

1. 1. The System of Truth

a. Three Generations of Source Code Management

b. Choosing your Source Control

c. Making Your First Pull Request

d. Git Tools

i. Git Command Line Basics

ii. Git Command Line Tutorial

iii. Git Clients

iv. Git IDE Integration

e. Git Collaboration Patterns

i. git-flow

ii. GitHub Flow

iii. Gitlab Flow

iv. OneFlow

v. Trunk Based Development

f. Conclusion

2. 2. Continuous Integration

a. Adopt Continuous Integration

b. Declaratively Script Your Build

i. Build With Apache Ant

ii. Build With Apache Maven

iii. Build With Gradle

DevOps Tools for Java
Developers

Best Practices from Source Code to Production
Containers

With Early Release ebooks, you get books in their earliest form—the
authors’ raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Stephen Chin, Baruch Sadogursky, and
Melissa McKay

DevOps Tools for Java
Developers
by Stephen Chin, Baruch Sadogursky, and Melissa McKay

Copyright © 2022 Stephen Chin, Baruch Sadogursky, and Melissa
McKay. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade

Development Editor: Corbin Collins

Production Editor: Kate Galloway

Interior Designer: David Futato

http://oreilly.com/

Cover Designer: Karen Montgomery

Illustrator: O’Reilly Media

October 2021: First Edition

Revision History for the Early
Release

2020-12-18: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492084020 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
DevOps Tools for Java Developers, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors
have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open

http://oreilly.com/catalog/errata.csp?isbn=9781492084020

source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such
licenses and/or rights.

978-1-492-08395-5

Chapter 1. The System of Truth
Stephen Chin

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the authors’ raw
and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

This will be the 4th chapter of the final book. If there is a GitHub repo associated with
the book, it will be made active after final publication.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at ccollins@oreilly.com.

A complex system that works in invariably found to have evolved
from a simple system that worked.

—John Gall (Gall’s Law)

To have an effective DevOps pipeline, it is important to have a single
system of truth to understand what bits and bytes are being deployed
into production. For most systems this starts with a source code
management system that contains all of the source code that gets
compiled and built into the production deployment. By tracing a
production deployment back to a specific tagged version in source
control, you can do root cause analysis of bugs, security holes, and
performance issues.

mailto:ccollins@oreilly.com

Source code management solves several key roles in the software
delivery lifecycle:

1. Collaboration: Large teams working on a single codebase
would constantly block on each other without effective
source code management, reducing productivity as the team
size grows.

2. Versioning: Source code systems let you tag different
versions of the code to identify what is being deployed into
production or released to a customer.

3. History: By keeping a chronological record of all versions of
software as it is developed, it is possible to revert back to an
older version of the code or identify the specific change that
caused a regression.

4. Attribution: Knowing who made the changes in a particular
file allows you to identify ownership, domain expertise, and
assess risk when making changes.

5. Dependencies: As source code is better managed, it also
typically becomes the source for other key metadata about
the project like dependencies on other packages.

Since source code management plays such a critical role in software
development, it is important to understand how it works and select a
system that best meets the needs of your organization and the desired
DevOps workflow.

Three Generations of Source Code
Management

Collaboration is a big part of software development, and as you scale
with larger teams, the ability to collaborate effectively on a shared
code base often becomes a bottleneck to developer productivity. Also,
the complexity of systems continues to increase, so rather than
managing a dozen files or a handful of modules, it is common to see
thousands of source files that need to be updated enmasse to
accomplish system-wide refactorings.

To handle the need to collaborate on codebases, source code
management (SCM) systems were created. The first generation SCM
systems handled collaboration via file locking. Examples of these are
SCCS and RCS, which required that you lock files before editing,
make your changes, and then release the lock for other folks to
contribute. This seemlingly eliminated the possibility of two
developers making conflicting changes with two major drawbacks:

1. Productivity was reduced since you had to wait for other
developers to finish their changes before editing. In systems
with long files, this could effectively limit the concurrency to
only one developer at a time.

2. This does not solve the problem of conflicts across files. It is
still possible for two developers to modify different files with
inter-dependencies and create a buggy or unstable system by
introducing conflicting changes.

A substantial improvement over this were the second generation
version control systems starting with Concurrent Versions System
(CVS) created by Dick Grune. CVS was revolutionary in its approach
to (or lack of) file locking. Rather than preventing you from changing
files it would allow multiple developers to make their simultaneous
(and possibly conflicting) changes to the same files. This was later
resolved via file merging where the conflicting files were analyzed
via a difference (diff) algorithm and any conflicting changes were
presented to the user to resolve.

By delaying the resolution of conflicting changes to a later “check-
in”, CVS allowed for multiple developers to freely modify and
refactor a large codebase without becoming blocked on other changes
to the same files. This not only increases developer productivity, but
also allows for the isolation and testing of large features separately,
which can later be merged into an integrated codebase.

The most popular second generation SCM is currently Subversion,
which is designed as a drop-in replacement for CVS. It offers several
advantages over Subversion including tracking commits as a single
revision, which avoids file update collisions that can corrupt the CVS
repository state.

The third generation of version control is distributed version control
systems (DVCS). In DVCS, every developer has a copy of the entire
repository along with the full history stored locally. Just like in a
second generation version control system, you checkout a copy of the
repository, make changes, and check it back in. However, to integrate

those changes with other developers you sync your entire repository
in a peer-to-peer fashion.

There were several early DVCS systems including Arch, Monotone,
and Darcs, but become popularized by Git and Mercurial. Git was
developed as a direct response of the Linux team to their need for a
stable and reliable version control system that could support the scale
and requirements for open-source operating system development, and
has become the defacto standard for both open-source and
commercial version control system usage.

Distributed version control systems offer several advantages over
server-based version control:

1. You can develop entirely offline - Since you have a local
copy of the repository, checking code in and out, merging,
and managing branches can all be done without a network
connection.

2. No single point of failure - Unlike a server-based SCM where
only one copy of the entire repository with full history exists,
DVCS creates a copy of the repository on every developer’s
machine, increasing redundancy.

3. Faster local operations - Since all version control operations
are local to the machine, they are much faster and not
affected by network speed or server load.

4. Decentralized control - Since syncing the code involves
copying the entire repository, this makes it much easier to

fork a codebase, and in the case of open source projects can
make it much easier to start an independent effort when the
main project has stalled or taken an undesirable direction.

And there are a few disadvantages of distributed version control
including:

1. Slower initial repository sync - The initial sync includes
copying the entire repository history, which can be much
slower.

2. Larger storage requirements - Since everyone has a full copy
of the repository and all history, for very large and/or long
running projects this can be a sizable disk requirement.

3. No ability to lock files - Server based version control systems
offer some support for locking files when a binary file that
cannot be merged needs to be edited. With distributed version
control systems locking mechanics cannot be enforced, which
means only mergable files like text are suitable for
versioning.

Choosing your Source Control

Hopefully by this time you are convinced that using a modern
distributed version control system is the way to go. It provides the
best capabilities for local and remote development of any size team.

Also, of the commonly used version control systems, Git has become
the clear winner in adoption. This is shown clearly by looking at the
Google Trends analysis of the most commonly used version control
systems as shown in Figure 1-1.

Figure 1-1. Popularity of different version control systems from 2004 through 2020

Git has become the defacto standard in the open source community,
which means there is a wide base of support for its usage along with a
rich ecosystem. However, sometimes it is difficult to convince your
boss or peers to adopt new technologies if they have a deep
investment in a legacy source control technology.

Here are some reasons you can use to convince your boss to upgrade
to Git:

1. Reliability: Git is written like a file system including a proper
filesystem check tool (git fsck) and checksums to ensure data
reliability. And given it is a distributed version control system
you probably have your data also pushed to multiple external
repositories.

2. Performance: Git is not the first distributed version control
system, but it is the fastest. It was built from the ground up to

1

support Linux development with extremely large codebases
and thousands of developers.

3. Tool Support: There are over 40 different frontends for Git
and support in just about every major IDE (IntelliJ, Visual
Code, Eclipse, Netbeans, etc.) so you are unlikely to find a
development platform that does not fully support it.

4. Integrations: Git has first class integrations with IDEs, issue
trackers, messaging platform, continuous integration servers,
security scanners, code review tools, dependency
management, and cloud platforms.

In summary, there is not much to lose by upgrading to Git, and a lot
of additional capabilities and integrations to start to take advantage
of.

Getting started with Git is as simple as downloading a client for your
development machien and creating a local repository. However the
real power comes in collaboration with the rest of your team, and this
is most convenient if you have a central repository to push changes to
and collaborate with.

There are several companies that offer commercial Git repos that you
can self host or run on their Cloud platform. These include Amazon
CodeCommit, Assembla, Azure DevOps, GitLab, Phabricator,
SourceForge, GitHub, RhodeCode, Bitbucket, Gitcolony, and others.
According to data from the 2020 JetBrains Developer Ecosystem

Report shown in Figure 1-2, these Git-based source control systems
accounted for over 75% of the commercial source control market.

Figure 1-2. Data from the JetBrains State of the Developer Ecosystem 2020 report on usage
of Version Control Services [The State of Developer Ecosystem 2020

(https://www.jetbrains.com/lp/devecosystem-2020/), JetBrains s.r.o., CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/)]

The noticable standout that accounts for 15% of the VCS market is
Perforce Helix Core, which is a centralized version control system.
However, even Perforce now supports Git repos and tools within
Helix Core via Helix4Git, acknowledging that this is the dominant

https://www.jetbrains.com/lp/devecosystem-2020/
https://creativecommons.org/licenses/by/4.0/

trend and developers are demanding a distributed version control
workflow.

All of these version control services offer some additional services on
top of basic version control, including capabilities like:

Collaboration

Code reviews - Having an efficient system for code
reviews is important to maintain code integrity,
quality, and standards.

Advanced pull request/merge features - Many
vendors implement advanced features on top of Git
that help with multirepository and team workflows
for more efficient change request mangement.

Workflow automation - Approvals in a large
organization can be both fluid and complicated, so
having automation of team and corporate workflows
improves efficiency.

Team comments/discussions - Effective team
interaction and dicussions that can be tied to specific
pull requests and code changes help to improve
communication within and around the team.

Compliance/Security

Tracking - Being able to track the code history is a
core feature of any version control system, but often
additional compliance checks and reports are
required.

Auditing changes - For control and regulatory
purposes, it is often required to audit the changes to a
codebase, so having tools to automate this can be
helpful.

Permissions management - Fine grained roles and
permissions allow for restricting access to sensitive
files or codebases.

Bill of materials - For auditing purposes, a full list of
all software modules and dependencies is often
required, and can be generated off of the source code.

Security vulnerability scanning - Many common
security vulnerabilities can be uncovered by scanning
the codebase and looking for common patterns that
are used to exploit deployed applications. Using an
automated vulnerability scanner on the source code
can help to identify vulnerabilities early in the
development process.

Integration

Issue tracking - By having tight integration with an
issue tracker, you can tie specific changesets to a

software defect, making it easier to identify the
version a bug is fixed in and trace any regressions.

CI/CD - Typically a continuous integration server
will be used to build the code checked in to source
control. A tight integration makes it easier to kick off
builds, report back on success and test results, and
automate promotion and/or deployment of successful
builds.

Binary package repository - Fetching dependencies
from a binary repository and storing build results
provides a central place to look for artifacts and to
stage deployments.

Slack integration - Team collaboration is important to
a successful development effort, and making it easy
to discuss source files, check-ins, and other source
control events simplifies communication.

Clients (Desktop/IDE) - There are a lot of free clients
and plug-ins for various IDEs that are allow you to
access your source control system including open-
source clients from GitHub, BitBucket, and others.

When selecting a version control service it is important to make sure
that it fits into the development workflow of your team, integrates
with other tools that you already use, and fits into your corporate
security policies. Often companies have a version control system that
is standardized across the organization, but there may be benefits to

adopting a more modern version control system, especially if the
corporate standard is not a distributed version control system like Git.

Making Your First Pull Request

To get a feel for how version control works, we are going to do a
simple exercise to create your first pull request to the official book
repository on GitHub. We have a section of the readme file dedicated
to reader comments, so you can join the rest of the readers in showing
your accomplishment in learning modern DevOps best practices!

This exercise doesn’t require installing any software or require using
the command line, so it should be easy and straightforward to
accomplish. Finishing this exercise is highly recommended so you
understand the basic concepts of distributed version control that we
go into more detail later in the chapter.

To start with you will need to navigate to the book repository at
https://github.com/mjmckay/devops-tools-for-java-developers. For
this exercise you will need to be logged in so you can create a pull
request from the web user interface. If you don’t already have a
GitHub account, it is easy and free to sign up and get started.

The DevOps Tools for Java Developers repository GitHub page is
shown in Figure 1-3. The GitHub UI shows the root files and the
contents of a special file called README.md by default. We are
going to make edits to the readme file, which is coded in a visual text
language called markdown.

https://github.com/mjmckay/devops-tools-for-java-developers

Since we only have read access to this repository, we are going to
create a fork of the repository that we can freely edit to make and
propose the changes. Once you are logged in to GitHub you can start
this process by clicking on the “Fork” button highlighted in the upper
right corner.

Figure 1-3. The GitHub repository for the DevOps Tools for Java Developers book samples

A fork is a copy of the repository that we own and have full
permissions to change and edit, which will get created under our
personal account at GitHub. Once your fork is created, complete the
following steps to open the web-based text editor:

1. Click on the “README.md” file that you want to edit to see
the details page

2. Click on the pencil icon on the details page to edit the file

Once you have entered the editor you will see the web-based text
editor shown in Figure 1-4. Scroll down to the section with the visitor
log, and add your own personal comment to the end to let folks know
you completed this exercise.

Figure 1-4. The GitHub web-based text editor that you can use to make quick changes to
files

The recommended format for visitor log entries is:

Name (@optional_twitter_handle): Visitor comment

If you want to be fancy on the twitter handle and link to your profile,
the markdown syntax for twitter links is as follows:

[@twitterhandle](https://twitter.com/twitterhandle)

To check your changes you can click on the “Preview changes” tab,
which will show what the rendered output is once inserted into the
original readme.

Once you are satisfied with your changes, scroll down to the code
commit section shown in Figure 1-5. Enter a helpful description for
the change to explain what you updated. Then go ahead and click the
“Commit changes” button.

For this example we will simply commit to the main branch, which is
the default. However, if you were working in a shared repository you
should commit your pull request to a feature branch that can be
integrated separately.

Figure 1-5. Example of how to use the GitHub UI to commit changes to a repository that you
have write access to

https://twitter.com/twitterhandle

After you have made a change to your forked repository, you can then
submit this as a pull request for the original project. This will notify
the project maintainers (in this case the book authors) that a proposed
change is waiting for review and let them choose whether or not to
integrate it into the original project.

To do this, go to the “Pull requests” tab in the GitHub user interface.
This screen has a button to create a “New pull request” that will
present you with a choice of the “base” and “head” repository to be
merged as shown in Figure 1-6.

In this case since you only have one change, the default repositories
should be selected correctly. Simply click the “Create pull request”
button and a new pull request against the original repository will be
submitted for review.

Figure 1-6. User interface for creating a pull request from a forked repository

This completes your submission of a pull request! Now it is up to the
original repository owners to review and comment on, or
accept/reject the pull request. While you don’t have write access to

the original repository to see what this looks like, Figure 1-7 shows
you what will be presented to the repository owners.

Once the respository owners accept you pull request, your custom
visitor log greeting will be added to the official book repository!

Figure 1-7. The repository owner user interface for merging in the resulting pull request

This workflow is an example of the fork and pull request
collaboration model for handling project integration. We will talk a
bit more about different collaboration patterns and what sort of
projects and team structures they are most suitable for.

Git Tools

In the previous section we showed an entire web-based workflow for
Git using the GitHub UI. However, other than code reviews and

repository management, most developers will spend the majority of
their time in one of the client-based user interfaces to Git.

The available client interfaces for Git can be broadly split into the
following categories:

Command Line - There is an official Git command line client
that may already be installed on your system, or is easily
added.

GUI Clients - The official Git distribution comes with a
couple open-source tools that can be used to more easily
browse your revision history or to structure a commit. Also,
there are several third-party free and open-source Git tools
that can make working with your repository easier.

Git IDE plug-ins - Often you need to go no farther than your
favorite IDE to work with your distributed source control
system. Many major IDEs have Git support packaged by
default or offer a well supported plug-in.

Git Command Line Basics

The Git command line is the most powerful interface to your source
control system, allowing for all local and remote options to manage
your repository. You can check to see if you have the Git command
line installed by typing the following on the console:

git --version

If you have git installed it will return the operating system and
version that you are using similar to this:

git version 2.26.2.windows.1

However, if you don’t have Git installed it, the easiest way to get it
on different platforms is:

Linux Distributions:

Debian-based: sudo apt install git-all

RPM-based: sudo dnf install git-all

Mac OS X

Running git on OS X 10.9 or later will ask you to
install it.

Another easy option is to install GitHub Desktop,
which installs and configures the command line
tools.

Windows

The easiest way is to simply install GitHub Desktop,
which installs the command line tools as well.

Another option is Git for Windows, which can be
downloaded here: https://git-scm.com/download/win

Regardless of which approach you use to install Git, you will end up
with the same great command line tools, which are well supported
across all desktop platforms.

To start with, it is helpful to understand the basic Git commands. The
diagram in Figure 1-8 shows a typical repository hierarchy with one
central repository and three clients who have cloned it locally. Notice
that every client has a full copy of the repository and also a working
copy where they can make changes.

Figure 1-8. Diagram of a typical central server pattern for distributed version control
collaboration

Some of the Git commands that allow you to move data between
repositories and also the working copy are shown. Now let’s go

https://git-scm.com/download/win

through some of the most common commands that are used to
manage your repository and collaborate in Git.

Repository management:

clone - This command is used to make a connected copy of
another local or remote repository on the local filesystem. For
those coming from a concurrent version control system like
CVS or Subversion, this command servs a similar purpose to
checkout, but is semantically different in that it creates a
full copy of the remote repository. All of the clients in
Figure 1-8 would have cloned the central server to begin.

init - Init creates a new, empty repository. However, most of
the time you will start by cloning an existing repository.

Changeset management:

add - This adds file revisions to version control, which can be
either a new file or modifications to an existing file. This is
different than the add command in CVS or Subversion in
that it does not track the file and needs to be called every
time the file changes. Make sure to call add on all new and
modified files before committing.

mv - Renames or moves a file/directory, while also updating
the version control record for the next commit. It is similar in
use to the mv command in Unix and should be used instead

of filesystem commands to keep version control history
intact.

restore - This allows you to restore files from the Git index in
the case where they are deleted or erroneously modified.

rm - Removes a file or directory, while also updating the
version control record for the next commit. It is similar in use
to the rm command in Unix and should be used instead of
filesystem commands to keep version control history intact.

History control:

branch - With no arguments this command lists all of the
branches in the local repository. It can also be used to create a
new branch or delete branches.

commit - Used to save changes in the working copy to the
local repository. Before running commit make sure to register
all your file changes by calling add, mv and rm on files that
have been added, modified, renamed, or moved. You also
need to specify a commit message that can be done on the
command line with the -m option or if omitted a text editor
(e.g. vi) will be spawned to allow you to enter a message.

merge - Merge joins changes from the named commits into
the current branch. If the merged in history is already a
descendant of the current branch then a “fast-forward” is
used to combine the history sequentially. Otherwise a merge
is created the combines the history and where there are

conflicts the user is prompted to resolve. This command is
also used by git pull to integrate changes from the
remote repository.

rebase - Rebase replays the commits from your current
branch on the upstream branch. This is different from merge
in that the result will be a linear history rather than a merge
commit, which can keep the revision history easier to follow.
The disadvantage is that rebase creates entirely new commits
when it moves the history, so if the current branch contains
changes that have previously been pushed you are rewriting
history that other clients may depend upon.

reset - This can be used to revert the HEAD to a previous
state, and has several practical uses such as reverting an add
or undoing a commit. However, if those changes have been
pushed remotely this can cause problems with the upstream
repository. Use with care!

switch - Switches between branches for the working copy. If
you have changes in the working copy this can result in a
three-way merge, so it is often better to commit or stash your
changes first. With the -c command this command will
create a branch and immediately switch to it.

tag - Allows you to create a tag on a specific commit that is
signed by PGP. This uses the default e-mail address’s PGP
key. Since tags are cryptographically signed and unique, they
should not be reused or changed once pushed. Additional

options on this command allow for deleting, verifying, and
listing tags.

log - This shows the commit logs in a textual format. It can
be used for a quick view of recent changes, and supports
advanced options for the history subset shown and formatting
of the output. Later in this chapter we also show how to
visually browse the history using tools like gitk.

Collaboration

fetch - Fetch pulls the history from a remote repository into
the local repository, but makes no attempt to merge it with
local commits. This is a safe operation that can be performed
at any time and repeatedly without causing merge conflicts or
affecting the working copy.

pull - This command is equivalent to a git fetch
followed by git merge FETCH_HEAD. It is very
convenient for the common workflow where you want to
grab the latest changes from a remote repository and integrate
it with your working copy. However, if you have local
changes it can cause merge conflicts that you will be forced
to resolve. For this reason, it is often safer to fetch first and
then decide if a simple merge will suffice.

push - This command sends changes to the upstream remote
repository from the local repository. Use this after a commit

to push your changes to the upstream repository so other
developers can see your changes.

Now that you have a basic understanding of the Git commands, let’s
put this knowledge to practice.

Git Command Line Tutorial

To demonstrate how to use these commands, we will go through a
simple example to create new local repository from scratch. For this
exercise we are assuming you are on a system with a Bash-like
command shell. This is the default on most Linux distributions as
well as Mac OS X. If you are on Windows you can do this via
Windows PowerShell, which has sufficient aliases to emulate Bash
for basic commands.

If this is your first time using Git, it is a good idea to put in your
name and e-mail, which will be associated with all of your version
control operations. You can do this with the following commands:

git config --global user.name "Put Your Name Here"

git config --global user.email "your@email.address"

After you have configured your personal information go to a suitable
directory to create your working project. First create the project
folder and initialize the repository:

mkdir tutorial

cd tutorial

git init

This will create the repository and initialize it so you can start
tracking revisions of files. Let’s create a new file that we can add to
revision control:

echo "This is a sample file" > sample.txt

To add this file to revision control, use the git add command as
follows:

git add sample.txt

And you can add this file to version control by using the git
commit command as follows:

git commit sample.txt -m "First git commit!"

Congratulations on making your first command line commit using
Git! You can double check to make sure that your file is being tracked
in revision control by using the git log command, which should
return output similar to the following:

commit 0da1bd4423503bba5ebf77db7675c1eb5def3960 (HEAD -

> master)

Author: Stephen Chin <steveonjava@gmail.com>

Date: Sat Oct 31 04:19:08 2020 -0700

 First git commit!

From this you can see some of the details that Git stores in the
repository including branch information (the default branch being
master), and revisions by global unique identifiers (GUIDs). While
there is a lot more you can do from the command line, it is often
easier to use a Git Client built for your workflow or IDE integration
that is designed for a developer workflow. We will talk about these
client options in the next couple sections.

Git Clients

There are several free and open source clients that you can use to
work with Git repos more easily and are optimized for different
workflows. Most clients do not try to do everything, but specialize in
visualizations and functionality for specific workflows.

The default Git installation comes with a couple handy visual tools
that make committing and viewing history easier. These tools are
written in Tcl-Tk, are cross-platform, and are easily launched from
the command line to supplement the Git CLI.

The first tool, Gitk, provides an alternative to the command line for
navigating, viewing, and searching the Git history of your local
repository. The user interface for Gitk showing the history for the
ScalaFX open-source project is shown in Figure 1-9.

Figure 1-9. The bundled Git history viewer application

The top pane of Gitk displays the revision history with branching
information drawn visually, which can be very useful for deciphering
complicated branch history. Below this are search filters that can be
used to find commits containing specific text. Finally, for the selected
changeset, you can see the changed files and a textual diff of the
changes, which is also searchable.

The other tool that comes bundled with Git is Git Gui. Unlike Gitk,
which only shows information about the repository history, Git Gui
allows you to modify the repository by executing many of the Git
commands including commit, push, branch, merge, and others.

The user interface for Git Gui editing the source code repository for
this book is shown in Figure 1-10. On the left side all of the changes
to the working copy are shown with the unstaged changes on top and
the files that will be included in the next commit on the bottom. The

details for the selected file is shown in the right side with the full file
contents for new files, or a diff for modified files. At the bottom-right
buttons are provided for common operations like Rescan, Sign Off,
Commit, and Push. Further commands are available in the menu for
advanced operations like branching, merging, and remote repository
management.

Figure 1-10. The bundled Git collaboration application

Git Gui is an example of a workflow driven user interface for Git. It
doesn’t expose the full set of functionality available on the command
line, but is very convenient for the commonly used Git workflows.

Another example of a workflow driven user interface is GitHub
Desktop. This is the most popular 3rd party GitHub user interface,
and as mentioned earlier, also conveniently comes bundled with the
command line tools so you can use it as an installer for the Git CLI
and aforementioned bundled GUIs.

GitHub Desktop is very similar to Git Gui, but is optimized for
integration with GitHub’s service and the user interface is designed to
make it easy to follow workflows similar to GitHub Flow. The
GitHub Desktop user interface editing the source repository for
another great book, The Definitive Guide to Modern Client
Development, is shown in Figure 1-11.

Figure 1-11. GitHub’s open source desktop client

In addition to the same sort of capabilities to view changes, commit
revisions, and pull/push code as Git Gui, GitHub Desktop has a
bunch of advanced features that make managing your code much
easier:

Attributing commits with collaborators

Syntax highlighted diffs

Image diff support

Editor and shell integration

Checking out and seeing CI status on pull requests

GitHub Desktop can be used with any Git repo, but has features
tailored specficially for use with GitHub hosted repositories. Some
other popular Git tools include:

SourceTree: A free, but proprietary, Git client made by
Atlassian. It is a good alternative to GitHub Desktop and only
has a slight bias towards Atlassian’s Git service, BitBucket:
https://www.sourcetreeapp.com/

GitKraken: A commercial and featureful Git client. It is free
for open source developers, but paid for commercial use:
https://www.gitkraken.com/

TortoiseGit: A free, GPL licensed, Git client based on
TortoiseSVN. The only downside is that it is Windows only:
https://tortoisegit.org/

Others: A full list of Git GUI clients is maintained on the Git
website at: https://git-scm.com/downloads/guis

Git desktop clients are a great addition to the arsenal of available
source control management tools you have available. However, the
most useful Git interface may already be at your fingerprints right
inside your IDE.

https://www.sourcetreeapp.com/
https://www.gitkraken.com/
https://tortoisegit.org/
https://git-scm.com/downloads/guis

Git IDE Integration

Many integrated development environments (IDEs) include Git
support either as a standard feature, or as a well supported plug-in.
Chances are that you need to go no further than your favorite IDE to
do basic version control operations like adding, moving, and
removing files, committing code, and pushing your changes to an
upstream repository.

One of the most popular Java IDEs is Jetbrains IntelliJ. It has both a
Community Edition that is open source as well as a commercial
version with additional features for enterprise developers. The IntelliJ
Git support is full featured with the ability to sync changes from a
remote repository, track and commit changes performed in the IDE,
and integrate upstream changes. The integrated commit tab for a Git
changeset is shown in Figure 1-12

Figure 1-12. IntelliJ Commit tab for managing working copy changes

IntelliJ offers a rich set of features that you can use to customize the
Git behavior to your team workflow. For example, if your team
prefers a git-flow or GitHub Flow workflow you can choose to merge
on update. However, if your team wants to keep a linear history as
prescribed in OneFlow you can choose to rebase on update instead.
IntelliJ also supports both native credential provider as well as the
open-source Keepass password manager.

Another IDE that offers great Git support is Eclipse, which is a fully
open-source IDE that has strong community support and is run by the
Eclipse Foundation. The Eclipse Git support is provided by the EGit
project, which is based on JGit, a pure Java implementation of the Git
version control system.

Due to the tight integration with the embedded Java implementation
of Git, Eclipse has the most full-featured Git support. From the
Eclipse user interface you can accomplish almost everything that you
would normally have to do from the command-line including
rebasing, cherry-picking, tagging, patches, and more. The rich set of
features is obvious from the settings dialog shown in Figure 1-13
which has twelve pages of configuration for how the Git integration
works and is supported by a user guide, which is almost a book itself
at 161 pages in length.

Figure 1-13. Eclipse Settings dialog for Git configuration

Some other Java IDEs that you can expect great Git support from
include:

NetBeans - Offers a git plug-in that fully supports workflow
from the IDE

Visual Studio Code - Supports Git along with other version
control systems out of the box

BlueJ - A popular learning IDE built by King’s College
London also supports Git in its team workflows

JDeveloper - While it doesn’t support complicated
workflows, JDeveloper does have basic support for cloning,
comitting, and pushing to Git repos

Through this chapter you have added a whole set of new command
line, desktop, and integrated tools to your arsenal to work with Git
repos. This range of community and industry supported tools means
that no matter what your operating system, project workflow, or even
team preference is, you will find full tooling support to be successful
with your source control management. In the next section we will go
into more detail on different collaboration patterns that are well
supported by the full range of Git tools.

Git Collaboration Patterns

Distributed version control systems have a proven track record of
scaling to extremely large teams with hundreds of collaborators. At
this scale it is necessary to agree upon uniform collaboration patterns
that help the team to avoid rework, large and unwieldy merges, and to
reduce the amount of time blocked or administering the version
control history.

Most projects follow a central repository model where a single
repository is designated as the official repository for integrations,
builds, and releases. Even thought a distributed version control
system allows for non-centralized peer-to-peer exchanges of
revisions, these are best reserved for short lived efforts between a
small number of developers. For any large project having a single
system of truth is important and requires one repository that everyone
agrees is the official codeline.

For open source projects it is common to have a limited set of
developers who have write access to the central repository and other

committer are recommended to “fork” the project and issue pull
requests to have their changes included. This scales well to projects
with thousands of contributors, and allows for review and oversight
from a core team when the codebase is not well understood.

However, for most corporate projects a shared repository is preferred.
The same workflow with pull requests can be used to keep a central
or release branch clean, but this simplifies the contribution process
and encourages more frequent integration, which reduces the size and
difficulty of merging in changes. For teams on tight deadlines or
following an Agile process with short iterations, this also reduces risk
of last minute integration failures.

The last best practice that is employed by most teams is to use
branches to work on features, which then get integrated back into the
main codeline. Git makes it easy to create short lived branches, so it
is not uncommon to create and merge back in a branch for work that
only takes a couple hours. The risk with creating long-lived feature
branches is that if they diverge too much from the main trunk of code
development, they can become difficult to integrate back in.

Following these general best practices for distributed version control,
there are several collaboration models that have emerged. They share
a lot of commonalities, and primarily diverge in their approach to
branching, history management, and integration speed.

git-flow

Git-flow is one of the earliest git workflows inspired by a blog post
from Vincent Driessen . It laid the groundwork for later Git
collaboration workflows like GitHub Flow; however, git-flow is a
more complicated workflow than most projects require and can add
additional branch management and integration work.

Key Attributes:

Development Branches: Branch per feature

Merge Strategy: No fast forward merges

Rebasing History: No rebasing

Release Strategy: Separate release branch

In git-flow there are two long-lived branchee; one for development
integration called “develop” and another for final releases called
“master”. Developers are expected to do all of their coding in
“feature branches” that are named according to the feature they are
working on and integrate that with the “develop” branch once
complete. When the “develop” branch has the features necessary for a
release, a new release branch is created that is used to stabilize the
codebase with patches and bugfixes.

Once the release branch has stabilized and is ready for release it is
integrated into the “master” branch and given a release tag. Once on
the master, only hotfixes are applied, which are small changes
managed on a dedicated branch. These hotfixes also need to be
applied back to the develop branch and any other concurrent releases

2

that need the same fix. A sample diagram for git-flow is shown in
Figure 1-14.

Figure 1-14. Example diagram showing how git-flow manages branches and integration3

Due to the design decisions on git-flow, it tends to create a very
complicated merge history. By not taking advantage of fast-forward
merges or rebasing, every integration becomes a commit and the
number of concurrent branches can be hard to follow even with visual
tools. Also, the complicated rules and branch strategy requires team
training and is difficult to enforce with tools, often requiring check-
ins and integration to be done from the command line interface.

Git-flow is best applied to projects that are explicitly versioned and
have multiple releases that need to be maintained in parallel. Usually
this is not the case for web applications, which only have one “latest”
version and can be managed with a single release branch. If your
project gits in the suite spot where git-flow excels, it is a very well
thought out collaboration model, otherwise you may find that a
simpler collaboration model will suffice.

GitHub Flow

GitHub Flow is a simplified Git workflow launched in response to the
complexity of git-flow by Scott Chacon in another prominent blog .
GitHub Flow or a close variant has been adopted by most
development teams since it is easier to implement in practice, handles
the common case for continuous released web development, and is
well supported by tools.

Key Attributes:

Development Branches: Branch per feature

Merge Strategy: No fast forward merges

4

Rebasing History: No rebasing

Release Strategy: No separate release branches

GitHub Flow takes a very simple approach to branch management,
using “master” as the main codeline and also the release branch.
Developers do all of their work on short-lived feature branches and
integrate them back into master as soon as their code passes tests and
code reviews.

In general, GitHub Flow makes good use of available tooling by
having a straightforward workflow with a simple branching straategy
and no use of complicated arguments to disable fast-forward merges
or replace merges with rebasing. This makes GitHub Flow easy to
adopt on any team and use by developers who are not familiar with
the team process or are not as familiar with the command line Git
interface.

The GitHub Flow collaboration model works well for server-side and
cloud deployed applications where the only meaningful version is the
latest release. In fact, GitHub Flow recommends that teams
continuously deploy to production to avoid feature stacking where a
single release build has multiple features that increase complexity and
make it harder to determine the breaking change. However, for more
complicated workflows with multiple concurrent releases GitHub
Flow needs to be modified to accommodate.

Gitlab Flow

Gitlab Flow is basically an extension of GitHub Flow documented on
Gitlab’s website . It takes the same core design principles about using
master as a single long-lived branch and doing the majority of
development on feature branches. However, it adds a few extensions
to support release branches and history clean-up that many teams
have adopted as best practices.

Key Attributes:

Development Branches: Branch per feature

Merge Strategy: Open ended

Rebasing History: Optional

Release Strategy: Separate release branches

The main difference between GitHub Flow and Gitlab Flow is the
addition of release branches. This is recognition that most teams are
not practicing continuous deployment at the level GitHub does. By
having release branches this allows stabilization of code before it gets
pushed into production; however, Gitlab Flow recommends making
patches to master and then cherry picking them for release rather than
having an extra hotfix branch like git-flow.

The other significant different is the willingness to edit history using
rebase and squash. By cleaning up the history before committing to
master, it is easier to retroactively go back and read the history to
discover when key changes or bugs were introduced. However, this

5

involves rewriting the local history and can be dangerous when that
history has already been pushed to the central server.

Gitlab Flow is a modern take on the Gitlab Flow philosophy to
collaboration workflow, but ultimately your team has to decide on the
features and branch strategy based on your project’s needs.

OneFlow

OneFlow is another collaboration workflow based on git-flow
proposed by Adam Ruka and consolidated in a detailed blog .
OneFlow makes the same adaptation as GitHub/Gitlab flow in
squashing the separate “develop” branch in favor of feature branches
and direct integration on main. However, it keeps the release and
hotfix branches that are used in git-flow.

Key Attributes:

Development Branches: Branch per feature

Merge Strategy: No fast forward merges without rebase

Rebasing History: Rebasing recommended

Release Strategy: Separate release branches

The other big deviation in OneFlow is that it heavily favors
modifying history to keep the Git revision history readable. It offers
three different merge strategies that have varying levels of revision
cleanliness and rollback friendlyness:

6

Option #1: Rebase - This makes the merge history mostly
linear and easy to follow. It has the usual caveat that
changesets pushed to the central server should not be rebased
and makes it more difficult to rollback changes since they are
not captured in a single commit.

Option #2: merge -no-ff - This is the same strategy used in
git-flow and has the disadvantage that the merge history is
largely non-sequential and difficult to follow.

Option #3: rebase + merge -no-ff - This is a rebase
workaround that tacks on an extra merge integration at the
end so it can be rolled back as a unit even though it is still
mostly sequential.

OneFlow is a thoughtful approach to a Git collaboration workflow
that is created from the experience of developers on large enterprise
projects. It can be seen as a modern variant on git-flow that should
serve the needs of projects of any size.

Trunk Based Development

All of the aforementioned approaches are variants of the feature
branch development model where all active development is done on
branches that get merged in to either master or a dedicated
development branch. They take advantage of the great support Git
has for branch management, but if features are not granular enough,
suffer from the typical integration problems that have plagued teams
for decades. The longer the feature branch is in active development,

the higher likelihood there is for merge conflicts with other features
and maintenance going on in the master branch (or trunk).

Trunk Based Development solves this problem by recommending that
all development happen on the main branch with very short
integrations that occur anytime that tests are passing, but not
necessarily waiting for a full feature to be completed.

Key Attributes:

Development Branches: Optional, but no long-lived branches

Merge Strategy: Only if using development branches

Rebasing History: Rebasing recommended

Release Strategy: Separate release branches

Paul Hammant is a strong advocate for Trunk Based Development
having setup a full website at https://trunkbaseddevelopment.com/
and written a book on the topic. While this is not a new approach to
collaboration on source control management systems, it is a proven
approach to agile development in large teams and works equally well
on classic central SCMs like CVS and Subversion to modern
distributed version control systems like Git.

Conclusion

Good source control systems and practices lay the foundation for a
solid DevOps approach to building, releasing, and deploying code

https://trunkbaseddevelopment.com/

quickly. In this chapter we discussed the history of source control
systems and explained why the world has moved to embrace
distributed version control.

This consolidation has built a rich ecosystem of source control
servers, developer tools, and commercial integrations. Finally,
through the adoption of distributed version control by DevOps
thought leaders, best practices and collaboration workflows have
been established that you can follow to help make your team
successful with adopting as modern SCM.

In the next few chapters we will drill into systems that connect to
your source control management system including continuous
integration, package management, and security scanning that allow
you to rapidly deploy to traditional or cloud-native environments.
You are on the way to building a comprehensive DevOps platform
that will support whatever workflow you need to meet your quality
and deployment objectives.

1 Source: Google Trends https://trends.google.com/trends/explore?
date=all&q=%2Fm%2F05vqwg,%2Fm%2F09d6g,%2Fm%2F012ct9,%2Fm%2F084
41_&hl=en-US&tz=&tz=

2 https://nvie.com/posts/a-successful-git-branching-model/

3 Vincent Driessen, Creative Commons BY-SA, http://nvie.com/archives/323

4 http://scottchacon.com/2011/08/31/github-flow.html

5 https://docs.gitlab.com/ee/topics/gitlab_flow.html

6 https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow

https://trends.google.com/trends/explore?date=all&q=%2Fm%2F05vqwg,%2Fm%2F09d6g,%2Fm%2F012ct9,%2Fm%2F08441_&hl=en-US&tz=&tz=
https://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/archives/323
http://scottchacon.com/2011/08/31/github-flow.html
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow

Chapter 2. Continuous
Integration
Melissa McKay

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the authors’ raw
and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

This will be the 5th chapter of the final book. If there is a GitHub repo associated with
the book, it will be made active after final publication.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at ccollins@oreilly.com.

Always make new mistakes.

—Esther Dyson

In Chapter 4, you learned the value of source control and a common
code repository. Now that you have organized and settled on your
source control solution, what next? Simply having a common
location where all developers on a project can update and maintain
the code base is a long way from getting your software deployed to a
production environment. There are a few more steps you must take to

mailto:ccollins@oreilly.com

get the end result to a place where your users can bask in the perfect
user experience of your delivered software.

Think about the process that you would take as an individual
developer to progress your software through the entire software
development lifecycle. After determining the acceptance criteria for a
particular feature or bug fix for your software, you would proceed
with adding the actual lines of code along with the related unit tests to
the codebase. Then, you would compile and run all of the unit tests to
ensure that your new code works like you expect, (or at least as
defined by your unit tests), and doesn’t break known existing
functionality. After you find that all tests pass, you would build and
package your application and verify functionality in the form of
integration tests in a Quality Assurance (QA) environment. Finally,
happy with the green light from your well oiled and maintained test
suites, you would deliver and/or deploy your software to a production
environment.

If you have any development experience at all, you know as well as I
do that software rarely falls into place so neatly. Strict
implementation of the ideal workflow described is too simplistic
when you begin working on a larger project with a team of
developers. There are a number of complications introduced that can
gum up the gears of the software delivery lifecycle and throw your
schedule into a lurch. This chapter will discuss how Continuous
Integration (CI) and the related best practices and toolsets will help
you steer clear of or mitigate the most common hurdles and
headaches that software development projects often encounter on the
path to delivery.

Adopt Continuous Integration

Continuous Integration, or CI, is most simply described as frequently
integrating code changes from multiple contributors into the main
source code repository of a project. In practice, this definition by
itself is a little vague. Exactly how often is implied by frequently?
What does integrating actually mean in this context? Is it enough just
to coordinate pushing code changes to the source code repository?
And most importantly, what problem does this process solve - for
what benefit(s) should I adopt this practice?

The concept of CI has been around now for quite some time.
According to Martin Fowler, the term Continuous Integration
originated with Kent Beck’s Extreme Programming development
process, as one of its original twelve practices. In the DevOps
community, the term itself is now as common as butter on toast. But
how it is implemented may vary from team to team and project to
project. The benefits are hit or miss if there isn’t a thorough
understanding of the original intent or if best practices are abandoned.

CI is meant to identify bugs and compatibility issues as quickly as
possible in the development cycle. The basic premise of CI is that if
developers integrate changes often, bugs can be found sooner in the
process and less time is spent hunting down when and where a
problem was introduced. The longer a bug goes undiscovered, the
more potential there is for it to become entrenched in the surrounding
code base. It is much easier from a development perspective to find,
catch and fix bugs closer to when they are introduced rather than to
extract them from layers of code that have already moved to later

1

stages of the delivery pipeline. Bugs that evade discovery until the
latest acceptance phases, and especially those that escape all the way
to release, directly translate to more money to fix and less time to
spend on new features. In the case of fixing a bug in production, in
many instances, there is now a requirement to patch existing
deployments in addition to including and documenting the fix in a
new version. This inherently reduces the time the team has available
to spend on the development of new features.

It’s important to understand that implementing a CI solution does not
equate to software that never has any bugs. It would be foolish to use
such a definitive measure to determine whether the implementation of
CI is worthy. A more valuable metric might be the number of bugs or
compatibility issues that were caught by CI. In much the same way
that a vaccine is never 100% effective in a large population, CI is
simply another level of protection to filter the most obvious bugs
from a release. By itself, CI will never replace the well-known
benefits of software development best practices that are in the
purview of the initial design and development steps. It will, however,
provide a safety net for software as it is repeatedly handled and
massaged by multiple developers over time.

Continuous Integration doesn’t get rid of bugs, but it does make
them dramatically easier to find and remove.

—Martin Fowler

My first experience with CI was during an internship at a small
company that adopted the software development methodology of
Extreme Programming[], of which CI is an important aspect. We did2

not have an incredibly fancy system using all of the latest and
greatest DevOps tools. What we did have in place was a common
code repository, and a single build server located in a small closet in
the office. Unbeknownst to me when I first joined the development
team, there was also a speaker set up on the build server that would
erupt in the sound of emergency sirens if a fresh check-out from
source control resulted in the failure of a build or any automated tests.
We were a relatively young team, so this part of our CI was mostly in
jest, but guess who learned remarkably quickly not to push code to
the main repository without first verifying that the project built
successfully and passed unit tests? To this day, I feel exceptionally
fortunate to have been exposed to this practice in this way. The
simplicity of it underscored the most important aspects of CI.

There were three byproducts of this simple setup that I want to call
out:

1. Code integration was regular and rarely complicated.

My team had agreed to follow XP practices, where
integration is encouraged as often as every few hours. More
important than a specific time interval, was the amount of
code that required integration at any given point. When
planning and breaking down actual development work, we
focused our efforts on creating small, completable tasks,
always beginning with the simplest thing that can possibly
work. By “completable”, I mean after the development task
was complete, it could be integrated into the main code
repository and the result would be expected to build

3

4

successfully and pass all unit tests. This practice of
organizing code updates in as small a package as possible
made regular and frequent integration to the main source
code repository a normal and unremarkable activity. Rarely
was there significant time spent on large integration efforts.

2. Build and test failures were relatively easy to troubleshoot.

Because the project was built and automated tests were run at
regular intervals, it was readily apparent where to start
troubleshooting any failures. A relatively small amount of
code would have been touched since the latest successful
build, and if the problem couldn’t immediately be identified
and resolved, we would start with reverting the latest merge
and work backward as needed in order to restore a clean
build.

3. Bugs and compatibility issues introduced by integration and
caught by the CI system were fixed immediately.

The loud sound of the siren let everyone on the team know
there was a problem that needed to be addressed, a problem
that could not be ignored. Because our CI system halted
progress whenever there was a build or test failure, everyone
was on board to figure out what was wrong and what to do to
fix the problem. Team communication, coordination, and
cooperation were all in top shape because no-one would be
able to move forward until the issue was resolved. A majority
of the time, the offending code could be identified simply by
analyzing the most recent merge and the responsibility to fix

was assigned to that developer or pair of developers. There
were also times when a discussion with the entire team was
necessary because of a compatibility issue around multiple
recent merges where changes in one part of the system
negatively affected another seemingly unrelated part. These
instances required our team to re-evaluate the code changes
being made holistically and then decide together the best plan
of action.

These three things were key to the success of our CI solution. You
might have discerned that all three of these aspects imply the
prerequisites of a healthy code base and a healthy development team.
Without these, the initial implementation of a CI solution will
undoubtedly be more difficult. However, implementing a CI solution
will in turn have a positive impact on the codebase as well as the
health of the team, and taking the first steps will provide a measure of
benefit that will be well worth the effort. It is true there is much more
to an effective CI solution than simple coordination of code
contribution to a shared repository and following a mandate to
integrate at an agreed-upon frequency. The following sections will
walk you through the essentials of a complete, practicable, CI
solution that will help to unburden and accelerate the software
development process.

Declaratively Script Your Build

These three things were key to the success of our CI solution. You
might have discerned that all three of these aspects imply the

prerequisites of a healthy code base and a healthy development team.
Without these, the initial implementation of a CI solution will
undoubtedly be more difficult. However, implementing a CI solution
will in turn have a positive impact on the codebase as well as the
health of the team, and taking the first steps will provide a measure of
benefit that will be well worth the effort. It is true there is much more
to an effective CI solution than simple coordination of code
contribution to a shared repository and following a mandate to
integrate at an agreed-upon frequency. The following sections will
walk you through the essentials of a complete, practicable, CI
solution that will help to unburden and accelerate the software
development process.

You will reap a tremendous amount of time savings from taking this
step alone. Your project build lifecycle (all of the discrete steps
required to build your project) can easily grow more complicated
over time, especially as you consume more and more dependencies,
include various resources, add modules, and add tests. You may also
need to build your project differently depending on the intended
deployment environment. For example, you might need to enable
debugging capabilities in a development or quality assurance
environment, but disable debugging in a build intended for release to
production as well as prevent test classes from being included in the
distributable package. Manually performing all of the required steps
involved in building a java project, including consideration for
configuration differences per environment, is a hotbed for human
error. The first time you neglect a step like building an updated
dependency and consequently must repeat a build of a huge multi-

module project to correct your mistake, you will appreciate the value
of a build script.

Whatever tool or framework you choose for scripting your build, take
care to use a declarative approach rather than imperative. A quick
reminder of the meaning of these terms:

Imperative

Defining an exact procedure with implementation details

Declarative

Defining an action without implementation details

In other words, keep your build script focused on what you need to
do rather than how to do it. This will help keep your script
understandable, maintainable, testable, and scalable by encouraging
reuse on other projects or modules. To accomplish this, you may need
to establish or conform to a known convention, or write plugins or
other external code referenced from your build script that provides
the implementation details. Some build tools are more apt to foster a
declarative approach than others. This usually comes with the cost of
conforming to a convention versus flexibility.

The java ecosystem has several well-established build tools available,
so I would be surprised if you are currently manually compiling your
project with javac and packaging your class files into a jar or other
package type. You likely already have some sort of build process and
script established, but in the unlikely scenario that you do not, you

are starting a brand-new java project, or you are looking to improve
an existing script to utilize best practices, this section will summarize
a few of the most common build tools/frameworks available in the
Java ecosystem and what they provide you out of the box. First, it is
important to map out your build process in order to determine what
you need from your build script in order to gain the most benefit.

To build a java project, at the bare minimum you will need to specify
the following:

Java version

The version of Java required to compile the project

Source directory path

The directory that includes all of the source code for the
project

Destination directory path

The directory where compiled class files are expected to
be placed

Names, locations, and versions of needed dependencies

The metadata necessary to locate and gather any
dependencies required by your project

With this information, you should be able to execute a minimal build
process with the following steps:

1. Collect any needed dependencies.

2. Compile the code.

3. Run tests.

4. Package your application.

The best way to show how to massage your build process into a build
script is by example. The following examples demonstrate the use of
three of the most common build tools to script the minimal build
process described for a simple Hello World Java application. In no
way do these examples explore all of the functionality available in
these tools. They are simply meant as a crash course to help you
either begin to understand your existing build script or help you write
your first build script to benefit from a full CI solution.

In evaluating a build tool, bear in mind the actual process your
project requires to complete a build. It may be that your project
requires scripting of additional steps that are not shown here and one
build tool may be more suited than another to accomplish this. It is
important that the tool you choose helps you programmatically define
and accelerate the build process your project requires rather than
arbitrarily force you to modify your process to fit the requirements of
the tool. That said, when you learn the capabilities of a tool, reflect
on your process and be mindful of changes that would benefit your
team. This is most important with established projects. Changes to
the process, however well-intentioned, can be painful for a
development team. They should only be made intentionally, with a

clear understanding of the reason for the change and of course, a clear
benefit.

Build With Apache Ant

Apache Ant is an open-source project released under an Apache
License by the Apache Software Foundation. According to the
Apache Ant documentation the name is an acronym for “Another
Neat Tool” and was initially part of the Tomcat codebase, written by
James Duncan Davidson for the purpose of building Tomcat. It’s first
initial release was on July 19, 2000.

Apache Ant is a build tool written in Java that provides a way to
describe a build process as declarative steps within an XML file. This
is the first build tool that I was exposed to in my Java career and
although Ant has heavy competition today, it is still an active project
and widely used often in combination with other tools.

https://ant.apache.org/

KEY ANT TERMINOLOGY

Ant Task

An Ant task is a small unit of work such as deleting a directory or
copying a file. Under the covers, Ant tasks map to Java objects which
contain the implementation details for the task. There are a large
number of built-in tasks available in Ant as well as the ability to create
custom tasks.

Ant Target

Ant tasks are grouped into Ant targets. An Ant target is invoked by
Ant directly. For example, for a target named compile, you would run
the command ant compile. Ant targets can be configured to

depend on each other in order to control the order of execution.

LISTING ANT TARGETS
Some Ant build files can grow to be quite large. In the same
directory as build.xml, you can run the following command to get a
list of available targets:

ant -projecthelp

Ant Build File

The Ant build file is an XML file used to configure all of the Ant tasks
and targets utilized by a project. By default, this file is named
build.xml and is found at the root of the project directory.

Example 2-1 is a simple Ant build file I created and executed with
Ant 1.10.8.

Example 2-1. Ant build script (build.xml)

<project name="my-app" basedir="." default="package">

 <property name="version" value="1.0-SNAPSHOT"/>

 <property name="finalName"

value="${ant.project.name}-${version}"/>

 <property name="src.dir" value="src/main/java"/>

 <property name="build.dir" value="target"/>

 <property name="output.dir"

value="${build.dir}/classes"/>

 <property name="test.src.dir"

value="src/test/java"/>

 <property name="test.output.dir"

value="${build.dir}/test-classes"/>

 <property name="lib.dir" value="lib"/>

 <path id="classpath">

 <fileset dir="${lib.dir}" includes="**/*.jar"/>

 </path>

 <target name="clean">

 <delete dir="${build.dir}"/>

 </target>

 <target name="compile" depends="clean">

 <mkdir dir="${output.dir}"/>

 <javac srcdir="${src.dir}"

 destdir="${output.dir}"

 target="11" source="11"

 classpathref="classpath"

 includeantruntime="false"/>

 </target>

 <target name="compile-test">

 <mkdir dir="${test.output.dir}"/>

 <javac srcdir="${test.src.dir}"

 destdir="${test.output.dir}"

 target="11" source="11"

 classpathref="classpath"

 includeantruntime="false"/>

 </target>

 <target name="test" depends="compile-test">

 <junit printsummary="yes" fork="true">

 <classpath>

 <path refid="classpath"/>

 <pathelement location="${output.dir}"/>

 <pathelement

location="${test.output.dir}"/>

 </classpath>

 <batchtest>

 <fileset dir="${test.src.dir}"

includes="**/*Test.java"/>

 </batchtest>

 </junit>

 </target>

 <target name="package" depends="compile,test">

 <mkdir dir="${build.dir}"/>

 <jar jarfile="${build.dir}/${finalName}.jar"

 basedir="${output.dir}"/>

 </target>

</project>

The value of the default attribute of the project can be set
to the name of a default target to run when Ant is invoked
without a target. For this project, the command ant
without any arguments will run the package target.

Property elements are hardcoded values that may be used
more than once in the rest of the build script. Using them

helps keep with both readability and maintainability.

This path element is how I chose to manage the location
of needed dependencies for this project. In this case, both
the junit and hamcrest-core jars are manually placed in
the directory configured here. This technique implies that
dependencies would be checked into source control along
with the project. Although it was simple to do for this
project for this example, this is not a recommended
practice. Chapter 6 will discuss package management in
detail.

The compile target is responsible for the compilation of
the source code (this project specifies Java 11) and
placement of the resulting class files in the configured
location. This target depends on the clean target, meaning
the clean target will be run first, to ensure that compiled
class files are fresh and not leftover from an old build.

The test target configures the junit Ant task which will
run all of the available unit tests and print the results to
the screen.

The package target will assemble and place a final jar file
in the configured location.

Executing ant package is a one-line command that will take our
Java project, compile it, run unit tests, and then assemble a jar file for
us. Ant is flexible, rich in functionality, and satisfies our goal of

scripting a minimal build. The XML configuration file is a clean,
straightforward way of documenting the project’s build lifecycle. By
itself, Ant is lacking in the way of dependency management.
However, tools like Apache Ivy have been developed to extend this
functionality to Ant.

Build With Apache Maven

According to the Apache Maven Project documentation, maven is a
Yiddish word meaning accumulator of knowledge. Like Apache Ant,
Maven is also an open-source project of the Apache Software
Foundation. It began as an improvement to the Jakarta turbine project
build that was utilizing varied configurations of Ant for each
subproject. It’s first official release was on July, 2004.

Like Apache Ant, Maven uses an XML document, (a POM file), to
describe and manage java projects. This document records
information about the project including a unique identifier for the
project, the required compiler version, configuration property values,
and metadata on all required dependencies and their versions. One of
the most powerful features of Maven is its dependency management
and the ability to use repositories to share dependencies with other
projects.

Maven relies heavily on convention in order to provide a uniform
method of managing and documenting a project that can easily scale
across all projects using Maven. A project is expected to be laid out
on the filesystem in a specific way and in order to keep the script
declarative, customized implementations require building custom

https://ant.apache.org/ivy/
https://maven.apache.org/

plugins. Although it can be extensively customized to override
expected defaults, Maven works out of the box with very little
configuration if you conform to the expected project structure.

KEY MAVEN TERMINOLOGY

Lifecycle phase

A lifecycle phase is a discrete step in a project’s build lifecycle. Maven
defines a list of default phases that are executed sequentially during a
build. The default phases are validate, compile, test, package, verify,
install, and deploy. Two other Maven lifecycles consist of lifecycle
phases that handle cleaning and documentation for the project.
Invoking Maven with a lifecycle phase will execute all of the lifecycle
phases in order up to and including the given lifecycle phase.

Maven goal

Maven goals handle the implementation details of the execution of a
lifecycle phase. A goal can be configured to be associated with
multiple lifecycle phases.

Maven plugin

A collection of common maven goals with a common purpose. Goals
are provided by plugins to be executed in the lifecycle phase they are
bound to.

POM file

The Maven Project Object Model, or POM, is implemented as an XML
configuration file that includes the configuration for all of the Maven
lifecycle phases, goals, and plugins required for the project’s build
lifecycle. The name of this file is pom.xml and is found at the root of a
project. In multi-module projects, a POM file at the root of the project
is potentially a parent POM that provides inherited configuration to
POMs that specify the parent POM. All project POM files extend
Maven’s Super POM which is provided by the Maven installation itself
and includes default configuration.

Example 2-2 is a simple POM file I configured for my Java 11
environment using Maven 3.6.3.

Example 2-2. Maven POM file (pom.xml)

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.mycompany.app</groupId>

 <artifactId>my-app</artifactId>

 <version>1.0-SNAPSHOT</version>

 <name>my-app</name>

 <!-- FIXME change it to the project's website -->

 <url>http://www.example.com</url>

 <properties>

 <project.build.sourceEncoding>UTF-

8</project.build.sourceEncoding>

 <maven.compiler.release>11</maven.compiler.release>

 </properties>

 <dependencies>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.11</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

 <build>

 <pluginManagement>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-

plugin</artifactId>

 <version>3.8.0</version>

 </plugin>

 </plugins>

 </pluginManagement>

 </build>

</project>

Every project is uniquely identified by its configured
groupId, artifactId, and _version.

Properties are hardcoded values that can potentially be
used in multiple places in the POM file. They can be
either custom properties or built-in properties used by
plugins or goals.

The dependencies block is where all direct dependencies
of the project are identified. This project relies on junit to
run the unit tests, so the junit dependency is specified
here. Junit has a dependency itself on hamcrest-core, but
Maven is smart enough to figure that out without having
to include it here. By default, Maven will pull these
dependencies from Maven Central.

The build block is where plugins are configured. Unless
there is configuration you want to override, this block
isn’t required.

There are default plugin bindings for all of the lifecycle
phases, but in this case, I wanted to configure the maven-
compiler-plugin to use Java version 11 rather than the
default. The property that controls this for the plugin is
maven.compiler.release in the properties block.
This configuration could have been put in the plugin
block, but it makes sense to move it to the properties
block for better visibility toward the top of the file. This
property replaces maven.compiler.source and
maven.compiler.target that is usually seen when
using older versions of Java.

MAVEN PLUGIN VERSIONING
It is a good idea to lock down all of your maven plugin versions to avoid using
Maven defaults. Specifically, pay special attention to Maven instructions for
configuring your build script when using older versions of Maven and Java
versions 9 or greater. The default plugin versions of your Maven installation
might not be compatible with later versions of Java.

Because of the strong reliance on convention, this Maven build script
is quite brief. With this small POM file, I am able to execute mvn
package to compile, run tests, and assemble a jar file, all utilizing
default settings. If you spend any time with Apache Maven, you will
quickly realize that Maven is much more than just a build tool and is
chock-full of powerful features. For someone new to Maven, its
potential complexity can be overwhelming. Also, customization
through creating a new Maven plugin is daunting when the

customization is minor. At the time of this writing, the Apache
Maven Project documentation available contains excellent resources
including a “Maven in 5 Minutes” guide. I highly recommend starting
with these resources if you are unfamiliar with Maven.

MAVEN TO ANT CONVERSION
Although the Apache Maven Ant Plugin is no longer maintained, it is possible
to generate an Ant build file from a Maven POM file. Doing this will help you
appreciate everything you get out of the box with Maven’s convention and
defaults! In the same directory as your pom.xml file, invoke the Maven plugin
with the command mvn ant:ant

Build With Gradle

Gradle is an open-source build tool under the Apache 2.0 license.
Hans Dockter, the founder of Gradle explained that his original idea
was to call the project Cradle with a C. He ultimately decided on the
name Gradle with a G since it used Groovy for the DSL. Gradle 1.0
was released on June 12, 2012, so in comparison to Apache Ant and
Apache Maven, Gradle is the new kid on the block.

One of the biggest differences between Gradle and Maven and Ant is
that the Gradle build script is not XML based. Instead, Gradle build
scripts can be written with either a Groovy or Kotlin DSL. Like
Maven, Gradle also utilizes convention, but is more in the middle of
the road compared to Maven. The Gradle documentation touts the
flexibility of the tool and includes instructions on how to easily
customize your build.

5

http://maven.apache.org/
http://maven.apache.org/plugins/maven-ant-plugin/index.html
https://docs.gradle.org/current/userguide/userguide.html

TIP
Gradle has extensive online documentation on migrating Maven builds to
Gradle. You can generate a Gradle build file from an existing Maven POM.

https://docs.gradle.org/current/userguide/migrating_from_maven.html

KEY GRADLE TERMINOLOGY

Domain-Specific Language (DSL)

Gradle scripts use a Domain-specific language, or DSL, specific to
Gradle. With the Gradle DSL, you can write a Gradle script using
either Kotlin or Groovy language features. The Gradle Build
Language Reference documents the Gradle DSL.

Gradle Task

A Gradle task behaves as a discrete step in your build lifecycle. Tasks
can include implementations of units of work like copying files, inputs
that the implementation uses, and outputs that the implementation
affects. Tasks can specify dependencies on other tasks in order to
control the order of execution. Your project build will consist of a
number of tasks that a Gradle build will configure and then execute in
the appropriate order.

Gradle Lifecycle Tasks

These are common tasks that are provided by Gradle’s Base Plugin
and includes clean, check, assemble, and build. Other plugins can
apply the Base Plugin for access to these tasks.

Gradle Plugin

A Gradle plugin includes a collection of Gradle tasks and is the
mechanism with which to add extensions to existing functionality,
features, conventions, configuration, and other customizations to your
build.

Gradle Build Phase

Gradle build phases are not to be confused with Maven phases. A
Gradle build will move through three fixed build phases, initialization,
configuration, and execution.

Example 2-3 is a simple Gradle build file that I generated from the
content of Example 2-2 in the previous section.

Example 2-3. Gradle build script (build.gradle)

6

https://docs.gradle.org/current/dsl/

/*

 * This file was generated by the Gradle 'init' task.

 */

plugins {

 id 'java'

 id 'maven-publish'

}

repositories {

 mavenLocal()

 maven {

 url =

uri('https://repo.maven.apache.org/maven2')

 }

}

dependencies {

 testImplementation 'junit:junit:4.11'

}

group = 'com.mycompany.app'

version = '1.0-SNAPSHOT'

description = 'my-app'

sourceCompatibility = '11'

publishing {

 publications {

 maven(MavenPublication) {

 from(components.java)

 }

 }

}

tasks.withType(JavaCompile) {

 options.encoding = 'UTF-8'

}

Gradle plugins are applied by adding their plugin id to the
plugins block. The java plugin is a Gradle Core plugin
that provides compilation, testing, packaging, and other
functionality for Java projects.

Repositories for dependencies are provided in the
repositories block. Dependencies are resolved using these
settings.

Gradle handles dependencies similarly to Maven. The
junit dependency is required for our unit tests, so it is
included in the dependencies block.

The sourceCompatibility configuration setting is provided
by the java plugin and maps to the source option of
javac. There is also a targetCompatibility configuration
setting. Its default value is the value of
sourceCompatibility, so there was no reason to add it to
the build script.

The flexibility of Gradle allows me to add explicit
encoding for the Java compiler. There is a task provided
by the java plugin called compileJava that is of the type
JavaCompiler. This code block sets the encoding
property on this compile task.

This Gradle build script allows me to compile, run tests, and
assemble a jar file for my project by executing the single command

gradle build. Because Gradle builds are based on well-known
conventions, build scripts only contain what is needed that
differentiates the build, helping to keep them small and maintainable.
This simple script shows how powerful and flexible Gradle can be,
especially for Java projects that have a more complicated build
process. In that case, the upfront investment required to understand
the Gradle domain-specific language for customization is well worth
the time.

All three of these tools for building your Java project have their own
strengths and weaknesses. You will want to choose a tool based on
the needs of your project, the experience of your team, and the
flexibility required. Wrangling together a build script, however you
choose to do it, and with whatever tool you choose to do it, will
increase your efficiency by leaps and bounds. Building a java project
is a repetitive process consisting of a number of steps, ripe for human
error, and marvelously suitable for automation. Reducing your project
build down to a single command saves ramp-up time for new
developers, increases efficiency during development tasks in a local
development environment, and paves the way for build automation,
an integral component of an effective CI solution. Build server
options and examples will be discussed in more detail later in this
chapter in the section Continuous Building in the Cloud.

Wrangling together a build script, however you choose to do it, will
increase your efficiency by leaps and bounds. Building a java project
is a repetitive process consisting of a number of steps, ripe for human
error, and marvelously suitable for automation. Reducing your project
build down to a single command saves ramp-up time for new

developers, increases efficiency during development tasks in a local
development environment, and paves the way for build automation,
an integral component of an effective CI solution. Build server
options and examples will be discussed in more detail in the section
Continuous Building in the Cloud.

1 Fowler, Martin. “Continuous Integration.” Last modified May 1, 2006.
https://www.martinfowler.com/articles/continuousIntegration.html

2 Wells, Don. “Integrate Often.” Accessed July 5, 2020,
http://www.extremeprogramming.org/rules/integrateoften.html

3 http://www.extremeprogramming.org/rules/integrateoften.html

4 http://www.extremeprogramming.org/values.html

5 Gradle forum entry in Dec, 2011 (https://discuss.gradle.org/t/why-is-gradle-called-
gradle/3226)

6 The Wikipedia entry on Domain-specific language
(https://en.wikipedia.org/wiki/Domain-specific_language) provides more information.

https://www.martinfowler.com/articles/continuousIntegration.html
http://www.extremeprogramming.org/rules/integrateoften.html
http://www.extremeprogramming.org/rules/integrateoften.html
http://www.extremeprogramming.org/values.html
https://discuss.gradle.org/t/why-is-gradle-called-gradle/3226
https://en.wikipedia.org/wiki/Domain-specific_language

About the Authors
Stephen Chin is Head of Developer Relations at JFrog and author of
The Definitive Guide to Modern Client Development, Raspberry Pi
with Java, and Pro JavaFX Platform. He has keynoted numerous Java
conferences around the world including Devoxx, JNation, JavaOne,
Joker, and Open Source India. Stephen is an avid motorcyclist who
has done evangelism tours in Europe, Japan, and Brazil, interviewing
hackers in their natural habitat. When he is not traveling, he enjoys
teaching kids how to do embedded and robot programming together
with his teenage daughter. You can follow his hacking adventures at:
http://steveonjava.com

Baruch Sadogursky (a.k.a. JBaruch) is the Chief Sticker Officer
(also, Head of DevOps Advocacy) at JFrog. His passion is speaking
about technology. Well, speaking in general, but doing it about
technology makes him look smart, and 19 years of hi-tech experience
sure helps. When he’s not on stage (or on a plane to get there), he
learns about technology, people and how they work, or more
precisely, don’t work together.

He is a co-author of the Liquid Software book, a CNCF ambassador
and a passionate conference speaker on DevOps, DevSecOps, digital
transformation, containers and cloud-native, artifact management and
other topics, and is a regular at the industry’s most prestigious events
including DockerCon, Devoxx, DevOps Days, OSCON, Qcon,

http://steveonjava.com/

JavaOne and many others. You can see some of his talks at
jfrog.com/shownotes

Melissa McKay is currently a Developer Advocate with the JFrog
Developer Relations team. She has been active in the software
industry 20 years and her background and experience spans a slew of
technologies and tools used in the development and operation of
enterprise products and services. Melissa is a mom, software
developer, Java geek, huge promoter of Java UNconferences, and is
always on the lookout for ways to grow, learn, and improve
development processes. She is active in the developer community,
has spoken at CodeOne, Java Dev Day Mexico and assists with
organizing the JCrete and JAlba Unconferences as well as
Devoxx4Kids events.

	1. The System of Truth
	Three Generations of Source Code Management
	Choosing your Source Control
	Making Your First Pull Request
	Git Tools
	Git Command Line Basics
	Git Command Line Tutorial
	Git Clients
	Git IDE Integration

	Git Collaboration Patterns
	git-flow
	GitHub Flow
	Gitlab Flow
	OneFlow
	Trunk Based Development

	Conclusion

	2. Continuous Integration
	Adopt Continuous Integration
	Declaratively Script Your Build
	Build With Apache Ant
	Build With Apache Maven
	Build With Gradle

