
Austin Parker,
 Daniel Spoonhower,

 Jonathan Mace
 & Rebecca Isaacs

Foreword by Ben Sigelman

Distributed
 Tracing in
Practice
Instrumenting, Analyzing, and Debugging
Microservices

Austin Parker, Daniel Spoonhower, Jonathan Mace, and
Rebecca Isaacs with Ben Sigelman

Distributed Tracing in Practice
Instrumenting, Analyzing, and

Debugging Microservices

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05663-8

[LSI]

Distributed Tracing in Practice
by Austin Parker, Daniel Spoonhower, Jonathan Mace, and Rebecca Isaacs, with Ben Sigelman

Copyright © 2020 Ben Sigelman, Austin Parker, Daniel Spoonhower, Jonathan Mace, and Rebecca Isaacs.
All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Sarah Grey
Production Editor: Katherine Tozer
Copyeditor: Chris Morris
Proofreader: JM Olejarz

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2020: First Edition

Revision History for the First Edition
2020-04-13 First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492056638 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Distributed Tracing in Practice, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492056638

Table of Contents

Foreword. ix

Introduction: What Is Distributed Tracing?. xiii

1. The Problem with Distributed Tracing. 1
The Pieces of a Distributed Tracing Deployment 3
Distributed Tracing, Microservices, Serverless, Oh My! 4
The Benefits of Tracing 6
Setting the Table 7

2. An Ontology of Instrumentation. 9
White Box Versus Black Box 10
Application Versus System 13
Agents Versus Libraries 15
Propagating Context 16

Interprocess Propagation 18
Intraprocess Propagation 20

The Shape of Distributed Tracing 23
Tracing-Friendly Microservices and Serverless 23
Tracing in a Monolith 25
Tracing in Web and Mobile Clients 27

3. Open Source Instrumentation: Interfaces, Libraries, and Frameworks. 31
The Importance of Abstract Instrumentation 32
OpenTelemetry 34
OpenTracing and OpenCensus 43

OpenTracing 43
OpenCensus 48

iii

Other Notable Formats and Projects 53
X-Ray 53
Zipkin 54

Interoperability and Migration Strategies 54
Why Use Open Source Instrumentation? 57

Interoperability 58
Portability 58
Ecosystem and Implicit Visibility 59

4. Best Practices for Instrumentation. 61
Tracing by Example 61

Installing the Sample Application 62
Adding Basic Distributed Tracing 62
Custom Instrumentation 70

Where to Start—Nodes and Edges 71
Framework Instrumentation 72
Service Mesh Instrumentation 75
Creating Your Service Graph 76

What’s in a Span? 79
Effective Naming 79
Effective Tagging 80
Effective Logging 81
Understanding Performance Considerations 82

Trace-Driven Development 85
Developing with Traces 86
Testing with Traces 89

Creating an Instrumentation Plan 91
Making the Case for Instrumentation 91
Instrumentation Quality Checklist 93
Knowing When to Stop Instrumenting 95
Smart and Sustainable Instrumentation Growth 97

5. Deploying Tracing. 99
Organizational Adoption 100

Start Close to Your Users 100
Start Centrally: Load Balancers and Gateways 101
Leverage Infrastructure: RPC Frameworks and Service Meshes 102
Make Adoption Repeatable 103

Tracer Architecture 104
In-Process Libraries 105
Sidecars and Agents 106
Collectors 107

iv | Table of Contents

Centralized Storage and Analysis 108
Incremental Deployment 109

Data Provenance, Security, and Federation 110
Frontend Service Telemetry 110
Server-Side Telemetry for Managed Services 114

6. Overhead, Costs, and Sampling. 117
Application Overhead 118

Latency 118
Throughput 120

Infrastructure Costs 122
Network 122
Storage 123

Sampling 124
Minimum Requirements 124
Strategies 126
Selecting Traces 130

Off-the-Shelf ETL Solutions 131

7. A New Observability Scorecard. 135
The Three Pillars Defined 136

Metrics 136
Logging 138
Distributed Tracing 139

Fatal Flaws of the Three Pillars 140
Design Goals 141
Assessing the Three Pillars 142
Three Pipes (Not Pillars) 144

Observability Goals and Activities 145
Two Goals in Observability 145
Two Fundamental Activities in Observability 146
A New Scorecard 148
The Path Ahead 152

8. Improving Baseline Performance. 153
Measuring Performance 154

Percentiles 156
Histograms 158

Defining the Critical Path 160
Approaches to Improving Performance 163

Individual Traces 163
Biased Sampling and Trace Comparison 165

Table of Contents | v

Trace Search 167
Multimodal Analysis 169
Aggregate Analysis 171
Correlation Analysis 173

9. Restoring Baseline Performance. 179
Defining the Problem 180
Human Factors 182

(Avoiding) Finger-Pointing 182
“Suppressing” the Messenger 183
Incident Hand-off 184
Good Postmortems 184

Approaches to Restoring Performance 185
Integration with Alerting Workflows 185
Individual Traces 186
Biased Sampling 187
Real-Time Response 189
Knowing What’s Normal 191
Aggregate and Correlation Root Cause Analysis 195

10. Are We There Yet? The Past and Present. 201
Distributed Tracing: A History of Pragmatism 202

Request-Based Systems 202
Response Time Matters 202
Request-Oriented Information 203

Notable Work 203
Pinpoint 204
Magpie 204
X-Trace 206
Dapper 207

Where to Next? 208

11. Beyond Individual Requests. 209
The Value of Traces in Aggregate 211

Example 1: Is Network Congestion Affecting My Application? 211
Example 2: What Services Are Required to Serve an API Endpoint? 211

Organizing the Data 212
A Strawperson Solution 212

What About the Trade-offs? 214
Sampling for Aggregate Analysis 214
The Processing Pipeline 215
Incorporating Heterogeneous Data 217

vi | Table of Contents

Custom Functions 217
Joining with Other Data Sources 218

Recap and Case Study 219
The Value of Traces in Aggregate 219
Organizing the Data 220
Sampling for Aggregate Analysis 220
The Processing Pipeline 221
Incorporating Heterogeneous Data 221

12. Beyond Spans. 223
Why Spans Have Prevailed 223

Visibility 223
Pragmatism 224
Portability 224
Compatibility 225
Flexibility 225

Why Spans Aren’t Enough 225
Graphs, Not Trees 226
Inter-Request Dependencies 227
Decoupled Dependencies 228
Distributed Dataflow 229
Machine Learning 230
Low-Level Performance Metrics 231

New Abstractions 232
Seeing Causality 234

13. Beyond Distributed Tracing. 237
Limitations of Distributed Tracing 238

Challenge 1: Anticipating Problems 239
Challenge 2: Completeness Versus Costs 240
Challenge 3: Open-Ended Use Cases 240

Other Tools Like Distributed Tracing 241
Census 241

A Motivating Example 242
A Distributed Tracing Solution? 243
Tag Propagation and Local Metric Aggregation 244
Comparison to Distributed Tracing 245

Pivot Tracing 246
Dynamic Instrumentation 246
Recurring Problems 247
How Does It Work? 247
Dynamic Context 248

Table of Contents | vii

Comparison to Distributed Tracing 248
Pythia 249

Performance Regressions 249
Design 251
Overheads 251
Comparison to Distributed Tracing 251

14. The Future of Context Propagation. 253
Cross-Cutting Tools 253
Use Cases 254

Distributed Tracing 254
Cross-Component Metrics 255
Cross-Component Resource Management 255
Managing Data Quality Trade-offs 256
Failure Testing of Microservices 257
Enforcing Cross-System Consistency 258
Request Duplication 258
Record Lineage in Stream Processing Systems 259
Auditing Security Policies 259
Testing in Production 259

Common Themes 260
Should You Care? 260
The Tracing Plane 261

Is Baggage Enough? 262
Beyond Key-Value Pairs 264
Compiling BDL 265
BaggageContext 266
Merging 266
Overheads 266

A. The State of Distributed Tracing Circa 2020. 269

B. Context Propagation in OpenTelemetry. 275

Bibliography. 281

Index. 285

viii | Table of Contents

Foreword

Human beings have struggled to understand production software for exactly as long
as human beings have had production software. We have these marvelously fast
machines, but they don’t speak our language and—despite their speed and all of the
hype about artificial intelligence—they are still entirely unreflective and opaque.

For many (many) decades, our efforts to understand production software ultimately
boiled down to two types of telemetry data: log data and time series statistics. The
time series data—also known as metrics—helped us understand that “something ter‐
rible” was happening inside of our computers. If we were lucky, the logging data
would help us understand specifically what that terrible thing was.

But then everything changed: our software needed more than just one computer. In
fact, it needed thousands of them.

We broke the software into tiny, independently operated services and distributed
those fragmented services across the planet, atomized among the millions of comput‐
ers housed in massive datacenters. And with so many processes involved in every
end-user request, the logs and statistics from individual machines told only a sliver of
the story. It felt like we were flying blind.

I started working on distributed tracing in early 2005. At the time, I was a 25-year-old
software engineer working—somewhat grudgingly, if I’m being candid—on a far-
flung service within the Google AdWords backend infrastructure. Like the rest of the
company, I was trying to write software capable of withstanding a punishing load
from the outside world (by this point, Google was already a verb and we had scaled
well into uncharted territory for commodity hardware). We were running microservi‐
ces before that term had been invented, and when we needed some new abstraction
layer or infrastructure, we were almost always forced to write it in-house (for one
thing, GitHub hadn’t even been incorporated yet).

ix

To make a long story short, we kept the ship afloat…but it was a mess. And nobody
except for the old-timer super-geniuses (read: not me) had any clue where the bodies
were buried or how it all actually fit together.

That’s when I met Sharon Perl, truly by accident. She had been a research scientist at
DEC’s Systems Research Center in the 1990s (i.e., when it was cool!) and came to
Google in the very early days: 2001, if I remember correctly. In that short impromptu
conversation with Sharon, I asked her what she was working on, and she rattled off a
list of interesting systems software projects: a distributed blob store, a Google-scale
identity service, a distributed lockservice…and then this thing called Dapper. Dapper
was “a distributed tracing system,” whatever that was.

Needless to say, I had never heard of a distributed tracing system—in 2005, hardly
any nonacademic had—but it sounded fascinating. At the time, Dapper was just a
prototype that Sharon codeveloped with Mike Burrows and Luiz Barroso. They had
patched Google’s internal RPC subsystem and control-flow packages in order to
propagate a few GUIDs alongside each request as the request bounced from service
to service. It wasn’t fully operational, but an early proof-of-concept showed that the
fundamentals were sound. For the first time, an ordinary Google engineer actually
had some hope of understanding what happened to an individual web request in the
150 milliseconds it took to touch hundreds or thousands of distinct microservices.

I was hooked. Here was something truly novel, powerful, and—from a personal
standpoint—wildly understaffed! So I started to dig into the Dapper codebase, clean
things up, round edges, and deal with more than my share of internal bureaucracy
(among other things, Dapper had a daemon running with root privileges on every
piece of production hardware at Google and, wisely, they put some process around
that sort of thing). Suffice it to say, after a year or two of wall time and some phenom‐
enal work from a team of engineers, we were able to deploy Dapper across all of Goo‐
gle’s backend software. To the best of my knowledge, this was the first time any
organization had run distributed tracing continuously for a production system at
scale.

…and so we deployed Dapper across all of Google, and we solved observability.

If only! The truth is that Dapper was a point solution to some painful yet isolated
problems. In the early days, it was hard to get people to even use it, much less benefit
from it. My team’s KPI was the number of weekly logins, and I remember when the
number hovered in the low double digits, month after month. We would dream up
clever analytical features, deploy them, wait for the thundering herds of enthusiastic
users, and then feel disappointed.

Eventually we did find a way to increase usage and thus organizational value to Goo‐
gle, but it wasn’t with new analytical features or insightful visualizations. In fact, it
was something really basic that only required a few hundred lines of code: one of my

x | Foreword

colleagues integrated links to relevant Dapper traces into a tool that Google engineers
already used many times a day. It turns out that some small fraction of people would
click on those links, and sometimes they found something really valuable on the
other side.

That was it. Just a simple integration into an existing workflow. Beyond the data engi‐
neering and instrumentation challenges, distributed tracing is hard because it’s often
thought of not just as a new set of telemetry but as a distinct, segregated product
experience. No matter how compelling that product experience is, developers (like all
people) are creatures of habit who do not want to learn a new tool to check proac‐
tively. Tracing data and insights must fit into the context of preexisting workflows
and tasks to be done. This is the best way to give tracing-oriented insights the expo‐
sure needed to justify the investment in a fundamentally new data source.

Distributed tracing is still in its infancy. Thinking back to the early days of the Dap‐
per project, when I was just ramping up on the codebase, I asked Luiz Barroso if he
could spare 30 minutes to help me understand a few things. Luiz was already quite
distinguished, but was (and remains) humble, friendly, and generous with his time, so
he agreed. When I met with him, I must have sounded a bit naive, but I was also
unfathomably excited about what I wanted to do to Dapper. I wanted to build in a
just-in-time sampling mechanism, create a declarative programming language for
user-defined queries that execute across application services, integrate kernel traces,
and more. I asked him what he thought. Ever the voice of wisdom, he let me down
easy and explained that simply getting Dapper into production would be a major
accomplishment and would take years. “Start there,” he said.

Luiz was right about that. Fifteen years later, much of our industry hasn’t gotten a
whole lot further than that, at least in production. Distributed tracing is worth it, but
it’s hard! Still, it’s a very young discipline, and the last section of this book provides a
window on what’s still to come. In another 15 years, we will look back on distributed
tracing circa 2020 as both critical and primitive. By understanding where the technol‐
ogy is going, we’ll be better able to position ourselves to adapt to the dynamic land‐
scape surrounding tracing and observability in general.

Stepping back, it’s important to remember that nobody works with “just one
microservice.”

Our industry moved to microservices so that our dev teams could operate with inde‐
pendence, and to a certain extent, we got our wish—at least where continuous inte‐
gration/continuous deployment is concerned. But this “independence” was an
illusion; in production, these microservices are in fact highly interdependent, and a
failure or slowdown in one service propagates across the stack of microservices, leav‐
ing chaos and confusion (and many frantic Slack messages) in its wake.

Foreword | xi

Distributed traces must be part of the solution to this problem. They are the only
window we have into how the hundreds of services in deep, multilayered microser‐
vice architectures actually interact as they fulfill end-to-end user requests. They may
be a relative newcomer to the telemetry world compared to time series stats and
vanilla logs, but they are also the most vital when it comes to understanding the
larger system. Without tracing data, we are reduced to guess-and-check across seas of
disorganized logging data and metrics dashboards.

Yet it’s not nearly as simple as adding distributed tracing. While healthy observability
in distributed systems must involve distributed traces, we still need to figure out how.
How do we make distributed tracing useful? How do we adopt it? How do we inte‐
grate it into our existing workflows and processes? And how do we future-proof these
efforts?

These are fascinating and challenging questions, and they are the subject of this book.
We hope you enjoy it.

— Ben Sigelman
Cofounder and CEO of Lightstep

and cocreator of Dapper

xii | Foreword

Introduction: What Is Distributed Tracing?

If you’re reading this book, you may already have some idea what the words dis‐
tributed tracing mean. You may also have no idea what they mean—for all we know,
you’re simply a fan of bandicoots (the animal on the cover). We won’t judge, promise.

Either way, you’re reading this to gain some insight into what distributed tracing is,
and how you can use it to understand the performance and operation of your micro‐
services and other software. With that in mind, let’s start out with a simple definition.

Distributed tracing (also called distributed request tracing) is a type of correlated log‐
ging that helps you gain visibility into the operation of a distributed software system
for use cases such as performance profiling, debugging in production, and root cause
analysis of failures or other incidents. It gives you the ability to understand exactly
what a particular individual service is doing as part of the whole, enabling you to ask
and answer questions about the performance of your services and your distributed
system as a whole.

That was easy—see you next book!

What’s that? Why’s everyone asking for a refund? Oh…

We’re being told that you need a little more than that. Well, let’s take a step back and
talk about software, specifically distributed software, so that we can better understand
the problems that distributed tracing solves.

Distributed Architectures and You
The art and science of developing, deploying, and operating software is constantly in
flux. New advances in computing hardware and software have dramatically pushed
the boundaries of what an application looks like over the years. While there’s an inter‐
esting digression here about how “everything old is new again,” we’ll focus on changes
over the past two decades or so, for the sake of brevity.

xiii

Prior to advances in virtualization and containerization, if you needed to deploy
some sort of web-based application, you would need a physical server, possibly one
dedicated to your application itself. As traffic increased to your application, you
would either need to increase the physical resources of that server (adding RAM, for
example) or you would need multiple servers that each ran their own copy of your
application.

With a monolithic server process, this horizontal scaling often led to unfavorable
trade-offs in cost, performance, and organizational overhead. Running multiple
instances of your server meant you were duplicating all functionality of the server,
rather than scaling individual subcomponents independently. With traditional infra‐
structure, you were often forced to make a decision about how many minutes (or
hours!) of degraded performance was acceptable while you brought additional
capacity online—servers aren’t cheap to run, so why would you run at peak capacity if
you didn’t need to? Finally, as the size and complexity of your application increased,
along with the amount of developers who were working on it, testing and validating
new changes became more difficult. As your organization grew, it became unreasona‐
ble for developers to understand a single codebase, not to mention the shape of the
entire system. Increasingly smaller changes increased the odds of a ripple effect that
led to total application failure as their impact radiated out from one component to
another.

Time marched on, however, and solutions to these problems were built. Software was
created that abstracted away the details of physical hardware such as virtualization,
allowing for a single physical server to be split into multiple logical servers. Docker
and other containerization technologies extended this concept, providing a light‐
weight and user-friendly abstraction over heavier-weight virtual machines, moving
the question of “who deploys this software” from operators to developers. The popu‐
larization of cloud computing and its notion of on-demand computing resources
solved the problem of resource scaling, as it became possible to increase the amount
of RAM or CPU cores for a given server at the click of a button. Finally, the idea of
microservice architectures came about to address the complexity imposed by ever-
larger and more complicated software-oriented businesses by structuring large appli‐
cations around loosely coupled independent services.

Today, it’s arguable that most applications are distributed in some fashion, even if they
don’t use microservices. Simple client-server applications themselves are distributed
—consider the classic question of “A call to my server has timed out; was the response
lost, or was the work not done at all?” Additionally, they may have a variety of dis‐
tributed dependencies, such as datastores that are consumed as a service offered by a
cloud provider, or a whole host of third-party APIs that provide everything from ana‐
lytics to push notifications and more.

xiv | Introduction: What Is Distributed Tracing?

1 [Sig19]

Why is distributed software so popular? The arguments for distributed software are
pretty clear:

Scalability
A distributed application can more easily respond to demand, and its scaling can
be more efficient. If a lot of people are trying to log in to your application, you
could scale out only the login services, for example.

Reliability
Failures in one component shouldn’t bring down the entire application. Dis‐
tributed applications are more resilient because they split up functions through a
variety of service processes and hosts, ensuring that even if a dependent service
goes offline, it shouldn’t impact the rest of the application.

Maintainability
Distributed software is more easily maintainable for a couple of reasons. Divid‐
ing services from each other can increase how maintainable each component is
by allowing it to focus on a smaller set of responsibilities. In addition, you’re freer
to add features and capabilities without implementing (and maintaining) them
yourself—for example, adding a speech-to-text function in an application by
relying on some cloud provider’s speech-to-text service.

This is the tip of the iceberg, so to speak, in terms of the benefits of distributed archi‐
tectures. Of course, it’s not all sunshine and roses, and into every life, a little rain must
fall…

Deep Systems
A distributed architecture is a prime example of what software architects often call a
deep system.1 These systems are notable not because of their width, but because of
their complexity. If you think about certain services or classes of services in a dis‐
tributed architecture, you should be able to identify the difference. A pool of cache
nodes scales wide (as in, you simply add more instances to handle demand), but
other services scale differently. Requests may route through three, four, fourteen, or
forty different layers of services, and each of those layers may have other dependen‐
cies that you aren’t aware of. Even if you have a comparatively simple service, your
software probably has dozens of dependencies on code that you didn’t write, or on
managed services through a cloud provider, or even on the underlying orchestration
software that manages its state.

The problem with deep systems is ultimately a human one. It quickly becomes unre‐
alistic for a single human, or even a group of them, to understand enough of the

Introduction: What Is Distributed Tracing? | xv

services that are in the critical path of even a single request and continue maintaining
it. The scope of what you as a service owner can control versus what you’re implicitly
responsible for is illustrated in Figure P-1. This calculus becomes a recipe for stress
and burnout, as you’re forced into a reactive state against other service owners, con‐
stantly fighting fires, and trying to figure out how your services interact with each
other.

Figure P-1. The service that you can control has dependencies that you’re responsible for
but have no direct control over.

Distributed architectures require a reimagined approach to understanding the health
and performance of software. It’s not enough to simply look at a single stack trace or
watch graphs of CPU and memory utilization. As software scales—in depth, but also
in breadth—telemetry data like logs and metrics alone don’t provide the clarity you
require to quickly identify problems in production.

The Difficulties of Understanding Distributed
Architectures
Distributing your software presents new and exciting challenges. Suddenly, failures
and crashes become harder to pin down. The service that you’re responsible for may
be receiving data that’s malformed or unexpected from a source that you don’t control
because that service is managed by a team halfway across the globe (or a remote
team). Failures in services that you thought were rock-solid suddenly cause cascading
failures and errors across all of your services. To borrow a phrase from Twitter, you’ve
got a microservices murder mystery (see Figure P-2) on your hands.

xvi | Introduction: What Is Distributed Tracing?

Figure P-2. It’s funny because it’s true.

To extend the metaphor, monitoring helps determine where the body is, but it doesn’t
reveal why the murder occurred. Distributed tracing fills in those gaps by allowing
you to easily comprehend your entire system by providing solutions to three major
pain points:

Obfuscation
As your application becomes more distributed, the coherence of failures begins
to decrease. That is to say, the distance between cause and effect increases. An
outage at your cloud provider’s blob storage could fan out to cause huge cascad‐
ing latency for everyone, or a single difficult-to-diagnose failure at a particular
service many hops away that prevents you from uncovering the proximate cause.

Inconsistency
Distributed applications might be reliable overall, but the state of individual com‐
ponents can be much less consistent than they would be in monolithic or non-
distributed applications. In addition, since each component of a distributed
application is designed to be highly independent, the state of those components
will be inconsistent—what happens when someone does a deployment, for exam‐
ple? Do all of the other components understand what to do? How does that
impact the overall application?

Decentralized
Critical data about the performance of your services will be, by definition, decen‐
tralized. How do you go looking for failures in a service when there may be a
thousand copies of that service running, on hundreds of hosts? How do you cor‐
relate those failures? The greatest strength of distributing your application is also
the greatest impediment to understanding how it actually functions!

You may be wondering, “How do we address these difficulties?” Spoiler: distributed
tracing.

Introduction: What Is Distributed Tracing? | xvii

How Does Distributed Tracing Help?
Distributed tracing emerges as a critical tool in managing the explosion of complexity
that our deep systems bring. It provides context that spans the life of a request and
can be used to understand the interactions and shape of your architecture. However,
these individual traces are just the beginning—in aggregate, traces can give you
important insights about what’s actually going on in your distributed system, allowing
you not only to correlate interesting data about your services (for example, that most
of your errors are happening on a specific host or in a specific database cluster), but
also to filter and rank the importance of other types of telemetry. Effectively, dis‐
tributed traces provide context that helps you filter problem-solving down to only
things that are relevant to your investigation, so you don’t have to guess and check
multiple logs and dashboards. In this way, distributed tracing is actually at the center
of a modern observability platform, and it becomes a critical component of your dis‐
tributed architecture rather than an isolated tool.

So, what is a trace? The easiest way to understand is to think about your software in
terms of requests. Each of your components is in the business of doing some sort of
work in response to a request (aka RPC, from remote procedure call) from another
service. This could be as prosaic as a web page requesting some structured data from
a service endpoint to present to a user, or as complex as a highly parallelized search
process. The actual nature of the work doesn’t matter too much, although there are
certain patterns that we’ll discuss later on that lend themselves to certain styles of
tracing. While distributed tracing can function in most distributed systems, as we’ll
discuss in Chapter 4, its strengths are best demonstrated in modeling the RPC rela‐
tionships between your services.

In addition to the RPC relationships, think about the work that each of those services
does. Maybe they’re authenticating and authorizing user roles, performing mathemat‐
ical calculations, or simply transforming data from one format to another. These
services are communicating with each other through RPCs, sending requests and
receiving responses. Regardless of what they’re doing, one thing that all of these serv‐
ices have in common is that the work they’re performing takes some length of time.
The basic pattern of services and RPCs is illustrated in Figure P-3.

Figure P-3. A request from a client process to a service process.

We call the work that each service is doing a span, as in the span of time that it takes
for the work to occur. These spans can be annotated with metadata (known as

xviii | Introduction: What Is Distributed Tracing?

attributes or tags) and events (also referred to as logs). The RPCs between services are
represented through relationships that model the nature of the request and the order
in which the requests occur. This relationship is propagated by way of the trace con‐
text, some data that uniquely identifies a trace and each individual span within it. The
span data that is created by each service is then forwarded to some external process,
where it can be aggregated into a trace, analyzed for further insights, and stored for
further analysis. A simple example of a trace can be seen in Figure P-4, showing a
trace between two services, as well as a subtrace inside the first service.

Figure P-4. A simple trace.

Distributed tracing mitigates the obfuscation present in distributed architectures by
ensuring that each logical request through your services is presented as that—a single
logical request. It ensures that all of the data relevant to a given execution of your
business logic remain coupled at the point that they’re analyzed and presented. It
addresses the inconsistency issue by allowing queries to be made using relationships
between services along specific APIs or other routes, letting you ask questions like
“What happens to my API when this other service is down?” Finally, it addresses the
decentralization issue by providing a method to ensure that processes can contribute
trace data independently to a collector that can centralize it later, allowing you to vis‐
ualize and understand requests that may be running across multiple datacenters,
regions, or other distributions.

With all this in mind, what are some things that you can do with distributed tracing?
What makes it crucial to understanding distributed systems? We’ve compiled several
real-world examples:

• A major transactional email and messaging company implemented distributed
tracing across its backend platform, including tracing calls to Redis. This trace
data quickly showed that there was an unneeded loop in its calls to Redis, which
was fetching data from the cache more than necessary. In removing this unnee‐
ded call, the company reduced the time it took to send an email anywhere from
100 to 1,000 milliseconds! This worked out to be a roughly 85% reduction in the
time for every single email sent—and this is for a platform that was sending over
one billion emails a day! Not only was the company able to discover this

Introduction: What Is Distributed Tracing? | xix

unneeded call, it was able to validate the impact of removing it on other services
and quantify the value of the work.

• An industrial data company was able to use distributed trace data in order to
easily compare requests during an incident where a primary database was over‐
loaded to an earlier baseline. The ability to view aggregate statistical data about
historical performance along with the context of individual requests during the
regression dramatically reduced the time required to determine the root cause of
the incident.

• A major health and fitness company implemented distributed tracing across its
applications. As they analyzed the performance of their document database, engi‐
neers were able to identify repeated calls that could be consolidated, leading to
reduced latency and more efficient code.

• A video-delivery platform used distributed tracing to troubleshoot latency issues
from managed services that its system relied on. It was able to positively identify
an issue with its cloud provider’s Kafka pipeline before the vendor did, enabling a
rapid response to the incident and restoration of desired performance.

These are just a handful of examples—distributed tracing has also demonstrated
value in teams that are trying to better understand their continuous integration sys‐
tems by providing visibility into their test pipeline, into the operation of global-scale
search technologies at Google, and as a cornerstone of open source projects like
OpenTelemetry. The question truly is: what is distributed tracing to you?

Distributed Tracing and You
Distributed tracing, again, is a method to understand distributed software. That’s a lot
like saying that water is wet, though—not terribly helpful, and reductive to a fault.
Indeed, the best way to understand distributed tracing is to see it in practice, which is
where this book comes in!

In the coming chapters, we’ll cover the three major things you need to know to get
started with implementing distributed tracing for your applications and discuss
strategies that you can apply to solve the problems caused by distributed architec‐
tures. You’ll learn about the different ways to instrument your software for dis‐
tributed tracing and the styles of tracing and monitoring available to you. We’ll
discuss how to collect all of the data that your instrumentation produces and the vari‐
ous performance considerations and costs around the collection and storage of trace
data. After that, we’ll cover how to generate value from your trace data and turn it
into useful, operational insights. Finally, we’ll talk about the future of distributed
tracing.

By the end of this book, you should understand the exciting world of distributed trac‐
ing and know where, how, and when to implement it for your software. Ultimately,

xx | Introduction: What Is Distributed Tracing?

the goal of Distributed Tracing in Practice is to allow you to build, operate, and under‐
stand your software more easily. We hope that the lessons in this text will help you in
building the next generation of monitoring and observability practice at your
organization.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, datatypes, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download on
GitHub.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of

Introduction: What Is Distributed Tracing? | xxi

https://github.com/distributed-tracing-in-practice
mailto:bookquestions@oreilly.com

example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Distributed Tracing in
Practice by Austin Parker, Daniel Spoonhower, Jonathan Mace, and Rebecca Isaacs
with Ben Sigelman (O’Reilly). Copyright 2020 Ben Sigelman, Austin Parker, Daniel
Spoonhower, Jonathan Mace, and Rebecca Isaacs, 978-1-492-05663-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. Visit http://oreilly.com for more information.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/distributed-tracing.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

xxii | Introduction: What Is Distributed Tracing?

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/distributed-tracing
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Austin Parker

Special thanks to everyone at O’Reilly who helped make this possible—our edi‐
tors, Sarah Grey, Virginia Wilson, and Katherine Tozer; the production staff who
worked tirelessly indexing, revising, redrawing, and making sure things fit on the
page. Thanks to our technical reviewers for their insights and feedback; you
made this a better book! I’d also like to thank Ben Sigelman and the rest of the
crew at Lightstep for all their support—truly, without y’all, none of this would
have happened.

I’d like to thank my parents, for having me, and to my Dad for being a daily
inspiration. Love you both. To my wife: <3.

In solidarity, Austin.

Daniel Spoonhower
I’d like to thank everyone at Lightstep for supporting Austin and me through this
work, and especially those that answered my many questions about their experi‐
ence implementing and using tracing. I’d like to thank Bob Harper and Guy Blel‐
loch for helping me to understand the value of clear writing (and for giving me
some practice in writing under a deadline). I’d also like to thank my family for
helping me find the time to work on this book.

Rebecca Isaacs
I would like to acknowledge the experience, advice and good ideas of my collea‐
gues, many of whom have high expectations for the utility of distributed tracing
in production settings. I would also like to thank Paul Barham for his insights
and wisdom about tracing and analysis of distributed systems.

Introduction: What Is Distributed Tracing? | xxiii

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1 [Mic13]

CHAPTER 1

The Problem with Distributed Tracing

I HAVE NO TOOLS BECAUSE I’VE DESTROYED MY TOOLS WITH MY TOOLS.
—James Mickens1

The concept of tracing the execution of a computer program is not a new one in any
sense. Being able to understand the call stack of a program is fairly critical, you might
say, to all manner of profiling, debugging, and monitoring tasks. Indeed, stack traces
are likely to be the second most utilized debugging tool in the world, right behind
print statements liberally scattered throughout a codebase. Our tools, processes, and
technologies have improved over the past two decades and demand new methodolo‐
gies and patterns of thinking, though. As we recalled in the Introduction, modern
architectures such as microservices have fundamentally broken these classic methods
of profiling, debugging, and monitoring. Distributed tracing stands ready to alleviate
these issues to fix the holes in our tools that we have destroyed with our tools.

There’s just one problem—distributed tracing can be hard. Why is this the case?
Three fundamental problems generally occur when you’re trying to get started with
distributed tracing.

First, you need to be able to generate trace data. Support for distributed tracing as a
first-class citizen in your runtime may be spotty or nonexistent. Your software might
not be structured to easily accept the instrumentation code required to emit tracing
data. You may use patterns that are antithetical to the request-based style of most dis‐
tributed tracing platforms. Often, distributed tracing initiatives are dead on arrival
due to the challenges of instrumenting an existing codebase.

1

Another problem is how you collect and store the trace data generated by your soft‐
ware. Imagine hundreds or thousands of services, each emitting small chunks of trace
data for each request, potentially millions of times per second. How do you capture
that data and store it for analysis and retrieval? How do you decide what to keep, and
how long to keep it? How do you scale the collection of your data in time with
requests to your services?

Finally, once you’ve got all of this data, how do you actually derive value from it? How
do you translate the raw trace data that you’re receiving into actionable insights and
actions? How do you use trace data to provide context to other service telemetry,
reducing the time required to diagnose issues? Can you turn your trace data into
value for other parts of the business, outside of just engineers? These questions, and
more, stymie and confuse many who are trying to get started with distributed tracing.

The result of a distributed tracing deployment is a tool that grants you visibility into
your deep system and the ability to easily understand how individual services in a
request contribute to the overall performance of each request. The trace data you’ll
generate can be used not only to display the overall shape of your distributed system
(see Figure 1-1), but also to view individual service performance inside a single
request.

Figure 1-1. A service map generated from distributed trace data.

As Figure 1-2 shows, you’ll be able to inspect requests as they move from frontend
clients into backend services and understand how—and why—latency or errors are
occurring, and what impact they’re having on the entire request. These traces provide
a wealth of information that you’ll find invaluable when troubleshooting problems in
production, such as metadata that indicates which host or region a particular service
is running on. You’ll have the ability to search, sort, filter, group, and generally slice
and dice this trace data how you please in order to quickly troubleshoot problems or
understand how different dimensions are impacting your service performance.

2 | Chapter 1: The Problem with Distributed Tracing

Figure 1-2. A sample trace demonstrating a request initiated by a frontend web client.

So, how do you get from here to there? What do you need to build a successful dis‐
tributed tracing deployment?

The Pieces of a Distributed Tracing Deployment
To answer these questions and help you organize your thinking about the subject,
we’ve broken down distributed tracing deployments into three main areas of focus,
which is also how we’ve organized the book. These three pieces build off of each
other, but may be generally useful to different people at different times—by no means
do you need to be an expert on all three! Inside each section you’ll find helpful
explanations, lessons, and examples of how to build and deliver a distributed tracing
deployment at your organization that should help in building confidence in your sys‐
tems and software.

The Pieces of a Distributed Tracing Deployment | 3

Instrumentation, Chapter 2
Distributed tracing requires traces. Trace data can be generated through instru‐
mentation of your service processes or by transforming existing telemetry data
into trace data. In this section, you’ll learn about spans, the building blocks of
request-based distributed traces, and how they may be generated by your serv‐
ices. We’ll discuss the state of the art in instrumentation frameworks such as
OpenTelemetry, a widely supported open source project that offers an instrumen‐
tation API (and more) that allows for easy bootstrapping of distributed tracing
into your software. In addition, we’ll discuss the best practices for instrumenting
legacy code as well as greenfield development.

Deployment, Chapter 5
Once you’re generating trace data, you need to send it somewhere. Deploying
tracing for your organization requires an understanding of where your software
runs—for end users and their clients, as well as on servers—and how it’s oper‐
ated. You’ll need to understand the security, privacy, and compliance implications
of collecting and storing trace data. You may encounter trade-offs in overhead
relating to how much data is kept, and how much is discarded through a process
known as sampling. We’ll discuss best practices around all of these topics and
help you figure out how to quickly deploy tracing infrastructure for your system.

Delivering value, Chapter 7
Once your services are generating trace data and you’ve deployed the necessary
infrastructure to collect it, the real fun begins! How do you combine traces with
your other observability tools and techniques such as metrics and logs? How do
you measure what matters—and how do you define what matters to begin with?
Distributed tracing provides the tools you’ll need to answer these questions, and
we’ll help you figure it out in this section. You’ll learn how to use traces to
improve your baseline performance, as well as how tracing assists you in getting
back to that baseline when things catch on fire.

All that said, there’s still an open question here: how does distributed tracing relate to
microservices, and distributed architectures more generally? We touched on this in
Introduction: What Is Distributed Tracing?, but let’s digress for a moment to review
the relationship between these things.

Distributed Tracing, Microservices, Serverless, Oh My!
There’s a certain line of thinking about microservices, now that we’re several years
past them being the “hot thing” in every analyst’s portfolio of “Top Trends for 20XX”
—namely, that the battle has been won. The exploding popularity of cloud comput‐
ing, Kubernetes, containerization, and other development tools which enable rapid
provisioning and deployment of hardware (or hardware-like abstractions) has

4 | Chapter 1: The Problem with Distributed Tracing

2 [Sta19]
3 [Fow14]
4 Cardinality is a mathematical term that refers to the number of elements in a set or group. In the context of

metrics, it’s the number of unique combinations of metric names and key/value attributes attached to those
names. We’ll discuss this more in later chapters.

transformed the industry, undoubtedly. These factors can make it feel like asking the
question “Should I use microservices?” would be to out oneself as a fool or charlatan.

Take a step back here and we’ll look at some real-world data. First and foremost,
there’s some evidence that containers aren’t exactly as popular in production as the
hype may make them seem: only 25% of developers use them in production.2 Quite a
few engineering organizations are still using traditional monoliths for a lot of their
work. Why? One reason may be, ironically enough, the lack of accessible distributed
tracing tools.

Developer and author Martin Fowler identifies three primary considerations for
those adopting microservices: the ability to rapidly provision hardware, the ability to
rapidly deploy software, and a monitoring regime that can detect serious problems
quickly.3 The things we love about microservices (independence, idempotence, etc.)
are also the things that make them difficult to understand, especially when things go
wrong. Serverless technologies add further confusion to this equation by giving you
less visibility into the runtime environment of a particular function and often being
stubbornly resistant to monitoring through your favorite tools.

How, then, should we consider distributed tracing arrayed against these questions?
First, distributed tracing solves the monitoring question raised by Fowler by provid‐
ing visibility into the operation of your microservice architecture. It allows you to
gain critical insights into the performance and status of individual services as part of
a chain of requests in a way that would be difficult or time-consuming to do other‐
wise. Distributed tracing gives you the ability to understand exactly what a particular,
individual service is doing as part of the whole, enabling you to ask and answer ques‐
tions about the performance of your services and your distributed system.

Traditional metrics and logging alone simply can’t compare to the additional context
provided by distributed tracing. Metrics, for example, will allow you to get an aggre‐
gate understanding of what’s happening to all instances of a given service, and even
allow you to narrow your query to specific groups of services, but fail to account for
infinite cardinality.4

Logs, on the other hand, provide extremely fine-grained detail on a given service, but
have no built-in way to provide that detail in the context of a request. While you can
use metrics and logs to discover and address problems in your distributed system,
distributed tracing provides context that helps you narrow down the search space

Distributed Tracing, Microservices, Serverless, Oh My! | 5

required to discover the root cause of an incident while it’s occurring (when every
moment counts).

As we mentioned in the Introduction, trying to manage and understand a complex,
microservice-based distributed architecture can lead to stress and burnout. If you’re
thinking about migrating to microservices, are in the middle of a transition from a
monolith to microservices, or are already tasked with wrangling an immense micro‐
service architecture, then you might be experiencing this stress too, when considering
how to understand the health and performance of your software. Distributed tracing
might not be a panacea, but as part of a larger observability strategy, it can become a
critical component of how you operate reliable distributed systems.

The Benefits of Tracing
What are the specific benefits you can achieve with distributed tracing? We’ll talk
about this throughout the rest of the book, but let’s review the high-level quick wins
first:

• Distributed tracing can transform the way that you develop and deliver software,
no doubt about it. It has benefits not only for software quality, but for your
organization’s health.

• Distributed tracing can improve developer productivity and your development
output. It is the best and easiest way for developers to understand the behavior of
distributed systems in production. You will spend less time troubleshooting and
debugging a distributed system by using distributed tracing than you would
without it, and you’ll discover problems you wouldn’t otherwise realize you had.

• Distributed tracing supports modern polyglot development. Since distributed
tracing is agnostic to your programming language, monitoring vendor, and run‐
time environment, you can propagate a single trace from an iOS-native client
through a C++ high-performance proxy through a Java or C# backend to a web-
scale database and back, all visualized in a single place, using a single tool. No
other set of tools allows you this freedom and flexibility.

• Distributed tracing reduces the overhead required for deployments and rollbacks
by quickly giving you visibility into changes. This not only reduces the mean
time to resolution of incidents, but decreases the time to market for new features
and the mean time to detection of performance regressions. This also improves
communication and collaboration across teams because your developers aren’t
siloed into a particular monitoring stack for their slice of the pie—everyone,
from frontend developers to database nerds, can look at the same data to under‐
stand how changes impact the overall system.

6 | Chapter 1: The Problem with Distributed Tracing

Setting the Table
After all that, we hope that we have your attention! Let’s recap:

• Distributed tracing is a tool that allows for profiling and monitoring distributed
systems by way of traces, data that represents requests as they flow through a
system.

• Distributed tracing is agnostic to your programming language, runtime, or
deployment environment and can be used with almost every type of application
or service.

• Distributed tracing improves teamwork and coordination, and reduces time to
detect and resolve performance issues with your application.

To realize these benefits, first you’ll need some trace data. Then you’ll need to collect
it, and finally you’ll have to analyze it. Let’s start at the beginning, then, and talk about
instrumenting your code for distributed tracing.

Setting the Table | 7

CHAPTER 2

An Ontology of Instrumentation

When you sketch a system diagram, what do you start with? We often start with a
simple box representing a single service, as in Figure 2-1.

Figure 2-1. A visual representation of a service, component, function, or what have you.

This box is extended, added to, and connected to a variety of other boxes through
dashed and solid lines, arrows, and other logically connected fabric. At the end of the
day, we can’t really escape the idea of our software being this series of connected
boxes on some sort of plane. Often, we aren’t able to conceptualize of our boxes as
much other than a simple function that accepts inputs, does something to them, and
sends the output to another box off in the distance (see Figure 2-2).

We already instrument our boxes in various ways during development to understand
what’s happening inside each one—after all, practically no software is bug-free, and
any system accepting input from users is likely to receive something the developer
did not expect. You can think of instrumentation as anything that assists you in moni‐
toring or measuring the performance and state of an application—so you’ll write
some logs that indicate when a user inputs invalid parameters to your function, or
perhaps when an operation is disallowed.

9

Figure 2-2. Multiple services, components, functions, etc. linked together visually.

Now, if you’re reading this, we’ll assume you’re interested in instrumenting your code
for tracing, which has its own set of concerns and edge cases that you’ll need to
address. In this chapter, we’ll cover the two critical things you need to understand in
order to begin instrumenting an application and talk about the trade-offs between
them. Finally, we’ll demonstrate how to apply the instrumentation techniques we
present in order to trace a simple service that communicates over HTTP.

As mentioned in the Introduction, a span is a unit of work per‐
formed by a service. We’ll discuss more concrete representations of
them in Chapter 3, but in the upcoming sections we represent
them as JSON blobs.

White Box Versus Black Box
The first major topic we’ll cover is the distinction between white box and black box
instrumentation. Remember the little square from Figure 2-1 that contained the ser‐
vice we were interested in monitoring? Turn it on its side and imagine that it’s a box
—like in Figure 2-3.

Figure 2-3. A visual representation of a service from Figure 2-1, but in three dimensions.

10 | Chapter 2: An Ontology of Instrumentation

1 Or through Get-Process in PowerShell, for our Windows friends!

To an outside observer, such as a user or consumer of our service, this box is com‐
pletely opaque. You may have some guarantees, such as, “If I put something in this
box, I’ll get something else out of it,” but the actual mechanism of this operation is
unknown and unknowable to you, the user. Consider a scenario where, as an external
end user, you wanted to know the performance of the mechanism inside the box—all
you’re able to do is measure the length of time it takes from when you put something
into when you’re given your result. You don’t have any real ability to model what’s
happening inside the box—other than pure conjecture, which isn’t really useful in this
circumstance—and thus the amount of data you can reasonably make inferences
about is fairly small. We consider this sort of instrumentation to be operating against
a black box.

Let’s apply this metaphor to a daemon process running on a system and the various
dimensions we can measure it in. As an operator of this process, I can view interest‐
ing and potentially valuable data about the process by inspecting /proc/<pid>/
status]—for example, the amount of memory mapped to the process (as VmSize).1 I
can view open file handles, calculate the percentage of CPU utilization by the process
over a fixed time range with some fancy math, and do all sorts of things. However,
little of this helps me trace the application. For that, I’ll need to observe the set of
observable inputs to my process:

• I/O devices
• System calls
• Network activity
• External libraries
• Process operations

We can discard several of these in the context of distributed systems; as a matter of
fact, we can generally focus on just one—network activity. By and large, distributed
applications running across multiple physical or virtual servers will have the majority
of their inputs defined by an RPC (remote procedure call) that is delivered across a
LAN or WAN link. This does not diminish the utility or importance of these other
forms of input (they can be critical for debugging or deep, kernel-level tracing), but it
does help to focus our discussion.

Thus, one example of a black box trace would be to observe, through some sort of
proxy, the incoming and outgoing network traffic of a process. If we know that our
black box accepts requests in the format /api/:operation/:resourceId, and

White Box Versus Black Box | 11

responds with some message, we could use the proxy to create a span that looks
something like Example 2-1.

Example 2-1. Black box trace

{
 'operationName': '/api/<operation>',
 'duration': <endTime—startTime>
 'tags': [
 {'resource': '<id>'},
 {'service': '<processName>'},
 {'wasSuccess': true}
 // And so forth—pid, other metrics
]
}

By analyzing the traffic as it enters and exits the process, we can collect the data
required to build a useful span.

Up to this point, we’ve been talking about black box instrumentation, presupposing
that we don’t know what’s going on inside the box. What if we opened it up to look
inside, as in Figure 2-4? We can easily create and validate a hypothesis due to our
knowledge of the inner workings of a service we write—after all, we wrote it! It is this
knowledge of the service and the ability to modify it that comprises white box
instrumentation.

Figure 2-4. When you open the box, you can view all of the inputs, outputs, and how
they’re transformed.

With the ability to look inside the service and modify its code, we can instrument our
software in much more powerful ways. The ability to fully comprehend the internal
workings of the service, the data model that it operates on, and the exact call graph
that comprises its execution flow allows for writing trace instrumentation that is
more comprehensive and more useful than we might otherwise. Recall our earlier
example—when limited to merely observing the inputs and outputs, we could lack
critical pieces of information for our span, such as the relationships between external
RPC calls created by our service or requests to other components of our distributed

12 | Chapter 2: An Ontology of Instrumentation

application, such as a database. With white box instrumentation, we do not have to
think of the entire internal transaction as a single logical whole, but can consider it as
almost a subtrace of our greater transaction.

Given this, you might be wondering, “Why wouldn’t I always use white box instru‐
mentation?” Quite simply: sometimes, you cannot. This is common in larger engi‐
neering teams with more legacy software to maintain—consider a modern API
frontend that is backed by a legacy mainframe application. Even if you could modify
the source code to your legacy services (which is not always possible), would you
want to? In these circumstances, you might be able to represent only the work per‐
formed in your legacy component via black box instrumentation. Keep in mind, you
do not necessarily need to create your black box spans from the system that operates
a service; a typical pattern is to use the calling service with its white box instrumenta‐
tion to create a separate span for the black box process.

Application Versus System
Our second topic is the distinction between application and system instrumentation.
Much has been written about the difference between application and system monitor‐
ing, and instrumentation for distributed tracing follows similar lines. We’ll briefly
review the distinction and discuss how it applies to instrumentation for distributed
tracing.

Traditionally, the people who operated applications and the people who operated the
servers that ran those applications had different concerns. A system operator might
be concerned with the health of disk drives, the amount of memory available on a
server, or other system metrics. Meanwhile, an application operator would have more
prosaic questions—is the application responding to requests, and is it performing
acceptably? The application operator, thus, might monitor their application by using
a script to access the application over the network every few seconds and report any
failures. The system operator, however, would use similar scripts to query the server’s
operating system to understand when a disk was running out of space.

In the context of distributed tracing, we’re usually less concerned with these sort of
metrics (or, to be more accurate, we gather them through other sources), but they
shouldn’t be ignored. Indeed, we can think of this as more of a question about what
component generates our traces. In short, do we generate spans in our application
code, or does some service or subsystem that is running our application code do it for
us?

Consider our simple service from the last section—we know it has some inputs and
produces some outputs. Let’s add some more boxes to our service diagram in
Figure 2-5.

Application Versus System | 13

Figure 2-5. A simple system diagram of an API server, service proxy, and worker process.

All of these services could be independently instrumented for traces, emitting spans
as a single request passes through them—in fact, this is a very common pattern and
the easiest way to get started with tracing distributed systems. However, applications
are often ignorant of what’s going on outside of their immediate context—indeed, a
stateless service would be ignorant of anything happening outside of the context of a
specific request! In this case, we need to pull back a bit, looking not only at the serv‐
ices that are running, but the substrate they exist in. This is where system instrumen‐
tation comes into play.

Systems can be many exciting things—consider container orchestration systems such
as Kubernetes or managed platforms such as DC/OS. We can use these systems to
generate trace data in the form of spans or context baggage that provides turn-key
instrumentation to applications or to enhance the quality of spans emitted by applica‐
tion code. Since these orchestrators and platforms act, practically, as the operating
system for services running on them (see Figure 2-6), you’re able to extract useful
system data such as memory usage, CPU share utilization, and other data external to
the process or its container and share that with the application or emit it as a separate
span for analysis.

Figure 2-6. The services from Figure 2-5, but running inside a platform that exposes sys‐
tem data.

14 | Chapter 2: An Ontology of Instrumentation

So, when should you use application instrumentation and when should you use sys‐
tem instrumentation? Ideally, you’d use both. At the time of this writing, it’s generally
easier to get started with pure application instrumentation, but new technology such
as service meshes dramatically reduces the difficulty of implementing system instru‐
mentation. In the future, we expect that managed orchestration platforms such as
Google Kubernetes Engine or AWS Fargate will provide seamless span context propa‐
gation to services running on them.

Agents Versus Libraries
The third topic we’ll cover is the distinction between agent-based and library-based
instrumentation. What do we mean by agents and libraries? Remember, a white box
presupposes that the person writing instrumentation has access to the source code of
the application being instrumented and can use that knowledge to generate more log‐
ically accurate instrumentation. This closely maps to the concept of instrumenting
with a library. Conversely, the black box assumes you don’t have that interior knowl‐
edge of the application source—agents are more analogous to this case, since they
operate outside of the process itself.

The terms agent and library are used quite a bit in the modern tracing space, some‐
times interchangeably, with confusing results. There are libraries that brand them‐
selves as agents, agents that call themselves libraries, and a lot of things in between.
We suggest that the biggest distinction between the two comes down to intent. The
intent of a library is to make it easier to write instrumentation that can be shared
across multiple services, easing the pain of adoption for creating distributed traces
across a polyglot distributed system. Agents, conversely, intend to make it very easy
to trace and observe existing systems without rewriting code.

A library-based instrumentation approach can be characterized by its reliance on an
application-level dependency on some shared, standardized library that is used
throughout its services. These libraries provide a sane and standardized API for han‐
dling the key components of creating instrumentation and propagating context.
Libraries can support a polyglot heterogeneous application by defining a relatively
small API that supports the least-common set of features shared by all of the target
languages. Indeed, it’s generally possible with a library-based strategy to write your
instrumentation against a thin interface wrapper and only depend on a concrete
implementation of your library at runtime via dependency injection. That said,
library-based instrumentation generally relies on developers to write instrumentation
code.

Agent-based instrumentation relies on some sort of external process or processes to
instrument processes at runtime. There are a wide variety of agents and strategies for
instrumenting with agents, but there are really two major methods agents use to
instrument a service directly. The first is some external process or monitoring service

Agents Versus Libraries | 15

that injects code into your service and uses this to create a trace of the service as vari‐
ous functions are called. The second method is through some sort of in-process agent
that is imported to the runtime environment of a process and uses a system of user-
defined rules to trace specific actions. Of special note is indirect usage of agents to
capture data that can be transformed into trace data—one such interesting applica‐
tion is to extend the black box approach and use some sort of existing data source for
service state, like structured or unstructured log files, which the agent then trans‐
forms into trace data.

Really, as with everything else in this chapter, you’re going to need to blend these
approaches. Even with modern code, if you haven’t been considering how to instru‐
ment your services from the jump, there’s going to be an implementation cost to add
tracing libraries to your existing services and applications. Some of your older serv‐
ices may not be able to have tracing added at all, and will require agents in order to be
instrumented. That said, even if you have fairly modern software and services, you
can jump-start tracing with agents to more quickly prove value or to prop up overall
system visibility for teams that don’t have high-quality library-based instrumentation.

Propagating Context
So far, we’ve discussed various strategies for instrumenting our services to emit spans
that describe the work our services are doing. These spans, as standalone pieces of
data, aren’t very exciting. In order to create traces, we will need some way to commu‐
nicate certain details about our spans to other services or other parts of our process.
The mechanism by which we communicate these details to other services is generally
known as context propagation.

Let’s start by talking about what we’re propagating, then we’ll move into how it’s
propagated. Let’s assume we have a simple service proxy that provides functions
around user management. What would a span look like? (These span representations
are covered in more detail in Chapter 3 when we discuss OpenTelemetry.)

Our span in Example 2-2 has some pretty basic information—the operation we’re
concerned with, a tag—but there’s something new as well. We’ve added a spanId field
that provides an identifier for this particular span. Conceptually, each of our services
is going to emit a span for the work that it’s doing, represented in Figure 2-7.

Example 2-2. Basic span

{
 operationName: "api/getUser",
 spanId: "09f42f7e-e606-4923-831b-7dd612683720",
 tags: [
 {
 key: "userName",

16 | Chapter 2: An Ontology of Instrumentation

 value: "testUser"
 },
],
 // Start time, duration, etc.
}

Figure 2-7. Relationship between the API proxy and the datastore services.

What’s going on in our datastore service? Let’s look at Example 2-3.

Example 2-3. Datastore service

{
 operationName: "getUserFromStore",
 spanId: "dac303fb-6c1c-4816-ac86-ce717cee1714",
 tags: [
 {
 key: "userId",
 value: 105832
 }
],
 // Start time, duration, etc.
}

One of the benefits of distributed tracing is that your spans exist largely independ‐
ently of each other. As we’ll talk about in later chapters, you can collect and centralize
data from multiple sources, so we want a way for each of these spans to know the
relationship between them that doesn’t require us to send too much data around. For
distributed RPCs like this, it’s popular to send the trace context between services in an
HTTP header, and have the child service create a span with a defined parent-child
relationship. Our second span’s data structure would look something like
Example 2-4, in contrast.

Example 2-4. Span with a defined parent-child relationship

{
 operationName: "getUserFromStore",

Propagating Context | 17

 spanId: "dac303fb-6c1c-4816-ac86-ce717cee1714",
 parentSpanId: "09f42f7e-e606-4923-831b-7dd612683720",
 tags: [
 {
 key: "userId",
 value: 105832
 }
],
 // Start time, duration, etc.
}

The trace context (sometimes simplified to just context) is covered
more in Chapter 3 and later in this chapter. For now, think of it as a
set of globally unique identifiers for a trace and each of its spans.
Typically, these identifiers are a bunch of random bits or a large
random number.

Those are the basics—let’s dive in for a more detailed look at the two different types
of propagation: interprocess and intraprocess.

Interprocess Propagation
One key notion of microservice architectures is that we can think of each service as
fairly independent of its peers. A service should do one logical thing reliably and
robustly. This allows our services to scale horizontally in response to demand or
other signals. This notion maps very well to span-based distributed tracing—each
service, logically, would have a single span that corresponds to the work being per‐
formed by that service. It’s often helpful to conceive of this by considering the RPCs
that make up your microservices as a sort of call stack. Imagine an application with a
few components, building off what we’ve been discussing earlier, as in Figure 2-8.

Figure 2-8. A service diagram from client to datastore.

Now let’s manually trace a request through the system, starting at the client:

client
api-proxy
auth
api-server
datastore

18 | Chapter 2: An Ontology of Instrumentation

Any transaction you make, logically, needs to follow this series of RPC calls: the client
talks to the api-proxy, the api-proxy authenticates the request and passes it along to
the api-server, which talks to the datastore, which returns the result all the way back
to the client. The work each of those services performs would be a single, logical
span. We can intuit that we’ll need some mechanism to propagate the trace context
through this chain of requests so that each subsequent call can use that information
to form a parent-child relationship with its predecessor.

For the purposes of this section, let’s presume that our services communicate with
each other using HTTP. However, the principles that we’re discussing aren’t limited to
interprocess communication over HTTP—they can be performed over a variety of
transport methods such as gRPC, Apache Thrift, SOAP, etc.

Why HTTP?
Here and throughout the book, we tend to use HTTP and RESTful API idioms when
discussing RPCs. This is mostly an affordance to the relative simplicity of HTTP, the
familiarity that most of our readers have with it, and the fact that conceptually the
model of a RESTful API with HTTP as the message-passing system is easily modeled
by distributed traces.

Ultimately, when you’re making an RPC between any two of these services, you need
two things to happen. The caller needs a way to take the current span context and
serialize the required information to propagate the trace context to the next hop. The
callee needs a way to discover the span context (if it exists) and create a child span
using this data. The first action, serializing the current span context, is also known as
an inject operation, whereas the latter is an extract. We’re “injecting” the span context
into the transport, and “extracting” it back out. These inject and extract operations
happen at the edge of our service in code—you’d generally want to use some sort of
middleware in your HTTP service that would automatically perform these operations
when a new request is created or received.

The terms trace context and span context are used interchangeably
throughout the text. In general, they denote the same context—
unique identifiers about a trace and span.

Broadly speaking, inject and extract semantics are fairly universal—you either pass in
a span context, or get one back as the result. The span context is simple enough—it’s
an object that contains the identifier for a span. The exact implementation of a span
context varies somewhat across implementations, but open source projects such as
OpenTracing have defined a span context as an object containing a SpanID, a

Propagating Context | 19

TraceID, and an array of baggage (which contains arbitrary key-value pairs). In gen‐
eral, we want these identifiers to be fairly unique—a span ID should be unique within
a TraceID, and a TraceID should be unique within a very large space. How large?
That depends entirely on the amount of traces your system is generating, but a ran‐
dom 64-bit value is usually sufficient. The W3C’s forthcoming general specification
for trace context is standardizing around 128-bit identifiers, such as UUIDv4, which
allows for very low probabilities of collisions (to reach a 50% probability of a single
collision with UUIDv4, you’d need to generate 2.71 quintillion identifiers—that’s one
billion IDs a second for 85 years!) and should be sufficient for any single system.

Aside from IDs, there’s baggage, as mentioned earlier—this is a convenient way to
propagate information from earlier services to later ones. Imagine that you would like
to propagate some piece of information from the client through every span such as a
user ID, a version, etc. You could use baggage to do this, but use it with care! Every‐
thing you put into baggage will exist on every hop after you add it, and the overhead
of pushing that additional data across the network may incur noticeable performance
penalties.

How should we use these methods? It’s best that they happen in a fairly touch-free
way. A good practice is to include middleware in your HTTP request pipeline that
attempts to extract the span context from each incoming request and adds it to the
request object. In your route handler, you can then look for the incoming span con‐
text and create a new child span. Similarly, wrapping your outgoing HTTP requests
with a function that looks for an existing span and injects it into the outgoing request
ensures that the next service down the line can pick it up if properly instrumented. A
productive way to begin instrumenting an existing application is through this strat‐
egy, as a matter of fact—we’ll talk more about that later.

It is very important that your team or organization develops standards for the format
of propagated contexts. Eventually, the W3C’s standardization efforts will reduce this
burden, but as of this writing, you’ll need to ensure that upstream and downstream
service owners all agree on the format for your span context. Standardizing around
some shared code for performing inject/extract works well and is easy to do in more
homogenous environments. In a more polyglot world, such as one where you’ve got
microservices written and running in a variety of languages, make sure that docu‐
mentation is clear and widely shared about the specific headers that will carry your
trace context, and the format of that data. Open source telemetry frameworks also
ease the burden of dealing with this problem, which we’ll cover in Chapter 3.

Intraprocess Propagation
Where interprocess propagation is concerned with passing a trace context between
different services, intraprocess propagation is concerned with passing the trace con‐
text around inside a single process. Why would we want to do this? If our microser‐

20 | Chapter 2: An Ontology of Instrumentation

vice applications are being designed like we all hope they are, we would have a single
span per service, right?

Not all applications are pretty arrangements of microservices. We would hazard a
guess that most applications aren’t. We’re seeing a greater and greater number of what
we call “gentrified” applications—new, greenfield development tacked on to large
brownfield monoliths. These hybrid applications often do involve a great deal of
microservices surrounding the core monolith—and wouldn’t you know it, we’d like to
trace both those microservices and the calls they make inside the monolith. Even in
microservices, it’s extremely likely that we’ll want to trace individual functions, or
requests into our database.

In addition, not all microservices are equally micro—think about a worker service
that parallelizes work across multiple threads or across multiple remote services. In
all of these cases, it would be highly beneficial to be able to propagate a trace inside a
service in order to create spans that more accurately represent the work being
performed.

The basic concepts here are very similar to the ones discussed in the section on inter‐
process propagation, with one critical difference. Since we aren’t making RPCs, we
don’t need to concern ourselves with injecting or extracting our span context and
serializing or deserializing it across a process boundary. In general, we’re more con‐
cerned with the scope of a span. The details of this are fairly language-specific, but
we’ll give an overview of the concept. In a multithreaded or asynchronous processing
scenario, we can define an active span as the span that is in scope of the work that our
process is doing at any given point. Consider the pseudocode in Example 2-5.

Example 2-5. Active span

async function bigSearch(*context, key, dataset...) {
 for dataset d {
 let result = await d.findInSet(*context, key)
 }
 return result
}

async function (dataset) findInSet(*context, key) {
 while *context.isNotCancelled {
 let found = d.find(key)
 if found {
 *context = *context.Cancel
 return found
 }
 }
}

Propagating Context | 21

Our bigSearch function can take some arbitrary amount of datasets, a context, and a
key to look up in those sets. For each set, it starts a thread and begins to search for the
key. When the key is found, it cancels the context and returns the result, causing all
other searches to short-circuit as well. We can visualize this in the timing graph
shown in Figure 2-9, which would be generated by the pseudocode in Example 2-6.

Figure 2-9. A span timing diagram demonstrating early cancellation of child spans.

How do you create these relationships in spans? As mentioned, we can create parent-
child relations between spans using a span context, and the same principle applies
here. Since we don’t have to cross an RPC boundary, the simplest way is to pass the
span context as a parameter to child functions, like in Example 2-6.

Example 2-6. Span context as a parameter to child functions

async function bigSearch(*context, key, dataset...) {
 let span = startSpan("bigSearch")
 span.setTag("searchKey", key)
 for dataset d {
 let result = await d.findInSet(*context, key, span.context)
 }
 span.finish()
 return result
}

async function (dataset) findInSet(*context, key, spanContext) {
 let childSpan = startSpanFromContext("findInSet", spanContext)
 while *context.isNotCancelled {
 let found = d.find(key)
 if found {
 *context = *context.Cancel
 span.log("found span in dataset", d)
 span.finish()
 return found
 }
 }
 span.setTag("cancelled", true)
 span.finish()
}

22 | Chapter 2: An Ontology of Instrumentation

The preceding pseudocode is written in the style of Go or other
languages where a user-managed process context object is avail‐
able. In languages such as Java or C#, thread-local storage would
offer similar functions. The key thing to note is that you need to
pass the span context into child functions that you wish to create
spans for and use whatever language facility exists to do so. It can
be as simple as passing a single span object around via function
parameters.

Each of the child spans in this case would have a single parent, but it’s kind of ugly to
have to modify our method signatures to accept span contexts everywhere. Worry
not, there’s an easier way to do it through a mechanism known as a scope manager,
but that’s dependent on the specific technology and language you’re using. In general,
a scope manager removes the manual part of this process by using thread-local stor‐
age to automatically preserve a reference to the active span for a function and can use
that reference to create new child spans from the active one. We’ll discuss explicit
implementations of scope managers in Chapter 3. For now, just know that you don’t
have to limit your traces simply to RPCs!

The Shape of Distributed Tracing
Now that we’ve introduced some of the basic concepts around instrumenting services,
let’s dive in to make it a bit more real. You might have an understanding of differing
forms of instrumentation and how they can interact with each other, but how do we
tie these concepts back to the sort of software and services you might be familiar
with? In general, there’s a certain pattern—or shape—of how distributed traces act,
and interact, with common software architectural styles. Let’s review them and give
some pointers on which sort of instrumentation approaches would work best.

Tracing-Friendly Microservices and Serverless
Distributed tracing and microservices/serverless were, quite literally, made for each
other. Historically, distributed tracing technology has been built by large engineering
organizations with thousands or tens of thousands of microservices that are operated
and maintained by hundreds or thousands of people. It may surprise you, then, that
not all microservices are created equal when it comes to being traced. As a matter of
fact, span-based distributed request tracing has several characteristics that you can
hew to in order to create more useful traces from your microservices or serverless
architectures. We’ll cover some quick dos and don’ts here.

Generally with microservices or serverless, consider white box instrumentation first
Your microservices should be small enough that you can make the necessary
changes to allow for library-based instrumentation practices, where your tracing
code is integrated into the service itself. This allows for trace data that’s not only

The Shape of Distributed Tracing | 23

2 Ingress and egress refer to traffic that enters, or exits, a network boundary, respectively. Broadly, these are
used to refer to any or all incoming or outgoing requests from a service.

more accurately scoped to the actual function of the service, but also offers you
the opportunity to build out tracing over time as services are updated to take
advantage of it. Capture semantic information about each service in your trace
data. A well-traced microservice should attach relevant semantic attributes (such
as the OpenTelemetry span.kind attribute) to the spans that it generates. This
gives you a more complete and accurate view of what your services are doing and
is especially beneficial in a microservice architecture as you have fewer guaran‐
tees about trace data consumers being aware of what your service does.

Create attributes for the important things!
Think about what you’d want to know if you were trying to debug a production
fire at 3 a.m., then add that. Some recommended attributes/tags are hostname,
region or datacenter, and service.version. One great idea that we’re starting
to see more of is a README attribute, or some other pointer to an internal system
that indicates where people can ask questions or find out more information
about the service. Ensure that ingress and egress are traced.2 As we’ve mentioned,
it’s best practice to have the process of creating spans for incoming and outgoing
requests to be handled automatically by your RPC library.

Finally, start with what you know
If you have particular trouble spots, latency-sensitive services, or other areas of
interest, then the quickest way to make useful traces is to start building them
from there. It can often be easier to add a little bit of instrumentation to under‐
stand the problems you’re having now rather than waiting for a large-scale instru‐
mentation plan to be developed and executed, and we’ll go into more detail on
this later.

There are also some things to avoid:

Don’t neglect to set “rules of the road”
The most critical aspect of successful instrumentation is that each service is able
to create spans that are part of a larger distributed trace. This means that one of
your first steps should be to ensure that standard context propagation headers
and formats are being used. Chapter 4 will dive in deeper to a variety of open
source frameworks for distributed tracing; we’d suggest using one of those.

In general, don’t try to trace extremely long operations
Distributed request tracing works best when the entire traced operation takes
place in a fairly short (minutes) time span. There are several reasons for this,
such as data retention periods for trace analyzers and sampling considerations
(which we’ll get into later), but for now let’s just say that it’s not a great fit. If you

24 | Chapter 2: An Ontology of Instrumentation

are trying to trace operations with an extremely long execution time, don’t fret,
there are options to address those use cases.

If you own a service that isn’t in the critical path, don’t assume you don’t need to do
anything

You might think that your service isn’t important, or that it doesn’t have a role to
play in a trace. At the very least, you’ll want to ensure that all of your services
pass tracing headers through that may be coming from their callers to their call‐
ees. We would suggest, though, that if you’re going to go ahead and do that, it
doesn’t take a lot more work to wrap your microservice in a span and send it on
its way, giving everyone a more complete view of the work of the application.

Finally, don’t hold trace data locally for very long
This is more of a concern with a serverless service, but it’s good advice in general
—preferably, you’re regularly exfiltrating your trace data from your service to
some external collector. Some of this is to ensure that your analysis system is able
to capture and analyze each request in its entirety while that trace is still relevant.
More importantly, this practice reduces the potential for lost data if an instance of
your service becomes unavailable due to a crash or some other disaster.

Tracing in a Monolith
We’ve stated that distributed tracing is primarily the domain of microservices, so
some of you might be looking forlornly at your monoliths of yore, silently mouthing
“Is tracing not for me, then?” Humble reader, hope is not lost—but you will need dif‐
ferent tactics to instrument a monolith.

When instrumenting monoliths, you should first take stock of what you already have
and consider why you’re adding tracing. We see a few rationales for this. One is that
you’re decomposing your monolith and have decided to adopt tracing, but need to
extend traces into the monolith from the new microservice components. Another is
that you’re adopting tracing at a different layer of the system (for example, at your
client/frontend) and would like to capture end-to-end performance data to identify
hotspots. Whatever your reasons are, instrumenting a monolith looks both similar
and dissimilar to instrumenting a microservice.

As mentioned earlier, you should take stock of how you’re observing the monolith
already to determine the best path forward. Are your existing metrics and logs valua‐
ble? Studying how your on-call teams and engineers are using existing observability
data to inform their on-call practice can be useful in understanding where tracing
would be beneficial to your monolith. For example, one common pattern we’ve seen
with engineers who retrofit tracing into their monolithic applications is to use agents
or other out-of-process services to capture log data and marshal it into trace data.
This is a fairly low-touch method of adding tracing to a monolith, yes, but if the logs

The Shape of Distributed Tracing | 25

you’re using aren’t valuable to begin with, then the trace data you generate is also
going to be of limited value.

That said, what distinguishes tracing in a monolith from tracing in a microservice?
First, and most critical, is your instrumentation methodology. Attempting to trace a
monolith as a black box can be challenging to the point of futility. Many monolithic
applications are characterized by a high level of concurrency and parallel processing
on different threads or thread-shaped objects, requiring some level of white box
introspection of what’s happening inside the process itself. Ingress and egress opera‐
tions may be extremely difficult to quantify due to the complexity of the monolith,
especially if the monolith exposes multiple versions of an API that each support dif‐
ferent RPC styles—consider a monolithic service that exposes a v1…vn API where
each version adds and/or deprecates a particular RPC transport (SOAP, JSON over
HTTP, Apache Thrift, etc.).

The Right Abstraction to Instrument
In general, divorced from whatever framework you’re using, it’s best to instrument at
the layer of abstraction below the one you’re trying to understand and inspect. Instru‐
menting below the layer of inspection gives you more visibility into your system with
less effort. In addition, if you’ve instrumented below the layer you’re inspecting, then
it is generally easier to pull a context “up” in order to get more details in a particular
service or part of your code than it is to push an existing context “down” into the
underlying framework.

One strategy that can serve you well when instrumenting a monolithic service for
tracing is to rely on agent-based approaches to inject instrumentation into the service
framework layer. Consider the Spring Framework for Java—if your application is
built on Spring, you’ll get more bang for the buck by instrumenting the Spring classes
themselves as opposed to your own code. Conveniently enough, these popular frame‐
works often have open source instrumentation available, saving you the trouble of
implementing it yourself. Framework instrumentation can get you started, and in
some cases might be enough to understand the broad performance shape of requests,
but will often need to be paired with some level of manual instrumentation to capture
the nuances of your business logic. There aren’t many silver bullets here, to be blunt—
you’ll need to carefully consider the structure of your application code, and how calls
propagate through your service. You need to pay special attention to the intraprocess
propagation of spans and traces inside your service, as there aren’t necessarily clean
lines of separation like you’d get in a microservice architecture.

Along those same lines, spend some time thinking about exactly what functions or
intraprocess calls need to be their own spans, and which can be combined with a

26 | Chapter 2: An Ontology of Instrumentation

common parent span. It may not be necessary, or desirable, to add a trace for every
single function call in your monolith. It usually isn’t!

Finally, it can be helpful to create a model of your monolith’s various internal compo‐
nents and use those to orient your thinking around what “should be traced.” Consider
a simple ecommerce monolith that provides some sort of UI, an inventory compo‐
nent, an account management component, and an order management component
(see Figure 2-10). In a monolith, each of these components may share code with oth‐
ers, and they may have very fuzzy boundaries in some cases, but they’re the logical
divisions available to you that can provide context to trace data. For example, it might
be that some piece of shared functionality fails more often when called from the
account management component versus the order management component—having
trace data that corresponds to the component instead of the function will make it eas‐
ier to identify the reason.

Figure 2-10. A shopping cart/ecommerce monolithic application.

There are a lot of things you’ll want to do the same way as you would if you were
tracing a microservice, though. You’ll still want to capture semantic information
about your service (or internal component) in each span, and you’ll want to create
attributes for hostname, IP address, etc. If you’re using agents or framework-based
instrumentation for your monolith, much of this work may be done for you. Ulti‐
mately, there’s nothing that stops you from tracing monoliths or having trace data
from monoliths be a part of a larger trace. In the worst case, where you don’t have any
ability to modify or introspect your existing process, you can always fall back on
wrapping the monolith in some sort of request proxy and generating trace data
through that—it’s always better to have a span than no span.

Tracing in Web and Mobile Clients
Most of this book has been written from the implied perspective of a backend service,
running in your datacenter or on a cloud provider. What about when your code
doesn’t run on something you control quite so neatly? As mentioned earlier, one of

The Shape of Distributed Tracing | 27

the benefits of distributed tracing is that it allows for visibility into the complete, end-
to-end life cycle of a request—not just a narrow slice of it.

So, what does a distributed trace look like when it begins at the beginning? Mobile
computing through cell phones, tablets, and other small-scale devices has become the
gateway to software for millions of people, and so we’ve seen a rise in client-side
single-page applications and native mobile applications. You should consider how
you’re tracing these parts of your application, and be aware of some of their special
requirements. For the sake of brevity, we’ll refer to these client applications as
frontend services for the rest of this section.

Instrumenting a frontend service looks an awful lot like instrumenting any other ser‐
vice, with the same sort of stipulations and watchwords—be sure to trace egress (so,
any communication between your client and your server), add semantic tags, and so
forth. The biggest question is one of verbosity. How much detail in your frontend
trace data is too much? There’s a wealth of information available in Web APIs
through the Performance interface on the amount of time it takes to load resources
(such as HTML, CSS, JavaScript, and image assets), how long redirects and other
HTTP methods take to execute, and how long it takes to create the DOM and display
it to an end user. This can be extremely valuable information to include in a trace of
your frontend service. However, it’s possible that it can be an overwhelming amount
of data for consumers of your traces—both humans and machines. We’ll discuss the
trade-offs around collecting and storing trace data in later chapters, but suffice to say
that there’s some amount of overhead for creating, collecting, and storing trace data.

One option is, of course, to collect everything you can and leverage your analysis
tools to cut through the chaff. This is becoming more popular as the sophistication of
analysis tools increases. Another option is to create two separate traces—a trace that
represents the work being done by the frontend client, such as performance and tim‐
ing information around rendering the DOM or drawing UI elements, and a separate
trace that represents the work being done by the frontend communicating with back‐
end components, such as loading data from an API. These traces can be linked by a
single, shared attribute. Consider the humans who are consuming your trace data in
order to make a decision here—how much data do they need in order to understand
the performance profile of a request, and what are they responsible for?

Other challenges than verbosity are involved in instrumenting frontend services, of
course. Many of them are challenges endemic to the nature of mobile or web services
in general—inconsistent network availability, a significantly wider variance in the
performance of end-user hardware, etc. Here are some common scenarios to watch
out for when instrumenting frontend services:

28 | Chapter 2: An Ontology of Instrumentation

https://oreil.ly/Hngwz

Loss of WAN connectivity
Your instrumentation and reporting should check to make sure they can report
spans before they start recording, and potentially NoOp (short for no operation)
to avoid unneeded allocations and work if there’s no chance that the trace data
can be sent to your backend.

Unexpected loss of focus for your service
In general, background processes on mobile devices are constrained in what they
can do or how long they can do it. Make sure that your tracer is listening for
events that indicate a loss of focus, and hurry up to flush whatever trace data is
available to your trace analyzer.

Debounce your spans
If your application has a button, someone is probably going to click it in frustra‐
tion. You should be debouncing any sort of long-running request, so make sure
that span creation is also debounced to avoid creating a lot of unnecessary spans
(although it might be fun to count how many rage taps you get and monitor
that!).

Be careful with PII
As privacy laws and regulations continue to develop, you should be extremely
careful about what you’re logging or recording from a device. We are not lawyers
(and we’re especially not your lawyers), so you should check the specifics with
your legal counsel, but the European Union’s General Data Protection Regulation
(GDPR) asserts that users have a right to understand how you’re using their per‐
sonal data, to request access to that personal data, and to request that their data
be deleted. In the interest of not having to delete swaths of telemetry data at the
request of your end users, it would behoove you to simply not track personal data
to begin with. Again, talk to a lawyer for details.

If you feel a bit lost, don’t worry—we just dumped a lot on you. It might be useful to
keep these pointers in mind and reference them after you’ve finished the book and
have a better understanding of not only instrumentation, but also collection and anal‐
ysis of trace data. In Chapter 3, we’ll discuss various open source telemetry and trac‐
ing frameworks that you can use to address many of the challenges raised when
tracing microservices, serverless, monolithic, or frontend services.

The Shape of Distributed Tracing | 29

CHAPTER 3

Open Source Instrumentation: Interfaces,
Libraries, and Frameworks

As a technology, tracing—even distributed tracing—isn’t brand-new. Developers have
been building distributed systems in some form or another for decades and have
turned to tracing solutions to understand these systems. One thing many of these sol‐
utions have in common, however, is that they tend to be very focused. Sometimes this
focus is for a particular technology stack or language; sometimes it relies on the usage
of a particular middleware provider; sometimes it’s just a home-rolled solution that’s
been maintained for years by engineers who aren’t with your company anymore.
More recently, we’ve seen this sort of behavior continue to proliferate aided by cloud
vendors and other platform providers.

Some might say, “Well, what’s the problem here?” After all, for a great many people,
these proprietary or otherwise closed solutions work fine, or at least are providing
value to their users. While that certainly can be the case, these solutions are often
more brittle than they appear at first glance. The foremost argument against propriet‐
ary instrumentation is that it often leaves you at the mercy of the authors of the
instrumentation solution when it comes to adapting your software for new languages,
methodologies, and challenges caused by increasing scale or business requirements.

Remember—one of the few constants in life, and especially in computing, is change.
At the time of this writing, Microsoft is one of the largest contributors to open source
software. If you went back in time 20 years and told someone that, they’d likely be
shocked! Relying on the current state of vendors and cloud providers and popular
languages or runtimes will invariably lock you into decisions that you might not want
to be locked into.

There is a solution to this dilemma, one that’s been widely adopted by users, vendors,
and software authors—the open source model of instrumentation. What we mean, in

31

practice, is that rather than relying on languages and runtimes to provide the tools for
instrumenting software, the community in general provides them. In this chapter,
we’ll discuss the current state of the art when it comes to these open source solutions,
as well as some of the historical context and forerunner projects that you’re likely to
encounter in the wild. We’ll also cover the API and methodology behind instrument‐
ing software with these packages, such as OpenTelemetry.

The Importance of Abstract Instrumentation
Why is it important to embrace abstract instrumentation in the first place? It’s a good
question, especially if you’re already using a platform or tech stack that provides some
sort of tracing functionality, and are thinking about adopting it to monitor your serv‐
ices. Historically, this information has been available at several locations that tend to
“make sense” (for example, at the boundaries of your services, or via some ingress
layer such as a load balancer, web proxy, or other routing service). These trace identi‐
fiers, such as the X-Amzn-TraceID of Amazon’s Elastic Load Balancer (ELB) or the
fairly opaque tracing headers supplied by Microsoft’s IIS (Internet Information Serv‐
ices), are able to provide a fairly thorough view into a single request as it moves
through your services. That said, there are a few critical areas where these legacy trac‐
ing methods fall short.

The first test that these tracing methods fail is portability. Take, for example, IIS
Request Tracing. It might not surprise you to learn that using this requires you to also
use IIS as your web server/proxy, which also implies that your software runs on Win‐
dows Server. While we won’t suggest that there’s no software that runs (and generates
perhaps a massive amount of business value) on Windows Server, we would also sug‐
gest that it’s not quite as popular these days as it once was. The associated costs of this
lock-in can be deleterious, however. You may delay or defer maintenance and
upgrades to your monitoring, opening you up to security vulnerabilities. Advance‐
ments in monitoring platforms may provide you with improved insights and lower
costs, but you may be unable to take advantage of them because you’ll be locked into
your existing instrumentation. Finally, even if you’re generally happy with the level of
control and insight that your proprietary instrumentation grants you, you may find it
difficult to convince new team members of its greatness if they’ve learned to appreci‐
ate newer tools.

The second test that proprietary tracing methods fail is being adaptable to distributed
applications. This is obvious when attempting to instrument a client-server relation‐
ship over some external link, such as the internet. Without some abstract instrumen‐
tation on both sides (the mobile application or client web application, and the
backend server), you’ll often have to resort to manual hacks to fit and transform data
being generated by two potentially separate systems. Often, these proprietary systems
will begin their traces at the ingress point rather than at the client, which can

32 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

segregate your data rather than provide a single, end-to-end view into a request.
These systems often lack internal extensibility, which is to say that you may find it
challenging or impossible to create subtraces of service functionality outside of the
top-level HTTP request. Additionally, you’ll find that these systems may struggle at
instrumenting transport methods that aren’t carried across HTTP, leaving you with a
tangled mess of incompatible trace data being generated by your HTTP, gRPC, SOAP,
or other carriers. This can stymie refactoring for performance or integration with
new services and technologies.

The third and final test that these methods fail is they promote vendor lock-in by
necessity or by design. Don’t like the analysis tools available? Too bad! Don’t care for a
particular instrumentation API? You’re stuck with it unless you wrap the provided
API in your own. Even this can only do so much, depending on the underlying
design of the system. One surprisingly common situation we’ve seen is that this lock-
in can paralyze teams that are spinning up new services because there may be busi‐
ness reasons that prevent the allocation of additional analytic capacity. A popular
pricing model for monitoring, for example, relies on the amount of hosts or contain‐
ers that are being monitored at any given time—if you’re locked into a vendor with
this pricing strategy, it can actually act as a damper on the amount of new instrumen‐
tation added to your application due to cost concerns. While this may seem like a
savvy way to save a few bucks while developing a new and unproven idea, you don’t
know if this new service will take off (or, worse, become a sneaky failure-prone piece
of code causing difficulties, headaches, and many late-night alerts for other teams).

Abstract, open source instrumentation solves these problems neatly. Your instrumen‐
tation is portable to any underlying operating system (OS) that supports the language
you’re writing it in—Linux, Windows, macOS, iOS, whatever! Since it’s open source,
even if it doesn’t work right now, you have the ability to fork it and add support if
required. Thankfully, the major open source instrumentation interfaces and frame‐
works have wide support for the majority of general purpose programming languages
in use today…although if you wanted to port it to Perl, we’re sure someone would be
grateful. As you might expect from a widely supported framework, open source and
abstract instrumentation are very adaptable to your changing requirements and
needs.

As your services decompose into smaller services, you’ll find that abstract instrumen‐
tation fits in very neatly with your new service boundaries, regardless of how they’re
being written, deployed, or run. Abstract instrumentation makes it easier to integrate
your instrumentation with other technologies as well, such as service meshes or con‐
tainer orchestration platforms. Not to mention, as you integrate new services into
your distributed application, abstract instrumentation grants you the flexibility to
share a common language of instrumentation across disparate teams. Finally, and
most importantly, abstract instrumentation prevents vendor lock-in of analysis or
instrumentation. Since the instrumentation APIs, trace data format, propagation

The Importance of Abstract Instrumentation | 33

headers, wire format, and more are defined openly and publicly, you’ll be able to use
them (either directly or through a shim) with any sort of analysis system you can
imagine. At the time of this writing, almost every major monitoring vendor supports
at least one—and usually more—open source tracing formats, thus allowing you the
flexibility of write once, run anywhere with your instrumentation code.

Now that we’ve gone over the benefits of these instrumentation frameworks, let’s take
a look at the most popular ones available, starting with the newest: OpenTelemetry.

OpenTelemetry
Writing an instrumentation library is, in a word, difficult. While the actual process of
collecting and generating telemetry from a service is conceptually fairly straightfor‐
ward, implementing that process in a highly performant way that also can get buy-in
from a diverse group of users is extremely challenging. The foremost reason is that
however much any two pieces of software have in common, they’re likely to be very
different. While this might be somewhat reductionist, it’s a useful thing to keep in
mind when discussing the challenges of writing instrumentation libraries for a gen‐
eral audience. However, there are several good reasons that you might prefer a
general-purpose instrumentation library over a bespoke one:

• A general-purpose library will be more likely to be more performant in the
general use case.

• The authors of the general-purpose library are more likely to have considered
edge cases and other situations.

• Using a general-purpose library can save you months of maintenance headaches
in adapting, extending, and using a bespoke one.

As your software becomes more complex, and development cycles become more
strained, the rationale for the general-purpose library grows. You probably don’t have
the time or desire to implement your own telemetry collector or API. You might not
have the expertise to create or maintain bespoke telemetry libraries in every language
used by your application, or you may find the organizational dynamics of creating an
internal standard insurmountable. Finally, you probably don’t want to have to rein‐
vent the wheel in terms of generating telemetry data from your dependencies—RPC
frameworks, HTTP libraries, etc.

OpenTelemetry solves these problems and a host of others for you. The primary goal
of OpenTelemetry is to provide a single set of APIs, libraries, agents, and collectors
that you can use to capture distributed tracing and metric telemetry from your appli‐
cation. In doing so, OpenTelemetry imagines a world where portable, high-quality
telemetry data is a built-in feature of cloud native software.

34 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

OpenTelemetry was formally announced in May 2019 as the next major release of
both OpenTracing and OpenCensus. These two projects had similar goals but differ‐
ent ways of achieving them. The seeds for OpenTelemetry were planted in the fall of
2018 in several wide-ranging Twitter threads that crystallized the major stumbling
block facing both projects—the appearance of a “standards war” between the two.
Open source project authors, seeing that there were two incompatible standards for
instrumentation, would defer adding tracing to their libraries and frameworks in the
absence of consensus about which they should focus on. (For more information, see
“OpenTracing” on page 43 and “OpenCensus” on page 48.)

These and other disagreements led to back-channel negotiations and discussions
between the founders of each project along with a neutral mediator. A small technical
team was formed to prototype a merged API, which became the initial prototype of
OpenTelemetry. Spring 2019 saw work continue on the prototype, along with efforts
to codify the new governance structure—taking lessons from other successful open
source projects, like Kubernetes. After the announcement in May, contributors from
a wide variety of companies, including Microsoft, Google, Lightstep, and Datadog,
worked in concert to formalize the specification, application programming interface
(API), software development kit (SDK), and other components.

Which brings us to now. OpenTelemetry, at the time of this writing, is still in an alpha
phase. The project anticipates a beta by the time you’re reading this, but as is the
nature of open source, the timeline may change. With that in mind, we’ll focus this
section mostly on the distributed tracing components in OpenTelemetry, along with
critical parts of its design.

OpenTelemetry comprises three major components. These are the API, the SDK, and
the Collector. These components implement the OpenTelemetry specification and
data model, and are designed to be interoperable and composable with each other.
What does this mean? In short, parts of these components can be “swapped out” with
differing implementations, as long as those reimplementations conform to the speci‐
fication and the data model.

As Figure 3-1 shows, there are two main parts of any given OpenTelemetry library.
The API contains the interfaces required for writing instrumentation code along with
a minimal (or NoOp) implementation of the SDK. Generally, the API will be pack‐
aged with the SDK, which implements the core functionality of the API such as man‐
aging span state and context, serializing and deserializing span context from the wire,
and other features. External to the SDK are exporters, plug-ins that translate and
transmit the OpenTelemetry trace data to a suitable backend service for analysis. Each
of these components is decoupled from the others; you can use the API with no SDK
(see Figure 3-2), for example, or selectively reimplement parts of the SDK.

OpenTelemetry | 35

Figure 3-1. A generic OpenTelemetry library.

Figure 3-2. Minimal implementation of OpenTelemetry.

36 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

If you’re writing code that will primarily be used as a library, then you would use the
API by itself. If you’re writing a service that will run—either alone or in concert with
other services—you’d use the API and SDK.

The rationale is fairly simple. Let’s say you’re writing a library that performs some
convenient function, like an optimized search on some set of data. Your users want to
be able to trace your code—giving them insight into the number of iterations it
requires to find the desired search term, for example. You can accomplish this very
easily by adding tracing instrumentation and creating either a single span that repre‐
sents the work being done by your library, or multiple spans representing each itera‐
tion (if you parallelized the algorithm in some way, this latter approach might be
more useful). However, you want your library to be fairly performant and to have few
external dependencies; after all, it’s an optimized piece of code. In this case, you’d only
take a dependency on the OpenTelemetry API package. When someone imports and
uses your library, which is also using the OpenTelemetry SDK, your library would
automatically swap over to using the full implementation rather than the minimal
one, allowing your end users to trace the activity of your code.

The OpenTelemetry API provides three major things: distributed context propaga‐
tion, management, application tracing, and application metrics. We’ll focus on the
first two in this book.

First, tracing. The primary building block of spans in OpenTelemetry is the Tracer.
The Tracer provides methods for creating and activating new Span objects along with
the ability to track and manage the active Span in the process context. Each Tracer is
configured with Propagator objects, which allow for transferring the span context
across process boundaries. The API provides a TracerProvider which allows for the
creation of new Tracer objects, which each have a required name and an optional
version. OpenTelemetry refers to this concept as named tracers, which act as a name‐
spacing mechanism for multiple logical components inside a single process. For
example, if you were to instrument a service that used an HTTP framework to com‐
municate with other services, you would name the tracer for our service’s business
logic something like myService, while instrumentation for the HTTP framework
would be named opentelemetry.net.http. This helps in preventing collisions in
span name, attribute key, or other factors. Optionally, we can assign a version string
to our tracer that should correspond to the version of the instrumentation library
itself (i.e., semver:1.0.0).

Each tracer has to provide three methods—getting the current span, creating a new
span, and activating a given span as the current one. In addition, it should provide
methods to configure other important tracing components, like propagator objects.
When creating a new span, the tracer will first check whether there’s an active span,
and create the new one as its child. A span or span context can also be provided when
creating a new span as its parent. Each span is required to contain a span context,

OpenTelemetry | 37

1 For more details, see the W3C documentation.

which is an immutable data structure that contains identifiers for the trace, span, and
other flags and state values:

TraceID

16-byte array with at least one nonzero byte.

SpanId

8-byte array with at least one nonzero byte.

TraceFlags

Details about the trace. Present in all traces, unlike Tracestate.

Tracestate

System-specific configuration data, which allows for multiple tracing systems to
participate in the same trace.1

IsValid

A Boolean flag, which returns true if the TraceID and SpanId are valid (or
non-zero).

IsRemote

A Boolean flag, which returns true if the span context was propagated from a
remote parent.

The span is a data structure that represents a single operation in a trace. Each trace
contains a root span that represents the end-to-end latency of a request and, option‐
ally, subspans that correspond to suboperations. The span encapsulates information
like the name of the operation, its span context, a parent span, the start and end time‐
stamp of the operation, a map of attributes, links to other spans, a list of events with
timestamps, and a status. Some of these are more self-explanatory than others. The
start time of a span should be set to the time that it was created, but you can override
this with an arbitrary timestamp as well. Once a span has been created, you can
change its name, set attribute keys and values, and add links to other spans and
events—but only before the span has finished. Once an end time has been set, these
values become immutable. Since the span is not intended to propagate information
inside a process, you should not provide access to span fields other than span context.

There are a few new concepts here, so we’ll break them down.

The name of the span is a requirement when creating a new span, but it’s one of the
only absolutely required parameters. Depending on the implementation, a span may
be automatically created as the child of the current active span, but you also have the
option to indicate that it should be a new root span. The span kind field is used to

38 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

https://oreil.ly/6sPwi

describe the relationship between a given span and its parents and children in the
trace. The two properties that it describes are if the span is the parent or child of a
remote operation and if the span represents a synchronous call. A single span should
only have a single span kind in order for the field to be meaningful to analysis sys‐
tems. See Table 3-2 for a complete description of span kind values.

Attributes are a collection of key-value pairs that can be created either at span cre‐
ation time or during the lifetime of the span. In general, you want to set known
attributes at span creation. Links are between arbitrary amounts of spans that have
some causal relationship. They can exist between spans in a single trace or across
multiple traces. When would you use link objects? First, you may want to use them to
represent batch operations, where a single span was initiated from multiple incoming
spans, each representing a single item in the batch. Additionally, a link can declare
the relationship between an originating trace and a following trace. Consider a trace
entering a trusted boundary of a service such as remote client code, like a web
browser, and being forced to generate a new trace rather than relying on the incom‐
ing context. The root span in the new trace would be linked to the old trace.

Finally, as mentioned earlier, the start and stop timestamps are required but are gen‐
erally automatically generated. You can tell the API to create a span with an arbitrary
start and stop timestamp, which is useful if you’re creating some sort of proxy that
transforms existing telemetry data (such as a log file) into a trace.

Once you’ve created a tracer and a span, what can you do with them? The API
provides several required methods:

• Get the SpanContext.
• Check whether the span IsRecording information.
• SetAttributes on the span.
• AddEvents to the span.
• SetStatus of the span.
• UpdateName of the span.
• End the span.

While some of these are fairly self-explanatory, such as ending the span, others are
more nuanced. IsRecording is one of these—this method returns a Boolean value
indicating whether the span is recording events, attributes, etc. The intended design
of this flag is to avoid potentially expensive computation of attributes or events when
a span is not being recorded. An interesting wrinkle to this is that the flag is inde‐
pendent of the sampling decision of the trace. An individual span may record events
even if the trace that it is a member of has been sampled out (based on flags in the
span context). The rationale is that you may want to record and process the latency of

OpenTelemetry | 39

all requests with instrumentation while sending only a subset of the instrumented
requests to the backend. SetStatus lets you modify the status of a span operation. By
default, a span will have a status of Ok, indicating that the operation that the span rep‐
resents completed successfully. You can see a full list and description of valid statuses
(which will look familiar if you’ve used gRPC) in Table 3-1 and Table 3-2. Keep in
mind that you can also create your own status codes through the API, which would
be useful for creating statuses that map to your own RPC system.

Table 3-1. OpenTelemetry span status canonical codes

Code Description

Ok The operation completed successfully.

Cancelled The operation was cancelled (typically, by the caller).

Unknown An unknown error occurred.

InvalidArgument The client specified an invalid argument. Differs from FailedPrecondi
tion, as this indicates that the arguments were invalid regardless of the system
state.

DeadlineExceeded Deadline (timeout) expired before operation could complete.

NotFound The entity requested could not be found.

AlreadyExists The entity already exists (if we were trying to create it).

PermissionDenied The caller was authenticated, but did not have permission to execute the desired
operation.

ResourceExhausted Some resource was exhausted, such as an API rate limit, per-user quota, or
physical resource like disk space.

FailedPrecondition The operation was rejected because the system is not in the appropriate state for
the execution of the requested operation.

Aborted The operation was aborted.

OutOfRange The operation was attempted outside a valid range. Unlike InvalidArgu
ment, this error indicates the problem may be fixed if the system state changes.

Unimplemented The requested operation is not implemented or supported in this service.

Internal An internal error occurred.

Unavailable The requested service is unavailable.

DataLoss Unrecoverable data loss or corruption occurred.

Unauthenticated The request is not valid due to invalid or missing authentication credentials.

40 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

Table 3-2. OpenTelemetry SpanKind reference

Kind Description Asynchronous

CLIENT This span represents a synchronous request to a remote service; it is the parent of its
associated SERVER span.

False

SERVER This span represents a synchronous request from a client on the remote service; it is the child
of its associated CLIENT span.

False

PRODUCER This span represents the parent of an asynchronous request. It is expected to end before its
associated CONSUMER span.

True

CONSUMER This span represents the child of an asynchronous request. It is the child of an associated
PRODUCER span.

True

INTERNAL This span does not represent any RPC; instead, it is an internal operation within a service and
has no interaction with remote parents or children.

n/a

SetAttributes allows you to add key-value pairs to a span. These attributes, which
are also commonly referred to as tags, are the primary method of aggregating and
indexing spans in a backend analysis system. Attribute keys must be strings, and
attribute values may be strings, Boolean, or numeric values. If you try to set an
attribute that already exists, the new value will overwrite the existing one. AddEvents
allows you to add timestamped events to a span. An event is roughly analogous to a
log statement. These events can also have attributes, allowing you to make structured
event data.

That was a lot of ground to cover, so let’s illustrate with Example 3-1.

Example 3-1. Attributes

import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import io.opentelemetry.OpenTelemetry;
import io.opentelemetry.exporters.jaeger.JaegerGrpcSpanExporter;
import io.opentelemetry.sdk.OpenTelemetrySdk;
import io.opentelemetry.sdk.trace.export.SimpleSpansProcessor;
import io.opentelemetry.trace.Span;
import io.opentelemetry.trace.Tracer;

public class OpenTelemetryExample {
 // Get a tracer from the tracer factory
 private Tracer tracer = OpenTelemetry.getTracerFactory()
 .get("OpenTelemetryExample");
 // Export traces to Jaeger
 private JaegerGrpcSpanExporter jaegerExporter;

 public JaegerExample(String ip, int port) {
 this.ip = ip;
 this.port = port;
 }

OpenTelemetry | 41

 private void setupJaegerExporter() {
 // Set up a gRPC channel to export span data to Jaeger
 ManagedChannel jaegerChannel = ManagedChannelBuilder.forAddress(ip, port)
 .build();
 // Build the Jaeger exporter
 this.jaegerExporter =
 JaegerGrpcSpanExporter.newBuilder()
 .setServiceName("OpenTelemetryExample")
 .setChannel(jaegerChannel)
 .setDeadline(30)
 .build();
 // Register the Jaeger exporter with the span processor on our tracer
 OpenTelemetrySdk.getTracerFactory()
 .addSpanProcessor(SimpleSpansProcessor.newBuilder(this.jaegerExporter)
 .build());
 }

 private void makeSpan() {
 // Generate a span
 Span span = this.tracer.spanBuilder("test span").startSpan();
 span.addEvent("about to do work");
 // Simulate some work happening
 doWork();
 span.addEvent("finished doing work");
 span.end();
 }

 private void doWork() {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 }
 }

 public static void main(String[] args) {
 JaegerExample example = new JaegerExample("localhost", 14250);
 example.setupJaegerExporter();
 example.makeSpan();

 // Wait for things to complete
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 }
 }
}

All spans created by this tracer will be prefixed with the name you enter here.

42 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

2 [Sig16]

There are other span processors available in OpenTelemetry—this one sends each
span as it finishes. Alternatively, you can use a batching processor that sends
groups of spans on some time interval.

You could also add attributes or other metadata here.

As you can see, the basics are pretty straightforward. Create a tracer, register an
exporter, then create spans. You’ll need to do a bit more to instrument your actual
services, however (more about instrumenting a real service in Chapter 4). What
haven’t we discussed about OpenTelemetry? First, we didn’t touch on the metrics
component, since this text is focused on distributed tracing. Second, we didn’t discuss
the distributed context components of OpenTelemetry in detail—you can read more
about those in Appendix B.

OpenTelemetry is the new standard for instrumenting your code for distributed trac‐
ing. Its broad base of support from major cloud and observability vendors ensures
that it will have the necessary resources for maintenance and improvements over
time, and it’s expected to gain adoption rapidly in existing and new open source
frameworks and libraries. We’ll take you through its predecessors now and help you
understand not only the differences between them and OpenTelemetry, but also the
similarities.

OpenTracing and OpenCensus
OpenTracing and OpenCensus are both highly successful open source projects and
have been broadly adopted by developers for instrumenting their distributed systems.
In this section, we’ll discuss the specifications and APIs of these frameworks and
some of the drawbacks that led to the creation of OpenTelemetry.

OpenTracing
OpenTracing was launched in 2016 with the goal of fixing the broken state of tracing
instrumentation.2 While large tech companies like Google had used distributed trac‐
ing for over a decade, overall adoption was slow. The OpenTracing authors saw this as
a failure at the point of instrumentation—the wide variety of processes that a request
would pass through all required instrumentation to interoperate, and the existing
instrumentation options would necessarily bind you to a specific tracing vendor.

As we’ve mentioned, the trace context must remain unbroken through the entire
request in order to provide end-to-end visibility. This was the primary rationale
behind OpenTracing: to provide a standard mechanism for instrumentation that

OpenTracing and OpenCensus | 43

3 Figure based off of an image at OpenTracing.

wouldn’t bind any particular package, library, or service author to a particular tracing
vendor. Prior efforts in this space focused on standardization of data formats and
context encoding rather than APIs to manage spans and propagation of the trace
context between services. While this could be useful, the authors determined that it
wasn’t required for the widespread adoption of distributed tracing.

Indeed, the problem was (and, in large part, still is) that the point of instrumentation
matters a great deal. Instrumenting your application code and business logic can be
useful, yes—but instrumenting the middleware and the frameworks your application
relies on can be much more valuable: you benefit from the instrumentation without
additional effort during development and can extend the instrumentation into your
business logic easily. How did the authors seek to accomplish this? To achieve the goal
of vendor neutrality, OpenTracing could not be overly opinionated about data for‐
mats, context propagation encoding, or other factors. Instead, they built a semantic
specification that was portable across programming languages and provided an inter‐
face package that others could implement. The overall design can be seen in
Figure 3-3.

Figure 3-3. The OpenTracing ecosystem design.3

What does the OpenTracing API look like? It’s primarily focused on span and context
management; it has a fairly constrained API surface. There are three main objects
defined in the OpenTracing API: tracer, span, and span context. We’ll discuss each of
them in turn.

A tracer is capable of creating spans and responsible for serialization and deserializa‐
tion of them across process boundaries. Tracers must satisfy all of the following
requirements:

44 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

https://oreil.ly/JhXBy

• Start a new span.
• Inject a span context into a carrier.
• Extract a span context from a carrier.

A span started by a tracer must have a name—a human-readable string that repre‐
sents the work being done by the span. The specification prescribes that the “opera‐
tion name should be the most general string that identifies a (statistically) interesting
class of Span instances.” As we’ve mentioned, this is because the name is the primary
aggregation key for your traces. A span may also be created with references to other
span context objects, an explicit starting time, and key-value pairs of tag data. Span
contexts are also operated on by the tracer for context propagation purposes through
the inject and extract methods.

First, we should define what a carrier is: a data structure that “carries” the encoded
span context, such as a text map or blob of binary data. OpenTracing requires three
formats for injection and extraction: text map, HTTP headers, and binary. Text map
and HTTP headers are very similar in that they’re both string-to-string maps, but
HTTP headers require that both the keys and values satisfy RFC 7230. Binary is a sin‐
gle arbitrary blob of bytes that represent the span context.

In practice, it is this last part—injecting and extracting a span context—that has
caused much consternation in the distributed tracing community. As OpenTracing
did not specify a data format for the context headers (in part due to significant exist‐
ing work in the space from projects such as Zipkin, which we’ll discuss in “Other
Notable Formats and Projects” on page 53), several different keys are commonly seen
in the wild. These include x-ot-span-context (a binary blob used by Envoy), the B3
headers (x-b3-TraceID, x-b3-spanid, etc.) and Jaeger’s uber-TraceID, which are
both HTTP headers, and more (Jaeger is an OpenTracing tracer and trace analyzer).
In addition, many organizations that had an existing tracing implementation would
use or reuse their tracing headers and adapt them to the OpenTracing API. As
described earlier, many of these issues are made moot by the adoption of W3C Trace‐
Context, which provides a universal standard for propagating trace state over the
wire, but it’s likely that we’ll see these legacy headers in use for years to come.

OpenTracing’s second primary object type is the span. A span implementation must
satisfy the following requirements:

• Retrieve the span context of the span.
• Overwrite the name.
• Finish (or complete) the span.
• Set a tag on the span.
• Create a log message on the span.

OpenTracing and OpenCensus | 45

https://oreil.ly/GgfXg

• Set an item in the span baggage.
• Get an item in the span baggage.

Some of these methods are fairly self-explanatory, such as overwriting the name of
the span. One important note is that after a span is finished, no methods other than
retrieving the span context may be called on it. As with starting a span, finishing a span
accepts an optional explicit timestamp—if unsupplied, the current time will be used.
Logs are an interesting field on spans because they can accept an arbitrary value, as
opposed to tags, which can only accept string, numeric, or Boolean value types. This
means, for example, that complex objects can be logged and, subject to the capabili‐
ties of the trace analyzer or OpenTracing implementation, interpreted.

Finally, we come to baggage. Baggage items are key-value pairs where both the key
and value must be a string. Unlike tags or logs, baggage items are applied to the given
span, its span context, and all span objects that directly or transitively reference that
span. When you add baggage items, they’re attached to the span context rather than
to the span itself, so when you inject that context and extract it on the other side of an
RPC, the baggage has gone along for the ride and can be retrieved. Baggage is a pow‐
erful tool because it allows developers to easily pass values throughout their system,
so it should be used with care. Some interesting applications of baggage are to pass
values from a client system (such as client OS or application version) to a backend
system where they can be used to apply more metadata to spans, or even for condi‐
tional logic statements in the backend such as selecting which method handles a
given request.

Finally, the span context. We’ve discussed it in this chapter and others, and its history
in OpenTracing is complex. Originally, it only exposed a single method—an iterator
for all baggage items. The authors left the actual implementation largely up to authors
of tracers that implemented OpenTracing in a bid for compatibility. Over time, the
specification was extended to offer accessors for the TraceID and SpanID (ToTraceID
and ToSpanID, respectively), which would return a string representation of the trace
and span ID values. This was not extended to every language prior to the develop‐
ment of OpenTelemetry, however, so it’s unlikely to be seen in the wild. For the most
part, as far as the specification is concerned, a SpanContext is an opaque identifier.

What does it look like in practice? Let’s go through a small example in Java (see
Example 3-2).

Example 3-2. SpanContext

import io.jaegertracing.Configuration;
import io.jaegertracing.Configuration.ReporterConfiguration;
import io.jaegertracing.Configuration.SamplerConfiguration;
import io.jaegertracing.internal.JaegerTracer;
import io.jaegertracing.internal.samplers.ConstSampler;

46 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

import io.opentracing.Span;
import io.opentracing.util.GlobalTracer;

...

SamplerConfiguration samplerConfig = SamplerConfiguration.fromEnv()
 .withType(ConstSampler.TYPE)
 .withParam(1);

ReporterConfiguration reporterConfig = ReporterConfiguration.fromEnv()
 .withLogSpans(true);

Configuration config = new Configuration("helloWorld")
 .withSampler(samplerConfig)
 .withReporter(reporterConfig);

GlobalTracer.register(config.getTracer());

...

try (Span parent = GlobalTracer.get().buildSpan("hello").start()) {
 parent.setTag("parentSpan", true);
 parent.log("event", "hello world!");
 try (Span child = GlobalTracer.get().buildSpan("child").asChildOf(parent)
 .start()) {
 child.setTag("childSpan", true);
 }
}

Since OpenTracing doesn’t provide an implementation of the tracer, you’ll need
to import the Jaeger packages.

The OpenTracing packages here are for the span and global tracer API.

Since OpenTracing doesn’t have a first-class sampling API, Jaeger provides it.

OpenTracing’s GlobalTracer provides a single instance of the tracer class (single‐
ton) to the process.

buildSpan takes a single argument, the name of the span.

OpenTracing in Java supports a try-with-resources pattern that can finish a span
automatically when it goes out of scope. Automatic context management in the
Java tracer implicitly forms a parent-child relationship between these two spans.

As you can see, the API for OpenTracing is fairly small—too small, ironically enough.
What drove adoption of OpenTracing was also what made it hard to use, in many
ways. A common scenario for a new developer who had heard about distributed

OpenTracing and OpenCensus | 47

tracing was to discover the OpenTracing website and try to install an OpenTracing
package for their language, only to find that it didn’t actually do anything.

OpenTracing provided mock and NoOp tracers in each language for the benefit of
testing and validation, but there was no simple or easy way to “get started” without
first understanding the design of the library. In addition, some of the trade-offs made
for the sake of simplicity turned out to be difficult for end users to cope with. Imple‐
menters of the OpenTracing API would often add nonstandard features that patched
holes or added convenience for users, breaking some of the fundamental promises of
vendor neutrality.

OpenTracing also presented users with a tracing-only framework. There was no asso‐
ciated metrics API, for example, to allow for the recording of counters, gauges, or
other common metric primitives. Users wanted more.

OpenCensus
In early 2018, Google released an open source version of its internal Census project,
naming it OpenCensus. Census was designed under different circumstances and with
different constraints than OpenTracing. The goal of the Census project was to pro‐
vide a uniform method for instrumenting and capturing trace and metric data from
Google services automatically. The Census team built deep integrations into technol‐
ogies such as gRPC, affording any developer who used these technologies basic trac‐
ing and metrics for no additional work.

The design of Census, thus, was extremely different from the thin API offered by
OpenTracing. Census was an entire SDK for tracing and metrics, providing a full
implementation in addition to the API, tightly coupled and deeply entwined with
gRPC for activities such as context propagation. Open-sourcing Census was in many
ways an effort to extend the existing Google tracing infrastructure to external users of
Google services—since Google services such as Spanner were traced using Census,
external requests that were also traced using Census could be connected seamlessly.
In addition, maintaining a tracing and metrics framework and integrating it with a
variety of tools and vendors can be extremely costly, making the economics of open-
sourcing the project a win for Google.

The fundamental design of OpenCensus differed significantly from OpenTracing, as
Figure 3-4 shows. In addition to a tracing API, as mentioned, a metrics API was
included. Context propagation could be handled automatically thanks to all imple‐
mentations using the same format for propagating trace context. It supported the
automatic collection of traces and metrics from integrated frameworks along with a
local viewer for this data (called “zPages”), making it more immediately useful out of
the box. Finally, rather than relying on runtime-swappable implementations of its
API to capture and export data to a trace analyzer, it provided a pluggable exporter
model that allowed it to upload data to almost any backend. Like the design, the

48 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

https://oreil.ly/C-1Vx

4 Figure based off of an image on GitHub
5 Figure based off of an image on GitHub

specification is different—rather than focus on a few primitive types, it defines several
different components that build upon each other, as shown in Figure 3-5.

Figure 3-4. OpenCensus ecosystem design.4

Figure 3-5. OpenCensus library design.5

The OpenCensus libraries are built on a base of in-process context propagation.
Where OpenTracing left this mechanism as an exercise to the implementer, Open‐
Census required explicit or implicit propagation of subcontexts inside a process.
Where a language-supported generic context exists (such as Golang’s context.Con
text), that implementation must be used.

All other APIs are built on this generic context. The Tracing API is extremely similar,
however, to the OpenTracing API in terms of the creation and construction of span
objects. The SDK provides a tracer that spans can be started from (with a required
name, as in OpenTracing), but the way you do this is different than in OpenTracing.
OpenCensus allows for the creation of root spans and child spans—spans that do not,
or do, have a parent. When creating a span, the span may be attached or detached
from the underlying context. Unlike OpenTracing, there is no mechanism to modify

OpenTracing and OpenCensus | 49

https://oreil.ly/wWqdW
https://oreil.ly/wWqdW

the start or stop time of a span at creation or completion. There is also no explicit
span context object; instead, SpanID and TraceID are fields set on the span itself.
OpenCensus additionally defines several unique fields such as Status and SpanKind,
semantic fields that describe the operation status (for example, OK, CANCELLED, and
PERMISSION_DENIED) and its type (SERVER, CLIENT, or UNSPECIFIED). A full list of
fields follows:

• SpanID

• TraceID

• ParentSpanID

• StartTime

• EndTime

• Status

• Link

• SpanKind

• TraceOptions

• Tracestate

• Time Events (Annotations and Message Events)

Of note is the Time Events field, which represents a collection of events that occurred
during the lifetime of the span. Annotations contain both attributes (key-value pairs)
as well as a log message.

In addition to the Span API, OpenCensus provides an API to control sampling.
In-process sampling allows you to record only a certain number of spans based on
various conditions. Samplers can be configured on the global tracer, or set per span.
There are four provided samplers:

• Always (always return true for a sampling decision)
• Never (always return false for a sampling decision)
• Probabilistic (random chance of returning true or false based on a rate, by

default 1 in 10,000)
• RateLimiting (attempts to sample at a given rate over a time window, default of

0.1 traces/second)

In addition to the Tracing and Context APIs, OpenCensus defines a tagging API.
These are used by the Data Aggregation API (part of the stats package) in order to
configure how data is aggregated and broken down in views. Since the focus of this
text is primarily on distributed tracing, we won’t dwell on this topic other than to

50 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

distinguish it from OpenTracing span tags. Other important differences are that
OpenCensus deliberately elides many of the details about interprocess propagation
from the spec, instead delegating it to specific propagator plug-ins (such as the
go.opencensus.io/plugin/ochttp/propagation/b3 package).

So we’ve talked about how the tracing API is shaped, but what does it look like in
practice? Example 3-3 offers a Java sample:

Example 3-3. Tracing API

import io.opencensus.trace.AttributeValue;
import io.opencensus.common.Scope;
import io.opencensus.trace.Span;
import io.opencensus.trace.Status;
import io.opencensus.exporter.trace.zipkin.ZipkinTraceExporter;
import io.opencensus.trace.Tracer;
import io.opencensus.trace.Tracing;
import io.opencensus.trace.config.TraceConfig;
import io.opencensus.trace.config.TraceParams;
import io.opencensus.trace.samplers.Samplers;

...

ZipkinTraceExporter.createAndRegister(
 "http://localhost:9411/api/v2/spans", "tracing-to-zipkin-service");

TraceConfig traceConfig = Tracing.getTraceConfig();
TraceParams activeTraceParams = traceConfig.getActiveTraceParams();
traceConfig.updateActiveTraceParams(
 activeTraceParams.toBuilder().setSampler(
 Samplers.alwaysSample()).build());

Tracer tracer = Tracing.getTracer();

try (Scope scope = tracer.spanBuilder("main").startScopedSpan()) {
 System.out.println("About to do some busy work...");
 for (int i = 0; i < 10; i++) {
 doWork(i);
 }
}

...

private static void doWork(int i) {
 Tracer tracer = Tracing.getTracer();

 try (Scope scope = tracer.spanBuilder("doWork").startScopedSpan()) {
 Span span = tracer.getCurrentSpan();

 try {
 System.out.println("doing busy work");

OpenTracing and OpenCensus | 51

 Thread.sleep(100L);
 }
 catch (InterruptedException e) {
 span.setStatus(Status.INTERNAL.withDescription(e.toString()));
 }

 Map<String, AttributeValue> attrs = new HashMap<String, AttributeValue>();
 attrs.put("use", AttributeValue.stringAttributeValue("demo"));
 span.addAnnotation("Invoking doWork", attrs);
 }
}

OpenCensus handles the work of creating traces, so you only need to import an
exporter to an analysis system.

In order to export traces to an analysis system, you need to create and register the
exporter. These options differ by analysis system.

Notice that the sampling process is handled by OpenCensus—you’ll still always
sample in these test cases.

There’s no global tracer equivalent in OpenCensus (although some helper meth‐
ods exist), so you need to grab a reference to a tracer.

Similar to OpenTracing, OpenCensus supports try-with-resources patterns to
automatically manage span life cycle.

This span is implicitly a child of the span in main, since it’s executed inside a
scoped span.

Notice that annotations are roughly equivalent to OpenTracing logs, but with
slightly different usage semantics.

As you can see, OpenCensus provides a “batteries included” experience that Open‐
Tracing lacked. However, this part of its design is what makes it unacceptable for
some use cases. The inability to replace parts of the SDK with differing implementa‐
tions, for example, meant that it couldn’t find purchase in certain vendor ecosystems.
Bundling metrics and tracing APIs also proved a difficult pill to swallow for
implementers who wanted to use only one part of the OpenCensus package. Tight
coupling between the API and SDK made integration challenging for third-party
library authors, who didn’t necessarily want to have to ship the full SDK with their
libraries. Ultimately, the biggest flaw was simply that the open source telemetry com‐
munity was split between two separate projects, rather than one single and unified
effort.

52 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

While OpenTelemetry is the new and current standard for tracing instrumentation, it
isn’t the only one. It’s extremely likely that you’ll continue to see OpenTracing and
OpenCensus in the wild for years to come. In addition, you might encounter other
technologies, instrumentation libraries, and propagation standards in the wild. We’ll
briefly discuss three of the most popular ones next.

Other Notable Formats and Projects
Distributed tracing isn’t a completely new concept, it’s worth repeating. Very large-
scale distributed systems have created the need for some way to correlate and track a
request across multiple processes or servers. With that in mind, we’d like to briefly
discuss a few of the other popular systems you might see and give you some resources
on how to use them.

X-Ray
X-Ray is an Amazon Web Services (AWS) product that provides distributed tracing
for applications running in the AWS ecosystem. One advantage of X-Ray is its deep
integration into the AWS client SDK, allowing for seamless tracing of calls to a variety
of AWS managed services. In addition, X-Ray provides a suite of analytical tools for
the trace data, such as a trace visualizer and a service map.

At a high level, X-Ray shares a lot in common with span-based tracing systems with a
few differences in naming conventions. Rather than spans, X-Ray uses the term seg‐
ment to refer to a unit of work being traced. Segments contain information about the
resource running an application such as the hostname, request/response details, and
any errors that occurred during operation. In addition, segments can have arbitrary
annotations and metadata added by developers to assist in categorizing and analyzing
them. In lieu of using individual spans to capture work done inside a single request,
X-Ray introduces a concept known as the subsegment, which captures detailed timing
information about downstream calls, be they remote or internal. All segments for a
single logical request are rolled up into a single trace, which you should be familiar
with by now. X-Ray uses a proprietary tracing header, X-Amzn-TraceID, which is
propagated by the X-Ray SDK and all other AWS services. This single key contains all
information about the trace, such as its root trace identifier, sampling decision, and
parent segment (if applicable).

Functionally, X-Ray relies on a daemon process in conjunction with the X-Ray SDK
to collect telemetry data. This daemon must be present or available to receive seg‐
ment data from your services, which it can then forward to the X-Ray backend for
trace assembly and display.

To learn more about X-Ray, see its developer documentation.

Other Notable Formats and Projects | 53

https://oreil.ly/l7Gli

6 Why are they called B3 headers? The original internal name of Zipkin at Twitter was “BigBrotherBird.”

Zipkin
Twitter developed Zipkin and released it to the wider open source community in
2012. It’s notable for being one of the first popular implementations of Dapper-style
tracing released under an open source software license, and many of the conventions
that are supported by the wider distributed tracing world owe a debt to Zipkin for
popularizing them. Overall, Zipkin includes a trace analysis backend, a collector/
daemon process, and client libraries and integrations with popular RPC and web
frameworks.

Much of the terminology used in Zipkin is portable to other tracing systems, owing
to their shared heritage from the Dapper paper. A span is a single unit of work; a trace
is a collection of spans; and so forth. One of the most enduring parts of Zipkin is the
popularization of B3 HTTP headers as a defacto standard for passing trace context
across the wire.6

These headers are effectively superseded by the W3C TraceContext specification, but
it’s likely that you’ll see them in the wild—especially since they’re supported by Open‐
Telemetry as well. The critical B3 headers are as follows:

X-B3-TraceID

64- or 128-bit hex string

X-B3-SpanID

64-bit hex string

X-B3-ParentSpanID

64-bit hex string (header absent if there is no parent)

X-B3-Sampled

Boolean of “1” or “0,” optional

Interoperability and Migration Strategies
In a sufficiently large organization, one of the most challenging parts of distributed
tracing might be getting everyone to agree on a single standard. The relative ease of
integrating tracing into a team’s services has made it very attractive for SRE and
DevOps practitioners to implement. This ease of integration, however, hasn’t neces‐
sarily translated into ease of maintainability.

Over the past decade, distributed tracing has gone from a niche technology employed
by a select group of large, modern software enterprises to a necessary component of
modern microservice architectures. Part of this growth has involved changes in

54 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

https://zipkin.io

technology and tooling, with both proprietary and open source projects being
announced, being adopted, growing, and eventually being eclipsed by newer projects
which start the whole cycle over again. To combat this and be resilient in the face of
future improvements and updates to the distributed tracing landscape, we need to
develop ideas on how to maintain and upgrade distributed tracing systems.

The first thing to consider is whether you’re looking for true interoperability between
different tracing systems or trying to migrate and standardize around a single new
system. We’ll discuss the interop case first.

In general, traces are most useful when they can combine the entirety of a single logi‐
cal request as it moves through your system. However, sufficiently complex systems
(or sufficiently bifurcated organizations) might not have a desire or ability to create
the necessary conditions to trace requests through the entire call stack. Just because
that’s the case today doesn’t mean it will be the case tomorrow or the day after that,
though. The primary obstacle to interoperability is usually a lack of information
about the different systems used already, and more specifically, the method those sys‐
tems use to propagate trace context. Your first step in achieving interoperability, then,
should be to catalog the services that you’re aware of and note a few things about
them:

• If traced, the header format used for propagating trace context
• RPC framework(s) they use to communicate with other services, and if those

frameworks are transparently passing headers
• Existing tracing instrumentation libraries (Zipkin, X-Ray, OpenTracing, Open‐

Census, etc.) that are direct or second-order dependencies
• Clients for other services, such as databases

Documenting these tracing dependencies will reveal what parts of your system can
communicate with each other and where you might see gaps in instrumentation (for
instance, if you have an RPC framework that does not forward incoming headers,
then you’d see a trace break at that point). With this information, you can begin to
make other decisions, such as what trace context header format makes the most sense
for your environment. Even if you don’t have standard headers, there are approaches
you can take in your instrumentation to support seamless context propagation. One
popular method is to implement a propagator stack in your instrumentation library or
RPC framework. This allows you to add new propagators while preserving support
for existing ones. Example 3-4 illustrates creating this stack in OpenTracing.

Interoperability and Migration Strategies | 55

Example 3-4. Creating a propagator stack in OpenTracing

public final class PropagatorStack implements Propagator {
 Format format;
 List<Propagator> propagators;

 public PropagatorStack(Format format) {
 if (format == null) {
 throw new IllegalArgumentException("Format cannot be null.");
 }
 this.format = format;
 propagators = new LinkedList<Propagator>();
 }

 public Format format() {
 return format;
 }

 public PropagatorStack pushPropagator(Propagator propagator) {
 if (propagator == null) {
 throw new IllegalArgumentException("Propagator cannot be null.");
 }
 propagators.add(propagator);
 return this;
 }

 public <C> SpanContext extract(C carrier) {
 for (int i = propagators.size() - 1; i >=0; i--) {
 SpanContext context = propagators.get(i).extract(carrier);
 if (context != null) {
 return context;
 }
 }
 return null;
 }

 public <C> void inject(SpanContext context, C carrier) {
 for (int i = 0; i < propagators.size(); i++) {
 propagators.get(i).inject(context, carrier);
 }
 }
}

The propagator stack will stop extracting the span context once it finds its first match,
but will inject headers for all registered propagators. You could theoretically modify
this behavior to return multiple extracted contexts if you had multiple independent
tracers in a given service. Standardizing tracing headers from the top down is usually
the most successful strategy, however, rather than attempting to manage individual
services’ and teams’ preferences.

56 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

When standardizing or migrating, the calculus changes somewhat. You may still find
it useful to do much of the documentation work mentioned earlier, but in service of
estimating the effort required to perform a migration. If your existing tracing system
is largely home-brewed—perhaps it uses custom headers or trace/span identifier for‐
mats—you’ll want to identify the number of services traced by that system versus the
new one and see if you can create some sort of shim between your old code and the
new code. Depending on the design of your existing tracing system, you may want to
consider using OpenTelemetry as a standard API but rewrite parts of your library to
meet its specification, plugging in those components in lieu of the reference SDK.

If you’re already using OpenTracing or OpenCensus and simply want to migrate to
OpenTelemetry, then you have several options as well. Do you want to use the Open‐
Telemetry SDK in lieu of your existing OpenTracing tracer? Then you’d need to use
the OpenTelemetry bridge component to make it appear as an OpenTracing tracer to
your existing instrumentation, and switch out the tracer in each of your services. You
can achieve a more gradual migration by ensuring that you’re using compatible
header formats (W3C, B3, or one through a custom propagator) in your old and new
instrumentation, then deploying new services with OpenTelemetry and leaving your
old services as is for now. As long as your trace analyzer supports ingesting traces
from both frameworks, you should see a single trace containing spans from both your
old and new services.

Another migration strategy, especially useful if you’re migrating to a new platform—
for example, containerizing existing services in order to run them on Kubernetes—is
to replace your existing tracing with a more black box approach as a prelude to rein‐
strumenting the logic. By using the tracing features built into service meshes, for
example, you can trace requests between your containerized services without replac‐
ing any existing instrumentation or filling in any instrumentation gaps. Over time,
you can extend the spans into the service code and rip out any existing instrumenta‐
tion when it’s convenient, while getting the immediate benefit of seamless traces that
extend across all of your newly containerized services.

Why Use Open Source Instrumentation?
Regardless of your strategy, the best way to ensure that your tracing system is main‐
tainable and extensible is using open source standards and frameworks. Proprietary,
or home-brewed, tracing systems are almost always more difficult and costly to main‐
tain than something with broad community support. To conclude this chapter, we’ll
discuss the rationale behind choosing open source instrumentation.

Why Use Open Source Instrumentation? | 57

Interoperability
When implementing any sort of distributed telemetry, interoperability is a prime
concern. You may have two services or two thousand, but unless there’s a way to
guarantee that the telemetry data from any arbitrary service is compatible with the
telemetry data from any other service, you’re going to have a bad time trying to
understand performance across all of your services. Open source instrumentation
addresses this by not only providing a single set of concepts and libraries for all of
your services, but also allowing for telemetry capture that extends past the bound‐
aries of your business logic.

The first case is the simpler one to understand—while it’s certainly possible to create
your own request tracing system through correlation identifiers, this approach can be
brittle and difficult to maintain as you scale. One of the benefits of open source solu‐
tions is that they make many of these decisions for you! You don’t have to sit down
and decide whether you want a correlation ID based on a universally unique identi‐
fier (UUID) or a collision resistant unique identifier (CUID), for example. You can
guarantee that each new service being instrumented is speaking the same language
when it comes to context ID generation and propagation.

This also avoids frustrating migration strategies when you extend your traces out to
new endpoints or frontends; you can guarantee that identifiers for traces are consis‐
tently generated, allowing for seamless extension. Contrast this with more log-based
approaches to tracing such as Distributed Diagnostic Context, which can work great
as long as your entire system is relatively homogenous. Extending these through a
polyglot system can involve a lot of time massaging logs into the same format, and
that’s before you get into the challenges of retention and indexing that log data.

The second case for the superior interoperability of OSS instrumentation is how it
integrates into other OSS software and libraries. Projects such as OpenTelemetry, by
virtue of being vendor-neutral, are attractive instrumentation options for other OSS
projects that wish to provide telemetry data to their end users. You can look at Open‐
Tracing as an example of this: the OpenTracing registry indexes hundreds of integra‐
tions and plug-ins that instrument other OSS projects, from database clients to
distributed messaging queues to network libraries, and more. These integrations
allow you to get started quickly instrumenting a new, or existing, service and ensure
that instrumentation can be extended into your business logic. The registry’s popular‐
ity led to OpenTelemetry adopting a similar registry. Keep in mind that OpenTeleme‐
try is broadly backward-compatible with OpenTracing instrumentation, so be sure to
check both!

Portability
As the observability space continues to mature, there will inevitably be a growing
amount of projects and vendors who provide the ability to analyze distributed tracing

58 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

https://oreil.ly/W-smF
https://opentracing.io/registry
https://opentelemetry.io/registry

data. With this in mind, it’s critical that your instrumentation be portable between
different analysis systems. In short, you don’t want to have to rewrite your tracing
code when you change the analysis tool you’re using to ingest that data.

OpenTelemetry is an excellent example of this in practice. Your service emits teleme‐
try data to a collector running as an agent, and those agents are able to export to a
variety of backends. This gives you the ability to write instrumentation once and have
it work with no configuration changes in a variety of environments, and even send
that telemetry to multiple endpoints simultaneously simply by changing the configu‐
ration of the collector. For example, you could run a local analysis tool and have a
local agent collecting telemetry data during development—then, with no changes to
the code, have that same telemetry data go to a commercial analysis backend.

Ecosystem and Implicit Visibility
To echo some earlier points, the ecosystem of an open source community is going to
be extremely valuable to your instrumentation journey. We won’t belabor the basic
value proposition of open source software in this text, but suffice to say many hands
make light work.

Realistically, for as much as we harp on it, writing instrumentation and other “main‐
tainability” code isn’t a priority outside of its immediate utility. When you’re writing a
service, you’ll absolutely use as much logging as you can get away with in order to
figure out why things aren’t working the way you expect them to, but how often do
you go back in and delete “unnecessary” logging statements? I’d expect it’s more fre‐
quently than you think! It’s natural to think that the amount of telemetry you’re
adding is too much because development cycles tend to be very granular, especially
initially. This also applies to modifying code; one of the quickest ways to understand
the control flow of a program is to add some simple print statements in an if state‐
ment and see which get output for a certain input value or control flow. When debug‐
ging issues, we tend to create “windows” that look into the code at a specific, narrow
angle. Many of those windows remain, but they’re all too focused on specific, already
existing problems to be much help in understanding overall performance.

So, how do we resolve these two ideas? On one hand, we want to build observable
software. On the other, we’re not sure what we should care about observing and don’t
do a great job of looking at the right thing, especially ahead of time. Open source
instrumentation, again, helps address this tension. First, it provides a rich ecosystem
of existing instrumentation that we can rely on to trace the important things in our
lower-level dependencies (such as RPC frameworks). This existing instrumentation is
generally lightweight and easy to add to our service, and satisfies much of the
boilerplate associated with distributed tracing. Second, it allows for implicit visibility
into our requests through this ecosystem. If you’re using some sort of service mesh as
part of your application, that service mesh is capable of creating and extending traces

Why Use Open Source Instrumentation? | 59

between all of your services, giving you implicit visibility into your entire backend
system with no code overhead. If you start to combine this with other components,
such as client-level tracing, RPC framework tracing, DB client tracing, and so forth,
then you’ll gain implicit visibility into your entire application.

Exploiting the OSS ecosystem is an excellent strategy to quickly bootstrap useful
information about your system. However, there’s more to distributed tracing than
simply throwing a bunch of libraries at the problem and seeing what sticks—you’ll
want to move from implicit to explicit visibility into your requests and call stack.
You’ll want to create and use custom tags and attributes from your business logic in
order to profile and understand what’s going on in your code and application. In
Chapter 4, we’ll talk about some of the best practices for instrumenting your services
and how you can supercharge your telemetry.

60 | Chapter 3: Open Source Instrumentation: Interfaces, Libraries, and Frameworks

CHAPTER 4

Best Practices for Instrumentation

The first step of any journey is the hardest—including the journey of instrumenting
your applications for distributed tracing. Questions pile upon questions: What should
I do first? How do I know I’m doing things right? When am I done? Every application
is different, but this chapter offers some general advice and strategies to create best
practices for instrumenting applications.

Best practices do not exist in a vacuum. The data your instrumentation generates will
be collected by a trace analysis system, which will analyze it and process it. As the
instrumenter, it’s critical that you provide it with the best data possible!

We’ll first discuss an application that lacks instrumentation in order to ground our
discussion. Then, we’ll talk about the first steps for instrumenting an existing applica‐
tion—looking at the nodes and edges—and some common ways to accomplish that.
We’ll go over best practices for creating spans and the sort of information you’ll want
to add to them. We’ll discuss how you’d use tracing as part of application develop‐
ment to validate that your architecture is working the way you expect it to work.
Finally, we’ll give you some signals to let you know when you’ve hit “too much”
instrumentation.

Tracing by Example
It’s a truism that the best way to learn is by doing. To help make sense of how you
should instrument a microservices application for distributed tracing, it stands to rea‐
son that you must first have a microservices application. We’ve built a sample applica‐
tion that we will use to illustrate some techniques and best practices. In this section,
we’ll describe how you can run the service on your computer in order to follow along
with the examples provided, and demonstrate some basic principles of instrumenta‐
tion that can be applied more generally to instrument your own services.

61

Installing the Sample Application
We’ve developed a small microservice application to demonstrate the important con‐
cepts required to instrument an application. To run it, you’ll need an up-to-date ver‐
sion of the Go runtime and Node.JS installed on your computer. You’ll also need to
download a copy of the source code for the application, which can be found at this
GitHub repository—you can check it out using the Git version control software, or
download and extract a zip archive of the files. Once you’ve got a local copy of the
source files, running the software is fairly straightforward: in a terminal window, exe‐
cute go run cmd/<binary>/main.go from the microcalc directory to run each ser‐
vice. To run the client application, you’ll need to execute npm install in the web
subdirectory, then npm start.

The application itself is a basic calculator with three components. The client is a web
application for the browser written in HTML and JavaScript that provides an inter‐
face to the backend service. The next major component is an API proxy that receives
requests from the client and dispatches them to the appropriate worker service. The
final component, the operator workers, are services that receive a list of operands,
perform the appropriate mathematical operation on those operands, and return the
result.

Adding Basic Distributed Tracing
Before you add tracing, look at the code itself and how it functions. We’ll look at the
code in order—first, the web client, then the API service, and finally the workers.
Once you have an understanding of what each piece of code does, it becomes easier
to understand not only how to instrument the service, but why (see Figure 4-1).

Figure 4-1. The design of MicroCalc.

The client service is very straightforward—a simple HTML and JavaScript frontend.
The HTML presents a form, which we intercept in JavaScript and create a XMLHttpRe
quest that transmits data to the backend services. The uninstrumented version of this
code can be seen in Example 4-1. As you can see, we’re not doing anything terribly

62 | Chapter 4: Best Practices for Instrumentation

https://golang.org
https://nodejs.org
https://oreil.ly/microcalc
https://oreil.ly/microcalc

complicated here—we create a hook on the form element and listen for the onClick
event that is emitted when the Submit button is pressed.

Example 4-1. Uninstrumented client service

const handleForm = () => {
 const endpoint = 'http://localhost:3000/calculate'
 let form = document.getElementById('calc')

 const onClick = (event) => {
 event.preventDefault();

 let fd = new FormData(form);
 let requestPayload = {
 method: fd.get('calcMethod'),
 operands: tokenizeOperands(fd.get('values'))
 };

 calculate(endpoint, requestPayload).then((res) => {
 updateResult(res);
 });
 }
 form.addEventListener('submit', onClick)
}

const calculate = (endpoint, payload) => {
 return new Promise(async (resolve, reject) => {
 const req = new XMLHttpRequest();
 req.open('POST', endpoint, true);
 req.setRequestHeader('Content-Type', 'application/json');
 req.setRequestHeader('Accept', 'application/json');
 req.send(JSON.stringify(payload))
 req.onload = function () {
 resolve(req.response);
 };
 });
};

Your first step when instrumenting this should be to trace the interaction between
this service and our backend services. OpenTelemetry helpfully provides an instru‐
mentation plug-in for tracing XMLHttpRequest, so you’ll want to use that for your
basic instrumentation. After importing the OpenTelemetry packages, you then need
to set up your tracer and plug-ins. Once you’ve accomplished that, wrap your method
calls to XMLHttpRequest with some tracing code, as seen in Example 4-2.

Tracing by Example | 63

Example 4-2. Creating and configuring your tracer

// After importing dependencies, create a tracer and configure it
const webTracerWithZone = new WebTracer({
 scopeManager: new ZoneScopeManager(),
 plugins: [
 new XMLHttpRequestPlugin({
 ignoreUrls: [/localhost:8090\/sockjs-node/],
 propagateTraceHeaderCorsUrls: [
 'http://localhost:3000/calculate'
]
 })
]
});

webTracerWithZone.addSpanProcessor(
 new SimpleSpanProcessor(new ConsoleSpanExporter())
);

const handleForm = () => {
 const endpoint = 'http://localhost:3000/calculate'
 let form = document.getElementById('calc')

 const onClick = (event) => {
 event.preventDefault();
 const span = webTracerWithZone.startSpan(
 'calc-request',
 { parent: webTracerWithZone.getCurrentSpan() }
);
 let fd = new FormData(form);
 let requestPayload = {
 method: fd.get('calcMethod'),
 operands: tokenizeOperands(fd.get('values'))
 };
 webTracerWithZone.withSpan(span, () => {
 calculate(endpoint, requestPayload).then((res) => {
 webTracerWithZone.getCurrentSpan().addEvent('request-complete');
 span.end();
 updateResult(res);
 });
 });
 }
 form.addEventListener('submit', onClick)
}

Notice that we’re starting a new span here. This encapsulates our entire logical
request from client to server; it is the root span of the trace.

64 | Chapter 4: Best Practices for Instrumentation

Here we wrap our call to calculate, which will automatically create a child span.
No additional code is required in calculate.

Run the page in web with npm start and click Submit with your browser console
open—you should see spans being written to the console output. You’ve now added
basic tracing to your client service!

We’ll now look at the backend services—the API and workers. The API provider ser‐
vice uses the Go net/http library to provide an HTTP framework that we’re using as
an RPC framework for passing messages between the client, the API service, and the
workers. As seen in Figure 4-1, the API receives messages in JSON format from the
client, looks up the appropriate worker in its configuration, dispatches the operands
to the appropriate worker service, and returns the result to the client.

The API service has two main methods that we care about: Run and calcHandler.
The Run method in Example 4-3 initializes the HTTP router and sets up the HTTP
server. calcHandler performs the logic of handling incoming requests by parsing the
JSON body from the client, matching it to a worker, then creating a well-formed
request to the worker service.

Example 4-3. Run method

func Run() {
 mux := http.NewServeMux()
 mux.Handle("/", http.HandlerFunc(rootHandler))
 mux.Handle("/calculate", http.HandlerFunc(calcHandler))
 services = GetServices()

 log.Println("Initializing server...")
 err := http.ListenAndServe(":3000", mux)
 if err != nil {
 log.Fatalf("Could not initialize server: %s", err)
 }
}

func calcHandler(w http.ResponseWriter, req *http.Request) {
 calcRequest, err := ParseCalcRequest(req.Body)
 if err != nil {
 http.Error(w, err.Error(), http.StatusBadRequest)
 return
 }

 var url string

 for _, n := range services.Services {
 if strings.ToLower(calcRequest.Method) == strings.ToLower(n.Name) {
 j, _ := json.Marshal(calcRequest.Operands)
 url = fmt.Sprintf("http://%s:%d/%s?o=%s",

Tracing by Example | 65

 n.Host,
 n.Port,
 strings.ToLower(n.Name),
 strings.Trim(string(j),
 "[]"))
 }
 }

 if url == "" {
 http.Error(w, "could not find requested calculation method",
 http.StatusBadRequest)
 }

 client := http.DefaultClient
 request, _ := http.NewRequest("GET", url, nil)
 res, err := client.Do(request)
 if err != nil {
 http.Error(w, err.Error(), http.StatusInternalServerError)
 return
 }
 body, err := ioutil.ReadAll(res.Body)
 res.Body.Close()
 if err != nil {
 http.Error(w, err.Error(), http.StatusInternalServerError)
 return
 }

 resp, err := strconv.Atoi(string(body))
 if err != nil {
 http.Error(w, err.Error(), http.StatusInternalServerError)
 return
 }

 fmt.Fprintf(w, "%d", resp)
}

Let’s start at the edge of this service and find instrumentation for the RPC framework.
In Example 4-4, since we’re using HTTP for communicating between services, you’ll
want to instrument the HTTP framework code. Now, you could write this yourself,
but it’s generally a better idea to look for open source instrumentation for these com‐
mon components. In this case, we can utilize the OpenTelemetry project’s existing
othttp package to wrap our HTTP routes with tracing instrumentation.

Example 4-4. Using the OpenTelemetry project’s existing othttp package to wrap our
HTTP routes with tracing instrumentation

std, err := stdout.NewExporter(stdout.Options{PrettyPrint: true})

traceProvider, err := sdktrace.NewProvider(
 sdktrace.WithConfig(

66 | Chapter 4: Best Practices for Instrumentation

 sdktrace.Config{
 DefaultSampler: sdktrace.AlwaysSample()
 }
), sdktrace.WithSyncer(std))

mux.Handle("/",
 othttp.NewHandler(http.HandlerFunc(rootHandler),
 "root", othttp.WithPublicEndpoint())
)
mux.Handle("/calculate",
 othttp.NewHandler(http.HandlerFunc(calcHandler),
 "calculate", othttp.WithPublicEndpoint())
)

Handle errors and such appropriately. Some code has been deleted for clarity.

First, we need to register an exporter to actually view the telemetry output; this
could also be an external analysis backend, but we’ll use stdout for now.

Then, register the exporter with the trace provider and set it to sample 100% of
spans.

What does this do for us? The instrumentation plug-in will handle quite a bit of “con‐
venience” tasks for us, like propagating spans from incoming requests and adding
some useful attributes (seen in Example 4-5) such as the HTTP method type,
response code, and more. Simply by adding this, we’re able to begin tracing requests
to our backend system. Take special note of the parameter we’ve passed into our
instrumentation handler, othttp.WithPublicEndpoint—this will slightly modify
how the trace context from the client is flowed to our backend services. Rather than
persisting the same TraceID from the client, the incoming context will be associated
with a new trace as a link.

Example 4-5. JSON span output

{
 "SpanContext": {
 "TraceID": "060a61155cc12b0a83b625aa1808203a",
 "SpanID": "a6ff374ec6ed5c64",
 "TraceFlags": 1
 },
 "ParentSpanID": "0000000000000000",
 "SpanKind": 2,
 "Name": "go.opentelemetry.io/plugin/othttp/add",
 "StartTime": "2020-01-02T17:34:01.52675-05:00",
 "EndTime": "2020-01-02T17:34:01.526805742-05:00",
 "Attributes": [
 {
 "Key": "http.host",

Tracing by Example | 67

 "Value": {
 "Type": "STRING",
 "Value": "localhost:3000"
 }
 },
 {
 "Key": "http.method",
 "Value": {
 "Type": "STRING",
 "Value": "GET"
 }
 },
 {
 "Key": "http.path",
 "Value": {
 "Type": "STRING",
 "Value": "/"
 }
 },
 {
 "Key": "http.url",
 "Value": {
 "Type": "STRING",
 "Value": "/"
 }
 },
 {
 "Key": "http.user_agent",
 "Value": {
 "Type": "STRING",
 "Value": "HTTPie/1.0.2"
 }
 },
 {
 "Key": "http.wrote_bytes",
 "Value": {
 "Type": "INT64",
 "Value": 27
 }
 },
 {
 "Key": "http.status_code",
 "Value": {
 "Type": "INT64",
 "Value": 200
 }
 }
],
 "MessageEvents": null,
 "Links": null,
 "Status": 0,
 "HasRemoteParent": false,

68 | Chapter 4: Best Practices for Instrumentation

 "DroppedAttributeCount": 0,
 "DroppedMessageEventCount": 0,
 "DroppedLinkCount": 0,
 "ChildSpanCount": 0
}

In calcHandler, we’ll want to do something similar to instrument our outgoing RPC
to the worker service. Again, OpenTelemetry contains an instrumentation plug-in for
Go’s HTTP client that we can use (see Example 4-6).

Example 4-6. API handler

client := http.DefaultClient
// Get the context from the request in order to pass it to the instrumentation plug-in
ctx := req.Context()
request, _ := http.NewRequestWithContext(ctx, "GET", url, nil)
// Create a new outgoing trace
ctx, request = httptrace.W3C(ctx, request)
// Inject the context into the outgoing request
httptrace.Inject(ctx, request)
// Send the request
res, err := client.Do(request)

This will add W3C tracing headers to the outgoing request, which can be picked up
by the worker, propagating the trace context across the wire. This enables us to visu‐
alize the relationship between our services very easily, since spans created in the
worker service will have the same trace identifier as the parent(s).

Adding tracing to the worker services is equally straightforward because we’re simply
wrapping the router method with the OpenTelemetry trace handler, as shown in
Example 4-7.

Example 4-7. Adding the handler

// You also need to add an exporter and register it with the trace provider,
// as in the API server, but the code is the same
mux.Handle("/",
 othttp.NewHandler(http.HandlerFunc(addHandler),
 "add",
 othttp.WithPublicEndpoint())
)

The instrumentation plug-ins handle a great deal of the boilerplate that we need to be
concerned with in this and other languages—things like extracting the span context
from the incoming request, creating a new child span (or a new root span, if appro‐
priate), and adding that span to the request context. In the next section, we’ll look at
how we can extend this basic instrumentation with custom events and attributes from
our business logic in order to enhance the utility of our spans and traces.

Tracing by Example | 69

Custom Instrumentation
At this point, we’ve got the critical parts of tracing set up in our services; each RPC is
traced, allowing us to see a single request as it travels from our client service to all of
our backend services. In addition, we have a span available in our business logic, car‐
ried along the request context, that we can enhance with custom attributes or events.
What, then, shall we do? In general, this is really up to you, the instrumenter. We’ll
discuss this in more detail in “Effective Tagging” on page 80, but it’s helpful to add
custom instrumentation for a few things in your business logic—capturing and log‐
ging error states, for example, or creating child spans that further describe the func‐
tioning of a service. In our API service, we’ve implemented an example of this by
passing the local context into a different method (ParseCalcRequest), where we cre‐
ate a new span and enhance it with custom events as shown in Example 4-8.

Example 4-8. Enhancing a span with custom events

var calcRequest CalcRequest
err = tr.WithSpan(ctx, "generateRequest", func(ctx context.Context) error {
 calcRequest, err = ParseCalcRequest(ctx, b)
 return err
})

In Example 4-9, you can see what we’re doing with the passed context—we get the
current span from the context and add events to it. In this case, we’ve added some
informational events around what the function actually does (parsing the body of our
incoming request into an object), and changing the span’s status if the operation
failed.

Example 4-9. Adding events to the span

func ParseCalcRequest(ctx context.Context, body []byte) (CalcRequest, error) {
 var parsedRequest CalcRequest

 trace.CurrentSpan(ctx).AddEvent(ctx, "attempting to parse body")
 trace.CurrentSpan(ctx).AddEvent(ctx, fmt.Sprintf("%s", body))
 err := json.Unmarshal(body, &parsedRequest)
 if err != nil {
 trace.CurrentSpan(ctx).SetStatus(codes.InvalidArgument)
 trace.CurrentSpan(ctx).AddEvent(ctx, err.Error())
 trace.CurrentSpan(ctx).End()
 return parsedRequest, err
 }
 trace.CurrentSpan(ctx).End()
 return parsedRequest, nil
}

70 | Chapter 4: Best Practices for Instrumentation

Now that you have a basic handle on how to add instrumentation to an application,
let’s step back a bit. You might be thinking that “real” applications are obviously more
complex and intricate than a purpose-built sample. The good news, however, is that
the basic principles we learned and implemented here are generally applicable to
instrumenting software of any size or complexity. Let’s take a look at instrumenting
software and how to apply these basic principles to microservice applications.

Where to Start—Nodes and Edges
People tend to start at the outside when solving problems—whether they’re organiza‐
tional, financial, computational, or even culinary. The easiest place to start is at the
place that’s closest to you. The same approach applies to instrumenting services for
distributed tracing.

Practically, starting from the outside is effective for three major reasons. The first of
these is that the edges of your service are the easiest to see—and, thus, manipulate. It’s
fairly straightforward to add things that surround a service even if it’s hard to modify
the service itself. Second, starting from the outside tends to be organizationally effi‐
cient. It can be difficult to convince disparate teams to adopt distributed tracing,
especially if the value of that tracing can be hard to see in isolation. Finally, dis‐
tributed tracing requires context propagation—we need each service to know about
the caller’s trace, and each service we call out to needs to know that it’s included in a
trace as well. For these reasons, it’s highly useful to begin instrumenting any sort of
existing application by starting from the outside and moving in. This can take the
form of framework instrumentation or service mesh (or equivalent component)
instrumentation.

Trade-offs of Outside-In Instrumentation
In general, changing code or infrastructure outside a process that you’re instrument‐
ing may require more effort than changing it for just that process. In addition, sweep‐
ing changes to your infrastructure or framework code are often more difficult to
review, as they’re less incremental. If it’s logistically or organizationally difficult to
approach instrumentation outside-in, you’ll still get benefits from adding instrumen‐
tation to one service at a time at the cost of having broken traces. Make sure to check
that other services are transparently forwarding the tracing headers that they’ll be
receiving in this case!

Where to Start—Nodes and Edges | 71

Framework Instrumentation
In any distributed application, services need to communicate with each other. This
RPC traffic can take a variety of protocols and transport methods—structured data
over HTTP, Protocol Buffers over gRPC, Apache Thrift, custom protocols over TCP
sockets, and more. There must be some equivalency on both sides of this connection.
Your services need to be speaking the same language when they talk!

There are two critical components when it comes to instrumentation at the frame‐
work level. First, our frameworks must allow us to perform context propagation, the
transmission of trace identifiers across the network. Second, our frameworks should
aid us in creating spans for each service.

Context propagation is perhaps the easier challenge to solve. Let’s take another look at
MicroCalc to discuss it. As shown in Figure 4-2, we’re only using one transport
method (HTTP), but two different ways of passing messages—JSON, and query
parameters. You can imagine that some of these links could be done differently; for
instance, we could refactor the communication between our API service and the
worker services to use gRPC, Thrift, or even graphQL. The transport itself is largely
irrelevant, the requirement is simply that we are able to pass the trace context to the
next service.

Figure 4-2. The protocols used for inter-service communication in MicroCalc.

Once you identify the transport protocols your services use to communicate, con‐
sider the critical path for your service calls. In short, identify the path of calls as a
request moves through your services. In this stage of analysis, you’ll want to focus on
components that act as a hub for requests. Why? Generally, these components are
going to logically encapsulate operations on the backend and provide an API for mul‐
tiple clients (such as browser-based web clients or native applications on a mobile
device). Therefore, instrumenting these components first allows for a shorter timeline
to derive value from tracing. In the preceding example, our API proxy service meets
these criteria—our client communicates directly through it for all downstream
actions.

After identifying the service you’ll instrument, you should consider the transport
method used for requests coming into, and exiting, the service. Our API proxy
service exclusively communicates via structured data using HTTP, but this is simply

72 | Chapter 4: Best Practices for Instrumentation

an example for the sake of brevity—in the real world, you’ll often find services that
can accept multiple transports and also send outgoing requests through multiple
transports. You’ll want to be acutely aware of these complications when instrument‐
ing your own applications.

That said, we’ll look at the actual mechanics of instrumenting our service. In frame‐
work instrumentation, you’ll want to instrument the transport framework of your
service itself. This can often be implemented as some sort of middleware in your
request path: code that is run for each incoming request. This is a common pattern
for adding logging to your requests, for example. What middlewares would you want
to implement for this service? Logically, you’ll need to accomplish the following:

• Check whether an incoming request includes a trace context, which would indi‐
cate that the request is being traced. If so, add this context to the request.

• Check whether a context exists in the request. If the context exists, create a new
span as a child of the flowed context. Otherwise, create a new root span. Add this
span to the request.

• Check whether a span exists in the request. If a span exists, add other pertinent
information available in the request context to it such as the route, user identifi‐
ers, etc. Otherwise, do nothing and continue.

These three logical actions can be combined into a single piece of middleware
through the use of instrumentation libraries such as the ones we discussed in Chap‐
ter 3. We can implement a straightforward version of this middleware in Golang
using the OpenTracing library, as Example 4-10 shows, or by using instrumentation
plug-ins bundled with frameworks like OpenTelemetry, as we demonstrated in “Trac‐
ing by Example” on page 61.

Example 4-10. Tracing middleware

func TracingMiddleware(t opentracing.Tracer, h http.HandlerFunc) http.HandlerFunc {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 spanContext, _ := t.Extract(opentracing.HTTPHeaders,
 opentracing.HTTPHeadersCarrier(r.Header))
 span := t.StartSpan(r.Method, opentracing.ChildOf(spanContext))
 span.SetTag("route", r.URL.EscapedPath())
 r = r.WithContext(opentracing.ContextWithSpan(r.Context(),
 span.Context()))
 defer span.Finish()
 h(w, r)
 span.SetTag("status", w.ResponseCode)
 }
)
}

Where to Start—Nodes and Edges | 73

This snippet accomplishes the goals laid out earlier—we first attempt to extract a
span context from the request headers. In the preceding sample, we make some
assumptions, namely that our span context will be propagated using HTTP headers
and not any sort of binary format. OpenTracing, generally, defines these headers to be
of the following formats:

ot-span-id

A 64- or 128-bit unsigned integer

ot-trace-id

A 64- or 128-bit unsigned integer

ot-sampled

A Boolean value indicating if the upstream service has sampled out the trace

Please note that these are not the only types of headers that can contain a span con‐
text. You can learn more about other popular header formats in “OpenTracing and
OpenCensus” on page 43.

As we learned in Chapter 2, the span context is critical to propagating a trace
throughout our services, which is why we first extract it from the incoming request.
After extracting any incoming headers, our middleware then creates a new span,
named after the HTTP operation being performed (GET, POST, PUT, etc.), adds a tag
indicating the route being requested, then adds the new span to the Go context
object. Finally, the middleware continues the request chain. As the request resolves, it
adds the response code from the request to the span, which is closed implicitly
through our call to defer.

Let’s imagine that we stopped here. If you were to add this middleware to the API
proxy service along with a tracer and trace analyzer, what would you see? Well, every
single incoming HTTP request would be traced, for one. This would give you the
ability to monitor your API endpoints for latency on every incoming request, a valua‐
ble first step when monitoring your application. The other win here is that you have
now propagated your trace into the context, allowing for further function or RPC
calls to add information or create new spans based off of it. Meanwhile, you will still
be able to access latency information, per API route, and use that to inform you of
performance issues and potential hotspots in your codebase.

There are trade-offs with instrumenting the framework, however. Framework instru‐
mentation heavily relies on the ability to make code changes to your services them‐
selves. If you can’t modify the service code, you can’t really instrument the transport
framework. You may find framework instrumentation difficult if your API proxy acts
simply as a translation layer—for example, a thin wrapper that translates JSON over
HTTP to a proprietary or internal transport—in this case, the general principle
would apply, but you may lack the ability to enrich a span with as much data as you
would want. Finally, framework instrumentation may be difficult if you do not have

74 | Chapter 4: Best Practices for Instrumentation

components that centralize requests—for example, a client that calls multiple services
directly, rather than through some proxy layer. In this case, you could use the client as
the centralization point, and add your initial instrumentation there.

Service Mesh Instrumentation
When discussing the trade-offs of framework instrumentation, the first consideration
we mentioned was “What if you can’t change the code?” This isn’t an unreasonable or
outlandish hypothetical. There are a variety of reasons that the person instrumenting
software isn’t able to modify the service they’re attempting to instrument. Most com‐
monly this is a challenge for larger organizations to address, where the people moni‐
toring the application are separated from the people making the application by
geography, time zone, and so forth.

How, then, to instrument code that you can’t touch? In short, you instrument the part
of the code that you can touch and go from there.

You should first understand what a service mesh is—if you know, feel free to skip
ahead a paragraph or so. A service mesh is a configurable infrastructure layer designed
to support interprocess communication among services. It performs this, generally,
through sidecar proxies, processes that live alongside each service instance and handle
all of the interprocess communication for their associated service. In addition to ser‐
vice communications, the service mesh and its sidecars can handle monitoring, secu‐
rity, service discovery, load balancing, encryption, and more. In essence, the service
mesh allows for a separation of developer concerns from operations concerns, allow‐
ing teams to specialize and focus on writing performant, secure, and reliable software.

Now that we’re on the same page, let’s talk about what service mesh instrumentation
looks like. As indicated earlier, one of the critical features of the sidecar proxy is that
all interprocess communication flows through the proxy. This allows us to add trac‐
ing to the proxy itself. As it happens, this functionality works out of the box in many
modern service mesh projects such as Istio, but at a more hypothetical level, the
mechanics look remarkably similar to how framework instrumentation works. On
incoming requests, pull the span context from the headers, create a new span using
this context, and add tags that describe the operation—finishing the span when the
request resolves.

The biggest advantage to this style of instrumentation is that you can get a complete
picture of your application. Recall our discussion of framework instrumentation—we
started at a centralization point, and then continued outward from there. By instru‐
menting at the service mesh, all of the services which are managed by the service
mesh will be part of the trace, giving you much greater insight into your entire appli‐
cation. In addition, service mesh instrumentation is agnostic to the transport layer of
each service. As long as the traffic is being passed through the sidecar, it will be
traced.

Where to Start—Nodes and Edges | 75

https://istio.io

That said, there are trade-offs and drawbacks to service mesh instrumentation. Pri‐
marily, service mesh instrumentation acts as a black box form of instrumentation.
You have no idea what’s happening inside the code, and you can’t enrich your spans
with data outside of the data that’s already there. Realistically, this means you can ach‐
ieve some useful implicit findings—tagging spans with HTTP response codes, for
example, and presuming that any status code that represents a failed request (like
HTTP 500) will be an error—but requires specialized parsing or handling to get
explicit information into a span. The other flaw with service mesh instrumentation is
that it’s difficult for services to enrich the spans coming from the service mesh. Your
sidecar will pass tracing headers into your process, yes—but you will still need to
extract those headers, create a span context, and so forth. If each service is creating its
own child spans, you can very quickly get into a state where your traces have become
extremely large and begin to have a real cost for storage or processing.

Ultimately, service mesh instrumentation and framework instrumentation are not an
either/or decision. They work best together! Not all of your services, realistically, will
need to be instrumented out of the box, or potentially ever. Let’s talk about why.

Creating Your Service Graph
Regardless of which methodology you use to begin instrumenting your application,
you should consider the first milestone you’d like to achieve. What do you want to
measure? We would argue that tracing is primarily a way to measure the performance
and health of individual services in the context of a larger application. To understand
that context, however, you need to have some idea of the connections between your
services and how requests flow through the system. Thus, a good first milestone
would be to build a service graph for your complete application or some significant
subset of it, as Figure 4-3 illustrates.

This comparison should demonstrate the necessity of understanding your service
graph. Even when services are simple, with few dependencies, understanding your
service graph can be a critical component of improving your MTTR (mean time to
recovery) for incidents. Since much of this is bound to unrelated factors, such as the
amount of time it takes to deploy a new version of a service, reducing the time spent
in diagnosis is the best way to reduce overall MTTR. A key benefit of distributed trac‐
ing is that it allows you to implicitly map your services and the relationships between
them, allowing you to identify errors in other services that contribute to the latency
of a particular request. When applications become more complicated and intercon‐
nected, understanding these relationships stops being optional and starts becoming
fundamental.

76 | Chapter 4: Best Practices for Instrumentation

Figure 4-3. A comparison of MicroCalc versus a more complex microservice graph.

In the sample application, you can see that the dependencies between services are
fairly straightforward and easy to understand. Even in this simple application, being
able to build the entire graph is highly valuable. Let’s imagine that you used a combi‐
nation of techniques in order to instrument each of our services (API proxy, authenti‐
cation service, worker services, etc.) and have a trace analyzer that can read and
process the spans generated from our application. Using this, you can answer ques‐
tions that would be difficult if you didn’t have access to these service relationships.
These can range from the mundane (“What services contribute most to the latency of
this specific operation?”) to the specific (“For this specific customer ID, for this spe‐
cific transaction, what service is failing?”). However, if you limit yourself to merely
tracing the edges of your services, you’re in a bit of a pickle. You can only identify
failures very coarsely, such as if a request failed or succeeded.

Where to Start—Nodes and Edges | 77

So, how do you fix this? You have several options. Certainly one is to begin adding
instrumentation to the service code itself. As we’ll discuss in the next section, there’s
an art and a science to creating spans that are useful for profiling and debugging
traced code. The other is to leverage the edges you’ve traced, and mine them for more
data. We’ll present three more advanced mechanisms that use the concepts of frame‐
work and mesh instrumentation to fill in the gaps of your service mesh.

The first method is to increase the level of detail in our framework-provided spans. In
our example HTTP middleware, we recorded only a small amount of detail about the
request such as the HTTP method, route, and status code. In reality, each request
would potentially have a great deal more data recorded. Are your incoming requests
tied to a user? Consider attaching the user identifier to each request as a tag. Service-
to-service requests should be identified with some semantic identifiers provided by
your tracing library such as OpenTelemetry’s SpanKind attributes or specific tags that
allow you to identify the type of a service (cache, database, and so forth). For database
calls, instrumenting the database client allows you to capture a wide variety of infor‐
mation such as the actual database instance being used, the database query, and so
forth. All of these enrichments help build your service graph into a semantic repre‐
sentation of your application and the connections between it.

The second method is to leverage existing instrumentation and integrations for your
services. A variety of plug-ins exist for OpenTelemetry, OpenTracing, and OpenCen‐
sus that allow for common open source libraries to emit spans as a part of your exist‐
ing trace. If you’re facing a daunting instrumentation journey, with a large amount of
existing code, you can use these plug-ins to instrument existing frameworks and cli‐
ents alongside higher-level instrumentation at the service mesh/framework layer. We
list a sample of these plug-ins in Appendix A.

The third method is through manual instrumentation, which we covered in “Custom
Instrumentation” on page 70, and the same principles apply. You’ll want to ensure
that a root span is propagated into each service that you can create child spans from.
Depending on the level of detail required for a service, you may not need multiple
child spans for a single service; consider the pseudocode in Example 4-11.

Example 4-11. A pseudocode method to handle resizing and storing of images

func uploadHandler(request) {
 image = imageHelper.ParseFile(request.Body())
 resizedImage = imageHelper.Resize(image)
 uploadResponse = uploadToBucket(resizedImage)
 return uploadResponse
}

In this case, what do we care about tracing? The answer will vary based on your
requirements. There’s an argument for having most of the methods being called here

78 | Chapter 4: Best Practices for Instrumentation

https://oreil.ly/OJHDX

have their own child spans, but the real delineation here would be to restrict child
calls to methods that are outside the scope of responsibility for a given team. You can
imagine a situation where as our service grows we may factor the functions that parse
and resize images out of this into another service. As we’ve written, you’ll probably
want to simply encase this whole method in a single span and add tags and logs based
off the responses to your method calls, something like Example 4-12.

Example 4-12. Manually instrumenting a method

func uploadHandler(context, request) {
 span = getTracer().startSpanFromContext(context)
 image = imageHelper.ParseFile(request.Body())
 if image == error {
 span.setTag("error", true)
 span.log(image.error)
 }
 // Etc.
}

Any or all of these methods can be intermingled to build a more effective and repre‐
sentative service graph that not only accurately describes the service dependencies of
your application but semantically represents the nature of these dependencies. We’ve
discussed adding or enriching spans; next, we’ll look at how to create these spans, and
how to determine the most important and valuable information you should add to a
span.

What’s in a Span?
Spans are the building blocks of distributed tracing, but what does that actually
mean? A span represents two things: the span of time that your service was working
and the mechanism by which data is carried from your service to some analysis sys‐
tem capable of processing and interpreting it. Creating effective spans that unlock
insights into the behavior of your service is one part art, one part science. It involves
understanding best practices around assigning names to your spans, ensuring that
you’re tagging spans with semantically useful information, and logging structured
data.

Effective Naming
What’s in a name? When it comes to a span, this is a very good question! The name of
a span, also known as the operation name, is a required value in open source tracing
libraries, in fact, it is one of the only required values. Why is this the case? As we’ve
alluded to, spans are an abstraction over the work of a service. This is a significant
difference from the way you might think of a request chain, or a call stack. You
should not have a one-to-one mapping between function name and span name.

What’s in a Span? | 79

That said, what’s in a span name?

First, names should be aggregable. In short, you want to avoid span names that are
unique to each execution of a service. One antipattern we see, especially in HTTP
services, is implementers making the span name the same as the fully matched route
(such as GET /api/v2/users/1532492). This pattern makes it difficult to aggregate
operations across thousands or millions of executions, severely reducing the utility of
your data. Instead, make the route more generic and move parameters to tags, such as
GET /api/v2/users/{id} with an associated tag of userId: 1532492.

Our second piece of advice is that names should describe actions, not resources. To
use an example, let’s think back to MicroCalc. We could add a datastore, which could
be blob storage, could be SQL, could be anything for any number of purposes, like a
user database or a history of previous results. In lieu of naming a span based on the
resource it’s accessing, mutating, or otherwise consuming you’ll be far better served
by describing the action and tagging the span with the resource type. This allows for
queries against your spans across multiple types, allowing for interesting analytical
insights. An example would be the difference between the names WriteUserToSQL
and WriteUser. You can imagine a situation where these independent components
are switched out for testing (suppose we wanted to trial a NoSQL or cloud datastore
for our users?); having this less proscriptive name would allow for comparisons
between each backing store. Following these two pieces of advice will ensure that
your spans are more useful down the line as you analyze them.

Effective Tagging
You’re not required to tag your spans, but you should. Tags are the main way you can
enrich a span with more information about what’s happening for a given operation,
and unlock a lot of power for analytics. While names will help you aggregate at a high
level (so you can ask questions like “What’s my error rate for looking up users across
all services?”), tags will allow you to slice and dice that information to better under‐
stand the why of your query. Data with a high cardinality should be exposed in your
span as a tag, rather than something else—placing high-cardinality data in a name
reduces your ability to aggregate operations, and placing it inside of log statements
often reduces its indexability.

So, what makes an effective tag? Tags should be externally important, which is to say,
they should have meaning to other consumers of your trace data. While there are
ways to use tags and traces in development, the tags you emit into a production trac‐
ing system should be generally useful to anyone trying to understand what your ser‐
vice is doing.

Tags should be internally consistent as well: using the same keys across multiple serv‐
ices. In our mock application, we could theoretically have each service report the
same piece of information (a user ID, let’s say) using different tag keys—userId,

80 | Chapter 4: Best Practices for Instrumentation

UserId, User_ID, USERID, and so forth—but this would be difficult to create queries
about in external systems. Consider building helper libraries that standardize these
keys, or settle upon a format that comports with your organization’s coding
standards.

In addition to the consistency of tag keys, ensure that tag data is kept as consistent as
possible within a tag key. If some services report the userId key as a string value, and
others as an integer value, problems could arise in your analysis system. Furthermore,
ensure that if you’re tracking some numerical value, you add the unit of the tag to the
key. For example, if you’re measuring the bytes returned on a request, mes
sage_size_kb is more useful than message_size. Tags should be succinct rather than
verbose—don’t put stack traces in tags, for example. Remember, tags are critical to
querying your trace data and building insights, so don’t neglect them!

Effective Logging
Naming and tagging of spans both assist in your ability to derive insights from your
traces. They help you build a relational graph of sorts, showing you what happened
(through names) and why it happened (through tags). Logs could be thought of as the
how it happened piece of this puzzle, offering developers the ability to attach struc‐
tured or unstructured text strings to a given span.

Effective logging with spans has two central components. First, ask yourself what you
really should be logging. Named and tagged spans can significantly reduce the
amount of logging statements required by your code. When in doubt, make a new
span rather than a new logging statement. For example, consider the pseudocode in
Example 4-13.

Example 4-13. Named and tagged spans

func getAPI(context, request) {
 value = request.Body()
 outgoingRequest = new HttpRequest()
 outgoingRequest.Body = new ValueQuery(value)
 response = await HttpClient().Get(outgoingRequest)
 if response != Http.OK {
 request.error = true
 return
 }
 resValue = response.Body()
 // Go off and do more work
}

Without tracing, you would want to log quite a bit here—for example, the incoming
parameters, especially the value you care about inspecting. The outgoing request
body would possibly be interesting to log. The response code would definitely be

What’s in a Span? | 81

something you’d look to log, especially if it’s an exceptional or error case. With a span,
however, there’s significantly less that’s valuable as a log statement—the incoming
parameter value, if it’s generally useful, could be a tag such as value:foo, the
response code would certainly be one, and so forth. That said, you might still be
interested in logging the exact error case that’s happening there. In this situation, con‐
sider making a new span for that external request instead. The rationale here is two‐
fold: this is an edge of your application code, and, as discussed earlier, it’s a good
practice to trace the edges.

Another reason is that a log statement would be less interesting in terms of data than
another span. HTTP GET may seem like a simple operation, and it often is when we
think about using it. Consider what’s happening behind the scenes, though—DNS
lookups, routing through who-knows-how-many hops, time spent waiting on socket
reads, and so forth. This information, if made available in a span through tags, can
provide more fine-grained insight into performance issues and is thus better served
by being a new span rather than a discrete log operation.

The second aspect to effective logging in your spans is, when possible, write struc‐
tured logs and be sure your analysis system is capable of understanding them. This is
more about ensuring the usability of your spans down the line than anything else—an
analysis system can turn structured logging data into something more readable in a
GUI, and provides options for performing complex queries (i.e., “show me all logs
from Service X where an event was logged with a particular type of exception” or “are
any of my services emitting logs at an INFO level?”).

Security and Compliance Considerations
Attributes, tags, events, logs, and even span names can potentially contain personally
identifiable information (PII). This data, depending on local and federal regulations,
may be protected by law. You should pay careful attention to exactly what data is
being added to your spans, especially if you are using a third-party analysis tool for
your trace data. Your organization may also specify certain rules and regulations that
pertain to the amount of time that diagnostic data may be retained for legal discovery
or other purposes. Consult relevant legal advisers in your organization or locality for
more information to determine exactly what can, and can’t, be stored.

Understanding Performance Considerations
The undesirable side effect of creating these rich, detailed spans is that they all have to
go somewhere, and that takes time. Let’s consider a text representation of a typical
span for an HTTP request (see Example 4-14).

82 | Chapter 4: Best Practices for Instrumentation

Example 4-14. Typical span for an HTTP request

{
 context:
 {
 TraceID: 9322f7b2-2435-4f36-acec-f9750e5bd9b7,
 SpanID: b84da0c2-5b5f-4ecf-90d5-0772c0b5cc18
 }
 name: "/api/v1/getCat",
 startTime: 1559595918,
 finishTime: 1559595920,
 endTime:
 tags:
 [
 {
 key: "userId",
 value: 9876546
 },
 {
 key: "srcImagePath",
 value: "s3://cat-objects/19/06/01/catten-arr-djinn.jpg"
 },
 {
 key: "voteTotalPositive",
 value: 9872658
 },
 {
 key: "voteTotalNegative",
 value: 72
 },
 {
 key: "http.status_code",
 value: 200
 },
 {
 key: "env",
 value: "prod"
 },
 {
 key: "cache.hit",
 value: true
 }

]
}

This is less than 1 KB of data—about 600 bytes. Encoding it in base64 brings that up
to around 800 bytes. We’re still under 1 KB, so that’s good—but this is just one span.
What would it look like for an error case? A stack trace would probably balloon us up
from sub 1 KiB to around 3–4 KiB. Encoding a single span is, again, fractional

What’s in a Span? | 83

seconds—(time openssl base64 reports cpu 0.006 total)—which isn’t that much
when you get down to it.

Now multiply that by a thousand, ten thousand, a hundred thousand…eventually, it
adds up. You’re never going to get any of this for free, but never fear, it’s not as bad as
it might seem. The first thing to keep in mind is that you don’t know until you know
—there’s no single rule we can give you to magically make everything perform better.
The amount of overhead you’re willing to budget for and accept in your application’s
performance is going to vary depending on a vast amount of factors that include:

• Language and runtime
• Deployment profile
• Resource utilization
• Horizontal scalability

With that in mind, you should consider these factors carefully as you begin to instru‐
ment your application. Keep in mind that the stable use case and the worst-case per‐
formance profile will often look extremely different. More than one developer has
found themselves in a hairy situation where some external resource was suddenly
unexpectedly available for a long period of time, leading to extremely ungraceful and
resource-intensive service crash loops or hangs. A strategy you can use to combat this
is to build in safety valves to your internal tracing framework. Depending on your
sampling strategy, this “tracing safety valve” could be a cutoff on new span creation if
the application is in a persistent failing state, or a gradual reduction in span creation
to an asymptotic point.

Graceful Degradation of Span Creation
Traditionally, distributed tracing has ameliorated persistent failure states and garbage
data through per-process or per-application sampling strategies around span creation.
New dynamic sampling approaches that move this decision out of the process allow
you to collect 100% of the trace data from each of your services, but present some
unique challenges in how you should handle span creation while in a persistent (non-
recoverable) failure. You should consider the span creation rate (and size of those
spans) during persistent failure of a service and use that to make a decision—in a low-
throughput service where span count is measured in tens or hundreds a minute, you
may be OK without a backoff.

Additionally, consider building in some sort of method to remotely disable the tracer
in your application code. This can be useful in a variety of scenarios beyond the
aforementioned unexpected external resource loss; it can also be helpful when want‐
ing to profile your service performance with tracing on versus with tracing off.

84 | Chapter 4: Best Practices for Instrumentation

Ultimately, the biggest resource cost in tracing isn’t really the service-level cost of cre‐
ating and sending spans. A single span is most likely a fraction of the data that’s being
handled in any given RPC in terms of size. You should experiment with the spans
you’re creating, the amount of data you’re adding to them, and the rate at which
you’re creating them in order to find the right balance between performance and
information that’s required to provide value from tracing.

Trace-Driven Development
When tracing is discussed as part of an application or service, there’s a tendency to
“put it off,” so to speak. In fact, there’s almost a hierarchy of monitoring that is
applied, in order, to services as they’re developed. You’ll start off with nothing, but
quickly start to add log statements to your code, so you can see what’s going on in a
particular method or what parameters are being passed around. Quite often, this is
the majority of the monitoring that’s applied to a new service up until it’s about ready
to be released, at which point you’ll go back in and identify some metrics that you
care about (error rate, for example) and stub those in, right before the whole ball of
wax gets shoved into your production deployments.

Why is it done this way? For several reasons—some of them good. It can be very diffi‐
cult to write monitoring code when the code you’re monitoring shifts and churns
under your feet—think of how quickly lines of code can be added, removed, or refac‐
tored while a project is in development—so it’s something that developers tend not to
do, unless there’s a very strong observability practice on their team.

There’s another reason, though, and it’s perhaps the more interesting one. It’s hard to
write monitoring code in development because you don’t really know what to moni‐
tor. The things you do know to care about, such as an error rate, aren’t really that
interesting to monitor and often can be observed through another source, such as
through a proxy or API gateway. Machine-level metrics such as memory consump‐
tion of your process aren’t something most developers have to worry about, and if
they do, those metrics are going to be monitored by a different component rather
than by their application itself.

Neither metrics nor logs do a good job of capturing the things you do know about at
the beginning of your service’s development, such as what services it should be com‐
municating with, or how it should call functions internally. Tracing offers an option,
allowing for the development of traces as you develop your application that both offer
necessary context while developing and testing your code and provide a ready-made
toolset for observability within your application code. In this section, we’ll cover the
two high-level parts of this concept: developing using traces, and testing using traces.

Trace-Driven Development | 85

Developing with Traces
No matter what language, platform, or style of service you write, they’ll all probably
start at the same place: a whiteboard. It’s this surface that you’ll use to create the
model of your service’s functions, and draw lines that represent the connections
between it and other services. It makes a lot of sense, especially in the early prototyp‐
ing phases of development, to start out in such a malleable place.

The problem comes when it’s time to take your model and translate it into code. How
do you ensure that what you’ve written on the board matches up with your code? Tra‐
ditionally the usage of test functions is recommended, but this is perhaps too small of
a target to really tell you anything useful. A unit test, by design, should validate the
behavior of very small units of functionality—a single method call, for example. You
can, of course, write bigger unit tests that begin to validate other suppositions about
your functions, such as ensuring that method A calls method B calls method C…but
eventually, you’re just writing a test that exercises every code path for spurious
reasons.

When you try to test the relationship your service has to antecedent and dependent
services, it gets even more convoluted. Generally, these would be considered integra‐
tion tests. The problem with integration tests to verify your model is twofold, how‐
ever. The first problem is that if you begin to mock services out, you’re not testing
against the actual service, just a mock replacement that follows some preordained
command. The second, and perhaps larger, problem is that integration tests are nec‐
essarily going to be limited to your test environment and have poor support for com‐
municating across process boundaries (at least, without going through a bunch of
hoops to set up an integration test framework or write your own).

If unit tests and integration tests won’t work, then what will? Well, let’s go back to the
original point—it’s important to have a way to validate your mental model of your
application. That means you should be able to write your code in a way that allows
you to ensure both internal methods and external services are being called in the cor‐
rect order, with the correct parameters, and that errors are handled sanely. One com‐
mon mistake we’ve observed, especially in code with significant external service
dependencies, is what happens on persistent service failure.

You can see examples of this happening in the real world all the time. Consider the
outages that occurred as a result of AWS S3 buckets becoming persistently unavail‐
able for hours upon end several years ago. Having trace data available to you, both in
test and production, allows you to write tools that quickly compare the desired state
of your system with reality. It’s also invaluable when trying to build chaos systems as
part of your continuous integration/continuous delivery (CI/CD)—being able to find
the differences between your steady-state system and the system under chaos will
dramatically improve your ability to build more resilient systems.

86 | Chapter 4: Best Practices for Instrumentation

Tracing as a part of your development process works similarly to tracing anywhere
else in your codebase, with a few notable conveniences. First, recall our earlier discus‐
sion of how to start tracing a service (“Where to Start—Nodes and Edges” on page
71). The same principle applies to writing a new service and to instrumenting an
existing one. You should apply middleware to each incoming request that checks for
span data, and if it exists, create a new child span. When your new service emits out‐
bound requests, it too should inject your current span context into the outgoing
request so that downstream services that are tracing-aware can take part in the trace.
The changes to the process tend to come between these points because you’ll be faced
with challenges around how much to trace.

As we’ll discuss at the end of this chapter, there is such a thing as too much tracing. In
production especially, you want to limit your traces to the data that matters for exter‐
nal observers and users when they view an end-to-end trace. How, then, to accurately
model a single service with multiple internal calls? You’ll want to create some sort of
verbosity concept for your tracer. This is extremely common in logging, where log
levels exist such as info, debug, warning, and error. Each verbosity specifies at mini‐
mum that the log statement must meet to be printed. The same concept can apply to
traces as well. Example 4-15 demonstrates one method in Golang to create verbose
traces, configurable via an environment variable.

Example 4-15. Creating verbose traces

var traceVerbose = os.Getenv("TRACE_LEVEL") == "verbose"

...

func withLocalSpan(ctx context.Context) (context.Context, opentracing.Span) {
 if traceVerbose {
 pc, _, _, ok := runtime.Caller(1)
 callerFn := runtime.FuncForPC(pc)
 if ok && callerFn != nil {
 span, ctx := opentracing.StartSpanFromContext(
 ctx, callerFn.Name()
)
 return ctx, span
 }
 }
 return ctx, opentracing.SpanFromContext(ctx)
}

func finishLocalSpan(span opentracing.Span) {
 if traceVerbose {
 span.Finish()
 }
}

Trace-Driven Development | 87

Setting trace verbosity isn’t just limited to Go—aspects, attributes, or other dynamic/
metaprogramming techniques can be utilized in languages with support for them.
The basic idea is as presented, though. First, ensure that the verbosity level is set
appropriately. Then, determine the calling function and start a new span as a child of
the current one. Finally, return the span and the language context object as appropri‐
ate. Note that in this case, we’re only providing a start/finish method—this means that
any logs or tags we introduce will not necessarily be added to the verbose child, but
could be added to the parent if the child doesn’t exist. If this isn’t desirable, then con‐
sider creating helper functions to log or tag through to avoid this behavior. Using our
verbose traces is fairly straightforward as well (see Example 4-16).

Example 4-16. Using verbose traces

import (
 "github.com/opentracing-contrib/go-stdlib/nethttp"
 "github.com/opentracing/opentracing-go"
)

func main() {
 // Create and register tracer

 mux := http.NewServeMux()
 fs := http.FileServer(http.Dir("../static"))

 mux.HandleFunc("/getFoo", getFooHandler)
 mux.Handle("/", fs)

 mw := nethttp.Middleware(tracer, mux)
 log.Printf("Server listening on port %s", serverPort)
 http.ListenAndServe(serverPort, mw)
}

func getFooHandler(w http.ResponseWriter, r *http.Request) {
 foo := getFoo(r.Context())
 // Handle response
}

func getFoo(ctx context.Context) {
 ctx, localSpan := withLocalSpan(ctx)
 // Do stuff
 finishLocalSpan(localSpan)
}

In this example, we’re creating a simple HTTP server in Golang and tracing it with
the go-stdlib package. This will parse incoming HTTP requests for tracing headers
and create spans appropriately, so the edges of our service are being handled. By
adding the withLocalSpan and finishLocalSpan methods, we can create a span
that’s local to a function and only exists when our trace verbosity is set appropriately.

88 | Chapter 4: Best Practices for Instrumentation

These spans could be viewed in a trace analyzer while performing local development,
allowing you to accurately assess that calls are happening in the same way that you
think they should be, ensuring that you can observe your service as it calls other serv‐
ices (or is called by them), and as a bonus allows you to use open source frameworks
as a default choice for questions like, “What logging/metrics/tracing API should I be
using?” as these can be performed through your telemetry API. Don’t reinvent the
wheel if you don’t need to, after all!

Testing with Traces
Trace data can be represented as a directional acyclic graph. While it’s usually repre‐
sented as a flame graph, traces are simply directional acyclic graphs of a request, as
illustrated in Figure 4-4. A directed acyclic graph, or DAG, may be extremely familiar
to you if you have a computer science or mathematics background; it has several
properties that are extremely useful. DAGs are finite (they have an end) and they have
no directed cycles (they don’t loop on themselves—those that do are called cyclical
references). One other useful property of DAGs is that they are fairly easy to compare
to each other.

Figure 4-4. Comparison of a flame graph view of a trace versus a DAG view.

Knowing this, what are the possibilities? First, you may be asking, “So what?” As dis‐
cussed earlier, integration testing and other forms of higher-level tests are sufficient
and necessary to ensure the operation of our service as it is deployed. That said, there
are several reasons you might want to consider adding trace comparisons to your
testing repertoire. The easiest way to think about applied trace data as a form of test‐
ing is through simple diffs between environments. Consider a scenario where we
deploy a version of our application to a staging or preproduction environment after

Trace-Driven Development | 89

testing it locally. Further consider that we export our trace data in some sort of flat
file, suitable for processing, as shown in Example 4-17.

Example 4-17. Exporting trace data

[
 {
 name: "getFoo",
 spanContext: {
 SpanID: 1,
 TraceID: 1
 },
 parent: nil
 },
 {
 name: "computeFoo",
 spanContext: {
 SpanID: 2,
 TraceID: 1
 },
 parent: spanContext{
 SpanID: 1,
 TraceID: 1
 }
 },
 ...
]

In a real system, we might expect these to be out of order or otherwise not exist in a
sorted state, but we should expect that the call graph for a single API endpoint will be
the same between them.

One potential application, then, is to perform a topographical sort on each set of trace
data, then compare by length or through some other diffing process. If our traces dif‐
fer, we know we have some sort of problem because the results didn’t match our
expectations.

Another application of this would be to identify, proactively, when services begin to
take dependencies on your service. Consider a situation where our authentication
service, or search service, was more widely publicized to other teams. Unbeknownst
to us, they start to take a dependency on it in their new services. Automated trace
diffing would give us proactive insights into these new consumers, especially if there’s
some sort of centralized framework generating and comparing these traces over time.

Still another application is simply using tracing as the backbone of gathering service
level indicators and objectives for your service, and automatically comparing them as
you deploy new versions. Since traces are inherently able to understand the timing of

90 | Chapter 4: Best Practices for Instrumentation

your service, they’re a great way to keep track of performance changes across a wide
variety of requests as you iterate and further develop services.

Ultimately, a lot of this is speculative—we’re not aware of anyone using distributed
tracing heavily as a part of their test suites. That doesn’t mean it isn’t useful, but as a
new technology, not every facet of it has been explored and exploited yet. Maybe
you’ll be the first!

Creating an Instrumentation Plan
For better or worse, most people come to distributed tracing and monitoring late in
the development of an application or piece of software. Some of this has to do with
the nature of iterative development—when you’re creating a product or service, it can
be difficult to understand what it is you need to know until you’ve spent some time
actually building and running it. Distributed tracing adds a wrinkle to this as well
because developers will often come to it as a solution to problems that are cropping
up due to scale and growth, be it in terms of service count or organizational complex‐
ity. In both of these cases, you’ll often have some large, presumably complicated set of
services already deployed and running and need to know how you can leverage dis‐
tributed tracing in order to improve the reliability and health of not only your soft‐
ware, but also your team. Perhaps you’re starting greenfield development on some
new piece of software and are adding distributed tracing out of the gate—you’ll still
need to create a plan for how to both add and grow tracing throughout your team
and organization. In this section, we’ll discuss how you can make an effective case for
instrumentation of either new or existing services in your organization and how to
get buy-in from your (and other) teams, signals that indicate when you’ve instrumen‐
ted enough, and finally how to sustainably grow instrumentation throughout your
services.

Making the Case for Instrumentation
Let’s assume that you’re already sold on the idea of distributed tracing by virtue of
you reading this book. The challenge, then, becomes convincing your colleagues that
it’s as good of an idea as you think it is, because they’re going to have to do some work
as well to ensure that their services are compatible with tracing.

When making the case to other teams about the benefits, and costs, of distributed
tracing, it’s important to keep in mind many of the instrumentation lessons that we’ve
discussed in this chapter. In short, instrumentation can be valuable even if it’s fairly
basic. If every service emits one span with some basic attributes that require no run‐
time overhead (i.e., string values that can be precalculated at service initialization)
then the total added overhead to each request is simply the propagation of trace con‐
text headers, a task that adds 25 bytes on the wire and a negligible amount of cycles to
decode afterwards.

Creating an Instrumentation Plan | 91

1 [Sam16]

The benefit—end-to-end tracing of a request—is extremely helpful for such a small
price. This request-centric style of distributed tracing has found adopters at compa‐
nies such as Google, which has used Dapper to diagnose anomalies and steady-state
performance problems in addition to attribution for resource utilization.1 Numerous
other engineering teams and organizations, large and small, have adopted distributed
tracing in order to reduce MTTR for incidents and other production downtime. In
addition, distributed tracing is extremely valuable as part of a larger monitoring and
observability practice, where it enables you to reduce the search space of data that you
need to investigate in order to diagnose incidents, profile performance, and restore
your services to a healthy state.

It can be useful to think of distributed tracing as a “level playing field” when it comes
to service performance. Especially when interacting in a polyglot environment, or in
a globally distributed enterprise, there can be challenges in ensuring that everyone is
on the same page in terms of performance data. Some of these challenges are techni‐
cal, but many are political. The proliferation of vanity metrics is particularly notable
here; you can measure quite a few things about your software performance that don’t
matter, and you may already be doing so in order to achieve nebulous “quality” goals
set for reasons beyond our ken. Distributed tracing data, however, provides critical
signals by default in a standardized way for all of your services and does so without
requiring synthetic endpoints or approaches to ensuring service health. This trace
data can then be used to bring some peace and sanity to a possibly broken process. Of
course, the first step to delivering that trace data is service instrumentation, so you’ll
need to start there.

It doesn’t have to be difficult to instrument your services. Good tools—open source
and proprietary—will ease the instrumentation burden. We detail these in Appen‐
dix A, with examples of automatic instrumentation as well as library integrations for
popular frameworks that enable tracing—sometimes with no code changes required.
You should be aware of your frameworks and shared code when making the case for
instrumentation so that you can leverage these existing tools. In our experience, one
of the most persuasive arguments for distributed tracing is to simply instrument
some existing microservice framework already used by your organization and
demonstrate how services using it can be traced by simply updating a dependency. If
you have an internal hackathon or hack day, this can be a fun and interesting project
to tackle!

No matter how you do it, the case for instrumentation ultimately comes down to the
case for distributed tracing in general. As we’ve mentioned, there are plenty of inter‐
esting applications for tracing outside performance monitoring: tracing as part of
your development cycle, tracing in testing other applications. You could use

92 | Chapter 4: Best Practices for Instrumentation

distributed tracing as part of your CI and CD framework, timing how long certain
parts of your build and deployments take. Tracing could be integrated into task run‐
ners for creating virtual machines or provisioning containers, allowing you to under‐
stand what parts of your build and deploy life cycle take the most time. Tracing can
be used as a value-add for services that provide some sort of API as a service—if
you’re already tracing the execution time of your backend, you could make some ver‐
sion of that trace data available to your customers in order to help them profile their
software as well. The possibilities for tracing are limitless, and the case for instru‐
menting your software should reflect that.

Instrumentation Quality Checklist
When instrumenting an existing service or creating guidelines on how to instrument
new services, it can be useful to have a checklist of items that are important to ensur‐
ing quality instrumentation throughout your entire application. We’ve included a rec‐
ommended one in the book’s repository, but you’re welcome to use it as a jumping-
off point for your own.

Instrumentation Checklist
Span Status and Creation

• All error conditions under a given span appropriately set the span status to an
error state.

• RPC framework result codes are mapped to span status (i.e., Internal Error, Not
Found, etc.).

• All spans that are started are also finished, even in the case of unrecoverable
errors if possible.

• Spans should only represent work that is semantically important to the request
life cycle of a service; try not to create spans around endpoints only receiving
synthetic traffic, like a /status or /health endpoint.

Span Boundaries
• Egress and ingress spans have appropriate labels (SpanKind is set).
• Egress and ingress spans have appropriate relationships (client/server, consumer/

producer).
• Internal spans are appropriately labeled and do not imply a remote call.

Attributes
• Spans include a version attribute for the service they represent.
• Spans that represent work by a dependency have an attribute for that dependen‐

cy’s version.

Creating an Instrumentation Plan | 93

https://oreil.ly/instrmntn-checklist

• Spans should include attributes identifying underlying infrastructure:
— Hostname / FQDN
— Container name, if appropriate
— Runtime version
— Application server version, if appropriate
— Region or availability zone

• Attributes are namespaced where appropriate (i.e., to prevent collisions between
key names where the semantic meaning of the key differs between services in a
request).

• Attributes with numerical values should include the unit of measurement in the
key name (i.e, payload_size_kb versus payload_size).

• Attributes should not contain any PII.

Events
• Useful and descriptive event messages that would be useful for upstream or

downstream service users should be added:
— Request-response payloads (sanitized)
— Stack traces, exceptions, and error messages

• Long-running operations (such as waiting for a mutex) should be wrapped in
events; one when the operation begins, and one when it ends.

Much of what’s in our instrumentation checklist is drawn from other parts of this
chapter, so we won’t elaborate too much on it. A few notes to call out:

• Many open source instrumentation libraries or framework instrumentation libra‐
ries will, by default, instrument every incoming request or endpoint defined in
your service code, including diagnostic endpoints. Generally, you’ll want to
implement a filter or sampler on your service to prevent spans being created
from these endpoints unless you have some pressing need for it.

• Be very careful about exposing PII in your attributes and events; the costs for
noncompliance can be severe, especially if you’re transmitting trace data to a
third party for analysis and storage.

• Version attributes are extremely valuable, especially when doing trace compari‐
sons, as they allow you to easily diff a request across two or more versions of a
service in order to discover performance regressions or improvements.

94 | Chapter 4: Best Practices for Instrumentation

• Integrating your feature flags and other experiments with your trace data is a use‐
ful way to understand how those experiments are changing the performance and
reliability of your service.

Feel free to adapt this checklist with specific information that makes it useful for your
team, and include it on service rollout checklists.

Knowing When to Stop Instrumenting
We’ve touched on the costs of instrumentation several times in this chapter; let’s take
a deeper look. At a high level, instrumentation is a trade-off like anything else in soft‐
ware. You’re trading some measure of performance for, hopefully, a much higher level
of insight into the operation of your service at a level that’s easy to communicate to
others in your team or organization. In this section we point out a few notable anti-
patterns to watch out for when you’re instrumenting. There’s the risk that the trade-
offs become too costly and lead you to stop instrumenting, or to oversample and lose
resolution on your traces.

One antipattern is implementing too high a default resolution. A good rule is that your
service should emit as many spans as logical operations it performs. Does your ser‐
vice handle authentication and authorization for users? Logically, break down this
function—it’s handling an incoming request, performing some lookups in a data‐
store, transforming the result, and returning it. There are two logical operations here
—handling the request/response and looking up the data. It’s always valuable to sepa‐
rate out calls to external services; in this example, you might only have a single span if
the datastore is some sort of local database), but you may not need to emit a span for
marshaling the response into a new format that your caller expects.

If your service is more complicated, adding more spans can be OK, but you need to
consider how consumers of your trace data will find it valuable, and if it’s collapsible
into fewer spans. The corollary to this point is that you may want to have the ability
to increase the verbosity of spans emitted by a service—refer back to “Trace-Driven
Development” on page 85 for ideas on how to increase or decrease the resolution of
your spans. This is why we say default resolution; you want to ensure that the default
amount of information emitted is small enough to integrate well into a larger trace,
but large enough to ensure that it contains useful information for consumers that
might not be on your team (but might be affected by issues with your service!).

Another antipattern is not standardizing your propagation format. This can be chal‐
lenging, especially when integrating legacy services or services written by a variety of
teams. The key value of a trace is in the interconnected nature of a trace. If you have
20, 50, 200, or more services that are using a mishmash of tracing formats, you’re
going to have a bad time trying to get value out of your traces. Avoid this by

Creating an Instrumentation Plan | 95

standardizing your tracing practices as much as possible, and providing shims for
legacy systems or between different formats.

One method to combat non-standard propagation formats is to create a stack of trac‐
ing propagators that can be aware of different headers (such as X-B3 or opentracing)
and select the appropriate one on a per-request basis. You might find that it’s less
work to actually update existing systems to the new format rather than create com‐
patibility layers—use your best judgment and your organization’s existing standards
and practices to figure out what’s right for you.

The final advice, going back to the section title, is knowing when you should stop.
Unfortunately, there’s not a cut-and-dry answer here, but there are some signals you
should pay attention to. In general, you should consider what your service’s breaking
point is without sampling any of your trace data.

Sampling is a practice where a certain percentage of your traces aren’t recorded for
analysis in order to reduce the overall load on your system. A discussion of sampling
appears in “Sampling” on page 124, but we would advise that you don’t consider the
sample rate when writing instrumentation. If you’re worried about the amount of
spans created by your service, consider using verbosity flags to dynamically adjust
how many spans are being created, or consider “tail-based” sampling approaches that
analyze the entire trace before making a sampling decision. This is important because
sampling is the best way to accidentally throw away potentially critical data that might
be useful when debugging or diagnosing an issue in production. In contrast, a tradi‐
tional sampling approach will make the decision at the beginning of a trace, so there’s
no reason to optimize around “will this or won’t this be sampled”—your trace is
going to be thrown away in its entirety if it is sampled out.

A sign that you need to keep going is if the inter-service resolution of your trace is too
low. For example, if you’re eliding multiple dependent services in a single span, you
should keep instrumenting until those services are independent spans. You don’t nec‐
essarily need to instrument the dependent services, but your RPC calls to each of
them should be instrumented, especially if each of those calls are terminal in your
request chain. To be more specific, imagine a worker service that communicates with
several datastore wrappers—it may not be necessary to instrument those datastore
wrappers, but you should have separate spans for each of the calls from your service
to them in order to better understand latency and errors (am I failing to read, or fail‐
ing to write?).

Stop tracing if the number of spans you’re emitting by default begins to look like the
actual call stack of a service. Keep instrumenting if you’ve got unhandled error cases
in your service code—being able to categorize spans with errors versus spans without
errors is vital. Finally, you should keep instrumenting if you’re finding new things to
instrument. Consider modifying your standard bug-handling process to not only

96 | Chapter 4: Best Practices for Instrumentation

include writing new tests to cover the fix, but to include writing new instrumentation
to make sure that you can catch it in the future.

Smart and Sustainable Instrumentation Growth
It’s one thing to instrument a single service, or a demonstration application that’s
meant to teach you some concepts about tracing. It’s another, altogether more chal‐
lenging task to figure out where to go from there. Depending on how you start your
instrumentation journey, you may quickly find yourself in untested waters, struggling
to figure out how to provide value from tracing while simultaneously growing its
adoption within your organization or team.

There are several strategies you can employ to grow instrumentation inside your
application. These strategies, broadly, can be grouped into technical and organiza‐
tional solutions. We’ll first address the technical strategies, then talk about the organi‐
zational ones. There is some overlap between the two—as you might expect, technical
and organizational solutions work hand in hand to enable each other.

Technically, the best way to grow instrumentation throughout your application is to
make it easy to use. Providing libraries that do the heavy lifting required to set up
tracing and integrate it into your RPC frameworks or other shared code makes it easy
for services to integrate tracing. Similarly, creating standard tags, attributes, and other
metadata for your organization is a great way to ensure that new teams and services
adopting tracing have a road map to quickly understand and gain value from tracing
as they enable it. Finally, look at adopting tracing as part of your development and
testing process—if teams are able to start using tracing on a day-to-day basis, then it
becomes part of their workflow, and it’ll be available once they deploy their services
to production.

Ultimately, the goal of instrumentation growth should be tied to the ease of adopting
instrumentation. You’re going to find it challenging to grow the adoption of tracing if
it’s a lot of work for individual developers to implement. Every major engineering
organization to adopt distributed tracing (including Google and Uber) has made
tracing a first-class component of its microservice architecture by wrapping its infra‐
structure libraries in tracing code. This strategy allows for growing instrumentation
quite naturally—as new services are deployed or migrated, they’ll automatically gain
instrumentation.

Organizationally, there’s a bit more to talk about. All of the technical solutions pre‐
sented earlier aren’t going to be worth much without organizational buy-in. How,
then, should you develop that buy-in? The easiest option, and one we’ve seen be
incredibly successful, is simply a top-down mandate to use distributed tracing. Now,
this doesn’t necessarily mean you should start emailing your VP of Engineering, and
in many cases, this isn’t the most effective strategy. If you have a platform team, SRE
team, DevOps team, or other infrastructure engineers, these teams can be a successful

Creating an Instrumentation Plan | 97

place to look for the impetus to grow tracing throughout your software. Consider
how problems are communicated and managed in your engineering organization.
Who has performance management as part of their portfolio? These can be allies and
advocates for the initial implementation of tracing across all your services.

If your SRE team is using tools such as launch checklists, add tracing compatibility to
the checklist and start to roll it out that way. You should also consider how your trac‐
ing is performing when you’re performing postmortems on incidents—were there
services that weren’t traced that should have been? Was there data that was critical to
resolving the incident that wasn’t present in the spans? Instrumentation beyond the
basics can also be a defined goal for your teams that’s measured like any other aspect
of code quality. It’s also useful to track improvements to instrumentation rather than
simply adding new services—effective instrumentation is just as important as ubiqui‐
tous instrumentation.

Ensure that a process exists for end users of your traces to suggest improvements,
especially to shared libraries, in order to drive continuous improvement. Pay careful
attention to existing instrumentation code during refactors, especially refactors that
modify instrumentation itself. You don’t want to lose resolution on your traces
because someone removed spans accidentally! This is an area where building tests
around your instrumentation is valuable, as you can easily compare the state of your
traces before and after changes, and automatically warn or notify developers of unex‐
pected differences.

Ultimately, instrumentation is a critical part of distributed tracing, but it’s only the
first step. Without instrumentation, you’re not going to have the necessary trace data
to actually observe and understand requests as they move through your system. Once
you’ve instrumented your services, you’ll suddenly be presented with a fire hose of
data. How can you collect and analyze that data in order to discover insights and per‐
formance information about your services in aggregate? Over the next few chapters,
we’ll discuss the art of collecting and storing trace data.

98 | Chapter 4: Best Practices for Instrumentation

CHAPTER 5

Deploying Tracing

Understanding how to instrument code so that your application generates quality
telemetry is no small feat, so congratulations on making it this far! However, that tele‐
metry won’t amount to much without the rest of a tracing deployment to consume
those spans and use them to provide value to you and other developers. We’ll spend
this and the following chapter looking underneath the hood of tracers and consider
some of the common components in those implementations as well as some of the
trade-offs required. While not many readers are likely to be considering building new
tracing solutions from scratch, a high-level understanding of what’s going on will
help you to choose the best tracer for your organization and to maximize the value
that it can bring.

Distributed tracing can offer a lot to organizations where individual teams work
independently. Tracing problems across the many layers of your application helps you
quickly identify which service is the performance bottleneck or is responsible for a
regression. However, this independence can also be an obstacle to getting started with
distributed tracing: if you’re responsible for deploying tracing across your organiza‐
tion, you’ll need to get these teams to work together.

You’ll get the most value from tracing if it’s deployed consistently across your organi‐
zation and your application. However, you’ll face two sets of challenges in doing so.
First, you need to overcome some organizational barriers: getting data from some
teams may require those teams to instrument their services, change configuration, or
maybe just redeploy their services. You may also need them to follow conventions
about tags or at the very least propagate tracing context.

Second, you’ll need to make sure you have the right infrastructure in place. While this
can be partially outsourced to a vendor, some parts of the tracing system will still run
on your infrastructure or could affect the performance of your application. And even
if do you manage to offload most of the work, understanding trade-offs in tracing

99

system design can help you evaluate different vendors and perhaps get some insight
into how their pricing reflects the underlying costs of processing, storing, and analyz‐
ing traces.

Organizational Adoption
If your organization is building a distributed application, chances are that organiza‐
tion is not small. Successful adoption of distributed tracing will require work not just
from you and your team, but from many teams across your organization—and per‐
haps even outside of your organization.

In this context, you’re looking not just to get the most value from distributed tracing
early on, but to get the most demonstrable value. That is, you’ll need to produce evi‐
dence of the value of tracing for your organization. To do so, you’ll need to be
thoughtful about where and how you deploy it. Though it’s often considered a tool
for “end-to-end understanding,” tracing can also provide value for individual teams;
showing an example of this is the best way to convince other teams to adopt it as well.

In addition, deploying tracing at scale will also require considerable computing and
storage resources. We will cover the costs of these resources in more detail in Chap‐
ter 6, but when thinking about how to deploy tracing, it’s important that you choose a
tracing solution that can meet your organization’s needs not just in terms of features,
but in how those features perform at scale. It’s also important to make sure that the
incremental cost of doing so doesn’t outpace the incremental value offered by tracing.

Start Close to Your Users
There’s no better way to ensure that tracing has business value than to start close to
the users of your application. How do they interact with your application? Through a
mobile app? A single-page web app or a more traditional one? Through a specialized
device? Perhaps your organization only provides an API to your users, in which case,
that API is as close as you’ll be able to get. In any case, if you measure performance
close to your users, you can be sure that you are measuring something that matters.
In our experience, we’ve seen both large and small organizations fail to take this
approach and instead choose a service to instrument because it was easy. Unfortu‐
nately, while the instrumentation was indeed easy, it didn’t help build evidence that
tracing should be a priority for the organization and it didn’t help to surface chal‐
lenges that developers faced as they continued to roll out tracing.

It is possible to start too close to your users for your initial foray into tracing. For
example, if your mobile app is on a slow release cadence, it might take too long yo get
the initial version of tracing deployed or be too slow to iterate on instrumentation.
Web apps or nightly builds of mobile apps can make good choices. Get as close to
your users as you reasonably can, but make sure you can still move quickly.

100 | Chapter 5: Deploying Tracing

You should also consider specific types of requests or transactions that are important
to your users and your business. For example, it might be tempting to choose an
asynchronous request type that’s used to record some analytics about user behavior:
this might seem easy (it’s a simple request and changes to it do not receive much scru‐
tiny) and low risk (changes are unlikely to negatively impact users). However, you
also have far less to gain by starting with this type of request. Instead, start with a type
of request that represents an important user conversion. For example, if your applica‐
tion is part of an ecommerce solution, start with the point at which a purchase is
made.

Start Centrally: Load Balancers and Gateways
If you can’t start with a mobile app, web app, or other client of your application,
choose a part of your backend systems that is still relatively close to your users:
ingress load balancers or API gateways.

Ingress load balancers, especially HTTP (or “level 7”) load balancers, are good candi‐
dates for quickly getting started with tracing. Load balancers are designed to effi‐
ciently pass through traffic, and it’s relatively easy for them to generate spans in
addition to other metrics and logs they might already be emitting.

Many widely used load balancers have support for tracing built in or have existing
plug-ins that make adding tracing easy. For example, Envoy supports several tracers
out of the box; Linkerd ships with support for the OpenCensus collector; NGINX
supports an OpenTracing plug-in that can be used with several tracing systems.

HTTP load balancers can add a number of interesting tags automatically, including
the request path, method, and protocol as well as status codes indicating the success
or failure of the request. These tags can be valuable data sources when using dis‐
tributed tracing to understand application performance.

Note that TCP (transmission control protocol, or “level 3/4”) load balancers provide
significantly less value since they do not have access to HTTP (or other application-
level) request data. We have seen few examples where instrumenting TCP load bal‐
ancers provides value as part of a distributed tracing solution.

API gateways also provide an opportunity to gather rich telemetry that is relatively
close to the user and also broad in scope. Teams who manage API gateways often feel
a lot of pain that can be alleviated with tracing and will be willing allies. In particular,
they are often held accountable for the performance of the APIs that sit beneath the
gateway or, at the least, get paged frequently when those upstream systems perform
poorly.

If a gateway service can emit spans for the endpoints it serves and for its view of the
services for which it’s acting as a gateway, these spans can be used to attribute slow
performance to other backend services (and their respective teams). This is important

Organizational Adoption | 101

because API gateways frequently make calls to several upstream systems, including
authorization and other common services, in addition to the services providing the
business logic for API requests that they are serving. An immediate effect of this
approach is that the team that owns the gateway service can more confidently identify
which other teams need to improve performance. This is an example of how tracing
can benefit even a single team: by tying the performance of a service to the perfor‐
mance of its dependencies, even very short traces can provide value.

When starting a tracing deployment with either ingress load balancers or API gate‐
ways, these initial traces can help inform your next steps in that deployment. For
example, if a particular upstream service is frequently a bottleneck for request latency,
that service would be a logical next step for instrumentation (and that instrumenta‐
tion hopefully will provide results that directly impact user-perceived latency).

Leverage Infrastructure: RPC Frameworks and Service Meshes
Finally, a third approach to starting with tracing in a larger organization is to leverage
the infrastructure that connects services. If your organization has a standard frame‐
work for making RPC calls or you use a service mesh, you can get at least half the
work done for a broad (though not deep) integration with tracing very quickly.

As we discussed in Chapter 4, RPC frameworks and service meshes provide standard
ways of connecting services, and often provide support for security, service discovery,
load balancing, and (relevant to the current topic) generating telemetry. Many frame‐
works and service meshes already support tracing out of the box or can be easily
extended to do so. As with ingress load balancers, they may also be able to add some
additional information to those spans, possibly including request information and
error codes. RPC frameworks and service meshes can also facilitate propagating con‐
text between services: they can make sure that span and trace IDs are included among
the headers or other metadata.

Extracting context is another story, however. Since many of these frameworks are not
part of handling requests on the server side, you’ll need to find another way to do
this. If there is already common code used across your organization as part of han‐
dling requests, then you can plug in additional middleware at that point to extract
trace context. Without any common request-handling code, however, you will need
to make some changes to the services themselves to extract context from requests as
they arrive. If you don’t have either of these options, you’ll be left with a lot of single-
span traces and not much to say about getting better end-to-end visibility.

In addition to instrumenting your framework, choose one service to start with and
make sure that context is being propagated properly through that service. At the very
least, the team that owns that service will be able to understand how the performance
of requests it handles relates to its upstream services. As with the previous approach,

102 | Chapter 5: Deploying Tracing

even without deep instrumentation into all of your organization’s services, a broad
integration with tracing can help inform the next steps for rolling out tracing.

What About Service Orchestration?
We have discussed load balancers, service mesh, and other infrastructure, but you
may be wondering why we don’t mention Kubernetes or other orchestration tools as
part of deploying tracing. (After all, users of Kubernetes certainly need distributed
tracing, right?) While it might be possible in the future, today orchestration systems
don’t have much to offer directly to speed the adoption of distributed tracing. (Of
course, you might use Kubernetes or other platforms as part of the infrastructure on
which the components of a tracing solution run, but here we’re talking about collect‐
ing telemetry.)

The fundamental reason for this is that most orchestration platforms, including
Kubernetes, focus on making sure that the right code is running in the right places
rather than on how individual requests are handled. When they do help with things
like service discovery, they aim to get out of the way as quickly as possible. This is all
to say, these platforms focus on the control plane rather than the data plane.

In many ways, orchestration tools like Kubernetes complement observability tools
like distributed tracing. Distributed tracing provides an understanding of what is
happening in a distributed system, while orchestration tools provide a means to con‐
trol these systems and effect change. Once you know what service deployment is
causing a problem, Kubernetes will help you to quickly roll it back.

Make Adoption Repeatable
After you’ve shown that one team can be successful with tracing, the next step is, well,
to help a second team do so. Take what you’ve learned from that first team and use it
to make the next steps easier. This can mean both choosing which teams to go to next
and knowing how to approach them. For example, did any other teams get pulled in
to help address performance problems with the first roll-out of tracing? (Were any
other teams implicated in those problems?) Are there other teams that are facing sim‐
ilar problems to those addressed by tracing in the initial roll-out?

Also consider what worked and didn’t work for that first team. If there was a particu‐
lar type of request for which tracing offered a lot of value, look for an analogue of that
type of request. If particular tags were invaluable, make sure that those are included
for each new service. If particular use cases came up a lot, consider how to automate
anything necessary for new teams to take advantage of those.

If you didn’t instrument any of the frameworks or standard libraries used across your
organization as part of your initial deployment, now is a good time to start planning

Organizational Adoption | 103

that work. With the evidence you gathered in support of tracing, it should be easy to
make the case for the organization to invest in tracing.

One thing that we didn’t worry about with your first deployment was how to stand‐
ardize the process; this might be the time to start. As we discussed in Chapter 4, trac‐
ing is most effective when there are standards around how operation names appear
and the types of tags that are included in spans. While this wasn’t necessary for the
first team to adopt tracing (and in fact, wouldn’t have provided any value), this may
become important for the second team—and certainly for the third, fourth, and fifth
teams—to get the most value from tracing. It’s also a good time to consider adding
tracing to launch checklists so that all new services will be built and deployed with
tracing enabled.

While the goal of the initial roll-out was to prove the value of tracing, moving for‐
ward it should be to reduce the friction for each subsequent team and to help make
sure that tracing is used consistently from team to team.

Tracer Architecture
As you roll out tracing across your organization, the tracer you use must be prepared
for greater and greater load. Whether you are deploying an open source tracer or
adopting a proprietary solution, understanding what’s going on underneath the hood
will help you deploy and scale up your tracing solution smoothly. Though the archi‐
tecture will vary from implementation to implementation, this section presents a
high-level view of the major components of most tracers.

Figure 5-1 shows a simplified view of a tracer architecture. While some components
may be combined in some implementations, the work of the tracer can be logically
divided as follows:

In-process libraries
Application code generally creates spans not by making network requests, but
instead by using an SDK. As discussed in previous chapters, this SDK may be
used as part of explicit instrumentation or may use reflection or other features of
dynamic languages to automatically create spans.

Sidecars and agents
Some parts of the tracing system run near the application and help to forward
data quickly to the rest of the tracer.

Collectors
As opposed to sidecars or agents, which are generally stateless, collectors may
temporarily store spans, filter them, compute aggregate statistics about them, or
prepare them for storage and analysis.

104 | Chapter 5: Deploying Tracing

Centralized storage and analysis
This is where the real magic happens: where traces are assembled from their con‐
stituent spans and where global statistics about application performance are
computed. It also provides the user interface that lets developers search traces
and that visualizes those traces.

We’ll cover each of these components in turn.

Figure 5-1. Simplified tracer architecture.

In-Process Libraries
While applications could send spans over the network to a tracing system as they are
generated, there’s a lot to be gained from buffering them and sending them in
batches: some repeated parts of the spans need only be sent once, and sending batches
can reduce network overhead. We can’t expect every service to reimplement this
functionality, so nearly all tracers provide some form of buffering as part of their
SDKs.

In addition, these libraries handle discovery of other components of the tracer as well
as network errors by retrying attempts to send spans (and reporting those errors
appropriately). They may also offer a number of performance optimizations that are
important for high-volume services: optimizations in how spans are buffered (includ‐
ing how those buffers are synchronized) and improvements in performance achieved
through continuously streaming many spans over a single network connection
(reducing network overhead, latency, and local memory consumption).

Depending on your position within your organization and the service in question,
deploying new tracing libraries might be a breeze or a Sisyphean task. For the services

Tracer Architecture | 105

that are deployed weekly (or even daily), adding a new dependency might be a rela‐
tively easy task. If you are part of a platform team, doing so might involve a little
more work, including making the case for the change, creating the pull request in an
unfamiliar codebase, getting approval, and deploying the change. In any case, the
actual process will depend on the language, platform, and package (or dependency)
management system.

On some platforms, especially those that use interpreters, just-in-time compilers, or
dynamic linking, it’s possible to deploy in-process libraries with no code changes (and
no recompilation). For example, Java’s Special Agent offers a means to dynamically
link relevant instrumentation and tracer libraries into the Java virtual machine (JVM)
by inspecting the bytecode of modules that have already been loaded. In those cases,
redeploying services with new configurations may be sufficient. (Note that services
on these platforms make excellent candidates for your initial roll-out of tracing!)

Sidecars and Agents
The terms sidecar and agent can be used to mean a number of things, so if you see
them, take a closer look to be sure you understand what functions that tracer compo‐
nent is implementing. In many cases, these are relatively stand-alone components
that, while deployed close to your application, are isolated enough to have little
opportunity to interfere with application performance. A common motivation for
creating this type of component is to move as much functionality as possible from the
in-process library to a sidecar, alleviating the need to reimplement this functionality
for every language or platform. Some of this functionality may include discovering
other tracer components and handling network errors.

Depending on how you’ve set up your infrastructure, this might take the form of a
host-level daemon (for example, using systemd) or a sidecar container running
alongside your service container. One important consideration will be budgeting for
the resources required to run these sidecars: though it’s likely to be a small amount of
CPU per service instance, the total cost can quickly add up as you deploy tracing for
every service in your application.

Even in a containerized environment, you might consider running only one sidecar
per host (for example, using a Kubernetes DaemonSet). This will potentially save on
some resources (since you will need to run fewer sidecars) and can help collect better
telemetry throughout the service life cycle (running within the same Kubernetes Pod
can mean that your tracing sidecar can’t observe service shutdown, since it is shut
down at the same time). On the other hand, running only one sidecar per host can
mean that one noisy service instance on that host can generate so much telemetry
that the tracing sidecar is overwhelmed and data from it—and other service instances
—is dropped.

106 | Chapter 5: Deploying Tracing

Historically, the term “agent” was used to describe processes that interacted more
directly—or even were part of—your service instances, often plugging into the run‐
time of the service itself. While most modern tracing systems use the terms “client” or
“SDK” for this sort of functionality, you still might see it in some cases. One reason
that many of these systems stopped using this term was that it can be associated with
plug-ins that would significantly impact performance, in some cases so much so that
it could only be used in staging or QA environments and never in customer-facing
production environments. Java’s Special Agent was named because it offers many of
the advantages of a more traditional agent (primarily that it’s easy to install) without
the runtime overhead.

Collectors
Span data is often emitted in a format that’s not optimized for storage or analysis. At
the same time, not all data will be kept in most tracing deployments: most of these
spans will not offer enough value, and, as we’ll describe in Chapter 6, the costs of
doing so are quite high. As such, it’s important to perform some translation, sam‐
pling, and aggregation of spans. For these reasons, and generally to provide a level of
abstraction between the application and the rest of the tracing components, many
tracers include a component called a collector. What distinguishes a collector from a
sidecar or agent is that it’s usually running further away from application services and
may even run on dedicated hosts or virtual machines (VMs). The function of a collec‐
tor varies from implementation to implementation, but we will cover some common
cases here.

Most in-process libraries and sidecars transmit spans in a way that minimizes perfor‐
mance impact on the service process itself. This usually means minimizing the
amount of computation required by the service (since CPU is often the scarcest
resource). However, this is often not the most efficient way to transmit spans from
the point of view of network consumption, nor is it usually a convenient format for
querying, storing, or analyzing spans. One common function of a collector is to
translate incoming spans into a format more amenable to these processes. For exam‐
ple, a simple translation would be to compress spans using a generic compression
algorithm. Another more domain-specific compression technique would be to create
dictionaries of commonly appearing strings (for example, common service and oper‐
ation names and common tags) and then forward those dictionaries and spans that
reference them.

Collectors may accept spans in a number of different formats and translate spans into
a single, uniform format. Others may forward spans to multiple tracer systems and
possibly even forward spans to these systems in different formats. In cases where the
in-process library or sidecar is shared across multiple tracer implementations (as in
the case of OpenTelemetry), the collector may be the first component to introduce a
tracer-specific format.

Tracer Architecture | 107

Collectors are also often responsible (at least in part) for sampling spans: that is, in
implementations where only a subset of spans are processed, collectors are responsi‐
ble for selecting which spans should be forwarded to other tracer components. There
are a number of different ways that spans can be sampled, including uniformly ran‐
domly, based on attributes of those spans or other information. In some cases, sam‐
pling can be performed either in-process or in a sidecar, but since there is often a
need to change the parameters controlling how spans are sampled, moving this func‐
tionality to a smaller set of centrally controlled processes can make managing this
configuration easier. In other cases, spans must be buffered for a longer period of
time before they can be sampled, requiring more memory than would typically be
available in a sidecar.

Collectors may also be responsible for computing some aggregate statistics about
spans. For example, the spans that are not sampled may be accounted for in various
ways, including the total number of spans received from a given service, the number
of spans where an error occurred or with a given tag key and value, and information
about the latency of some or all spans (including median and standard deviation), or
even as a histogram.

Computation of these statistics might be too expensive to do within the service pro‐
cess or in a sidecar. These statistics will also be more accurate if they are computed
before significant sampling takes place. In all cases, the goal of computing these
aggregates is to preserve some information about as many spans as possible, while
reducing the total amount of data that must be forwarded to other tracer
components.

Collectors may be deployed in a number of different ways, depending on what func‐
tionality they provide. In some cases, they may require significant resources to store,
index, or otherwise process spans. When they do, they’ll often be deployed on dedica‐
ted hosts (to isolate them from the rest of the application). If they perform significant
sampling, it might be beneficial to deploy them on the same network as the applica‐
tion because this can reduce network costs, especially if other tracer components are
not deployed on the same network (and even if they are still on dedicated hosts).

On the other hand, if a tracer implementation performs few of the kinds of function‐
ality described in this section, this functionality may be built into the sidecar and
agent. This is often the case when they store very little state (and especially when that
state is specific to a service instance). Doing so simplifies tracer deployment, since
there is one less component to deploy.

Centralized Storage and Analysis
Finally, tracers must take these spans (and any other information computed from
them) and provide some value to developers. This work is usually performed not just
by one component but by a set of components. Together they are responsible for

108 | Chapter 5: Deploying Tracing

gathering all of the tracing telemetry from your application, storing it, analyzing it,
and visualizing it in useful ways. The number of components and their function will
vary widely based on the tracing implementation you choose. Likewise, how you
deploy these components of a tracer will also vary significantly based on this choice.

Tracers may store spans and other data in a variety of ways. Tracers may include data‐
bases of spans or traces as well as time series data (including request rates and
latency). These storage systems will typically provide at least a few different indices
on these spans and time series. They may also include temporary storage of spans
that is used during the ingestion process (for example, as a message queue). Tracers
will also include components which can search these storage systems, in response to
developer queries or automated analyses. In many cases, tracers are used as part of an
incident management process, and in those cases, they must be able to answer ques‐
tions about requests that have occurred in the last few minutes—if not the last few
seconds. As such, the process of receiving, storing, indexing, and analyzing traces
must also be completed in minutes or seconds after a request is completed. Due to the
volume of data, the tracer components that ingest and store data often require signifi‐
cant effort to deploy and maintain.

The most important aspect of these tracer components is that they centralize the func‐
tionality described earlier: since the whole point of traces is to provide cross-service
visibility, some components of the tracer must bring together data from across all
services. In most tracer implementations, the in-process libraries, sidecars, and col‐
lectors all have only a narrow view of the application, perhaps from one service
instance or from a handful of them. It’s the role of these centralized storage and anal‐
ysis components to take whatever data has been forwarded to them and build a uni‐
fied view of the application and its behavior.

Incremental Deployment
As you begin your journey toward adopting distributed tracing, think about which
aspects of the implementation could present the biggest challenges for your organiza‐
tion. Perhaps your organization uses a large number of languages and frameworks;
perhaps teams in your organization make similar technology choices, but manage
releases using very different processes; perhaps some tracing use cases are much more
important than others; or perhaps your organization operates at a scale much larger
than most other organizations. Consider what makes your organization different
than others, and how these differences might impact choices related to tracing.

Despite all of these potential variations, we can unilaterally endorse the use of open
source APIs, SDKs, and libraries. A great deal of effort has gone into building these
tools in ways that minimize potential performance impact on your application, while
at the same time maximizing your options for other choices about tracer implemen‐
tations. A number of different open source and commercial tracer implementations

Tracer Architecture | 109

work with projects like OpenTracing, OpenCensus, and OpenTelemetry; they make a
great choice even if you decide that your best path forward is to build a new tracer
from scratch!

Using an open source API and SDK will also enable you to compare tracer imple‐
mentations very early in the process: the functionality offered by different tracers can
vary a lot. As you are making the case for tracing within your organization, make
sure that you are using results of specific implementations. As part of that compari‐
son, also make sure that you test at scale: you don’t want to find out several months
into your project that your favorite tracer can’t handle traffic from your production
workload.

Also, remember that—at least from your organization’s point of view—the adoption
of distributed tracing will continue for some time. Make sure that the initial invest‐
ment in terms of instrumentation and implementation makes sense for both the
short- and long-term value that your organization will be deriving from it.

Data Provenance, Security, and Federation
So far, when we’ve discussed instrumenting your application and deploying a tracer,
we made a simplifying assumption that all of the code was under your control. In
fact, that code runs in a variety of environments, including not only your datacenter
or virtual private cloud but also the phones and computers of your users and the
environments managed by any service providers that you might leverage as part of
your application. If telemetry is generated by code that runs outside of your control,
you should ask additional questions about the quality of that data.

Frontend Service Telemetry
One powerful aspect of distributed tracing is its capacity to tie performance from
your frontend services (that is, your mobile app and web clients) together with per‐
formance from your backend services, providing a complete view of how your appli‐
cation is working. Capturing telemetry from frontend services lets you measure
performance from as close to your users as you can get. However, because of its
source, frontend telemetry must be given special treatment in a couple of ways, and in
the context of our current discussion, it’s important to ask how much you can and
should trust it.

Frontend telemetry can be suspect first because of the quality of the platforms them‐
selves. Mobile devices and desktops are notoriously prone to inaccurate clocks; that
is, the time reported by a mobile device may be seconds or even minutes different
from that reported on your backend servers. This leads to a kind of clock skew where
a span reported by a frontend service might look as if it doesn’t start until after its
child span (as reported by a backend service). The top trace in Figure 5-2 shows an

110 | Chapter 5: Deploying Tracing

1 [Mil17]

example of how this might appear; in the example span A is generated by a frontend
service, and the other four spans come from a backend service, including spans B and
C, which are child spans of A. While A starts before C (as it should), it appears to
start after B, which should not be possible.

There are two common methods to address this problem. First, tracing solutions can
attempt to measure this clock skew using adaptations of the Network Time Protocol.1

This involves recording timestamps both on the tracing library (running as part of
the frontend service) and within the tracing implementation, and comparing these
timestamps to estimate the clock skew. This skew can then be removed from frontend
spans by adding or subtracting it from the timestamps that appear in the span. In our
experience, this method is effective most of the time. However, when it does fail (usu‐
ally due to one of the many uncertainties of running code on a mobile device), the
results can be very confusing, and can offer results that are even less accurate than the
original timestamps. (It’s important to call out when this is happening so that devel‐
opers can disable it and restore the original timestamps.)

Figure 5-2. Example tracing showing clock skew before (top) and after (bottom)
correction.

Data Provenance, Security, and Federation | 111

A second method to address clock skew between frontend and backend services is to
leverage the causal relationships between client and server spans. By definition a cli‐
ent span must start before its associated server span starts. And while it’s not always
the case, in many applications server spans end before their associated client spans
end. Given this, the timestamps in frontend spans can be adjusted to maintain these
invariants. Unlike an estimate of clock skew, these adjustments yield more predictable
results. However, these adjustments are quite coarse: they don’t establish exactly when
a frontend span should start, they only put an upper bound on it. As such, it’s difficult
to distinguish how much network time is consumed by the request as opposed to the
response.

In our work on implementing tracing solutions, we’ve used a combination of these
two techniques: we use clock skew estimation to try to build a precise model of per‐
formance, but use causal relationships as a check to make sure that these estimates
make sense. The bottom trace in Figure 5-2 shows what that same trace might look
like after timestamps in A have been corrected.

Frontend telemetry can also be suspect because of the actions of malicious users. That
is, these users might try to manipulate your telemetry to disguise performance prob‐
lems or distract you from other work by creating spans that indicate spurious issues.
Malicious users might also try to overwhelm your tracing system by instigating a
denial-of-service attack against it.

One course of action that we’ve observed is to simply ignore the problem. The cost of
generating sufficient false telemetry is high enough—and the impact of that telemetry
sufficiently low—to discourage any users from carrying out such an attack. Figure 5-3
(A) shows what this might look like: spans are sent directly over the internet to trac‐
ing backends, in parallel with requests made to other application backends. Depend‐
ing on how you are using spans from frontend services, this may be appropriate for
your organization.

One variation of this approach is to make sure that any spans from frontend services
(that is, from untrusted sources) can be segregated from those originating from back‐
end services. That way, even if your tracing system were to be attacked in some way,
you could still be confident that spans originating from backend services were accu‐
rate (and simply ignore frontend ones until you could put another solution in place).

OpenTelemetry’s concept of a “public endpoint” (as discussed in Chapter 4) is
another way of marking this sort of trust boundary. By setting that attribute, you’re
indicating to the tracing system that you don’t completely trust the context that was
propagated to this point.

112 | Chapter 5: Deploying Tracing

Figure 5-3. Three ways of sending spans from frontend services (for example, a mobile
app) to tracing backends.

An alternative to trusting frontend services is to synthesize these spans on the back‐
end. That is, rather than sending spans directly from frontend services, those front‐
end services send enough data (for example, span start and end times) to the
backends that the backends can reconstruct those spans and forward them to the
tracing implementation. Figure 5-3 (B) shows what this might look like. (Not shown
in the figure are spans sent from the application backends to the tracing system.) This
might mean extending the API provided by the application backends, but because
such an API is much narrower than a generic tracing API, it limits the kinds of false
information that an attacker can provide and also increases the cost of doing so (since
the attack must be customized to your application).

Data Provenance, Security, and Federation | 113

This approach also has a couple of other advantages: you might be able to save on the
number and size of network requests from frontend services; you can also more easily
upgrade the format of your frontend telemetry, since it will only require a backend
deployment to do so. However, taking this approach means that when your backends
are down, you will receive neither any backend telemetry nor any frontend telemetry.
It is also a lot more work, since you are in some ways reimplementing part of the
frontend tracing SDK.

Finally, the most secure way to accept spans from frontend services is (perhaps
unsurprisingly) to authenticate these requests. For example, you can set up an
authenticating proxy that can validate the users from which spans are being sent, as
shown in Figure 5-3 (C). In fact, you probably already have one of these proxies, so
authenticating telemetry might just be a question of setting up a new route in its
configuration.

This approach has a couple of drawbacks: it doesn’t work if your application accepts
anonymous traffic and it is still possible for an attacker to send spurious data through
such a proxy (though it’s much harder to do so at scale). And of course, if an attacker
compromises your authentication system, they could leverage that to confuse or over‐
whelm your tracing system…but in that case, you’ve probably got bigger problems to
consider.

Server-Side Telemetry for Managed Services
In some cases, you may now be able to let others take on some of the work of deploy‐
ing tracing for you: some managed service providers are now starting to emit teleme‐
try describing the services that they provide. This means that you need to manage
neither these services nor their telemetry. While this practice is still in its infancy, it’s
an important step forward for observability.

Managed service providers, whether they offer data storage, data analysis, or integra‐
tion with other services, are a great way to quickly implement parts of your applica‐
tion or even extend it. And while these service providers probably have an obligation
to provide some sort of baseline performance, there can still be variations in this per‐
formance that affect your application (positively or negatively). Even if not, it can still
be useful to understand how managed service performance is related to the perfor‐
mance of the rest of your application.

Even without the cooperation of service providers, you can instrument your applica‐
tion to provide some visibility into how these services are performing by adding
client-side spans to your application. The span labeled GET /<key> shown in
Figure 5-4 is an example of this. It’s tagged kind: client to indicate that it represents
time waiting for an external request to complete. Without any managed service spans,
this would be the bottom span in this trace: you’d have no indication of what’s hap‐
pening within this request.

114 | Chapter 5: Deploying Tracing

Figure 5-4. An example trace that includes a span from a managed service provider.

However, with managed service spans, you would also see the span labeled GetObject
(which is also tagged as kind: server), as shown in the figure. This can then be used
as part of the approaches described in Chapter 8 and Chapter 9, for example, using
the difference between the client and service spans to measure the impact of the net‐
work on request latency. In fact, this trace looks like any other trace you’ll see in this
book. Depending on the level of visibility that the service provider is comfortable
with, you might also glean some information about how the request was handled.

As with frontend spans, there can be some concerns about trusting the data that
comes from devices beyond your organization’s control. Since you have an explicit
relationship with this service provider, you can probably trust it not to intentionally
pollute your data. However, it still would be worthwhile to identify these spans in
some way: should a problem occur, doing so will enable you to isolate data from
external sources.

There are still several challenges that need to be addressed to make it easy to integrate
managed service spans. For example:

• How are spans transmitted to the tracing backends? (Directly from the service
provider or not?)

• How is tracing context propagated to the managed service? (As part of request
metadata?)

• What naming and other conventions are used for operation names, tags, and
other span data?

Ultimately, these are all questions about how to federate tracing. And while these
problems existed before (for example, when integrating several open source projects),
they are more acute when the software is not only written by different organizations
but also managed independently. In part, efforts like OpenTelemetry can help address
these problems. However, they will also require some standardization (or at least
coordination) of tracing solutions as they concern not just the format of the telemetry
data but also how it is ingested.

Data Provenance, Security, and Federation | 115

Managed service telemetry is still very new and only available for a handful of serv‐
ices. If you see it, thank your provider…and take advantage of it!

Summary
Properly instrumenting your services is the first step in distributed tracing, and doing
so will generate a lot of data, more than you or any other developer has time to look
at. Success in distributed tracing requires something to sift through that data and find
the insights you need to understand and improve application performance; that’s the
role of the rest of the tracer implementation.

In this chapter, we considered some of the human factors at play in deploying tracing
within a larger organization, as well as a high-level architecture of many tracer imple‐
mentations. A major factor driving the design of tracers is managing infrastructure
costs—computing, network, and storage. We’ll dive into these costs and how different
tracers handle them in more detail in the next chapter.

116 | Chapter 5: Deploying Tracing

CHAPTER 6

Overhead, Costs, and Sampling

Defining the right set of spans to trace to understand your application can be a chal‐
lenge—though a challenge worth rising to—but once you’ve done so, you’ll find your‐
self faced with another challenge: managing the torrent of spans as they’re emitted
from your application. Even when your application is generating data at the right vol‐
ume, it’s still important to understand the impact on the performance of your applica‐
tion and the cost of your computing infrastructure. The first tenet of distributed
tracing—like all observability tools—should be to “first, do no harm.” Tracing can be
implemented in a way that has negligible impact on your application, but managing
the cost of the infrastructure can be more difficult.

Not all spans have equal value. Many spans represent run-of-the-mill requests that
are (hopefully) bountiful within your application. While it’s useful to measure the
performance of these requests and perhaps to have a few examples, chances are that
just a handful will be sufficient. On the other hand, spans related to a rarely occurring
bug or to a small but important user can provide critical insight into what’s happen‐
ing and why.

Above all, it’s important that the set of spans representing a single request are pre‐
served as an atomic unit. If only a part of a request is available, then tracing has failed
in its goal of providing end-to-end information about what’s happening. This means
than while many spans might appear to be low value because they represent ordinary
cases, they provide context for other less-ordinary spans within the same request.

If not all spans have equal value, then selecting the right spans is crucial to managing
costs and making sure you are getting a return on your investment in tracing.

In this chapter, we will make a few assumptions about the architecture of a tracing
solution to aid our discussion. Most tracing solutions include most or all of the com‐
ponents shown in Figure 5-1, though they may be implemented in different ways.

117

First, most tracing solutions include some sort of SDK that enables application devel‐
opers to create and annotate spans. Some solutions may also include an agent that
runs close to application services as a sidecar process or on the same host. A set of
collectors begin the aggregation process, while finally spans are analyzed and stored
by some central service.

Application Overhead
The first place the cost of tracing can show up is in the performance of the applica‐
tion itself. Ideally, tracing SDKs would have no effect on your application’s perfor‐
mance, but without some care, tracing can have an impact on both your application’s
latency and its throughput.

Latency
Latency, or the time required to process a request, is of utmost importance to applica‐
tion owners: reducing latency is one of the primary metrics that lead developers to
look to distributed tracing. However, gathering the data required to build traces can
also contribute to latency. Understanding that impact is an important part of choos‐
ing the right granularity for spans.

Creating and finishing spans as well as adding tags and logs all can generate latency.
High-performance tracers perform only the absolutely necessary work on application
threads and move the remaining work to a background thread. Still, building spans
often requires additional function calls, allocation, or updates to shared data struc‐
tures. For example:

• Creating a span might require allocating a new object, adding a reference to the
string representing the name of the operation, reading a value from a perfor‐
mance timer, and possibly updating some thread-local state.

• Logging an event may require serializing a data structure into a generic format
that can be sent over the network.

• Finishing a span might require reading a value from a performance timer, updat‐
ing a field in an object, and storing that object in a shared buffer.

Allocating additional objects can certainly have an impact, especially if tracing instru‐
mentation is added to a performance-critical piece of code. In a garbage-collected
language, this allocation may trigger a collection which can have further negative
impact on latency.

Logging has the greatest potential for impact here as it often involves the greatest
amount of data. Best practices for logging mean that an event should be structured:
application authors should log each event with a well-defined structure, including
field names:

118 | Chapter 6: Overhead, Costs, and Sampling

span.LogEvent({'request_id': req.id,
 'error_code': 404,
 'message': 'document not in corpus'});

However, these events must be converted to a generic format that can be sent over the
network to downstream tracer systems. Usually this means that each event is serial‐
ized into a single string, often JSON. This requires additional allocation and time to
convert integers and other binary data into appropriate representations.

One strategy for reducing the cost of this serialization is to defer this work or move it
to a background thread. While attractive, this can have unintended consequences if
any of the parameters passed as part of the event are subsequently modified. Consider
Example 6-1, where incremental progress is logged as part of a span.

Example 6-1. Incremental progress logged as part of a span

status = {progress: 0.1, complete: false};
span.LogEvent({'message': 'work started', 'status': status});
doSomething();
status.progress = 0.2;

If the event is not serialized until after the last line of that example, the data that later
appears as part of the trace will not reflect the state of the application when LogEvent
was called.

Some tracers distinguish between an ordinary event and one which might be serial‐
ized out of band. However, application developers often miss this subtle distinction,
and many tracers opt for a simple interface where all events may be serialized out of
band. As such, many tracer APIs force users to express each field of an event as a
scalar value. If that’s not the case, best practice is to avoid passing shared, mutable
data structures when logging with tracers.

In a multithreaded application, using a shared buffer can become a source of conten‐
tion as many threads try to add spans to that buffer. This can be mitigated by either
batching spans locally before adding them to a shared buffer or by using a lock-free
data structure as the implementation of that buffer.

While tracing can contribute to application latency, following best practices usually
means that its impact is quite small and might even be too small to be measured. For
example, if spans are only created as part of network calls, the latency changes will be
in the noise: one additional function call, allocating a handful of bytes, and perform‐
ing an atomic compare-and-swap instruction are all orders of magnitude faster than
making a round-trip RPC, even within a single datacenter. When combining these
best practices with reusable buffers and lock-free structures, and moving work to a
background thread, most developers can safely ignore the latency impact of tracing
even in user-facing production systems.

Application Overhead | 119

Performance Impact of Other Kinds of Tracing
Throughout this book, we focus on distributed tracing, but there are many other
kinds of tracing that developers use to understand applications performance. Kernel
tracing and browser tracing are two examples. Many of these techniques and the asso‐
ciated tools focus on a single process, diving deep into the performance of that pro‐
cess. They often provide extremely fine-grained performance data, even down to the
level of an individual function or line of code. To provide that level of resolution,
these tools integrate tightly with the language complier or runtime and may have sig‐
nificant impact on performance. If enabled in user-facing or large scale deployments,
this could result in poor user experience or additional infrastructure costs.

When developers first learn about distributed tracing and how it’s being using in pro‐
duction systems, they may be surprised to learn how little effect it has on perfor‐
mance. This is largely due to the granularity of instrumentation: since distributed
tracing focuses on events such as interprocess communication, the overhead is negli‐
gible when compared to the duration of the events themselves.

Throughput
Tracing can also affect application performance by reducing throughput, the number
of requests that a fixed amount of infrastructure can handle in a fixed period of time.
This can result in increased infrastructure costs, since additional computing power is
required to handle the same number of requests. Throughput is often an important
concern for high-volume services, where these costs can be significant.

As described in “Latency” on page 118, one of the primary ways that latency impact is
managed is by moving work to a background thread. This thread (or threads) is then
responsible for serializing span data so that it can be sent downstream. It is also
responsible for buffering spans to reduce per-span network overhead as well as retry‐
ing failed network requests. As in other contexts, buffering has its trade-offs. A larger
buffer trades off-network overhead for increased memory usage. In addition, larger
buffers introduce a delay between when events occur in the application and when
they can be observed in a tracing tool. Best practices indicate that application events
should be reflected in observability tools within one minute: any more delay can
mean that developers and operators can’t adequately understand whether the changes
they are making (for example, rollbacks) are having the desired effects.

For mobile clients, power is another critical resource, and many devices will periodi‐
cally power down mobile data radios to save power. Tracer SDKs should be careful
not to buffer spans for too long in case the radio is powered down in the meantime
(and sending those spans would cause it to be powered up again).

120 | Chapter 6: Overhead, Costs, and Sampling

1 [Sig10]

Given these concerns about memory and power, and the fact that other parts of the
tracing pipeline may also introduce additional delay, most tracer libraries buffer
spans for at most a few seconds, usually less than a second. Network costs may also be
reduced by maintaining long-lived connections to downstream tracer systems, for
example by streaming spans to backends, effectively reducing the delay to nothing
while also keeping memory impact low.

Tracers may compress span data to reduce the network costs, though this is another
example of trading computing resources for network ones. Often, spans emitted from
a single process will share many operation names, tag keys, and even some tag values.
For example, a service will generally only serve a static number of endpoints, which
in part determine the unique operation names found in the spans emitted by that
process. Often spans will include a tag indicating the language or platform, the host,
or the datacenter, all of which will be shared by all spans emitted by that process. If
these strings are sent only once as part of a request containing many spans, a signifi‐
cant amount of bandwidth can be saved. Tracers may also use a generic compression
technique, such as gzipping the entire span buffer, before sending it over the wire. In
all of these cases, tracers may incur slightly more computational overhead in
exchange for lowering network usage.

Finally, tracer SDKs and agents may also reduce the impact on throughput by only
emitting a subset of spans that could be generated. We’ll discuss this as part of sam‐
pling strategies later in this chapter.

Tracing Overhead at Google
Google’s distributed tracing system, Dapper, was built to measure latency in a high-
volume distributed system. Many first-time tracing users believe that tracing cannot
be used in a production system because the overhead on the application will be too
high.

Despite its enormous scale, Google deployed Dapper as part of every web search
request. As described in its technical report,1 it measured the effects on latency and
throughput at a variety of different sampling rates. Even when each server is handling
tens of thousands of requests per second, Google found that the latency and through‐
put impact of sampling 1 in 16 requests was within the experimental error. Dapper
often sampled more aggressively—not because of the impact on application overhead,
but because of the infrastructure costs associated with storing these spans. When run‐
ning on hundreds of thousands of servers concurrently, even with 1-for-16 sampling,
Dapper generated far too much data to store at a reasonable cost.

Application Overhead | 121

Infrastructure Costs
While the effect of tracing on the application itself can be minimized relatively easily,
the cost of the network and storage required to collect, store, and eventually analyze
traces is a more significant design and engineering challenge.

We’ll walk through a simplified—and in many ways, naive—model to help make
these costs more concrete. This is not meant as a guide for analyzing the cost of trac‐
ing your application, since it bakes in many assumptions about the size and imple‐
mentation of an application. Hopefully, however, it gives a sense of the relative scale
of the different ways that tracing can affect your infrastructure costs.

Assuming an individual span (including tags and logs) is 500 bytes in size, we can
start to estimate these costs by computing the approximate data rate required to trace
your application. You can do so based on the number of end-user requests (that is,
the number of interactions that your users have with your application) and the num‐
ber of services in your application (including browser or mobile apps and backend
services such as an authentication service, a user database service, or a payment ser‐
vice). For example, if your application serves two thousand end-user requests each
second and consists of 20 services, it would generate 20 MB of span data every second
or 72 GB every hour.

Network
Tracing solutions aim to move span data away from applications as quickly as possi‐
ble, both because this helps minimize the impact on the application and because it
makes these spans available for analysis (and therefore the source of insights for trac‐
ing users) more quickly. As discussed earlier, tracers can trade off some network costs
by incurring additional computation, but there are a number of additional design
choices to be made in how these spans are collected.

Not all network costs are the same. Network transfer within a datacenter or virtual
private cloud (VPC) is typically free, and is usually only limited by the capacity of an
individual machine (often around a few GB per second). Sending data out of a VPC,
on the other hand, can quickly incur large costs. Sending data within a region or a
continent might cost as little as $0.01 per GB, but costs quickly rise when sending
data across continents or public networks—by a factor of 10 or even 20. Assuming a
cost of $0.10 per GB, a tracer that sends every span over the internet would incur
about $173 in network fees per day for our small example application.

As a basis for comparison, even a conservative estimate of the infrastructure required
to run the application itself is less than this amount. For example, if we assume that
each instance of a service can serve 500 requests per second and that every service
participates in every request, 80 VM instances are required. At $0.04 per hour (on-
demand prices) these instances would only cost about $77 per day. Again, we are

122 | Chapter 6: Overhead, Costs, and Sampling

2 [Sig10]

making a number of assumptions about the behavior of an application (and your
application’s performance might vary by an order of magnitude), but this example
shows that the network costs required to send all spans over the internet are on the
same scale as the computing costs required to run an application. This is far beyond
what most organizations are willing to spend.

Where spans are stored can have a huge impact on cost. Storing them close to the
application can reduce these costs, but this can complicate global analysis of traces.
Most tracers take a sample of spans to reduce these costs.

Storage
No matter where spans are stored, tracers must store them somewhere. As a baseline,
assume you use a simple block storage system (such as AWS S3 or Google Cloud
Storage), and your provider charges $0.02 to store 1 GB for a month. Assuming that
storing spans for one month is sufficient, the cost of using this solution for storing
spans generated by our example application would be about $35 per day.

However, these storage solutions are among the simplest—and cheapest—solutions.
Making use of spans requires much more than just storing them: providing function‐
ality to search spans, bulk access for analysis of similar or related spans, and aggregat‐
ing metrics about groups of spans all require some way of indexing spans once they
are stored. These indices of course also require storage and other resources, so this
estimate must be seen as the lower bound on what a naive implementation would
cost. As in the case of networking resources, most tracing solutions implement some
form of sampling to reduce storage costs.

Tracing Costs at Google
Most of the sampling implemented with Dapper was aimed at reducing network and
storage costs. The default sampling rate in the process itself was 1 in 1024, and spans
were typically reduced by another factor of 10 before traces were stored durably.

Even at these sampling rates, Dapper stored traces in regional repositories to reduce
network costs. At the time when Dapper was originally deployed, most requests were
handled by a collection of services running within a single region, so all of the spans
for a given trace would be generated in a single region. The team was frugal with
which attributes could be used to search for spans. While they originally implemented
two different indices (one for service and one for host), they found that usage pat‐
terns didn’t justify the cost of maintaining these indices separately. They later com‐
bined these two into a single composite index to bring costs in line with value.2

Infrastructure Costs | 123

Sampling
So far in this chapter, we’ve discussed the many different costs that a tracing solution
might incur. We concluded that if every span of every request was captured, stored,
and indexed, the cost of tracing could be greater than the cost of running the applica‐
tion itself.

It is paramount, therefore, that a tracing solution reduce the amount of telemetry
data in some way. Tracers use several strategies to do so, but the most widely used and
effective is to collect and process a subset of spans by sampling them. Almost all sig‐
nificant application behavior will surface in more than one request, so as long as the
tracing solution can capture at least one example of each interesting behavior, users
can use those examples to find and address bugs and performance problems.

Minimum Requirements
The first and most important consideration when determining how to sample spans
is to make sure that the tracing solution is building complete traces. By complete, we
mean that if a tracer chooses to capture a given request, it must collect every span
from that request. Failing to do so means that users will be left with as many ques‐
tions as they started with.

The trace in Figure 6-1 shows three spans as part of an example of an incomplete
trace. These three spans are labeled A (the root of the trace), C (missing parent span
B), and E (missing parent span D). From these, the user can possibly infer that the
latency is due to C or E, but the three configurations in the figure show there are sev‐
eral possibilities for why C and E were invoked. Their closest common ancestor
might be A, B, or D, and each of these possibilities might lead to users taking different
actions to understand the causes of slowness. Furthermore, additional spans as chil‐
dren of C or E that did not appear in the trace might describe the ultimate cause of
the latency.

Sampling consistently across a distributed system is difficult because, like in many
challenges in a distributed system, it requires coordination. Either sampling decisions
must be made globally or the tracer component associated with each service must
come to the same sampling decision, often by sharing some information about the
request. This must be done in an extremely efficient way since it must be done for
every request handled by the application.

124 | Chapter 6: Overhead, Costs, and Sampling

Figure 6-1. An incomplete trace.

Because the cost of sending spans over the network between datacenters is high, sam‐
pling decisions must be made in—or very close to—the application: at the very least,
the decision must be made before spans leave the datacenter or VPC. This poses an
especially large problem for applications that span (no pun intended!) regions or even
cloud providers.

Sampling | 125

Strategies
As sampling is nearly ubiquitous in tracing solutions, it can be useful to classify each
solution by the methods and kinds of data it uses to sample traces. Which traces are
sampled affects which kinds of analysis can be performed and of course the results of
those analyses. Consider which sorts of use cases are most important to you as part of
choosing a tracing solution and sampling approach.

Up-front sampling
A simple way to determine which spans to keep is to make sampling decisions before
any spans have been generated for a given request. This is often called up-front or
head-based sampling, as the decision is made at the beginning or “head” of the
request. In some cases, it is referred to as unbiased sampling when sampling decisions
are made without even looking at the request.

In its original instantiation, Dapper followed this strategy by flipping a coin at the
beginning of each request and passing the result of that coin flip to every other ser‐
vice that participated in the request. With this strategy, each service knows at the
moment it begins processing a request whether to capture spans as part of handling
that request.

Solutions can vary their sampling rates based on some features of a request. For
example, the tracer for a lower-throughput service or endpoint might be configured
to use a higher sampling rate. In this case, as a user of a tracing solution, you are
essentially writing a set of rules that govern how data is sampled.

Sampling rates can also be varied dynamically to achieve a desired output rate: this
enables you to budget for a given amount of infrastructure (mostly network and stor‐
age) and to make the most of that infrastructure, regardless of the actual throughput
of the application.

Up-front sampling is a strong approach for use cases that only consider traces in
aggregate (especially high-throughput services) and for which there is little diversity
within the population of traces. Up-front sampling was chosen as part of the imple‐
mentation of Dapper as Google search requests are both plentiful and relatively
homogeneous.

While up-front sampling is both simple and efficient, it suffers from two deficiencies.
First, requiring that sampling decisions are passed to every service that participates in
the request means there is a high degree of uniformity in the application code. It also
requires that the root span of each request can be determined with high confidence. If
the result of each coin flip is not propagated properly or if it is inadvertently ignored,
incomplete traces will result. At Google, a unified codebase (with a small set of lan‐
guages and a single RPC framework) was sufficient. In addition, Google also runs a

126 | Chapter 6: Overhead, Costs, and Sampling

3 “Tail-based” can be an especially confusing term for those with a statistics background, as “tail” can refer to
the narrow part of an asymmetric distribution. In that case, “tail-based” would mean sampling requests that
have a higher latency compared with other requests.

standard set of frontend servers, making it easy to determine where traces should
start for nearly all requests.

Second, up-front sampling means that sampling decisions are made with no informa‐
tion about what will happen in the course of handling the request. The parameters of
the request itself can be used to inform that decision, but important signals such as
the duration of the request or even if the request succeeded are, obviously, not known
until after the request has completed. This can be mitigated to some extent by per‐
forming the sampling in two stages. A first pass of sampling is made within each ser‐
vice instance to reduce the amount of data to a more manageable level. This partially
sampled data can then be forwarded to a centralized solution which—with the advan‐
tage of a now complete picture of each request and its response, including latency and
response code—can make a second sampling decision. However, if any sampling
occurs within the service instances themselves (that is, in the first pass), requests with
interesting behavior that occur infrequently will be lost. In the next section, we will
consider a solution where sampling decisions are made only in a central location.

Response-based sampling
To address many of the shortcomings of up-front sampling, many tracers make each
sampling decision based on features of the response or on information derived from
the request as a whole, including the response. For example, part of the response may
indicate that the request failed. This failure may be used as a trigger to sample this
request (since failed requests may be especially valuable in tracking down issues).
This strategy is sometimes called tail-based sampling since the sampling decision is
made at the end or the “tail” of the request.3

In addition to errors, response-based sampling may also use the duration of the
request as part of making sampling decisions. For example, tracers may set a thres‐
hold and keep all (or a significant portion of) traces whose duration exceed that
threshold. Response sizes or other application-specific features of responses may also
be used as part of making those decisions.

Response-based sampling is significantly harder to implement than up-front sam‐
pling. Unlike up-front sampling, whether a span is going to be sampled may not be
known until seconds (or more) after the part of the request corresponding to that
span has finished. For example, a deeply nested span may be ready seconds before the
root span of its trace has finished—and seconds before a sampling decision for that
trace can be made. In that case, that child span must be temporarily stored in some

Sampling | 127

way. This can consume resources from the application (if it’s stored locally) or addi‐
tional network bandwidth (if it’s not).

Centralized sampling decisions
Since the purpose of tracing is to construct a global view of your application, it
shouldn’t be surprising that sampling techniques require global knowledge of your
application. Even passing a single bit from service to service, as in the case of up-front
sampling, is a form of global coordination. It follows that as more information is cen‐
tralized, more sophisticated sampling methods can be applied.

A naive approach where we first centralize all spans and then perform any sampling
would, as discussed, be quite expensive. However, we can achieve similar results by
first centralizing only portions of spans, making sampling decisions using that central‐
ized data, and then communicating those sampling decisions back out so that they
can be implemented in a distributed fashion.

The first step in implementing this hybrid approach is to make sure that the spans
which are selected are still available at the time that sampling decisions are made.
This requires that spans are buffered for at least as long as the duration of the longest
request your application is expected to handle. For example, if your application han‐
dles interactive search queries that may take as long as 30 seconds, then this buffer
must be large enough to hold at least 30 seconds’ worth of spans (and probably more)
to account for the time it takes to make and communicate the sampling decisions
themselves. In other applications, a buffer of five or even 10 minutes might be more
appropriate. For the purposes of illustration, assume that the tracer will buffer spans
for one minute.

For example, consider two spans that are part of the same trace: span A represents
handling an HTTP request and span B represents a database query performed as part
of handling that request. In addition, assume that significant additional computation
occurs after that database query. Figure 6-2 shows what this trace might look like.

Figure 6-2. A trace with a timeline of buffer events.

128 | Chapter 6: Overhead, Costs, and Sampling

In Figure 6-2, span A doesn’t finish until 10 seconds after span B finishes. If a prop‐
erty of span A (for example, the response code of the HTTP request) is used to select
A as part of the sample, that decision cannot be made until at least 10 seconds after
span B finishes. It follows that span B must be kept in the buffer for at least 10
seconds.

Typically, such a buffer is implemented as an in-memory cache in which spans are
appended to the buffer as they arrive. Memory is fast and cheap enough to store these
spans for a short period of time. Once the size of the buffer reaches its limit, the old‐
est span is overwritten each time a new span is added. Though these spans could be
written to local disk, the additional value of storing them durably is relatively low,
and the cost of doing so is usually large enough to make this approach prohibitively
expensive.

As the number of spans that are generated in one minute can be quite large, it should
be clear that we cannot implement this buffer inside of the service process: the
amount of memory required would be large enough to have a significant impact on
the service itself. Sometimes the buffer is implemented as a sidecar process or, more
commonly, in a separate container or on a dedicated virtual machine (shown in
Figure 6-1 as a “collector”). As discussed earlier, for high-throughput applications,
this buffer would also need to be located close to the application—within the same
datacenter or VPC—to keep network costs under control.

A key part of this approach is to make sure that all spans that are part of a trace can
be easily identified. In fact, this was already a requirement, since the spans that make
up a trace will arrive from many different sources and as they are collected and ana‐
lyzed, spans must be sorted into their respective traces. As part of propagating con‐
text between processes, each span must have a TraceID or other means to identify
which trace it belongs to. Tracing solutions can use TraceIDs to indicate which spans
should be sampled. Since TraceIDs are much smaller than the spans themselves, and
because the number of sampled spans is typically much smaller than the total number
of spans, this technique can dramatically lower infrastructure costs. Figure 6-3 shows
how part of the flow of spans from collectors to the central analysis and storage com‐
ponents can be replaced with TraceIDs. If some or all trace IDs are forwarded to the
central analysis component, these can be sent back to other collectors to ensure that
sampling decisions are made consistently.

Sampling | 129

Figure 6-3. An updated collection architecture showing propagation of TraceIDs.

Selecting Traces
Once a tracing solution offers a way to make sampling decisions based on a wide
range of request characteristics, we are left with a choice: which characteristics should
we use? Since the decision to sample a trace begins with the decision to sample a span
(which will eventually become part of that trace), we should choose span characteris‐
tics that lead to valuable traces.

As we’ve mentioned, one approach is to select traces which indicate problems—those
traces that are slow or have errors—since these often offer the most actionable infor‐
mation. However, there are a few problems with this approach. First, it is also useful
to have healthy requests, which can serve as a baseline for understanding problematic
requests. Second, what constitutes “slow” may depend on the operation that the span
represents: we might expect certain more expensive operations to generally be slower
than others, meaning that fast operations will rarely or never be sampled. Third,
though a given span may be tagged with an error, an operation further up the stack
may recover from that error, meaning that the trace as a whole is not that interesting.

Rather than selecting spans which are slow relative to all other spans, many tracing
solutions focus on spans which are slow relative to other spans for the same service
and operation. Similarly, spans that indicate errors at the root of a trace or as the top-
level span for a given service are more likely to be of value. As such, tracing solutions
may build models of performance for each service and operation, and then select
spans (and build traces) relative to these models. In organizations with a few services
per team and at most dozens of operations per service, this approach often provides a
lot of value to users.

130 | Chapter 6: Overhead, Costs, and Sampling

Tracing solutions that take this approach, however, must put some safety mechanisms
in place to handle intentional or unintentional misuses of these fields. For example, in
our experience building and managing tracing solutions both in-house and as a com‐
mercial product, we’ve seen many examples of other kinds of data leaking into the
operation field. In one case, a developer set the operation to the URL of the request,
which included a user ID. This led to hundreds of thousands of “operations” and an
attempt by the tracing system to capture representative slow traces for every one of
them. Obviously, this was both expensive and offered little value to users.

For implementers and power users of metrics tools, this will be a familiar problem:
maintaining state for each element of a high-cardinality set is expensive. As a result,
tracing solutions that attempt to find interesting examples for each service and opera‐
tion should include a safeguard such as choosing only the most commonly occurring
operations, up to some limit. In fact, once such a safeguard is implemented, it can be
applied to arbitrary tags, enabling the tracing solution to capture representative sam‐
ples for a wide range of traces.

Once you’ve chosen what sorts of characteristics make a span (and therefore, a trace)
interesting, you’re left only with the choice of how frequently to sample them. This
choice can largely be driven by costs: set a budget for infrastructure costs, then con‐
figure your tracing solution to periodically sample as many traces as can fit into that
budget.

In addition, you may also consider selecting traces based on some external events,
such as when a new release is pushed out or when some production configuration is
changed. Service failures are often caused by changes to one or more parts of an
application, and ensuring that you have traces to help explain what’s happening dur‐
ing these failures can be invaluable. The moment when a failure is known to have
occurred—for example, when an alert fires—is also an excellent opportunity to cap‐
ture a number of traces.

As with all biased sampling, it’s important that tracing tools account for bias when
computing statistics about latency, error rates, or other aspects of application perfor‐
mance. For example, if your tracing solution biases toward slower requests, it’s critical
that these requests get less weight if they are used to compute the average latency for
your service.

Off-the-Shelf ETL Solutions
Can off-the-shelf extract-transform-load (ETL) tools be used to implement the inges‐
tion portion of a tracing solution? While it is certainly possible to do so, most generic
ETL tools are built to process data that is much more homogeneous. As we’ve dis‐
cussed, not all spans provide the same value: spans which are slow or have errors may
provide important clues to improving performance. Likewise, ordinary spans that are

Off-the-Shelf ETL Solutions | 131

part of the same trace as a slow span (or a span that failed) may also provide helpful
context. In addition, the true value of a span might not be known until sometime
after it is collected by a tracing solution, seconds or even minutes later. Many ETL
tools expect that each piece of data can be processed independently or that collections
can be processed uniformly, and therefore are not a good fit for distributed tracing.

Unsurprisingly, generic ETL solutions also offer less flexibility for trading off differ‐
ent sorts of resources (for example, network versus storage). In our experience, using
a generic solution for the collection typically will require an order of magnitude more
infrastructure resources than a solution built specifically for tracing.

On the other hand, once spans have been sampled and grouped together into traces,
there are many opportunities to use off-the-shelf tools to analyze and store them.
Though detailing it is beyond the scope of this book, many of the use cases described
in Chapters 7 and 8 can be implemented using off-the-shelf tools.

Other Approaches to Reducing Data Volume (and Therefore Costs)
One of the main challenges in building a tracing solution is managing costs: sifting
through spans to find information that will be valuable to users without doubling
your storage or network bills. Though we have focused on sampling as the main tech‐
nique for reducing data volume—and therefore managing costs—there are other
techniques that tracing solutions can also take advantage of.

It might typically be considered out of scope for a tracing solution, but gathering sta‐
tistics about spans is a powerful way to derive some information from a set of spans
without recording every detail of that set or even of a single span. The rate that a
given operation occurs at, the frequency of specific tag values, or a histogram of
latency for a class of spans can all be represented efficiently (often requiring less space
than a single span) and can offer powerful insights into what’s happening in an
application.

Similarly, once a trace has been sampled, you need not store every detail of that trace.
Often just knowing which operations were on the critical path (and how much each
contributed) or the presence of certain interesting tags can be valuable. If this infor‐
mation can be extracted before traces are stored durably—and the trace itself dis‐
carded—storage costs can be significantly reduced.

Summary
Like other observability tools, distributed tracing tools must minimize the impact
they have on application performance. Fortunately, there are straightforward ways of
doing this: even at scale, tracing can be implemented in a way that has very little over‐
head on the application itself, meaning that it’s safe for you to use tracing in your

132 | Chapter 6: Overhead, Costs, and Sampling

production environments. This is important because it is difficult to reproduce many
failures and other issues outside of production in distributed systems—and increas‐
ingly, in almost any modern application. Using tracing in production will enable you
to find these issues much more quickly,

While the impact on the application is small, the cost of processing and storing trace
data can be large. The value of traces is often in the details they provide, whether fol‐
lowing requests across services or in the tags and events associated with spans. A
trace can become much larger than the request and response that it describes, so stor‐
ing every trace would be expensive from an infrastructure point of view. However,
not all trace data offers the same value. Traces representing slow or failed requests
may offer a lot more value. Sampling a subset of traces (and discarding the rest) is a
commonly used technique to make sure you are collecting the right traces while
keeping costs under control.

As either an implementer or a user of a tracing solution (or both), you should be
aware of different sampling techniques, including when sampling decisions are made
and, most importantly, what information is used to inform those decisions. Different
techniques will offer different performance trade-offs and provide better support for
different sets of use cases.

Since tracing takes a request-centric view of observability, it offers an opportunity to
serve as the backbone for other types of telemetry, including metrics and logs. Trac‐
ing can help ensure you are maximizing the value of all of your observability tools by
putting telemetry data in context. In Chapter 7, we’ll focus on what you should expect
from observability tools in general and how tracing relates to—and can amplify the
benefits of—these other tools.

Summary | 133

CHAPTER 7

A New Observability Scorecard

Engineers at organizations like Google and Twitter originally promoted observability
as a method not just for monitoring their production systems but for being able to
understand the behavior of those systems using a relatively small number of signals.
Borrowed from control theory, the term observability formally means that the inter‐
nal states of a system can be inferred from its external outputs. This became neces‐
sary within these organizations as the complexity of their systems grew so large—and
the number of people responsible for managing them stayed relatively small—that
they needed a way to simplify the problem space. In addition, as part of site reliability
engineering (SRE) organizations, many of the engineers that were responsible for
observability were not working on the software directly, but on the infrastructure
responsible for operating it and making it reliable. As such, a model for understand‐
ing software performance from a set of external signals was appealing and, ultimately,
necessary.

Despite a formal definition, observability continues to elude the understanding of
many practitioners. For many, the term is equated with the tools used to observe soft‐
ware systems: metrics, logging, and (as will come as no surprise to the reader) dis‐
tributed tracing. These three tools became known as the “three pillars of
observability,” each a necessary part of understanding system behavior. Though often
implemented as separate tools, they are usually used in conjunction as part of an
observability platform.

Metrics, logging, and tracing tools are built around three different corresponding
data sources, and are often compared based on what can be effectively or efficiently
derived from each of those data sources. In the end, however, users are more interes‐
ted in what they can learn from an observability tool than where the data came from.

Users turn to observability tools to understand the relationships between causes and
effects in the distributed systems. That is, they are usually more interested in what

135

1 [Bey16]

can be accomplished with a tool than how it works or where the data comes from. In
this chapter, we’ll look at the three pillars of observability in turn, consider their limi‐
tations, and build a framework for assessing observability tools in general.

The Three Pillars Defined
Before examining the trade-offs and alternatives, it’s useful to understand these three
observability tools as they are most often deployed today.

Metrics
Metrics, broadly defined, are collections of statistics about services that enable devel‐
opers and operators to understand the gross behavior of those services and how they
are being used. Examples include request rate, average duration, average size, queue
size, number of requests, number of errors, and number of active users.

These values are usually captured as time series, so that operators can see and under‐
stand changes to metrics over time. Changes can then be correlated to other coinci‐
dent events, which in turn can indicate what corrective actions to take.

In today’s production environments, metrics are typically aggregated every minute or
even six to twelve times per minute. To enable operators to react quickly enough to
maintain three—or even four or more—“nines” of uptime, metrics must be aggrega‐
ted and visualized within at most one minute but ideally even more quickly.

Metrics and Service Level Indicators
The authors of Site Reliability Engineering describe how to measure the level or quality
of service provided by a service or application in terms of service level indicators
(SLIs).1 As a quantitative measure of service levels, SLIs are a subset of metrics and,
like other metrics, will typically be measured as a time series. Examples of SLIs
include some the examples given in this chapter, including request duration (or
latency) and error rate.

Of course, there are many other types of metrics and often the same tools will be used
to measure both SLIs and non-SLI metrics. This can lead to some confusion on the
part of users of these tools: while SLIs should be measured and compared with your
service level objectives (SLOs), other metrics are not things that you should be opti‐
mizing (unless doing so helps you meet one of your SLOs). As such, we encourage
readers to label dashboards and the metrics clearly as SLIs in cases where they are, in
fact, indicators of service levels.

136 | Chapter 7: A New Observability Scorecard

To help developers and operators understand more about changes to metrics, devel‐
opers add labels as they record metrics. Typically in the form of a key-value pair, each
label describes the circumstances of the change to the metric more specifically. For
example, request latency may be labeled with the version of the service handling the
request, the host on which the request is handled, or the datacenter in which the host
was running.

Using labels, a metric such as latency can broken down into submetrics, one for (say)
each host. This can enable an operator to pinpoint problems, for example, by estab‐
lishing that an overloaded host is responsible for slow requests.

Types of metrics: Counters and gauges
Most metrics fall into two categories: counters and gauges. Counters are values which
describe, well, the number of events of a particular type that have occurred. Examples
include the number of requests and the number of bytes transferred. From a develo‐
per’s point of view, the primary operation associated with a counter is to increment it.

Counters can be manipulated in several ways. For example, it’s easy to aggregate
changes to a counter from multiple sources, simply by adding them together. From a
counter, it’s also easy to compute a rate of change by considering the values of a
counter at different points in time. For example, though recorded as a counter, the
number of requests is usually visualized as a rate, such as requests per minute or
requests per second.

Gauges are metrics that describe the state of a part of your software as a numeric
value and at a particular moment in time. Examples include the duration of a request,
the size of a queue, or the current number of active users. From a developer’s point of
view, the primary operation associated with a gauge is to describe its current value (or
set it).

Gauges are somewhat more challenging than counters to aggregate, as doing so nec‐
essarily discards information. When combining gauge values from several sources,
metrics systems capture statistics about them, including average, minimum, and
maximum.

Gauges’ values may also be combined using histograms. The range of values can be
divided into discrete buckets, and the number of instances in each bucket can be
recorded. This effectively turns gauges into counters (or, more precisely, into a set of
counters), which can then be easily combined by simply adding together the counts
for each bucket. Histograms are useful in that other statistics may be derived from
them. For example, using bucket counts, a metrics tool can estimate the 99th-
percentile value of a gauge.

The Three Pillars Defined | 137

Metrics tools
The challenges of implementing metrics tools stem largely from how to aggregate
data. What is the window across which values are aggregated? How are the windows
from different sources aligned?

Logging
Logging can describe any activity where systems capture events as text or structured
data and either print these events out or store them for future use and analysis. In the
context of observability, logging usually means centralized logging, where event data
from each service instance is transmitted to a single system so that it can be analyzed
and searched uniformly.

To support this collection and analysis, log entries must have a timestamp that indi‐
cates when the event occurred. Aside from that, however, there is usually little stan‐
dard structure to logs. While there are standard schema for some specific use cases
(for example, web server logs), as an observability tool, log structure will depend on
how it’s used by the application and how logs are created by developers.

Example 7-1 shows an example of logging in Java (using Log4j).

Example 7-1. Java logging example

import org.apache.logging.log4j.Logger;
import org.apache.logging.log4j.LogManager;

...
Logger LOGGER = LogManager.getLogger();
LOGGER.info("Hello, world!");

Similarly, Example 7-2 shows an example of logging in Go.

Example 7-2. Go logging example

import "log"
import "bytes"

...
buf bytes.Buffer
logger = log.New(&buf, "logger: ", log.Lshortfile)
logger.Print("Hello, world!")

Logging conventions
Partly due to the volume of data produced through logging, there are a few conven‐
tions in common use. First, most logging systems support some notion of a “level” or
“severity.” Typical examples of levels include “informational,” “warning,” and “error.”

138 | Chapter 7: A New Observability Scorecard

2 [Sig10]

These can be used as part of an automatic or manual filtering process. For example, a
logging tool may only keep info-level logs for a few hours, but might store errors
forever.

A second common convention is to add some correlation ID or other means to create
links between related log entries. In a distributed system, this is often used to trace
requests as they pass from one service to another. For example, all logs related to a
single end-user request may include a unique identifier for that request.

Defined in the broadest sense, even a summary of logging tools would be far beyond
the scope of this section or chapter: logging is used for a wide range of use cases, such
as revenue tracking, security auditing, and business metric tracking. To give a sense of
what these tools look like as part of an observability suite, we’ll briefly describe a
common implementation using Elasticsearch, Logstash, and Kibana (often called an
“ELK stack”).

In an ELK stack, log data is generated by many different sources—including server
logs, event APIs and streaming publish-subscribe (pub-sub) systems, to name a few—
and fed into Logstash. Logstash transforms these log entries by providing additional
structure and normalizing data across different sources. The results are then forwar‐
ded to Elasticsearch where they are indexed so that they can be searched easily.
Finally, Kibana is an analysis and visualization tool used to build dashboards based
on the data stored in Elasticsearch.

The primary challenge of implementing a logging tool is storing the data in a way that
is cost-effective and will allow the data to be searched efficiently. Most log entries will
be of little value, but finding the log which contains a rare error or a suspicious trans‐
action will have tremendous value. A specific type of search is to find all of the logs
associated with a single request.

Distributed Tracing
After the previous chapters, hopefully you have some sense of the purpose, scope, and
implementation of distributed tracing. For the purposes of this chapter, it’s useful to
define distributed tracing as it was implemented as part of Google’s Dapper project.2

Using this definition, distributed tracing consists of collecting request data from the
application and then analyzing and visualizing this data as traces.

Tracing data, in the form of spans, must be collected from the application, transmit‐
ted, and stored in such a way that complete requests can be reconstructed. In Chap‐
ters 5 and 6, we discussed the high-level architecture of distributed tracing
implementations and some challenges of these implementations. As with centralized

The Three Pillars Defined | 139

logging systems, many of these challenges are associated with transmitting and stor‐
ing large amounts of data. In some ways, tracing is a specialized form of logging that
attempts to address these costs by tightly coupling the collection process to applica‐
tion request handling. As tracing tools are often focused on use cases around perfor‐
mance analysis, they build in some common fields that describe the timing of
application events (for example, request duration).

As visualization tools, distributed tracing tools often show requests using a flame
graph (or, when presented upside down, an icicle graph) or a tree showing the timing
relationships between spans.

The current practice of distributed tracing being part of distributed systems software
development stems largely from the Dapper project at Google and the subsequent
OpenZipkin and Jaeger projects (from Twitter and Uber, respectively). Many other
organizations have deployed the open source tools OpenZipkin and Jaeger.

All of these tools combine some SDK or agents with a collection pipeline and a stor‐
age system (usually off-the-shelf) to store and process the data. In the case of Dapper,
this storage system was BigTable, while OpenZipkin and Jaeger can be deployed using
Cassandra, Elasticsearch, or even (for OpenZipkin) MySQL.

Though not billed as “distributing tracing,” many application performance manage‐
ment (APM) tools provide functionality that overlaps with distributing tracing and
may include traces as part of that. However, because they take a simpler approach to
data collection, they often fail to provide good results for large distributed systems. In
particular, they may not be able to pass through context or may need to use a very
small sample to avoid adversely affecting performance (leading to broken traces or
other missing data).

The challenges of implementing and deploying a tracing solution depend largely on
the use cases you are considering. As Dapper was focused primarily on long-term
performance optimization, the primary challenges were related to managing the costs
associated with transmitting and storing traces, largely due to Google’s scale. In
organizations with more heterogeneous development environments, just getting span
data from the application in a way that can be used to generate complete traces can be
a significant challenge.

Fatal Flaws of the Three Pillars
As we’ve considered each of these types of tools in turn, we’ve discussed some chal‐
lenges in implementing each in ways that are effective and efficient. However, it’s use‐
ful to consider the challenges and limitations of these tools in a more systematic and
holistic way. Doing so will enable us to better understand the trade-offs in building,
operating, and using these tools. It will also challenge the notion that they are really
three separate and independently defined categories of tools.

140 | Chapter 7: A New Observability Scorecard

Design Goals
When designing an observability solution as a whole, there are three areas that we
should consider. These areas are broader than any specific use cases and instead focus
on how value is derived from a solution and how that value relates to cost. For any
solution, we should be able to assess how it performs in each of these areas:

• Does it account for every transaction? If so, then the impact of every transaction
can be measured using the solution.

• Is it immune to cardinality issues? If so, the solution allows users to analyze arbi‐
trary subsets of transactions.

• Does its cost grow proportionally with business value? If so, as the volume of
business grows, the cost of the observability solution grows proportionally.

Accounting for every transaction
An observability solution accounts for all of the data if even the rarest events can be
observed. This includes, for example, infrequent errors or the behavior of the smallest
of customer segments. Solutions that sample transactions may miss these rare but still
valuable events.

Immunity from cardinality issues
An observability solution is immune to cardinality issues if users can ask questions
about and compare behaviors for arbitrary subsets of the data. Cardinality means the
number of different elements in a set, and in the context of observability, cardinality
refers to the number of different labels (or equivalently, tags) present on data points.
Cardinality issues means the challenges of managing and querying data with many
different labels. For example, can a user compare performance data between service
instances running on two different hosts? When there are dozens of hosts? Hun‐
dreds? Thousands? Can performance data be further broken down by software ver‐
sion? Can we compare performance across customer segments or even among
individual customers? Solutions that aggregate data before these questions are asked
may miss opportunities to answer them; if the data is not aggregated, it may incur
high resource costs.

Cost growing proportionally with business value
An observability solution’s cost grows proportionally with business value if its cost
per transaction stays constant even as the number of transactions increases. In the
case of modern distributed systems, including microservice- or serverless-based
architectures, developers may add new observability data sources as they add new
services or functions; each of these will create more data and therefore cost more,

Fatal Flaws of the Three Pillars | 141

even as the number of transactions stays fixed. However, in doing so, the observabil‐
ity solution now consumes a larger portion of the value of each such transaction.

Assessing the Three Pillars
With these design goals in hand, we can succinctly evaluate each of the three pillars of
observability, as shown in Table 7-1.

Table 7-1. Fatal flaws of the three pillars, summarized
Metrics Logs Distributed tracing

Accounts for every transaction ✓ ✓ -

Immune to cardinality issues - ✓ ✓
Cost grows proportionally ✓ - ✓

Fatal flaws in metrics
It is straightforward to build a metrics tool that accounts for every transaction: statis‐
tics like count, mean, and standard deviation can be easily computed in a distributed
fashion. Moreover, the cost of doing so is modest since the amount of data that must
be transmitted and stored is small and, in fact, constant with respect to the number of
transactions.

However, the cost of processing and storing metrics increases with the cardinality of
the dataset. That is, as the number of different labels grows, and more importantly, as
the number of combinations of different labels grows, the cost of managing these sta‐
tistics increases significantly: the number of values that must be maintained grows
exponentially with the number of different labels.

For example, suppose that a metrics tool is capturing request counts from five differ‐
ent hosts, and that each request is labeled with all of the following:

• Its hostname
• The response class (no error, not authorized, bad request, server unavailable, or

internal error)
• The client host from which the request was issued (say that there were also five)

Using these labels, metrics can then be used to answer questions such as:

• Which host served the most requests?
• Which host served the most internal errors?
• Which client host made the most bad requests?

142 | Chapter 7: A New Observability Scorecard

To answer all of these (and other arbitrary) questions about request counts, a metrics
tool must aggregate 5 × 5 × 5 = 125 different counters. This small example might not
seem prohibitively costly, but in real-world use cases, there might be dozens of differ‐
ent dimensions across which a user might want to examine behaviors and hundreds
or thousands of different values for each of these dimensions. Tracking millions or
billions of different combinations is prohibitively costly. As a result, most metrics sol‐
utions limit the number of different label combinations that you can track. While
these solutions can be powerful tools for understanding when something has gone
wrong, they are not as useful for understanding why something has gone wrong.

Fatal flaw in logging
Centralized logging solutions account for every transaction by definition: they record
every event as a log entry. Moreover, they are generally immune from cardinality
issues as the cost of storing each new event is proportional only to the size of that
event (and not the number or content of previous events). Unlike metrics, there is no
hidden cost in adding labels, tags, or other structure to individual logs. While there is
some cost in maintaining indices of log data (to enable users to find relevant entries),
search engines such as Google have developed a number of techniques for searching
extremely large datasets efficiently using arbitrary queries. Many of these techniques
can be applied to log data.

However, while this cost is predictable, it is not small in aggregate nor is it scalable for
an organization adopting microservices, serverless, or other distributed architectures.
For logging to explain problems with an individual transaction, it must surface all of
the logs associated with that transaction. That means, even for a fixed number of
transactions, adding to a system’s complexity (for example, by adding a new service)
will increase the cost of logging even if the number of transactions remains constant.

As a result, developers are often discouraged from adding verbose logging to applica‐
tions, and in most cases logging may be severely curtailed or even disabled in produc‐
tion environments to save on cost. This is particularly problematic as there can be
significant value in some of these production logs since many performance problems
only emerge at scale or in the context of hard-to-predict customer behavior.

Fatal flaws in distributed tracing
Because distributed tracing tools are built from the ground up to support distributed
applications, maintaining complete records of individual transactions (including
across services) is a primary capability. As such, it’s easy to control costs simply by
changing the fraction of transactions for which traces are transmitted and stored.
Dapper showed that sampling an extremely small portion of transactions—as few as
0.1% or even 0.01%—still has tremendous value for understanding performance and
driving optimization work. If new services are added in a way that significantly
increases the number of spans, the sampling rate can simply be turned down. And

Fatal Flaws of the Three Pillars | 143

like logging, there are no issues with adding high-cardinality tags or other annota‐
tions to spans.

However, this sampling has a critical downside: it’s no longer possible to reconstruct a
complete picture of application performance from these samples. Nor is it possible to
examine types of transactions that occur rarely. For example, if an operator is trying
to understand 99.9th-percentile latency performance, the chances of 1-in-10,000
sampling finding helpful examples is vanishingly small.

As such, distributed tracing is often used as a tool to explain gross performance prob‐
lems rather than determining when they are occurring. And while it can be quite val‐
uable for high-volume applications with relatively homogeneous users (like Google),
it doesn’t offer many advantages over centralized logging for lower-value applications,
nor does it help provide visibility into small user segments or infrequently occurring
errors.

Three Pipes (Not Pillars)
The reader may be asking some questions about our framing of the problem at this
point: for example, why define distributed tracing as a technique that must use some
form of sampling? Why require that metric time series be computed in advance and
stored as separate streams? You are absolutely correct to be asking such questions!
While implementers of these tools have each focused on optimizing for specific use
cases, in fact, they are not really three separate tools but three different techniques for
collecting and managing telemetry data.

If we instead view these three techniques as pipes—three ways of transmitting and
storing data—rather than three separate pillars, there are many opportunities to
answer interesting and valuable questions at a reasonable cost. While it is far beyond
the scope of this chapter to describe the design of a unified observability platform, the
following examples show how metrics, logging, and distributed tracing data can be
used to provide functionality usually associated with one of the other pillars:

• Logs may be visualized as traces. In cases where each entry is tagged with transac‐
tion or request identifier (sometimes called a correlation ID), it’s straightforward
to describe a query to find all of the logs associated with an individual transac‐
tion. If the logs also contain request latency (or if pairs of logs can be used to
infer latency) then they can be visualized as a flame (or icicle) graph.

• Time series may be derived from spans. For example, the durations of spans may
be extracted either as they are generated or after the fact and then displayed as a
time series of latency. (If sampling is used, then the results must be scaled appro‐
priately.) Other metric time series can also be derived from tags as they occur in
spans.

144 | Chapter 7: A New Observability Scorecard

3 [Abr13]

• Logs may also be extracted from spans. In cases where volume is sufficiently low,
span annotations can be extracted and centralized with other logs.

• Metric time series may be computed from logs. For example, Facebook’s Scuba
database ingests (and stores) millions of events per second and then lets users
query and view metrics derived from these events as time series.3

• Changes to metric counters or gauges can be added as span annotations. While
metrics are usually aggregated very close to the source to reduce the cost of trans‐
mitting and storing them, associating changes to spans offers additional possibil‐
ities in how they are analyzed.

While these three different ways of organizing observability data present many trade-
offs, we shouldn’t ask users to commit to these tradeoffs as part of selecting tools:
these are the concerns of tool implementers. At the same time, as users of observabil‐
ity tools we will ultimately pay for these choices. As we will discuss in the next sec‐
tion, we must first approach the problem from the point of view of the outcomes we
want to achieve. Only then can we adequately assess which tools are required and
how well they are performing.

Observability Goals and Activities
The fragility of the three pillars is perhaps unsurprising. It is a trio of convenience:
there is no fundamental law of nature that requires there to be exactly three observa‐
bility tools. Despite this, the three pillars are often used as a checklist for infrastruc‐
ture teams whose responsibility is to provide tools to the rest of their organizations.
Unfortunately, it is quite possible to deliver suitable implementations of all three pil‐
lars but still leave gaps in the observability platform. That is, developers and operators
may not be able to understand the behavior of their applications and services despite
having metrics, logging, and tracing tools, because even together, those tools often do
not achieve the primary goals of observability.

Two Goals in Observability
There are ultimately only two goals in using any observability tool:

• Improving baseline performance
• Restoring baseline performance (after a regression)

By improving baseline performance, developers hope to improve user experience,
lower infrastructure costs, or both. For user-facing applications, performance often

Observability Goals and Activities | 145

means request latency, though it might also include other, longer transactions. This
sort of optimization is a process usually undertaken over the course of days, weeks, or
even months.

Observability tools are critical for improving baseline performance first in measuring
that performance (that is, in establishing the baseline) and then by directing develop‐
ers toward the parts of their software where they can be more effective in improving
performance. With a monolithic application, developers may simply use a CPU pro‐
filer to understand which parts of the application are taking the most time. In a dis‐
tributed system, it’s often unclear when slow parts of a request are actually impacting
user experience. We will consider examples in Chapter 9 that show how distributed
tracing is critical in determining how to plan and execute work in improving baseline
performance.

In contrast to the planned work behind improving baseline performance, restoring
baseline performance is, almost by definition, unplanned. Regressions in perfor‐
mance, including application outages, can result in a loss of revenue, negatively
impact the brand, and degrade user trust. As such, regressions occurring in produc‐
tion systems must be corrected as soon as possible. Depending on your organization’s
service level goals, you may have only minutes to detect, understand, and mitigate
performance regressions.

Observability tools are also critical in restoring baseline performance. Often prob‐
lems in one service may not be detected in that service itself but still negatively affect
the performance of other services. (This can be true when both services are managed
by the same organization or when they are managed by two different ones.) As we
discuss in Chapter 9, distributed tracing is also critical in effectively and quickly
responding to performance regressions.

Two Fundamental Activities in Observability
While improving and restoring baseline performance might feel like very different
kinds of goals, they are both based on the same two fundamental activities:

• Measuring the impact of performance on users
• Explaining variation in those measurements

To some users of monitoring tools, especially infrastructure- and network-
monitoring tools, it might come as a surprise to see such a narrow definition of what
we care about: that we focus only on the impact on users. There are hundreds of other
types of measurements that could describe the behavior of a production software sys‐
tem: from host, storage, and network utilization, to queue sizes, open connections,
and garbage collector overhead and many other types of performance.

146 | Chapter 7: A New Observability Scorecard

In the case of improving baseline performance, if you are not working on something
that will improve the performance as observed by your users (or reduce cost), well,
you are wasting your time. And if you just got woken up at 3 a.m. for something that
is not impacting your users, you should have a few words with the rest of your team
about what constitutes an urgent alert!

While we’re strict about measuring performance impact on users, we’re less so about
what exactly “performance” means in this context. Generally, any behavior of the soft‐
ware that users might notice is worth measuring: not just request latency but quanti‐
tative user experience and even correctness can all be considered types of
performance.

Focusing on user impact is closely related to the mantra of “alerting on symptoms
rather than causes.” And of course, your tools should measure all these other potential
causes, but as a user of observability tools, you need concern yourself with them only
inasmuch as they assist you in the second fundamental activity: explaining variations
in user-impacting performance. The danger of looking too closely at all of these other
metrics is that many of them may describe problems that will distract you from more
important work: in any production system of reasonable scale, there are always doz‐
ens—if not hundreds—of things going wrong, but (hopefully) only a small fraction of
them are impacting your users at any given time.

As a concrete example of this kind of distraction, consider the giant dashboards that
can be seen in operations centers or on the monitors of many on-call engineers. Filled
with rows and rows of time series, these dashboards capture many signals that might
tell an operator what is going wrong.

Even—and perhaps especially—during a user-impacting incident, these dashboards
often will show many graphs that are changing simultaneously: when something is
going wrong, it will often affect many different aspects of performance. However,
these graphs are merely showing correlated failures and not bringing you any closer to
the cause of the problem. While there may be one or two people on your team who
can look at these sorts of dashboards and infer the root cause of the problem, it
doesn’t bode well for the team if these people ever go on vacation.

Worse, many members of your team may look at these dashboards and assume that
they are exhaustive: that they include every possible explanation for the cause of a
problem. After all, they were built by smart, experienced people! This can lead to the
assumption that, if the dashboard can’t explain the problem, it must be a “networking
glitch” or another problem that can’t be explained, and therefore shouldn’t be investi‐
gated. Unfortunately, today’s software systems are too complex and too dynamic for
developers—even seasoned ones—to anticipate every possible cause.

While variation in performance is often first described as a time-dependent phenom‐
ena (“our service started slowing down at 5:03 p.m.” or “error rate jumped at 11:30

Observability Goals and Activities | 147

a.m.”), time is merely a proxy for some other precipitating event, whether that be a
new release of your service, a change in one of your service’s dependencies, or
another change to the environment.

It’s critical that observability tools measure performance in ways that let these events
be distinguished from each other. This is the root of the requirement around cardin‐
ality discussed earlier: the ability to compare performance across releases, hosts, cli‐
ents, or other dimensions that can impact that performance.

The number of signals that can explain performance variation is orders of magnitude
larger than the number of ways that performance can impact users. While a typical
application might only measure a handful of ways that users can be affected, there can
easily be thousands or even tens of thousands of explanations for why users are being
impacted. The problem is not a signal-to-noise problem (where there is a lack of
information) but a too-much-signal problem: there are just too many data sources,
each of which will probably help to explain a performance problem at some point,
even if they are not helpful in explaining today’s problem.

We seem to still be rather far from the point where tools can automatically pinpoint
the root cause of a performance problem. As such, the role of an observability tool in
explaining variation is often to help narrow the search space. This can take the form of
providing suggestions as to what likely causes might be. It can also mean allowing
developers and operators to interactively query data in such a way that they can form
hypotheses and then build evidence to support or repudiate them.

Explaining performance variation leads us to the purpose of an observability tool: to
take action to improve performance. The type of variation will lead to the type of
action to be taken. If slow requests are associated with a new release, that release
should be rolled back; if slow requests are all occurring on the same compute node, a
new node should be provisioned to augment or replace the old one. Ultimately, being
able to explain variation in performance will enable you to control the impact on
your users.

A New Scorecard
With these goals and activities in mind, we are now in a better position to think about
the trade-offs of metrics, logging, and distributed tracing and to judge the efficacy of
an observability platform in general. We will do so looking at how solutions address
each of the activities described earlier.

First, to help users measure the impact of performance on users (or put another way,
to measure symptoms), observability tools should be judged on the following
characteristics:

148 | Chapter 7: A New Observability Scorecard

• Statistical fidelity
• Cardinality limits
• Volume limits
• Time limits

While no tool can provide perfect fidelity with no limits (and at reasonable cost),
striking the right balance between these is critical to providing value.

Second, to help users explain variations in these measurements, observability tools
must be able to help quickly narrow the search space of possible explanations. While
there is no fixed set of ways to do that, there are some high-level approaches that
observability tools can take to facilitate this:

• Providing context
• Prioritizing by impact
• Automating correlation

These are more qualitative than the ways we can judge how well observability tools
measure impact. They are outlined later in this chapter and will be described in more
detail in the context of specific use cases in subsequent chapters.

Statistical fidelity
By fidelity, we mean that when summarizing the behavior of a large population of
requests, observability tools maintain enough information to understand the overall
“shape” of the behavior, often shown using histograms.

Statistics like mean and standard deviation are great tools for summarizing behaviors
that follow normal or other simple distributions. However, software measurements
like latency are rarely normal—they often have long tails—and are often multi-
modal. For example, request latency will often have multiple modes based on whether
required data can be found in a cache. When trying to understand or improve
latency, it’s important to understand whether the current objective would be best
served by increasing the number of cache hits or improving the latency of a cache
miss.

Histograms provide a simple visual way of capturing these discrete behaviors and
understanding their relative frequency. Histograms can also be used to derive statis‐
tics such as different percentiles.

Observability Goals and Activities | 149

High-Percentile Latency
While they are certainly more difficult to measure than other statistics (such as count,
mean, or standard deviation), high-percentile measurements are critical for under‐
standing and improving performance, particularly in the case of request latency. As
such, it’s best practice to measure not just mean latency, but also the latency of the
slowest requests, such as the 95th, 99th, or even 99.9th percentile.

In a distributed system, the combinatorics of fanning out a request across hundreds
of services means that, while only 1% of requests to an individual service may be slow,
the chances of these slow requests impacting users may be much higher.

More qualitatively, those users experiencing the slowest 1% of requests can act as bell‐
wethers for the rest of your user-base. These are often expert users who are pushing
the limits of your system. As the data volume grows or the complexity of user interac‐
tions increase, many more users may experience larger latencies.

Cardinality limits
The ability to break down performance across different dimensions is at the core of
explaining variation. As such, an observability solution must be able to ingest and
analyze data with many different labels or tags that represent these dimensions. While
there will likely be some limits on the cardinality of the data, observability solutions
should be measured on their capacity to use labels, tags, and other metadata to
explain variation in performance.

Volume limits
An observability solution’s volume limits are defined by how many events can be cap‐
tured every minute and how much detail can be captured with each event. In cases
where not all events are captured, what mechanisms are used to select events (that is,
to sample them)? The processes used to select events can affect which are available for
subsequent analysis as well as what statistics inferences can be drawn from the
sample.

Time limits
Not all observability can (or should) be kept forever. The amount of history that an
observability solution stores is sometimes called its horizon. Depending on the use
case, different horizons may be appropriate. In the case of validating a new release,
hours or maybe days of data will be sufficient. Measuring the impact of a quarter-long
optimization project will obviously require a longer horizon. Infrastructure capacity
planning might require a year or more of data to account for a business’s seasonality.

150 | Chapter 7: A New Observability Scorecard

The other important aspect of time is how soon a request is reflected in measure‐
ments and analysis. As part of restoring baseline performance for a highly available
service, it’s critical that measurements be made within a minute or less. For other use
cases, processing data as part of a daily or weekly batch may be sufficient.

Provide context
Many (maybe even most) software problems are caused not by a failure of a single
component but by an unanticipated interaction between two or more components.
One of the most common cases is where one component fails gracefully but another
component, one that depends on the first, does not handle this failure properly.

As such, observability solutions must put failures and other performance problems in
context. What was the original request that led to the problem? What sequence of
actions led to the current state? A distributed trace is one example of this sort of con‐
text, but context can span multiple requests or even hosts. For example, an operator
trying to understand why one service instance is overloaded would benefit from
understanding that several other instances have recently crashed (leading a load bal‐
ancer to redirect traffic).

Prioritize by impact
As mentioned earlier, the complexity of distributed systems means that there will
always be many things going wrong, including many requests (or parts of requests)
that are slow. An observability solution should help prioritize both the problems and
their potential causes by the impact they are having on users.

One example is to prioritize performance problems based on their contributions to
the critical path of requests. The critical path is the parts of a request that, if sped up,
would improve the latency experienced by an end user. Since, by definition, speeding
up parts of a request that are not on the critical path would have no impact on end
users, it’s not worth spending time on them.

Automate correlation
Human operators have important knowledge about the behavior of software systems
as well as insights into their failures, but the number of signals that are emitted from
distributed systems is far too large to sift through manually. An observability solution
can help human operators focus on what matters by promoting signals which corre‐
late with performance issues and, conversely, by filtering out signals which have no
correlated changes. For example, if the rate of errors observed during a slow roll-out
is much higher for the new version, then showing the difference in performance
based on version can be invaluable. (On the other hand, showing a breakdown by
host might lead to incorrect conclusions.)

Observability Goals and Activities | 151

The Path Ahead
In this light, when making choices about observability tools, we should not ask sim‐
ply “Is this a good metrics tool?” (or a good logging tool or a good tracing tool) but
instead “Is this a good observability tool?” Doing so means accepting broader defini‐
tions of each of these tools and of distributed tracing in particular. Unlike metrics and
logs, distributed tracing starts from the assumption that we are trying to observe a
distributed system. It is critical that any observability tool used in a distributed system
provide a holistic view of the application, and there is an opportunity for distributed
tracing to play a much larger role in how applications are developed and run.

As we consider use cases and potential future work in subsequent chapters, we will
continue to take a broader view of tracing: not just as it was deployed as tools like
Dapper at Google, but as a tool that takes advantage of multiple sources of informa‐
tion and combines them in ways that are timely and cost-efficient for developers and
operators. This will mean leveraging metric data to understand possible causes out‐
side of the application or deriving metrics from traces to show operators when appli‐
cation behavior is changing. It will also mean leveraging log data as another source of
information for tracing and showing users specific events data as part of explaining
what happened.

While the three pillars of observability offer an easy way to categorize existing tools,
breaking free of this paradigm offers many more possibilities for how we approach
observability problems. As we consider a range of use cases in the next few chapters,
consider how these different data sources—individually and especially when com‐
bined—can help connect cause and effect in production systems.

152 | Chapter 7: A New Observability Scorecard

CHAPTER 8

Improving Baseline Performance

In any other production system—whether it’s a software system or a factory—the
process by which the product is created has a profound impact on the cost of produc‐
tion and on the product itself. In modern software applications, production costs are
mostly related to computing resources and other infrastructure, including the costs of
buying and running servers in a private datacenter or renting them from a cloud pro‐
vider. How that software is delivered also affects user experience. In this chapter, we
consider how to reduce costs and improve user experience using distributed tracing.

In particular, we focus on improving baseline performance: that is, how the software
performs over the course of weeks, months, or quarters. Understanding baseline per‐
formance will enable you to plan engineering work over the next few weeks or
months effectively, maximizing your chances of having a positive impact. (In con‐
trast, the following chapter will focus on approaches to restoring performance to that
baseline when something has gone wrong.)

In the previous chapter, we discussed distributed tracing in the context of the “three
pillars of observability.” In particular, we said that software developers and operators
have the most to gain from distributed tracing and other observability tools when
those tools take advantage of all three forms of performance telemetry: metrics, logs,
and traces. As such, the approaches in this chapter will consider distributed tracing as
a means for not merely viewing traces, but for analyzing and visualizing telemetry
using tracing data as a way to put that telemetry in the context of application
requests. While we will start with looking at individual traces as a way of understand‐
ing application performance, we will quickly progress to approaches that automate
many manual steps and take advantage of hundreds or thousands of traces.

Before we can start to analyze performance data, however, we must first establish how
we measure performance, including the statistics tools required to do so for a large
volume of requests.

153

1 [May10]
2 [Aka17]
3 [Med17]

Measuring Performance
For user-facing applications, it’s critical to measure performance as it affects users. As
such, request latency is a critical measure for these applications, and moreover,
latency should be measured as close to the user as possible. Measuring latency in the
user’s browser or mobile app is better than measuring it at the load balancer: this will
enable you to see the effects of the network on performance. Even better would be to
measure latency between a user’s interaction and when new results are rendered on
their screen: this lets you see the impact of multiple requests to your backends as well
as any computation done in the client.

Economic Value of Lower Latency
Numerous studies have shown that even barely perceptible increases in latency can
have significant effects on revenue and other kinds of user conversions. Experiments
performed by Google showed that increasing the time to load a page of search results
by half a second reduced the total number of searches by 20%, and conversely, if Goo‐
gle made a page faster, it would see a roughly proportional increase in the amount of
usage.1 Research by Akamai showed that even an increase in latency as little as 100
milliseconds could reduce ecommerce conversion by as much as 7%.2 Pinterest
showed that a 40% reduction in visitor wait time resulted in a 15% increase in conver‐
sion to sign-up.3

While it may be easy to focus on reducing infrastructure costs when thinking about
the economic value of software performance, improving user experience is not just
good for users, but has real—and measurable—business value as well.

In measuring performance, you should also consider which users’ performance you
care about. Are you interested in improving performance for your average users? For
your power users? Perhaps for a specific customer segment? This choice will affect
how you go about measuring performance.

If you are interested in improving performance for most users or are working to
reduce costs, targeting median latency might be a good place to start. Working to
improve median latency can not only improve performance for many users, it’s also a
good place to start if you are looking to reduce overall costs. Because many requests
tend to cluster around the middle of the distribution, reducing the amount of

154 | Chapter 8: Improving Baseline Performance

computation required for each of these requests can have a big impact on overall
compute requirements.

If you want to improve performance for the subset of your users that are having the
worst experience, measuring high-percentile latency (as discussed later) will get you
pointed in the right direction. It may seem counterintuitive to spend your time
improving latency for only (say) 1% of requests. However, there are several important
reasons to consider doing so:

• If you are responsible for a service in the middle of your application, 1% of the
requests that your service is handling can affect many more than 1% of end users.
This occurs most often when requests from users are fanned out (directly or
indirectly) across many instances of your service. The chances of a slow request
affecting a given user increase with the number of instances serving that part of
the request, since the slowest such instance will determine the overall latency
observed by that user.

• Users experiencing high-percentile latency often serve as bellwethers for the rest
of your users. The slowest requests are usually hitting parts of your application
that are already performing at or near their limits. As request volume increases,
more and more requests will suffer from similar problems; though you are
improving only 1% of requests today, they will represent a larger portion of
requests in the near future.

• Our experience has shown that users experiencing high latency tend to do so
because they are using larger datasets or are issuing more complex queries. These
also tend to be high-value users, including those responsible for an outsize por‐
tion of your revenue.

Though not always considered part of “performance,” the portion of user requests that
fail (or have some unrecoverable error) is also important to measure. (If you require
that all “performance” measures be expressed in terms of “faster” or “slower,” then
consider failed requests to be infinitely slow.) Requests fail for any number of reasons
in distributed systems, including software bugs in service (locally or further down the
stack), user errors, network failures, and underprovisioned services. In many ways,
understanding errors is the bread and butter of distributed tracing: isolating them
requires understanding the dependencies between services and how they interact
with each other.

The two other “golden” metrics of application performance, traffic rate and satura‐
tion, cannot be associated with individual requests in the same way that latency or the
presence of errors can be. (An individual request can certainly be part of what causes
traffic to spike, but it’s difficult to blame that request more than any other.) These
metrics typically play a larger role in applications that are more focused on through‐
put than on latency: this is true of many batch-processing systems and some

Measuring Performance | 155

high-volume delivery systems (including video processing). In these applications, if
the throughput falls below a given threshold then user experience may suffer, but
most optimization is focused on maintaining that throughput while reducing costs.
Note, however, that traffic rate and saturation can also be important signals in
explaining and improving latency and error rates; we will consider how they can be
integrated into distributed tracing to do so.

Whatever measures of performance matter for your business, organization, or users,
once you’ve determined what they are, measuring and setting goals for them is criti‐
cal to prioritizing your work. Though mostly beyond the scope of this book, estab‐
lishing SLIs is a way of formalizing performance measurements in a way that can be
measured precisely by determining:

• What you are measuring (for example, median or 99th-percentile latency)
• What you are measuring it for (for example, which service, endpoint, or

operation)
• Over what time period you are measuring it (for example, the last five minutes)

If integrated into your distributed tracing solution, SLIs can also help to make auto‐
mated decisions about data collection and sampling and even guide you toward the
root causes of performance problems. Before we look at that, however, let’s introduce
a few concepts from statistics.

Percentiles
Throughout this chapter and the next, we will frequently refer to high-percentile
latency or in some cases, 99th-percentile latency. (If you are familiar with percentiles,
feel free to skip this section.) Like statistics such as average and maximum, percentiles
are a way of summarizing the performance of a large set of requests. Unlike average
or maximum, however, percentiles offer a much more powerful way of comparing
sets (or “populations”) of requests. Two common places where you may have seen
percentiles and similar statistics are academic tests that were “graded on a curve” or
measures of the height or weight of young children.

Percentiles can be defined as follows: each percentile gives the value of some meas‐
urement (in our case, often latency) for which a given portion of the population lies
below that value. For example, if the 50th-percentile latency is 100 milliseconds (ms),
then 50% of the requests considered were faster than 100 ms. Similarly, if the 90th-
percentile latency was 1 second, then 90% of the requests considered were faster than
1 second (see Table 8-1).

156 | Chapter 8: Improving Baseline Performance

4 You can assess how wide a distribution is using its standard deviation; however, most latency distributions are
not normal distributions. As we’ll discuss in the next section, looking at the whole distribution can be even
better than just looking at a single percentile, including the median.

Table 8-1. Example request latencies and statistics

Request latency (ms)
87

89

91

93

102

138

174

260

556

5000

Selected statistics (ms) 50th percentile
120 Average

659 90th percentile

1000 Maximum

Given the request latencies shown in Table 8-1, we can compute the average, 50th and
90th percentiles, as shown. (Note that we’ve chosen to use a definition of percentiles
that interpolates between values.)

Percentiles provide more flexibility than just looking at an average value. Simply put,
looking at the average only works well when the average is representative of the data
as a whole. In measuring software performance, it’s not uncommon for values to be
widely distributed. And when a few values are very widely distributed, they can have
an outsize impact on the average. In our simple example, because there is one
extremely large value, the average is larger than all of the values but that one. The
50th percentile (or median) is often more robust to outliers than the average.4

Percentiles are also useful when looking to understand and improve the performance
of the slowest requests. It can be tempting to look at the maximum latency; however,
the maximum will often be determined by how timeouts are configured or even by
some aspect of the telemetry or monitoring system. For example, if you are investi‐
gating a request that took exactly 60 seconds, chances are you will find that some part
of the request repeatedly failed until the entire request was aborted (meaning that you
are not really debugging a slow request but a failed one). Looking at requests that are

Measuring Performance | 157

among the slowest 1%, 5%, or 10% (depending on your overall request volume) will
usually offer better candidates for improving latency.

Beware: Computing with Percentiles
In addition to being less familiar to many engineers and developers, using percentiles
also presents some challenges for implementers of distributed tracing and other
observability tools.

Averages and maximums can be measured on separate hosts (or even in separate
datacenters) and then easily combined: averages by weighting them appropriately,
and maximums simply by taking the largest.

Unlike statistics such as average and maximum, however, there’s no straightforward
way of combining separate measurements of the 50th (or any other) percentile. Users
should be careful when observability tools claim to do so.

Computing percentiles for small datasets can be confusing and often misleading. In
our work, we’ve come across developers from time to time who are trying to measure
99th- (or even 99.9th-) percentile latencies for datasets with only dozens of examples.
In trying to keep our example in Table 8-1 small, we are ourselves guilty of this: in
our example of 10 points, the 90th percentile is determined by only two points (the
two largest)!

When a percentile (or any statistic, for that matter) is determined by only a few
points, noise in the measurement of those points can carry over into that percentile.
In addition, differences in how different tools compute percentiles (for example,
using interpolation or the nearest point) can also make it difficult to compare results.
In those cases, it’s easy to make incorrect conclusions. Try to avoid computing per‐
centiles that will be determined by only a handful of points.

Histograms
Though slightly more expensive in terms of network and storage costs, histograms
provide much more detail than just a handful of statistics. This is especially important
in software performance where the behavior of a service is often much more complex
than just a single Gaussian or “bell” curve. While they might at first seem unfamiliar
if you are more used to reading time series graphs, they will quickly become a go-to
tool for improving performance.

Unlike a time series graph, where the unit of measurement—in our case, latency—is
on the vertical axis, in a histogram the unit of measurement is on the horizontal axis
(see Figure 8-1).

158 | Chapter 8: Improving Baseline Performance

Figure 8-1. Example of a histogram.

Each bar in the histogram represents a subset of the overall population: for example,
the requests with a latency between 100 and 150 ms. The height of the bar indicates
the size of that subset; this is sometimes labeled “frequency.” In the example, there are
around 10,000 requests with latencies between 100 m and 150 ms. Like many latency
histograms, the example is plotted on a log-log scale. A logarithmic horizontal axis
lets us see a much wider range of latencies (from only a few milliseconds up to a
minute) while a logarithmic vertical axis lets us see patterns in even small subsets of
requests.

While the 99th- and other high-percentile latencies are more robust to outliers than
statistics like the maximum, they can still fail to reveal many aspects of application
performance. For the requests in Figure 8-1, the 99th-percentile latency is around 3
seconds. However, this would still be the case even if the cluster of requests between
100 and 150 ms slowed down to around 1 second instead. Likewise, it would still be
the case even if the cluster of requests around 5 seconds had occurred at 10 seconds
instead. Ultimately, the 99th percentile is really just showing a simple division of your
requests: 99% of them are faster and 1% are slower. It says nothing about how
requests are distributed within these two sets.

The shape of a latency histogram, however, describes the performance of your service
or application in far more detail. In several of the analyses later in this chapter and in
the following chapter, we’ll show how to use them to divide requests into meaningful
classes and then to understand the reasons behind the performance differences
between those classes.

Measuring Performance | 159

Defining the Critical Path
In any distributed system of reasonable complexity, there are always many services
and RPCs that are slow. So many, in fact, that even the hardest-working developers
would not be able to track down all of these issues and fix them before more were
introduced. And indeed they shouldn’t! Most of these issues have no impact on users
and so fixing them is of little value to your business or organization. Before working
to address latency of any particular service, you should be confident that doing so will
affect performance as observed by users. (In Chapter 7 we referred to this as “priori‐
tizing by impact.”)

A common method for understanding which services are impacting user-visible per‐
formance is to first determine the critical path of each slow request. Originally devel‐
oped as part of project management, the critical path (when applied to requests in a
distributed software system) describes the parts of processing the request that, when
taken together, determine the overall duration of the request.

In the terms of distributed tracing, the critical path of a trace is a subset of spans of
that trace or even parts of those spans. One definition says that span A is part of the
critical path at time t if and only if two conditions are true:

• A’s parent is blocked on A’s completion at time t
• A is not blocked on any child span’s completion at time t

This is a convenient way of thinking about the critical path; in a way, it describes the
“bottom edge” of a trace. In some cases, however (and as we’ll describe later), there is
some ambiguity when there are multiple concurrent child spans. To avoid this ambi‐
guity, we define the critical path as follows. Span A is part of the critical path at time t
if and only if reducing the length of A at time t reduces the overall latency of the request.

Figure 8-2 shows an example trace with the critical path shaded. You can see that the
length of the critical path is the same as the length of the overall request, and in this
case, the length of the longest span as well. In this example, span A contributes to the
critical path at several points, including at the beginning and end of the request.
Spans B, D, and E are each entirely on the critical path. Span C is partially on the crit‐
ical path, but only before and after D.

160 | Chapter 8: Improving Baseline Performance

Figure 8-2. Example trace with critical path.

If you were looking to reduce the latency of this request, you should look at spans B,
D, or E or at the parts of spans A and C that are not blocked on one of the other
spans.

Figure 8-3 shows a second trace. In this example, two of the spans represent the same
work, but as perceived by the client (client A) and the server (server A).

Figure 8-3. Trace with client span on the critical path.

Looking at the time where client A is on the critical path, you might be asking “Why
is the client doing any work here?” In this case, the delay is most likely due to net‐
work latency, though different tracing tools may show this in different ways. As a user
you must often consider: is the latency being caused by the service directly? Or is it a
delay caused by something external (like the network)? Or is it caused by contention
for some other resource (for example, the CPU or a lock)? Additional metadata on
spans can help shed light on these cases, as discussed later.

Figure 8-4 shows a third trace with the critical path shaded. In this case, span A has
two child spans (B and C) that represent concurrently executing work. At time t, A
could be said to be blocked on either of the child spans (and neither of those two are

Defining the Critical Path | 161

blocked on any other spans), so by the first definition of “critical path” either one
could be considered to be on the critical path.

In this case, however, reducing the length of B would not reduce the overall length of
the request; only reducing C would have that effect. When there are multiple child
spans that describe work that is being executed concurrently, the longest such request
is the only one on the critical path.

Figure 8-4. Example trace with concurrent child spans and critical path.

Note that the definition only says that some reduction of the length of a span on the
critical path will reduce the overall latency of the request, but not that any reduction
will result in an equal reduction in overall latency.

For example, consider a span that is on the critical path and is 1 second in duration.
Reducing its length by 500 ms doesn’t necessarily reduce the time of the entire
request by 500 ms. In the trace shown in Figure 8-4, when the length of span C is
reduced to less than the length of B, it will no longer be on the critical path (and
therefore reducing its duration will no longer reduce overall latency). Remember that
as part of optimizing the work represented by an individual span, you may change
which spans appear on the critical path altogether (and therefore need to change your
plans for further optimization work).

Understanding Causal Relationships
When using the span-based model of distributed tracing popularized by Google’s
Dapper, spans contain explicit references to their parents. From this information, a
tree can be built showing where spans started relative to each other. However, some
assumptions about the relationships between spans still need to be assumed.

When a child span starts, is the parent truly blocked on the work represented by the
child? Or is this an asynchronous request with other work continuing concurrently?
Understanding the difference will partly depend on the developers who are looking at
traces to understand that code that generated them.

162 | Chapter 8: Improving Baseline Performance

In addition, using conventions about how concurrent work is represented using spans
can also help. For example, whenever two or more threads (or workers, etc.) are pro‐
cessing concurrently, use a separate span for each of them that is distinct from their
parent. This means that if one thread makes an asynchronous call and then continues
processing, two child spans should be created. Doing so will make it easier to under‐
stand whether the original thread ever blocks on the asynchronous call and enable
automatic trace analysis to better understanding what’s happening.

Approaches to Improving Performance
With these concepts in hand, we’ll now consider a number of different approaches to
improving baseline performance. Since our focus is on distributed tracing, we will
consider ways to isolate performance problems to a single component within a dis‐
tributed system. We’ll assume that you are familiar with conventional approaches to
software optimization and that, if tasked with improving the speed or efficiency of a
single function, class, or module, you can do so using debuggers, profilers, and other
tools. Our goal with these approaches is to help you identify that function, class, or
module, so that you can then apply those tools.

Individual Traces
The most basic use of distributed tracing is to consider individual requests and look
for unexpected behavior, common antipatterns, or other opportunities for
improvement.

The first questions you should ask when looking at optimizing an individual trace
are:

• Are there any operations on the critical path that could be optimized?
• Could queries on the critical path be cached?
• Could the functionality offered by request be refactored to split expensive opera‐

tions from commonly needed ones?

As we’ve noted, asking any of these questions without understanding the critical path
could mean a lot of effort expended with little improvement to what your users are
experiencing.

When optimizing a trace such as that shown in Figure 8-2, you should also consider
the relative lengths of these spans. In this case, since D is more than twice as long as
E, a 20% improvement to D will offer more than twice the benefit of a 20% improve‐
ment to E. (Similarly, caching the result of D could yield as much as twice the benefit
of caching the result of E, assuming equivalent cache hit rates.) Focus your optimiza‐
tion work on the spans that make up the largest parts of the critical path.

Approaches to Improving Performance | 163

Understanding the performance impact of refactoring requires some additional
explanation. To make our example more concrete, imagine in Figure 8-2 that span B
represents some authentication operation, span C some computation that determines
what’s changed since the user last logged in, and span E a lookup of the user’s display
preferences. Often, when you are maintaining an API endpoint, both the underlying
performance and uses of that endpoint will change over time. In this example, per‐
haps the original use case required these operations to be bundled together (or per‐
haps bundling them reduced network overhead), but now the endpoint is being
invoked frequently just to perform the lookup of the display preferences. In that case,
those preferences could be returned much more quickly if the endpoint is refactored
into two parts: one that determines what’s changed and one that returns those prefer‐
ences. Sometimes, as in cases like this, “optimization” simply means doing less.

Another example of one of the most common problems discovered when starting
with distributed tracing is shown in Figure 8-5. The trace on the left shows a root
span with six subspans (labeled A through F). These spans represent sequential calls
to other services, possibly including queries of one or more remote databases. It’s
often the case that these calls are independent of each other (that is, no one of them
depends on the results of any of the others), and that the calls or queries can be per‐
formed concurrently. If they are performed concurrently, as shown in the trace on the
right side of the figure, the overall latency of the request can be greatly reduced.

Figure 8-5. Trace showing sequence of independent subspans (concurrent on right).

Sometimes several subspans are each implemented efficiently when considered in iso‐
lation, but when considered as part of some larger request, they do redundant work;

164 | Chapter 8: Improving Baseline Performance

Figure 8-6 shows an example. Both spans labeled A on the left side represent the
same computation. (Taken together these two A spans represent a majority of the
critical path.) This code can be refactored to perform that computation only one time
—with the results passed down to each of the two subspans—reducing the total time
required to process the request, as shown on the right side of the figure. Doing so
reduces the total amount of work performed during the request: this is an example
where tracing can improve both latency and throughput.

Figure 8-6. Trace showing redundant work performed in two subspans (refactored on
right).

A final example of an individual trace that can offer an opportunity for optimization
comes not from optimizing the code itself but from changing the configuration of
that code. Recall that Figure 8-3 shows a trace where there is a large difference
between the duration of a client span and a server span for a single RPC, and that this
difference can often be a result of network latency. Sometimes this network latency is
unavoidable, but at other times it can be a result of a misconfiguration. For example,
one service might be calling another service but routing requests to an instance in
another datacenter instead of a local one or, similarly, it might be querying a database
replica in the wrong region. This frequently occurs when service configuration is
heedlessly copied from one datacenter to another.

The example shows that you can discover this by inspecting the tags on each of the
spans found in the trace. If the region tag differs between the client and server spans,
that’s a good indication that there might be an opportunity to reduce overall latency.

Biased Sampling and Trace Comparison
In Chapter 6, we discussed sampling and how it can be used as a mechanism to con‐
trol costs. In summary, collecting all traces (and all spans) is not necessary to under‐
standing or improving application performance—and is usually prohibitively
expensive. Traces may be sampled in a way that biases toward those with valuable

Approaches to Improving Performance | 165

information, usually by selecting those that represent slow requests or requests with
errors. Here we will consider sampling in the context of improving performance indi‐
cators that matter to your business, organization, or users: your SLIs. Moreover, once
the right traces are selected, you can compare them to quickly identify the root causes
of issues.

While looking at a single trace can be a good approach to improving median latency,
improving the performance of the slowest requests is best done by considering at least
two requests: one close to the median latency and one that has a high-percentile
latency. Sampling requests uniformly at random, however, is unlikely to yield many
examples of slow requests, especially if the distribution of requests looks like that
shown in Figure 8-1. That is, if the latency of requests was uniformly distributed, then
uniform sampling would be a reasonable approach, but since latency is almost never
uniformly distributed, sampling should be biased to make sure that infrequent—but
still valuable—traces are collected. For improving slow requests, make sure that a suf‐
ficient number of 99th-percentile (or even 99.9th-percentile) latency requests are
sampled. Note that this might even mean that these requests are sampled just as fre‐
quently as median requests, even if they are many times less likely to occur.

Similarly, it is important to bias trace samples toward requests with errors. Services
typically try to keep the portion of errors to a fraction of a percent, so again, uniform
sampling is unlikely to pick up a reasonable set of examples.

There are other, more application-specific, features that might also be good candi‐
dates for driving sampling bias. For example, if you are running an experiment with
only 0.1% of your users, biasing toward that set of users is important in understand‐
ing the performance of code running that experiment.

Once you have a sample of traces (as few as just two), you can then compare them to
understand what is causing the slow ones to be slow. Typically it’s not the case that
every subspan is proportionally longer in the slow request, but that one or two sub‐
spans are much longer.

Figure 8-7 shows two traces for an /api/update-inventory request, one on the top
that takes 186 ms and one on the bottom that takes 1.49 seconds (in both cases as
observed by the client). Looking at the spans that contributed to the critical path,
most of the spans in the two traces are approximately the same length. The exception
is the write-cache operation, which takes more than 28 times longer in the top exam‐
ple. Further investigation would be required to understand why this operation takes
longer in some cases, but comparing these two traces has more or less eliminated any
other theory as to why the trace show at the top is slow.

166 | Chapter 8: Improving Baseline Performance

Figure 8-7. Two traces, showing fast and slow responses for an example API request.

Trace Search
In addition to automated sampling based on latency, errors, or other features of
spans, users may also want to search for spans in a manual, ad hoc way. For example,
users may be working to eliminate specific classes of errors. Or users may be testing
new code using their own user accounts and want to search for the traces associated
with those accounts. For traces that are generated as part of a CI/CD pipeline, they
may be tagged with build labels or deployment information so that users can find
traces associated with failures quickly. Being able to search for specific traces is
important when you, as a user, have a hypothesis that you want to validate or refute.
To support these use cases, it’s necessary to index traces in such a way that a relevant
trace can be found easily and efficiently.

Approaches to Improving Performance | 167

5 [Sig10]

There is ample work on indexing structured data like traces; however, in many cases,
these indexes can become almost as large as the trace repository itself. Since storage is
one of the major costs associated with distributed tracing, understanding how to bal‐
ance the needs of users with this cost is important.

The Dapper work at Google showed that a single index based on service and then
host and time was able to meet many of the needs of our users.5 This was because,
first, most users were responsible for a small number of services and were focusing
on the performance of just one at a time, and second, some other observability tool
had clued them to where or when a problem was occurring. Initially, we also pro‐
vided an index which would enable lookup based first on host, but did not see
enough interest to justify the additional cost. Tools that take similar approaches may
limit use cases to those focused on a single service.

Tracing tools can also provide some assistance in building search queries quickly. Just
as search engines suggest queries as we start typing, tracing tools can suggest relevant
traces. For example, once a user has selected a service, a tool can suggest operations
that that service implements as well as tags associated with that service. Thus, tracing
tools also support a form of discovery about the data found in traces. For example,
suggestions might help users understand which sorts of errors are occurring in their
service or enumerate which operations their services depend on. This process can
help guide users toward hypotheses about which factors are impacting baseline per‐
formance.

Once a user has a hypothesis, the next step is to look for evidence that supports or
refutes that hypothesis. Searching through traces is the way to find that evidence.
Some examples of hypotheses that can be explored using tracing:

• Long requests are often blocked on retries (look for spans tagged with
retry=true)

• Cache misses account for the majority of latency when they occur (look for spans
with cache=miss)

• Requests that time out waiting for RPCs (look for spans with errors that indicate
timeouts or RPC cancellation)

While validating and refuting existing hypotheses are important use cases for dis‐
tributed tracing, we will explore a set of analyses later where tracing tools also help
users to form new hypotheses about application performance.

168 | Chapter 8: Improving Baseline Performance

Multimodal Analysis
In the rest of this chapter, we’ll describe use cases that depend not on just one or two
traces, but a statistically significant collection of them. This may be dozens, hundreds,
or even thousands of traces, depending on the homogeneity of the requests. Histo‐
grams offer a convenient way of visualizing the behavior of many traces in a way that
provides much more information than just a few statistics. Here we’ll show how to
use multimodal analysis to break down performance into a small set of broad cate‐
gories that can be used to inform the next steps of optimization.

A modality (in the context of a histogram) is what’s shown as a peak in a graph: each
modality represents a set of traces that have approximately the same latency. A histo‐
gram is multimodal if it has multiple peaks. As noted earlier, a latency histogram for a
single service or even a single operation rarely has a simple bell-shaped curve. This is
because latency is usually determined by a number of discrete factors, including the
following:

• Which network type the client is using, including mobile data (3G, 4G, 5G) or
broadband internet

• Whether an existing connection or session can be reused
• Whether the request can be serviced from a cache
• Whether the request involves mutating any persistent state
• Whether an upstream request timed out and must be retried

For example, requests that may be satisfied from a cache may be 10 times faster on
average than those that cannot. A service that uses a cache will usually have a multi‐
modal latency distribution where one peak corresponds to cache hits and another to
cache misses. Because a service may be affected by more than one of these factors, it’s
not uncommon to see histograms with five or more modalities.

Figure 8-8 shows a multimodal latency histogram. On the left side requests are pre‐
sented as a single distribution; on the right side, requests are broken down into three
groups. (Notice that the height of each bar on the left is the sum of the heights of the
corresponding bars on the right.) This histogram shows what you might see if
requests were divided by client network type: most broadband requests are faster
than most 4G requests (and nearly all 3G requests); most 4G requests are faster than
most 3G ones.

Approaches to Improving Performance | 169

Figure 8-8. Multimodal histogram (left: combined, right: as separate components).

Understanding what distinguishes one modality from another is key to improving
performance. In some cases, multimodal analysis will help to make sure you are com‐
paring the right sets of requests (it’s unlikely you’ll be able to make requests that
mutate persistent state faster than those that don’t). In others, it will help you focus on
the right set of solutions (speeding up backend processing time is less likely to
improve 3G user latency than reducing the number of requests or the sizes of the
results). In still others, it will help you manage performance and cost trade-offs
(increasing cache size may improve latency but require additional computing
resources).

Multimodal analysis offers more precision than just comparing requests based on
their latency: comparing a fast and a slow request will often provide less insight than
comparing traces from two different modalities. Multimodal analysis is also impor‐
tant in that it enables users to move from just “reducing latency” to more concrete
next steps such as reducing payload size or improving cache hit rate. Once you can
focus on a more specific set of requests, you can use the other techniques described
earlier to find the root causes of slower requests.

Histogram Bin Width and Multimodal Analysis
While we haven’t discussed many of the choices necessary in using histograms at
length, one implementation detail that is especially important to multimodal analysis
is bin size. The bin size is the width of the bars in the histogram. The smaller the bins,
the more bins there will be, and the more detail the histogram can offer. Using larger
bins can sometimes be problematic as more information about each request is lost:
each bucket will represent a more diverse set of examples.

However, using too many bins can cause random noise in the original sample to
appear as multiple modalities in the histogram. For example, it might be that few
requests have a latency of 117 ms, even though many requests have latencies of 116
ms and 118 ms. This is probably not a result of two truly different behaviors in your
application, but just a result of the fact that, even within a uniform population, meas‐
urements will still show some variation—just like you can’t expect the next coin flip
following a “heads” to always be a “tails.”

170 | Chapter 8: Improving Baseline Performance

Bin size need not be fixed, even within a given histogram. We’ve found using bins that
are narrower at the small end of the axis and wider at the large end is a good fit for
understanding request latency, especially if latency will be graphed on a logarithmic
scale. This also helps users focus on behavior that will improve performance in a
meaningful way since, for example, shaving off only a few milliseconds will have little
impact on a request that took seconds to complete.

Aggregate Analysis
Collections of traces can also be used to draw conclusions about performance in ways
that are less susceptible to small variations in individual traces. In the preceding
example of comparing two traces, there was only one major difference (and so mak‐
ing the comparison was relatively straightforward), but often there will be many dif‐
ferences, some significant, and others not. By taking a larger sample of traces, we (or
rather, our tracing tools) are able to better see the patterns that can lead to meaning‐
ful improvements in performance.

A simple form of aggregate analysis is just to look at the most common errors within
those traces. This can be especially fruitful when looking at a sample set that contains
only failed requests, as common errors are likely culprits to consider when trying to
eliminate those failures (though see the following section for how this approach can
be further improved).

Note that when we say “errors within those traces” we mean errors that occur within
any span in a given trace. This is where some of the true power of tracing starts to
show: while metrics would enable you to observe an increase in errors in, say, both a
mobile client and a backend, tracing enables you to know that these two types of
errors are both occurring within the same requests.

One of the most effective forms of aggregate analysis that we observed both at Google
and elsewhere is aggregate critical path analysis. In this analysis, once given a sample
of traces, we identify a set of classes of spans for which we want to measure the per‐
formance impact. This is usually the set of services or the operations that occur in
that sample of traces (though in some cases those classes could be even more fine-
grained). The result of the analysis will tell us where we should focus our optimiza‐
tion efforts to improve latency across the sample.

The analysis proceeds as follows. For each trace, we compute what percentage of the
critical path of that trace was contributed by each class of spans. Table 8-2 shows how
much of the critical path can be attributed to each span in the trace in Figure 8-2.
Assuming that the labels in that trace correspond to services, in this one trace 40% of
the critical path was contributed by A, 10% by B, etc. Once these percentages are cal‐
culated for each trace, they are averaged across all traces in the set.

Approaches to Improving Performance | 171

Table 8-2. Percentages of the critical path contributed by each span in the trace in Figure 8-2

Span Percentage of critical path
A 40%

B 10%

C 20%

D 20%

E 10%

Assuming that the other traces in the sample under analysis looked similar to this
example, optimizations to services A and, to some extent, C and D offer the best
opportunities to reduce the latency of traces in the population from which the sample
was drawn. B and E offer less opportunity simply because they contribute less to the
critical path: even reducing the duration of B to zero would only result in a 10%
improvement on average to request latency.

Aggregate critical path analysis can also be performed on the absolute durations that
each span contributes to the critical path, rather than percentages. Perhaps obviously,
this will bias the result toward optimizations that have the biggest impact on the slow‐
est traces in the sample. While this might be your intent, it would be better to limit
the initial sample of traces to better match what you would like to optimize (for
example, to those traces with 99th-percentile latency or higher) as this will reduce the
impact of a few outliers in the sample.

There are a few other things to look out for when doing aggregate critical path analy‐
sis. The first really applies to any aggregate analysis: be sure that you’ve chosen an
appropriate sample. One common mistake is to take a sample over a period of time
that doesn’t adequately represent the requests you’d like to optimize, perhaps by not
including requests from your peak traffic periods. Requests that occur during peak
traffic periods are much more likely to demonstrate where resource contention
occurs.

A second warning is to look for how network time is attributed (explicitly or implic‐
itly) to spans. In our running example in Figure 8-2, we determined that the span
labeled A contributed a significant amount of time to the critical path. However, it
also appears that this span makes three RPCs. If spans B, C, and E are all spans gener‐
ated by the servers of those RPCs (rather than the clients) then it’s likely that some of
that time attributed to A was time waiting for data to be transmitted over the network.
While there may be some changes that can be made to A to reduce this time (for
example, by compressing or otherwise reducing the size of payloads), optimizing the
code of A itself will likely have little effect.

172 | Chapter 8: Improving Baseline Performance

Correlation Analysis
We finish this chapter with a final analysis—one of the most powerful that distributed
tracing can offer developers looking to improve baseline performance. While many of
the techniques described earlier enable you to validate or refute existing hypotheses
about performance, correlation analysis takes things one step further by creating new
hypotheses, along with evidence to support them. This is an entirely novel workflow
for many developers: rather than having to rely on intuition and guess what could be
improved, tracing tools can guide you directly to the opportunities with the highest
potential to improve performance. You of course must bring your experience and
expertise about the application, but rather than starting from a blank page, you are
offered a “draft” to begin editing.

In the previous section, we noted that looking at common errors within a sample of
failed requests can help to find which type or types of errors were the root causes of
those failed requests. While this approach can be useful at times, it is prone to mis‐
takes. In particular, while it accounts for when they occur, it fails to account for when
they do not occur. To understand the problem, consider the following example. Sup‐
pose that there are two types of errors that appear in traces as described here. Error 1
occurs in 90% of traces that represent failed requests; Error 2 occurs in 100% of all
traces (including both successful and failed requests).

When considering a sample of traces that exclusively represents failed requests, it
may appear that Error 2 is the more likely culprit, since it appears in every failed
request, while Error 1 only appears in 90% of the sample. However, since Error 2
occurs in every request—including those that succeed—it’s unlikely to be the cause of
failures in our sample: this error is apparently recoverable, since it is recovered from
in the successful requests.

The question we are really trying to ask is not “Which type of error is more likely to
occur in failed requests?” but “Which type of error more strongly correlates with fail‐
ure?” Though correlation is not causation, it is a powerful tool in discovering root
causes.

To perform correlation analysis, we need not just one sample of traces but two. One
sample should represent the class of traces that you want to eliminate or at least
reduce, for example, failed or slow requests. The second sample should represent the
complement of the first sample: usually a set of successful or fast requests. (You can
think of this setup as being like a good scientific experiment, with both an experi‐
mental group and a control group.)

In addition to two sample sets, we also need a set of features with which we can look
for correlations. In distributed tracing, these features will be things like the services,
operations, errors, and tags associated with the spans that make up these traces. It
also includes the durations of those spans as well as what percentage of the critical

Approaches to Improving Performance | 173

path they are responsible for. This analysis can consider features of any span in the
trace: for example, even if we were investigating the top span shown in Figure 8-3, the
tags of the two spans below it might be critical (pun intended!) to the analysis.

Once we have the two sample sets (let’s call them A and B) and a set of features, carry‐
ing out the analysis simply means looking at each feature and asking, what’s the likeli‐
hood that it occurs in sample A but not in sample B? This yields a “coefficient of
correlation” for each feature. A coefficient of 1.0 means that a given feature appeared
in every trace in sample A and never in a trace in sample B, while a coefficient of –1.0
means that a given feature appeared in every trace in sample B and never in a trace in
sample A. A coefficient of 0.0 means that the feature was equally likely to appear in
both samples (including all of the time, not at all, or anywhere in between). The
closer to 1.0 or –1.0 the coefficient of correlation is, the more likely that feature can
explain the difference between the two samples.

Going back to our example with two types of errors, we can now say that Error 1 has
a coefficient of correlation of 0.9, while Error 2 has a coefficient of correlation of 0.0.
This tells us that Error 1 is a much better place to start looking when trying to
understand why requests have failed.

Of course, errors are only one type of feature that can help us understand what’s gone
wrong. As noted earlier, a span’s tags and contribution to the critical path are among
the important features that can be used to drive this analysis. This serves as a good
reminder of the importance of good instrumentation (as covered in Chapter 4)!

Table 8-3 is an anonymized example taken from a production service and includes
several tags. It shows the results of a correlation analysis when looking at traces for a
single operation whose latency is in the 99th percentile or greater.

Table 8-3. Example showing coefficients of correlation for several (anonymized) tags

Feature Coefficient of correlation
org_name: Acme 0.41

project_name: acme-prod 0.41

operation: fetching –0.39

total_rows_read: 0 –0.37

This example shows a relatively strong correlation between latency and a single orga‐
nization (in this case, a set of users). Perhaps the organization has a large amount of
data or makes particularly complex queries; in either case, these queries might be
quite expensive. Further investigation would be necessary to understand why.
(Unsurprisingly, this also correlates with the largest project in this organization: often
this analysis may yield one or two redundant tags.) In this example, latency is nega‐
tively correlated with queries for which no rows were read (total_rows_read: 0),

174 | Chapter 8: Improving Baseline Performance

indicating that these queries were usually not among the 1% slowest queries. This also
might provide some clue as to why slow queries were slow (perhaps a new index is
required?). In any case, a next step might be to look at some traces that meet these
criteria.

One concern you might have when adding all of these tags is that the number of tags
and the number of values of those tags (that is, their cardinality) might become large,
leading to excessive costs in managing all of this trace data. (In particular,
total_rows_read might have thousands of different values.) In Chapter 7, we identi‐
fied cardinality limits as an important way of comparing observability tools. Happily,
most distributed tracing tools—even those supporting correlation analysis—can
easily support this sort of cardinality.

As a developer, you should add many tags to spans, including as many of the follow‐
ing as makes sense for your application:

• Software versions (including versions of platforms and third-party components),
active experiments, and other “feature flags”

• User cohorts, segments, and other classifiers of user behavior
• Where a computation is running (for example, host, cluster, or datacenter)
• Any resources where contention may occur while servicing a request (for exam‐

ple, database tables, connection pools, even locks)
• Metrics of CPU, disk, or network load on a host, VM, or container

Any of these features might explain variation in performance, so including them in
application telemetry is an important first step in providing the raw data for the anal‐
ysis described here. It’s worth calling out the last list item; while these sorts of metrics
haven’t historically been part of distributed tracing, associating them with spans can
help explain cases where a request is slow not because of any computation performed
as part of the request itself, but simply because computationally intensive requests
were running nearby (for example, on the same host). This is an example of where a
good observability tool will span the “three pillars” described in the previous chapter:
ingesting multiple types of data (in this case metrics and spans) can support more
powerful analyses.

You can also use multimodal analysis to identify the sample sets to use in correlation
analysis. In the preceding example, we compared the 1% slowest requests with the
remaining 99%. However, the division between fast and slow will rarely fall on such
an arbitrarily defined boundary. In fact, by the nature of multimodal distributions,
there will be several different kinds of “fast” or “slow” requests. The quality of a corre‐
lation analysis will be much higher if at least one of the sample sets represents a single
type of behavior.

Approaches to Improving Performance | 175

To take advantage of multimodal analysis, you should first consider a histogram of
latencies and then use the traces in the slowest peak (or if that peak is too small,
either several slow peaks or the largest of the slower peaks) as one of your sample sets.
Use the remainder of the traces as your other sample set and continue with the analy‐
sis as described in this section.

Fully Automated Analysis
This chapter describes an analysis that can automatically enumerate hypotheses that
explain slow or failed requests. Can the process of identifying performance problems
and fixing them be completely automated? In our experience, the answer (fortunately
or unfortunately, depending on your perspective) is “no.”

First, there might be several tags which are all correlated with higher latency, but only
one of which will be something that can be “fixed” (and is not just another side effect
of the problem). Understanding how to map tags to source code, configuration, infra‐
structure, and user behavior requires knowledge that’s not present in telemetry itself.

Second, our experience has shown that it is difficult to identify sample sets automati‐
cally, even using a form of automated multimodal analysis. Many different aspects of
application performance may intersect to produce complex distributions, and it may
take some trial and error as well as knowledge about the application to find the right
thresholds for creating sample sets.

Finally, even when the reason that a set of requests is slow can be determined auto‐
matically, the path to making them faster frequently cannot. For example, say that
slow requests are highly correlated with a particular set of accounts. Deactivating
those accounts is obviously one way to improve overall latency but not a reasonable
option. Instead it may require research to understand what those users are trying to
accomplish and looking for workarounds or even developing new features to elimi‐
nate these slow requests.

Though some actions may be taken automatically (for example, rolling back problem‐
atic releases), human developers and operators still have an important role to play
(for now, anyway).

Summary
Improving baseline performance is ultimately about defining what aspects of perfor‐
mance matter to you and your users, discovering the biggest factors in determining
that performance, and making changes to your application to address any perfor‐
mance issues.

As part of discovering which factors impact performance—and especially latency—
you should consider the critical path of each request. Being able to determine the

176 | Chapter 8: Improving Baseline Performance

critical path of each request is a key advantage of using distributed tracing; using it
will help ensure your efforts to improve performance pay off.

Traditional uses of distributed tracing focus on analyzing individual requests. How‐
ever, more powerful analyses use hundreds or thousands of requests to look for pat‐
terns in traces. They not only validate (or refute) user-defined hypotheses but also
help generate new hypotheses that explain opportunities to improve performance.
Whether user-defined or automatically generated, those hypotheses can leverage tele‐
metry not just from one service, but from every service that generates spans that
make up those traces.

Summary | 177

CHAPTER 9

Restoring Baseline Performance

In the previous chapter, we discussed approaches to improving baseline performance,
usually with the goal of improving user experience, reducing costs, or both. In this
chapter, we’ll consider how distributed tracing can help when a change—intentional
or not—has caused a degradation in performance, and you need to restore perfor‐
mance to its previous levels quickly.

The way that your organization approaches problems like this may vary, but most
organizations will follow some sort of incident response plan. Such a plan involves
identifying when an incident occurs (either a partial or complete interruption in ser‐
vice or a significant performance degradation), how team members are notified, how
they respond, and (once the incident is over) what sorts of follow-up are required.
While there are other types of incidents besides those related to performance (for
example, security breaches), we will frame many of the approaches here in terms of
incident response.

In this chapter we will also focus on performance from the perspective of a single ser‐
vice. Most developers are responsible for at most a small number of services, and so
it’s natural to frame performance issues in terms of the performance of a single ser‐
vice. Of course, what ultimately matters is the overall application performance as per‐
ceived by your users; much of this chapter will discuss how to relate application
performance to the performance of individual services.

As the focus of this chapter is on restoring baseline performance, we assume that per‐
formance has recently changed. And as software is (generally) deterministic, changes
in performance are usually driven by changes to the software or to the environment
in which it’s running. While that might sound very broad, take comfort: changes that
impact service performance typically come from one of four different areas:

179

Changes to the service itself
New deployments or configuration changes

Changes in user behavior
New deployments or configuration changes to downstream services that play the
role of “users” of that service (including both end users and other services)

New behavior in response to new features or external events

Changes to upstream dependencies
New deployments, configuration changes, or changes to traffic from other serv‐
ices that share those dependencies (both direct and indirect)

Changes to underlying infrastructure
Changes to host, container, or network configuration

Colocation of services contending for the same resources

Mitigating performance problems typically means identifying which is the root cause
(or causes) of the problem and then undoing that change. In the case of a new
deployment, a configuration change, or possibly an infrastructure change, this often
means rolling back that change. In the case of a change in user behavior, it might
mean disabling a new feature or even blocking certain types of requests or queries. In
both cases, it can also mean provisioning additional resources to account for slower
code or more expensive queries.

To undo these changes, it will be critical to identify which team of developers was
responsible for the original change. You must effectively communicate with this team,
both describing the problem and providing enough evidence to convince them to
stop their current work and roll back the change (or disable the feature, etc.). And in
all of these steps, time is of the essence since performance regressions can have repu‐
tational, economic, and even legal repercussions.

Defining the Problem
Before we can discuss how to restore baseline performance, we must first define it. In
Chapter 8, we started with the “four golden signals”—latency, failure rate, traffic rate,
and saturation—but focused mostly on the first two. While traffic rate and saturation
are often used by developers and operators to understand and predict system health,
they have less direct impact on end users of an application: their impact often mani‐
fests in terms of latency. We will continue to focus on latency and failure rate here.

In that chapter, we also defined SLIs as a precise way of measuring performance.
Defining a baseline for SLIs really starts with declaring our intention for what
performance should be. This means defining an SLO. An SLO is an SLI together with
a goal for what the value of that indicator should be.

180 | Chapter 9: Restoring Baseline Performance

For example, if one of your SLIs is 99th-percentile latency for your service as meas‐
ured over the last 5 minutes, then an SLO might be that this latency is less than 1 sec‐
ond. Or if one of your SLIs is the error rate for your service as measured over the last
10 minutes, then an SLO might be that this rate is less than 0.1% of all requests.

When we discussed errors in the previous chapter, we covered how an error raised by
one service might impact the behavior of another. However, we must also consider
the case where a service fails to respond at all. To understand this case, it’s important
to measure error rate not just by looking at how a service reports its own error rate
but by measuring it from outside that service. When measured this way, we can talk
about how much of the time the service is available to answer requests, or its availa‐
bility. Thus another SLO might be that a service is available 99.9% of the time as
measured once per minute over the course of a calendar month.

Business Metric-Based SLOs
In this chapter, we focus on SLOs based on metrics like latency and error rate that can
easily be derived from spans and are present in many distributed tracing solutions.
However, you should also consider SLOs based on the metrics that are most impor‐
tant to your business.

For example, ecommerce applications might look at purchase rates or time-to-
purchase as SLOs. Products with a mobile app component might consider key inter‐
actions with the app, including cold start, both in rate and duration.

If spans are tagged with information about user actions (whether a purchase was suc‐
cessful, etc.) these metrics can be derived from traces, and—importantly—regressions
can be tied to specific (sets of) requests. This will ensure that you are investigating the
right sorts of regressions effectively.

Choose an SLO with an eye toward historic values: there’s no sense in setting an
objective that you will immediately fail to meet. But SLOs should also account for the
expectations of your users. In some domains (for example, for some financial applica‐
tions), users are happy to sacrifice availability if they are given higher assurances that
an application will perform correctly. In other domains (for example, observability
platforms), users may tolerate some loss of precision if the application is highly
available.

The final part of defining service levels is to describe what happens when you fail to
meet your SLOs. This usually takes the form of a service level agreement (SLA). An
SLA is an SLO—an objective—together with some consequence for failing to meet
that objective. SLAs often involve some sort of monetary compensation. For example,
if you fail to meet your SLO, you may be required to refund part of your customers’
fees. In other cases, it may give your customers the option to terminate their contract

Defining the Problem | 181

with you before the end of its term. Unlike SLIs and SLOs, which purely relate to your
application’s performance, SLAs put this performance into the context of real-world
consequences.

Setting SLOs and SLAs helps you to establish baseline performance and to under‐
stand when you should take action. If your goal is to keep 99th-percentile latency
below 1 second, and it’s increased from 200 ms to 250 ms, it’s probably not worth
waking up in the middle of the night for (though it might be a good place to start the
next time you have some free time to spend improving performance).

While it may be tempting to define baseline performance simply as “however it’s
working today,” using a more rigorous definition will enable you to be more confi‐
dent in determining when you need to take action to restore that performance. Per‐
haps more importantly, it will help you determine when you don’t need to take action:
after all, making changes to production systems always involves risk, and you proba‐
bly have better things to do with your time.

Human Factors
Before we dive into the details of how to use distributed tracing to determine which
changes are causing a performance regression, it’s useful to consider how tracing can
support people and processes in incident response. Unlike improving baseline perfor‐
mance, responding to an incident is unplanned work. Since time is usually of the
essence, facilitating communication and human interaction will play a much larger
role in incident response than in typical engineering work.

Determining who has the knowledge to understand a problem and who will do the
work is often just as difficult as debugging the code itself. Moreover, once those deci‐
sions have been made, they must be communicated effectively in the moment and
recorded so that they can be understood after the fact.

(Avoiding) Finger-Pointing
No one likes to be at fault for a regression. In fact, teams are incentivized to measure
performance in a way that can quickly show that they are not responsible for regres‐
sions. As a result, when a regression occurs, many teams will produce evidence that
they are not at fault. This leads to many teams blaming others…but without evidence.

For example, suppose that service A provides a shared storage solution that is used by
service B (among others). Service B’s latency is degrading, and the team that owns
service B is blaming service A. Service A’s metrics show that it is still meeting its SLO,
and the team that owns service A is claiming that service B is probably misusing the
API. Perhaps this reminds you of a meeting you have attended?

182 | Chapter 9: Restoring Baseline Performance

Traces can help resolve this sort of conflict. In this example, they would provide a way
of measuring the performance of service A from the perspectives of both service A
and service B. It might be that service A is meeting its SLO in general but not for ser‐
vice B. Or we might see evidence that, in fact, requests from service B to service A
could be optimized. Or it might be that the real culprit is neither service but a third
party, like the network or another client of service A that is abusing a shared resource.
Using distributed traces helps bring the conversation back to facts and, importantly,
ensures that everyone involved is talking about the same requests.

“Suppressing” the Messenger
In many cases, there may be many services between the point at which the offending
change was made and where that change is adversely affecting an SLI. For example,
many services may pass through an error that occurred further down the stack. It
may look as if the error rate of these services has increased during an incident (and in
fact, it has), but these errors don’t indicate a problem with that service, only that an
error has occurred elsewhere.

When no changes were made to these intermediary services leading up to the inci‐
dent, then no changes to those services can likely resolve it. However, the teams
responsible for these intermediary services may still be interrupted from their day-to-
day work (including being paged); they may be called into meetings to discuss the
incident; or their time may be wasted in other ways.

MTTR describes how long it takes to address a regression. However, you might less
frequently hear mean time to innocence (MTTI). This term is used to describe how
long it takes to exonerate teams whose services were potentially—but ultimately not
—at fault in an incident. You can think of MTTI as the cost paid across your organi‐
zation for a lack of understanding about which service was responsible for a given
incident.

The solution to these issues is to “suppress” the messenger. That is, rather than shoot‐
ing the messenger, we should look for ways to limit the participation of teams whose
services are merely conduits for errors or other problematic requests. We use “sup‐
press” in this context in the same way that we might direct a compiler to suppress
certain kinds of errors or warnings: while they might be valuable at times, in these
cases they are just another source of noise.

Traces can help to exonerate these teams quickly: when looking at a trace, it’s easy to
see the first point at which an error occurred and where that error was simply passed
through.

Human Factors | 183

Incident Hand-off
Unfortunately, some incidents will last for hours or even days. In these cases, one per‐
son cannot reasonably lead—or even participate in—the response for its full duration.
In those cases, it’s necessary to hand off responsibility for leading, investigating, or
communicating about an incident. One major challenge in incident hand-off is mak‐
ing sure information about the incident is transferred from one set of humans to
another.

What makes that information transfer particularly challenging is that often that infor‐
mation is incomplete. (After all, if you understood everything about what was hap‐
pening, you could make short work of the incident and probably avoid the hand-off
altogether.) Traces can help in this case as well. If you can identify a class of requests
that seem to be problematic and then capture a set of traces for those requests, you
need not understand every detail of what’s happening with those requests for them to
be useful. Because traces capture not only a lot of detail about what’s happening but
also the causal relationships between your and other services, subsequent responders
can mine them to ask questions that you didn’t even consider. That is, traces offer a
way to capture a dataset that is both narrow and broad: narrow because it represents
only the problematic requests, and broad because it’s not limited to the avenues of
inquiry that you had time to pursue.

Good Postmortems
If you are an adherent of DevOps culture (and you should be!), you probably write
and discuss postmortems for each incident in which your team participates. A post‐
mortem is an opportunity to document events leading up to the incident, how it was
handled, what was good about the response, and what could have been better. A good
postmortem will focus on the facts: to avoid repeating either the incident itself or the
mistake made in response to it, it’s important to understand precisely what happened.

As is sometimes repeated in SRE circles (and playing off of a British motivational
poster from World War II), “keep calm and gather data for the postmortem.” It can be
difficult in the heat of incident response to keep good records of exactly what you dis‐
cover. For example, if an upstream service is discovered to have deployed a new
release coincidently with the performance regression, that team may be pressured
into quickly rolling back that release. When the performance regression disappears
minutes later, we might assume that the new release was responsible for that regres‐
sion. In fact, that release might have been responsible, but ideally we would capture
some evidence of that. However, we might not have adequate staff to both respond to
the incident and build meticulous records of what was happening. Instead, we should
consider tools that let us quickly capture evidence—or even potential evidence—of
what was going wrong during the incident.

184 | Chapter 9: Restoring Baseline Performance

Distributed tracing can provide an easy way to collect that evidence. Due to the very
detailed nature of each trace, even just a handful of traces can provide ample infor‐
mation. For example, if spans are tagged with a software release version, the traces of
even a few slow requests can provide evidence that that release was responsible for
the regression.

Whether you record information for your postmortems in shared docs, in chat
rooms, or using other tools, dropping in links to potentially useful traces is well
worth your time, even while in the heat of the moment of incident response. They
can be used to validate theories of what was happening during the incident. These
traces can serve as powerful visual aids during postmortems and operational reviews.

Approaches to Restoring Performance
With the right SLOs in place, you can be confident that you have made a good start at
understanding what baseline performance looks like and when your service has devi‐
ated from it. As much as it might feel like a solo endeavor at times, incident response
is always a group effort.

We continue with several approaches that show how distributed tracing can help
determine and mitigate the root cause of performance regressions. In most cases,
each approach will apply to a wide range of types of changes. For example, whether
you’ve just deployed a new version of your service, one of your upstream dependen‐
cies has, or one of your downstream users has, tracing can help you identify if and
when those changes are affecting your service’s performance.

Tracing can also serve as a communication tool, and each of the following approaches
provides ways of facilitating communication during or after incident response.

Integration with Alerting Workflows
Incident response is often triggered by an automated alert. That is, some SLI has
crossed a predetermined threshold, escalation policies and on-call schedules have
been consulted, and someone’s phone starts ringing or buzzing (or both). If this is
your phone, you stumble out of bed, open your laptop, and begin investigating. At a
minimum, this alert includes the SLI and the threshold. From there, it’s up to you to
begin building theories about what’s going wrong and how you might mitigate that
problem. Typically this involves opening one or more observability tools and looking
for signs of the problem.

In rest of the chapter, we’ll consider a number of different ways that distributed trac‐
ing can help identify the root causes of regressions and restore baseline performance.
These techniques are particularly effective if some preliminary results are included as
part of alerts. In that case, you can simply click on a link to begin investigation.

Approaches to Restoring Performance | 185

This should be relatively straightforward for all of the approaches we describe, from
the simplest to the most sophisticated. For example, if an alert is triggered because an
error rate has spiked, there must be at least one failed request. Or if an SLI like latency
has crossed some threshold, then there will be a number of requests slower than that
threshold that can form the basis of an analysis. Including traces of those requests (as
well as the results of other analysis) as part of an alert can save you valuable time.
While raw metrics and logs can also be included as part of an alert, neither offers the
context that distributed traces can provide.

It’s beyond the scope of this book to give a complete accounting of best practices
around alerting. However, it’s still worth a few words to remind you to alert on symp‐
toms, not causes. This means that alerts should be triggered based on things that your
users can observe, likely the same metrics that you choose to be part of your SLOs
and SLAs. Conveniently, there are typically only a handful of symptoms that matter
for most services (meaning that you have only a small set of alerts to maintain and
document). On the other hand, the number of possible causes of a performance
regression is orders of magnitude larger. It’s the role of tracing—and for that matter,
any observability tool—to reduce the number of possibilities that you must consider
when looking for a root cause. If information that helps expedite this process can be
included in the alert itself, all the better!

This can be taken one step further to help make sure the right people are alerted
when there is a regression. For example, if an SLO is about to be violated, then some‐
one should probably be alerted. But should it the owner of the API gateway (which
lies closest to the user and the definition of the SLO) or of the backend service that
ultimately served the requests (and returned the errors)? Probably better to start with
the backend service owner, since that’s where the errors originated. They can always
bring a member of the API gateway team into the investigation if necessary. Using
information in the trace, alerting systems can route alerts to those developers and
operators most likely to be able to address the root cause. This is a way of automating
the technique described earlier as “suppressing” the messenger: it can shave valuable
minutes off of your MTTR and also significantly reduce the number of interruptions
to others’ work (and sleep) across your organization.

Individual Traces
Looking at individual traces is one of the simplest ways of leveraging tracing as part
of incident response and root cause analysis. Individual traces are particularly useful
when failures are black and white: for example, when a breaking change is deployed
to your service or to another. This means that all requests (or at least a significant
number of them) are failing, so it’s easy for you to identify one such request.

Figure 9-1 shows an example of a failed request. An error is propagated from the
span labeled D up through B up to the top of the trace. (Spans which resulted in an

186 | Chapter 9: Restoring Baseline Performance

error are loosely outlined.) Looking at the logs associated with span D, we see that the
error is related to the response that it got from span E (that is, some invariant that it
expected was not met). This could mean one of a couple of things: either D represents
a recent deployment or E represents a recent deployment. Once you’ve determined
which service has recently deployed a new release, mitigating the issue is just a matter
of finding the appropriate service owner and getting them to roll back that deploy‐
ment. And as noted earlier, sending along the trace shown in the figure will be a great
way to motivate them to do so! This example uses a combination of traces and logs:
the trace helps identify the impact of an error, and logs provide additional informa‐
tion to help pinpoint the problem. In isolation, neither would be as powerful.

Figure 9-1. Trace showing an error propagating up the stack.

The risk of using individual traces during incident response is that, because you are
moving fast, it can be easy to overgeneralize from a single trace and draw an incorrect
conclusion about the cause of the incident. For example, perhaps the error shown in
Figure 9-1 has been occurring for a long time and what’s changed recently is how that
error is handled. Or perhaps a change in user behavior is triggering that error. (In
either case, it would still be a good idea to eventually fix the error, but your focus in
responding to an incident should be to find the safest way to mitigate the problem,
not necessarily the cleanest way of fixing a bug.) Some of the approaches later in this
chapter will show how to leverage more than one trace—even hundreds or thousands
—to avoid this sort of “premature generalization.”

Biased Sampling
As described in the previous chapter, biasing trace sampling based on the SLIs that
are important to your business or organization is an effective way to derive value
from distributed tracing. As in that chapter, biasing toward slower or failed requests
can help make sure outliers are available for analysis. However, in the context of
restoring baseline performance, there are a few other kinds of bias that can also be
valuable.

Approaches to Restoring Performance | 187

Most regressions in performance are caused by changes to the application or its envi‐
ronment, so biasing sampling with an eye toward those changes can be useful. For
example:

• If you are about to make an infrastructure configuration change, make sure you
have adequate traces from before and after the change.

• As you deploy a new version of your service, make sure you have traces from
both the old and the new versions.

• If you are starting an experiment or slowly rolling out a new and significant fea‐
ture, make sure you have traces from before, during, and after the change.

To bias sampling during these sorts of events, there are a couple of possible
approaches to consider. First, your tracing tool may allow you to dynamically trigger
adjustments to the sampling algorithm using an API call or a configuration change.
For example, you may be able to temporarily increase the number of traces collected
from certain hosts. If you do so for hosts running a new version of your service, you
will bias sampling toward that new version.

A second approach is to add tags to spans to make these changes apparent in the tele‐
metry data itself. For example, adding tags that describe infrastructure or software
versions means that you can easily see when a given request hit a new version or an
old one (or in some cases, both). What’s especially powerful about this approach is
that it also means that the tracing tool can detect these changes and automatically
change the sampling algorithm to account for this. For example, if a new version of a
service is being incrementally deployed, spans from the new version will have a tag
that’s never been seen before. This can be used to increase the sampling rate for traces
from the new version and also to increase the sampling rate for traces from the old
version (relative to services not undergoing any changes at the moment). Having
both facilitates better comparisons between the two versions.

Integration with your infrastructure, deployment, and experiment management tools
can help make this sort of biased sampling easier to achieve. Infrastructure and
deployment tools can set environment variables that can be used to include infra‐
structure configuration and software versions as part of spans. Experiment manage‐
ment tools (including feature flagging systems) can be configured or extended to
annotate spans with the current active experiments and feature configuration. In any
case, when there are planned changes to your software or infrastructure, making sure
your distributed tracing solution is aware (one way or another) of those changes will
help ensure that you have the data necessary to understand their impact.

188 | Chapter 9: Restoring Baseline Performance

Leveraging Tracing with Chaos Engineering
One additional opportunity for integrating tracing with other production tools is in
chaos engineering: the practice of deliberately injecting failures into your distributed
system to understand how your software—and your team—will respond to them.
While not technically part of incident response or restoring baseline performance,
this practice can help you prepare for when real issues do occur. Distributed tracing
can help provide the data necessary to address any issues that are discovered through
this technique.

Of course, the failures introduced as part of chaos engineering should be rare enough
that they don’t affect user-visible performance. Unfortunately, this also means that
requests with injected failures are unlikely to be collected using uniform sampling
techniques. As in the case of new releases and other planned changes, adding tags to
spans to indicate when failures are deliberate can help address this issue and make
sure that traces are collected for analysis.

Tracing can also help recognize cases when injected faults are affecting users. Injected
failures that are propagated all the way to the top of the stack can be discovered by
looking for traces that contain both a span with an injected failure and a root span
with an error. If these cases occur, a team member can be immediately alerted or
(even better) that type of injected failure can be disabled.

Real-Time Response
Unlike planned performance improvement work, where you have plenty of time to
carefully gather data to support your decisions, it’s difficult to anticipate what sorts of
data will be necessary when responding to an incident, nor will you have as much
time as you’d like to collect it. However, distributed tracing tools can provide real-
time search functionality to get you up to speed quickly on what’s happening.

Figure 9-2 shows an example of trace search functionality offered by Zipkin. (Though
you can see from the figure that this tool offers more than just real-time search, we’ll
ignore the “lookback” option in this section.) Using this functionality, you can look
for traces that include a particular service, whose latency exceeds a given threshold,
or that contain some particular tag or other metadata. Using this, you can find traces
that are examples of slow or failed requests and—as you start to build a theory as to
what’s gone wrong—traces that exhibit other features that you believe might help
explain the issue. For example, you might suspect a canary release is responsible for a
regression, so searching for traces handled by that canary is a good place to start. By
performing multiple searches, you can also compare traces to begin to understand
their differences.

Approaches to Restoring Performance | 189

Figure 9-2. Screenshot of Zipkin’s trace search functionality.

This functionality is similar to that provided by many log aggregation tools—both
provide for ad hoc searches over a large corpus of diagnostic data. However, in most
cases, logs that provide evidence of the problem will rarely provide evidence of the
cause of the problem. Tracking down logs from service to service can be difficult, but
(in contrast) distributed tracing tools can easily put those logs in the context of an
end-to-end request. That is unless, of course, you’ve managed to add correlation IDs
to all of your logs. If you have included these sorts of identifiers throughout your logs,
you’ve essentially turned your logging system into a tracing one (though probably not
a very efficient one), as discussed in Chapter 7.

Different tracing tools collect and store data in different ways, so the exact functional‐
ity offered by your tool might be different than what’s shown in Figure 9-2. Despite
this, we can still speculate about what’s possible with distributed tracing based on the
following two observations:

• Network performance (and in particular, local network performance) continues
to rapidly improve.

• The data required for real-time response is, almost by definition, short-lived.

The first observation means that it should be possible to extract a large portion, if not
all, of the tracing data from the application at a reasonable cost. This means that even
rare events can be extracted and available for real-time search and analysis. The sec‐
ond means that—at least for real-time analysis—tracing solutions are not required to
persist data for extended periods of time. This can greatly reduce the overall cost of
storing traces and other telemetry.

This raises a question: what does “real-time” mean in distributed tracing, anyway?
Given that most changes to a distributed application are instigated by a human and
take at least a few seconds to propagate and take effect, getting results in less than a
second is probably not necessary (especially since many requests might even take a
second or two). On the other hand, waiting even one or two minutes for new data to

190 | Chapter 9: Restoring Baseline Performance

appear in an observability tool can be excruciating if you are trying to understand if
the release you just deployed has fixed a regression. Having to wait hours can make
such a tool all but useless!

Ultimately, what “real-time” means will depend on other aspects of your incident
response process (including how fast you can detect changes and act to address them)
and on the commitments you’ve made to your users. If you are running a highly
available application, every minute of downtime matters, and so does every minute of
delay between when a change happens and when you can investigate it.

If we expect that developers will be alerted within a few minutes of when regressions
occur, then most trace searches that occur as part of incident response will also occur
within a few minutes of those requests. All tracing tools should capture and store
some historical traces to help establish a baseline; however, tracing solutions that spe‐
cialize in supporting real-time response can keep a much more detailed record of
what’s occurred in the last few minutes. In those cases, those responding to an inci‐
dent have access to nearly arbitrary data about what’s happened—precluding the need
to know what queries will be run in advance or to set up filters or triggers to make
sure useful traces are captured. By temporarily storing these traces, tracing solutions
can do so at a reasonable cost.

Knowing What’s Normal
While setting an SLO can help set a simple expectation for baseline performance,
there will obviously be much more variation in actual performance, even under nor‐
mal conditions. For example, user behavior will likely follow diurnal or weekly cycles
which in turn will affect performance. Given those expected changes, having a more
refined definition of baseline performance is key to effective incident response. One
way to better understand what’s normal is to compare current performance to one
hour ago, one day ago, or one week ago. (If your business is a retailer, you likely need
to consider other sorts of seasonality as well.)

Understanding current performance relative to what’s normal will enable you to make
better decisions. For example, suppose your traffic rate is steadily growing and that
this increased load is (you believe) also causing increased response latency. Though it
is still below your SLO, if latency were to continue to climb, you will soon cross that
threshold. Should you provision more instances to account for this load? Or wait it
out (and avoid unnecessary infrastructure costs)? Really the question you are asking
is, are you at peak traffic or not? The answer to this question is largely based on when
the peak occurred yesterday, last week, or last year.

Figure 9-3 shows two examples of how visualizations of historical data can be used to
understand baseline performance and how that performance has changed. The left
side is a time series graph showing periodic behavior in both latency (top) and traffic
rate (bottom). Two time series are overlaid for both metrics. One graph (black) shows

Approaches to Restoring Performance | 191

how the service performed last week. The other graph (which ends at the vertical line
corresponding to Friday evening) shows how the service is performing so far this
week. The traffic rate (bottom) shows both diurnal and weekly cycles, with the high‐
est peaks in the evenings over the weekend. The vertical bar represents the current
time. From looking at this graph at (1), you can determine that load is close to, but
not quite at, peak, so provisioning a few more instances might be a good idea.

Figure 9-3. Using historical performance to establish what’s normal.

Interestingly, there was also a spike in 95th-percentile latency (top) that occurred ear‐
lier in the week at (2). This did not correspond with an increase in traffic nor was
there a spike at this point in time during the previous week. This indicates a deviation
from normal and that some other event (for example, a deployment) may have caused
the change in latency.

The right side of Figure 9-3 is a histogram with an overlay of past performance. The
bars show the current distribution of latencies (say, for requests in the last hour). The
line shows the distribution of requests for the same time period yesterday. In this
case, there is a second peak in today’s graph that did not appear in yesterday’s graph.
This would indicate that there is some new aspect of service performance that didn’t
exist yesterday or that some users’ behavior has changed in a significant way.

This analysis of histograms is related to the multimodal analysis described in Chap‐
ter 8. In this case, however, rather than simply comparing two or more peaks within a
single distribution, we are comparing the number and sizes of the peaks in two differ‐
ent distributions.

Note that “what’s normal” need not be expressed solely in terms of software perfor‐
mance like latency or error rates. For example, tracking aggregate user behavior can
also play a role in determining what’s normal. Knowing typical conversion rates and
session lengths can help to establish whether your users are deviating from their usual
behavior. Any deviation might be a key symptom of a regression in software
performance—or it might even be the cause of a change in software performance. In

192 | Chapter 9: Restoring Baseline Performance

either case, understanding user behavior helps put application performance into the
larger context of how it matters to your business or organization.

Automated analysis of traces in can also help establish if performance has deviated
from normal. Up until now we’ve considered changes in performance mostly as
measured by metrics like high-percentile latency. However, while looking at percen‐
tiles is often better than looking at just medium latency, focusing only on percentiles
can still cause you to miss significant changes in performance. Here, we consider how
an automated analysis can look at the shape of a latency distribution and determine
whether there’s likely to have been a change.

Earlier we considered how current performance could be compared with past perfor‐
mance by overlaying two latency histograms. While this can be a useful way to iden‐
tify many kinds of changes, it still has its limits. For example, Figure 9-4 shows
latency histograms for two samples. Suppose we were trying to decide if the second
sample represents a change in performance from the first or just more of the same.
There is less than a 5% difference in 99th-percentile latency and less than a 1% differ‐
ence in 99.9th-percentile latency between the two samples. From these measurements
and looking at the two histograms, you might think that the two samples represent
the same underlying service behavior.

However, a huge portion of the requests on the right side (nearly half!) are signifi‐
cantly faster than those on the left side. Most of these fast requests fall into the first
bucket in the histogram (as indicated by the arrow) and were only tens of milli‐
seconds in duration. (Remember that, like many of the histograms shown in the
book, the vertical axis is plotted on a logarithmic scale.) This could be due to the
introduction of a cache or some similar optimization. Regardless of what caused it, if
neither metrics like high-percentile latency nor visual inspection are sufficient to tell
when something has changed, we must consider other tools.

Figure 9-4. Two visually similar but very different histograms.

Approaches to Restoring Performance | 193

Fortunately, there are a number of robust statistical techniques for determining
whether two sample sets are likely to be taken from the same distribution. While a
thorough description of these techniques (and how you might choose among them)
is beyond the scope of this book, we’ll consider one technique and describe how you
might use it to address this problem. What you should take away is that, first, these
techniques exist; and second, they have powerful applications to measuring perfor‐
mance changes.

The technique that we will consider here uses the Kolmogorov-Smirnov (K-S) statis‐
tic. The K-S statistic measures the difference between two distributions as a single
scalar number. To describe this technique we first need to define one other concept
from the study of statistics. So far we have showed a number of histograms as a way
of visualizing a distribution; here, we will show a cumulative distribution function
(CDF). This differs from histograms in two ways. First, as the name suggests, we
accumulate counts, so each point on a CDF is the sum of all of the corresponding his‐
togram points to its left. Second, the vertical axis is normalized, so it ranges from zero
to one. Framing sample sets as CDFs will enable us to more easily compare them.

Figure 9-5 shows two cumulative distribution functions. While the upper line grows
more slowly initially than the lower one, it quickly overtakes it. If rendered in a histo‐
gram, this would be shown as a steeper peak that appeared farther to the left. The K-S
statistic is generated from the largest vertical distance between the two CDFs, as
shown by the arrow. The larger that distance, the more likely that the two CDFs were
drawn from different distributions; that is, that there was an actual change in perfor‐
mance. As you can imagine, such a measure can be quickly and automatically compu‐
ted for a large number of histograms.

How is such a statistic used? Is there a threshold for the K-S statistic (or any similar
statistic) that, when crossed, would mean that a regression has occurred? In general,
no, as the performance of many services will change over time. Even if a service has
experienced the largest change in performance across your application, that doesn’t
necessarily mean that anything is wrong or, even if something is wrong, that that ser‐
vice is the root cause of the issue. However, techniques like the K-S statistic are useful
for organizing information. For example, sorting services (or operations, etc.) accord‐
ing to the K-S statistic or other measures of change can help human responders iden‐
tify root causes.

194 | Chapter 9: Restoring Baseline Performance

1 Source: Wikipedia.

Figure 9-5. Cumulative distribution functions of two sample sets; the arrow shows the
Kolmogorov–Smirnov statistic1.

Aggregate and Correlation Root Cause Analysis
The technique described in the previous section is one example of an aggregate analy‐
sis: it used not just one or two traces but a statistically significant sample to determine
if a change in performance has occurred. Once you’ve determined that there has been
a change in performance, restoring baseline performance usually comes down to
finding the root cause or causes of that change. (Sound simple enough?) In Chapter 8,
we showed how aggregate analyses can be used to improve baseline performance;
these approaches also have powerful applications in understanding changes to your
application and its environment and, ultimately, in addressing performance
regressions.

The first step in any of these approaches is to divide traces into two sample sets; these
will form the basis of any comparison. In the context of restoring baseline perfor‐
mance, the first sample set should come from the regression itself. This is usually easy
if the regression is happening right now. If you know that the regression is present in
only a portion of requests (for example, if you know there is a problem with a canary
release) then sampling from that portion is also important.

Approaches to Restoring Performance | 195

https://oreil.ly/Sc0wk

The second sample set should represent baseline performance. This will likely be a set
of traces from before the regression started, perhaps from an hour, a day, or a week
ago: leverage your understanding of what’s normal for your application and choose a
baseline set from a similar point in whatever cyclic behavior your application and
users exhibit. As in the preceding section, using overlaid time series or histogram
graphs can help to understand how performance varies over time, and therefore help
you identify a sample set to represent baseline performance.

Recall that correlation analysis means taking these two sample sets and then finding
features of traces that appear in one of those sets but not the other. Although such
correlation is not a guarantee of causation, it is often a strong clue that can lead you
to the cause of a regression.

Latency, errors, tags, and other metadata can all be valuable features of traces that you
can use to understand what’s changed. It’s worth a reminder that part of the power of
distributed tracing is that it puts performance changes in the context of what’s hap‐
pening throughout your application. When determining which attributes of traces
should be used as part of correlation analysis, remember that these should come from
every span in these traces, not just the ones corresponding to your service. Even the
existence of certain spans within a trace can be a powerful signal in understanding
what’s changed.

As an example, suppose that you believe that request latency has increased for your
service, and you compare a sample of traces that have occurred in the last five
minutes to those that occurred an hour ago. Table 9-1 shows a small set of features
that might be identified by this analysis.

Table 9-1. Example of correlation analysis used to determine what has changed

Feature Coefficient of
correlation

service: inventory, service.version: 1.14.2 0.65

runinfo.host: vm73 0.41

service: inventory,service.version: 1.14.1 –0.65

The table shows that there is a strong correlation with a new version of the inventory
service and the latest traces; it also shows a strong correlation between the previous
version of that service and traces from an hour ago. This provides enough evidence to
take steps to mitigate the problem—by rolling back the most recent release of the
inventory service—and that should be sufficient to let you defer further work until
after business hours and to assign it to the appropriate team. (This analysis also
shows a correlation between the latest traces and one of the hosts provided as part of
the infrastructure. This could be because the new instance of the inventory service
was deployed on that host.)

196 | Chapter 9: Restoring Baseline Performance

Someone eventually needs to understand the root cause of this issue, and correlation
analysis can be used to further refine your understanding of what was happening.
Similar to the analysis described in the previous chapter, you might compare slow
requests from the last few minutes to faster requests from before the regression. This
can identify specific operations that led to higher latency in the new version and help
the team responsible for the inventory service understand how to address them.

Aggregate analysis can also help to identify more subtle changes in service perfor‐
mance. When comparing two sets of traces, we can look at the latency contributions
related to arbitrary tags, operations, and services and how those contributions
changed over time.

One method for doing so is to consider how the critical path changes between the
baseline and regression sets. In this method, the critical path is computed for each
trace. (The definition of the “critical path” is covered in Chapter 8.) The average con‐
tribution for each service and operation is then determined for each of the two sets.
Services and operations are ranked by the differences between these two averages.

Table 9-2 shows an example of this method. In this example, the inventory service
continues to have a big impact on the changes in performance. Here the write-cache
operation contributes more than five times more to the critical path in the regression
set than in the baseline set. This is strong evidence that this operation is the cause of
the performance regression.

Table 9-2. Critical path contributions in baseline and regression traces

Service/Operation Baseline Regression Change
inventory/write-cache 63.1 ms 368 ms +305 ms

inventory-db/update 1.75 ms 2.26 ms +516 ms

memcached/set 4.94 ms 4.71 ms –230 ms

inventory/update-inventory 15.2 ms 14.8 ms –470 ms

inventory/database-update 32 ms 30.6 ms –1.4 ms

Another method for understanding performance changes is to consider every tag
found in either set of traces. For each tag, all spans in each set on which that tag
appears are enumerated and the average duration of those spans is computed for each
set. Tags are then ranked based on the difference between those two averages.

Table 9-3 shows an example of what this might look like. Four tags are shown with
changes in average duration between a few hundred milliseconds and more than a
second. The tag item-time: new undergoes the biggest change between the baseline
set and the regression, moving from 114 ms to 1.24 seconds. This would be a great
place to start looking for what code changed between releases. In other cases, these
results might indicate a change not in the application itself but in the behavior of

Approaches to Restoring Performance | 197

some clients (client.browser) or in contention for a resource (db.instance or
runinfo.host).

Table 9-3. Average duration for spans in baseline and regression traces

Tag Baseline
(ms)

Regression
(ms)

Change
(ms)

item-type: new 114 1240 +1130

client.browser: mozilla68 111 548 +437

db.instance: cassandra.4 117 464 +348

runinfo.host: vm123 116 453 +337

Both the contribution to the critical path and total duration can play roles in finding
the root cause—or causes—of a performance problem. The critical path is often bet‐
ter in isolating what code is consuming more resources as part of the regression; total
duration can detect changes that occurred outside a single piece of code. Sometimes a
change is solely a result of new code or configuration being deployed but sometimes
it is also a result of the interaction between old code and new code. For example, a
new version of your mobile app may make API calls using a different set of parame‐
ters. This change may show up as a tag on the span emitted from the mobile app or
from the API gateway, but that span may not contribute much time to the critical
path. Using both methods will help you to mitigate the problem (perhaps by provi‐
sioning additional resources) as well as put a longer-term fix into place (perhaps by
optimizing the old code).

Aggregate root cause analysis overcomes many of the problems with analyses based
on just a few traces: when using a small number of examples, it’s easy to build—and
justify—false theories that “explain” performance regressions. Moreover, automating
this process can eliminate many of the problems with doing this sort of analysis man‐
ually: it can take a long time for developers to consider a significant number of traces.

With approaches like aggregate root cause analysis, distributed tracing not only ena‐
bles developers to validate or refute hypotheses that they may have created through
intuition or previous experience but can also help developers to form those hypotheses
in the first place. This is especially important in a distributed system, as there may be
thousands (or even millions) of different signals that can potentially point to the root
cause, but even more so during an incident, when intuition and previous experience
aren’t always enough.

198 | Chapter 9: Restoring Baseline Performance

Summary
Some readers may be surprised at the approaches described in this and the previous
chapters, since they might not be considered traditional applications of distributed
tracing. Many developers think of tracing only as an option of last resort, to be used
when other tools (including metric and log aggregation tools) fail. This could be
because tracing is still unfamiliar to many developers, as tracing is the newest of the
three so-called “pillars” of observability and has only become an important tool since
the adoption of microservices and other distributed architectures.

This is unfortunate because tracing has a lot to offer to developers. When we consid‐
ered a scorecard for observability tools in Chapter 7, we noted the importance of pro‐
viding context, prioritizing by impact, and automating correlation. Observability
tools must be able to:

• Show how performance problems in one service are related to the behavior of
other services

• Show how a service’s performance impacts user-visible performance (or not)
• Automatically identify which changes in a distributed application might be the

root causes of performance issues

All three of these are important in prioritizing work on improving performance and
in responding to incidents quickly; in the latter case, they’re especially so since these
capabilities mean that developers can more effectively and efficiently communicate
with each other and across teams.

Unfortunately, it’s not sufficient to simply layer distributed tracing on top of existing
observability tools. This might be enough to enable developers to look at individual
traces, but as we’ve shown, the real power of tracing comes through approaches like
aggregate analysis that use hundreds or thousands of traces to draw conclusions. As
many of our examples demonstrate, for distributed tracing to really deliver on all of
the aspects of our scorecard, it must be used in a way where trace data is used along‐
side metrics and logs.

Put another way, while looking at traces can offer some insight to developers, the real
value of tracing ultimately comes from using trace data—along with metrics and logs
—to quickly understand when performance problems are occurring and to identify
the root causes of those problems. It does so by explaining variation in performance:
both offering hypotheses that succinctly describe the cause and providing evidence to
support those hypotheses.

Tracing makes this possible by making the relationships between causes and effects
explicit. It ties different kinds of telemetry together using end-to-end requests to
reveal the structure of your application. Without tracing, you will often see a

Summary | 199

(potentially large) set of metrics that are all changing at the same time, and you won’t
be able to figure out which are the root causes. With tracing, you can identify which
metrics are relevant to the issue you are trying to address and have the context to
understand why. While tracing by itself isn’t a complete observability solution, it is a
necessary part of observability for any distributed system.

200 | Chapter 9: Restoring Baseline Performance

CHAPTER 10

Are We There Yet? The Past and Present

If you’ve read this book, then let us offer our congratulations! We have officially cov‐
ered the full range of technical topics, and you are ready to put distributed tracing to
good use in your own applications.

We’re now going to turn our gaze toward the future, and discuss some new challenges
that distributed tracing might be able to solve in the future (possibly with some
tweaks to the way things work under the hood).

We’ll also look back at how some of the concepts described in this book came to be.
They certainly didn’t materialize out of thin air! Rather, distributed tracing as we
know it is the result of a gradual evolution—a process that is not yet over. What les‐
sons can we learn from the journey so far? And in what ways might distributed trac‐
ing continue to evolve?

Of course, we cannot predict the future with total certainty. We can, however, point
out places where careful decision-making today might make your life substantially
easier down the line. We’ve already emphasized this sort of judicious decision-making
throughout the book, such as keeping instrumentation implementation-agnostic, and
pushing instrumentation to the framework level where possible. For the future, it’s all
about making ourselves robust to what might happen. What kinds of new use cases
might distributed tracing solve? How might we use or repurpose the constituent
pieces of distributed tracing?

For many of these questions, we can find possible answers by looking to the world of
distributed systems research. Researchers are often proposing new designs and opti‐
mizations, identifying new classes of problems, and presenting new perspectives on
old problems. In the rest of this book, we will discuss some of this research.

201

1 [Lin06]
2 [Sou09]

Distributed Tracing: A History of Pragmatism
There’s a surprising contrast between how long distributed tracing has been around
and how long distributed systems have been around.

Distributed systems have been around for more than half a century. So too have
problems related to understanding their behavior and their performance.

By comparison, distributed tracing tools only started to emerge a little over a decade
ago! What’s more, only within the past few years have we started to see standards for
distributed tracing, open source frameworks, and the growth of a community.

Request-Based Systems
To understand why this is, we have to look back at where today’s microservice archi‐
tectures came from. Although the history of distributed systems stretches back deca‐
des, many of the systems that we have today can trace their origins back to the late
1990s, when the explosive growth of the internet was in full swing. This growth led to
a huge proliferation of request-response systems, such as two-tier websites, with a web
server frontend and a database backend. While request-response systems as a concept
were certainly not new, the web put this type of system front and center.

Response Time Matters
A subtler change occurred with the growing prominence of request-response sys‐
tems. Previously, the most common approach to evaluating systems’ performance was
to measure system health in aggregate, by considering system-wide metrics such as
throughput and relating them to system-wide measures such as performance coun‐
ters over time.

For internet systems, though, throughput wasn’t the most important metric. Instead,
it was response latency. First and foremost, it was important for the system to
respond promptly to requests, because there’s usually a human with a limited atten‐
tion span sitting at the other end. Some of the major internet companies even quanti‐
fied this: in 2006, Google found that increasing page load time from 400 ms to 900 ms
caused a 20% drop in traffic.1 Other studies in recent years have measured similar
effects.2

202 | Chapter 10: Are We There Yet? The Past and Present

Request-Oriented Information
This shift in focus also changed which information was most useful for system analy‐
sis and troubleshooting. Understanding the factors contributing to response latency
required being able to drill down into slow requests to see where the slowdown came
from and why. Requests were a new dimension for reasoning about systems, orthogo‐
nal to any one machine or process in aggregate.

However, this new request-oriented perspective also presented new challenges. Teas‐
ing out request-oriented information wasn’t easy, because request-response systems
execute (and interleave) many requests concurrently. Many of the existing approaches
to performance analysis at the time weren’t quite the right fit, often because they
focused on aggregate system measures and throughput.

Distributed tracing grew out of this need. Researchers and practitioners were interes‐
ted in analyzing performance and troubleshooting problems in request-response sys‐
tems. Some pieces of distributed tracing came from these early explorations.
Eventually, simple request-response systems evolved into the complex microservice
architectures we have today. Likewise, some of the early request-oriented approaches
to analysis and troubleshooting were adapted and generalized so that they could
extend to these new scenarios.

This is the origin of distributed tracing. Instead of thinking of distributed tracing as a
standalone entity, we should regard it as a pragmatic combination of different design
pieces, chosen because they make the most sense for the systems and environments
that we have today. Although distributed tracing is not the only approach we could
have taken, it is probably the best approach for the kind of analysis we want to do
today.

Notable Work
Many people have contributed to distributed tracing over the years. From this large
body of work, there are four pieces that have been especially influential, because they
embody key ideas that have shaped today’s distributed tracing frameworks.

The first is a research prototype called Pinpoint. The second is an industry research
prototype called Magpie. The third is a research prototype called X-Trace. The fourth
is a production system from Google called Dapper.

Notable Work | 203

3 [Che02]
4 [Bar04]

Pinpoint
Pinpoint was a research prototype developed in 2002 by researchers at the University
of California at Berkeley and Stanford University.3 Its goal was to identify the root
causes of problems in internet services.

Pinpoint represented a shift in approaches to problem-solving. The authors recog‐
nized the growing mismatch between the problem-solving techniques of the time,
and the new class of dynamic, always-on, constantly evolving internet services. Before
Pinpoint, a common approach to root cause analysis was to statically model systems.
But in a constantly evolving internet service, keeping models both up to date and cor‐
rect became a gargantuan task.

Today, these challenges might seem obvious. Imagine trying to statically model your
microservice architecture, along with all of its dependencies! Imagine the logistical
nightmare of keeping this model up to date with every change committed!

Pinpoint was one of the first to argue for a request-oriented and data-driven
approach. Rather than proactively modeling the system, the authors thought it better
to measure the system and use the recorded data to troubleshoot problems after the
fact. Sound familiar?

Key to Pinpoint was being able to group information on a per-request basis. To do
this, Pinpoint assigned each request a unique request ID, which it maintained in
thread-local storage—an idea that eventually became the trace contexts that we prop‐
agate today. Pinpoint didn’t fully explore these ideas, though; it was only intended for
a single-machine Java Enterprise environment, so maintaining request IDs could be
done easily within the middleware. Pinpoint did not yet deal with context propaga‐
tion between machines or user-created threads.

Magpie
Magpie was an industrial research prototype developed in 2004 by researchers at
Microsoft Research Cambridge.4 Its goal was to record detailed end-to-end traces
(much like the traces we get today with Jaeger or Zipkin) and annotate those traces
with fine-grained information about the resources consumed during execution (such
as I/O and CPU measurements). Much of its technical focus was on disentangling
concurrent requests that execute within the same software components.

Magpie was a more broadly applicable tool than Pinpoint, because the authors
designed it for arbitrary, heterogeneous .NET applications. Like Pinpoint, Magpie
needed request-oriented information. However, it ran headfirst into a problem that

204 | Chapter 10: Are We There Yet? The Past and Present

5 [Cho14]

Pinpoint had carefully sidestepped: in Magpie’s heterogeneous environment, there
was no ubiquitous middleware and no easy way to propagate request IDs; the only
option was exhaustive source code instrumentation. The authors faced a tough deci‐
sion, and ultimately decided not to propagate request IDs. Instead, Magpie inferred
correlations mostly from existing outputs.

Specifically, Magpie integrated with Windows XP’s Event Tracing for Windows
(ETW), a lightweight event logging framework which already recorded many thread-,
networking-, and resource-related events. Relationships between events could often
be inferred already from the events, including events occurring in the same threads,
and between some concurrent activities (such as kicking off a new thread). The
authors only had to add additional events in a few choice locations to complete the
end-to-end picture of a request (e.g., if there was network communication, the sender
and receiver would need to explicitly log a connection ID on both ends). From these
events, all that remained was a postprocessing step to construct traces from the recor‐
ded events. Magpie relied on a developer-supplied scheme to describe how to parse
events and extract correlation IDs.

Magpie is an interesting system because it grappled with the difficulty of making a
general-purpose tool. Pinpoint could take shortcuts because it only dealt with J2EE
applications; Magpie could not. Since Magpie, other research has explored inference-
based approaches; for example in 2014 Facebook presented a similar system called
“The Mystery Machine.”5

However, while inferring request structure is an appealing alternative to doing
exhaustive instrumentation, the downside is that it’s a less scalable and more brittle
approach, since it depends on event parsing and correct developer-supplied schemas.

Ultimately, distributed tracing does use context propagation, and practitioners have
collectively decided that it is worth the instrumentation effort.

Although request traces alone are a useful starting point, Magpie also demonstrated
the value in incorporating fine-grained information like resource usage into traces.
This is something we can think about doing today, because we often have other sour‐
ces of information outside of distributed tracing (such as ETW events), and we can
enhance their value using that information to augment traces.

Notable Work | 205

6 [Fon07]

X-Trace
X-Trace was a tracing framework developed in 2007 by researchers at the University
of California at Berkeley.6 Its main goal was troubleshooting requests whose execu‐
tions spanned many different machines, layers, and administrative domains. X-Trace
began to crystalize some key pieces of distributed tracing that are used today, and its
open source implementation is still in use.

In the time between Pinpoint (2002) and X-Trace (2007), internet services continued
to evolve, growing more complex, more heterogeneous, and more distributed. The
need for request-oriented tracing grew in importance, but the approaches taken by
tools like Pinpoint and Magpie were starting to show cracks. The main issue was their
tight integration with the environments they operated in. It was difficult or impossi‐
ble to incorporate information spanning different operating systems, programming
languages, or layers (such as the network). Today this is something we have grown to
expect—there is very little we can assume in common across our microservices!

X-Trace therefore focused on generality: how can we get request traces in such a het‐
erogeneous environment? Its guiding design philosophy was to demand as little from
the people using the tool as possible, by imposing minimal assumptions and require‐
ments. To achieve this, X-Trace made two important design choices: first, a standard
for context propagation, so that information recorded in different components could
be combined coherently; and second, out-of-band report collection, to separate the
recording of information from its usage.

To avoid having to infer any relationships between events, X-Trace proposed includ‐
ing a parent ID as well as a request ID. The parent ID was dynamic, and would be
updated every time a new event was recorded. Each event would explicitly record the
ID of its causal predecessor.

By including a parent ID, X-Trace’s backend components could deterministically
reconstruct the order and concurrency of events happening during the request. The
backends did not have to rely on post-processing to infer relationships using timing
or knowledge of the system’s internals. It meant that developers of different system
components could make different choices about how to log events, in terms of level of
detail as well as the information contained in events. The only requirement was to
incorporate and propagate the X-Trace metadata.

X-Trace also separated the recording of information from its usage. This meant
developers using it would not have to commit up front to a particular diagnosis tech‐
nique or use case. The authors foresaw how administrators of different components
would also want control over their portion of the trace data (thus not exposing

206 | Chapter 10: Are We There Yet? The Past and Present

7 [Sig10]

detailed internal information about their systems). Out-of-band data collection
achieved this by imposing an abstraction boundary between data generation and the
backend concerns of data collection and storage.

Distributed tracing frameworks today follow the same philosophy as X-Trace did:
only include the minimal pieces necessary to capture traces. That way, frameworks
can still be used even by extremely heterogeneous systems. X-Trace’s parent ID is
analogous to the parent span IDs used in today’s distributed tracing frameworks.

Dapper
Dapper is a tracing framework developed for internal use at Google. It was described
in a 2010 whitepaper and is still in use today.7 You might already be familiar with
Dapper, as its design forms the basis of today’s most popular distributed tracing
frameworks.

Even back before 2010, Google’s internal systems were a lot like today’s microservice
architectures: heavily RPC-based, with a single request invoking many different serv‐
ices, often in parallel. Google faced the same challenges that had motivated prior
work, and set about building a distributed tracing framework that would give them
request-oriented visibility into large, heterogeneous production systems.

Dapper was the name of this distributed tracing framework. It elaborated on some of
the concepts presented by Pinpoint, Magpie, and X-Trace, while simultaneously deal‐
ing with new operational challenges that arose from practical experience.

A key concept introduced by Dapper was the span model of tracing. By now you’ll be
familiar with the concept of spans, as a key building block of distributed tracing.
However, prior to Dapper, distributed traces were based on the notion of events—
instantaneous points in time that are very similar to individual logging statements.
Events are useful for describing what happened, but they don’t directly lead to action‐
able data, which was important for Dapper. Instead, its authors observed that well-
defined segments of request execution (such as individual RPCs) aligned very well
with their goal of diagnosing performance problems, especially those relating to
request latency. Treating spans as a first-class primitive at the instrumentation level
meant that traces would immediately expose timing information about the most
important and meaningful parts of a request.

Before Dapper, the authors of X-Trace had argued that distributed tracing should
impose a minimal set of requirements. Dapper, however, imposed an additional
requirement on its users, by incorporating spans as a first-class concept. With this
careful design change, it substantially improved the utility of the resulting traces.

Notable Work | 207

Dapper was the first publicly described distributed tracing framework used in pro‐
duction by a large company. In addition to refining the tracing models of prior works,
the paper also brought to light operational challenges that hadn’t been previously
considered, including the need for trace sampling, trade-offs surrounding runtime
overheads, security concerns, and how to make trace data accessible to users.

Where to Next?
As the nature of distributed systems changed over the years, so too did the require‐
ments of distributed tracing frameworks. The initial work primarily focused on tech‐
nical requirements around how to get request-oriented information. Gradually, they
grew to also incorporate practical requirements, such as how to ease adoption and
how to increase trace data utility. As distributed tracing frameworks saw more wide‐
spread production use, operational requirements came to light involving scalability
and tracing backends.

Although these requirements have shaped the design of distributed tracing frame‐
works, they aren’t set in stone. In particular, new system designs and architectures
continue to surface, such as serverless computing, and the increasing representation
of streaming systems. As our computing systems change, they may influence or
necessitate changes to our distributed tracing frameworks.

Likewise, we do not have all the answers when it comes to troubleshooting dis‐
tributed systems. Distributed tracing gives us valuable visibility, and requests have
proven to be a useful dimension along which to capture information. However, meth‐
ods to extract value from distributed tracing data are still in flux and less established
than the techniques for getting the data. New advances in trace analysis may provoke
changes to what data is captured by systems.

In the remaining chapters, we’ll take a look at recent research which examines some
of these questions. These works bring to light new requirements and new approaches
to address existing requirements. Whether these new ideas will ultimately prevail still
remains to be seen.

208 | Chapter 10: Are We There Yet? The Past and Present

CHAPTER 11

Beyond Individual Requests

You’ve already seen how traces capture useful information about the end-to-end
behavior of individual requests. This includes the time taken by each individual RPC,
how much data was transferred at each hop, timeouts, and error responses. By
inspecting a single trace carefully, you can often explain why the request took the
time that it did. For example, you might see that a particular request missed in the
cache. Perhaps a service returned an exceptionally large response record that took a
long time to serialize and deserialize. Maybe there’s a straggler in a large RPC fanout
that responds many milliseconds after its peers. Perhaps the trace reveals the dreaded
staircase pattern, where RPC calls that should be parallel are in fact executing serially.

Any one of these situations would reveal something important about that particular
trace, but as the span timing diagram in Figure 11-1 illustrates, it’s hard to interpret
these behaviors in isolation. What you can’t tell from individual traces is how often
the situation occurs, and in response to which types of requests. Therefore, should
you—the service operator or owner—take some action to fix the problem, or is it a
one-off that is unlikely to happen again in your lifetime? Which of the suspicious-
looking parts of a trace are actually unusual? By comparing a single trace to an aggre‐
gate, or one aggregate set to another, you can learn contextual information that helps
answer such questions.

The benefits of aggregate traces don’t stop there. In addition to giving context for
interpreting an individual trace, groups of traces can enlighten us about the system as
a whole, even when everything is working normally. One of the most common appli‐
cations for trace aggregations is to extract the dependencies between services in a
production system (see Figure 11-2), while others include capacity planning, A/B
testing, and detecting workload trends. In “Aggregate Analysis” on page 171, we
talked about using aggregate critical path analysis to discover where to focus

209

optimization efforts, and in “Correlation Analysis” on page 173, we showed how cor‐
relation analysis can help with root cause diagnosis.

Figure 11-1. Interpreting individual traces without data is hard.

Figure 11-2. A service dependency graph; the edge weights indicate the fraction of traces
containing that dependency.

To recap, trace aggregations provide context in two complementary ways. First, they
show whether a particular measurement or behavior is anomalous compared to the
typical trace as well as the prevalence of that characteristic. Second, aggregations cap‐
ture what is normal in the system, defining a reference point for typical behavior and
generating data for tasks such as provisioning, alerts, and tracking trends over time.

210 | Chapter 11: Beyond Individual Requests

In the rest of this chapter we will dig a little deeper into how to use the context pro‐
vided by aggregate traces to focus debugging efforts and extract insights about system
behavior.

The Value of Traces in Aggregate
Let’s look at some concrete examples to illustrate how trace aggregations are useful in
practice.

Example 1: Is Network Congestion Affecting My Application?
You have a congested link in your datacenter network, indicated by some metric such
as counters from the network switch. You want to find out what impact, if any, the
congestion is having on your application traffic. Specifically, given a trace of a request
that is potentially affected, you would pose the question: “Is this latency high?” To
answer, you first need to decide what “high” means, and typically the 95th or 99th
percentile would be a good choice of definition (see “High-Percentile Latency” on
page 150). Then, take a control group of traces (say, a similar population over a
period when the link was not congested), and compare the 99th-percentile latency
with that of traces captured during the congestion.

Conversely, you may use the same information about what defines high latency to
pick example traces for closer inspection. In this example, you could examine com‐
munication patterns in traces exhibiting high latency to decide whether the slowness
is correlated with the problematic network link.

Example 2: What Services Are Required to Serve an API Endpoint?
You’ve decided to serve some of your API endpoints out of a different datacenter and
you wish to avoid cross-datacenter traffic by keeping together the microservices used
to serve the same endpoint. To help in planning, you want to identify how many
microservices participate in serving each endpoint. “What is the average number of
services involved in requests to a particular API endpoint?”

To answer this question using aggregated traces, you would group by endpoint
requests and then count the number of unique services that were present before tak‐
ing the average of each group of traces. Because you’re looking at the aggregate, you’re
not misled by natural variations in the number of services involved. Dynamic depen‐
dencies, such as when a cache miss causes a backend storage service to be invoked,
are common in microservice architectures, and a single trace may not contain the
entire set of dependent services.

In addition to system-wide insights, you can use contextual knowledge derived from
the aggregate set of traces to be more effective when debugging with traces. Focusing
attention on traces in the tail of the relevant distribution is often a good start.

The Value of Traces in Aggregate | 211

For instance, if you observe that the RPC send and receive times in a slow trace are in
the 99th percentile of the distribution for that value across all traces, then that’s a
strong clue that the problem might lie in the network. On the other hand, if you see a
slow RPC but note that it is orders of magnitude larger than the average size across all
traces, you may reasonably conclude that the propagation delay in this case is as
expected and not (necessarily) relevant to the problem you are debugging. Notice that
both cases have involved using an aggregation function over some property of the
traces (99th percentile of transmission time and average message size, respectively) to
provide context for debugging.

Being able to check whether the characteristics of a specific trace are abnormal means
that you can focus your debugging in the most promising places. Being able to check
whether the suspicious stuff occurs in enough traces to matter directs debugging
efforts to the most impactful problems.

Organizing the Data
The examples we described in the previous section rely on applying aggregation to
different components of the traces. You answered the first question (“Is this latency
high?”) by looking at the distribution of a single value—the duration—that is a basic
property of each trace. By contrast, the question “What is the average number of serv‐
ices for requests to a particular API endpoint?” requires applying an aggregate func‐
tion to a value derived from counting the number of services contained within each
trace.

What this means in practice is that the best way to organize aggregate trace data to be
able to answer such a range of questions is not obvious. If you only want to answer
the first type of question, then you can store trace attributes in flat tables, for example
in a relational database. If the second type is more important, you might consider
using a graph store (recall that traces are really graphs). In either case, it may also be
useful to run user-defined queries that apply to arbitrary tags, and so you will proba‐
bly want a way to support them too.

Clearly, how best to make traces available for aggregate analysis depends on the par‐
ticular requirements of the operating environment. For this reason, we are not going
to say that one way is better than another, but instead we will use a strawperson solu‐
tion—taking the “flat tables” approach—to illustrate the trade-offs involved more
concretely.

A Strawperson Solution
We’ll start by picking SQL as our query language, leaving the specific storage backend
unspecified—for example, it could be a relational database or a Hive data warehouse.
In the following examples, we’ll use nonstandard, SQL-like pseudocode.

212 | Chapter 11: Beyond Individual Requests

Let’s begin by considering how you would use SQL to answer the question from
Example 1. This is actually straightforward. As described earlier, you choose 99th-
percentile duration as the aggregation function, which you then apply to your collec‐
tion of traces. Thus the query to learn the exact value of “high” will look something
like this:

SELECT PERCENTILE(duration, 0.99)
FROM traces

More realistically, you will likely want to filter the traces according to attributes like
the date or the type of request, and this extends the query to:

SELECT PERCENTILE(duration, 0.99)
FROM traces
WHERE date = `today` AND type = 'http'

Notice that we have assumed a table called traces, with one row per trace and col‐
umns for duration, date, and type. You can imagine also surfacing other properties
of traces in this same table, such as the trace identifier, timestamp, and other common
attributes.

Let’s move to the second example question: “What is the average number of services
involved in requests to a particular API endpoint?”

Here you’re interested in a derived attribute of the trace, specifically the number of
services. We mentioned previously that a graph store might be a good choice here.
However, for our strawperson we’re going to stick with the flat tables and explore
their pros and cons for different types of queries.

Let’s assume we have a second table called spans, with one row per span and, at a
minimum, the fields TraceID, SpanID, and service. This time, as shown in
Example 11-1, you’re going to filter on traces with the API endpoint of interest, and
then take the average of the count of unique services:

Example 11-1. Spans table

SELECT AVG(num_services) FROM (
 SELECT COUNT(DISTINCT spans.service) AS num_services
 FROM spans JOIN traces
 ON traces.TraceID = spans.TraceID —tables joined on TraceID
 WHERE traces.api_endpoint = '/get/something'
 GROUP BY spans.TraceID) —service count per trace

If you aren’t familiar with SQL, this query might seem complicated. Let’s step back
and consider what’s going on: We have flattened the constituent spans of each trace
into a set of rows in the spans table. After filtering in the traces table to just the rows
with the api_endpoint of interest, we choose only spans with a matching TraceID

Organizing the Data | 213

and then count the number of unique services in each group of spans. Finally we take
the average of those counts to get our answer. That’s it!

This basic idea of squishing trace graphs into flat tables is very powerful. The general
approach is to have different tables for the different kinds of objects that comprise a
trace. Thus in this example we have the top level traces table, holding information
about traces, and a second spans table holding information just about spans. In prac‐
tice, we might also consider tables for certain common tags, or even derived proper‐
ties of traces like the critical path. The key to it all (pun intended) is in using TraceID
and spanid as join keys, which then allows us to compute aggregate functions across
traces, spans, or their attributes.

What About the Trade-offs?
The astute reader may be wondering why we went to the trouble of using a join in the
previous query. We could have avoided it simply by making the number of services a
field in the traces table, as in Example 11-2:

Example 11-2. Traces table

SELECT AVG(num_services)
FROM traces
WHERE api_endpoint = '/get/something'

However, the num_services column is not a base property of a raw trace, so this
implies a precomputation that walks over every trace in the dataset to count the num‐
ber of services. Indeed, the data in these tables has to come from somewhere, typi‐
cally a regularly scheduled batch-processing job, or perhaps a real-time streaming
computation. The trade-off that we’re making in this example is between adding com‐
plexity to the preprocessing and adding complexity to the query. We’ll say more about
preprocessing traces for aggregate analysis later, but first let’s think about sampling
and how it relates to trace aggregation.

Sampling for Aggregate Analysis
In an ideal world, when we apply an aggregation function to a population of traces,
we get an answer that is true not only for the traces, but also for the real-world sys‐
tem. In other words, if the traces indicate that the 95th percentile for RPC server pro‐
cessing time is one second, then that’s also the case in your actual system.
Unfortunately, there are good reasons why it may not be the case that the aggregate
set of traces precisely reflects reality. In particular, as we explained in “Biased Sam‐
pling and Trace Comparison” on page 165, it’s not always desirable to sample in a

214 | Chapter 11: Beyond Individual Requests

completely representative manner. This is not to say that aggregate analysis of sam‐
pled traces isn’t useful—it is—but use caution when interpreting the results.

One way to avoid the problem of sampling bias is simply not to sample! Just apply
aggregate functions as soon as possible to all traces, which guarantees the integrity of
the result. If you already know which aggregation functions you’re going to be run‐
ning, you can even throw away the raw traces and just keep the result, saving on stor‐
age costs and making future queries very fast and cheap. The downside with this
approach is that you can’t change your mind later and apply a different aggregation
function. In the first example we used earlier (“Is this latency high?”), this means you
would store the precomputed 99th-percentile latency, so the lookup would be fast and
cheap, but it also means you couldn’t decide to check the 75th-percentile latency
instead (unless you decided in advance to store that too).

In summary, there’s a three-way trade-off between accuracy, flexibility, and cost,
which you can control by setting the sampling rate and choosing when to apply
aggregation functions. The following questions guide this choice:

• How much error in the aggregation results is acceptable? This sounds like a scary
question, but in practice, every observability system provides imperfect data and
thus has inherent error. Here we encourage you to choose the trace sampling rate
intentionally in order to find the right balance between accuracy and cost.

• Do you know in advance what questions you will want to ask of your set of
traces? Applying aggregation early and keeping just the answer will be much
cheaper, but at the expense of flexibility of future queries.

Let’s turn now to the processing pipeline itself.

The Processing Pipeline
By now you know that a trace is made up of records produced by multiple machines
in a distributed system. The first step in making that data meaningful for inspection
is to stitch together related records into a single trace object. This has to be done
whether we make traces available for aggregate analysis or simply provide a way to
look at them one at a time.

In addition, tracing data is often imperfect: we see incomplete and buggy instrumen‐
tation generating invalid records, or loss in the collection system itself resulting in
broken traces. As a result, processing to clean up the trace data is often performed at
this stage also.

Assuming these two necessary steps happen somewhere, our concern now is how and
when to prepare the data for on-demand aggregation, as well as which, if any, aggre‐
gation functions to precompute. Referring to Example 2: precomputing the number

The Processing Pipeline | 215

of services in each trace is a function performed in the pipeline, while calculating the
average number of services per trace using a SQL query is an aggregation you per‐
form later and on-demand.

In Figure 11-3 we illustrate two possible architectures for the processing pipeline. In
both diagrams the trace data flows from the top (the production services) to the bot‐
tom, where we depict the output as flat tables, as in the strawperson data representa‐
tion described earlier (of course, other representations are feasible as well). The
diagram doesn’t show how the tables are eventually used, but we would typically use
them for interactive queries, batch processing, and even visualizations and
dashboards.

Figure 11-3. Two possible architectures for the trace processing pipeline.

The left side of Figure 11-3 shows a pipeline in which we store the cleaned-up traces
before applying batch processing to produce the tables. If you don’t already have a
processing pipeline in place but wish to apply aggregate analysis to your traces, then
this arrangement is a good way to get started. You can use your existing store for indi‐
vidual traces, or copy them to a different one, and then run a regularly scheduled
batch job over the data without changing anything about your current tracing infra‐
structure. The outputs may be somewhat delayed, but you can start learning insights
from trace aggregations without a big investment in additional infrastructure.

On the right side of the diagram, we depict a streaming system that processes traces
as they arrive and continuously updates the output tables. A semi-real-time system
like this gives access to trace aggregations much sooner, and holds the exciting possi‐
bility of being able to perform tasks like live debugging using the outputs and tying
alerts to trace aggregates. These benefits come with a price: the operational burden of
such a system is higher, particularly because tracing data is inherently unpredictable,

216 | Chapter 11: Beyond Individual Requests

often arriving in large bursts of data, and you have to ensure the system can keep up
with the rate of incoming records.

Regardless of how traces are stored, being able to quickly find traces that match speci‐
fied criteria is extremely useful. One way to achieve this is to build an index as part of
the processing pipeline. Because users may want to look for traces that match any of a
large number of attributes, we recommend indexing on as many properties as possi‐
ble. Even when aggregate analysis is not feasible in real time, the ability to discover
and inspect individual traces with specific characteristics is valuable for debugging.

In fact, building a wide index is just one example of functionality you can build into
your processing pipeline. Another is to precompute aggregations, such as the number
of services in a trace, as we discussed in “What About the Trade-offs?” on page 214. A
third important kind of processing is to extract information from heterogeneous data
in traces, which we discuss next.

Incorporating Heterogeneous Data
The processing pipeline extracts properties of, and computes aggregations over, gen‐
eral attributes of traces like the number of services. It is also a place where you can
introduce domain-specific processing of tags. We talked about effective tagging in
Chapter 4, where we noted that tags enrich a span with more information and let you
apply powerful, custom aggregate analysis.

Custom Functions
Let’s consider a simple example that builds on our strawperson scenario. If you
instrument services so that RPC spans contain tags for the client and the server’s
datacenter, then you could extract this information (by parsing tags to find the ones
referring to the datacenter) into your spans table as two extra columns. Now when
you ask “Is this latency high?” you can take into account whether the traces of interest
contain inter- or intra-datacenter traffic, with the former likely being across wide-
area network links and thus expected to be significantly slower.

Taking this idea further, when different teams own different microservices, each team
can write its own service-specific tags and then perform custom processing on those
tags in the aggregate traces. This is a great way to get more visibility into service
behavior. For example, if a service makes outgoing calls to different services depend‐
ing on the arguments of the incoming RPC, the team owning the service might write
custom tags into the trace recording the arguments and so have an “explanation” for
the outgoing RPCs.

Incorporating Heterogeneous Data | 217

Supporting custom functions in your processing pipeline is a bit like user-defined
functions (UDFs) for a SQL query tool—they are powerful and flexible, but there are
some tricky questions that you need to address:

• How do users express UDFs? How do you make them safe (not crash the system,
or get stuck in an infinite loop)?

• How do you prevent UDFs from using too much resources, like CPU or memory,
or taking too long?

• How do you ensure that UDFs stay in sync with changes to instrumentation in
the source code? If a tag is changed, or removed, whose responsibility is it to
update the code in the processing pipeline?

As software engineers, we ask these types of questions in other domains also, espe‐
cially when thinking about best practices. Like any important piece of infrastructure,
you need to consider how the processing pipeline fits into the larger software ecosys‐
tem and plan for its robustness and longevity.

Joining with Other Data Sources
Most microservices operators collect vast amounts of metric data at many levels of
the software stack. Combining this data with traces extends the reach of our under‐
standing and insights significantly. For instance, you might ask “Is this RPC latency
high, given the kernel version installed on the server machine?” In other words, you
want to break down the 99th-percentile latencies by kernel versions, because after all,
the Linux TCP stack in the kernel is being constantly tweaked and may well play a
part in the tail latencies that you observe in production.

How do you achieve the ability to answer questions about traces that involve other
types of data? In this case you could arrange for a tag to be added to every RPC that
records the kernel version at the server, but that would be inefficient and not a gen‐
eral solution. There may be many other pieces of data from external sources that you
will want to join against, some of which may be infeasible to generate tags for.

A more flexible approach is to ensure that suitable join keys are present in both data
sources in a form amenable to querying. Thus, with our strawperson solution, we
might maintain a table, populated by a different process, called kernel_versions
with fields hostname, version, start_time, and stop_time. Now you can write the
query, shown in Example 11-3, to extract 99th-percentile RPC latencies by kernel ver‐
sion by joining hostname from each row in your spans table with hostname in the
table that tracks the current kernel versions:

218 | Chapter 11: Beyond Individual Requests

1 [Kal17]

Example 11-3. Extracting 99th-percentile RPC latencies

SELECT kernel_version, PERCENTILE(duration, 0.99)
FROM spans JOIN kernel_versions
 ON spans.server_hostname = kernel_versions.hostname
WHERE
 spans.timestamp > kernel_versions.start_time
 AND (spans.timestamp < kernel_versions.stop_time
 OR kernel_versions.stop_time IS NULL)
 AND spans.date = `today` AND spans.type = 'http'
GROUP BY
 kernel_version

The presence of hostname in both tables makes the query simple. In general, design‐
ing data query systems with the expectation that different sources may be combined
in the same query unlocks a great deal of information, and tracing data is no
exception.

This concludes a lightning tour of the benefits of aggregation. For readers thinking
about building and/or deploying a processing pipeline for aggregate analysis of traces,
we highlighted some of the trade-offs and implementation issues. To conclude the
chapter, we’ll recap the key points by describing how they appear in a case study of a
real-world tracing system.

Recap and Case Study
Canopy is a distributed tracing infrastructure in use at Facebook, described in a paper
published in 2017,1 whose authors include Jonathan Mace, a coauthor of this book. In
contrast to conventional tracing systems like Zipkin or Dapper, Facebook engineers
designed Canopy from the start to support aggregate analysis and to incorporate het‐
erogeneous data, such as logging statements, performance counters, and stack traces.

The Value of Traces in Aggregate
The number of traces at Facebook is immense, with over a billion captured per day,
and so in Canopy aggregation is the norm, rather than the exception. Similar to the
basic design of our strawperson tables, Canopy aggregates traces into datasets, in
which each column is a feature, the term it uses for a value derived from aggregated
traces. When analyzing performance data, Facebook engineers query datasets
directly, as well as access them via visualization tools and in dashboards.

Recap and Case Study | 219

Organizing the Data
Canopy supports multiple APIs for instrumentation, which means that the raw trace
data it consumes has a variety of forms, from records representing the RPCs we are
familiar with in other tracing systems, to events capturing the causal relationships
between asynchronous function calls, and many others. In Canopy’s processing pipe‐
line all of these lower-level data models are mapped to a standard intermediate repre‐
sentation called a modeled trace, from which the pipeline extracts features and
outputs the final datasets.

In terms of the trade-off between precomputation and query complexity, the design‐
ers of Canopy have come down firmly on the side of eager precomputation of fea‐
tures in the processing pipeline. This has the advantage of supporting almost real-
time interactive analysis on trace aggregates, but it is possible that some of that
precomputation is redundant.

As well as producing aggregated datasets, Canopy stores individual traces on disk for
deeper analysis when required. This is the ideal situation for the engineer debugging
a performance problem: The datasets, and higher-level tools written against them, let
them quickly identify where to look more closely, and then they can retrieve exactly
the right traces for detailed examination.

Sampling for Aggregate Analysis
Canopy doesn’t attempt to obtain a representative (accurate) set of traces; rather it
focuses on providing value for specific use cases, while keeping the volume of tracing
manageable. Individual users or teams define policies that set sampling rates on a
case-by-case basis according to request characteristics like the endpoint or datacenter.
The rates are further constrained by fixed limits set per user and globally.

The Canopy paper strongly implies that the main priority for the system is flexibility,
rather than accuracy (which is not possible with per-user sampling policies) or cost
(the paper does not discuss cost directly). Within this choice there is some nuance: by
placing aggregation into the processing pipeline, Canopy designers have potentially
limited flexibility. However, this is mitigated by also storing the original traces on disk
at some cost, leaving open the option to compute additional aggregations offline at a
later time.

The paper discusses characteristics of the Canopy system itself. For example, it
reports how often individual columns across many datasets were accessed by user
queries over six months (it notes that one column—page load latency—is by far the
most popular). A potential use of such information that is not mentioned in the paper
would be to refine the set of aggregate analysis functions run in the pipeline, thus
reducing complexity and the cognitive burden on engineers for commonplace
queries.

220 | Chapter 11: Beyond Individual Requests

The Processing Pipeline
The heart of Canopy is its processing pipeline, which looks somewhat like the
streaming system we showed on the right side of Figure 11-3. The pipeline, which
runs continuously online, takes incoming events and builds modeled traces, which
includes cleaning up the traces by detecting and correcting buggy and incomplete
instrumentation, aligning timestamps, inferring missing information, and so on. The
pipeline then applies aggregation functions to traces, and finally outputs multiple
datasets.

The Canopy designers have taken a great deal of care to ensure that the processing
pipeline can keep up with the rate of arriving data records (reported as 1.16 GB/s).
The system contains mechanisms like isolation queues, offloading work to be pro‐
cessed asynchronously, and ways to shed load when necessary.

To deal with the diversity of input data and custom aggregations required by different
engineering teams, Canopy has extensive support for user-defined aggregation func‐
tions in the processing pipeline. An interesting discussion in the paper describes how
the original system design included a domain-specific language (DSL) for expressing
UDFs as simple pipelines of filters and transformations. It turned out that users
needed more complex computations than expected and the DSL had to evolve to
include more general-purpose features. Moreover, interactive exploration of the anal‐
ysis functions proved to be a requirement, leading to integration with iPython
notebooks.

Incorporating Heterogeneous Data
There are two characteristics of Canopy that make it particularly well suited to han‐
dling heterogeneous data. First, translating all events into a common trace model
means that different types of data (say, traces of browser page loads versus the back‐
end RPC call graph) can be fed directly into Canopy’s processing pipeline and unified
in traces as appropriate. Similarly, on the output side of the pipeline, the capability to
introduce or adapt user-defined aggregation functions supports the customized
extraction of information from these various data sources.

In contrast to the approach we suggested earlier of keeping the other data sources
separate but joinable, Canopy is designed to integrate heterogeneous data tightly. This
adds complexity to the processing pipeline, but simplifies access to relevant features
of a trace. Data that is not trace-related, such as the kernel version on each server, will
still need some kind of join key with trace datasets to be accessed programmatically.

In conclusion, Canopy provides a powerful real-time tracing system that supports
customized aggregate analysis, while also keeping individual traces for detailed
inspection. In practice, companies without the resources of Facebook are unlikely to

Recap and Case Study | 221

choose to build and maintain such a costly system, but the design offers many good
lessons that also apply to simpler systems for aggregate analysis of traces.

222 | Chapter 11: Beyond Individual Requests

CHAPTER 12

Beyond Spans

Most distributed tracing systems that run in production today represent requests as a
tree of spans. This representation is simple to understand and well-suited to a large
number of common workloads, but it isn’t a good fit for all of them. In this chapter
we’ll look at how the span came to be the first-class citizen of tracing, and then
explore its shortcomings for systems like machine learning models, streaming,
pub-sub, and distributed dataflow. Devising new abstractions for tracing is an excit‐
ing area of active research and development and we’ll try to give you a flavor of what’s
coming in the near future.

Why Spans Have Prevailed
In Chapter 10, we described how early tracing systems influenced the design, and
even the terminology, of present-day systems. As distributed systems evolved and
became more complicated, users had a pressing need to understand request-response
slowdowns, especially when requests were interleaved and executed concurrently.
This led to a remote procedure call (RPC)-centric approach, tightly integrated with
the way that the systems being traced were implemented. These days, distributed sys‐
tems have more diverse execution and communication patterns, and for many popu‐
lar systems the “traditional” request-oriented tracing design is not a good fit.
Nevertheless, having the RPC—represented by a span—as the core datatype in dis‐
tributed tracing has served us well over many years. Let’s start by looking at the
reasons.

Visibility
It is self-evident that tracing RPCs shows you which components of your system
communicate using RPCs. In microservice applications, RPCs enable the loose cou‐
pling of independent services, a key feature of the modularity, scalablity, and

223

maintainability of those applications. At the same time, this decoupling makes the
end-to-end picture of how the microservices communicate to serve an individual
request murky, to say the least. We already talked a great deal about how important
tracing is for understanding the behavior of your microservice architecture—here we
want to emphasize that a trace comprising a tree of spans is the perfect abstraction for
visibility into this style of distributed system.

Similarly, we use RPCs in many distributed systems that are not microservice archi‐
tectures. RPCs are so pervasive that tracing them invariably tells us something about
what’s going on, even when they aren’t the primary mechanism for communication.
The upshot is that while we continue to use RPCs in our distributed systems (which is
probably forever), we will continue to use spans in our distributed traces!

Pragmatism
It is hugely convenient for users if the low-level tracing mechanisms, such as context
propagation and emitting the trace records themselves, are built into the RPC subsys‐
tem. Integration at this level typically provides a simple API for users to create instru‐
mentation, and takes care of all the messy and sometimes complex implementation
details (see Chapter 2). The ubiquity of RPCs means that once tracing support has
been added to an RPC subsystem, you get tracing—and spans—for very little extra
effort.

However, there is a price for this convenience, paid in the form of spans as the one-
size-fits-all abstraction. Because RPC systems are the common base layer of many dif‐
ferent applications, adding support for specialized tracing abstractions that might
only apply to a handful of applications is not generally practical. Alternatively, you
could have a completely separate tracing system, not tied to RPCs and thus more flex‐
ible, but then you’d have to deploy and maintain it separately, adding operational bur‐
den. As a result, to make use of the convenience of the RPC layer to record stuff that
doesn’t look like a span, you have to shoehorn your information into something that
does. We will describe a few examples of this later.

In practice, the operators of distributed tracing systems tend to favor convenience
over flexibility, but it’s possible that the scales are tipping—perhaps after reading this
chapter you will come to your own conclusions.

Portability
The RPC layer of a distributed system occupies a unique place in the software stack,
existing below applications and above the operating system and system-level services.
This means that spans are agnostic to both the application and the system and thus
inherently portable to different applications and different platforms.

224 | Chapter 12: Beyond Spans

It’s interesting to note that when spans incorporate information from both layers they
can provide a unique window onto how application-level actions map onto the physi‐
cal world. A good example of this is when a span reports the IP addresses of the hosts
involved in the RPC—a performance engineer might use that information to diag‐
nose why the RPC is slow. Without the information that identifies the servers, the
engineer can detect the slowness, but has less data to help find the root cause.

Compatibility
Spans represent a fairly low-level abstraction, capturing the bare minimum of details
of a request-response communication style. With just a handful of conventions for
representing spans in common use, compatibility between software systems from
multiple sources is straightforward, making it feasible to collect end-to-end traces
across diverse components and to reuse existing visualization and analysis tools. The
fact that spans have become such a basic building block of tracing is also to our
advantage when converting spans from one format (say, OpenTracing) to another
(say, Zipkin), because both forms broadly capture the same information.

Flexibility
Finally, the “killer feature” of spans is that in most popular tracing systems they are
defined with a minimum of structure. You may argue that this is a drawback, leading
to ambiguity and imprecision, but it also results in tremendous adaptability. If you
want to reuse the span data structure to represent some activity that is not an RPC, it
may be possible to do so simply by defining custom tags.

The case for spans is strong, but let’s take a look at the other side of the argument.

Why Spans Aren’t Enough
With all these good reasons for the continuing prevalence of spans, what then is the
problem? What do we mean when we say that spans aren’t a good fit for all dis‐
tributed systems, and why does this matter? Spans have prevailed because they are
well suited to the dominant request-response style of distributed computation, but
other communication paradigms are becoming more popular. These new systems are
a lot like the old ones in that they can have complex interdependencies between com‐
ponents, and performance debugging is challenging. Distributed tracing seems like it
ought to be just as valuable for the new systems, but trying to capture their behavior
using spans can be awkward, as we’ll now describe.

As a running example, we’ll use a hypothetical social media platform that operates
out of several datacenters. It runs a microservice architecture and serves each individ‐
ual request entirely out of one datacenter, with a frontend load balancer that spreads
requests evenly across the datacenters. Each request corresponds to an HTTP-based

Why Spans Aren’t Enough | 225

API endpoint, so there are requests for fetching the user’s feed, personalized recom‐
mendations and ads, and so on. On the face of it, this sounds like a perfect fit for the
tree-of-spans tracing approach, so let’s look at where it falls short.

Graphs, Not Trees
The first problem is when an end-to-end trace is a graph rather than a tree. In other
words, the flow of control contains joins (where a child span has multiple parents) as
well as forks (where a parent has multiple children). As we mentioned earlier, spans
don’t have a great deal of predefined structure, but one thing they do require is for
each span to have no more than one parent (and a span with no parents is the root of
the trace).

One common cause of this behavior is when multiple RPCs are batched into a single
onward RPC. Batching is often used to improve the efficiency of repeated requests to
the same server—instead of sending many small messages, send a single large one. In
the social media example there are many places where batching will likely be happen‐
ing in the backend. For instance, a single timeline request might fetch multiple items
for the timeline in parallel. If some of those items involve retrieving data from the
same servers, then the system might batch those requests into a single RPC.

Figure 12-1 shows how batching produces graphs of spans, rather than trees. In the
diagram, multiple incoming requests to service A are combined into a batch that
results in a single outgoing request to service B. Now, what is the parent of the span
representing the call from A to B? In reality, the outgoing RPC depends on all of the
incoming RPCs, but we can’t represent this directly in current tracing systems.
Instead, we have to find a workaround.

One reasonable approach is to pick the first or the last request added to the batch to
be the parent. The right side of Figure 12-1 shows the actual trace graph together with
the compromise tree resulting from the workaround (the paths from X/Y/Z back to
the root are elided in the diagram). Clearly, the compromise tree doesn’t correctly
represent the true dependencies. For instance, the RPCs from X and Y that contrib‐
uted to the batch will appear to terminate at A, becoming leaf nodes in the trace tree.
Moreover, from the point of view of the performance engineer, the latency introduced
by batching may be a significant contribution to overall latency, and so the time spent
waiting by each parent request should also be recorded. Once again, you can work
around the lack of expressivity by adding timestamped annotations that record when
items are inserted into the batch, but you will need custom processing to subse‐
quently extract and process the information.

226 | Chapter 12: Beyond Spans

Figure 12-1. RPC batching leads to spans with multiple parents.

Inter-Request Dependencies
A generalization of the previous problem is when multiple traces (rather than spans
within a single trace) are interdependent, as if Service A in Figure 12-1 batched
incoming requests that belonged to multiple different traces into the outgoing request
to Service B. In our example social media platform, we can image a “RemoteRepli‐
caUpdaterService” that batches unrelated updates in one datacenter in order to send
fewer, larger RPCs across the wide area network to the other datacenters.

Fortunately, with this batching style of inter-request dependencies, you can take
advantage of the flexibility of spans to use existing tracing systems without much dis‐
ruption. Simply add a tag to the nonterminating trace that records the other TraceIDs
(and perhaps also information about nontraced requests) that went into the batch.
Indeed, FollowsFrom references in OpenTracing are intended to handle this use case.

Another, more significant challenge for inter-request dependencies with conventional
tree-of-spans tracing arises when the definition of a trace is too restrictive for the type
of end-to-end type request that you are interested in. Let’s explore this scenario by
assuming that our example social media platform operates a conventional tracing sys‐
tem. Its frontend server makes the decision to sample a request (i.e., to trace it) at the
ingress to the set of microservices that comprise the backend serving system. This
means that a trace is implicitly defined as the set of actions involved in serving a sin‐
gle HTTP request. So far, so good.

Why Spans Aren’t Enough | 227

However, if the social media company decides in the future that it wants to extend its
tracing system out to clients, for example by adding tracing logic into its bespoke
mobile app, then this notion of a trace suddenly doesn’t work as well. In client apps, a
single user action typically involves many requests to the backend, each of which is
sampled independently by the frontend server. Thus, although inside the datacenter
each trace corresponds to a single HTTP-based API endpoint, from the perspective of
the user, an action like navigating to the home page might involve RPCs to several
different endpoints, to fetch content, ads, and profile information.

To make a single trace that represents one of these user actions you could combine
multiple traces after the fact, provided they are tied together with some common tag.
But how do you ensure that your frontend sampler will choose all (or none) of the
traces for a given user action? Perhaps you could sample on the client, but now you
have devolved the sampling decision from a handful of servers in your datacenter to
potentially millions of clients that may fail frequently, not have good connectivity, or
be running an old version of the software. Alternatively you might consider extend‐
ing your external API to indicate to the backend that some set of RPCs belongs to a
single trace, but this could leave you vulnerable to denial-of-service attacks.

There are many other subtle issues at play here, but the takeaway point is that addi‐
tional complexity is inevitable when the conventional notion of a trace is insuffi‐
ciently expressive.

Decoupled Dependencies
Publish-subscribe (pub-sub) systems play an important role in many microservices
architectures. By decoupling the writer of a message from its readers, pub-sub
smooths out load spikes, allows publishers and subscribers to scale and evolve inde‐
pendently, and lets subscribers come and go without needing to notify the publishing
service. A consequence of this decoupling is a dilemma for tracing, illustrated in
Figure 12-2: should the loosely coupled communication via the pub-sub system be
treated as a single trace or many?

Figure 12-2. How do you trace a pub-sub system?

228 | Chapter 12: Beyond Spans

Let’s consider the single-trace solution, which may indeed be appropriate for some
microservice systems. When the writer publishes a message to the pub-sub system,
you trace it as a one-way RPC (most tracing systems have support for such messages),
and propagate the trace context as normal. Subscribers pick up the context along with
the message and continue propagation, giving a single, unbroken end-to-end trace
that includes all your dependent services. One of the benefits of pub-sub is its loose
coupling, but this can easily have the unfortunate consequence of obscuring which
services are interdependent. Tracing across the pub-sub boundary solves this prob‐
lem, and also has the advantage of treating the pub-sub system like any other micro‐
service, giving visibility into how the pub-sub system itself fits into the overall
ecosystem of microservices.

However, this model isn’t necessarily the right choice. Turning again to our social
media platform, let’s assume its “RemoteReplicaUpdaterService” uses a pub-sub sys‐
tem to asynchronously disseminate state updates to storage replicas in its other data‐
centers. Here, the single-trace approach becomes awkward: There may be a large
number of subscribers for each publisher, different subscribers to the same publisher
may be involved in unrelated activities that don’t belong in the same trace, and there
can be a delay between writing and reading a message.

You can handle these issues by starting a new trace for each message read by a sub‐
scriber, perhaps retaining a reference to the message writer’s TraceID as a tag in the
new trace. But now, even though the tracing mechanisms themselves are straightfor‐
ward, you’ve made it more complicated to track end-to-end dependencies.

Returning to our example: maybe the social media platform also runs a second pub-
sub system that it configures with much tighter delay bounds in order to propagate
user-visible changes in a timely fashion. When a follower is blocked, it’s important
that the change appears as quickly as possible in every copy of the follower graph.
End-to-end tracing through the pub-sub system may be an important debugging tool
for these types of requests, and now someone has to choose which mode of tracing to
adopt, or else configure the two pub-sub systems differently. The tracing dilemma for
decoupled dependencies has become an operational burden.

Distributed Dataflow
In the last 15 years or so, data-parallel, distributed execution frameworks like Hadoop
and Spark have become tremendously popular. In contrast to request-oriented sys‐
tems, distributed tracing for these frameworks is almost nonexistent, with developers
relying on metrics, logs, profilers, and debuggers to monitor performance and solve
problems. Why is this? The answer is not clear, especially given that a framework like
Spark is more homogeneous and self-contained than most microservice architec‐
tures, and thus potentially less effort to instrument for tracing.

Why Spans Aren’t Enough | 229

However, there are other challenges: distributed dataflow is designed to operate at
very large scales and as a result a single job could run for hours (or longer!) and may
comprise millions of RPCs. The control plane, which includes services like the cluster
scheduler and resource manager, can play a significant part in the end-to-end com‐
pletion time of a job. Should you instrument the control plane for tracing also?
Finally, the distributed dataflow paradigm executes programs as directed by acyclic
graphs, and as discussed earlier, graphs are not well supported by existing tracing
systems.

Streaming systems, often built over the top of distributed dataflow systems, offer yet
another challenge to the spans-oriented tracing model. How should you define the
concept of “request” for processing that runs over a continuously arriving, infinite
stream of data? Perhaps you should consider a different core abstraction, like tracing
how specific data items are passed between processes, read, and mutated (this is
known as data provenance in the academic community)? Alternatively, you could for‐
get about tracking an individual activity or piece of state, and instead just snapshot
the execution of the entire system during a fixed time window. New styles of trace will
require new tools for analysis and visualization, so you would have to start from
scratch to extract value from your traces.

Machine Learning
Machine learning (ML) systems comprise yet another style of distributed computing,
with performance analysis and debugging challenges for which existing distributed
tracing systems have no out-of-the-box solutions. Because of this, ML systems tend to
have their own custom tracing tools, such as the trace viewer built into the Tensor‐
Flow TensorBoard visualization toolkit. For service owners that run machine learning
as just one part of their infrastructure (say, to predict the best ad to serve for a specific
web page request), this has the drawback that the ML systems operate outside the reg‐
ular observability framework, which is especially undesirable when the ML is
production-critical and resource-intensive.

Although there are many types of ML models (logistic regression, support vector
machines, deep neural networks, etc.), they have in common (at least) two ways that
RPC-based tracing is not a good fit:

Steps, not requests
Training a machine learning process involves repeated steps, in which operators
—schedulable units of work like matrix multiply, or the reading of a file—com‐
pute over the current state of the training data and produce updates. At the end
of each step, the operators exchange updated values. Although you can think of
each operation within a step as being a span, causally related to its parents and
children by its input and output, respectively, there is no conceptual equivalent of
an end-to-end request. Instead, because a key metric is the time taken per step,

230 | Chapter 12: Beyond Spans

ML tracing tools typically provide the ability to look deeply into the concurrency
and scheduling of operators within a single training step.

In contrast, ML inference has a more request-oriented flavor. However, to
improve efficiency, inference models batch requests (similar to the situation we
showed in Figure 12-1), leading to the issue of inter-request dependencies that
we discussed earlier.

Multilayer performance monitoring
Hardware acceleration is often a key component of machine learning deploy‐
ments. Particularly during training, the movement of data between devices over
the PCI bus and/or the network can be a major bottleneck, and whether an oper‐
ation is scheduled on CPU or GPU can affect its running time significantly. As a
result, to debug performance problems in a distributed ML job, you need visibil‐
ity into how the runtime schedules work on each server individually, as well as
across the cluster.

In addition, different ML models have diverse characteristics—for example, lan‐
guage models often use large tables, known as embeddings, that can be hundreds
of gigabytes and hence have to be shared across multiple devices. However, the
model may only access a handful of rows in each step, leading to complicated
scatter-gather communication patterns. Similarly, models that rely on AllReduce,
an efficient group communication primitive for updating state across many
nodes, may be highly sensitive to its implementation specifics, which in turn
depend on the available device and network hardware.

As a consequence, distributed tracing for ML systems must incorporate data not
only at the level of RPCs (or AllReduce operations) between computers, but also
at the level of the low-level behavior and causal dependencies within each
computer.

In fact, the second of these problems is more general—metrics from components
underneath the RPC layer are critical to understanding the performance of requests,
as we explain next.

Low-Level Performance Metrics
Performance debugging is often about detecting problems by looking across the entire
system, followed by zooming in deep to diagnose the cause. Distributed tracing is
great for the first task, especially when using aggregate analysis of traces, as we dis‐
cuss in Chapter 11. On the other hand, when it comes to explaining a slow RPC that
might be caused by a low-level issue like a VM hiccup, suboptimal thread scheduling,
or network packet loss, span-oriented tracing is not a good fit. Low-level events are
usually not caused by the activities on behalf of any one request, but rather the set of

Why Spans Aren’t Enough | 231

1 [Dan15]

all things currently running on the server. So in some sense, attribution to a specific
trace isn’t terribly meaningful.

Another problem with incorporating fine-grained performance metrics is timescale.
RPCs happen quickly—very quickly. Tracing systems use microsecond or even nano‐
second timestamps for good reason. Yet, for reasons of scale and performance,
observability systems typically aggregate metrics every minute, or at best every few
seconds. These timescales are orders of magnitude different!

The trend to move performance-critical functionality from software into hardware is
another challenge for span-oriented tracing systems. We already mentioned the prev‐
alence of accelerators for ML. Another increasingly widespread example is the use of
remote direct memory access (RDMA) for distributed applications with stringent
network performance requirements. Meanwhile, the research community is advanc‐
ing the state of the art exploring how to use programmable network switches for
complex tasks like executing consensus protocols.1 How to associate low-level hard‐
ware counters with the high-level concept of a trace is an open problem, as is how to
surface this information in a way that is useful for performance debugging of slow
requests, or for the aggregate analysis of multiple traces.

But what about metrics from within the application, like requests per second? If your
service is experiencing high sustained load, could this be a useful indicator as to why
an RPC is slow? Well, maybe! Perhaps the high load is occurring now, but won’t start
impacting requests until later (e.g., once the queues are full). Perhaps the high load is
having an adverse effect, but the trace sampling just so happens not to select any of
the suffering requests.

This is not to say that system metrics together with traces can’t be useful for perfor‐
mance debugging. Indeed, we talked about the idea of a unified observability plat‐
form in Chapter 6 and pointed out some of its advantages. However, the alliance of
spans and metrics is an uneasy one that must be handled with care.

New Abstractions
We’ve described a selection of the issues that arise when spans are not the right
abstraction for the task at hand. In this section we’ll discuss some of the changes afoot
to help overcome some of the shortcomings of the tree-of-spans approach to dis‐
tributed tracing.

The tracing community has been well aware of the problems with spans for years;
there is a great deal of fascinating, and often quite nuanced, discussion in various
online forums. Efforts are underway to address some of the more pressing problems

232 | Chapter 12: Beyond Spans

2 [Erl11]

by evolving the specifications for OpenTracing and OpenZipkin, for example sup‐
porting multiparent spans by means of the OpenTracing tag FollowsFrom.

OpenCensus (now part of OpenTelemetry) is one of the “new wave” of tracing para‐
digms. It supports the propagation of tags (not to be confused with the explicit tags
we write into spans) between services, along with the usual trace context information
like the TraceID. Tags act like labels, which the system associates with metrics collec‐
ted at each node in the trace tree and subsequently aggregated. This is pretty neat: a
tag like originator:photo-app, combined with a measure like vm_cpu_cycles, lets
you see the end-to-end CPU costs for requests coming from photo-app, and more‐
over, to compare them with the CPU costs for requests coming from a different origi‐
nator, say, video-app.

Essentially, OpenCensus gives you a way to associate metrics with traces. It doesn’t fix
the problem we described earlier of precise attribution of low-level metrics to a par‐
ticular request, so you still need to choose your metrics carefully. Some types of meas‐
ures (like counting CPU cycles on a thread while it’s doing work on behalf of exactly
one request) are well suited to this use, others (like network link utilization) are not.
We will describe OpenCensus in more detail in “Census” on page 241.

Production tracing systems must use caution when adopting new abstractions so as
not to disrupt existing infrastructure. However, the research community does not
have such constraints and has explored some interesting approaches. For example, to
mention an idea that is particularly well suited to systems like streaming distributed
dataflow, rather than attempting to correlate related events on different machines,
collect performance data from every machine in the cluster at the same time. In
theory, you could do this by firing off a sampling profiler, or a kernel trace, to run for
30 seconds (say) on every server at the same time. But then you would have to back‐
haul all the profiles and run an expensive computation to merge them after the fact,
and in a large cluster the cost of doing this could be prohibitive.

An alternative approach is to push the trace analysis into the same cluster that is
being traced. This idea has been at the heart of various research systems, for example
the Fay system published in 2011.2 In Fay, the user provided a declarative query that
the system parsed and turned into dynamic instrumentation, customized to just that
query. It used a runtime module on each server to filter and aggregate the outputs
from the instrumentation before uploading the results for further processing (such as
for aggregation and visualization).

Dynamic instrumentation would be a bold undertaking in a production cluster, espe‐
cially when the cluster supports multiple tenants and resource isolation is important.
Perhaps inspired by the ideas in Fay, you can imagine a rolling buffer of locally

New Abstractions | 233

collected trace data, sampled, filtered and even joined on the spot with data from
other servers on demand. In Chapter 13, we’ll describe another research system, Pivot
Tracing, that does exactly this.

Could such distributed-tracing-plus-analysis techniques be combined with the famil‐
iar trace context propagation mechanism to enable a different form of distributed
tracing? Or will some other approach be sufficiently compelling that it finds wide‐
spread adoption? It’s hard to tell at this point where we are headed, but there’s no
doubt that exciting times are ahead for distributed tracing.

Seeing Causality
For users of distributed tracing, one of the most important questions to answer is
“Why was this request slow?” The answer is hopefully contained within a trace, or in
how it differs from comparable traces. But sometimes you cannot find the answer just
by looking at traces: you can see there was a problem, and you may even see which
service was unusually slow, but there are no obvious clues as to the cause.

One explanation is that the tracing instrumentation is insufficient to debug the par‐
ticular problem. For instance, if you don’t record when a timeout expires, then you
may not be able to tell when that timeout causes an error response. But in other cases,
your trace was slow because of external factors. If a server experiences a transient
period of CPU overload, for example, and the thread processing your request simply
doesn’t get enough CPU time to complete the work, then you will not capture this in
a trace. Another tricky scenario is if your request is blocked waiting for a lock—per‐
haps a lock in a third-party library that you don’t even know existed—and unless you
instrument the wait and hold times for synchronization primitives, which would add
overhead to a performance-critical operation, then you simply don’t have the visibil‐
ity to diagnose such a problem.

These examples illustrate the limitations of the visibility you get from traces alone.
Fortunately, you may be able to correlate the slowness in your trace with logs and
metrics (see Chapter 7). Because tracing shows you where and when to look, it’s feasi‐
ble to use the other observability pillars to diagnose the problem. As long as the full
tree of causal relationships is captured in the trace, you can take advantage of other
data sources to fill in the visibility gaps when required.

But what about when causality is not tracked completely? If you rely on components
in your distributed system that don’t support tracing (in other words, that don’t prop‐
agate the trace context and/or record spans) then you may not even be aware that you
have a dependence on them. This may sound like poor operational practice, but it’s
surprisingly easy for this to happen with complex, distributed systems running a vari‐
ety of in-house and open source software.

234 | Chapter 12: Beyond Spans

3 [Agu03]
4 [Cho14]
5 [Wu19]

The research world has proposed ways to infer causality just from the black box
behavior of a distributed system. Back in 2003, Project5 explored whether the timing
of messages between components could reveal causal relationships, especially for nes‐
ted RPCs.3 More recently, the Mystery Machine takes a different tack, applying
hypothesis testing about program behavior to the information in large numbers of
system logs in order to deduce a causal model of system behavior.4 These ideas are
promising, and perhaps in future we will use such techniques to automatically fill in
missing dependencies in traces.

Returning to the question “Why was this request slow?,” we have discussed how miss‐
ing instrumentation or dependencies in traces can make the question hard to answer.
A different challenge for tracing, that is very common in practice, is when the root
cause originates outside the scope of visibility (or perhaps even the lifetime) of the
request suffering the slowdown. Traces capture direct dependencies, but sometimes
the problem comes from indirect dependencies.

Let’s look at the shared queue shown in Figure 12-3, where the expensive request A is
at the front of the queue, slowing down requests B and C which are queued behind it.
The queue introduces an ordering of requests that can result in head-of-line blocking.
Typically you wouldn’t instrument fine-grained operations like enqueue and dequeue
because of the overhead, so how do you detect when the queueing delay is adversely
impacting some requests?

Figure 12-3. In a shared queue, request A slows down requests B and C.

Once again, the tree-of-spans tracing model doesn’t easily express what’s going on
here. There is an implicit dependency between requests that is temporal rather than
functional. Requests may interfere if one of them is slow, but if the queue never
backed up, there would be no dependency between them. There is some exciting
research work in this direction (including, for example, the recent Zeno project that
describes this idea using the term temporal provenance),5 but detecting and diagnos‐
ing such interference from sequencing remains an open problem.

In this chapter we’ve looked at the kinds of distributed systems for which the tracing
model of a tree of spans is not well suited, along with a taste of some new abstractions
on the horizon.

Seeing Causality | 235

CHAPTER 13

Beyond Distributed Tracing

At the very beginning of this book, in the Introduction, we argued that most applica‐
tions today are distributed in some fashion, whether as simple client-server applica‐
tions or more general architectures like microservices. Distributed architectures give
clear benefits, especially with scalability, reliability, and maintainability. The biggest
drawback, however, is that distributed architectures break traditional methods of
profiling, debugging, and monitoring. Such methods were designed to capture infor‐
mation in a component- or machine-centric way (because they were designed when
applications only ran on a single machine). By contrast, in distributed architectures,
we care about end-to-end executions of requests across multiple components and
machines. Traditional methods aren’t enough for distributed architectures because
they lack visibility: they weren’t designed to be able to correlate and combine events
across multiple components and machines.

This is the point of distributed tracing—to meet the profiling, debugging, and moni‐
toring needs of modern, distributed architectures. Distributed tracing is designed for
distributed architectures and addresses the key challenges of incoherence, inconsis‐
tency, and decentralization that we described in the Introduction. With distributed
tracing, you gain visibility across your entire stack. Distributed tracing gives you a
way to profile, debug, and monitor our distributed applications, where previously it
was tremendously difficult.

Today, distributed tracing has become a de facto component in modern distributed
applications. It is the most popular and most well-established tool for profiling,
debugging, and monitoring requests. There are multiple open source initiatives and
implementations, several of which we have discussed throughout this book. Clearly,
distributed tracing has proved its worth.

With all this said, distributed tracing is not the only way to gain visibility of your dis‐
tributed application. In fact, just as we discussed some of the core distributed tracing

237

history in Chapter 10, there are several interesting projects that explore different
(though, not entirely dissimilar) approaches to profiling, debugging, and monitoring.
In Chapter 3, we touched upon one: Census (open-sourced as OpenCensus, and
today forming the metrics component of OpenTelemetry). The way Census captures
metrics is very similar to distributed tracing, but there are also important differences
between the two.

In this chapter we will examine Census in more detail, along with two other projects:
Pivot Tracing, a 2015 research project from Brown University; and Pythia, a 2019
research project from Boston University. These projects tackle similar sorts of prob‐
lems to distributed tracing and they also make use of similar underlying techniques.
In particular, they all use context propagation—albeit not always in the same way as
distributed tracing. This is not entirely surprising, given that a lack of cross-
component context was the main shortcoming of previous approaches. We’ll also
make sure to describe some of the important motivations and design choices made by
these three tools, which differ from those of distributed tracing.

Limitations of Distributed Tracing
When you deploy distributed tracing, and instrument your systems, you have to
make a number of practical choices. It’s not always obvious what the right choices are
when you’re doing instrumentation. Sometimes there might not be an obvious best
choice. This is why distributed tracing can be quite difficult to get right, and why we
need to resort to best practices when doing instrumentation.

In Chapter 1 we introduced three fundamental problems that generally occur when
you’re using distributed tracing. Let’s briefly recap these:

Generating trace data
Choosing where in a program useful data exists, and instrumenting the applica‐
tion to record it

Collecting and storing trace data
Deciding under what circumstances trace data should be emitted, and how to
route it from its origin to the tracing backends

Extracting value from data
Using traces to profile, monitor, and debug your application in a meaningful way

Even if you make all the right choices, you might still encounter unavoidable limita‐
tions. In data generation, you need to be able to predict what kind of problems might
occur in the future and what data should be recorded to help problem diagnosis. On
the collection and storage front, you need to balance sampling only a fraction of
traces, paying high computational costs, and getting enough data to be meaningful
for problem diagnosis. Lastly, extracting value from traces is up to you: you are

238 | Chapter 13: Beyond Distributed Tracing

responsible for identifying and debugging problems. Distributed tracing just provides
you with some data to help—and because of the first two problems, that data might
be misleading, redundant, or incomplete.

Challenge 1: Anticipating Problems
When you deploy distributed tracing, it’s up to you to decide what data to record—
that is, what parts of the program to instrument with spans, and what additional tags
and annotations to add to those spans. At first glance this doesn’t seem too tricky,
because for most applications it’s easy to identify the most important parts of the
code. For example, you would almost certainly want to wrap all of your RPCs in
spans to measure response latency and status codes.

Beyond some of the obviously important high-level parts of your application, there
are a wide range of instrumentation choices you can make. Should you break down
the high-level RPC span into multiple child spans representing each stage of execu‐
tion? Should you intricately instrument your caches and resource consumption?
Should you augment your traces with additional log annotations, to provide more
context about what’s happening during a span? Your high-level goal is to instrument
the things that are going to be the most useful. But you can’t instrument everything,
both because of the time-consuming nature of doing instrumentation and more fun‐
damentally because your application needs to cope with the volume of spans being
emitted. Computational costs are a driving challenge of distributed tracing, as we dis‐
cuss in Chapter 6.

In the worst case, it might be impossible to predict a priori where to put your instru‐
mentation, because nobody can perfectly predict where and how problems might
arise. On the one hand, the point of distributed tracing is to be able to investigate
unexpected behaviors and debug problems, so you’d hope that traces contain useful
information for diagnosing problems when they do arise. On the other hand, some‐
times you’ll be unlucky, and the information you need to diagnose a problem just
might not be present in traces, or even in other data sources like system logs.

When you don’t have visibility of a problem’s root causes, then diagnosing the prob‐
lem becomes a tedious and time-consuming task. If you want to add new instrumen‐
tation, in the hopes of shedding more light on the matter, you’d have to go back to
your code to do it. This is fundamentally slow, because deploying new instrumenta‐
tion is part of the development path of applications—getting that new instrumenta‐
tion into the production system might take a while. In the worst case this is a repeated
process—for example, how often do you get print debugging right the very first time?

Of course, it isn’t all doom and gloom. What we’re describing here is an exceptional
case for distributed tracing. In the grand scheme of things, the instrumentation you’ll
have in place will be enough to solve most problems most of the time. But what if you
do want to focus on these unanticipated problems? Two of the tools we’ll be looking at

Limitations of Distributed Tracing | 239

in a moment—Pivot Tracing and Pythia—target this use case in particular. Pivot
Tracing and Pythia are a lot like distributed tracing, but their main goal is to home in
on problems that existing instrumentation might miss.

Challenge 2: Completeness Versus Costs
Computational costs are a never-ending battle, as you saw in Chapter 6. Computa‐
tional costs shape your instrumentation choices and arise from multiple places in the
tracing pipeline:

• The critical path of requests to generate trace data
• Background threads and processes that receive and buffer local trace data
• Network transmission of trace data to the tracing framework’s backends
• Processing and storage by the tracing backends once trace data is received

The main way distributed tracing mitigates computational costs is by sampling. Sam‐
pling is simple but effective: you only have to pay computational costs when you
actually trace a request, so sampling is a configuration knob that lets you reduce com‐
putational costs by tracing fewer requests. The most common sampling method is
also the simplest: uniform random sampling, decided at the very beginning of a
request. If a request isn’t sampled, no trace data is generated at all.

Computational costs are one of the most important factors for profiling, debugging,
and monitoring—especially for tools that run in production systems. A central tenet
of profiling, debugging, and monitoring tools is “do no harm.” Distributed tracing is
no exception, and neither are any of the other tools we’ll talk about. Unlike dis‐
tributed tracing, Census, Pivot Tracing, and Pythia take different approaches to deal‐
ing with overheads, and don’t solve the problem using sampling.

Challenge 3: Open-Ended Use Cases
The value of distributed tracing doesn’t arise from individual spans or annotations in
isolation—its value is in combining all of a request’s data coherently from start to fin‐
ish. This is why distributed tracing frameworks sample traces on a per-request basis.
They sample either all of the trace data for a request or none of it. This is called coher‐
ent sampling. Coherent sampling is necessary for distributed tracing. Think about its
original goal: to help relate information from multiple points in a request’s execution,
especially across different machines and components. It would be no good if dis‐
tributed tracing arbitrarily recorded just bits and pieces of a request!

When you instrument your systems, you instrument the spans and annotations that
you think will be the most useful for the future—for example, latency and metrics of
important top-level spans; annotations at critical parts of our program; and as
described earlier, information to anticipate future debugging needs. Traces can end

240 | Chapter 13: Beyond Distributed Tracing

1 [Kal17]
2 [Sig10]

up containing a lot of data! For example, Facebook described in its Canopy paper
how the volume of data in a single trace can become overwhelming, due to multiple
different users and use cases all feeding data into the same traces.1

Fortunately, sampling gives you a convenient way to balance computational costs. For
example, you can now increase the amount of detail that goes into a single trace, and
simply reduce your sampling probability to average out the total cost across all
requests. In their Dapper paper,2 the authors from Google commented about how
sampling was very useful, as it enabled them to capture very detailed traces.

Not all tools for profiling, debugging, and monitoring need to capture so much
detailed information. Part of why distributed tracing does record detailed informa‐
tion is because the use case is so open-ended—record all the data now, store it some‐
where, and make it available for whatever future use case you have in mind. By
contrast, Census, Pivot Tracing, and Pythia have more specific use cases in mind,
which enables them to record less speculative data up front.

Other Tools Like Distributed Tracing
We’ll now take a look at three tools that are similar to distributed tracing. First, Cen‐
sus is an internal tool from Google whose primary focus is on cross-component met‐
rics; Google released an open-source version called OpenCensus in 2018. Next, we’ll
look at Pivot Tracing, a research project published in 2015 by researchers from
Brown University. Pivot Tracing focuses on diagnosing recurring cross-component
problems quickly, by using dynamic instrumentation. Last, we’ll look at Pythia, a
research project from Boston University introduced in 2019. Pythia focuses on auto‐
matically finding and turning on useful instrumentation when problems arise: that is,
finding and dynamically enabling the instrumentation needed to explain a problem.

Census
Census started as an internal project at Google for collecting cross-component metric
data from Google services. Google never published anything about Census in detail,
but in 2018 it released an open source version called OpenCensus. Soon afterward,
OpenCensus was merged with OpenTracing to become OpenTelemetry. You can read
a bit more about this history in Chapter 3 as well as about the relationship between
OpenCensus and distributed tracing. Our focus here is specifically on the metrics
part of Census.

Other Tools Like Distributed Tracing | 241

Just like distributed tracing, the fundamental motivation for Census is to capture and
relate information across multiple machines. In this case, the focus is metric data,
which we’ll explain with an example.

A Motivating Example
Suppose you have two frontend APIs, A and B, as well as a number of other inter‐
mediate services that A and B call. Figure 13-1 illustrates these services. Those inter‐
mediate services might themselves make calls to other intermediate services, but
eventually, requests end up querying a backend database, DB. Both frontend APIs—
that is, both A and B—eventually result in calls to DB, but A and B aren’t the services
directly making those calls.

Figure 13-1. Two frontend services, A and B, interact with a database indirectly through
several other services.

There are a few useful questions you might want to ask in this scenario. If you’re a
developer of A or B, you might want to know things like how many database calls
each request makes, or how much of your request’s overall latency is spent at the data‐
base. If you’re a developer or operator of the database, then you might want to know
which frontend APIs are using the database the most, so that you can better attribute
costs or put together an SLA.

There’s just one problem: since A and B don’t call to the database directly, nobody has
the means to answer these questions by themselves. In a standalone application, it
would be straightforward to drill down into these sorts of metrics. But in a dis‐
tributed application, the information is unavailable by default.

242 | Chapter 13: Beyond Distributed Tracing

A Distributed Tracing Solution?
Distributed tracing would provide one possible solution to this problem. Figure 13-2
depicts a trace of API A in this setup. Certainly, the trace would contain all the neces‐
sary information:

Figure 13-2. A trace of API A will record the number of database calls and the latency of
each.

The top-level span tells you that this request came through API A.

Lurking way down in the child spans will be spans for database calls, telling you
both the number of database calls and the latency of each call.

Also included in the trace will be detail from every service that is invoked along
the way.

Through straightforward postprocessing you can extract aggregate statistics to
answer some of the questions mentioned earlier. However, there’s a big drawback with
using distributed tracing here. You’ll inevitably be sampling distributed traces rather
than tracing every request, because every service invoked adds extra detail to the
trace, meaning extra overhead. You wouldn’t be able to capture traces for 100% of
requests because of the huge computational overheads that would introduce.

When it comes to metrics, you’ll often be interested in outliers—how does your appli‐
cation behave in rare but important edge cases? Time is often spent diagnosing
requests with outlier latency, in the 99th percentile and above. By sampling traces,
you will miss many of the most important requests for diagnosing problems. It might
give you the false impression that there are no high-latency outliers at all.

Census | 243

Tag Propagation and Local Metric Aggregation
Census addresses this specific use case, and it captures metrics for 100% of requests.
Census doesn’t record individual traces at all, so it doesn’t use sampling to deal with
computational costs. The key to Census is context propagation. Like distributed trac‐
ing, Census propagates contexts with requests, but those contexts don’t include Trace‐
IDs. Instead, contexts contain tags that describe user-selected request properties. At
any point during the request, any service can write a tag to the Census context. From
the preceding example, API A and API B can write tags of “API A” or “API B” respec‐
tively. Those tags then get forwarded with the request, inside the Census context, to
any child services that get called.

As well as tags, any service along the way can record a metric. In our example, the
backend database might emit a simple count of API calls, and perhaps also the latency
of each call. Whenever a component emits a metric, Census will inspect the request’s
tags in the Census context, then increment counters on a per-tag basis. Counters are
maintained locally (in our example, at the database) and only aggregated metrics get
reported, periodically, to the Census backends.

Census doesn’t capture individual traces at all, because metrics get immediately
aggregated within the application (e.g., by the backend database in our example). In
the preceding example, the database would record separate counters for APIs A and
B. In general, these counters get grouped arbitrarily based on whatever tags are
present in the Census context. If you implemented a third frontend API, you could
simply start propagating the tag “API C,” and the database would automatically group
counters for API C.

Doing local aggregation avoids all overheads of generating and reporting individual
traces. As a result, Census can propagate tags and record metrics for every request.
Census is particularly useful for diagnosing uncommon and outlier requests, which
might be missed by low sampling rates. On the other hand, Census’s main limitation
is that it cannot drill down and inspect individual requests.

A second concern about Census is the overhead of propagating tags: the bigger and
more complex the system, the more tags you might want to propagate. Census simply
limits the number of tags a request can have to 1,000 bytes. This is a new source of
overheads that distributed tracing doesn’t really have (if we exclude baggage for now).
In the next chapter, we talk about context overheads in more detail.

244 | Chapter 13: Beyond Distributed Tracing

Comparison to Distributed Tracing
Figure 13-3 illustrates the distributed tracing approach compared to the Census
approach. There are a few key differences:

Figure 13-3. A comparison of distributed tracing versus Census.

Distributed tracing emits span data at every component visited by a request, for
every request.

Distributed tracing propagates TraceIDs with requests, so that backends can
combine spans from the same request.

Distributed tracing emits span data at every component, potentially leading to
large traces.

Distributed tracing backends are responsible for extracting metrics from traces, if
we want metrics.

Census propagates tags with requests instead of TraceIDs.

Census only emits metric data.

Census | 245

3 [Mac15]

Census locally aggregates metrics.

Census only emits metric aggregates to the Census backend, rather than per-
request measurements.

Census is very similar to distributed tracing, in that it propagates contexts with
requests so that it can combine data across component and machine boundaries.
However, it is not as open-ended as distributed tracing. Census is narrower in scope:
it focuses on aggregating metrics, grouped by cross-component tags. Aggregated met‐
rics are an important use case, especially for understanding outliers like 99th-
percentile tail latency. Census has directly influenced the inclusion of metrics in
OpenTelemetry today.

While Census is not as open-ended as distributed tracing, it does achieve complete
visibility of all requests where tracing typically does not. Local aggregation means it
can cheaply record metrics for every request. Census doesn’t have to sample requests
—it records metrics of every request; by contrast, distributed tracing needs sampling
to reduce overheads. Like distributed tracing, when you’re instrumenting your sys‐
tem, it’s up to you to choose which tags to use and which metrics to capture.

Pivot Tracing
Pivot Tracing is a research project from Brown University published in 2015.3 Pivot
Tracing is a lot like Census, in that its core goal is to extract aggregated metrics from
distributed applications. Pivot Tracing is designed to help diagnose unanticipated
problems in distributed applications on the fly, by using a technique called dynamic
instrumentation. Like Census, Pivot Tracing aggregates data directly at the source
rather than generating individual traces of requests. It correlates data across compo‐
nents by propagating contexts, but goes a step beyond the tags used by Census.

Dynamic Instrumentation
When you use distributed tracing, you hardcode instrumentation into our applica‐
tions, in much the same way that traditional logs and metrics are hardcoded in stand‐
alone applications. Dynamic instrumentation is an alternative approach to hard-
coding the instrumentation. In a standalone setting, the best-known examples are
DTrace, SystemTap, and eBPF. Rather than hardcoding instrumentation at develop‐
ment time, dynamic instrumentation frameworks let you inject code into running
programs, without having to recompile or redeploy the program.

246 | Chapter 13: Beyond Distributed Tracing

Recurring Problems
By default, Pivot Tracing records nothing at all. It only injects instrumentation code
into your running application when you ask for it to be installed. It thereby targets
active debugging, where there is a persistent problem in the system, and you are
actively investigating the problem by turning instrumentation on and off.

How Does It Work?
Let’s go back to our earlier example depicted in Figure 13-1.

In this example, we did two things. First, at the database, we counted database queries
and recorded query latency. Second, at the frontends, we were using the API name (A
or B) as a tag. Census would then aggregate the query latency, grouped by API name.

You can do the same thing in Pivot Tracing, in roughly the same way. Pivot Tracing
provides a more generalized query language for expressing these aggregates. Con‐
cretely, to record just the database query latency, you would use the following query:

FROM q in DB.ExecuteQuery
SELECT q.duration, COUNT

This query refers to DB.ExecuteQuery, which is the source code database method that
executes queries. ExecuteQuery is an example of a tracepoint—a location in the appli‐
cation source code where Pivot Tracing can run instrumentation. The query causes
the database to aggregate the ExecuteQuery method duration every time the method
is invoked, as well as a counter. Like Census, these aggregations happen locally at the
database, rather than reporting data for every request.

This query accounts for measuring database metrics, but our goal was to also group
those metrics by the frontend API type. To do this, we would expand our earlier
query to refer to tracepoints for API A and API B, which we will collectively refer to
as FrontEnd.HandleRequest.

FROM q in DB.ExecuteQuery
JOIN r in FrontEnd.HandleRequest ON r -> q
GROUPBY r.apiName
SELECT r.apiName, q.duration, COUNT

The -> symbol indicates a happened-before join, a special query operator introduced
by Pivot Tracing. This query operator simply means that FrontEnd.HandleRequest
has to happen first, then later in the request DB.ExecuteQuery happens. Pivot Tracing
will record apiName when the request passes through the HandleRequest method,
add it to the Pivot Tracing context, and propagate it along the execution. Then when
the request reaches ExecuteQuery at the database, Pivot Tracing will emit the dura‐
tion of ExecuteQuery, grouped by apiName in the Pivot Tracing context.

Pivot Tracing | 247

The happened-before join is Pivot Tracing’s way of formalizing causality and context
propagation. In essence, a happened-before join between two tracepoints indicates
that information from the first tracepoint should be propagated to the second. In our
earlier example, all we’re doing is propagating a tag from HandleRequest in the fron‐
tends, to ExecuteQuery at the database.

Pivot Tracing extends beyond just simple single relations. Queries can refer to multi‐
ple tracepoints, with multiple different happened-before joins. Pivot Tracing also
supports a range of standard query operators such as unions, selection, projec
tion, aggregation, and groupby. Multiple queries can run side by side without inter‐
ference, and queries can be nested.

Dynamic Context
For any query that uses a happened-before join, Pivot Tracing needs to propagate
data from an initial tracepoint to a later tracepoint. Depending on the query, the exact
data that gets propagated varies. In the preceding example, the data was simply a
string tag containing the apiName—concretely, it would be either API A or API B.
More generally the data could be a set of tuples, partially aggregated data, grouped
data, and more. To support this, Pivot Tracing makes use of a general-purpose,
dynamic context that the authors termed baggage. You’ve already heard the term used
earlier in this book; Pivot Tracing introduced it for arbitrary metadata propagated
with requests. Today, baggage has been adopted by distributed tracing frameworks to
refer to arbitrary key-value pairs.

Like Census, Pivot Tracing avoids substantial overheads by aggregating as much data
locally as possible. When a user writes a query, that query is optimized to perform
things like filters and aggregations at the earliest possible tracepoint. Nonetheless,
baggage size is a concern for Pivot Tracing, and in general, if a tool propagates arbi‐
trary metadata with a request, then it needs to be careful not to propagate too much!
We go into this in more detail in the next chapter.

Comparison to Distributed Tracing
Pivot Tracing is much more similar to Census than to distributed tracing, but all
three share a few commonalities. All three tools propagate contexts with requests, so
that they can combine data across component and machine boundaries. Both Census
and Pivot Tracing aggregate data as close to the source as possible, so they can be
complete where distributed tracing is not. Unlike Census and Distributed Tracing,
Pivot Tracing is the first tool suitable for unanticipated problems, as dynamic instru‐
mentation lets developers interactively insert and remove new instrumentation to
manually get to the root cause of problems. Pivot Tracing is more open-ended than
Census, because it supports a broader set of operations than just tags and aggrega‐
tions. However, it doesn’t provide as rich data as distributed tracing does.

248 | Chapter 13: Beyond Distributed Tracing

4 [Ate19]

Pivot Tracing is a research project, with an open-source implementation, but there
are a few unresolved challenges. First and foremost is managing the overheads and
security of using dynamic instrumentation. However, with the growing use of eBPF
in production systems, we may see more Pivot Tracing style proliferate in the future.

One alternative way to think about Pivot Tracing is to compare it with distributed
tracing backends. In Chapter 10, we described a tracing use case where we aggregate
high-level metrics across many traces. Facebook’s Canopy is centered around this use
case. Whereas a distributed tracing system performs these aggregation queries in the
tracing backends, Pivot Tracing “optimizes” these queries by pushing their execution
all the way to the original data source.

Pythia
Pythia is a research project from Boston University published in 2019.4 It is more
closely related to distributed tracing than to Census or Pivot Tracing. Like Pivot Trac‐
ing, Pythia is intended to help diagnose unanticipated problems, by dynamically
changing the instrumentation in running systems. The overall output from Pythia is,
in fact, distributed traces; however, the data contained in the traces is the set of data
most able to explain a performance problem.

Performance Regressions
Pythia’s use case is to automatically find explanations for differences in request per‐
formance. That is, for a collection of similar requests that have different performance,
it will try to find instrumentation that best helps distinguish these two classes.

Consider the example illustrated in Figure 13-4. Suppose a storage service has an in-
memory cache to maintain a subset of the hot data in memory. Requests to this sys‐
tem can follow one of two paths:

Pythia | 249

Figure 13-4. A cache hit versus a cache miss.

The fast path—the request looks up data that exists in the in-memory cache, and
can immediately return a result.

The slow path—the request looks up data that doesn’t exist in the in-memory
cache, and has to go to disk to fetch the data.

By default, if you only instrument your RPC framework, then your instrumentation
will only capture API calls to the storage service. If you were to plot the latency distri‐
bution of the storage service, you’d see a bimodal distribution (see Figure 13-5).

Figure 13-5. The storage service has a bimodal latency distribution.

The goal of Pythia is to automatically identify some internal tracepoints that are
present in one mode, but not in the other. For example, slow requests might invoke a
fetchFromDisk method that is not present in the fast, cached requests. Pythia would
identify and automatically instrument this method. The new output from the system

250 | Chapter 13: Beyond Distributed Tracing

would contain this instrumentation, making it clear to Pythia users why the two
request classes are different.

Design
Pythia primarily operates as a distributed tracing backend. It runs as a constant loop,
with each iteration performing the following steps:

1. Resolve group requests that are expected to perform similarly.
2. Identify groups that exhibit high coefficient of variation in their response time or

other important metric.
3. Search the space of possible instrumentation and identify new instrumentation to

enable.
4. Dynamically update the system’s instrumentation.

In addition to enabling new instrumentation, Pythia also performs a garbage collec‐
tion step of disabling instrumentation that isn’t useful.

Overheads
Pythia introduces a new dimension for managing and evaluating distributed tracing
overheads. Concretely, Pythia can automatically determine when instrumentation is
not useful for explaining performance variations, and disable it. Given some desired
computational overhead, Pythia can either increase trace detail and reduce the sam‐
pling rate, or decrease trace detail and increase the sampling rate. Both of these are
useful for Pythia. Receiving lots of samples quickly is useful for rapidly testing new
instrumentation hypotheses, while having high trace detail makes it easier to rapidly
localize instrumentation.

Comparison to Distributed Tracing
Pythia is built on top of distributed tracing. However, its use case is more narrow,
with a sole focus on explaining performance variations. Unlike distributed tracing,
Census, and Pivot Tracing, Pythia does not rely on end users to manually explore data
and identify problems. Instead, it automates some of this process. For example, while
Pivot Tracing is also suitable for explaining performance variations, each successive
query must be chosen by the user—a time-consuming manual process. By contrast,
Pythia automatically navigates the space of possible instrumentation, leading to much
faster problem resolution. Of the tools we’ve discussed in this chapter, Pythia is the
most recent, and is an ongoing project of the Massachusetts Open Cloud initiative.

Pythia | 251

Summary
When we use distributed tracing, we have to make trade-offs about what to record,
and how often to record it. Distributed tracing is very much “all or nothing”—if a
request is traced, you get a lot of trace detail. However, none of the trade-offs made
by distributed tracing are truly fundamental to profiling, debugging, or monitoring
distributed architectures. Census, Pivot Tracing, and Pythia present several different
approaches to distributed tracing that are also very effective. Each tool has a different
use case, which enables different design choices. Overall, we can observe the
following:

• It’s useful to be able to turn instrumentation on and off dynamically at runtime.
Sometimes instrumentation is useful for human-driven “deep dive” analysis, but
not needed the rest of the time.

• Not all instrumentation is created equal. Some instrumentation, like request
latency, will always be important; the value of other instrumentation might be
difficult to gauge.

• Detailed traces are useful for historical analysis, but for recurring problems, we
can insert new instrumentation and “try again,” rather than go digging through
old traces.

• Tracing doesn’t need to be “all or nothing.” For example, it can be useful to record
a small number of detailed traces and a larger number of simple traces.

• If you’re using data to do aggregate analysis, some of those aggregations can be
performed directly at the data source, rather than by tracing backends. Early
aggregations are far more cost-effective.

• Context propagation adds a new source of overheads.

All of these tools have one thing in common: capturing cross-component causality. In
distributed architectures, getting causality between events is very challenging. All of
these tools use context propagation in one form or another, as the mechanism for
observing and recording cross-component relationships. In the next chapter, we will
dive more deeply into context propagation.

252 | Chapter 13: Beyond Distributed Tracing

1 [Mac18a]

CHAPTER 14

The Future of Context Propagation

In this chapter, we’re going to home in on context propagation, a powerful mecha‐
nism for many different use cases beyond just profiling, debugging, and monitoring.
We’ll refer to this wider class of tools as cross-cutting tools—tools designed for dis‐
tributed architectures. Distributed tracing, Census, Pivot Tracing, and Pythia are all
examples of cross-cutting tools. But, cross-cutting tools don’t need to be about tracing
specifically, nor about recording trace data.

We’ll wrap up by taking a look at the Tracing Plane, a 2018 research project from
Brown University.1

The goal of the Tracing Plane is to abstract and generalize the context propagation
used by cross-cutting tools. In Chapters 4 and 5, we talked about the importance of
abstract instrumentation and interoperability for distributed tracing. Many of these
concerns also apply directly to context propagation too. The Tracing Plane project
identifies some of the design considerations for context propagation, and proposes a
general solution called BaggageContexts. In the future, some of these concepts may
materialize as components of our distributed tracing tools.

Cross-Cutting Tools
The goal of distributed tracing is to correlate and integrate data across different com‐
ponents and machines. Distributed traces are used for offline analysis—to analyze
trace data long after it’s been recorded. Distributed tracing has a distinct division
between the application-side components of the tool, for instrumentation and gener‐
ating traces, and the ex post facto aggregation and trace analysis components.

253

Recently, several academic research projects and industrial prototypes have devel‐
oped a wider variety of cross-component tools, many of them for online tasks. Some
of these tools still focus on profiling, debugging, and monitoring, but a distinct set of
them go a step further and consider enforcement, such as resource management.
Instead of just offline analysis, these tools observe and analyze events while requests
execute, and potentially make immediate decisions about what actions to take.

The Tracing Plane refers to this broader class of tools as cross-cutting tools. Generally
speaking, these are tools that deal with end-to-end requests in distributed architec‐
tures. Distributed tracing is certainly one in this class of tools, but cross-cutting tools
as a whole encompass a broader range of use cases than just recording traces.

Context propagation is a core component of cross-cutting tools. It’s the mechanism
that lets tools combine information across components and machines. Different tools
propagate different contexts—for example, distributed tracing tools propagate Trace‐
IDs, but metrics tools like Census propagate tags, and Retro, a tool that we have yet to
discuss, propagates tenant identifiers. Not all cross-cutting tools use concepts like
spans, which are specific to distributed tracing in particular. Likewise, many cross-
cutting tools don’t collect and store data in backend databases, but instead have con‐
trol loops that interact directly with the system in real time.

Use Cases
Let’s take a look at some example use cases for cross-cutting tools. Some of these are
real tools that exist today in production systems; some are research or industry proto‐
types; others are proposed use cases that have yet to see the light of day. For each tool,
we’ll touch on three pieces:

• What kind of context propagation the tool uses
• How you go about using the tool in your application
• The background or backend components of the tool

Distributed Tracing
Distributed tracing is the core focus of this book, and the most obvious example of a
cross-cutting tool. While there are different implementations out there in the wild,
they all follow roughly the same design: they use context propagation to pass around
TraceIDs; you have to instrument your systems to record and annotate spans, which
under the covers also updates the TraceIDs; and background components buffer and
send recorded data over the network to backend tracing servers, for indexing and
storage.

254 | Chapter 14: The Future of Context Propagation

2 [Mac15]

In Chapter 13, we introduced Pythia, which we can view as an extension of dis‐
tributed tracing. Pythia differs in that as a user, you no longer have to exhaustively
decide the instrumentation of your system. In the background, Pythia will automati‐
cally analyze traces, predict new instrumentation that might be useful, and send
instrumentation commands back to the application.

Cross-Component Metrics
The two main example cross-cutting tools for metrics are Census and Pivot Tracing,
both of which we described in Chapter 13. To summarize:

Census
Propagates tags with requests. To use Census, your instrumentation will either
add tags to the Census context or record a metric. When you record metrics, they
are automatically grouped by tags present in the Census context. Census aggre‐
gates metrics locally in the background; it only periodically reports its aggregates
to the backend servers.

Pivot Tracing
Propagates partial query results with requests, which are typically sets of tuples.
To use Pivot Tracing you enable a dynamic instrumentation agent in your appli‐
cation. In response to user-supplied queries, the Pivot Tracing agent dynamically
inserts the necessary instrumentation, which will add, remove, and transform
tuples from Pivot Tracing’s context. In the background, Pivot Tracing agents
receive queries from users, and report query results back to users.

Cross-Component Resource Management
Resource management is a difficult problem in distributed architectures, especially
ones where you might have multiple users or multiple tenants. An aggressive tenant
might send too many requests, potentially overloading services, to the detriment of all
other users. This is also sometimes called “resource isolation” or “performance isola‐
tion.” In large distributed applications, it’s useful to coordinate the resource manage‐
ment decisions across services.

In a 2015 project, researchers from Brown University described Retro, a prototype
system for end-to-end resource management.2 Retro uses context propagation to help
attribute resource consumption to requests and tenants. To do this, Retro propagates
a tenant ID with every request, to identify the user or task that owns each request. To
use Retro, you add a Retro agent to your applications. Retro’s agent automatically
hooks into system calls to measure CPU cycles, disk accesses, network bytes, and a

Use Cases | 255

3 [Cho16]

few other generic resources. Any time the application tries to use one of these resour‐
ces, Retro will consult the active tenant ID, and attribute the measurement to the
active tenant.

A second step is to identify places in your application where tenants can be rate-
limited. Normally these are places like RPC request queues, where you can impose
fair queuing or rate-limiting logic.

Retro has a backend server that makes resource management decisions. It periodi‐
cally receives resource consumption measurements from all parts of your application,
then decides whether any of the tenants should be rate-limited. Retro sends those
decisions back to the schedulers in the system.

Managing Data Quality Trade-offs
Many modern applications can make data quality trade-offs. A data quality trade-off
is when you decide to reduce the accuracy or quality of a result, in exchange for a
faster response.

A simple example is a distributed search query that fans out to one hundred
machines. Here, you would have a data quality trade-off, with three options:

• Your application could wait for all one hundred machines to return a result,
inheriting the latency of the slowest machine.

• You could choose to use only the results from the first 50 machines to reply.
• You might simply use whichever results you have after some period of time has

elapsed, such as 80 ms.

In large architectures, there might be many services that can make data quality trade-
offs. Each request might hit multiple of these services too. If your goal is to achieve a
desired end-to-end request latency, you’d have to decide how to apportion your
request latency into latency goals for each service. It’s neither easy nor obvious how to
do this.

A 2016 project from Facebook described DQBarge, a prototype system for end-to-
end data quality trade-offs.3 DQBarge is designed to make these data quality trade-off
decisions automatically.

The authors of DQBarge found certain request-level data to be useful for making data
quality trade-offs. DQBarge propagates this information in its context:

256 | Chapter 14: The Future of Context Propagation

4 [Ros18]

• At request ingress, DQBarge predicts which child services will be called and in
which order. DQBarge estimates how much slack time is available at each service.
DQBarge puts this prediction into its context.

• As the request runs, each component measures time actually spent in the compo‐
nent and whatever data quality trade-off was made by the component.

• Each component adds CPU and memory load metrics to the DQBarge context.
• The preceding three are done automatically by DQBarge; in addition, developers

can instrument their services manually to insert key-value tags into the DQBarge
context.

Using this information, DQBarge has machine learning models that run in every ser‐
vice. When a request shows up, data from the DQBarge context is fed into the model
to predict an appropriate data quality trade-off (such as an appropriate timeout).
These models are created during an offline step using prerecorded distributed traces.

Failure Testing of Microservices
LinkedOut is a 2018 project from LinkedIn that focuses on failure-testing of micro‐
services.4 LinkedOut systematically injects faults into services at the level of requests.
Due to the complexity of microservice architectures, LinkedOut needs to be able to
target specific points during request flows to inject faults.

• LinkedOut injects dummy requests alongside production workloads.
• LinkedOut propagates fault instructions with each dummy request. A fault

instruction is either an error, a delay, or a timeout. Fault instructions can also
include filters specifying where and when faults should occur.

• At each service, LinkedOut inspects the request’s metadata, checks the filters on
the fault instructions, and possibly executes a fault instruction. LinkedOut only
performs a fault injection action if the filters match.

• The LinkedOut backend runs fault injection experiments by propagating various
fault instructions with dummy requests, and asserting that the system behaves in
the correct way when the actions are triggered.

Use Cases | 257

5 [Lof17]
6 [Bas19]

Enforcing Cross-System Consistency
Independent evolution is one of the key benefits of microservice architectures: you
develop, deploy, and scale each service independently. As your system grows in scale,
you need to start thinking about things like replication and consistency. Fortunately,
these are well-studied topics and a fundamental part of distributed systems. Micro‐
services usually make use of eventual consistency, where updates made on one replica
will eventually make their way to all other replicas (but not usually immediately).
Cross-system consistency becomes a problem when we wire up multiple microservi‐
ces that use eventual consistency.

Consider the following: when a user composes a social media post, the post content is
stored in a posts database, then a notification is generated for the user’s followers, and
stored in a notifications database. Clearly, followers shouldn’t actually receive the
notification until the post is available to be read from the posts database. However,
the posts and notifications databases are separate services that can be replicated at
different speeds. It’s entirely possible for the follower to be notified of a post that
doesn’t exist yet in the local replica.

Cross-system consistency problems happen because microservice architectures rap‐
idly grow and evolve in features. Microservices aren’t usually designed at the begin‐
ning with replication and consistency in mind; instead, they come about later on
when the service needs to scale.

Researchers at INESC TEC in Portugal proposed a tool to address this problem.5 In
the preceding example, the tool would prevent a notification from being delivered to
a follower until the post had been replicated. To do this, each time a request writes to
an eventually consistent service, the tool generates and propagates a causal timestamp
with the request. Using causal timestamps, components can infer any preconditions
that must be met before the request may proceed. In the background, components
maintain and increment causal timestamps as they execute operations.

Request Duplication
One popular technique to reduce tail latency is request duplication—that is, sending
multiple copies of a request to different worker nodes. It’s difficult to do this in large
distributed architectures without blowing up your system with extra requests,
because each child service could potentially add further duplication. Researchers at
Tufts University have proposed propagating metadata about request duplication
choices alongside requests, and having a global external control loop that tweaks
when and where duplication decisions should happen.6

258 | Chapter 14: The Future of Context Propagation

7 [Zva19]

Record Lineage in Stream Processing Systems
In stream processing systems like Spark Streaming or Kafka Streams, the concept of a
request is less well defined than in RPC architectures. We might, for example, be
interested in the end-to-end flow of a record through the system; however, intermedi‐
ate processing stages might combine multiple input records into a single output
record. Distributed tracing would be capable of capturing this by simply combining
the input traces with the output traces; however, when sampling comes into play, it
would require every input record to have been sampled. Researchers from the Hun‐
garian Academy of Sciences proposed a hybrid approach, whereby instead of sending
trace data to the tracing backends, the trace data is instead written directly to the
trace context and propagated with the request (or in this case, record).7 This leads
very quickly to large contexts as the execution progresses; future work will need to
address this.

Auditing Security Policies
Security challenges are exacerbated in microservice architectures because of the
increased decentralization. Even the original Dapper paper mentions distributed tra‐
cing’s useful applications to computer security. The authors used Dapper to verify
that services were adhering to authentication and encryption policies, by augmenting
traces with security protocol parameters. More generally, distributed tracing is an
appealing way to audit security policies. Incorrect authentication repeatedly makes
the Open Web Application Security Project’s top 10 most critical security risks; in
microservice architectures it occurs because policies aren’t asserted at the time that
privileged actions are executed. Distributed tracing would be a mechanism for audit‐
ing security policy enforcement; taken a step further, context propagation would be a
good way to enforce security policies at runtime.

Testing in Production
Integration testing is a big challenge for distributed architectures, because it’s so diffi‐
cult to replicate production environments and workloads in an offline setting. Testing
in production is one way to get around this, but has the added danger of colocating
test traffic with real traffic. Context propagation is a simple way of propagating addi‐
tional metadata with requests, to communicate testing objectives to downstream
services. In general, the baggage mechanism of distributed tracing is already an effec‐
tive way of tagging requests for the benefit of downstream services.

Use Cases | 259

Common Themes
Cross-cutting tools all use context propagation, and there are a few common themes:

Contexts are dynamic
The cross-cutting tools often read and update the context as requests progress.

Response propagation
Sometimes, information from downstream services is propagated back to the
caller, requiring contexts to be passed back to callers in RPC responses.

Variable context size
Distributed tracing usually has fixed-size contexts, since only TraceIDs and flags
need to be propagated (excluding baggage). Most cross-cutting tools have vari‐
able sized contexts.

Small context size
Although contexts are variable in size, most cross-cutting tools factor context size
into their design. In particular they aim to minimize context size, since the larger
the context, the bigger the runtime cost to propagate it. If the context gets too
large, it will introduce unacceptable overheads. For example, Census has hard-
coded limits on the size of the tags it’s willing to propagate, and drops tags above
that limit.

Need for instrumentation
No matter which cross-cutting tool you wish to deploy, you have to go and
instrument your entire architecture with context propagation. Chapter 2 outlined
how enormous this effort can be.

Should You Care?
For some of the use cases we’ve described, the tools haven’t yet made it beyond alpha-
stage prototypes, so you might wonder why this information is relevant. Beyond giv‐
ing a glimpse of the tools we might have in the future, a more concrete goal is to
emphasize reusability of the distributed tracing components we have today.

Reusable, interoperable instrumentation is one of the biggest challenges for dis‐
tributed tracing, and this challenge also extends to cross-cutting tools. Cross-cutting
tools all propagate contexts, and they all need instrumentation for propagating con‐
texts. They all follow requests, and the instrumentation needed for propagating con‐
texts always happens in the same places for every tool. Do you really want to re-
instrument your applications again in the future if you want to deploy any of these
tools?

In the past couple of years, this observation led to the inclusion of general-purpose
baggage in the OpenTracing spec, and most distributed tracing frameworks today let

260 | Chapter 14: The Future of Context Propagation

8 [Mac18a]

you propagate arbitrary key-value pairs with requests. This is suitable for several of
the use cases mentioned earlier, including metrics, testing in production, and simple
resource management. However, baggage is currently underspecified, primarily
because it’s hard for us to anticipate future use cases.

The final research project we’ll talk about is an effort to do just this. Called the Trac‐
ing Plane, the project focuses specifically on factoring out context propagation as a
general-purpose, reusable component for cross-cutting tools. The project shines a
light on some of the subtle challenges to getting this right, and proposes one possible
implementation.

The Tracing Plane
The Tracing Plane is a 2018 research project from Brown University, follow-up on
work from their earlier Pivot Tracing project.8

The idea behind the Tracing Plane is that context propagation is so useful that it
should be factored out as a separate component, one that can be reused simultane‐
ously by different cross-cutting tools. The authors proposed an abstraction layering
for context propagation, much like OpenTracing is an abstraction layer for dis‐
tributed tracing.

Figure 14-1 illustrates how distributed tracing would interact with the Tracing Plane.
Rather than context propagation being an internal component of distributed tracing,
tightly integrated with the concept of TraceIDs and spans, it would instead be a
general-purpose component to which distributed tracing is but one client.

Figure 14-1. The Tracing Plane proposes factoring context propagation as a standalone
component.

The Tracing Plane | 261

It’s important that context propagation can be shared by multiple tools, because the
effort required to add context propagation instrumentation is so high. All cross-
cutting tools need instrumentation to propagate contexts alongside requests. This
instrumentation is the same, regardless of the cross-cutting tool being deployed. If
instrumentation can be reused, you only have to instrument your systems once,
rather than every time you want to deploy one of these new tools.

Is Baggage Enough?
Distributed tracing already has a notion of baggage, described in Chapter 2 as an
array of key-value pairs. Any component can add new key-value pairs to a request’s
baggage; later components can query values from baggage too. This has already
enabled a few interesting use cases. For example, discussions on the Jaeger message
board have included proposals for security auditing, traffic labeling, and testing use
cases similar to those described earlier.

Unfortunately, this simple definition falls flat whenever we have multiparent causality.
Multiparent causality occurs in two main ways (see Figures 15-2 and 15-3).

Figure 14-2. Multiparent causality needs to be able to merge contexts.

Multiple parent spans
This is when some span of execution is causally dependent on multiple parent or
sibling spans completing. When this happens, the contexts from both parents or
siblings need to be passed to the new span, and somehow combined together.

262 | Chapter 14: The Future of Context Propagation

Figure 14-3. Response propagation needs to be able to merge contexts.

Response propagation
Not all distributed tracing implementations need or use response propagation,
but many do. In general, it’s reasonable that a cross-cutting tool might modify its
context, and pass the modified context back to the parent. When this happens,
the parent needs to merge the response context back with its original context.
Remember, the parent might have also continued to do work in the meantime, so
the parent might also have modified its own context.

Put simply, you need to be able to merge two contexts into one. Merging happens
anywhere two concurrent branches of a request join. Merging is fundamental to con‐
current programs, and distributed architectures are fundamentally concurrent.

Let’s return for a moment to the key-value baggage used in distributed tracing. Sup‐
pose service B inserted priority:low into the baggage, and service C inserted prior
ity:high. What should you do? The two baggages now have two different values for
the same key. Since keys can only have one value, you’ll need to pick one. Today this
happens in a crude way: usually one is selected randomly. Alternatively you could go
to your code and add more instrumentation to resolve this conflict manually. Neither
choice is appealing, and distributed tracing users have bumped into this problem
already. The typical message board response is that distributed tracing won’t help; you
must make the decision yourself.

In simple systems, it might be acceptable for you to manually add instrumentation to
resolve these merge conflicts. But in large architectures, this might be too much effort
—there might be too many places where merge conflicts can happen, and you might
not even be aware of them all. It’s difficult to even know ahead of time all of the serv‐
ices that might have your application as a dependency.

The Tracing Plane | 263

Beyond Key-Value Pairs
We saw how different cross-cutting tools propagate different kinds of data, and that
data might also have different merge semantics. For example, when merging
priority:low with priority:high, you might want to just keep the highest priority
level, in this case keep priority:high.

Other kinds of data have other merge semantics. For example, Census treats its tags
like a set. If this was implemented as keys and values, the ideal result of merging
tags:A with tags:B might be the set union tags:A,B. A more elaborate example is a
counter. A simple tool that counts RPC invocations might want to add values: merg‐
ing count:5 with count:2 should produce count:7.

Unfortunately, there is no one correct way of merging contexts. It’s up to the cross-
cutting tool to decide how this should happen. Fortunately, it’s usually quite easy to
write concisely what data gets propagated and how it should get merged.

The Tracing Plane introduced a language for this called BDL, or, Baggage Definition
Language. For the preceding priority example, we would write:

bag PriorityExampleTool {
 int32 Priority = 0;
}

This definition is stating that the PriorityExampleTool wants to propagate a field
called “Priority” of type int32. By default in BDL, merging two int32 fields will keep
the larger one.

At this stage, our goal by showing you BDL is to be illustrative rather than exhaustive;
for now, it suffices to know that definitions in BDL look and behave a lot like Google’s
Protocol Buffers (a popular interchange format for structured data).

Let’s look at another example:

bag Census {
 set<string> Tags = 0;
}

This definition defines Census as propagating a field called Tags that is a set of
strings. By default in BDL, merging two sets will perform a set union.

As we have mentioned, BDL looks and behaves a lot like Google’s Protocol Buffers. It
has the typical built-in primitive types that you would expect, along with some special
built-in types: sets, maps, flags, and counters. All types in BDL have explicit merge
semantics (such as set union for sets). BDL supports nested definitions and has many
of the useful properties offered by other interchange formats, such as support for
unknown fields when mixing multiple different versions of a bag definition.

264 | Chapter 14: The Future of Context Propagation

Compiling BDL
BDL is all well and good for declaring data used by cross-cutting tools, but we haven’t
said yet what it actually compiles to, or how it’s used. The Tracing Plane project also
defines an underlying serialization format for BDL called BaggageContext. This is
similar to how Protocol Buffers has a well-defined underlying serialization format.

From a BDL definition, a command-line compiler will generate source files that you
can include in your projects. For example in Java, compiling the Census declaration
would produce a source file Census.java, as shown in Example 14-1.

Example 14-1. Command-line compiler

public interface Census {

 public Set<String> getTags();
 public void setTags(Set<String> tags);

 public byte[] writeTo(byte[] baggageContext);
 public static Census readFrom(byte[] baggageContext);

}

The compiled code defines an interface and an implementation (not shown) repre‐
senting the Census bag. The code includes methods to get and set values for Tags
and methods to serialize and deserialize the data. Notice that baggageContext is
simply a byte array. To use the compiled code is straightforward (see Example 14-2).

Example 14-2. Using the compiled code

public class Example {

 public static void main(String[] args) {
 byte[] emptyBaggageContext = new byte[0];

 Census census = Census.readFrom(emptyBaggageContext);

 Set<String> tags = new HashSet<String>();
 tags.add("API-A");
 census.setTags(tags);

 byte[] baggageContextWithTag = census.writeTo(emptyBaggageContext);
 }
}

Initially our baggageContext contains nothing; this is equivalent to an empty
array.

The Tracing Plane | 265

Using readFrom we can extract a Census bag from the empty baggageContext.
Since the baggageContext is empty, the Census bag will contain no tags.

We create a tag “API-A” and add it to the Census bag.

We use writeTo to inject the Census bag into baggageContext. We receive back a
nonempty baggageContext that contains the serialized Census bag.

All of these operations are designed to be quite computationally efficient.

BaggageContext
In the preceding example, baggageContext represented the generic, serialized form
of a bag. You can think of BaggageContext as being like our opaque trace contexts in
distributed tracing. BaggageContext needs to be passed around with requests,
included in RPC headers, and so on. As in the preceding example, distributed tracing
would use BaggageContext to store its TraceIDs; then anywhere you create spans, you
would read and write tracing data directly to and from the BaggageContext.

Merging
BaggageContext provides one additional extremely useful property: it can be merged.
The BaggageContext format is carefully designed such that two serialized instances
can be merged together easily and efficiently, without needing to either deserialize the
objects or even understand the datatypes contained within. The BaggageContext
library has the core interface shown in the following example:

public class BaggageContext {

 public byte[] merge(byte[] baggageContextA, byte[] baggageContextB);

 public byte[] trim(byte[] baggageContext, int size);

}

We won’t get into the details of the implementation here, but at the heart of the Bag‐
gageContext is a simple byte-wise comparison scheme. The merge API combines two
BaggageContext instances at the byte level, without actually interpreting the values.
Duplicating an instance is easy—it can simply be copied.

Overheads
In addition to merging, the BaggageContext library provides a trim API call. This is
used for managing overheads. The idea behind trim is to limit the size of the Bagga‐
geContext being propagated. For example, a service might only be willing to

266 | Chapter 14: The Future of Context Propagation

propagate 1000 bytes; using trim, the service can enforce this limit. This is a lot like
how Census operates today, by discarding tags above a given size threshold.

Like merge, trim correctly discards data at the byte level, without interpreting the val‐
ues in the BaggageContext. Trimming has two nice properties. First, when data is dis‐
carded, the trim operation adds a small (1-byte) marker to the BaggageContext to
indicate that a trim occurred. This can be used by cross-cutting tools later, as a hint
that some data was being propagated but at some point had to be thrown away. Sec‐
ond, trim discards data based on an implicit priority ordering that is baked into the
serialization format.

Summary
BaggageContext and BDL may come across as a heavyweight way of doing context
propagation—after all, simple key-value pairs seem so much nicer! However, BDL
used many of the lessons offered by existing approaches to data serialization, specifi‐
cally Protocol Buffers. As a result, the serialized overhead of BaggageContext is mini‐
mal, but we get all sorts of nice properties that are difficult or impossible to achieve
with key-value pairs:

• All BaggageContext data has explicit merge semantics, making it clear how to
resolve merge conflicts.

• Merge conflicts are resolved automatically, correctly, and without the need for
custom instrumentation.

• Services can propagate BaggageContext instances without needing to be able to
interpret them, as BaggageContexts are just bytes.

• Services only interpret BaggageContext instances when they actually use or
manipulate the data contained within.

• BaggageContext instances can be resized without needing to interpret them.
• Cross-cutting tools can update their bag definitions, and use multiple versions

concurrently, with correct conflict resolution.
• When you instrument your system, all you need to do is propagate BaggageCon‐

texts. The only API you need to use is the merge and trim API. You don’t need to
know anything about the tools that might later use the BaggageContext.

• You don’t need to revisit your instrumentation to deploy new cross-cutting tools.

In the future, a more principled approach to context propagation is quite likely.
Whether the approach we described here is the one that gets used is anybody’s guess.
Certainly, future context propagation needs to solve the problem of key-conflicts, and
BaggageContext provides an elegant solution to this.

Summary | 267

As we said back in Chapter 10, distributed tracing is young, and it’s still evolving. The
tools we use in the future might not be the same as the tools we use today. The lessons
we’ve learned with projects like OpenTracing and OpenTelemetry are ones we can
apply to other areas that are less mature, such as context propagation. For now,
knowing this might not change the way you choose to use distributed tracing. But we
hope we’ve helped to broaden your perspective on what future tracing tools might do.

268 | Chapter 14: The Future of Context Propagation

APPENDIX A

The State of Distributed Tracing Circa 2020

One of the biggest challenges in writing this book has been figuring out what merits
inclusion. We’ve attempted to provide a broad, and somewhat timeless, overview of
the fundamental concepts and techniques underpinning the technology as it exists
today. For everything we touched on, however, there’s more that we left out. This
appendix will attempt to give you a snapshot of popular tools for distributed tracing,
both open source and commercial, that you might find useful.

Open Source Tracers and Trace Analysis
These are some popular open source tracers and trace analyzers:

Zipkin
One of the most mature open source tracing tools available today. We discuss it
in more depth in “Zipkin” on page 54. It provides, in addition to a trace analyzer,
a number of instrumentation libraries for popular frameworks such as ASP.NET
Core, a variety of Java frameworks (such as Jersey, JAXRS2, Apache HttpClient,
and Spring Cloud), and more.

Jaeger
A newer open source tracing tool and a Cloud Native Computing Foundation
(CNCF) project. The more lightweight nature of Jaeger has made it extremely
popular for cloud-native developers, and it is the default trace analyzer for the
popular service mesh Istio. Jaeger also fully supports the OpenTracing API, mak‐
ing it compatible with hundreds of integrations into existing frameworks and
libraries.

SkyWalking
An Apache Foundation project that has found a great deal of popularity in China.
Its goal is to be an all-in-one application performance management tool. It

269

https://zipkin.io
https://www.jaegertracing.io
https://skywalking.apache.org

supports not just distributed traces but also metrics, and can ingest data from a
variety of tracing formats.

Haystack
A distributed tracing analysis system built by Expedia. It supports OpenTracing,
allowing you to make use of hundreds of existing integrations. It supports trace
analysis and allows you to create custom alerts based on performance data.

Pinpoint
An APM tool that supports monitoring of Java- and PHP-based distributed sys‐
tems. One unique characteristic of Pinpoint is that it exclusively instruments
your code through agents and plug-ins, which means you can’t do explicit instru‐
mentation of your source code and are required to run the agent.

Appdash
An application tracing system for Go that is based on Google’s Dapper. It’s pri‐
marily intended for instrumenting Go-based applications, but offers support for
the OpenTracing API and has clients in Python and Ruby as well.

In general, Jaeger and Zipkin are the two most popular and mature open source trac‐
ing tools. They have large user and contributor communities, and offer a fairly
straightforward setup and installation process.

At the time of this writing, OpenTelemetry is still in alpha, but by the time this book
is printed it’s anticipated to be in beta or moving toward a 1.0 release. One of the
design goals of OpenTelemetry, in addition to providing a standard API and SDK for
instrumentation, is to provide high-quality automatic instrumentation for popular
frameworks and libraries both through wrappers around that code and also through
agents. We anticipate that this movement toward instrumentation as a focus of the
open source world will lead to distributed tracing being a built-in feature of RPC
frameworks, libraries, and other software products.

Commercial Tracers and Trace Analyzers
There’s a huge variety of commercial performance monitoring and distributed tracing
vendors. In an effort to be impartial, we’ll simply list the most notable ones here. In
general, these are all SaaS products that do the heavy lifting in terms of storing, ana‐
lyzing, indexing, and alerting based on your trace data. Some of them offer propriet‐
ary agents and other tools to ease instrumentation. Many, if not most, support open
source instrumentation standards such as OpenTracing, OpenCensus, and
OpenTelemetry:

• AppDynamics
• Datadog

270 | Appendix A: The State of Distributed Tracing Circa 2020

https://expediadotcom.github.io/haystack
https://naver.github.io/pinpoint
https://github.com/sourcegraph/appdash
https://www.appdynamics.com
https://www.datadog.com

• Dynatrace
• Elastic
• Epsagon
• Honeycomb
• Instana
• Lightstep
• New Relic
• Splunk
• Wavefront

Language-Specific Tracing Features
Not every language is created equal when it comes to distributed tracing. Some lan‐
guages offer tools, features, and projects that you may wish to employ in instrument‐
ing your code. We’ll look at a few of them here.

Java and C#
As two of the most common languages in use around the world, it’s no surprise that
Java and C# have wide support for distributed tracing. A variety of proprietary and
open source agents and automatic instrumentation plug-ins exist for most popular
service and RPC frameworks, including:

• Spring
• Akka
• JAX-RS
• JDBI
• JDBC
• Apache HttpClient
• Netty
• OkHTTP
• Java Flight Recorder (JFR)
• Web Servlet Filter
• gRPC

C# also supports a wide variety of instrumentation plug-ins, such as:

The State of Distributed Tracing Circa 2020 | 271

https://www.dynatrace.com
https://www.elastic.co
https://www.epsagon.com
https://www.honeycomb.io
https://www.instana.com
https://www.lightstep.com
https://www.newrelic.com
https://www.splunk.com
https://www.wavefront.com

• ASP.NET MVC
• ASP.NET WebAPI
• ASP.NET Core MVC
• Entity Framework Core
• gRPC

In addition, both of these languages feature a variety of automatic instrumentation
tools that operate on the bytecode of compiled software, such as the Java Special
Agent or C#’s Fody plug-in. It’s also possible to use a variety of aspect-oriented pro‐
gramming frameworks (such as C#’s PostSharp) to write tracing plug-ins that allow
you to easily decorate method declarations in order to trace them.

Go, Rust, and C++
Go, Rust, C++, and C are somewhat more challenging to instrument because they
lack some of the niceties available to us in managed runtimes like the JVM or CLR.
However, their popularity as microservice languages means that there are a great
many instrumentation tools available for them.

Go supports automatic instrumentation primarily by wrapping existing libraries with
tracing code. Generally, you use these by modifying your import path to point to a
traced version of the library, but there are other implementations that provide func‐
tion wrappers—such as the ones used earlier in this text, in the MicroCalc example
code.

Rust supports tracing as a first-class citizen through its tracing crate (package, in
Rust parlance), which was formerly known as tokio-trace. This crate provides an
interface to popular OSS tracing APIs such as OpenTracing and OpenTelemetry. This
package is becoming widely supported throughout the Rust ecosystem, and provides
helpful methods for tracing at the local function level in addition to distributed
requests.

C++ is supported by the OpenTracing API, as well as OpenTelemetry. There’s little in
the way of automatic instrumentation or tracing agents for C++, but tracers exist for
most commercial and OSS tracing systems that support C++ as it is part of service
mesh tracing (through its integration into tools like Envoy and Nginx).

Python, JavaScript, and Other Dynamic Languages
Dynamic languages tend to have excellent support for distributed tracing instrumen‐
tation, through either plug-ins or agents. We’ll focus just on JavaScript and Python,
but much of this is generally applicable to other similar languages (for example, most

272 | Appendix A: The State of Distributed Tracing Circa 2020

of what we write about JavaScript applies to TypeScript and other languages that run
on V8 or other JS runtimes).

JavaScript instrumentation can be thought of in two major groups—browser- and
Node.JS-based. Browser instrumentation is primarily interested in instrumenting
HTTP libraries, such as the XMLHttpRequest or fetch libraries. These plug-ins tend
to be fairly straightforward, just importing the libraries and going from there. Since
JavaScript makes it easy to add hooks to existing functions, quite a bit of browser
instrumentation falls into this category. There are also packages, like OpenCensus
Web, which hook into the underlying browser API to trace page load timings and
user interactions in the browser.

For Node.JS, instrumentation plug-ins and middleware exist for many popular and
widely used libraries and frameworks, such as the following:

• Express
• Connect
• gRPC
• Restify
• Native modules (dns, http, net, etc.)
• MySQL and MySQL2
• pg (Postgres)
• Redis
• MongoDB

This isn’t an exhaustive list, but it’s representative of the breadth of integrations
available.

Python, similarly, allows for dynamic instrumentation by simply importing a tracing
library into your application code, as method signatures can be intercepted and
rewritten by imported code. Some of the frameworks and libraries that are instru‐
mented for Python are:

• Django
• Flask
• Tornado
• Cassandra
• Memcached
• MongoDB
• MySQL

The State of Distributed Tracing Circa 2020 | 273

• Postgres
• Redis
• gRPC
• Requests
• gevent

The best way to discover these and other integrations for your language is to browse
the various tracing registries available at OpenTracing and OpenTelemetry, as they
tend to be somewhat exhaustive.

274 | Appendix A: The State of Distributed Tracing Circa 2020

https://opentracing.io/registry
https://opentelemetry.io/registry

APPENDIX B

Context Propagation in OpenTelemetry

In Chapter 14 we discussed context propagation as it applies not only to distributed
tracing, but also to other applications in microservice architectures. As of this writ‐
ing, OpenTelemetry has adopted a proposal to separate its context mechanism and
model from the distributed tracing and metric models to support a wider variety of
use cases. As the exact translation of this proposal into specification has not occurred
at this point, we’ll describe the overarching goals of this context propagation model,
how it factors into the overall OpenTelemetry project, and its intended use.

Why a Separate Context Model?
Earlier in the book we discussed the advantages of context propagation as a mecha‐
nism that applies to use cases beyond simply profiling and monitoring microservice
architectures, also known as cross-cutting tools. Today, the practical realities of how
developers build software has meant that these cross-cutting tools are often tightly
coupled to some other particular component or dependency in their software. An
example of this is in OpenTracing—the ability to propagate key-value pairs through
trace context baggage is quite useful for passing messages around an application for
telemetry purposes (for example, using data carried in the baggage from an upstream
service to isolate a particular event or metric later in the request), but we have also
seen usages of it where developers use it as an out-of-band message channel to send
commands or control flow indicators to later services in a request. Another example,
outside of an existing telemetry tool, would be gRPC’s context class, which is com‐
monly used as a way to propagate security principles and credentials across API
boundaries.

OpenTelemetry’s context model primarily seeks to address two main concerns—
extensibility of the context propagation mechanism, and a cleaner separation of con‐
cerns between observability and context propagation. Extensibility is fairly

275

straightforward as a design goal. A clean separation between the context propagation
mechanism and the observability components allows for end users to consume and
utilize just the context propagation mechanism if they wish, without requiring them
to depend on the observability tool for nonobservability concerns. This makes it eas‐
ier for developers to build new applications built on context propagation, such as A/B
testing, lower-level request routing, and authentication/authorization schemes. In
addition to these extensibility goals, separation of concerns in OpenTelemetry itself is
a critical goal. By moving context propagation into its own, self-contained compo‐
nent, it becomes easier to understand and reason about without having to understand
all of the observability APIs. Furthermore, it allows for the context propagation
mechanism to have multiple self-contained types of propagation—for example, you
may want to sample your trace context and throw away certain traces, but if you’re
passing security data through the propagation mechanism, you’d never want that to
be discarded.

The OpenTelemetry Context Model
OpenTelemetry’s context propagation model defines a “top level” set of cross-cutting
concerns which integrate with the business and application logic of a service, and a
“bottom level” context propagation layer that can store and manage state across the
life span of a request in a distributed system, as illustrated in Figure B-1.

Figure B-1. Overview of the context propagation system.

The top level includes functions such as distributed tracing, metrics, and correlations
along with other nonobservability functions. These observability APIs are discussed
more generally in “OpenTelemetry” on page 34, however, the correlations function is
not. Correlations are a feature of OpenTelemetry that allows you to propagate index
values throughout a request to assist in correlating observability events that occur in
one service with some piece of data provided by an upstream service in order to

276 | Appendix B: Context Propagation in OpenTelemetry

establish a causal link between them. As a simple example, you could link the version
of some upstream component or dependency (like an OS or browser version) with a
particular failure in a downstream component or service. The API for correlations is
based on the W3C CorrelationContext specification, which we’ll take a look at in
more detail now.

W3C CorrelationContext and the Correlations API
Much like the W3C Trace-Context specification’s goal of ensuring a standard format
for the propagation of trace context, correlation context ensures a standard format for
passing user-defined correlation data through a request. The CorrelationContext
header(s) in a request are limited to 180 key-value pairs, with a maximum size of
4,096 bytes for a single pair, and a total length of 8,192 bytes for all pairs in a single
header.

Here, we show example headers, and keys and values are URL-encoded:

// A single correlation context header
Correlation-Context: userID=janeDoe,isTrialUser=false,token=entropy9

// Multiple headers are allowed
Correlation-Context: userID=janeDoe
Correlation-Context: isTrialUser=false,token=entropy9

At the time of this writing, the W3C standard is a public working draft, and is not
finalized, so these details may change in the future.

OpenTelemetry seeks to adopt an API that allows for observability components (trac‐
ing, metrics, etc.) to interact with the correlation context through a simple set of set‐
ters and getters. The proposed methods are as follows:

GetCorrelation(context, key) -> value

Returns a value from a given key in the correlation context

SetCorrelation(context, key, value) -> context

Returns a context with the given key-value pair

RemoveCorrelation(context, key) -> context

Returns a context with the given key removed

ClearCorrelations(context) -> context

Returns a context with correlations removed (used if crossing a trust boundary)

GetCorrelationPropagator() -> (HTTP_Extractor, HTTP_Injector)

Returns an implementation of the injector and extractor methods needed to
deserialize a correlation context from an upstream process or serialize them for
propagation to a downstream process.

Context Propagation in OpenTelemetry | 277

https://oreil.ly/9Ycf3

Distributed and Local Context
Outside the general scope of correlation context, OpenTelemetry itself needs to inter‐
act with the underlying context API. Broadly, these interactions can be thought of as
interacting with a distributed, or a local, context. Distributed context we’ve already
discussed; it’s how you propagate data across API boundaries. Local context interacts
with this in two ways. The first is to allow in-process access to the distributed context,
and either access or modify it as required by the service. The other is to hold values
that are intended to scope a single request inside of a single process, shared by its
threads or subprocesses. The intention of the local context API is not only to encap‐
sulate the correlation context, but also to act as a wrapper for local resources (such as
process-wide attributes) that would be applied to telemetry sources within the con‐
text’s scope. This local context should be managed either by passing an explicit con‐
text object from function to function, or automatically by registering it in thread-
local storage (or language equivalent).

Examples and Potential Applications
The specifics of the context propagation mechanism in OpenTelemetry have yet to be
fully implemented (but should be by the time you read this), but we would be remiss
to not at least demonstrate some of the functionality that it should enable in
pseudocode.

Our example posits a simple routing scenario, where two versions of a client service
exist. In this scenario, you might wish to have different backend services handle
requests differently from each client version, and capture some performance data on
the response times of each request. To put it in more concrete terms, consider a mes‐
saging application where you are adding new features, but wish to ensure that users of
all client versions can continue to communicate. You would need to either force client
updates for your end users so that they are all using the same version of the back-end
service or create logic in your back-end service that could handle multiple different
client versions at the same time. Both of these have drawbacks—end users may not
wish to update, and the complexity of adding handlers for each client version in a sin‐
gle backend may balloon the complexity and maintainability cost of the code. Using
context, however, you could easily route requests to the appropriate service based on
some value in the correlation-context header. An example of this in pseudo-code can
be seen in the following example:

func init() {
 baggageExtractor, baggageInjector = Correlations.HTTPPropagator()
 traceExtractor, traceInjector = Tracer.W3CPropagator()

 Propagation.SetExtractors(baggageExtractor, traceExtractor)
 Propagation.SetInjectors(baggageInjector, traceInjector)
}

278 | Appendix B: Context Propagation in OpenTelemetry

func main() {
 init()
 // Define handlers, process context, etc.
 router.Handle("/api/chat", handleRequest(context, this.request))
}

func handleRequest(context, request) -> (context) {
 extractors = Propagation.GetExtractors()
 context = Propagation.Extract(context, extractors, request.Headers)

 context = Tracer.StartSpan(context, ...)

 clientVersion = Correlations.GetCorrelation(context, "clientVersion")

 switch (clientVersion) {
 case "1.0":
 result, context = fetchDataFromServiceB(context)
 case "2.0":
 result, context = fetchDataFromServiceC(context)
 }

 context = request.Response(context, result)
 Tracer.EndSpan(context)
 return context
}

func fetchDataFromServiceB(context) -> (context, data) {
 req = MakeRequest(...)

 injectors = Propagation.GetInjectors()
 req.Headers = Propagation.Inject(context, injectors, req.Headers)

 data = req.Do()
 return data
}

Note that baggage and Trace Context are propagated separately to avoid correla‐
tions being sampled out.

Extractors and injectors are set globally, so that we’re able to properly inject and
extract all headers from our outgoing and incoming requests.

The extract function will run all registered extractors, so both our trace context
and our correlation context are present in the local context.

This span will be the child of whatever span was extracted from our incoming
request, and the new span will be in the resulting context.

Context Propagation in OpenTelemetry | 279

Keys need to be known by the receiving service in order to inspect them; there’s
no way to enumerate all of the keys in a correlation context.

Create a new outgoing HTTP request to our new service. We don’t describe
fetchDataFromServiceC here, but it would be similar.

This injects both the correlation context and the trace context into the outgoing
request.

Notice that the inject and extract functions in the preceding example don’t specifically
reference a tracer or any other OpenTelemetry component at all; this is a by-product
of the separation of concerns between observability and context. You should also
notice that many of the functions are returning a context object rather than manipu‐
lating the state of an existing one. Context objects are intended to be immutable, so
you’ll need to be sure that you’re passing the correct context into function calls or
assigning it to thread-local storage, as appropriate.

Keep in mind that the preceding example is intended not to be exhaustive; it’s more of
an idea of how you could use these distributed and local contexts for purposes other
than simply propagating trace context. The majority of this work should be handled
for you, behind the scenes, by the OpenTelemetry SDK and various helper libraries.
We have included it in this text to ensure that you’re aware of it, though, and to get
you thinking about the possibilities of the correlation context as a more general way
to pass data across API boundaries in a standards-compliant way. It’s possible that in
the future, this context layer may migrate to a completely separate project, independ‐
ent of OpenTelemetry as a way for multiple open source projects to benefit from it
and standardize on a single distributed context layer.

You can read more about the OpenTelemetry context layer at OpenTelemetry’s Git‐
Hub repository.

280 | Appendix B: Context Propagation in OpenTelemetry

https://oreil.ly/GqfRV
https://oreil.ly/GqfRV

Bibliography

[Abr13] Abraham, Lior, John Allen, Oleksandr Barykin, Vinayak Borkar, Bhuwan
Chopra, Ciprian Gerea, Daniel Merl, Josh Metzler, David Reiss, Subbu Subrama‐
nian, Janet L. Wiener, and Okay Zed. 2013. “Scuba: Diving into Data at Facebook.”
Facebook paper. https://research.fb.com/wp-content/uploads/2016/11/scuba-diving-
into-data-at-facebook.pdf.

[Agu03] Aguilera, Marcos K., Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds,
and Athicha Muthitacharoen. 2003. “Performance Debugging for Distributed Sys‐
tems of Black Boxes.” ACM SIGOPS Operating Systems Review 37(5): 74-89. https://
pdos.csail.mit.edu/~athicha/papers/blackboxes:sosp03.pdf.

[Aka17] Akamai. 2017. “Akamai Online Retail Performance Report: Milliseconds Are
Critical.” Press release. April 19, 2017. https://www.akamai.com/uk/en/about/news/
press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-
report.jsp.

[Ate19] Ates, Emre, Lily Sturmann, Mert Toslali, Orran Krieger, Richard Megginson,
Ayse K. Coskun, and Raja R. Sambasivan. 2019. “An Automated, Cross-Layer
Instrumentation Framework for Diagnosing Performance Problems in Distributed
Applications.” SoCC ’19: Proceedings of the ACM Symposium on Cloud Computing
(November 2019): 165–70. https://doi.org/10.1145/3357223.3362704.

[Bar04] Barham, Paul, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004.
“Using Magpie for Request Extraction and Workload Modelling.” Proceedings of
the 1st ACM SIGOPS European Workshop, Leuven, Belgium, September 19-22,
2004.

[Bas19] Bashir, Hafiz Mohsin, Abdullah Bin Faisal, Muhammad Asim Jamshed, Peter
Vondras, Ali Musa Iftikhar, Ihsan Ayyub Qazi, and Fahad R. Dogar. 2019. “Reduc‐
ing Tail Latency via Safe and Simple Duplication.” Presented at CoNext 2019: 15th
International Conference on Emerging Networking Experiments and Technolo‐
gies, Orlando, FL, December 9-12. https://arxiv.org/pdf/1905.13352.pdf.

281

https://research.fb.com/wp-content/uploads/2016/11/scuba-diving-into-data-at-facebook.pdf
https://research.fb.com/wp-content/uploads/2016/11/scuba-diving-into-data-at-facebook.pdf
https://pdos.csail.mit.edu/~athicha/papers/blackboxes:sosp03.pdf
https://pdos.csail.mit.edu/~athicha/papers/blackboxes:sosp03.pdf
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://doi.org/10.1145/3357223.3362704
https://arxiv.org/pdf/1905.13352.pdf

[Bey16] Beyer, Betsy, Chris Jones, Jennifer Petoff, and Niall Richard Murphy, eds.
2016. Site Reliability Engineering: How Google Runs Production Systems. Sebastopol,
CA: O’Reilly.

[Che02] Chen, Mike Y., Emre Kıcıman, Eugene Fratkin, Armando Fox, and Eric
Brewer. 2002. “Pinpoint: Problem Determination in Large, Dynamic Internet Serv‐
ices.” Proceedings of the 2002 International Conference on Dependable Systems and
Networks: 595-604. http://roc.cs.berkeley.edu/papers/roc-pinpoint-ipds.pdf.

[Cho14] Chow, Michael, David Meisner, Jason Flinn, Daniel Peek, and Thomas F.
Wenisch. 2014. “The Mystery Machine: End-to-End Performance Analysis of
Large-Scale Internet Services.” Presented at 11th USENIX Symposium on Operat‐
ing Systems Design and Implementation, Broomfield, CO, October 2014. https://
www.usenix.org/system/files/conference/osdi14/osdi14-paper-chow.pdf.

[Cho16] Chow, Michael, Kaushik Veeraraghavan, Michael J. Cafarella, and Jason
Flinn. 2016. “DQBarge: Improving Data-quality Trade-offs in Large-Scale Internet
Services.” Presented at 12th USENIX Symposium on Operating Systems Design
and Implementation, Savannah, GA, November 2016. https://www.usenix.org/
system/files/conference/osdi16/osdi16-chow.pdf.

[Dan15] Dang, Huynh Tu, Daniele Sciascia, Marco Canini, Fernando Pedone, Robert
Soulé. 2015. “NetPaxos: Consensus at Network Speed.” SOSR ’15: Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking Research (June
2015) 5: 1-7. https://doi.org/10.1145/2774993.2774999.

[Erl11] Erlingsson, Úlfar, Marcus Peinado, Simon Peter, and Mihai Budiu. “Fay:
Extensible Distributed Tracing from Kernels to Clusters.” SOSP ’11: Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles (October
2011): 311-26. https://doi.org/10.1145/2043556.2043585.

[Fon07] Fonseca, Rodrigo, George Porter, Randy H. Katz, Scott Shenker, and Ion Sto‐
ica. 2007. “X-Trace: A Pervasive Network Tracing Framework.” Proceedings of the
4th USENIX Symposium on Networked Systems Design & Implementation. https://
people.eecs.berkeley.edu/~istoica/papers/2007/xtr-nsdi07.pdf.

[Fow14] Fowler, Martin. 2014. “Microservice Prerequisites.” MartinFowler.com.
August 28, 2014. https://martinfowler.com/bliki/MicroservicePrerequisites.html.

[Kal17] Kaldor, Jonathan, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor Kuro‐
patwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi,
Vinod Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. 2017. “Canopy:
An End-to-End Performance Tracing and Analysis System.” SOSP ’17: Proceedings
of the 26th Symposium on Operating Systems Principles, October 2017. https://
doi.org/10.1145/3132747.3132749.

[Lin06] Linden, Greg. “Marissa Mayer at Web 2.0.” Geeking with Greg, November 9,
2006. http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html.

[Lof17] Loff, João, Daniel Porto, Carlos Baquero, João Garcia, Nuno Preguiça, and
Rodrigo Rodrigues. 2017. “Transparent Cross-System Consistency.” PaPoC ’17:

282 | Bibliography

http://roc.cs.berkeley.edu/papers/roc-pinpoint-ipds.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-chow.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-chow.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-chow.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-chow.pdf
https://doi.org/10.1145/2774993.2774999
https://doi.org/10.1145/2043556.2043585
https://people.eecs.berkeley.edu/~istoica/papers/2007/xtr-nsdi07.pdf
https://people.eecs.berkeley.edu/~istoica/papers/2007/xtr-nsdi07.pdf
https://martinfowler.com/bliki/MicroservicePrerequisites.html
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/3132747.3132749
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

Proceedings of the 3rd International Workshop on Principles and Practice of Consis‐
tency for Distributed Data, April, 2017. https://doi.org/10.1145/3064889.3064898.

[Mac15] Mace, Jonathan, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi.
2015. “Retro: Targeted Resource Management in Multi-Tenant Distributed Sys‐
tems.” Presented at USENIX Symposium on Networked Systems Design and
Implementation, Oakland, CA, May 2015. https://www.usenix.org/system/files/
conference/nsdi15/nsdi15-paper-mace.pdf

[Mac18a] Mace, Jonathan, and Rodrigo Fonseca. 2018. “Universal Context Propaga‐
tion for Distributed System Instrumentation.” EuroSys ’18: Proceedings of the Thir‐
teenth EuroSys Conference (April 2018): 1–18. https://doi.org/
10.1145/3190508.3190526.

[Mac18b] Mace, Jonathan, Ryan Roelke, and Rodrigo Fonseca. 2018. “Pivot Tracing:
Dynamic Causal Monitoring for Distributed Systems.” ACM Transactions on Com‐
puter Systems 35(4): 1-28, October 2015. https://www2.cs.uic.edu/~brents/cs494-
cdcs/papers/pivot-tracing.pdf.

[May10] Mayer, Marissa. 2010. “Google Speed Research.” Filmed at Web 2.0, San
Francisco, CA, April 2010. https://www.youtube.com/watch?v=BQwAKsFmK_8.

[Med17] Meder, Sam, Vadim Antonov, and Jeff Chang. 2017. “Driving User Growth
with Performance Improvements.” Medium. March 3, 2017. https://medium.com/
pinterest-engineering/driving-user-growth-with-performance-improvements-
cfc50dafadd7.

[Mic13] Mickens, James. 2013. “The Night Watch.” Login: Logout. November 2013.
https://www.usenix.org/system/files/1311_05-08_mickens.pdf.

[Mil17] Mills, David L. 2017. Computer Network Time Synchronization: The Network
Time Protocol on Earth and in Space, 2nd ed. Boca Raton, FL: CRC Press.

[Ros18] Rosen, Logan. 2018 “LinkedOut: A Request-Level Failure Injection Frame‐
work.” LinkedIn Engineering Blog, May, 2018. https://engineering.linkedin.com/blog/
2018/05/linkedout--a-request-level-failure-injection-framework.

[Sam16] Sambasivan, Raja R., Ilari Shafer, Jonathan Mace, Benjamin H. Sigelman,
Rodrigo Fonseca, and Gregory R. Ganger. 2016. “Principled Workflow-Centric
Tracing of Distributed Systems.” SoCC ’16: Proceedings of the Seventh ACM Sympo‐
sium on Cloud Computing, October 2016. http://dx.doi.org/
10.1145/2987550.2987568.

[Sig16] Sigelman, Ben. 2016. “Towards Turnkey Distributed Tracing.” Medium. June
15, 2016. https://medium.com/opentracing/towards-turnkey-distributed-
tracing-5f4297d1736.

[Sig19] Sigelman, Ben. 2019. “How ‘Deep Systems’ Broke Observability…And What
We Can Do About It.” Filmed October 16, 2019, Systems @Scale 2019, San Jose,
CA. https://atscaleconference.com/videos/systems-scale-2019-how-deep-systems-
broke-observability-and-what-we-can-do-about-it.

[Sig10] Sigelman, Benjamin H., Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. “Dapper,

Bibliography | 283

https://doi.org/10.1145/3064889.3064898
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-mace.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-mace.pdf
https://doi.org/10.1145/3190508.3190526
https://doi.org/10.1145/3190508.3190526
https://www2.cs.uic.edu/~brents/cs494-cdcs/papers/pivot-tracing.pdf
https://www2.cs.uic.edu/~brents/cs494-cdcs/papers/pivot-tracing.pdf
https://www.youtube.com/watch?v=BQwAKsFmK_8
https://medium.com/pinterest-engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
https://medium.com/pinterest-engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
https://medium.com/pinterest-engineering/driving-user-growth-with-performance-improvements-cfc50dafadd7
https://www.usenix.org/system/files/1311_05-08_mickens.pdf
https://engineering.linkedin.com/blog/2018/05/linkedout--a-request-level-failure-injection-framework
https://engineering.linkedin.com/blog/2018/05/linkedout--a-request-level-failure-injection-framework
http://dx.doi.org/10.1145/2987550.2987568
http://dx.doi.org/10.1145/2987550.2987568
https://medium.com/opentracing/towards-turnkey-distributed-tracing-5f4297d1736
https://medium.com/opentracing/towards-turnkey-distributed-tracing-5f4297d1736
https://atscaleconference.com/videos/systems-scale-2019-how-deep-systems-broke-observability-and-what-we-can-do-about-it
https://atscaleconference.com/videos/systems-scale-2019-how-deep-systems-broke-observability-and-what-we-can-do-about-it

a Large-Scale Distributed Systems Tracing Infrastructure.” Google paper. https://
research.google/pubs/pub36356.

[Sou09] Souders, Steve. 2009. “Velocity and the Bottom Line.” O’Reilly Radar, July 1,
2009. http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html.

[Sta19] Stack Overflow. 2019. “Developer Survey Results 2019.” https://insights.stacko
verflow.com/survey/2019.

[Wu19] Wu, Yang, Ang Chen, and Linh Thi Xuan Phan. 2019. “Zeno: Diagnosing
Performance Problems with Temporal Provenance.” Facebook paper presented at
16th USENIX Symposium on Networked Systems Design and Implementation,
Boston, February 2019. https://www.cs.rice.edu/~angchen/papers/nsdi-2019.pdf.

[Zva19] Zvara, Zoltán, Péter G.N. Szabó, Barnabás Balázs, and András Benczúr. 2019.
“Optimizing Distributed Data Stream Processing by Tracing.” Future Generation
Computer Systems 90: 578-91. https://www.sciencedirect.com/science/article/abs/pii/
S0167739X17325141.

284 | Bibliography

https://research.google/pubs/pub36356
https://research.google/pubs/pub36356
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.cs.rice.edu/~angchen/papers/nsdi-2019.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0167739X17325141
https://www.sciencedirect.com/science/article/abs/pii/S0167739X17325141

Index

A
abstract instrumentation, 32
active span, 21
agent-based instrumentation

about, 15
deployment of tracing, 106
library-based versus, 15
monolithic server tracing, 26
portability of open source, 59
tracer architecture, 104

aggregate analysis
about, 195
automated root cause analysis, 198
Canopy, 219
critical path aggregate analysis, 171
errors seen via traces, 171
Kolmogorov-Smirnov statistic, 194
performance changes, 197
sampling and, 214
traces, 171, 209

(see also trace aggregations)
traces organized, 212

aggregate traces (see trace aggregations)
aggregation of data (see data aggregation)
agnostic nature of distributed tracing, 6

abstract instrumentation, 33
importance of, 201
service mesh transport layers, 75
spans agnostic, 224

AllReduce communication in ML, 231
Amazon Web Services (AWS)

tracing header, 32, 53
X-Ray distributed tracing, 53

analyzing data (see data analysis)

anomalous metrics via trace aggregations, 210
API services

API gateway tracing, 101
best practices custom instrumentation, 70
best practices example framework, 65
distributed tracing challenge, 242, 247
endpoint and trace aggregations, 211
HTTP API idioms used in book, 19
Jaeger sampling API for OpenTracing, 47
OpenCensus, 48
OpenTelemetry, 35, 39, 41
OpenTracing, 44, 47
RESTful API, 19
Web APIs for frontend tracing, 28

AppDash, 270
application performance management (APM)

tools, 140
application programming interface (see API

services)
application versus system instrumentation, 13
attributes of spans (see tags)
attribution for code from book, xxii
automated alerts, data presented, 185
automated data analysis

deviation from normal, 193
fully automated, 176

B
B3 context headers, 45, 54
backend services

client app tracing challenges, 227
clock skew, 110
data outside your control, 110
malicious users, 112

285

baggage
about, 46
Baggage Definition Language, 264
BaggageContext, 253, 266
general-purpose, 260
merging two contexts into one, 263, 266
multiparent causality, 262
OpenTracing APIs, 46
OpenTracing span context, 20, 46, 275
Pivot Tracing dynamic context, 248

Baggage Definition Language (BDL), 264
BaggageContext, 253, 266
trim API call, 266

Barroso, Luiz, x
baseline performance, defining, 180

(see also improving baseline performance;
restoring baseline performance)

basic design example, 61
batch operation link objects, 39
batching RPCs, 226

machine learning inference, 231
best practices

beginning at nodes and edges, 71, 87
custom instrumentation, 70
example microservice, 62
first step in instrumenting, 63, 66, 71
framework instrumentation, 72
how much instrumentation, 95
instrumentation checklist, 93
logging, 81
making the case for instrumentation, 91
OpenTelemetry HTTP instrumentation, 66,

69
performance considerations, 82, 95
plug-ins for existing frameworks, 78
privacy laws and regulations, 82
request detail increased, 78
RPC instrumentation, 66, 69
safety valves, 84
service graph, 76
service mesh instrumentation, 75
span context as critical, 74
spans, 79
sustainable instrumentation growth, 97
tags, 80
testing with traces, 89, 259
trace-driven development, 85
tracer creation, 63, 69
verbosity of traces, 87

beyond distributed tracing
about, 237, 252
challenges of distributed tracing, 238
completeness versus cost, 240
OpenCensus, 241
Pivot Tracing, 240, 246
Pythia, 240, 249

beyond spans
about, 225
batching RPCs, 226
causality, 234
client app tracing challenges, 227
distributed dataflow, 229
inter-request dependencies, 227
low-level performance, 231
machine learning systems, 230
new abstractions, 232
publish-subscribe systems, 228
span benefits, 223
span benefits not enough, 225
streaming systems challenges, 230
tree of spans abstraction, 223, 226

biased sampling
improving performance, 165
restoring performance, 187

bin size in multimodal analysis, 170
black box instrumentation, 9

migration strategy via, 57
monolithic server tracing, 26
service mesh instrumentation as, 76

breaking change deployment, 186
browser tracing, 120, 273

(see also web clients)
Burrows, Mike, x

C
C/C#/C++ tracing features, 271

user-managed process context object, 23
Canopy (Facebook), 219, 241
cardinality

cost of metrics and, 142, 175
definition, 5
observability immunity to, 141
observability tools, 150
sampling high-cardinality sets, 131
tags, 80, 175

carriers in OpenTracing, 45
case study of trace aggregations (Canopy), 219
causal relationships, 162

286 | Index

causality in debugging, 234
correlation analysis, 173, 196

Census (see OpenCensus)
centralized storage of tracings (see data storage)
chaos engineering, 189
checklists

instrumentation checklist, 93
observability three pillars, 145
observability tool scorecard, 148
for organizational buy-in, 98

client-server applications
abstract instrumentation necessity, 32
as distributed, xiv

clock skew in frontend telemetry, 110
Cloud Native Computing Foundation (CNCF),

269
code from book

attribution for, xxii
download site, xxi
permission to use, xxi

coefficient of correlation, 174
coherent sampling, 240
collectors

about, 107
aggregation by, 108
deployment, 108
sampling spans, 108
tracer architecture, 104
translation by, 107

communication, service incidents, 180, 182
tracing as communication tool, 185

compression of span data, 121
consistency across system, 258
container orchestration

abstract instrumentation, 33
deployment of tracing and, 103

containerization
about, xiv
limited use of, 5
migration strategy for, 57

context (see trace context)
context propagation, 16

beyond distributed tracing, 238
cross-cutting tools, 254, 260, 275
cross-cutting tools sharing, 261
cross-system consistency, 258
data quality trade-offs, 256
failure testing of microservices, 257
framework instrumentation, 72

history of distributed tracing, 206
merging two contexts into one, 263, 266
multiparent causality, 262
observability tools, 151
OpenCensus, 48, 244
OpenTelemetry API, 37
OpenTelemetry example, 278
OpenTelemetry model, 276
OpenTelemetry model separation, 275
OpenTracing, 45
propagator stack, 55, 96
request duplication, 258
Retro resource management, 255
security audits via traces, 259
span context as critical, 74
standard headers and formats, 20, 24, 55, 95,

277
testing in production, 259
Tracing Plane focus on, 253, 261

control plane of distributed dataflow, 230
conventions used in book, xxi
correlation analysis

coefficient of correlation, 174
improving performance, 173
restoring performance, 196
sample sets via multimodal analysis, 175

cost of tracing
application throughput, 120
cardinality and, 142, 175
completeness versus cost, 240
Dapper latency and throughput metrics, 121
Dapper network and storage costs, 123
data volume reduction, 132
infrastructure costs, 121
latency economic impact, 154
log costs, 143
mobile clients powering down, 120
network costs, 122, 123
observability solution cost, 141
real-time analysis requirements, 190
request latency, 118, 154
sampling, 124, 143
storage costs, 123

counters, 137
OpenCensus per-tag counters, 244

critical path, 160
aggregate critical path analysis, 171
deviation from normal, 197
longest spans optimized, 163

Index | 287

span absolute durations, 172
cross-cutting tools

about, 253, 260, 275
context propagation as core component, 254
cross-system consistency, 258
data quality trade-offs, 256
failure testing of microservices, 257
merging two contexts into one, 263, 266
resource management, 255
streaming systems, 259
use cases, 254, 260

cumulative distribution function (CDF), 194
cyclical references, 89

D
Dapper

BigTable, 140
causal relationships in span trees, 162
distributed tracing, x, 139
history of, x, 207
indexing traces, 168
latency and throughput metrics, 121
network and storage costs, 123
request-centric, 92
sampling, usefulness of, 241
security audits via traces, 259
up-front sampling, 126
Zipkin implementing, 54

data aggregation
aggregate analysis of traces, 171
aggregate user behavior, 192
cardinality and, 141
challenge of distributed tracing, 2
collectors for, 108
counters, 137
gauges, 137
metrics, 136, 143
organizing trace aggregations, 212
span data overview, xix
span names, 80
trace description, xviii

data analysis
aggregate analysis of traces, 171
challenge of distributed tracing, 2
delivering value, 4
deployment, 108
deviation from normal, 193
frontend traces, 28
fully automated, 176

heterogeneous data, 221
histograms (see histograms)
indexing traces, 167
Kibana, 139
multimodal analysis, 169, 175
open source trace analyzers, 269
sampling strategies and, 126
searching traces, 167
statistics (see statistics)
structured logs for, 82
tracer architecture, 105

data collection
APM tools for tracing, 140
challenge of distributed tracing, 1, 238
data outside your control, 110
data volume reduction, 132
managed service telemetry, 114
out-of-band data collection, 206
privacy (see privacy laws)

data generation
challenge of distributed tracing, 1, 238
instrumentation for, 4

(see also instrumentation)
data prevenance, 230
data quality trade-offs, 256
data storage

BigTable of Dapper, 140
Canopy, 220
challenge of distributed tracing, 238
cost of, 123
Dapper sampling, 121, 123
data volume reduction, 132
deployment, 108
embeddings in machine learning, 231
infrastructure costs, 122, 123
real-time analysis requirements, 190

debouncing spans, 29
debugging as granular windows, 59
decentralization

distributed software challenge, xvii
distributed tracing clarifying, xix

deep systems
about, xv
distributed tracing managing, xviii, 2

denial of service attacks, 112
deployment of distributed tracing

agent-based instrumentation, 106
API gateways, 101
beginning with users, 100

288 | Index

collectors, 108
data analysis, 108
delivering value, 4
incremental, 109
information required for, 4
infrastructure leverage, 102
instrumentation, 4, 24
library deployment, 105
load balancers, 101
open source implementations, 109
orchestration tools and, 103
organizational adoption, 100
repeatability in organization, 103
sidecar proxies, 106
standardization incorporated, 104
tracer architecture, 104

directed acyclic graphs (DAGs), 89
distributed applications

about, xiii
abstract instrumentation, 33
as deep system, 2
benefits of, xv
challenges of, xv
cost of tracing (see cost of tracing)
data quality trade-offs, 256
as deep system, xv
inputs defined by RPCs, 11
machine learning

tracing tools, 230
observability tool scorecard, 148
production costs, 153
proprietary tracing failure, 32
remote direct memory access, 232
request duplication, 258
resource management, 255
RPC position in software stack, 224
service graph, 76
testing with traces, 89, 259
trace-driven development, 85
tracing-friendly architectures, 23
tree of spans abstraction, 224, 226

distributed dataflow, 229
Distributed Diagnostic Context, 58
distributed request tracing, xiii

(see also distributed tracing)
distributed tracing

about, xviii, 144, 237, 253
agnostic nature of, 6, 33, 75, 201, 224
APM tools for, 140

beginning at nodes and edges, 71, 87
benefits of, 6, 17, 91
challenges of, 1, 109, 139, 238

(see also beyond distributed tracing)
context (see trace context)
cost of (see cost of tracing)
as cross-cutting tool, 253, 254
Dapper project, x, 139
deep systems management, xviii, 2
definition, xiii
examples of, xix
future of, 208
history of, ix, 202, 203
making the case for, 91
monolithic server tracing, 25
as observability pipe, 144
as observability tool, 135, 139, 143
open source boilerplates, 59, 69
organizational buy-in, 91, 97
other kinds of tracing, 120
performance considerations, 82, 95
power of, 196
request-centric style, 92
safety valves, 84
service graph, 76
span independence, 17
spans becoming awkward, 225
tracer architecture, 104
tracing-friendly architectures, 23
web and mobile clients, 27

Docker, xiv
documentation

automated alerts, 186
log correlation ID, 139, 144
metric labels, 137
of performance incident, 182
postmortems for incidents, 185
README attributes, 24
searching traces, 167
span tags, 175
trace context, 20
tracing dependencies, 55
version attributes, 37, 94, 188

download site for book code, xxi
DQBarge (Facebook), 256
dynamic instrumentation

Fay, 233
Pivot Tracing, 246
Pythia, 249, 250

Index | 289

Python, 273
dynamic languages tracing support, 272

E
economic impact of latency, 154
egress

definition, 24
frontend service tracing, 28
monolithic servers, 26
tracing importance, 24

Elasticsearch, 139
ELK (Elasticsearch, Logstash, and Kibana)

stacks, 139
embeddings in machine learning, 231
environment variable for verbosity, 87
Envoy

C++ support, 272
context headers, 45
tracer support, 101

errors seen via traces
aggregate analysis, 171
correlation analysis, 173
error rates reported by and outside of ser‐

vice, 181
sources of, 183

ETL (extract-transform-load) tools, 131
European Union General Data Protection Reg‐

ulation (GDPR), 29
events

about, xix
AddEvents API of OpenTelemetry, 41
best practices custom instrumentation, 70
Event Tracing for Windows, 205
latency of request, 118
low-level events, 231
parent ID in X-Trace, 206
privacy laws and regulations, 82
spans replacing, 207
time events field of OpenCensus, 50

eventual consistency, 258
examples

best practices instrumentation, 61
latency correlation analysis, 174, 196
OpenCensus, 51, 242
OpenTelemetry, 41
OpenTelemetry context propagation, 278
OpenTracing, 46
Pivot Tracing, 247
Pythia, 249

exporters
best practices example HTTP instrument,

67
OpenCensus, 48
OpenTelemetry, 35, 43
portability of open source instrumentation,

59
service testing with traces, 90

extract operations
about, 19
OpenTracing baggage, 46
OpenTracing span context from carrier, 45
standardizing, 20

extract-transform-load (ETL) tools, 131

F
Facebook

Canopy, 219, 241
DQBarge, 256
The Mystery Machine, 205, 235
Scuba, 145

failure state
breaking change deployment, 186
chaos engineering, 189
correlation analysis of failed requests, 173
microservice failure testing, 257
organizational buy-in of tracing, 98
portion of user requests that fail, 155
tracing safety valve, 84

Fay system, 233
focus loss, 29
Fowler, Martin, 5
framework instrumentation, 26

beginning instrumentation at edges, 71
best practices, 72
challenges of, 74
context propagation, 72
deployment leveraging framework, 102
extent of instrumentation, 94
importance of, 201
instrumentation libraries, 73
request detail increased, 78
span context, 74

frontend services
abstract instrumentation necessity, 32
client app tracing challenges, 227
data outside your control, 110
distributed tracing, 27
malicious users, 112

290 | Index

fully automated data analysis, 176
future of distributed tracing, 208

future tool re-instrumentation, 260

G
gauges, 137
General Data Protection Regulation (GDPR),

29
gentrified applications, 21
Go tracing features, 272

context object, 74
HTTP framework, 65, 69
logs in Go, 138
runtime URL, 62
user-managed process context object, 23
verbose traces, 87

Google
AdWords, ix
Census project (see OpenCensus)
Dapper project (see Dapper)
Protocol Buffers, 264

graph store, 212, 213
gRPC

context class for security, 275
Google Census, 48

H
Hadoop, 229
Haystack (Expedia), 270
head-based sampling, 126
header formats

Amazon Web Services, 32, 53
B3 context headers, 45, 54
Envoy, 45
Jaeger, 45
Microsoft IIS, 32
OpenTracing, 45
standardization by OpenTelemetry, 277
standardization in history, 206
standardization of, 20, 55, 95
W3C, 69

heterogeneous data, 221
high-percentile latency, 155
histograms

cumulative distribution function versus, 194
gauge values, 137
historical data, 192, 193
improving baseline performance, 158
modality, 169

multimodal, 169
multimodal analysis bin size, 170
observability tools, 149

historical data
aggregate analysis, 195
visualization, 191
visualization limitations, 193

history of distributed systems, 202
context propagation standard, 206
Dapper, 207
distributed tracing, ix, 202, 203
Magpie, 204
microservices, 202
The Mystery Machine, 205
Pinpoint, 204, 205
request-response systems, 202, 223
spans, 207, 223
telemetry data, ix
X-Trace, 206, 207

HTTP
best practices example framework, 65
best practices instrumentation, 66, 69
book use of, 19
framework instrumentation, 72
JavaScript instrumentation, 273
load balancer tracing, 101
trace performance considerations, 82
trace verbosity, 88

I
improving baseline performance

about, 145, 153
aggregate analysis of traces, 171
approaches to, 163-176
biased sampling, 165
correlation analysis, 173
critical path, 160
fully automated analysis, 176
histograms, 158, 170
individual traces optimized, 163
measuring performance, 154
multimodal analysis, 169, 175
as observability goal, 145
percentiles, 156
span tags, 175
trace search queries, 168
trace searches, 167

in-process libraries in tracer architecture, 104,
105

Index | 291

incident response, 179
alert data presented, 185
alert routing, 186
communication during, 180, 182, 185
distributed tracing for, 199
incident hand-off, 184
postmortems, 184

inconsistency
distributed software challenge, xvii
distributed tracing mitigating, xix

indexing traces, 167
indirect dependencies, 235
infrastructure costs, 122

application production costs, 153
Dapper sampling, 121
data volume reduction, 132
ETL tools for tracing, 132
network costs, 122
sampling to reduce, 124, 143, 240

(see also sampling)
storage costs, 123
throughput and tracing, 120

ingress
definition, 24
monolithic servers, 26
tracing importance, 24

inject operations
about, 19
OpenTracing baggage, 46
OpenTracing span context, 45
standardizing, 20

instrumentation
about, 4
abstract instrumentation, 32
agents versus libraries, 15

(see also agent-based instrumentation)
application versus system, 13
best practices

checklist of important items, 93
custom instrumentation, 70
example microservice, 62
first step, 63, 66, 71
framework instrumentation, 72
how much, 95
open source instrumentation, 66, 69
performance considerations, 82, 95
plug-ins for existing frameworks, 78
service meshes, 75
sustainable growth, 97

black box versus white box, 9
challenges of distributed tracing, 238
code that cannot be changed, 75
definition, 9
deployment, 4, 24
don’t do these things, 24
dynamic instrumentation, 233, 246-249,

250, 273
example basic design, 61
framework instrumentation, 72
frontend services, 28
future tool re-instrumentation, 260
JavaScript, 273
layer of abstraction of, 26
libraries versus agents, 15

(see also library-based instrumentation)
making the case for, 91
monolithic server tracing, 26
open source benefits, 33, 57

(see also open source instrumentation)
open source for popular frameworks, 26
performance considerations, 82, 95
plan for, 91, 103
proprietary instrumentation challenges, 31
service meshes, 75
standard, OpenTelemetry as, 43
trouble spots, 24
white box as tracing-friendly, 23
white box versus black box, 12

inter-request dependencies, 227
machine learning inference, 231

interoperability
open source instrumentation, 58
OpenTelemetry components, 35
tracing systems, 55

interprocess context propagation, 18
intraprocess context propagation, 20

monolithic contexts, 26
Istio, 75

J
Jaeger

context headers, 45
distributed tracing, 140, 269
as open source, 140, 269
OpenTracing Tracer implementation, 47
sampling API for OpenTracing, 47

Java
Java tracing features, 271

292 | Index

Special Agent, 106, 107, 272
Spring Framework instrumentation, 26
user-managed process context object, 23

JavaScript tracing support, 272

K
kernel tracing, 120
Kibana, 139
Kolmogorov-Smirnov (K-S) statistic, 194
Kubernetes

DaemonSet, 106
deployment of tracing and, 103
Pod and tracing, 106

L
language-specific tracing features, 271
latency

aggregate analysis, 197
automated analysis of distribution, 193
correlation analysis examples, 174, 196
in cost of tracing, 118
critical path, 160
data quality trade-offs, 256
distributions not normal, 157, 166, 169
economic value of lower latency, 154
fully automated analysis, 176
high-percentile latency, 155, 166, 211
histograms, 158
improvement approaches, 163-176
measuring performance, 154
median latency improvement, 154
network congestion and trace aggregations,

211
restoring performance after incident (see

restoring baseline performance)
traffic rate growing, 191

library-based instrumentation
about, 15
agent-based versus, 15
deploying new libraries, 105
difficulty of writing, 34
extent of instrumentation, 94
framework instrumentation best practices,

73
general-purpose library benefits, 34
OpenTelemetry API, 37
propagator stack, 55
RPC library instrumentation, 24
for sustainable instrumentation growth, 97

tracer architecture, 104, 105
tracing-friendly architectures, 23
version attributes, 37

link objects, 39
LinkedOut (LinkedIn), 257
Linkerd, 101
load balancer tracing, 101
logs

best practices, 81
challenges of, 139
correlation ID, 139, 144
deleting logging statements, 59
distributed tracing versus, 5
ELK stacks, 139
events, xix

(see also events)
Go, 138
latency of request, 118
levels or severity, 138
monolithic server tracing, 25
as observability pipe, 144
as observability tool, 135, 138, 143
observability tool fatal flaws, 143
open source instrumentation versus, 58
OpenTracing complex object logging, 46
privacy laws and regulations, 29, 82
searching, 143, 190
verbosity, 87

Logstash, 139

M
Mace, Jonathan, 219
machine learning (ML)

AllReduce communication, 231
DQBarge, 257
embeddings, 231
inference, 231
steps not requests, 230
tracing tools, 230

Magpie, 204
maintainability of distributed software, xv
malicious users and frontend services, 112
managed service telemetry, 114
manual instrumentation

example basic design, 61
request detail increased, 78
root span propagation, 78

mean time to innocence (MTTI), 183
mean time to recovery (see MTTR)

Index | 293

measuring performance, 154
merging two contexts into one, 263

Baggage Definition Language, 266
merge semantics, 264

metadata (see tags)
metrics

aggregation of, 136, 143
application versus system, 13
associating with traces, 233
cardinality, 5, 142
challenges of, 138
counters, 137
definition, 136
distributed tracing versus, 5
gauges, 137
history, ix
labels, 137
latency (see latency)
low-level performance, 231
as observability pipe, 144
as observability tool, 136, 142

(see also observability)
observability tool fatal flaws, 142
OpenCensus associating with traces, 233,

244
microservices

about, xiv
abstract instrumentation, 33
availability, 181
best practices example microservice, 62
considerations for adopting, 4
cross-system consistency, 258
distributed dataflow lacking tracing, 229
distributed tracing relationship to, 5
gentrified applications, 21
history of, 202
independence of services, xi, 18, 258
interprocess context propagation, 18
intraprocess context propagation, 20
publish-subscribe systems, 228
security audits via traces, 259
service graph, 76
spans for all, 25
testing with traces, 89, 259
tracing-friendly architectures, 23

Microsoft IIS (Internet Information Services),
32

migration strategies, 57
interoperability avoiding, 58

ML (see machine learning)
mobile clients

client app tracing challenges, 227
data outside your control, 110
distributed tracing, 27
powering down and span buffering, 120

modality in histograms, 169
monitoring

application versus system, 13
challenges of, xvi
distributed tracing overview, 5
observability, 135
trace-driven development, 85

monolithic applications, xiv
gentrified applications, 21
improving baseline performance, 146
tracing in, 25

MTTR (mean time to recovery)
distributed tracing to reduce, 92
service graph improving, 76

multimodal analysis, 169
bin size, 170
correlation analysis sample sets via, 175

multiparent causality, 262
The Mystery Machine (Facebook), 205, 235

N
namespacing, 37
network boundary tracing, 24
network congestion and trace aggregations, 211
network costs, 122

Dapper, 123
sampling decisions and, 125

Network Time Protocol for clock skew, 111
network types, 3G versus 4G, 169
NGINX

C++ support, 272
tracer support, 101

NoOp (no operation), 29, 35
normal performance defined, 191

aggregations of traces, 210
Kolmogorov-Smirnov statistic, 194

O
obfuscation

distributed software challenge, xvii
distributed tracing mitigating, xix

observability
about, 135

294 | Index

design goals, 141
distributed tracing, 135, 139, 144
ELK stacks, 139
goals of, 145
horizons, 150
logs, 135, 138, 144
machine learning outside of, 230
metrics, 136, 142, 144
OpenTelemetry context model, 275-277
performance impact on users, 146
real-time response, 189
statistical fidelity of tools, 149
three pillars, 135, 145
three pillars, fatal flaws, 142
three pipes, 144
tool scorecard, 148, 199

open source instrumentation
abstract instrumentation, 32
benefits of, 33, 57, 109
as boilerplates, 59, 69
community of open source, 59
Dapper-style tracing, 54
extent of instrumentation, 94
general-purpose instrumentation library

benefits, 34
interoperability, 35, 58
Jaeger as, 140, 269
managed service telemetry and, 115
migration strategies, 57
plug-ins registry, 78
portability, 58
proprietary instrumentation challenges, 31,

57
span name required, 79

open source tracers and trace analyzers, 269
Open Web Application Security Project, 259
OpenCensus

about, 48, 241, 255
APIs, 48
associating metrics with traces, 233, 244
challenges, 244
context propagation, 244
as cross-cutting tool, 253-255
distributed tracing comparison, 245
example, 51, 242
exporters, 48
gRPC, 48
in-process context propagation, 49
migration strategies, 57

new wave tracing paradigm, 233, 244
as OpenTelemetry metrics, 233, 238, 241
plug-ins registry URL, 78
tags, 244, 260
Web, 273

OpenTelemetry, 34
API component, 35, 39, 272, 277
as instrumentation standard, 53
associating metrics with traces, 233
backward-compatibility with OpenTracing,

58
best practices HTTP instrument, 66, 69
best practices trace handler, 69
best practices tracer creation, 63, 69
collectors, 107
components of, 35
context model, 276, 280
context model separation, 275
context propagation example, 278
current status, 35, 270
distributed and local context, 278
example, 41
exporters, 35, 43
history, 35, 43
instrumentation plug-in, 58, 63, 270
migration strategies, 57
named tracers, 37
new wave tracing paradigm, 233
observability, 275, 277
OpenCensus as metrics of, 233, 238, 241
plug-ins registry URL, 58, 78
portability of, 59
SDK component, 35
semantic attributes, 24, 78
span context, 37
as standard for instrumentation, 43
standard format for context propagation,

277
Tracer, 37
vendor neutral, 58

OpenTracing, 43
as abstraction layer, 261
API, 44, 47, 272
carriers, 45
complex object logging, 46
context header data formats, 45
example, 46
framework instrumentation libraries, 73
general-purpose baggage, 260

Index | 295

HTTP headers, 74
inter-request dependencies, 227
interoperability of, 58
migration strategies, 57
multi-parent spans, 233
OpenTelemetry backward-compatible with,

58, 241
plug-ins registry URL, 58, 78
propagator stack, 55
span context, 19, 46, 275

OpenZipkin, 140, 269
multi-parent spans, 233

operation name, 79
orchestration tools and deployment, 103
organizational buy-in, 91, 97

challenges of distributed tracing, 109
deployment, 100, 103

organizing trace aggregation data, 212
out-of-band data collection, 206
outlier challenges, 243

OpenCensus handling, 244
O’Reilly Media online, xxii

P
past performance (see historical data)
percentiles, 156

caution on computing with, 158
performance considerations

APM tools for tracing, 140
application throughput, 120
browser tracing, 120
chaos engineering, 189
critical path, 160
Dapper latency and throughput metrics, 121
data quality trade-offs, 256
defining baseline, 180

(see also improving baseline perfor‐
mance; restoring baseline perfor‐
mance)

defining normal, 191
of distributed tracing, 82, 120
fully automated analysis, 176
how much instrumentation, 95
improvement approaches, 163-176
kernel tracing, 120
latency economic impact, 154
low-level performance, 231
making the case for instrumentation, 91
measuring performance, 154

percentiles, 156
portion of user requests that fail, 155
prioritization of problems, 151, 199
request latency, 118
restoring performance after incident (see

restoring baseline performance)
sampling, 96

(see also sampling)
saturation, 155, 180
traces for testing services, 89, 259
traffic rate, 155, 180
user impact, 146, 154

Perl, Sharon, x
permission to use code from book, xxi
personally identifiable information (PII), 82

(see also privacy laws and regulations)
Pinpoint, 204, 205, 270
Pivot Tracing

about, 255
baggage as dynamic context, 248
challenges, 249
as cross-cutting tool, 253, 255
distributed tracing comparison, 248
dynamic instrumentation, 246
example, 247
goal of, 240, 241, 246
queries, 248
unanticipated problem diagnosis, 246, 248

planning for instrumentation, 91, 103
observability, 141

plug-ins by language, 271
portability of open source instrumentation, 58
postmortems for incidents, 184
prioritization of problems, 151, 199
privacy laws and regulations

EU General Data Protection Regulation, 29
logging and, 29, 82
noncompliance costs high, 94
span data, 82

Project 5 for inferring causality, 235
propagating context (see context propagation)
propagator stack, 55, 96
proprietary instrumentation challenges, 31, 57
publish-subscribe (pub-sub) systems, 228
Pythia

as cross-cutting tool, 253, 255
design, 251
distributed tracing comparison, 251
dynamic instrumentation, 249, 250

296 | Index

example, 249
goal of, 240, 241, 250
unanticipated problem diagnosis, 249

Python tracing support, 273

Q
questions answered, pointer to, 24
questions or problems with book, xxi

R
README attributes, 24
real-time response to incidents, 189

meaning of real-time, 190
remote direct memory access (RDMA), 232
remote procedure calls (see RPCs)
request-response systems, 202, 223

streaming systems versus, 230, 259
requests

context via distributed tracing, xviii
request duplication, 258
response latency in history, 202
as RPCs to be traced, xviii, 2

resource management, 255
response-based sampling, 127
RESTful API, 19
restoring baseline performance

about, 146, 179
aggregate analysis, 194-197
alert data presented, 185
alert routing, 186
approaches to, 185-198
automated analysis of latency distribution,

193
automated root cause analysis, 198
biased sampling, 187
changes that impact service performance,

179
chaos engineering, 189
communication, 180, 182, 185
correlation analysis, 196
critical path changes, 197
defining baseline performance, 180
defining normal, 191
distributed tracing for, 199
error rates reported by and outside of ser‐

vice, 181
error sources, 183
histograms, 192, 193
historical data, 191

human responses to incident, 182, 186
incident hand-off, 184
incident response, 179
individual traces, 186
Kolmogorov-Smirnov statistic, 194
mitigating performance problems, 180
as observability goal, 145
postmortems, 184
real-time response, 189
tag durations, 197
tags with version attributes, 188
trace searches, 189
traces instead of blame, 182

Retro for resource management, 255
root cause analysis

aggregate analysis, 194, 195
biased sampling, 187
causality, 234
correlation analysis, 196
defining normal, 191
individual traces, 186
Kolmogorov-Smirnov statistic, 194
Pinpoint, 204
real-time response, 189

root span
concurrent subspan calls, 164
manual instrumentation, 78
OpenCensus, 49
OpenTelemetry, 38
originating and following traces, 39
redundancy in subspans, 164

RPCs (remote procedure calls)
batching, 226
best practices example framework, 65
best practices example instrumentation, 66,

69
best practices framework instrumentation,

72
deployment leveraging, 102
distributed software inputs as, 11
history of, 223
HTTP use in book, 19
inter-request dependencies, 227
interprocess context propagation, 19
library instrumentation, 24
open source instrumentation, 59
propagator stack, 55
relationships, xix
as requests to be traced, xviii, 223

Index | 297

tags into, 233
unique position in software stack, 224

Rust tracing features, 272

S
safety valves, 84
sampling, 96

aggregate analysis and, 214
aggregate critical path analysis, 171
application throughput, 121
bias, accounting for, 131
biased sampling, 165, 187
Canopy, 220
centralized sampling decisions, 128
coherent sampling, 240
collectors for, 108
costs of tracing, 124, 143, 240
Dapper latency and throughput metrics,

121, 143
Dapper network and storage costs, 123
Dapper percentage of transactions, 143
data volume reduction, 132
frequency of, 131
minimum requirements, 124
observability tool volume limits, 150
response-based, 127
sampling rates, 126, 143
selecting traces, 130
strategies, 126
time period, 172
TraceID on spans, 129
up-front sampling, 126

saturation, 155, 180
scalability of distributed software, xv
scope manager for span contexts, 23
Scuba (Facebook), 145
searches

extremely large datasets, 143
logs, 143, 190
trace search queries, 168
traces, 167, 189

security audits via traces, 259
gRPC context class for security, 275

segments (spans) in X-Ray, 53
serverless technologies

challenges of, 5
tracing-friendly architectures, 23

service graph, 76
service level agreement (SLA), 181

service level indicators (SLIs)
automated alert data presented, 185
defining baseline performance, 180
improving baseline performance, 156
metric labels, 136
traces for gathering, 90

service level objectives (SLOs)
business metric–based, 181
defining baseline performance, 180, 185
failing to meet, 181
SLIs compared with, 136
traces for gathering, 90

service meshes
abstract instrumentation, 33
beginning instrumentation at edges, 71
definition, 75
deployment leveraging, 102
instrumentation best practices, 75
instrumentation challenges, 76
migration strategy via, 57
open source instrumentation benefits, 59

services (see microservices)
sidecar proxies of service meshes

definition, 75
deployment of tracing, 106
tracer architecture, 104
tracing, 75
tracing challenges, 76

site reliability engineering (SRE), 135, 136, 184
SkyWalking (Apache Foundation), 269
SLIs (see service level indicators)
SLOs (see service level objectives)
spans

about, 38, 223
active span, 21
all microservices producing, 25
benefits, 223
benefits not enough, 225
best practices, 79
best practices example tracing, 70
beyond spans (see beyond spans)
context propagation, 16, 37
cost of tracing and span selection, 117

(see also cost of tracing)
created under OpenCensus, 49
created under OpenTelemetry, 38
created under OpenTracing, 45
creation safety valve, 84
critical path, 160

298 | Index

critical path absolute durations, 172
critical path aggregate analysis, 171
debouncing, 29
definition, xviii
history of, 207, 223
independence of, 17
information encapsulated in, 38
IsRecording API, 39
link objects, 39
logging with, 81
multiparent causality, 262
naming, 79, 82
OpenTelemetry APIs, 39
OpenTelemetry Tracer, 37
OpenTracing APIs, 45
OpenTracing span context, 46
parent-child relationship, 17, 22, 38
performance considerations, 82, 95
privacy laws and regulations, 82
root span of OpenTelemetry, 38
RPC position in software stack, 224
safety valves, 84
sampling, 96

(see also sampling)
scope manager for span contexts, 23
as segments in X-Ray, 53
span context, 19, 37, 46
span context as critical, 74
span context propagator stack, 55
span ID, 19
statistics about, 132
status codes of OpenTelemetry API, 40
tag information, 24, 175

(see also tags)
trace description, xix
TraceID, 129
tree of spans abstraction, 223, 226

Spark, 229
Spring Framework instrumentation, 26
SQL and organizing trace aggregations, 212

joining with other data sources, 218
SRE (see site reliability engineering)
stack traces

debugging ubiquity of, 1
performance considerations, 83

standards
B3 HTTP Headers, 54
beginning with deployment, 104

context propagation headers and formats,
20, 24, 55, 95, 206

managed service telemetry, 115
migration strategies, 57
OpenTelemetry, 35, 43, 53
for sustainable instrumentation growth, 97
tags, 80
user-defined CorrelationContext data, 277
W3C TraceContext, 45, 54, 277
W3C tracing headers, 69

statistics
correlation analysis, 173, 196
gauge values, 137
histograms generating, 137
Kolmogorov-Smirnov statistic, 194
latency distributions not normal, 157, 166,

169
multimodal analysis, 169, 175
observability tools, 149
percentile caution, 158
span statistics, 132

storage of tracings (see data storage)
streaming systems challenges, 230, 259
system versus application instrumentation, 13

T
tags

about, xviii, 39
best practices, 80
cardinality, 80, 175
frontend tracing, 28
important information in, 24, 80
monolithic server traces, 27
OpenCensus unique fields, 50
OpenTelemetry, 39, 78
OpenTracing complex object logging, 46
privacy laws and regulations, 82
README attributes, 24
region tag and latency, 165
request detail increased, 78
searching traces, 167
semantic attributes, 24, 78
service-specific for custom processing, 217
SetAttributes API of OpenTelemetry, 41
span kind field, 38, 40, 50, 78
tag durations, 197
user actions for SLOs, 181
version attributes, 37, 94, 188

tags in new tracing paradigms, 233, 244

Index | 299

tail-based sampling, 127
temporal provenance, 235
TensorFlow TensorBoard visualization kit, 230
throughput in cost of tracing, 120
timescales of timestamps versus aggregation,

232
trace aggregations

about, 209
aggregate analysis, 209

(see also aggregate analysis)
API endpoint service, 211
Canopy, 219
case study, 219
custom functions, 217, 221
heterogeneous data, 221
improving baseline performance, 171
indexing traces, 217
joining with other data sources, 218
network congestion, 211
organizing data, 212
processing pipeline, 215, 220
processing pipeline, Canopy, 220, 221
sampling and aggregate analysis, 214
strawperson table, 212, 217, 219

trace context
about, xix, 18
application versus system level, 14
B3 HTTP Headers de-facto standard, 54
best practices custom instrumentation, 70
best practices example tracing headers, 69
context propagation, 16

(see also context propagation)
distributed tracing overview, 5
documentation of, 20
interoperability, 55
interprocess propagation, 18
intraprocess propagation, 20
OpenCensus in-process propagation, 49
OpenTelemetry Tracer, 37
span context propagator stack, 55
span parent-child relationships, 17, 22
standard headers and formats, 20, 24
TraceID, 19
W3C TraceContext standard, 45, 54

trace-driven development, 85
tracers

commercial, 270
open source, 269
OpenCensus, 49

OpenTelemetry, 37, 63, 69, 69
OpenTracing, 44, 47

traces
about, xviii
aggregate analysis, 171, 209

(see also trace aggregations)
browser tracing, 120
developing application with traces, 85
directed acyclic graphs, 89
indexing, 167
individual trace optimization, 163
interoperability between tracing systems, 55
kernel tracing, 120
named tracers of OpenTelemetry, 37
observable inputs for, 11
originating and following traces, 39
sampling, 96
sampling, selecting for, 130
search queries, 168
searching, 167, 189
security audits, 259
service testing with, 89, 259
span context propagation, 16, 37
storage of, 108, 121
TraceID, 19, 129
tracer architecture, 104, 117
verbosity, 87

tracing format (see header formats)
Tracing Plane, 253, 261

Baggage Definition Language, 264
traffic rate

as golden metric of performance, 155, 180
latency climbing, 191

Twitter Zipkin (see Zipkin)

U
unanticipated problem diagnosis

Pivot Tracing, 246, 248
Pythia, 249

unbiased sampling, 126
up-front sampling, 126
URLs

best practices example microservice, 62
book code examples, xxi
book web page, xxii
commercial tracers and trace analyzers, 270
Distributed Diagnostic Context, 58
Jaeger, 269
open source instrumentation plug-ins, 78

300 | Index

open source tracers and trace analyzers, 269
OpenCensus, 48
OpenTelemetry context layer, 280
OpenTelemetry integrations and plug-ins,

58
OpenTracing integrations and plug-ins, 58
O’Reilly Media online, xxii
Web APIs for frontend tracing, 28
X-Ray, 53
Zipkin, 54, 269

user impact of performance
aggregate user behavior, 192
automated alerts on symptoms, 186
chaos engineering, 189
critical path, 160
measuring performance, 154
observability, 146
portion of user requests that fail, 155
which users, 154, 166

V
vendor URLs, 270

vendor lock-in, 33, 33, 58
verbosity of traces, 87
version attributes, 37, 94, 188
virtualization, xiv
visibility of OpenCensus, 246
visualization tools

cumulative distribution function, 194
dashboards of operations centers, 147
flame graph, 140, 144
histograms (see histograms)
historical data, 191, 193

Kibana, 139
TensorFlow TensorBoard, 230

W
W3C

best practices example tracing headers, 69
TraceContext, 45, 54, 277

WAN connectivity loss, 29
Web APIs, URL for frontend tracing, 28
web clients

abstract instrumentation necessity, 32
best practices example microservice, 62
browser tracing, 120, 273
client app tracing challenges, 227
data outside your control, 110
distributed tracing, 27
JavaScript instrumentation, 273
request-response systems, 202
response latency in history, 202

white box instrumentation, 12
tracing-friendly architectures, 23

X
X-Ray (Amazon), 53
X-Trace, 206, 207

Z
Zeno temporal provenance, 235
Zipkin (Twitter), 54

OpenZipkin, 140, 233, 269
trace searches, 189
URL, 54

Index | 301

About the Authors
Austin Parker is principal developer advocate at Lightstep, where he works as a core
contributor and maintainer to the OpenTracing project. Prior to Lightstep, he was a
software architect at Apprenda, building enterprise platforms using Kubernetes.

Daniel Spoonhower is a cofounder of Lightstep, where he’s building performance
management tools for modern software systems. Previously, Spoons spent almost six
years at Google, where he worked on developer tools as part of Google’s internal
infrastructure and Cloud Platform teams. He has published papers on the perfor‐
mance of parallel programs, garbage collection, and real-time programming. He has a
PhD in programming languages from Carnegie Mellon University but still hasn’t
found one he loves.

Jonathan Mace is a tenure-track faculty member at the Max Planck Institute for Soft‐
ware Systems, where he leads the Cloud Software Systems research group. His
research centers on ways to understand, monitor, and debug large distributed sys‐
tems. His notable work includes Pivot Tracing, which introduced the concept of bag‐
gage used by distributed tracing today; Canopy, Facebook’s internal performance
tracing system; and his PhD work on abstractions for tracing, which received Hono‐
rable Mention for the 2018 Dennis M. Ritchie Doctoral Dissertation Award.

Rebecca Isaacs is a software engineer currently focused on the performance tuning
and debugging of large-scale datacenter services. She was previously a research scien‐
tist, most recently at Google. She first started thinking about tracing for distributed
systems over 15 years ago while at Microsoft Research, which she joined after obtain‐
ing a PhD from Cambridge University and a BSc from the University of Glasgow.

Colophon
The animal sniffing the subtitle on the cover of Distributed Tracing in Practice is a
long-nosed bandicoot (Perameles nasuta), a marsupial found in a narrow range along
the coast of eastern Australian rainforest and woodlands.

Long-nosed bandicoots have brownish gray fur and a short tail, weigh about two
pounds, and stretch about one foot long. The lifespan is typically five to six years.
These bandicoots dig distinctive conical holes when they forage with their clawed
toes and characteristic snout. They forage for insects, fungi, and plants at night and
nest in shallow dirt holes during the day. The long-nosed bandicoot’s pouch faces
backward to protect its young from dug-up soil.

When the conservation status of the long-nosed bandicoot was last assessed in 2015,
authorities listed the species as of Least Concern, but Australia’s Department of Agri‐
culture, Water, and the Environment found it at risk of extinction after the bushfires

of 2019–20. Many of the animals on O’Reilly’s covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Meyers Kleines Lexicon. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Foreword
	Introduction: What Is Distributed Tracing?
	Distributed Architectures and You
	Deep Systems
	The Difficulties of Understanding Distributed Architectures
	How Does Distributed Tracing Help?
	Distributed Tracing and You
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. The Problem with Distributed Tracing
	The Pieces of a Distributed Tracing Deployment
	Distributed Tracing, Microservices, Serverless, Oh My!
	The Benefits of Tracing
	Setting the Table

	Chapter 2. An Ontology of Instrumentation
	White Box Versus Black Box
	Application Versus System
	Agents Versus Libraries
	Propagating Context
	Interprocess Propagation
	Intraprocess Propagation

	The Shape of Distributed Tracing
	Tracing-Friendly Microservices and Serverless
	Tracing in a Monolith
	Tracing in Web and Mobile Clients

	Chapter 3. Open Source Instrumentation: Interfaces, Libraries, and Frameworks
	The Importance of Abstract Instrumentation
	OpenTelemetry
	OpenTracing and OpenCensus
	OpenTracing
	OpenCensus

	Other Notable Formats and Projects
	X-Ray
	Zipkin

	Interoperability and Migration Strategies
	Why Use Open Source Instrumentation?
	Interoperability
	Portability
	Ecosystem and Implicit Visibility

	Chapter 4. Best Practices for Instrumentation
	Tracing by Example
	Installing the Sample Application
	Adding Basic Distributed Tracing
	Custom Instrumentation

	Where to Start—Nodes and Edges
	Framework Instrumentation
	Service Mesh Instrumentation
	Creating Your Service Graph

	What’s in a Span?
	Effective Naming
	Effective Tagging
	Effective Logging
	Understanding Performance Considerations

	Trace-Driven Development
	Developing with Traces
	Testing with Traces

	Creating an Instrumentation Plan
	Making the Case for Instrumentation
	Instrumentation Quality Checklist
	Knowing When to Stop Instrumenting
	Smart and Sustainable Instrumentation Growth

	Chapter 5. Deploying Tracing
	Organizational Adoption
	Start Close to Your Users
	Start Centrally: Load Balancers and Gateways
	Leverage Infrastructure: RPC Frameworks and Service Meshes
	Make Adoption Repeatable

	Tracer Architecture
	In-Process Libraries
	Sidecars and Agents
	Collectors
	Centralized Storage and Analysis
	Incremental Deployment

	Data Provenance, Security, and Federation
	Frontend Service Telemetry
	Server-Side Telemetry for Managed Services

	Summary

	Chapter 6. Overhead, Costs, and Sampling
	Application Overhead
	Latency
	Throughput

	Infrastructure Costs
	Network
	Storage

	Sampling
	Minimum Requirements
	Strategies
	Selecting Traces

	Off-the-Shelf ETL Solutions
	Summary

	Chapter 7. A New Observability Scorecard
	The Three Pillars Defined
	Metrics
	Logging
	Distributed Tracing

	Fatal Flaws of the Three Pillars
	Design Goals
	Assessing the Three Pillars
	Three Pipes (Not Pillars)

	Observability Goals and Activities
	Two Goals in Observability
	Two Fundamental Activities in Observability
	A New Scorecard
	The Path Ahead

	Chapter 8. Improving Baseline Performance
	Measuring Performance
	Percentiles
	Histograms

	Defining the Critical Path
	Approaches to Improving Performance
	Individual Traces
	Biased Sampling and Trace Comparison
	Trace Search
	Multimodal Analysis
	Aggregate Analysis
	Correlation Analysis

	Summary

	Chapter 9. Restoring Baseline Performance
	Defining the Problem
	Human Factors
	(Avoiding) Finger-Pointing
	“Suppressing” the Messenger
	Incident Hand-off
	Good Postmortems

	Approaches to Restoring Performance
	Integration with Alerting Workflows
	Individual Traces
	Biased Sampling
	Real-Time Response
	Knowing What’s Normal
	Aggregate and Correlation Root Cause Analysis

	Summary

	Chapter 10. Are We There Yet? The Past and Present
	Distributed Tracing: A History of Pragmatism
	Request-Based Systems
	Response Time Matters
	Request-Oriented Information

	Notable Work
	Pinpoint
	Magpie
	X-Trace
	Dapper

	Where to Next?

	Chapter 11. Beyond Individual Requests
	The Value of Traces in Aggregate
	Example 1: Is Network Congestion Affecting My Application?
	Example 2: What Services Are Required to Serve an API Endpoint?

	Organizing the Data
	A Strawperson Solution

	What About the Trade-offs?
	Sampling for Aggregate Analysis
	The Processing Pipeline
	Incorporating Heterogeneous Data
	Custom Functions
	Joining with Other Data Sources

	Recap and Case Study
	The Value of Traces in Aggregate
	Organizing the Data
	Sampling for Aggregate Analysis
	The Processing Pipeline
	Incorporating Heterogeneous Data

	Chapter 12. Beyond Spans
	Why Spans Have Prevailed
	Visibility
	Pragmatism
	Portability
	Compatibility
	Flexibility

	Why Spans Aren’t Enough
	Graphs, Not Trees
	Inter-Request Dependencies
	Decoupled Dependencies
	Distributed Dataflow
	Machine Learning
	Low-Level Performance Metrics

	New Abstractions
	Seeing Causality

	Chapter 13. Beyond Distributed Tracing
	Limitations of Distributed Tracing
	Challenge 1: Anticipating Problems
	Challenge 2: Completeness Versus Costs
	Challenge 3: Open-Ended Use Cases

	Other Tools Like Distributed Tracing
	Census
	A Motivating Example
	A Distributed Tracing Solution?
	Tag Propagation and Local Metric Aggregation
	Comparison to Distributed Tracing

	Pivot Tracing
	Dynamic Instrumentation
	Recurring Problems
	How Does It Work?
	Dynamic Context
	Comparison to Distributed Tracing

	Pythia
	Performance Regressions
	Design
	Overheads
	Comparison to Distributed Tracing

	Summary

	Chapter 14. The Future of Context Propagation
	Cross-Cutting Tools
	Use Cases
	Distributed Tracing
	Cross-Component Metrics
	Cross-Component Resource Management
	Managing Data Quality Trade-offs
	Failure Testing of Microservices
	Enforcing Cross-System Consistency
	Request Duplication
	Record Lineage in Stream Processing Systems
	Auditing Security Policies
	Testing in Production

	Common Themes
	Should You Care?
	The Tracing Plane
	Is Baggage Enough?
	Beyond Key-Value Pairs
	Compiling BDL
	BaggageContext
	Merging
	Overheads

	Summary

	Appendix A. The State of Distributed Tracing Circa 2020
	Open Source Tracers and Trace Analysis
	Commercial Tracers and Trace Analyzers
	Language-Specific Tracing Features
	Java and C#
	Go, Rust, and C++
	Python, JavaScript, and Other Dynamic Languages

	Appendix B. Context Propagation in OpenTelemetry
	Why a Separate Context Model?
	The OpenTelemetry Context Model
	W3C CorrelationContext and the Correlations API
	Distributed and Local Context

	Examples and Potential Applications

	Bibliography
	Index
	About the Authors
	Colophon

