bug that you might not think about it. Grouping a valid

and invalid selector together can lead to the whole declaration being ignored.

a, ..button-primary { }

According to the CSS speci^cation:

If just one of these selectors were invalid, the entire selector list would

be invalid.

]e ..button-primary class has two dot notations, which makes it invalid.

Grouping it with the a element would make the browser ignore the entire

declaration.

]is mistake is easily made when selecting the ::selection pseudo-element

(to target selected text) or the ::placeholder pseudo-element (to target input

placeholders). We also see it in vendor-pre^xed selectors, used for cross-

browser support; when one vendor-pre^xed selector of a group is incorrect,

the whole style declaration will be ignored.

4. CSS Properties That Commonly Lead to Bugs

168 Debugging CSS

https://www.w3.org/TR/selectors/%23grouping

Calling a CSS Selector More Than Once

A common mistake with CSS speci^city is calling a selector more than once.

.title { /* Some styles */ }

/* 300 lines and.. */

.title { /* Another style */ }

]is alone is not a bug, but it easily opens the way for bugs. Avoid this pattern,

and use a style linter that warns about such things.

Customizing an Input’s Placeholder

Firefox makes placeholder text of input elements semi-transparent. When

setting a custom color for placeholder text, keep in mind that it will appear a

bit dimmed.]is is not good for accessibility. Make sure to ^x that by resetting

the semi-transparency:

::-webkit-input-placeholder { color: #222; opacity: 1 }
::-moz-placeholder { color: #222; opacity: 1 }
:-ms-input-placeholder { color: #222; opacity: 1 }

The Order of User-Action Pseudo-Classes

]e order of the :visited , :focus , :hover , and :active pseudo-classes is

important. If they don’t appear as follows, then they won’t work as expected:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 169

a:visited { color: pink; }
a:focus { outline: solid 1px dotted; }
a:hover { background: grey; }
a:active { background: darkgrey; }

Targeting an Element With More Than One Class

A common mistake that I see among beginners is incorrectly targeting two

classes at the same time in order to select an element. Consider the following:

<div class="alert success"></div>
<div class="alert danger"></div>

.alert.success { background-color: green; }

.alert.danger { background-color: red; }

]e ^rst style will work with elements that have both .alert and .success

classes, while the second one will work only with elements that have both

.alert and .danger classes. However, suppose we did the following:

.alert .success { background-color: green; }

]e mistake here is adding a space between the two classes.]is space

changes the whole thing, and it won’t work. We are basically selecting an

element with a .success class inside an element with an .alert class. It

assumes an HTML structure like the following:

<div class="alert">
<div class="success"></div>

</div>

4. CSS Properties That Commonly Lead to Bugs

170 Debugging CSS

Use the correct selector, or else you could waste a lot of time wondering why

it’s not working.

Targeting Classes on Particular Elements

Accessibility of a website to all users is a core principle of website design.

Neglecting it can lead to bad results. A common problem we see is using a div

element for a button and making it clickable only with JavaScript.

One way to prevent developers who you are working with from adding a class

to any element and calling it a button is by targeting classes together with their

elements.

button.btn { }

]is way, the .btn class won’t work on any element except the button . It’s a

good way to restrict usage of the class to actual button elements.

An Alternative to !important

Sometimes, a style won’t work because it’s being overridden by another style

in the CSS ^le. Using !important is not recommended.]ere is a better way,

with CSS classes only.

.btn.btn { }

Calling a class twice increases the speci9city of a selector, thus making the

rule work without !important . Make sure there is no space between the

classes. Note that you can call it three, four, or however many times you like.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 171

CSS Borders

Border on Hover

A common mistake when showing a border on hover is to add the border only

on hover. If the border is 1 pixel, then the element will jump by that much

when the user hovers over it. To avoid the jump, add the border to the normal

state with a transparent color.

.nav-item { border: 2px solid rgba(0, 0, 0, 0); }

.nav-item:hover { border-color: #222; }

]is way, the border has already been added and is reserving space, and the

appearance of the border on hover will be based on border-color .

We see this often with inline navigation menus, where items should have a

border on hover. Notice in the ^gure how the elements are slightly pushed to

the right once the navigation item is hovered over.

Multiple Borders

When you add more than one CSS border to an element — for example, borders

on the left and bottom edges — you might notice that the point where the two

borders meet is kind of weird.]e bottom end of the left border and the left

end of the bottom border will look like cut-o` triangles.

4. CSS Properties That Commonly Lead to Bugs

172 Debugging CSS

]is is normal and expected. CSS borders work like that. If you want multiple

borders, then you could combine a border with a shadow to ^x the issue.]e

left border can be kept as it is, and the bottom one can be a shadow.

Border and currentColor keyword

]is is not necessarily a bug, but worth mentioning.]e currentColor

keyword is the default value of border-color .

.element {
color: #222;
border: 2px solid;

}

Notice that a color isn’t declared in the border rule.]e default value is

currentColor , which inherits its value from the color property. Our example

could be written out as follows:

.element {
color: #222;
border: 2px solid currentColor;

}

]e point is that adding a color to the border rule is not necessary when it’s

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 173

the same value as color .

Border Transition on Hover

]ere are many ways to transition a border with CSS. One common way is to

modify border-width . Suppose we have two buttons:

We want to expand the border of the ^rst one, so we use border-width .

Hovering over the button will shift the position of the other button because of

the expanded border width.]ere are two main problems with this approach:

•]e transition is slow.]at is, the browser will not smoothly animate the

width. Instead of increasing it like 1, 1.1, 1.2 … 3 , it will increase like

1, 2, 3 .]is is stepped animation.

• It’s also bad for performance. A change to border-width will trigger a

repaint of the layout in the browser.]e sibling button will move around

because of the new border width. With each frame of the animation, the

browser will repaint their positions.

]e preferable solution is to use box-shadow . A shadow is much easier to

transition, and performance is good enough.

4. CSS Properties That Commonly Lead to Bugs

174 Debugging CSS

Suppose we want to animate the bottom width of an element’s border from 3

to 6 pixels. To do that, we can use box-shadow , working with its y value as an

alternative to border-width .

:root {
--shadow-y: 3px;

}

.element {
box-shadow: 0 var(--shadow-y) 0 0 #222;
transition: box-shadow 0.3s ease-out;

}

.element:hover {
--shadow-y: 6px;

}

Going further, I de^ned a CSS variable to hold the y value of the shadow, and

I changed that on hover. Using a CSS variable, instead of copying the whole

box-shadow rule again, reduces redundancy in the code.

Changing a Border’s Width Based on Screen Size

A border-width that works for laptop or desktop screens might be too big for

mobile. Usually, we would use a media query to change border-width at a

certain screen size. While that works, with the CSS tools available today, we

have better alternatives.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 175

By using CSS’ comparison function, we can create a shadow that respond to

screen size without having to use a media query.

.element {
border: min(1vw, 10px) solid #468eef;

}

]us, border-width ’s maximum value will be 10 pixels, and it will get smaller

as the screen narrows.

Adding a Border to Text Content

When I started learning CSS, I thought it was possible to add a border to text.

It’s not.]is might trip up anyone who is new to CSS. However, it is doable

with the text-stroke or text-shadow property. Let’s explore both solutions.

]e most common solution is to set color to transparent and then add the

border.

4. CSS Properties That Commonly Lead to Bugs

176 Debugging CSS

.element {
color: transparent;

-webkit-text-stroke: 1px #000;
}

While this works, the text will be inaccessible in unsupported browsers, such

as Internet Explorer and old versions of Chrome, Firefox, and Safari.

We can use CSS’ @supports query to detect whether -webkit-text-stroke is

supported and, if so, use it.

@supports (-webkit-text-stroke: 1px black) {
.element {

color: transparent;
-webkit-text-stroke: 1px #222;

}
}

Also, we can replace color: transparent with something else.

@supports (-webkit-text-stroke: 1px black) {
.element {

-webkit-text-fill-color: #fff;
-webkit-text-stroke: 1px #222;

}
}

border: none vs. border: 0

Both border: none and border: 0 will reset the border to its initial state. It

resets border-width to 0px and border-style to none , and border-color

will inherit its value from the color property.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 177

I would prefer to use border: 0 . However, if we look at another property

such as box-shadow , resetting it to box-shadow: 0 is invalid.]is is confusing

because you would expect that 0 would reset both of those properties.]e

none keyword works with both, though. I recommend using it instead of 0 .

Focus Outline

]is is not directly related to the border property, but it’s easy to confuse

border and outline . For example, a quick search on StackOver_ow for “css

border” returns a couple of questions whose titles contain “focus border, blue

border”. So, I decided to cover it here.

]e blue border or outline that appears when an element is focused is not a

bug, but rather a feature that helps keyboard users to know where they are, to

take action, and more. Its implementation is not consistent across browsers.

Instead of removing that outline, we can override it with a custom one.

4. CSS Properties That Commonly Lead to Bugs

178 Debugging CSS

.nav-item a:focus {
outline: dotted 2px blue;

}

]e possibilities are endless. But please don’t remove that outline under any

circumstances, because it will a`ect the accessibility of the website.

Box Shadow

A Shadow on One Side of an Element

When you add a shadow in CSS, it will spread out from the four sides of the

element by default. I’ve seen a common request in my research for how to add

a shadow in one direction.

With box-shadow , the spread value controls the size of the shadow’s area of

coverage. By using a negative value, we can add a shadow to one direction of

the element.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 179

.element {
/* The value of -5px is the spread of the shadow. */
box-shadow: 0 7px 7px -5px #ccc;

}

box-shadow and overflow: hidden Don’t Mix Well

If you need to use overflow for an element, and some of its children have a

box-shadow property, the shadow will be cut o` on the left and right sides.

In this example, the thumbnail’s shadow is cut o` on the left and right sides.

]e reason is that overflow: hidden is being applied to the parent element

(the card). Avoid using overflow: hidden when you want a shadow to be

visible on child elements.

Multiple Box Shadows

Sometimes we need to add multiple shadows to an element.]is is supported

and can be done without additional HTML elements or pseudo-elements. Each

shadow would be separated by a comma.

4. CSS Properties That Commonly Lead to Bugs

180 Debugging CSS

.element {
box-shadow: 0 5px 10px 0 #ccc, 0 10px 20px #222;

}

White-Space Issue With Box Shadow and Inline Image

Do you remember when we talked about the display of an image and how

an image has a little white space below it?]e reason is that it’s an inline

element.]at also happens when we use box-shadow with the parent of an

inline image.

<div class="img-wrapper">

</div>

.img-wrapper {
box-shadow: 0 5px 10px 0 #ccc;

}

In this example, there is white space below the image, which becomes visible

only after the shadow is added. Make sure to reset the display value of the

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 181

image to avoid this issue.

Box Shadow on Header Element

When the website’s header is directly followed by, say, a hero image, then

adding a shadow might be tricky. If you try to add a shadow to the header, it

will be covered by the hero section.

Solving this issue can be done by changing the stacking context of the header

element.]e easiest solution is to add the following:

.site-header {
position: relative;

}

Make sure that this ^x doesn’t have unintended side e`ects.

Shadow on Arrow of Speech Bubble

A common design pattern for tooltips and dropdown menus is to add an arrow

that points to the parent element of the tooltip or dropdown menu.]ere

are many ways to make an arrow in CSS, the most common being to create a

pseudo-element with a border on one side.

4. CSS Properties That Commonly Lead to Bugs

182 Debugging CSS

How do we add box-shadow to the arrow? We can simulate a shadow coming

from one direction by using a negative value for the x and y values.

.element::before {
content: "";
width: 20px;
height: 20px;
background-color: #fff;
position: absolute;
left: 50%;
top: -10px;
transform: translateX(-50%) rotate(45deg);
box-shadow: -1px -1px 1px 0 lightgray;

}

An inset Shadow on Image Elements

Suppose we have an image, and we want to add a translucent inner border to

it that acts as a fallback, in case the image fails to load.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 183

]e border would also be useful in preventing bright images from blending

into light backgrounds.]e ^rst solution you might think of is to use an inset

box-shadow :

img {
box-shadow: inset 0 0 0 2px rgba(0, 0, 0, 0.2);

}

Unfortunately, an inset box-shadow doesn’t work with images. We need a

workaround. I learned a few solutions while analyzing facebook.com’s new

design, which we’ll explore below.

Using an Additional HTML Element for the Border

With an additional element, we would keep its background transparent and

add a border only.]e following shows the HTML’s structure and the CSS:

<div class="avatar-wrapper">
<img class="avatar" width="40" height="40" src="avatar.jpg"

width="40" alt="">
<div class="avatar-outline"></div>

</div>

4. CSS Properties That Commonly Lead to Bugs

184 Debugging CSS

https://ishadeed.com/article/new-facebook-css/
https://ishadeed.com/article/new-facebook-css/

.avatar-wrapper {
position: relative;

}

.avatar {
display: block;
border-radius: 50%;

}

.avatar-outline {
position: absolute;
left: 0;
top: 0;
width: 100%;
height: 100%;
box-shadow: inset 0 0 0 1px rgba(0, 0, 0, 0.1);
border-radius: 50%;

}

Using an SVG image

Another interesting solution is to use an svg element, instead of an img .]is

solution is well supported in browsers and is much easier to control. Here is

the HTML:

<svg role="none" style="height: 100px; width: 100px;">
<mask id="circle">
<circle cx="50" cy="50" fill="white" r="50"></circle>

</mask>
<g mask="url(#circle)">
<image x="0" y="0" height="100%" preserveAspectRatio="xMidYMid

slice" width="100%" xlink:href="shadeed.jpg" style="height: 100px;
width: 100px;"></image>

<circle class="border" cx="50" cy="50" r="50"></circle>
</g>

</svg>

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 185

Let’s go over the SVG code:

1. We have a mask element as a circle.

2. A group follows, containing the image itself and a circle element.]e

circle element acts as a border, and it will be above the image .

.border {
stroke-width: 2;
stroke: rgba(0, 0, 0, 0.1);
fill: none;

}

Facebook uses both solutions in its 2020 redesign.]e SVG one is used rarely

for things like pro^le pictures and user avatars in the sidebar.]e solution

with the additional HTML element is used a lot in the social feed, in

comments, and more.

CSS Transforms

Applying Multiple Transforms

In CSS transforms, we can use one or more transforms on an element. For

instance, it’s possible to move an element 10 pixels to the right and then rotate

it.

.element {
transform: translateX(10px) rotate(20deg);

}

Occasionally, you might need to use multiple transforms on an element.

4. CSS Properties That Commonly Lead to Bugs

186 Debugging CSS

However, sometimes you’ll need one transform on mobile and two on desktop.

Here, we run into a common issue.

Let’s say we have a modal that should be centered horizontally on mobile.

In larger viewports, it should be centered both horizontally and vertically. A

common mistake is to accidentally reset the transform.

.modal-body {
transform: translateX(-50%);

}

@media (min-width: 800px) {
.modal-body {

transform: translate(0, -50%);
}

}

]e transform gets an unintended reset with translate(0, -50%) .]is can

easily cause confusion.]e solution is straightforward: We need to keep the

translateX(-50%) .

@media (min-width: 800px) {
.modal-body {

transform: translate(-50%, -50%);
}

}

The Order of CSS Transforms Matters

According to MDN:

]e transform functions are multiplied in order from left to right,

meaning that composite transforms are e`ectively applied in order from

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 187

right to left.

]e order of transform functions is important. Keep an eye on them to avoid

issues.

Notice how the order of the transform functions a`ects the visual position

of each rectangle. In the ^rst one, the element has been scaled ^rst, then

transformed 20 pixels to the right.]e opposite happens with the second

rectangle. When debugging CSS transforms, make sure the order meets your

needs. Don’t add transform functions randomly.

Overriding a Transform by Mistake

When I started to learn CSS, I wasn’t totally aware that the transform CSS

property can include multiple transforms, and that we need to specify all of

the transforms we want every time we declare the property.]e following is a

bug:

4. CSS Properties That Commonly Lead to Bugs

188 Debugging CSS

.element {
transform: translateY(100px);

}

.element:hover {
transform: rotate(45deg);

}

You might expect that both the translate and rotate functions will work,

but that’s not so.]e second transform will override the ^rst one; thus, we’ll

lose translateY . Instead, we would combine them:

.element:hover {
transform: translateY(100px) rotate(45deg);

}

And keep in mind the importance of order, as explained earlier.

Individual Transform Properties

At the time of writing, only Firefox 72 supports individually declared

transforms.]at would solve the issue mentioned just above really well,

because we wouldn’t have to combine all transforms together. Here is the

reworked version of the previous example:

.element {
translate: 0 100px;

}

.element:hover {
rotate: 45deg;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 189

Isn’t that simpler? You can detect whether this is supported with the

@supports media query.

@supports (translate: 10px 10px) {
/* Add the individual transform properties */

}

Transforming SVG Elements

]e coordinate system for HTML elements starts at 50% 50% . In SVG, it’s

completely di`erent; it starts at 0 0 . Because of this di`erence, using CSS

transforms with SVG elements can be confusing.

To transform an SVG element as expected, use pixel values and avoid

percentages. And keep in mind that CSS transforms aren’t supported in

Internet Explorer but are supported as of Microsoft Edge 17.

Taken from Ana Tudor on CSS-Tricks, the following example illustrates the

issue:

rect {
/* This doesn’t work in Internet Explorer and old versions of Edge.

*/
transform: translate(295px, 115px);

}

<!-- This works everywhere. -->
<rect width='150' height='80' transform='translate(295 115)' />

We can use the inline transform attribute for an SVG child element. It’s a bit

di`erent with the CSS transform, with no comma between the values.

4. CSS Properties That Commonly Lead to Bugs

190 Debugging CSS

https://css-tricks.com/transforms-on-svg-elements/

Using Transforms to Rotate Text by 90 Degrees

I wouldn’t consider this a bug, but rather a question of ^nding a better way to

solve this need. Say we want to rotate a text element.

]e ^rst approach you might consider is positioning the text and rotating it.

While this would work, there is a better solution. By using CSS’ writing-mode ,

we can easily change the writing direction from left-to-right to top-to-bottom.

]e property sets the direction (horizontal or vertical) of a text element. It was

intended for languages such as Japanese and Chinese.

/* Without writing-mode */
.title {

position: absolute;
left: 40px;
transform-origin: left top;
transform: rotate(90deg);

}

/* With writing-mode */
.title { writing-mode: vertical-lr; }

With writing-mode , we can rotate the title with one line of CSS. Browser

support is great, too.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 191

https://caniuse.com/css-writing-mode
https://caniuse.com/css-writing-mode

CSS Custom Properties (Variables)

Scoped vs. Global Variables

A scoped variable is one that can only be used inside an element, whereas a

global one, as evident by its name, can be used globally.

<div class="header">
<div class="item"></div>

</div>

.header {
--brand-color: #222;

}

We de^ne a variable, --brand-color , which will only work with the .header

element and its child items. An element with a class of .item can see the

variable.

While researching this topic, I noticed a question that is marked as correct on

StackOver_ow, but is not actually correct.]e answer claims that the following

should work:

.header {
--brand-color: #222;

}

body {
background-color: var(--brand-color);

}

4. CSS Properties That Commonly Lead to Bugs

192 Debugging CSS

]is will never work.]e body element can’t see the CSS variable because its

scoped to the .header element. For this to work, the CSS variable must be

de^ned globally:

:root {
--brand-color: #222;

}

body {
background-color: var(--brand-color);

}

]is works perfectly.

Setting a Fallback for a Variable

Sometimes when talking about fallbacks for variables, it might be confusing

whether we’re referring to a fallback for an old browser that doesn’t support

CSS variables or a fallback for the CSS variable itself.

.title {
color: #222;
color: var(--brand-color);

}

]e ^rst rule above is a fallback for old browsers, which can be automated

using a tool such as PostCSS.

However, our focus here is on a fallback for the CSS variable itself:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 193

.title {
color: var(--brand-color, #222);

}

If, for some reason, the variable --brand-color is not available, then the value

after the comma will be used instead. Note that you can use more than one

fallback value. See below:

.title {
color: var(--brand-color, var(--secondary-color, #222));

}

Retrieving All CSS Variables Defined in a Document

Sometimes, you might want to see all of the global CSS variables in your

application or website.]ankfully, we can get them from the browser’s

DevTools.

Select the html element, and on the right side, you should see all CSS

variables de^ned within it.

4. CSS Properties That Commonly Lead to Bugs

194 Debugging CSS

]e ^gure highlights how CSS variables look when we inspect the root element

of the page (the html element). What I like about Firefox is that you can toggle

a variable!]is can be very useful for debugging or testing the fallback value of

a CSS variable.

Invalidation at Computed-Value Time

A declaration will be invalid at the computed-value time if it uses a valid

custom property but if the property value, after substituting the var()

functions, is invalid. When this happens, the property computes to its

initial value. Consider the following example, taken from Lea Verou’s blog:

#toc {
position: fixed;
top: 11em;
top: max(0em, 11rem - var(--scrolltop) * 1px);

}

If the browser doesn’t support the max() comparison function, it will make

the property invalid at the computed-value time, which will compute to

initial ; and for the top property, the initial value will be 0 .]is will break

the design.]e ^x for this is to use the @supports function to detect support

for the max() function. If it’s supported, then the declaration will be used.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 195

https://lea.verou.me/2020/06/hybrid-positioning-with-css-variables-and-max/

#toc {
position: fixed;
top: 11em;

}

@supports (top: max(1em, 1px)) {
#toc {

top: max(0em, 11rem - var(--scrolltop) * 1px);
}

}

Horizontal Scrolling

]is is one of the most common issues in front-end development. Horizontal

scrolling is an indication that an element is positioned outside the viewport’s

boundaries or that an element is wider than the viewport.]e reasons vary. I

will try to summarize them here, along with strategies you can use to ^nd and

^x the problem.

Firefox Shows a scroll Label

A little assistance worth highlighting is that Firefox shows a “scroll” label for

elements that are wider than the viewport.]e label will guide you to debug

the element that is causing the horizontal scrolling.

4. CSS Properties That Commonly Lead to Bugs

196 Debugging CSS

When you click on the scroll label, Firefox will highlight the element that is

causing the horizontal scrolling.

]e h2 and p elements are causing the horizontal scrolling because they are

wider than the viewport. As a result, Firefox highlights them when the “scroll”

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 197

label is clicked.

Finding Horizontal Scrolling Bugs

Let’s focus ^rst on how to ^nd horizontal scrolling problems.]e ^rst thing

to do is to make sure that the scrollbars are shown by default. macOS, for

example, doesn’t show the scrollbars until you start scrolling (either vertically

or horizontally). Making the scrollbars visible can help us to spot scrolling

issues much more quickly.

Go to “System Preferences” > “General” > “Show scroll bars” > “Always”.

Windows shows the scrollbars by default, so there is no need to do anything

there.

Scrolling to the Left or Right

On the page you want to test, try scrolling to the left or right with your mouse

or trackpad. Keep narrowing the screen, and repeat the process. If there is no

scrolling, then activate mobile mode in the DevTools. A horizontal scrolling

issue in mobile mode might look like the following:

4. CSS Properties That Commonly Lead to Bugs

198 Debugging CSS

]is means there is an element wider than the body or html element.

Using JavaScript to Get Elements Wider Than the Body

We can take it further and use a script to detect whether an element is wider

than the body or html element.]is can be useful in a large project or one

you’re new to.

[].forEach.call(document.querySelectorAll("body *"), function (el) {
if (el.offsetWidth > document.body.offsetWidth) {
console.log(el.className);

}
});

Here, we’ve selected all elements inside the body , checked whether an

element is wider than it, and printed it out.

Using outline

By using CSS’ outline property, we can add an outline around every element

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 199

in the layout.]at can be a great help in revealing any issues. For example, it

can reveal whether any elements are taking up more space than allowed for

them.

,:before, *:after {
outline: solid 1px;

}

]is works perfectly, but we can take it to the next level with a script created

by Addy Osmani:

[].forEach.call($$("*"),function(a){a.style.outline="1px solid
#"+(~~(Math.random()*(1<<24))).toString(16)})

]is script will add an outline to every element on the page, with a di`erent

color for each one. (Having all outlines in the same color would get a bit

confusing in a complex layout.)

Note that using outline is much better than border , for a few reasons:

• An outline will be added after a border, in case an element has one. In

other words, the outline won’t take up space because it is drawn outside

4. CSS Properties That Commonly Lead to Bugs

200 Debugging CSS

https://gist.github.com/addyosmani/fd3999ea7fce242756b1

of the element’s content.

• Using a border might break some design components, in case box-

sizing is not set to border-box or if an element already has a border. It

would get confusing.

• An outline won’t be a`ected by an element’s border-radius . All

outlines added to the page will be rectangular.

Fixing Horizontal Scrolling

Now that we’ve identi^ed horizontal scrolling issues, it’s time to learn how to

debug them. When you ^nd horizontal scrolling, you might not see the cause

of the issue at ^rst glance, so you need to experiment.

Open up the browser’s DevTools and start deleting the main HTML elements

one by one, to see whether the scrolling disappears (Hint: you can use CMD +

z for macOS or CTRL + z or Windows to cancel the deletion of an element).

Once you see that the scrolling is gone, note the element that you just deleted.

Refresh the page, and dig into that element to see what’s there.]ere could be

a few reasons for the horizontal scrolling. Let’s explore them.

A Fixed Width

A ^xed width will de^nitely cause horizontal scrolling. For example, the

following will cause a bug when the viewport is narrower than 1000 pixels.

.section {
width: 1000px;

}

To ^x this, we need to set a maximum width for the element using max-width :

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 201

.section {
width: 1000px;
max-width: 100%; /* Prevent the element from getting wider than

1000 pixels when the viewport is small. */
}

A Positioned Element With a Negative Value

An element for which one of the position properties (top , right , bottom ,

left) is set to a negative value will cause a horizontal scrolling.

.element {
position: absolute;
right: -100px;

}

]e same thing can happen when you use a CSS transform to move an element

out of the viewport.

4. CSS Properties That Commonly Lead to Bugs

202 Debugging CSS

.element {
position: absolute;
right: 0;
transform: translateX(1500px);

}

If it's necessary to place an element outside its parent, then it's better to use

the following:

• apply a CSS transform

• use CSS overflow: hidden on the parent, in case you don't have another

choice

A Flexbox Wrapper Without Wrapping

When using _exbox, the row won’t wrap by default. When the viewport gets

small, horizontal scrolling will happen because not enough space is available

to show all of the elements on one line.]is is a common issue with _exbox.

To solve it, you need to force wrapping on certain screen sizes.

.section {
display: flex;
flex-wrap: wrap; /* Force flex items onto a new line in case not

enough space is available. */
}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 203

A Grid Wrapper With minmax()

When using CSS grid, there is a possibility of horizontal scrolling. Say we have

a grid with columns that are dynamic and that have a minimum width of 200

pixels.

.wrapper {
display: grid;
grid-template-columns: 200px 1fr;
grid-gap: 16px;

}

Everything looks good until the viewport gets narrower.]e space isn’t

enough, and as a result, horizontal scrolling occurs.

4. CSS Properties That Commonly Lead to Bugs

204 Debugging CSS

To ^x this, we can apply the grid only when space is enough, using a media

query.

@media (min-width: 400px) {
.wrapper { /* The grid goes here. */ }
}

A Long Word or Inline Link

If an article has a very long word or link, it can easily cause horizontal over_ow

if it’s not handled properly.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 205

As you see, the long word causes horizontal scrolling.]e solution is to use the

overflow-wrap CSS property. It prevents a long word from over_owing its line

box.

.content p {
overflow-wrap: break-word;

}

It’s worth mentioning that the property has been renamed from word-wrap to

overflow-wrap .

An Image Without max-width: 100%

If for any reason you’re not using a CSS reset ^le, then you need to make sure

that any image on the website doesn’t exceed its parent’s width. To do this, all

you need is the following:

img { max-width: 100%; }

You guessed it — forgetting to include that line will cause horizontal scrolling.

4. CSS Properties That Commonly Lead to Bugs

206 Debugging CSS

Transition

CSS transitions enable us to animate an element smoothly from one state to

another. Let’s explore some common issues with them.

Transition on Resize

An annoying problem with transitions is seeing elements move and animate

when the browser window is resized.]is is because you’ve applied the

transition to all properties, which breaks the behavior and might even cause

performance issues.

.element {
transition: all 0.2s ease-out;

}

]e all keyword tells us that the transition will be applied to all properties

of the element.]is might be OK for one element, but using such a pattern

at scale is not recommended. When I started learning about CSS, I got used to

making the following mistake:

* {
transition: all 0.2s ease-out

}

]is bit of CSS adds a transition to every element on the page. Don’t do this,

please! It’s not a good idea.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 207

Transitioning Height

A common need is to transition an element’s height — for example, from 0

to auto .]e auto value would make the height of the element equal the

content within.

.element {
height: 0;
transition: height 0.2s ease-out;

}

.element:hover {
height: auto;

}

Unfortunately, this is not possible in CSS. You can’t transition to auto .

However, there is a workaround. Instead of using height , we can use a max-

height value that is great than the content’s height. For example, if we have a

mobile menu with a height of 200 pixels, then the value of max-height should

be at least 300 pixels.]e reason for the greater value is to make sure that the

height of the element never gets to that point.

.element {
max-height: 0;
overflow: hidden;
transition: max-height 0.2s ease-out;

}

.element:hover {
max-height: 300px;

}

I added overflow: hidden to clip any content that might be visible when max-

4. CSS Properties That Commonly Lead to Bugs

208 Debugging CSS

height: 0 is set on the element.

Transitioning Visibility and Display

Transitioning the display property of an element is not possible. However,

we can combine the visibility and opacity properties to mimic hiding an

element in an accessible way.

Here we have a menu that should be shown on mouse hover and keyboard

focus. If we used only opacity to hide it, then the menu would still be there

and its links clickable (though invisible).]is behavior will inevitably lead to

confusion. A better solution would be to use something like the following:

.menu {
opacity: 0;
visibility: hidden;
transition: opacity 0.3s ease-out, visibility 0.3s ease-out;

}

.menu-wrapper:hover .menu {
opacity: 1;
visibility: visible;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 209

CSS’ visibility property is animatable. When added in the transition

group, it will be animated, and the menu will fade in and out nicely, without

suddenly disappearing.

Overflow

]e value of the overflow property is visible by default. Other values are

hidden , scroll , and auto .

overflow-y: auto vs. overflow-y: scroll

When we have a component with a ^xed height and scrollable content, using

overflow-y: scroll is tempting.]e downside is that when the content is too

short, a scrollbar will be visible on the Windows operating system. For macOS,

the scrollbar is hidden by default.

.section {
overflow-y: scroll;

}

4. CSS Properties That Commonly Lead to Bugs

210 Debugging CSS

To ^x this and show the scrollbar only when the content goes long, use auto

instead.

.section {
overflow-y: auto;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 211

Scrolling on Mobile

When we have, say, a slider, it’s not enough to add overflow-x and call it a

day. In Chrome on iOS, we need to keep scrolling and moving the content

manually. Luckily, there is a property that enhances the scrolling experience.

.wrapper {
overflow-x: auto;
-webkit-overflow-scrolling: touch;

}

]is is called momentum-based scrolling. MDN describes it thus:

where the content continues to scroll for a while after ^nishing the scroll

gesture and removing your ^nger from the touchscreen.

As an advice, make sure to avoid using -webkit-overflow-scrolling: touch

for a big scrolling context (e.g. a full page layout) as this might cause some

4. CSS Properties That Commonly Lead to Bugs

212 Debugging CSS

https://developer.mozilla.org/en-US/docs/Web/CSS/-webkit-overflow-scrolling

random bugs on Safari iOS.

Inline-Block Elements With overflow: hidden

According to the CSS speci^cation:

]e baseline of an “inline-block” is the baseline of its last line box in the

normal _ow unless it has either no in-_ow line boxes or if its “over_ow”

property has a computed value other than “visible”, in which case the

baseline is the bottom margin edge.

When an inline-block element has an overflow value other than visible ,

this will cause the bottom edge of the element to be aligned according to the

text baseline of its siblings.

To solve this, change the alignment of the button that has overflow: hidden .

.button {
vertical-align: top;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 213

Text Overflow

]e text-overflow property sets how text with an over_ow is shown.]e

most common value is ellipsis :]e text will get clipped, and at the end of it

will be three dots, like this… .

]e property is sometimes confusing to use. A common hurdle is that a

declaration of text-overflow: ellipsis does not work as you would expect.

span {
text-overflow: ellipsis;

}

For text-overflow to work, the following is required:

• the element’s display type should be set to block ,

• the element must have the overflow and white-space properties set.

span {
display: block;
text-overflow: ellipsis;
overflow: hidden;
white-space: nowrap;

}

4. CSS Properties That Commonly Lead to Bugs

214 Debugging CSS

With these set, it will work as expected. Out of curiosity, I tested other display

types, including inline-block and flex , and none of them work as expected.

The !important Rule

Using the !important rule without good reason can cause bugs and waste

your time. Why is that? Because it breaks the natural cascade of CSS. You might

try to style an element and ^nd that the style is not working.]e reason could

be that another element is overriding that style.

.element { color: #222 !important; }

.element { color: #ccc; }

]e element’s color is #222 , even though a di`erent color is declared a second

time. In a large project, using !important randomly can cause a lot of

confusion.

Avoid !important in general. Here are some things to consider before using it:

• Try to identify the source of the speci^city issue with the DevTools.

• It’s sometimes warranted when you’re working with a third-party CSS ^le.

You might not have any option but to override the external style.

Utility CSS classes have become more popular recently. I would consider these

a good justi^cation for !important .

<div class="d-block"></div>

.d-block { display: block !important; }

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 215

]e d-block class sets the element to display as a block type. Adding

!important ensures it will be applied as expected.

Flexbox

]e _exbox layout module provides us with a way to lay out a group of items

either horizontally or vertically.]ere are many common issues with _exbox:

Some are done mistakenly by the developer, and others are bugs in a browser’s

implementation.

User-Made Bugs

Forgetting flex-wrap

When setting an element as a wrapper for _exbox items, it’s easy to forget

about how the items should wrap. Once you shrink the viewport, you notice

horizontal scrolling.]e reason is that _exbox doesn’t wrap by default.

<div class="section">
<div class="item"></div>
<div class="item"></div>
<div class="item"></div>

</div>

.section { display: flex; }

4. CSS Properties That Commonly Lead to Bugs

216 Debugging CSS

Notice how the items aren’t wrapping onto a new line, thus causing horizontal

scrolling.]at is not good. Always make sure to add flex-wrap: wrap .

.section {
display: flex;
flex-wrap: wrap;

}

Using justify-content: space-between for Spacing

When we use _exbox to make, say, a grid of cards, using justify-content:

space-between can be tricky.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 217

]e grid of cards above is given space-between , but notice how the last row

looks weird? Well, the designer assumed that the number of cards would

always be a multiple of four (4, 8, 12, etc.).

CSS grid is recommended for such a purpose. However, If you don’t have any

option but to use _exbox to create a grid, here are some solutions you can use.

Using Padding and Negative Margin

<div class="grid">
<div class="grid-item">

<div class="card"></div>
</div>
<!-- + 7 more cards -->

</div>

4. CSS Properties That Commonly Lead to Bugs

218 Debugging CSS

.grid {
display: flex;
flex-wrap: wrap;
margin-left: -1rem;

}

.grid-item {
padding: 1rem 0 0 1rem;
flex: 0 0 25%;
margin-bottom: 1rem;

}

Each grid-item has padding on the left side, but it’s not needed for the ^rst

grid item of each row. To avoid having to use complex CSS selectors, we can

just push the wrapper to the left by using a negative margin on the left side.

Adding Empty Spacer Elements

While studying Facebook’s new CSS, I noticed an interesting use case of a

spacer element for the problem we are solving now.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 219

If we have a grid of six items, the last two will be added as empty spacer

elements.]is ensures that space-between works as expected.

<!-- before -->
<div class="grid">

<div class="grid-item">…</div>
<div class="grid-item">…</div>
<div class="grid-item">…</div>

</div>

<!-- after -->
<div class="grid">

<div class="grid-item">…</div>
<div class="grid-item">…</div>
<div class="grid-item">…</div>
<div class="empty-element">…</div>

</div>

Again, the empty element’s purpose is to keep the spacing working as

expected. Of course, this should be done dynamically.

Hiding a Flexbox Element in Certain Viewports

Hiding a _exbox element on mobile and showing it on desktop can be tricky.

4. CSS Properties That Commonly Lead to Bugs

220 Debugging CSS

.element { display: none; }

@media (min-width: 768px) {
.element {

display: block;
}

}

You might thoughtlessly type display: block because that is the common

way to show a hidden element. However, because the element is a _ex

wrapper, a display value of block could break the layout.]is mistake could

lead to some debugging time.

@media (min-width: 768px) {
.element {

display: flex;
}

}

Stretched Images

By default, _exbox does stretch its child items to make them equal in height if

the direction is set to row , and it makes them equal in width if the direction

is set to column .]is can make an image look stretched.

<article class="recipe">

<h2>Recipe title</h2>

</article>

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 221

.recipe { display: flex; }

img { width: 50%; }

A simple online search reveals that this issue is common, and it has

inconsistent browser behavior.]e only browser that still stretches an image

by default is Safari version 13. To ^x it, we need to reset the alignment of the

image itself.

.recipe img { align-self: flex-start; }

While Safari version 13 is the only one that has the inconsistent behavior of

stretching the image, the button element is stretched in all browsers.]e ^x

is the same (align-self: flex-start), but small details like this make you

think about the weirdness of browsers.

We see a related problem when a _ex wrapper has its direction set to column .

<div class="card">
<h2 class="card__title"></h2>
<p class="card__desc"></p>

</div>

4. CSS Properties That Commonly Lead to Bugs

222 Debugging CSS

.card {
display: flex;
flex-direction: column;

}

]e .card__category element will stretch to take up the full width of its

parent. If this behavior is not intended, then you’ll need to use align-self to

force the span element to be as wide as its content.

.card__category {
align-self: flex-start;

}

Flexbox Child Items Are Not Equal in Width

A common struggle is getting _exbox child items to be equal in width.

According to the speci^cation:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 223

If the speci^ed _ex-basis is auto, the used _ex-basis is the value of the

_ex item’s main size property. (]is can itself be the keyword auto, which

sizes the _ex item based on its contents.)

Each _ex item has a flex-basis property, which acts as the sizing property for

that item. When the value is flex-basis: auto , the basis is the content’s size.

So, the child item with more text will — you guessed it — be bigger.]is can be

solved by doing the following:

.item {
flex-grow: 1;
flex-basis: 0%;

}

With that, each child item will take up the same space as its siblings.

Setting the Minimum Width to Zero With Flexbox

]e default value of min-width is auto , which is computed to 0 .]e min-

width of a _ex item is equal to the size of its contents.

According to the CSS speci^cation:

By default, _ex items won’t shrink below their minimum content size

(the length of the longest word or ^xed-size element). To change this, set

the min-width or min-height property.

Consider the following example:

4. CSS Properties That Commonly Lead to Bugs

224 Debugging CSS

https://www.w3.org/TR/css-flexbox-1/

]e person’s name is long, which causes horizontal scrolling. So, we add the

following to truncate it:

.c-person__name {
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;

}

]e trick is to add min-width: 0 to the element.

.c-person__name {
/* Other styles */
min-width: 0;

}

Here is how it should look when ^xed:

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 225

Flex Formatting Context

It’s worth mentioning that when we assign display: flex to an element,

the _ex container establishes a new _ex formatting context. Adding float

won’t work. Moreover, there is no margin collapse for the child items of a _ex

container.

Browser Implementation Bugs

Let’s walk through some of the most common issues with _exbox related to

incorrect or inconsistent browser implementation.

In this section, I will rely heavily on Flexbugs, a great resource by Philip Walton

for all browser bugs related to _exbox.

4. CSS Properties That Commonly Lead to Bugs

226 Debugging CSS

https://github.com/philipwalton/flexbugs

flex-basis Doesn’t Support calc()

When using the shorthand version of the flex property, Internet Explorer

versions 10 to 11 ignore any calc() functions.

.element {
flex: 0 0 calc(100% / 3);

}

]e solution is to write out the longhand version.

.element {
flex-grow: 0;
flex-shrink: 0;
flex-basis: calc(100% / 3);

}

In Internet Explorer 10, the calc() function doesn’t work in the longhand

flex-basis declaration. To work around this, we do the following:

.element {
flex: 0 0 auto;
width: calc(100% / 3);

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 227

Some HTML Elements Can’t Be Flex Containers

Elements such as button , fieldset , and summary don’t work as _ex

containers.]e _exbox repository gives the following reason:

]e browser’s default rendering of those element’s UI con_icts with the

display: flex declaration.

Consider the following example:

<fieldset>
<legend>Enter your information</legend>
<p>

<label for="name">Your name</label>
<input type="text" id="name">

</p>
<p>

<label for="email">Email address</label>
<input type="email" id="email">

</p>
</fieldset>

fieldset {
display: flex;
flex-wrap: wrap;

}

4. CSS Properties That Commonly Lead to Bugs

228 Debugging CSS

You would assume that the inputs will be displayed next to each other, right?

]at’s not the case with this bug. It won’t work. A workaround is to wrap the

inputs in another element that can act as a _ex container.

<fieldset>
<div class="inputs-group">

<!-- inputs -->
</div>

</fieldset>

.inputs-group {
display: flex;
flex-wrap: wrap;

}

]at ^xes the issue.

]e button element bug is ^xed in Chrome, Firefox, and Safari.

Inline Elements Not Treated as Flex Items

All inline elements, including ::before and ::after pseudo-elements, don’t

work as _ex items in Internet Explorer 10. In version 11, this bug was ^xed

for regular inline elements, but it still a`ected the ::before and ::after

pseudo-elements.

<div class="element"></div>

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 229

.element {
display: flex;

}

.element::before {
content: "Hello";
flex-grow: 1;

}

]e ::before pseudo-element won’t work as a _ex item.]e workaround is

to add a display value other than inline to the item (for example, inline-

block , block , or flex).

.element::before {
content: "Hello";
flex-grow: 1;
display: block;

}

Importance Is Ignored in flex-basis When flex Shorthand Is Used

In Internet Explorer 10, the !important rule doesn’t work with flex-basis in

the shorthand version.

4. CSS Properties That Commonly Lead to Bugs

230 Debugging CSS

.element {
flex: 0 0 100% !important;

}

]is won’t work.]e flex-basis setting of 100% will be ignored. We need to

write out the longhand version.

.element {
flex: 0 0 100% !important;
flex-basis: 100% !important;

}

Note that this bug was ^xed in Internet Explorer 11.

Centering a Flex Item With margin: auto Doesn’t Work With Flexbox Wrapper
Set to Column

You can use the margin: auto to center a _ex item in its container. In Internet

Explorer versions 10 to 11, this feature doesn’t work when the direction of the

_exbox wrapper is a column.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 231

<div class="wrapper">
<div class="item"></div>

</div>

.wrapper {
display: flex;
flex-direction: column;

}

.item { margin: auto; }

Instead of the .item being centered, it is rendered according to align-self:

stretch (the default value).]e solution is either to:

• use align-self: center on the item itself,

• use align-items: center on the wrapper.

]is issue has been ^xed in Microsoft Edge.

Flex Items Don’t Justify Correctly With max-width

When max-width is used for a _ex item, in conjunction with justify-content

on the _ex wrapper, the spacing is not calculated correctly.

4. CSS Properties That Commonly Lead to Bugs

232 Debugging CSS

.item {
flex: 1 0 0%;
max-width: 25%;

}

]e expected result here is that the size of the elements would start from 0%

(flex-basis) and won’t be more than 25% (max-width). We can achieve the

same e`ect by setting a value for max-width instead of flex-basis , and we

can let it shrink by setting a minimum size (min-width for a row direction,

and min-height for a column direction).

.item {
flex: 0 1 25%;
min-width: 0%;

}

Firefox’s Flexbox Inspector

Firefox has some great resources for debugging _exbox components in its

DevTools. It shows a label of “_ex” next to each element that is a _ex container.

When an element is hovered over in the “Inspector” panel, the information

bar (the dark-grey one) shows the type of the _ex element.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 233

]e great thing is that the “_ex” label is clickable. When it’s clicked, Firefox will

highlight the _ex layout items. It can also be accessed from the little _exbox

icon beside the CSS declaration in the “Rules” panel.

]e highlight is useful when you’re in doubt of how a _exbox layout works.

Take advantage of these tools — they enable you to make sure that nothing

weird is happening and clear up any confusion about a _exbox container.

4. CSS Properties That Commonly Lead to Bugs

234 Debugging CSS

CSS Grid

Unintentional Implicit Tracks

A common misstep with CSS grid is to create an additional grid track by

placing an item outside of the grid’s explicit boundaries. First, what’s the

di`erence between an implicit and explicit grid?

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr;

}

.item-1 {
grid-column: 1 / 2;

}

.item-2 {
grid-column: 3 / 4;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 235

]e .item-1 element has an implicit grid track, and it’s placed within the

grid’s boundaries.]e .item-2 element has an explicit grid track, which

places the element outside of the de^ned grid.

CSS grid allows this.]e problem is when a developer is not aware that an

implicit grid track has been created. Make sure to use the correct values for

grid-column or grid-row when working with CSS grid.

A Column With 1fr Computes to Zero

]ere is a case in which a column with 1fr will compute to a width of 0 ,

which means it’s invisible.

<div class="wrapper">
<div class="item"></div>
<div class="item"></div>
<div class="item"></div>
<div class="item"></div>

</div>

.wrapper {
display: grid;
grid-template-columns: repeat(3, minmax(50px, 200px)) 1fr;
grid-template-rows: 200px;
grid-gap: 20px;

}

We have three items with a minimum of 50 pixels and a maximum of 200

pixels.]e last item should take the remaining space, 1fr . If the sum of the

widths of the ^rst three items is less than 600 pixels, then the last column will

be invisible if:

4. CSS Properties That Commonly Lead to Bugs

236 Debugging CSS

• it has no content at all,

• it has no border or padding.

Keep that in mind when working with CSS grid.]is issue might be confusing

at ^rst, but when you understand how it works, you’ll be ^ne.

Equal 1fr Columns

You might think that the CSS grid fraction unit, fr , works as a percentage. It

doesn’t.

<div class="wrapper">
<div class="item">Item 1</div>
<div class="item">Item 2</div>
<div class="item">Item 3</div>

</div>

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 237

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-template-rows: 200px;
grid-gap: 20px;

}

]e items look equal. However, when one of them has a very long word, its

width will expand.

<div class="wrapper">
<div class="item">Item 1</div>
<div class="item">I’m special because I have

averylongwordthatmightmakemebiggerthanmysiblings.</div>
<div class="item">Item 3</div>

</div>

Why does this happen? By default, CSS grid behaves in a way that gives the

1fr unit a minimum size of auto (minmax(auto, 1fr) . We can override this

4. CSS Properties That Commonly Lead to Bugs

238 Debugging CSS

and force all items to have equal width.]e default behavior might be good for

some cases, but it’s not always what we want.

.wrapper {
/* other styles */
grid-template-columns: repeat(3, minmax(0, 1fr));

}

Beware that the above will cause horizontal scrolling. See the section on

horizontal scrolling for ways to solve it.

Setting Percentage Values

]e unique thing about CSS grid that it has a fraction unit, which can be

used to divide columns and rows. Using percentages goes against how CSS grid

works.

.wrapper {
display: grid;
grid-template-columns: 33% 33% 33%;
grid-gap: 2%;

}

Using percentage values for grid-template-columns and grid-gap would

cause horizontal scrolling. Instead, use the fr unit.

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-gap: 1rem;

}

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 239

Misusing auto-fit and auto-fill

I wouldn’t consider this a bug, but misusing auto-fit and auto-fill can lead

to an unexpected result. Let’s di`erentiate them ^rst. Take the following grid:

.wrapper {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
grid-gap: 1rem;

}

Out goal is to have a minimum 200-pixel width for the grid item.

In auto-fill , the empty tracks won’t collapse to 0 , thus keeping the space

as it is.

In auto-fit , the browser will keep a minimum size of 200 pixels, and if space

is available, the empty tracks will collapse to 0 .]us, the grid items will take

up the remaining space.

I was working on coding a layout of a new section for a client, and while

testing, I found a bug telling me that there was an empty space on the right

side. I opened up the DevTools and realized that I was using auto-fill for the

grid.

4. CSS Properties That Commonly Lead to Bugs

240 Debugging CSS

As you can see, this is not exactly a bug, but it a`ected the result and confused

me.

Horizontal Scrolling and minmax

As I mentioned in the section on horizontal scrolling, using minmax() without

proper testing can cause grid items to be wider than the viewport, which will

result in horizontal scrolling.

.wrapper {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(350px, 1fr));
grid-gap: 16px;

}

If the viewport is narrower than 350 pixels, then horizontal scrolling will

occur. We can avoid that by setting up a media query.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 241

.wrapper {
display: grid;
grid-template-columns: 1fr;
grid-gap: 16px;

}

@media (min-width: 400px) {
.wrapper {

grid-template-columns: repeat(auto-fit, minmax(350px, 1fr));
}

}

]is way, the minmax() function will be applied only when there is enough

space.

Browser Implementation Issues

Even though CSS grid is relatively new (being released in March 2017), it

can still get challenging, especially when supporting the old version of it

released in Internet Explorer 11. To avoid any issues, I recommend using

the @supports query to detect whether the browser supports the new grid

speci^cation.

@supports (grid-area: auto) {
/* CSS grid code goes here */

}

I used grid-area because it’s a part of the new grid speci^cation. With this,

Internet Explorer 11 won’t apply CSS grid. Supporting grid in Internet Explorer

is not impossible, but you need to stick to its old implementation. Rachel

Andrew has written about the topic in detail.

4. CSS Properties That Commonly Lead to Bugs

242 Debugging CSS

https://rachelandrew.co.uk/archives/2016/11/26/should-i-try-to-use-the-ie-implementation-of-css-grid-layout/
https://rachelandrew.co.uk/archives/2016/11/26/should-i-try-to-use-the-ie-implementation-of-css-grid-layout/

Handling Long and Unexpected Content

]e heading of this section echoes an article I wrote for CSS-Tricks. I will

revisit that article and list the issues that come up in our daily work. We

sometimes put e`ort into building components without considering how long

the content might run.]ink about such questions, and decide what to do in

those cases.

When you code CSS, you’re writing abstract rules to take unknown

content and organize it in an unknown medium. - Keith J Grant

Forgetting to Set Padding Between Text Label and Icon

In some layouts, we need to add an icon as a CSS background for an accordion

element or an input ^eld.

Notice how the text overlaps the icon.]at’s because there is no padding on

the right. Fixing this is simple, but ^nding the bug before a user does is hard.

I will explain some techniques to prevent bugs from happening in the next

chapter.

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 243

https://css-tricks.com/handling-long-unexpected-content-css/
https://twitter.com/keithjgrant/status/842728744653676544

.accordion { padding-right: 50px; }

]e same thing can happen with an input that has an icon.

Long Name in Media Object

“Media object” is a term coined by Nicole Sullivan. It consists of an image on

the left and descriptive text on the right. Without much e`ort on our part, the

text will break onto a new line in case it’s long and there is not enough space

for it to ^t beside the image. However, if it goes on a new line, it could break

the design or look weird.

]ere is more than one solution to this problem.]e most common are:

4. CSS Properties That Commonly Lead to Bugs

244 Debugging CSS

http://www.stubbornella.org/content/2010/06/25/the-media-object-saves-hundreds-of-lines-of-code/

• the good ol’ _oat,

• _exbox.

Suppose our markup looks like this:

<div class="card-meta">

<div class="author">
Written by
<h3>Ahmad Shadeed</h3>

</div>
</div>

Solution 1: Float

To do this, we would need to _oat the image to the left and then add a clear^x

to account for the issue caused by _oats.

.card-meta img { float: left; }

.card-meta::after {
content: "";
display: table;

}

Solution 2: Flexbox

Flexbox is better, because we only need to apply it to the parent element.

.card-meta { display: flex; }

]is will keep the image and text on the same line. However, we should

4. CSS Properties That Commonly Lead to Bugs

Debugging CSS 245

account for another scenario, which is if we don’t want the person’s name to

wrap onto a new line? In this case, text-overflow to the rescue.

.card-meta h3 {
white-space: nowrap;
text-overflow: ellipsis;
overflow: hidden;

}

Wrapping Up

Now that we’ve reached the end of this chapter, I hope you’re more

comfortable with the most common CSS properties and their issues. Of course,

I haven’t mentioned every single property, but I’ve tried to include the things

that you will be addressing in your daily work.

If you’ve gone through the ^rst four chapters carefully, then you will be able

to tackle any CSS issue from the start to ^nish using the techniques you’ve

learned.

4. CSS Properties That Commonly Lead to Bugs

246 Debugging CSS

]is whole book is about ^nding CSS issues and solving them. Can we do the

opposite? In this section, we will explore di`erent ways to break a CSS layout

and make it fail. Yes, you read that correctly.

Add Long Text Content

As we’ve seen, a common reason for a layout bug is text being longer than

expected. Adding long text randomly can reveal CSS issues that you haven’t

thought about.

]e article title in the ^rst box is short; the designer wrote it to make it ^t.

]e developer copied the text and implemented the component based on that.

When I tried to add long text, an interesting thing happened!]e link icon was

pushed to a new line.

We can’t assume this is an error, but we can ask ourselves a couple of

questions:

• Is this behavior intentional?]at is, when the text gets long, should it

push other items to a new line?

5. Breaking a Layout Intentionally

248 Debugging CSS

• Or is this unexpected, and should it not happen at all?

Some CSS issues happen due to a misunderstanding between the designer

and developer.]e designer hasn’t worked out all possible scenarios, and the

developer hasn’t thought about asking questions about the component.]e

fault is on both sides.

forceFeed.js

]ankfully, tools exist to help us add random content and test for issues.

forceFeed.js is one of them. Let’s go through how it works.

Install

First, install it via npm or bower :

npm install forcefeed
/* or */
bower install forcefeed

Or simply download the JavaScript ^le from the GitHub repository.

Include the Script

Include the script after the page’s content and before the end of the body

element.

<script src="path/to/forceFeed.js"></script>
</body>

5. Breaking a Layout Intentionally

Debugging CSS 249

https://github.com/Heydon/forceFeed

Add Attribute to Elements

Add the attribute data-forcefeed to the elements you want to set random

content on.

<div class="person">
<h3 class="name" data-forcefeed="words|2"></h3>
<p class="description" data-forcefeed="sentences|3|6">This will be

overridden</p>
</div>

]e ^rst one, data-forcefeed="words|2" , will generate two random words,

according to the de^ned array, and data-forcefeed="sentences|3|6" will

generate a random number of sentences ranging between three and six.

Add the Arrays

window.words = ['Design', 'Work', 'Awesome', 'Cool'];

window.sentences = ['Can you break me?', 'I love food and baking',
'How are you today?', 'When was the last time you saw mom?'];

Execute the Script

Finally, we need to make the script work on the page.

forceFeed({words: window.words, sentences: window.sentences});

With that, we can now refresh the page (Command or Control + R) to see the

content change. Perhaps you will notice a broken element.

5. Breaking a Layout Intentionally

250 Debugging CSS

Try Content in Different Languages

If you’re working on a multilingual website, then the chances are high that

some design components will break when they have di`erent content.

We might have an English title that has modi^ed kerning (the spacing

between characters). It might work great, but when the translated page has

Arabic content in right-to-left (RTL) mode, the text breaks. Arabic has no such

thing as kerning.

Another bug can occur when we assume a speci^c minimum size for a button

component. When the content is translated into another language, it might

look di`erent.

On Twitter, the “Done” button looks good in English. In Arabic, the button

looks too small and is not easily noticeable.]e reason is that the button has a

5. Breaking a Layout Intentionally

Debugging CSS 251

rule of min-width: 40px .]is can be ^xed by increasing the minimum width

of the button.

]ese bugs related to language are important and shouldn’t be ignored. If you

are interested in learning more about the issue, I’ve written a complete guide

about it, RTL Styling 101.

Resize the Browser’s Window

]is is one of the easiest ways to break a layout and uncover its weaknesses.

When you resize the browser window, you’ll see some issues that you wouldn’t

normally notice. One interesting area to focus on is what I call “in-between”

design cases. I’ve written a detailed article about it on my blog, and I’d like to

go over the concepts again here.

In responsive web design, it’s common to work on di`erent variations

of a page. A typical web page should have two variations at least, one

for small screen sizes (e.g. mobile) and the other for large screens (e.g.

desktop). Often times, we forget about the in-between design variation,

and we end up with a component or section being too wide or narrow.

In other words, you will uncover more issues when you test the in-between

design states. Believe me, you will ^nd some interesting issues that you or the

team haven’t considered.

5. Breaking a Layout Intentionally

252 Debugging CSS

http://rtlstyling.com/
https://ishadeed.com/article/in-between/

Here we have some cards that need to be one column on mobile and two

columns on tablets.]e in-between state makes the cards look too wide,

which can a`ect readability. While this might not seem like a bug, it is.

Another clear example of the importance of testing the in-between state is the

following footer design, taken from a real project.

5. Breaking a Layout Intentionally

Debugging CSS 253

In the middle view, the social media icon for Instagram breaks onto a new line.

Such behavior is not expected and shouldn’t happen at all.

]is should suace to illustrate that such issues can’t be ignored.]anks to the

simple trick of browser resizing, we can discover them fairly easily.

Avoid Placeholder Images

Images play an important role in making web pages accessible and easy to

read. Your job as a front-end developer is to provide a solid structure for

a component that can handle any image used. For example, you might be

working on a hero section with a perfect cover image and accompanying text.

5. Breaking a Layout Intentionally

254 Debugging CSS

Breaking such a component is easy — just change the image. Suddenly, you’ll

see that the text is hard to read. We’ve forgotten to place a semi-transparent

black overlay that would make the text easy to read. Unfortunately, some

designers assume that the implementation of their design will exactly match

their mockup.]at isn’t the case. A lot of changes will happen in the

development process.

By changing images and trying di`erent styles on them, we can uncover

hidden issues.

Image sizes and dimensions are another area that deserves attention. As

the front-end developer, you might prepare a media component that can be

used for images in things like recipes and articles. One question to pose is:

What image dimensions are expected or recommended? Should the content

manager be restricted to uploading images with prede^ned sizes to the

content management system (CMS), or should they be free to upload whatever

sizes they like?

5. Breaking a Layout Intentionally

Debugging CSS 255

We have a media component containing an image here.]e ^rst one is the

default image provided by the designer, and the second one is added by

an author to the CMS.]at inconsistency is not good.]e designer and

developer should agree on image sizes, and then teach the authors to follow

that standard.

If you don't have much control over the image size, then I recommend using

CSS object-fit with a ^xed height for the image.]at can keep all images

within the same height without breaking them.

.media__thumb {
height: 220px;
object-fit: cover;

}

Open in Internet Explorer

Nope, this is not a joke. Internet Explorer is well known for breaking websites.

If your website is required to work in Internet Explorer, then you will need to

think about every CSS decision you’ve made. For example, if you’ve used CSS

5. Breaking a Layout Intentionally

256 Debugging CSS

grid for the layout, then it’s recommended to add a fallback using _exbox or an

older layout method (_oats, inline-block, etc.).

Rotate Between Portrait and Landscape
Orientation

While working on an update to the mobile menu of my personal website, I

found an interesting design issue. Something as simple as rotating the device

from portrait to landscape orientation can reveal unexpected issues, especially

if some elements are ^xed or absolutely positioned.

]e “close” button is absolutely positioned and horizontally centered. In

landscape orientation, the button overlaps with the navigation, which is

clearly not intended. Testing in both orientations is important.

5. Breaking a Layout Intentionally

Debugging CSS 257

Wrapping Up

In this chapter, we learned about how to intentionally break a layout. Next, we

will explore browser inconsistencies and implementation bugs.

5. Breaking a Layout Intentionally

258 Debugging CSS

We all know that web browsers have inconsistencies, and that’s ^ne. As web

developers, we have to ^x those on day one of a project, so that we can

start with a clean and solid code base. In this chapter, I will go over the

most common CSS resets, along with how to make reduced test cases and do

regression testing.

Using a CSS Reset File

CSS reset ^les are an important part of web development.]e two most

common are Reset CSS by Eric Meyer and Normalize.css by Nicolas Gallagher.

By using a CSS reset ^le, you will save yourself a lot of time ^xing and

debugging issues that have already been ^xed. Take the following example

from Normalize.css:

/**
* 1. Correct the line height in all browsers.
*/

html {
line-height: 1.55; /* 1 */

}

Having a consistent line-height across all browsers is important. It will save

you time from ^guring out why the line-height does not work consistently

across browsers.

Another example is making elements such as b and strong have a bold font

weight.]is doesn’t work consistently in all browsers, so adding it will prevent

unexpected behavior.

6. Browser Inconsistencies and Implementation Bugs

260 Debugging CSS

/**
* Add the correct font-weight in Chrome, Edge, and Safari.
*/

b,
strong {
font-weight: bold;

}

]ese are only a couple of examples. Remember to include a CSS reset ^le. If

you don’t want to, then at least work on your own reset ^le. Some will argue

that a reset ^le is not always needed because it will increase the total size of

your CSS ^les. I agree. But you can easily create your own small ^le and be

done with it.

Using Normalize.css

Compared to some other resets, Normalize.css only ^xes issues with browser

consistency, without resetting everything. It will keep common CSS styles

among web browsers. For example, the margins of heading elements such as

h1 and h2 will be preserved.

Here is a snippet from Normalize.css that resets the body element’s margin:

body {
margin: 0;

}

Depending on the nature of the project you’re working on, you can decide

what’s best to use.

6. Browser Inconsistencies and Implementation Bugs

Debugging CSS 261

Browser Implementation Bugs

Web browsers are made by humans, and humans make errors. It’s totally

normal to ^nd that a browser does not support a particular feature as expected

or implements a feature di`erently than other browsers. In this section, we’ll

walk through the steps of ^nding a bug in browser implementation.

First, what is a browser implementation bug? It’s a bug caused by the browser

itself.]e bug might be in one or multiple browsers and is caused by improper

implementation of the CSS speci^cation.

Verify the Bug

Is there really a bug, or are you mistaken? It’s a waste of time to start

debugging something, only to realize later that it’s not a bug, but rather a

deliberate feature.

Some bugs are ones that appear in all browsers on all devices — those are easy

to ^nd. Other bugs appear in speci^c browsers or devices, like the Nexus 5

Android phone — ^nding those are harder because you would need an actual

Nexus 5 device or an online emulator, which is usually not free.

Verifying that a bug is indeed a bug will vary according to its complexity. Once

you are sure that it’s a bug, then you’ll move on to the next step.

Decide on the Correct Behavior

Once you’ve veri^ed that it’s a bug, you’ll need to decide how the feature ought

to look and behave. For example, you could decide that a particular element’s

height should be between 150 and 450 pixels, and if it surpasses that, then it

6. Browser Inconsistencies and Implementation Bugs

262 Debugging CSS

will be considered a bug.

Isolate the Bug

Once you’ve veri^ed the bug and decided on the correct behavior, try to

reproduce it. Let’s learn how to reproduce a bug through test-case reduction.

Test-Case Reduction

One of the most underrated skills among web developers is creating a reduced

test case. When we encounter a problem with a web page we’re building, we

need to identify the cause.]e problem might be across browsers or only on

mobile browsers. Debugging an issue by working with a page’s entire HTML

and CSS is not ideal. We need to isolate the problem in a test case, so that our

time is spent more on ^xing the problem than on identifying it.

Let’s learn how to make a reduced test case.

1. Disable JavaScript
If you disable JavaScript and the problem is still there, then you’ll know

the problem has nothing to do with JavaScript.]is is helpful for quickly

ruling out JavaScript-related issues. Adding on that, you can open the

project in a private mode tab, or deactivate all the browser extensions. If

the issue disappears, then it might be because a browser extension.

2. Identify the problem
Is the problem related to alignment? Or horizontal _ow? Whatever it is,

we need to identify it. It helps to articulate the problem very precisely:

“I’m going to debug the horizontal scrolling in the hero section.”

6. Browser Inconsistencies and Implementation Bugs

Debugging CSS 263

3. Isolate the HTML
Open up the browser’s DevTools and comb through the head element of

the page, eliminating any unneeded style and script ^les. If something

looks unrelated, remove it and move on. Once the head is cleaned up,

move on to the body element and remove all HTML that is not related to

the problem.

4. Isolate the CSS
Now that we’re sure the HTML contains only the bit of code we want to

debug, let’s isolate the CSS needed for that HTML. Remove any decorative

styles, like color and background-color . Keep the CSS as minimal as

possible, leaving only the CSS that is causing the problem.

5. Comment the code
If you doubt that a particular HTML element or CSS rule is causing the

issue, add a comment explaining as much, so that you don’t forget while

debugging. Comments are extremely useful when you need to get help

from others or as a reminder if you come back to the issue after some

time.

6. Use the reduced 9les
Once we’re done isolating the problem, let’s copy the remaining HTML

and CSS to a new local ^le, and then we’ll be ready. We now have a

reduced test case of the problem. Better yet, we can add the HTML and

CSS to CodePen, which will make it easy to test it ourselves or to get help

from others.

Example of Reduced Test Case

To make things clearer, let’s go through a real example of a CSS bug and see

how to convert it into a reduced test case.

6. Browser Inconsistencies and Implementation Bugs

264 Debugging CSS

https://codepen.io/

In the ^gure below, we have a web page with a horizontal scrolling issue. We’ve

tried hard and can’t ^gure out how to solve the problem. So, let’s isolate the

problem as much as we can.

At ^rst, we’ll try the following:

1. Remove any additional styles and scripts from the page’s head element

that are not important to the demo.

2. Inspect the body , and delete the sections one by one. If deleting a section

causes the issue to disappear, then keep it.

3. Once we’ve decided on the HTML that should be kept, the next step is

the CSS. We need only the CSS required to make the demo work, such as

width , height , and display . Decorative properties such as background ,

border , color , and box-shadow can be removed if they don’t a`ect the

issue.

6. Browser Inconsistencies and Implementation Bugs

Debugging CSS 265

Following the steps above, we should have the least amount of HTML and CSS

to make the test case work. Repeat the steps above, and make sure that the

code is clean. Here is how our reduced test case looks after we’ve isolated it:

It looks like the issue is in the grid section. Now, the question is, is it possible

to reduce this even more? Here is what we can do:

• Remove the second row in the grid.

• Clean up the rounded corners and the shadow of the cards.

• Remove the title from each card.

Once it’s cleaned, we can add some comments to aid with testing.

6. Browser Inconsistencies and Implementation Bugs

266 Debugging CSS

/* Not sure if 100vw is causing the horizontal scrolling. */
.section {

width: 100vw;
padding: 1rem;

}

]e comment makes it helpful for us or anyone else who tries to ^x the bug.

]is is the most we can do to reduce the test case.]e next step is to extract

the HTML and CSS, and upload them to our website or wherever we want.

Make It Fail

In his book on debugging, Dave Agans identi^es “make it fail” as one of the

primary steps in debugging any coding problem.]e extent to which we can

follow this advice with CSS will depend on the type of bug we’re dealing with.

Some bugs are clear — for example, ones that appear in all viewport sizes.

Other bug types are more complex, in which case making them fail is harder.

As Agans mentions in his book, the reasons for making it fail are so that:

• we can look at the bug,

• we can focus on the cause,

• we can tell if we’ve ^xed it.

A line of his illustrates a misconception we often run into:

]e toast burns only if you put bread in the toaster; therefore the problem

is with the bread.

Sometimes, we misunderstand the cause of a CSS issue.]e toast only burns

if we put it in the toaster for a long time. If it burns, then it’s our fault, not the

6. Browser Inconsistencies and Implementation Bugs

Debugging CSS 267

toaster’s.]is same goes for CSS development. If we use a layout module to do

something it wasn’t designed for, then the fault is ours.

You might wonder, “What if I’ve tried everything I know of and still can’t

reproduce the issue?” Well, remind yourself that every failure has a cause.

]ere is no secret recipe for ^nding it; it’s hidden somewhere in the

randomness.

Back Up Your Work

Before testing, save your work in a new Git branch. If you don’t use version

control, copy your work in a backup, and start testing from there. By doing one

of these, iterating and changing things will be much safer, and the chances of

losing work will be very low.

Document Everything

For a complex CSS bug, I like to write down the following:

1. what I did,

2. the order of steps I took,

3. what happened as a result of the steps taken.

Documenting these steps can be helpful for you and your team.

]e following is an example of documented steps to reproducing a CSS bug.

1. Open the website in Safari on iOS 12.

2. Click on the mobile menu toggle.

6. Browser Inconsistencies and Implementation Bugs

268 Debugging CSS

3. Click on the close button. It doesn’t work.

4. Click on the close button again. It works.

When doing the steps above, the page should be blank, except for the header,

where the problem is.

Test and Iterate

Once we have a reduced test case, we can start testing the bug in the browser

or device in question. We would keep iterating and editing until we notice a

di`erence.

When iterating, it’s very important to change one thing at a time. Don’t

change the CSS randomly and hope that it will work. If it works, then you

won’t know how you did it, and the guesswork will start. Change one thing,

test, and repeat.

]e usefulness of this approach is that, when the bug is ^xed, we can compare
the changes we made to make it work.]is wouldn’t happen if we changed a

million things at once to get it working.

Research the Issue

If you’ve tried hard to ^x the issue and can’t do it, then the internet is your

friend. Search online for the issue or pattern, and see whether others have

faced the same issue. Chances are high that you are not the ^rst.

6. Browser Inconsistencies and Implementation Bugs

Debugging CSS 269

Report to Browser Vendors

If you believe that the bug you’ve found is unique and no one has ever

encountered it, then it’s time to report it to browser vendors. Every browser

vendor has a public forum with all of the bugs submitted by users. If you’ve

documented the steps taken to reproduce the issue, as recommended earlier,

then all you need is to post the steps with your reduced test case ^les. Also,

submit a screenshot or video if that would help.

Here is where to submit bugs in browser implementation:

• Firefox: bugzilla.mozilla.org

• Safari: bugs.webkit.org

• Chrome: bugs.chromium.org

Never Throw Away a Debugging Demo

When working on a reduced test case, you might create multiple copies of

it, each with a slight change. Don’t delete them. Archive them, because they

might be helpful in the future. You could do a few things with them:

• Write a blog post about the bug and your test cases, explaining how you

^xed it.

• Keep them as a log for yourself, for when you face a similar bug.

• Share them with a colleague or team members who want to learn how you

^xed it.

6. Browser Inconsistencies and Implementation Bugs

270 Debugging CSS

https://bugzilla.mozilla.org/
https://bugs.webkit.org/
https://bugs.chromium.org/

Regression Testing

As explained on Wikipedia:

Regression testing is re-running functional and non-functional tests to

ensure that previously developed and tested software still performs after

a change. If not, that would be called a regression.

When you ^x a bug, you might accidentally break another thing without

knowing it.]at is called a regression. Testing for regressions can be time-

consuming, because a bug might occur in a particular environment, viewport

size, or scroll position. Using a tool, we can do regression testing by de^ning

our design components.

In this section, we will learn how to use BackstopJS to do regression testing.

According to the oacial GitHub repository:

BackstopJS automates visual regression testing of your responsive web UI

by comparing DOM screenshots over time.

BackstopJS uses a headless Chromium browser, the same one used for Google’s

Chrome. Here is how it works:

1. Assign a URL path for the page we want to test.

2. Add the selectors we want to watch.

3. Generate reference screenshots for them.

4. Run backstop test to test our changes against the reference screenshots.

Let’s learn how to use BackstopJS. First, install it globally:

6. Browser Inconsistencies and Implementation Bugs

Debugging CSS 271

https://en.wikipedia.org/wiki/Regression_testing
https://github.com/garris/BackstopJS

$ npm install -g backstopjs

Inside our project’s directory, we need to initialize a BackstopJS project.

$ backstop init

BackstopJS Configuration File

When we initialize the project, a backstop.json ^le will be created in the root

directory of the project. You will ^nd everything that can be con^gured in

there. For our simple lesson, the following are required:

• id

• viewport

• scenarios

In the scenarios array, there is a selectors array, where we can add all of

the CSS selectors to watch. I’ve added the following:

6. Browser Inconsistencies and Implementation Bugs

272 Debugging CSS

"viewports": [
{
"label": "phone",
"width": 320,
"height": 480

},
{
"label": "tablet",
"width": 1024,
"height": 768

}
],
"scenarios": [

{
"url": "http://localhost:8080/"
"selectors": [
".c-header--full"

]
}

]

In this con^guration, we’ve added two elements to watch, and the URL of the

page is index.html .]e next step is to generate the reference screenshots.

$ backstop reference

By generating a reference for the elements we’ve assigned, we can make

changes in the CSS. If something is di`erent from the reference, BackstopJS

will throw an error, with a detailed UI.

To use the tool, let’s increase the vertical padding in the header, and then rerun

the test.

$ backstop test

6. Browser Inconsistencies and Implementation Bugs

Debugging CSS 273

]e test failed because the reference screenshot is di`erent from the tested

one. Notice how the third screenshot has a pink color — this is a highlight of

the di`erence.

In a real project, we might work on a ^x for an issue and, in the process,

inadvertently create a regression. We can’t manually test everything in a large

project, so having such tools makes our life easier, and makes us much more

productive.

Wrapping Up

In this chapter, we’ve learned about CSS resets, reduced test cases, and

regression testing. We’re almost done! In the next chapter, we will explore

some general tips and tricks for debugging CSS.

6. Browser Inconsistencies and Implementation Bugs

274 Debugging CSS

Debugging Multilingual Websites

When it comes to debugging a multilingual website, we need to be aware of

how to test for it and how things work. In talking about multilingual websites,

we’ll focus on left-to-right (LTR) and right-to-left (RTL) layouts, using the

examples of English and Arabic, respectively.

Common Bugs With LTR and RTL

Spacing Issues

When debugging for LTR and RTL, most of the issues will be related to spacing.

]e horizontal direction will be _ipped for each language, and the spacing

issues will usually come down to either padding or margin . Say we have the

following:

.element {
margin-left: 10px;

}

For RTL, it would be like this:

.element {
margin-right: 10px;

}

We would do the equivalent for padding and the positioning properties (top ,

right , bottom , left).

7. General Tips and Tricks

276 Debugging CSS

Adding on that, we can use CSS logical properties to avoid writing more CSS

for RTL. Here is how the above example will look:

.element {
margin-inline-start: 10px;

}

]e property margin-inline-start is logical.]at means, it will be margin-

left for LTR and margin-right for RTL. If you're interested to learn more

about RTL styling, I recommend you reading this guide by yours truly.

Alignment Issues

When text is aligned to the right in LTR, it should be _ipped in RTL.

.element {
text-align: right;

}

For RTL, it would be like this:

.element {
text-align: left;

}

Debugging RTL

Depending on how the website you’re building works, switching the CSS from

LTR to RTL for a given page might be easy. If the CSS is combined into one ^le,

switching will be as easy as setting the dir attribute on the html element.

7. General Tips and Tricks

Debugging CSS 277

http://rtlstyling.com/

<html dir="rtl"></html>

We can ^rst set the attribute in the DevTools, and then inspect the issues we

want to ^x.

If the CSS for the LTR and RTL isn’t in one ^le, then it is most probably in two

^les, such as main-ltr.css and main-rtl.css . Switching the dir attribute

won’t be enough then; we would also need to edit the src of the style sheet

in the head element.

A Quick Way to Add RTL Content

Let’s say we’ve built the CSS for the LTR and RTL layouts, and the only thing

missing is to test the typography of the RTL content. When viewing the design

in RTL mode with the LTR content, you can use Google’s in-page translation to

quickly translate all of the content.]is will help you to create an RTL design

with the content and make it suitable for the text direction.

I’ve written an extensive guide about this, in case you’re interested, titled RTL

Styling 101.

Using @supports

In case you don’t know about it, @supports is used to detect whether a given

CSS feature is supported by the user’s browser.

7. General Tips and Tricks

278 Debugging CSS

http://rtlstyling.com/
http://rtlstyling.com/

@supports (display: flex) {
/* If flexbox is supported, apply this. */
.element {

display: flex;
}

}

An interesting way to test it is to toggle its functionality.]ere are browser

extensions for this, but we can do it manually by adding a random letter. When

the random letter is added, it will break the rule; thus, the CSS won’t work.

@supports (display: flexB) {
..

}

I added the letter “B” after display: flex .]e browser won’t recognize that,

and you will get the default behavior, as if @supports is disabled. Cool, right?

However, in a large project with a lot of @supports rules, doing it manually is

not practical.]ankfully, Ire Aderinokun has created a browser extension for

this purpose, and it’s available for both Chrome and Firefox.

7. General Tips and Tricks

Debugging CSS 279

https://github.com/ireade/feature-queries-manager

]e extension will add a new tab in your browser’s DevTools. On the left, you’ll

see a toggleable list of the CSS features nested in @supports queries, and on

the right will be a list of every @supports query that uses a particular feature.

]e CSS shown above is for grid-related stu`. Toggling the checkbox on the left

will disable and enable CSS grid.]is is a great way to test and break a layout.

Let’s get more into the ways to break a layout.

Browser Extensions

Grid Ruler

A great way to test whether two UI elements are aligned correctly is to use

a ruler and guides.]is can be easily done in design apps such as Sketch,

Adobe XD, Photoshop, and Illustrator. In a browser, it’s not possible without an

extension.

One great extension, Grid Ruler, is available only in Google Chrome. It enables

you to drag and place guides either horizontally or vertically.]is is extremely

useful for verifying that two elements are aligned correctly.

In this mockup, the grid line tells us that the user avatar and the button are

aligned.

7. General Tips and Tricks

280 Debugging CSS

https://chrome.google.com/webstore/detail/grid-ruler/joadogiaiabhmggdifljlpkclnpfncmj

OLI Grid CSS

]e OLI Grid CSS plugin is available for Firefox and Chrome. What’s nice about

it is that it draw in the page columns, just like in Sketch and Adobe XD.]is is

helpful for seeing whether the layout you’re working on aligns to the columns.

I tried testing the plugin with a Bootstrap-built page, and it works as expected.

Note that you need to ^gure out the width of the .container element of the

page ^rst.

Web Developer Extension

A very useful extension that provides a lot of functionalities to do. Here are

some key things:

• Disable all styles

• Disable browser default styles

7. General Tips and Tricks

Debugging CSS 281

https://addons.mozilla.org/en-US/firefox/addon/oli-grid-css/

• Disable inline styles

• Disable print styles

And that’s only a few from the CSS tab!

Pesticide Extension

I explained previously about using the outline CSS property as a way to

debug design issues.]is blog does the same but in one click only. It adds

random colored outlines to every single element on the page, with the ability

to highlight a speci^c element.

Mocking Up in the Browser

]ere are times when you want to quickly mock up a design idea in the

browser by moving a few elements here and there.]is is useful for showing

a design concept to a developer, client, or designer. Being able to make such

edits quickly is important to productivity.

Taking advantage of the browser’s built-in tools, we can do that. In this

section, we’ll focus on concepts and examples for mocking up designs quickly

in the browser.

7. General Tips and Tricks

282 Debugging CSS

Good Ol’ CSS Positioning

With CSS positioning, we can edit some elements in the DevTools by adding

position to them and placing them where we want.]is is a quick way to

mock up a design idea while testing for bugs.

Here we have a card with a category. After some thinking, the designer tells

you, the developer, that the team has decided it wants a di`erent position for

the category. You suggest that the category could be moved to the upper-left

corner.]is can be done while you both are on a video call. It’s as simple as

adding the following:

.card {
position: relative;

}

.category {
position: absolute;
left: 0;
top: 16px;

}

]is kind of edit, which didn’t take a minute, can allow decisions to happen

7. General Tips and Tricks

Debugging CSS 283

more quickly.

Hiding Design Elements

As I explained previously, being able to hide design elements quickly, such as

with the H key in Chrome, is a useful trick. Doing this, we can hide some

design elements and replace them with others, if we want to, for example, take

a screenshot of a design concept.

Here we have a section header, which contains a bug that prevents the

author’s avatar and name from aligning.]e design team has requested that it

be removed temporarily. You can quickly delete it from the HTML, hide it with

display: none , or use the H key in Chrome.

CSS Flexbox

Using _exbox, we can quickly make a layout horizontal or vertical. Flexbox

properties such as align-items and justify-content are powerful and can

accomplish most any design idea you want to show.

7. General Tips and Tricks

284 Debugging CSS

]is section header has a row of items.]e problem is that the spacing

between items is inconsistent. What can we do?]e fastest solution is to add

display: flex and justify-content: space-between .]e design is changed

instantly, and all of it happens in the DevTools! You can now proceed to

screenshot this change and discuss it with your colleagues.

CSS Grid Layout

]is is the most powerful layout module in CSS. Suppose we have a featured

news section, and the designer wants to lay out the items in a presentable way

— say, as equal-height columns.

We simply use CSS grid to set the columns, and then we con^rm with the

designer that this is what they want.

7. General Tips and Tricks

Debugging CSS 285

.wrapper {
display: grid;
grid-template-columns: 2fr 1fr 1fr;

}

Is that still not enough for the designer? You can continue editing and showing

them your changes. Moreover, you can try di`erent layout concepts and tie

each one to a CSS class, toggling each class in the “.cls” panel.

CSS Viewport Units

We can use viewport units to make a section take up the full horizontal or

vertical space of the viewport. We can also use them to size fonts. All of these

use cases give us _exibility and make our designs more dynamic.

Suppose we have a hero section that is required to occupy 90% of the screen’s

full height. We want to verify the requirement with the designer, so we mock

it up very quickly:

.hero {
height: 90vh;

}

We give the hero section a height of 90vh , which will make it occupy 90% of

the screen’s vertical space. We made this edit in less than a minute!

CSS Columns

If we want a quicker method than CSS grid, we can use columns. For example,

we could divide links in the footer into two equal columns. We can make this

edit with one line of code, and get back to the designer right away.

7. General Tips and Tricks

286 Debugging CSS

.footer-section {
columns: 2;

}

]e other good thing about CSS columns is that we can change the number of

columns with the keyboard’s up and down arrows.

CSS Filters

Let’s say the designer wants to experiment with a dark mode for the website,

but they haven’t done any mockups for it. Using CSS ^lters, we can quickly

whip up a dark mode.

html {
filter: invert(90%) hue-rotate(25deg);

}

And to polish it, we can revert the elements that shouldn’t have been inverted

(such as images and videos):

7. General Tips and Tricks

Debugging CSS 287

html {
img, video, iframe {
filter: invert(100%) hue-rotate(-25deg);

}
}

With that done, we can take a full-page screenshot and show it to the team —

all in less than two minutes! Isn’t that cool? With the mockup sent, the team

can start thinking and deciding on it. Also, you’ve saved the designer’s time!

Making a dark mode for a small web page would take them at least 10 minutes.

Desaturating the Design

Desaturating a page (i.e. converting it into black and white) using CSS ^lters is

a useful trick, for a few reasons:

• If the website you are testing is heavy with colors, your eyes might get

tired. Desaturating the page will help you focus on ^xing the bug at hand.

• It’s useful for testing and exploration. When the page is saturated, you can

easily spot any colors that are not suitable for the design.

• Testing for accessibility becomes easier. Making the page grayscale will let

you know which colors are easy to read and which are not.

To desaturate a web page with CSS, open up the browser’s DevTools, select the

html or body element, and add the following:

html {
filter: grayscale(1);

}

]at’s all. You now have a black-and-white website!

7. General Tips and Tricks

288 Debugging CSS

Wireframe Styling

When mocking up a design, we don’t always have time to choose good colors

and fonts. In this case, we can convert the whole web page into a wireframe

style using a bit of CSS.]is will let you focus on mocking up ideas quickly and

getting feedback as soon as possible.

Here is how to do it:

* {
color: #000;
background: #ccc !important;
outline: solid 1px;

}

img, video, iframe {
background: #ccc;
opacity: 0;

}

Hover for Touch Screens

While debugging on touch devices (phones, tablets, etc.), you might notice

some elements change in color or style when you scroll.]is is because the

:hover style ^res on scroll.]is is a problem.]e solution is to use the hover

media query. According to Mozilla Developer Network:

]e hover CSS media feature can be used to test whether the user’s

primary input mechanism can hover over elements.

7. General Tips and Tricks

Debugging CSS 289

https://developer.mozilla.org/en-US/docs/Web/CSS/@media/hover

@media (hover: hover) {
.element:hover {
color: #222;

}
}

With this, we prevent :hover styles from ^ring for mobile and tablet users. At

the time of writing, this feature is supported in all major browsers.]e good

thing is that when you active device mode in Chrome, it will be considered a

touch screen, so you can test the hover media query there.

Using CSS to Show Potential Errors

]ere is no direct way to display potential errors in CSS. However, some clever

folks have devised workarounds that enable us to debug incorrect usage of

HTML and CSS. Let’s explore some of them.

7. General Tips and Tricks

290 Debugging CSS

Using a CSS Class Out of Context

Let’s say you’ve built a design system with your team, and you want to lint

errors related to incorrect usage of a component in the design system. In his

methodology named Inverted Triangle CSS (ITCSS), Harry Roberts uses the

following classes to create warnings about incorrect usage of CSS classes.

<div class="o-layout">
<div class="o-layout__item"></div>
<div class="o-layout__item"></div>
<div class="o-layout__item"></div>

</div>

]e .o-layout class is for an element that acts as a layout wrapper.]e .o-

layout__item class should only be applied to elements within a parent that

has the .o-layout class.]e following usage would be incorrect:

<div>
<div class="o-layout__item"></div>

</div>

]e element with the .o-layout__item class shouldn’t live on its own like

this. We can debug this very easily:

.o-layout__item {
/* Show a warning outline by default. */

outline: solid 5px yellow;
}

.o-layout .o-layout__item {
/* Remove the outline when item is in .o-layout. */

outline: none;
}

7. General Tips and Tricks

Debugging CSS 291

Also, we can detect whether .o-layout__item is a direct child of .o-layout .

.o-layout > :not(.o-layout__item) {
outline: solid 5px yellow;

}

Adding width or height Attributes to Elements

Generally speaking, width and height attributes are not recommended for

any HTML elements, except img .

:not(img):not(object):not(embed):not(svg):not(canvas)[width],
:not(img):not(object):not(embed):not(svg):not(canvas)[height] {

outline: solid 5px red;
}

Going further, you can use Gaël Poupard’s browser extension, a11y.css, which

shows di`erent advice, warnings, and errors.

7. General Tips and Tricks

292 Debugging CSS

https://ffoodd.github.io/a11y.css/index.html

Acknowledgements

]e book idea started as a note in April 2020. I asked Kholoud, my wife, what

do you think about writing a book about debugging CSS? I told her that it will

be a very short one (60 pages max). Seven months later, the book has 300

pages. Kholoud was the ^rst person to support the book idea, and she insisted

that I should move on with this, and here we are.]ank you, my dearest

person!

]e ^rst person that encouraged me from the community is Mr. John Allsopp.

He invited me to talk at Web Directions conference about the book topic and

was one of the ^rst supporters.]ank you very much!

I want to thank is Geo`rey Crofte. He was helpful and kind enough to

proofread the whole book, and highlighting a lot of ^xes.]ank you very

much!

Finally, I would like to thank Bram Van Damme, who reviewed the very

^rst draft of the book. He highlighted some important things that I should

improve.]ank you, Bram!

Debugging CSS 293

	Foreword
	Table of Contents

	Introduction and Overview
	The History of Debugging CSS
	Style Master
	Firebug Browser Extension

	What Has Changed Today?
	What Does Debugging CSS Mean?
	Why Debugging Should Be Taught
	The Debugging Mindset
	Identifying CSS Bugs
	Explaining a Bug to Someone

	Why Debugging Needs Time
	An Issue Is Not Clear
	The Symptoms Are Easier to Treat Than the Cause
	Focusing on One Path to the Problem
	Ignoring Side Effects

	Write Code That Is Easy To Debug
	Who Is This Book For?
	Why I Wrote This Book?
	An Overview of the Book Chapters

	Introduction to CSS Bugs
	What Is a Bug?
	Browsers Are Different

	How to Fix a CSS Bug
	Check the CSS
	Check Browser Support
	Use the Browser’s Developer Tools

	CSS Bug Types
	Visual Design Bug Types
	Technical Bug Types
	Calling an Incorrect File Path
	Misnaming a Property
	Using an Invalid Value for a Property
	Using a Property That Depends on Another
	Overriding One Property With Another
	Duplicating a Property
	Incorrectly Typing a Class Name
	Neglecting the Cascade
	Forgetting to Bust the Cache
	Neglecting Performance
	Ignoring Specificity

	The Debugging Process
	Getting Browser Information From Non-Technical People
	Debugging Techniques

	Wrapping Up

	Debugging Environments and Tools
	Toggling a CSS Declaration
	Using the Keyboard to Increment and Decrement Values
	CSS Errors
	DevTools Mobile Mode
	Mobile Mode Doesn’t Show a Horizontal Scrollbar
	Scroll Into View
	Screenshotting Design Elements
	Device Pixel Ratio
	Switching the User Agent
	Debugging Media Queries
	Don’t Forget the Meta Viewport Tag
	The Order of Media Queries Matters
	What If a Media Query Doesn’t Work?
	Avoid Double-Breakpoint Media Queries
	List Media Queries
	Vertical Media Queries Are Important
	Don’t Depend on Browser Resizing Alone

	Box Model
	Everything in CSS Is a Box

	Computed CSS Values
	Grayed-Out Properties
	Firefox’s Style Editor
	CSS Properties That Don’t Have an Effect
	Compatibility Support in Firefox
	Getting the Computed Value While Resizing the Browser
	Getting the Computed Value With JavaScript
	Reordering HTML Elements
	Editing Elements in the DevTools
	CSS Classes
	Utility-Based CSS Websites
	Changing an Element’s Type
	Adding or Removing an Attribute
	Deleting an Element
	Keyboard Goodness

	The H Key
	Forcing an Element’s State
	Select an Element
	Use the Panel
	Toggle the State of an Element

	Debug an Element Shown Via JavaScript
	Is the Element in the HTML?
	Is the Element Added to the HTML on Hover?

	Break JavaScript
	Subtree Modification
	Attribute Modification
	Node Removal

	Using the Debugger Keyword
	Formatting the Source Code to Be Easier to Read
	Copying an Element’s HTML Along With Its CSS
	Rendered Fonts
	Checking for Unused CSS
	Color-Switching With the DevTools
	Copying CSS From the DevTools to the Source Code
	Copy Directly From the Inline Inspector
	Use the changes Feature in Firefox Browser

	Debugging Source-Map Files
	Debugging Accessibility Issues Caused by CSS
	Give the Text Sufficient Color Contrast
	Think Twice Before Hiding With display: none
	Use the Accessibility Tree
	Fix Unclickable Elements

	Debugging CSS Performance
	Multiple Browser Profiles
	Rendering and Emulation
	CSS Print Styles
	CSS Media prefer-color-scheme
	CSS Media prefers-reduced-motion

	Virtual Machines
	Online Services
	Mobile Devices
	Mobile Browsers
	Inspecting Your Mobile Browser
	Mobile Simulators
	Browser Support
	Can I Use
	Vendor Prefixes
	Wrapping Up

	CSS Properties That Commonly Lead to Bugs
	Box Sizing
	Display Type
	Inline Elements
	Spacing and Inline Elements

	Block Elements
	Spacing Below an Image
	The legend Element

	Using display With Positioned Elements
	Alignment of Inline Elements
	An Inline Display Overriding One in a CSS File
	Float and Block Display
	Float and Flex Display
	Showing and Hiding the br Element
	Situations to Avoid the Display Type
	To Hide a Form’s Input Label
	To Style a Checkbox

	Margin
	Margin Collapse
	Margin and Inline Elements
	Just-in-Case Margin
	Centering an Element
	Auto Margin and Positioning
	Auto Margin and Flexbox

	Padding
	Using Padding With Height
	Padding and Inline Elements
	The Padding Shorthand
	Percentage-Based Padding

	Width Property
	Inline Elements Don’t Accept a Width or Height
	Fixed Width Is Not Recommended
	Full Width for Image
	Using 100% vs. auto for Width
	An Image With position: absolute Doesn’t Need Width or Height

	Height Property
	Full Percentage-Based Height
	Filling the Height of the Remaining Space Available
	Percentage-Based Width and No Height
	Height and Viewport Units

	Setting a Minimum or Maximum Width
	Minimum Width
	Minimum Width for Buttons
	Minimum Width and Padding
	Which Has Higher Priority: min-width or max-width?
	Resetting min-width
	Setting to 0
	Setting to initial

	Max Width
	Max Width for Page Wrappers
	Percentage for Maximum Width
	Setting a Maximum Width Based on the Content
	Constraining an Image in a Wrapper
	Resetting max-width
	The none Keyword Value
	The initial Keyword Value
	The unset Keyword Value

	Minimum Height
	Setting a Minimum Height for Variable Content
	Setting a Minimum Height for Positioned Elements

	Maximum Height
	Setting a Maximum Height for Positioned Elements
	Setting a Percentage-Based Maximum Height
	Transitioning an Element’s Height
	Maximum Height Depending on the Element’s Defined Height

	Shorthand vs. Longhand Properties
	Positioning
	Using the Positioning Offset Properties
	Icon Alignment
	Using the width and height Properties
	How Padding Works for Positioned Elements
	Using z-index
	Resetting the Position

	The Z-Index Property
	Forgetting to Set the Position
	Default Stacking Order
	CSS Properties That Create a Stacking Context
	An Element Can’t Appear Above Its Parent’s Siblings
	An Element Floating Above Its Siblings

	The calc() Function
	Text Alignment
	Forgetting to Center a Button’s Content

	Viewport Units
	Using height: 100vh Is Risky

	Pseudo-Elements
	Forgetting the content Property
	Using Width or Height
	Using Pseudo-Elements With Grid or Flexbox
	When to Use ::before and When to Use ::after

	Color
	The transparent Keyword
	Not Taking Advantage of the Cascade
	Forgetting the Hash Notation

	CSS Backgrounds
	The Order of the Background’s Size and Position
	Don’t Use the Shorthand to Set a Color Only
	Dynamic Background
	Forgetting About background-repeat
	Printing CSS and Backgrounds

	CSS Selectors
	Forgetting the Dot Notation for Classes
	Grouping Selectors
	Calling a CSS Selector More Than Once
	Customizing an Input’s Placeholder
	The Order of User-Action Pseudo-Classes
	Targeting an Element With More Than One Class
	Targeting Classes on Particular Elements
	An Alternative to !important

	CSS Borders
	Border on Hover
	Multiple Borders
	Border and currentColor keyword
	Border Transition on Hover
	Changing a Border’s Width Based on Screen Size
	Adding a Border to Text Content
	border: none vs. border: 0
	Focus Outline

	Box Shadow
	A Shadow on One Side of an Element
	box-shadow and overflow: hidden Don’t Mix Well
	Multiple Box Shadows
	White-Space Issue With Box Shadow and Inline Image
	Box Shadow on Header Element
	Shadow on Arrow of Speech Bubble
	An inset Shadow on Image Elements
	Using an Additional HTML Element for the Border
	Using an SVG image

	CSS Transforms
	Applying Multiple Transforms
	The Order of CSS Transforms Matters
	Overriding a Transform by Mistake
	Individual Transform Properties
	Transforming SVG Elements
	Using Transforms to Rotate Text by 90 Degrees

	CSS Custom Properties (Variables)
	Scoped vs. Global Variables
	Setting a Fallback for a Variable
	Retrieving All CSS Variables Defined in a Document
	Invalidation at Computed-Value Time

	Horizontal Scrolling
	Firefox Shows a scroll Label
	Finding Horizontal Scrolling Bugs
	Scrolling to the Left or Right
	Using JavaScript to Get Elements Wider Than the Body
	Using outline

	Fixing Horizontal Scrolling
	A Fixed Width
	A Positioned Element With a Negative Value
	A Flexbox Wrapper Without Wrapping
	A Grid Wrapper With minmax()
	A Long Word or Inline Link
	An Image Without max-width: 100%

	Transition
	Transition on Resize
	Transitioning Height
	Transitioning Visibility and Display

	Overflow
	overflow-y: auto vs. overflow-y: scroll
	Scrolling on Mobile
	Inline-Block Elements With overflow: hidden

	Text Overflow
	The !important Rule
	Flexbox
	User-Made Bugs
	Forgetting flex-wrap
	Using justify-content: space-between for Spacing
	Using Padding and Negative Margin
	Adding Empty Spacer Elements

	Hiding a Flexbox Element in Certain Viewports
	Stretched Images
	Flexbox Child Items Are Not Equal in Width
	Setting the Minimum Width to Zero With Flexbox
	Flex Formatting Context

	Browser Implementation Bugs
	flex-basis Doesn’t Support calc()
	Some HTML Elements Can’t Be Flex Containers
	Inline Elements Not Treated as Flex Items
	Importance Is Ignored in flex-basis When flex Shorthand Is Used
	Centering a Flex Item With margin: auto Doesn’t Work With Flexbox Wrapper Set to Column
	Flex Items Don’t Justify Correctly With max-width

	Firefox’s Flexbox Inspector

	CSS Grid
	Unintentional Implicit Tracks
	A Column With 1fr Computes to Zero
	Equal 1fr Columns
	Setting Percentage Values
	Misusing auto-fit and auto-fill
	Horizontal Scrolling and minmax
	Browser Implementation Issues

	Handling Long and Unexpected Content
	Forgetting to Set Padding Between Text Label and Icon
	Long Name in Media Object
	Solution 1: Float
	Solution 2: Flexbox

	Wrapping Up

	Breaking a Layout Intentionally
	Add Long Text Content
	forceFeed.js
	Install
	Include the Script
	Add Attribute to Elements
	Add the Arrays
	Execute the Script

	Try Content in Different Languages
	Resize the Browser’s Window
	Avoid Placeholder Images
	Open in Internet Explorer
	Rotate Between Portrait and Landscape Orientation
	Wrapping Up

	Browser Inconsistencies and Implementation Bugs
	Using a CSS Reset File
	Using Normalize.css
	Browser Implementation Bugs
	Verify the Bug
	Decide on the Correct Behavior
	Isolate the Bug

	Test-Case Reduction
	Example of Reduced Test Case

	Make It Fail
	Back Up Your Work
	Document Everything
	Test and Iterate
	Research the Issue
	Report to Browser Vendors
	Never Throw Away a Debugging Demo
	Regression Testing
	BackstopJS Configuration File

	Wrapping Up

	General Tips and Tricks
	Debugging Multilingual Websites
	Common Bugs With LTR and RTL
	Spacing Issues
	Alignment Issues
	Debugging RTL
	A Quick Way to Add RTL Content

	Using @supports
	Browser Extensions
	Grid Ruler
	OLI Grid CSS
	Web Developer Extension
	Pesticide Extension

	Mocking Up in the Browser
	Good Ol’ CSS Positioning
	Hiding Design Elements
	CSS Flexbox
	CSS Grid Layout
	CSS Viewport Units
	CSS Columns
	CSS Filters
	Desaturating the Design
	Wireframe Styling

	Hover for Touch Screens
	Using CSS to Show Potential Errors
	Using a CSS Class Out of Context
	Adding width or height Attributes to Elements

	Acknowledgements

