

Elements of Android Jetpack

by Mark L. Murphy

Elements of Android Jetpack
by Mark L. Murphy

Copyright © 2019-2021 CommonsWare, LLC. All Rights Reserved.
Printed in the United States of America.

Printing History:
January 2021: Version 2.0

The CommonsWare name and logo, “Busy Coder's Guide”, and related trade dress are trademarks of CommonsWare,
LLC.

All other trademarks referenced in this book are trademarks of their respective firms.

The publisher and author(s) assume no responsibility for errors or omissions or for damages resulting from the use of the
information contained herein.

Table of Contents
Headings formatted in bold-italic have changed since the last version.

• Preface
◦ Prerequisites .. ix
◦ About the Updates .. ix
◦ What’s New in Version 2.0? ... x
◦ Warescription .. x
◦ Book Bug Bounty .. xi
◦ Source Code and Its License .. xii
◦ Creative Commons and the Four-to-Free (42F) Guarantee xii
◦ Acknowledgments ... xiii

• Introducing Android
◦ Focus: Apps, Not Operating Systems ... 1
◦ What You Need .. 1
◦ How This Book Is Organized .. 5

• Setting Up the Tools
◦ But First, Some Notes About Android’s Emulator 7
◦ Step #1: Install Android Studio .. 8
◦ Step #2: Running Android Studio for the First Time 9

• Getting Your First Project
◦ Step #1: Importing the Project ... 17
◦ Step #2: Get Ready for the x86 Emulator ... 19
◦ Step #3: Set Up the AVD .. 20
◦ Step #4: Set Up the Device .. 24
◦ Step #5: Running the Project .. 30

• Taking a Tour of Android Studio
◦ The Project Tree ... 34
◦ The Editing Pane ... 37
◦ The Docked Views ... 37
◦ Popular Menu and Toolbar Options ... 38
◦ Android Studio and Release Channels ... 45

• Examining Your Code
◦ The Top Level .. 49
◦ The Project Contents ... 50
◦ The App Module Contents .. 52
◦ The Generated Source Sets ... 53
◦ Language Differences .. 57

i

◦ Introducing the Activity ... 57
◦ Other Things in the Project Tree .. 63

• Exploring Your Resources
◦ What You See in res/ .. 66
◦ OS Versions and API Levels ... 66
◦ Decoding Resource Directory Names ... 69
◦ Our Initial Resource Types ... 69
◦ About That R Thingy ... 75
◦ The Resource Manager .. 76

• Inspecting Your Manifest
◦ The Root Element .. 79
◦ The Application Element ... 80
◦ The Activity Element (And Its Children) ... 81

• Reviewing Your Gradle Scripts
◦ Gradle: The Big Questions .. 83
◦ Obtaining Gradle ... 85
◦ Examining the Gradle Files ... 87
◦ Requesting Plugins .. 91
◦ Android Plugin for Gradle Configuration .. 92
◦ Other Stuff in the android Closure ... 94
◦ Libraries and Dependencies ... 95

• Inspecting the Compiled App
◦ What We Build .. 97
◦ Where They Go ... 99
◦ Building the APK .. 99
◦ Analyzing the APK ... 100

• Touring the Tests
◦ Instrumented Tests .. 103
◦ Unit Tests ... 111

• Introducing Jetpack
◦ What, Exactly, is Jetpack? .. 115
◦ Um, OK, So, What’s the Point? .. 115
◦ Key Elements of Jetpack ... 116
◦ What Came Before: the Android Support Library 120

• Introducing the Sampler Projects
◦ The Projects .. 121
◦ Getting a Sampler Project .. 122
◦ The Modules ... 125
◦ Running the Samples ... 125

• Starting Simple: TextView and Button
◦ First, Some Terminology ... 129

ii

◦ Introducing the Graphical Layout Editor ... 134
◦ TextView: Assigning Labels .. 142
◦ Button: Reacting to Input ... 148
◦ The Curious Case of the Missing R ... 157

• Debugging Your App
◦ Get Thee To a Stack Trace ... 160
◦ Running Your App in the Debugger ... 163
◦ So, Where Did We Go Wrong? ... 169

• Introducing ConstraintLayout
◦ The Role of Containers ... 174
◦ Layouts and Adapter-Based Containers .. 175
◦ ConstraintLayout: One Layout To Rule Them All 176
◦ Getting ConstraintLayout .. 177
◦ Using Widgets and Containers from Libraries 177
◦ A Quick RTL Refresher .. 179
◦ Simple Rows with ConstraintLayout .. 180
◦ Starting from Scratch .. 184
◦ ConstraintLayout and the Attributes Pane 186
◦ EditText: Making Users Type Stuff ... 187
◦ More Complex Forms .. 189
◦ Turning Back to RTL .. 196
◦ More Fun with ConstraintLayout ... 197
◦ Notes on the Classic Containers ... 198

• Integrating Common Form Widgets
◦ ImageView and ImageButton ... 201
◦ Compound Buttons ... 207
◦ SeekBar ... 219
◦ ScrollView: Making It All Fit ... 222
◦ Other Notes About the Sample .. 225

• Contemplating Contexts
◦ It’s Not an OMG Object, But It’s Close .. 233
◦ The Major Types of Context .. 234
◦ Key Context Features ... 236
◦ Know Your Context .. 238
◦ Context Anti-Patterns ... 239

• Icons
◦ App Icons… And Everything Else .. 241
◦ Creating an App Icon with the Asset Studio 242
◦ Creating Other Icons with the Asset Studio 248

• Adding Libraries
◦ Depending on a Local JAR .. 249

iii

◦ Artifacts and Repositories ... 250
◦ Requesting Dependencies .. 251

• Employing RecyclerView
◦ Recap: Layouts vs. Adapter-Based Containers 255
◦ The Challenge: Memory .. 256
◦ Enter RecyclerView .. 257
◦ A Trivial List ... 258
◦ Hey, What About ListView? .. 275
◦ Gesture Navigation and Scrolling Widgets 276

• Coping with Configurations
◦ What’s a Configuration? And How Do They Change? 279
◦ Configurations and Resource Sets ... 280
◦ Implementing Resource Sets .. 281
◦ Resource Set Rules ... 284
◦ Activity Lifecycles ... 288
◦ When Activities Die .. 292
◦ Context Anti-Pattern: Outliving It ... 293

• Integrating ViewModel
◦ Configuration Changes .. 295
◦ What We Want… and What We Do Not Want 296
◦ Enter the ViewModel ... 297
◦ Applying ViewModel ... 297
◦ ViewModel and the Lifecycle .. 302
◦ Changing Data in the ViewModel .. 306
◦ ViewModel and AndroidViewModel .. 318
◦ ViewModelFactory ... 319

• Understanding Processes
◦ When Processes Are Created ... 321
◦ What Is In Your Process .. 322
◦ BACK, HOME, and Your Process .. 322
◦ Termination .. 323
◦ Foreground Means “I Love You” ... 324
◦ Tasks and Your App ... 325
◦ Instance State ... 327
◦ Pondering Parcelable ... 329
◦ A State-Aware ViewModel .. 333

• Binding Your Data
◦ The Basic Steps .. 341
◦ Why Bother? ... 351
◦ The Major “Gimme the Views” Options .. 352

• Defining and Using Styles

iv

◦ Styles: DIY DRY .. 355
◦ Elements of Style ... 356
◦ Themes: Would a Style By Any Other Name… 360
◦ Android 10 Dark Mode .. 365
◦ The DayNight Solution ... 369
◦ The Material Components for Android ... 370
◦ Context Anti-Pattern: Using Application Everywhere 371

• Configuring the App Bar
◦ So. Many. Bars. ... 374
◦ Vector Drawables ... 376
◦ Menu Resources ... 381
◦ Using Toolbar Directly .. 386
◦ Using Toolbar as the Action Bar ... 399
◦ Having Fun at Bars .. 402

• Implementing Multiple Activities
◦ Multiple Activities, and Your App .. 403
◦ Creating Your Second (and Third and…) Activity 404
◦ Starting Your Own Activity .. 406
◦ Extra! Extra! ... 407
◦ Seeing This In Action ... 407
◦ Using Implicit Intents ... 412
◦ Asynchronicity and Results .. 414
◦ The Inverse: <intent-filter> ... 424

• Adopting Fragments
◦ The Six Questions .. 427
◦ Where You Get Your Fragments From ... 432
◦ Static vs. Dynamic Fragments .. 432
◦ Fragments, and What You Have Seen Already 433
◦ ToDo, or Not ToDo? That Is the Question 433
◦ The Fragment Lifecycle Methods .. 464
◦ Context Anti-Pattern: Assuming Certain Types 469

• Navigating Your App
◦ What We Get from the Navigation Component 471
◦ Elements of Navigation ... 475
◦ A Navigation-ized To-Do List ... 482
◦ So… Was It Worth It? .. 494

• Dialogs
◦ A Tale of Four Dialogs ... 495
◦ Using AlertDialog and DialogFragment ... 498

• Thinking About Threads and LiveData
◦ The Main Application Thread .. 507

v

◦ The UI Thread is for UI .. 509
◦ Introducing LiveData .. 510
◦ Colors… Live! ... 512
◦ Sources of Owners ... 519
◦ Where Do Threads Come From? Um, Besides From Me? 520
◦ Coroutines and ViewModel ... 521

• Adding Some Architecture
◦ Repositories .. 523
◦ Unidirectional Data Flow .. 524
◦ A UDF Implementation .. 526
◦ States and Events ... 547

• Working with Content
◦ The Storage Access Framework .. 555
◦ Android 11+ Restrictions .. 568

• Using Preferences
◦ The Preferred Preferences .. 569
◦ Collecting Preferences with PreferenceFragmentCompat 570
◦ Types of Preferences .. 576
◦ Working with SharedPreferences ... 579

• Requesting Permissions
◦ Frequently-Asked Questions About Permissions 585
◦ Dangerous Permissions: Request at Runtime 588

• Handling Files
◦ The Three Types of File Storage ... 599
◦ What the User Sees ... 602
◦ Storage, Permissions, and Access ... 602
◦ Reading, Writing, and Debugging Storage 603
◦ Serving Files with FileProvider ... 624
◦ What You Should Use ... 636

• Accessing the Internet
◦ An API Roundup .. 637
◦ Android’s Restrictions ... 641
◦ Forecasting the Weather ... 643

• Storing Data in a Room
◦ Room Requirements ... 664
◦ Room Furnishings ... 664
◦ Other Fun Stuff in the App ... 671
◦ What Else Does Room Offer? ... 681
◦ Examining Your Database .. 682

• Inverting Your Dependencies
◦ The Problem: Test Control ... 687

vi

◦ The Solution: Dependency Inversion .. 688
◦ Dependency Inversion in Android .. 689
◦ Applying Koin ... 689

• Testing Your Changes
◦ A Quick Recap ... 701
◦ Which Tests Should I Write? .. 702
◦ Writing Unit Tests ... 702
◦ Employing Mocks .. 708
◦ Writing Instrumented Tests .. 716
◦ Writing Basic Espresso Tests ... 722
◦ Another Option: UI Automator .. 728
◦ Again: What Should I Be Using? .. 729

• Working with WorkManager
◦ The Role of WorkManager ... 731
◦ WorkManager Dependencies ... 732
◦ Workers: They Do Work ... 733
◦ Performing Simple Work .. 736
◦ Work Inputs ... 737
◦ Constrained Work ... 738
◦ Tagged Work .. 739
◦ Monitoring Work ... 740
◦ Canceling Work ... 748
◦ Delayed Work ... 749
◦ Parallel Work .. 749
◦ Chained Work .. 750
◦ Periodic Work ... 760
◦ Unique Work ... 760
◦ Testing Work .. 761
◦ WorkManager and Side Effects ... 765

• Creating a New Project
◦ Key Decisions That You Need to Make .. 771
◦ The New-Project Wizard ... 774
◦ Copying an Existing Project .. 779

• Signing Your App
◦ Role of Code Signing ... 781
◦ What Happens In Debug Mode .. 782
◦ Production Signing Keys ... 783

• Shrinking Your App
◦ Why We Care ... 791
◦ Identify What to Attack .. 792
◦ Shrinking Your Dependencies .. 792

vii

◦ Shrinking Your Code ... 794
◦ Removing Unused Resources .. 798
◦ Optimizing Bitmaps ... 800
◦ Hey, What About App Bundles? ... 805

• Using the AVD Manager and the Emulator
◦ Notable AVD Configuration Options .. 807
◦ The Emulator Sidebar ... 813
◦ Emulator Window Operations ... 829
◦ In-IDE Emulator .. 830

• Using the SDK Manager
◦ Installing Platform Pieces ... 836
◦ Installing and Upgrading Tools .. 838
◦ Adding Third-Party SDK Suppliers .. 839

• Configuring Your Project
◦ Risks and Rewards ... 841
◦ The Project Category ... 842
◦ The SDK Location .. 843
◦ The Variables ... 844
◦ The Modules .. 845
◦ Dependencies .. 848
◦ Build Variants .. 849
◦ Suggestions .. 851

• Configuring Android Studio
◦ Searching for Settings .. 854
◦ Themes and Colors .. 855
◦ Fonts. And Other Fonts. .. 857
◦ Code Styles ... 861
◦ Inlay Hints ... 866
◦ Other Settings of Note ... 868

• Coping with New Android Versions
◦ The March of the Versions .. 871
◦ The Typical Release Process .. 872
◦ Things to Worry About ... 874

• Deciding Where to Go From Here
◦ The Rest of the Books .. 877
◦ Android Developer Support .. 878
◦ Major Conferences ... 878

viii

Preface

Thanks!

Thanks for your interest in developing applications for Android! Android has grown
from nothing to the world’s most popular smartphone OS in a few short years.
Whether you are developing applications for the public, for your business or
organization, or are just experimenting on your own, I think you will find Android to
be an exciting and challenging area for exploration.

And, most of all, thanks for your interest in this book! I sincerely hope you find it
useful and at least occasionally entertaining.

Prerequisites
This book is written for developers with prior experience in Java or Kotlin. If you are
not familiar with either of these languages, it will be difficult for you to follow the
code samples in the book. The author of this book has published Elements of Kotlin.
If you obtained this book via the Warescription, you are eligible to download a copy
of Elements of Kotlin, along with the rest of the CommonsWare line of books.

This book is written for people who have used an Android device before. If you are
not familiar with basic Android concepts — such as the home screen and launcher,
navigating home and back, and so on — you will want to spend time with an
Android device.

About the Updates
This book will be updated a few times per year, to reflect newer versions of Android,

ix

https://commonsware.com/Kotlin

Android Studio, and the Jetpack family of libraries.

If you obtained this book through the Warescription, you will be able to download
updates as they become available, for the duration of your subscription period.

If you obtained this book through other channels… um, well, it’s still a really nice
book!

Each release has notations to show what is new or changed compared with the
immediately preceding release:

• The Table of Contents in the ebook formats (PDF, EPUB, MOBI/Kindle)
shows sections with changes in bold-italic font

• Those sections have changebars on the right to denote specific paragraphs
that are new or modified

And, there is the “What’s New” section, just below this paragraph.

What’s New in Version 2.0?
This one is unchanged from Version 1.9, other than a few bug fixes, following the
general pattern of major-number book releases.

Warescription
If you purchased the Warescription, read on! If you obtained this book from other
channels, feel free to jump ahead.

The Warescription entitles you, for the duration of your subscription, to digital
editions of this book and its updates, in PDF, EPUB, and Kindle (MOBI/KF8)
formats, plus the ability to read the book online at the Warescription Web site. You
also have access to other books that CommonsWare publishes during that
subscription period.

Each subscriber gets personalized editions of all editions of each title. That way,
your books are never out of date for long, and you can take advantage of new
material as it is made available.

However, you can only download the books while you have an active Warescription.
Hence, please download your updates as they come out. You can find out when

PREFACE

x

https://wares.commonsware.com/

new releases of this book are available via:

1. The CommonsBlog
2. The CommonsWare Twitter feed
3. Opting into emails announcing each book release — log into the

Warescription site and choose Configure from the nav bar
4. Just check back on the Warescription site every month or two

Subscribers also have access to other benefits, including:

• “Office hours” — online chats to help you get answers to your Android
application development questions. You will find a calendar for these on
your Warescription page.

• A Stack Overflow “bump” service, to get additional attention for a question
that you have posted there that does not have an adequate answer.

• A discussion board for asking arbitrary questions about Android app
development.

Book Bug Bounty
Find a problem in the book? Let CommonsWare know!

Be the first to report a unique concrete problem in the current edition, and
CommonsWare will extend your Warescription by six months as a bounty for
helping CommonsWare deliver a better product.

By “concrete” problem, we mean things like:

1. Typographical errors
2. Sample applications that do not work as advertised, in the environment

described in the book
3. Factual errors that cannot be open to interpretation

By “unique”, we mean ones not yet reported. Be sure to check the book’s errata page,
though, to see if your issue has already been reported. One coupon is given per
email containing valid bug reports.

We appreciate hearing about “softer” issues as well, such as:

• Places where you think we are in error, but where we feel our interpretation
is reasonable

PREFACE

xi

https://commonsware.com/blog
https://twitter.com/CommonsWare
https://wares.commonsware.com/
https://wares.commonsware.com/
https://commonsware.com/Jetpack/errata

• Places where you think we could add sample applications, or otherwise
expand upon the existing material

However, those “softer” issues do not qualify for the formal bounty program.

Questions about the bug bounty, or problems you wish to report for bounty
consideration, should be sent to bounty@commonsware.com.

Source Code and Its License
The source code in this book is licensed under the Apache 2.0 License, in case you
have the desire to reuse any of it.

Copying source code directly from the book, in the PDF editions, works best with
Adobe Reader, though it may also work with other PDF viewers. Some PDF viewers,
for reasons that remain unclear, foul up copying the source code to the clipboard
when it is selected.

Creative Commons and the Four-to-Free (42F)
Guarantee
Each CommonsWare book version will be available for use under the Creative
Commons Attribution-Noncommercial-ShareAlike 3.0 license as of the fourth
anniversary of its publication date. That means that, once four years have elapsed,
you can use this prose for non-commercial purposes. That is our Four-to-Free
Guarantee to our readers and the broader community.

This edition of this book will be available under the aforementioned Creative
Commons license on 1 January 2025.

For more details on the Creative Commons Attribution-Noncommercial-ShareAlike
3.0 license, visit the Creative Commons Web site

Note that future editions of this book will become free on later dates, each four years
from the publication of that edition. Releasing one edition under the Creative
Commons license does not automatically release all editions under that license.

PREFACE

xii

mailto:bounty@commonsware.com
https://www.apache.org/licenses/LICENSE-2.0.html
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments
The author would like to thank the Google team responsible for Android and the
Android Jetpack.

PREFACE

xiii

Part One: Getting Started

Introducing Android

No doubt, you are in a hurry to get started with Android application development.
After all, you are reading this book, aimed at busy coders.

However, before we dive into getting tools set up and starting in on actual
programming, it is important that we “get on the same page” with respect to several
high-level Android concepts. This will simplify further discussions later in the book.

Focus: Apps, Not Operating Systems
This book is focused on writing Android applications (“apps”). An app is something
that a user might install from the Play Store or otherwise download to their device.
That app usually has some user interface, and it might have other code designed to
work in the background.

This book is not focused on modifications to the Android firmware, such as writing
device drivers. For that, you will need to seek other resources.

What You Need
In order to get started as an Android developer — and to get the most out of this
book — you are going to need several things, outlined in the following sections.

A Development Machine

For the purposes of this book, you will need a Windows, macOS, or Linux computer
on which to write your Android apps. This is how the vast majority of Android app
developers do their work, though there are tools (e.g., AIDE) that allow you to write

1

https://www.opersys.com/

Android apps directly on an Android device.

Your development machine should be as powerful as you can manage:

• A fast CPU (e.g., quad-core Intel Core i5/i7 with at least 2.0 GHz clock speed
per core)

• As much RAM as you can manage (8GB minimum)
• As fast of a hard drive as you can find (an SSD is an excellent choice in

general)
• A screen with enough resolution to use the development tools (1280x800

minimum resolution)

The primary development tool for Android apps — called Android Studio —
consumes a lot of resources, particularly when compiling a project, which is why it
helps to have a powerful development machine.

Language Experience

In general, to write Android apps, you need to know how to work with computer
programming languages. In particular, Android app development is focused heavily
on Java and Kotlin, with Groovy also playing a role.

Java

The original programming language used for Android app development was Java.
Right now, most Android code in the world is written in Java, and most educational
material is written around Java.

As a result, to be an Android app developer today, it helps to know Java.

This book does not teach you Java. Java has been around for around two decades,
and so there are lots of existing books, courses, videos, and the like to help you learn
Java. However, there are many things in Java that are not really relevant for Android
app development, such as Swing desktop GUIs and Java servlets for Web
applications. You do not need to know everything about Java, as Java is vast. Rather,
focus on:

• Language fundamentals (flow control, etc.)
• Classes and objects
• Methods and data members
• Public, private, and protected

INTRODUCING ANDROID

2

https://en.wikibooks.org/wiki/Java_Programming/Language_Fundamentals
https://en.wikibooks.org/wiki/Java_Programming/Classes_and_Objects
https://en.wikibooks.org/wiki/Java_Programming/Methods
https://en.wikibooks.org/wiki/Java_Programming/Data_and_Variables
https://en.wikibooks.org/wiki/Java_Programming/Access_Modifiers

• Static and instance scope
• Exceptions
• Threads
• Collections
• Generics
• File I/O
• Reflection
• Interfaces

The links are to Wikibooks material on those topics, though there are countless
other Java resources for you to consider.

Kotlin

The primary current language for Android app development is Kotlin. Kotlin is a
fairly new language, having only reached 1.0 status in 2016. That causes some
problems, as there is less material about how to write Kotlin than there is on how to
write Java. On the other hand, Kotlin adopts newer approaches and discards legacy
“cruft”. The resulting language can be much more concise, getting more work done
with fewer lines of code.

This book does not teach you Kotlin. The author of this book is also the author of
Elements of Kotlin, which was written with an eye towards it being a companion to
the book that you are reading now. From time to time, you will find this book
pointing out relevant chapters and sections in Elements of Kotlin, to help newcomers
to both Android and Kotlin learn both subjects.

Note that at the 2019 Google I|O conference, Google indicated that the Android SDK
will be “Kotlin first” going forward. While Java development is still possible, Google
will be focusing on Kotlin in terms of documentation, samples, education, and some
new technologies. So, while this book will present material in both Java and Kotlin,
you should strongly consider learning Kotlin in the not-too-distant future.

Groovy and Gradle

The code that causes your app to do stuff will be written mostly in Java and Kotlin.

The code that causes your app to be built out of that Java and Kotlin will be written
in Groovy… though you may not notice this much.

INTRODUCING ANDROID

3

https://en.wikibooks.org/wiki/Java_Programming/Using_Static_Members
https://en.wikibooks.org/wiki/Java_Programming/Exceptions
https://en.wikibooks.org/wiki/Java_Programming/Threads_and_Runnables
https://en.wikibooks.org/wiki/Java_Programming/Collections
https://en.wikibooks.org/wiki/Java_Programming/Generics
https://en.wikibooks.org/wiki/Java_Programming/BasicIO
https://en.wikibooks.org/wiki/Java_Programming/Reflection
https://en.wikibooks.org/wiki/Java_Programming/Interfaces
https://commonsware.com/Kotlin

Most Android apps are built using a build tool called Gradle. Gradle is a program for
building other programs. We will be working with “Gradle build scripts” to configure
how Gradle turns our source code into a (hopefully) working app. The Gradle build
scripts that we use today usually are written using the Groovy programming
language.

However, for most basic uses of Gradle — including pretty much everything in this
book — you will not need to think much about Groovy syntax. Just follow the
recipes described in the book, and you can put off learning Groovy until such time
as you really want to start creating elaborate build scripts.

An Android Test Environment

Writing Android apps is fun!

(no, really!)

However, that fun only appears when you can actually run the app that you created.
Otherwise, you just have a hunk of source code that sits around doing nothing. To
run the app, you will need an Android device or emulator.

Devices

Every Android developer should have at least one Android device. Every Android
device that legitimately has the Play Store on it is able to be used for app
development. You can enable the super-secret “developer options” in the device, to
allow you to install apps that you have written yourself on the device and test them
out — we will see how to do that in this book.

Typically, that Android device will be a phone, though you could test on something
else, such as a tablet, if you wish. Android app development puts few requirements
on the device itself; for example, you do not necessarily need to have a usable SIM
installed in the phone.

In an upcoming chapter, you will see how to configure your Android device for use
with app development.

Emulators

All Android developers should have at least one device. Some Android developers,

INTRODUCING ANDROID

4

such as the author of this book, have lots of Android devices. However, inevitably,
you run into cases where hardware is a problem:

• You want to test your app on different versions of Android, but you do not
have a device for a particular Android version

• You want to test your app for various screen sizes and resolutions, but you
do not have devices for all of the scenarios that you wish to test

• You want to test your app in unusual situations, such as running on a
Chromebook, and you do not have a device that matches

For those cases, the Android tools come with an emulator. The emulator gives you
an app for your development machine that pretends to be an Android device. You
decide what sort of device it is: Android version, screen size and resolution, and so
on. You can run your app on the emulator and get a sense for what it would be like
for the app to be running on a real device with those same characteristics.

In an upcoming chapter, you will see how to set up the Android emulator.

Patience and Serenity

Android app development often can be a frustrating experience:

• Advice that you get from older sources may not work, due to changes in
Android

• Dealing with multiple programming languages makes it more difficult to
make use of advice that you get, if you have to keep converting code snippets
between languages

• The GUI that you wrote that works fine on one device does not work quite as
well on the next device

• And so on

You will be able to address all of these challenges in time. Early on, though, you
should expect that these sorts of problems will arise, and you will need to cope with
them when they do.

How This Book Is Organized
This book is divided into two major parts: a “Hello, World” walk-through and
“deeper dives” into major Android app development topics.

INTRODUCING ANDROID

5

“Hello, World!”, Front to Back

For decades, the classic first program for a person in a given programming
environment is dubbed “hello, world”.

In a typical programming environment, a “hello, world!” app is usually trivial,
offering little to learn from.

Android is complicated, which makes even “hello, world!” a place to learn all sorts of
things, from how user interfaces get constructed, to how our tools work, to how the
tools know how to build that app and show us that user interface.

So, in the first several chapters, we will examine various facets of a “hello, world!”
app generated from Android Studio’s new-project wizard.

Deeper Dives

Of course, a “hello, world!” app is very shallow. You will not get very far in Android
app development if all you know is what “hello, world!” shows you.

So, after the tour of the “hello, world!” app, we will expand upon the concepts seen
there, exploring different aspects of Android app development. We will not cover
everything in Android — that would take thousands upon thousands of pages. This
book will give you a basic foundation for Android app development and will help
point you to places to learn other facets of what Android apps can do.

INTRODUCING ANDROID

6

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

Setting Up the Tools

Now, let us get you set up with the pieces and parts necessary to build an Android
app.

NOTE: The instructions presented here are accurate as of the time of this writing.
However, the tools change rapidly, and so these instructions may be out of date by
the time you read this. Please refer to the Android Developers Web site for current
instructions, using this as a base guideline of what to expect.

But First, Some Notes About Android’s Emulator
As mentioned in the previous chapter, the Android tools include an emulator, a
piece of software that pretends to be an Android device. This is very useful for
development — not only does it mean you can get started on Android without a
device, but the emulator can help test device configurations that you do not own.

Emulators not only emulate Android itself, but also the CPU of the Android device.
Most Android devices have ARM CPUs… but it is likely that your development
machine has an x86 CPU. The emulator can emulate an ARM CPU when running on
your x86 CPU, but it is slow. Fortunately, the emulator can also emulate an Android
device that has an x86 CPU, and this runs much more quickly. You really want to be
able to use the x86 emulator.

However, to use the x86 emulator, you will need some additional software:

• Linux users need KVM
• macOS and Windows users need the “Intel Hardware Accelerated Execution

Manager” (a.k.a., HAXM), which the Android Studio installer will attempt to
install for you

7

https://developer.android.com/

And, the x86 emulator will only work for CPUs meeting certain requirements:

Development
OS

CPU
Manufacturer

CPU Requirements

mac OS Intel any modern Mac should work

Linux/
Windows

Intel
support for Intel VT-x, Intel EM64T (Intel 64),

and Execute Disable (XD) Bit functionality

Linux AMD
support for AMD Virtualization (AMD-V) and
Supplemental Streaming SIMD Extensions 3

(SSSE3)

Windows 10
April 2018 or

newer
AMD

support for Windows Hypervisor Platform
(WHPX) functionality

If your CPU does not meet those requirements, you will want to have one or more
Android devices available to you, so that you can test on hardware rather than the
emulator.

If you are running Windows or Linux, you need to ensure that your computer’s BIOS
is set up to support “virtualization extensions”. Unfortunately, many PC
manufacturers disable this by default. The details of how to get into your BIOS
settings will vary by PC, but usually it involves rebooting your computer and
pressing some function key on the initial boot screen. In the BIOS settings, you are
looking for references to “virtualization”. Enable them if they are not already
enabled. macOS machines come with virtualization extensions pre-enabled.

Part of the Android Studio installation process will try to set you up to be able to use
the x86 emulator. Make note of any messages that you see in the installation wizard
regarding “HAXM” (or, if you are running Linux, KVM), as those will be important
later.

Step #1: Install Android Studio
At the time of this writing, the current production version of Android Studio is 4.1.1
and this book covers that version. Android Studio gets updated often, and so you
may be on a newer version — there may be some differences between what you have

SETTING UP THE TOOLS

8

and what is presented here.

You have two major download options. You can get the latest shipping version of
Android Studio from the Android Studio download page. Or, you can download
Android Studio 4.1.1 directly, for:

• Windows
• macOS
• Linux

Windows users can download a self-installing EXE, which will add suitable launch
options for you to be able to start the IDE.

macOS users can download a DMG disk image and install it akin to other macOS
software, dragging the Android Studio icon into the Applications folder.

Linux users (and power Windows users) can download a ZIP file, then unZIP it to
some likely spot on your hard drive. Android Studio can then be run from the
studiostudio batch file or shell script from your Android Studio installation’s bin/
directory.

Step #2: Running Android Studio for the First Time
When you first run Android Studio, you may be asked if you want to import settings
from some other prior installation of Android Studio:

Figure 1: Android Studio First-Run Settings Migration Dialog

SETTING UP THE TOOLS

9

https://developer.android.com/studio
https://redirector.gvt1.com/edgedl/android/studio/install/4.1.1.0/android-studio-ide-201.6953283-windows.exe
https://redirector.gvt1.com/edgedl/android/studio/install/4.1.1.0/android-studio-ide-201.6953283-mac.dmg
https://redirector.gvt1.com/edgedl/android/studio/ide-zips/4.1.1.0/android-studio-ide-201.6953283-linux.tar.gz

If you are using Android Studio for the first time, the “Do not import settings”
option is the correct choice to make.

Then, after a short splash screen, you may be presented with a “Data Sharing”
dialog:

Figure 2: Android Studio Data Sharing Dialog

Click whichever button you wish.

SETTING UP THE TOOLS

10

Then, after a potentially long “Finding Available SDK Components” progress dialog,
you will be taken to the Android Studio Setup Wizard:

Figure 3: Android Studio Setup Wizard, First Page

SETTING UP THE TOOLS

11

Just click “Next” to advance to the second page of the wizard:

Figure 4: Android Studio Setup Wizard, Second Page

Here, you have a choice between “Standard” and “Custom” setup modes. Most likely,
right now, the “Standard” route will be fine for your environment.

SETTING UP THE TOOLS

12

If you go the “Standard” route and click “Next”, you should be taken to a wizard page
where you can choose your UI theme:

Figure 5: Android Studio Setup Wizard, UI Theme Page

SETTING UP THE TOOLS

13

Choose whichever you like, then click “Next”, to go to a wizard page to verify what
will be downloaded and installed:

Figure 6: Android Studio Setup Wizard, Verify Settings Page

SETTING UP THE TOOLS

14

Clicking “Next” may take you to a wizard page explaining some information about
the Android emulator:

Figure 7: Android Studio Setup Wizard, Emulator Info Page

What is explained on this page may not make much sense to you. That is perfectly
normal, and we will get into what this page is trying to say later in the book. Just
click “Finish” to begin the setup process. This will include downloading a copy of the
Android SDK and installing it into a directory adjacent to where Android Studio
itself is installed.

When that is done, Android Studio will busily start downloading stuff to your
development machine.

SETTING UP THE TOOLS

15

Clicking “Finish” when that is done will then take you to the Android Studio
Welcome dialog:

Figure 8: Android Studio 4.0 Welcome Dialog

SETTING UP THE TOOLS

16

Getting Your First Project

Creating an Android application first involves an Android “project”. As with many
other development environments, the project is where your source code and other
assets (such as icons) reside. And, the project contains the instructions for your tools
for how to convert that source code and other assets into an Android app.

So, let’s work on setting up a “hello, world!” application to examine.

As with the rest of this book, these instructions are for Android Studio 4.1.1. If you
are using a newer or older version of this IDE, while the instructions are likely to be
close to what you will see, there will be differences.

Step #1: Importing the Project
Roughly speaking, there are two ways to start with a project with Android Studio:
creating a new project or importing an existing project.

It might sound like creating a new project would be the more common scenario. In
truth, many developers import an existing project, because they are working on a
development team, and somebody else on the team created the project. Often, that
project was created quite some time ago, with developers coming and going from
the team.

So, while we will see how to create a project later in the book, for now, let’s import
an existing project, one set up for use by this book. It will closely resemble the sort
of project that you get when creating a brand-new project in Android Studio.

You can download this project from the CommonsWare site. Then, unZIP that
project to some place on your development machine. It will unZIP into an

17

https://commonsware.com/Jetpack/HelloWorld/4.1.1/HelloWorld.zip

HelloWorld/ directory.

Then, import the project. From the Android Studio welcome dialog — where we
ended up at the end of the previous chapter — you can import a project via the
“Import project (Eclipse ADT, Gradle, etc.)” option. If you already have a project
open in Android Studio, you can import a project via File > New > Import Project…
from the main menu.

Importing a project brings up a typical directory-picker dialog. Pick the HelloWorld/
directory and click OK to begin the import process. This may take a while,
depending on the speed of your development machine. A “Tip of the Day” dialog
may appear, which you can dismiss.

At this point, you should have a mostly-empty Android Studio IDE window:

Figure 9: Android Studio Project Window, Showing Hello World

We will examine what is all in this window coming up in future chapters. But, first,
let’s get things set up for you to be able to run this sample app and see its results.

GETTING YOUR FIRST PROJECT

18

Step #2: Get Ready for the x86 Emulator
Your next decision to make is whether or not you want to bother setting up an
emulator image right now. If you have an Android device, you may prefer to start
testing your app on it, and come back to set up the emulator at a later point. In that
case, skip to Step #4.

Otherwise, here is what you may need to do, based on the operating system on your
development machine.

Windows

If your CPU met the requirements, and you successfully enabled the right things in
your system’s BIOS, the Android Studio installation should have installed HAXM,
and you should be ready to continue with the next step.

If, on the other hand, you got some error messages in the installation wizard
regarding HAXM, you would need to address those first. Unfortunately, there is so
much variety in PC hardware and possible problems that this book cannot help you
diagnose and fix your HAXM problems.

Mac

The wizards of Cupertino set up their Mac hardware to be able to run the Android
x86 emulator without additional configuration. This is really nice of them,
considering that Android competes with iOS. The Android Studio installation
wizard should have installed HAXM successfully, and you should be able to continue
with the next step.

Linux

The Android x86 emulator on Linux does not use HAXM. Instead, it uses KVM, a
common Linux virtualization engine.

If, during the Android Studio installation process, the wizard showed you a page
that said that you needed to configure KVM, you will need to do that before you can
set up and use the x86 emulator. The details of how to set up KVM will vary by
Linux distro (e.g., Ubuntu).

GETTING YOUR FIRST PROJECT

19

https://help.ubuntu.com/community/KVM/Installation

Step #3: Set Up the AVD
The Android emulator can emulate one or several Android devices. Each
configuration you want is stored in an “Android virtual device”, or AVD. The AVD
Manager is where you create these AVDs.

To open the AVD Manager in Android Studio, choose Tools > AVD Manager from the
main menu.

You should be taken to “welcome”-type screen:

Figure 10: Android Studio AVD Manager, Welcome Screen

GETTING YOUR FIRST PROJECT

20

Click the “Create Virtual Device” button, which brings up a “Virtual Device
Configuration” wizard:

Figure 11: Android Studio Virtual Device Configuration Wizard, First Page

The first page of the wizard allows you to choose a device profile to use as a starting
point for your AVD. The “New Hardware Profile” button allows you to define new
profiles, if there is no existing profile that meets your needs.

Since emulator speeds are tied somewhat to the resolution of their (virtual) screens,
you generally aim for a device profile that is on the low end but is not completely
ridiculous. For example, a 1280x768 or 1280x720 phone would be considered by
many people to be fairly low-resolution. However, there are plenty of devices out
there at that resolution (or lower), and it makes for a reasonable starting emulator.

If you want to create a new device profile based on an existing one — to change a
few parameters but otherwise use what the original profile had — click the “Clone
Device” button once you have selected your starter profile.

However, in general, at the outset, using an existing profile is perfectly fine. The
Nexus 4 image is a likely choice to start with.

GETTING YOUR FIRST PROJECT

21

Clicking “Next” allows you to choose an emulator image to use:

Figure 12: Android Studio Virtual Device Configuration Wizard, Second Page

The emulator images are spread across three tabs:

• “Recommended”
• “x86 Images”
• “Other Images”

Each of those tabs lists a bunch of possible emulator images, where those tables
have cryptic columns like “API Level” and “Release Name”. We will get into what
those are a bit later in the book. For right now, the key column is the “Target”
column. This will tell you what version of Android the emulator emulates, such as
“Android 8.1” or “Android 5.1”. For the time being, whether the “Target” has “(Google
APIs)” or not does not matter very much.

GETTING YOUR FIRST PROJECT

22

On some of these tabs, you should see some entries with a “Download” link, and you
might see others without it. The emulator images with “Download” next to them
will trigger a one-time download of the files necessary to create AVDs for that
particular API level and CPU architecture combination, after another license dialog
and progress dialog:

Figure 13: Android Studio Component Installer Dialog, Downloading API 28 Image

GETTING YOUR FIRST PROJECT

23

Once you have identified the image that you want — and have downloaded it if
needed — click on one of them in the wizard. Clicking “Next” allows you to finalize
the configuration of your AVD:

Figure 14: Android Studio Virtual Device Configuration Wizard, Third Page

A default name for the AVD is suggested, though you are welcome to replace this
with your own value. However, that name must be something valid: only letters,
numbers, spaces, and select punctuation (e.g., ., _, -, (,)) are supported.

The rest of the default values should be fine for now.

Clicking “Finish” will return you to the main AVD Manager, showing your new AVD.
You can then close the AVD Manager window.

Step #4: Set Up the Device
You do not need an Android device to get started in Android application
development. Having one is a good idea before you try to ship an application (e.g.,
upload it to the Play Store). And, perhaps you already have a device — maybe that is
what is spurring your interest in developing for Android.

GETTING YOUR FIRST PROJECT

24

If you do not have an Android device that you wish to set up for development, you
can skip this step and jump ahead to Step #5.

First, we need to enable USB debugging on the device. To do this, go into the
Settings app.

You will need to find the “Build number” entry in here. Normally, that is on an
“About” screen in Settings, though some devices have it in a separate screen (e.g.,
“Software Info”) off of the “About” screen.

Once you find the “Build number” entry, tap it seven times.

(yes, this is silly — just roll with it)

You should then see a brief popup message (a Toast) indicating that you are now a
developer.

Then, you should have access to a “Developer options” item. Once again, the exact
location of this varies by device, but usually it is either:

GETTING YOUR FIRST PROJECT

25

• An entry on the main Settings screen
• An entry in “System” > “Advanced options”, particularly on Android 8.0+

devices:

Figure 15: System Screen in Android 9.0 Settings App, Showing Advanced Options,
with Developer Options Highlighted

GETTING YOUR FIRST PROJECT

26

Tapping on “Developer options” will bring up the Developer Options screen:

Figure 16: Developer Options Screen in Android 9.0 Settings App

You may need to slide a switch in the upper-right corner of the screen to the “ON”
position to modify the values on this screen.

GETTING YOUR FIRST PROJECT

27

Then, scroll down and enable USB debugging, so you can use your device with the
Android build tools:

Figure 17: Debugging Options, in Android 9.0 Settings App

You can leave the other settings alone for now if you wish, though you may find the
“Stay awake” option to be handy, as it saves you from having to unlock your phone
all of the time while it is plugged into USB.

GETTING YOUR FIRST PROJECT

28

On devices running Android 4.2.2 or higher, before you can actually use the setting
you just toggled, you will be prompted to allow USB debugging with your specific
development machine via a dialog box:

Figure 18: Allow USB Debugging Dialog

This occurs when you plug in the device via the USB cable and have the driver
appropriately set up. That process varies by the operating system of your
development machine, as is covered in the following sections.

Windows

When you first plug in your Android device, Windows will attempt to find a driver
for it. It is possible that, by virtue of other software you have installed, that the
driver is ready for use. If it finds a driver, you are probably ready to go.

If the driver is not found, you can try to get one from the manufacturer links on the
Android Developer site.

macOS and Linux

It is likely that simply plugging in your device will “just work”.

GETTING YOUR FIRST PROJECT

29

https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb

If you are running Ubuntu (or perhaps other Linux variants), and when you later try
running your app it appears that Android Studio does not “see” your device, you may
need to add some udev rules. This GitHub repository contains some instructions and
a large file showing the rules for devices from a variety of manufacturers, and this
blog post provides more details of how to work with udev rules for Android devices.

Step #5: Running the Project
Now, we can confirm that our project is set up properly by running it on a device or
emulator.

Android Studio has a toolbar just below the main menu. In that toolbar, you will
find two drop-down lists, followed by the Run toolbar button (usually depicted as a
green rightward-pointing triangle):

Figure 19: Android Studio Toolbar Segment

The first drop-down says “this is what I want to run”. Right now, your only viable
option is “app”, referring to the app that this project builds.

The second drop-down says “this is where I want to run it”. Here, you will find a list
of devices and emulators that are available to you.

GETTING YOUR FIRST PROJECT

30

https://github.com/M0Rf30/android-udev-rules
https://twikkie.wordpress.com/2016/08/02/how-to-debug-android-application-on-device-via-ubuntu/
https://twikkie.wordpress.com/2016/08/02/how-to-debug-android-application-on-device-via-ubuntu/

To run the app, choose your desired device or emulator in the second drop-down,
then click the Run toolbar button. If you choose an emulator, and the emulator is
not already running, Android Studio will start it up. Then, after a short wait, your
app should appear on it:

Figure 20: Android 9.0 Emulator with HelloWorld App

Note that you may have to unlock your device or emulator to actually see the app
running.

The first time you launch the emulator for a particular AVD, you may see this
message:

Figure 21: Android Emulator Cold-Boot Warning

The emulator behaves a bit like an Android device. Closing the emulator window is
more like tapping the POWER button to turn off the screen. The next time you start

GETTING YOUR FIRST PROJECT

31

that particular AVD, it will wake up to the state in which you left it, rather than
booting from scratch (“cold boot”). This speeds up starting the emulator.
Occasionally, though, you will have the need to start the emulator as if the device
were powering on. To do that, in the AVD Manager, in the drop-down menu in the
Actions column, choose “Cold Boot Now”.

Figure 22: AVD Manager, Showing Actions Drop-Down Menu

GETTING YOUR FIRST PROJECT

32

Taking a Tour of Android Studio

At this point, you have Android Studio set up, you have imported a project, and you
have run that app on a device or emulator. Congratulations!

However, it may be useful for you to understand exactly what all of this does.

So, in this chapter and the next few that follow it, we are going to walk through what
you set up in the previous two chapters, to explain what the pieces are and how they
work together. We will start by examining Android Studio itself and the major things
that you will be using.

33

The Project Tree
The “Project” view — docked by default on the left side, towards the top — brings
up a way for you to view what is in the project.

Figure 23: Android Studio Project View (Highlighted with Red Arrow)

What appears in this view is determined by the drop-down list above the tree itself:

Figure 24: Android Studio Project View Drop-Down (Highlighted with Red Arrow)

TAKING A TOUR OF ANDROID STUDIO

34

The default is known as the “Android view”:

Figure 25: Android Studio Project View, “Android” Mode

TAKING A TOUR OF ANDROID STUDIO

35

You are welcome to use this if you wish. Many newcomers to Android are more
comfortable changing that drop-down to be “Project”. This converts the tree to one
showing the files that make up the project, with a typical sort of directories-and-files
structure:

Figure 26: Android Studio Project View, “Project” Mode

This book usually will show the “Project” edition of the tree.

TAKING A TOUR OF ANDROID STUDIO

36

The Editing Pane
The biggest area of the IDE is devoted to the editing pane. Most files that you
double-click on in the Project view will open in the editing pane. Each such file gets
its own tab:

Figure 27: Android Studio Project View, Showing Editing Pane

The Docked Views
The “Project” view is not the only such view docked along the edges of the IDE. A
variety of other such views are docked there by default, and the View > Tool
Windows menu will offer other such views that you can display.

TAKING A TOUR OF ANDROID STUDIO

37

Some of these are “general purpose”, not strictly tied to Android app development.
For example, the “Terminal” tool, docked by default towards the bottom of the IDE,
brings up a terminal or command prompt, so you can execute command-line
programs right from within the IDE:

Figure 28: Android Studio Terminal

Others of these, such as “Gradle” and “Logcat”, are tied to Android app development,
and we will examine those in greater detail as we explore different aspects of how to
write Android apps.

Popular Menu and Toolbar Options
Across the top of the IDE are toolbars. These represent a subset of the items that are
available in the IDE’s main menu. There are lots of toolbar options and lots of menu
items. We will use some of these in the course of this book, but we will not be
examining all of them.

By contrast, there are several menu items — many with corresponding toolbar
buttons — that are fairly popular and are worth mentioning now.

We already used one of these toolbar buttons: the Run option, represented by a
green triangle:

Figure 29: Android Studio Toolbar Segment

TAKING A TOUR OF ANDROID STUDIO

38

Additional Run Options

After you have run your app on a device or emulator, a few new toolbar buttons will
show up, replacing the original Run button:

Figure 30: Post-Run Android Studio Toolbar Segment

The black square with a green curved arrow will re-run your app on the device or
emulator. This will do the same thing as the Run button did back when it was just
the simple green triangle.

The “A” with a green curved arrow, and the four lines with a tiny green curved arrow,
will try to take changes that you have made in the IDE and simply “apply” them to
the running copy of your app. For larger projects, this might be substantially faster
than just running the app. However, it is somewhat risky — the resulting patched
app might not be exactly the same as what you would get by just running it
normally.

Debug

Near to those toolbar buttons is a large green bug:

Figure 31: Android Studio Debug Toolbar Button (Highlighted with Red Arrow)

This is the “Debug” button. By default, clicking this has much the same effect as
clicking the Run button, other than Debug happening a bit more slowly. However,
this runs your app under the control of the Android Studio debugger, where you can
set breakpoints, inspect objects, and otherwise see what is going on when the app is
running.

We will examine how to use the Android Studio debugger more later in the book.

Open Project/Open Recent

In Android Studio, you can have several projects open at one time. Each project gets

TAKING A TOUR OF ANDROID STUDIO

39

its own separate window, with the same menus, toolbar, and so on as do the other
windows.

To open another project, you can:

• Choose File > Open… from the main menu, to open an existing Android
Studio project

• Choose File > Open Recent from the main menu, which will bring up a fly-
out menu containing a list of projects that you have recently worked on, to
be able to re-open those projects rapidly

• Choose File > New > Import Project from the main menu to import another
project and set it up for use with Android Studio

• Choose File > New > New Project from the main menu to create a new
project using a new-project wizard, which we will examine later in the book

To stop working on a project, just close its window. To stop Android Studio
completely, close all of its windows. When you re-launch Android Studio, it will re-
open the last project you had worked in, and you can get to other recent projects
quickly via File > Open Recent.

AVD Manager

We saw how to set up an emulator with the AVD Manager in the previous chapter.

To return to the AVD Manager, you can use the Tools > AVD Manager main menu
option that you did before. Also, there is a toolbar button for more rapid access to
the AVD Manager:

Figure 32: Android Studio AVD Manager Toolbar Button (Highlighted with Red
Arrow)

We will explore the AVD Manager, and working with the emulator, in greater detail
in an upcoming chapter.

TAKING A TOUR OF ANDROID STUDIO

40

SDK Manager

When you installed Android Studio and ran it for the first time, a lot of the tools,
libraries, and related materials that form “the Android SDK” were also downloaded
and installed for you.

When updates to Android Studio or installed pieces of the Android SDK are
available, you will be prompted with a dialog or other form of pop-up, where you
can elect to allow Android Studio to install the update. Note that installing updates
may take a few minutes, depending on your Internet connection speed. Also note
that installing updates may require you to restart Android Studio afterwards to apply
those updates.

On occasion, you may find instructions telling you to go to “the SDK Manager” to
install something. You can get to the SDK Manager via Tools > SDK Manager in the
main menu or via its corresponding toolbar button:

Figure 33: Android Studio SDK Manager Toolbar Button (Highlighted with Red
Arrow)

We will explore the SDK Manager in greater detail later in the book.

TAKING A TOUR OF ANDROID STUDIO

41

Settings

To control the overall behavior of Android Studio, there is a Settings dialog that you
can display via “File” > “Settings” (on Windows and Linux; macOS has an
equivalent option in “Android Studio” > “Preferences…”):

Figure 34: Android Studio Settings Dialog

There are a lot of settings that you can configure in the Settings dialog. You can
either navigate via the tree on the left or via the search field.

Some popular things to tailor include:

TAKING A TOUR OF ANDROID STUDIO

42

• The color scheme to use for the IDE:

Figure 35: Android Studio Settings Dialog, Color Scheme General Settings

TAKING A TOUR OF ANDROID STUDIO

43

• The font and font size to use in the editing pane:

Figure 36: Android Studio Settings Dialog, Color Scheme Font Settings

TAKING A TOUR OF ANDROID STUDIO

44

• The coding style rules to apply to your source code, for languages like Java
and Kotlin:

Figure 37: Android Studio Settings Dialog, Kotlin Code Style Settings

We will explore more options later in the book.

Android Studio and Release Channels
When you install Android Studio for the first time, your installation will be set up to
get updates on the “stable” release channel. Here, a “release channel” is a specific set
of possible upgrades. The “stable” release channel means that you are getting full
production-ready updates. Android Studio will check for updates when launched,
and you can manually check for updates via the main menu (e.g., Help > Check for
Update… on Windows and Linux).

If an update is available, you will be presented with a dialog box showing you details
of the update, allowing you to view release notes, and encouraging you to apply the
update. If you choose the latter, the dialog downloads the update and restarts the
IDE, applying the update along the way.

TAKING A TOUR OF ANDROID STUDIO

45

To control which channel’s worth of updates you are getting, go to the Settings
dialog, and in there go to “Appearance & Behavior > System Settings > Updates”:

Figure 38: Android Studio Settings Dialog, Updates Screen

You have four channels to choose from:

• Stable, which is appropriate for most developers
• Beta, which will get updates that are slightly ahead of stable
• Dev, which is even more ahead than is the beta channel
• Canary, which is updated very early (and the name, suggestive of a “canary in

a coal mine”, indicates that you are here to help debug the IDE)

For most developers, Stable is the best choice. Power users might consider one of the
other channels.

TAKING A TOUR OF ANDROID STUDIO

46

When an update is available, Android Studio will tell you via a dialog:

Figure 39: Android Studio Update Dialog

“Remind Me Later” will pop up the dialog in the future, while “Update and Restart”
will apply the upgrade now and restart the IDE after upgrading it. “Ignore This
Update” will stop the dialog from appearing automatically, but it will not apply the
update… and usually you want the updates.

TAKING A TOUR OF ANDROID STUDIO

47

Examining Your Code

When you decided to learn how to write Android apps, most likely you were
thinking about traditional computer programming, using programming languages
like Java and Kotlin. There is a fair amount of such programming involved in
Android apps, though perhaps less than you might think.

In this chapter, we will explore what our starter project contains in terms of the code
and how that code is organized.

The Top Level
Let’s look at our starter project’s tree, as shown in the “Project” view (in the “Project”
mode in the drop-down), focusing on the top level of entries:

Figure 40: Android Studio Project View, Showing Top Level Entries

You will spend the vast majority of your time in the HelloWorld/ portion of the
project tree, which represents the files that make up your Android app. We will
examine the other two items — “External Libraries” and “Scratches and Consoles” —
a bit later in this chapter.

49

The Project Contents
That HelloWorld/ entry contains a fair number of files and subdirectories:

Figure 41: Android Studio Project View, Showing HelloWorld/ Entries

Most of the time, you will be working in the app/ directory. This is called a “module”,
and it represents something that you are trying to build:

• An app for an Android device
• An app for some other specialty scenario, such as an app to be deployed to a

Wear OS smartwatch
• A library to be used by multiple other modules
• And so on

Your project can have one or several modules; by default, it will just have one,
named app/, for building your Android app. In Android Studio 4.1.1, a module
directory is denoted by the small dot in the corner of the folder icon and a boldface
name.

Some of the files and directories in HelloWorld/ are tied to the Gradle build system,

EXAMINING YOUR CODE

50

which we will discuss later in this book:

• .gradle/
• gradle/
• build.gradle
• gradle.properties
• gradlew
• gradlew.bat
• local.properties
• settings.gradle

The .idea/ directory, along with the build/ directory, are generated from the rest of
the files in your project. You will not need to do anything with these manually —
Android Studio will handle all of that for you.

Android Studio can work with a variety of version control systems, but it has the
tightest integration with Git. When you create a project in Android Studio, it will
create a .gitignore file for you, set up to indicate which files do not need to go into
version control. If you are using Git, this file should be a great starting point, though
you can modify it as needed (e.g., to ignore other files or directories). If you are not
using Git, you can ignore or delete the .gitignore file.

EXAMINING YOUR CODE

51

https://en.wikipedia.org/wiki/Git

The App Module Contents
The app/ directory contains the files necessary to build your app:

Figure 42: Android Studio Project View, Showing app/ Entries

Most of the time, you will be working in the src/ directory, which contains the
source code and other files that you will be creating and editing to define your app.

The build/ directory here is similar to the build/ directory that is under the
HelloWorld/ root directory. It contains the output of building your app. In this case,
we will use this build/ directory a bit more often, as it contains the actual app itself
that we can distribute through the Google Play Store or other app distribution
channels. We will examine this build/ directory a bit more later in the book.

In a typical starter project, the libs/ directory is empty. It is there to support some
old ways of attaching libraries to your module, for code written by others that you
wish to use. We will explore what libraries are and what ones this project uses in an
upcoming chapter.

The build.gradle file, like its counterpart in the HelloWorld/ root directory,
contains Gradle instructions for how to build your app. We will examine this file in
detail later in the book.

The .gitignore file, like its counterpart in the HelloWorld/ root directory, identifies

EXAMINING YOUR CODE

52

files and directories that can be skipped when putting this project into a Git
repository. While you may need to maintain this file if you are using Git, using Git
and .gitignore is outside the scope of this book.

Last, the proguard-rules.pro file is there in support of ProGuard and related tools.
These are used in Android project for two reasons:

1. They help to reduce the size of the apps, by eliminating stuff from libraries
that we are not really using

2. They “obfuscate” the code in the apps, to make it slightly more difficult for
people to “reverse engineer” the apps and figure out how they work

Until you are ready to think about distributing your app to other users, though,
ProGuard and similar tools are not necessary. Hence, we will postpone looking at
that stuff until much later in the book.

The Generated Source Sets
Inside the src/ directory are “source sets”. These identify different directories of
source code (and related files) that will be used in different circumstances:

Figure 43: Android Studio Project View, Showing src/ Entries

There are three source sets that will be created by default for an Android project:
main/, androidTest/ and test/.

EXAMINING YOUR CODE

53

https://www.guardsquare.com/en/proguard

main/main/

The source set that you will spend most of your time in is main/. This represents the
“main” source code for your app. For most apps, this source set contains all of your
code (and related files) that make up the app itself:

Figure 44: Android Studio Project View, Showing main Source Set Entries

Your Java and Kotlin code will go in a java/ directory inside of the source set. Here,
we see one Kotlin file, named MainActivity.kt (where the .kt part is left off in the
tree).

You will also find:

• Resources, in the res/ directory, which are files that are not source code but
contribute to your app, such as your icons and other images, as we will see in
an upcoming chapter

• AndroidManifest.xml, which is the “table of contents” of what is in your app,
as we will see in another upcoming chapter

• Optionally other things (assets/, jni/, aidl/, etc.), though these will not be
seen in every Android project

EXAMINING YOUR CODE

54

androidTest/androidTest/

The androidTest/ source set can have its own Java/Kotlin source code, resources,
and manifest file. Typically, it only has Java and Kotlin source code:

Figure 45: Android Studio Project View, Showing androidTest Source Set Entries

This source set’s files will not go into your app. Instead, they are for testing your app,
to make sure that your app does what it is supposed to do.

EXAMINING YOUR CODE

55

test/test/

There is a very similar source set, named test/, in a typical Android project:

Figure 46: Android Studio Project View, Showing test Source Set Entries

As with androidTest/, test/ can contain its own Java and Kotlin code. And, as with
the androidTest/ source set, the test/ code is not part of your app, but instead is
for testing your app.

The difference between androidTest/ and test/ is in where your tests run:

• androidTest/ tests run inside of an Android device or emulator
• test/ tests run directly on your development machine, in a Java virtual

machine

We will explore that distinction in greater detail, along with the test code in our
starter project, later in the book.

EXAMINING YOUR CODE

56

Language Differences
When you import an Android project into Android Studio, you get whatever source
code was in that project. This could be Java, Kotlin, or some combination.

When you create a project from scratch — as we will examine in an upcoming
chapter — you will be able to tell the new-project wizard whether you want it to
generate Java or Kotlin files. When you start working on adding new stuff to your
project, you can add in new Java or Kotlin files.

The HelloWorld sample project that you imported was created using the Android
Studio 4.1.1 new-project wizard, where the author asked for Kotlin files. Therefore,
our two test source sets and the main source set contain Kotlin.

If you would prefer, you can download a Java edition of the same project from the
CommonsWare site. UnZIPping and importing that project gives you the same thing
as the HelloWorld Kotlin project, except that the source code (main/, androidTest/,
and test/) is Java, not Kotlin.

Introducing the Activity
Ignoring the test code for a while, our one-and-only source file in our project
implements a MainActivity class, either in Java or Kotlin. This class represents an
“activity”, one of the core components in an Android app.

The Role of the Activity

The building block of the user interface is the activity. You can think of an activity as
being the Android analogue for the window in a desktop application or the page in a
classic Web app. It represents a chunk of your user interface and, in many cases, a
discrete entry point into your app (i.e., a way for other apps to link to your app).

Normally, an activity will take up most of the screen, leaving space for things like a
status bar (the strip across the top with the clock, battery icon, etc.) and a
navigation bar (the strip across the bottom with buttons for going back, going to the
home screen, etc.)

However, bear in mind that on some devices, the user will be able to work with more
than one activity at a time, such as split-screen mode on a phone or multi-window
mode on a Chrome OS device. So, while it is easy to think of activities as being

EXAMINING YOUR CODE

57

https://commonsware.com/Jetpack/HelloWorld/4.1.1/HelloWorldJava.zip
https://commonsware.com/Jetpack/HelloWorld/4.1.1/HelloWorldJava.zip

equivalent to the screen, just remember that this is a simplification, and that reality
is more complicated (as reality often is).

In a simple app with one activity, such as this sample app, that activity will serve as
the entry point for the app itself. The user’s home screen will often have an “app
drawer” or similar thing with a bunch of icons. While the user thinks of those as
“running an app”, in reality those icons pass control to an activity inside of the app,
one designated as being something that should appear in a “launcher” or home
screen. What makes an activity appear in this app drawer is based upon stuff found
in the AndroidManifest.xml file, and we will see how that works later in the book.

Examining the Generated Code

When you create a new project via the new-project wizard — as this sample app was
— usually you will have that wizard create your first activity for you. The activity will
have the same functionality regardless of whether you asked for Java or Kotlin code.
Since Java and Kotlin do not have the same syntax, those files will not be identical in
code, but they will be identical in functionality.

So, let’s see what our sample app’s activity looks like, in both languages.

Java

The HelloWorldJava.zip version of the sample app was created using Java as the
requested programming language. So, our main source set has MainActivity.java in
a com.commonsware.jetpack.hello Java package:

packagepackage com.commonsware.jetpack.hellocom.commonsware.jetpack.hello;

importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
}

EXAMINING YOUR CODE

58

Kotlin

The HelloWorld.zip version of the sample app was created using Kotlin as the
requested programming language. So, our main source set has MainActivity.kt in
that same Java-style package (com.commonsware.jetpack.hello):

packagepackage com.commonsware.jetpack.hellocom.commonsware.jetpack.hello

importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport android.os.Bundleandroid.os.Bundle

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {
overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {

supersuper.onCreate(savedInstanceState)
setContentView(RR.layout.activity_main)

}
}

Code Commonalities

While Java and Kotlin differ in syntax, both activities are doing the same thing and
are using the same things from the Android SDK.

AppCompatActivity

All activities in Android inherit from an android.app.Activity base class. In our
case, MainActivity does not inherit directly from that class. Instead, it extends
androidx.appcompat.app.AppCompatActivity. That, in turn, inherits from
android.app.Activity, so MainActivity has Activity in its inheritance hierarchy.

Technically, you do not need AppCompatActivity — you could inherit from
something else, even from Activity itself. However, Google is making it difficult for
you to extend from anything else other than AppCompatActivity. When you create a
new project, it is very likely that you will be given an activity that extends from
AppCompatActivity.

The theory is that AppCompatActivity makes it easier for you to develop apps that
will behave consistently across many versions of Android, compared to inheriting
from Activity or some other subclass of Activity.

We will see more about where AppCompatActivity comes from a bit later in this
chapter.

EXAMINING YOUR CODE

59

onCreate()

MainActivity has one Java method or Kotlin function: onCreate(). This overrides
an onCreate() method that we inherit. Our job in onCreate() is to set up the basic
UI that is to be shown by this activity.

In reality, onCreate() is just one of a series of “lifecycle methods”, methods or
functions that get called as our activity is coming onto the screen, leaving the
screen, and so on. We will see more about lifecycles later in the book.

The very first thing that we do in onCreate() is chain to the inherited
implementation of onCreate(), via a call to super.onCreate(). This is a very typical
pattern for onCreate() of an activity, as the activity is not fully initialized until after
super.onCreate() has been called. So, we try to get that out of the way early, so we
are safe to do the rest of our work afterwards.

setContentView()

The other thing that we do in onCreate() is call a setContentView() method. This
says “Hey, Android! The UI that we want to show starts with this!”. We supply
something to serve as the foundation for our UI, which we can further tailor if
needed. Calling setContentView() is not required, but it is a fairly typical approach.

In this case, we pass in a funny-looking value to setContentView():
R.layout.activity_main. This serves as a reference to a layout resource, named
activity_main. We will explore resources in the next chapter, including an
explanation of what this R thing is.

EXAMINING YOUR CODE

60

Line Numbers

You may have noticed that some of the screenshots in this book that show the
editing pane show line numbers in the gutter area on the left:

Figure 47: Android Studio Source Editor, Showing Line Numbers

Those will not be enabled by default. If you want to enable them, you have two main
options.

EXAMINING YOUR CODE

61

Per Editor

If you temporarily want to show line numbers, choose “View” > “Active Editor” from
the main menu, and toggle on “Show Line Numbers”:

Figure 48: Android Studio, Showing “Show Line Numbers” Option

EXAMINING YOUR CODE

62

All the Time

If you wish to have line numbers be toggled on by default, choose “File” > “Settings”
from the main menu (or “Android Studio” > “Preferences…” on macOS). Go into
“Editor” > “Appearance” and check “Show line numbers”, then click “OK”:

Figure 49: Android Studio, Showing “Show Line Numbers” Setting

We will be exploring other options in this Settings screen throughout the book.

Other Things in the Project Tree
The project tree, starting at the HelloWorld/ root node, contains all of the stuff that
makes up the project. However, the project tree itself also contains two other root
nodes: “External Libraries” and “Scratches and Consoles”.

External Libraries

The more important of the two, by far, is “External Libraries”, though you will only
need to examine this area of the project tree on occasion.

EXAMINING YOUR CODE

63

MainActivity is fairly small. It can be that small because “it stands upon the
shoulders of giants”. In this case, those “giants” are libraries.

Our tiny app pulls in a very long list of libraries:

Figure 50: Android Studio External Libraries List (Partial)

This is not a complete list — the list is so long, it cannot fit in a single screenshot.

Most of these libraries come from Google and are part of the Android SDK. Some are
from other developers, such as libraries from JetBrains in support of Kotlin.

We will see in an upcoming chapter where these libraries come from and why they
are all being used to build this little app.

Scratches and Consoles

The last item, “Scratches and Consoles”, is almost completely undocumented and
seems to be infrequently used. Among other things, via the right-mouse context
menu, you can create new “scratch files” here, useful for notes or testing
programming language syntax outside the scope of actual project code.

EXAMINING YOUR CODE

64

https://en.wikipedia.org/wiki/Standing_on_the_shoulders_of_giants
https://en.wikipedia.org/wiki/Standing_on_the_shoulders_of_giants

Exploring Your Resources

Resources are static bits of information held outside the Java/Kotlin source code. As
we discussed previously, resources are stored as files under the res/ directory in
your source set (e.g., app/src/main/res/). Here is where you will find all your icons
and other images, your externalized strings for internationalization, and more.

These are separate from the Java/Kotlin source code not only because they are
different in format. They are separate because you can have multiple definitions of a
resource, to use in different circumstances. For example, with internationalization,
you will have strings for different languages. Your Java/Kotlin code will be able to
remain largely oblivious to this, as Android will choose the right resource to use,
from all candidates, in a given circumstance (e.g., choose the Spanish string if the
device’s locale is set to Spanish).

In this chapter, we will examine the resources in our starter project and what their
roles are in Android app development. Later chapters will cover more about these
resources and describe other types of resources that your project can have.

65

What You See in resres/
If you look at the app/src/main/res/ directory of your project, you will see a fairly
long list of subdirectories:

Figure 51: Resource Directories in Android Studio

Resources are placed into directory based in part on the resource type. That forms
the base name of the directory, such as drawable and layout. Some directories
contain a suffix after this, such as the -v24 part of drawable-v24. That suffix
indicates a particular resource set, which we will examine more shortly.

But first, we need to talk about API levels.

OS Versions and API Levels
Android has come a long way since the early beta releases from late 2007. Each new
Android OS version adds more capabilities to the platform and more things that
developers can do to exploit those capabilities.

Moreover, the core Android development team tries very hard to ensure forwards

EXPLORING YOUR RESOURCES

66

and backwards compatibility. An app you write today should work unchanged on
future versions of Android (forwards compatibility), albeit perhaps missing some
features or working in some sort of “compatibility mode”. And there are techniques
for creating apps that will work both on the latest and on previous versions of
Android (backwards compatibility).

To help us keep track of all the different OS versions that matter to us as developers,
Android has API levels. A new API level is defined when an Android version ships
that contains changes that affect developers. When you create an emulator AVD to
test your app, you will indicate what API level that emulator should emulate. When
you distribute your app, you will indicate the oldest API level your app supports, so
the app is not installed on older devices.

We started with API Level 1 and Android 1.0… but that was a long time ago.
Nowadays, the focus tends to be on newer versions of Android and corresponding
higher API levels. Here, though, Android gets a bit complicated, as there are a lot of
different versions of Android being used today.

Google used to publish up-to-date version information on its dashboards page, but
they abandoned that a while ago. Instead, they rely on you creating a new project
and looking at a version distribution chart available from the new project wizard.

EXPLORING YOUR RESOURCES

67

https://developer.android.com/about/dashboards/

Or, you could just look at the copy of that chart shown here:

Figure 52: Android OS Distribution Chart, from Android Studio 4.1

The chart shows the various Android versions, their API level numbers, and the
“cumulative distribution”. The cumulative distribution shows you what percentage of
the Android device ecosystem you can reach if your minSdkVersion is set to that
particular API level. Their numbers are based on devices using the Play Store and
therefore will miss many devices that are based on other distribution channels.

This book focuses on Android 5.0 (API Level 21) and higher. There are ways to
support older devices than that, but supporting older than Android 4.4 (API Level
19) gets complicated, so this book skips that to help keep the explanations simple.

At the time that this chapter was last updated, the latest production version of
Android was 10 (API Level 29).

Beyond the latest production version, from time to time we are given “developer
previews” of an upcoming version of Android. These are not good choices for new
Android developers to worry about, but experienced developers may be interested in
testing on pre-release Android versions and trying to use upcoming features. For
example, in February 2020, Google announced “Android R” and release the first

EXPLORING YOUR RESOURCES

68

developer preview of what will become Android 11.

Decoding Resource Directory Names
Our app has a bunch of resource directories. Some have simple names, like
drawable/ and layout/. Others have suffixes, like drawable-v24/ and mipmap-hdpi/.

The initial segment of the directory name — or the whole name for those that lack
suffixes — usually indicates the type of the resource. There are many resource types
in Android, and we will explore a few of them in this chapter. The exception is the
values/ directory, which can contain a variety of smaller resource types, not just one
“values” type.

The suffixes represent “resource sets”, and they indicate that this directory contains
resources of a particular type that should only be used in certain scenarios. We call
these scenarios “configurations”; the suffixes indicate what configurations those
resources are used for.

For example:

• drawable/ has resources that are good for any configuration, but drawable-
v24/ has resources that are only going to be used on API Level 24 and higher
devices (i.e., Android 7.0 and higher)

• mipmap-anydpi-v26/ has resources that are good for any screen density, but
they will only be used on API Level 26 and higher devices

• mipmap-mdpi/ has resources that are designed around “medium density”
screens, where the density is around 160dpi (dpi = dots per inch)

We will explore these rules more later in the book, as they get fairly complex fairly
quickly.

Our Initial Resource Types
Our starter app contains six types of resources, though two of them (drawables and
mipmaps) are pretty much the same thing.

Layouts

The resource type that will consume most of your time is the layout resource. This
describes a chunk of our app’s user interface. That chunk could be:

EXPLORING YOUR RESOURCES

69

• A screen
• A row in a list
• A cell in a grid
• A reusable piece that you want to apply to several different screens
• And so on

Layout resources are XML files that either you create by hand or create through the
use of drag-and-drop GUI builders built into Android Studio. We will be spending
quite a bit of time covering layout resources throughout this book, starting with a
chapter on widgets, our smallest pieces of a layout resource.

The starter project has a fairly simple layout… though it could be even simpler:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

As we will see, XML elements generally will map to widgets (things that users touch)
and containers (things that organize widgets and other containers). So, here, we
have a ConstraintLayout container that wraps around a single TextView widget.

In the chapter on widgets, we will explore this XML structure in detail, plus show
you how you can set up this XML through the drag-and-drop GUI builder.

Drawables and Mipmaps

All apps have some amount of artwork, mostly in the form of icons. For example,
most apps have an icon that will appear in the home screen or launcher app, that

EXPLORING YOUR RESOURCES

70

allows the user to bring up the app’s UI. Apps might have other icons in that UI, to
appear on buttons or other tappable things. Some apps may use a “splash screen” as
an introductory bit of UI, and so they have some large graphic that they want to use
for that screen. And there are many other uses of artwork within an Android app, of
relevance to some apps but perhaps not to others.

Sometimes, these graphics are downloaded from the Internet as part of running the
app. Most of the rest are packaged with the app itself: the graphic designer creates
the artwork and the developer arranges to use it in the app in the appropriate place.

Most of these pre-packaged bits of artwork are in the form of drawable and mipmap
resources.

Many of these are bitmap images: PNG, JPEG, etc. They can also be:

• Vector art, imported from SVG files that your graphic designer might prepare
in tools like Adobe Illustrator

• Specialized XML files, usually with rules for how to combine two or more
other resources together

There are really boring technical distinctions between drawables and mipmaps, and
tedious historical explanations for why we have two different resource types for the
same stuff. For the purposes of this book — and so you do not fall asleep while
reading it — you do not need to worry about all of that. The rules for the vast
majority of Android developers are fairly simple:

• Your home screen launcher icon is a mipmap
• Everything else is a drawable

We will start exploring these resources more in an upcoming chapter where we
change your launcher icon.

Strings

Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it helps with
internationalization (I18N) and localization (L10N). Even if you are not going to
translate your strings to other languages, it is easier to make corrections if all the
strings are in one spot instead of scattered throughout your source code.

Strings are one of the “values” resource types. So, in the values/ directory, we can

EXPLORING YOUR RESOURCES

71

have one or several files that contain string resources. Typically, you have just one
such file, named strings.xml.

The starter app’s strings.xml file contains… not very much:

<resources><resources>
<string<string name="app_name">>My Application</string></string>

</resources></resources>

All files in the values/ directory will be XML files with a root <resources> element.
What appears inside that root element defines the actual resources contained in
that file.

Inside strings.xml, the <resources> element contains just one child element: a
<string>, defining a single string resource. Each string resource has a name, which is
how we will refer to that string from elsewhere in the app. And, each string resource
has a value, consisting of the text between the <string> and </string> tags. Here,
we define app_name to be “HelloWorld”.

The starter app does not have translations of this resource, but it could. For
example, it could contain a res/values-es/ directory, containing strings to be used
for devices whose locale is set to Spanish. In there, app_name might be defined as
“HolaMundo”. On the fly, Android will choose the right translation to use, based on
the translations that you provide and the locale of the device.

We will be working with a bunch of string resources in this book, and we will
explore the issues of translations a bit more in a later chapter.

Colors

Another type of “values” resource is the color resource. As you might expect, it
provides a symbolic name for colors. This allows us to give names that have
semantic meaning (e.g., “the standard accent color”) and use those names in our
code. It also then gives us one place to define what the actual color is for that name,
so if we need to change the color, we can change it in one place.

Color resources are defined by <color> elements in a “values” resource file.
Convention says that your colors go into a colors.xml resource file, and that is what
the starter app has:

EXPLORING YOUR RESOURCES

72

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<color<color name="purple_200">>#FFBB86FC</color></color>
<color<color name="purple_500">>#FF6200EE</color></color>
<color<color name="purple_700">>#FF3700B3</color></color>
<color<color name="teal_200">>#FF03DAC5</color></color>
<color<color name="teal_700">>#FF018786</color></color>
<color<color name="black">>#FF000000</color></color>
<color<color name="white">>#FFFFFFFF</color></color>

</resources></resources>

Here, we define three colors:

• colorPrimary
• colorPrimaryDark
• colorAccent

As with our app_name string resource, just having these colors does not cause
anything to use those colors. That requires additional code or additional resources,
ones that happen to reference these resources.

Styles and Themes

A place where color resources are often used is in style resources. Style resources are
reminiscent of CSS stylesheets in Web development. Styles allow you to give a name
to a collection of UI properties, then apply those properties to various scenarios.

One such scenario is where a style is used as a “theme”. This provides the defaults for
UI properties for an entire activity, or perhaps even the entire app. The sample
project defines one such theme, AppTheme, in its themes.xml file:

<resources<resources xmlns:tools="http://schemas.android.com/tools">>
<!-- Base application theme. -->
<style<style name="Theme.MyApplication" parent="Theme.MaterialComponents.DayNight.DarkActionBar">>

<!-- Primary brand color. -->
<item<item name="colorPrimary">>@color/purple_500</item></item>
<item<item name="colorPrimaryVariant">>@color/purple_700</item></item>
<item<item name="colorOnPrimary">>@color/white</item></item>
<!-- Secondary brand color. -->
<item<item name="colorSecondary">>@color/teal_200</item></item>
<item<item name="colorSecondaryVariant">>@color/teal_700</item></item>
<item<item name="colorOnSecondary">>@color/black</item></item>
<!-- Status bar color. -->
<item<item name="android:statusBarColor" tools:targetApi="l">>

?attr/colorPrimaryVariant
</item></item>

EXPLORING YOUR RESOURCES

73

<!-- Customize your theme here. -->
</style></style>

</resources></resources>

The parent attribute on the <style> indicates that we are inheriting existing UI
property definitions from something called
Theme.MaterialComponents.Light.DarkActionBar. That name has lots of pieces:

• Theme indicates that we are starting from the base system theme
• MaterialComponents indicates that this theme comes from a library referred

to as the Material Components for Android
• Light indicates that the general look is dark text on a light background
• DarkActionBar says that the “app bar” — the toolbar structure towards the

top of the screen of most Android activities, formerly called an “action bar”
— should have white icons on a dark background

Figure 53: Top Part of an Android Activity, Annotated

AppTheme inherits from Theme.MaterialComponents.Light.DarkActionBar, so we
get lots of stuff “for free” as a result. We then override additional UI properties as we
see fit, such as colorPrimary, which the Material Components will use for the app
bar background, the foreground text in the main UI area, and a few other roles.

The AppTheme style refers to the color resources that were defined in the colors.xml
file. In resources, when you need to refer to another resource, you do so using the

EXPLORING YOUR RESOURCES

74

https://github.com/material-components/material-components-android

syntax @type/name, where type is the type of the resource (color, string, drawable,
mipmap, etc.), and name is the name of the resource. For “values” resources, like our
colors, the name comes from the name attribute of the element that defines the
resource. For all other types of resources, the name comes from the filename of the
resource file, without the file extension. So, here, @color/colorPrimary refers to the
colorPrimary color resource.

Note that the resource references do not include any of those suffixes on the
directory names that we use for resource sets. If you look in the various directories
for mipmap resources, you will see that we have six different variations of an
ic_launcher mipmap:

• mipmap-anydpi-v26/ic_launcher.xml
• mipmap-hdpi/ic_launcher.png
• mipmap-mdpi/ic_launcher.png
• mipmap-xhdpi/ic_launcher.png
• mipmap-xxhdpi/ic_launcher.png
• mipmap-xxxhdpi/ic_launcher.png

However, when things like our manifest refer to these, it is always as @mipmap/
ic_launcher. Android will decide, on the fly, which of these six definitions to use,
based on the rules encoded in those directory names and the configuration of the
device at the time we are trying to use the resource. We will get much more into all
of that complexity later in the book.

About That R Thingy
When we were looking at the source code to MainActivity, we saw this line:

setContentView(RR.layout.activity_main)

setContentView() tells the activity “this is the UI to display”. The
R.layout.activity_main value is a reference to our activity_main.xml layout
resource.

Just as we refer to our app’s resources from other resources using @type/name syntax,
we refer to our app’s resources from Java and Kotlin using R.type.name syntax. The
same rules apply:

• The type is the type of the resource (e.g., layout), not counting any suffixes
that might be on the directory name

EXPLORING YOUR RESOURCES

75

• The name is the name attribute of a “values” resource or the filename of other
types of resources, excluding the file extension

Occasionally, you will try to refer to an R value and the IDE will say that it cannot
find that value. We will explore this problem more in a bit later in the book.

The Resource Manager
Android Studio also has a “Resource Manager” tool. This is designed to help you
navigate some key types of resources more easily:

• Drawables (though not mipmaps for some reason)
• Colors
• Layouts

This tool is accessible via a “Resource Manager” button, docked by default on the left
edge of the Android Studio window.

Figure 54: Android Studio Resource Manager, As Initially Opened

There are a set of tabs towards the top that allow you to toggle between the three

EXPLORING YOUR RESOURCES

76

sets of resources that this tool supports. By default, each tab’s contents is a list, but
there are buttons towards the bottom of the tool to toggle between list and grid
modes:

Figure 55: Android Studio Resource Manager, Showing a Grid of Color Resources,
With Toggle Buttons Highlighted

Double-clicking on a resource opens up an editor window for it, while right-clicking
over a resource provides options for copying it, renaming it, etc.

The + icon in the toolbar towards the top lets you add new drawable resources, using
the Image Asset Wizard or Vector Asset Wizard, both of which we will see in
upcoming chapters.

For larger projects, this can be useful to help you find resources. In particular, the
Drawable tab can be very handy for identifying if you already have a piece of artwork
in your app or whether you need to add it.

EXPLORING YOUR RESOURCES

77

Inspecting Your Manifest

A key part of the foundation for any Android application is the manifest file:
AndroidManifest.xml. This will be in your app module’s src/main/ directory (the
main source set) for typical Android Studio projects.

Here is where you declare what is inside your application, such as your activities.
You also indicate how these pieces attach themselves to the overall Android system;
for example, you indicate which activity (or activities) should appear on the device’s
launcher.

When you create your application, you will get a starter manifest generated for you.
For a simple application, offering a single activity and nothing else, the auto-
generated manifest will require a few minor modifications, but otherwise it will be
fine. Some apps will have a manifest that has 1,000+ lines. Your production Android
applications probably will fall somewhere in the middle.

The Root Element
Here is the AndroidManifest.xml file from the starter project:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.jetpack.hello">>

<application<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.MyApplication">>

79

<activity<activity android:name=".MainActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

The root <manifest> element usually does not contain too much. It will have one or
more XML namespace declarations. Here, we have just one, defining the android
namespace, which is used for most of the attributes that you will find in the
manifest file. We will see other manifests later on that have other namespace
declarations (e.g., tools), but usually there are not too many of them.

The key attribute in the <manifest> element is package. This indicates where the
build tools will generate some Java code for use by your app. We will explore that
generated code later in the book.

The Application Element
There can be many child elements of the root <manifest> element. Over the course
of this book, we will see ones like <uses-permission> that appear in these
manifests.

However, the most important child element by far is <application>. This describes
the app that is using this manifest.

In a significant Android app, most of what goes in the manifest consists of child
elements of <application>, such as the <activity> element. Beyond that, the
<application> element:

• Provides defaults for behavior of those activities, such as what theme is used
to specify colors and such (android:theme)

• Provides details about the app that get used by other apps (e.g., Settings),
such as the app’s display name (android:label) and icon (android:icon
and, sometimes, android:roundIcon)

• Configures overall app behavior, such as whether it handles right-to-left
languages (a.k.a., RTL), such as Arabic and Hebrew (android:supportsRtl)

• Configures certain aspects of how the app integrates with the rest of the

INSPECTING YOUR MANIFEST

80

operating system, such as whether it wishes to participate in device-wide
backups (android:allowBackup)

We will explore many of these attributes as we proceed in this book.

The Activity Element (And Its Children)
The children of <application> mostly represent the “table of contents” for the app.

Android has four major types of “components”:

• Activities, representing the UI
• Services, representing background processing that is decoupled from the UI
• Content providers, which expose databases or data streams to other apps or

the operating system
• Broadcast receivers, which supply the “subscriber” side of a publish/

subscribe messaging system used by apps and the operating system to
communicate

Most of these will be registered in the manifest via corresponding child elements of
<application>:

Component Element

Activity <activity>

Service <service>

Content Provider <provider>

Broadcast Receiver <receiver>

Your app may have several of one type, such as having several activities. Your app
may have none of a particular type, such as having no broadcast receivers registered
in the manifest.

Our starter app has a single <activity> element, and nothing more:

INSPECTING YOUR MANIFEST

81

<activity<activity android:name=".MainActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>

<activity> elements have an android:name attribute. This will identify the Java or
Kotlin class that contains the implementation of the activity. The android:name
attribute, in this case, has a bare Java class name prefixed with a single dot
(.MainActivity). Sometimes, you will see android:name with a fully-qualified class
name (e.g., com.commonsware.helloworld.MainActivity). Sometimes, you will see
just a bare Java class name (e.g., MainActivity). Both MainActivity and
.MainActivity refer to a Java class that will be in your project’s package — the one
you declared in the package attribute of the <manifest> element.

Sometimes, an <activity> element will have an <intent-filter> child element
describing under what conditions this activity will be displayed. Most apps will have
at least one <activity> element that sets up your activity to appear in the launcher,
so users can choose to run it. That is what this <intent-filter> element does,
though the details of how that works are beyond the scope of this particular book.
Suffice it to say that whenever you see an <activity> element with this particular
<intent-filter> (an <action> of android.intent.action.MAIN and a <category>
of android.intent.category.LAUNCHER), you know that this activity should appear
in the launcher for the user to be able to start.

The other component elements — <service>, <provider>, <receiver> — will have
similar characteristics:

• They all will have an android:name attribute, identifying the code that serves
as the implementation for that component

• They might have an <intent-filter>
• They might have other attributes as well (e.g., android:permission)

INSPECTING YOUR MANIFEST

82

Reviewing Your Gradle Scripts

In the discussion of Android Studio, this book has mentioned something called
“Gradle”, without a lot of explanation.

In this chapter, the mysteries of Gradle will be revealed to you.

(well, OK, some of the mysteries…)

Gradle: The Big Questions
First, let us “set the stage” by examining what this is all about, through a series of
fictionally-asked questions (FAQs).

What is Gradle?

Gradle is software for building software, otherwise known as “build automation
software” or “build systems”. You may have used other build systems before in other
environments, such as makemake (C/C++), rakerake (Ruby), Ant (Java), Maven (Java), etc.

These tools know — via intrinsic capabilities and rules that you teach them — how
to determine what needs to be created (e.g., based on file changes) and how to
create them. A build system does not compile, link, package, etc. applications
directly, but instead directs separate compilers, linkers, and packagers to do that
work.

Gradle, as used by default in Android Studio 4.1.1, uses a domain-specific language
(DSL) built on top of Groovy to accomplish these tasks.

83

https://www.gradle.org/

What is Groovy?

There are many programming languages that are designed to run on top of the Java
VM. Kotlin is one of particular importance for Android developers. Groovy is
another.

As with Java, Groovy supports:

• Defining classes with the class keyword
• Creating subclasses using extends
• Importing classes from external JARs using import
• Defining method bodies using braces ({ and })
• Objects are created via the new operator

Groovy also resembles Kotlin in some ways:

• You can have free-standing statements outside of a class
• You can use string interpolation (e.g., "Hello, $name" to dynamically insert

a name value into the string)
• You can skip types on variable declarations (e.g., def foo = 1;, akin to var
foo = 1 in Kotlin)

What Does Android Have To Do with Gradle?

Google has published the Android Gradle Plugin, which gives Gradle the ability to
build Android projects. Google is also using Gradle and the Android Gradle Plugin
as the build system behind Android Studio.

Hey, I Thought I Read That Gradle Used Kotlin Scripts?

There is an option, starting with Android Studio 4.0, to use Kotlin scripts for
defining your Gradle builds, instead of Groovy scripts. If you see a project with
build.gradle.kts files instead of build.gradle files, that project is using Kotlin
Gradle scripts instead of Groovy ones.

This may prove to be the long-term direction for Android. However, this book is
going to focus on Groovy scripts, for a few reasons:

• The new-project wizard still generates Groovy scripts
• The vast majority of existing projects — such as the one you might start

helping on — will be using Groovy scripts

REVIEWING YOUR GRADLE SCRIPTS

84

https://groovy-lang.org/

• In the end, both scripts wind up doing the same work, with the sole
difference being some syntax variances between Groovy and Kotlin

Obtaining Gradle
If you will only be using Gradle in the context of Android Studio, the IDE will take
care of getting Gradle for you. If, however, you are planning on using Gradle outside
of Android Studio (e.g., command-line builds), you will want to consider where your
Gradle is coming from. This is particularly important for situations where you want
to build the app outside of an IDE, such as using a continuous integration (CI)
server, like Jenkins or Circle CI.

Also, the way that Android Studio works with Gradle — called the Gradle Wrapper
— opens up security issues for your development machine, if you like to download
open source projects from places like GitHub and try using them.

Direct Installation

What some developers looking to use Gradle outside of Android Studio will wind up
doing is installing Gradle directly.

The Gradle download page contains links to ZIP archives for Gradle itself: binaries,
source code, or both.

You can unZIP this archive to your desired location on your development machine.

OS Packages

You may be able to obtain Gradle via a package manager for your particular
operating system

The gradlewgradlew Wrapper

A brand new Android Studio project — and many of those that you will find in
places like GitHub — will have a gradlew and gradlew.bat file in the project root,
along with a gradle/ directory. This represents the “Gradle Wrapper”.

The Gradle Wrapper consists of three pieces:

• the batch file (gradlew.bat) or shell script (gradlew)

REVIEWING YOUR GRADLE SCRIPTS

85

https://www.gradle.org/downloads
https://gradle.org/install/#with-a-package-manager
https://www.gradle.org/docs/current/userguide/gradle_wrapper.html

• the JAR file used by the batch file and shell script (in the gradle/wrapper/
directory)

• the gradle-wrapper.properties file (also in the gradle/wrapper/ directory)

Android Studio uses the gradle-wrapper.properties file to determine where to
download Gradle from, for use in your project, from the distributionUrl property
in that file:

#Wed Nov 04 08:26:51 EST 2020
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\:\://services.gradle.org/distributions/gradle-6.5-bin.zip

When you create or import a project, or if you change the version of Gradle
referenced in the properties file, Android Studio will download the Gradle pointed
to by the distributionUrl property and install it to a .gradle/ directory (note the
leading .) in your project. That version of Gradle will be what Android Studio uses.

RULE #1: Only use a distributionUrldistributionUrl that you trust.

If you are importing an Android project from a third party — such as something that
you download from GitHub — and they contain the gradle/wrapper/gradle-
wrapper.properties file, examine it to see where the distributionUrl is pointing
to. If it is loading from services.gradle.org, or from an internal enterprise server,
it is probably trustworthy. If it is pointing to a URL located somewhere else, consider
whether you really want to use that version of Gradle, as it may have been modified
by some malware author.

The batch file, shell script, and JAR file are there to support command-line builds. If
you run the gradlewgradlew command, it will use a local copy of Gradle installed in
.gradle/ in the project. If there is no such copy of Gradle, gradlewgradlew will download
Gradle from the distributionUrl, as does Android Studio. Note that Android
Studio does not use gradlewgradlew for this role — that logic is built into Android Studio
itself.

RULE #2: Only use a gradlewgradlew that you REALLY trust.

It is relatively easy to examine a .properties file to check a URL to see if it seems
valid. Making sense of a batch file or shell script can be cumbersome. Decompiling a
JAR file and making sense of it can be rather difficult. Yet, if you use gradlewgradlew that

REVIEWING YOUR GRADLE SCRIPTS

86

you obtained from somebody, that script and JAR are running on your development
machine, as is the copy of Gradle that they install. If that code was tampered with,
the malware has complete access to your development machine and anything that it
can reach, such as servers within your organization.

Examining the Gradle Files
An Android Studio project usually has two build.gradle files, one at the project
level and one at the “module” level (e.g., in the app/ directory).

The Project-Level File

The build.gradle file in the project directory controls the Gradle configuration for
all modules in your project. The starter project has the single app module, and many
projects only need one module.

If you downloaded the Kotlin edition of the starter project, your top-level
build.gradle looks like this:

// Top-level build file where you can add configuration options common to all sub-projects/modules.
buildscript {

ext.kotlin_version = "1.4.10"
repositories {

google()
jcenter()

}
dependencies {

classpath 'com.android.tools.build:gradle:4.1.1'
classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"

// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

}
}

allprojects {
repositories {

google()
jcenter()

}
}

task clean(type: Delete) {
delete rootProject.buildDir

}

If instead you have the Java-based starter project, you will have a very similar
build.gradle file, one without the Kotlin references:

REVIEWING YOUR GRADLE SCRIPTS

87

// Top-level build file where you can add configuration options common to all sub-projects/modules.
buildscript {

repositories {
google()
jcenter()

}
dependencies {

classpath 'com.android.tools.build:gradle:4.1.1'

// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

}
}

allprojects {
repositories {

google()
jcenter()

}
}

task clean(type: Delete) {
delete rootProject.buildDir

}

In either case, the file contains three things (besides an opening comment):

• a buildscript closure
• an allprojects closure
• a clean task

In Groovy terms, a “closure” is a block of code wrapped in braces ({ }).

There are three main closures in the project-level build.gradle file.

buildscriptbuildscript

The buildscript closure in Gradle is where you list sources of plugins that you want
to use in the project. Hence, here you are not configuring your project so much as
you are configuring the build itself.

The repositories closure inside the buildscript closure indicates where plugins
can come from. Here, jcenter() is a built-in method that teaches Gradle about
JCenter, a popular location for obtaining open source libraries. Similarly, google() is
a built-in method that teaches Gradle about a site where it can download plugins
from Google.

The dependencies closure indicates libraries that contain Gradle plugins. In the

REVIEWING YOUR GRADLE SCRIPTS

88

Kotlin edition of the build.gradle file, there are two such dependencies:

• com.android.tools.build:gradle, which is where the Android Plugin for
Gradle comes from, which teaches Gradle how to build Android apps

• org.jetbrains.kotlin:kotlin-gradle-plugin, which teaches Gradle how
to compile Kotlin source code

(the Java edition of the project will lack the Kotlin plugin)

The identifiers of the libraries (e.g., com.android.tools.build:gradle) are followed
by a version number, indicating what particular version of those libraries should be
used. From time to time, Android Studio will ask you to update those versions, just
as it will ask on occasion for you to upgrade the version of Gradle specified in
gradle-wrapper.properties. Google maintains a page listing the Gradle versions
supported by each Android Gradle Plugin version

allprojectsallprojects

The allprojects closure says “apply these settings to all modules in this project”.
Here, we are setting up jcenter() and google() as places to find libraries used in
any of the modules in our project. We will use lots of libraries in our projects —
having these “repositories” set up in allprojects makes it simpler for us to request
them. We will talk a bit more about libraries later in this chapter.

cleanclean

Like many build systems, Gradle is based around tasks. Plugins and your own Gradle
files teach Gradle about various tasks that it should be able to perform when
requested. The clean() task in the top-level build.gradle file is one such task. As
written, this task is almost useless, and it is unclear why Google includes it, other
than perhaps to point out that you are able to define custom tasks.

The Module-Level Gradle File

In your app/ module, you will also find a build.gradle file. This has settings unique
for this module, independent of any other module that your project may have in the
future.

The Kotlin project’s edition of app/build.gradle includes a number of Kotlin
references:

REVIEWING YOUR GRADLE SCRIPTS

89

https://developer.android.com/studio/releases/gradle-plugin.html#updating-gradle
https://developer.android.com/studio/releases/gradle-plugin.html#updating-gradle

plugins {
id 'com.android.application'
id 'kotlin-android'

}

android {
compileSdkVersion 30
buildToolsVersion "30.0.2"

defaultConfig {
applicationId "com.commonsware.jetpack.hello"
minSdkVersion 21
targetSdkVersion 30
versionCode 1
versionName "1.0"

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
}

buildTypes {
release {

minifyEnabled falsefalse
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'

}
}
compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8

}
kotlinOptions {

jvmTarget = '1.8'
}

}

dependencies {

implementation "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
implementation 'androidx.core:core-ktx:1.3.2'
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'com.google.android.material:material:1.2.1'
implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
testImplementation 'junit:junit:4.+'
androidTestImplementation 'androidx.test.ext:junit:1.1.2'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

}

…while the Java edition does not:

plugins {
id 'com.android.application'

}

android {
compileSdkVersion 30
buildToolsVersion "30.0.2"

defaultConfig {
applicationId "com.commonsware.jetpack.hello"
minSdkVersion 21

REVIEWING YOUR GRADLE SCRIPTS

90

targetSdkVersion 30
versionCode 1
versionName "1.0"

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
}

buildTypes {
release {

minifyEnabled falsefalse
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'

}
}
compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8

}
}

dependencies {

implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'com.google.android.material:material:1.2.1'
implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
testImplementation 'junit:junit:4.+'
androidTestImplementation 'androidx.test.ext:junit:1.1.2'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

}

The android closure contains all of the Android-specific configuration information.
The Android plugin will use this closure, where the plugin itself comes from the
apply plugin: 'com.android.application' line at the top, coupled with the
classpath line from the project-level build.gradle file. We will explore some of the
specific values defined in this closure in the next section.

This build.gradle file also has a dependencies closure. Whereas the dependencies
closure in the buildscript closure in the top-level build.gradle file is for libraries
used by the build process, the dependencies closure in the module’s build.gradle
file is for libraries used by your code in that module. We will talk more about
libraries later in the chapter.

Requesting Plugins
The first lines in app/build.gradle usually request various plugins. The lines that
you added to the top-level build.gradle file specify sources of plugins, but those
libraries can have many different plugins, and you only need some of them. Plus, if
your project grows and you have more modules than just app, you might need a
different mix of plugins per module.

REVIEWING YOUR GRADLE SCRIPTS

91

As a result, each module’s build.gradle file starts off with a series of apply plugin
statements to indicate what plugins are needed:

plugins {
id 'com.android.application'
id 'kotlin-android'

}

Both the Java and the Kotlin editions of the starter project will request the
com.android.application plugin. This teaches Gradle how to build Android apps.
There are other options here, such as com.android.library to teach Gradle how to
build an Android library, but nearly every project will have at least one module using
com.android.application.

Kotlin-based projects will also request the kotlin-android plugin. This teaches
Gradle how to compile Kotlin code, particularly in the context of building an
Android application.

Android Plugin for Gradle Configuration
One of the most important areas for configuration in app/build.gradle is inside the
android closure. That configures the Android Plugin for Gradle, teaching it the
details of how you want your app to be assembled from its source code, resources,
etc.

In theory, this closure can get very complex. In practice, most apps will configure
just a few things, as the starter app does:

android {
compileSdkVersion 30
buildToolsVersion "30.0.2"

defaultConfig {
applicationId "com.commonsware.jetpack.hello"
minSdkVersion 21
targetSdkVersion 30
versionCode 1
versionName "1.0"

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
}

buildTypes {
release {

minifyEnabled falsefalse
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'

REVIEWING YOUR GRADLE SCRIPTS

92

}
}
compileOptions {

Package Name and Application ID

In the previous chapter, we saw that there is a package attribute on the root
<manifest> element of a manifest, and that indicates where some code-generated
classes will go.

The package value also serves as the default value for your application ID. However,
you can override it, as the starter app does, via an applicationId statement in the
defaultConfig closure inside that android closure.

The application ID is a unique identifier for our app, such that:

• no two apps can be installed on the same device at the same time with the
same application ID

• no two apps can be uploaded to the Play Store with the same application ID
(and other distribution channels may have the same limitation)

Convention says that the application ID starts with a reversed edition of some
domain name that you control, to reduce the likelihood of an accidental collision
with the application ID of some other developer.

compileSdkVersioncompileSdkVersion, minSdkVersionminSdkVersion, and targetSdkVersiontargetSdkVersion

Back in the chapter introducing resources, we discussed the concept of API levels.
API levels are integers, with higher numbers indicating newer versions of Android. A
new API level is created for:

• Every major version of Android (e.g., Android 8.0 is API Level 26)
• Every minor version of Android (e.g., Android 8.1 is API Level 27)
• Some patch versions of Android (e.g., Android 4.0 was API Level 14, but

Android 4.0.3 was API Level 15)

We use those API levels in three key places in the module’s build.gradle file:
compileSdkVersion, minSdkVersion, and targetSdkVersion.

compileSdkVersion indicates what version of Android do we want to compile
against. Classes, methods, and other symbols that existed in Android at that time
(or from before) will be available to us at compile time, but newer things will not.

REVIEWING YOUR GRADLE SCRIPTS

93

Usually, therefore, we set the compileSdkVersion to be a fairly modern API level,
such as the latest production version of Android.

minSdkVersion indicates what is the oldest version of Android you are willing to
support. So, if you are only supporting your app on Android 5.0 and newer versions
of Android, you would set your minSdkVersion to be 21. Older devices will be
incapable of installing your app, and your app will not appear in the Play Store app
for devices running an older version of Android.

targetSdkVersion indicates what version of Android you are thinking of as you are
writing your code. If your application is run on a newer version of Android, Android
may do some things to try to improve compatibility of your code with respect to
changes made in the newer Android. However, from a practical standpoint,
nowadays the targetSdkVersion usually is the same value as the compileSdkVersion
— we update both of them at the same time to the same value.

Version Code and Version Name

The defaultConfig closure has versionCode and versionName properties. These two
values represent the versions of your application.

The versionName value is what the user will see for a version indicator in places like
the Settings app and the Play Store. This can be whatever string you want, using
whatever naming or numbering system that you want. However, for customer
support purposes, you should have some system that varies by release, rather than
using the same string all of the time.

The versionCode, on the other hand, must be an integer, and newer versions must
have higher version codes than do older versions. Android and the Play Store will
compare the version code of a new APK to the version code of an installed
application to determine if the new APK is indeed an update. The typical approach
is to start the version code at 1 and increment it with each production release of
your application, though you can choose another convention if you wish. During
development, you can leave these alone, but when you move to production, these
attributes will matter greatly.

Other Stuff in the androidandroid Closure
The android closure has a testInstrumentationRunner statement — we will explore
that more in an upcoming chapter, to see how testing works.

REVIEWING YOUR GRADLE SCRIPTS

94

The android closure also has a buildTypes closure. This provides specific
configuration for different “build types”, such as debug for development builds and
release for production builds. The defaults provided in the starter project are fine
for many basic apps.

The compileOptions and kotlinOptions closures indicate that we want the Java and
Kotlin compilers to generate JVM 1.8 bytecode. While JVM bytecode has advanced a
lot since then, 1.8 is the newest that Android supports at this time.

Libraries and Dependencies
Roughly speaking, the code and assets that make up an app come from three
sources:

1. The source that you and people that you know are writing for this app.
2. The source that comes from your compileSdkVersion, representing the

Android SDK that you are linking to.
3. Everything else, generally referred to as dependencies. These are libraries,

written by Google, independent Android developers, major firms, and so on.
Every modern Android app uses libraries, and bigger apps use more libraries.

From a pure technical standpoint, most dependencies are listed in build.gradle
files in dependencies closures. We have seen two of these in this chapter.

One dependencies closure appears in the project-level build.gradle file, inside of a
buildscript closure:

dependencies {
classpath 'com.android.tools.build:gradle:4.1.1'
classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"

// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files

}

Those list places where Gradle plugins come from. You are always depending upon
the Android Gradle Plugin, and some other developers publish Gradle plugins that
you may elect to use in the future. Kotlin users will also use a Kotlin plugin.

However, the dependencies closure that we tend to think about the most is the one
in our module’s build.gradle file, such as app/build.gradle, such as this one from

REVIEWING YOUR GRADLE SCRIPTS

95

the starter project:

dependencies {

implementation "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
implementation 'androidx.core:core-ktx:1.3.2'
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'com.google.android.material:material:1.2.1'
implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
testImplementation 'junit:junit:4.+'
androidTestImplementation 'androidx.test.ext:junit:1.1.2'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

}

Here, there are three types of statements:

• implementation says “here is a dependency that I want to use for my actual
app”

• androidTestImplementation says “here is a dependency that I want to use
for testing”

• testImplementation says “here is a dependency that I want to use for… a
slightly different type of testing”

(we will explore the differences between those in an upcoming chapter)

Our starter project has eight statements in app/build.gradle attempting to pull in
dependencies:

• Three are tied to testing. We will be discussing those soon.
• Two are tied to Kotlin (org.jetbrains.kotlin:kotlin-stdlib-jre7 and
androidx.core:core-ktx) and will not be seen in pure-Java projects.

• The first line — the fileTree(dir: 'libs', include: ['*.jar']) one —
allows you to add plain JARs to your project, by putting them in a libs/
directory.

• The constraintlayout and appcompat dependencies are specifically part of
Jetpack and are foundations for modern Android UI development. We will
be spending quite a bit of the book going over what these offer and how you
use them.

Most likely, you will be adding other similar statements to this set, plus perhaps
deleting ones that you are not actually using (e.g., the fileTree() one). We will see
how to add other libraries as the book progresses, as many of the things that are
common in Android app development require additional libraries.

REVIEWING YOUR GRADLE SCRIPTS

96

Inspecting the Compiled App

Our starter project has a bit of code, a bunch of resources, a manifest, and Gradle
build instructions. And, we can see the app running on a device or emulator.

However, Android is not running directly that bit of code and other stuff. Android
Studio compiles the things in our project into something that Android then runs.

In this chapter, we will take a brief look at what Android Studio is building for us
and how we can examine that output, beyond running it on Android.

What We Build
From the user’s standpoint, we are building an app. Usually, that is true. The story
can get complicated with specialized scenarios like Android Auto and Android Wear,
but we can ignore those for the time being.

From a programming standpoint, what you are creating is an APK, perhaps by way
of an app bundle.

APKs

An APK is the Android executable format. It is what gets installed on an Android
device, and it is what the device runs.

An APK is a ZIP archive. You can unpack one using your favorite unZIP tool, though
we will see a better option for many cases later in this chapter.

The APK will contain:

97

• Your compiled code
• Your resources, usually in their own “compiled” format
• Your manifest, also in a “compiled” format
• Other miscellaneous files

This includes not only the things that you create yourself but also the stuff that you
wind up using from libraries that are part of your app module.

App Bundles

The APK not only is what an Android device runs, but usually it is what Android app
developers publish. You use Android Studio to create the APK from your project,
and you upload that APK to the Play Store or other app distribution channels. The
Play Store or other site then distributes the APK to users.

You will hear Google talk about “app bundles” as an alternative. App bundles are
designed for large, complex apps, where only part of what goes in an APK will be
relevant for any given device. For example, a major brand APK may have strings
translated to many languages, but the user typically uses only one or two languages.
Having translations in other languages just takes up disk space and adds no value to
that individual user. App bundles allow Google to craft tailored APKs on your behalf
that match the needs of individual devices and users.

However, now you are no longer in control over what is in your app. Google is. While
Google likes to comment on what they can remove from your app (e.g., unnecessary
languages), they do not discuss whether they might add anything to your app or
otherwise modify its behavior. That could be for their benefit or for the benefit of
some third party.

You will need to decide for yourself whether the benefits of app bundles outweigh
the risks.

INSPECTING THE COMPILED APP

98

https://commonsware.com/blog/2020/09/23/uncomfortable-questions-app-signing.html
https://commonsware.com/blog/2020/09/23/uncomfortable-questions-app-signing.html

Where They Go
When you run your app in Android Studio, it creates an APK to install on the device.
That APK will wind up inside of the module’s build/ directory. build/ contains all
sorts of outputs of the build process, the APK being chief among them:

Figure 56: Android Studio Project build Contents

Specifically, when you start off, you will find the APK in build/outputs/debug/app-
debug.apk. By default, the filename will be based on your Gradle module name, so
an app/ module winds up with an APK with app in the name. And, by default, you
are creating a debug build — the sort of build that you as a developer will use — and
so the APK winds up in a debug/ directory and has debug in the name.

Building the APK
You can manually build the APK at any time through the Build menu in Android
Studio. For example, you might want to do that before trying to analyze the APK.

For creating an ordinary debug APK, choose Build > Build Bundles(s) / APK(s) >
Build APK(s) from the Android Studio main menu. After a few moments, a “toast”-

INSPECTING THE COMPILED APP

99

style popup window should appear announcing the results:

Figure 57: Android Studio, Toast Showing Build Results

Analyzing the APK
One of the links in that toast is to “analyze” the APK.

Android Studio offers an APK Analyzer tool. Mostly, it exists to help developers see
exactly what is in the APK, blended from all of the possible sources (your code,
library code, etc.). For developers looking to reduce the size of the APK, the APK
Analyzer is great for seeing where the space goes.

INSPECTING THE COMPILED APP

100

To bring up the APK Analyzer, either click that “analyze” link from a fresh build, or
choose Build > Analyze APK at any time. The latter will bring up a typical file
chooser dialog for you to navigate through the build/ directory to select the APK
that you want to analyze:

Figure 58: Android Studio, APK Selection Dialog

The APK Analyzer then opens in a fresh tab:

Figure 59: Android Studio, APK Analyzer

INSPECTING THE COMPILED APP

101

The starter project’s APK is a 3MB file. This may seem rather large for an app that
does not really do much. That is because:

• Google’s starter projects include a lot of libraries, and
• A normal debug build does not eliminate unused stuff from those libraries

We will look into how to address that latter problem much later in the book.

The table shows the breakdown of where the space goes. Of note:

• The .dex files — and, where relevant, the kotlin/ directory — represent
your compiled code, both that you wrote, what was code-generated for you
by Android Studio, and what you get from libraries

• The res/ directory and the resources.arsc file represent your resources
• The AndroidManifest.xml file is your manifest

We will explore these things much more later in the book and help you see how you
might make your app smaller.

INSPECTING THE COMPILED APP

102

Touring the Tests

When we write Android apps, a chunk of our time is spent testing those apps. Some
of that testing is manual: poking at the UI and seeing if everything works as
expected. But some of that testing is automated, with test classes that test our “real”
classes and confirm that everything is OK.

With that in mind, let’s take a look at the types of tests that we have in the starter
project and how to run them.

Instrumented Tests
There are two major types of test in an Android app:

• Instrumented tests, which run in Android on a device or emulator
• Unit tests, which run on your development machine or similar places

Unit tests run much faster, but they cannot test as much, because they do not have
access to everything inside of Android. For example, while we could test our ability
to talk to a Web service from unit tests, we cannot test our ability to get GPS
locations using Android APIs from unit tests. For those, we need instrumented tests.
Similarly, most automated UI testing needs instrumented tests, as the Android UI
system is only really available in Android.

Since they are more flexible, and since test speed only becomes a major issue with
larger projects, let’s focus first on instrumented tests.

Where They Run

As noted above, instrumented tests will run on an Android device or emulator. For

103

your own personal test runs, you can use the same devices or emulators that you use
for manually running the app.

Projects that employ continuous integration (CI) servers will need to configure them
to support running tests on server-hosted emulators. Some hosted CI services —
such as CircleCI — have that capability readily available to you. For self-hosted CI
servers, there should be recipes available to teach you how to configure them for
Android app testing.

What You Can Test

Because you are running the tests in an actual Android environment, you can test
anything that you want. You have the full Android SDK at your disposal.

However, from a practical standpoint, there will be limits as to what you can test:

• Emulators do not emulate everything about hardware. For example, you will
not be able to test readings that you get from nearby cell towers, as an
emulator is not in communication with any actual cell towers.

• You want your tests to be repeatable. Hence, even on hardware, you may
need to limit testing what you really get from the hardware, as you do not
control that hardware and what it might return. For example, while in theory
you could test getting actual location data via GPS from a device, you cannot
guarantee the precise values that will get returned, as GPS is inexact by its
very nature.

• Any given device has one set of hardware characteristics. Any given emulator
will mimic one set of hardware characteristics. Testing things that vary based
on hardware characteristics will require multiple test runs across a fleet of
devices or emulators that will reflect the varying characteristics.

What the Starter Project Has

The starter project not only has a “hello, world” sort of UI for you, but it has a
similar instrumented test set up, ready for you to run.

The androidTestandroidTest Source Set

As we saw earlier in the book, instrumented test code resides in an androidTest/
directory. This is a peer to the main/ directory that contains your “real” application
code. androidTest/ is a “source set” that will be used only when running

TOURING THE TESTS

104

https://circleci.com/

instrumented tests. The stuff in the androidTest/ source set will not be included in
your app when you ship it.

The Test Class

Inside of there you will find a java/ directory, with a Java package matching the
application ID of your app, and an ExampleInstrumentedTest Java or Kotlin file.

When you create a new project, and you choose whether or not to have Kotlin
support, that choice will determine not only whether your MainActivity is in Java or
Kotlin, but also whether your test code is in Java or Kotlin.

The Kotlin class is fairly short:

packagepackage com.commonsware.jetpack.hellocom.commonsware.jetpack.hello

importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

importimport org.junit.Assert.*org.junit.Assert.*

/**
* Instrumented test, which will execute on an Android device.
*
* See [testing documentation](http://d.android.com/tools/testing).
*/

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass ExampleInstrumentedTestExampleInstrumentedTest {

@Test
funfun useAppContext() {

// Context of the app under test.
valval appContext = InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext
assertEquals("com.commonsware.jetpack.hello", appContext.packageName)

}
}

The Java equivalent is not much longer:

packagepackage com.commonsware.jetpack.hellocom.commonsware.jetpack.hello;

importimport android.content.Contextandroid.content.Context;
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry;

TOURING THE TESTS

105

importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4;

importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;

importimport staticstatic org.junit.Assert.*;

/**
* Instrumented test, which will execute on an Android device.
*
* @see Testing documentation
*/

@RunWith(AndroidJUnit4AndroidJUnit4.class)
publicpublic classclass ExampleInstrumentedTestExampleInstrumentedTest {

@Test
publicpublic void useAppContext() {

// Context of the app under test.
ContextContext appContext =

InstrumentationRegistryInstrumentationRegistry.getInstrumentation().getTargetContext();
assertEquals("com.commonsware.jetpack.hello", appContext.getPackageName());

}
}

The Annotations

The Java and Kotlin editions of the test class are equivalent, other than language
syntax.

Both have a single class, named ExampleInstrumentedTest, annotated with a
@RunWith(AndroidJUnit4::class) annotation. Android presently uses JUnit 4 for
instrumented tests. This annotation tells JUnit — and, more importantly, some
Android Studio stuff for running tests — that this class contains test code that
should be run as part of an instrumented test.

Both editions of ExampleInstrumentedTest have one method (or function, in
Kotlin). It is called useAppContext(), and it is marked with the @Test annotation. A
test class can contain one or more of these @Test methods/functions. When it
comes time to run the tests, Android Studio will:

• Create an instance of your test class
• Call one of the @Test methods/functions on that instance
• Create another instance of your test class
• Call another of the @Test methods/functions on that new instance
• And so on, until all of the @Test methods/functions have been executed

TOURING THE TESTS

106

https://junit.org/junit4/

The Test Code

So… what is useAppContext() testing?

In truth, it is not testing very much.

We will explore what a Context is a bit later in the book. For the moment, take it on
faith that this code is:

• Finding out what our application ID is, by calling getPackageName() on a
Context

• Confirming whether it matches the expected value of
com.commonsware.jetpack.hello

assertEquals() is supplied by JUnit 4 and will fail the test if the two values are not
equal.

We will explore much more about JUnit 4 and how to write more elaborate tests
much later in the book.

How You Run Them

For a single test method or function, you will notice a green triangle “run” icon in
the “gutter” area of the code editor:

Figure 60: Android Studio, Showing Instrumented Test in Kotlin

TOURING THE TESTS

107

Clicking that will allow you to run that individual test method/function. Or,
optionally, you will be able to debug that test method.

Figure 61: Android Studio, Showing Pop-Up Menu for Running a Test Function

Similarly, there is a “run” icon in the gutter next to the class name, to run all of the
test functions in the Kotlin test class. For a Java class, the class-level test icon is a
“double-run” pair of overlapping green triangles:

Figure 62: Android Studio, Showing Instrumented Test in Java

(Why is there a difference? Ask Google.)

TOURING THE TESTS

108

https://issuetracker.google.com/issues/118518626

For smaller projects, those may suffice. For larger projects, you can set up a custom
“run configuration” that can run all of the instrumented tests in your project, for
example. We will see this much later in the book.

What the Test Results Look Like

When you run a test method or a test class, rather than focusing on the output in
the emulator or device, you will focus instead on the “Run” view in Android Studio.
This will show you which tests succeeded and which tests failed.

The nice people who created Android Studio elected to write tests that succeed, and
Android Studio’s output will reflect that:

Figure 63: Android Studio, Showing Successful Test Results

Note the “All Tests Passed” message with the green checkmark-in-circle icon.

TOURING THE TESTS

109

If a test fails — such as a modified version of the sample’s test class that compares
the application ID to this.is.wrong — you will see the failed test in a tree on the
left and details of what went wrong on the right:

Figure 64: Android Studio, Showing Failed Test Results

JUnit assertions, such as assertEquals(), will provide some details as to what went
wrong, shown in a stack trace in the test output:

org.junit.ComparisonFailure: expected:<[this.is.wrong]> but
was:<[com.commonsware.jetpack.hello]>

Here, we see that we expected this.is.wrong, but we instead got
com.commonsware.jetpack.hello, and so the test failed.

About That testInstrumentationRunnertestInstrumentationRunner

Back in the chapter on Gradle, we saw this line in the defaultConfig closure:

The testInstrumentationRunner indicates what code should be used to execute the
JUnit tests themselves. The runner shown here is the standard runner for
instrumented tests. Various third-party testing tools might have you replace this

TOURING THE TESTS

110

value with some class from their library, so this is not always the test runner that we
use.

The androidTestImplementationandroidTestImplementation Dependencies

Such a library would also show up as an androidTestImplementation dependency in
the list of dependencies for the module. We have a couple of those already:

androidTestImplementation 'androidx.test.ext:junit:1.1.2'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

The one that is really required is androidx.test:runner. This is the library that
supplies the AndroidJUnitRunner class and other core classes for writing and
running our instrumented tests.

The other one is androidx.test.espresso:espresso-core. This is the core of
Espresso, a powerful library for writing GUI tests. However, our existing
instrumented test does not actually use Espresso, so this particular dependency is
unnecessary at the moment. We will cover Espresso much later in the book.

Unit Tests
The other type of tests are unit tests. They too use JUnit4, which causes some
confusion when developers try to determine the difference between the
instrumented tests and unit tests.

Where They Run

Unit tests run in Windows, macOS, or Linux, not Android. Unit tests are the same
sorts of tests that you would run in an ordinary Java or Kotlin project that had no
ties at all to building Android apps.

You can run unit tests on your own development machine. You can also arrange to
run unit tests on a CI server or some similar environment.

Because unit tests avoid a lot of the work in getting code over into an Android
environment, unit tests can run more quickly. Plus, a development machine or CI
server is likely to be faster than Android hardware, and even the Android emulator
adds some amount of runtime overhead.

TOURING THE TESTS

111

What You Can Test

You can test your non-Android business logic fairly easily, just using standard JUnit
tests. However, any code that uses Android-related classes is going to have a
problem, though.

You can get past this somewhat by the use of mocking engines, such as Mockito.
They allow you to create “fake” Android objects based on real Android classes, where
you teach the mocks how to respond to particular method calls.

What the Starter Project Has

Our starter project has a similar set of stuff for unit tests as it did for instrumented
tests, with some modifications.

• Whereas instrumented tests go in an androidTest/ source set, unit tests go
in a test/ source set.

• In there, as with the androidTest/ source set, there is a java/ directory and
a com.commonsware.jetpack.hello package. And, once again, there is a
single class, though this time it is named ExampleUnitTest.

The Annotations and the Test Code

Once again, the class will either be in Java or Kotlin:

packagepackage com.commonsware.jetpack.hellocom.commonsware.jetpack.hello

importimport org.junit.Testorg.junit.Test

importimport org.junit.Assert.*org.junit.Assert.*

/**
* Example local unit test, which will execute on the development machine (host).
*
* See [testing documentation](http://d.android.com/tools/testing).
*/
classclass ExampleUnitTestExampleUnitTest {

@Test
funfun addition_isCorrect() {

assertEquals(4, 2 + 2)
}

}

packagepackage com.commonsware.jetpack.hellocom.commonsware.jetpack.hello;

importimport org.junit.Testorg.junit.Test;

TOURING THE TESTS

112

importimport staticstatic org.junit.Assert.*;

/**
* Example local unit test, which will execute on the development machine (host).
*
* @see Testing documentation
*/
publicpublic classclass ExampleUnitTestExampleUnitTest {

@Test
publicpublic void addition_isCorrect() {

assertEquals(4, 2 + 2);
}

}

Unit test classes do not normally get a @RunWith annotation. However, we still put
@Test annotations on the methods or functions that contain the tests to be run.

In both Java and Kotlin, the tests use JUnit’s assertEquals() to compare two values
for equality. This time, the test is to confirm that 2 + 2 equals 4. This test usually
succeeds.

How You Run Them

You can run unit tests in much the same way as you run instrumented tests:

• Click the green “run” icon next to a test method/function to run it alone:

Figure 65: Android Studio, Showing Run Icons and Menu for Kotlin Unit Test Class

• Click the “run” icon next to a test class to run all of its test code
• Set up a “run configuration” to run all of your unit tests, which we will see

much later in the book

TOURING THE TESTS

113

What the Test Results Look Like

When you run unit tests, you will not be prompted for a device or emulator to run
them on. Unit tests run directly on your development machine, not on an Android
device or emulator.

They will run much faster, and they will provide similar output in the “Run” view of
Android Studio:

Figure 66: Android Studio, Showing Results of Successful Unit Tests

The testInstrumentationtestInstrumentation Dependencies

Any testImplementation statement in your dependencies in your module’s
build.gradle file will be compiled into your tests and available for use. The one
default testImplementation dependency is junit:junit, which pulls in the JUnit
classes.

TOURING THE TESTS

114

Introducing Jetpack

This book is titled “Elements of Android Jetpack”. Yet, we have not yet discussed
Jetpack at all. So, it’s about time that we saw what Jetpack is and what it has to do
with Android app development, your future projects, and the rest of this book.

What, Exactly, is Jetpack?
Jetpack… is a brand name.

In 2018, Google elected to use the term “Jetpack” to refer to a seemingly-random
collection of Android technologies and tools. In many respects, the only things that
those technologies and tools have in common is:

• They are involved in Android app development
• Google thinks that they are part of Jetpack

There is no singular “Jetpack” tool or library. In fact, outside of the cover and the
contents of this chapter, “Jetpack” will not be used much as a term in this book, as it
focuses on what is in Jetpack more so than Jetpack itself.

Um, OK, So, What’s the Point?
The first Android devices shipped to the public in October 2008. Public Android app
development had been going on for about a year prior to this, with the first preview
releases and Android SDK bits available in 2007. Google had been working on
Android apps for a while prior even to that preview release.

In short, Android app development has been around for a while.

115

Along the way, many techniques and approaches were tried and discarded. Many
programming patterns were applied, rejected, and replaced. Many UI designs were
rolled out to great fanfare, only to be shunted aside in favor of yet new UI designs.
And so on. Android app development has a lot of history, and while some of that
history remains relevant today, a lot of it is just baggage.

Jetpack is a way of thinking about Android app development that dumps some of
that baggage.

The focus of Jetpack — and this book by extension — is on the current
recommended practices in Android. We try to ignore most of the history, or at least
put it in its appropriate place. Instead, we try to help you build using up-to-date
approaches, bypassing the approaches of yesteryear.

Key Elements of Jetpack
Not everything in the Jetpack is of equal importance. This book focuses on those
elements that are commonplace for most ordinary Android apps or are tied closely
to other commonplace Android app development steps.

AppCompat

As was mentioned earlier in this chapter, Android is over 10 years old. Android
changes with every release.

However, Android devices do not get very many OS updates from their
manufacturer. Even the best might only get updates for 2-3 years, and there are
plenty that never get an update. As a result, Android users use a wide range of
Android OS versions. While the changes from release to release may be small or may
be large, the combined changes from older versions of Android to newer ones can be
vast.

AppCompat tries to help. It gives us an API for our activities and fragments that
resembles the latest-and-greatest version of Android. When your app runs on older
devices, AppCompat tries to fill in the gaps of UI functionality where it can. While
using AppCompat makes your APK a lot larger and makes app development more
confusing, many developers are grateful for the backwards-compatibility that it
offers.

We will dive more deeply into what AppCompat is, and its relationship to your app,

INTRODUCING JETPACK

116

in an upcoming chapter.

Fragment

A layout does not exist on its own. Something has to arrange to use a layout resource
and show it on the screen. We saw in the previous chapters that an Activity can be
used for that, and we will start there for seeing how to build Android user interfaces.

However, in many cases, you will wind up using fragments for loading and
displaying your layout resources. Fragments are wrappers around layout resources
and their widgets. Many apps might consist of a single activity, with each different
“screen” being represented by a fragment that uses associated layout resources and
code. The user, as part of using the app, will switch from fragment to fragment as
needed — for example, clicking a button might cause another fragment to be shown
on the screen.

We will look at fragments a bit later in the book.

Navigation

While some apps might have just one screen of information, most have more than
one. Users click on widgets and are taken to other screens. Users then press the
BACK button and return to the screen they had been on originally. And so forth.

We have had ways of accomplishing this sort of navigation since Android’s
introduction. However, it involves Java/Kotlin code, and sometimes quite a bit of it,
for complex interactions. Google keeps trying to move some of that sort of work into
resources, where it can.

The Navigation library provides a way to declare how to move from screen to screen
via resources, with a new editor in Android Studio to assist in defining those
resources and depicting your navigation flow.

We will explore this Navigation library as part of our discussion of fragments.

Lifecycles, ViewModel, and LiveData

Most Android devices are phones or tablets. These can be held in portrait or
landscape. Well-written apps appear to seamlessly transition between the two as the
user rotates the screen.

INTRODUCING JETPACK

117

In reality, screen rotations and other types of “configuration changes” are among the
most annoying aspects of Android app development. It turns out that our activities
and fragments have “lifecycles”, and they come and go not only based on user
navigation but also these configuration changes. Keeping our state as the user
rotates the screen is important, as users get irritated if we lose stuff.

To that end, Google nowadays offers two Jetpack pieces to help with this:

• Special code for dealing with lifecycles
• A ViewModel class that helps maintain our state across configuration changes

For some developers, configuration changes are the most annoying thing in Android
app development. For others, it is threads. We need to do work on background
threads to keep our UI “responsive”, accepting and processing user input while that
background work is ongoing. This is a pain to manage in its own right, and
configuration changes make it that much more difficult. LiveData objects — held by
our ViewModel — make it somewhat easier to do work in background threads while
not losing track of that work if the user rotates the screen, for example.

In this book, we will explore ViewModel and lifecycle handlers as well as LiveData
and threads.

Room

Many apps need a database on the device. Sometimes, that is the “system of record”,
as the data is only on the device. Sometimes, the database serves as more of a local
cache, for data that we obtained from a server or for data that we need to get to a
server.

Android has had a relational database, called SQLite, in its SDK since the beginning.
However, the standard Android APIs for working with this database are a bit crude
by modern standards. To that end, Google has created Room, a lightweight object
wrapper around SQLite databases, to simplify your database I/O. Room also works
nicely with LiveData, to help you do your database I/O on background threads.

We will explore the basics of Room much later in the book.

WorkManager

Many times, the work that we need to do on background threads has to be
performed in near-real time. But sometimes the work that we need to do can

INTRODUCING JETPACK

118

happen totally independently from what the user may (or may not) be doing in our
UI. So while a “pull to refresh” UI operation requires us to do a refresh right now, a
periodic refresh from the server might happen every few hours, even if the user is
not in the app right now.

While there have been many solutions over the years for this problem, Google is
steering us towards WorkManager right now. We can teach WorkManager about
background work to be performed, then schedule that work to occur. That schedule
might be based in part on time (“do it soon”, “do it every few hours”, etc.). That
schedule might be based in part on the state of the device (“do it when the device is
on a charger”, “do it when the device is on WiFi”, etc.). Then, WorkManager will
arrange to do the work, even if the user leaves our UI.

We will examine WorkManager towards the end of the book.

Android KTX

The Android SDK is based on Java, and it has a fairly typical Java API, albeit one with
a variety of patterns, based in part on the age of the code.

Kotlin is Google’s recommended language for Android developers going forward,
with Java being relegated to the SDK itself. This is similar to how Apple steers
developers towards Swift, with Objective-C being used only sporadically.

One of Kotlin’s features is the “extension function”. This is a way for a library to add
functions (Java methods) to somebody else’s Java/Kotlin class. For developers using
the class, the extension functions are seamlessly integrated with the functions that
were part of the class from the outset.

Android KTX is a collection of such extension functions, designed to make common
aspects of the Android SDK a bit easier to use.

We will see Android KTX code sprinkled throughout this book.

You can learn more about extension functions in the "Extension
Functions" chapter of Elements of Kotlin!

INTRODUCING JETPACK

119

https://commonsware.com/Kotlin

Testing

No software project is complete without testing. We have already seen how Android
projects can have instrumented tests and unit tests. We are given stub tests when we
create our project, just to get us going, but we will need to write a lot more tests
before we are done.

We will be exploring testing more later in the book.

What Came Before: the Android Support Library
Many of the capabilities described here as being part of Jetpack have existed for a
while, in some cases for many years.

The biggest change with Jetpack — besides the branding — is the set of libraries
that we use. The Jetpack libraries are all “AndroidX” libraries, where we will be
referring to libraries and Java packages that have androidx in their names.

Prior to Jetpack, we had a set of libraries that evolved over the years, with a variety of
naming schemes for libraries and Java packages. Much of what is in the Jetpack
originated in what we called the Android Support Library. Some came from the
Architecture Components, which was another family of libraries.

Since Google debuted Jetpack in May 2018, anything written prior to that would be
referring to these older library collections. Most of what was in those libraries has
been replaced by AndroidX equivalents, though not everything. This will cause some
amount of confusion, particularly since a single Android project cannot easily
combine the older libraries (Support Library and Architecture Components) and the
AndroidX libraries.

As a result, particularly as you learn Android app development, it will help if you
know the dates for your educational materials and online resources. Whenever you
see a date prior to May 2018 — and even for some stuff after that date — just bear in
mind that you may need to convert some older library and Java package names into
their AndroidX equivalents.

INTRODUCING JETPACK

120

Introducing the Sampler Projects

It is time to move past what Android Studio gives you by default for a new project
and start seeing how we can add our own stuff to these projects.

To that end, this book has a pair of Android Studio projects that contain the code
samples that will be shown in the remainder of the book. You are welcome to
download one or both of these projects to be able to run the samples on your own
devices or emulators.

The Projects
The two projects are very similar, in terms of the Android SDK features that they
demonstrate. The primary difference: one is in Kotlin, and the other is in Java. The
resources, manifests, and much of the Gradle build files will be the same, but the
source code will be in the programming language for the project:

• Sampler is in Kotlin
• SamplerJ is in Java

This way, you can choose which project to work with, based on which programming
language you want to use for your initial Android work. In general, the rest of the
book will show you both the Java and the Kotlin editions of the code, so you can
compare and contrast the two languages and Android’s support for each. In
particular, if you are new to Kotlin, these corresponding samples can help you see
how Java approaches get translated into Kotlin. Note that there will be a few samples
in the latter half of the book that are Kotlin-only.

These two projects are hosted on GitLab:

121

https://about.gitlab.com/

• The Java project is at: https://gitlab.com/commonsguy/cw-jetpack-java
• The Kotlin project is at: https://gitlab.com/commonsguy/cw-jetpack-kotlin

Getting a Sampler Project
Relevant portions of the Sampler projects are shown directly in this book, including
links to the GitLab Web site where you can view the full source files. So, if all you
want to do is to read the code, you do not need anything more than this book and a
Web browser.

If, on the other hand, you want to run the sample code, or perhaps modify it as part
of your own experiments, you will need to get one or both of the Sampler projects
onto your development machine and into Android Studio. You can do that
completely from inside Android Studio if you wish, or you can get the source code
separately and then import it into Android Studio.

Direct From Android Studio

Android Studio has built-in support for Git. You can download and import a Git
project into Android Studio via File > New > Project from Version Control from an
existing Android Studio window.

If you are at the Android Studio “welcome” dialog, click “Check out project from
Version Control” and choose Git from the menu. If you already have a project open
in Android Studio, choose File > New > Project from Version Control from the main
menu.

INTRODUCING THE SAMPLER PROJECTS

122

https://gitlab.com/commonsguy/cw-jetpack-java
https://gitlab.com/commonsguy/cw-jetpack-kotlin

This will bring up a “Get from Version Control” dialog box:

Figure 67: Android Studio “Get from Version Control” Dialog

Choose “Git” in the “Version control” drop-down. Then, in the “URL” field, fill in the
Git URL for the project that you want to clone:

• Java: https://gitlab.com/commonsguy/cw-jetpack-java.git
• Kotlin: https://gitlab.com/commonsguy/cw-jetpack-kotlin.git

In the “Directory” field, you can provide the path to the directory on your
development machine where you want to put the source code. This needs to be a
new empty directory, but otherwise it can be wherever you want. The folder icon
next to that field will bring up a directory chooser window to help you pick or create
the directory that you want to use.

Then, click the “Clone” button to download the code and begin importing it into
Android Studio. After a short while, your project will then be opened into an
Android Studio window and be ready for use.

INTRODUCING THE SAMPLER PROJECTS

123

https://gitlab.com/commonsguy/cw-jetpack-java.git
https://gitlab.com/commonsguy/cw-jetpack-kotlin.git

Manually

If you prefer to use other tools to work with Git repositories, you are welcome to do
that too.

Clone or Download

Using your favorite Git client, clone the repository from its associated URL:

• Java: https://gitlab.com/commonsguy/cw-jetpack-java.git
• Kotlin: https://gitlab.com/commonsguy/cw-jetpack-kotlin.git

Import

Then, in an existing Android Studio window, you can choose File > New > Import
Project to bring up a file/directory chooser. Alternatively, if you are at the welcome
dialog, choose “Import an existing project” to bring up that same chooser.

Select the directory into which you cloned or unZIPped the Git repo, then click OK.
It should open up right into an Android Studio window.

INTRODUCING THE SAMPLER PROJECTS

124

https://gitlab.com/commonsguy/cw-jetpack-java.git
https://gitlab.com/commonsguy/cw-jetpack-kotlin.git

The Modules
Each project has the same set of modules (mostly):

Figure 68: Android Studio, Android View, Showing Modules

Each module represents one sample app. Some chapters will use a few sample apps.
Some sample apps will be used across multiple chapters. Each chapter will point out
the modules that it is showing you, so you can synchronize your IDE with what the
book is covering.

Running the Samples
Each module is ready to run!

In the toolbar, there is a drop-down list:

Figure 69: Android Studio, Run Configurations Drop-Down

INTRODUCING THE SAMPLER PROJECTS

125

Part Two: Creating an App’s UI

Starting Simple: TextView and Button

Android offers a wide assortment of UI elements. Some are part of the Android SDK.
Others come from third-party libraries. If the UI element is something
commonplace, seen in multiple platforms or GUI environments, then it is likely that
Android has an analogue of it somewhere.

But, as the saying goes, we must learn to walk before we can run.

So, in this chapter, we will explore the basics of Android’s widget-based UI system by
looking at two extremely common widgets: TextView and Button.

First, Some Terminology
Let’s start off by defining some terms as they will be used in Android app
development — and, by extension, in this book.

Widgets

Wikipedia has a nice definition of a widget:

A graphical widget (also graphical control element or control) in a graphical
user interface is an element of interaction, such as a button or a scroll bar.
Controls are software components that a computer user interacts with
through direct manipulation to read or edit information about an
application.

(quote from the 14 May 2020 version of the page)

129

https://en.wikipedia.org/wiki/GUI_widget

Take, for example, this Android screen:

Figure 70: Android 9.0 Settings App Screen

Here, we see:

• a vertically-scrolling list, with rows containing two pieces of text and an icon
• a search field, with a magnifying glass icon and a space to type in a search

term, contained in a rounded rectangle

Everything listed above is made of widgets. The user interface for most Android
screens is made up of one or more widgets.

This does not mean that you cannot do your own drawing. In fact, all the existing
widgets are implemented via low-level drawing routines, which you can use for
everything from your own custom widgets to games.

However, for most non-game applications, your Android user interface will be made
up of several widgets.

From a coding standpoint, widgets extend from a base class named
android.view.View.

STARTING SIMPLE: TEXTVIEW AND BUTTON

130

Containers

Containers are ways of organizing multiple widgets into some sort of structure.
Widgets do not naturally line themselves up in some specific pattern — we have to
define that pattern ourselves.

In most GUI toolkits, a container is deemed to have a set of children. Those children
are widgets, or sometimes are other containers. Each container has its basic rule for
how it lays out its children on the screen, possibly customized by requests from the
children themselves.

Android supplies a handful of containers, designed to handle most common
scenarios. However, we will use one most of the time: ConstraintLayout. This
particular container gives us a flexible set of rules to decide where to place widgets
within the screen. We will explore ConstraintLayout in an upcoming chapter.

From a coding standpoint, containers extend from a base class called
android.view.ViewGroup. ViewGroup itself inherits from View, and so (usually)
things that we can do to a widget we can also do to a container.

Attributes

Widgets have attributes that describe how they should look and behave. In a layout
resource, these are literally XML attributes on the widget’s element in the file.
Usually, there are corresponding getter and setter methods for manipulating this
attribute at runtime from your Java/Kotlin code.

For example, widgets and containers have a “visibility” attribute. This is set by:

• android:visibility attribute in a layout resource
• setVisibility() in Java
• Assigning a value to the visibility property in Kotlin

If you visit the JavaDocs for a widget, such as the JavaDocs for TextView, you will see
an “XML Attributes” table near the top. This lists all of the attributes defined
uniquely on this class, and the “Inherited XML Attributes” table that follows lists all
those that the widget inherits from superclasses. Of course, the JavaDocs also list the
fields, constants, constructors, and public/protected methods that you can use on
the widget itself.

This book does not attempt to explain each and every attribute on each and every

STARTING SIMPLE: TEXTVIEW AND BUTTON

131

https://developer.android.com/reference/android/widget/TextView.html
https://developer.android.com/reference/android/widget/TextView.html

widget. We will, however, cover a variety of popular widgets and the most
commonly-used attributes on those widgets.

Widget IDs

Most widgets and containers in a layout resource will have an ID associated with
them, by means of an android:id attribute. This serves two roles:

1. It allows you to reference that widget from within the layout file, for relative
positioning rules (e.g., put this Button below that other Button)

2. It allows you to reference that widget from Java/Kotlin code

For example, here is a TextView widget with an ID of @+id/hello:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView android:id="@+id/hello"

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="@dimen/hello_padding"
android:text="@string/hello"
android:textSize="@dimen/hello_size"
android:textStyle="bold" />/>

(from SimpleText/src/main/res/layout/activity_main.xml)

Usually we use @+id/... as the id value, where the ... represents your locally-
unique name for the widget. For example, you might have a widget whose ID is
@+id/postalCode or a container whose ID is @+id/addressInfo. You may find
android:id values that lack the + sign (e.g., @id/postalCode) — usually this means
that somewhere else in the same layout resource, there will be one for the same ID
value, but with the + sign.

Size, Margins, and Padding

Widgets have some sort of size, since a zero-pixel-high, zero-pixel-wide widget is not
especially user-friendly. Sometimes, that size will be dictated by what is inside the
widget itself, such as a label (TextView) having a size dictated by the text in the
label. Sometimes, that size will be dictated by the size of whatever holds the widget
(a “container”, described in the next section), where the widget wants to take up all
remaining width and/or height. Sometimes, that size will be a specific set of
dimensions. We will see attributes like android:layout_height and

STARTING SIMPLE: TEXTVIEW AND BUTTON

132

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleText/src/main/res/layout/activity_main.xml

android:layout_width that can be used by a widget to suggest sizing rules to its
parent.

Let’s look again at that TextView:

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView android:id="@+id/hello"

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="@dimen/hello_padding"
android:text="@string/hello"
android:textSize="@dimen/hello_size"
android:textStyle="bold" />/>

(from SimpleText/src/main/res/layout/activity_main.xml)

Here, we have both android:layout_height and android:layout_width set to
wrap_content. wrap_content tells Android “please size this based on whatever is
inside of it”. For example, with a label (TextView), “whatever is inside of it” is the text
that should be displayed. For a container (e.g., ConstraintLayout), “whatever is
inside of it” is the set of children that it manages.

Widgets can have margins. As with CSS, margins provide separation between a
widget and anything adjacent to it (e.g., other widgets, edges of the screen). Margins
are designed to help prevent widgets from running right up next to each other, so
they are visually distinct. We will see attributes like android:layout_margin for
specifying margins.

Widgets can have padding. As with CSS, padding provides separation between the
contents of a widget and the widget’s edges. This is mostly used with widgets that
have some sort of background, like a button, so that the contents of the widget (e.g.,
button caption) does not run right into the edges of the button, once again for visual
distinction. We will see attributes like android:padding for specifying padding.

Hey, What Are Those @dimen@dimen Things?

You will notice that the android:padding attribute has a value of @dimen/
hello_padding. That is a reference to a dimension resource. Like string and color
resources, dimension resources reside in files in res/values/, typically named
dimens.xml. There, you give the dimension a name and a corresponding value:

STARTING SIMPLE: TEXTVIEW AND BUTTON

133

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleText/src/main/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<dimen<dimen name="hello_size">>24sp</dimen></dimen>
<dimen<dimen name="hello_padding">>8dp</dimen></dimen>

</resources></resources>

(from SimpleText/src/main/res/values/dimens.xml)

Here, we have two dimension resources, hello_size and hello_padding.

The value of a dimension resource is made up of two pieces:

• An integer or floating-point number, and
• A unit of measure

hello_padding is defined as 8dp. dp is short for “density-independent pixels”. There
are 160 dp in an inch. dp is the typical unit of measure for most things in Android.

However, hello_size is 24sp. sp is short for “scaled pixels”. One sp is the same size
as one dp for the default font scale. However, users can go into the Settings app and
change their font scale, to make text bigger or smaller. sp takes that into account. So,
if you use sp dimensions for your text size — say, in a TextView widget — your text
will also adjust based on the user’s chosen font scale.

There are other units of measure that you could use but are almost never used:

• in for inches
• mm for millimeters
• px for hardware pixels

In particular, trying to use px for a dimension will result in compiler warnings. Using
px does not take screen density differences into account, so a dimension measured
in px will be different sizes on different devices. This is almost never what you want.

Introducing the Graphical Layout Editor
If you open a layout resource in Android Studio, you will see one of two perspectives:
XML, or a drag-and-drop graphical editor.

STARTING SIMPLE: TEXTVIEW AND BUTTON

134

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleText/src/main/res/values/dimens.xml

Towards the upper-right of the layout resource editing tab, you will see that it has a
few toolbar buttons:

Figure 71: Android Studio Graphical Layout Editor, with Toolbar Buttons Highlighted

One will be selected at any point in time. The “Design” one represents the graphical
layout editor:

Figure 72: Android Studio Graphical Layout Editor

STARTING SIMPLE: TEXTVIEW AND BUTTON

135

The “Code” one allows you to edit the raw XML that is the actual content of the
layout resource:

Figure 73: Text View in Layout Editor

The “Split” one gives you both the text editor plus parts of the graphical layout
editor:

Figure 74: Text View in Layout Editor with Preview and Attributes Panes

Clicking on items in the preview will select the corresponding XML element in the
text editor.

The XML editor is very useful but is also very typical: it offers basic editing with
some amount of auto-completion to reduce the amount of typing that you need. If

STARTING SIMPLE: TEXTVIEW AND BUTTON

136

you have done software development using other IDEs or editors, the XML editor in
Android Studio should be akin to what you are used to.

The graphical editor also resembles those used in IDEs for decades. However, there
has been a bit more variation in how IDEs set up those editors, and Android Studio
has its own approach to this sort of tool. So, with that in mind, let’s review what it
offers.

Palette

The upper-left side of the graphical layout editor is the Palette tool:

Figure 75: Palette Tool

This lists all sorts of widgets and containers that you can drag and drop. They are
divided into categories (“Widgets”, “Text”, “Layouts”, etc.) with many options in each.
A few are not strictly widgets or containers but rather other sorts of XML elements
that you can have in a layout resource (e.g., <fragment>, <requestFocus>). Some —
such as the RecyclerView shown in the above screenshot — are from libraries and
may have a “download” icon adjacent to them to help illustrate that.

As we cover how to use the graphical layout editor, we will see how to create and
configure several of these widgets, containers, and other items.

STARTING SIMPLE: TEXTVIEW AND BUTTON

137

Preview

The main central area of the graphical layout editor consists of two perspectives on
your layout resource contents. The one on the left or top is a preview of what your
UI should resemble, if this layout were used for the UI of an activity:

Figure 76: UI Preview

This pours your layout resource contents into a preview frame that has aspects of a
regular Android device, such as the navigation bar at the bottom and the status bar
at the top.

If you drag items out of the Palette and drop them into the preview area, they will be
added to your layout resource.

STARTING SIMPLE: TEXTVIEW AND BUTTON

138

Blueprint

To the right of the preview area (or below it) is the blueprint view. This also visually
depicts your layout resource. However, rather than showing you a preview of what
your UI might look like, it visually represents what widget and container classes you
are using. And, for some types of containers, it will show some of the sizing and
positioning rules that you are using for children of that container:

Figure 77: Blueprint

For a trivial layout resource, the blueprint view does not show you much. It will
become more useful with more complex layout resources.

Preview Toolbar

Figure 78: Preview Toolbar, Top Level

From left to right, the toolbar contains:

STARTING SIMPLE: TEXTVIEW AND BUTTON

139

• A drop-down to toggle whether you see the preview, the blueprint, or both
• A toggle to control whether you are seeing the layout as applied to portrait

or landscape perspectives
• A drop-down to choose what device size and resolution should be used for

the preview, culled from your emulator images and the available device
definitions

• A drop-down to choose what API level should be used for the simulated UI
of the preview

• A button to choose what theme to use for presenting the UI of the preview
• A button to choose what language to use for determining which of your

string resources gets used in the preview

A couple of those — particularly the theme selector — pertain to topics that we will
explore later in the book.

Component Tree

Towards the bottom-left corner is the component tree:

Figure 79: Component Tree

This gives you a full tree of all of the widgets and containers inside of this layout
resource. It corresponds to the tree of XML elements in the layout resource itself.

Clicking on any item in the component tree highlights it in both the preview and
blueprint views, plus it switches to that widget or container for the attributes pane.

STARTING SIMPLE: TEXTVIEW AND BUTTON

140

Attributes

When a widget or container is selected — whether via the component tree, clicking
on it in the preview, or clicking on it in the blueprint — the “Attributes” pane on the
right will allow you to manipulate how that widget or container looks and behaves:

Figure 80: Attributes Pane

This is divided into sections. The “All Attributes” section, as the name suggests, lists
all available attributes for this widget. The other sections highlight common subsets
of the attributes. Each section can be expanded or collapsed via the triangle icon in
the section header.

STARTING SIMPLE: TEXTVIEW AND BUTTON

141

You can also click the magnifying glass icon in the toolbar of this pane to search for
available attributes by name:

Figure 81: Attributes Pane, Showing Search Results

We will see what some of these attributes are and how to work with them over the
course of the next few chapters.

For the attributes in the full roster, you can click the star icon on the left to mark
them as “favorites”, as seen with the “visibility” attribute in the above screenshot.
Those favorite attributes show up in the section labeled “Favorite Attributes”.

TextViewTextView: Assigning Labels
Arguably, the simplest widget is the label, referred to in Android as a TextView. Like
in most GUI toolkits, labels are bits of text that are not editable directly by users.
Typically, they are used to identify adjacent widgets (e.g., a “Name:” label before a
field where one fills in a name) or display other text of relevance to users (e.g.,
messages in pop-up dialog).

As with any widget, you can create instances of TextView in your Java or Kotlin code
by invoking a constructor, then use setText() methods to set the text to be
displayed by the TextView. However, for ordinary UIs, typically you will use XML
layout resources — in there, you can add a TextView element to the layout, with an
android:text attribute to set the text of the label itself.

A Sample TextView

Our first sample app — SimpleText — is even simpler than the “Hello, World” ones
from earlier in the book. The activity_main layout just has a TextView in it:

STARTING SIMPLE: TEXTVIEW AND BUTTON

142

<?xml version="1.0" encoding="utf-8"?>
<TextView<TextView android:id="@+id/hello"

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="@dimen/hello_padding"
android:text="@string/hello"
android:textSize="@dimen/hello_size"
android:textStyle="bold" />/>

(from SimpleText/src/main/res/layout/activity_main.xml)

A TextView displays some text, set by the android:text attribute. Because of the
wrap_content values for width and height, the size of this TextView will be
determined by:

• The text we are putting in it (android:text)
• The font size of that text (android:textSize)
• The font style of that text (android:textStyle)
• The padding that we put on it (android:padding)

The SamplerJ/SimpleText edition of MainActivity just displays this layout, via
setContentView():

packagepackage com.commonsware.jetpack.samplerj.simpletextcom.commonsware.jetpack.samplerj.simpletext;

importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport android.os.Bundleandroid.os.Bundle;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
}

(from SimpleText/src/main/java/com/commonsware/jetpack/samplerj/simpletext/MainActivity.java)

…while the Sampler/SimpleText edition does the same thing, but in Kotlin instead
of Java:

packagepackage com.commonsware.jetpack.sampler.simpletextcom.commonsware.jetpack.sampler.simpletext

importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport android.os.Bundleandroid.os.Bundle

STARTING SIMPLE: TEXTVIEW AND BUTTON

143

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleText/src/main/res/layout/activity_main.xml
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/SimpleText
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/SimpleText
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/SimpleText/src/main/java/com/commonsware/jetpack/samplerj/simpletext/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/SimpleText
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/SimpleText

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {
overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {

supersuper.onCreate(savedInstanceState)
setContentView(RR.layout.activity_main)

}
}

(from SimpleText/src/main/java/com/commonsware/jetpack/sampler/simpletext/MainActivity.kt)

Android Studio Graphical Layout Editor

The TextView widget is available in the “Common” category of the Palette in the
Android Studio graphical layout editor:

Figure 82: Palette, TextView in Common Category

(it also appears in the “Text” category)

If you want to add a TextView to a layout, just drag the TextView from the Palette
into a layout file in the main editing area to add the widget to the layout. Or, drag it
over the top of some container you see in the Component Tree pane of the editor to
add it as a child of that specific container.

Clicking on the new TextView will set up the Attributes pane with the various
attributes of the widget, ready for you to change as needed.

STARTING SIMPLE: TEXTVIEW AND BUTTON

144

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleText/src/main/java/com/commonsware/jetpack/sampler/simpletext/MainActivity.kt

Editing the Text

The “Text” attribute will allow you to choose or define a string resource to serve as
the text to be displayed:

Figure 83: Attributes Pane, Showing TextView “text” Attribute

The “text” with a wrench icon allows you to provide a separate piece of text that will
show up in the preview, but not be used by your app at runtime.

STARTING SIMPLE: TEXTVIEW AND BUTTON

145

You can either type a literal string right in the Attributes pane row, or you can click
the “…” button to the right of the field to pick a string resource:

Figure 84: String Resources Dialog

STARTING SIMPLE: TEXTVIEW AND BUTTON

146

You can highlight one of those resources and click “OK” to use it. Or, towards the
upper-left of that dialog, there is an “+” drop-down. When viewing string resources,
that drop-down will offer “String Resource File” and “String Value” options.
Choosing the “String Value” option will allow you to define a new string resource via
another dialog:

Figure 85: New String Resource Dialog

You can give your new string resource a name, the actual text of the string itself, the
filename in which the string resource should reside (strings.xml by default), and
which values/ directory the string should go into (values by default). You will also
choose the “source set” — for now, that will just be main. Once you accept the dialog,
your new string resource will be applied to your TextView.

In the SimpleText projects, the TextView has an android:text attribute set to the
@string/hello string resource.

STARTING SIMPLE: TEXTVIEW AND BUTTON

147

Editing the ID

The “id” attribute will allow you to change the android:id value of the widget:

Figure 86: Attributes Pane, Showing ID Field

The value you fill in here is what goes after the @+id/ portion (e.g., textView2). This
works for all widgets, not just TextView.

In the SimpleText projects, the TextView has hello for its ID field contents, which
results in android:id="@+id/hello" in the XML.

Notable TextView Attributes

TextView has numerous other attributes of relevance for labels, such as:

1. android:typeface to set the typeface to use for the label (e.g., monospace)
2. android:textStyle to indicate that the typeface should be made bold

(bold), italic (italic), or bold and italic (bold_italic)
3. android:textColor to set the color of the label’s text, in RGB hex format

(e.g., #FF0000 for red), ARGB hex format (e.g., #88FF0000 for a translucent
red), or as a reference to a color resource (e.g., @color/colorAccent)

These attributes, like most others, can be modified through the Attributes pane,
though many of these are in the “All Attributes” section. The SimpleText app sets
the textSize, textStyle, and padding attributes.

Button: Reacting to Input
Android has a Button widget, which is your classic push-button “click me and
something cool will happen” widget. As it turns out, Button is a subclass of
TextView, so everything discussed in the preceding section in terms of formatting
the face of the button still holds.

STARTING SIMPLE: TEXTVIEW AND BUTTON

148

A Sample Button

Our next sample app — SimpleButton — has a similar activity_main layout as the
SimpleText app had:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button android:id="@+id/showElapsed"

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textSize="@dimen/hello_size"
tools:text="123 seconds since started!" />/>

(from SimpleButton/src/main/res/layout/activity_main.xml)

The primary difference is that this is a Button widget instead of a TextView widget.
Also:

• The android:id is now showElapsed
• We skip the padding and textStyle, to adopt the standard look for buttons
• We skip the android:text that normally would be here, as we are going to

provide the text at runtime via our Java or Kotlin code
• We have a tools:text attribute… which raises a question

Hey, What Is That tools:tools: Thing?

You will notice that our Button element has a tools:text attribute.

Attributes in the tools: namespace are suggestions to the development tools and
have no impact on the behavior of your app when it runs. They are here to help
make Android Studio work a bit better, particularly with respect to the graphical
layout editor.

Normally, we have an android:text attribute on TextView and subclasses, and that
provides the text. Here, though, we skip that attribute, as we are going to provide
the text at runtime. However, that makes the graphical layout editor less useful:

• The caption of the Button shows up blank
• Since the width and height of the Button are each wrap_content, the

graphical layout editor does not know how big to make the Button

tools:text says, “hey, Android Studio! use this for the Button caption for the

STARTING SIMPLE: TEXTVIEW AND BUTTON

149

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleButton/src/main/res/layout/activity_main.xml

graphical layout editor!”. This value will not show up when you run the app; it will
only appear in the IDE. Typically, you set tools:text to either:

• A reasonable value, to see what that looks like
• Some extreme value, such as a really long string, to see what that looks like,

in case you find that you need to adjust the GUI design to deal with that

Android Studio Graphical Layout Editor

The Button widget is available in the “Buttons” portion of the Palette in the Android
Studio graphical layout editor:

Figure 87: Widgets Palette, Button Shown Highlighted

You can drag that Button from the palette into a layout file in the main editing area
to add the widget to the layout. The Attributes pane will then let you adjust the
various attributes of this Button. Since Button inherits from TextView, most of the
options are the same (e.g., “Text”).

Tracking Button Clicks

In the SimpleButton sample, we want to show the time since the activity was

STARTING SIMPLE: TEXTVIEW AND BUTTON

150

displayed in the button caption. Tapping the button should update the caption to
show the now-current elapsed time.

This implies that:

• We can find out when the button is clicked, and
• We can set the android:text attribute at runtime with a generated value

Updating the caption of the Button is a matter of calling setText() on the Button
with the desired caption. However, there are a few approaches for doing that, as well
as for finding out about the button clicks. The recommended current approach for
getting access to the Button widget, for general-purpose use, is to use “view binding”.

With view binding, the Android build tools code-generate a Java class for you, based
on each one of your layout resources. That class not only helps you set up the layout,
but it gives you fields for accessing each of the named widgets within that layout.

Both the SamplerJ/SimpleButton Java edition and the Sampler/SimpleButton Kotlin
edition of this sample use view binding.

View binding is enabled as an option via a new closure in the android closure in
your module’s build.gradle file:

buildFeatures {
viewBinding = truetrue

}

(from SimpleButton/build.gradle)

buildFeatures does “pretty much what it says on the tin”: it enables optional build
features that get added to our Android builds. Here, we are opting into view binding
via viewBinding = true.

Adding those lines automatically sets up view binding for each of our layouts. Right
now, we just have a single layout: activity_main.

The class name for the code-generated class is derived from the layout name, where
names_like_this get converted into NamesLikeThis and have Binding appended. So,
since our layout resource is activity_main.xml, we get ActivityMainBinding. This
is code-generated into a databinding Java sub-package of the package name from
the manifest. Hence, the fully-qualified import statement for this class is:

STARTING SIMPLE: TEXTVIEW AND BUTTON

151

https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/SimpleButton
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/SimpleButton
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/SimpleButton
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/SimpleButton
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/SimpleButton
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleButton/build.gradle

importimport com.commonsware.jetpack.sampler.simplebutton.databinding.ActivityMainBindingcom.commonsware.jetpack.sampler.simplebutton.databinding.ActivityMainBinding

(if you are wondering why this is “view binding”, but the package name has
databinding, that is for historical reasons — just roll with it)

Our activity can then reference ActivityMainBinding and use it to set up the UI and
get a reference to the showElapsed widget, in Java:

packagepackage com.commonsware.jetpack.samplerj.simplebuttoncom.commonsware.jetpack.samplerj.simplebutton;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.widget.Buttonandroid.widget.Button;
importimport com.commonsware.jetpack.samplerj.simplebutton.databinding.ActivityMainBindingcom.commonsware.jetpack.samplerj.simplebutton.databinding.ActivityMainBinding;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
privateprivate finalfinal long startTimeMs = SystemClockSystemClock.elapsedRealtime();
privateprivate ActivityMainBindingActivityMainBinding binding;

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

binding = ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());
setContentView(binding.getRoot());
binding.showElapsed.setOnClickListener(v -> updateButton());
updateButton();

}

void updateButton() {
long nowMs = SystemClockSystemClock.elapsedRealtime();
StringString caption = getString(R.string.elapsed, (nowMs - startTimeMs) / 1000);

binding.showElapsed.setText(caption);
}

}

(from SimpleButton/src/main/java/com/commonsware/jetpack/samplerj/simplebutton/MainActivity.java)

…and Kotlin:

packagepackage com.commonsware.jetpack.sampler.simplebuttoncom.commonsware.jetpack.sampler.simplebutton

importimport android.os.Bundleandroid.os.Bundle
importimport android.os.SystemClockandroid.os.SystemClock
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport com.commonsware.jetpack.sampler.simplebutton.databinding.ActivityMainBindingcom.commonsware.jetpack.sampler.simplebutton.databinding.ActivityMainBinding

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {
privateprivate valval startTimeMs = SystemClockSystemClock.elapsedRealtime()
privateprivate lateinitlateinit varvar binding: ActivityMainBindingActivityMainBinding

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

STARTING SIMPLE: TEXTVIEW AND BUTTON

152

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/SimpleButton/src/main/java/com/commonsware/jetpack/samplerj/simplebutton/MainActivity.java

binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)
binding.showElapsed.setOnClickListener { updateButton() }
updateButton()

}

privateprivate funfun updateButton() {
valval nowMs = SystemClockSystemClock.elapsedRealtime()
valval caption = getString(RR.string.elapsed, (nowMs - startTimeMs) / 1000)

binding.showElapsed.text = caption
}

}

(from SimpleButton/src/main/java/com/commonsware/jetpack/sampler/simplebutton/MainActivity.kt)

We get an ActivityMainBinding instance by calling the static inflate() method on
it, passing in a LayoutInflater that we get from getLayoutInflater(). A
LayoutInflater knows how to take a layout resource and create the corresponding
Java objects representing all of the widgets and containers in that resource. When
we called setContentView(R.layout.activity_main) before, under the covers,
setContentView() used a LayoutInflater. ActivityMainBinding also uses a
LayoutInflater.

Given that ActivityMainBinding object, we can call setContentView(), this time
not passing in R.layout.activity_main. We already inflated the layout using
ActivityMainBinding and LayoutInflater — we do not need to do it twice.
Instead, we call getRoot() on our binding object, which represents the root of our
layout view hierarchy. Passing that to setContentView() sets up our UI, just as
setContentView(R.layout.activity_main) did.

But the binding object also gives us access to our widgets. Specifically,
ActivityMainBinding has a showElapsed field, named after the android:id that we
used for the <Button> in the layout. showElapsed is a Java Button object representing
this widget, and we can do things like call setOnClickListener() to arrange to get
control when the user clicks the button.

Natively, setOnClickListener() takes an OnClickListener callback object. In both
the Java and the Kotlin examples, we call setOnClickListener() on the Button, we
are using a lambda expression that Java or Kotlin will convert into an
OnClickListener for us, with the body of the lambda expression forming the body
of the onClick() method and being called when the user clicks the button. There,
we call an updateButton() method, which we also call from onCreate().

updateButton() uses SystemClock.elapsedRealtime() to get the number of

STARTING SIMPLE: TEXTVIEW AND BUTTON

153

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleButton/src/main/java/com/commonsware/jetpack/sampler/simplebutton/MainActivity.kt

milliseconds that have elapsed since the device booted. SystemClock is a class
supplied by the Android SDK that returns various time values that are tied to device
activity. We use that same elapsedRealtime() method to populate a startTimeMs
field in the activity, which will record when the activity was displayed. Hence, the
number of milliseconds between the activity being displayed and now is a matter of
subtracting startTimeMs from nowMs.

To display that in the Button, updateButton() calls getString() on the activity.
getString() returns the value of a string resource, given the ID of that string
resource. Here, we are looking to pull in an elapsed string resource. The
SimpleButton project defines that using a combination of a message and a
placeholder:

<resources><resources>
<string<string name="app_name">>Jetpack: Button</string></string>
<string<string name="elapsed">>%d seconds since started!</string></string>

</resources></resources>

(from SimpleButton/src/main/res/values/strings.xml)

String resources support the same placeholder patterns as does Java’s
String.format() method, which is largely the same as what you might use in
sprintf() in C/C++ development. Here, %d says “we will supply an integer to fill in
here”, which we do via the second parameter to getString(). The result is that
caption will hold the string resource with the %d replaced by the number of seconds
since the activity was started.

That caption value is then passed to setText() on our Button, which causes it to
show the caption.

STARTING SIMPLE: TEXTVIEW AND BUTTON

154

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/SimpleButton/src/main/res/values/strings.xml

Initially, that caption will show that 0 seconds have elapsed:

Figure 88: SimpleButton Sample, As Initially Launched

STARTING SIMPLE: TEXTVIEW AND BUTTON

155

If you tap it later, it will show the number of seconds since the activity was started:

Figure 89: SimpleButton Sample, A Little While Later

Note that the Button changes size as the caption changes length. That is because the
Button uses wrap_content for its width, so as the content changes, so will the
Button width.

So, we:

• Use the code-generated binding class to set up our UI based on our layout
resource

• Used the showElapsed field on that binding class to get at our Button object
• Used setOnClickListener() and setText() on the Button to find out when

the button is clicked and update its caption, respectively

There are alternatives to view binding for doing all of this — we will discuss those
more later in the book.

STARTING SIMPLE: TEXTVIEW AND BUTTON

156

The Curious Case of the Missing R
The Java and Kotlin code both refer to these R values. The R class gets code generated
by the IDE and build tools based on our current roster of resources. Each resource
gets a corresponding R value based on the type of resource (R.layout, R.id,
R.string, etc.) and the name of the resource (R.layout.activity_main,
R.id.showElapsed, R.string.elapsed, etc.).

Sometimes, when you are working on your Java or Kotlin code, you will run into
cases where you cannot seem to use the R class to reference your resources. There
are two main scenarios:

• The IDE says that it does not know what R is
• The IDE says that it knows what R is but does not recognize a particular

resource that you are trying to reference (e.g., you have R.layout.foo, and
either layout or foo are reported as not being recognized)

These problems come about due to where that R class lives and when it is created (or
updated).

Where R Lives

All of our Java and Kotlin classes reside in some “package”. In the starter project, that
package is com.commonsware.helloworld. Our one-and-only class, MainActivity, is
in that package. The samples shown in this chapter are in different packages, such as
com.commonsware.jetpack.sampler.simplebutton for the Kotlin edition of the
SimpleButton sample.

The R class will be code-generated by the build tools in the Java package identified
by the package attribute in the <manifest> element. So, for a project whose package
is com.commonsware.jetpack.sampler.simplebutton, the fully-qualified class name
for R is com.commonsware.jetpack.sampler.simplebutton.R.

Java and Kotlin share a common rule: you do not need to import classes that are in
the same package as the class that you are in. So, in our projects, MainActivity can
refer to R without an import statement, as both MainActivity and R are in the
project’s package (e.g., com.commonsware.jetpack.sampler.simplebutton).

If you try referencing R, and Android Studio complains that it does not know what R
is, consider whether your class is in a different package than the one defined in the

STARTING SIMPLE: TEXTVIEW AND BUTTON

157

<manifest> element. If it is, you will need to add an import statement to pull in your
R class.

When R Is Created

R is created as part of building your project. To allow code-completion and other
assistance features of Android Studio to work, R gets re-created whenever you add,
rename, or remove a resource, as R is an “index” of all of the resources in your app.
However, occasionally, you will use some feature of Android Studio that happens to
add, rename, or remove a resource, but Android Studio fails to regenerate that R
class.

If Android Studio knows what R is but does not recognize some particular resource,
try manually building the project, via Build > Rebuild Project from the Android
Studio main menu. This forces R to get regenerated, and it may clear up your
problem.

When R Is Not Created

Sometimes, though, Android Studio does not know what R is because R is missing
entirely.

If there is some bug in one of your resources — or, as it turns out, if there is some
bug in your manifest — R may not be regenerated. If Android Studio says that it does
not know what R is, and either you already have the import statement or you should
not need one (since R and your code are in the same package), then it is likely that
there is some problem in a resource or your manifest.

If you manually build the project — again, via Build > Rebuild Project from the
Android Studio main menu — you should get a build error telling you exactly what
resource is flawed, so you can try to fix it.

Package Names

Since the package value is used for Java code generation, it has to be a valid Java
package name. Java convention says that the package name should be based on a
reverse domain name (e.g., com.commonsware.myapplication), where you own the
domain in question. That way, it is unlikely that anyone else will accidentally collide
with the same name.

STARTING SIMPLE: TEXTVIEW AND BUTTON

158

Debugging Your App

Now that we are starting to manipulate widgets, the odds increase that we are going
to somehow do it wrong, and our app will crash. Usually, when your app crashes, the
OS will show a dialog box:

Figure 90: Android 5.0 App Crash Dialog

159

Figure 91: Android 9.0 Dialog After Repeated Crashes

In this chapter, we will cover a few tips on how to debug these sorts of issues.

Get Thee To a Stack Trace
If it seems like your app has crashed, the first thing you will want to do is examine
the stack trace that is associated with this crash. These are logged to a facility known
as Logcat, on your device or emulator. You can view those logs using the Logcat tool
in Android Studio.

DEBUGGING YOUR APP

160

The Logcat tool is available at any time, from pretty much anywhere in Android
Studio, by means of clicking on the Android tool window entry, usually docked at
the bottom of your IDE window:

Figure 92: Minimized Tool Windows in Android Studio, Showing Logcat Tool

Clicking on that will bring up some Android-specific logs in an Logcat tool window:

Figure 93: Android Logcat Tool Window

Logcat will show your stack traces, diagnostic information from the operating
system, and anything you wish to include via calls to static methods on the
android.util.Log class. For example, Log.e() will log a message at error severity,
causing it to be displayed in red.

The toolbar across the top of the Logcat window has a drop-down list of available
devices and running emulators. Whichever one is selected there is the source of the
log messages seen in the main area of the Logcat tool window.

If your app crashes, most of the time, there will be an associated Java stack trace
(even if you are writing Kotlin code). For example the stack trace that triggered the
crash dialog shown at the start of this chapter is:

DEBUGGING YOUR APP

161

E/AndroidRuntime: FATAL EXCEPTION: main
Process: com.commonsware.jetpack.sampler.simpleboom, PID: 14064
java.lang.RuntimeException: Unable to start activity...

at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2693)
at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2758)
at android.app.ActivityThread.access$900(ActivityThread.java:177)
at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1448)
at android.os.Handler.dispatchMessage(Handler.java:102)
at android.os.Looper.loop(Looper.java:145)
at android.app.ActivityThread.main(ActivityThread.java:5942)
at java.lang.reflect.Method.invoke(Native Method)
at java.lang.reflect.Method.invoke(Method.java:372)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run...
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1195)

Caused by: android.content.res.Resources$NotFoundException: String resource...
at android.content.res.Resources.getText(Resources.java:1334)
at android.widget.TextView.setText(TextView.java:4917)
at com.commonsware.jetpack.sampler.simpleboom.MainActivity...
at com.commonsware.jetpack.sampler.simpleboom.MainActivity...
at android.app.Activity.performCreate(Activity.java:6283)
at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1119)
at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2646)
at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java:2758)
at android.app.ActivityThread.access$900(ActivityThread.java:177)
at android.app.ActivityThread$H.handleMessage(ActivityThread.java:1448)
at android.os.Handler.dispatchMessage(Handler.java:102)
at android.os.Looper.loop(Looper.java:145)
at android.app.ActivityThread.main(ActivityThread.java:5942)
at java.lang.reflect.Method.invoke(Native Method)
at java.lang.reflect.Method.invoke(Method.java:372)
at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run...
at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1195)

(note: some lines were truncated with ... to try to make the output fit the page
width better)

Most of the time — though not always — you should be able to find references to
your code in the stack trace, to know where you were when you crashed.

If you want to send something from Logcat to somebody else, such as via an issue
tracker, just highlight the text and copy it to the clipboard, as you would with any
text editor.

The “trash can” icon atop the tool strip on the left is the “clear log” tool. Clicking it
will appear to clear Logcat. It definitely clears your Logcat view, so you will only see
messages logged after you cleared it. Note, though, that this does not actually clear

DEBUGGING YOUR APP

162

the logs from the device or emulator.

In addition, you can:

• Use the “Log level” drop-down to filter lines based on severity, where
messages for your chosen severity or higher will be displayed (e.g., only show
“Error” severity)

• Use the search field to the right of the “Log level” drop-down to filter items
based on a search string

• Set up more permanent filters via the drop-down to the right of the search
field (e.g., “No Filters”)

Running Your App in the Debugger
The SimpleBoom module in the Sampler and SamplerJ projects is very similar to the
SimpleButton example we looked at in the chapter on widgets. There are three main
differences:

• The button now has a text caption defined in the layout via the
android:text attribute:

<?xml version="1.0" encoding="utf-8"?>
<Button<Button android:id="@+id/showElapsed"

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/elapsed_caption"
android:textSize="@dimen/hello_size" />/>

(from SimpleBoom/src/main/res/layout/activity_main.xml)

DEBUGGING YOUR APP

163

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/SimpleBoom
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/SimpleBoom
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/SimpleBoom
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/SimpleBoom
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleBoom/src/main/res/layout/activity_main.xml

• We no longer immediately update the button when starting the activity, so
that caption shows up:

Figure 94: SimpleBoom Sample App, As Initially Launched

• We crash when the user taps the button

Sometimes, the stack trace alone will give you enough information to know how to
fix the bug. If not, you can run your app in the debugger to see exactly how your
code is executing and perhaps get a better sense for your mistake.

DEBUGGING YOUR APP

164

Setting Breakpoints

In our Java and Kotlin code editors in Android Studio, the vertical bar on the left is
called “the gutter”:

Figure 95: Editor, with Gutter Area Highlighted

The author of this book likes having the line numbers visible. To control whether
those show up, go to Files > Settings > Editor > General > Apperance — the “Show
line numbers” checkbox controls whether the gutter shows line numbers.

Clicking in the gutter on a line of source code will set a breakpoint, which appears as
a red dot in the gutter and a pink highlight on the line:

Figure 96: Editor, with Breakpoint

DEBUGGING YOUR APP

165

When you run your app using the debugger, when code execution reaches lines with
a breakpoint, execution stops and you can use the IDE to learn more about what is
going on.

For lines containing lambda expressions, when you click in the gutter to set a
breakpoint, you will get a drop-down menu of options for what the breakpoint
should affect:

Figure 97: Editor, While Trying to Set a Breakpoint on Line 31

Your options are:

• Set the breakpoint for the initial code on the line (“Line”)
• Set the breakpoint to trigger when the lambda expression is executed (“{
updateButton() }”)

• Both (“All”)

Launching the Debugger

To run the app and have the breakpoints take effect, you need to run it in the
debugger. You can do this from the Run > Debug main menu option or the “green
run triangle over a dark gray bug” toolbar icon:

Figure 98: Android Studio Toolbar, with Debug Icon on Right

DEBUGGING YOUR APP

166

This behaves a lot like when you normally run the app. However, the app will run
more slowly, and when the breakpoint is reached, your IDE window will open a
Debug tool that shows you what is going on:

Figure 99: Android Studio, Showing Debug Tool at a Breakpoint

Examining Objects

The middle of the Debug tool shows a “Variables” list. This will contain local
variables, fields/properties of the current object, and other values that your code
might be referencing:

Figure 100: Variables Pane of Debug Tool

DEBUGGING YOUR APP

167

Simple types, like the Long value nowMs, just show their value. More complex types
will show you their type and can be explored in turn using the gray triangle to
expand the object tree:

Figure 101: Variables Pane of Debug Tool, Showing Object Contents

This can help you understand the data at this point in the code.

Stepping Through the Code

The toolbar towards the top of the Debug tool has a few buttons that let you step
through the code to follow along as it gets executed:

Figure 102: Code Step Toolbar Buttons in Debug Tool

From left to right, these are:

• Execute this statement and move into the next one

DEBUGGING YOUR APP

168

• Step into the function being called in this statement, if it is not an Android
SDK function

• Step into the function being called in this statement, even if it is an Android
SDK function

• Execute far enough to exit the function that we are in and then stop

Also, there is a tool strip on the left with a few useful buttons:

Figure 103: Tool Strip in Debug Tool

Of particular note:

• The top-most button (green triangle) will start executing code until the next
breakpoint or crash

• The red square terminates your process
• The fourth button (two overlapping red dots) brings up a dialog box showing

you all of your breakpoints

So, Where Did We Go Wrong?
In both the Java and Kotlin editions of MainActivity and its updateButton()

DEBUGGING YOUR APP

169

method, we have a simpler bit of code that tries to set the caption to just be the
number of seconds that have elapsed:

privateprivate funfun updateButton() {
valval nowMs = SystemClockSystemClock.elapsedRealtime()

binding.showElapsed.setText(((nowMs - startTimeMs) / 1000).toInt())
}

(from SimpleBoom/src/main/java/com/commonsware/jetpack/sampler/simpleboom/MainActivity.kt)

void updateButton() {
long nowMs = SystemClockSystemClock.elapsedRealtime();
int seconds = (int)((nowMs - startTimeMs) / 1000);

binding.showElapsed.setText(seconds);
}

(from SimpleBoom/src/main/java/com/commonsware/jetpack/samplerj/simpleboom/MainActivity.java)

This code compiles, because setText() on a Button has a variant that accepts an Int
as a parameter. We are passing an Int that represents the number of seconds.

Let’s look at the relevant portion of the stack trace again:

Caused by: android.content.res.Resources$NotFoundException: String resource ID #0x11
at android.content.res.Resources.getText(Resources.java:1334)
at android.widget.TextView.setText(TextView.java:4917)
at com.commonsware.jetpack.sampler.simpleboom.MainActivity.updateButton...

As it turns out, setText(Int) does not show that Int value as text in the Button
caption. Instead, Android is expecting that to be a reference to a string resource,
such as R.string.elapsed. Those R values are all integers, and so many functions in
the Android SDK that accept an Int are expecting a resource ID, not some arbitrary
value as we are providing. In particular, if you get crash with an
android.content.res.Resources$NotFoundException, there is a good chance that
you are passing in a value to a function that is not a valid resource ID.

The correct way to implement this would be to convert the numeric value to a
String, then pass that to setText():

DEBUGGING YOUR APP

170

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimpleBoom/src/main/java/com/commonsware/jetpack/sampler/simpleboom/MainActivity.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/SimpleBoom/src/main/java/com/commonsware/jetpack/samplerj/simpleboom/MainActivity.java

privateprivate funfun updateButton() {
valval nowMs = SystemClockSystemClock.elapsedRealtime()

showElapsed?.setText(((nowMs - startTimeMs) / 1000).toString())
}

void updateButton() {
long nowMs = SystemClockSystemClock.elapsedRealtime();
int seconds = (int)((nowMs - startTimeMs) / 1000);

showElapsed.setText(IntegerInteger.toString(seconds));
}

DEBUGGING YOUR APP

171

Introducing ConstraintLayoutConstraintLayout

The starter app that we examined in the opening chapters had a layout like this:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">>

<TextView<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

This wraps a single TextView in a ConstraintLayout. For the purposes of what this
“hello, world!” app does, the ConstraintLayout is pointless — we saw activities
using just a TextView in the chapter on widgets.

However, more often than not, you will have more than one widget in your layout
resources. When you do, you will always have some sort of container, and frequently
that container will be a ConstraintLayout.

In this chapter, we will review what containers are and why we use them, examine

173

some basic scenarios for using ConstraintLayout, and look at another widget:
EditText.

The Role of Containers
Some apps have screens that contain just one widget.

Not many, though.

Most of the time, our user interface is more complicated than that… even if it does
not seem that complicated when you look at it:

Figure 104: A Sample Screen

Here we have:

• Three checkboxes
• Three labels adjacent to those checkboxes
• Some sort of title (“ToDo”)
• A strange little “…” icon in the upper right
• A yellow background behind the title and icon

INTRODUCING CONSTRAINTLAYOUT

174

This takes more than one XML element to represent in a layout resource. In fact,
this takes more than one layout resource. This app is a “to-do list” sort of app, and it
can handle an arbitrary number of to-do items. So while this screenshot shows three
rows of checkboxes-and-labels, really the user could have 0 to N of them.

As we covered previously, containers extend from ViewGroup, and the job of a
ViewGroup is to organize some number of children and display them on the screen.
ViewGroup itself extends from View, so the children of a ViewGroup can be a mix of
View and ViewGroup objects.

So, in this screenshot, we clearly have at least one ViewGroup that is organizing all of
those widgets and displaying them.

Layouts and Adapter-Based Containers
Roughly speaking, there are two major types of ViewGroup implementations:

• There are those that organize a set of children known at the time that you
are writing the app

• There are those that organize a set of children that cannot be known until
the app is run

For example, if we were to write a to-do list app like the one shown above, we do not
know how many to-do items there are in the list. That depends on how many the
user enters that we save in a database, a Web service, or some other place. However,
for each individual to-do list item, we know that the visual representation of that
item is a checkbox and a label showing the task to be performed.

So, in this case, we have both types of ViewGroup. The list of to-do items is managed
by a ViewGroup that is optimized for organizing data at runtime, while each row in
that list is managed by a ViewGroup that is optimized for organizing data when we
write the app.

The most popular ViewGroup for organizing data at runtime is RecyclerView,
though there are other options. We will explore RecyclerView more later in the
book. The recommended ViewGroup for organizing widgets in layout resources is a
ConstraintLayout, though there are other options.

INTRODUCING CONSTRAINTLAYOUT

175

ConstraintLayoutConstraintLayout: One Layout To Rule Them All
If you survey the Internet, you will find that ConstraintLayout is popular but
relatively new. You will find references to other ...Layout classes, such as
LinearLayout and RelativeLayout. We will explore those briefly later in this
chapter. Suffice it to say that LinearLayout and RelativeLayout existed from the
beginning (2008’s Android 1.0), while ConstraintLayout debuted in 2016. And, there
is nothing that ConstraintLayout can do that cannot also be accomplished by some
mix of the classic layout classes (e.g., LinearLayout).

So, why did Google bother with ConstraintLayout?

Drag-and-Drop GUI Builders

Google would like everyone to use Android Studio, and in particular for everyone to
use Android Studio’s drag-and-drop GUI builder.

How well a drag-and-drop GUI builder works depends a lot on how the rules for
laying out a UI get defined. With drag-and-drop gestures, the developer is only
providing you with X/Y coordinates of a widget, based on where the developer
releases the mouse button and completes the drop. It is up to the GUI builder to
determine what that really means in terms of layout rules.

However, in 2008, we had no drag-and-drop GUI builder. LinearLayout,
RelativeLayout, and kin were not designed with drag-and-drop in mind. As it turns
out, some of those (e.g., LinearLayout) work well in a drag-and-drop model, while
others (e.g., RelativeLayout) do not.

By contrast, ConstraintLayout was designed with drag-and-drop GUI building in
mind.

Performance

The classic layout classes were not written with performance in mind. Some of their
features work well but are a bit slow to execute. They are not so slow as to be
unusable, but they do make the app a bit more sluggish, particularly when scrolling
the screen.

The objective of ConstraintLayout was to offer all of the capabilities of the classic
containers — and more — while keeping performance in mind.

INTRODUCING CONSTRAINTLAYOUT

176

Library vs. Framework

LinearLayout, RelativeLayout, and the other classic containers are framework
classes. As a result, they could have different implementations on different versions
of Android. Since that causes a lot of pain for maintaining backwards compatibility,
Google does not change these classes that often.

ConstraintLayout, by contrast, comes from a library. This has a cost, as now each
app needs its own copy of the ConstraintLayout code. However, it also means that
Google can keep improving ConstraintLayout, and developers can adopt newer
versions of the library that add new features or fix bugs.

Getting ConstraintLayoutConstraintLayout

Since ConstraintLayout comes from a library, we need to ensure that we have this
library in our module. If you create the project from the Android Studio new-project
wizard, it is very likely that you already have the library in your dependencies.

What you are looking for is androidx.constraintlayout:constraintlayout for
some version:

dependencies {
implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:$kotlin_version"
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
implementation "androidx.activity:activity:1.1.0"

}

(from ConstraintRow/build.gradle)

You may find that you have a different artifact,
com.android.support.constraint:constraint-layout. This too provides
ConstraintLayout, but it is the older artifact, from the Android Support Library. If
you have other artifacts in your dependencies that are androidx-based, you will
want to use the androidx edition of the constraintlayout artifact.

Using Widgets and Containers from Libraries
In an earlier chapter, we saw that layout resources use XML elements to describe the
UI. The elements that we explored — TextView and Button — had simple element
names, plus attributes that were prefixed with android:. This is how you will use

INTRODUCING CONSTRAINTLAYOUT

177

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ConstraintRow/build.gradle

most of the widgets and containers that are part of the “framework classes” — the
classes that are part of Android itself and ship with Android devices.

However, ConstraintLayout is from a library, so it is not part of the framework
classes. A copy of the code for ConstraintLayout is packaged in your APK and ships
with your app.

Using widgets and containers from libraries is very similar to using widgets and
containers from the framework classes, with two key differences.

Fully-Qualified Class Name

In the chapter on widgets, we focused on TextView and Button. Those widgets have
XML elements named <TextView> and <Button>, respectively.

Most framework widgets work that way: the XML element can be the bare class
name. No library widgets work that way. For those, the XML element needs to be the
fully-qualified class name. So, when using ConstraintLayout, you will see XML
elements like <androidx.constraintlayout.widget.ConstraintLayout>. This gets a
bit wordy if you are working with the XML, but if you are mostly using the drag-and-
drop GUI builder, you will barely notice the difference.

app:app: Attributes

You will also find that some of the XML attributes do not get the android: prefix,
but instead get an app: prefix. These are XML attributes defined by the library code,
whereas android:-prefixed attributes come from framework code.

This means that the first time you start using library widgets and containers in a
layout resource, you might see app show up in red:

Figure 105: Android Studio Layout XML Editor, Showing Red app

INTRODUCING CONSTRAINTLAYOUT

178

This means that the app XML namespace has not been declared. The simplest way to
add it is to:

• Put your text cursor somewhere in the red-highlighted app text
• Press Alt-Enter (or the equivalent for macOS) to bring up the “quick-fix”

menu:

Figure 106: Android Studio Layout XML Editor, Showing Quick-Fix Menu

• Choose “Create namespace declaration” from the menu

This will add xmlns:app="http://schemas.android.com/apk/res-auto" to your
root XML element of the layout resource.

A Quick RTL Refresher
Most of the world’s languages are written left-to-right. So, in this paragraph, you
read the letters and words starting from the left edge of a line across to the right
edge.

Arabic and Hebrew, among others, are written right-to-left. The abbreviation “RTL”
refers to these languages. LTR, in turn, refers to left-to-right languages.

Android supports both LTR and RTL. We noted in the chapter introducing the
manifest how your app can advertise that it supports RTL. This, in turn, will cause
you to refer to “start” and “end” instead of “left” and “right” when positioning
widgets on the screen:

INTRODUCING CONSTRAINTLAYOUT

179

https://en.wikipedia.org/wiki/Right-to-left

Language Direction “Start” Means… “End” Means…

LTR Left Right

RTL Right Left

In general, we want the GUI to flow with the language direction. Things that you
might have on the left with an LTR language usually go on the right with an RTL
language, and so forth.

Simple Rows with ConstraintLayoutConstraintLayout

The ConstraintRow sample module in the Sampler and SamplerJ projects is very
similar to the SimpleText sample. The layout now has a ConstraintLayout wrapped
around a TextView and a Button.

The XML

Our root element is now
<androidx.constraintlayout.widget.ConstraintLayout>:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="@dimen/container_padding">>

<TextView<TextView android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/label_caption"
app:layout_constraintBaseline_toBaselineOf="@id/button"
app:layout_constraintStart_toStartOf="parent" />/>

<Button<Button
android:id="@+id/button"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:text="@string/button_caption"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintStart_toEndOf="@id/label"

INTRODUCING CONSTRAINTLAYOUT

180

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ConstraintRow
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ConstraintRow
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ConstraintRow
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ConstraintRow

app:layout_constraintEnd_toEndOf="parent"/>/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from ConstraintRow/src/main/res/layout/activity_main.xml)

We give that ConstraintLayout a height and width of match_parent, which
indicates that this widget or container should fill up the available space of its parent
container. In this case, the “parent” is a container that occupies most of the space on
the screen, so the ConstraintLayout will fill that space. We also give the
ConstraintLayout padding on all four sides, so the contents of the
ConstraintLayout will be inset from the edges by however much @dimen/
container_padding calls for (8dp in this case).

There are two XML elements that are contained in the ConstraintLayout: our
TextView and our Button. Both have IDs, sizes, and captions (via android:text).
However, both also have anchoring rules, indicating where the widgets should be
positioned within the ConstraintLayout.

The TextView has app:layout_constraintStart_toStartOf="parent". All attributes
starting with app:layout_constraint are rules for children of ConstraintLayout.
app:layout_constraintStart_toStartOf="parent" says:

• We are trying to constrain the “start” edge of the widget (constraintStart),
where the “start” edge is on the left for left-to-right languages and on the
right for right-to-left languages

• We are trying to anchor that edge to the start edge of something else
(toStartOf)

• The “something else” is the ConstraintLayout itself ("parent")

So, app:layout_constraintStart_toStartOf="parent" will anchor the start edge of
the TextView to the start side of the ConstraintLayout.

Similarly, the Button has:

• app:layout_constraintTop_toTopOf="parent" to anchor the top of the
Button to the top of the ConstraintLayout

• app:layout_constraintEnd_toEndOf to anchor the “end” of the Button to
the “end” of the ConstraintLayout, where “end” is on the right for left-to-
right languages and on the left for right-to-left languages

The TextView also has app:layout_constraintBaseline_toBaselineOf="@id/

INTRODUCING CONSTRAINTLAYOUT

181

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ConstraintRow/src/main/res/layout/activity_main.xml

button". Here, “baseline” refers to the invisible line that text appears to “sit” upon. A
TextView — and any subclasses, like Button — has a baseline. Here, we are
anchoring the baseline of the TextView to the baseline of the Button, so wherever
the Button winds up, the TextView will have a matching vertical position. The "@id/
button" ties into the @+id/button declared in the android:id attribute of the
Button, so the ConstraintLayout knows what widget is the target of this anchoring
rule.

The Button also has app:layout_constraintStart_toEndOf="@id/label". This says
that we want to anchor the start edge of the Button to the end edge of the TextView
(whose android:id value is @+id/label).

The Button has an unusual android:layout_width value: 0dp. Normally, this would
mean a width of zero dp, which would be a bit short. For a child of
ConstraintLayout, though, 0dp means “the width is determined by the horizontal
constraints”. In the case of the Button:

• The start edge is anchored to the end edge of the TextView
• The end edge is anchored to the end edge of the ConstraintLayout

As a result, with a width of 0dp, the Button will be stretched to fill the space between
those two anchor positions. If instead the width were wrap_content, the Button
width would be determined by its caption, and it would be centered in between
those two anchor positions.

The Android Studio Graphical Layout Editor

If you click on a widget in the ConstraintLayout in the blueprint view, that view will
show squares on the corners and circles centered on the edges:

Figure 107: Android Studio Graphical Layout Editor, Blueprint View

The squares are resize handles. Most likely, you have seen this pattern before,

INTRODUCING CONSTRAINTLAYOUT

182

whether in IDEs, drawing tools, or other programs. You would use this resizing
approach if you wanted a fixed size for the widget. Later switching to using
dimension resources, rather than hard-coded values, for the size values would be a
good idea. You can also change the width and height through the Attributes pane.

The circles are more important, as they allow you to define the constraints, by
dragging a circle to some anchor point:

Figure 108: Blueprint View, Showing Constraint Being Created

You can drag the circle to an equivalent circle on another widget or to the edges of
the ConstraintLayout, to establish an anchoring rule between those two points.
That rule is represented by an arrow connecting the two widgets, with the start and
end of the arrow showing the sides that were constrained.

The Result

If you run either edition of the ConstraintRow sample, you will see the result
matches the graphical layout editor and what we asked for in the XML attributes:

INTRODUCING CONSTRAINTLAYOUT

183

• The TextView is aligned on the start edge of the screen and is vertically
aligned with the baseline of the Button

• The TextView takes up its “natural” space based upon its caption
• The Button fills the space between the TextView and the end edge of the

screen
• The Button is aligned with the top of the screen
• Everything is inset 8dp from the edges

Figure 109: ConstraintRow Sample, As Initially Launched

Starting from Scratch
As with other containers, you can create a new layout resource with a
ConstraintLayout as the root, by right-clicking over a layout resource directory,
choosing New > “Layout resource file” from the context menu, and typing in
ConstraintLayout for the root element. Fortunately, auto-complete on the “Root
element” field allows you to just start typing ConstraintLayout, then choose the
fully-qualified class name from the drop-down list.

If you drag a widget into the ConstraintLayout and drop it in an arbitrary spot,
what you get at design time will be different than what you get when you run the

INTRODUCING CONSTRAINTLAYOUT

184

app. In the graphical layout editor, the Button shows up where you drop it:

Figure 110: ConstraintLayout, With Dragged-In Button

However, if you look at the XML that was generated, you will see that the Button has
no constraints. It does have a pair of attributes with the tools: prefix:
tools:layout_editor_absoluteX and tools:layout_editor_absoluteY:

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout<android.support.constraint.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent">>

<Button<Button
android:id="@+id/button9"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Button"
tools:layout_editor_absoluteX="77dp"
tools:layout_editor_absoluteY="36dp" />/>

</android.support.constraint.ConstraintLayout></android.support.constraint.ConstraintLayout>

INTRODUCING CONSTRAINTLAYOUT

185

As we discussed earlier in the book, attributes in the tools: namespace are
suggestions to the development tools and have no impact on the behavior of your
app when it runs. In this case, Android Studio remembers the upper-left corner of
where you dropped the Button. But, as a warning on the Button in the layout editor
will tell you, a Button without constraints will wind up at coordinate (0,0) at
runtime (basically, upper-left for LTR languages and upper-right for RTL languages).

Dragging in a widget is insufficient. You also need to use the graphical layout editor
to define the constraints, dragging the circles on the widget’s edges and connecting
them to the edges of other widgets or to the ConstraintLayout itself.

ConstraintLayoutConstraintLayout and the Attributes Pane
When you click on a widget inside a ConstraintLayout, the Attributes pane has a
strange-looking control in the “Layout” category of attributes:

Figure 111: Constraint Configuration Thingy

The chevrons inside the square indicate that the sizing rule is wrap_content for each
axis. Clicking on one of the chevrons will toggle between states for that axis:

INTRODUCING CONSTRAINTLAYOUT

186

• a fixed width, indicated by a sizing bar
• 0dp, for stretching the size to the available space, indicated by a sawtooth

line
• wrap_content, indicated by those chevrons

EditTextEditText: Making Users Type Stuff
Along with buttons and labels, fields are the third “anchor” of most GUI toolkits. In
Android, they are implemented via the EditText widget, which is a subclass of the
TextView used for labels.

Along with the standard TextView attributes (e.g., android:textStyle), EditText
has others that will be useful for you in constructing fields, notably
android:inputType, to describe what sort of input your EditText expects (numbers?
email addresses? phone numbers?).

INTRODUCING CONSTRAINTLAYOUT

187

Graphical Layout Editor

The Palette in the graphical layout editor has a whole section dedicated primarily to
EditText widgets, named “Text”:

Figure 112: Widgets Palette, “Plain Text” Shown Highlighted

The first entry is a TextView. The second entry (“Plain Text”) is a general-purpose
EditText. The rest come pre-configured for various scenarios, such as a password.

You can drag any of these into your layout, then use the Attributes pane to configure
relevant attributes, or edit the EditText XML as you see fit. The “Id” and “Text”
attributes are the same as found on TextView, as are many other attributes, inherited
from TextView.

Notable Attributes

The “Hint” item in the Attributes pane allows you to set a “hint” for this EditText.
The “hint” text will be shown in light gray in the EditText widget when the user has
not entered anything yet. Once the user starts typing into the EditText, the “hint”
vanishes. This might allow you to save on screen space, replacing a separate label

INTRODUCING CONSTRAINTLAYOUT

188

TextView.

The “Input Type” item in the Attributes pane allows you to describe what sort of
input you are expecting to receive in this EditText, lining up with many of the types
of fields you can drag from the Palette into the layout:

Figure 113: Android Studio’s Text Fields InputType List

More Complex Forms
Let’s look at a bit more elaborate example, found in the ConstraintForm modules of
the Java and Kotlin projects.

What We Want

We want to have a form that collects the first and last name of a person, with a
Button to submit the form. We are not reacting to that button click — the purpose
of this sample is to see how the form is constructed.

This seems straightforward enough. For example, we can have a ConstraintLayout
that collects the first name and last name in two rows, with the Button below the

INTRODUCING CONSTRAINTLAYOUT

189

https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ConstraintForm
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ConstraintForm

last name row.

However, if we limit ourselves to the sort of ConstraintLayout anchoring rules that
we have seen above, we would wind up with a layout that looks like this:

Figure 114: A Ragged Form

INTRODUCING CONSTRAINTLAYOUT

190

This works, but it would be nicer if we had columns for the labels and the fields:

Figure 115: ConstraintForm Sample, As Initially Launched

Fortunately, ConstraintLayout offers some features for helping us get this sort of
look.

How We Get There

Our layout is more complex than the earlier example, owing in part to having five
children of the ConstraintLayout: two TextView widgets, two EditText widgets, and
a Button:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="@dimen/container_padding">>

<androidx.constraintlayout.widget.Barrier<androidx.constraintlayout.widget.Barrier
android:id="@+id/barrier"

INTRODUCING CONSTRAINTLAYOUT

191

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="@dimen/margin_barrier"
android:layout_marginEnd="@dimen/margin_barrier"
app:barrierDirection="end"
app:constraint_referenced_ids="labelFirst,labelLast" />/>

<TextView<TextView
android:id="@+id/labelFirst"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:labelFor="@id/firstName"
android:text="@string/label_first"
app:layout_constraintEnd_toStartOf="@id/barrier"
app:layout_constraintBaseline_toBaselineOf="@id/firstName"
app:layout_constraintHorizontal_bias="1.0"
app:layout_constraintStart_toStartOf="parent" />/>

<EditText<EditText
android:id="@+id/firstName"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:inputType="textPersonName"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@id/barrier"
app:layout_constraintTop_toTopOf="parent" />/>

<TextView<TextView
android:id="@+id/labelLast"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:labelFor="@id/lastName"
android:text="@string/label_last"
app:layout_constraintEnd_toStartOf="@id/barrier"
app:layout_constraintBaseline_toBaselineOf="@id/lastName"
app:layout_constraintHorizontal_bias="1.0"
app:layout_constraintStart_toStartOf="parent" />/>

<EditText<EditText
android:id="@+id/lastName"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:inputType="textPersonName"
android:layout_marginTop="@dimen/margin_row"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@id/barrier"
app:layout_constraintTop_toBottomOf="@id/firstName" />/>

INTRODUCING CONSTRAINTLAYOUT

192

<Button<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/save_caption"
android:layout_marginTop="@dimen/margin_row"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toBottomOf="@id/lastName" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from ConstraintForm/src/main/res/layout/activity_main.xml)

If you look at that XML, there are six child elements of the ConstraintLayout — we
will explore that sixth one shortly.

Naming the Widgets

Each of the widgets gets a fairly simple android:id:

• firstName and lastName for the two EditText widgets
• firstLabel and lastLabel for the two TextView widgets
• button for the Button

Since we are not doing anything with these widgets from our Java/Kotlin code, the
widget IDs are purely for internal use within this layout resource.

BarrierBarrier: You Shall Not Pass

The sixth child of the ConstraintLayout is a Barrier. Barrier is one of a couple of
options with ConstraintLayout for creating a virtual anchor point: a place for you to
reference in layout anchoring rules that is not itself a widget in the layout.

Specifically, this Barrier has:

• app:barrierDirection="end"
• app:constraint_referenced_ids="labelFirst,labelLast"

Here, the “barrier direction” indicates where the barrier is established relative to the
widgets referenced in the app:constraint_referenced_ids attribute. In our case,
the end for app:barrierDirection means “put this Barrier at the end position of
the child that is farthest from the start position”. Both of the TextView widgets are
set up to start from the start edge of the ConstraintLayout and take up as much

INTRODUCING CONSTRAINTLAYOUT

193

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ConstraintForm/src/main/res/layout/activity_main.xml

room as their content requires (android:layout_width="wrap_content"). As a
result, the Barrier is placed at the end of whichever of those two TextView widgets
is longest. In the sample app, that is the second label, which uses Last Name
(Surname): as the caption (courtesy of @string/label_last). So, the Barrier is
placed where the labelLast TextView ends.

We then set up the firstName and lastName widgets to have their start position be
where the Barrier is, via app:layout_constraintStart_toEndOf="@id/barrier".
This is why both fields have the same starting position, and that position is
determined by the longest of the labels.

Figure 116: Android Studio Graphical Layout Editor, Showing Form with Barrier

As a result, our four main widgets — the two labels and the two fields — are
organized into two columns, where the width of the first column is determined by
the width of the labels inside of it.

Your Position Shows Some Bias

Our two labels do not have the same width. The labelLast text was set up to be
excessively long to illustrate this.

INTRODUCING CONSTRAINTLAYOUT

194

By default, if we just anchored the labels to the start edge of the ConstraintLayout,
their text would wind up on that edge. That is a bit awkward, though, in that our
labelFirst text would wind up relatively far away from its associated field.

To address this, our layout has each label do two things:

1. Constrain both the start and end edges, where the end is anchored to the
Barrier via app:layout_constraintEnd_toStartOf="@id/barrier"

2. Shove the text to the end side via
app:layout_constraintHorizontal_bias="1.0"

Bias, in terms of ConstraintLayout, means “if there is extra room, slide the widget
in this direction along the axis”. The default bias is 0.5, meaning that the widget is
centered in the available space. For the horizontal axis, 0.0 means “slide the widget
all the way towards the start side” and 1.0 means “slide the widget all the way
towards the end side”.

By having the label end at the Barrier and having its associated field start at the
Barrier, we ensure that the label and the field are close together.

Declaring the Rows

In terms of the rows, the fields drive the vertical positioning:

• The top of firstName is anchored to the top of the ConstraintLayout via
app:layout_constraintTop_toTopOf="parent"

• The top of lastName is anchored to the bottom of firstName via
app:layout_constraintTop_toBottomOf="@id/firstName"

• The top of button is anchored to the bottom of lastName via
app:layout_constraintTop_toBottomOf="@id/lastName"

• The labels have their baselines aligned with their associated fields

In addition:

• Each label has android:labelFor set, pointing to its associated field, for the
benefit of screen readers and other assistive technologies

• The Button has app:layout_constraintEnd_toEndOf="parent" and no
start-side anchor, so it will be flush on the end side of the
ConstraintLayout

INTRODUCING CONSTRAINTLAYOUT

195

Turning Back to RTL
In order for the “start”/“end” attributes to reverse their positions based on language
direction, you need to have android:supportsRtl="true" in your <application>
element in your manifest. Most newly-created projects will have this attribute
already set for you by the new-project wizard.

To see how your app behaves with RTL — without having to learn Arabic or Hebrew,
if you are not literate in those languages — you can force Android to use RTL layout
rules with any language on Android 4.2+ devices. To do this, go into the Settings app
of the device or emulator and choose “Developer options”. In there, scroll down to
the “Force RTL layout direction” item. By default, this is turned off, and so layout
direction is determined by the user’s chosen language:

Figure 117: Developer Options in Settings, Normal Mode

INTRODUCING CONSTRAINTLAYOUT

196

Tapping that switch uses RTL layout rules — with “start” referring to the right and
“end” referring to the left — for all languages:

Figure 118: Developer Options in Settings, Forced-RTL Mode

More Fun with ConstraintLayoutConstraintLayout

There are many more capabilities of ConstraintLayout than what we have covered
here. You can:

• Use Guideline to set up anchoring points, a bit like Barrier, but set at
arbitrary locations

• Use app:layout_constraintWidth_percent and
app:layout_constraintHeight_percent to size children as a percentage of
the ConstraintLayout size along a particular axis

• Use app:layout_constraintDimensionRatio to force a child to adhere to a
particular aspect ratio

• Use ConstraintSet to alter the anchoring and sizing rules for children of
ConstraintLayout at runtime

• And more!

INTRODUCING CONSTRAINTLAYOUT

197

We will see ConstraintLayout used in many of the samples through the rest of the
book.

Notes on the Classic Containers
While ConstraintLayout is the recommended solution for Jetpack-based Android
app development, it is not the only option. And since ConstraintLayout is relatively
new, there is a lot of existing code that does not use it.

Four container classes were the dominant options starting with Android 1.0 and can
still be used today: LinearLayout, RelativeLayout, TableLayout, and FrameLayout.

LinearLayoutLinearLayout

LinearLayout represents Android’s approach to a box model — widgets or child
containers are lined up in a column or row, one after the next. Since many other GUI
toolkits use this sort of an approach, a lot of developers used LinearLayout
extensively. Plus, it is very easy to use: other than an android:orientation attribute
to indicate if it should be a row (horizontal) or column (vertical), nothing else is
required.

And, for fairly simple scenarios, there is nothing wrong with using LinearLayout.

However, LinearLayout was designed around simple usage and simple
implementation, not performance. Having lots of nested LinearLayout containers
can slow things down. And for a complex form, you would need lots of
LinearLayout containers. Even something as simple as ConstraintForm would take
three LinearLayout instances:

• Two horizontal ones for the rows containing the labels and fields
• A vertical one for holding those rows plus the Button

RelativeLayoutRelativeLayout

On the surface, RelativeLayout looks a lot like ConstraintLayout. RelativeLayout,
as the name suggests, lays out widgets based upon their relationship to other
widgets in the container and the parent container. You can place Widget X below
and to the left of Widget Y, or have Widget Z’s bottom edge align with the bottom of
the container, and so on. And it does so via special attributes on the children, saying
what they are anchored to.

INTRODUCING CONSTRAINTLAYOUT

198

All of that sounds like ConstraintLayout.

However, RelativeLayout was not created with performance or drag-and-drop GUI
builders in mind. ConstraintLayout has a superset of RelativeLayout features, and
RelativeLayout has its own set of attributes similar to, but distinct from, those in
ConstraintLayout. There is little reason to use RelativeLayout today.

TableLayoutTableLayout

If you like HTML tables, you will like Android’s TableLayout. It allows you to
position your widgets in a grid to your specifications. You control the number of
rows and columns, which columns might shrink or stretch to accommodate their
contents, and so on.

TableLayout works in conjunction with TableRow. TableLayout controls the overall
behavior of the container, with the widgets themselves poured into one or more
TableRow containers, one per row in the grid. Using a TableLayout with TableRow
works a lot like using an HTML <table> with <tr> elements.

When Android started out, HTML tables were very popular, not only for tabular
data but for general page layout. CSS had only caught on in recent years, so lots of
Web developers were used to using HTML tables to try to position things on the
screen in the desired locations. Having a TableLayout that mimicked HTML tables
was a logical move, to help ease the transition for those early Web designers.

With Barrier, you can set up a ConstraintLayout that can handle table structures,
with rows and columns, where the columns can vary in width based on contents.
However, it is likely that there will be some scenarios that would be very difficult to
implement with ConstraintLayout that TableLayout could handle easily. Overall,
though, ConstraintLayout is much more powerful than is TableLayout. Plus,
TableLayout suffers from the same performance problems of LinearLayout, with
lots of nested containers.

So, in general, if you see a grid sort of structure, try using a ConstraintLayout, and
consider falling back to TableLayout only if needed.

FrameLayoutFrameLayout

Android has a FrameLayout class. Like ConstraintLayout, LinearLayout,
RelativeLayout, and TableLayout, FrameLayout exists to size and position its
children. However, FrameLayout has a very simple pair of layout rules:

INTRODUCING CONSTRAINTLAYOUT

199

1. All children go in the upper-start corner (e.g., upper-left for LTR languages),
unless android:gravity indicates to position the children elsewhere

2. Children can overlap on the Z axis (which ConstraintLayout and
RelativeLayout also support)

The result is that all the widgets are stacked one on top of another.

This may seem useless.

Primarily, FrameLayout is used in places where we want to reserve space for
something, but we do not know what the “something” is at compile time. The
decision of what the “something” is will be made at runtime, where we will use Java/
Kotlin code to put something in the FrameLayout. We will see this pattern used with
fragments, later in the book.

Occasionally, FrameLayout is literally used for “framing”, where we want some sort of
a border around a child. In this case, the background of the FrameLayout (e.g.,
android:background) defines what the frame should look like.

INTRODUCING CONSTRAINTLAYOUT

200

Integrating Common Form Widgets

TextView, Button, and EditText form the foundation of many user interfaces in
Android, and their analogues form the foundation of other GUI toolkits.

Overall, the Android SDK has a reasonable range of widgets to choose from, though
not everything is covered. In this chapter, we will review a number of other
commonly-used widgets in the Android SDK and explore some other capabilities of
Android’s UI system.

All of the code in this chapter comes from the FormWidgets module of the Java and
Kotlin sample projects.

ImageViewImageView and ImageButtonImageButton

Android has two widgets to help you embed images in your activities: ImageView and
ImageButton. As the names suggest, they are image-based analogues to TextView
and Button, respectively.

Each widget takes an android:src attribute (in an layout resource) to specify what
picture to use. These usually reference a drawable resource (e.g., @drawable/icon) or
sometimes a mipmap resource (e.g., @mipmap/ic_launcher).

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors.
While both ImageView and ImageButton can call your code when they are clicked,
ImageButton has built-in logic to visually respond to the click, the way that Button
does.

Our sample app has an ImageView named icon and an ImageButton named button:

201

https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/FormWidgets
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/FormWidgets

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:contentDescription="@string/icon_caption"
android:src="@mipmap/ic_launcher"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/log" />/>

<ImageButton<ImageButton
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:contentDescription="@string/button_caption"
android:src="@mipmap/ic_launcher"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/icon" />/>

(from FormWidgets/src/main/res/layout/activity_main.xml)

INTEGRATING COMMON FORM WIDGETS

202

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/res/layout/activity_main.xml

These then show up in our overall activity’s output, which stacks a bunch of widgets
in a ConstraintLayout:

Figure 119: FormWidgets Sample, with ImageView and ImageButton Highlighted

INTEGRATING COMMON FORM WIDGETS

203

Android Studio Graphical Layout Editor

The ImageView widget can be found in the “Common” portion of the Palette in the
Android Studio graphical layout editor:

Figure 120: Palette, ImageView Shown Highlighted

INTEGRATING COMMON FORM WIDGETS

204

ImageButton shows up in the “Buttons” portion:

Figure 121: Palette, ImageButton Shown Highlighted

INTEGRATING COMMON FORM WIDGETS

205

When you drag one of these into the preview or blueprint, you are immediately
greeted by a dialog to choose a drawable resource or color to use for the image:

Figure 122: Image Resource Dialog

Unfortunately, you have no choice but to choose one of these, as due to some
curious design decisions by Google, if you click Cancel to exit the dialog, it also
abandons the entire drag-and-drop operation.

You can drag these into a layout file, then use the Attributes pane to set their
attributes. Like all widgets, you will have an “id” option to set the android:id value
for the widget. Two others of importance, though, are more unique to ImageView
and ImageButton:

• srcCompat allows you to choose a drawable resource to use as the image to
be displayed, which will be filled in by whatever you chose in the resource
dialog (note: src also works)

• contentDescription provides the text that will be used to describe the
image to users that have accessibility services enabled (e.g., TalkBack), such
as visually impaired users

If you choose an image from the “Sample data” section in the resource dialog,

INTEGRATING COMMON FORM WIDGETS

206

https://issuetracker.google.com/issues/37120765
https://issuetracker.google.com/issues/37120765

instead of app:srcCompat, you get tools:srcCompat. This provides an image that
you can use in the IDE, but that image will not be displayed at runtime. This is
useful for cases where you want to supply the image from a URL or something else
dynamic.

Reacting to Events

You can call setOnClickListener() on an ImageView or ImageButton to find out
when the user clicks the widget and do something:

binding.icon.setOnClickListener(v -> log(R.string.icon_clicked));
binding.button.setOnClickListener(v -> log(R.string.button_clicked));

(from FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java)

binding.icon.setOnClickListener { log(RR.string.icon_clicked) }
binding.button.setOnClickListener { log(RR.string.button_clicked) }

(from FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt)

We will cover the log() function that both of those are using a bit later in this
chapter.

Compound Buttons
The Android SDK has a CompoundButton class that represents a widget that can be
clicked to toggle a “checked” state. CompoundButton itself is an abstract class, but
there are a few subclasses of CompoundButton of interest to Android app developers.

SwitchSwitch

For a simple widget to show a checked or unchecked state, the modern approach is
to use a Switch.

Switch extends CompoundButton, which in turn inherits from TextView. As a result,
you can use TextView properties like android:textColor to format the widget, in
addition to android:text to set the caption that should appear adjacent to the
actual “switch” UI.

Within your Java/Kotlin code, you can call:

1. isChecked() to determine if the checkbox has been checked

INTEGRATING COMMON FORM WIDGETS

207

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt

2. setChecked() to force the checkbox into a checked or unchecked state
3. toggle() to toggle the checkbox as if the user clicked upon it, inverting

whatever its current state is

Also, you can register a listener object (in this case, an instance of
OnCheckedChangeListener) to be notified when the state of the checkbox changes.

Our sample app has an Switch named swytch:

<Switch<Switch
android:id="@+id/swytch"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:text="@string/switch_caption"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/button" />/>

(from FormWidgets/src/main/res/layout/activity_main.xml)

This appears beneath the ImageButton.

Figure 123: FormWidgets Sample, with Switch Highlighted

INTEGRATING COMMON FORM WIDGETS

208

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/res/layout/activity_main.xml

In our case, initially it is unchecked, but the user can tap on it to check it:

Figure 124: FormWidgets Sample, with Switch Checked

INTEGRATING COMMON FORM WIDGETS

209

Android Studio Graphical Layout Editor

The Switch widget can be found in the “Buttons” portion of the Palette in the
Android Studio Graphical Layout editor:

Figure 125: Palette, Switch Highlighted

You can drag one into the layout and configure it as desired using the Attributes
pane. Mostly the attributes match those of TextView and Button.

Reacting to Events

The primary event listener for any form of CompoundButton is for changes in the
checked state. You can register a CompoundButton.OnCheckedChangeListener via
setOnCheckedChangeListener() from Java:

binding.swytch.setOnCheckedChangeListener((v, isChecked) ->
log(isChecked ? R.string.switch_checked : R.string.switch_unchecked));

(from FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java)

…or Kotlin:

INTEGRATING COMMON FORM WIDGETS

210

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java

binding.swytch.setOnCheckedChangeListener { _, isChecked ->
log(ifif (isChecked) RR.string.switch_checked elseelse RR.string.switch_unchecked)

}

(from FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt)

In this case, our lambda expressions are converted into instances of
OnCheckedChangeListener, with the lambda expression bodies forming the
implementation of the onCheckedChanged() function. That function gets passed two
parameters:

• The CompoundButton whose checked state changed, and
• A Boolean reflecting whether the new state is checked or unchecked

In our case, we just use that Boolean to choose which of two string resources to pass
to log(), using the ternary operator in Java and an if expression in Kotlin.

Hey, You Have a Typo in android:idandroid:id!

You may have noticed that the android:id value for the Switch is swytch.
Considering that the ImageButton is button, you might expect that the Switch
would be named switch.

However, this does not work. You cannot create a widget whose ID matches a Java
keyword. switch is a Java keyword, so we cannot use switch as a widget ID.
Similarly, we cannot have widgets with an ID of if, else, or return.

CheckBoxCheckBox

If you would prefer something that looks more like a classic checkbox, the Android
SDK has CheckBox. It too is a subclass of CompoundButton and can be used
interchangeably with Switch.

Our sample app has a CheckBox named checkbox:

<CheckBox<CheckBox
android:id="@+id/checkbox"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:text="@string/checkbox_caption"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/swytch" />/>

INTEGRATING COMMON FORM WIDGETS

211

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt

(from FormWidgets/src/main/res/layout/activity_main.xml)

This appears beneath the Switch:

Figure 126: FormWidgets Sample, with CheckBox Highlighted

INTEGRATING COMMON FORM WIDGETS

212

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/res/layout/activity_main.xml

Once again, in our case it is unchecked by default, but the user can tap on it to
check it:

Figure 127: FormWidgets Sample, with CheckBox Checked

INTEGRATING COMMON FORM WIDGETS

213

Android Studio Graphical Layout Editor

The CheckBox widget can be found in the “Buttons” portion of the Palette in the
Android Studio Graphical Layout editor:

Figure 128: Palette, CheckBox Highlighted

You can drag one into the layout and configure it as desired using the Attributes
pane. As CheckBox inherits from TextView, most of the settings are the same as
those you would find on a regular TextView.

Reacting to Events

As with Switch, you can register a CompoundButton.OnCheckedChangeListener on a
CheckBox using setOnCheckedChangeListener():

binding.checkbox.setOnCheckedChangeListener((v, isChecked) ->
log(isChecked ? R.string.checkbox_checked : R.string.checkbox_unchecked));

(from FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java)

binding.checkbox.setOnCheckedChangeListener { _, isChecked ->
log(ifif (isChecked) RR.string.checkbox_checked elseelse RR.string.checkbox_unchecked)

}

(from FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt)

INTEGRATING COMMON FORM WIDGETS

214

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt

RadioButtonRadioButton and RadioGroupRadioGroup

As with other implementations of radio buttons in other toolkits, Android’s radio
buttons are two-state, like checkboxes, but can be grouped such that only one radio
button in the group can be checked at any time. RadioButton is another form of
CompoundButton and, on its own, works like Switch and CheckBox.

Most times, you will want to put your RadioButton widgets inside of a RadioGroup.
The RadioGroup is a LinearLayout that indicates a set of radio buttons whose state
is tied, meaning only one button out of the group can be selected at any time. If you
assign an android:id to your RadioGroup in your layout resource, you can access the
group from your Java/Kotlin code and invoke:

1. check() to check a specific radio button via its ID (e.g.,
group.check(R.id.radio1))

2. clearCheck() to clear all radio buttons, so none in the group are checked
3. getCheckedRadioButtonId() to get the ID of the currently-checked radio

button (or -1 if none are checked)

Note that the radio button group is initially set to be completely unchecked at the
outset. To preset one of the radio buttons to be checked, use either setChecked() on
the RadioButton or check() on the RadioGroup. Alternatively, you can use the
android:checked attribute on one of the RadioButton widgets in the layout file.

Our sample app has a RadioGroup named radioGroup, containing three RadioButton
widgets:

<RadioGroup<RadioGroup
android:id="@+id/radioGroup"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:background="@color/radiogroup_background"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/checkbox">>

<RadioButton<RadioButton
android:id="@+id/radioButton1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/radiobutton1_caption" />/>

INTEGRATING COMMON FORM WIDGETS

215

<RadioButton<RadioButton
android:id="@+id/radioButton2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="@string/radiobutton2_caption" />/>

<RadioButton<RadioButton
android:id="@+id/radioButton3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/radiobutton3_caption" />/>

</RadioGroup></RadioGroup>

(from FormWidgets/src/main/res/layout/activity_main.xml)

They appear beneath the CheckBox:

Figure 129: FormWidgets Sample, with RadioGroup Highlighted

The RadioGroup is given a pale yellow background via
android:background="@color/radiogroup_background" so you can better see its
boundaries. The three RadioButton widgets differ in ID, caption, and whether they
are checked (the middle one has android:checked="true" to pre-select it).

INTEGRATING COMMON FORM WIDGETS

216

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/res/layout/activity_main.xml

RadioGroup inherits from LinearLayout, which lays its children out one after the
next. By default, that is in a column, but you can use
android:orientation="horizontal" to make them form a row.

Android Studio Graphical Layout Editor

The RadioGroup container and RadioButton widget can be found in the “Buttons”
portion of the Palette in the Android Studio Graphical Layout editor:

Figure 130: Palette, RadioGroup Highlighted

Dragging a RadioGroup into the preview gives you a box into which you can drag
other widgets, such as the RadioButton.

Reacting to Events

It is possible to register the same sort of CompoundButton.OnCheckedChangeListener
objects on RadioButton, as it too is a CompoundButton. More often, though, it is
simpler to react to events on the RadioGroup, as you only need to register one
listener, rather than one per RadioButton.

RadioGroup also has a setOnCheckedChangeListener() function. However, it takes a
RadioGroup.OnCheckedChangeListener implementation, which is slightly different
from CompoundButton.OnCheckedChangeListener. Your onCheckedChanged()

INTEGRATING COMMON FORM WIDGETS

217

function is passed:

• The RadioGroup that the user interacted with, and
• The widget ID of the RadioButton that changed

You are not given a Boolean for the new state of that RadioButton, though. That is
because you are always called for the newly-checked RadioButton, and so it is always
checked. Your onCheckedChanged() function is not called for the RadioButton that
may have been unchecked as a result of the user checking another RadioButton.

In the SamplerJ edition of MainActivity, we use a Java method reference to have an
onRadioGroupChange() function on MainActivity be called whenever the user
checks a RadioButton in the RadioGroup:

binding.radioGroup.setOnCheckedChangeListener(thisthis::onRadioGroupChange);

(from FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java)

There, we examine the ID of the newly-checked RadioButton and log() a different
string resource for each:

privateprivate void onRadioGroupChange(RadioGroupRadioGroup group, int checkedId) {
@StringRes int msg;

ifif (checkedId == R.id.radioButton1) {
msg = R.string.radiobutton1_checked;

}
elseelse if (checkedId == R.id.radioButton2) {

msg = R.string.radiobutton2_checked;
}
elseelse {

msg = R.string.radiobutton3_checked;
}

log(msg);
}

(from FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java)

The Kotlin code in the Sampler edition of MainActivity uses a when expression to
log() the desired string resource:

binding.radioGroup.setOnCheckedChangeListener { _, checkedId ->
log(

whenwhen (checkedId) {

INTEGRATING COMMON FORM WIDGETS

218

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java

RR.id.radioButton1 -> RR.string.radiobutton1_checked
RR.id.radioButton2 -> RR.string.radiobutton2_checked
elseelse -> RR.string.radiobutton3_checked

}
)

}

(from FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt)

SeekBarSeekBar

Sometimes, you want the user to pick a number along some range, such as a
percentage from 0% to 100%. You could use an EditText and then have data
validation to handle illegal entries (e.g., numbers outside of your desired range).

Or, you can use a SeekBar.

SeekBar allows the user to slide a “thumb” along a bar, where different thumb
positions represent different values along a range from 0 to a maximum value that
you specify (the default maximum is 100).

The bottom of our layout is a SeekBar:

<SeekBar<SeekBar
android:id="@+id/seekbar"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_marginTop="@dimen/margin_row"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/radioGroup" />/>

INTEGRATING COMMON FORM WIDGETS

219

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt

(from FormWidgets/src/main/res/layout/activity_main.xml)

Figure 131: FormWidgets Sample, with SeekBar Highlighted

SeekBar does not inherit from TextView, so it has no caption. Most likely, you will
want to use an adjacent TextView to label the SeekBar, so that the user has an idea
of what this value represents.

INTEGRATING COMMON FORM WIDGETS

220

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/res/layout/activity_main.xml

Android Studio Graphical Layout Editor

The SeekBar widget can be found in the “Widgets” portion of the Palette in the
Android Studio Graphical Layout editor:

Figure 132: Palette, SeekBar Highlighted

You will notice that there is also an entry for “SeekBar (Discrete)”, where a “discrete”
SeekBar shows tick marks for the values in the range. This can be useful if the range
is relatively short (e.g., 0-5). To create a discrete SeekBar, you need to supply a
drawable resource that provides the “tick mark”, showing the user where the thumb
will snap to. If you drag a “SeekBar (Discrete)” into your layout resource, you get a
SeekBar with an attribute of style="@style/
Widget.AppCompat.SeekBar.Discrete". This sets a particular “style” on the SeekBar,
and this style sets the tick mark drawable. We will explore styles in much greater
detail later in the book.

Reacting to Events

SeekBar has setOnSeekBarChangeListener(), which tells you about changes in the
SeekBar value. However, it also requires you to override a couple of other methods,

INTEGRATING COMMON FORM WIDGETS

221

and so it is a bit more complicated to use than are the other listeners that we have
seen in this chapter. We will examine the SeekBar.OnSeekBarChangeListener more
later in this chapter and see how it works.

ScrollViewScrollView: Making It All Fit
Android devices come in all sizes. Some have very large screens, while others have
very small screens. The problem with very small screens is that your forms do not
always fit the available space, particularly in landscape mode:

Figure 133: FormWidgets Sample, In Landscape on a Unihertz Atom

That is why the entire ConstraintLayout is wrapped in a ScrollView. ScrollView
provides a vertically-scrolling area for your form. The user can swipe up and down to
pan around the form and see all of it.

ScrollView itself is a very simple container class, holding exactly one child (in this
case, the ConstraintLayout), and making it scrollable. So, our entire activity_main
layout is:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"

INTEGRATING COMMON FORM WIDGETS

222

android:padding="@dimen/container_padding">>

<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout
android:layout_width="match_parent"
android:layout_height="wrap_content">>

<TextView<TextView
android:id="@+id/log"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:background="@color/log_background"
android:gravity="center_horizontal"
android:text="@string/log_default"
android:textStyle="bold"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:contentDescription="@string/icon_caption"
android:src="@mipmap/ic_launcher"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/log" />/>

<ImageButton<ImageButton
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:contentDescription="@string/button_caption"
android:src="@mipmap/ic_launcher"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/icon" />/>

<Switch<Switch
android:id="@+id/swytch"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:text="@string/switch_caption"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"

INTEGRATING COMMON FORM WIDGETS

223

app:layout_constraintTop_toBottomOf="@id/button" />/>

<CheckBox<CheckBox
android:id="@+id/checkbox"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:text="@string/checkbox_caption"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/swytch" />/>

<RadioGroup<RadioGroup
android:id="@+id/radioGroup"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/margin_row"
android:background="@color/radiogroup_background"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/checkbox">>

<RadioButton<RadioButton
android:id="@+id/radioButton1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/radiobutton1_caption" />/>

<RadioButton<RadioButton
android:id="@+id/radioButton2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="true"
android:text="@string/radiobutton2_caption" />/>

<RadioButton<RadioButton
android:id="@+id/radioButton3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/radiobutton3_caption" />/>

</RadioGroup></RadioGroup>

<SeekBar<SeekBar
android:id="@+id/seekbar"
android:layout_width="0dp"
android:layout_height="match_parent"
android:layout_marginTop="@dimen/margin_row"
app:layout_constraintEnd_toEndOf="parent"

INTEGRATING COMMON FORM WIDGETS

224

app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/radioGroup" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>
</ScrollView></ScrollView>

(from FormWidgets/src/main/res/layout/activity_main.xml)

Figure 134: FormWidgets Sample, In Landscape on a Unihertz Atom, Scrolled Down

Note that there is also a HorizontalScrollView that will allow your form to be wider
than the screen, whereas ScrollView allows your form to be taller than the screen.

Other Notes About the Sample
There are a few more interesting elements of the sample app that are worth noting.

android:gravityandroid:gravity

There is a TextView at the top of the layout. Initially, it shows the message “Oh,
c’mon, click something!”, but if you follow those instructions and start interacting
with the other widgets, the message changes to reflect the recent event (e.g., “Button
clicked!”).

The TextView has an android:gravity="center_horizontal" attribute:

INTEGRATING COMMON FORM WIDGETS

225

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/res/layout/activity_main.xml

<TextView<TextView
android:id="@+id/log"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:background="@color/log_background"
android:gravity="center_horizontal"
android:text="@string/log_default"
android:textStyle="bold"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

(from FormWidgets/src/main/res/layout/activity_main.xml)

“Gravity” means “hey, if there is room, position my content here”.
center_horizontal gravity says “hey, if there is room horizontally, center my
content”. For a TextView, the “content” is the text. The width is set to 0dp, which for
a child of ConstraintLayout means that the TextView will be stretched between its
start and end anchor points. Those are at the edges of the ConstraintLayout, so the
TextView stretches to fill the width of the screen, less 8dp of padding that we have in
the ScrollView. The TextView has a gray background, so in the screenshots, you see
the full extent of the TextView plus the centered message.

Another way of centering things is through ConstraintLayout itself. If we switch the
width of the TextView to wrap_content, ConstraintLayout will interpret that as
meaning that the TextView should be centered between its start and end anchor
points (assuming there is no bias setting to slide it one way or another):

<TextView<TextView
android:id="@+id/log"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:background="@color/log_background"
android:text="@string/log_default"
android:textStyle="bold"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

INTEGRATING COMMON FORM WIDGETS

226

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/res/layout/activity_main.xml

However, in that case, the TextView itself is only as big as its content, so the gray
background does not stretch to fill the screen:

Figure 135: FormWidgets Sample, with Alternate Way of Centering Text

log()log()

That TextView is the log widget. Our log() function is set up to:

• Display a message in that TextView, and
• Log that same message to Logcat

So, we have a log() method in Java:

privateprivate void log(@StringRes int msg) {
binding.log.setText(msg);
LogLog.d(TAG, getString(msg));

}

(from FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java)

…and a corresponding log() function in Kotlin:

INTEGRATING COMMON FORM WIDGETS

227

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java

privateprivate funfun log(@StringRes msg: IntInt) {
binding.log.setText(msg)
LogLog.d(TAGTAG, getString(msg))

}

(from FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt)

The parameter to log() has a @StringRes annotation. This has no effect at runtime.
However, it will help the build tools avoid some compile-time problems akin to the
bug from the chapter on debugging. There, we passed an arbitrary Int to setText()
on a TextView. That function expects a string resource, and so it crashes if you pass
some Int that does not represent a string resource. The @StringRes annotation on
an Int says “hey! this Int should point to a string resource!”. If we attempt to call
log() with an arbitrary Int, we will get an error in Android Studio:

Figure 136: Android Studio, Showing Lint Error

This error message is being provided by a tool called “Lint”. The IDE uses Lint and
its set of rules to identify possible problem spots in the code, such as calling log()
with a value that is not a string resource ID. Consider it a reminder service, hinting
about some possible flaws in your code.

INTEGRATING COMMON FORM WIDGETS

228

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt

We also want to log messages from our SeekBar. There, though, we want to show the
current value of the SeekBar, based on where the user has positioned the thumb:

Figure 137: FormWidgets Sample, Showing SeekBar value

Our log() function is not set up for that, so we instead just do that bit of logging
directly from our OnSeekBarChangeListener, whether that is implemented in Java:

binding.seekbar.setOnSeekBarChangeListener(
newnew SeekBarSeekBar.OnSeekBarChangeListener() {

@Override
publicpublic void onProgressChanged(SeekBarSeekBar seekBar, int progress,

boolean fromUser) {
StringString msg = getString(R.string.seekbar_changed, progress);

binding.log.setText(msg);
LogLog.d(TAG, msg);

}

@Override
publicpublic void onStartTrackingTouch(SeekBarSeekBar seekBar) {
// ignored

}

INTEGRATING COMMON FORM WIDGETS

229

@Override
publicpublic void onStopTrackingTouch(SeekBarSeekBar seekBar) {

// ignored
}

});
}

(from FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java)

…or Kotlin:

binding.seekbar.setOnSeekBarChangeListener(objectobject :
SeekBarSeekBar.OnSeekBarChangeListenerOnSeekBarChangeListener {
overrideoverride funfun onProgressChanged(

seekBar: SeekBarSeekBar,
progress: IntInt,
fromUser: BooleanBoolean

) {
valval msg = getString(RR.string.seekbar_changed, progress)

binding.log.text = msg
LogLog.d(TAGTAG, msg)

}

overrideoverride funfun onStartTrackingTouch(seekBar: SeekBarSeekBar) {
// unused

}

overrideoverride funfun onStopTrackingTouch(seekBar: SeekBarSeekBar) {
// unused

}
})

(from FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt)

Our string resource has a placeholder in it:

<string<string name="seekbar_changed">>SeekBar changed to %d!</string></string>

(from FormWidgets/src/main/res/values/strings.xml)

Here, %d in our string resource means “we will supply some Int at runtime to fill in
here”. getString() not only takes a string resource ID, but it optionally takes objects
to use for those placeholders.

The primary function of an OnSeekBarChangeListener is onProgressChanged(). This
will be called when the SeekBar value is adjusted. You are passed:

INTEGRATING COMMON FORM WIDGETS

230

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/samplerj/formwidgets/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/java/com/commonsware/jetpack/sampler/formwidgets/MainActivity.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FormWidgets/src/main/res/values/strings.xml

• The Seekbar itself,
• The new value of the SeekBar, and
• A Boolean indicating if the user changed the SeekBar value or if you did

programmatically

So, our getString(R.string.seekbar_changed, progress) call takes the progress
value and uses that to replace the %d in the string resource, giving us the text to
display in the TextView and Logcat.

OnSeekBarChangeListener also has two other methods:

• onStartTrackingTouch(), which will be called when the user starts dragging
the thumb

• onStopTrackingTouch(), which will be called when the user stops dragging
the thumb

Most uses of SeekBar do not need to worry about those events, but we have to have
those methods to satisfy the compiler, so the FormWidgets sample just has them as
empty functions.

INTEGRATING COMMON FORM WIDGETS

231

Contemplating Contexts

When we call getString() to convert a string resource into its actual String value,
we have been calling it on our MainActivity. However, in reality, that function is
implemented on Context. MainActivity extends AppCompatActivity, which inherits
from Activity, which implements the Context interface.

We use Context objects a lot in Android.

So, in this chapter, let’s quickly review what a Context is, where to get one, and how
we use it.

It’s Not an OMG Object, But It’s Close
Back when Android was first created, in the mid-2000’s, the dominant form of Java
programming was for server-side Web development, using servlets, WARs, and so
on. In Web development, there is often some form of “session” object. At minimum,
this object represents the user’s session with the server and represents a place where
the servlet can stash values from one request that might be used in a subsequent
request from the same user.

Computer programming has lots of “anti-patterns”: things that we really should not
do. One of those anti-patterns is “the God object”, where we have one class that tries
to do far too much. Session objects in Web development have a tendency to become
God objects, because it is simple to say, “oh, well, we’ll just have the session handle
that”, even for things that have little to do with maintaining user state across
requests.

In Android, the God object is Context. A lot of functionality routes through a
Context, either because:

233

https://en.wikipedia.org/wiki/God_object

• Our only ways of accomplishing a particular thing involve functions on a
Context, or

• Our only way to get at some other object that accomplishes that thing is by
calling a function on the Context

For lightweight app development, such as most of this book’s samples, this does not
pose much of a problem. Any code in an activity, for example, has easy access to a
Context, as the activity itself is a Context. In larger apps, though, quite a bit of time
is spent trying to figure out how best to write the code to reduce the number of
places where we need a Context.

The Major Types of ContextContext

Context is an interface, so in theory anything could be a Context. However, there are
only a few Context implementations that actually “do the heavy lifting” required of a
fully-working Context.

ContextContext from Components

Primarily, your components will give you a Context.

The one component that we have worked with so far is Activity. An Activity is
itself a Context, which is why we can call getString() on it.

There are three other types of components:

• Service, which, like Activity, implements Context itself
• BroadcastReceiver, where you get a Context via its onReceive() function

that you implement or inherit
• ContentProvider, where you get a Context by calling getContext() when

you need one

The vast majority of the time, using a Context that you get from a “nearby”
component is the right answer. For example, for code that is in an Activity, most of
the time you will want to use the Activity itself as your Context.

ApplicationApplication

There is one other “root” Context besides your components: Application.

CONTEMPLATING CONTEXTS

234

Each Android app process has an Application singleton. This object is created when
the process is created, and it lives through the life of that process. In your regular
app code, you get access to this singleton… by calling getApplicationContext() on
some other Context.

As a result, Application may seem somewhat pointless. If you already have a
Context, why would you need getApplicationContext() to get a different Context?

The answer lies in lifespan. Other types of Context — particularly an Activity —
have short lifespans. As we will see later in the book, an Activity will come and go
from the screen, even in some cases where the user might not think that there has
been any change. Sometimes, we will need a Context that lives longer than this, and
for that, we have Application.

That being said, only use Application when you have a clear reason why you need
it.

Instrumented Tests

Note that in testing we get a Context in other ways.

For example, back in the chapter introducing testing, we had an
ExampleInstrumentedTest class, both in Kotlin:

packagepackage com.commonsware.jetpack.hellocom.commonsware.jetpack.hello

importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4

importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith

importimport org.junit.Assert.*org.junit.Assert.*

/**
* Instrumented test, which will execute on an Android device.
*
* See [testing documentation](http://d.android.com/tools/testing).
*/

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass ExampleInstrumentedTestExampleInstrumentedTest {

@Test
funfun useAppContext() {

// Context of the app under test.

CONTEMPLATING CONTEXTS

235

valval appContext = InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext
assertEquals("com.commonsware.jetpack.hello", appContext.packageName)

}
}

…and in Java:

packagepackage com.commonsware.jetpack.hellocom.commonsware.jetpack.hello;

importimport android.content.Contextandroid.content.Context;
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry;
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4;

importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;

importimport staticstatic org.junit.Assert.*;

/**
* Instrumented test, which will execute on an Android device.
*
* @see Testing documentation
*/

@RunWith(AndroidJUnit4AndroidJUnit4.class)
publicpublic classclass ExampleInstrumentedTestExampleInstrumentedTest {

@Test
publicpublic void useAppContext() {

// Context of the app under test.
ContextContext appContext =

InstrumentationRegistryInstrumentationRegistry.getInstrumentation().getTargetContext();
assertEquals("com.commonsware.jetpack.hello", appContext.getPackageName());

}
}

InstrumentationRegistry.getTargetContext() returns a Context from the app
that we are testing.

Key ContextContext Features
Many things take a Context. Constructors for all of our widgets and containers, for
example, take a Context as a parameter.

In terms of directly calling functions on a Context, though, there are a few
categories into which those functions fall.

CONTEMPLATING CONTEXTS

236

Access to Resources and Assets

If you want to get the value or otherwise use a resource, you will wind up using a
Context.

Sometimes, that comes from passing the Context to something else as a parameter.
We will see examples of that later in the book, such as data binding.

Sometimes, that comes from calling convenience functions on Context itself, such as
getString().

In general, though, access to resources comes from a Resources object, and you get
one of those by calling getResources() on a Context. Resources has functions to
retrieve most types of resources: strings, dimensions, colors, and so on. The
convenience functions on Context simply delegate to the Resources object — for
example, getString() on Context just forwards your request to getString() on
Resources.

In addition to resources, an Android app can also have assets, found in an assets/
directory that sits alongside directories like src/ and res/. If you package assets this
way with your app, calling getAssets() on a Context gives you an AssetManager.
From there, you can work with the assets, such as by calling open() to get an
InputStream from which you can read an asset’s content.

Access to Root Directories

Resources and assets are packaged with the app. Beyond those, we have the ability to
write to files on the local filesystem and read them back later. On the whole, this is
standard I/O using Java classes like File, InputStream, OutputWriter, and so on.
The big limitation is where we can read and write.

For that, Context has a family of functions, like getFilesDir(), that return File
objects representing directories that we can read from and (usually) write to. We will
explore those functions in detail later in the book.

Access to System Services

Lots of stuff used by your app is actually managed outside of your app.

For example, suppose that you want to find out the device’s location. Your app code
does not work with GPS hardware directly. Instead, it will work with a

CONTEMPLATING CONTEXTS

237

LocationManager or something that wraps around a LocationManager.
LocationManager is a “system service”, and it in turn will talk to other parts of the
OS that, eventually, work with the GPS hardware.

Whenever you need access to a “system service”, the typical approach to get one is to
call getSystemService() on a Context. Occasionally, there will be other approaches:

• Some system services have convenience functions on Context, such as
getPackageManager() to get a PackageManager instance

• Some system services have a function that you can use to get an instance by
way of a Context, such as LayoutInflater.from()

Access to Other Components

As we start to explore Android’s components more, you will see that if we want to
work with other components from an existing component, we will need a Context.

Specifically, we use a Context to:

• Start an Activity
• Start or bind to a Service
• Send a system broadcast to be picked up by a BroadcastReceiver
• Work with a ContentProvider

Know Your ContextContext

As your app grows, you will start having classes that are not Android components
and do not have direct access to some Context. Instead, they will be talking with
your Web services, or storing things in a local database, or performing any number
of other tasks that are important for your app.

In an ideal world, few of those classes will need a Context. For those that do, you
will need to decide what Context they will use:

• Do they take a Context as a function parameter for a particular operation, so
the caller chooses the Context?

• Do they take a Context as a constructor parameter, so the choice of Context
has to take into account how long this object is needed?

• Do they do something more elaborate, such as use dependency inversion?

CONTEMPLATING CONTEXTS

238

ContextContext Anti-Patterns
The reason why you need to know what Context you are using in different
circumstances is because there are several anti-patterns when working with Context.
Some of these will result in warnings in the IDE, but not always, as sometimes the
IDE cannot identify that you are implementing an anti-pattern.

We will explore these anti-patterns later in the book:

• Avoiding static references to component Context objects
• Trying to use Application for everything
• Assuming that a Context is always of some specific type

CONTEMPLATING CONTEXTS

239

Icons

Each app has an icon. For most apps, the user will see that icon in their launcher, for
whatever activity (or activities) are advertised as belonging in the launcher. In
addition, this icon can appear in other places, such as in the Settings app.

App icons are drawable resources. Except when they are mipmap resources. And
except when they are multiple resources, combined together at runtime to create an
image with a “squircle” background. And…

Are you confused yet?

In theory, setting up app icons would be quite simple, and for years that was the
case. Nowadays, setting up an app icon is unnecessarily complex, though at least
Android Studio has an Asset Studio tool to try to make it a bit simpler.

In this chapter, we will explore what it takes to set up one of these app icons.

App Icons… And Everything Else
Google has been making app icons increasingly complicated over the past few years:

• App icons are mipmap resources, while everything else is a drawable resource
• Android 7.1 introduced the concept of a separate “round icon” that an app

can have, which would be used in place of the regular app icon on certain
Android 7.1 devices… then dropped this feature with Android 8.0

• Android 8.0 introduced the concept of “adaptive icons”, where you have to
provide separate “foreground” and “background” images, mostly so that
certain home screen launchers can shape the background image as they
want (square, round, “squircle”, etc.)

241

Creating an App Icon with the Asset Studio
If you right-click over pretty much any directory in the Android Studio tree, the
context menu will have an “Image Asset” option. This is also available from File >
New > Image Asset. This brings up the Asset Studio, to help you to assemble icons.

By default, the Asset Studio has its “Icon Type” drop-down set for “Launcher Icons
(Adaptive and Legacy)”, which is how you set up an app icon nowadays:

Figure 138: Asset Studio, As Initially Launched

The overall name for your launcher icon is found in the Name field, above the tabs.
The default is ic_launcher, and unless you have a good reason to change it, you are
best served by leaving it alone.

Foreground Layer

What you would ordinarily think of as your icon is what Android Studio and
Android 8.0+ refer to as the “Foreground Layer”. The Asset Studio starts on the
Foreground Layer tab for you to configure this layer.

ICONS

242

Your icon can come from three main sources:

• Some image of your own design, which you would load into the Foreground
Layer tab by selecting the Image radio button, then clicking the “…” button
next to the Path field, to browse your development machine and find that
image

• A piece of canned clip art, which you would choose by clicking on the “Clip
Art” radio button, clicking the “Clip Art” button to choose the image, and
clicking the Color button to choose a color to apply to that image:

Figure 139: Asset Studio, Showing Clip Art Options

ICONS

243

• A letter or two, which you would choose by clicking on the Text radio
button, filling in 1-2 letters in the Text field, choosing a font from your
development machine in the adjacent drop-down, and clicking the Color
button to choose a color to apply to the font:

Figure 140: Asset Studio, Showing Text Options

For all three of these, you can:

• Choose the name to use for this image, in the “Layer Name” field
• Choose, via the Trim radio buttons, whether to remove all transparent space

from the edges of the image (“Yes”) or not (“No”)
• Resize the image from its default size

That latter choice is particularly important, as you need to keep your foreground
layer content within the “safe zone”. That shows up in the previews as a dark gray
circle. So long as your foreground layer is in the safe zone, you should not have to
worry about anything accidentally cutting off part of the layer when it renders your
app icon.

ICONS

244

Background Layer

In the preview area, by default, you will see a green grid behind your foreground
layer. That is the default background layer. If you would like to use something else,
click the “Background Layer” tab:

Figure 141: Asset Studio, Showing Background Layer

Your two main options are:

• a flat color
• an image of your choosing (akin to the foreground, where you click the “…”

button next to the Path field to pick the background image)

The background needs to be designed to be cropped into a variety of shapes, such as
those shown in the preview (circle, various rounded forms of squares, etc.). Hence,
outside of flat colors, typical backgrounds will be gradients or simple patterns, such
as the default grid.

Options

On Android 8.0+ devices, the foreground layer, background layer, and device-chosen

ICONS

245

shape (e.g., squircle) combine to create your app icon.

On older devices, the app icon is whatever you choose it to be, where the Options
tab helps you decide what that is:

Figure 142: Asset Studio, Showing Legacy Options

The most important legacy option is the “Legacy Icon (API <= 25)” section. If your
minSdkVersion is below 26, this will be the icon rendition that will be used as your
app icon by default. The Asset Studio will merge your foreground and background
layers itself, then apply your selected shape from the drop-down (e.g., square).

For Android 7.1 devices, you can also opt to have the Asset Studio create a separate
round icon, that you can declare in your manifest, as will be seen later in this
chapter.

If you are going to be distributing your app through the Play Store, you can also
generate a Play Store rendition of your icon. This is reminiscent of the legacy icon,
but at a higher resolution.

ICONS

246

Generating the Icon

Once you have adjusted your app icon via the three tabs, click Next at the bottom of
the Asset Studio wizard. This will bring up the final wizard page, showing you what
will be generated for you by the wizard:

Figure 143: Asset Studio, Showing What Will Be Created

The Output Directories tree shows you each file that will be created or replaced.
Those that show up in red are ones that will be replaced; ones that show up in black
are new files. Typically, unless you changed the icon or layer names, most of the files
will be replacements for files that exist already.

Some of these files will be typical bitmap-style resources. Some are vector drawables,
a concept that we will explore in an upcoming chapter.

Using In Your Manifest

Then, in your manifest, you can have an android:icon attribute on the
<application> element to associate your icon with your app. If you did not change
the names of the icon, then your manifest should already have the appropriate
attribute values.

ICONS

247

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.myapplication"

xmlns:android="http://schemas.android.com/apk/res/android">>

<application<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">>
<activity<activity android:name=".MainActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

You can also have an android:roundIcon attribute. This is for the Android
7.1-specific scenario of having a dedicated round icon resource. If you elected to have
Android Studio create a round icon for you, ensure that your <application>
element has an android:roundIcon attribute that points to the round icon resource
(e.g., @mipmap/ic_launcher_round).

Creating Other Icons with the Asset Studio
In principle, you can use the Asset Studio to create other types of icons, by choosing
another type of icon from the drop down, such as “Action Bar and Tab Icons”.

In practice, the Asset Studio does not do much for you here, other than create
multiple versions of your icon for different screen densities.

For most Android app developers, there are two other options:

1. Get icons at the right resolutions for different densities from your graphic
designer, perhaps exported from Adobe Photoshop

2. Create vector icons, as will be covered in an upcoming chapter

ICONS

248

Adding Libraries

While you are writing some code for an app, the vast majority of the code that is the
app comes from other developers. Some might be members of your development
team, but far more comes from outsiders: Google and other Android developers.

You have seen some of this already. You did not write Activity, TextView, and
similar classes. Instead, they came from the Android SDK, written (primarily) by
Google.

Beyond the Android SDK, though, there are thousands of libraries that developers
have access to, including many from Google itself. We add these as dependencies in
our projects, to use their code alongside ours.

You have seen some of that already too, in the form of libraries for things like
ConstraintLayout.

In this chapter, we will explore a bit more about these libraries, how you find them,
and how you integrate them.

Depending on a Local JAR
Some projects that you look at will have an implementation statement in their
module’s build.gradle file that looks like this:

implementation fileTree(dir: 'libs', include: ['*.jar'])

This pulls in any JAR files that happen to be in the libs/ directory of this module.

JARs, as you probably know, are libraries containing Java code, as created by

249

standard Java build tools (javac, jar, etc.). For the first decade-plus of Java’s
existence, we distributed reusable bits of code in the form of JAR files. You would
download a JAR from a Web site, drop it into your project, and through something
like this implementation statement, say that your project should use the JAR.

In Android, the contents of these JARs are packaged into your APK. Whatever
public classes happen to be in those JARs are available to you at compile time.

However, in general, using plain JARs nowadays is considered to be a bad idea. There
is no information in a JAR about:

• What version of the library the JAR represents — while this could be part of
the filename, files can be renamed far too easily

• What other libraries this JAR requires — at best, you find that out from
documentation, then need to hunt down those JARs and see what they
require, and so on

Instead, nowadays, you should try to use artifacts, rather than bare JAR files.

Artifacts and Repositories
An artifact is usually represented in the form of two files:

• The actual content, such as a JAR
• A metadata file, paired with the JAR, that has information about “transitive

dependencies” (i.e., the other artifacts that this artifact depends upon)

Artifacts are housed in artifact repositories. Those repositories not only contain the
artifacts, but they organize the artifacts for easy access. This includes organizing
them by version, so you can request a specific version of an artifact and get it,
instead of an older (or possibly newer) version of that same artifact.

Some artifact repositories are public. A typical Android project will use two such
repositories:

• JCenter, a popular place for open source artifacts
• Google’s repository, for things like the Android Gradle Plugin

There are other general-purpose artifact repositories, such as Maven Central or
jitpack.io. And there can be private repositories, such as ones used by organizations
for their own private artifacts, used by their private projects.

ADDING LIBRARIES

250

So, we have dependencies like these:

dependencies {

implementation "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
implementation 'androidx.core:core-ktx:1.3.2'
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'com.google.android.material:material:1.2.1'
implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
testImplementation 'junit:junit:4.+'
androidTestImplementation 'androidx.test.ext:junit:1.1.2'
androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

}

For those, Gradle checks with our registered repositories and says “hey, do you have
this particular artifact?”. This is based on the group (e.g., org.jetbrains.kotlin),
the artifact ID (e.g., kotlin-stdlib-jdk7), and the desired artifact version. If a
match is found, Gradle downloads it and caches it for later use. If no match is found,
you get a build error pointing out the difficulty.

Requesting Dependencies
With all that as background, let’s explore a bit more about how those
implementation statements are working and how you can add your own for other
dependencies that you may want to use.

Find What You Need

First, you need to identify the libraries that address whatever problems you need to
solve.

Many libraries will be covered in this book. Yet more are covered in other
CommonsWare books. A few more are in the developer documentation.

The biggest catalog of open source libraries is the Android Arsenal. Here you can
browse and search for libraries. Each listing will contain links to where you can find
out more about that particular library, typically in the form of a GitHub repository.

Beyond that, you will find blog posts, Stack Overflow answers, and other resources
pointing out candidate libraries to use.

ADDING LIBRARIES

251

https://android-arsenal.com/

Configure the Repositories

If you are using one of Google’s libraries, a project created in Android Studio should
be set up with the proper artifact repository already. Your project should also come
pre-configured to pull from JCenter, where many open source libraries are from. As a
result, for the vast majority of libraries, you do not need to configure an additional
artifact repository.

But, sometimes you do.

For example, you may find some libraries that advise you to configure support for
jitpack.io:

repositories {
maven {

url "https://jitpack.io"
}

}

This is because they are using JitPack to publish their libraries, instead of JCenter.

You can do one of two things:

1. Add that maven {} closure to the repositories closure in the allprojects
closure in your top-level build.gradle file

2. Add the entire sample repositories closure to your module’s build.gradle
file

Either of these will make this artifact repository available to you for that module.
The first approach makes it available for all modules in your app, for if you create a
more complex app that involves multiple modules.

So, when you review the documentation for a dependency, it should indicate what
artifact repository to use, and you need to ensure that you are set up to use that
repository. If the library does not state what artifact repository it uses, try adding the
dependency, and if it works, then (hopefully) they published the artifact on JCenter.

Identify the Version That You Want

As noted above, each artifact has an identifier made up of three pieces: a group ID,
an artifact ID within the group, and a version number.

ADDING LIBRARIES

252

Technically, the version number can contain wildcards. For example, while 1.0.2
indicates a specific version, 1.0.+ says “pick the latest among all versions that start
with 1.0”. This is convenient for getting patches, but it means that on some random
day, all of a sudden, you are using a new version of the library, and that might cause
problems. Typically, we do not use wildcards, but instead just keep tabs on when the
artifacts get new versions. Android Studio will help with this, highlighting artifacts
that have newer versions available.

For Google’s artifacts, you can browse a Web page for their Maven repository to find
the available versions for an artifact given its group ID and artifact ID.

For other artifacts, you usually go to the support site for that artifact, which for
many artifacts is a GitHub project. A well-maintained library will have details of the
latest version of that artifact, so you know what version to request in your module’s
build.gradle file.

Add the Dependencies

Then, you just need to add the appropriate implementation lines for whatever
dependencies that you wish to add, alongside the existing ones in your module’s
build.gradle file.

Note that many libraries showing sample code for adding them to your
build.gradle file will show a slightly different syntax, with a compile keyword
instead of implementation:

compile 'com.whatever:something:1.2.3'

That is because Android Studio 3.0 and Gradle 4.1 switched to a new syntax for
specifying dependencies. compile was replaced by implementation. If you use
compile, your Gradle build script will still work… for now. Eventually, support for
compile will be dropped, and so you should aim to use implementation instead of
compile going forward.

We will see lots of dependencies closures throughout the rest of this book, showing
different artifacts that we can depend upon.

ADDING LIBRARIES

253

https://maven.google.com/

Employing RecyclerViewRecyclerView

If you have spent much time with Android devices and apps, no doubt that you will
have seen apps that show lists or grids of stuff: contacts, songs, movies, books, to-do
items, etc.

If the app was written in 2015 or later, there is a very good chance that it uses
RecyclerView for those lists and grids. In this chapter, we will explore what
RecyclerView is and how you can use it for your own collections of data.

Recap: Layouts vs. Adapter-Based Containers
As we saw back in the chapter on ConstraintLayout, there are two major types of
ViewGroup implementations:

• There are those that organize a set of children known at the time that you
are writing the app

• There are those that organize a set of children that cannot be known until
the app is run

Mostly, ConstraintLayout is for the first scenario. You know that you will have a
certain set of widgets that you want to appear, and you need to size and position
them. ConstraintLayout — and the legacy containers, like LinearLayout — excel at
this role.

However, quite frequently, we have collections of stuff to display. We might know
what sorts of stuff would be in the collection (contacts, songs, movies, books, to-do
items, etc.). But we do not know how big the collection will be. Perhaps when we
first run the app, the collection will be empty. Over time, the collection might grow.
If we are reusing data from other places, such as the user’s contact manager, there

255

might be lots of data from the outset. We just do not know.

ConstraintLayout would be useful for displaying an individual item out of that
collection of stuff. However, trying to use ConstraintLayout and ScrollView to
handle an arbitrary-sized collection would be really painful.

Fortunately, we have options.

The original solution for this sort of problem was the AdapterView family of classes,
notably ListView. AdapterView worked but was fairly inflexible. RecyclerView was
created as an alternative, and it is the dominant solution for this problem today. We
will discuss ListView and the rest of AdapterView towards the end of the chapter,
but outside of certain scenarios, your focus nowadays should be on RecyclerView.

The Challenge: Memory
Suppose that our UI is supposed to look like this:

Figure 144: Settings App from Android 9.0

Here we have a vertically-scrolling list of items. Each item appears to have an

EMPLOYING RECYCLERVIEW

256

ImageView and a pair of TextView widgets.

This happens to be from the Settings app on an Android 9.0 device. If you have
spent much time with Settings, you know that while it has a bunch of top-level
options like these, there are only so many. We could, if needed, have one
ConstraintLayout in a ScrollView that managed them.

But what happens if our list needs to have thousands of items in it?

Each widget — TextView, Button, ImageView, etc. — takes up around 1KB of
memory, not counting its content (text, image, whatever). Several thousand widgets
means several MB of memory.

On Android, the amount of memory your app can use is limited. On very old or very
cheap devices, it might be as little as 16MB, though higher values (e.g., 32MB, 48MB)
are a bit more common today. Still, there is always a cap. Having one screen use
several MB of memory will be a problem for apps that have lots of screens,
particularly if many of those screens will have their own long lists.

AdapterView and RecyclerView are designed around recycling. If you look at that
screenshot again, no matter how many rows there might be in the list overall, the
user can only see 8 of them on this particular screen at once. View recycling takes
advantage of this, so we can limit our memory usage. Rather than having widgets for
each item in the list, we have widgets for each visible item, plus a few more to help
with reacting to scrolling events. As rows in the list scroll off the screen, they
become eligible for reuse (recycling). This helps keep our memory usage to a more
reasonable level, despite having a potentially very long list.

Enter RecyclerViewRecyclerView

RecyclerView, on its own, does very little other than help manage view recycling
(e.g., row recycling of a vertical list). It delegates almost everything else to other
classes, such as:

• a layout manager, responsible for organizing the views into various
structures (vertical list, grid, staggered grid, etc.)

• an item decorator, responsible for applying effects and light positioning to
the views, such as adding divider lines between rows in a vertical list

• an item animator, responsible for animated effects as the model data
changes

EMPLOYING RECYCLERVIEW

257

• and so on

Through “adapter” and “view-holder” classes, we teach RecyclerView what should go
into the list rows, grid cells, or whatever. RecyclerView then handles the scrolling
and recycling for us.

A Trivial List
The RecyclerViewBasics sample module in the Sampler and SamplerJ projects
demonstrate a fairly simple list. The items in the list will be a set of randomly-
generated integers, where we will show the values both as a hexadecimal number
and as a color:

Figure 145: RecyclerViewBasics Sample

The Dependency

RecyclerView comes from a library, not the framework portion of the Android SDK.
As a result, we need a new dependency, one for
androidx.recyclerview:recyclerview:

EMPLOYING RECYCLERVIEW

258

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/RecyclerViewBasics
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/RecyclerViewBasics
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/RecyclerViewBasics
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/RecyclerViewBasics

dependencies {
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'androidx.recyclerview:recyclerview:1.1.0'
implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:$kotlin_version"
implementation "androidx.activity:activity:1.1.0"

}

(from RecyclerViewBasics/build.gradle)

Elsewhere, you may see references to com.android.support:recyclerview-v7. That
library offers the same RecyclerView, but is part of the older Android Support
Library. Jetpack projects should use the androidx edition of RecyclerView.

The Layouts

This project has two layout resources: activity_main and row.

The Activity Layout

The activity_main layout resource contains a RecyclerView inside of a
ConstraintLayout:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="@dimen/content_padding"
tools:context=".MainActivity">>

<androidx.recyclerview.widget.RecyclerView<androidx.recyclerview.widget.RecyclerView
android:id="@+id/items"
android:layout_width="0dp"
android:layout_height="0dp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from RecyclerViewBasics/src/main/res/layout/activity_main.xml)

EMPLOYING RECYCLERVIEW

259

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/src/main/res/layout/activity_main.xml

As with ConstraintLayout itself, RecyclerView needs to have its fully-qualified class
name in the layout resource XML, which is why we have an
<androidx.recyclerview.widget.RecyclerView> element instead of simply a
<RecyclerView> element. Otherwise, RecyclerView is just an ordinary thing that we
can size and position as needed. Here, we have it set to fill the ConstraintLayout,
excluding 8dp of padding that the ConstraintLayout applies.

Note that RecyclerView knows how to scroll, so we do not need to wrap
RecyclerView in a ScrollView.

When constructing a new UI, if you wish to use the drag-and-drop GUI builder in
Android Studio, you can find RecyclerView in the “Containers” category of the
Palette:

Figure 146: Android Studio Palette, Showing RecyclerView

The Row Layout

This project has a second layout resource, named row. Each row in our RecyclerView
will be created from this row layout resource as a template:

EMPLOYING RECYCLERVIEW

260

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="?android:attr/selectableItemBackground"
android:clickable="true"
android:focusable="true"
android:padding="@dimen/content_padding">>

<View<View
android:id="@+id/swatch"
android:layout_width="@dimen/swatch_size"
android:layout_height="@dimen/swatch_size"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="@dimen/label_start_margin"
android:textAppearance="?android:attr/textAppearanceLarge"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@id/swatch"
app:layout_constraintTop_toTopOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from RecyclerViewBasics/src/main/res/layout/row.xml)

Once again, our root is a ConstraintLayout, this time with two children: a
TextView… and a View.

Here, View is literally referring to android.view.View, the root class of all widgets
and containers. View is not used all that often, as it does not render anything in the
foreground: no text, no image, etc. However, it can have a background color, so the
primary usage of View is for lines, boxes, and other shaded areas that have no
children. In this case, we are using it for the color swatch seen on the left side of the
rows, so we give it an ID of swatch.

The label TextView will be used to show the hexadecimal number that we randomly
generate and are using for the color. Here, we use android:textAppearance as an
attribute. That sets a bunch of things at once: text size, text style, etc. In particular,

EMPLOYING RECYCLERVIEW

261

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/src/main/res/layout/row.xml

our value (?android:attr/textAppearanceLarge) is a reference to a standard text
appearance from our activity’s theme. We will explore themes more later in the
book. For now, take it on faith that ?android:attr/textAppearanceLarge will give
us a standard “large” text appearance.

The ConstraintLayout has three attributes that we have not used before:

• android:background="?android:attr/selectableItemBackground"
• android:clickable="true"
• android:focusable="true"

The android:clickable and android:focusable attributes control whether the user
can interact with this element. By default, container classes like ConstraintLayout
are non-interactive, so they ignore any touch or key events. By setting
android:clickable="true" and android:focusable="true", we are indicating that
this particular container is interactive, and so we should pay attention to touch and
key events. This is typical of a container that serves as the root for an individual item
in a RecyclerView.

In particular, those tie into android:background="?android:attr/
selectableItemBackground". android:background says “this is what the
background of this thing should be”. The default background for a container like
ConstraintLayout is transparent. In this case, we are replacing that with something
that we are pulling from our theme (?android:attr/selectableItemBackground),
which will apply a standard “selectable” background. If you run the sample apps, and
you tap on a row in the list, you will see a ripple effect — this comes from the
“selectable” background.

The LayoutManagerLayoutManager

As with our other samples, our activity is MainActivity, whether that is written in
Java:

packagepackage com.commonsware.jetpack.samplerj.recyclerviewcom.commonsware.jetpack.samplerj.recyclerview;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.commonsware.jetpack.samplerj.recyclerview.databinding.ActivityMainBindingcom.commonsware.jetpack.samplerj.recyclerview.databinding.ActivityMainBinding;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Listjava.util.List;
importimport java.util.Randomjava.util.Random;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration;
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {

EMPLOYING RECYCLERVIEW

262

privateprivate finalfinal RandomRandom random = newnew RandomRandom();

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

finalfinal ActivityMainBindingActivityMainBinding binding =
ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

ColorAdapterColorAdapter adapter = newnew ColorAdapterColorAdapter(getLayoutInflater());

adapter.submitList(buildItems());
binding.items.setLayoutManager(newnew LinearLayoutManagerLinearLayoutManager(thisthis));
binding.items.addItemDecoration(

newnew DividerItemDecoration(thisthis, DividerItemDecorationDividerItemDecoration.VERTICAL));
binding.items.setAdapter(adapter);

}

privateprivate ListList<IntegerInteger> buildItems() {
ArrayListArrayList<IntegerInteger> result = newnew ArrayListArrayList<>(25);

forfor (int i = 0; i < 25; i++) {
result.add(random.nextInt());

}

returnreturn result;
}

}

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/MainActivity.java)

… or Kotlin:

packagepackage com.commonsware.jetpack.sampler.recyclerviewcom.commonsware.jetpack.sampler.recyclerview

importimport android.os.Bundleandroid.os.Bundle
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager
importimport com.commonsware.jetpack.sampler.recyclerview.databinding.ActivityMainBindingcom.commonsware.jetpack.sampler.recyclerview.databinding.ActivityMainBinding
importimport java.util.*java.util.*

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {
privateprivate valval random = RandomRandom()

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

binding.items.apply {
layoutManager = LinearLayoutManagerLinearLayoutManager(thisthis@MainActivity)
addItemDecoration(

DividerItemDecorationDividerItemDecoration(thisthis@MainActivity, DividerItemDecorationDividerItemDecoration.VERTICALVERTICAL)
)

EMPLOYING RECYCLERVIEW

263

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/MainActivity.java

adapter = ColorAdapterColorAdapter(layoutInflater).apply {
submitList(buildItems())

}
}

}

privateprivate funfun buildItems() = ListList(25) { random.nextInt() }
}

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/MainActivity.kt)

The UI is set up in onCreate(). Here, we configure the RecyclerView.

One thing that we need to teach the RecyclerView is what sort of look we want it to
have overall. In this case, we want a vertically-scrolling list. For that, we can use a
LinearLayoutManager.

RecyclerView uses a LayoutManager to control the overall layout of items within its
scrollable area. LinearLayoutManager lays those items out in a list. By default, that
list is vertical.

(despite the name, LinearLayoutManager is not related to LinearLayout, except in
the most general sense)

So, we create an instance of LinearLayoutManager and associate it with the
RecyclerView via setLayoutManager().

If you do not want a vertically-scrolling list, you could use:

• GridLayoutManager, which implements a two-dimensional vertically-
scrolling list, with rows consisting of multiple cells

• StaggeredGridLayoutManager, which implements a “staggered grid”, which
has columns of cells, but where the cells do not have to all have the same
size

In addition, it is possible to create your own RecyclerView.LayoutManager, or use
ones from third-party libraries.

The Divider

By default, a RecyclerView just shows its items, and nothing else. However, with a
vertically-scrolling list, frequently we want some sort of divider between the rows in
the list. Sometimes, that is not necessary, as we have stuff in the items themselves
that visually distinguish one from another. The rest of the time, we will want the

EMPLOYING RECYCLERVIEW

264

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/MainActivity.kt

help of RecyclerView to handle this.

RecyclerView delegates that sort of work to one or more ItemDecoration objects.
The primary one offered by the RecyclerView library is DividerItemDecoration,
which draws a thin line for you.

DividerItemDecoration can be used both for the normal vertically-scrolling list and
for the less-common horizontally-scrolling list. Hence, we need to tell
DividerItemDecoration which way to draw the divider line. For a vertically-scrolling
list, we need a divider configured for such a list, so we pass
DividerItemDecoration.VERTICAL to the DividerItemDecoration constructor when
we set it up.

You can then add these ItemDecoration objects to a RecyclerView via
addItemDecoration() calls.

The Data

The data that we want to depict in the list is a roster of 25 random numbers. To that
end, we have a buildItems() Java method:

privateprivate ListList<IntegerInteger> buildItems() {
ArrayListArrayList<IntegerInteger> result = newnew ArrayListArrayList<>(25);

forfor (int i = 0; i < 25; i++) {
result.add(random.nextInt());

}

returnreturn result;
}

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/MainActivity.java)

… or Kotlin function:

privateprivate funfun buildItems() = ListList(25) { random.nextInt() }

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/MainActivity.kt)

In each case, we create a list of 25 random numbers, using Random.nextInt() as the
source of the number. buildItems() is called from onCreate() and will be used to
populate our RecyclerView.Adapter.

EMPLOYING RECYCLERVIEW

265

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/MainActivity.kt

The ViewHolderViewHolder

Each RecyclerView is associated with one or more implementations of
RecyclerView.ViewHolder. Each instance of a ViewHolder class wraps one piece of
data (in our case, one random number) and ties it to one visual representation of
that data. However, courtesy of recycling, a ViewHolder will get reused. As the user
scrolls, and items scroll off the screen, their associated ViewHolder objects will need
to be associated with new pieces of data that are to be scrolled onto the screen.

Our particular implementation is ColorViewHolder, both in Java:

packagepackage com.commonsware.jetpack.samplerj.recyclerviewcom.commonsware.jetpack.samplerj.recyclerview;

importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.jetpack.samplerj.recyclerview.databinding.RowBindingcom.commonsware.jetpack.samplerj.recyclerview.databinding.RowBinding;
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView;

classclass ColorViewHolderColorViewHolder extendsextends RecyclerViewRecyclerView.ViewHolder {
privateprivate finalfinal RowBindingRowBinding binding;

ColorViewHolderColorViewHolder(RowBindingRowBinding binding) {
supersuper(binding.getRoot());

thisthis.binding = binding;

binding.getRoot().setOnClickListener(
v -> ToastToast.makeText(binding.label.getContext(), binding.label.getText(),

ToastToast.LENGTH_LONG).show());
}

void bindTo(IntegerInteger color) {
binding.label.setText(

binding.label.getContext().getString(R.string.label_template, color));
binding.swatch.setBackgroundColor(color);

}
}

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/ColorViewHolder.java)

… and Kotlin:

packagepackage com.commonsware.jetpack.sampler.recyclerviewcom.commonsware.jetpack.sampler.recyclerview

importimport android.widget.Toastandroid.widget.Toast
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView
importimport com.commonsware.jetpack.sampler.recyclerview.databinding.RowBindingcom.commonsware.jetpack.sampler.recyclerview.databinding.RowBinding

EMPLOYING RECYCLERVIEW

266

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/ColorViewHolder.java

classclass ColorViewHolderColorViewHolder(privateprivate valval binding: RowBindingRowBinding) :
RecyclerViewRecyclerView.ViewHolderViewHolder(binding.root) {
init {

binding.root.setOnClickListener { _ ->
ToastToast.makeText(

binding.label.context,
binding.label.text,
ToastToast.LENGTH_LONGLENGTH_LONG

).show()
}

}

funfun bindTo(color: IntInt) {
binding.label.text =

binding.label.context.getString(RR.string.label_template, color)
binding.swatch.setBackgroundColor(color)

}
}

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/ColorViewHolder.kt)

The Constructor

Something outside of the ViewHolder is responsible for setting up the visual
representation and providing the View for it to our constructor. We will see how that
works a bit later in this chapter. Our ColorViewHolder is expecting this View to be
the root of our row layout resource, so we can work with its contents.

The job of our constructor is to find the individual widgets that we need and
configure them for our use.

The Java code uses findViewById() to access the swatch and label widgets. The
Kotlin code uses Kotlin synthetic accessors (import
kotlinx.android.synthetic.main.row.view.*) to access the contents of the row
and assign them to individual properties.

The ToastToast

We also call setOnClickListener() on the row itself, to find out when it is clicked.
There, to provide feedback to the user, we show a Toast.

A Toast is a transient message, meaning that it displays and disappears on its own
without user interaction. Moreover, it does not take focus away from the currently-

EMPLOYING RECYCLERVIEW

267

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/ColorViewHolder.kt

active Activity, so if the user is busy writing the next Great Programming Guide,
they will not have keystrokes be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it.
You get no acknowledgment from them, nor does the message stick around for a
long time to pester the user. Hence, the Toast is mostly for advisory messages, ones
that if the user misses them, no harm will come.

Making a Toast is fairly easy. The Toast class offers a static makeText() method that
accepts a String (or string resource ID) and returns a Toast instance. The
makeText() method also needs the Activity (or other Context) plus a duration. The
duration is expressed in the form of the LENGTH_SHORT or LENGTH_LONG constants to
indicate, on a relative basis, how long the message should remain visible. Once your
Toast is configured, call its show() method, and the message will be displayed.

The Binding

Other than needing to use the base class of RecyclerView.ViewHolder, there is no
other particular protocol that is mandated between the adapter and the view holder.
However, at some point, our ViewHolder needs to be handed the data that it is
supposed to represent in these widgets.

For that, ColorViewHolder has bindTo(). It takes a color integer and pours it into
the label and swatch widgets.

For the label, we use getString(), where our string resource has a placeholder to
format the number:

<string<string name="label_template">>#%1$08x</string></string>

(from RecyclerViewBasics/src/main/res/values/strings.xml)

That cryptic placeholder (#%1$08x) means that we want to format the first
parameter (%1) as an eight-digit hexadecimal value (08x).

For the color swatch, we call setBackgroundColor(). This is a method available on
any View that can be used to set its background color to a particular value. In our
case, we are using a randomly-generated color, not a color resource, so we can just
pass in the color integer.

EMPLOYING RECYCLERVIEW

268

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/src/main/res/values/strings.xml

The Adapter

We still need to tell the RecyclerView what to display. That is handled by an
implementation of RecyclerView.Adapter. Here, “adapter” refers to the adapter
pattern: an adapter takes data and adapts it for some other role. In our case, an
Adapter takes some collection of data and uses it to define the visual representation
of that data, in the form of View and ViewGroup objects.

Our Adapter — named ColorAdapter — will use the row layout that we defined
earlier to define the visual representation of each piece of data. ColorAdapter uses
our ColorViewHolder to manage the actual widgets.

We have two implementations of ColorAdapter, in Java:

packagepackage com.commonsware.jetpack.samplerj.recyclerviewcom.commonsware.jetpack.samplerj.recyclerview;

importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.commonsware.jetpack.samplerj.recyclerview.databinding.RowBindingcom.commonsware.jetpack.samplerj.recyclerview.databinding.RowBinding;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.recyclerview.widget.DiffUtilandroidx.recyclerview.widget.DiffUtil;
importimport androidx.recyclerview.widget.ListAdapterandroidx.recyclerview.widget.ListAdapter;

classclass ColorAdapterColorAdapter extendsextends ListAdapterListAdapter<IntegerInteger, ColorViewHolderColorViewHolder> {
privateprivate finalfinal LayoutInflaterLayoutInflater inflater;

ColorAdapterColorAdapter(LayoutInflaterLayoutInflater inflater) {
supersuper(DIFF_CALLBACK);
thisthis.inflater = inflater;

}

@NonNull
@Override
publicpublic ColorViewHolderColorViewHolder onCreateViewHolder(@NonNull ViewGroupViewGroup parent,

int viewType) {
returnreturn newnew ColorViewHolder(RowBindingRowBinding.inflate(inflater, parent, falsefalse));

}

@Override
publicpublic void onBindViewHolder(@NonNull ColorViewHolderColorViewHolder holder, int position) {

holder.bindTo(getItem(position));
}

privateprivate staticstatic finalfinal DiffUtilDiffUtil.ItemCallback<IntegerInteger> DIFF_CALLBACK =
newnew DiffUtilDiffUtil.ItemCallback<IntegerInteger>() {

EMPLOYING RECYCLERVIEW

269

@Override
publicpublic boolean areItemsTheSame(@NonNull IntegerInteger oldColor,

@NonNull IntegerInteger newColor) {
returnreturn oldColor.equals(newColor);

}

@Override
publicpublic boolean areContentsTheSame(@NonNull IntegerInteger oldColor,

@NonNull IntegerInteger newColor) {
returnreturn areItemsTheSame(oldColor, newColor);

}
};

}

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/ColorAdapter.java)

… and Kotlin:

packagepackage com.commonsware.jetpack.sampler.recyclerviewcom.commonsware.jetpack.sampler.recyclerview

importimport android.view.LayoutInflaterandroid.view.LayoutInflater
importimport android.view.ViewGroupandroid.view.ViewGroup
importimport androidx.recyclerview.widget.DiffUtilandroidx.recyclerview.widget.DiffUtil
importimport androidx.recyclerview.widget.ListAdapterandroidx.recyclerview.widget.ListAdapter
importimport com.commonsware.jetpack.sampler.recyclerview.databinding.RowBindingcom.commonsware.jetpack.sampler.recyclerview.databinding.RowBinding

classclass ColorAdapterColorAdapter(privateprivate valval inflater: LayoutInflaterLayoutInflater) :
ListAdapterListAdapter<IntInt, ColorViewHolderColorViewHolder>(ColorDifferColorDiffer) {

overrideoverride funfun onCreateViewHolder(
parent: ViewGroupViewGroup,
viewType: IntInt

): ColorViewHolderColorViewHolder {
returnreturn ColorViewHolderColorViewHolder(RowBindingRowBinding.inflate(inflater, parent, falsefalse))

}

overrideoverride funfun onBindViewHolder(holder: ColorViewHolderColorViewHolder, position: IntInt) {
holder.bindTo(getItem(position))

}

privateprivate objectobject ColorDifferColorDiffer : DiffUtilDiffUtil.ItemCallbackItemCallback<IntInt>() {
overrideoverride funfun areItemsTheSame(oldColor: IntInt, newColor: IntInt): BooleanBoolean {

returnreturn oldColor == newColor
}

overrideoverride funfun areContentsTheSame(oldColor: IntInt, newColor: IntInt): BooleanBoolean {
returnreturn areItemsTheSame(oldColor, newColor)

EMPLOYING RECYCLERVIEW

270

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/ColorAdapter.java

}
}

}

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/ColorAdapter.kt)

The Base Class

When we created ColorViewHolder, we directly extended
RecyclerView.ViewHolder. You can do the same thing with RecyclerView.Adapter,
having your class (e.g., ColorAdapter) extend it directly. In this case, we are using
ListAdapter, a supplied partial implementation of RecyclerView.Adapter that
knows how to work with lists of data.

NOTE: There are two things named ListAdapter in the Android SDK. We are using
androidx.recyclerview.widget.ListAdapter, which works with RecyclerView. The
android.widget.ListAdapter interface is designed for use with the older
AdapterView family of widgets, such as ListView. Make sure that you use the right
one, as otherwise you will get lots of strange compile errors.

ListAdapter uses generics and takes two data types:

• The type of data for individual elements in the list to be shown (in our case,
a Java Integer or Kotlin Int)

• The RecyclerView.ViewHolder class that we want to use for the items in the
list (in our case, ColorViewHolder)

The Constructor and the “Differ”

The ListAdapter constructor requires an implementation of a
DiffUtil.ItemCallback object.

Part of what ListAdapter does for us is help deal with changes to our list of data.
This app, as it stands, only shows one set of random numbers in the list. But,
suppose we had a button that allowed the user to add more numbers. We would
need our RecyclerView.Adapter to be able to show both the old numbers and the
new numbers.

ListAdapter has all of the smarts to handle that for us as efficiently as possible.
However, ListAdapter knows nothing about our data and our visual representation
of that data, and knowing more about those things helps with efficiency. The

EMPLOYING RECYCLERVIEW

271

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/ColorAdapter.kt

DiffUtil.ItemCallback is our way of teaching ListAdapter more about our data.
Specifically, a DiffUtil.ItemCallback has two Java methods or Kotlin functions:

• areItemsTheSame() takes in two pieces of data from our lists (old and
changed) and needs to return true if they are the actual same thing

• areContentsTheSame() takes in two pieces of data and returns true if their
visual representation will be the same when the data is rendered on the
screen

If our ListAdapter were adapting the items in an online shopping cart, we would
return true from areItemsTheSame() if both objects are really the same underlying
cart entry. But, suppose the user had more than one of some particular product in
the cart, such as three boxes of laundry detergent. areItemsTheSame() might return
false for some pair, as the first box is not the same box as the second box. However,
areContentsTheSame() might return true, as the visual representation might be the
same (e.g., a thumbnail image of the laundry detergent box).

In our case, not only is the data not changing, but it is very simple and distinct, so
we can use content equality for both areItemsTheSame() and
areContentsTheSame(). So, we have a ColorDiffer that does just that, either in the
form of a static Java class or a singleton Kotlin object. We use ColorDiffer in our
ColorAdapter constructor, so now ListAdapter knows about how to compare our
colors.

onCreateViewHolder()onCreateViewHolder()

Any RecyclerView.Adapter needs to know how to do two other things:

1. Create the ViewHolder that we want, including setting up its UI; and
2. Bind data from our collection to ViewHolder instances as they are displayed

on the screen

onCreateViewHolder() handles the first of these. It creates instances of
ColorViewHolder and returns them.

However, ColorViewHolder wants the View that represents the UI for the row in our
list. That UI is defined in the row layout resource. We need some way to get a View
for a layout resource. All our prior uses of layout resources were for activities, and we
just passed the resource ID to setContentView(). That will not work here.

So, our ColorAdapter constructor takes in a LayoutInflater object. LayoutInflater

EMPLOYING RECYCLERVIEW

272

knows how to “inflate” layout resources. In Android, “inflate” means:

• Walk a tree of XML elements in an XML resource
• Create Java objects for each element in that tree
• Stitch those objects together into their own tree structure, mirroring the tree

defined in the XML
• Return the Java object representing the root of the tree

Given that our row layout is:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="?android:attr/selectableItemBackground"
android:clickable="true"
android:focusable="true"
android:padding="@dimen/content_padding">>

<View<View
android:id="@+id/swatch"
android:layout_width="@dimen/swatch_size"
android:layout_height="@dimen/swatch_size"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<TextView<TextView
android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="@dimen/label_start_margin"
android:textAppearance="?android:attr/textAppearanceLarge"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@id/swatch"
app:layout_constraintTop_toTopOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from RecyclerViewBasics/src/main/res/layout/row.xml)

…then a call to inflate() on a LayoutInflater, supplying R.layout.row as the first
parameter, should return a ConstraintLayout object that holds onto a TextView and
a View.

EMPLOYING RECYCLERVIEW

273

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/src/main/res/layout/row.xml

That is what onCreateViewHolder() does: calls inflate(), gets the root View, passes
that to the ColorViewHolder() constructor, and returns the ColorViewHolder
instance.

LayoutInflater has a few inflate() methods, taking different parameters. They all
do the same basic thing: “inflate” the layout into a View hierarchy. The particular
inflate() that you will use most often takes three parameters:

• The resource ID of the layout that you want to inflate
• The ViewGroup that the widgets in that layout will eventually be added to
• false to say “but please do not add them to the parent right away”

(something else will do that when appropriate, RecyclerView and
LinearLayoutManager in this case)

onBindViewHolder()onBindViewHolder()

onBindViewHolder() will be called when RecylerView wants to show one of our
pieces of data. We are passed the 0-based index into our collection of data
representing what RecyclerView wants, and we are passed a ViewHolder (created by
onCreateViewHolder() previously) to use for the visual representation.

ListAdapter gives us a getItem() method that we can use to get our color for a
given position. We then just call bindTo() on the ColorViewHolder, and
ColorViewHolder takes it from there.

Applying the ColorAdapterColorAdapter

To make use of ColorAdapter, we first need to give it some colors to display.
Subclasses of ListAdapter have a submitList() method that you can use for that.
You provide a List of your data, such as the results of our buildItems() call.

Then, to have the colors show up, you call setAdapter() on the RecyclerView,
handing it your RecyclerView.Adapter instance.

We do both of these things in onCreate() of MainActivity as part of the overall
setup:

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

EMPLOYING RECYCLERVIEW

274

finalfinal ActivityMainBindingActivityMainBinding binding =
ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

ColorAdapterColorAdapter adapter = newnew ColorAdapterColorAdapter(getLayoutInflater());

adapter.submitList(buildItems());
binding.items.setLayoutManager(newnew LinearLayoutManagerLinearLayoutManager(thisthis));
binding.items.addItemDecoration(

newnew DividerItemDecoration(thisthis, DividerItemDecorationDividerItemDecoration.VERTICAL));
binding.items.setAdapter(adapter);

}

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/MainActivity.java)

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

binding.items.apply {
layoutManager = LinearLayoutManagerLinearLayoutManager(thisthis@MainActivity)
addItemDecoration(

DividerItemDecorationDividerItemDecoration(thisthis@MainActivity, DividerItemDecorationDividerItemDecoration.VERTICALVERTICAL)
)
adapter = ColorAdapterColorAdapter(layoutInflater).apply {

submitList(buildItems())
}

}
}

(from RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/MainActivity.kt)

Hey, What About ListViewListView?
If you read about Android from older sources, you will see a lot of discussion of
ListView.

ListView is a subclass of AdapterView. The AdapterView family of classes is the
precursor to RecyclerView. Like RecyclerView, they display collections of data. And,
like RecyclerView, they use an adapter to convert your data into visual
representations to display. However, on the whole, the AdapterView widgets were
less configurable and less powerful than is RecyclerView.

Almost every AdapterView subclass that is part of the Android SDK could be
replaced by RecyclerView. ListView and GridView can be replaced very easily.

EMPLOYING RECYCLERVIEW

275

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/samplerj/recyclerview/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/RecyclerViewBasics/src/main/java/com/commonsware/jetpack/sampler/recyclerview/MainActivity.kt

Gallery would take a bit more work. Many third-party libraries exist for
implementing tree structures — parents with children, like a directory tree — in
RecyclerView, to replace ExpandableListView.

The main exception is Spinner, which implements a drop-down list. RecyclerView
cannot reproduce this sort of widget directly, though it could be used as part of
some larger replacement.

Gesture Navigation and Scrolling Widgets
Some Android users — including many who purchase an Android 10+ device — will
wind up using a “gesture” form of system navigation. This can interfere with
scrolling widgets, like a RecyclerView.

A Tale of Three (or More) Nav Patterns

Way back in the beginning, navigation actions were handled by hardware buttons.
Android 3.0 introduced the notion of a “navigation bar” for handling “home”, “back”,
and “overview” navigation actions, leading to the classic three-button bar:

Figure 147: Three-Button Android Nav Bar

Android 9.0 added another option for users: a two-button nav, where “home” and
“overview” actions were handled by gestures on a central pill affordance:

Figure 148: Button-and-Pill Android 9.0 Nav Bar

Android 10 deprecates that two-button nav option but adds a new nav option that is
based on gestures:

EMPLOYING RECYCLERVIEW

276

Action Associated Gesture

Home swipe up from bottom screen edge

Back swipe inward from the screen edge on left or right

Overview swipe up from the bottom screen edge and hold

Users can choose among those by visiting Settings > System > Gestures > “System
navigation”:

Figure 149: System Navigation Settings in Android 10

The user can choose between gesture-based nav, the Android 9.0 button-and-pill
option, or the classic three-button nav option. Note, though, that not all users will
have access to all of those options. Pixel 4 users, for example, cannot choose the
two-button nav option.

On top of this, some device manufacturers have created their own gesture-based nav
options. Device manufacturers will be allowed to continue coming up with their own
schemes for this, meaning that a user might have three or four navigation options

EMPLOYING RECYCLERVIEW

277

on Android 10 devices.

Impacts on Apps

The system “steals” touch events from apps to handle these navigation gestures. If
your app relies upon touch events near the edges, you may run into some problems.
In particular, the user may get confused when trying to use your app, trying to apply
your gestures and winding up with system responses. While simple taps will be
passed through to your app from these system edge areas, anything else is
indeterminate.

For example, suppose that you have a RecyclerView that goes all the way to the
bottom of the screen. Based on a subtle and invisible line of demarcation, the same
gesture might either scroll your RecyclerView or take the user to the home screen.
Those are substantially different results for the same gesture, applied in slightly
different locations.

You may need to consider redesigning your UI to:

• Avoid expecting swipe gestures near screen edges, and
• Provide a visual distinction of where swipe gestures are valid, to help the

user learn where to swipe to control your UI

Technically, there is a way that you can tell the system to ignore “back” gestures and
pass those along to your app. However, from a practical standpoint, this has
problems:

• The user may not know how to exit this screen and may get frustrated as a
result

• This approach may not be honored by manufacturer-specific nav schemes

Avoiding the edges is a safer approach.

The OS informs your app about “window insets”, to indicate areas where the system
will steal your touch events. This library helps you leverage that information to
adjust your UI based upon the particular device’s window insets, based on device
model and whether the user has enabled gesture-based nav or not.

On the whole, this book’s samples ignore the impacts of gesture navigation.

EMPLOYING RECYCLERVIEW

278

https://developer.android.com/training/gestures/gesturenav#back-gestures
https://github.com/chrisbanes/insetter

Coping with Configurations

Devices sometimes change while users are using them, in ways that our application
will care about:

• The user might rotate the screen from portrait to landscape, or vice versa
• The user might switch to a different language via the Settings application,

returning to our running application afterwards
• It might become dark, suggesting that we should be in some sort of “night

mode”
• And so on

In all of these cases, it is likely that we will want to change what resources we use.
For example, our layout for a portrait screen may be too tall to use in landscape
mode, so we would want to substitute in some other layout.

This chapter will explore how to provide alternative resources for these different
scenarios — called “configuration changes” — and will explain what happens to our
activities when the user changes the configuration while we are in the foreground.

What’s a Configuration? And How Do They
Change?
Different pieces of Android hardware can have different capabilities, such as:

• Different screen sizes
• Different screen densities (dots per inch)
• Different number and capabilities of cameras
• Different mix of radios (GSM? CDMA? GPS? Bluetooth? WiFi? NFC?

279

something else?)
• And so on

Some of these, in the eyes of the core Android team, might drive the selection of
resources, like layouts or drawables. Different screen sizes might drive the choice of
layout. Different screen densities might drive the choice of drawable (using a higher-
resolution image on a higher-density device). These are considered part of the
device’s “configuration”.

Other differences — ones that do not drive the selection of resources — are not part
of the device’s configuration but merely are “features” that some devices have and
other devices do not. For example, cameras and Bluetooth and WiFi are features.
The core Android team does not expect that you will want different resources based
on whether or not the device has a front-facing camera.

Most of the hardware features that drive a configuration might change on the fly. For
example, the user can rotate the device and switch from potrait to landscape, while
our app is still running. Somehow, though, we may need to switch to landscape-
friendly resources from the portrait-friendly resources that we started with. When a
configuration switches to something else on the fly, that is a “configuration change”,
and Android provides special support for such events to help developers adjust their
applications to match the new configuration.

Configurations and Resource Sets
Somehow, we need to be able to tell Android:

• Some resources are to be used for a certain type of configuration, such as
“large screens” or “high-density screens” or “uses English”

• Some resources are for some other configuration, for as many different
configuration aspects as we wish to support

• Some resources are the default and are valid for any configuration

The way Android currently handles this is by having multiple resource directories,
with the criteria for each embedded in their names.

For example, suppose that you want to support multiple languages. You will need to
choose some default language, one that will be used if your app winds up on a
device whose locale is set to a language that you do not support. For example, you
might set your default language to be US English. In that case, your US English

COPING WITH CONFIGURATIONS

280

strings would go into res/values/strings.xml. If you also wanted to offer a
translation in Spanish, you would add a res/values-es/ directory, where es is the
ISO 639-1 two-letter code for Spanish. In res/values-es/, you would put your
Spanish strings. At runtime, Android will choose which string to use, for a given
string resource ID (e.g., @string/app_name), based on the device’s locale(s) and the
various translations of that string that you provide.

This, therefore, is the bedrock resource set strategy: have a complete set of resources
in the default directory (e.g., res/values/), and override those resources in other
resource sets tied to specific configurations as needed (e.g., res/values-es/).

Implementing Resource Sets
Ideally, that strategy would be sufficient. Unfortunately, things are not quite that
simple. So, let’s walk through some common configurations and associated resource
sets, to see how we can set them up.

Language

As noted above, you can have different resource sets for different languages, by
adding the language code as a suffix on the resource directory name. Usually, this is
just applied to res/values/ (e.g., res/values-es/), as usually the only things that
change in an app based on language are string resources. In principle, though, you
could use such language suffixes on any resource directory (e.g., res/raw/ for
English-language audio clips and res/raw-es/ for Spanish-language audio clips).

However, languages often vary by region:

• US English has much in common with UK English, but not everything (e.g.,
“color” versus “colour”)

• French as spoken in France differs somewhat from French as spoken in the
Quebec province of Canada

• Spanish as spoken in Spain differs somewhat from Spanish as spoken in
Mexico

• And so on

To address this, Android supports two different systems for regional localization.

The classic approach was to add an ISO-3166-1 alpha-2 code after the language code
and prefixed by r (for “region”). For example, US English is res/values-en-rUS/,

COPING WITH CONFIGURATIONS

281

https://en.wikipedia.org/wiki/ISO_639-1
https://www.iso.org/obp/ui/#iso:pub:PUB500001:en

while UK English is res/values-en-rGB/ (“GB” for “Great Britain”).

Android 7.0 and higher support BCP 47 language and locale values as an alternative
system. Those get an overall b+ prefix, to distinguish them from other resource set
qualifiers. In the BCP 47 approach, English is res/values-b+en/, while US English is
res/values-b+en+US/ and UK English is res/values-b+en+GB/. However, this
system has not been as popular, in part because we have so much history with the
original system.

In either case, string resource sets are additive. You do not need to have a full set of
US English strings and a full set of UK English strings to support full localization,
because many of those strings will be in common. Plus, you can choose one of the
regions to be the default for a particular language, so you only need resource sets
and overrides for the specific strings that you need for the specific locales that
concern you.

So, for example, you could have:

• US English strings in res/values/ as the overall default for your app
• UK English strings in res/values-en-rGB/, for the handful of strings that

you need where the British spelling or term differs from the US version
• Mexican Spanish strings in res/values-es/
• Spain Spanish strings in res/values-es-rES/, for the handful of strings that

you need where the Spain localization differs from the Mexican localization
• And so on

Note that Android Studio has a translations editor to help you manage your string
resources for your default language and whatever translations you are going to
include in your app.

Screen Size and Orientation

The resource sets that get the most attention are those for screen size (and,
secondarily, screen orientation).

Android “borrows a page” from Web development. Web content nowadays uses CSS
media queries to have different layout rules based on screen size, typically screen
width. Similarly, Android allows you to set up different resource sets to use for
screens with varying sizes, where you choose the size. And, like CSS media queries,
you can choose the dividing lines between different rules — you are not limited to
some fixed set of size buckets.

COPING WITH CONFIGURATIONS

282

https://www.w3.org/International/articles/language-tags/Overview.en.php

There are three families of qualifiers that you can use:

• -wNNNdp, for some number NNN, means “use these resources when the current
width of the screen is NNN density-independent pixels (dp) or larger”

• -hNNNdp, for some number NNN, means “use these resources when the current
height of the screen is NNN dp or larger”

• -swNNNdp means “use these resources when the smallest width of the screen,
in any orientation, is NNN dp or larger”

The difference between -wNNNdp and -swNNNdp is that -wNNNdp is based on the
current width, and the current width of a device depends on its orientation.
-swNNNdp, by contrast, cares only what the length of the shorter screen dimension is
(“smallest width”) and therefore is independent of orientation.

So, you could have:

• res/layout/ for layout resources aimed at smaller screens
• res/layout-w640dp/ for layout resources aimed at screens whose current

width is 4" (640dp) or larger
• res/layout-w1120dp/ for layout resources aimed at screens whose current

width is 7" (1120dp) or larger

Hey, What About res/layout-largeres/layout-large?

You will see references to other size-related resource set qualifiers: -small, -normal,
-large, and -xlarge. This was the original system used by Android. However, it was
not very flexible. Android 3.2 added the system described above, and so most
modern Android app development should use that system.

Hey, What About res/layout-landres/layout-land?

Similarly, you will see references to a -land suffix to be used for landscape resources.
So res/layout/ would be used for portrait layouts and res/layout-land/ would be
used for landscape layouts.

Frequently, though, we do not care about the actual orientation, only the width (or
maybe the height). For example, many Web sites that use CSS media queries apply
different CSS rules based on the viewport width. While most computer monitors are
landscape, some can be rotated to portrait — the CSS media queries do not care and
only differentiate based on width.

COPING WITH CONFIGURATIONS

283

As a result, while -land exists and can be used, you will not see it quite as much as
you might have in the early days of Android app development.

API Level

Earlier in the book, we saw res/drawable-v24/ as a resource directory. This follows
the same resource set system, where -vNN, for some value of NN, means “use these
resources on devices running API Level NN or higher”. So, res/drawable-v24/ will be
used on API Level 24+ devices and will be ignored on older devices.

Screen Density

Similarly, we saw various mipmap directories, like res/mipmap-hdpi/ and res/
mipmap-xhdpi/. This too follows the same resource set system, where -hdpi says
“these resources were optimized for HDPI screens”, while -xhdpi says “these
resources were optimized for XHDPI screens”.

The Full Roster

There are lots of different resource set qualifiers.

The full roster can be found in the Android developer documentation. In particular,
“Table 2” in that section lists all of the current candidates.

Note that resource set qualifiers get added from time to time. For example, the
-wNNNdp family of screen size qualifiers was added in API Level 13 (Android 3.2). The
table points out what version of Android added support for those qualifiers. Older
devices will not crash if they encounter those qualifiers, simply ignoring them
instead.

Resource Set Rules
Where things start to get complicated is when you need to use multiple disparate
criteria for your resources.

For example, suppose that you have drawable resources that are locale-dependent,
because they tie into local iconography (e.g., roadside traffic signs). You might want
to have resource sets of drawables tied to language, so you can substitute in different
images for different locales. However, you might also want to have those images vary
by density, using higher-resolution images on higher-density devices, so the images

COPING WITH CONFIGURATIONS

284

https://developer.android.com/guide/topics/resources/providing-resources#AlternativeResources

all come out around the same physical size.

To do that, you would wind up with directories with multiple resource set qualifiers,
such as:

• res/drawable-ldpi/
• res/drawable-mdpi/
• res/drawable-hdpi/
• res/drawable-xhdpi/
• res/drawable-en-rUK-ldpi/
• res/drawable-en-rUK-mdpi/
• res/drawable-en-rUK-hdpi/
• res/drawable-en-rUK-xhdpi/
• And so on

(with the default language being, say, US English, using an American set of icons)

Once you get into these sorts of situations, though, a few rules come into play, such
as:

• The configuration options (e.g., -en) have a particular order of precedence,
and they must appear in the directory name in that order. The Android
documentation outlines the specific order in which these options can
appear. For the purposes of this example, screen density is more important
than language.

• There can only be one value of each configuration option category per
directory.

Given that you can have N different definitions of a resource, how does Android
choose the one to use?

First, Android tosses out ones that are specifically invalid. So, for example, if the
language of the device is -ru, Android will ignore resource sets that specify other
languages (e.g., -zh). The exceptions to this are density qualifiers and screen size
qualifiers — we will get to those exceptions later.

Then, Android chooses the resource set that has the desired resource and has the
most important distinct qualifier. Here, by “most important”, we mean the one that
appears left-most in the directory name, based upon the directory naming rules
discussed above. And, by “distinct”, we mean where no other resource set has that
qualifier.

COPING WITH CONFIGURATIONS

285

https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources
https://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

If there is no specific resource set that matches, Android chooses the default set —
the one with no suffixes on the directory name (e.g., res/layout/).

With those rules in mind, let’s look at some scenarios, to cover the base case plus
the aforementioned exceptions.

Scenario #1: Something Simple

Let’s suppose that we have a main.xml layout resource in:

• res/layout-w640dp/
• res/layout/

When we call setContentView(R.layout.main), Android will choose the main.xml
in res/layout-w640dp/ if the device’s current width is 640dp or larger. That
particular resource set is valid in that case, and it has the most important distinct
qualifier (-w640dp). If the device has a smaller current width, though, the res/
layout-w640dp/ resource set does not qualify, and so it is ignored. That leaves us
with res/layout/, so Android uses that main.xml version.

Scenario #2: Disparate Resource Set Categories

It is possible, though bizarre, for you to have a project with main.xml in:

• res/layout-en/
• res/layout-w640dp/
• res/layout/

In this case, if the device’s locale is set to be English, Android will choose res/
layout-en/, regardless of the orientation of the device. That is because -en is a more
important resource set qualifier — “Language and region” appears higher in the
“Table 2. Configuration qualifier names” from the Android documentation than does
“Available width” (for -w640dp). If the device is not set for English, though, Android
will toss out that resource set, at which point the decision-making process is the
same as in Scenario #1 above.

Scenario #3: Multiple Qualifiers

Now let’s envision a project with main.xml in:

• res/layout-en/

COPING WITH CONFIGURATIONS

286

• res/layout-w640dp-v21/
• res/layout/

You might think that res/layout-w640dp-v21/ would be a higher-priority choice
than res/layout-en/, as it is more specific, matching on two resource set qualifiers
versus the one or none from the other resource sets.

(in fact, the author of this book thought this was the choice for many years)

In this case, though, language is more important than either screen orientation or
Android API level, so the decision-making process is similar to Scenario #2 above:
Android chooses res/layout-en/ for English-language devices, res/layout-w640dp-
v21/ for 4"-wide API Level 21+ devices, or res/layout/ for everything else.

Scenario #4: Multiple Qualifiers, Revisited

Let’s change the resource mix, so now we have a project with main.xml in:

• res/layout-w640dp-night/
• res/layout-w640dp-v21/
• res/layout/

Here, while -w640dp is the most important resource set qualifier, it is not distinct —
we have more than one resource set with -w640dp. Hence, we need to check which is
the next-most-important resource set qualifier. In this case, that is -night, as night
mode is a more important category than is Android API level, and so Android will
choose res/layout-land-night/ if the device is in night mode. Otherwise, it will
choose res/layout-w640dp-v21/ if the device is running API Level 21 or higher. If
the device is not in night mode and is not running API Level 21 or higher — or if the
device is less than 4" wide at present — Android will go with res/layout/.

Scenario #5: Screen Density

Now, let’s look at the main exception to the rules: screen density.

Android will always accept a resource set that contains a screen density, even if it
does not match the density of the device. If there is an exact density match, of course,
Android uses it. Otherwise, it will use what it feels is the next-best match, based
upon how far off it is from the device’s actual density and whether the other density
is higher or lower than the device’s actual density.

COPING WITH CONFIGURATIONS

287

The reason for this is that for drawable and mipmap resources, Android will
downsample or upsample the image automatically, so the drawable will appear to be
the right size, even though you did not provide an image in that specific density.

The catch is two-fold:

1. Android applies this logic to all resources, not just drawables and mipmaps,
so even if there is no exact density match on, say, a layout, Android will still
choose a resource from another density bucket for the layout

2. As a side-effect of the previous bullet, if you include a density resource set
qualifier, Android will ignore any lower-priority resource set qualifiers
(unless there are multiple directories with the same density resource set
qualifier, in which case the lower-priority qualifiers serve as the “tiebreaker”)

So, now let’s pretend that our project has main.xml in:

• res/layout-mdpi/
• res/layout-nonav/
• res/layout/

Android will choose res/layout-mdpi/, even for -hdpi devices that do not have a
“non-touch navigation method”. While -mdpi does not match -hdpi, Android will
still choose -mdpi. If we were dealing with drawable or mipmap resources, Android
would upsample the -mdpi image.

Activity Lifecycles
The user taps a launcher icon to start our activity. Then, the user rotates the screen,
causing a configuration change. Later, the user presses BACK to return to the
launcher.

While those things were going on, Android was calling lifecycle methods on our
activity, to let us know what is going on.

An activity, generally speaking, is in one of four states at any point in time:

1. Active: the activity was started by the user, is running, and is in the
foreground. This is what you are used to thinking of in terms of your
activity’s operation.

2. Paused: the activity was started by the user, is running, and is visible, but

COPING WITH CONFIGURATIONS

288

another activity is overlaying part of the screen. During this time, the user
can see parts of your activity but may not be able to interact with it.

3. Stopped: the activity was started by the user, is running, but it is completely
hidden by other activities that have been launched or switched to.

4. Destroyed: the activity was destroyed, perhaps due to the user pressing the
BACK button.

Android will call so-called “lifecycle methods” on your activity as the activity
transitions between these four states.

The Activity developer documentation usually provides some variation of this
diagram:

Figure 150: Activity Lifecycle Diagram

(the above image is reproduced from work created and shared by the Android Open
Source Project and used according to terms described in the Creative Commons 2.5
Attribution License)

This diagram shows the various lifecycle methods and the trigger events that cause
them.

COPING WITH CONFIGURATIONS

289

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://source.android.com/license
https://source.android.com/license
https://creativecommons.org/licenses/by/2.5/
https://creativecommons.org/licenses/by/2.5/

The following sections outline these lifecycle methods and their roles. We will see
them in use starting in the next chapter.

onCreate()onCreate() and onDestroy()onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in all the
examples. This will get called in two primary situations:

• When the activity is launched by the user, such as from a launcher icon,
onCreate() will be invoked with a null parameter

• If the activity undergoes a configuration change, by default your activity will
be re-created and onCreate() will be called

In general, onCreate() is where you initialize your user interface and set up
anything that needs to be done once, regardless of how the activity gets used.

On the other end of the lifecycle, onDestroy() may be called when the activity is
shutting down, such as because the activity called finish() (which “finishes” the
activity) or the user presses the BACK button. Hence, onDestroy() is mostly for
cleanly releasing resources you obtained in onCreate() (if any), plus making sure
that anything you started up outside of lifecycle methods gets stopped, such as
background threads.

Bear in mind, though, that onDestroy() may not be called. This would occur in a
few circumstances:

• You crash with an unhandled exception
• The user force-stops your application, such as through the Settings app
• Android has an urgent need to free up RAM (e.g., to handle an incoming

phone call), wants to terminate your process, and cannot take the time to
call all the lifecycle methods

Hence, onDestroy() is very likely to be called, but it is not guaranteed.

Also, bear in mind that it may take a long time for onDestroy() to be called. It is
called quickly if the user presses BACK to finish the foreground activity. If, however,
the user presses HOME to bring up the home screen, your activity is not
immediately destroyed. onDestroy() will not be called until Android does decide to
gracefully terminate your process, and that could be seconds, minutes, or hours
later.

COPING WITH CONFIGURATIONS

290

onStart()onStart(), onRestart()onRestart(), and onStop()onStop()

An activity can come to the foreground either because it is first being launched, or
because it is being brought back to the foreground after having been hidden (e.g., by
another app’s activity).

The onStart() method is called in either of those cases. The onRestart() method is
called in the case where the activity had been stopped and is now restarting.

Conversely, onStop() is called when the activity is about to be stopped. Primarily, in
onStop(), you clean up anything you set up in onStart().

Once started, your activity is visible, at least partially. Anything that should be
happening while your activity is visible should be set up in onCreate() or onStart()
and cleaned up in onStop() (for onStart()) or onDestroy() (for onCreate()).

onPause()onPause() and onResume()onResume()

The onResume() method is called just before your activity comes to the foreground,
either after being initially launched, being restarted from a stopped state, or after a
pop-up dialog (e.g., incoming call) is cleared. When your activity is resumed and is
now fully in the foreground, the user can interact with it:

• They can tap on your widgets
• Navigation button clicks, such as BACK, affect your activity
• Hardware input, such as from a keyboard, is sent to your activity

Conversely, anything that takes over user input — the activation of another activity
— will result in your onPause() being called. Here, you should undo anything you
did in onResume().

Once onPause() is called, Android reserves the right to kill off your activity’s process
at any point. Hence, you should not be relying upon receiving any further events.

Stick to the Pairs

If you initialize something in onCreate(), clean it up in onDestroy().

If you initialize something in onStart(), clean it up in onStop().

If you initialize something in onResume(), clean it up in onPause().

COPING WITH CONFIGURATIONS

291

In other words, stick to the pairs. For example, do not initialize something in
onStart() and try to clean it up in onPause(), as there are scenarios where
onPause() may be called multiple times in succession (i.e., user brings up a non-full-
screen activity, which triggers onPause() but not onStop(), and hence not
onStart()).

Which pairs of lifecycle methods you choose is up to you, depending upon your
needs. You may decide that you need two pairs (e.g., onCreate()/onDestroy() and
onStart()/onStop()). Just do not mix and match between them.

Making the Superclass Happy

If you override a lifecycle method, you need to chain to the superclass’
implementation of the method. Otherwise, you will crash at runtime with a
SuperNotCalledException. Android Studio will warn you if you implement a
lifecycle method and fail to chain to the superclass.

In practice, when you chain to the superclass’ implementation is up to you, so long
as it is in the same method (e.g., chaining to super.onCreate() from onCreate()).
In theory, though, if you are relying on things that you inherit from Activity, it is
safest to:

• Chain to the superclass before doing your own work for the creation set of
methods (onCreate(), onStart(), onResume())

• Chain to the superclass after doing your own work for the destruction set of
methods (onPause(), onStop(), onDestroy())

When Activities Die
So, what gets rid of an activity? What can trigger the chain of events that results in
onDestroy() being called?

First and foremost, when the user presses the BACK button, the foreground activity
will be destroyed, and control will return to the previous activity in the user’s
navigation flow (i.e., whatever activity they were on before the now-destroyed
activity came to the foreground).

You can accomplish the same thing by calling finish() from your activity. This is
mostly for cases where some other UI action would indicate that the user is done
with the activity (e.g., the activity presents a list for the user to choose from —

COPING WITH CONFIGURATIONS

292

clicking on a list item might close the activity). However, please do not artificially
add your own “exit”, “quit”, or other menu items or buttons to your activity — just
allow the user to use normal Android navigation options, such as the BACK button.

If none of your activities are in the foreground any more, your application’s process
is a candidate to be terminated to free up RAM. As noted earlier, depending on
circumstances, Android may or may not call onDestroy() in these cases (onPause()
and onStop() would have been called when your activities left the foreground).

If the user causes the device to go through a configuration change, such as switching
between portrait and landscape, Android’s default behavior is to destroy your
current foreground activity and create a brand new one in its place. We will cover
this more in the next chapter.

And, if your activity has an unhandled exception, your activity will be destroyed,
though Android will not call any more lifecycle methods on it, as it assumes your
activity is in an unstable state.

ContextContext Anti-Pattern: Outliving It
Suppose that we had an activity that looked like this:

privateprivate lateinitlateinit varvar doNotDoThis: ViewView

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {
overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {

supersuper.onCreate(savedInstanceState)

setContentView(RR.layout.activity_main)

doNotDoThis = showElapsed // from the SimpleBoom layout, showElapsed is a widget
}

}

We take a widget from our activity’s layout and we assign it to a global property.

On the surface, this may not seem all that bad. However, when the activity is
destroyed — due to a configuration change, BACK button press, etc. — we now have
a memory leak.

Each widget holds a reference to the activity that created it. In this case,
doNotDoThis has a reference back to our MainActivity. Since doNotDoThis is global

COPING WITH CONFIGURATIONS

293

in scope, that widget cannot be garbage collected. And since the doNotDoThis
reference prevents the widget from being garbage collected, it prevents the
destroyed activity from being garbage collected.

Fortunately, Android Studio will complain if you try to do this sort of thing.

In general, be very careful about having objects that are tied to some Context outlive
the Context itself. This can include forking a background thread that has a reference
to a Context, as that Context cannot be garbage collected until the thread
terminates.

COPING WITH CONFIGURATIONS

294

Integrating ViewModelViewModel

If you happened to install and run the RecyclerViewBasics sample app, try the
following:

1. Run the app
2. Make note of the top color
3. Rotate the device

Most likely, you will find that the top color is different than before. This implies that
we generated a new random set of colors. And, if you keep switching the device
between portrait and landscape, you would keep getting new colors.

That is not great.

It would be worse if our data were coming from disk, or from the network, instead of
being randomly generated. If we have to re-load our data every time that the user
rotates the screen, we would wind up having to make many extra requests of our
database (local or remote), wasting time and battery.

In this chapter, we will focus on how to avoid this problem, through a viewmodel.

Configuration Changes
When you call methods in the Android SDK that load a resource (e.g.,
setContentView(R.layout.activity_main)), Android will walk through your
resource sets, find the right resource for the given request, and use it.

But what happens if the configuration changes after we asked for the resource? For
example, what if the user was holding their device in portrait mode, then rotates the

295

screen to landscape? We might want a version of our layouts that can take advantage
of the wider screen, if such versions exist. And, since we already requested the
resources, Android has no good way of handing us revised resources on the fly…
except by forcing us to re-request those resources. So, this is what Android does, by
default, to our foreground activity, when the configuration changes on the fly.

The biggest thing that Android does on a configuration change is destroy and
recreate our activity. In other words:

• Android calls onPause(), onStop(), and onDestroy() on our original
instance of the activity

• Android creates a brand new instance of the same activity class, using the
same Intent that was used to create the original instance

• Android calls onCreate(), onStart(), and onResume() of the new activity
instance

• The new activity appears on the screen

This may seem… invasive. You might not expect that Android would wipe out a
perfectly good activity, just because the user flicked her wrist and rotated the screen
of her phone. However, this is the only way Android has that guarantees that we will
re-request all our resources.

What We Want… and What We Do Not Want
We want to present a user interface that fits well with the current configuration. For
example, we want to take advantage of the screen space that is given to us.

Conversely, we do not want to have a UI that fits poorly in the given space. For
example, in landscape mode, our layout might be too tall. Even if we use a
ScrollView to make it vertically scrollable, so the user can take steps to see the
entire layout, that may not be very user-friendly.

However, despite the UI change, we want the user to think that nothing much
unusual happened when the user triggered the configuration.

We do not want the user to regret that configuration change, such as by losing the
data that we were showing (or, worse, that the user had entered or changed).

Over the years, we have spent a fair amount of time dealing with this challenge.
There is a two-tier solution that seems to work best. In this chapter, we will focus on

INTEGRATING VIEWMODEL

296

one of those tiers: retaining data using ViewModel.

Enter the ViewModelViewModel

So, a configuration change destroys and recreates our activity, by default. As a result,
anything that is held onto uniquely by an activity instance — such as our random
numbers — gets lost when we switch to the new activity instance, by default.

What would be nice is if we could separate our activity data into two groups:

• Part of our data, such as references to widgets, can be discarded on a
configuration change, as we will need to get fresh data in the new activity

• Part of our data, such as our random numbers, could be passed from the old
activity instance to the new activity instance, so we can present that data
again to the user

The Jetpack solution for this is ViewModel. We can create a subclass of ViewModel
that holds onto the second category of activity data: the stuff that we want to reuse
after the configuration change. Jetpack will take the steps necessary to get that data
— indeed, typically the entire ViewModel object — from the old activity instance to
the new one. All that we need to do is make intelligent choices about what goes into
the ViewModel and what does not.

Applying ViewModel
The ViewModel sample module in the Sampler and SamplerJ projects start with the
same code that we used in RecyclerViewBasics. So, we have a RecyclerView in an
activity that is set up to display 25 random numbers as colors. The difference is that
this time, we will use a ViewModel to retain those random numbers across a
configuration change. Also, we will log the lifecycle methods, so we can see them as
they are executed.

The Dependencies

You will need to add a dependency on androidx.lifecycle:lifecycle-extensions
to your project, in order to be able to create ViewModel instances in your activities.

Kotlin developers will also want to add androidx.lifecycle:lifecycle-viewmodel-
ktx as a dependency. This adds a few Kotlin-specific extension functions associated

INTEGRATING VIEWMODEL

297

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ViewModel
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ViewModel
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ViewModel
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ViewModel

with ViewModel and related classes. They make using ViewModel a little bit easier in
Kotlin than if you were to use the Java API alone. This is a common pattern in
Jetpack: have a Java API with a separate library containing Kotlin extension
functions. The “Android KTX” brand is used for these Kotlin extension function
libraries.

Kotlin developers also will want to add androidx.activity:activity-ktx as a
dependency. This adds some Kotlin-specific extension functions to Activity,
including ones that we will use when working with ViewModel.

So, in our Kotlin project, we have:

implementation 'androidx.lifecycle:lifecycle-extensions:2.2.0'
implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.2.0'
implementation "androidx.activity:activity-ktx:1.1.0"

(from ViewModel/build.gradle)

The Java project just has:

implementation 'androidx.lifecycle:lifecycle-extensions:2.2.0'

(from ViewModel/build.gradle)

The ViewModelViewModel

Our project now has a ColorViewModel class that inherits from Jetpack’s ViewModel,
both in Java:

packagepackage com.commonsware.jetpack.samplerj.viewmodelcom.commonsware.jetpack.samplerj.viewmodel;

importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Listjava.util.List;
importimport java.util.Randomjava.util.Random;
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel;

publicpublic classclass ColorViewModelColorViewModel extendsextends ViewModelViewModel {
privateprivate finalfinal RandomRandom random = newnew RandomRandom();
finalfinal ListList<IntegerInteger> numbers = buildItems();

privateprivate ListList<IntegerInteger> buildItems() {
ArrayListArrayList<IntegerInteger> result = newnew ArrayListArrayList<>(25);

forfor (int i = 0; i < 25; i++) {
result.add(random.nextInt());

INTEGRATING VIEWMODEL

298

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ViewModel/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ViewModel/build.gradle

}

returnreturn result;
}

}

(from ViewModel/src/main/java/com/commonsware/jetpack/samplerj/viewmodel/ColorViewModel.java)

…and Kotlin:

packagepackage com.commonsware.jetpack.sampler.viewmodelcom.commonsware.jetpack.sampler.viewmodel

importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport java.util.*java.util.*

classclass ColorViewModelColorViewModel : ViewModelViewModel() {
privateprivate valval random = RandomRandom()
valval numbers = ListList(25) { random.nextInt() }

}

(from ViewModel/src/main/java/com/commonsware/jetpack/sampler/viewmodel/ColorViewModel.kt)

Our random numbers are now created in the ColorViewModel, via property
initializers. Otherwise, our ColorViewModel itself is fairly unremarkable.

Using the ViewModelViewModel

How you get a ViewModel depends a bit on whether you are using Java or Kotlin.

Java

Our activity can get its instance of ColorViewModel from a ViewModelProvider,
which we can create using an ordinary constructor. On that, we can call get() to
retrieve our ColorViewModel. We need to pass the Java Class object for our
ColorViewModel as a parameter to get():

ColorViewModelColorViewModel vm = newnew ViewModelProviderViewModelProvider(thisthis).get(ColorViewModelColorViewModel.class);

(from ViewModel/src/main/java/com/commonsware/jetpack/samplerj/viewmodel/MainActivity.java)

We can then use the numbers property of our ColorViewModel to populate our
RecyclerView:

INTEGRATING VIEWMODEL

299

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ViewModel/src/main/java/com/commonsware/jetpack/samplerj/viewmodel/ColorViewModel.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ViewModel/src/main/java/com/commonsware/jetpack/sampler/viewmodel/ColorViewModel.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ViewModel/src/main/java/com/commonsware/jetpack/samplerj/viewmodel/MainActivity.java

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

finalfinal ActivityMainBindingActivityMainBinding binding =
ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

ColorAdapterColorAdapter adapter = newnew ColorAdapterColorAdapter(getLayoutInflater());
ColorViewModelColorViewModel vm = newnew ViewModelProviderViewModelProvider(thisthis).get(ColorViewModelColorViewModel.class);

adapter.submitList(vm.numbers);
binding.items.setLayoutManager(newnew LinearLayoutManagerLinearLayoutManager(thisthis));
binding.items.addItemDecoration(

newnew DividerItemDecoration(thisthis, DividerItemDecorationDividerItemDecoration.VERTICAL));
binding.items.setAdapter(adapter);

LogLog.d(TAG, "onCreate() called!");
}

(from ViewModel/src/main/java/com/commonsware/jetpack/samplerj/viewmodel/MainActivity.java)

Kotlin

In Kotlin, the activity-ktx library gives us a viewModels property delegate that we
can use:

valval vm: ColorViewModelColorViewModel byby viewModels()

(from ViewModel/src/main/java/com/commonsware/jetpack/sampler/viewmodel/MainActivity.kt)

You can learn more about property delegates in the "Property
Delegates" chapter of Elements of Kotlin!

Then, as with Java, we can use the numbers property of our ColorViewModel to
populate our RecyclerView:

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

INTEGRATING VIEWMODEL

300

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ViewModel/src/main/java/com/commonsware/jetpack/samplerj/viewmodel/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ViewModel/src/main/java/com/commonsware/jetpack/sampler/viewmodel/MainActivity.kt
https://commonsware.com/Kotlin

setContentView(binding.root)

valval vm: ColorViewModelColorViewModel byby viewModels()

binding.items.apply {
layoutManager = LinearLayoutManagerLinearLayoutManager(thisthis@MainActivity)
addItemDecoration(

DividerItemDecorationDividerItemDecoration(
thisthis@MainActivity,
DividerItemDecorationDividerItemDecoration.VERTICALVERTICAL

)
)
adapter = ColorAdapterColorAdapter(layoutInflater).apply {

submitList(vm.numbers)
}

}

LogLog.d(TAGTAG, "onCreate() called!")
}

(from ViewModel/src/main/java/com/commonsware/jetpack/sampler/viewmodel/MainActivity.kt)

The Older Solution

Earlier versions of this book, and various blog posts and articles, will show
ViewModelProviders.of() as the way to get a ViewModel. This was deprecated and
should no longer be used, as it may be removed in future versions of the lifecycle-
extensions library.

The Results

If you run this sample app, and you rotate the screen, the random numbers are the
same.

The reason this works is that we have the same ColorViewModel instance in both the
old activity (before the configuration change) and the new activity (after the
configuration change). ViewModelProvider and the rest of the ViewModel portion of
Jetpack will ensure that we have the same ColorViewModel in the old and new
activity instances. Since our ColorViewModel holds our data, our data is retained
across the configuration change, so we have the same numbers in both the old and
the new activity.

INTEGRATING VIEWMODEL

301

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ViewModel/src/main/java/com/commonsware/jetpack/sampler/viewmodel/MainActivity.kt

ViewModelViewModel and the Lifecycle
Our MainActivity also has calls to Log.d() in the main lifecycle functions, both in
Java:

packagepackage com.commonsware.jetpack.samplerj.viewmodelcom.commonsware.jetpack.samplerj.viewmodel;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.jetpack.samplerj.viewmodel.databinding.ActivityMainBindingcom.commonsware.jetpack.samplerj.viewmodel.databinding.ActivityMainBinding;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider;
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration;
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
privateprivate staticstatic finalfinal StringString TAG = "ViewModel";

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

finalfinal ActivityMainBindingActivityMainBinding binding =
ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

ColorAdapterColorAdapter adapter = newnew ColorAdapterColorAdapter(getLayoutInflater());
ColorViewModelColorViewModel vm = newnew ViewModelProviderViewModelProvider(thisthis).get(ColorViewModelColorViewModel.class);

adapter.submitList(vm.numbers);
binding.items.setLayoutManager(newnew LinearLayoutManagerLinearLayoutManager(thisthis));
binding.items.addItemDecoration(

newnew DividerItemDecoration(thisthis, DividerItemDecorationDividerItemDecoration.VERTICAL));
binding.items.setAdapter(adapter);

LogLog.d(TAG, "onCreate() called!");
}

@Override
protectedprotected void onStart() {

supersuper.onStart();

LogLog.d(TAG, "onStart() called!");
}

@Override
protectedprotected void onResume() {

supersuper.onResume();

LogLog.d(TAG, "onResume() called!");
}

@Override
protectedprotected void onPause() {

LogLog.d(TAG, "onPause() called!");

INTEGRATING VIEWMODEL

302

supersuper.onPause();
}

@Override
protectedprotected void onStop() {

LogLog.d(TAG, "onStop() called!");

supersuper.onStop();
}

@Override
protectedprotected void onDestroy() {

LogLog.d(TAG, "onDestroy() called!");

supersuper.onDestroy();
}

}

(from ViewModel/src/main/java/com/commonsware/jetpack/samplerj/viewmodel/MainActivity.java)

…and in Kotlin:

packagepackage com.commonsware.jetpack.sampler.viewmodelcom.commonsware.jetpack.sampler.viewmodel

importimport android.os.Bundleandroid.os.Bundle
importimport android.util.Logandroid.util.Log
importimport androidx.activity.viewModelsandroidx.activity.viewModels
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager
importimport com.commonsware.jetpack.sampler.viewmodel.databinding.ActivityMainBindingcom.commonsware.jetpack.sampler.viewmodel.databinding.ActivityMainBinding

privateprivate constconst valval TAG = "ViewModel"

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {
overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {

supersuper.onCreate(savedInstanceState)

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

valval vm: ColorViewModelColorViewModel byby viewModels()

binding.items.apply {
layoutManager = LinearLayoutManagerLinearLayoutManager(thisthis@MainActivity)
addItemDecoration(

DividerItemDecorationDividerItemDecoration(
thisthis@MainActivity,
DividerItemDecorationDividerItemDecoration.VERTICALVERTICAL

)
)
adapter = ColorAdapterColorAdapter(layoutInflater).apply {

submitList(vm.numbers)
}

}

LogLog.d(TAGTAG, "onCreate() called!")
}

INTEGRATING VIEWMODEL

303

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ViewModel/src/main/java/com/commonsware/jetpack/samplerj/viewmodel/MainActivity.java

overrideoverride funfun onStart() {
supersuper.onStart()

LogLog.d(TAGTAG, "onStart() called!")
}

overrideoverride funfun onResume() {
supersuper.onResume()

LogLog.d(TAGTAG, "onResume() called!")
}

overrideoverride funfun onPause() {
LogLog.d(TAGTAG, "onPause() called!")

supersuper.onPause()
}

overrideoverride funfun onStop() {
LogLog.d(TAGTAG, "onStop() called!")

supersuper.onStop()
}

overrideoverride funfun onDestroy() {
LogLog.d(TAGTAG, "onDestroy() called!")

supersuper.onDestroy()
}

}

(from ViewModel/src/main/java/com/commonsware/jetpack/sampler/viewmodel/MainActivity.kt)

As you run the app, and as you undergo configuration changes, you will see the
lifecycle methods get logged, by looking for these messages in the Logcat view in
Android Studio. For example, starting the app will result in Logcat messages like:

com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onCreate() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onStart() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onResume() called!

If you rotate the screen, the list of messages becomes:

com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onCreate() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onStart() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onResume() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onPause() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onStop() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onDestroy() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onCreate() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onStart() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onResume() called!

INTEGRATING VIEWMODEL

304

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ViewModel/src/main/java/com/commonsware/jetpack/sampler/viewmodel/MainActivity.kt

If you press BACK to exit the rotated activity, the list of messages becomes:

com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onCreate() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onStart() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onResume() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onPause() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onStop() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onDestroy() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onCreate() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onStart() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onResume() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onPause() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onStop() called!
com.commonsware.jetpack.sampler.viewmodel D/ViewModel: onDestroy() called!

We are seeing our original activity instance come onto the screen, then get
destroyed and a replacement created, before it too gets destroyed as the user exits
the activity.

Our ColorViewModel is oblivious to most of this. It will get created as part of the
original onCreate() call. When the new activity instance is in its onCreate(), and it
attempts to retrieve the ColorViewModel, Jetpack realizes that we already have a
ColorViewModel from the previous activity instance, so it reuses it.

If we wanted, we could override onCleared() in ColorViewModel. This will be called
when our activity is “really” destroyed:

• onDestroy() is called, and
• We are not undergoing a configuration change

In onCleared(), we could clean up anything that we needed to clean up. Often,
there is nothing that you need to clean up specifically — after all, the ViewModel will
get garbage-collected shortly. However, sometimes your ViewModel might hold onto
things that should get cleaned up, such as:

• References to threads, Kotlin coroutines, or the like
• Open Internet connections to some server
• Open references to local databases
• And so on

To the extent that your ViewModel has those, onCleared() is where you would
release those things, such as disconnecting from the server.

INTEGRATING VIEWMODEL

305

Changing Data in the ViewModelViewModel

In our 25-random-numbers example, the data never changed. That is what we
wanted for that example, so our random numbers would be consistent through
configuration changes.

However, it is not very realistic. Most of the time, our data changes when the user
uses the app, and we need our viewmodel to handle that.

The LifecycleList sample module in the Sampler and SamplerJ projects blend our
lifecycle-logging logic with our show-a-list logic. Now, instead of showing 25 random
colors, we will show a list of lifecycle events, collected as the user uses the app:

Figure 151: LifecycleList Demo, As Initially Launched

Each row in the list now shows four pieces of data:

• The lifecycle method that was called (e.g., onCreate())
• The number of seconds since the app was started when the event occurred

(e.g., 0:00 for initial events)
• A random number identifying the activity (in the upper right corner)

INTEGRATING VIEWMODEL

306

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/LifecycleList
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/LifecycleList
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/LifecycleList
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/LifecycleList

• A random number identifying the viewmodel (in the lower right corner)

These latter two values will help show us when we wind up with different instances
of those objects.

The EventEvent Model

We need some object to hold that data to be shown in each of our RecyclerView
rows. So, this project has an Event model class, in Java:

packagepackage com.commonsware.jetpack.samplerj.lifecyclecom.commonsware.jetpack.samplerj.lifecycle;

importimport android.os.SystemClockandroid.os.SystemClock;

classclass EventEvent {
finalfinal long timestamp = SystemClockSystemClock.elapsedRealtime();
finalfinal StringString message;
finalfinal int activityHash;
finalfinal int viewmodelHash;

EventEvent(StringString message, int activityHash, int viewmodelHash) {
thisthis.message = message;
thisthis.activityHash = activityHash;
thisthis.viewmodelHash = viewmodelHash;

}
}

(from LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/Event.java)

…or Kotlin:

packagepackage com.commonsware.jetpack.sampler.lifecyclecom.commonsware.jetpack.sampler.lifecycle

importimport android.os.SystemClockandroid.os.SystemClock

data classdata class EventEvent(
valval message: StringString,
valval activityHash: IntInt,
valval viewmodelHash: IntInt,
valval timestamp: LongLong = SystemClockSystemClock.elapsedRealtime()

)

(from LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/Event.kt)

The two “hash code” values are Int properties. The lifecycle method is a String
referred to as the message. And we have a timestamp property that will track when

INTEGRATING VIEWMODEL

307

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/Event.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/Event.kt

this Event was created. For that, we use SystemClock.elapsedRealtime(), which
returns the number of milliseconds since the device was powered on.

The New RecyclerViewRecyclerView Bits

Our row layout now needs widgets for those four pieces of data that we wish to
display:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="@dimen/content_padding">>

<TextView<TextView
android:id="@+id/activityHash"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="0x12345678" />/>

<TextView<TextView
android:id="@+id/viewmodelHash"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toBottomOf="@id/activityHash"
tools:text="0x90ABCDEF" />/>

<androidx.constraintlayout.widget.Barrier<androidx.constraintlayout.widget.Barrier
android:id="@+id/barrier"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginEnd="4dp"
android:layout_marginStart="4dp"
app:barrierDirection="start"
app:constraint_referenced_ids="activityHash,viewmodelHash" />/>

<TextView<TextView
android:id="@+id/timestamp"
android:layout_width="wrap_content"

INTEGRATING VIEWMODEL

308

android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="01:23" />/>

<TextView<TextView
android:id="@+id/message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toStartOf="@id/barrier"
app:layout_constraintStart_toEndOf="@id/timestamp"
app:layout_constraintTop_toTopOf="parent"
tools:text="onDestroy()" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from LifecycleList/src/main/res/layout/row.xml)

Each of the four pieces of data is represented by a TextView. The two hash values are
anchored to the “end” side of the ConstraintLayout, with the activityHash on the
top and the viewmodelHash on the bottom. The timestamp widget is anchored on the
“start” side of the ConstraintLayout, centered between the top and the bottom. And
the message widget is centered in the remaining space, using a Barrier to determine
where the hashes start.

Figure 152: Android Studio Layout Editor, Showing row Layout

Note that we dropped the android:background, android:clickable, and
android:focusable attributes from the ConstraintLayout, as this particular sample
is not going to respond to click events on the rows. That allows our new view-holder
class, EventViewHolder, to just focus on populating the widgets for its row:

INTEGRATING VIEWMODEL

309

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/LifecycleList/src/main/res/layout/row.xml

packagepackage com.commonsware.jetpack.samplerj.lifecyclecom.commonsware.jetpack.samplerj.lifecycle;

importimport android.text.format.DateUtilsandroid.text.format.DateUtils;
importimport com.commonsware.jetpack.samplerj.lifecycle.databinding.RowBindingcom.commonsware.jetpack.samplerj.lifecycle.databinding.RowBinding;
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView;

classclass EventViewHolderEventViewHolder extendsextends RecyclerViewRecyclerView.ViewHolder {
privateprivate finalfinal RowBindingRowBinding binding;
privateprivate finalfinal long startTime;

EventViewHolderEventViewHolder(RowBindingRowBinding binding, long startTime) {
supersuper(binding.getRoot());

thisthis.binding = binding;
thisthis.startTime = startTime;

}

void bindTo(EventEvent event) {
long elapsedSeconds = (event.timestamp - startTime)/1000;

binding.timestamp.setText(DateUtilsDateUtils.formatElapsedTime(elapsedSeconds));
binding.message.setText(event.message);
binding.activityHash.setText(IntegerInteger.toHexString(event.activityHash));
binding.viewmodelHash.setText(IntegerInteger.toHexString(event.viewmodelHash));

}
}

(from LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/EventViewHolder.java)

packagepackage com.commonsware.jetpack.sampler.lifecyclecom.commonsware.jetpack.sampler.lifecycle

importimport android.text.format.DateUtilsandroid.text.format.DateUtils
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView
importimport com.commonsware.jetpack.sampler.lifecycle.databinding.RowBindingcom.commonsware.jetpack.sampler.lifecycle.databinding.RowBinding

classclass EventViewHolderEventViewHolder(
privateprivate valval binding: RowBindingRowBinding,
privateprivate valval startTime: LongLong

) : RecyclerViewRecyclerView.ViewHolderViewHolder(binding.root) {
funfun bindTo(event: EventEvent) {

valval elapsedSeconds = (event.timestamp - startTime) / 1000

binding.timestamp.text = DateUtilsDateUtils.formatElapsedTime(elapsedSeconds)
binding.message.text = event.message
binding.activityHash.text = IntegerInteger.toHexString(event.activityHash)
binding.viewmodelHash.text = IntegerInteger.toHexString(event.viewmodelHash)

}
}

INTEGRATING VIEWMODEL

310

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/EventViewHolder.java

(from LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/EventViewHolder.kt)

For the timestamp, we use DateUtils.formatElapsedTime(). This is a utility method
provided by Android that formats a number of seconds into an HH:MM:SS format to
show the elapsed time in hours, minutes, and seconds. Note that the Event value for
the timestamp is in milliseconds, as is the startTime value that is being passed into
EventViewHolder, so we need to divide our net time by 1000 to convert the
milliseconds to seconds.

Our new adapter — EventAdapter — wraps a List of Event objects and pours them
into EventViewHolder objects as needed:

packagepackage com.commonsware.jetpack.samplerj.lifecyclecom.commonsware.jetpack.samplerj.lifecycle;

importimport android.os.SystemClockandroid.os.SystemClock;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.commonsware.jetpack.samplerj.lifecycle.databinding.RowBindingcom.commonsware.jetpack.samplerj.lifecycle.databinding.RowBinding;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.recyclerview.widget.DiffUtilandroidx.recyclerview.widget.DiffUtil;
importimport androidx.recyclerview.widget.ListAdapterandroidx.recyclerview.widget.ListAdapter;

classclass EventAdapterEventAdapter extendsextends ListAdapterListAdapter<EventEvent, EventViewHolderEventViewHolder> {
privateprivate finalfinal LayoutInflaterLayoutInflater inflater;
privateprivate finalfinal long startTime;

EventAdapterEventAdapter(LayoutInflaterLayoutInflater inflater, long startTime) {
supersuper(DIFF_CALLBACK);
thisthis.inflater = inflater;
thisthis.startTime = startTime;

}

@NonNull
@Override
publicpublic EventViewHolderEventViewHolder onCreateViewHolder(@NonNull ViewGroupViewGroup parent,

int viewType) {
finalfinal RowBindingRowBinding binding = RowBindingRowBinding.inflate(inflater, parent, falsefalse);

returnreturn newnew EventViewHolder(binding, startTime);
}

@Override
publicpublic void onBindViewHolder(@NonNull EventViewHolderEventViewHolder holder, int position) {

holder.bindTo(getItem(position));
}

privateprivate staticstatic finalfinal DiffUtilDiffUtil.ItemCallback<EventEvent> DIFF_CALLBACK =
newnew DiffUtilDiffUtil.ItemCallback<EventEvent>() {

@Override
publicpublic boolean areItemsTheSame(@NonNull EventEvent oldEvent, @NonNull EventEvent newEvent) {

returnreturn oldEvent == newEvent;
}

@Override

INTEGRATING VIEWMODEL

311

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/EventViewHolder.kt

publicpublic boolean areContentsTheSame(@NonNull EventEvent oldEvent, @NonNull EventEvent newEvent) {
returnreturn oldEvent.timestamp == newEvent.timestamp &&

oldEvent.message.equals(newEvent.message) &&
oldEvent.activityHash == newEvent.activityHash &&
oldEvent.viewmodelHash == newEvent.viewmodelHash;

}
};

}

(from LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/EventAdapter.java)

packagepackage com.commonsware.jetpack.sampler.lifecyclecom.commonsware.jetpack.sampler.lifecycle

importimport android.view.LayoutInflaterandroid.view.LayoutInflater
importimport android.view.ViewGroupandroid.view.ViewGroup
importimport androidx.recyclerview.widget.DiffUtilandroidx.recyclerview.widget.DiffUtil
importimport androidx.recyclerview.widget.ListAdapterandroidx.recyclerview.widget.ListAdapter
importimport com.commonsware.jetpack.sampler.lifecycle.databinding.RowBindingcom.commonsware.jetpack.sampler.lifecycle.databinding.RowBinding

internalinternal classclass EventAdapterEventAdapter(
privateprivate valval inflater: LayoutInflaterLayoutInflater,
privateprivate valval startTime: LongLong

) : ListAdapterListAdapter<EventEvent, EventViewHolderEventViewHolder>(EventDifferEventDiffer) {

overrideoverride funfun onCreateViewHolder(
parent: ViewGroupViewGroup,
viewType: IntInt

) = EventViewHolderEventViewHolder(RowBindingRowBinding.inflate(inflater, parent, falsefalse), startTime)

overrideoverride funfun onBindViewHolder(holder: EventViewHolderEventViewHolder, position: IntInt) {
holder.bindTo(getItem(position))

}

privateprivate objectobject EventDifferEventDiffer : DiffUtilDiffUtil.ItemCallbackItemCallback<EventEvent>() {
overrideoverride funfun areItemsTheSame(oldEvent: EventEvent, newEvent: EventEvent) =

oldEvent === newEvent

overrideoverride funfun areContentsTheSame(oldEvent: EventEvent, newEvent: EventEvent) =
oldEvent == newEvent

}
}

(from LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/EventAdapter.kt)

For our DiffUtil.ItemCallback implementation, we use identity equality to
determine whether the items are the same and content equality to determine if the
contents are the same. Here, though, we have more substantial language differences:

• In Java, identity equality is via ==, and we have to examine each one of the

INTEGRATING VIEWMODEL

312

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/EventAdapter.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/EventAdapter.kt

Event fields ourselves in areContentsTheSame()
• In Kotlin, identity is via ===, and we can use object equality (==) for our
Event, since it is a data class and generates an equals() function that
compares each property for us

The EventViewModelEventViewModel

Our ViewModel is now called EventViewModel, and it has two properties:

• events, which is a list of the events that we have had to date
• startTime, which is the time when the EventViewModel is created, once

again obtained via SystemClock.elapsedRealtime()

packagepackage com.commonsware.jetpack.samplerj.lifecyclecom.commonsware.jetpack.samplerj.lifecycle;

importimport android.os.SystemClockandroid.os.SystemClock;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Listjava.util.List;
importimport java.util.Randomjava.util.Random;
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel;

publicpublic classclass EventViewModelEventViewModel extendsextends ViewModelViewModel {
finalfinal ListList<EventEvent> events = newnew ArrayListArrayList<>();
finalfinal long startTime = SystemClockSystemClock.elapsedRealtime();
privateprivate finalfinal int id = newnew RandomRandom().nextInt();

void addEvent(StringString message, int activityHash) {
events.add(newnew EventEvent(message, activityHash, id));

}

@Override
protectedprotected void onCleared() {

events.clear();
}

}

(from LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/EventViewModel.java)

packagepackage com.commonsware.jetpack.sampler.lifecyclecom.commonsware.jetpack.sampler.lifecycle

importimport android.os.SystemClockandroid.os.SystemClock
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport java.util.*java.util.*

classclass EventViewModelEventViewModel : ViewModelViewModel() {
valval events: MutableListMutableList<EventEvent> = mutableListOf()

INTEGRATING VIEWMODEL

313

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/EventViewModel.java

valval startTime = SystemClockSystemClock.elapsedRealtime()
privateprivate valval id = RandomRandom().nextInt()

funfun addEvent(message: StringString, activityHash: IntInt) {
events.add(EventEvent(message, activityHash, id))

}

overrideoverride funfun onCleared() {
events.clear()

}
}

(from LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/EventViewModel.kt)

We also have:

• addEvent(), to record an event when it occurs
• onCleared(), to clear the events list when the EventViewModel is no longer

being used

The onCleared() implementation is unnecessary, as the events list would be
garbage-collected when the EventViewModel is. We have it here just to show you
what overriding that method looks like.

Updating the EventViewModelEventViewModel

MainActivity now has an addEvent() function to update the EventViewModel when
lifecycle events occur:

packagepackage com.commonsware.jetpack.samplerj.lifecyclecom.commonsware.jetpack.samplerj.lifecycle;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.commonsware.jetpack.samplerj.lifecycle.databinding.ActivityMainBindingcom.commonsware.jetpack.samplerj.lifecycle.databinding.ActivityMainBinding;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Randomjava.util.Random;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider;
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration;
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
privateprivate EventAdapterEventAdapter adapter;
privateprivate EventViewModelEventViewModel vm;
privateprivate finalfinal int id = newnew RandomRandom().nextInt();

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

finalfinal ActivityMainBindingActivityMainBinding binding =

INTEGRATING VIEWMODEL

314

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/EventViewModel.kt

ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

vm = newnew ViewModelProviderViewModelProvider(thisthis).get(EventViewModelEventViewModel.class);
adapter = newnew EventAdapterEventAdapter(getLayoutInflater(), vm.startTime);
addEvent("onCreate()");

binding.items.setLayoutManager(newnew LinearLayoutManagerLinearLayoutManager(thisthis));
binding.items.addItemDecoration(

newnew DividerItemDecoration(thisthis, DividerItemDecorationDividerItemDecoration.VERTICAL));
binding.items.setAdapter(adapter);

}

@Override
protectedprotected void onStart() {

supersuper.onStart();

addEvent("onStart()");
}

@Override
protectedprotected void onResume() {

supersuper.onResume();

addEvent("onResume()");
}

@Override
protectedprotected void onPause() {

addEvent("onPause()");

supersuper.onPause();
}

@Override
protectedprotected void onStop() {

addEvent("onStop()");

supersuper.onStop();
}

@Override
protectedprotected void onDestroy() {

addEvent("onDestroy()");

supersuper.onDestroy();
}

privateprivate void addEvent(StringString message) {
vm.addEvent(message, id);
adapter.submitList(newnew ArrayListArrayList<>(vm.events));

}
}

(from LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/MainActivity.java)

packagepackage com.commonsware.jetpack.sampler.lifecyclecom.commonsware.jetpack.sampler.lifecycle

importimport android.os.Bundleandroid.os.Bundle

INTEGRATING VIEWMODEL

315

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/samplerj/lifecycle/MainActivity.java

importimport androidx.activity.viewModelsandroidx.activity.viewModels
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager
importimport com.commonsware.jetpack.sampler.lifecycle.databinding.ActivityMainBindingcom.commonsware.jetpack.sampler.lifecycle.databinding.ActivityMainBinding
importimport java.util.*java.util.*
importimport kotlin.collections.ArrayListkotlin.collections.ArrayList

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {
privateprivate lateinitlateinit varvar adapter: EventAdapterEventAdapter
privateprivate valval vm: EventViewModelEventViewModel byby viewModels()
privateprivate valval id = RandomRandom().nextInt()

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

adapter = EventAdapterEventAdapter(layoutInflater, vm.startTime)
addEvent("onCreate()")

binding.items.layoutManager = LinearLayoutManagerLinearLayoutManager(thisthis)
binding.items.addItemDecoration(

DividerItemDecorationDividerItemDecoration(thisthis, DividerItemDecorationDividerItemDecoration.VERTICALVERTICAL)
)
binding.items.adapter = adapter

}

overrideoverride funfun onStart() {
supersuper.onStart()

addEvent("onStart()")
}

overrideoverride funfun onResume() {
supersuper.onResume()

addEvent("onResume()")
}

overrideoverride funfun onPause() {
addEvent("onPause()")

supersuper.onPause()
}

overrideoverride funfun onStop() {
addEvent("onStop()")

supersuper.onStop()
}

overrideoverride funfun onDestroy() {
addEvent("onDestroy()")

supersuper.onDestroy()
}

INTEGRATING VIEWMODEL

316

privateprivate funfun addEvent(message: StringString) {
vm.addEvent(message, id)
adapter.submitList(ArrayListArrayList(vm.events))

}
}

(from LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/MainActivity.kt)

addEvent() also calls submitList() on our EventAdapter, to update the
RecyclerView when we add events to the list. This requires us to hold onto the
EventAdapter and the EventViewModel in properties of the activity, rather than just
using them as local variables in onCreate().

When addEvent() calls submitList(), it creates a new ArrayList from the events.
That is because ListAdapter and submitList() will “short-circuit” the update logic
if you pass the same List to submitList() that you did the previous call.
ListAdapter assumes that nothing needs to be done in that case, as ListAdapter
assumes that the list contents did not change. To get past this, we have to pass in a
brand-new ArrayList object each time.

INTEGRATING VIEWMODEL

317

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/LifecycleList/src/main/java/com/commonsware/jetpack/sampler/lifecycle/MainActivity.kt

The Results

When you run the app, lifecycle events show up in the list. If you rotate the screen a
couple of times, the events start to pile up:

Figure 153: LifecycleList After Two Configuration Changes

The activity “hash code” value in the upper right changes with each configuration
change, as we get a fresh instance of MainActivity each time. However, the
viewmodel “hash code” value in the lower right remains the same, as we are using
the same EventViewModel instance for each of our MainActivity instances.

ViewModelViewModel and AndroidViewModelAndroidViewModel

Sometimes, your ViewModel could really use a Context. For example, you might need
to format some data using a string resource, and the only way to get a string
resource is through a Context.

If you need a Context in your ViewModel, Google’s official solution is
AndroidViewModel. This offers a getApplication() function that you can call to
retrieve the Application singleton. Application implements Context, so you can

INTEGRATING VIEWMODEL

318

look up string resources and stuff from there. Your activity or fragment does not
need to worry about this: just use ViewModelProvider and request the ViewModel.
You also will extend AndroidViewModel instead of ViewModel and implement the
required constructor, that takes an Application as a parameter.

Some of the examples in the upcoming chapters will use ViewModel, while others
will use AndroidViewModel.

ViewModelFactoryViewModelFactory

A ViewModelProvider will use a ViewModelProvider.Factory to create instances of
your ViewModel subclass. If you have no constructor parameters — or if you are
extending AndroidViewModel and just have the Application constructor parameter
— then the default ViewModelProvider.Factory will suffice. No special
configuration is necessary.

However, there will be times when you will want to pass other constructor
parameters to your ViewModel subclass. You can have those parameters, but now the
Jetpack does not know how to create instances of your ViewModel. You will need to
supply the ViewModelProvider a ViewModelProvider.Factory that knows how to
create those instances.

INTEGRATING VIEWMODEL

319

Understanding Processes

So far, we have been treating our activity like it is our entire application. Soon, we
will start to get into more complex scenarios, involving multiple activities and other
types of components, like services and content providers.

But, before we get into a lot of that, it is useful to understand how all of this ties into
the actual OS itself. Android is based on Linux, and Linux applications run in OS
processes. Understanding a bit about how Android and Linux processes inter-relate
will be useful in understanding how our mixed bag of components work within
these processes.

And, along the way, we will answer nagging questions like, “what is that Bundle
thing that we are passed in onCreate() that we have been ignoring?”.

When Processes Are Created
A user installs your app, goes to their launcher’s app drawer, and taps on an icon
representing your activity. Your activity dutifully appears on the screen.

At this point, we know that we have a process for our app, because it is running.

Frequently, the trigger for Android to fork a process for you is that the user tapped
on your launcher icon and launched your activity. However, your process might
already exist for other reasons. In that case, by default, Android will reuse your
existing process, and have it display your activity. By default, your app will have at
most one process.

321

What Is In Your Process
When Android needs a process for your app — such as to show the launcher activity
— Android forks a copy of a process known as the zygote. As a result of the way
your process is forked from the zygote, your process contains:

• A copy of a virtual machine for running your app, shared among all such
processes via Linux copy-on-write memory sharing

• A copy of the Android framework classes, like Activity and Button, also
shared via copy-on-write memory

• A copy of shared native libraries, such as for SSL encryption and local
database access, also shared via copy-on-write memory

• A copy of your own classes, loaded out of your APK
• A copy of classes from libraries in your app, loaded out of your APK
• Any native libraries (e.g., written in C/C++) that you linked into your app,

loaded out of your APK
• Any objects created by you or the framework classes, such as the instance of

your Activity subclass

So, our process has a lot of things in it. Much of it is shared among all other Android
SDK apps forked from the zygote. The unique elements will be those things that we
use from our APK.

BACK, HOME, and Your Process
So far, our sample apps have had just one activity. So, imagine this scenario: from the
app drawer, the user taps on the icon associated with your app’s activity. Then, with
your activity in the foreground, the user presses BACK.

At this point, the user is telling the OS that she is done with your activity. Our
activity is destroyed. Control will return to whatever preceded that activity — in this
case, the launcher.

You might think that this would cause your process to be terminated. After all, that
is how most desktop operating systems work. Once the user closes the last window
of the application, the process hosting that application is terminated.

However, that is not how Android works. Android will keep your process around, for
a little while at least. This is done for speed and power: if the user happens to want
to return to your app sooner rather than later, it is more efficient to simply bring up

UNDERSTANDING PROCESSES

322

another copy of your activity again in the existing process than it is to go set up a
completely new copy of the process. This does not mean that your process will live
forever; we will discuss when your process will go away later in this chapter.

Now, instead of the user pressing BACK, let’s say that the user pressed HOME
instead. Visually, frequently there is little difference: the launcher re-appears.

The difference is what happens to your activity.

When the user presses BACK, your foreground activity is destroyed. It will be called
with onDestroy() among the other teardown lifecycle methods. And the activity
itself — the instance of your subclass of Activity — will never be used again, and
hopefully is garbage collected.

When the user presses HOME, your foreground activity is not destroyed… at least,
not immediately. It remains in memory. If the user launches your app again from the
launcher, and if your process is still around, Android will simply bring your existing
activity instance back to the foreground, rather than having to create a brand-new
one (as is the case if the user pressed BACK and destroyed your activity).

What HOME literally is doing is bringing the launcher’s own activity back to the
foreground. Otherwise, it does not affect your process very much.

Termination
Processes cannot live forever. They take up a chunk of RAM, for your classes and
objects, and these mobile devices only have so much RAM to work with. Eventually,
therefore, Android has to get rid of your process, to free up memory for other apps
and their processes.

How long your process will stick around depends on a variety of factors, including:

• What else the device is doing, either in the foreground (user using apps) or
in the background (e.g., automated checks for new email)

• How much memory the device has
• What is still running inside your process

Going back to the scenario from above, we have an application with a single activity
launched from the launcher, where the user can return to the launcher either by
pressing BACK or by pressing HOME. You might think that this makes no difference

UNDERSTANDING PROCESSES

323

at all on when the process would be terminated, but that would be incorrect.
Pressing HOME would keep the process around perhaps a bit longer than would
pressing BACK.

Why?

When the user presses BACK, your one and only activity is destroyed. When the user
presses HOME, your activity is not destroyed. Android will tend to keep processes
around longer if they have active (i.e., not destroyed) components in them.

The key word there is “tend”.

There is an element of the Android OS called the “out-of-memory killer”. Its job is to
ensure that there is a reasonable amount of free system RAM available at all times,
so Android can fork new processes for apps when needed. When free system RAM
drops below a certain level, the out-of-memory killer will terminate a process. The
out-of-memory killer will tend to terminate empty processes more readily than it
will terminate process with 1+ running components. However, the out-of-memory
killer also takes into account things like:

• Process age, where older processes will be somewhat more likely to be
terminated

• Memory usage, where bigger processes will be somewhat more likely to be
terminated

However, in general, processes with active (not destroyed) components will stick
around a bit longer than processes without such components.

Foreground Means “I Love You”
Just because Android terminates processes to free up memory does not mean that it
will terminate just any process to free up memory. A foreground process — the most
common of which is a process that has an activity in the foreground — is the least
likely of all to be terminated. In fact, you can pretty much assume that if Android
has to kill off the foreground process, that the phone is very sick and will crash in a
matter of moments.

(and, fortunately, that does not happen very often)

So, if you are in the foreground, you are safe. It is only when you are not in the

UNDERSTANDING PROCESSES

324

foreground that you are at risk of having the process be terminated.

Tasks and Your App
If you have used an Android device for a reasonable length of time, most likely you
will have seen the “overview screen, sometimes called the ”recent-tasks list". The
look has varied widely over the years and across the range of devices and
manufacturers. They all give you a way to “get back to where you once belonged” —
you can rapidly return to some app that you had been in recently.

So, on Android 9.0 you might see:

Figure 154: Overview Screen on Google Pixel Running Android 9.0

UNDERSTANDING PROCESSES

325

https://www.thebeatles.com/song/get-back

…while on Android 5.0, you might see:

Figure 155: Overview Screen on Samsung Galaxy Note 3 Running Android 5.0

Tasks are the sort of thing that developers often ignore early on. However, many
apps eventually do need to address task management.

What is a Task?

Tasks are a bit like tabs in a Web browser.

In a tabbed Web browser, each tab operates fairly independently from other tabs. In
particular, each tab has its own “back stack”: pressing the BACK button affects your
current tab, not other tabs that happen to be open.

Similarly, a task in Android represents a stack of activities. One activity can open
other activities, in the same app or even in different apps, as we will explore in an
upcoming chapter. By default, those activities will all belong to the same task. Each
time the user presses the BACK button, it destroys the current foreground activity
and returns control to whatever activity preceded it. If the user presses BACK from
the first (“root”) activity of the task, the task itself is destroyed and the user returns
to the home screen.

UNDERSTANDING PROCESSES

326

OK, So Why Do I Care?

The point of tasks is to allow users to rapidly move between apps that have been
used recently. In principle, this is the same as a desktop operating system allowing
the user to move between opened apps.

However, there is one practical difference: mobile devices usually have a lot less
RAM. While newer high-end Android devices might have a lot of RAM, older or less-
expensive Android devices might not have very much. As a result, we cannot have
lots of running processes — the out-of-memory killer will eventually have to start
killing off those processes to free up memory for yet other processes.

However, once an app’s process is terminated, everything it held onto in memory is
now gone. It has to reload data from disk or from the network. Moreover, it loses all
“context” by default: the app does not necessarily remember where the user had
been in the app. Instead, by default, if the user goes back to the app, the app will
start over from scratch.

To help deal with this, Android keeps track of some amount of state associated with
your app. If:

• The user navigates away from your app,
• Android terminates your app’s process, and
• The user attempts to return to your app within 30 minutes of having left it

…then Android will try to restore your app and its task to the state it had been in
when the user left. In particular, for the purposes of this chapter, Android will hand
some “instance state” back to your activity, and you can try to use that to pretend to
the user that your activity had been around all along, even though in reality this is a
brand-new activity instance in a brand-new process.

Instance State
So, with that in mind, let’s talk a bit about “instance state”.

Why Are We Passed a BundleBundle in onCreate()onCreate()?

You may have noticed that all of our activities in the sample apps so far have an
onCreate() function that takes a Bundle as a parameter. Each of the samples has
done work in onCreate()… and each of the samples has ignored this Bundle.

UNDERSTANDING PROCESSES

327

This Bundle is known as the “saved instance state”.

A Bundle is a key-value store, using strings for keys and a limited set of data types
for the values. Mostly, a Bundle is designed to hold simple bits of data: Boolean, Int,
Long, String, etc.

Normally, when our activity is created, the Bundle parameter to onCreate() is null.
That is why in Kotlin it is typed as Bundle? instead of Bundle.

If that Bundle is not null, it represents some state from some previous instance of
our activity, where that previous instance either:

• Had been destroyed as part of a configuration change, or
• Had been nuked from orbit as part of Android terminating the app’s process,

but the user happened to try returning to that app within 30 minutes of
having left it

Our job is to use that Bundle to help set up our user interface.

Nowadays, for the configuration-change scenario, we usually use a ViewModel or
something like that. However, a ViewModel also gets nuked from orbit when the
process is terminated, so that does not help us for the “return in 30 minutes”
scenario.

When Do We Fill In the Instance State BundleBundle?

Your activity can optionally override an onSaveInstanceState() function. This will
be passed a Bundle, and you can fill data into that Bundle.

Typically, you chain to the superclass, as Activity will put things into the Bundle
related to your current on-screen widgets. In particular, Activity will save some
user-mutable data from those widgets, such as:

• The text that the user has typed into an EditText
• The checked states of CompoundButton widgets like Switch or CheckBox
• The position of a SeekBar

When you chain to the superclass implementation of onSaveInstanceState(),
Activity will save all that data for you. In addition, you can put your own data into
the Bundle.

UNDERSTANDING PROCESSES

328

In current versions of the Jetpack, we can adapt our ViewModel classes to handle this
work for us. We will see that later in the chapter.

When Do We Get the Instance State BundleBundle?

Your activity will get a copy of that Bundle back in two places:

• onCreate(), and
• onRestoreInstanceState()

onCreate() is always called for a new activity instance. However, there may not be
any instance state to restore, so its Bundle parameter may be null.
onRestoreInstanceState() is only called if there is instance state to restore, so its
Bundle will never be null.

Your job is to look for this Bundle and apply any data from it that you put into the
Bundle in onSaveInstanceState(). Or, let your ViewModel handle that.

What Are the Limits on the BundleBundle?

As noted above, Bundle does not support arbitrary data types. For your own custom
classes, you can address this limitation via Parcelable, as we will see in the next
section. But you should not assume that you can put any sort of data into the
Bundle.

There is also a size limitation. The details are rather complicated, but the general
rule of thumb is “keep your Bundle well under 1MB”.

The instance state Bundle is not designed to be a replacement for a local database or
a server. Use it for in-flight data that you cannot easily load again and that should fit
the data type and size limitations. Use your ViewModel for data that you have loaded
from disk or the network that you would prefer not to load again after a
configuration change, and live with the fact that you will need to load that data
again after your process has been terminated.

Pondering ParcelableParcelable

In the LifecycleList sample app from the previous chapter, our EventViewModel
held onto two pieces of data:

UNDERSTANDING PROCESSES

329

• The time when the EventViewModel was created, and
• The list of Event objects representing the lifecycle events

If our process is terminated, but the user returns to us with 30 minutes, ideally we
would still have this data. But our EventViewModel is gone and will be replaced by a
brand-new instance in the brand-new process. We could store this data in a file or
database, but unless the list of Event objects is really long, we could put this data
into the saved instance state Bundle.

Except for one problem: Bundle does not know anything about Event.

In order to be able to put our Event objects into the Bundle, we need to make Event
be Parcelable.

Parcelable is a marker interface, reminiscent of Java’s Serializable, that shows up
in many places in the Android SDK. A Parcelable object is one that can be placed
into a Parcel. A Parcel is the primary vehicle for passing data between processes in
Android’s inter-process communication (IPC) framework. And, of note, Bundle
supports Parcelable objects.

You have two major approaches for adding Parcelable capabilities to your classes in
Android:

1. Use an annotation processor that will add in the appropriate bits of magic
for you

2. Just do it yourself

ParcelableParcelable by Annotation

Annotation processors take @Things @That @LookLike @These("snippets") and
augment your code. In particular, they can generate code for you to save you typing
in a bunch of boilerplate.

Kotlin users have easy access to a @Parcelize annotation that can make simple
classes — such as Event — be Parcelable.

To add Parcelable support to a Kotlin class, just:

• Have that class declare that it implements the Parcelable interface, though
you do not need to override any of its methods, and

• Add the @Parcelize annotation to the class:

UNDERSTANDING PROCESSES

330

packagepackage com.commonsware.jetpack.sampler.statecom.commonsware.jetpack.sampler.state

importimport android.os.Parcelableandroid.os.Parcelable
importimport android.os.SystemClockandroid.os.SystemClock
importimport kotlinx.android.parcel.Parcelizekotlinx.android.parcel.Parcelize

@Parcelize
data classdata class EventEvent(

valval message: StringString,
valval activityHash: IntInt,
valval viewmodelHash: IntInt,
valval timestamp: LongLong = SystemClockSystemClock.elapsedRealtime()

) : ParcelableParcelable

(from InstanceState/src/main/java/com/commonsware/jetpack/sampler/state/Event.kt)

Here we have a revised version of the Event class that adds the @Parcelize
annotation and the Parcelable interface. The actual code to support the Parcelable
interface will be code-generated, and so we can skip it.

There are many third-party libraries that support Parcelable, including many
annotation processors for Java that can accomplish a similar thing to what we get
with Kotlin.

ParcelableParcelable by Hand

Adding Parcelable support yourself is not especially difficult, though it is a bit
tedious.

The Parcelable Interface

The first steps is to add the Parcelable interface to the class. Immediately, your IDE
should start complaining that you need to implement two methods to satisfy the
Parcelable interface.

The easier of the two methods is describeContents(), where you will return 0, most
likely.

The other method you will need to implement is writeToParcel(). You are passed
in two parameters: a very important Parcel, and a usually-ignored int named flags.

Your job, in writeToParcel(), is to call a series of write...() methods on the
Parcel to write out all data members of this object that should be considered part of

UNDERSTANDING PROCESSES

331

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/InstanceState/src/main/java/com/commonsware/jetpack/sampler/state/Event.kt
https://android-arsenal.com/tag/71?sort=created

the object as it is passed across process boundaries. There are dozens of type-safe
methods for writing data into the Parcel, including:

• methods that write individual primitives (e.g., writeInt()) or Java arrays of
primitives (e.g., writeStringArray())

• writeBundle(), for writing out a Bundle
• writeParcelable() and writeParcelableArray(), for writing out other

objects that implement Parcelable
• various specialized methods for particular data types (e.g., writeSizeF()) or

interfaces (e.g., writeSerializable())

In the case of the generated Event code shown earlier in this chapter,
writeToParcel() writes out each of our four fields:

@Override
publicpublic void writeToParcel(ParcelParcel dest, int flags) {

dest.writeLong(timestamp);
dest.writeString(message);
dest.writeInt(activityHash);
dest.writeInt(viewmodelHash);

}

(from InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/Event.java)

The CREATOR

When Android tries reading objects in from a Parcel, and it encounters an instance
of your Parcelable class, it will retrieve a static CREATOR object that must be defined
on that class. The CREATOR is an instance of Parcelable.Creator, using generics to
tie it to the type of your class:

@SuppressWarnings("unused")
publicpublic staticstatic finalfinal ParcelableParcelable.Creator<EventEvent> CREATOR = newnew ParcelableParcelable.Creator<EventEvent>() {

@Override
publicpublic EventEvent createFromParcel(ParcelParcel in) {

returnreturn newnew Event(in);
}

@Override
publicpublic EventEvent[] newArray(int size) {

returnreturn newnew EventEvent[size];
}

};

(from InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/Event.java)

The @SuppressWarnings("unused") annotation is because the IDE will think that

UNDERSTANDING PROCESSES

332

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/Event.java
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/Event.java

this CREATOR instance is not referred to anywhere. That is because it will only be
used via Java reflection.

The CREATOR will need two methods. createFromParcel(), given a Parcel, needs to
return an instance of your class populated from that Parcel. newArray(), given a
size, needs to return a type-safe array of your class.

The typical implementation of createFromParcel() will delegate the actual work to
a protected or private constructor on your class that takes the Parcel as input:

protectedprotected Event(ParcelParcel in) {
timestamp = in.readLong();
message = in.readString();
activityHash = in.readInt();
viewmodelHash = in.readInt();

}

(from InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/Event.java)

You need to read in the same values that you wrote out to the Parcel, and in the
same order.

A State-Aware ViewModelViewModel

Version 2.2.0 of the Jetpack lifecycle artifacts added first-class support for tying
ViewModel and your saved instance state together. The InstanceState sample
module in the Sampler and SamplerJ projects use an EventViewModel that still holds
our events and start time. However, in this case, we also use the new ViewModel
capabilities to store that data in the saved instance state Bundle and use that data
when creating a new EventViewModel instance in a new process.

The SavedStateHandleSavedStateHandle

The first step for making this work is to add a SavedStateHandle constructor
parameter to our ViewModel. SavedStateHandle is a wrapper around the saved
instance state Bundle that the Jetpack developers introduced.

So, EventViewModel has that constructor parameter:

packagepackage com.commonsware.jetpack.samplerj.statecom.commonsware.jetpack.samplerj.state;

importimport android.os.SystemClockandroid.os.SystemClock;

UNDERSTANDING PROCESSES

333

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/Event.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/InstanceState
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/InstanceState
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/InstanceState
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/InstanceState

importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Randomjava.util.Random;
importimport androidx.lifecycle.SavedStateHandleandroidx.lifecycle.SavedStateHandle;
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel;

publicpublic classclass EventViewModelEventViewModel extendsextends ViewModelViewModel {
privateprivate staticstatic finalfinal StringString STATE_EVENTS = "events";
privateprivate staticstatic finalfinal StringString STATE_START_TIME = "startTime";

finalfinal ArrayListArrayList<EventEvent> events;
finalfinal LongLong startTime;
privateprivate finalfinal int id = newnew RandomRandom().nextInt();
privateprivate finalfinal SavedStateHandleSavedStateHandle state;

publicpublic EventViewModel(SavedStateHandleSavedStateHandle state) {
thisthis.state = state;

ArrayListArrayList<EventEvent> events = state.get(STATE_EVENTS);

ifif (events == nullnull) {
thisthis.events = newnew ArrayListArrayList<>();

}
elseelse {

thisthis.events = events;
}

LongLong startTime = state.get(STATE_START_TIME);

ifif (startTime == nullnull) {
thisthis.startTime = SystemClockSystemClock.elapsedRealtime();
state.set(STATE_START_TIME, thisthis.startTime);

}
elseelse {

thisthis.startTime = startTime;
}

}

void addEvent(StringString message, int activityHash) {
events.add(newnew EventEvent(message, activityHash, id));
state.set(STATE_EVENTS, events);

}

@Override
protectedprotected void onCleared() {

events.clear();
}

}

UNDERSTANDING PROCESSES

334

(from InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/EventViewModel.java)

packagepackage com.commonsware.jetpack.sampler.statecom.commonsware.jetpack.sampler.state

importimport android.os.SystemClockandroid.os.SystemClock
importimport androidx.lifecycle.SavedStateHandleandroidx.lifecycle.SavedStateHandle
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport java.util.*java.util.*

privateprivate constconst valval STATE_EVENTS = "events"
privateprivate constconst valval STATE_START_TIME = "startTime"

classclass EventViewModelEventViewModel(privateprivate valval state: SavedStateHandleSavedStateHandle) : ViewModelViewModel() {
valval events: ArrayListArrayList<EventEvent> = state.getget(STATE_EVENTSSTATE_EVENTS) ?: arrayListOf()
valval startTime: LongLong = state.getget(STATE_START_TIMESTATE_START_TIME)

?: SystemClockSystemClock.elapsedRealtime().also { state.setset(STATE_START_TIMESTATE_START_TIME, it) }
privateprivate valval id = RandomRandom().nextInt()

funfun addEvent(message: StringString, activityId: IntInt) {
events.add(EventEvent(message, activityId, id))
state.setset(STATE_EVENTSSTATE_EVENTS, events)

}

overrideoverride funfun onCleared() {
events.clear()

}
}

(from InstanceState/src/main/java/com/commonsware/jetpack/sampler/state/EventViewModel.kt)

SavedStateHandle uses basic get() and set() methods for manipulated the saved
instance state. Both operate using strings as keys, as with a Bundle. So, in
EventViewModel, we initialize our events and startTime properties to be based on
the supplied SavedStateHandle. But, if our handle does not contain that data, we
initialize it to be an empty list of events and the current time, respectively.

Whenever we change these properties, we also update the SavedStateHandle. Since
the value of startTime is only defined once, if we need to use the current time for its
value, we also use set() to save that in the handle. And, in the addEvent() function,
we not only update the contents of the events ArrayList, but we make sure that the
SavedStateHandle has the latest copy of those events.

Note that id is not part of the saved instance state. That value will get regenerated
for each new EventViewModel.

UNDERSTANDING PROCESSES

335

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/EventViewModel.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/InstanceState/src/main/java/com/commonsware/jetpack/sampler/state/EventViewModel.kt

The Results

We do not need to do anything special when retrieving our viewmodels — the
Jetpack viewmodel system already knows how to handle SavedStateHandle
scenarios by default. As a result, our activities look and work much the same as the
earlier LifecycleList counterparts:

packagepackage com.commonsware.jetpack.samplerj.statecom.commonsware.jetpack.samplerj.state;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.commonsware.jetpack.samplerj.state.databinding.ActivityMainBindingcom.commonsware.jetpack.samplerj.state.databinding.ActivityMainBinding;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Randomjava.util.Random;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider;
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration;
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
privateprivate EventAdapterEventAdapter adapter;
privateprivate EventViewModelEventViewModel vm;
privateprivate finalfinal int id = newnew RandomRandom().nextInt();

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

finalfinal ActivityMainBindingActivityMainBinding binding =
ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

vm = newnew ViewModelProviderViewModelProvider(thisthis).get(EventViewModelEventViewModel.class);
adapter = newnew EventAdapterEventAdapter(getLayoutInflater(), vm.startTime);
addEvent("onCreate()");

binding.items.setLayoutManager(newnew LinearLayoutManagerLinearLayoutManager(thisthis));
binding.items.addItemDecoration(

newnew DividerItemDecoration(thisthis, DividerItemDecorationDividerItemDecoration.VERTICAL));
binding.items.setAdapter(adapter);

}

@Override
protectedprotected void onStart() {

supersuper.onStart();

UNDERSTANDING PROCESSES

336

addEvent("onStart()");
}

@Override
protectedprotected void onResume() {

supersuper.onResume();

addEvent("onResume()");
}

@Override
protectedprotected void onPause() {

addEvent("onPause()");

supersuper.onPause();
}

@Override
protectedprotected void onStop() {

addEvent("onStop()");

supersuper.onStop();
}

@Override
protectedprotected void onDestroy() {

addEvent("onDestroy()");

supersuper.onDestroy();
}

privateprivate void addEvent(StringString message) {
vm.addEvent(message, id);
adapter.submitList(newnew ArrayListArrayList<>(vm.events));

}
}

(from InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/MainActivity.java)

packagepackage com.commonsware.jetpack.sampler.statecom.commonsware.jetpack.sampler.state

importimport android.os.Bundleandroid.os.Bundle
importimport androidx.activity.viewModelsandroidx.activity.viewModels
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager
importimport com.commonsware.jetpack.sampler.state.databinding.ActivityMainBindingcom.commonsware.jetpack.sampler.state.databinding.ActivityMainBinding
importimport java.util.*java.util.*

UNDERSTANDING PROCESSES

337

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/InstanceState/src/main/java/com/commonsware/jetpack/samplerj/state/MainActivity.java

importimport kotlin.collections.ArrayListkotlin.collections.ArrayList

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {
privateprivate valval vm: EventViewModelEventViewModel byby viewModels()

privateprivate lateinitlateinit varvar adapter: EventAdapterEventAdapter
privateprivate valval id = RandomRandom().nextInt()

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

adapter = EventAdapterEventAdapter(layoutInflater, vm.startTime)
addEvent("onCreate()")

binding.items.layoutManager = LinearLayoutManagerLinearLayoutManager(thisthis)
binding.items.addItemDecoration(

DividerItemDecorationDividerItemDecoration(thisthis, DividerItemDecorationDividerItemDecoration.VERTICALVERTICAL)
)
binding.items.adapter = adapter

}

overrideoverride funfun onStart() {
supersuper.onStart()

addEvent("onStart()")
}

overrideoverride funfun onResume() {
supersuper.onResume()

addEvent("onResume()")
}

overrideoverride funfun onPause() {
addEvent("onPause()")

supersuper.onPause()
}

overrideoverride funfun onStop() {
addEvent("onStop()")

supersuper.onStop()
}

UNDERSTANDING PROCESSES

338

overrideoverride funfun onDestroy() {
addEvent("onDestroy()")

supersuper.onDestroy()
}

privateprivate funfun addEvent(message: StringString) {
vm.addEvent(message, id)
adapter.submitList(ArrayListArrayList(vm.events))

}
}

(from InstanceState/src/main/java/com/commonsware/jetpack/sampler/state/MainActivity.kt)

Seeing the effect of our saved instance state support is tricky. We need to have our
process be terminated while leaving the task alone. That means we cannot swipe our
task off of the overview screen, as that terminates the task. Similarly, the stop-
process buttons in Android Studio toolbars (with a red square icon) seem to
terminate the task as well.

One way to see this work is to use the command line.

The Android SDK ships with an adb command-line utility. We can use this to
communicate with a running emulator or debuggable device. You will find adb in
the platform-tools/ directory of your Android SDK installation.

In particular:

• adb shell says “give me access to a Linux-style shell inside of Android”
• adb shell am says “run the am command in that shell”, where am is the

“activity manager” tool
• adb shell am kill ... says “kill the process identified by the supplied

application ID” (shown here as ...)

To experiment with instance states:

• Run the sample app
• Undergo configuration changes, if desired
• Press HOME, to move the app to the background and trigger an
onSaveInstanceState() call

• Run adb shell am kill com.commonsware.jetpack.sampler.state (for the
Kotlin edition) or adb shell am kill

UNDERSTANDING PROCESSES

339

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/InstanceState/src/main/java/com/commonsware/jetpack/sampler/state/MainActivity.kt

com.commonsware.jetpack.samplerj.state (for the Java edition) to
terminate the background process

• Bring up the overview screen and tap on the entry for this sample app

In the original LifecycleList sample, configuration changes would show new
instance ID codes for the activity, but the EventViewModel instance ID code would
be the same, as we reuse the existing viewmodel on a configuration change. Now,
though, we are terminating the process, so we should see a new viewmodel ID code
for the newer events:

Figure 156: InstanceState Sample App, Following Above Script

However, we still have the original events and the original start time — we did not
start over with an empty EventViewModel, because we populated it from the saved
instance state Bundle.

UNDERSTANDING PROCESSES

340

Binding Your Data

So far, to update our UI, we have been pushing data into widgets from our Java or
Kotlin code. For example, we have been updating the text property of a TextView.

Data binding, in general, refers to frameworks or libraries designed to pull data into
the UI. UI definitions — such as Android layout resources — contain information
about how to populate widgets from supplied model objects.

This chapter explores Android’s data binding support and how to use it to perhaps
simplify your Android app development. And, we will also see why the word
“perhaps” is in that previous sentence.

The Basic Steps
The DataBind sample module in the Sampler and SamplerJ projects adds to the
InstanceState sample from the preceding chapter. The primary difference is that we
will fill in the RecyclerView rows using data binding.

Enabling Data Binding

Data binding is an opt-in feature, in part because it can slow down the build process.
For small projects like the ones in this book, you will not notice the overhead of the
data binding tools, but that overhead becomes more annoying as projects get larger.

To opt into data binding, we need to enable it, by adding another closure to our
module’s build.gradle file’s android closure:

341

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/DataBind
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/DataBind
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/DataBind
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/DataBind

buildFeatures {
dataBinding = truetrue
viewBinding = truetrue

}

(from DataBind/build.gradle)

This works similar to how we enabled view binding earlier in the book. In this case,
we are enabling both view binding and data binding.

Also, Kotlin projects using data binding should add the kotlin-kapt plugin:

apply plugin: 'kotlin-kapt'

(from DataBind/build.gradle)

This plugin enables annotation processing for Kotlin source files. Using annotations
is not absolutely required in a data binding project, but it is somewhat common, and
this plugin is needed so the data binding code can process those annotations.

Augmenting the Layout

The real fun begins with the layout for our RecyclerView row. The original edition of
this layout resource was a typical ConstraintLayout with our TextView widgets:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="@dimen/content_padding">>

<TextView<TextView
android:id="@+id/activityHash"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="0x12345678" />/>

<TextView<TextView
android:id="@+id/viewmodelHash"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

BINDING YOUR DATA

342

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DataBind/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DataBind/build.gradle

app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toBottomOf="@id/activityHash"
tools:text="0x90ABCDEF" />/>

<androidx.constraintlayout.widget.Barrier<androidx.constraintlayout.widget.Barrier
android:id="@+id/barrier"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginEnd="4dp"
android:layout_marginStart="4dp"
app:barrierDirection="start"
app:constraint_referenced_ids="activityHash,viewmodelHash" />/>

<TextView<TextView
android:id="@+id/timestamp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="01:23" />/>

<TextView<TextView
android:id="@+id/message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toStartOf="@id/barrier"
app:layout_constraintStart_toEndOf="@id/timestamp"
app:layout_constraintTop_toTopOf="parent"
tools:text="onDestroy()" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from InstanceState/src/main/res/layout/row.xml)

We need to make some changes to that in order to leverage data binding:

<?xml version="1.0" encoding="utf-8"?>
<layout><layout>

<data><data>

<import<import type="android.text.format.DateUtils" />/>

<variable<variable

BINDING YOUR DATA

343

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/InstanceState/src/main/res/layout/row.xml

name="event"
type="com.commonsware.jetpack.sampler.databind.Event" />/>

<variable<variable
name="elapsedSeconds"
type="Long" />/>

</data></data>

<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="@dimen/content_padding">>

<TextView<TextView
android:id="@+id/activityHash"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@{Integer.toHexString(event.activityHash)}"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="0x12345678" />/>

<TextView<TextView
android:id="@+id/viewmodelHash"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@{Integer.toHexString(event.viewmodelHash)}"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toBottomOf="@id/activityHash"
tools:text="0x90ABCDEF" />/>

<androidx.constraintlayout.widget.Barrier<androidx.constraintlayout.widget.Barrier
android:id="@+id/barrier"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginEnd="4dp"
android:layout_marginStart="4dp"
app:barrierDirection="start"
app:constraint_referenced_ids="activityHash,viewmodelHash" />/>

<TextView<TextView
android:id="@+id/timestamp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

BINDING YOUR DATA

344

android:text="@{DateUtils.formatElapsedTime(elapsedSeconds)}"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="01:23" />/>

<TextView<TextView
android:id="@+id/message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@{event.message}"
android:textAppearance="?android:attr/textAppearanceLarge"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toStartOf="@id/barrier"
app:layout_constraintStart_toEndOf="@id/timestamp"
app:layout_constraintTop_toTopOf="parent"
tools:text="onDestroy()" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>
</layout></layout>

(from DataBind/src/main/res/layout/row.xml)

First, the entire resource file gets wrapped in a <layout> element, on which we can
place the android namespace declaration. Only layout resources with a root
<layout> element are processed by the data binding portion of the build system.

That <layout> element then has two children. The second child is our
ConstraintLayout, representing the root View or ViewGroup for the resource. The
first child is a <data> element, and that is where we configure how data binding
should proceed when this layout resource gets used.

Inside of <data> we have three elements.

Two are <variable> elements. These identify and describe the objects that we can
pull data from. In our case, we have an event variable that is an instance of our
Event model class, and we have an elapsedSeconds value that represents the
number of seconds that have elapsed between the start of the app and this event. As
we will see, our Java or Kotlin code will now “bind” those objects into our layout,
rather than update widgets directly.

The other element is <import>. This works like import statements in Java or Kotlin,
indicating a particular class that we would like to reference. In the world of data
binding, mostly we use <import> for classes where we wish to refer to static

BINDING YOUR DATA

345

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DataBind/src/main/res/layout/row.xml

methods or fields (and their Kotlin equivalents).

Our four TextView widgets now have android:text attributes, where they had none
before. That is because the earlier version of this sample relied upon Java or Kotlin
code to push data into the widgets, and now we are going to pull data in using data
binding.

Those android:text attributes use “binding expressions”. A binding expression is
identified in a data binding-enhanced layout through @{} syntax, with the actual
expression between the braces. Those expressions use a language syntax that looks a
lot like Java or Kotlin expressions, and they can reference:

• Our <variable> values
• Global functions and properties on the classes listed in <import> elements
• Global functions and properties on any java.lang classes
• A few other magic values, such as context to get a Context, should we need

one
• Properties of other widgets in this same layout resource

The activityHash TextView has
android:text="@{Integer.toHexString(event.activityHash)}". The binding
expression works like its Java or Kotlin counterparts, taking our activityHash value
out of our event and formatting it as a hex string. The text of this TextView will then
contain that hex string.

The android:text attributes of the other TextView widgets work the same:

• viewmodelHash uses Integer.toHexString(event.viewmodelHash) to fill in
the text with the hex string of that hash code

• timestamp uses DateUtils.formatElapsedTime(elapsedSeconds) to format
the elapsedSeconds value as an elapsed time

• message just uses event.message to bind from the message from the Event

While we happen to use android:text for all four widgets, binding expressions can
be applied to just about any attribute, such as android:checked for the checked
state of a CompoundButton.

Updating the Model

Data binding has its limits. One limit is that it can only access public functions and
properties. So, we need to ensure that everything we need is now public in our

BINDING YOUR DATA

346

Event class, both in Java:

packagepackage com.commonsware.jetpack.samplerj.databindcom.commonsware.jetpack.samplerj.databind;

importimport android.os.Parcelandroid.os.Parcel;
importimport android.os.Parcelableandroid.os.Parcelable;
importimport android.os.SystemClockandroid.os.SystemClock;

publicpublic classclass EventEvent implementsimplements ParcelableParcelable {
publicpublic finalfinal long timestamp;
publicpublic finalfinal StringString message;
publicpublic finalfinal int activityHash;
publicpublic finalfinal int viewmodelHash;

EventEvent(StringString message, int activityHash, int viewmodelHash) {
thisthis.message = message;
thisthis.activityHash = activityHash;
thisthis.viewmodelHash = viewmodelHash;
thisthis.timestamp = SystemClockSystemClock.elapsedRealtime();

}

protectedprotected Event(ParcelParcel in) {
timestamp = in.readLong();
message = in.readString();
activityHash = in.readInt();
viewmodelHash = in.readInt();

}

@Override
publicpublic int describeContents() {

returnreturn 0;
}

@Override
publicpublic void writeToParcel(ParcelParcel dest, int flags) {

dest.writeLong(timestamp);
dest.writeString(message);
dest.writeInt(activityHash);
dest.writeInt(viewmodelHash);

}

@SuppressWarnings("unused")
publicpublic staticstatic finalfinal ParcelableParcelable.Creator<EventEvent> CREATOR = newnew ParcelableParcelable.Creator<EventEvent>() {

@Override
publicpublic EventEvent createFromParcel(ParcelParcel in) {

returnreturn newnew Event(in);
}

@Override
publicpublic EventEvent[] newArray(int size) {

returnreturn newnew EventEvent[size];
}

};
}

(from DataBind/src/main/java/com/commonsware/jetpack/samplerj/databind/Event.java)

…and Kotlin:

BINDING YOUR DATA

347

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DataBind/src/main/java/com/commonsware/jetpack/samplerj/databind/Event.java

packagepackage com.commonsware.jetpack.sampler.databindcom.commonsware.jetpack.sampler.databind

importimport android.os.Parcelableandroid.os.Parcelable
importimport android.os.SystemClockandroid.os.SystemClock
importimport kotlinx.android.parcel.Parcelizekotlinx.android.parcel.Parcelize

@Parcelize
data classdata class EventEvent(

valval message: StringString,
valval activityHash: IntInt,
valval viewmodelHash: IntInt,
valval timestamp: LongLong = SystemClockSystemClock.elapsedRealtime()

) : ParcelableParcelable

(from DataBind/src/main/java/com/commonsware/jetpack/sampler/databind/Event.kt)

Applying the Binding

The layout configures one side of the binding: pulling data into widgets. We still
need to do some work to configure the other side of the binding: supplying the
source of that data. In the case of this example, we need to provide the Event object
for this layout resource.

That is handled via some modifications to our EventAdapter and EventViewHolder,
to get at a “binding object” for an inflated layout and then call functions on it to
supply our variables.

Creating the Binding

When we use <layout> in a layout resource and set up the layout side of the data
binding system, the build system code-generates a Java class associated with that
layout file. As with view binding, the class name is derived from the layout name,
where names_like_this get converted into NamesLikeThis and have Binding
appended. So, since our layout resource was row.xml, we get RowBinding. This is
code-generated into a databinding Java sub-package of the package name from the
manifest. Hence, the fully-qualified import statement for this class is:

importimport com.commonsware.jetpack.sampler.databind.databinding.RowBindingcom.commonsware.jetpack.sampler.databind.databinding.RowBinding;

(normally, projects would not have databind in their own application IDs, so the
near-duplication that you see here is peculiar to this project)

This is a subclass of ViewDataBinding, supplied by the androidx.databinding

BINDING YOUR DATA

348

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DataBind/src/main/java/com/commonsware/jetpack/sampler/databind/Event.kt

libraries that are added to your project by enabling data binding in your
build.gradle file.

Creating an instance of the binding also inflates the associated layout. Your binding
class has a number of factory methods for inflating the layout and creating the
binding. These mirror other methods that you have used elsewhere:

• setContentView(), taking an Activity and the layout resource ID as
parameters, inflates the layout, passes the result to setContentView() on the
Activity, and creates the binding

• inflate(), with a variety of parameter list options, just inflates the layout
using a LayoutInflater, and creates the binding — just like we have used
with view binding

Our revised version of EventAdapter uses the three-parameter flavor of inflate(),
which takes a LayoutInflater (obtained from the hosting activity), the parent
container, and false. This mirrors the inflate() one would use on LayoutInflater
itself, except that it also gives us our binding. We use this in onCreateViewHolder()
and pass the RowBinding into our EventViewHolder:

@NonNull
@Override
publicpublic EventViewHolderEventViewHolder onCreateViewHolder(@NonNull ViewGroupViewGroup parent,

int viewType) {
RowBindingRowBinding binding = RowBindingRowBinding.inflate(inflater, parent, falsefalse);

returnreturn newnew EventViewHolder(binding, startTime);
}

(from DataBind/src/main/java/com/commonsware/jetpack/samplerj/databind/EventAdapter.java)

overrideoverride funfun onCreateViewHolder(
parent: ViewGroupViewGroup,
viewType: IntInt

): EventViewHolderEventViewHolder {
valval binding = RowBindingRowBinding.inflate(inflater, parent, falsefalse)

returnreturn EventViewHolderEventViewHolder(binding, startTime)
}

(from DataBind/src/main/java/com/commonsware/jetpack/sampler/databind/EventAdapter.kt)

BINDING YOUR DATA

349

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DataBind/src/main/java/com/commonsware/jetpack/samplerj/databind/EventAdapter.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DataBind/src/main/java/com/commonsware/jetpack/sampler/databind/EventAdapter.kt

Pouring the Model into the Binding

The generated binding class will have setters for each <variable> in our <data>
element in the layout. Setter names are generated from the variable names using
standard JavaBean conventions, so our event variable becomes setEvent() and our
elapsedSeconds variable becomes setElapsedSeconds(). When we call setEvent()
and setElapsedSeconds(), the generated code will use those objects to populate our
TextView widgets, applying the binding expression from our android:text
attributes.

To accomplish this, our revised EventViewHolder holds onto the RowBinding and
uses it in bindTo():

packagepackage com.commonsware.jetpack.samplerj.databindcom.commonsware.jetpack.samplerj.databind;

importimport com.commonsware.jetpack.samplerj.databind.databinding.RowBindingcom.commonsware.jetpack.samplerj.databind.databinding.RowBinding;
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView;

classclass EventViewHolderEventViewHolder extendsextends RecyclerViewRecyclerView.ViewHolder {
privateprivate finalfinal long startTime;
privateprivate finalfinal RowBindingRowBinding row;

EventViewHolderEventViewHolder(RowBindingRowBinding row, long startTime) {
supersuper(row.getRoot());

thisthis.row = row;
thisthis.startTime = startTime;

}

void bindTo(EventEvent event) {
row.setElapsedSeconds((event.timestamp - startTime)/1000);
row.setEvent(event);
row.executePendingBindings();

}
}

(from DataBind/src/main/java/com/commonsware/jetpack/samplerj/databind/EventViewHolder.java)

packagepackage com.commonsware.jetpack.sampler.databindcom.commonsware.jetpack.sampler.databind

importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView
importimport com.commonsware.jetpack.sampler.databind.databinding.RowBindingcom.commonsware.jetpack.sampler.databind.databinding.RowBinding

classclass EventViewHolderEventViewHolder(valval row: RowBindingRowBinding, privateprivate valval startTime: LongLong) :
RecyclerViewRecyclerView.ViewHolderViewHolder(row.root) {
funfun bindTo(event: EventEvent) {

BINDING YOUR DATA

350

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DataBind/src/main/java/com/commonsware/jetpack/samplerj/databind/EventViewHolder.java

row.elapsedSeconds = (event.timestamp - startTime) / 1000
row.event = event
row.executePendingBindings()

}
}

(from DataBind/src/main/java/com/commonsware/jetpack/sampler/databind/EventViewHolder.kt)

We also call executePendingBindings() on the RowBinding. This is needed when
populating items in a RecyclerView, to ensure that those binding expressions are
evaluated and applied immediately rather than a bit later. In cases not involving
RecyclerView, though, it is usually safe to skip the executePendingBindings() call.

Getting the Root View

When we chain to the superclass constructor in a RecyclerView.ViewHolder, we
need to pass the View that is the UI for that particular bit of UI that the ViewHolder
is managing. To get the root view of a layout associated with a binding object, call
getRoot() on the binding object, as we do with view binding. That’s what
EventViewHolder does, passing the getRoot() results to the
RecyclerView.ViewHolder constructor.

Results

Visually, this app is the same as before. Functionally, the app is the same as before.
And, from a code complexity standpoint, the app is probably worse than before, as
we went through a lot of work just to avoid calling findViewById() and setText() a
few times.

Why Bother?
Some Android experts love data binding. Others hate it. Compared to a lot of things
in Android app development, opinions of data binding are wide and varied.

Developers that love data binding seem to focus a lot on the “separation of concerns”
that data binding helps to enforce. Your Java/Kotlin code can stop thinking about
widget details quite so much, with a lot of that code moving to the layout resources.

Detractors point out that:

• Data binding slows down the build process, as there is more code generation

BINDING YOUR DATA

351

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DataBind/src/main/java/com/commonsware/jetpack/sampler/databind/EventViewHolder.kt

that needs to go on, far more than simple view binding
• Data binding can be difficult to debug, as more code is hidden from view,

buried in data binding expressions and generated classes
• Data binding adds a bit more bloat to a project, adding three libraries and

these generated classes, where the user gains very little from the results —
view binding is smaller

Google promotes data binding as part of the Jetpack. However, whereas some
aspects of Jetpack are nearly unavoidable, data binding is optional. You can use it if
you like or skip it if you like.

The Major “Gimme the Views” Options
We have seen both data binding and view binding as ways of interacting with the
widgets in our layout resources.

Believe it or not… there are others, though in general they are no longer
recommended.

findViewById()findViewById()

The original solution, dating back to Android 1.0, is a method called
findViewById(). This method is available on Activity, View, and ViewGroup. You
pass in a widget resource ID (R.id.whatever) and it returns the first View that it
finds that matches that ID… or null if it fails to find something:

valval button = findViewById<ButtonButton>(RR.id.whatever)

The problem is that there is no validation on the widget ID that you supply. So,
while we like to pretend that findViewById() will always return our desired widget,
that is based on some assumptions:

• The widget ID is valid for this context — for example, you did not provide a
widget ID from Layout A to a findViewById() call that is tied to something
that instead inflated Layout B

• The layout is already inflated by this point — a mistake many early Android
developers made was to call findViewById() before setContentView(), for
example

The compiler will let you call findViewById() on any View or ViewGroup passing in

BINDING YOUR DATA

352

any R.id resource… even if there is no possible way that a widget with that ID will be
found. Most of the time, you will know what widget IDs to use in what
circumstances and will create valid findViewById() calls. Sometimes, though, you
will make mistakes… and then it comes down to testing as to whether or not you
catch those mistakes before they start affecting users. View binding helps to
eliminate that risk.

As a result, findViewById() is available but is no longer recommended for most
developers. What view binding and data binding do is give us code-generated classes
that limit our findViewById() usage to cases that are far more likely to succeed.

Kotlin Synthetic Accessors

Kotlin synthetic accessors come “for free” simply by adding the kotlin-android-
extensions plugin to a module.

The effect is that we can add an import statement that references our layout
resource (import kotlinx.android.synthetic.main.activity_main.*, referencing
the activity_main resource). With that, we get properties for each of the named
widgets in the layout. Under the covers, generated code will perform the
findViewById() call for us.

The larger the project, though, the greater the risk is that you will use the wrong
imports. Once you start getting dozens or hundreds of layout resources, making sure
that you use the right imports starts to become a challenge. The compiler will be
very happy to let you use any import you want. However, if you try referencing a
widget from Layout X and you are really using Layout Y, it is likely that you will wind
up crashing with a NullPointerException somewhere along the line.

Also, this approach is only available for Kotlin code — it adds no value to a Java
project.

Most importantly, though, this plugin is deprecated by JetBrains as of Kotlin 1.4.20.
So, while Kotlin synthetic accessors were “the go-to” Kotlin solution as recently as
2018, they are no longer recommended, even by their developers.

BINDING YOUR DATA

353

Defining and Using Styles

Android offers styles and themes, filling the same sort of role that CSS does in Web
development. We have seen a little bit about themes, such as having a custom theme
that defines the core colors to be used by your app.

On the whole, styles and themes are powerful yet confusing tools in the Android
developer’s toolbox. The “confusing” aspect stems from documentation that has
ranged from “simply not existing” to “limited and mystifying” over the years. As
such, most Android app development seems to avoid styles and themes to the extent
possible, settling instead for directly configuring widgets in layout files. This works,
and for smaller projects it is perfectly reasonable. The larger the project, the greater
the likelihood is that you will benefit from using styles and themes, just as a larger
Web app is more likely than a smaller one to benefit from a well-designed set of CSS
stylesheets.

In this chapter, we will take a slightly “deeper dive” into styles and themes, exploring
how you can create your own and apply them to your app’s UI.

Styles: DIY DRY
The purpose of styles is to encapsulate a set of attributes that you intend to use
repeatedly, conditionally, or otherwise wish to keep separate from your layouts. The
primary use case is “don’t repeat yourself” (DRY) — if you have a bunch of widgets
that look the same, use a style to use a single definition for “look the same”, rather
than copying the look from widget to widget.

The CustomStyle sample module in the Sampler and SamplerJ projects is based off
of the previous InstanceState sample, where we are showing a list of lifecycle
events. In this edition of the sample, we will define and apply a style resource to

355

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/CustomStyle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/CustomStyle
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/CustomStyle
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/CustomStyle

some of the TextView widgets in the list rows.

Styles and themes are defined using a style resource. By convention, style resources
go in res/values/styles.xml, though the actual filename does not matter, so long
as it is in a values resource directory.

Our res/values/styles.xml defines two style resources. One, AppTheme, is our
custom application theme, and we will revisit it later in the chapter.

The other is CustomText:

<style<style name="CustomText">>
<item<item name="android:textColor">>?colorAccent</item></item>
<item<item name="android:textStyle">>italic</item></item>
<item<item name="android:fontFamily">>monospace</item></item>

</style></style>

(from CustomStyle/src/main/res/values/styles.xml)

In the next sections, we will explore more about what this style does and how we are
using it.

Elements of Style
There are a few elements to consider when working with style resources:

• Where do you put the style attributes to say you want to apply a style?
• What attributes can you define via a style?
• What values can those attributes have in a style definition?

The Locations Where We Use Styles

To indicate that we want to use a <style> to style a widget, we apply the style
attribute to the widget, with a reference to our style resource (e.g., @style/
CustomText). So, for example, our res/layout/row.xml resource uses
style="@style/CustomText" on the activityHash and viewmodelHash widgets, but
not the others:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"

DEFINING AND USING STYLES

356

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/CustomStyle/src/main/res/values/styles.xml

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="@dimen/content_padding">>

<TextView<TextView
android:id="@+id/activityHash"
style="@style/CustomText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="0x12345678" />/>

<TextView<TextView
android:id="@+id/viewmodelHash"
style="@style/CustomText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toBottomOf="@id/activityHash"
tools:text="0x90ABCDEF" />/>

<androidx.constraintlayout.widget.Barrier<androidx.constraintlayout.widget.Barrier
android:id="@+id/barrier"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginEnd="4dp"
android:layout_marginStart="4dp"
app:barrierDirection="start"
app:constraint_referenced_ids="activityHash,viewmodelHash" />/>

<TextView<TextView
android:id="@+id/timestamp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="01:23" />/>

<TextView<TextView
android:id="@+id/message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceLarge"
app:layout_constraintBottom_toBottomOf="parent"

DEFINING AND USING STYLES

357

app:layout_constraintEnd_toStartOf="@id/barrier"
app:layout_constraintStart_toEndOf="@id/timestamp"
app:layout_constraintTop_toTopOf="parent"
tools:text="onDestroy()" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from CustomStyle/src/main/res/layout/row.xml)

If you apply the style attribute to a widget, if affects only that widget.

The style attribute can be applied to a container, to affect that container. However,
doing this does not automatically style widgets that reside inside of the container.

You can also apply a style to an activity or an application as a whole… in the form of
a theme. We will explain the differences more a bit later in this chapter.

The Available Attributes

When styling a widget or container, you can apply any of that widget’s or container’s
attributes in the style itself. So, if it shows up in the “XML Attributes” or “Inherited
XML Attributes” portions of the Android JavaDocs, or it shows up in the Attributes
pane of the Android Studio graphical layout designer, you can put it in a style.

If we go back to CustomText, we will see that our style has three <item> elements,
identifying three attributes that we wish to control:

<style<style name="CustomText">>
<item<item name="android:textColor">>?colorAccent</item></item>
<item<item name="android:textStyle">>italic</item></item>
<item<item name="android:fontFamily">>monospace</item></item>

</style></style>

(from CustomStyle/src/main/res/values/styles.xml)

Note that Android will ignore invalid styles. If you put an attribute in a style that is
unused by something that you apply the style to, the attribute is ignored. It does not
crash the app. It so happens that TextView has android:textColor,
android:textStyle, and android:fontFamily attributes, to control the text color,
style (bold, italic, etc.) and font (e.g., monospace) respectively. If we applied this
style to the ConstraintLayout at the root of row.xml, all three style attribute values
would be ignored, as a ConstraintLayout does not have a text color, style, or font.

Also, while layout directives, such as android:layout_width, can be put in a style,

DEFINING AND USING STYLES

358

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/CustomStyle/src/main/res/layout/row.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/CustomStyle/src/main/res/values/styles.xml

usually they are not. Styles tend to be limited to other aspects of look-and-feel:
colors, fonts, etc.

The Possible Values

Sometimes, the value that you will give those attributes in the style will be some
constant, like 30sp or #FFFF0000.

Sometimes, the value will appear to be string, but in reality it is one of a limited
number of possible “enumerated” values. For example, android:textStyle supports
italic as a value, as the sample project is using in CustomText. It does not support
aeroasdfasdf as a value.

Sometimes, the value will be a reference to a resource, such as @dimen/
standard_padding or @color/really_red.

Sometimes, though, you want to perform a bit of indirection — you want to apply
some other attribute value from the theme you are inheriting from. In that case, you
will wind up using the somewhat cryptic ? and ?android:attr/ syntax.

For example, the android:textColor attribute in the CustomText style does not have
a value of #D81B60 or @color/colorAccent, even though both of those are the color
that we actually wind up applying. Instead, android:textColor has ?colorAccent.
This says “go find the colorAccent value defined for our theme and use it here too”.
Our theme is AppTheme, and it has a colorAccent value:

<style<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">>
<!-- Customize your theme here. -->
<item<item name="colorPrimary">>@color/colorPrimary</item></item>
<item<item name="colorPrimaryDark">>@color/colorPrimaryDark</item></item>
<item<item name="colorAccent">>@color/colorAccent</item></item>

</style></style>

(from CustomStyle/src/main/res/values/styles.xml)

This way, if we change the theme’s colorAccent, we also change the
android:textColor of CustomText to match.

DEFINING AND USING STYLES

359

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/CustomStyle/src/main/res/values/styles.xml

The Results

We applied the CustomText style to two of our four TextView widgets, so those two
are now red italic monospace:

Figure 157: CustomStyle App, Showing CustomText Style

Themes: Would a Style By Any Other Name…
Themes are styles applied to an activity or application, via an android:theme
attribute on the <activity> or <application> element. They affect properties that
apply to the entire activity, such as the default colors to use. They also can define
default attributes to use for widgets used by that activity, without manually applying
style attributes to those widgets.

The CustomTheme sample module in the Sampler and SamplerJ projects is a variation
of the preceding sample, where we want to make TextView widgets display red italic
monospace text. This time, though, we are going to work with our AppTheme style
resource as a theme.

DEFINING AND USING STYLES

360

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/CustomTheme
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/CustomTheme
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/CustomTheme
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/CustomTheme

The Locations Where We Apply a Theme

A theme usually is applied via an android:theme attribute in the manifest. If you
apply it to an <activity>, that activity will use the designated theme. If you apply it
to an <application>, that theme will be used for all activities in the app… except for
any that override it with their own android:theme attribute.

If the theme you are applying is your own, just reference it as @style/..., just as you
would in a style attribute of a widget (e.g., @style/AppTheme). This includes themes
defined in libraries that you are using (@style/Theme.AppCompat.Dialog). If the
theme you are applying, though, comes from Android, typically you will use a value
with @android:style/ as the prefix, such as @android:style/
Theme.Material.Dialog or @android:style/Theme.Material.Light.

So, our sample app uses android:theme on the <application>, pointing to
AppTheme:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.jetpack.sampler.theme"

xmlns:android="http://schemas.android.com/apk/res/android">>

<application<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">>
<activity<activity android:name=".MainActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from CustomTheme/src/main/AndroidManifest.xml)

The Theme Declaration

Themes are just style resources.

DEFINING AND USING STYLES

361

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/CustomTheme/src/main/AndroidManifest.xml

So, our AppTheme appears in res/values/styles.xml alongside CustomText, though
with slight alterations from what we used in the previous sample:

<resources><resources>

<!-- Base application theme. -->
<style<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">>

<!-- Customize your theme here. -->
<item<item name="colorPrimary">>@color/colorPrimary</item></item>
<item<item name="colorPrimaryDark">>@color/colorPrimaryDark</item></item>
<item<item name="colorAccent">>@color/colorAccent</item></item>
<item<item name="android:textViewStyle">>@style/CustomText</item></item>

</style></style>

<style<style name="CustomText" parent="android:Widget.Material.TextView">>
<item<item name="android:textColor">>?colorAccent</item></item>
<item<item name="android:textStyle">>italic</item></item>
<item<item name="android:fontFamily">>monospace</item></item>

</style></style>

</resources></resources>

(from CustomTheme/src/main/res/values/styles.xml)

The Parent, and an AppCompat Recap

Any style resource can have a parent attribute. This is an inheritance model:
anything using the style resource gets the attributes defined both directly in that
style resource plus any defined by its parent.

A theme always has a parent, and that parent should be another theme. There are
hundreds, if not thousands, of attributes to be configured on a theme, so you want
to inherit the vast majority of them. AppTheme is declared to have
Theme.AppCompat.Light.DarkActionBar as its parent, so the activity in this app will
not only get the attributes defined directly in AppTheme but all the attributes defined
by Theme.AppCompat.Light.DarkActionBar.

Theme.AppCompat.Light.DarkActionBar is part of the AppCompat system. If you
have an activity that extends AppCompatActivity — as all of the ones in this book do
— that activity must use a theme that inherits from Theme.AppCompat.
Theme.AppCompat.Light.DarkActionBar itself inherits from Theme.AppCompat, so
AppTheme indirectly inherits from Theme.AppCompat.

DEFINING AND USING STYLES

362

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/CustomTheme/src/main/res/values/styles.xml

The Style Override

A theme can have attributes that override ones defined in parents. Theme.AppCompat
declares colorPrimary, colorPrimaryDark, and colorAccent attributes — AppTheme
overrides them and provides the values that should be used in the app.

One particular class of attributes defined in parents are references to style resources
that should be used to style particular types of widgets. For example,
android:textViewStyle says “this is the style resource that should be used for all
TextView widgets”. AppTheme has this attribute and points it to CustomText, so now
the CustomText defines the default look for all TextView widgets used in activities
that use AppTheme.

However, we now have to consider the parent of a regular (non-theme) style. When
we use a style attribute to apply a style resource to a widget, the attributes defined
in the style are used to override those from the default style for the type of widget,
such as TextView. The CustomStyle sample module did not have a parent for
CustomText, and the three attributes defined by CustomText would override
whatever the defaults are for TextView. However, in the CustomTheme project,
CustomText is the default, courtesy of it being applied via android:textViewStyle.
As a result, we need CustomText to have values for all relevant attributes, mostly
through inheritance from some parent. There are three major possibilities for the
parent value for an AppCompat project like this one:

• If there is an AppCompat style for that widget (e.g.,
Widget.AppCompat.Button), use it as the parent

• If there is no AppCompat style, and the project has a minSdkVersion of 21 or
higher, look for a Material style for that widget, such as the
android:Widget.Material.TextView parent used here (the android: prefix
is because Widget.Material.TextView comes from the framework, while
Widget.AppCompat.Button or Theme.AppCompat.Light.DarkActionBar
comes from a library)

• If there is no AppCompat style, and the project has a lower minSdkVersion
than 21… the story gets very complicated and is well outside the scope of this
book

The Result

Since our CustomText is now being applied by default for all TextView widgets, our
row can go back to having no style attributes:

DEFINING AND USING STYLES

363

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="@dimen/content_padding">>

<TextView<TextView
android:id="@+id/activityHash"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="0x12345678" />/>

<TextView<TextView
android:id="@+id/viewmodelHash"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toBottomOf="@id/activityHash"
tools:text="0x90ABCDEF" />/>

<androidx.constraintlayout.widget.Barrier<androidx.constraintlayout.widget.Barrier
android:id="@+id/barrier"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginEnd="4dp"
android:layout_marginStart="4dp"
app:barrierDirection="start"
app:constraint_referenced_ids="activityHash,viewmodelHash" />/>

<TextView<TextView
android:id="@+id/timestamp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:text="01:23" />/>

<TextView<TextView
android:id="@+id/message"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

DEFINING AND USING STYLES

364

android:textAppearance="?android:attr/textAppearanceLarge"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toStartOf="@id/barrier"
app:layout_constraintStart_toEndOf="@id/timestamp"
app:layout_constraintTop_toTopOf="parent"
tools:text="onDestroy()" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from CustomTheme/src/main/res/layout/row.xml)

Moreover, our red italic monospace look will be applied to all four TextView widgets
in the row, not just the two that we manually specified in the CustomStyle sample:

Figure 158: CustomTheme Sample, As Initially Launched

Android 10 Dark Mode
Android 10 offers a system-level option to enable “dark mode”. In dark mode, light
UI backgrounds get flipped to dark ones. This primarily affects system UI, but apps
can elect to react to this change as well, or otherwise support a dark theme for their
apps.

DEFINING AND USING STYLES

365

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/CustomTheme/src/main/res/layout/row.xml

Partly, this is for the user experience. People using their devices at night can do so
more easily if the UI is darker and therefore offers less glare. This is why navigation
apps often switch into a dark mode at different points (e.g., when ambient light
seems to be low), so drivers do not have this bright light shining at them constantly.
Also, some users may have visual impairments or other conditions where such glare
is a bigger problem than for other people. Plus, with some types of modern displays,
black pixels consume less power.

Users can switch to dark mode via the Settings app and the “Dark theme” option in
the Display screen:

Figure 159: Dark Theme in Settings

DEFINING AND USING STYLES

366

The user can also add a tile to the notification shade to be able to rapidly toggle
between normal and dark modes:

Figure 160: Dark Theme Tile

There are three main ways of handling dark mode in your app, besides ignoring it
entirely.

The Dark-All-The-Time Solution

The simplest solution for supporting dark mode is simply to always have a dark
theme. This means you have just one theme with one set of colors and artwork, to
minimize the work of graphic designers. The user gets the benefits all the time, and
the dark theme benefits users across Android versions (not just Android 10 users).

The System Override Solution

You could try to cheat a bit and have the system create a dark theme for you on the
fly. For that, add this entry to the <style> element for your custom theme:

<item<item name="android:forceDarkAllowed">>true</item></item>

DEFINING AND USING STYLES

367

Then, on Android 10 and higher devices, the system will examine your UI and swap
colors to try to make the app appear dark. It even has the smarts to determine
whether an ImageView appears to be containing an icon (that might be converted) or
a photo (that should not be converted).

So, in the default mode, you might have:

Figure 161: Sample App, in Normal Mode

DEFINING AND USING STYLES

368

…while if the user opts into the dark mode, android:forceDarkAllowed="true" will
give the user:

Figure 162: Sample App, in Force-Dark Mode

This is quick and easy. However:

• You do not have any control over the color substitutions, which may make
your designers unhappy

• Some things may get converted by accident, requiring you to add
android:forceDarkAllowed="false" to individual widgets to get them to be
left alone

• This only works on Android 10 and higher, so you will have different
behavior by OS version

The DayNightDayNight Solution
Google’s preferred solution is for you to use a theme that adapts based upon
whether the device is in dark mode or not. That way, you can have a light theme
“normally” while having a dark theme in dark mode.

DEFINING AND USING STYLES

369

In particular, AppCompat supports this via its DayNight theme family. The basic
recipe is:

• Change your theme’s parent theme to Theme.AppCompat.DayNight (or to
some other theme that extends Theme.AppCompat.DayNight).

• Define alternative colors, icons, and other resources in -night resource sets.
For example, your regular (“day”) colors might be in res/values/
colors.xml, while the “night” colors might be in res/values-night/
colors.xml. If you use the same name for the individual resources (e.g.,
primary), Android will choose the proper value to use depending on
whether dark mode is enabled.

You can learn more about the DayNight option in the "Dark
Mode" chapter of Elements of Android Q!

The Material Components for Android
The example shown in this chapter uses a theme based on Theme.AppCompat. All of
the sample apps in the Sampler and SamplerJ projects use themes based on
Theme.AppCompat.

However, HelloWorld and HelloWorldJ do not. As we saw earlier in the book, those
samples use a theme based on something called Theme.MaterialComponents.

This comes from a library known as the Material Components for Android.
Principally, this library offers a series of widgets that implement some of the UI
components seen in Material Design, from bottom navigation bars to snackbars to
“FABs” (floating action buttons). This library also uses a different theme system that
uses a different set of color names.

In the author’s opinion, the Material Components for Android represents a fine
library for experienced Android developers, but it is a poor choice for newcomers.
That is why the book continues to use Theme.AppCompat — the results that you get
are more in line with what documentation and other existing written material
covers.

Note, though, that the Android Studio new-project wizard will create a project that
uses the Material Components for Android. To switch to AppCompat:

DEFINING AND USING STYLES

370

https://commonsware.com/Q
https://github.com/material-components/material-components-android
https://github.com/material-components/material-components-android
https://github.com/material-components/material-components-android
https://commonsware.com/blog/2020/11/14/poor-default-why-button-does-not-work.html

• Replace the theme and its colors with ones from an AppCompat-based
project, such as one from this book

• Remove com.google.android.material:material from your module’s list of
dependencies (as you will no longer be needing it)

ContextContext Anti-Pattern: Using ApplicationApplication
Everywhere
We covered the Application implementation of Context earlier in the book. There,
we saw that an Application is a process-wide singleton, so we cannot somehow leak
it by holding some reference to it. In effect, it is pre-leaked for us.

Some might wonder why we would ever need any other type of Context. If we need
Context for so many things, and we have this one Context that is available all the
time… why not use it for everything?

The details are a bit complicated. The fundamental rule is fairly simple, though:
never use Application for anything involving the UI, as it may not apply styles and
themes correctly.

When it comes time to inflate layouts, we need a LayoutInflater that is aware of
the styles and themes to use — otherwise, whatever we requested in those styles and
themes will be ignored. But the theme might be specified on a per-activity basis.
Right now, we have been looking at apps with a single activity, but it is possible —
perhaps even likely — that your app will have more than one activity. Those
activities might have different themes. If we get our LayoutInflater from an
Activity, it will take the theme into account. If we get our LayoutInflater from the
Application, it will not, as the Application has no idea where and how the
LayoutInflater will be used.

Using Application for non-UI concerns, such as for working with files or databases,
is reasonable, as there Application is as good as Activity or any other kind of
Context. You do not have to go out of your way to use Application in general, but if
you have your own singletons that need a Context, Applications will help to avoid
memory leaks.

So, use Application:

• If you need a long-lived Context, and
• That Context is not going to be used for setting up your UI

DEFINING AND USING STYLES

371

Configuring the App Bar

Each of our apps’ activities has had this green bar across the top:

Figure 163: Activity, Highlighting Some Sort of Bar

To date, all it has done is show our title (app_name string resource). However, there is
more that we can do with this bar, and we will explore some of that in this chapter.

Our first problem, though, in deciding what this thing is called.

373

So. Many. Bars.
Many aspects of Android have changed over the years. For example, few Android 1.x/
2.x apps had this sort of bar at the top.

Sometimes, when Android changes, Google simply adds some new capability or
design feature, and that’s it. Sometimes, Google does one thing, then changes course
and replaces it with something else. And, on occasion, Google makes so many
changes that the result is quite a mess.

This bar is quite a mess.

Part of it is simply the name. Depending on who you ask, this bar could be referred
to as:

• the action bar
• a toolbar
• an app bar
• a string of profanities, though usually these describe the developer’s

relationship with this bar and do not actually name the bar itself

Action Bar

In the beginning, we referred to this as the “action bar”. Activity and other classes
had support for showing an action bar and doing things with it, such as dynamically
changing the title shown in the bar.

Nowadays, “action bar” is more of a role than an actual thing. We can opt into using
the action bar APIs, or we can achieve similar functionality without them.

Toolbar

The “action bar” terminology dominated Android 3.x and 4.x.

Android 5.0 debuted a Toolbar class. Initially, it was thought that the Toolbar was
simply a bit of refactoring, giving us a widget that looked and worked like the action
bar. The nice thing about Toolbar was that you could put one anywhere you wanted
in your UI, making it simpler to add dedicated toolbars, such as for a rich-text
editor.

CONFIGURING THE APP BAR

374

Over time, Toolbar became the stock implementation of this sort of top-of-the-
activity bar.

From a terminology standpoint, we have used “toolbar” as a descriptive term for
quite some time, as “toolbar” is a widely-used term in desktop apps. A desktop app
toolbar served a very similar role to the action bar in Android, and then the Toolbar
in Android. So, you might see references to “toolbar buttons” in Android, which
really refer to that sort of UI pattern, regardless of whether those buttons appear on
an actual Toolbar or not.

App Bar

In 2015, Google debuted “Material Design”. This is Google’s “design language” for
mobile, Web, and desktop apps. It provides Google’s recommendations for what
things should look and work like.

In Material Design, this bar is called the app bar, because apparently Google likes
coming up with new names for this.

The Material Design team has also created “Material Components for Android”,
which is a library that implements many of the UI patterns seen in Material Design
that go beyond what modern versions of Android support directly. There, they have
classes like AppBarLayout and CollapsingToolbarLayout, for trying to implement
some of the specific Material Design recommendations regarding app bars, such as
how they behave with respect to scrolling content in an activity.

Bars and This Book

From this point forward, the book will tend to use:

• Toolbar, in monospace, when referring to the actual Toolbar class
• “App bar”, when referring to the concept of this bar
• “Action bar”, when referring to that specific role
• “toolbar buttons”, when referring to the icons that can appear in this bar that

the user can tap on to perform actions

(the book will use few profanities, no matter how appropriate they may be for
aspects of Android app development)

CONFIGURING THE APP BAR

375

https://material.io/
https://material.io/design/components/app-bars-top.html
https://github.com/material-components/material-components-android

Bars Beyond These Bars

There are other bars in the Android UI that are unrelated to the app bar:

• The status bar is the thin strip across the top containing the time and
various icons for device status

• The navigation bar is the strip across the bottom that provides the HOME
button and — depending on Android version and situation — buttons for
BACK and RECENTS (the latter of which brings up the overview screen)

Vector Drawables
Frequently, the app bar contains toolbar buttons, such as the refresh one shown
below:

Figure 164: App Bar, Showing Highlighted Toolbar Button

We could use PNG images for these. However, typically, icons like this one are
implemented using vector drawables. These are drawn dynamically, so we do not
need different versions of vector drawables for different screen densities, the way
that we do with PNGs. Plus, Google supplies us with a library of existing vector

CONFIGURING THE APP BAR

376

artwork that we can use, in addition to importing SVG files from elsewhere, such as
from a graphic designer.

Starting the Vector Asset Wizard

To add a vector drawable to your app — either from Google-supplied artwork or
SVGs — you can use the Vector Asset Wizard. You can start this by right-clicking
over anything in your module’s portion of the project tree in Android Studio, then
choosing “New” > “Vector Asset” from the context menu.

This will bring up the Vector Asset Wizard on its first page:

Figure 165: Android Studio Vector Asset Wizard, First Page

CONFIGURING THE APP BAR

377

Using Built-In Vector Artwork

By default, the wizard starts off with the “Asset Type” radio buttons set to “Clip Art”,
allowing you to choose an icon from a Google-supplied library. The default icon is
the Android mascot (“Bugdroid”), but you can click the button next to “Clip Art” to
bring up the catalog of available artwork:

Figure 166: Android Studio Vector Asset Wizard, Icon Selector

Here you can:

• Search via the search field in the upper left;
• Browse all of the icons, by choosing “All” in the list on the left and scrolling

through the icons; or
• Browse a category of the icons, by choosing anything other than “All” in the

list on the left and scrolling through the chosen category of icons

CONFIGURING THE APP BAR

378

Once you have identified the icon that you want, you can click OK to return to the
wizard, with your icon selected:

Figure 167: Android Studio Vector Asset Wizard, First Page, Showing Refresh Icon

An icon name will be filled in for you in the “Name” field, though you can change
that if you wish. Similarly, you can override:

• The size of the icon (default is 24dp by 24dp)
• The color of the icon (default is black)
• The opacity of the icon, to control the color’s alpha channel (default is

opaque)
• Whether the icon should be flipped on RTL screens or should remain

unchanged

You can then click Next, followed by “Finish”, to add the vector drawable to the res/
drawable/ directory of your module.

Importing SVGs

If you have a vector image in SVG or PSD format from a graphic designer, you can try
to use it. Android’s vector drawables implement a subset of SVG, and some SVGs will

CONFIGURING THE APP BAR

379

be too complex for Android to support.

To use an existing SVG file, rather than browse the existing icons, choose “Local file
(SVG, PSD)” in the “Asset Type” radio buttons in the first page of the Vector Asset
Wizard:

Figure 168: Android Studio Vector Asset Wizard, First Page, Showing “Local file”
Option

CONFIGURING THE APP BAR

380

You can click the “…” button next to the “Path” field to browse for your SVG or PSD
file. After choosing the file, the Vector Asset Wizard will load it and give you some
idea of whether or not it will work. Specifically, if the preview does not look
promising, or you get warnings, that particular file may not work well as a vector
drawable:

Figure 169: Android Studio Vector Asset Wizard, First Page, Showing Problems

Beyond that, though, you can override the size, opacity, and RTL settings, then
proceed through the rest of the wizard to create the vector drawable.

Menu Resources
The next step in configuring the app bar is to set up a menu resource to reflect the
clickable items that should appear in the app bar, such as toolbar buttons.

CONFIGURING THE APP BAR

381

Why “Menu”?

Back in the dawn of Android time, referred to by some as “2007”, we had options
menus. These would rise up from the bottom of the screen based on the user
pressing a MENU key:

Figure 170: Legacy Options Menu

When Google introduced the action bar pattern with Android 3.0 in 2011, they used
the old options menu system and simply changed its UI. So, you will see references
to an “options menu” in our work with the action bar, as this is all based on that
original 2011 implementation of the action bar.

Similarly, the options menu was populated using a menu resource. The action bar
adopted the menu resource and extended it for its own purposes. Today, Toolbar
continues to use menu resources, even though we might not think of our work
involving a “menu” anymore.

Defining Menu Resources

Menu resources are “first-class” resources, like layouts, drawables, and mipmaps.
They get their own dedicated res/menu/ directory and have their own dedicated

CONFIGURING THE APP BAR

382

Android Studio editor.

Creating the res/menu/res/menu/ Directory

However, when you create a brand-new Android Studio project, you may not have a
res/menu/ directory in your module.

Since this is an ordinary directory in an ordinary filesystem, you can create this
directory by any means that you like, such as your development machine’s “file
manager”, or via a mkdir command on the command line.

Inside of Android Studio, you have two main options for creating this directory. The
simple one is to right-click over the res/ directory of your module, then choose
“New” > “Directory” from the context menu. This will pop up a dialog where you can
provide your directory name — if you fill in menu and accept the dialog, it will create
the menu/ subdirectory under res/ for you.

The more elaborate solution is to right-click over any directory in your module and
choose “New” > “Android Resource Directory” from the context menu. This brings
up a “New Resource Directory” dialog:

Figure 171: Android Studio New Resource Directory Dialog

CONFIGURING THE APP BAR

383

There, you can choose “menu” in the “Resource type” drop-down, then click “OK” to
create the res/menu/ directory. This dialog also allows you to create directories for
resource sets via the “Available qualifiers” list, and it has a few other “bells and
whistles”, but in the end, it just creates a directory.

Creating the Menu Resource

Once you have the res/menu/ directory, you can create an empty menu resource.

In Android Studio, that is a matter of:

1. Right-clicking over your res/menu/ directory
2. Choosing “New” > “Menu resource file” from the context menu, to bring up a

simple “New Menu Resource File” dialog
3. Entering the base name of the resource (e.g., actions) into the dialog
4. Clicking “OK” to close the dialog and create the nearly-empty resource

You will wind up with a menu resource based on your chosen name (e.g.,
actions.xml) with an empty <menu> root element:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android">>

</menu></menu>

CONFIGURING THE APP BAR

384

Adding Menu Items

The menu resource editor works like the graphical layout editor. You can either work
with the XML directly or use the drag-and-drop GUI builder. The drag-and-drop
GUI builder has the same basic structure as does the layout editor, with a palette, a
component tree, a preview area, and an attributes pane:

Figure 172: Android Studio Menu Resource Editor, Design Sub-Tab

CONFIGURING THE APP BAR

385

While there are several items in the “Palette” tool, mostly you will be working with
“Menu Item” elements. You can drag them from the “Palette” into the “Component
Tree” or preview area to add them to the menu resource:

Figure 173: Android Studio Menu Resource Editor, With Added Menu Item

The “Attributes” pane will then allow you to manipulate the menu item’s attributes
— we will explore this more in an upcoming section.

Using ToolbarToolbar Directly
So, let’s see how we can use vector drawables and menu resources to add interactive
elements to the app bar. First, we will look at how to do this using Toolbar directly
as a widget.

The Toolbar sample module in the Sampler and SamplerJ projects are a variation on
the show-a-list-of-random-colors ViewModel sample from earlier in the book. Most
of the changes are tied to using Toolbar, but if you examine the full modules, you
will see that this sample also blends in the instance state management — using
ViewModelProvider.Factory — that we saw in some of show-a-list-of-lifecycle-
events samples.

CONFIGURING THE APP BAR

386

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/Toolbar
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/Toolbar
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/Toolbar
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/Toolbar

Adding the Widget

We can add a Toolbar to our layout, positioning it wherever we want. Typically, it
appears at the top of the activity, but that is not a requirement.

So, the Toolbar project edition of the activity_main layout has a Toolbar above the
RecyclerView, wrapped in the ConstraintLayout:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">>

<androidx.appcompat.widget.Toolbar<androidx.appcompat.widget.Toolbar
android:id="@+id/toolbar"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:background="?attr/colorPrimary"
app:theme="?attr/actionBarPopupTheme"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<androidx.recyclerview.widget.RecyclerView<androidx.recyclerview.widget.RecyclerView
android:id="@+id/items"
android:layout_width="0dp"
android:layout_height="0dp"
android:padding="@dimen/content_padding"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toBottomOf="@id/toolbar" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from Toolbar/src/main/res/layout/activity_main.xml)

Usually, the app bar is set to be flush with the status bar and the sides of the screen.
So, whereas the ViewModel sample had 8dp of padding in the ConstraintLayout, this
sample moves that padding to the RecyclerView, so the Toolbar is not inset from
the edges.

CONFIGURING THE APP BAR

387

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Toolbar/src/main/res/layout/activity_main.xml

The Toolbar has attributes that mostly set up the size and position. A simple
Toolbar can use wrap_content for the height, and it will be sized appropriately for
toolbar buttons and such. android:background allows you to specify the
background color, and here we defer to the theme and use whatever we have set
there as colorPrimary (?attr/colorPrimary). We will explore the app:theme
attribute more in the next section.

Tailoring the Theme

The theme used by prior sample projects in this book was based on
Theme.AppCompat.Light.DarkActionBar. As the name suggests, this adds an action
bar to the top of the activity, with an eye towards it having a dark color, so text will
be shown in white for a good contrast.

The problem is that we do not want an action bar. We have our own Toolbar that we
want to show instead.

The theme has no way of knowing this, and so by default, we would wind up with
two app bars, stacked on top of each other:

Figure 174: Action Bar and Toolbar, Stacked

CONFIGURING THE APP BAR

388

This is… not good.

There is another base theme, Theme.AppCompat.Light.NoActionBar, which skips the
theme-supplied action bar, leaving it up to us. So, the Toolbar sample modules use
that base theme instead:

<resources><resources>

<!-- Base application theme. -->
<style<style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">>

<!-- Customize your theme here. -->
<item<item name="colorPrimary">>@color/colorPrimary</item></item>
<item<item name="colorPrimaryDark">>@color/colorPrimaryDark</item></item>
<item<item name="colorAccent">>@color/colorAccent</item></item>
<item<item name="actionBarPopupTheme">>@style/PopupOverlay</item></item>

</style></style>

<style<style name="PopupOverlay" parent="ThemeOverlay.AppCompat.Dark.ActionBar">>
<item<item name="iconTint">>@android:color/white</item></item>

</style></style>

</resources></resources>

(from Toolbar/src/main/res/values/styles.xml)

The next problem is that the stock look of a Toolbar assumes that the background
color will be light, and so we want dark text and icons on it. In our case, the
background color is relatively dark, and so we would prefer light text and icons. This
is a bit tricky to set up. One recipe is:

• Define a style resource that inherits from
ThemeOverlay.AppCompat.Dark.ActionBar (here called PopupOverlay)

• In that style resource, define the iconTint to be whatever color you want —
in this case, we are using @android:color/white to pull in a framework-
defined white color

• In the theme for the activity (AppTheme in our case), define an
actionBarPopupTheme attribute and have it point to the style resource that
you just created

• Give the Toolbar an app:theme attribute that delegates to the theme’s
actionBarPopupTheme (app:theme="?attr/actionBarPopupTheme")

ThemeOverlay.AppCompat.Dark.ActionBar will give us light text, and white for the
iconTint will give us light icons.

CONFIGURING THE APP BAR

389

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Toolbar/src/main/res/values/styles.xml

Defining the Menu Resource

The sample app has a menu resource, res/menu/actions.xml, that contain
interactive elements that will go into the Toolbar:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto">>

<item<item
android:id="@+id/refresh"
android:title="@string/menu_refresh"
android:icon="@drawable/ic_refresh_black_24dp"
app:showAsAction="ifRoom" />/>

<item<item
android:id="@+id/about"
android:title="@string/menu_about"
app:showAsAction="never" />/>

</menu></menu>

(from Toolbar/src/main/res/menu/actions.xml)

CONFIGURING THE APP BAR

390

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Toolbar/src/main/res/menu/actions.xml

In the graphical menu editor, we see two children — refresh and about — of the
root menu in the “Component Tree”:

Figure 175: Android Studio Graphical Menu Editor, As Initially Opened

The preview area shows these items as well, though they appear differently due to
the way that each of those items is configured, as we will see.

Hey, Why Is the Preview Showing Dark Text and Icons?

In the above screenshot, the title (“Jetpack: Toolbar”) and the icons in the Toolbar
show up dark. The graphical menu editor attempts to use our app’s theme, but it has
limits, and in this case it is not picking up some of the changes that we made to the
theme.

In general, consider the Android Studio preview options to be approximations of
what you will see when you run the app on an emulator or device.

Refresh

One of our two menu items is called refresh, and we will use it to allow the user to

CONFIGURING THE APP BAR

391

come up with a new random list of colors:

<item<item
android:id="@+id/refresh"
android:title="@string/menu_refresh"
android:icon="@drawable/ic_refresh_black_24dp"
app:showAsAction="ifRoom" />/>

(from Toolbar/src/main/res/menu/actions.xml)

Figure 176: Android Studio Graphical Menu Editor, Showing refresh Details

Each interactive element in our Toolbar will have an <item> element inside of the
root <menu> element of our menu resource. Items always have:

• An ID, using the same android:id system that we use for widget IDs
• A title, via the android:title attribute, usually pointing to a string resource

Items usually have a showAsAction attribute. For AppCompat-based activities, that
should be app:showAsAction — if you see code with android:showAsAction, that is
a menu resource for use with the native framework action bar or Toolbar, not the
AppCompat-compatible Toolbar that we use from AndroidX. showAsAction has
three major options:

CONFIGURING THE APP BAR

392

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Toolbar/src/main/res/menu/actions.xml

• always, to say that we really want this item to be shown as a toolbar button
• ifRoom, to say that we would prefer it be shown as a toolbar button, but that

is not essential
• never, to say that this item is unimportant and does not need a dedicated

button in the Toolbar

Items that go into the Toolbar that do not wind up with toolbar buttons go into “the
overflow menu”. If you have used Android apps that have a vertical ellipsis (“…”) icon
in their app bars, where a menu pops open when you tap it… that’s the overflow
menu. In our case, the refresh item has ifRoom, so if there is space for it to have a
toolbar button, it will have one, otherwise it will go into the overflow.

For items that might be toolbar buttons, usually you will want to provide an
android:icon attribute with a pointer to a drawable resource. Here, we are using a
refresh icon from the Vector Asset Wizard, using a stock refresh vector asset that is
supplied by Google.

About

Our about menu item is not nearly as important, so we set it to have never for
showAsAction and skip the android:icon attribute:

<item<item
android:id="@+id/about"
android:title="@string/menu_about"
app:showAsAction="never" />/>

CONFIGURING THE APP BAR

393

(from Toolbar/src/main/res/menu/actions.xml)

Figure 177: Android Studio Graphical Menu Editor, Showing about Details

Populating the ToolbarToolbar

We have a Toolbar in our layout. We have a menu resource. We now need to tie the
two together. That requires a bit of code in onCreate() of our MainActivity,
whether that is in Java:

binding.toolbar.setTitle(R.string.app_name);
binding.toolbar.inflateMenu(R.menu.actions);

(from Toolbar/src/main/java/com/commonsware/jetpack/samplerj/toolbar/MainActivity.java)

…or Kotlin:

binding.toolbar.apply {
setTitle(RR.string.app_name)
inflateMenu(RR.menu.actions)

(from Toolbar/src/main/java/com/commonsware/jetpack/sampler/toolbar/MainActivity.kt)

(the Kotlin will appear to be missing a closing brace, but that is because there is

CONFIGURING THE APP BAR

394

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Toolbar/src/main/res/menu/actions.xml
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Toolbar/src/main/java/com/commonsware/jetpack/samplerj/toolbar/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Toolbar/src/main/java/com/commonsware/jetpack/sampler/toolbar/MainActivity.kt

more code in this apply() that we will see in the next section)

First, we get access to the Toolbar, either via findViewById() in Java or by using
synthetic accessors in Kotlin. Then, we call two functions on the Toolbar:

• setTitle() sets the title text — when we use a Toolbar manually like this,
we need to provide that value ourselves

• inflateMenu(), where we pass it an ID of our menu resource
(R.menu.actions)

Under the covers, inflateMenu() uses a MenuInflater to convert our menu resource
XML into Menu and MenuItem objects, which Toolbar will use to configure the
Toolbar contents and show our toolbar button and overflow menu:

Figure 178: Toolbar Sample, As Initially Launched on Android 9.0

CONFIGURING THE APP BAR

395

The overflow menu appears when you tap the “…” button in the Toolbar:

Figure 179: Toolbar Sample, Showing Overflow Menu Contents, on Android 9.0

Responding to Events

While our toolbar button and overflow menu are pretty, they are useless unless we
arrange to find out when the user clicks on our refresh and about items.

For that, we call setOnMenuItemClickListener() on the Toolbar:

binding.toolbar.setOnMenuItemClickListener(item -> {
ifif (item.getItemId() == R.id.refresh) {

vm.refresh();
adapter.submitList(vm.numbers);
returnreturn truetrue;

}
elseelse if (item.getItemId() == R.id.about) {

ToastToast.makeText(MainActivityMainActivity.this, R.string.msg_toast,
ToastToast.LENGTH_LONG).show();

returnreturn truetrue;
}
elseelse {

CONFIGURING THE APP BAR

396

returnreturn falsefalse;
}

});

(from Toolbar/src/main/java/com/commonsware/jetpack/samplerj/toolbar/MainActivity.java)

binding.toolbar.apply {
setTitle(RR.string.app_name)
inflateMenu(RR.menu.actions)

setOnMenuItemClickListener { item ->
whenwhen (item.itemId) {

RR.id.refresh -> {
vm.refresh()
colorAdapter.submitList(vm.numbers)
truetrue

}
RR.id.about -> {

ToastToast.makeText(
thisthis@MainActivity,
RR.string.msg_toast,
ToastToast.LENGTH_LONGLENGTH_LONG

).show()
truetrue

}
elseelse -> falsefalse

}
}

}

(from Toolbar/src/main/java/com/commonsware/jetpack/sampler/toolbar/MainActivity.kt)

Our lambda expression is passed the MenuItem object corresponding to the <item>
from our menu resource that the user tapped on. We can call getItemId() to
determine which <item> it was.

If they clicked refresh, we call a refresh() function on the revised ColorViewModel
that generates a fresh set of colors:

packagepackage com.commonsware.jetpack.samplerj.toolbarcom.commonsware.jetpack.samplerj.toolbar;

importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Randomjava.util.Random;
importimport androidx.lifecycle.SavedStateHandleandroidx.lifecycle.SavedStateHandle;
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel;

publicpublic classclass ColorViewModelColorViewModel extendsextends ViewModelViewModel {

CONFIGURING THE APP BAR

397

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Toolbar/src/main/java/com/commonsware/jetpack/samplerj/toolbar/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Toolbar/src/main/java/com/commonsware/jetpack/sampler/toolbar/MainActivity.kt

privateprivate staticstatic finalfinal StringString STATE_NUMBERS = "numbers";
ArrayListArrayList<IntegerInteger> numbers;
privateprivate finalfinal SavedStateHandleSavedStateHandle state;

publicpublic ColorViewModel(SavedStateHandleSavedStateHandle state) {
thisthis.state = state;
numbers = state.get(STATE_NUMBERS);

ifif (numbers == nullnull) {
numbers = buildItems();

}
}

void refresh() {
numbers = buildItems();
state.set(STATE_NUMBERS, numbers);

}

privateprivate ArrayListArrayList<IntegerInteger> buildItems() {
RandomRandom random = newnew RandomRandom();

ArrayListArrayList<IntegerInteger> result = newnew ArrayListArrayList<>(25);

forfor (int i = 0; i < 25; i++) {
result.add(random.nextInt());

}

returnreturn result;
}

}

(from Toolbar/src/main/java/com/commonsware/jetpack/samplerj/toolbar/ColorViewModel.java)

packagepackage com.commonsware.jetpack.sampler.toolbarcom.commonsware.jetpack.sampler.toolbar

importimport androidx.lifecycle.SavedStateHandleandroidx.lifecycle.SavedStateHandle
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport java.util.*java.util.*

privateprivate constconst valval STATE_NUMBERS = "numbers"

classclass ColorViewModelColorViewModel(privateprivate valval state: SavedStateHandleSavedStateHandle) : ViewModelViewModel() {
privateprivate valval random = RandomRandom()
varvar numbers = state.getget<ListList<IntInt>>(STATE_NUMBERSSTATE_NUMBERS) ?: buildItems()

funfun refresh() {
numbers = buildItems()
state.setset(STATE_NUMBERSSTATE_NUMBERS, numbers)

CONFIGURING THE APP BAR

398

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Toolbar/src/main/java/com/commonsware/jetpack/samplerj/toolbar/ColorViewModel.java

}

privateprivate funfun buildItems() = ListList(25) { random.nextInt() }
}

(from Toolbar/src/main/java/com/commonsware/jetpack/sampler/toolbar/ColorViewModel.kt)

We then update the ColorAdapter with the new colors, and it updates the list.

If the user clicked about, we show a Toast — in a real app, an “About” item would
bring up some screen that contains a copyright notice, license terms, version
information, and so on.

The lambda expression needs to return true if the item click was handled by the
lambda, or false if the item was not recognized for one reason or another.

Using ToolbarToolbar as the Action Bar
There is also an option for us to take the Toolbar from our layout and tell
AppCompatActivity to use it as the action bar. This has value in some cases, such as
when we start working with fragments in an upcoming chapter.

The ActionBar modules in the Sampler and SamplerJ projects are almost the same
as the Toolbar modules. We use the same layout, the same menu resource, and the
same theme. The difference lies in the Java/Kotlin code for setting up the Toolbar
and responding to events.

Registering the ToolbarToolbar

To indicate that a Toolbar should serve in the role of the action bar, call
setSupportActionBar() on your AppCompatActivity, supplying the Toolbar:

setSupportActionBar(binding.toolbar);

(from ActionBar/src/main/java/com/commonsware/jetpack/samplerj/actionbar/MainActivity.java)

setSupportActionBar(binding.toolbar)

(from ActionBar/src/main/java/com/commonsware/jetpack/sampler/actionbar/MainActivity.kt)

The action bar automatically gets the title from its activity’s android:label manifest
attribute, so you may not need to call setTitle() yourself on the Toolbar.

CONFIGURING THE APP BAR

399

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Toolbar/src/main/java/com/commonsware/jetpack/sampler/toolbar/ColorViewModel.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ActionBar
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ActionBar
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ActionBar
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ActionBar
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ActionBar/src/main/java/com/commonsware/jetpack/samplerj/actionbar/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ActionBar/src/main/java/com/commonsware/jetpack/sampler/actionbar/MainActivity.kt

Populating the Action Bar

Rather than call inflateMenu() on the Toolbar, the action bar reuses the old
onCreateOptionsMenu() callback function from the days of options menus. Your
AppCompatActivity subclass — such as MainActivity in the ActionBar samples —
will need to override this:

@Override
publicpublic boolean onCreateOptionsMenu(MenuMenu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

returnreturn supersuper.onCreateOptionsMenu(menu);
}

(from ActionBar/src/main/java/com/commonsware/jetpack/samplerj/actionbar/MainActivity.java)

overrideoverride funfun onCreateOptionsMenu(menu: MenuMenu): BooleanBoolean {
menuInflater.inflate(RR.menu.actions, menu)

returnreturn supersuper.onCreateOptionsMenu(menu)
}

(from ActionBar/src/main/java/com/commonsware/jetpack/sampler/actionbar/MainActivity.kt)

In onCreateOptionsMenu(), you:

• Get a MenuInflater by calling getMenuInflater() on the activity
• Call inflate() on the MenuInflater, passing in your menu resource ID

(R.menu.actions) and the Menu object supplied to onCreateOptionsMenu()
• Chain to the superclass’ implementation of onCreateOptionsMenu() and

return its results

Responding to Events

Similarly, instead of calling setOnMenuItemClickListener() on the Toolbar to find
out when the user clicks on items, you override the legacy
onOptionsItemSelected() function:

@Override
publicpublic boolean onOptionsItemSelected(MenuItemMenuItem item) {

ifif (item.getItemId() == R.id.refresh) {
vm.refresh();
adapter.submitList(vm.numbers);
returnreturn truetrue;

CONFIGURING THE APP BAR

400

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ActionBar/src/main/java/com/commonsware/jetpack/samplerj/actionbar/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ActionBar/src/main/java/com/commonsware/jetpack/sampler/actionbar/MainActivity.kt

}
elseelse if (item.getItemId() == R.id.about) {

ToastToast.makeText(MainActivityMainActivity.this, R.string.msg_toast,
ToastToast.LENGTH_LONG).show();

returnreturn truetrue;
}
elseelse {

returnreturn supersuper.onOptionsItemSelected(item);
}

}

(from ActionBar/src/main/java/com/commonsware/jetpack/samplerj/actionbar/MainActivity.java)

overrideoverride funfun onOptionsItemSelected(item: MenuItemMenuItem): BooleanBoolean {
returnreturn whenwhen(item.itemId) {

RR.id.refresh -> {
vm.refresh()
colorAdapter.submitList(vm.numbers)
truetrue

}
RR.id.about -> {

ToastToast.makeText(
thisthis@MainActivity,
RR.string.msg_toast,
ToastToast.LENGTH_LONGLENGTH_LONG

).show()
truetrue

}
elseelse -> supersuper.onOptionsItemSelected(item)

}
}

(from ActionBar/src/main/java/com/commonsware/jetpack/sampler/actionbar/MainActivity.kt)

This function does the same basic thing as the lambda expression supplied to
setOnMenuItemClickListener():

• Get the item ID from the MenuItem
• Compare it to expected values (e.g., a when in Kotlin)
• Handle the events for those expected values (e.g., showing a Toast)
• Return true if the event was handled

In the unrecognized-item scenario, since we chained to the superclass in
onCreateOptionsMenu(), we chain to the superclass in onOptionsItemsSelected().
That way, if our superclass is contributing items to the action bar, we will both add
those items (onCreateOptionsMenu()) and handle their click events

CONFIGURING THE APP BAR

401

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ActionBar/src/main/java/com/commonsware/jetpack/samplerj/actionbar/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ActionBar/src/main/java/com/commonsware/jetpack/sampler/actionbar/MainActivity.kt

(onOptionsItemSelected()).

Visually, this sample is indistinguishable from the Toolbar one, other than using a
different app_name string resource. Functionally, it is merely a matter of where and
how you apply the menu resource and deal with the results.

Having Fun at Bars
There are many other things that you can do with an app bar, just with the Android
SDK, such as:

• Have checkable menu items, particularly for the overflow, that the user can
check and uncheck

• Add other sorts of widgets to it, such as search fields and custom menus
• Have a “contextual action bar” that overlays the regular app bar with options

tied to the UI state, such as providing actions for manipulating the current
selected item(s) in a list

• Hide and show the app bar, so it does not take up screen space all the time
(e.g., in a video player)

Other libraries can offer other features. For example, Google publishes the Material
Components for Android library, which offers extensions like:

• Bottom app bars (i.e., an app bar that appears on the bottom, rather than
the top)

• Collapsing toolbars (i.e., ones that appear super-sized at the outset, then
collapse as the user scrolls through content)

CONFIGURING THE APP BAR

402

https://github.com/material-components/material-components-android
https://github.com/material-components/material-components-android

Implementing Multiple Activities

All of the apps that we have seen so far in this book have had a single screen’s worth
of UI. Many apps are somewhat more complicated than that, where we need to have
lots of screens, such as:

• Showing a list of stuff
• Showing the details of a particular item out of that list
• Editing the details of a particular item, or adding a new one
• Settings to configure how the app behaves
• And so on

In the world of Jetpack, there are two main approaches for adding multiple screens.
In this chapter, we will look at one: having more than one activity. In the next
chapter, we will explore the other option: using fragments.

Multiple Activities, and Your App
There are at least two scenarios where your app may have to deal with multiple
activities.

The first is the one outlined above: you want to have different screens for handling
different bits of app functionality. In that case, you are the one writing the
additional activities, and you will be the one to choose when those activities get
displayed (e.g., bring up the details when the user taps on an item in the list). In this
case, you have other options, such as the fragments mentioned above. But a lot of
older Android projects will take the approach of having an activity for each distinct
screen.

The second is when you have some piece of data that you want some other app to

403

process. For example, you might have a URL to a Web page that you obtained from
somewhere, and you want the user to view that Web page in their browser. In this
case, you are not writing the Web browser (probably), but you are still deciding
when that Web browser activity gets displayed. So, we need a way to start up
another app, and that comes in the form of starting an activity from that app.

A less-common scenario is the inverse of the previous one. Suppose you are writing
a Web browser. You want other apps to be able to hand you URLs, so you can display
those Web pages to the user. In this case, you are writing the activity, but you may
not be the one deciding when that activity gets displayed.

This chapter will focus on the first two of those scenarios, as they are the most
common, though we will briefly cover how you support the third scenario.

Creating Your Second (and Third and…) Activity
Unfortunately, activities do not create themselves. On the positive side, this does
help keep Android developers gainfully employed.

Given a module with one activity, if you want a second activity, you will need to add
it yourself. The same holds true for the third activity, the fourth activity, and so on.

Defining the Class and Resources

To create your second (or third or whatever) activity, you first need to create the Java
or Kotlin class. You need to create a new source file, containing a public class that
extends Activity (or AppCompatActivity, etc.). You have two basic ways of doing
this:

• Just create the class yourself
• Use the Android Studio new-activity wizard

To use the Android Studio new-activity wizard, right-click a package (e.g.,
com.commonsware.jetpack.sampler.activities in the project tree, and go into the
“New” > “Activity” portion of the context menu. This will give you a submenu of
available activity templates.

IMPLEMENTING MULTIPLE ACTIVITIES

404

If you choose one of those templates, you will be presented with a one-page wizard
in which to provide the details for this activity:

Figure 180: Android Studio New Android Activity Dialog

What you see here will be based upon the template you chose. This happens to be
the wizard screen for the “Empty Activity” template; other templates will have forms
with other data to collect.

Clicking “Finish” will then create the activity’s Java or Kotlin class, related resources
(if any), and manifest entry.

Populating the Class and Resources

Once you have your stub activity set up, you can then add an onCreate() function to
it (or edit an existing one created by the wizard), filling in all the details (e.g.,
setContentView()), just like you did with your first activity. Your new activity may
need a new layout XML resource or other resources, which you would also have to
create (or edit those created for you by the wizard).

IMPLEMENTING MULTIPLE ACTIVITIES

405

Augmenting the Manifest

Simply having an activity implementation is not enough. We also need to add it to
our AndroidManifest.xml file. If you used the new-activity wizard, this entry will be
added for you. However, if you created the activity “by hand”, you will need to add its
manifest element, and over time you will need to edit this element in many cases.

Adding an activity to the manifest is a matter of adding another <activity> element
to the <application> element:

<activity<activity android:name=".BigSwatchActivity"></activity>></activity>

(from TwoActivities/src/main/AndroidManifest.xml)

You need the android:name attribute at minimum, identifying the Java/Kotlin class
that is the implementation of the activity.

As we have seen previously, <activity> elements can be more complex:

<activity<activity android:name=".MainActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>

(from TwoActivities/src/main/AndroidManifest.xml)

We will explore that <intent-filter> a bit more later in this chapter.

Starting Your Own Activity
To start an activity, we call startActivity() on some Context, typically on our
Activity or a Context obtained from a View.

To identify what activity to start, we pass an Intent object to startActivity().
When starting an activity from your own project, the particular type of Intent that
we will use is an “explicit” Intent. This is where we identify the specific class that
implements the activity that we want to start.

The explicit form of the Intent constructor takes two parameters:

IMPLEMENTING MULTIPLE ACTIVITIES

406

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/TwoActivities/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/TwoActivities/src/main/AndroidManifest.xml

• A Context, typically the activity that is asking to start another activity
• A Java Class object

That second parameter type means that in Kotlin, you will use ::class.java, rather
than just ::class, to get to the proper object.

Extra! Extra!
Sometimes, we may wish to pass some data from one activity to the next. For
example, we might have a RecyclerView in one activity showing a collection of stuff,
and we might have a separate activity to show details of one of those items in the
collection. We want to start the detail activity when the user clicks on an item in the
RecyclerView. However, somehow, the detail activity needs to know which item is
the one for which it is to show the details. Unless we tell it which one the user
clicked, the detail activity has no way to know.

One way to accomplish this is via Intent extras.

There is a series of putExtra() methods on Intent to allow you to supply key/value
pairs of data to be bundled into the Intent. The keys are strings. While you cannot
use arbitrary objects for the values, most primitive data types are supported, as are
strings and some types of lists. Also, anything implementing Parcelable can go in
an Intent extra.

Any activity can call getIntent() to retrieve the Intent used to start it up, and then
can call various forms of get... Extra() (with the ... indicating a data type) to
retrieve any bundled extras.

Seeing This In Action
As the name suggests, the TwoActivities sample module in the Sampler and
SamplerJ projects has two activities. The MainActivity is very similar to the Toolbar
one from the previous chapter. However, now when the user clicks on a color, we
want to launch a second activity that shows that color in a larger form.

The Second Activity

The second activity is named BigSwatchActivity, and it was created using the
“Empty Activity” template in the Android Studio new-activity wizard. As a result, the

IMPLEMENTING MULTIPLE ACTIVITIES

407

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/TwoActivities
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/TwoActivities
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/TwoActivities
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/TwoActivities

wizard added a manifest entry for our activity… the same one shown previously in
this chapter:

<activity<activity android:name=".BigSwatchActivity"></activity>></activity>

(from TwoActivities/src/main/AndroidManifest.xml)

The new-activity wizard created an activity_big_swatch layout resource, which we
modified to have a Toolbar at the top and a View taking up all the remaining space:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".BigSwatchActivity">>

<androidx.appcompat.widget.Toolbar<androidx.appcompat.widget.Toolbar
android:id="@+id/toolbar"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:background="?attr/colorPrimary"
android:theme="?attr/actionBarPopupTheme"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar" />/>

<View<View
android:id="@+id/swatch"
android:layout_width="0dp"
android:layout_height="0dp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="@id/toolbar" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from TwoActivities/src/main/res/layout/activity_big_swatch.xml)

And, the new-activity wizard created the BigSwatchActivity class itself, which we
then augmented with actual app logic. That class could be written in Java:

IMPLEMENTING MULTIPLE ACTIVITIES

408

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/TwoActivities/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/TwoActivities/src/main/res/layout/activity_big_swatch.xml

packagepackage com.commonsware.jetpack.samplerj.activitiescom.commonsware.jetpack.samplerj.activities;

importimport android.os.Bundleandroid.os.Bundle;
importimport com.commonsware.jetpack.samplerj.activities.databinding.ActivityBigSwatchBindingcom.commonsware.jetpack.samplerj.activities.databinding.ActivityBigSwatchBinding;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;

publicpublic classclass BigSwatchActivityBigSwatchActivity extendsextends AppCompatActivityAppCompatActivity {
staticstatic finalfinal StringString EXTRA_COLOR = "color";

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ActivityBigSwatchBindingActivityBigSwatchBinding binding =
ActivityBigSwatchBindingActivityBigSwatchBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

int color = getIntent().getIntExtra(EXTRA_COLOR, 0x7FFF0000);

binding.toolbar.setTitle("#" + IntegerInteger.toHexString(color));
binding.swatch.setBackgroundColor(color);

}
}

(from TwoActivities/src/main/java/com/commonsware/jetpack/samplerj/activities/BigSwatchActivity.java)

…or Kotlin:

packagepackage com.commonsware.jetpack.sampler.activitiescom.commonsware.jetpack.sampler.activities

importimport android.os.Bundleandroid.os.Bundle
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport com.commonsware.jetpack.sampler.activities.databinding.ActivityBigSwatchBindingcom.commonsware.jetpack.sampler.activities.databinding.ActivityBigSwatchBinding

constconst valval EXTRA_COLOR = "color"

classclass BigSwatchActivityBigSwatchActivity : AppCompatActivityAppCompatActivity() {

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval color = intent.getIntExtra(EXTRA_COLOREXTRA_COLOR, 0x7FFF0000)

ActivityBigSwatchBindingActivityBigSwatchBinding.inflate(layoutInflater).apply {
setContentView(root)
toolbar.title = "#${Integer.toHexString(color)}"
swatch.setBackgroundColor(color)

}
}

}

(from TwoActivities/src/main/java/com/commonsware/jetpack/sampler/activities/BigSwatchActivity.kt)

First, we call setContentView(R.layout.activity_big_swatch) to load up our
layout resource.

IMPLEMENTING MULTIPLE ACTIVITIES

409

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/TwoActivities/src/main/java/com/commonsware/jetpack/samplerj/activities/BigSwatchActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/TwoActivities/src/main/java/com/commonsware/jetpack/sampler/activities/BigSwatchActivity.kt

Then, we need to know what color to display. This activity expects to receive that
color in the form of an Intent extra. We have an EXTRA_COLOR constant defined to
use as the key. We call getIntent() to retrieve the Intent that created the activity,
and on that we call getIntExtra() to retrieve the EXTRA_COLOR value. The
get...Extra() functions that return primitives, like an Int, take two parameters:
the key to use to find the extra, and the default value to return if the extra is not
found. In our case, we use a hard-coded gray value as the default.

Then, we:

• Retrieve the Toolbar widget from the layout
• Set the title in the Toolbar to be the color, with a # at the front
• Set the background color of the swatch widget, so our activity shows up

almost entirely in that color (other than the Toolbar)

In the case of the Kotlin code, we take advantage of the fact that we only need the
binding inside of onCreate() to use the apply() scope function and skip any sort of
property declaration.

Starting the Activity

However, this activity will never be shown to the user unless we call
startActivity() at some point to show it, ideally passing the desired color as the
EXTRA_COLOR extra.

The Toolbar sample app — building on previous ones — handles row clicks in
ColorViewHolder. So, this app just changes ColorViewHolder to start
BigSwatchActivity instead of showing a Toast:

packagepackage com.commonsware.jetpack.samplerj.activitiescom.commonsware.jetpack.samplerj.activities;

importimport android.content.Contextandroid.content.Context;
importimport android.content.Intentandroid.content.Intent;
importimport android.view.Viewandroid.view.View;
importimport com.commonsware.jetpack.samplerj.activities.databinding.RowBindingcom.commonsware.jetpack.samplerj.activities.databinding.RowBinding;
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView;

classclass ColorViewHolderColorViewHolder extendsextends RecyclerViewRecyclerView.ViewHolder {
privateprivate finalfinal RowBindingRowBinding row;
privateprivate int color;

ColorViewHolderColorViewHolder(RowBindingRowBinding row) {
supersuper(row.getRoot());

IMPLEMENTING MULTIPLE ACTIVITIES

410

thisthis.row = row;
row.getRoot().setOnClickListener(thisthis::showBigSwatch);

}

void bindTo(IntegerInteger color) {
thisthis.color = color;

row.label.setText(
row.label.getContext().getString(R.string.label_template, color));

row.swatch.setBackgroundColor(color);
}

privateprivate void showBigSwatch(ViewView v) {
ContextContext context = v.getContext();

context.startActivity(newnew IntentIntent(context, BigSwatchActivityBigSwatchActivity.class)
.putExtra(BigSwatchActivityBigSwatchActivity.EXTRA_COLOR, color));

}
}

(from TwoActivities/src/main/java/com/commonsware/jetpack/samplerj/activities/ColorViewHolder.java)

packagepackage com.commonsware.jetpack.sampler.activitiescom.commonsware.jetpack.sampler.activities

importimport android.content.Intentandroid.content.Intent
importimport android.view.Viewandroid.view.View
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView
importimport com.commonsware.jetpack.sampler.activities.databinding.RowBindingcom.commonsware.jetpack.sampler.activities.databinding.RowBinding

classclass ColorViewHolderColorViewHolder(privateprivate valval row: RowBindingRowBinding) :
RecyclerViewRecyclerView.ViewHolderViewHolder(row.root) {
privateprivate varvar color: IntInt = 0x7FFFFFFF

init {
row.root.setOnClickListener(thisthis::showBigSwatch)

}

funfun bindTo(color: IntInt) {
thisthis.color = color
row.label.text = row.label.context.getString(RR.string.label_template, color)
row.swatch.setBackgroundColor(color)

}

privateprivate funfun showBigSwatch(v: ViewView) {
valval context = v.context

context.startActivity(
IntentIntent(context, BigSwatchActivityBigSwatchActivity::classclass.java)

.putExtra(EXTRA_COLOREXTRA_COLOR, color)
)

}
}

IMPLEMENTING MULTIPLE ACTIVITIES

411

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/TwoActivities/src/main/java/com/commonsware/jetpack/samplerj/activities/ColorViewHolder.java

(from TwoActivities/src/main/java/com/commonsware/jetpack/sampler/activities/ColorViewHolder.kt)

We use a method reference to tie our row clicks to a showBigSwatch() method.
There, we:

• Get a Context from the row View
• Create an explicit Intent, identifying BigSwatchActivity
• Add our EXTRA_COLOR extra to that Intent with the user’s chosen color
• Call startActivity() on the Context, passing in our Intent

Now, when the user taps on a color in the list, we see the BigSwatchActivity,
showing a very large color swatch that probably does not match our Toolbar color
very well:

Figure 181: TwoActivities Sample, Showing BigSwatchActivity

Using Implicit Intents
The explicit Intent approach works fine when the activity to be started is one of
yours. If you are going to start an activity from some other app, such as a Web
browser to view a URL, an explicit Intent will be a problem. After all, you have no
idea what Web browser will handle the request (Chrome? Firefox? Brave? Dolphin?

IMPLEMENTING MULTIPLE ACTIVITIES

412

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/TwoActivities/src/main/java/com/commonsware/jetpack/sampler/activities/ColorViewHolder.kt

something else?). Plus, you did not write the Web browser and do not know what
classes are in it. And, even if you used tools to peek inside the other app and find out
its class structure, the developers of that other app could change their
implementation at any point.

Instead, you will use what are referred as the “implicit” Intent structure, which
looks a lot like how the Web works.

If you have done any work on Web apps, you are aware that HTTP is based on verbs
applied to URIs:

• We want to GET this image
• We want to POST to this script or controller
• We want to PUT to this REST resource
• Etc.

Android’s implicit Intent model works much the same way, just with a lot more
verbs.

An implicit Intent is made up of two key pieces:

• A Uri object indicating what we want to act upon, such as a Uri
representation of a Web site URL, and

• An action string, identifying the particular action that we want

There are hundreds of action strings that are part of the Android framework, such
as:

• ACTION_VIEW, to bring up something that can view whatever the Uri refers to
• ACTION_PICK, to pick something from a collection of somethings
• ACTION_GET_CONTENT, to pick something based on a MIME type (e.g., pick an

image)
• ACTION_SEND, to share some text or content with another app, often used for

sending an SMS
• And so on

For example, to try to view a Web page, you can use:

startActivity(IntentIntent(IntentIntent.ACTION_VIEWACTION_VIEW, UriUri.parse("https://commonsware.com")))

We will see a few other Intent actions from the Android framework over the course

IMPLEMENTING MULTIPLE ACTIVITIES

413

of the rest of the book, starting with the next section. And, it is possible for apps to
define their own custom actions — in that case, if the developers of those apps want
you using those actions, they will need to document what those actions are and
what they do.

Asynchronicity and Results
startActivity() is asynchronous. The other activity will not show up until
sometime later, particularly after you return from whatever callback you were in
when you called startActivity() (e.g., onClick() of some View.OnClickListener).

Normally, this is not much of a problem. However, sometimes one activity might
start another, where the first activity would like to know some “results” from the
second. For example, the second activity might be some sort of “chooser”, to allow
the user to pick a file or contact or song or something, and the first activity needs to
know what the user chose. With startActivity() being asynchronous, it is clear
that we are not going to get that sort of result as a return value from
startActivity() itself.

To handle this scenario, there is a separate startActivityForResult() method.
While it too is asynchronous, it allows the newly-started activity to supply a result
(via a setResult() method) that is delivered to the original activity via an
onActivityResult() method.

The ContactPicker sample module in the Sampler and SamplerJ projects
demonstrates startActivityForResult() and implicit Intent objects.

The Scenario

The MainActivity UI is pretty simple: two really big buttons, one labeled “Pick” and
one labeled “View”. The business rules are:

• The “View” button should be disabled initially
• The “Pick” button, when clicked, should allow the user to pick a contact

from the list of contacts on the device
• Once the user picks a contact, the “View” button should be enabled
• The “View” button, when clicked, should show the user details of that

particular contact

There are two ways of going about implementing the pick-a-contact and view-a-

IMPLEMENTING MULTIPLE ACTIVITIES

414

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ContactPicker
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ContactPicker
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ContactPicker
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ContactPicker

contact logic:

1. Write a UI ourselves. This is rather complex. In addition, it would require
our app to have access to personally-identifying information (PII) about the
user’s contacts. That requires us to ask for permission, and the user might
not want to grant us permission, as letting us scan through their contacts
may seem scary.

2. We ask some other app — one that already knows how to work with
contacts — to let the user pick a contact and view a contact. On many
devices, there will be a built-in “Contacts” app that can do those things on
our behalf.

ContactPicker takes the second approach.

The Layout

We have two editions of the activity_main layout resource. One is in the traditional
res/layout/ directory, and it has two buttons:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="@dimen/container_padding">>

<Button<Button
android:id="@+id/pick"
android:layout_width="0dp"
android:layout_height="0dp"
android:text="@string/pick_caption"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintHeight_percent="0.5"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<Button<Button
android:id="@+id/view"
android:layout_width="0dp"
android:layout_height="0dp"
android:enabled="false"
android:text="@string/view_caption"
app:layout_constraintBottom_toBottomOf="parent"

IMPLEMENTING MULTIPLE ACTIVITIES

415

app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintHeight_percent="0.5"
app:layout_constraintStart_toStartOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from ContactPicker/src/main/res/layout/activity_main.xml)

The other is in res/layout-w640dp/, and it has two buttons:

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="@dimen/container_padding">>

<Button<Button
android:id="@+id/pick"
android:layout_width="0dp"
android:layout_height="0dp"
android:text="@string/pick_caption"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintWidth_percent="0.5" />/>

<Button<Button
android:id="@+id/view"
android:layout_width="0dp"
android:layout_height="0dp"
android:enabled="false"
android:text="@string/view_caption"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:layout_constraintWidth_percent="0.5" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from ContactPicker/src/main/res/layout-w640dp/activity_main.xml)

IMPLEMENTING MULTIPLE ACTIVITIES

416

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContactPicker/src/main/res/layout/activity_main.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContactPicker/src/main/res/layout-w640dp/activity_main.xml

The difference is subtle, but the way we have the constraints set up, the res/layout/
edition of the layout has the two buttons be vertically stacked:

Figure 182: ContactPicker, Launched in Portrait Mode on a Phone

IMPLEMENTING MULTIPLE ACTIVITIES

417

But, on devices with screens wider than 4", the res/layout-w640dp/ edition of the
layout will be used, and it has the constraints set up for the buttons to be side-by-
side:

Figure 183: ContactPicker, Launched in Landscape Mode on a Phone

Picking a Contact

In MainActivity, we set up a View.OnClickListener for the pick button, to allow
the user to pick a contact:

binding.pick.setOnClickListener(v -> {
trytry {

startActivityForResult(newnew IntentIntent(IntentIntent.ACTION_PICK,
ContactsContractContactsContract.Contacts.CONTENT_URI), REQUEST_PICK);

}
catchcatch (ExceptionException e) {

ToastToast.makeText(thisthis, R.string.msg_pick_error,
ToastToast.LENGTH_LONG).show();

}
}

);

(from ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java)

IMPLEMENTING MULTIPLE ACTIVITIES

418

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java

binding.pick.setOnClickListener {
trytry {

startActivityForResult(
IntentIntent(

IntentIntent.ACTION_PICKACTION_PICK,
ContactsContractContactsContract.ContactsContacts.CONTENT_URICONTENT_URI

), REQUEST_PICKREQUEST_PICK
)

} catchcatch (e: ExceptionException) {
ToastToast.makeText(thisthis, RR.string.msg_pick_error, ToastToast.LENGTH_LONGLENGTH_LONG).show()

}
}

(from ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt)

The specific implicit Intent that we are going to try is ACTION_PICK. This allows the
user to pick an item out of some collection of items. The collection is represented by
a Uri, just as the URL of the Web page for ACTION_VIEW is represented by a Uri.

The specific Uri that we use is ContactsContract.Contacts.CONTENT_URI. This is a
Uri provided by the framework that points to a system-supplied ContentProvider
that is the standard location on the device for storing the user’s contacts.

We wrap that Uri and ACTION_PICK in an Intent and pass that to
startActivityForResult(). ACTION_PICK is designed for use with
startActivityForResult(), since the point of having the user pick something is for
us to be able to find out the “result” (i.e., what the user picked).

startActivityForResult() takes a second parameter: an Int that identifies this
startActivityForResult() call from any others that we might be making in this
activity. Here, we have it defined as a constant, REQUEST_PICK.

The whole startActivityForResult() call is wrapped in a try/catch block. When
you use an implicit Intent to start an activity, there is a chance that there is no
activity to handle the request. In our case, there are a few reasons why we might not
be able to pick a contact, including:

• The app is running on a device that does not track contacts, such as perhaps
some tablets or TVs

• The user is restricted from accessing contacts, due to work profiles or similar
limitations imposed by the owner of the device

• The user might have disabled all apps that support our implicit Intent in the
Settings app, if the user did not think that she would be using those apps

IMPLEMENTING MULTIPLE ACTIVITIES

419

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt

With an explicit Intent to one of our activities, we know that it should succeed,
barring some bug in the app. With an implicit Intent, our request might not
succeed. If it fails, the most likely failure is an ActivityNotFoundException,
indicating that there was no activity identified that could handle our Intent.

So, we use try/catch to catch any such exceptions, showing an apology Toast in
response.

Getting and Retaining the Contact

If you call startActivityForResult() on an activity, as we do here, you need to
implement the corresponding onActivityResult() callback function on the same
activity. In our case, for an ACTION_PICK Intent, this will be called if either:

• The user picks something from the collection, and the other activity returns
control to us with an indication of what the user picked

• The user presses the BACK button to exit the activity that we started,
returning control to us that way

onActivityResult() gets three parameters:

• The Int that we passed as the second parameter to
startActivityForResult() (the “request code”)

• An Int that holds RESULT_OK if the user picked something or
RESULT_CANCELED if the user did not (the “response code”)

• An Intent object

In the particular case of ACTION_PICK, if we get a RESULT_OK response code, then the
Uri in the Intent that we are given will be a Uri identifying what the user picked. In
our case, that would be the Uri of a specific contact. We can get to that Uri by
calling the getData() method on the Intent.

So, MainActivity has onActivityResult() collect that data:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

@Nullable IntentIntent data) {
ifif (requestCode == REQUEST_PICK) {

ifif (resultCode == RESULT_OK &&
data != nullnull) {
vm.setContact(data.getData());
updateViewButton();

IMPLEMENTING MULTIPLE ACTIVITIES

420

}
}
elseelse {

supersuper.onActivityResult(requestCode, resultCode, data);
}

}

(from ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java)

overrideoverride funfun onActivityResult(
requestCode: IntInt,
resultCode: IntInt,
data: IntentIntent?

) {
ifif (requestCode == REQUEST_PICKREQUEST_PICK) {

ifif (resultCode == ActivityActivity.RESULT_OKRESULT_OK &&
data != nullnull

) {
vm.contact = data.data
updateViewButton()

}
} elseelse {

supersuper.onActivityResult(requestCode, resultCode, data)
}

}

(from ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt)

If we got a contact Uri, we do two things.

First, we update a ContactViewModel that is serving as the viewmodel for this
activity:

packagepackage com.commonsware.jetpack.samplerj.contactcom.commonsware.jetpack.samplerj.contact;

importimport android.net.Uriandroid.net.Uri;
importimport androidx.lifecycle.SavedStateHandleandroidx.lifecycle.SavedStateHandle;
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel;

publicpublic classclass ContactViewModelContactViewModel extendsextends ViewModelViewModel {
privateprivate staticstatic finalfinal StringString STATE_CONTACT = "contact";
privateprivate finalfinal SavedStateHandleSavedStateHandle state;
privateprivate UriUri contact;

publicpublic ContactViewModel(SavedStateHandleSavedStateHandle state) {
thisthis.state = state;
contact = state.get(STATE_CONTACT);

IMPLEMENTING MULTIPLE ACTIVITIES

421

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt

}

UriUri getContact() {
returnreturn contact;

}

void setContact(UriUri contact) {
thisthis.contact = contact;
state.set(STATE_CONTACT, contact);

}
}

(from ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/ContactViewModel.java)

packagepackage com.commonsware.jetpack.sampler.contactcom.commonsware.jetpack.sampler.contact

importimport android.net.Uriandroid.net.Uri
importimport androidx.lifecycle.SavedStateHandleandroidx.lifecycle.SavedStateHandle
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel

privateprivate constconst valval STATE_CONTACT = "contact"

classclass ContactViewModelContactViewModel(privateprivate valval state: SavedStateHandleSavedStateHandle) : ViewModelViewModel() {
varvar contact: UriUri? = state[STATE_CONTACTSTATE_CONTACT]

setset(value) {
field = value
state.setset(STATE_CONTACTSTATE_CONTACT, value)

}
}

(from ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/ContactViewModel.kt)

We also call an updateViewButton() function that marks the view button as being
enabled if we happen to have a contact now:

privateprivate void updateViewButton() {
ifif (vm.getContact() != nullnull) {

binding.view.setEnabled(truetrue);
}

}

(from ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java)

privateprivate funfun updateViewButton() {
ifif (vm.contact != nullnull) {

binding.view.isEnabled = truetrue
}

}

IMPLEMENTING MULTIPLE ACTIVITIES

422

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/ContactViewModel.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/ContactViewModel.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java

(from ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt)

In addition, we call updateViewButton() in onCreate(), after getting our
ContactViewModel, so we update the view button to be enabled after a configuration
change, if appropriate:

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

binding = ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());
setContentView(binding.getRoot());

vm = newnew ViewModelProviderViewModelProvider(thisthis).get(ContactViewModelContactViewModel.class);

updateViewButton();

(from ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java)

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)

updateViewButton()

(from ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt)

So, the net is that once the user picks the contact, the view button becomes enabled,
and we hold onto the contact Uri across configuration changes, so we do not lose
track of who the user picked.

Viewing the Contact

Our View.OnClickListener for the view button wraps our contact Uri in an
ACTION_VIEW Intent and tries to start an activity to view that contact:

binding.view.setOnClickListener(
v -> {

trytry {
startActivity(newnew IntentIntent(IntentIntent.ACTION_VIEW, vm.getContact()));

}
catchcatch (ExceptionException e) {

ToastToast.makeText(thisthis, R.string.msg_view_error,

IMPLEMENTING MULTIPLE ACTIVITIES

423

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt

ToastToast.LENGTH_LONG).show();
}

});

(from ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java)

binding.view.setOnClickListener {
trytry {

startActivity(IntentIntent(IntentIntent.ACTION_VIEWACTION_VIEW, vm.contact))
} catchcatch (e: ExceptionException) {

ToastToast.makeText(thisthis, RR.string.msg_view_error, ToastToast.LENGTH_LONGLENGTH_LONG).show()
}

}

(from ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt)

Once again, there might not be an activity available to the user to handle this
ACTION_VIEW request, we wrap our startActivity() call in a try/catch block to
deal with any possible exceptions.

If you run this on a device or emulator that has a working “contacts” app with 1+
contacts in it, clicking the “Pick” button lets you pick a contact, and then clicking
the “View” button views details of the picked contact. In both cases, the contacts
app is supplying the UI for picking and viewing contacts.

The Inverse: <intent-filter><intent-filter>

When we use an explicit Intent with startActivity(), it is fairly clear how Android
determines what activity to display: it is the one whose class is listed in the Intent.

When we use an implicit Intent — one with an action string and maybe a Uri, but
no class — somehow Android needs to find out what activity (or activities) can
handle that.

This is where the <intent-filter> comes in.

In our manifest, inside of an <activity> element, you can optionally have one or
more <intent-filter> elements. These describe certain implicit Intent structures
that our activity can handle. If some code tries starting an implicit Intent with a
matching structure, our activity will be considered a candidate. So, in the case of our
ACTION_PICK and ACTION_VIEW requests in the preceding sections, we are hoping
that there are 1+ activities with an <intent-filter> that matches our Intent.

IMPLEMENTING MULTIPLE ACTIVITIES

424

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/samplerj/contact/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContactPicker/src/main/java/com/commonsware/jetpack/sampler/contact/MainActivity.kt

Most apps will have an activity with one particular <intent-filter>:

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

(from ContactPicker/src/main/AndroidManifest.xml)

This would match an Intent like:

IntentIntent(IntentIntent.ACTION_MAINACTION_MAIN).addCategory(IntentIntent.CATEGORY_LAUNCHERCATEGORY_LAUNCHER)

A “category” is simply an identifier of related Intent structures and is one facet of an
implicit Intent, along with things like the action string and “data” Uri.

A launcher can ask Android “what activities support this Intent?”. Android will
return a list of matches, and the launcher can use this to provide options for the
user. When the user clicks on a specific activity, then the launcher has the details to
create an explicit Intent, which it can use to start the activity. Since this is the
standard behavior of launchers, and since most Android apps want to have 1+
activities appear in the launcher, most apps will have 1+ activities with the
MAIN/LAUNCHER <intent-filter>.

Most apps will not need <intent-filter> on an <activity> beyond this one,
though. However, they might use other apps that have activities with other <intent-
filter> options, such as the ACTION_PICK and ACTION_VIEW scenarios.

We will see an example of this sort of structure in an upcoming chapter, where we
will examine an app that supports ACTION_SEND, the standard Intent action for
“share” options in apps.

IMPLEMENTING MULTIPLE ACTIVITIES

425

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContactPicker/src/main/AndroidManifest.xml

Adopting Fragments

Activities are fine, but they are fairly inflexible. Development is moving away from
using activities as the core foundation of our UI. Activities will always exist, but
many times we use an activity mostly as a simple container for other UI logic.

And, frequently, that UI logic is held in fragments.

The original vision for fragments was to make it easier to support early Android
tablets, allowing you to assemble tablet-sized UIs by snapping together a bunch of
phone-sized UIs that you use individually on phones.

Over time, fragments were used in more places and for more reasons. While
fragments are not required, Google strongly encourages their use. Jetpack
specifically advocates having an app be a single activity, with fragments for each
“screen” of information.

This chapter will cover basic uses of fragments.

The Six Questions
In the world of journalism, the basics of any news story consist of six questions, the
Five Ws and How. Here, we will apply those six questions to help frame what we are
talking about with respect to fragments.

What?

Fragments are not activities, though they can be used by activities.

Fragments are not containers (i.e., subclasses of ViewGroup), though typically they

427

https://en.wikipedia.org/wiki/Five_Ws
https://en.wikipedia.org/wiki/Five_Ws

create a ViewGroup.

Rather, you should think of fragments as being units of UI reuse. You define a
fragment, much like you might define an activity, with layouts and lifecycle methods
and so on.

However, at that point, you can use fragments in different ways, with two main
patterns being:

• Having one activity switch between fragments based on user input
• Having multiple fragments on the screen at once, perhaps to take better

advantage of larger screen sizes on tablets, Chromebooks, etc.

Functionally, fragments are Java/Kotlin classes, extending from a base Fragment
class.

Where??

Fragments will appear on the screen where you tell them to appear. There are two
main approaches for this:

• Having <fragment> elements in layout resources
• Having FrameLayout containers in layout resources, where you then supply

the fragments to put in those containers at runtime

The first approach is for cases where the fragment will always be shown (“static
fragments”) by the activity. The second approach is for cases where the fragment
might be swapped out for another fragment, or whether the fragment might be
conditionally shown based on user input, screen size, or other criteria (“dynamic
fragments”).

Who?!?

Many fragments you will write yourself, just as you write your activities and other
application code.

However, libraries can also contribute fragment implementations. We will see an
example of this in the next chapter, with a Google-supplied Jetpack library offering a
fragment that we use directly. Third party libraries might offer fragments as part of
their API, for you to use or subclass as appropriate.

ADOPTING FRAGMENTS

428

When?!!?

In modern, Jetpack-centric app development, often we define our fragments at the
outset, as part of building our UI.

It is certainly possible to take an app that has several activities and rewite it such
that it has one activity and several fragments. This is a bit tedious, but it might prove
necessary at some point for legacy projects.

WHY?!?!?

Ah, this is the big question. If we have managed to make it this far through the book
without fragments, and we do not necessarily need fragments to create Android
applications, what is the point? Why would we bother?

There are many reasons for using fragments, some of which were hinted at above.

Break the Intent Barrier

Sharing data between activities is a problem. We can use extras on Intents, but they
are limited in terms of size and data types. Other than that, we are limited to using
singletons or other global objects, and those run the risk of memory leaks and
related problems.

However, a single activity can have several fragments and switch between them at
will. Plus, an activity can work directly with its fragments and share things, such as
having a shared ViewModel. So, fragments give us ways of having different “screens”
while still allowing everything to work using more-or-less normal Java/Kotlin object
interactions.

To an extent, you can draw a parallel to Web development. Early Web development,
and even a lot of modern development, has each “screen” be a separate Web page at
a separate URL, fetched from the server. This works, but it has a similar problem to
multiple activities in Android: one Web page cannot directly work with the DOM or
JavaScript objects of another Web page. In the past decade, there has been a lot of
movement towards “single-page applications”, where a single URL loading a single
Web page has multiple screens’ worth of content, courtesy of lots of DOM rewriting.
While this has its own set of problems, it gets past the separate-pages limitations,
allowing multiple screens to share a common set of JavaScript objects.

ADOPTING FRAGMENTS

429

Decomposition

Technically, one does not need fragments to allow for a single activity to represent
multiple screens. We have used setContentView() to populate the activity’s UI, and
you can call that as many times as needed. Each setContentView() call replaces
whatever the previous “content view” was with a new one. Or, you can do other
things with the activity’s view hierarchy to change the UI: hide and show widgets,
add and remove widgets, etc.

However, if you go this route, you run the risk of having a single monster activity
trying to manage all of this logic. For ease of maintenance and testing, having some
decomposition is useful, so a set of Java/Kotlin classes can manage an individual
screen, while the activity orchestrates which screen is seen at any point in time.

Fragments offer a foundation for this sort of decomposition. It is not the only
option, and it may not be the absolute best option. However, it is Google’s best
option, and Jetpack reflects a fragment-centric view of Android app development.

Screen Sizes

The original rationale for fragments was to make it easier to support multiple screen
sizes.

Android started out supporting phones. Phones may vary in size, from tiny ones
with less than 3” diagonal screen size, to monsters that are over 6”. However, those
variations in screen size pale in comparison to the differences between phones and
tablets, or phones and Chromebooks.

Some applications will simply expand to fill larger screen sizes. Many games will
take this approach, simply providing the user with bigger interactive elements,
bigger game boards, etc.

ADOPTING FRAGMENTS

430

Part of the original vision for fragments was that one could assemble a tablet UI
from a collection of phone screens, side by side.

Figure 184: Tablets vs. Handsets

(the above image is reproduced from work created and shared by the Android Open
Source Project and used according to terms described in the Creative Commons 2.5
Attribution License)

The user can access all of that functionality at once on a tablet, whereas they would
have to flip back and forth between separate screens on a phone.

For applications that can fit this design pattern, fragments allow you to support
phones and tablets from one code base. The fragments can be used by individual
activities on a phone, or they can be stitched together by a single activity for a
tablet.

OMGOMGOMG, HOW?!?!??

Well, answering that question is what the rest of this chapter is for!

ADOPTING FRAGMENTS

431

https://source.android.com/license
https://source.android.com/license
https://creativecommons.org/licenses/by/2.5/
https://creativecommons.org/licenses/by/2.5/

Where You Get Your Fragments From
We use a Fragment class as the basis for our fragments.

However, if you rummage through the Android SDK JavaDocs, you will find that
there are three classes named Fragment… and they are all incompatible with each
other.

This sucks.

The Jetpack edition of fragments is in the androidx namespace, specifically
androidx.fragment.app.Fragment. That is the Fragment class that we will be using
in this book.

The Jetpack Fragment class is based on the one from the Android Support Library. If
you see references to android.support.v4.app.Fragment, that is the Android
Support Library edition.

You will also find android.app.Fragment. This is the framework implementation of
fragments. It has been officially deprecated, with Google steering developers towards
a library-based implementation. The problem is that fragments have had quite a few
bugs over the years. Framework classes are only updated when the OS is updated,
and for many users that means the framework classes are rarely updated and are
usually out of date. By contrast, you as the app developer control which version of
the libraries that you use, so you can ensure that you are using up-to-date versions
that contains relevant bug fixes.

Fortunately, Java and Kotlin are strongly-typed languages, so it will be difficult for
you to accidentally use the wrong Fragment… though “difficult” is not “impossible”.

Static vs. Dynamic Fragments
Sometimes, you will have a fragment that should be around as long as your activity
is around. For that, you can use “static fragments”, where you use a <fragment>
element in a layout resource to specify where the fragment should go and how big it
should be. We will explore this more in the next chapter.

More often, though, your fragments will come and go, based on user input:

• You start by showing a list of stuff

ADOPTING FRAGMENTS

432

• The user clicks on an item in the list, and you show details about the item
that the user clicked on

• The user clicks an “edit” option in the toolbar, and so you show an edit form
to allow the user to modify the item

• The user clicks BACK to return to the details, then BACK again to return to
the list

In all of these cases, in a fragment-based UI, you will use dynamic fragments.

Roughly speaking, there are two ways of employing dynamic fragments:

1. Manually, using FragmentManager and FragmentTransaction classes, as we
will explore in this chapter

2. Using the Jetpack Navigation component, which we will see in the next
chapter

Fragments, and What You Have Seen Already
Fragments can do most everything of what we have seen so far that activities can do:

• Fragments can use layout resources to show a UI
• Fragments can have a ViewModel — in fact, they can not only have their own,

but they can share a ViewModel with the activity that hosts them
• Fragments have lifecycle methods, including both ones that you see in

activities (e.g., onCreate() and onDestroy()) and ones that are distinct for
fragments (e.g., onAttach() and onDetach())

ToDo, or Not ToDo? That Is the Question
To see dynamic fragments in action, let’s turn to the FragmentManual sample module
in the Sampler and SamplerJ projects.

This sample app is relatively complicated. We have:

• One activity
• Two fragments
• Two viewmodels
• A RecyclerView
• A few layout resources
• And other stuff besides

ADOPTING FRAGMENTS

433

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/FragmentManual
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/FragmentManual
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/FragmentManual
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/FragmentManual

What We’re Building

The sample app implements a to-do list, showing a list of to-do items along with
details of an individual item.

This code mimics some of the code from Exploring Android, though with a number
of differences, to illustrate the manual use of dynamic fragments.

From the user’s standpoint, launching the app brings up a list of to-do items, where
the list of things to do is hard-coded in the app:

Figure 185: FragmentManual Sample App, As Initially Launched

ADOPTING FRAGMENTS

434

https://commonsware.com/AndExplore

Tapping on the description of an item brings up additional details, including the
creation date and, in some cases, some notes:

Figure 186: FragmentManual Sample App, Showing To-Do Item Details

This version of the app is read-only, though readers of Exploring Android will create
a version of this app that allows users to add, edit, and remove to-do items.

The Model

Objects that represent our “business data” are usually called “model objects”. In a to-
do list app, we need objects that represent to-do items, and those would be
considered model objects.

So the sample app has a ToDoModel class that holds onto things like the description
(e.g., "Write an app for somebody in my community"), the creation time, and so
forth.

There are five pieces of data that we want to track:

• The description, as mentioned above
• Whether or not the item is completed, which will control things like

ADOPTING FRAGMENTS

435

whether the CheckBox is checked in the list and whether the checkmark icon
shows up in the detail screen

• Some optional additional notes about the item (e.g., "Talk to some people
at non-profit organizations to see what they need!")

• The time this item was created
• Some sort of unique identifier — while this is not important now, it will be

later when we start persisting this data in a database

Functionally, the Java and Kotlin editions of this class are identical. The code,
though, winds up being a fair bit different.

Kotlin

In Kotlin. we can use a simple data class, with individual val properties for the five
pieces of data mentioned above:

data classdata class ToDoModelToDoModel(
valval id: StringString,
valval description: StringString,
valval isCompleted: BooleanBoolean = falsefalse,
valval notes: StringString? = nullnull,
valval createdOn: InstantInstant = InstantInstant.now()

)

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoModel.kt)

Of particular interest:

• isCompleted is defaulted to false
• notes can be null and is defaulted to null
• createdOn is defaulted to the current date and time

Because this is a data class, we get things like a copy() function, toString(),
equals(), and so forth “for free”, courtesy of the Kotlin compiler.

You can learn more about data classes in the "Data Class" chapter
of Elements of Kotlin!

ADOPTING FRAGMENTS

436

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoModel.kt
https://commonsware.com/Kotlin

Java

We want the same basic characteristics in Java. It requires a bit more code:

publicpublic classclass ToDoModelToDoModel {
@NonNull
publicpublic finalfinal StringString id;
@NonNull
publicpublic finalfinal StringString description;
publicpublic finalfinal boolean isCompleted;
@Nullable
publicpublic finalfinal StringString notes;
@NonNull
publicpublic finalfinal InstantInstant createdOn;

ToDoModelToDoModel(@NonNull StringString id, @NonNull StringString description,
boolean isCompleted, @Nullable StringString notes,
@NonNull InstantInstant createdOn) {

thisthis.id = id;
thisthis.description = description;
thisthis.isCompleted = isCompleted;
thisthis.notes = notes;
thisthis.createdOn = createdOn;

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoModel.java)

We have fields for each of the five pieces of data. Those that are objects are marked
with @Nullable and @NotNull annotations, so that Android Studio can help ensure
that we use them properly with respect to null values. The fields are marked as
final, which is as close as Java comes to the immutability that you get with val
properties in a Kotlin data class.

We also have a constructor to fill in those fields. However, we do not have default
parameter values, so the caller will need to supply all five pieces of data whenever it
creates an instance of ToDoModel.

A Sidebar About InstantInstant

ToDoModel uses Instant. Instant was added to Java in Java 8, but it did not show up
in the Android SDK until API Level 26. On the surface, this would suggest that we
should not be using Instant, as the minSdkVersion of the Java and Kotlin projects is
21. Using newer classes on older devices usually results in a crash, such as a
ClassNotFoundException.

ADOPTING FRAGMENTS

437

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoModel.java

In this case, though, it works.

The reason is that Google is taking some steps to allow some Java 8 features to be
used on older devices. Support for things like Java 8 lambda expressions have been
around for a few years. In 2020, they added support for some Java 8-specific types,
Instant being one of them.

To be able to support Instant on older devices, you need two items in your module’s
build.gradle file. The first is a coreLibraryDesugaringEnabled true directive in
the compileOptions closure in the android closure:

compileOptions {
coreLibraryDesugaringEnabled truetrue
sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8

}

(from FragmentManual/build.gradle)

The other is a coreLibraryDesugaring dependency directive to pull in some version
of com.android.tools:desugar_jdk_libs, as part of your dependencies:

dependencies {
implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:$kotlin_version"
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'androidx.recyclerview:recyclerview:1.1.0'
implementation 'androidx.lifecycle:lifecycle-viewmodel-ktx:2.2.0'
implementation 'androidx.lifecycle:lifecycle-extensions:2.2.0'
implementation 'androidx.fragment:fragment-ktx:1.2.5'
implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.0.10'

}

(from FragmentManual/build.gradle)

The Repository

Repositories are a common pattern in modern Android app development.

The idea of a repository is to isolate details of how data is stored from the UI that is
using that data. The UI should neither know nor care whether the data is stored in a
database, in some other type of file, or on a Web service. Similarly, the code that
handles the data storage should not care whether the data is represented visually in
fields, checkboxes, or other sorts of widgets. Having a clean boundary between “the

ADOPTING FRAGMENTS

438

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/build.gradle

stuff that stores data” and “the stuff that uses data” can also help with testing. We
will explore the repository pattern in greater detail later in the book.

For now, though, we need something that can hold a few fake ToDoModel instances,
so we may as well set up a ToDoRepository for that.

A real repository can be very complicated. This sample app has no actual data
storage, so our ToDoRepository is fairly trivial:

packagepackage com.commonsware.jetpack.samplerj.fragmentscom.commonsware.jetpack.samplerj.fragments;

importimport java.time.Instantjava.time.Instant;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.HashMapjava.util.HashMap;
importimport java.util.Listjava.util.List;
importimport java.util.Mapjava.util.Map;
importimport java.util.UUIDjava.util.UUID;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.annotation.Nullableandroidx.annotation.Nullable;

classclass ToDoRepositoryToDoRepository {
staticstatic finalfinal ToDoRepositoryToDoRepository INSTANCE = newnew ToDoRepositoryToDoRepository();
privateprivate finalfinal MapMap<StringString, ToDoModelToDoModel> items = newnew HashMapHashMap<>();

privateprivate ToDoRepository() {
add(newnew ToDoModelToDoModel(UUID.randomUUID().toString(),

"Buy a copy of _Elements of Android Jetpack_", truetrue,
"See https://wares.commonsware.com",
InstantInstant.now()));

add(
newnew ToDoModel(UUID.randomUUID().toString(), "Read the entire book",

falsefalse, nullnull,
InstantInstant.now()));

add(newnew ToDoModelToDoModel(UUID.randomUUID().toString(),
"Write an app for somebody in my community", falsefalse,
"Talk to some people at non-profit organizations to see what they need!",
InstantInstant.now()));

}

@NonNull
ListList<ToDoModelToDoModel> getItems() {

returnreturn newnew ArrayListArrayList<>(items.values());
}

@Nullable
ToDoModelToDoModel findItemById(StringString id) {

ADOPTING FRAGMENTS

439

returnreturn items.get(id);
}

privateprivate void add(ToDoModelToDoModel model) {
items.put(model.id, model);

}
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoRepository.java)

packagepackage com.commonsware.jetpack.sampler.fragmentscom.commonsware.jetpack.sampler.fragments

importimport java.util.*java.util.*

objectobject ToDoRepositoryToDoRepository {
privateprivate valval items = listOf(

ToDoModelToDoModel(
id = UUIDUUID.randomUUID().toString(),
description = "Buy a copy of _Elements of Android Jetpack_",
isCompleted = truetrue,
notes = "See https://wares.commonsware.com"

), ToDoModelToDoModel(
id = UUIDUUID.randomUUID().toString(),
description = "Read the entire book"

), ToDoModelToDoModel(
id = UUIDUUID.randomUUID().toString(),
description = "Write an app for somebody in my community",
notes = "Talk to some people at non-profit organizations to see what they need!"

)
).associateBy { it.id }

funfun getItems(): ListList<ToDoModelToDoModel> = items.values.toList()

funfun findItemById(id: StringString) = items[id]
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoRepository.kt)

The repository holds a Map of ToDoModel objects, keyed by their id value. It has
functions to retrieve all models or a single model by ID.

The repository is set up as a singleton, either using a static field in Java or simply
having the repository be an object in Kotlin. That works, but it is not very flexible.
Later in the book, we will explore ways in which our app can use the repository like
a singleton, yet we would have the ability to swap out implementations of the
repository to use in different scenarios, through what is known as “dependency
inversion”.

The DisplayFragmentDisplayFragment

We need to display a ToDoModel to the user. And, in this sample app, we want to use

ADOPTING FRAGMENTS

440

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoRepository.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoRepository.kt

fragments for that. So, we have a DisplayFragment that will fill that role. That
DisplayFragment has its own layout and viewmodel, just like an activity might. The
Java/Kotlin code for the fragment is a bit different than what you would see in an
activity, but not that different.

So, let’s look at each of the pieces individually.

The Layout

The todo_display layout resource represents the UI that we want to use to show a
ToDoModel to the user:

<?xml version="1.0" encoding="utf-8"?>
<layout<layout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto">>

<data><data>

<variable<variable
name="model"
type="com.commonsware.jetpack.sampler.fragments.ToDoModel" />/>

<variable<variable
name="createdOnFormatted"
type="java.lang.CharSequence" />/>

<import<import type="android.view.View" />/>
</data></data>

<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout
android:layout_width="match_parent"
android:layout_height="match_parent">>

<ImageView<ImageView
android:id="@+id/completed"
android:layout_width="@dimen/checked_icon_size"
android:layout_height="@dimen/checked_icon_size"
android:layout_marginEnd="8dp"
android:layout_marginTop="8dp"
android:contentDescription="@string/is_completed"
android:src="@drawable/ic_check_circle_black_24dp"
android:tint="@color/colorAccent"
android:visibility="@{model.isCompleted ? View.VISIBLE : View.GONE}"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

ADOPTING FRAGMENTS

441

<TextView<TextView
android:id="@+id/desc"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@{model.description}"
android:textSize="@dimen/desc_view_size"
android:textStyle="bold"
app:layout_constraintEnd_toStartOf="@+id/completed"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<TextView<TextView
android:id="@+id/label_created"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@string/created_on"
android:textSize="@dimen/created_on_size"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/desc" />/>

<TextView<TextView
android:id="@+id/created_on"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@{createdOnFormatted}"
app:layout_constraintEnd_toStartOf="@+id/completed"
app:layout_constraintStart_toEndOf="@+id/label_created"
app:layout_constraintTop_toBottomOf="@+id/desc" />/>

<TextView<TextView
android:id="@+id/notes"
android:layout_width="0dp"
android:layout_height="0dp"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@{model.notes}"
android:textSize="@dimen/notes_size"
app:layout_constraintBottom_toBottomOf="parent"

ADOPTING FRAGMENTS

442

app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/label_created" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>
</layout></layout>

(from FragmentManual/src/main/res/layout/todo_display.xml)

On the whole, this is a basic ConstraintLayout-based layout resource, akin to those
that we have seen previously in the book. It uses data binding to populate the core
widgets.

The most interesting widget of the lot, though, is the ImageView:

<ImageView<ImageView
android:id="@+id/completed"
android:layout_width="@dimen/checked_icon_size"
android:layout_height="@dimen/checked_icon_size"
android:layout_marginEnd="8dp"
android:layout_marginTop="8dp"
android:contentDescription="@string/is_completed"
android:src="@drawable/ic_check_circle_black_24dp"
android:tint="@color/colorAccent"
android:visibility="@{model.isCompleted ? View.VISIBLE : View.GONE}"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

(from FragmentManual/src/main/res/layout/todo_display.xml)

The icon that we use — ic_check_circle_black_24dp — is one imported from clip
art through the Vector Asset wizard, the same way that we setup Toolbar icons in an
earlier chapter. However, we want it to show up in a different color. We could hand-
modify the XML of the resource. A simpler approach is used here, where we use
android:tint to apply our colorAccent color to the widget. All black pixels will be
replaced with pixels based on our accent color. This way, if we elect to change the
accent color, changing the color resource affects this ImageView without having to
modify the drawable itself.

Also, the ImageView uses a slightly complicated data binding expression:

android:visibility="@{model.isCompleted ? View.VISIBLE : View.GONE}"

(from FragmentManual/src/main/res/layout/todo_display.xml)

We want the icon to be visible if the isCompleted property is true. The

ADOPTING FRAGMENTS

443

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/res/layout/todo_display.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/res/layout/todo_display.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/res/layout/todo_display.xml

android:visibility attribute handles this, with three possible values:

• visible
• invisible: the widget’s pixels are not drawn, but it still takes up space on

the screen
• gone: the widget is ignored entirely

We want to toggle the visibility to be visible or gone based on whether the to-do
item has been completed.

Here, we use a “ternary expression”. This mimics the ternary expressions available in
Java (though not in Kotlin). A ternary expression is made up of three pieces:

• To the left of the ? is some boolean value — in our case, the value of the
isCompleted property

• To the left of the : is the value to use if the boolean value is true
• To the right of the : is the value to use if the boolean value is false

The end result is that the user sees a tinted checkmark if the to-do item is
completed.

The ViewModelViewModel

DisplayFragment has a DisplayViewModel to hold its data across configuration
changes:

packagepackage com.commonsware.jetpack.samplerj.fragmentscom.commonsware.jetpack.samplerj.fragments;

importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel;

publicpublic classclass DisplayViewModelDisplayViewModel extendsextends ViewModelViewModel {
privateprivate ToDoModelToDoModel model;

ToDoModelToDoModel getModel(StringString id) {
ifif (model == nullnull) {

model = ToDoRepositoryToDoRepository.INSTANCE.findItemById(id);
}

returnreturn model;
}

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayViewModel.java)

ADOPTING FRAGMENTS

444

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayViewModel.java

packagepackage com.commonsware.jetpack.sampler.fragmentscom.commonsware.jetpack.sampler.fragments

importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel

classclass DisplayViewModelDisplayViewModel : ViewModelViewModel() {
privateprivate varvar model: ToDoModelToDoModel? = nullnull

funfun getModel(id: StringString) =
model ?: ToDoRepositoryToDoRepository.findItemById(id).also { model = it }

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayViewModel.kt)

Each instance of our DisplayFragment will display a single ToDoModel instance. The
fragment starts out with just the ID of the model, though, as we will see in the next
section. Our DisplayViewModel just asks our ToDoRepository for the ToDoModel
associated with that ID.

The Class Declaration

As noted earlier in the chapter, we are using androidx.fragment.app.Fragment as
our Fragment implementation, so DisplayFragment extends from that class.

Fragments should have a public zero-argument constructor. That is because the
fragment code — such as the AndroidX fragment code — will create instances of our
fragments for us after configuration changes. The only constructor that this code
knows how to use is a public zero-argument constructor.

So, in Kotlin, we can skip the constructor in our declaration and just chain to the
zero-argument constructor we inherit from Fragment:

classclass DisplayFragmentDisplayFragment : FragmentFragment() {

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayFragment.kt)

In Java, we similarly skip any constructor and just extend from Fragment:

publicpublic classclass DisplayFragmentDisplayFragment extendsextends FragmentFragment {

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java)

The Factory Function

Frequently, our fragments need to know what they are supposed to do. In the case of

ADOPTING FRAGMENTS

445

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayViewModel.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayFragment.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java

DisplayFragment, it needs to know what ToDoModel to display. Given
DisplayViewModel, we can get a ToDoModel given its ID… but we still need for
DisplayFragment to get that ID. Since we are using zero-argument constructors, we
need another way to get that ID over to the fragment.

With manual fragments, that typically involves a factory function that can create
instances of our DisplayFragment for us.

In Java, that would be a static method that returns a DisplayFragment:

staticstatic DisplayFragmentDisplayFragment newInstance(StringString modelId) {
DisplayFragmentDisplayFragment result = newnew DisplayFragmentDisplayFragment();
BundleBundle args = newnew BundleBundle();

args.putString(ARG_MODEL_ID, modelId);
result.setArguments(args);

returnreturn result;
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java)

…while in Kotlin, it would be a function on a companion object:

companioncompanion objectobject {
funfun newInstance(modelId: StringString) = DisplayFragmentDisplayFragment().apply {

arguments = bundleOf(ARG_MODEL_IDARG_MODEL_ID to modelId)
}

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayFragment.kt)

The Arguments BundleBundle

These functions take a modelId as input and return a DisplayFragment as output.
What happens in between is that the function attaches an “arguments Bundle” to
the fragment, putting that model ID String into the Bundle.

We do this to handle the case where our process is terminated while in the
background, but the user returns to our activity and its fragments quickly. The
arguments Bundle for the fragment forms part of the saved instance state of our
activity. This way, we can hold onto the model ID and be able to show that model
again… in theory.

ADOPTING FRAGMENTS

446

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayFragment.kt

In reality, we generate fresh model objects with fresh IDs whenever we get a fresh
process, so the ID from the old process will be wrong. That is because this example
is very fake and does not persist its model data in a database. We will correct that
limitation in a later chapter.

Both implementations use a constant named ARG_MODEL_ID as the key to the value
for the Bundle:

privateprivate staticstatic finalfinal StringString ARG_MODEL_ID = "modelId";

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java)

In Java, we create that Bundle like we would any other object. In Kotlin, we can use
the bundleOf() top-level function, which works much like how mapOf() creates a
Map.

The newInstance() factory function:

• Creates an instance of DisplayFragment
• Creates a Bundle
• Puts the model ID into the Bundle under the ARG_MODEL_ID key
• Attaches the Bundle to the fragment via setArguments()
• Returns the DisplayFragment with the attached Bundle

The onCreateView()onCreateView() Function

A fragment typically has an onCreateView() function, whether on its own or one
that it inherits from some superclass. The job of onCreateView() is to return the
View that represents the view hierarchy to be managed by this fragment. In the case
of DisplayFragment, we want to use the view hierarchy defined by the todo_display
layout resource.

We are using data binding in this sample, so our todo_display layout resource gives
us a TodoDisplayBinding class, courtesy of the data binding code generator. So, as
we did in previous data binding examples, we can use that binding class to
inflate() our UI and return the getRoot() View from onCreateView():

@Nullable
@Override
publicpublic ViewView onCreateView(@NonNull LayoutInflaterLayoutInflater inflater,

@Nullable ViewGroupViewGroup container,
@Nullable BundleBundle savedInstanceState) {

ADOPTING FRAGMENTS

447

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java

binding = TodoDisplayBindingTodoDisplayBinding.inflate(inflater, container, falsefalse);

returnreturn binding.getRoot();
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java)

overrideoverride funfun onCreateView(
inflater: LayoutInflaterLayoutInflater,
container: ViewGroupViewGroup?,
savedInstanceState: BundleBundle?

) = TodoDisplayBindingTodoDisplayBinding.inflate(inflater, container, falsefalse)
.apply { binding = thisthis }
.root

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayFragment.kt)

In both cases, we are also holding onto the binding in a binding property for later
use.

The onViewCreated()onViewCreated() Function

A fragment also typically has an onViewCreated() function. This will be called after
onCreateView(), and it is where you configure and populate the widgets that are
part of the UI that the fragment is managing.

In our case, we are using data binding, so this is where we can bind our ToDoModel
into the layout, to invoke the binding expressions and fill in the widgets.

To do that, we:

• Get our DisplayViewModel from a ViewModelProvider, passing in the
fragment itself to of() to get a ViewModelProvider tied to our fragment

• Get the model ID out of the arguments Bundle
• Pass that ID to getModel() on the DisplayViewMode() to retrieve our
ToDoModel

• Put that model, and a formatted edition of the createdOn value, into the
binding

@Override
publicpublic void onViewCreated(@NonNull ViewView view,

@Nullable BundleBundle savedInstanceState) {
supersuper.onViewCreated(view, savedInstanceState);

ADOPTING FRAGMENTS

448

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayFragment.kt

DisplayViewModelDisplayViewModel vm =
newnew ViewModelProvider(thisthis).get(DisplayViewModelDisplayViewModel.class);

StringString modelId = getArguments().getString(ARG_MODEL_ID);

ifif (modelId == nullnull) {
throwthrow newnew IllegalArgumentException("no modelId provided!");

}

ToDoModelToDoModel model = vm.getModel(modelId);

ifif (model != nullnull) {
binding.setModel(model);
binding.setCreatedOnFormatted(DateUtilsDateUtils.getRelativeDateTimeString(

getActivity(),
model.createdOn.toEpochMilli(), DateUtilsDateUtils.MINUTE_IN_MILLIS,
DateUtilsDateUtils.WEEK_IN_MILLIS, 0

));
}

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java)

overrideoverride funfun onViewCreated(view: ViewView, savedInstanceState: BundleBundle?) {
supersuper.onViewCreated(view, savedInstanceState)

valval vm: DisplayViewModelDisplayViewModel byby viewModels()
valval model = vm.getModel(

arguments?.getString(ARG_MODEL_IDARG_MODEL_ID) ?: throwthrow IllegalStateExceptionIllegalStateException("no modelId provided!")
)

model?.let {
binding.model = model
binding.createdOnFormatted = DateUtilsDateUtils.getRelativeDateTimeString(

activity,
model.createdOn.toEpochMilli(), DateUtilsDateUtils.MINUTE_IN_MILLISMINUTE_IN_MILLIS,
DateUtilsDateUtils.WEEK_IN_MILLISWEEK_IN_MILLIS, 0

)
}

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayFragment.kt)

Note that we are using a DateUtils utility class supplied by Android for formatting
our date and time. The big advantage of using DateUtils is that this class is aware of
the user’s settings for how they prefer to see the date and time (e.g., 12- versus
24-hour mode). Specifically, we are using the getRelativeDateTimeString()
method on DateUtils, which will return a value that expresses the creation time
relative to now using phrases like “5 minutes ago” or “2 days ago”.

The net result is that after onViewCreated() returns, our widgets will have the

ADOPTING FRAGMENTS

449

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/DisplayFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/DisplayFragment.kt

desired contents.

Of course, so far, we have glossed over the issue of when and how any of this
happens. We have this lovely factory function… but something needs to call it. That
function creates a perfectly delightful fragment… but something needs to arrange to
show it on the screen. We will explore those steps in the upcoming sections.

The ListFragmentListFragment

We also have a ListFragment that is responsible for displaying the list of to-do
items. When the user clicks on an item in the list, we want to then show the
DisplayFragment.

There are several pieces that come together to show this list, with ListFragment
acting as a central coordinator for all of them.

The Fragment Layout

As we have seen in other samples in this book, this sample app uses a RecyclerView
for displaying the list of to-do items. Our todo_roster layout resource has that
RecyclerView, and nothing else:

<?xml version="1.0" encoding="utf-8"?>
<androidx.recyclerview.widget.RecyclerView<androidx.recyclerview.widget.RecyclerView android:id="@+id/items"

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent" />/>

(from FragmentManual/src/main/res/layout/todo_roster.xml)

The Row Layout

We also need a layout resource for the rows to appear in the list. That layout —
todo_row — is a bit more interesting:

<?xml version="1.0" encoding="utf-8"?>
<layout<layout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto">>

<data><data>

<variable<variable
name="model"

ADOPTING FRAGMENTS

450

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/res/layout/todo_roster.xml

type="com.commonsware.jetpack.sampler.fragments.ToDoModel" />/>
</data></data>

<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="?android:attr/selectableItemBackground"
android:clickable="true"
android:focusable="true">>

<CheckBox<CheckBox
android:id="@+id/checkbox"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:checked="@{model.isCompleted}"
android:textSize="@dimen/desc_size"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<TextView<TextView
android:id="@+id/desc"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@{model.description}"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@+id/checkbox"
app:layout_constraintTop_toTopOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>
</layout></layout>

(from FragmentManual/src/main/res/layout/todo_row.xml)

From a user experience standpoint, we want:

• The user to be able to mark the to-do item as completed by toggling the
checkbox (though, in this version of the app, we will not try to save that
change)

ADOPTING FRAGMENTS

451

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/res/layout/todo_row.xml

• The user to be able to view details of the item, via DisplayFragment, by
clicking elsewhere on the row

Normally, a CheckBox is both the actual “checkbox” square plus associated text. So,
visually, we could say that each row is just a CheckBox widget. But then clicks on the
text will wind up toggling the CheckBox state, as CheckBox interprets all clicks on it
equally. In our case, we want to distinguish between clicks on the checkbox and
clicks on the rest of the row, so we cannot just use CheckBox alone.

To that end, we have both a CheckBox and a TextView in our row, wrapped in a
ConstraintLayout, to mimic the presentation of a regular CheckBox but not have
clicks on the text trigger CheckBox state changes.

The root ConstraintLayout has its attributes set up such that it represents
something that can be clicked upon:

• android:background="?android:attr/selectableItemBackground"
• android:clickable="true"
• android:focusable="true"

We are also using data binding here, to populate the CheckBox checked state and the
TextView text based on the data in a particular ToDoModel.

The Viewmodel

Once again, we have a ViewModel to hold our data to be displayed. In this case,
ListViewModel holds the list of items obtained from the ToDoRepository:

packagepackage com.commonsware.jetpack.samplerj.fragmentscom.commonsware.jetpack.samplerj.fragments;

importimport java.util.Listjava.util.List;
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel;

publicpublic classclass ListViewModelListViewModel extendsextends ViewModelViewModel {
finalfinal ListList<ToDoModelToDoModel> items = ToDoRepositoryToDoRepository.INSTANCE.getItems();

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListViewModel.java)

packagepackage com.commonsware.jetpack.sampler.fragmentscom.commonsware.jetpack.sampler.fragments

importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel

ADOPTING FRAGMENTS

452

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListViewModel.java

classclass ListViewModelListViewModel : ViewModelViewModel() {
valval items = ToDoRepositoryToDoRepository.getItems()

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListViewModel.kt)

The Adapter and Row Holder

Since we are using a RecyclerView, we need a RecyclerView.Adapter and a
RecyclerView.ViewHolder. And we have an interesting requirement: we want our
ListFragment to get control when the user clicks on those rows, so we can navigate
to the DisplayFragment.

In Kotlin, we can accomplish this by having our adapter and view-holder accept a
function type as a parameter, so we can call that function when the user clicks on a
row.

You can learn more about function types in the "Functional
Programming" chapter of Elements of Kotlin!

In Java, we can create a custom listener interface and use instances of that listener in
lieu of the Kotlin function type.

Our RecyclerView.ViewHolder is called ToDoListRowHolder:

packagepackage com.commonsware.jetpack.samplerj.fragmentscom.commonsware.jetpack.samplerj.fragments;

importimport com.commonsware.jetpack.samplerj.fragments.databinding.TodoRowBindingcom.commonsware.jetpack.samplerj.fragments.databinding.TodoRowBinding;
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView;

classclass ToDoListRowHolderToDoListRowHolder extendsextends RecyclerViewRecyclerView.ViewHolder {
interfaceinterface OnRowClickListenerOnRowClickListener {

void onRowClick(ToDoModelToDoModel model);
}

privateprivate finalfinal TodoRowBindingTodoRowBinding binding;

ToDoListRowHolderToDoListRowHolder(TodoRowBindingTodoRowBinding binding, OnRowClickListenerOnRowClickListener listener) {
supersuper(binding.getRoot());

thisthis.binding = binding;

ADOPTING FRAGMENTS

453

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListViewModel.kt
https://commonsware.com/Kotlin

binding.getRoot().setOnClickListener(v -> {
ifif (binding.getModel()!=nullnull) {

listener.onRowClick(binding.getModel());
}

});
}

void bind(ToDoModelToDoModel model) {
binding.setModel(model);
binding.executePendingBindings();

}
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoListRowHolder.java)

packagepackage com.commonsware.jetpack.sampler.fragmentscom.commonsware.jetpack.sampler.fragments

importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView
importimport com.commonsware.jetpack.sampler.fragments.databinding.TodoRowBindingcom.commonsware.jetpack.sampler.fragments.databinding.TodoRowBinding

classclass ToDoListRowHolderToDoListRowHolder(
privateprivate valval binding: TodoRowBindingTodoRowBinding,
onRowClick: (ToDoModelToDoModel) -> UnitUnit

) :
RecyclerViewRecyclerView.ViewHolderViewHolder(binding.root) {
init {

binding.root.setOnClickListener { binding.model?.let { onRowClick(it) } }
}

funfun bind(model: ToDoModelToDoModel) {
binding.model = model
binding.executePendingBindings()

}
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoListRowHolder.kt)

We receive a TodoRowBinding object in our constructor — that is the data binding
generated binding class for our todo_row layout resource. We also receive the Kotlin
function type or the Java OnRowClickListener to use to report when the user clicks
on rows.

Then, we:

• Hold onto the binding in a property
• Set up a click listener on the ConstraintLayout (the root of our binding)

and invoke the Kotlin function type or call the Java listener when the user

ADOPTING FRAGMENTS

454

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoListRowHolder.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoListRowHolder.kt

clicks on a row
• Bind a model to the binding in bind() as requested

We can supply the ToDoModel to the function type or listener by asking our binding
for its model via getModel(). This way, we can pass the ToDoModel upstream when
the user clicks on its row.

Our RecyclerView.Adapter is called ToDoListAdapter:

packagepackage com.commonsware.jetpack.samplerj.fragmentscom.commonsware.jetpack.samplerj.fragments;

importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.commonsware.jetpack.samplerj.fragments.databinding.TodoRowBindingcom.commonsware.jetpack.samplerj.fragments.databinding.TodoRowBinding;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.recyclerview.widget.ListAdapterandroidx.recyclerview.widget.ListAdapter;

classclass ToDoListAdapterToDoListAdapter extendsextends ListAdapterListAdapter<ToDoModelToDoModel, ToDoListRowHolderToDoListRowHolder> {
privateprivate finalfinal LayoutInflaterLayoutInflater inflater;
privateprivate finalfinal ToDoListRowHolderToDoListRowHolder.OnRowClickListener listener;

protectedprotected ToDoListAdapter(LayoutInflaterLayoutInflater inflater,
ToDoListRowHolderToDoListRowHolder.OnRowClickListener listener) {

supersuper(ToDoModelToDoModel.DIFF_CALLBACK);
thisthis.inflater = inflater;
thisthis.listener = listener;

}

@NonNull
@Override
publicpublic ToDoListRowHolderToDoListRowHolder onCreateViewHolder(@NonNull ViewGroupViewGroup parent,

int viewType) {
returnreturn newnew ToDoListRowHolder(

TodoRowBindingTodoRowBinding.inflate(inflater, parent, falsefalse), listener);
}

@Override
publicpublic void onBindViewHolder(@NonNull ToDoListRowHolderToDoListRowHolder holder,

int position) {
holder.bind(getItem(position));

}
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoListAdapter.java)

ADOPTING FRAGMENTS

455

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoListAdapter.java

packagepackage com.commonsware.jetpack.sampler.fragmentscom.commonsware.jetpack.sampler.fragments

importimport android.view.LayoutInflaterandroid.view.LayoutInflater
importimport android.view.ViewGroupandroid.view.ViewGroup
importimport androidx.recyclerview.widget.ListAdapterandroidx.recyclerview.widget.ListAdapter
importimport com.commonsware.jetpack.sampler.fragments.databinding.TodoRowBindingcom.commonsware.jetpack.sampler.fragments.databinding.TodoRowBinding

classclass ToDoListAdapterToDoListAdapter(privateprivate valval inflater: LayoutInflaterLayoutInflater,
privateprivate valval onRowClick: (ToDoModelToDoModel) -> UnitUnit) :

ListAdapterListAdapter<ToDoModelToDoModel, ToDoListRowHolderToDoListRowHolder>(ToDoModelDiffCallbackToDoModelDiffCallback) {
overrideoverride funfun onCreateViewHolder(parent: ViewGroupViewGroup, viewType: IntInt) =

ToDoListRowHolderToDoListRowHolder(TodoRowBindingTodoRowBinding.inflate(inflater, parent, falsefalse), onRowClick)

overrideoverride funfun onBindViewHolder(holder: ToDoListRowHolderToDoListRowHolder, position: IntInt) {
holder.bind(getItem(position))

}
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoListAdapter.kt)

ToDoListAdapter is a ListAdapter, and so we need our DiffUtil.ItemCallback to
help identify changes in our data model. That is implemented on ToDoModel, as our
model class should know how to compare instances of itself:

staticstatic finalfinal DiffUtilDiffUtil.ItemCallback<ToDoModelToDoModel> DIFF_CALLBACK =
newnew DiffUtilDiffUtil.ItemCallback<ToDoModelToDoModel>() {

@Override
publicpublic boolean areItemsTheSame(@NonNull ToDoModelToDoModel oldItem,

@NonNull ToDoModelToDoModel newItem) {
returnreturn oldItem == newItem;

}

@Override
publicpublic boolean areContentsTheSame(@NonNull ToDoModelToDoModel oldItem,

@NonNull ToDoModelToDoModel newItem) {
returnreturn oldItem.isCompleted == newItem.isCompleted &&

oldItem.description.equals(newItem.description);
}

};

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoModel.java)

objectobject ToDoModelDiffCallbackToDoModelDiffCallback : DiffUtilDiffUtil.ItemCallbackItemCallback<ToDoModelToDoModel>() {
overrideoverride funfun areItemsTheSame(oldItem: ToDoModelToDoModel, newItem: ToDoModelToDoModel) =

oldItem === newItem

overrideoverride funfun areContentsTheSame(oldItem: ToDoModelToDoModel, newItem: ToDoModelToDoModel) =
oldItem.isCompleted == newItem.isCompleted &&

oldItem.description == newItem.description
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoModel.kt)

ADOPTING FRAGMENTS

456

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoListAdapter.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ToDoModel.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ToDoModel.kt

ToDoListAdapter also accepts our function type or listener in its constructor, to pass
to the constructors of each of the ToDoListRowHolder instances.

Beyond that, ToDoListAdapter is a fairly simple ListAdapter implementation,
creating instances of ToDoListRowHolder in onCreateViewHolder() and binding
ToDoModel instances in onBindViewHolder().

The Fragment

With all that done, our ListFragment has little to do, other than connect the
remaining pieces:

packagepackage com.commonsware.jetpack.samplerj.fragmentscom.commonsware.jetpack.samplerj.fragments;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.commonsware.jetpack.samplerj.fragments.databinding.TodoRosterBindingcom.commonsware.jetpack.samplerj.fragments.databinding.TodoRosterBinding;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.annotation.Nullableandroidx.annotation.Nullable;
importimport androidx.fragment.app.Fragmentandroidx.fragment.app.Fragment;
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider;
importimport androidx.lifecycle.ViewModelProvidersandroidx.lifecycle.ViewModelProviders;
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager;
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView;

publicpublic classclass ListFragmentListFragment extendsextends FragmentFragment {
privateprivate TodoRosterBindingTodoRosterBinding binding;

@Nullable
@Override
publicpublic ViewView onCreateView(@NonNull LayoutInflaterLayoutInflater inflater,

@Nullable ViewGroupViewGroup container,
@Nullable BundleBundle savedInstanceState) {

binding = TodoRosterBindingTodoRosterBinding.inflate(inflater, container, falsefalse);

returnreturn binding.getRoot();
}

@Override
publicpublic void onViewCreated(@NonNull ViewView view,

@Nullable BundleBundle savedInstanceState) {
supersuper.onViewCreated(view, savedInstanceState);

ListViewModelListViewModel vm = newnew ViewModelProviderViewModelProvider(thisthis).get(ListViewModelListViewModel.class);

binding.items.setLayoutManager(newnew LinearLayoutManagerLinearLayoutManager(getContext()));

ToDoListAdapterToDoListAdapter adapter = newnew ToDoListAdapterToDoListAdapter(getLayoutInflater(),
thisthis::navTo);

adapter.submitList(vm.items);
binding.items.setAdapter(adapter);

ADOPTING FRAGMENTS

457

}

@Override
publicpublic void onDestroyView() {

supersuper.onDestroyView();

binding = nullnull;
}

privateprivate void navTo(ToDoModelToDoModel model) {
getParentFragmentManager().beginTransaction()

.replace(android.R.id.content, DisplayFragmentDisplayFragment.newInstance(model.id))

.addToBackStack(nullnull)

.commit();
}

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java)

packagepackage com.commonsware.jetpack.sampler.fragmentscom.commonsware.jetpack.sampler.fragments

importimport android.os.Bundleandroid.os.Bundle
importimport android.view.LayoutInflaterandroid.view.LayoutInflater
importimport android.view.Viewandroid.view.View
importimport android.view.ViewGroupandroid.view.ViewGroup
importimport androidx.fragment.app.Fragmentandroidx.fragment.app.Fragment
importimport androidx.fragment.app.commitandroidx.fragment.app.commit
importimport androidx.fragment.app.viewModelsandroidx.fragment.app.viewModels
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager
importimport com.commonsware.jetpack.sampler.fragments.databinding.TodoRosterBindingcom.commonsware.jetpack.sampler.fragments.databinding.TodoRosterBinding

classclass ListFragmentListFragment : FragmentFragment() {
privateprivate varvar _binding: TodoRosterBindingTodoRosterBinding? = nullnull
privateprivate valval vm: ListViewModelListViewModel byby viewModels()

overrideoverride funfun onCreateView(
inflater: LayoutInflaterLayoutInflater,
container: ViewGroupViewGroup?,
savedInstanceState: BundleBundle?

): ViewView = TodoRosterBindingTodoRosterBinding.inflate(inflater, container, falsefalse)
.also { _binding = it }
.root

overrideoverride funfun onViewCreated(view: ViewView, savedInstanceState: BundleBundle?) {
supersuper.onViewCreated(view, savedInstanceState)

_binding?.let { binding ->
binding.items.layoutManager = LinearLayoutManagerLinearLayoutManager(context)

valval adapter = ToDoListAdapterToDoListAdapter(layoutInflater) {
navTo(it)

ADOPTING FRAGMENTS

458

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java

}

binding.items.adapter = adapter.apply { submitList(vm.items) }
}

}

overrideoverride funfun onDestroyView() {
supersuper.onDestroyView()

_binding = nullnull
}

privateprivate funfun navTo(model: ToDoModelToDoModel) {
parentFragmentManager.commit {

replace(android.RR.id.content, DisplayFragmentDisplayFragment.newInstance(model.id))
addToBackStack(nullnull)

}
}

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListFragment.kt)

As with DisplayFragment, our onCreateView() function sets up the UI to be
managed by this fragment. That is the RecyclerView defined in the todo_roster
layout resource. That layout resource does not use data binding, so we can use
inflate() on LayoutInflater directly to load that layout resource and create the
RecyclerView.

As with DisplayFragment, our onViewCreated() function configures the UI that we
inflated in onCreateView(). Here we:

• Get our ListViewModel from a ViewModelProvider
• Create a LinearLayoutManager and attach it to the RecyclerView
• Create a ToDoListAdapter and attach it to the RecyclerView
• Get our list of ToDoModel objects from the ListViewModel and supply those

to the ToDoListAdapter via submitList()

When we create the ToDoListAdapter, we need to supply our onItemClick function
type or listener implementation. In Java, we use a Java 8 method reference to have a
generated listener call our navTo() method. In Kotlin, we use a lambda expression to
call our navTo() function.

So, when the user clicks a row, whether we are in Java or Kotlin, navTo() is called.
There, we need to arrange to show the DisplayFragment.

ADOPTING FRAGMENTS

459

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListFragment.kt

The FragmentTransactionFragmentTransaction

navTo() uses a FragmentTransaction to display the DisplayFragment. The actual
work done is the same in Java and Kotlin. However, the Kotlin edition of the project
has added androidx.fragment:fragment-ktx as a dependency. This Android KTX
library offers some simpler syntax for Kotlin’s use of FragmentTransaction.

Java

The Java edition of navTo() has a fairly classic recipe for performing a
FragmentTransaction:

privateprivate void navTo(ToDoModelToDoModel model) {
getParentFragmentManager().beginTransaction()

.replace(android.R.id.content, DisplayFragmentDisplayFragment.newInstance(model.id))

.addToBackStack(nullnull)

.commit();
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java)

First, to get a FragmentTransaction, we need a FragmentManager. A fragment can
get a FragmentManager by calling getParentFragmentManager(). This returns the
FragmentManager that manages calling Fragment and any of its peer fragments.

Next, to get a FragmentTransaction for use, we can call beginTransaction() on the
FragmentManager. This returns a FragmentTransaction ready for us to configure and
commit.

In our case, we do two things to configure the FragmentTransaction:

1. We call replace() to say “please replace any fragment in the
android.R.id.content container with this new fragment”. The new
fragment is our DisplayFragment, created using the factory method. The
container is android.R.id.content, which is the framework’s ID for the
container for an activity’s UI. When we call setContentView() on an activity,
the “content view” winds up as a child of the android.R.id.content
container.

2. We call addToBackStack(null), indicating that when the user clicks the
BACK button, we want the FragmentTransaction to be rolled back. In our
case, that would revert the replace() call, which would cause
android.R.id.content to hold whatever fragment preceded the

ADOPTING FRAGMENTS

460

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java

DisplayFragment. As we will see shortly, the ListFragment itself is going in
that container, so reverting that transaction will cause the ListFragment to
be displayed again.

Finally, once our FragmentTransaction is configured, we call commit() to say “make
it so”. Shortly, the DisplayFragment will be shown on the screen, replacing the
ListFragment.

Kotlin

The Kotlin code does the same work, just with slightly different syntax:

privateprivate funfun navTo(model: ToDoModelToDoModel) {
parentFragmentManager.commit {

replace(android.RR.id.content, DisplayFragmentDisplayFragment.newInstance(model.id))
addToBackStack(nullnull)

}
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListFragment.kt)

Part of that syntax change is just ordinary Kotlin, where
getParentFragmentManager() can be replaced by reading the
parentFragmentManager pseudo-property.

Part of that syntax change comes from Android KTX, in the form of that
androidx.fragment:fragment-ktx library. It adds an extension function to
FragmentManager, named commit(). The commit()() function:

• Accepts a function type as a parameter, typically in the form of a lambda
expression as shown here

• Begins a FragmentTransaction
• Invokes that function type, setting the FragmentTransaction to be the

current object (i.e., this), so calls like replace() and addToBackStack() can
be called directly

• Commits that FragmentTransaction once the function type returns

The Activity

All that remains is for our activity to set up the ListFragment to be shown. That too
is handled via a FragmentTransaction, much like how we navigated from
ListFragment to DetailFragment. However, there is one wrinkle: we only execute

ADOPTING FRAGMENTS

461

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListFragment.kt

the FragmentTransaction if our savedInstanceState is null:

packagepackage com.commonsware.jetpack.samplerj.fragmentscom.commonsware.jetpack.samplerj.fragments;

importimport android.os.Bundleandroid.os.Bundle;
importimport androidx.annotation.Nullableandroidx.annotation.Nullable;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
@Override
protectedprotected void onCreate(@Nullable BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ifif (savedInstanceState == nullnull) {
getSupportFragmentManager().beginTransaction()

.add(android.R.id.content, newnew ListFragmentListFragment())

.commit();
}

}
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/MainActivity.java)

packagepackage com.commonsware.jetpack.sampler.fragmentscom.commonsware.jetpack.sampler.fragments

importimport android.os.Bundleandroid.os.Bundle
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.fragment.app.commitandroidx.fragment.app.commit

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

ifif (savedInstanceState == nullnull) {
supportFragmentManager.commit {

add(android.RR.id.content, ListFragmentListFragment())
}

}
}

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/MainActivity.kt)

When the device undergoes a configuration change, Android will automatically
destroy and recreate the activity and its fragments. As a result, in the re-created
activity, by the time onCreate() is called, any displayed fragments will already exist.

ADOPTING FRAGMENTS

462

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/MainActivity.kt

In that case, we do not need to create them ourselves. So, to distinguish between the
first time the activity is created and when the activity is re-created after a
configuration change, we see if the passed-in state Bundle is null. If it is, then our
fragment should not yet exist, so we create one and add() it to the container via a
FragmentTransaction. If the Bundle is not null, though, then the fragment should
already exist, so we can skip the step for creating and adding it.

Another approach that we could use is to see if the container already has a fragment
in it, using code like:

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

ifif (supportFragmentManager.findFragmentById(android.RR.id.content) == nullnull) {
supportFragmentManager.transaction {

add(android.RR.id.content, ListFragmentListFragment())
}

}
}

Those approaches are subtly different. The original asks “did the activity get re-
created?”. The revision asks “do we have a fragment in the container already?”. In the
context of this app, those will be equivalent, so either approach can work. In more
elaborate apps, where fragments might be coming and going with greater frequency
and complexity, those approaches may yield different results, and you will want to
choose the one that better matches the actual need of your code and situation.

On an activity, we use getSupportFragmentManager() to get the FragmentManager to
use. There is also a getFragmentManager() method, but it refers to the deprecated
framework edition of fragments, which is not what we want. getFragmentManager()
itself is deprecated, to help further warn us that this is not the method that we are
looking for.

The Recap

So, we have two fragments, each with their own viewmodel. The MainActivity sets
up the first fragment (ListFragment). That fragment renders its own UI and
switches to a different fragment (DetailsFragment) based on user input. The second
fragment handles its own UI, independently from the first fragment, other than for
data explicitly passed between them (the to-do item’s ID).

We could have implemented the same thing using two activities, instead of a single

ADOPTING FRAGMENTS

463

activity and two fragments. A lot of classic Android app development would have
taken that approach. The Jetpack recommendations are to use fragments where
possible and minimize your number of activities, for greater flexibility in
implementing your UI.

The Fragment Lifecycle Methods
Fragments have lifecycle methods, just like activities do. In fact, they support most
of the same lifecycle methods as activities:

• onCreate()
• onStart() (but not onRestart())
• onResume()
• onPause()
• onStop()
• onDestroy()

By and large, the same rules apply for fragments as do for activities with respect to
these lifecycle methods (e.g., onDestroy() may not be called).

In addition to those and the onCreateView() method we examined earlier in this
chapter, there are other lifecycle methods that you can elect to override if you so
choose.

onAttach() will be called first, even before onCreate(), letting you know that your
fragment has been attached to an activity. You are passed the Activity that will host
your fragment.

onViewCreated() will be called after onCreateView(). This is particularly useful if
you are inheriting the onCreateView() implementation but need to configure the
resulting views. For example, you need to attach an adapter to a ListFragment — a
common place to do that is in onViewCreated(), as you know that the ListView is
set up at that time.

onActivityCreated() will be called to indicate that the activity’s onCreate() has
completed. If there is something that you need to initialize in your fragment that
depends upon the activity’s onCreate() having completed its work, you can use
onActivityCreated() for that initialization work.

onDestroyView() is called before onDestroy(). This is the counterpart to

ADOPTING FRAGMENTS

464

onCreateView() where you set up your UI. If there are things that you need to clean
up specific to your UI, you might put that logic in onDestroyView().

onDetach() is called after onDestroy(), to let you know that your fragment has been
disassociated from its hosting activity.

Google offers this diagram, depicting the order in which these events will occur:

Figure 187: Fragment Lifecycle Methods

(the above image is reproduced from work created and shared by the Android Open
Source Project and used according to terms described in the Creative Commons 2.5
Attribution License)

ADOPTING FRAGMENTS

465

https://source.android.com/license
https://source.android.com/license
https://creativecommons.org/licenses/by/2.5/
https://creativecommons.org/licenses/by/2.5/

onAttach() Versus onAttach()

If you set your project to have a compileSdkVersion of 23 or higher, and you attempt
to override onAttach(), you may get a deprecation warning:

Figure 188: Android Studio, Showing Deprecated onAttach()

That is because there are two versions of onAttach() (and onDetach()) starting with
API Level 23. One takes an Activity as a parameter, and the other takes a Context
as a parameter. The one taking the Activity as a parameter has been deprecated,
and deprecated things show up with strikethrough applied to their names in
Android Studio.

The roles of onAttach() and onDetach() are the same with either parameter: let you
know when the fragment has been attached to or detached from its host. However,
now, the host could be anything that extends Context, not merely an Activity.

On API Level 22 and below, though, only the Activity flavor of onAttach() and
onDetach() exists. This leads to a conundrum, as you try to determine exactly how
to handle this for your app.

On the whole, if your minSdkVersion is below 23, overriding just
onAttach(Activity) is your best route. It will work on all Android devices that
support fragments. Overriding only onAttach(Context) will not work, as older
devices will ignore it (despite Activity being a subclass of Context). You could
override both methods, but on API Level 23+ devices, both flavors will be called,
which may or may not be a good idea for your Fragment subclass.

ADOPTING FRAGMENTS

466

View Binding and Fragments

A fragment may outlive its views. It is possible for a fragment to:

• Be created and have onCreate() be called
• Have onCreateView() and onViewCreated() be called
• Have onDestroyView() be called
• Have onCreateView() and onViewCreated() be called again (e.g., the

fragment gets re-displayed)
• Have onDestroyView() be called
• Have onDestroy() be called

In between the first onDestroyView() and the second onCreateView(), ideally our
fragment has no references to the views that were created and destroyed from the
first onCreateView()/onDestroyView() cycle. In the specific case of view binding,
this means that we do not want to hold onto our binding object after
onDestroyView() gets called.

The recommended pattern is to set the Java field or Kotlin property that holds the
binding object to null in onDestroyView(). The mechanics of this will vary a bit
between Java and Kotlin, owing to Kotlin caring deeply about null:

Java

ListFragment has a binding field:

privateprivate TodoRosterBindingTodoRosterBinding binding;

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java)

We then set a value to it in onCreateView(), using TodoRosterBinding.inflate():

@Nullable
@Override
publicpublic ViewView onCreateView(@NonNull LayoutInflaterLayoutInflater inflater,

@Nullable ViewGroupViewGroup container,
@Nullable BundleBundle savedInstanceState) {

binding = TodoRosterBindingTodoRosterBinding.inflate(inflater, container, falsefalse);

returnreturn binding.getRoot();
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java)

ADOPTING FRAGMENTS

467

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java

We can then use it in places like onViewCreated():

@Override
publicpublic void onViewCreated(@NonNull ViewView view,

@Nullable BundleBundle savedInstanceState) {
supersuper.onViewCreated(view, savedInstanceState);

ListViewModelListViewModel vm = newnew ViewModelProviderViewModelProvider(thisthis).get(ListViewModelListViewModel.class);

binding.items.setLayoutManager(newnew LinearLayoutManagerLinearLayoutManager(getContext()));

ToDoListAdapterToDoListAdapter adapter = newnew ToDoListAdapterToDoListAdapter(getLayoutInflater(),
thisthis::navTo);

adapter.submitList(vm.items);
binding.items.setAdapter(adapter);

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java)

Finally, we can set the field back to null in onDestroyView():

@Override
publicpublic void onDestroyView() {

supersuper.onDestroyView();

binding = nullnull;
}

(from FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java)

As a result, after onDestroyView(), the widgets created in onCreateView() can be
garbage-collected.

Kotlin

If we want to set a Kotlin property to null, we have to use a nullable type, in this
case TodoRosterBinding?:

privateprivate varvar _binding: TodoRosterBindingTodoRosterBinding? = nullnull

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListFragment.kt)

However, nullable types get to be annoying to use, as we have to keep using safe calls
(?.) everywhere. So, this sample (and many of the rest in this book) use _binding
for the property name, then use ?.let() to map that to a non-nullable binding for

ADOPTING FRAGMENTS

468

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/samplerj/fragments/ListFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListFragment.kt

use:

overrideoverride funfun onViewCreated(view: ViewView, savedInstanceState: BundleBundle?) {
supersuper.onViewCreated(view, savedInstanceState)

_binding?.let { binding ->
binding.items.layoutManager = LinearLayoutManagerLinearLayoutManager(context)

valval adapter = ToDoListAdapterToDoListAdapter(layoutInflater) {
navTo(it)

}

binding.items.adapter = adapter.apply { submitList(vm.items) }
}

}

(from FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListFragment.kt)

That minimizes the number of safe calls that we need, and it ensures that all of our
UI setup logic only happens if we have a binding object to use.

ContextContext Anti-Pattern: Assuming Certain Types
Fragment has a getContext() method that you can call, to retrieve a Context, should
you need one for retrieving resources, etc.

It is likely that this Context is the Activity that hosts the fragment. However you
should not assume that this Context is the Activity that hosts the fragment. Google
has been preparing for cases where fragments might be owned by something else,
though what that “something else” is has yet to be determined.

If the documentation for the source of a Context stipulates that it is a particular type
of Context, it should be safe to treat it as such, downcasting it as needed (e.g.,
context as Activity in Kotlin). Otherwise, limit your use of that Context to things
that are available on Context and make no assumptions about its concrete type.
That concrete type might vary from version to version of Android, or even between
devices on the same Android version (due to manufacturer tweaks to Android).

ADOPTING FRAGMENTS

469

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentManual/src/main/java/com/commonsware/jetpack/sampler/fragments/ListFragment.kt

Navigating Your App

In the beginning, if we wanted multiple screens of content, we would use multiple
activities. To switch from screen to screen, we would use startActivity().

As Android evolved, many developers started to use fragments. To switch from
screen to screen, we would execute a FragmentTransaction.

All of that works and you are welcome to use it.

However, as part of Jetpack, Google is pushing a new Navigation component. This
serves as a replacement for many direct uses of FragmentTransaction and
startActivity(), while still allowing you to navigate from activities and fragments
to other activities and fragments.

What We Get from the Navigation Component
The Navigation component does not add any new capabilities to Android. It can’t,
after all — it comes from a library, and anything that can be done by Library A could
be done by Library B or Hand-Written-Code C. Anything you can do with the
Navigation component you can do “the old-fashioned way” using startActivity(),
FragmentTransaction, and related techniques.

So… why bother with the Navigation component?

Uniform API/Isolation of Details

When we call startActivity(), we have to provide an Intent that identifies the
activity that we want to start. When we commit a FragmentTransaction, we have to
configure that object with an instance of the fragment to be displayed. As a result:

471

• Our code is tied to a specific type of navigation (activity or fragment)
• Our code knows implementation details of the destination (the Java/Kotlin

class that is the target)

A big thing in computer programming is “separation of concerns”. We want one
chunk of code to know as little as possible about the next chunk of code, in case we
need to radically change the implementation of either chunk. With classic manual
navigation, our activities and fragments know more about the other activities and
fragments than is ideal.

With the Navigation component, we start to get away from that.

One key aspect is that all navigation is the same with the Navigation component.
When we want to switch to a different screen, we use the same API regardless of
whether that screen is implemented by an activity or a fragment. Hence, we want to
switch implementations someday (e.g., convert an activity to a fragment), the code
that navigates to that changed destination may not itself need to change.

Another aspect is that the details of how different screens are implemented is
contained in a new type of resource (navigation). The resource contains details
about classes and whether they represent activities or fragments. The resource uses
IDs — akin to widget IDs — to identify screens and how we get there. Our Java/
Kotlin code uses those IDs to tell the Navigation component where we want to go.
So, now not only do we use one API for navigating to both activities and fragments,
but the details of which activities and fragments are hidden behind an ID. If we want
to swap out one implementation of a screen with another, those navigating to that
screen should not need to change.

NAVIGATING YOUR APP

472

Graphical Representation of Flows

The navigation resource type, like most of Android’s resources, is an XML file with
a particular set of elements. And, like layout and menu resources, Android Studio
offers a graphical editor for navigation resources, allowing you to connect screens
using a drag-and-drop interface:

Figure 189: Android Studio, Showing Navigation Resource Editor

We will explore the use of this editor later in this chapter.

“Safe Args”

In both the chapter on activities and the chapter on fragments, we saw how we can
pass data from one screen to another. In the case of activities, that is in the form of
Intent extras. In the case of fragments, that is in the form of the arguments Bundle.
As it turns out, the extras in an Intent are contained in a Bundle, so in both forms of
manual navigation, your data is passed via a Bundle.

The problem with a Bundle is that while a Bundle supports a range of data types for
values, any key could have any of those data types. This can lead to problems, if the

NAVIGATING YOUR APP

473

sender specifies a String where the recipient is expecting an Int, or something like
that. It is as if we got rid of the strong typing available in Java/Kotlin and just held
onto all of our data in Map objects.

An add-on to the Navigation component helps with this by offering “Safe Args”. Part
of the details that we can put into the navigation resource is what data is expected
by any given screen. Then, Android Studio will code-generate:

• A class to help code wishing to navigate to that screen provide the data, with
the expected data types

• A class to help the implementation of the screen retrieve that data, once
again with the expected data types

“Under the covers”, those generated classes work with Intent extras and the
arguments Bundle, but those implementation details are hidden from us. This gives
us type-safe navigation, so we do not accidentally provide data of the wrong type.

App Bar Up Integration

You may have noticed that in some apps, in some cases, a leftward-pointing arrow
appears in the app bar:

Figure 190: Up Button in App Bar

This button allows the user to navigate “up” in the app. In most cases, this is the
same as the user pressing the system BACK button in the navigation bar. Sometimes,
in complicated apps with complicated navigation, up might lead somewhere else
that represents “up” in some hierarchy of content.

The Navigation component allows you to tie your app bar (e.g., a Toolbar) into the
navigation flow, such that the “up” button is shown when the Navigation component
deems it to be appropriate.

NAVIGATING YOUR APP

474

Simpler Support of Advanced Features

Those reasons may be enough to warrant experimenting with the Navigation
component.

For veteran Android developers, the Navigation component also helps to simplify
the use of a variety of advanced features, such as:

• “Deep links”, to help Google’s search engine and other Web content to
launch an app (via a link) and drive straight to some inner portion of that
app, instead of just opening the launcher activity

• Transitions, a means by which we can give the appearance of a widget from
one screen “moving” to another screen, such as a thumbnail image in a list
“zooming” into a larger image when the user clicks on the list item and goes
to a detail screen

Elements of Navigation
There are four main pieces of the Navigation component:

• The navigation resources
• The Android Studio editor for those resources
• The NavHostFragment for intra-activity navigation between fragments
• The NavController that lets you navigate at runtime

Navigation Resources

Google only infrequently creates a new type of resource, and almost never do they
create one that is not handled directly by the OS.

For the Navigation component, they did just that.

You can have a res/navigation/ directory in your module that holds navigation
resources. Those are XML files with a root <navigation> element and a series of
child elements that describe the navigation graph of your app.

Principally, the Navigation component handles navigation between fragments within
an activity. Hence, the primary children of the <navigation> element are
<fragment> elements, identifying a particular fragment that is part of the navigation
graph. However, if you want to navigate to a different activity — perhaps one that

NAVIGATING YOUR APP

475

has its own navigation graph — you can have child <activity> elements off of
<navigation> that identify those.

The <fragment> and <activity> elements — otherwise known as the “destinations”
— have a number of possible child elements, of which two are the most important:

• <action> indicates a destination that is supported from this screen; the
Navigation component helps you navigate based on these actions

• <argument> indicates a particular bit of data that this screen is expecting as
input

The root <navigation> element will have an app:startDestination attribute that
identifies which <fragment> should be displayed when this navigation graph is used
by an activity.

We will explore all of these in greater detail when we work through a sample app a
bit later in the chapter.

Navigation Resource Editor

You are welcome to maintain navigation resources manually by editing the XML. Or,
you can use Android Studio’s dedicated editor for those resources.

As with layout and menu resources, the navigation editor is a visual drag-and-drop
editor, or you can work with the XML directly.

NAVIGATING YOUR APP

476

Destinations

The main “preview” area shows the existing destinations in the navigation graph:

Figure 191: Navigation Editor Destination “Preview”

To add a new destination, you can click the left-most toolbar button in the preview
area:

Figure 192: Navigation Editor Preview Area Toolbar

NAVIGATING YOUR APP

477

This will bring up a list of all of the activities and fragments in your module, along
with options for a “placeholder” and “create new destination”. The latter brings up a
new-fragment wizard to help you create a new fragment.

Figure 193: Navigation Editor “Add Destination” Drop-Down

NAVIGATING YOUR APP

478

If you click on a particular destination, the “Attributes” pane will show you key
information about that destination, much of which is editable:

Figure 194: Navigation Editor Destination Attributes

Of particular note:

NAVIGATING YOUR APP

479

• “ID” holds the unique identifier of this destination. This uses the same @+id/
syntax as is used in layout and menu resources, though in the editor we drop
off that prefix. So, while the editor may show displayFragment, the real
identifier in the XML is @+id/displayFragment.

• “Class” is the Java/Kotlin class that implements this fragment or activity
• “Label” will be used in places where the Navigation component shows a user-

readable name for the destination, such as in the app bar (e.g., a Toolbar)
• “Arguments” contains a list of the arguments that this particular destination

expects to receive as input. The + button allows you to add a new argument:

Figure 195: Navigation Editor “Add Argument” Dialog

In the preview area toolbar, you can click the “home” icon to designate the selected
destination as being the start destination for this navigation graph.

Actions

Arrows connecting destinations in the preview area represent actions. Reminiscent
of constraining widgets in a ConstraintLayout, you can drag a circle on the right
edge of a destination to a corresponding circle on the left edge of another
destination to create an action. This indicates that you want to be able to navigate
from the first destination to the second.

NAVIGATING YOUR APP

480

Clicking on an arrow highlights it in blue and brings up its own set of attributes:

Figure 196: Navigation Editor Action Attributes

Of particular note:

• Actions have their own “ID” value, once again using the same @+id/ syntax
that we have seen elsewhere

• “Destination” provides the ID of the destination that is the target of this
action (i.e., the destination that will be navigated to if this action is
performed)

• “Argument Default Values” allows you to optionally supply hard-coded
values for arguments required by the chosen destination, instead of having
to provide them in Java/Kotlin code

NavHostFragmentNavHostFragment

As noted earlier, the primary focus of the Navigation component is to navigate
between fragments within an activity. This implies that the Navigation component
knows where those fragments should go.

That is in the form of a NavHostFragment. This is a fragment that shows other

NAVIGATING YOUR APP

481

fragments, the ones specified in your navigation graph. You tell it what navigation
graph it should use, and it will be responsible for:

• Showing your start destination, and
• Switching to another fragment destination, when your code asks for that at

runtime

NavControllerNavController

Switching to another destination in your navigation graph at runtime involves a
NavController. This will be associated with the activity or fragment that is hosting
the NavHostFragment. There are utility functions for getting the NavController, and
from there you can ask it to move forwards or backwards in the navigation graph.
“Forwards” means “go to this destination”; “backwards” means “go back to where we
came from to get to our current destination”.

A Navigation-ized To-Do List
The FragmentNav sample module in the Sampler and SamplerJ projects mostly is a
clone of last chapter’s FragmentManual module. In this edition of the app, though,
we use the Navigation component to get between the ListFragment and the
DisplayFragment. We also switch to using a Toolbar here for our app bar, so we can
get the up button added for us when we are on the DisplayFragment.

The Dependencies

The Navigation component is relatively complex in terms of dependencies, as we
have variations for Java and Kotlin plus additional setup for the Safe Args feature.

The Basics

There are two main dependencies that most apps will use to employ the Navigation
component:

1. androidx.navigation:navigation-fragment provides the core support for
navigation, particularly using fragments

2. androidx.navigation:navigation-ui offers the integration with the
Toolbar and other forms of app bar

These dependencies are closely coupled and generally will need to have the same

NAVIGATING YOUR APP

482

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/FragmentNav
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/FragmentNav
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/FragmentNav
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/FragmentNav

version. So, the overall Sampler/SamplerJ projects define a nav_version constant
that contains the version to use:

buildscript {
ext.nav_version = "2.3.1"

repositories {
google()
jcenter()

}

dependencies {
classpath 'com.android.tools.build:gradle:4.1.1'
classpath "androidx.navigation:navigation-safe-args-gradle-plugin:$nav_version"

}
}

(from build.gradle)

That way, when we add the dependencies in our FragmentNav module, we can
reference that nav_version constant and ensure that everything stays synchronized:

implementation "androidx.navigation:navigation-fragment:$nav_version"
implementation "androidx.navigation:navigation-ui:$nav_version"

(from FragmentNav/build.gradle)

Groovy — the language used for these Gradle scripts — supports string
interpolation, using the same basic syntax as does Kotlin ($name to add the value of
name to the string). As a result, values like androidx.navigation:navigation-
fragment:$nav_version get the $nav_version portion replaced by whatever the
value of nav_version is.

The KTX Bits

The dependencies closure shown above is from the SamplerJ project. Both Java and
Kotlin projects are welcome to use those dependencies. Kotlin projects, though, are
more likely to use the Android KTX variants of the dependencies:

implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
implementation "androidx.navigation:navigation-ui-ktx:$nav_version"

(from FragmentNav/build.gradle)

These, like the rest of the Android KTX libraries, add some extension functions and
similar Kotlin features that make using the Navigation component easier in Kotlin.

NAVIGATING YOUR APP

483

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentNav/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentNav/build.gradle

The Safe Args Code Generator

For basic use of the Navigation component, those are all that you need. If you want
to use the Safe Args feature for type-safe data exchange as part of navigation, you
have some additional setup to perform.

Let’s review one of the earlier code snippets, where we defined nav_version:

buildscript {
ext.nav_version = "2.3.1"

repositories {
google()
jcenter()

}

dependencies {
classpath 'com.android.tools.build:gradle:4.1.1'
classpath "androidx.navigation:navigation-safe-args-gradle-plugin:$nav_version"

}
}

(from build.gradle)

If you look closely, this also adds another entry to the buildscript set of
dependencies. Specifically, this adds a Gradle plugin for Safe Args. dependencies in
a module usually refer to code added to that module for runtime use; dependencies
in the buildscript closure usually refer to Gradle plugins that will be used by
modules.

Simply having the classpath entry is insufficient, though. Modules need to opt into
specific plugins offered by the library indicated by the classpath entry. So, our Java
modules’ build.gradle files have two apply plugin statements at the top: one for
Android apps and one for Safe Args:

apply plugin: 'com.android.application'
apply plugin: 'androidx.navigation.safeargs'

(from FragmentNav/build.gradle)

Kotlin modules will have additional plugins for Kotlin support, along with a Kotlin-
specific version of the Safe Args plugin:

NAVIGATING YOUR APP

484

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentNav/build.gradle

apply plugin: 'com.android.application'
apply plugin: 'kotlin-android'
apply plugin: 'kotlin-android-extensions'
apply plugin: 'androidx.navigation.safeargs.kotlin'
apply plugin: 'kotlin-kapt'

(from FragmentNav/build.gradle)

The Navigation Resource

The module has a res/navigation/ directory for navigation resources. In there,
there is a main_nav_graph.xml resource that represents our tiny navigation graph:

<?xml version="1.0" encoding="utf-8"?>
<navigation<navigation android:id="@+id/main_nav_graph"

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
app:startDestination="@id/listFragment">>

<fragment<fragment
android:id="@+id/listFragment"
android:name="com.commonsware.jetpack.sampler.nav.ListFragment"
android:label="ToDo Items">>
<action<action

android:id="@+id/displayModel"
app:destination="@id/displayFragment" />/>

</fragment></fragment>
<fragment<fragment

android:id="@+id/displayFragment"
android:name="com.commonsware.jetpack.sampler.nav.DisplayFragment"
android:label="ToDo Item">>
<argument<argument

android:name="modelId"
app:argType="string" />/>

</fragment></fragment>
</navigation></navigation>

(from FragmentNav/src/main/res/navigation/main_nav_graph.xml)

NAVIGATING YOUR APP

485

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentNav/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentNav/src/main/res/navigation/main_nav_graph.xml

listFragmentlistFragment

There are two <fragment> elements set up as destinations in this resource. One is
listFragment, pointing to our ListFragment class:

Figure 197: Android Studio Navigation Editor, Showing listFragment

It contains an <action> child element, identifying that this destination can navigate
to the displayFragment destination. The action’s ID is displayModel, and that is
what we can use in our Java/Kotlin code to request to perform this action.

NAVIGATING YOUR APP

486

Clicking the action’s arrow in the graphic designer shows the details of that action in
the “Attributes” pane:

Figure 198: Android Studio Navigation Editor, Showing displayModel

The app:startDestination attribute in the root <navigation> element points to
this listFragment destination, meaning that when we first use this navigation
graph, the ListFragment is what should be displayed.

NAVIGATING YOUR APP

487

displayFragmentdisplayFragment

The other <fragment> element is for displayFragment:

Figure 199: Android Studio Navigation Editor, Showing displayFragment

This contains an <argument> child element, stating that this destination expects to
receive a modelId String value.

The Activity Layout

In the FragmentManual sample, we did not need an activity layout. We just used the
existing android.R.id.content container as a target for our FragmentTransaction
requests.

With the Navigation component, usually you will need a layout resource,
particularly one where you place the NavHostFragment to say where the navigation
graph’s <fragment> destinations should appear. So, FragmentNav has an
activity_main layout resource that does just that:

NAVIGATING YOUR APP

488

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">>

<androidx.appcompat.widget.Toolbar<androidx.appcompat.widget.Toolbar
android:id="@+id/toolbar"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:background="?attr/colorPrimary"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
app:theme="?attr/actionBarPopupTheme" />/>

<androidx.fragment.app.FragmentContainerView<androidx.fragment.app.FragmentContainerView
android:id="@+id/nav_host"
android:name="androidx.navigation.fragment.NavHostFragment"
android:layout_width="0dp"
android:layout_height="0dp"
app:defaultNavHost="true"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@id/toolbar"
app:navGraph="@navigation/main_nav_graph" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from FragmentNav/src/main/res/layout/activity_main.xml)

The NavHostFragment is added using a <FragmentContainerView> element in the
layout XML. This is the modern way to add “static fragments”, ones that will be used
all the time and cannot themselves be removed. The android:name attribute
identifies the particular Fragment subclass to use, using the fully-qualified class
name. In this case, we are not using one of our fragments, but instead are using
NavHostFragment (or, more formally,
androidx.navigation.fragment.NavHostFragment).

The NavHostFragment takes two main custom attributes in addition to the standard
ones for sizing and positioning the fragment. app:navGraph supplies a reference to
the navigation graph resource that this host will be using for its contents.
app:defaultNavHost basically says “have the system’s BACK button route through

NAVIGATING YOUR APP

489

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentNav/src/main/res/layout/activity_main.xml

this fragment’s navigation graph”, so BACK presses navigate backwards through the
graph.

The layout also has a Toolbar to use as our app bar, with the NavHostFragment
taking up the rest of the available space. As a result, this app uses
Theme.AppCompat.Light.NoActionBar as a basis for its AppTheme style resource, to
suppress the default action bar implementation, as we saw back in the chapter on
the app bar.

MainActivityMainActivity

Most of the FragmentNav app’s code is the same as its FragmentManual counterpart.
We still have two fragments, each with its own viewmodel, with ToDoModel objects
coming from a ToDoRepository. We also still have the same RecyclerView pieces for
populating the list.

What differs is how our activity sets things up, how we navigate from the
ListFragment to the DisplayFragment, and how we pass the ToDoModel ID between
those fragments.

The FragmentManual edition of MainActivity conditionally executed a
FragmentTransaction to bring up the ListFragment. The Navigation-enhanced
MainActivity instead needs to initialize the Navigation component.

The Android KTX extensions for Kotlin cause the Java and Kotlin code to look
somewhat different, even though in the end they do the same work:

• Obtain the NavController associated with our NavHostFragment
• Hook up that NavController to our Toolbar, to automatically manage things

like the Toolbar title and up button

Java

packagepackage com.commonsware.jetpack.samplerj.navcom.commonsware.jetpack.samplerj.nav;

importimport android.os.Bundleandroid.os.Bundle;
importimport androidx.annotation.Nullableandroidx.annotation.Nullable;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport androidx.navigation.NavControllerandroidx.navigation.NavController;
importimport androidx.navigation.fragment.NavHostFragmentandroidx.navigation.fragment.NavHostFragment;
importimport androidx.navigation.ui.AppBarConfigurationandroidx.navigation.ui.AppBarConfiguration;
importimport androidx.navigation.ui.NavigationUIandroidx.navigation.ui.NavigationUI;

NAVIGATING YOUR APP

490

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
@Override
protectedprotected void onCreate(@Nullable BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

NavControllerNavController nav =
((NavHostFragmentNavHostFragment)getSupportFragmentManager()

.findFragmentById(R.id.nav_host))

.getNavController();
AppBarConfigurationAppBarConfiguration appBarCfg =

newnew AppBarConfigurationAppBarConfiguration.Builder(nav.getGraph()).build();

NavigationUINavigationUI.setupWithNavController(findViewById(R.id.toolbar), nav,
appBarCfg);

}
}

(from FragmentNav/src/main/java/com/commonsware/jetpack/samplerj/nav/MainActivity.java)

In Java, to obtain the NavController, we:

• Get a FragmentManager via getSupportFragmentManager()
• Get the NavHostFragment from that FragmentManager via
findFragmentById()

• Call getNavController() on the NavHostFragment

After that, we:

• Ask the NavController for the NavGraph object that represents the parsed
navigation resource (getGraph())

• Pass that to an AppBarConfiguration.Builder and use that to build an
AppBarConfiguration

• Pass that along with the NavController and the Toolbar to
NavigationUI.setupWithNavController(), to have the Navigation
component automatically manage the contents of the Toolbar

Now, the Navigation component will fill in the Toolbar title from our destination
label and handle the up button, as we navigate through the graph that we have set
up for this NavHostFragment.

NAVIGATING YOUR APP

491

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentNav/src/main/java/com/commonsware/jetpack/samplerj/nav/MainActivity.java

Kotlin

The Kotlin code does the same work, with less actual code:

packagepackage com.commonsware.jetpack.sampler.navcom.commonsware.jetpack.sampler.nav

importimport android.os.Bundleandroid.os.Bundle
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.navigation.fragment.findNavControllerandroidx.navigation.fragment.findNavController
importimport androidx.navigation.ui.AppBarConfigurationandroidx.navigation.ui.AppBarConfiguration
importimport androidx.navigation.ui.setupWithNavControllerandroidx.navigation.ui.setupWithNavController
importimport com.commonsware.jetpack.sampler.nav.databinding.ActivityMainBindingcom.commonsware.jetpack.sampler.nav.databinding.ActivityMainBinding

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

supportFragmentManager.findFragmentById(RR.id.nav_host)?.findNavController()?.let { nav ->
binding.toolbar.setupWithNavController(nav, AppBarConfigurationAppBarConfiguration(nav.graph))

}
}

}

(from FragmentNav/src/main/java/com/commonsware/jetpack/sampler/nav/MainActivity.kt)

Android KTX gives us:

• A findNavController() extension function for Activity and Fragment, so
we can get our NavController just by calling findNavController() and
providing the ID of the NavHostFragment;

• A setupWithNavController() extension function on Toolbar, so we can add
Navigation support for it more directly; and

• A global AppBarConfiguration() function that looks like a constructor,
though it actually uses AppBarConfiguration.Builder “under the covers”

ListFragmentListFragment

The change to ListFragment is in the navTo() function, as now we use the
Navigation component instead of a FragmentTransaction to bring up the
DetailFragment.

This app uses Safe Args, courtesy of the <argument> element in the navigation graph
and the androidx.navigation.safeargs Gradle plugin. Hence, we get a
ListFragmentDirections class code-generated for us. This class is named based on

NAVIGATING YOUR APP

492

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentNav/src/main/java/com/commonsware/jetpack/sampler/nav/MainActivity.kt

the initial destination (ListFragment) and has static methods for each of our
actions that collect the arguments that we need to pass to the destination that we
want to navigate to. Our action has displayModel as its ID, so
ListFragmentDirections has a displayModel() method that we can call, either
from Java:

privateprivate void navTo(ToDoModelToDoModel model) {
NavHostFragmentNavHostFragment.findNavController(thisthis)

.navigate(ListFragmentDirectionsListFragmentDirections.displayModel(model.id));
}

(from FragmentNav/src/main/java/com/commonsware/jetpack/samplerj/nav/ListFragment.java)

…or from Kotlin:

privateprivate funfun navTo(model: ToDoModelToDoModel) {
findNavController().navigate(ListFragmentDirectionsListFragmentDirections.displayModel(model.id))

}

(from FragmentNav/src/main/java/com/commonsware/jetpack/sampler/nav/ListFragment.kt)

To navigate to a destination, we:

• Call displayModel(), passing it our ToDoModel ID as the argument, which
gives us a NavDirections object that encapsulates our action ID
(displayModel) and arguments

• Get our NavController using either NavHostFragment.findNavController()
(in Java) or the findNavController() extension function in Kotlin

• Pass the NavDirections to the navigate() function on our NavController

The Navigation component will then do whatever is necessary to take us to that
destination, updating the Toolbar as needed.

DisplayFragmentDisplayFragment

The only change in DisplayFragment is how we get our ToDoModel ID. In
FragmentManual, we used the arguments Bundle directly. In FragmentNav, we are
using Safe Args, which gives us a code-generated DisplayFragmentArgs class. This
class is named after our destination (DisplayFragment), knows how to obtain its
arguments, and supplies them to us in type-safe functions, such as getModelId() for
our modelId argument.

In Java, we get a DisplayFragmentArgs by calling the static fromBundle() method,

NAVIGATING YOUR APP

493

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentNav/src/main/java/com/commonsware/jetpack/samplerj/nav/ListFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentNav/src/main/java/com/commonsware/jetpack/sampler/nav/ListFragment.kt

providing it our arguments Bundle:

StringString modelId = DisplayFragmentArgsDisplayFragmentArgs.fromBundle(getArguments()).getModelId();

(from FragmentNav/src/main/java/com/commonsware/jetpack/samplerj/nav/DisplayFragment.java)

From there, a call to getModelId() returns the ToDoModel ID that we supplied to
ListFragmentDirections.displayModel().

In Kotlin, while you could do the same thing, you also have the navArgs() property
delegate from Android KTX:

privateprivate valval args: DisplayFragmentArgsDisplayFragmentArgs byby navArgs()

(from FragmentNav/src/main/java/com/commonsware/jetpack/sampler/nav/DisplayFragment.kt)

That knows how to get our arguments Bundle and set up our DisplayFragmentArgs
instance, so we can just refer to its modelId property to get the ToDoModel ID:

valval model = vm.getModel(args.modelId)

(from FragmentNav/src/main/java/com/commonsware/jetpack/sampler/nav/DisplayFragment.kt)

So… Was It Worth It?
The Navigation component, particularly with the Safe Args plugin, has some nice
features and characteristics. If your app has a fairly simple navigation graph, and the
UI is not too elaborate, the Navigation component may well be worth using.

However, every time you choose a framework like the Navigation component, you
sacrifice flexibility in favor of ease of development. There will be certain types of
navigation or UI structures that the Navigation component simply will not support.
If you need those things, you may not be able to use the Navigation component for
some or all of your app.

NAVIGATING YOUR APP

494

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/FragmentNav/src/main/java/com/commonsware/jetpack/samplerj/nav/DisplayFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentNav/src/main/java/com/commonsware/jetpack/sampler/nav/DisplayFragment.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/FragmentNav/src/main/java/com/commonsware/jetpack/sampler/nav/DisplayFragment.kt

Dialogs

If you have used a desktop operating system written in the past 25 years or so, you
are used to dialogs (otherwise referred to as “dialog boxes”, “modals”, and “those
things that keep getting in the way of what I am trying to do”).

On the whole, mobile design tries to get away from dialogs. Where possible, try not
to lock the user into doing one specific thing. So, for example, if you need the user to
provide a username and password, rather than use a dialog, consider using a regular
activity, or display a panel inside of an existing activity. That way, the user can not
only give you those credentials, but the user can get to your help and support
screens to learn more about why you are asking for those credentials.

However, Android does support dialogs, for those cases where you need them, and
we will explore some options for those in this chapter.

A Tale of Four Dialogs
Android has a tendency of making simple things complicated, and dialogs are no
exception. As a result, there are four main ways that you can set up a dialog: Dialog,
AlertDialog, DialogFragment, and Theme.AppCompat.Dialog.

DialogDialog

The base for “true” dialogs in Android is Dialog. This class sets up a window that
floats over top of your activity/fragment and displays whatever content you provide.

However, on its own, Dialog itself has no UI. It will display whatever you provide
and does not “decorate” that with other elements.

495

AlertDialogAlertDialog

If you have used Android for a few years, you are probably used to seeing dialogs
that are styled like this one:

Figure 200: AlertDialog

This stock “look and feel” comes from AlertDialog. AlertDialog is a subclass of
Dialog that offers a standard structure, including things like a title and positive
(“Nuke It”) and negative (“Um, No”) buttons.

DialogFragmentDialogFragment

A Dialog (or AlertDialog) is tied to the activity that displays it. If that activity is
destroyed and recreated due to a configuration change, a Dialog will not be re-
displayed… at least, not without help.

DialogFragment is a wrapper around Dialog and AlertDialog that will re-display its
dialog after a configuration change. Often times, we use DialogFragment so it
handles that element of state for us.

There are two main ways of implementing a DialogFragment:

• If you override onCreateView(), like you would in a regular fragment, that
UI will be wrapped in a Dialog and that Dialog is what is shown to the user

DIALOGS

496

• Alternatively, if you override onCreateDialog(), you can return your own
Dialog, such as an AlertDialog

We will see DialogFragment and onCreateDialog() shortly.

Theme.AppCompat.DialogTheme.AppCompat.Dialog

Activities, by default, appear to fill the screen on mobile devices. In reality, they fill
their window, and that window happens to mostly fill the screen on mobile devices
most of the time. The story starts to get complicated when users go into split-screen
mode, or for users using your app on desktop-style environments like Chrome OS,
but the concept remains the same.

However, the reason why an activity fills its window, by default, is because that is
what its theme says to do.

Not all themes do that. So, while Theme.AppCompat has its activity fill its window,
Theme.AppCompat.Dialog does not. Instead, it only takes up whatever space is
needed for its content, akin to how wrap_content works with layouts. That content
is centered on the screen, and whatever activity is behind this one on the back stack
is shown around the edges.

Visually, this appears like a dialog. So, if you find DialogFragment to be too
constraining, you are welcome to use themes to have one or more activities appear
like floating dialogs.

DIALOGS

497

Using AlertDialogAlertDialog and DialogFragmentDialogFragment

The NukeFromOrbit sample module in the Sampler and SamplerJ projects has a UI
that consists of a really big button:

Figure 201: NukeFromOrbit, As Initially Launched

DIALOGS

498

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/NukeFromOrbit
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/NukeFromOrbit
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/NukeFromOrbit
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/NukeFromOrbit

Clicking the button brings up the dialog shown earlier in the chapter:

Figure 202: NukeFromOrbit Sample, Showing Dialog

Clicking either button dismisses the dialog, but if you click the “Nuke It” button, we
also display a Toast.

Defining the Dialog

This particular sample uses DialogFragment and AlertDialog to display the
fragment. The apps have a ConfirmationDialogFragment that overrides
onCreateDialog() and creates an AlertDialog to display:

packagepackage com.commonsware.jetpack.samplerj.dialogcom.commonsware.jetpack.samplerj.dialog;

importimport android.app.Dialogandroid.app.Dialog;
importimport android.content.DialogInterfaceandroid.content.DialogInterface;
importimport android.os.Bundleandroid.os.Bundle;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.annotation.Nullableandroidx.annotation.Nullable;
importimport androidx.appcompat.app.AlertDialogandroidx.appcompat.app.AlertDialog;
importimport androidx.fragment.app.DialogFragmentandroidx.fragment.app.DialogFragment;
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider;
importimport androidx.navigation.NavControllerandroidx.navigation.NavController;
importimport androidx.navigation.fragment.NavHostFragmentandroidx.navigation.fragment.NavHostFragment;

DIALOGS

499

publicpublic classclass ConfirmationDialogFragmentConfirmationDialogFragment extendsextends DialogFragmentDialogFragment {
@NonNull
@Override
publicpublic DialogDialog onCreateDialog(@Nullable BundleBundle savedInstanceState) {

finalfinal NavControllerNavController navController = NavHostFragmentNavHostFragment.findNavController(thisthis);
finalfinal ViewModelProviderViewModelProvider viewModelProvider = newnew

ViewModelProviderViewModelProvider(navController.getViewModelStoreOwner(R.id.nav_graph));
finalfinal GraphViewModelGraphViewModel vm = viewModelProvider.get(GraphViewModelGraphViewModel.class);

returnreturn newnew AlertDialogAlertDialog.Builder(requireActivity())
.setTitle(R.string.dialog_title)
.setMessage(R.string.dialog_message)
.setPositiveButton(R.string.dialog_positive, (dialog, which) -> vm.onAccept())
.setNegativeButton(R.string.dialog_negative, (dialog, which) -> vm.onDecline())
.setOnCancelListener(dialog -> vm.onDecline())
.create();

}
}

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/ConfirmationDialogFragment.java)

packagepackage com.commonsware.jetpack.sampler.dialogcom.commonsware.jetpack.sampler.dialog

importimport android.app.Dialogandroid.app.Dialog
importimport android.content.DialogInterfaceandroid.content.DialogInterface
importimport android.os.Bundleandroid.os.Bundle
importimport androidx.appcompat.app.AlertDialogandroidx.appcompat.app.AlertDialog
importimport androidx.fragment.app.DialogFragmentandroidx.fragment.app.DialogFragment
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider
importimport androidx.navigation.fragment.NavHostFragmentandroidx.navigation.fragment.NavHostFragment

classclass ConfirmationDialogFragmentConfirmationDialogFragment : DialogFragmentDialogFragment() {
overrideoverride funfun onCreateDialog(savedInstanceState: BundleBundle?): DialogDialog {

valval navController = NavHostFragmentNavHostFragment.findNavController(thisthis)
valval viewModelProvider =

ViewModelProviderViewModelProvider(navController.getViewModelStoreOwner(RR.id.nav_graph))
valval vm = viewModelProvider.getget(GraphViewModelGraphViewModel::classclass.java)

returnreturn AlertDialogAlertDialog.BuilderBuilder(requireActivity())
.setTitle(RR.string.dialog_title)
.setMessage(RR.string.dialog_message)
.setPositiveButton(RR.string.dialog_positive) { _, _ -> vm.onAccept() }
.setNegativeButton(RR.string.dialog_negative) { _, _ -> vm.onDecline() }
.setOnCancelListener { vm.onDecline() }
.create()

}
}

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/ConfirmationDialogFragment.kt)

To create an AlertDialog, we use an AlertDialog.Builder. This takes our activity
as a constructor parameter, so we use requireActivity() to get the activity that is

DIALOGS

500

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/ConfirmationDialogFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/ConfirmationDialogFragment.kt

hosting this fragment and use it. As the name suggests, AlertDialog.Builder offers
a builder-style API to create the dialog, where we can call a series of functions one
after the next. Specifically we configure:

• The title, which is displayed towards the top (“Nuke From Orbit”)
• The message, which is the simplest form of “content” for the dialog,

consisting of just a piece of text to display (“Are you sure that you want to
nuke it from orbit?”)

• The positive button (“Nuke It”) and negative button (“Um, No”)
• A listener for if the user cancels the dialog by other means, such as pressing

the system BACK button

For the buttons, in addition to the caption, we also provide a lambda expression that
will be invoked if the button gets clicked. What that lambda expression does, and
the rest of the stuff in onCreateDialog(), we will explore more later on.

Displaying the Dialog

The classic way of displaying a DialogFragment is to create an instance and call
show() on it. This certainly works and you are welcome to use it.

However, if you are using the Navigation component, you can set up a
DialogFragment as a destination in a navigation graph, simply by using a <dialog>
element instead of a <fragment> element:

<?xml version="1.0" encoding="utf-8"?>
<navigation<navigation xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
android:id="@+id/nav_graph"
app:startDestination="@id/mainFragment">>

<fragment<fragment
android:id="@+id/mainFragment"
android:name="com.commonsware.jetpack.sampler.dialog.MainFragment"
android:label="MainFragment" >>
<action<action

android:id="@+id/confirmNuke"
app:destination="@id/confirmationDialogFragment" />/>

</fragment></fragment>
<dialog<dialog

android:id="@+id/confirmationDialogFragment"
android:name="com.commonsware.jetpack.sampler.dialog.ConfirmationDialogFragment"
android:label="ConfirmationDialogFragment" />/>

</navigation></navigation>

(from NukeFromOrbit/src/main/res/navigation/nav_graph.xml)

Here, we have ConfirmationDialogFragment set up in a graph, reachable by a

DIALOGS

501

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/NukeFromOrbit/src/main/res/navigation/nav_graph.xml

confirmNuke action from MainFragment.

MainFragment — which happens to be displaying that big button — can then just
navigate to ConfirmationDialogFragment without knowing or caring that this is a
dialog versus some other type of destination:

binding.nuke.setOnClickListener(v ->
NavHostFragmentNavHostFragment.findNavController(MainFragmentMainFragment.this)

.navigate(R.id.confirmNuke));

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/MainFragment.java)

binding.nuke.setOnClickListener { v: ViewView? ->
NavHostFragmentNavHostFragment.findNavController(thisthis@MainFragment)

.navigate(RR.id.confirmNuke)
}

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/MainFragment.kt)

Here, we are using view binding to bind a click listener to the nuke button, so when
the button is clicked, we show the dialog.

Sharing a ViewModel

Often, an activity or fragment needs a private ViewModel for managing its own data.
However, sometimes, it would be useful to have shared ViewModel objects. For
example, in this sample app, MainFragment needs to know whether the user clicked
the positive or the negative button. This implies some amount of data-sharing
between MainFragment and ConfirmationDialogFragment, and sharing a ViewModel
would be one approach for that sort of sharing.

That is handled by having the right ViewModelProvider:

• An activity that creates a ViewModelProvider via ViewModelProvider(this)
will get ViewModel objects tied to the activity

• A fragment that creates a ViewModelProvider via ViewModelProvider(this)
will get ViewModel objects tied to the fragment

• A fragment that creates a ViewModelProvider by passing the hosting activity
to the ViewModelProvider constructor will get ViewModel objects tied to the
activity… and if the activity uses ViewModelProvider(this), the activity and
the fragment will share those ViewModel objects

In Kotlin, instead of using the viewModels() property delegate, you can use

DIALOGS

502

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/MainFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/MainFragment.kt

activityViewModels() to get a ViewModel from the activity’s scope, sharing that
ViewModel with the activity.

It is also possible to get a ViewModelProvider tied not to an activity or a fragment,
but to a navigation graph. All of the destinations in that navigation graph will share
ViewModel objects obtained from the graph-specific ViewModelProvider.

To do that, we:

• Obtain a NavController for the fragment, via
NavHostFragment.findNavController()

• Create a ViewModelProvider, passing in a ViewModelStoreOwner obtained
from the NavController

• Use that ViewModelProvider for ViewModel objects to be shared among
destinations in the navigation graph

Both MainFragment and ConfirmationDialogFragment do this via similar blocks of
code:

finalfinal NavControllerNavController navController = NavHostFragmentNavHostFragment.findNavController(thisthis);
finalfinal ViewModelProviderViewModelProvider viewModelProvider = newnew

ViewModelProviderViewModelProvider(navController.getViewModelStoreOwner(R.id.nav_graph));
finalfinal GraphViewModelGraphViewModel vm = viewModelProvider.get(GraphViewModelGraphViewModel.class);

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/ConfirmationDialogFragment.java)

valval navController = NavHostFragmentNavHostFragment.findNavController(thisthis)
valval viewModelProvider =

ViewModelProviderViewModelProvider(navController.getViewModelStoreOwner(RR.id.nav_graph))
valval vm = viewModelProvider.getget(GraphViewModelGraphViewModel::classclass.java)

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/ConfirmationDialogFragment.kt)

Both our MainFragment instance and our ConfirmationDialogFragment instance
now share a GraphViewModel instance.

Reacting to the Dialog

But what we really want is to get the button-click events from
ConfirmationDialogFragment to MainFragment. The GraphViewModel is a key piece
of that, but we need some other elements as well… and we will take a look at those
in an upcoming chapter.

DIALOGS

503

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/ConfirmationDialogFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/ConfirmationDialogFragment.kt

Part Three: Accessing Data

Thinking About Threads and LiveDataLiveData

Users like apps that run smoothly. Users do not like applications that feel sluggish.

Usually, the reason why apps feel sluggish is due to problems with thread
management, particularly when performing some form of I/O (disk, database,
network, etc.). We need to take care when performing I/O that we do not slow down
the UI of the app, while still getting the data that we need to display.

Nowadays, working with background threads is often done in conjunction with
some form of reactive programming. In reactive programming, we request for work
to be done and arrange to get control when it is completed. That work can be
performed on one thread, while we get the results on some other thread. In
particular, reactive programming attempts to hide a lot of that thread complexity,
making it seem like we are doing “normal” programming.

This chapter introduces the key threading issues with Android and explores the
Jetpack solution for reactive programming: LiveData. Mostly, this chapter is to “set
the stage” for exploring I/O in upcoming chapters.

The Main Application Thread
When you call setText() on a TextView, you probably think that the screen is
updated with the text you supply, right then and there.

That’s not really what happens.

Rather, everything that modifies the widget-based UI goes through a message queue.
Calls to setText() do not update the screen — they just place a message on a queue
telling the operating system to update the screen. The operating system pops these

507

messages off of this queue and does what the messages require.

The queue is processed by one thread, variously called the “main application thread”
and the “UI thread”. So long as that thread can keep processing messages, the screen
will update, user input will be handled, and so on.

However, the main application thread is also used for nearly all callbacks into your
activity. Your onCreate(), onClick(), onCreateView(), and similar functions are all
called on the main application thread. While your code is executing in these
functions, Android is not processing messages on the queue, and so the screen does
not update, user input is not handled, and so on.

This, of course, is bad. So bad, that if you take more than a few seconds to do work
on the main application thread, Android may display the dreaded “Application Not
Responding” dialog (ANR for short), and your activity may be killed off.

Nowadays, though, the bigger concern is jank.

“Jank”, as used in Android, refers to sluggish UI updates, particularly when
something is animating. For example, you may have encountered some apps that
when you scroll in the app, the content does not scroll smoothly. Rather, it scrolls
jerkily, interleaving periods of rapid movement with periods where the scrolling
animation is frozen. Most of the time, this is caused by the app’s author doing too
much work on the main application thread.

Android widget-based UIs are updated at 60 frames per second. This means that any
given frame needs to be assembled in less than 16ms. Since the framework and OS
have work that needs to be done too, that means our application code must run in a
lot less than 16ms per frame. And, since our app may be called on many times in a
frame, this means that any given callback function, such as onBindViewHolder() of a
RecyclerView, needs to be done very quickly, best measured in microseconds. If,
instead, we take several milliseconds, we will “drop frames” (i.e., the screen does not
get updated between two successive frames), and the user may perceive jank as a
result.

Hence, you want to make sure that all of your work on the main application thread
happens quickly. This means that anything slow should be done in a background
thread, so as not to tie up the main application thread. This includes things like:

• Internet access, such as sending data to a Web service or downloading an
image

THINKING ABOUT THREADS AND LIVEDATA

508

• Significant file operations, since flash storage can be remarkably slow at
times

• Any sort of complex calculations

The UI Thread is for UI
However, there is one big limitation: in general, you cannot modify the UI from a
background thread. You can only modify the UI from the main application thread.

A few widgets have special support for being updated from a background thread.
ProgressBar is one in particular that is set up this way. ProgressBar is designed to
let you show progress of some background work, and so the Android engineers took
the time to make ProgressBar support background UI updates.

However, outside of exceptions like that, any other UI updates have to be done from
the main application thread.

This is a pain.

It means that we not only have to get our slow work off of the main application
thread, but we have to update the UI with the results of that work on the main
application thread. This sort of inter-thread communication is annoying.

Worse, this makes configuration changes that much trickier. Suppose we start some
work on a background thread, and while that work is ongoing, the user rotates the
screen. Our activity and its fragments get destroyed and recreated. Somehow, we not
only need to arrange for our results to get processed on the main application thread,
but they also need to be processed by whatever the now-current activity and
fragments are.

This has been one of the major headaches that has plagued Android app developers
since Android 1.0. Countless solutions have been offered by Google and by
independent developers. The current “best practices” involve:

• Using a ViewModel (or similar construct) that is stable across configuration
changes, so our code running on a background thread can hand the results
to the ViewModel without having to worry as much about configuration
changes

• Employing some sort of reactive programming solution for implementing
that background work and getting the results over to the main application

THINKING ABOUT THREADS AND LIVEDATA

509

thread

Introducing LiveDataLiveData

However, even those “best practices” have a bit of a gap: how do we push data from a
ViewModel to an activity or fragment? More importantly, how do we do so while
taking into account configuration changes?

So far, our viewmodels have been simple state containers. The activities and
fragments pull data from the viewmodels and push data into them.

Now, though, if we are saying that the viewmodel is somehow getting data delivered
to it from the background, somehow we need the activity or fragment to find out
that the data has arrived. So, for example, suppose that our fragment asks the
viewmodel to retrieve some data from a Web site. That may take hundreds of
milliseconds or longer, so the actual network I/O needs to be done on a background
thread. When that I/O completes, the now-current fragment needs to find out about
that, bearing in mind that it might be a different fragment instance by now, if a
configuration change occurred while the I/O was ongoing.

The Jetpack solution to this problem is LiveData.

LiveData is itself a state container, designed to be held onto by a ViewModel. It has
an Observer system, where interested parties can find out about changes in the data
associated with the LiveData. So, if a background thread pushes new data into the
LiveData, the LiveData will inform all of its observers. It does so on the main
application thread, so observers do not need to worry about switching threads.

More importantly, LiveData is aware of lifecycles, such as those from activities and
fragments. When an activity or fragment registers an Observer, and later the activity
or fragment is destroyed, the LiveData automatically removes the associated
Observer. Hence, when we undergo a configuration change, we do not need to
remember to remove any Observer objects that we may have registered with
LiveData — those get cleaned up automatically.

LiveData also automatically pushes an existing value, if there is one, to any new
registered Observer objects. When coupled with the automatic-removal feature, this
makes LiveData very convenient for dealing with configuration changes. The
activities and fragments can largely forget about configuration changes entirely, just
reacting to whatever the LiveData pushes to it. Those “pushes” will either be:

THINKING ABOUT THREADS AND LIVEDATA

510

• Because some asynchronous work completed, or
• The device underwent a configuration change and the new activity or

fragment is getting the data from before the change

Usually, the activity or fragment does not care about which of those scenarios
occurred and can handle them identically.

Sources of LiveDataLiveData

In many cases, you will get LiveData objects handed to you from something else. For
example, if you use Room for working with on-device databases, you can have the
results of your queries be in the form of LiveData. We will explore that more later in
the book.

Sometimes, you will use adapters to convert one form of reactive response into
LiveData. For example, RxJava is the most popular reactive framework for Java.
Jetpack offers a library that helps you convert RxJava reactive responses into
LiveData, as RxJava itself knows nothing about Android and things like activity/
fragment lifecycles. Similarly, with Kotlin coroutines, there are adapters supplied by
the Jetpack, to help consume suspend functions and Flow via LiveData.

Otherwise, you are on your own for creating LiveData objects. For that, there are
two main approaches:

1. Create a subclass of LiveData that handles the background threading and
delivery of updates

2. Use MutableLiveData (which does not require a subclass the way LiveData
does) and have code outside of that object deal with data sources, threading,
etc.

Active and Inactive States

If a LiveData was instantiated in a forest, and nobody was there to observe data
changes, does the LiveData really exist?

The answer is: yes, but it hopefully is not consuming any resources.

A LiveData implementation will be called with onActive() when it receives its first
active observer. Here, “active” means that the activity or fragment registering the
observer is in the started or resumed state. Conversely, the LiveData will be called
with onInactive() once it no longer has any active observers, either because all

THINKING ABOUT THREADS AND LIVEDATA

511

observers have been unregistered or none of them are active, as their lifecycles are
all stopped or destroyed.

The idea is that a LiveData would only start consuming significant system resources
— such as requesting GPS fixes — when there are active observers, releasing those
resources when there are no more active observers. This works in many cases,
though there are some that will require more finesse. For example, given that the
GPS radio takes some time before it starts generating GPS fixes, a LiveData for GPS
might want to wait some amount of time after losing its last active observer before
releasing the GPS radio, in case a new observer pops up quickly, to avoid delays in
getting those GPS fixes.

Subclasses of LiveData, therefore, should override onActive() (and perhaps
onInactive()) and use those events to control resource consumption.

Colors… Live!
The InLivingColor sample module in the Sampler and SamplerJ projects
implement the same basic UI as we saw in the TwoActivities sample earlier in the
book.

Part of the changes are to switch from two activities to two fragments and use the
Navigation component. That largely mirrors what we saw previously, so we will not
focus on those changes here.

The change of importance for these samples are how we get our list of randomly-
generated colors. In the earlier list-of-colors examples, we just generated colors
directly in the ColorViewModel. This time, we are going to pretend that it takes “real
work” to get these colors, such as having to call out to some random-color-
generating Web service. To that end, we have a ColorLiveData subclass of LiveData
that handles the threading aspects and generates the colors. ColorViewModel now
exposes a LiveData of colors to observers, and a ColorListFragment pours those
colors into the RecyclerView when they are ready.

ColorLiveDataColorLiveData

Our ColorLiveData is responsible for creating a random set of colors, using a
background thread. We only want to do this once we have one active observer —
otherwise, the colors are pointless. So, our LiveData subclass overrides onActive()
and handles the work there:

THINKING ABOUT THREADS AND LIVEDATA

512

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/InLivingColor
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/InLivingColor
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/InLivingColor
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/InLivingColor

packagepackage com.commonsware.jetpack.samplerj.livedatacom.commonsware.jetpack.samplerj.livedata;

importimport android.os.SystemClockandroid.os.SystemClock;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Randomjava.util.Random;
importimport java.util.concurrent.Executorjava.util.concurrent.Executor;
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;

classclass ColorLiveDataColorLiveData extendsextends LiveDataLiveData<ArrayListArrayList<IntegerInteger>> {
privateprivate finalfinal RandomRandom random = newnew RandomRandom();
privateprivate finalfinal ExecutorExecutor executor = ExecutorsExecutors.newSingleThreadExecutor();

@Override
publicpublic void onActive() {

supersuper.onActive();

ifif (getValue() == nullnull) {
executor.execute(() -> {

SystemClockSystemClock.sleep(2000); // use only for book samples!
postValue(buildItems());

});
}

}

privateprivate ArrayListArrayList<IntegerInteger> buildItems() {
ArrayListArrayList<IntegerInteger> result = newnew ArrayListArrayList<>(25);

forfor (int i = 0; i < 25; i++) {
result.add(random.nextInt());

}

returnreturn result;
}

}

(from InLivingColor/src/main/java/com/commonsware/jetpack/samplerj/livedata/ColorLiveData.java)

packagepackage com.commonsware.jetpack.sampler.livedatacom.commonsware.jetpack.sampler.livedata

importimport android.os.SystemClockandroid.os.SystemClock
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport java.util.*java.util.*
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors

classclass ColorLiveDataColorLiveData : LiveDataLiveData<ListList<IntInt>>() {
privateprivate valval random = RandomRandom()
privateprivate valval executor = ExecutorsExecutors.newSingleThreadExecutor()

THINKING ABOUT THREADS AND LIVEDATA

513

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/InLivingColor/src/main/java/com/commonsware/jetpack/samplerj/livedata/ColorLiveData.java

overrideoverride funfun onActive() {
supersuper.onActive()

ifif (value == nullnull) {
executor.execute {

SystemClockSystemClock.sleep(2000) // use only for book samples!
postValue(ListList(25) { random.nextInt() })

}
}

}
}

(from InLivingColor/src/main/java/com/commonsware/jetpack/sampler/livedata/ColorLiveData.kt)

We use a Java Executor for performing our background work. For what we are doing
now, a simple single-thread Executor is sufficient, but Executor gives us the
flexibility to swap in a thread pool if we decided that we needed lots of random
colors.

In onActive(), we see if we already have our colors. We do this by calling
getValue(), which will return the value held by the LiveData or null if we have not
yet generated any colors. If we do not already have colors, we use the Executor to
run some code on a background thread to generate the colors.

We use SystemClock.sleep() to simulate two seconds worth of I/O to get these
random colors, as our fictitious random-color-generating Web service is overloaded
and our pretend Internet connection is poor. If you have used Thread.sleep() in
Java before, SystemClock.sleep() works much the same way, blocking the current
thread for the stated number of milliseconds. The biggest difference:
Thread.sleep() throws an InterruptedException, which is unnecessary here and
the resulting try/catch block just clutters up the example.

To update the LiveData with the new colors, we call postValue(). This updates the
LiveData and — back on the main application thread — lets each of the registered
observers know about the new data.

This particular LiveData only ever calls postValue() once. That is all this sample
needs. However, there is nothing stopping you from having a LiveData that delivers
a stream of updates, such as a stream of sensor readings. There, you might call
postValue() hundreds or thousands of times, with the LiveData informing its
observers each time.

THINKING ABOUT THREADS AND LIVEDATA

514

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/InLivingColor/src/main/java/com/commonsware/jetpack/sampler/livedata/ColorLiveData.kt

ColorViewModelColorViewModel Changes

Our ColorViewModel now just holds onto a ColorLiveData instance:

packagepackage com.commonsware.jetpack.samplerj.livedatacom.commonsware.jetpack.samplerj.livedata;

importimport java.util.ArrayListjava.util.ArrayList;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel;

publicpublic classclass ColorViewModelColorViewModel extendsextends ViewModelViewModel {
finalfinal LiveDataLiveData<ArrayListArrayList<IntegerInteger>> numbers = newnew ColorLiveDataColorLiveData();

}

(from InLivingColor/src/main/java/com/commonsware/jetpack/samplerj/livedata/ColorViewModel.java)

packagepackage com.commonsware.jetpack.sampler.livedatacom.commonsware.jetpack.sampler.livedata

importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel

classclass ColorViewModelColorViewModel : ViewModelViewModel() {
valval numbers = ColorLiveDataColorLiveData()

}

(from InLivingColor/src/main/java/com/commonsware/jetpack/sampler/livedata/ColorViewModel.kt)

When the ColorViewModel is created, we create that ColorLiveData instance, and
the viewmodel holds onto that instance for the lifetime of the viewmodel. That way,
even after the work is completed and we have our list of colors, we still hold onto
those colors across configuration changes. However, to keep this example simple, we
are skipping the saved-state logic to try to handle cases where the process is
terminated shortly after the user moves the app to the background.

Since we do not start our background work until onActive() is called on the
ColorLiveData, just creating the ColorLiveData is cheap. And, if for some reason we
never observe the ColorLiveData, we do not go through the “expense” of generating
this list of random colors.

Observing the Colors

In the earlier list-of-colors example, we would call submitList() on our
ColorAdapter for our colors with the numbers that we get from the ColorViewModel.
Now, we observe the numbers property, as that is a LiveData.

THINKING ABOUT THREADS AND LIVEDATA

515

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/InLivingColor/src/main/java/com/commonsware/jetpack/samplerj/livedata/ColorViewModel.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/InLivingColor/src/main/java/com/commonsware/jetpack/sampler/livedata/ColorViewModel.kt

In Java, we use the observe() method on LiveData itself:

packagepackage com.commonsware.jetpack.samplerj.livedatacom.commonsware.jetpack.samplerj.livedata;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.LayoutInflaterandroid.view.LayoutInflater;
importimport android.view.Viewandroid.view.View;
importimport android.view.ViewGroupandroid.view.ViewGroup;
importimport com.commonsware.jetpack.samplerj.livedata.databinding.FragmentListBindingcom.commonsware.jetpack.samplerj.livedata.databinding.FragmentListBinding;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.fragment.app.Fragmentandroidx.fragment.app.Fragment;
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider;
importimport androidx.navigation.fragment.NavHostFragmentandroidx.navigation.fragment.NavHostFragment;
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration;
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager;
importimport androidx.recyclerview.widget.RecyclerViewandroidx.recyclerview.widget.RecyclerView;

publicpublic classclass ColorListFragmentColorListFragment extendsextends FragmentFragment {
privateprivate FragmentListBindingFragmentListBinding binding;

@Override
publicpublic ViewView onCreateView(@NonNull LayoutInflaterLayoutInflater inflater,

ViewGroupViewGroup container,
BundleBundle savedInstanceState) {

binding = FragmentListBindingFragmentListBinding.inflate(inflater, container, falsefalse);

returnreturn binding.getRoot();
}

@Override
publicpublic void onViewCreated(@NonNull ViewView view, BundleBundle savedInstanceState) {

ColorViewModelColorViewModel vm = newnew ViewModelProviderViewModelProvider(thisthis).get(ColorViewModelColorViewModel.class);

ColorAdapterColorAdapter colorAdapter = newnew ColorAdapterColorAdapter(getLayoutInflater(),
thisthis::navTo);

binding.items.setLayoutManager(newnew LinearLayoutManagerLinearLayoutManager(requireContext()));
binding.items.addItemDecoration(newnew DividerItemDecorationDividerItemDecoration(requireContext(),

DividerItemDecorationDividerItemDecoration.VERTICAL));
binding.items.setAdapter(colorAdapter);

vm.numbers.observe(getViewLifecycleOwner(), colorAdapter::submitList);
}

@Override
publicpublic void onDestroyView() {

supersuper.onDestroyView();

binding = nullnull;
}

privateprivate void navTo(int color) {
NavHostFragmentNavHostFragment.findNavController(thisthis)

.navigate(ColorListFragmentDirectionsColorListFragmentDirections.showColor(color));
}

}

(from InLivingColor/src/main/java/com/commonsware/jetpack/samplerj/livedata/ColorListFragment.java)

THINKING ABOUT THREADS AND LIVEDATA

516

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/InLivingColor/src/main/java/com/commonsware/jetpack/samplerj/livedata/ColorListFragment.java

observe() on a LiveData takes two parameters:

1. A LifecycleOwner, usually supplied by the activity or fragment that is using
the LiveData, so the LiveData knows when it is active or inactive

2. An Observer implementation

An Observer has a single method, observe(), that returns void and takes an
instance of whatever type the LiveData holds. So, in our case, observe() will be
passed an ArrayList<Int>. Here, in the Java scenario, we use a Java 8 method
reference to hand that ArrayList over to the ColorAdapter.

In Kotlin, we use an extension function on LiveData, also called observe(), that
allows us to use an ordinary lambda expression for the second parameter:

packagepackage com.commonsware.jetpack.sampler.livedatacom.commonsware.jetpack.sampler.livedata

importimport android.os.Bundleandroid.os.Bundle
importimport android.view.LayoutInflaterandroid.view.LayoutInflater
importimport android.view.Viewandroid.view.View
importimport android.view.ViewGroupandroid.view.ViewGroup
importimport androidx.fragment.app.Fragmentandroidx.fragment.app.Fragment
importimport androidx.fragment.app.viewModelsandroidx.fragment.app.viewModels
importimport androidx.lifecycle.observeandroidx.lifecycle.observe
importimport androidx.navigation.fragment.findNavControllerandroidx.navigation.fragment.findNavController
importimport androidx.recyclerview.widget.DividerItemDecorationandroidx.recyclerview.widget.DividerItemDecoration
importimport androidx.recyclerview.widget.LinearLayoutManagerandroidx.recyclerview.widget.LinearLayoutManager
importimport com.commonsware.jetpack.sampler.livedata.databinding.FragmentListBindingcom.commonsware.jetpack.sampler.livedata.databinding.FragmentListBinding

classclass ColorListFragmentColorListFragment : FragmentFragment() {
privateprivate valval vm: ColorViewModelColorViewModel byby viewModels()
privateprivate varvar _binding: FragmentListBindingFragmentListBinding? = nullnull

overrideoverride funfun onCreateView(
inflater: LayoutInflaterLayoutInflater,
container: ViewGroupViewGroup?,
savedInstanceState: BundleBundle?

): ViewView? = FragmentListBindingFragmentListBinding.inflate(inflater, container, falsefalse)
.also { _binding = it }
.root

overrideoverride funfun onViewCreated(view: ViewView, savedInstanceState: BundleBundle?) {
valval colorAdapter = ColorAdapterColorAdapter(layoutInflater) { color ->

navTo(color)
}

_binding?.let { binding ->

THINKING ABOUT THREADS AND LIVEDATA

517

binding.items.apply {
layoutManager = LinearLayoutManagerLinearLayoutManager(activity)

addItemDecoration(
DividerItemDecorationDividerItemDecoration(

activity,
DividerItemDecorationDividerItemDecoration.VERTICALVERTICAL

)
)

adapter = colorAdapter
}

}

vm.numbers.observe(viewLifecycleOwner) { colorAdapter.submitList(it) }
}

privateprivate funfun navTo(color: IntInt) {
findNavController().navigate(ColorListFragmentDirectionsColorListFragmentDirections.showColor(color))

}
}

(from InLivingColor/src/main/java/com/commonsware/jetpack/sampler/livedata/ColorListFragment.kt)

We will look more at the LifecycleOwner parameter, and what viewLifecycleOwner
is, shortly.

The Results

When the fragment is first created, it creates the ColorViewModel, which creates a
ColorLiveData. When the fragment then calls observe() on the LiveData, and the
fragment is later shown on the screen, the ColorLiveData will be called with
onActive(), as the fragment will now be started. At that point, the ColorLiveData
will generate the colors (after a two-second delay). When ColorLiveData calls
postValue(), the Observer registered by the fragment will be called, and the
ColorAdapter will get its colors.

If the user rotates the screen, our original ColorListFragment will be destroyed and
recreated. When the fresh ColorListFragment gets its ColorViewModel, it will be the
already-existing ColorLiveData instance. When the fragment calls observe(), its
Observer will be called immediately if the ColorLiveData already has its colors —
that is handled automatically by LiveData. Our fragment’s code does not care
whether it is the first or second instance of the ColorListFragment — it gets the
colors the same way and consumes them the same way.

THINKING ABOUT THREADS AND LIVEDATA

518

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/InLivingColor/src/main/java/com/commonsware/jetpack/sampler/livedata/ColorListFragment.kt

Sources of Owners
observe() on a LiveData takes a LifecycleOwner. Technically, you could implement
the LifecycleOwner interface on just about anything. In practice, there are three
commonly-used LifecycleOwner implementations:

1. FragmentActivity and things that inherit from it, like AppCompatActivity
2. Fragment
3. The “view LifecycleOwner” of a Fragment

The first two are fairly straightforward. They let the LiveData know about the
lifecycle of the activity and the fragment, respectively.

However, fragments are weird.

Fragments have, in effect, two lifecycles:

1. The lifecycle of the fragment itself
2. The lifecycle of a particular UI managed by that fragment

For example, let’s consider the to-do app that we examined in previous chapters. We
had two fragments: one showing the list of items, and another showing the details of
a particular item. We show the list first, then we show the details if the user taps on
an item. Suppose that the user launches the activity, taps on an item, then presses
BACK to return to the list. If the user did not rotate the screen, the list fragment
itself (RosterListFragment instance) is the same object both times it appears.
However, its UI is different, as onCreateView() gets called twice, once for each time
the fragment is displayed.

So, the “view LifecycleOwner” reflects the lifecycle of the widgets that a fragment
manages, while the fragment itself is a LifecycleOwner for its overall lifecycle. You
get the “view LifecycleOwner” by calling getViewLifecycleOwner() on the
Fragment.

The general rule of thumb is:

• If you are observing a LiveData solely for populating a UI, such as we are
doing here in ColorListFragment, use getViewLifecycleOwner() as the
LifecycleOwner and start observing in onViewCreated() (or possibly in
onCreateView())

• If you are observing a LiveData and need to observe for the entire lifetime of

THINKING ABOUT THREADS AND LIVEDATA

519

the fragment, regardless of its UI, use the Fragment itself as the
LifecycleOwner and start observing in onCreate()

Where Do Threads Come From? Um, Besides From
Me?
In this sample, we created our own thread, by means of
Executors.newSingleThreadExecutor(). This will be needed in some situations,
where you are using a synchronous API, one that offers no sort of callback or other
asynchronous option.

However, frequently, something else might create the threads for you.

Threads from Reactive Frameworks

As mentioned earlier, RxJava is the most popular reactive framework for Java
development. With RxJava, you indicate what work you want done and what RxJava-
supplied thread pool that you want that work to be done on (e.g., “use the thread
pool dedicated for I/O”). RxJava takes care of allocating the threads and using them
as appropriate.

In Kotlin, coroutines are gaining in popularity. Coroutines, along with other Kotlin
language and standard library features, offer a lot of the same capabilities as does
RxJava. Kotlin coroutines, though, can support Kotlin’s array of platform targets
(e.g., JavaScript) in addition to Android, while RxJava is tied to Java-based apps. On
the other hand, coroutines are fairly new to Kotlin overall, whereas RxJava has been
around longer. But, if you use coroutines, once again you will not need to create
threads yourself — you describe where you want work to be done , and the
coroutines engine handles the actual threading.

Threads from Data Sources

Many libraries that support database and network I/O offer their own thread pools
for performing that I/O. They offer either a true reactive API or a classic callback-
based system for getting the I/O results asynchronously.

Room, mentioned earlier in this chapter, is the Jetpack solution for on-device
database access. Room wraps Android’s SQLite support in an API that, among other
things, supports both synchronous and reactive access. If you prefer, you can call

THINKING ABOUT THREADS AND LIVEDATA

520

synchronous APIs and handle the threading yourself. Or, you can have Room
respond with LiveData, interact with RxJava, or support Kotlin coroutines. We will
explore Room more later in the book.

There are a massive number of third-party libraries available for Internet access.
Some are general-purpose for accessing data over HTTPS, such as OkHttp. Others
are optimized for specific types of Web access:

• Images (e.g., Glide, Picasso)
• REST Web services (Retrofit)
• GraphQL Web services (Apollo-Android)

All offer asynchronous APIs. In some cases, they offer integration with reactive
frameworks like RxJava. In others, they just allow you to supply a callback function
to be invoked when the I/O is completed.

Threads from Background Processing

Some work needs to be done in the background as a result of the user doing
something in your UI. For example, a Twitter client needs to refresh the timeline
when the user clicks a refresh button or performs a pull-to-refresh gesture. In those
cases, using threads and LiveData, RxJava, or Kotlin coroutines are recommended.

In other cases, the work may need to happen somewhat later, even if the user is no
longer interacting with the app. For example, you may have a business requirement
to check a server once per hour, every hour. Here, the user is not triggering the need
for background work — the passage of time is.

WorkManager is the Jetpack solution for this problem. It handles threading for you;
your work will be performed on a background thread automatically. We will explore
WorkManager more later in the book.

Coroutines and ViewModelViewModel

Most of the Kotlin samples in this book that need to do background processing will
do so using coroutines. We will have suspend functions that either call other
suspend functions or do work in a designated thread or thread pool:

suspendsuspend funfun doSomethingCool(): AwesomeMixAwesomeMix = withContext(DispatchersDispatchers.IOIO) {
// TODO something that returns an AwesomeMix

}

THINKING ABOUT THREADS AND LIVEDATA

521

A suspend function needs to be called inside of a CoroutineScope. While Kotlin
offers a GlobalScope that can be used for anything, ideally you use a scope that is
more closely tied to the work that is being done.

In Android UI development, that frequently will be a CoroutineScope associated
with a ViewModel. There is a viewModelScope extension property available to
ViewModel that provides a CoroutineScope tied to the lifetime of the ViewModel. In
particular, if the ViewModel is no longer being used (i.e., it is being called with
onCleared()), the viewModelScope is also cleaned up.

So, you wind up with code like this:

funfun doSomethingCoolAndGetTheResultsOnTheMainApplicationThread() {
viewModelScope.launch(DispatchersDispatchers.MainMain) {

valval mix = repo.doSomethingCool()

// TODO something with mix on the main application thread
}

}

(where repo is an object of the class that has the aforementioned
doSomethingCool() function)

Dispatchers.Main will mean that while doSomethingCool() will run on a
background thread, we will get the result delivered to us on the main application
thread.

You can learn more about coroutines in the "Introducing
Coroutines" chapter of Elements of Kotlin Coroutines!

Some of the Kotlin examples later in the book will demonstrate using coroutines.

THINKING ABOUT THREADS AND LIVEDATA

522

https://commonsware.com/Coroutines

Adding Some Architecture

MVC. MVP. MVVM. MVI. These abbreviations get tossed around a lot in app
development discussions, and increasingly in Android app development discussions.
Those using these abbreviations often think that:

• Everybody knows what they mean, and
• There is a single universal definition for each of those abbreviations, one

that everybody holds

In reality, these MV* abbreviations are well-known in some circles and unknown in
others. And, even among people who think they know these abbreviations, there is a
fair bit of disagreement about what the abbreviations mean, particularly when it
comes time to writing actual code.

This book is not a book on GUI architectures. However, in this chapter, we will
explore some facets of Google’s architecture recommendations.

Repositories
One key to Google’s recommended architecture pattern is the repository. Rather
than the GUI code dealing with things like disk and network I/O, we delegate that to
a repository, which handles those details. The GUI code just works with the
repository, one typically implemented as a singleton object (a global instance that all
pieces of the app can use).

Objective: Isolation

We really want our GUI code to be separate from our I/O code.

523

Mostly, that is for testing purposes. When we want to test our GUI code, we may or
may not want to actually go through that I/O:

• I/O is slow, and being able to use some sort of mock repository that is purely
memory-backed would allow tests to run faster

• Server I/O can be a problem, as there may not be a server that you can use
for automated testing

• We often need to test specific scenarios, and it is much easier to do that if we
can have a mock repository that we can control, rather than have to set up
files (or, worse, server entries) to get the real repository to respond the way
our scenario requires

Repository Structures

Simple repositories — like the ones that will be shown in this book — work directly
with files, databases, servers, and the like.

Some projects will add another layer of indirection, where repositories work with
“data sources”. A data source would be responsible for the direct I/O with one
particular set of files, or a particular database, or a particular Web service. The
repository would interact with the data source.

Mostly, the data source abstraction is there for complex repositories:

• You want to add in-memory caching at the repository level, and therefore
you want to separate out the I/O logic into another class

• You need to support both local I/O (for a persistent cache) and network I/O
(the source of shared or updated data), and putting all of that in a single
repository results in a huge class

• The actual data source itself is user-configurable, both in terms of details
(e.g., email account information) and protocol (e.g., IMAP4, JMAP, POP3),
where the repository does not know at compile-time what data source
implementation will be needed

So, while the apps in this book largely will skip the repository/data source separation
of concerns, that is just because the sample apps are pretty tiny.

Unidirectional Data Flow
Many of the remaining examples in this book employ a unidirectional data flow

ADDING SOME ARCHITECTURE

524

https://www.exclamationlabs.com/blog/the-case-for-unidirectional-data-flow/

pattern. Popularized by Redux in the world of Web app development, adopting a
unidirectional data flow can help simplify how different bits of your app work with
that data.

While the details will differ somewhat by implementation, the general approach of a
unidirectional data flow (UDF) is to minimize the number of places in the app that
can change data. In particular, while a user interface may allow the user to change
data, the GUI code itself does not change data, but instead works off of a stream of
immutable objects as a source of details for what to render in the GUI itself.

In particular, the UDF approach that will be used in most of the remaining book
samples will look a bit like this:

Figure 203: A Unidirectional Data Flow

In a nutshell:

• When a user does something in the UI, such as click a toolbar button, the UI
calls a function on something called “the motor”

• In response to those calls, the motor asks the repository to read, update, or
delete some data, using some sort of asynchronous mechanism

• The result of the repository work gets delivered to the motor via that

ADDING SOME ARCHITECTURE

525

https://redux.js.org/basics/data-flow

asynchronous mechanism
• The motor emits a “view state” of details that get used by the UI to update

what the user sees

A UDF Implementation
That UDF explanation may make more sense once we work through an example.

The DiceLight sample module in the Sampler and SamplerJ projects implement a
“diceware” app. It allows the user to randomly generate a passphrase from a word
list. Later, we will look at a more complex Diceware sample that allows the user to
supply an alternative word list. For now, we will settle for having a word list
packaged with the app.

The UI

When you launch the app, you are immediately greeted by a random passphrase:

Figure 204: DiceLight, As Initially Launched

The refresh toolbar button will generate a fresh passphrase, in case you do not like

ADDING SOME ARCHITECTURE

526

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/DiceLight
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/DiceLight
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/DiceLight
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/DiceLight

the original one. The “WORDS” item will display a list of word counts:

Figure 205: DiceLight, Showing Word Counts

Switching to a different word count will give you a fresh passphrase with that
number of words, in case you want one that is shorter or longer.

The words come from the EFF’s short wordlist, where we randomly choose a few out
of the 1,296 in the list. That word list is packaged in the assets/ directory, so it is
part of the Android APK that is our compiled app.

The View-State

In order to render this UI, we need a randomly-generated passphrase. However,
there are two other scenarios to consider:

• What happens while we are loading the words? Initially, they are not in
memory, and until they are, we cannot randomly generate a passphrase from
them. That disk I/O will be quick, but not instantaneous. The speed of
network I/O is a lot worse, though in this case we do not have any of that.
So, in theory, we should show something, such as a ProgressBar, while we
are loading the words.

ADDING SOME ARCHITECTURE

527

https://www.eff.org/document/eff-short-wordlist-passphrases-2

• What happens if we have some sort of problem loading the words? That
should not happen here, as we know that our words are available in our APK.
However, in general, disk I/O and network I/O can trigger exceptions. If we
have such an exception, we really ought to tell the user about it.

So, now we have three pieces of data to track:

• Whether or not we are loading
• The current passphrase, if we have it
• The current error, if we have one

Our MainViewState encapsulates those three pieces of data… but how it does so
varies by language.

Java

In Java, MainViewState is a simple class:

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware;

classclass MainViewStateMainViewState {
finalfinal boolean isLoading;
finalfinal StringString content;
finalfinal int wordCount;
finalfinal ThrowableThrowable error;

MainViewStateMainViewState(boolean isLoading, StringString content, int wordCount, ThrowableThrowable error) {
thisthis.isLoading = isLoading;
thisthis.content = content;
thisthis.wordCount = wordCount;
thisthis.error = error;

}
}

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainViewState.java)

We will use null to indicate that we do not have our passphrase (content) yet or do
not have a current error.

Kotlin

That Java representation works, and it is simple, but it is not great.

Partly, the problem is that those three pieces of data are mutually exclusive to an
extent:

ADDING SOME ARCHITECTURE

528

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainViewState.java

• If we have our passphrase, we did not crash, so we will not have an error
• If we have an error, we will not have a passphrase
• If we are loading, we will not have either of those things

Plus, using null as a “we don’t have the data yet” value is annoying in Kotlin. You
keep having to use safe calls (?.) and the like to deal with null.

In Kotlin, we take a substantially different approach, using a sealed class:

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware

sealedsealed classclass MainViewStateMainViewState {
objectobject LoadingLoading : MainViewStateMainViewState()
data classdata class ContentContent(valval passphrase: StringString, valval wordCount: IntInt) : MainViewStateMainViewState()
data classdata class ErrorError(valval throwable: ThrowableThrowable) : MainViewStateMainViewState()

}

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainViewState.kt)

Now, any instance of MainViewState has just the data that is appropriate for it (e.g.,
the passphrase and word count for Content). And, for a state that has no data —
such as Loading — it is an object, rather than a class.

This loading/content/error pattern is increasingly common in Android, as a way of
representing the three major states.

The Repository

So, we need to create those states and get them to the activity, so the activity can do
something with that information to display in the UI. A lot of that work is going to
be handled by our repository.

The PassphraseRepository is responsible for loading the words and generating a
random subset for us on demand. The core logic is the same between the Java and
Kotlin implementations, but the API is different, owing to different ways in handling
background work and singletons.

Java

Our PassphraseRepository is set up as a classic Java singleton, using a static
volatile field and a synchronized, lazy-initializing get() method:

ADDING SOME ARCHITECTURE

529

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainViewState.kt

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware;

importimport android.content.Contextandroid.content.Context;
importimport android.content.res.AssetManagerandroid.content.res.AssetManager;
importimport com.google.common.util.concurrent.ListenableFuturecom.google.common.util.concurrent.ListenableFuture;
importimport java.io.BufferedReaderjava.io.BufferedReader;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.io.InputStreamReaderjava.io.InputStreamReader;
importimport java.security.SecureRandomjava.security.SecureRandom;
importimport java.util.ArrayListjava.util.ArrayList;
importimport java.util.Listjava.util.List;
importimport java.util.concurrent.Executorjava.util.concurrent.Executor;
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors;
importimport java.util.concurrent.atomic.AtomicReferencejava.util.concurrent.atomic.AtomicReference;
importimport androidx.concurrent.futures.CallbackToFutureAdapterandroidx.concurrent.futures.CallbackToFutureAdapter;

classclass PassphraseRepositoryPassphraseRepository {
privateprivate staticstatic finalfinal StringString ASSET_FILENAME = "eff_short_wordlist_2_0.txt";
privateprivate staticstatic volatilevolatile PassphraseRepositoryPassphraseRepository INSTANCE;

synchronizedsynchronized staticstatic PassphraseRepositoryPassphraseRepository get(ContextContext context) {
ifif (INSTANCE == nullnull) {

INSTANCE = newnew PassphraseRepositoryPassphraseRepository(context.getApplicationContext());
}

returnreturn INSTANCE;
}

privateprivate finalfinal AssetManagerAssetManager assets;
privateprivate finalfinal AtomicReferenceAtomicReference<ListList<StringString>> wordsCache =

newnew AtomicReferenceAtomicReference<>();
privateprivate finalfinal SecureRandomSecureRandom random = newnew SecureRandomSecureRandom();
privateprivate finalfinal ExecutorExecutor threadPool = ExecutorsExecutors.newSingleThreadExecutor();

privateprivate PassphraseRepository(ContextContext context) {
assets = context.getAssets();

}

ListenableFutureListenableFuture<ListList<StringString>> generate(int wordCount) {
returnreturn CallbackToFutureAdapterCallbackToFutureAdapter.getFuture(completer -> {

threadPool.execute(() -> {
trytry {

ListList<StringString> words = wordsCache.get();

ifif (words == nullnull) {
InputStreamInputStream in = assets.open(PassphraseRepositoryPassphraseRepository.ASSET_FILENAME);

ADDING SOME ARCHITECTURE

530

words = readWords(in);
in.close();

synchronizedsynchronized (wordsCache) {
wordsCache.set(words);

}
}

completer.set(rollDemBones(words, wordCount));
}
catchcatch (ThrowableThrowable t) {

completer.setException(t);
}

});

returnreturn "generate words";
});

}

privateprivate ListList<StringString> rollDemBones(ListList<StringString> words, int wordCount) {
ListList<StringString> result = newnew ArrayListArrayList<>();
int size = words.size();

forfor (int i = 0; i < wordCount; i++) {
result.add(words.get(random.nextInt(size)));

}

returnreturn result;
}

privateprivate ListList<StringString> readWords(InputStreamInputStream in) throwsthrows IOExceptionIOException {
InputStreamReaderInputStreamReader isr = newnew InputStreamReaderInputStreamReader(in);
BufferedReaderBufferedReader reader = newnew BufferedReaderBufferedReader(isr);
StringString line;
ListList<StringString> result = newnew ArrayListArrayList<>();

whilewhile ((line = reader.readLine()) != nullnull) {
StringString[] pieces = line.split("\s");

ifif (pieces.length == 2) {
result.add(pieces[1]);

}
}

returnreturn result;
}

}

ADDING SOME ARCHITECTURE

531

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.java)

get() takes a Context as a parameter. We need a Context to be able to read in our
word list stored in assets. However, we do not want to hold onto an arbitary Context
in this singleton — if the Context is an Activity, we will wind up with a memory
leak. So, we hold onto the Application singleton edition of Context instead.

The singleton has a single visible method: generate(). Given a word count,
generate() generates a list of randomly-chosen words. However, this may involve
disk I/O to read in the assets, if this is the first time we are trying to generate a
passphrase in this process. As a result, we use a background thread for that work, in
the form of an Executor created from Executors.newSingleThreadExecutor(). The
execute() method that we call takes a Runnable (here implemented as a Java 8
lambda expression) and does that work on that background thread.

However, we need to be able to get the list of words to the caller when that
background task completes. To that end, generate() returns a ListenableFuture. A
Future is an object that represents some outstanding work; ListenableFuture is
one that lets one register a listener to find out when that work is done.
CallbackToFutureAdapter is a Jetpack utility class that helps you create a
ListenableFuture. Specifically, in the Resolver that you pass to getFuture() (here
implemented as a Java 8 lambda expression), you are passed a “completer” where
you can:

• Provide the data to be returned by the background work (set()), or
• Provide a Throwable if something went wrong (setException())

The lambda expression needs to return a String, but this is only used for logging
purposes.

ListenableFuture and CallbacktoFutureAdapter are obtained via the
androidx.concurrent:concurrent-futures library:

implementation "androidx.concurrent:concurrent-futures:1.0.0"

(from DiceLight/build.gradle)

The repository holds onto the read-in words in a cache, wrapped by an
AtomicReference to ensure that we handle possible parallel access to the cache
across multiple threads. generate() will:

• See if we have cached the words

ADDING SOME ARCHITECTURE

532

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.java
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DiceLight/build.gradle

• If not, read in the words and save them in the cache
• Randomly choose the requested number of words, passing that List to the

caller via the ListenableFuture

The word list contains a “die roll” value and a word for each line, separated by tabs,
such as:

1154 again
1155 agency
1156 aggressor
1161 aghast
1162 agitate
1163 agnostic

The readWords() method needs to split each line along the whitespace and take the
second part.

Kotlin

The Kotlin implementation does the same work, with three key differences:

1. Kotlin offers an object keyword for creating singletons, so we use that rather
than manage our own singleton

2. Since such singletons cannot have a constructor, we pass the Context into
generate(), whereas Java supplied it to the repository constructor

3. Rather than use ListenableFuture, generate() is a suspend function, doing
the work on a background thread, and we can still return our result list or
throw an exception

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware

importimport android.content.Contextandroid.content.Context
importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.withContextkotlinx.coroutines.withContext
importimport java.io.BufferedReaderjava.io.BufferedReader
importimport java.io.InputStreamjava.io.InputStream
importimport java.io.InputStreamReaderjava.io.InputStreamReader
importimport java.security.SecureRandomjava.security.SecureRandom
importimport java.util.concurrent.atomic.AtomicReferencejava.util.concurrent.atomic.AtomicReference

privateprivate constconst valval ASSET_FILENAME = "eff_short_wordlist_2_0.txt"

objectobject PassphraseRepositoryPassphraseRepository {
privateprivate valval wordsCache = AtomicReferenceAtomicReference<ListList<StringString>>()

ADDING SOME ARCHITECTURE

533

privateprivate valval random = SecureRandomSecureRandom()

suspendsuspend funfun generate(context: ContextContext, count: IntInt): ListList<StringString> {
valval words: ListList<StringString>? = wordsCache.getget()

returnreturn words?.let { rollDemBones(it, count) }
?: loadAndGenerate(context, count)

}

privateprivate suspendsuspend funfun loadAndGenerate(
context: ContextContext,
count: IntInt

): ListList<StringString> =
withContext(DispatchersDispatchers.IOIO) {

valval inputStream = context.assets.openopen(ASSET_FILENAMEASSET_FILENAME)

inputStream.use {
valval words = it.readLines()

.map { line -> line.split("\t") }

.filter { pieces -> pieces.size == 2 }

.map { pieces -> pieces[1] }

wordsCache.setset(words)

rollDemBones(words, count)
}

}

privateprivate funfun rollDemBones(words: ListList<StringString>, wordCount: IntInt) =
ListList(wordCount) { words[random.nextInt(words.size)] }

privateprivate funfun InputStreamInputStream.readLines(): ListList<StringString> {
valval result = mutableListOf<StringString>()

BufferedReaderBufferedReader(InputStreamReaderInputStreamReader(thisthis)).forEachLine { result.add(it); }

returnreturn result
}

}

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt)

As a result, our repository is a bit simpler (no singleton code, plus lots of Kotlin
functions to make it easier to read in and process the words). And, since we are
handling the background thread in the repository, consumers of this repository can
be a bit simpler as well.

ADDING SOME ARCHITECTURE

534

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt

The Motor

In Android, we have a problem with our UIs: they keep getting destroyed, courtesy
of configuration changes. We saw how we can use a ViewModel for retaining objects
across configuration changes, and we saw how we can have a ViewModel expose
LiveData objects to the UI layer to deliver data updates.

A motor is simply a ViewModel exposing LiveData.

The reason for the “motor” name (e.g., MainMotor) instead of a “viewmodel” name
(e.g., ViewModel) comes from other GUI architectures. In MVVM (Model-View-
Viewmodel) and MVP (Model-View-Presenter), what gets referred to as the
“viewmodel” fills the sort of role that we have here as the view-state: it is the data to
be displayed in the UI. However, in Android’s Architecture Components, just
because we use a ViewModel (for configuration changes) does not mean we want that
object to serve as a viewmodel (representing the data to be displayed). So, this book
uses “motor” to identify a ViewModel that exposes a LiveData of view-state objects.

And, as with our repository, the motor is a bit different between Java and Kotlin,
principally due to the way threading is handled.

Java

In Java, our repository gives us a ListenableFuture. Since that API involves I/O, we
need to get its work onto a background thread. So, MainMotor adapts the
ListenableFuture to LiveData:

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware;

importimport android.app.Applicationandroid.app.Application;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport com.google.common.util.concurrent.ListenableFuturecom.google.common.util.concurrent.ListenableFuture;
importimport java.util.Listjava.util.List;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData;

publicpublic classclass MainMotorMainMotor extendsextends AndroidViewModelAndroidViewModel {
privateprivate staticstatic finalfinal int DEFAULT_WORD_COUNT = 6;
privateprivate finalfinal MutableLiveDataMutableLiveData<MainViewStateMainViewState> viewStates =

newnew MutableLiveDataMutableLiveData<>();
privateprivate finalfinal PassphraseRepositoryPassphraseRepository repo;

ADDING SOME ARCHITECTURE

535

publicpublic MainMotor(@NonNull ApplicationApplication application) {
supersuper(application);

repo = PassphraseRepositoryPassphraseRepository.get(application);
generatePassphrase(DEFAULT_WORD_COUNT);

}

LiveDataLiveData<MainViewStateMainViewState> getViewStates() {
returnreturn viewStates;

}

void generatePassphrase() {
finalfinal MainViewStateMainViewState current = viewStates.getValue();

ifif (current == nullnull) {
generatePassphrase(DEFAULT_WORD_COUNT);

}
elseelse {

generatePassphrase(current.wordCount);
}

}

void generatePassphrase(int wordCount) {
viewStates.setValue(newnew MainViewStateMainViewState(truetrue, nullnull, wordCount, nullnull));

ListenableFutureListenableFuture<ListList<StringString>> future = repo.generate(wordCount);

future.addListener(() -> {
trytry {

viewStates.postValue(newnew MainViewStateMainViewState(falsefalse,
TextUtilsTextUtils.join(" ", future.get()), wordCount, nullnull));

}
catchcatch (ExceptionException e) {

viewStates.postValue(newnew MainViewStateMainViewState(falsefalse, nullnull, wordCount, e));
}

}, Runnable::run);
}

}

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainMotor.java)

MainMotor has a MutableLiveData for our MainViewState, exposing it to the UI layer
via a getViewStates() method returning a LiveData. MainMotor also has reference
to the PassphraseRepository singleton. And, since we need to supply a Context to
the repository, MainMotor extends AndroidViewModel, so we have a
getApplication() method to retrieve the Application singleton Context.

ADDING SOME ARCHITECTURE

536

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainMotor.java

The generatePassphrase(int) method first emits a view-state indicating that we
are loading. Then, it gets the ListenableFuture from the repository via a call to
generate(). Next, it adds a listener to the ListenableFuture, to be notified when
the work is complete. This takes a Runnable to be invoked at that time, plus an
Executor implementation to control what thread is used to execute the Runnable. In
our case, courtesy of Java 8 method references, we can replace that Executor with a
Runnable::run method reference, to say “execute the Runnable on whatever thread
you are on, please”.

Then, in the Runnable (lambda expression), we:

• Use Android’s TextUtils.join() method to convert the list of words into a
single space-delimited passphrase

• Emit a view-state with that result, or emit a view-state with the exception if
we ran into a problem

We use postValue() on MutableLiveData, to be sure that no matter what thread the
Runnable executes, it is safe for us to update the MutableLiveData.

We also have a generatePassphrase() method that takes no parameters. This will
use the wordCount from the previous view-state. If there was no previous view-state,
it uses an overall default value.

Note that MainMotor immediately generates a passphrase, using the default word
count, once it is created. This way, the activity does not need to tell the motor to do
anything — the activity just observes the LiveData and reacts when the initial
passphrase is emitted.

Kotlin

In Kotlin, since our repository exposes a suspend function, we use viewModelScope
to launch our coroutine, receiving the results on the main application thread:

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware

importimport android.app.Applicationandroid.app.Application
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData
importimport androidx.lifecycle.viewModelScopeandroidx.lifecycle.viewModelScope
importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.launchkotlinx.coroutines.launch

privateprivate constconst valval DEFAULT_WORD_COUNT = 6

ADDING SOME ARCHITECTURE

537

classclass MainMotorMainMotor(application: ApplicationApplication) : AndroidViewModelAndroidViewModel(application) {
privateprivate valval _results = MutableLiveDataMutableLiveData<MainViewStateMainViewState>()
valval results: LiveDataLiveData<MainViewStateMainViewState> = _results

init {
generatePassphrase(DEFAULT_WORD_COUNTDEFAULT_WORD_COUNT)

}

funfun generatePassphrase() {
generatePassphrase(

(results.value asas? MainViewStateMainViewState.ContentContent)?.wordCount ?: DEFAULT_WORD_COUNTDEFAULT_WORD_COUNT
)

}

funfun generatePassphrase(wordCount: IntInt) {
_results.value = MainViewStateMainViewState.LoadingLoading

viewModelScope.launch(DispatchersDispatchers.MainMain) {
_results.value = trytry {

valval randomWords = PassphraseRepositoryPassphraseRepository.generate(
getApplication(),
wordCount

)

MainViewStateMainViewState.ContentContent(randomWords.joinToString(" "), wordCount)
} catchcatch (t: ThrowableThrowable) {

MainViewStateMainViewState.ErrorError(t)
}

}
}

}

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainMotor.kt)

We also:

• Use the PassphraseRepository singleton supplied by the object declaration
• Use Kotlin’s own joinToString() instead of Android’s TextUtils.join() to

convert the list of words into the passphrase
• Use our sealed class implementations, so we are emitting some sub-type of
MainViewState

Otherwise, this works the same as its Java equivalent, including the two varieties of
generatePassphrase() (one with an explicit word count, one without) and
generating a passphrase when the MainMotor is created.

The Activity

Our layout is based on a CardView: a widget that is a simple rounded rectangle with
a bit of a drop shadow. Inside of there, we have a TextView and a ProgressBar:

ADDING SOME ARCHITECTURE

538

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainMotor.kt

<FrameLayout<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="8dp">>

<androidx.cardview.widget.CardView<androidx.cardview.widget.CardView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center"
android:padding="8dp">>

<TextView<TextView
android:id="@+id/passphrase"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:freezesText="true"
android:textSize="20sp"
android:typeface="monospace" />/>

<ProgressBar<ProgressBar
android:id="@+id/progress"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />/>

</androidx.cardview.widget.CardView></androidx.cardview.widget.CardView>

</FrameLayout></FrameLayout>

(from DiceLight/src/main/res/layout/activity_main.xml)

Managing that layout is a simple activity. We could have used a fragment here, but
there is only one screen. In general, the remaining sample apps will use fragments
and the Navigation component when there is more than one screen, but just a single
Activity otherwise.

In onCreate(), we get our MainMotor, start observing the LiveData, apply the
MainViewState to our widgets:

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

ActivityMainBindingActivityMainBinding binding =
ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

motor = newnew ViewModelProviderViewModelProvider(thisthis).get(MainMotorMainMotor.class);

ADDING SOME ARCHITECTURE

539

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceLight/src/main/res/layout/activity_main.xml

motor.getViewStates().observe(thisthis, viewState -> {
binding.progress.setVisibility(

viewState.isLoading ? ViewView.VISIBLE : ViewView.GONE);

ifif (viewState.content != nullnull) {
binding.passphrase.setText(viewState.content);

}
elseelse if (viewState.error != nullnull) {

binding.passphrase.setText(viewState.error.getLocalizedMessage());
LogLog.e("Diceware", "Exception generating passphrase",

viewState.error);
}
elseelse {

binding.passphrase.setText("");
}

});
}

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainActivity.java)

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

motor.results.observe(thisthis) { viewState ->
whenwhen (viewState) {

MainViewStateMainViewState.LoadingLoading -> {
binding.progress.visibility = ViewView.VISIBLEVISIBLE
binding.passphrase.text = ""

}
isis MainViewStateMainViewState.ContentContent -> {

binding.progress.visibility = ViewView.GONEGONE
binding.passphrase.text = viewState.passphrase

}
isis MainViewStateMainViewState.ErrorError -> {

binding.progress.visibility = ViewView.GONEGONE
binding.passphrase.text = viewState.throwable.localizedMessage
LogLog.e(

"Diceware",
"Exception generating passphrase",
viewState.throwable

)
}

ADDING SOME ARCHITECTURE

540

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainActivity.java

}
}

}

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt)

We also have a menu resource for the word count options and the refresh button:

<?xml version="1.0" encoding="utf-8"?>
<menu<menu xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto">>
<item<item

android:id="@+id/word_count"
app:showAsAction="ifRoom"
android:title="@string/menu_words">>
<menu><menu>

<group<group android:checkableBehavior="single">>
<item<item

android:id="@+id/word_count_4"
android:title="4" />/>

<item<item
android:id="@+id/word_count_5"
android:title="5" />/>

<item<item
android:id="@+id/word_count_6"
android:checked="true"
android:title="6" />/>

<item<item
android:id="@+id/word_count_7"
android:title="7" />/>

<item<item
android:id="@+id/word_count_8"
android:title="8" />/>

<item<item
android:id="@+id/word_count_9"
android:title="9" />/>

<item<item
android:id="@+id/word_count_10"
android:title="10" />/>

</group></group>
</menu></menu>

</item></item>
<item<item

android:id="@+id/refresh"
android:icon="@drawable/ic_cached_white_24dp"
app:showAsAction="ifRoom"

ADDING SOME ARCHITECTURE

541

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt

android:title="@string/menu_refresh" />/>

</menu></menu>

(from DiceLight/src/main/res/menu/actions.xml)

The word_count menu item is a bit unusual, following the Android recipe for
creating such a selection menu:

• The <item> has a <menu> child…
• …which in turn holds a <group> with
android:checkableBehavior="single"…

• … which wraps a set of <item> elements, one for each checkable menu item…
• … with android:checked="true" on the word_count_6 item, to pre-check

that one

We then have code in onCreateOptionsMenu() and onOptionsItemSelected() on
MainActivity to set up and handle that menu:

@Override
publicpublic boolean onCreateOptionsMenu(MenuMenu menu) {

getMenuInflater().inflate(R.menu.actions, menu);

returnreturn supersuper.onCreateOptionsMenu(menu);
}

@Override
publicpublic boolean onOptionsItemSelected(MenuItemMenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.refresh:

motor.generatePassphrase();
returnreturn truetrue;

casecase R.id.word_count_4:
casecase R.id.word_count_5:
casecase R.id.word_count_6:
casecase R.id.word_count_7:
casecase R.id.word_count_8:
casecase R.id.word_count_9:
casecase R.id.word_count_10:

item.setChecked(!item.isChecked());
motor.generatePassphrase(IntegerInteger.parseInt(item.getTitle().toString()));

returnreturn truetrue;
}

ADDING SOME ARCHITECTURE

542

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceLight/src/main/res/menu/actions.xml

returnreturn supersuper.onOptionsItemSelected(item);
}

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainActivity.java)

overrideoverride funfun onCreateOptionsMenu(menu: MenuMenu): BooleanBoolean {
menuInflater.inflate(RR.menu.actions, menu)

returnreturn supersuper.onCreateOptionsMenu(menu)
}

overrideoverride funfun onOptionsItemSelected(item: MenuItemMenuItem): BooleanBoolean {
whenwhen (item.itemId) {

RR.id.refresh -> {
motor.generatePassphrase()
returnreturn truetrue

}

RR.id.word_count_4, RR.id.word_count_5, RR.id.word_count_6, RR.id.word_count_7,
RR.id.word_count_8, RR.id.word_count_9, RR.id.word_count_10 -> {

item.isChecked = !item.isChecked

motor.generatePassphrase(IntegerInteger.parseInt(item.title.toString()))

returnreturn truetrue
}

}

returnreturn supersuper.onOptionsItemSelected(item)
}

(from DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt)

The refresh item is simple: we just call generatePassphrase() again, causing the
motor to get a fresh set of words from the repository and emitting another
MainViewState to update our UI.

For the word count, we have more work to do. First, we need to toggle the isChecked
state of the MenuItem, because Android (inexplicably) does not handle that for us
when the user clicks a checkable menu item. Then, we cheat a bit and parse the
actual text of the menu item as an Integer — this only works because this app is
English-only, so we know that the menu item captions can be parsed by
Integer.parseInt(). We then call generatePassphrase() to generate a passphrase
with the new number of words.

ADDING SOME ARCHITECTURE

543

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceLight/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt

Revisiting the Unidirectional Data Flow

Our activity takes user input (activity launch, refresh, word-count change) and
converts those into function calls on the motor:

Figure 206: UI Events Trigger Calls on Motor

ADDING SOME ARCHITECTURE

544

The motor then converts those calls into operations to be performed on our
repository, in an asynchronous fashion:

Figure 207: Motor Manipulates the Repository

ADDING SOME ARCHITECTURE

545

The repository does the work and asynchronously delivers the result to the motor:

Figure 208: Repository Responds to Motor

ADDING SOME ARCHITECTURE

546

The motor takes those results and crafts a revised view-state that the activity can use
to render the UI:

Figure 209: Motor Emits Up-to-Date View-State

Obviously, this is a very simple example. There are plenty of MVI frameworks, such
as Spotify’s Mobius, that provide a scaffold around this sort of flow that you can plug
into. However, in many cases, that level of sophistication (and corresponding
complexity) is not needed, and a simple motor-based flow like the one shown here
can suffice.

States and Events
Back in the chapter on dialogs, we had a scenario that sounds similar to the view-
states that we have seen in this chapter. We had a ConfirmationDialogFragment
displaying an AlertDialog, and we wanted to get the button-click events from the
ConfirmationDialogFragment back to the MainFragment that triggered the dialog to
be shown.

It may seem like we can do the same thing there as we did here: use LiveData and
have the ConfirmationDialogFragment emit a view-state that the MainFragment

ADDING SOME ARCHITECTURE

547

https://github.com/spotify/mobius

observes. In truth, that is close to what we need but not quite the same, because
“states” and “events” are subtly different, particularly in Android.

Definitions

In MainFragment, if the user clicks the positive button in the dialog, we want to show
a Toast. A Toast has its own lifecycle: it appears and vanishes on its own.

What we do not want to do is display a Toast again after a configuration change.
The Toast should appear exactly once per positive button click. If the user clicks the
positive button, sees the Toast, then rotates the screen, we should not re-display the
Toast.

As a result, the “did the user click the positive button” output from
ConfirmationDialogFragment cannot readily be part of a view-state. A view-state
represents data that we want to survive a configuration change. If MainActivity
wanted to update its button caption based on whether the user had accepted the
dialog in its most recent invocation, then we would want the “did the user click the
positive button” to be part of the view-state, so we could show the right caption after
a configuration change. That does not work well in our Toast scenario:
MainFragment would get the most-recent view-state after a configuration change, see
that the positive button had been clicked, and show the Toast again.

In many respects, the problem itself is not the configuration change. In theory, what
could happen is:

• The user clicks the really big button to display the dialog
• The user clicks the positive button on that dialog, then immediately rotates

the screen, so fast that MainFragment has not had time to react to the
positive button click

In that case, we still do want MainFragment to show the Toast… but only once.

In the terminology used in this book, we have “states” and “events”:

• A state is something that we want to survive a configuration change and use
• An event is something that we want to use exactly once, regardless of any

configuration changes that may or may not occur

ADDING SOME ARCHITECTURE

548

Impacts on Delivery

LiveData is a value holder with a way to tell a set of observers when that value
changes. It is designed for states, which is why we used it for the view-state in this
chapter.

On its own, though, it is not well-suited for events. There is no built-in concept of
“consuming” an event from LiveData that would prevent that event from being
consumed again after a configuration change.

The Jetpack does not have a great solution for this problem. The current “state of the
art” for handling this varies based on your programming language.

Java: Single Live Event

Google’s original solution was what is called the “single live event” pattern. And,
while Google has been backtracking away from that solution, it is still the best
option for Java projects that have not adopted RxJava as a reactive API, where RxJava
projects would use PublishSubject or similar options.

The single live event pattern still has us deliver via LiveData. However, we wrap the
data that represents the event (e.g., a boolean of whether the user dismissed the
dialog via the positive button or not) in a wrapper that tracks whether or not we
have consumed the event.

In the Java edition of the NukeFromOrbit sample module, that wrapper is called
Event:

packagepackage com.commonsware.jetpack.samplerj.dialogcom.commonsware.jetpack.samplerj.dialog;

importimport androidx.lifecycle.Observerandroidx.lifecycle.Observer;

publicpublic finalfinal classclass EventEvent<T> {
publicpublic interfaceinterface HandlerHandler<T> {

void handle(T content);
}

publicpublic staticstatic classclass EventObserverEventObserver<T> implementsimplements ObserverObserver<EventEvent<T>> {
privateprivate finalfinal EventEvent.Handler<T> handler;

publicpublic EventObserver(HandlerHandler<T> handler) {
thisthis.handler = handler;

}

ADDING SOME ARCHITECTURE

549

https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/NukeFromOrbit
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/NukeFromOrbit

@Override
publicpublic void onChanged(EventEvent<T> event) {

ifif (event != nullnull) {
event.handle(handler);

}
}

}

privateprivate boolean hasBeenHandled = falsefalse;
privateprivate finalfinal T content;

publicpublic Event(T content) {
thisthis.content = content;

}

privateprivate void handle(EventEvent.Handler<T> handler) {
ifif (!hasBeenHandled) {

hasBeenHandled = truetrue;
handler.handle(content);

}
}

}

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/Event.java)

At its core, Event wraps some object (using generic type T), referred to as content. It
has a handle() method that takes a callback (Event.Handler) and calls that callback
if the Event has not already been handled. Event also provides an Observer
implementation called EventObserver that handles an event received from a
LiveData, if that event has not already been handled.

When the user clicks one of the dialog buttons, or uses the system BACK button to
dismiss the dialog, ConfirmationDialogFragment calls either onAccept() or
onDecline() on the GraphViewModel:

packagepackage com.commonsware.jetpack.samplerj.dialogcom.commonsware.jetpack.samplerj.dialog;

importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData;
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel;

publicpublic classclass GraphViewModelGraphViewModel extendsextends ViewModelViewModel {
privateprivate MutableLiveDataMutableLiveData<EventEvent<BooleanBoolean>> results = newnew MutableLiveDataMutableLiveData<>();

LiveDataLiveData<EventEvent<BooleanBoolean>> getResultStream() {

ADDING SOME ARCHITECTURE

550

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/Event.java

returnreturn results;
}

void onAccept() {
results.postValue(newnew EventEvent<>(truetrue));

}

void onDecline() {
results.postValue(newnew EventEvent<>(falsefalse));

}
}

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/GraphViewModel.java)

GraphViewModel in turn posts a boolean value to a MutableLiveData called results,
where the boolean is wrapped in an Event.

MainFragment then sets up an EventObserver to receive those boolean values:

vm.getResultStream().observe(getViewLifecycleOwner(),
newnew EventEvent.EventObserver<>(wasAccepted -> {

ifif (wasAccepted) {
ToastToast.makeText(requireContext(), "BOOOOOOOM!",

ToastToast.LENGTH_LONG).show();
}

}));

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/MainFragment.java)

So, when the user clicks a button, the EventObserver handles the Event and passes
the underlying value to our code. If the user then rotates the screen or otherwise
triggers a configuration change, while EventObserver itself will receive the Event
from the LiveData, since the Event will have been marked as having been handled,
EventObserver does not wind up calling our code again. So, we get the boolean
value exactly once per button click.

This works. It is a bit of a hack, but it works.

Kotlin: BroadcastChannelBroadcastChannel

The “bit of a hack” aspect is why Google would prefer that you use something else.
In Kotlin, that “something else” right now is a BroadcastChannel and a Flow.

GraphViewModel in Kotlin still has onAccept() and onDecline() functions that
ConfirmationDialogFragment calls. This time, though, they offer() a boolean value

ADDING SOME ARCHITECTURE

551

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/GraphViewModel.java
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/samplerj/dialog/MainFragment.java

to a BroadcastChannel named results:

packagepackage com.commonsware.jetpack.sampler.dialogcom.commonsware.jetpack.sampler.dialog

importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport kotlinx.coroutines.channels.BroadcastChannelkotlinx.coroutines.channels.BroadcastChannel
importimport kotlinx.coroutines.channels.Channel.Factory.BUFFEREDkotlinx.coroutines.channels.Channel.Factory.BUFFERED
importimport kotlinx.coroutines.flow.asFlowkotlinx.coroutines.flow.asFlow

classclass GraphViewModelGraphViewModel : ViewModelViewModel() {
privateprivate valval results = BroadcastChannelBroadcastChannel<BooleanBoolean>(BUFFEREDBUFFERED)
valval resultStream = results.asFlow()

funfun onAccept() {
results.offer(truetrue)

}

funfun onDecline() {
results.offer(falsefalse)

}
}

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/GraphViewModel.kt)

A BroadcastChannel works a bit like LiveData, in that it can have one or more
observers and passes any offered object to each of them. Unlike LiveData, a
BroadcastChannel does not hold onto the last-offered object, so observers get each
object exactly once.

The BroadcastChannel is part of the GraphViewModel implementation. Its API is in
the form of a Flow created from that BroadcastChannel. A Flow recipient can receive
objects but not offer them — it is a consume-only interface. So, MainFragment
consumes those click results via that Flow:

vm.resultStream.onEach { wasAccepted ->
ifif (wasAccepted) {

ToastToast.makeText(requireContext(), "BOOOOOOOM!", ToastToast.LENGTH_LONGLENGTH_LONG)
.show()

}
}.launchIn(viewLifecycleOwner.lifecycleScope)

(from NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/MainFragment.kt)

This works much like the EventObserver from the Java example. The lambda
expression that we pass to onEach() will get called for each boolean offered by
ConfirmationDialogFragment and GraphViewModel. We use launchIn() to tell the

ADDING SOME ARCHITECTURE

552

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/GraphViewModel.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/NukeFromOrbit/src/main/java/com/commonsware/jetpack/sampler/dialog/MainFragment.kt

Flow to use a particular CoroutineScope to control when we stop observing the Flow.
And here, we use viewLifecycleOwner.lifecycleScope, a CoroutineScope provided
by the Jetpack that is tied to our fragment’s view lifecycle, so we will stop observing
once the fragment’s UI is destroyed.

You can learn more about Flow in the "Introducing Flows and
Channels" chapter of Elements of Kotlin Coroutines!

ADDING SOME ARCHITECTURE

553

https://commonsware.com/Coroutines

Working with Content

If you have written software for other platforms, you are used to working with files
on the filesystem. Android has some support for that, but it is limited and awkward
— we will explore that more in an upcoming chapter.

Instead, Google would like for us to work with content more generally, whether that
content comes from files, from services like Google Drive, or other places. To that
end, Android comes with the Storage Access Framework for creating and consuming
content.

The Storage Access Framework
Let’s think about photos for a minute.

A person might have photos managed as:

• on-device photos, mediated by an app like a gallery
• photos stored online in a photo-specific service, like Instagram
• photos stored online in a generic file-storage service, like Google Drive or

Dropbox

Now, let’s suppose that person is in an app that allows the user to pick a photo, such
as to attach to an email or to include in an MMS message.

Somehow, that email or text messaging client needs to allow the user to choose a
photo. Some developers attempt to do this by looking for photo files on the
filesystem, but that will miss lots of photos, particularly on newer versions of
Android. Some developers will use a class called MediaStore to query for available
photos. That is a reasonable choice, but MediaStore only allows you to query for

555

certain types of content, such as photos. If the user wants to attach a PDF to the
email, MediaStore is not a great solution. Also, MediaStore only knows about local
content, not items in cloud services used by the user.

The Storage Access Framework is designed to address these issues. It provides its
own “picker” UI to allow users to find a file of interest that matches the MIME type
that the client app wants. Document providers simply publish details about their
available content — including items that may not be on the device but could be
retrieved if needed. The picker UI allows for easy browsing and searching across all
possible document providers, to streamline the process for the user. And, since
Android is the one providing the picker, the picker should more reliably give a result
to the client app based upon the user’s selection (if any).

More Dice!

The Diceware modules of the Java and Kotlin projects are based on the DiceLight
sample that we saw previously. The difference is that in this version of the app, there
is an overflow menu with “Open Word File”, where the user can choose a different
word list to use as the source of words for the passphrases. To let the user choose the
word list, we will use the Storage Access Framework.

The SAF Actions

From a programming standpoint, the Storage Access Framework feels like the “file
open”, “file save-as”, and “choose directory” dialogs that you may be used to from
other GUI environments. The biggest difference is that the Storage Access
Framework is not limited to files.

These three bits of UI are tied to three Intent actions:

Action Equivalent Role

ACTION_OPEN_DOCUMENT file open

ACTION_CREATE_DOCUMENT file save-as

ACTION_OPEN_DOCUMENT_TREE choose directory

Those three Intent actions are designed for use with startActivityForResult(). In
onActivityResult(), if we got a result, that will contain a Uri that points to a

WORKING WITH CONTENT

556

https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/Diceware
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/Diceware

document (for ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT) or document
tree (for ACTION_CREATE_DOCUMENT). We can then use that Uri to write content, read
in existing content, or find child documents in a tree.

Opening a Document

Technically, we do not “open” a document using ACTION_OPEN_DOCUMENT. Instead, we
are requesting a Uri pointing to some document that the user chooses.

To do that, create an Intent with:

• ACTION_OPEN_DOCUMENT as the action
• CATEGORY_OPENABLE as the category
• your desired MIME type, including wildcards if appropriate

Then, use that Intent with startActivityForResult().

In the Diceware sample, we call startActivityForResult() with that Intent when
the user chooses the open menu item:

casecase R.id.open:
IntentIntent i =

newnew Intent()
.setType("text/plain")
.setAction(IntentIntent.ACTION_OPEN_DOCUMENT)
.addCategory(IntentIntent.CATEGORY_OPENABLE);

trytry {
startActivityForResult(i, REQUEST_OPEN);

}
catchcatch (ActivityNotFoundExceptionActivityNotFoundException ex) {

ToastToast.makeText(thisthis, "Sorry, we cannot open a document!",
ToastToast.LENGTH_LONG).show();

}

returnreturn truetrue;

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/MainActivity.java)

RR.id.openopen -> {
valval i = IntentIntent()

.setType("text/plain")

.setAction(IntentIntent.ACTION_OPEN_DOCUMENTACTION_OPEN_DOCUMENT)

.addCategory(IntentIntent.CATEGORY_OPENABLECATEGORY_OPENABLE)

WORKING WITH CONTENT

557

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/MainActivity.java

trytry {
startActivityForResult(i, REQUEST_OPENREQUEST_OPEN)

} catchcatch (ex: ActivityNotFoundExceptionActivityNotFoundException) {
ToastToast.makeText(

thisthis,
"Sorry, we cannot open a document!",
ToastToast.LENGTH_LONGLENGTH_LONG

).show()
}
returnreturn truetrue

}

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt)

ACTION_OPEN_DOCUMENT should supply a Uri in the result Intent that points to the
document the user chose, if the user actually chose one and we got RESULT_OK as the
result code. In our case, we pass that to MainMotor, asking it to generate a
passphrase for us, using that Uri and the user’s current requested word count:

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

@Nullable IntentIntent data) {
ifif (requestCode == REQUEST_OPEN) {

ifif (resultCode == RESULT_OK && data != nullnull) {
motor.generatePassphrase(data.getData());

}
}
elseelse {

supersuper.onActivityResult(requestCode, resultCode, data);
}

}

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/MainActivity.java)

overrideoverride funfun onActivityResult(
requestCode: IntInt,
resultCode: IntInt,
data: IntentIntent?

) {
ifif (requestCode == REQUEST_OPENREQUEST_OPEN) {

ifif (resultCode == ActivityActivity.RESULT_OKRESULT_OK && data != nullnull) {
data.data?.let { motor.generatePassphrase(it) }

}
} elseelse supersuper.onActivityResult(requestCode, resultCode, data)

}

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt)

WORKING WITH CONTENT

558

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt

The user is presented with the system’s ACTION_OPEN_DOCUMENT UI to browse among
various places and choose a document:

Figure 210: Storage Access Framework UI, Showing Documents

If you want to try this yourself, you can download the diceware.wordlist.txt or
eff_large_wordlist.txt word list files, put them on your test device, then open
them up within the Diceware app.

Why We Want Things To Be Openable

You will notice that the ACTION_OPEN_DOCUMENT Intent created in the Diceware
sample has CATEGORY_OPENABLE applied to it. This is supposed to guarantee that we
can actually consume the content represented by the Uri that we get. In particular,
we should be able to use a ContentResolver and open streams on that content.

If we leave off CATEGORY_OPENABLE, it is possible that we will get a Uri that we cannot
open ourselves.

The difference boils down to what use we intend to put the Uri toward:

• If all we plan to do is use that Uri for an ACTION_VIEW Intent and start an

WORKING WITH CONTENT

559

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/master/Diceware/diceware.wordlist.txt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/master/Diceware/diceware.wordlist.txt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/master/Diceware/eff_large_wordlist.txt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/master/Diceware/eff_large_wordlist.txt

activity on it, you could skip CATEGORY_OPENABLE and perhaps offer more
choices to your user

• Otherwise, use CATEGORY_OPENABLE

Since we used CATEGORY_OPENABLE, we can try to open an InputStream on the
content.

Consuming the Chosen Content

MainMotor is largely the same as before. However, when we generate the passphrase,
we pass the Uri along to generate() on PassphraseRepository:

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware;

importimport android.app.Applicationandroid.app.Application;
importimport android.net.Uriandroid.net.Uri;
importimport android.text.TextUtilsandroid.text.TextUtils;
importimport com.google.common.util.concurrent.ListenableFuturecom.google.common.util.concurrent.ListenableFuture;
importimport java.util.Listjava.util.List;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel;
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData;

publicpublic classclass MainMotorMainMotor extendsextends AndroidViewModelAndroidViewModel {
privateprivate staticstatic finalfinal int DEFAULT_WORD_COUNT = 6;
privateprivate finalfinal PassphraseRepositoryPassphraseRepository repo;
privateprivate UriUri wordsDoc = PassphraseRepositoryPassphraseRepository.ASSET_URI;
finalfinal MutableLiveDataMutableLiveData<MainViewStateMainViewState> viewStates =

newnew MutableLiveDataMutableLiveData<>();

publicpublic MainMotor(@NonNull ApplicationApplication application) {
supersuper(application);

repo = PassphraseRepositoryPassphraseRepository.get(application);
generatePassphrase(DEFAULT_WORD_COUNT);

}

void generatePassphrase() {
finalfinal MainViewStateMainViewState current = viewStates.getValue();

ifif (current == nullnull) {
generatePassphrase(DEFAULT_WORD_COUNT);

}
elseelse {

generatePassphrase(current.wordCount);
}

WORKING WITH CONTENT

560

}

void generatePassphrase(int wordCount) {
viewStates.setValue(newnew MainViewStateMainViewState(truetrue, nullnull, wordCount, nullnull));

ListenableFutureListenableFuture<ListList<StringString>> future = repo.generate(wordsDoc, wordCount);

future.addListener((RunnableRunnable)() -> {
trytry {

viewStates.postValue(newnew MainViewStateMainViewState(falsefalse,
TextUtilsTextUtils.join(" ", future.get()), wordCount, nullnull));

}
catchcatch (ExceptionException e) {

viewStates.postValue(newnew MainViewStateMainViewState(falsefalse, nullnull, wordCount, e));
}

}, Runnable::run);
}

void generatePassphrase(UriUri wordsDoc) {
thisthis.wordsDoc = wordsDoc;

generatePassphrase();
}

}

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/MainMotor.java)

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware

importimport android.app.Applicationandroid.app.Application
importimport android.net.Uriandroid.net.Uri
importimport androidx.lifecycle.*androidx.lifecycle.*
importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.launchkotlinx.coroutines.launch

privateprivate constconst valval DEFAULT_WORD_COUNT = 6

classclass MainMotorMainMotor(application: ApplicationApplication) : AndroidViewModelAndroidViewModel(application) {
privateprivate valval _results = MutableLiveDataMutableLiveData<MainViewStateMainViewState>()
valval results: LiveDataLiveData<MainViewStateMainViewState> = _results
privateprivate varvar wordsDoc = ASSET_URIASSET_URI

init {
generatePassphrase(DEFAULT_WORD_COUNTDEFAULT_WORD_COUNT)

}

funfun generatePassphrase() {
generatePassphrase(

(results.value asas? MainViewStateMainViewState.ContentContent)?.wordCount ?: DEFAULT_WORD_COUNTDEFAULT_WORD_COUNT
)

}

funfun generatePassphrase(wordCount: IntInt) {

WORKING WITH CONTENT

561

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/MainMotor.java

_results.value = MainViewStateMainViewState.LoadingLoading

viewModelScope.launch(DispatchersDispatchers.MainMain) {
_results.value = trytry {

valval randomWords = PassphraseRepositoryPassphraseRepository.generate(
getApplication(),
wordsDoc,
wordCount

)

MainViewStateMainViewState.ContentContent(randomWords.joinToString(" "), wordCount)
} catchcatch (t: ThrowableThrowable) {

MainViewStateMainViewState.ErrorError(t)
}

}
}

funfun generatePassphrase(wordsDoc: UriUri) {
thisthis.wordsDoc = wordsDoc

generatePassphrase()
}

}

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/MainMotor.kt)

For our initial passphrase, though, we start off with a Uri that points to our asset:

staticstatic finalfinal UriUri ASSET_URI =
UriUri.parse("file:///android_asset/eff_short_wordlist_2_0.txt");

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.java)

valval ASSET_URI: UriUri =
UriUri.parse("file:///android_asset/eff_short_wordlist_2_0.txt")

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt)

In PassphraseRepository, our words cache now is an LruCache. This is an Android
SDK class, representing a thread-safe Map that caps its size to a certain number of
entries. If we try putting more things in the cache than we have room for, the
LruCache will evict the least-recently-used (“LRU”) entry. In our case, the cache is
keyed by a Uri and is capped to at most four word lists:

privateprivate finalfinal LruCacheLruCache<UriUri, ListList<StringString>> wordsCache = newnew LruCacheLruCache<>(4);

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.java)

privateprivate valval wordsCache = LruCacheLruCache<UriUri, ListList<StringString>>(4)

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt)

WORKING WITH CONTENT

562

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/MainMotor.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt

Then, our revised generate() function gets the cached word list by examining our
cache using the supplied Uri and proceeds from there:

ListenableFutureListenableFuture<ListList<StringString>> generate(UriUri wordsDoc, int wordCount) {
returnreturn CallbackToFutureAdapterCallbackToFutureAdapter.getFuture(completer -> {

threadPool.execute(() -> {
ListList<StringString> words;

synchronizedsynchronized (wordsCache) {
words = wordsCache.get(wordsDoc);

}

trytry {
ifif (words == nullnull) {

InputStreamInputStream in;

ifif (wordsDoc.equals(ASSET_URI)) {
in = assets.open(PassphraseRepositoryPassphraseRepository.ASSET_FILENAME);

}
elseelse {

in = resolver.openInputStream(wordsDoc);
}

words = readWords(in);
in.close();

synchronizedsynchronized (wordsCache) {
wordsCache.put(wordsDoc, words);

}
}

completer.set(rollDemBones(words, wordCount));
}
catchcatch (ThrowableThrowable t) {

completer.setException(t);
}

});

returnreturn "generate words";
});

}

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.java)

suspendsuspend funfun generate(
context: ContextContext,
wordsDoc: UriUri,
count: IntInt

WORKING WITH CONTENT

563

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.java

): ListList<StringString> {
varvar words: ListList<StringString>?

synchronized(wordsCache) {
words = wordsCache.getget(wordsDoc)

}

returnreturn words?.let { rollDemBones(it, count, random) }
?: loadAndGenerate(context, wordsDoc, count)

}

privateprivate suspendsuspend funfun loadAndGenerate(
context: ContextContext,
wordsDoc: UriUri,
count: IntInt

): ListList<StringString> = withContext(DispatchersDispatchers.IOIO) {
valval inputStream: InputStreamInputStream? = ifif (wordsDoc == ASSET_URIASSET_URI) {

context.assets.openopen(ASSET_FILENAMEASSET_FILENAME)
} elseelse {

context.contentResolver.openInputStream(wordsDoc)
}

inputStream?.use {
valval words = it.readLines()

.map { line -> line.split("\t") }

.filter { pieces -> pieces.size == 2 }

.map { pieces -> pieces[1] }

synchronized(wordsCache) {
wordsCache.put(wordsDoc, words)

}

rollDemBones(words, count, random)
} ?: throwthrow IllegalStateExceptionIllegalStateException("could not open $wordsDoc")

}

(from Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt)

If we do not have our words yet, we need to load them. In DiceLight, we would
always open the asset. Now, we see if the asset is the magic ASSET_URI, and we only
use AssetManager and its open() function if that is the case. Otherwise, we use a
ContentResolver and openInputStream() to get the content identified by the Uri
that we got from ACTION_OPEN_DOCUMENT. You can get a ContentResolver by calling
getContentResolver() on a Context, such as the one supplied to the repository
constructor (Java) or generate() function (Kotlin).

WORKING WITH CONTENT

564

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Diceware/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt

The rest of PassphraseRepository is the same, as the rest of the code for loading
words does not care whether the InputStream came from an asset or came from the
ContentResolver.

DocumentFileDocumentFile and the Rest of the CRUD

ACTION_OPEN_DOCUMENT will give you a Uri for a document that you can open for
reading — the “R” in “CRUD”, as we saw in Diceware. The Storage Access Framework
also supports the remaining operations: create, update, and delete.

To help you with these operations, the Jetpack offers a DocumentFile class, which
provides convenience functions for finding out key details about the Uri that you
received. For ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT, you can get a
DocumentFile for a Uri by calling DocumentFile.fromSingelUri(), passing in that
Uri. DocumentFile then has functions like getType() to tell you the MIME type
associated with that particular piece of content.

Create

ACTION_CREATE_DOCUMENT will give you a Uri for a document that you can open for
writing, as it is your document.

To do this, construct an Intent with:

• an action of ACTION_CREATE_DOCUMENT
• a category of CATEGORY_OPENABLE
• the MIME type of the content you wish to write
• an extra, named EXTRA_TITLE, containing your desired filename or other

“display name” — this does not have to be a classic filename with an
extension

Then, invoke startActivityForResult() on that Intent, and use the Uri supplied
in the result Intent delivered to onActivityResult(). For example, you can use
ContentResolver and openOutputStream() to get an OutputStream that lets you
write data to the user-chosen location.

Note, though, that the user has the right to replace your proposed title with
something else. You can find out the title for a Uri by calling getName() on a
DocumentFile. Again, bear in mind that this does not have to have a classic filename
structure. In particular, it does not need to have a file extension.

WORKING WITH CONTENT

565

Update

The Uri returned from an ACTION_OPEN_DOCUMENT request may be writable; a Uri
from ACTION_CREATE_DOCUMENT should be writable. You can find out by calling
canWrite() on a DocumentFile for the Uri. If that returns true, you can use
openOutputStream() on a ContentResolver to write to that document.

Delete

If you can write to the content, you can also delete it. To do that, call delete() on a
DocumentFile for that Uri.

Getting Durable Access

By default, you will have the rights to read (and optionally write) to the document
represented by the Uri until the activity that requested the document via
ACTION_OPEN_DOCUMENT or ACTION_CREATE_DOCUMENT is destroyed.

If you pass the Uri to another component — such as another activity — you will
need to add FLAG_GRANT_READ_URI_PERMISSION and/or
FLAG_GRANT_WRITE_URI_PERMISSION to the Intent used to start that component.
That extends your access until that component is destroyed. Note that fragments are
all considered to be a part of the activity that created them, so you do not need to
worry about extending rights from one fragment to another.

If, however, you need the rights to survive your app restarting, you can call
takePersistableUriPermission() on a ContentResolver, indicating the Uri of the
document and the permissions (FLAG_GRANT_READ_URI_PERMISSION and/or
FLAG_GRANT_WRITE_URI_PERMISSION) that you want persisted. Then, you can save the
Uri somewhere — such as in SharedPreferences, which we will explore in an
upcoming chapter. Later, when your app runs again, you can get the Uri and
probably still use it with ContentResolver and DocumentFile, even for a completely
new activity or completely new process. Those rights even survive a reboot.

However, those rights will not survive the document being deleted or moved by
some other app. You can call exists() on a DocumentFile to see if your Uri still
points to a document that exists.

In addition, you can call getPersistedUriPermissions() to find out what persisted
permissions your app has. This returns a List of UriPermission objects, where each

WORKING WITH CONTENT

566

one of those represents a Uri, what persisted permissions (read or write) you have,
and when the permissions will expire.

Document Trees

ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT are sufficient for most apps.

However, there may be cases where you need the equivalent of a “choose directory”
dialog, to allow the user to pick a location where you can create (or work with)
several documents. For example, suppose that your app offers a report generator,
taking data from the database and creating a report with tables and graphs and stuff.
Some file formats, like PDF, might have the entire report in a single file — for that,
use ACTION_CREATE_DOCUMENT to allow the user to choose where to put that report.
Other file formats, like HTML, might require several files (e.g., the report body in
HTML and embedded graphs in PNG format). For that, you really need a “directory”,
into which you can create all of those individual bits of content.

For that, the Storage Access Framework offers document trees.

Getting a Tree

Instead of using ACTION_OPEN_DOCUMENT, you can use ACTION_OPEN_DOCUMENT_TREE.
Once again, you will use startActivityForResult() to request access to the tree. In
onActivityResult(), the result Intent has a Uri (getData()) that represents the
tree. You should have full read/write access not only to this tree but to anything
inside of it.

Working in the Tree

The simplest approach for then working with the tree is to use the aforementioned
DocumentFile wrapper. You can create one representing the tree by using the
fromTreeUri() static method, passing in the Uri that you got from the
ACTION_OPEN_DOCUMENT_TREE request.

From there, you can:

• Call listFiles() to get the immediate children of the root of this tree,
getting back an array of DocumentFile objects representing those children

• Call isDirectory() to confirm that you do indeed have a tree (or, call it on a
child to see if that child represents a sub-tree)

WORKING WITH CONTENT

567

• For those existing children that are files (isFile() returns true), use
getUri() to get the Uri for this child, so you can read its contents using a
ContentResolver and openInputStream()

• Call createDirectory() or createFile() to add new content as an
immediate child of this tree, getting a DocumentFile as a result

• For the createFile() scenario, call getUri() on the DocumentFile to get a
Uri that you can use for writing out the content using ContentResolver and
openOutputStream()

• and so on

Note that you can call takePersistableUriPermission() on a ContentResolver to
try to have durable access to the document tree, just as you can for a Uri to an
individual document.

Android 11+ Restrictions
Since the beginning, the Storage Access Framework has been billed as the way for
the app to get access to whatever content the user wants to work with.

In Android 11+, that is no longer the case, as the OS will prevent the user from
accessing the user’s content in scenarios that Google does not like.

Principally, this affects ACTION_OPEN_DOCUMENT_TREE, preventing the user from
selecting:

• The root of external storage
• The Download/ directory
• Any subdirectories off of the Android/ directory on external or removable

storage

ACTION_OPEN_DOCUMENT and ACTION_CREATE_DOCUMENT share that last restriction of
ACTION_OPEN_DOCUMENT_TREE. Otherwise, these actions seem unaffected.
Unfortunately, that ACTION_OPEN_DOCUMENT limitation means that an app’s files are
inaccessible by the user except through that app or by copying the files elsewhere
using a device-supplied file manager.

WORKING WITH CONTENT

568

Using Preferences

Android allows apps to keep preferences, in the form of key/value pairs (akin to a
Map), that will persist between invocations of an activity. As the name suggests, the
primary purpose is for you to store user-specified configuration details, such as the
last feed the user looked at in your feed reader, or what sort order to use by default
on a list, or whatever. Of course, you can store in the preferences whatever you like,
so long as it is keyed by a String and has a rudimentary value (boolean, String,
etc.)

The principal use of SharedPreferences, though, is for storing data that is collected
by a preference UI. Android provides a system for producing a UI that looks a lot
like the individual screens of the Settings app. That UI is fairly easy to set up and is a
recommended solution for configuration options and related settings.

In this chapter, we will examine how to set up a preference UI and work with
SharedPreferences

The Preferred Preferences
The good news is that there is only one SharedPreferences class.

The bad news is that there are a few implementations of the preference UI. The
native one — classes in android.preference — has been deprecated. Instead, we are
supposed to use the Support Library implementation or the AndroidX
implementation.

The SimplePrefs sample module in the Sampler and SamplerJ projects use the
AndroidX implementation, in the form of the androidx.preference:preference
library. This sample app offers a preference UI (PrefsFragment) and a regular UI that

569

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/SimplePrefs
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/SimplePrefs
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/SimplePrefs
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/SimplePrefs

shows the current value of the user-supplied preferences (HomeFragment).

Collecting Preferences with
PreferenceFragmentCompatPreferenceFragmentCompat

Some “preferences” will be collected as part of the natural use of your user interface.
For example, if you have a SeekBar widget to control a zoom level, you might elect to
record the SeekBar position in SharedPreferences, so you can restore the user’s last
zoom level later on.

However, in many cases, we have various settings that we would like the user to be
able to configure but are not something that the user would configure elsewhere in
our UI. For that, typically we use preference XML resources and a
PreferenceFragmentCompat.

Defining Your Preferences

First, you need to tell Android what preferences you are trying to collect from the
user.

To do this, you will need to add a res/xml/ directory to your project, if one does not
already exist. Then, you will define an XML resource file that describes the
preferences that you want. The root element of this XML file will be
<PreferenceScreen>, and it will contain child elements, generally one per
preference.

In the sample project, we have one such file, res/xml/preferences.xml:

<PreferenceScreen<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">>

<CheckBoxPreference<CheckBoxPreference
android:key="checkbox"
android:summary="@string/checkSummary"
android:title="@string/checkTitle"/>/>

<EditTextPreference<EditTextPreference
android:dialogTitle="@string/dialogTitle"
android:key="field"
android:summary="@string/fieldSummary"
android:title="@string/fieldTitle"/>/>

<ListPreference<ListPreference

USING PREFERENCES

570

android:dialogTitle="@string/listDialogTitle"
android:entries="@array/cities"
android:entryValues="@array/airportCodes"
android:key="list"
android:summary="@string/listSummary"
android:title="@string/listTitle"/>/>

</PreferenceScreen></PreferenceScreen>

(from SimplePrefs/src/main/res/xml/preferences.xml)

If you open up that resource in Android Studio, you will be given an editor that is
reminiscent of the layout resource editor, with XML and graphical editors.

Figure 211: Android Studio Preferences Editor

The drag-and-drop editor UI works akin to its layout resource editor counterpart.
You can drag a preference from the Palette into either the preview area or into the
Component Tree to add it to the resource. For any selected preference, the
Attributes pane allows you to modify attributes, either from the default short list of
popular properties or the full list of properties that you get from clicking “View all
properties”.

As with widgets in a layout resource, the element names of the preferences reflect a
Java class that is the implementation of that preference. Our preference XML has

USING PREFERENCES

571

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimplePrefs/src/main/res/xml/preferences.xml

CheckBoxPreference, EditTextPreference, and ListPreference elements, so our UI
will be constructed from those classes. Note that these are not widgets — they do
not extend from View — so you cannot use them directly in a layout resource.

Each preference element has two attributes at minimum:

1. android:key, which is the key you use to look up the value in the
SharedPreferences object via methods like getInt()

2. android:title, which is a few words identifying this preference to the user

You may also wish to consider having android:summary, which is a short sentence
explaining what the user is to supply for this preference.

There are lots of other attributes that are common to all preference elements, and
there are more types of preference elements than the ones that we used in the
preference XML shown above. We will examine these preference elements and
others like them later in this chapter.

Creating Your Preference Fragment

We use preference XML resources with a PreferenceFragmentCompat class. This is a
type of fragment that knows:

• How to load preference XML, inflating it into the actual Java objects
• How to render the UI for those preferences
• How to populate that UI with the current preference values
• How to update the preference values based on user input

Typically, a PreferenceFragmentCompat subclass just overrides
onCreatePreferences() and calls addPreferencesFromResource():

packagepackage com.commonsware.jetpack.simpleprefscom.commonsware.jetpack.simpleprefs;

importimport android.os.Bundleandroid.os.Bundle;
importimport androidx.preference.PreferenceFragmentCompatandroidx.preference.PreferenceFragmentCompat;

publicpublic classclass PrefsFragmentPrefsFragment extendsextends PreferenceFragmentCompatPreferenceFragmentCompat {
@Override
publicpublic void onCreatePreferences(BundleBundle savedInstanceState, StringString rootKey) {

addPreferencesFromResource(R.xml.preferences);
}

}

USING PREFERENCES

572

(from SimplePrefs/src/main/java/com/commonsware/jetpack/simpleprefs/PrefsFragment.java)

packagepackage com.commonsware.jetpack.simpleprefscom.commonsware.jetpack.simpleprefs

importimport android.os.Bundleandroid.os.Bundle
importimport androidx.preference.PreferenceFragmentCompatandroidx.preference.PreferenceFragmentCompat

classclass PrefsFragmentPrefsFragment : PreferenceFragmentCompatPreferenceFragmentCompat() {
overrideoverride funfun onCreatePreferences(

savedInstanceState: BundleBundle?,
rootKey: StringString?

) {
addPreferencesFromResource(RR.xml.preferences)

}
}

(from SimplePrefs/src/main/java/com/commonsware/jetpack/simpleprefs/PrefsFragment.kt)

Otherwise, this is an ordinary Fragment. We can start it using a
FragmentTransaction or the Navigation component, as we see fit. In this sample, we
use the Navigation component, linking a HomeFragment to the PrefsFragment:

<?xml version="1.0" encoding="utf-8"?>
<navigation<navigation android:id="@+id/nav_graph"

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
android:label="@string/app_name"
app:startDestination="@id/homeFragment">>

<fragment<fragment
android:id="@+id/homeFragment"
android:name="com.commonsware.jetpack.simpleprefs.HomeFragment"
android:label="@string/app_name">>
<action<action

android:id="@+id/editPrefs"
app:destination="@id/prefsFragment" />/>

</fragment></fragment>
<fragment<fragment

android:id="@+id/prefsFragment"
android:name="com.commonsware.jetpack.simpleprefs.PrefsFragment"
android:label="@string/app_name" />/>

</navigation></navigation>

(from SimplePrefs/src/main/res/navigation/nav_graph.xml)

USING PREFERENCES

573

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/SimplePrefs/src/main/java/com/commonsware/jetpack/simpleprefs/PrefsFragment.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimplePrefs/src/main/java/com/commonsware/jetpack/simpleprefs/PrefsFragment.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimplePrefs/src/main/res/navigation/nav_graph.xml

The UI

If you run the app and click the “Edit Preferences” button, you will be taken to
PrefsFragment and the UI that it creates:

Figure 212: PrefsFragment Initial UI

CheckBoxPreference is an “inline” preference: the user can set the value from a
widget right in the preference itself. In the case of CheckBoxPreference, that is in
the form of a CheckBox widget.

USING PREFERENCES

574

Our other two preferences are dialog preferences, where the user taps on the
preference to bring up a dialog where the user sets the value:

Figure 213: EditTextPreference Dialog

USING PREFERENCES

575

Figure 214: ListPreference Dialog

Each value is saved in the SharedPreferences as the user changes it. There is no
“save” action that the user needs to do in order to save the changes.

Types of Preferences
The elements in the preference XML will refer to subclasses of
androidx.preference.Preference. There are several of these in the current
AndroidX Preference library, and most may be added in the future. You can also
create your own, such as by extending DialogPreference and calling various
methods to build up the content of the dialog (e.g., setDialogTitle(),
setDialogLayoutResource()).

CheckBoxPreference and SwitchPreference

The sample application shown above a CheckBoxPreference. As noted, a
CheckBoxPreference is an “inline” preference, in that the widget the user interacts
with (in this case, a CheckBox) is part of the preference screen itself, rather than
contained in a separate dialog.

USING PREFERENCES

576

SwitchPreference is functionally equivalent to CheckBoxPreference, insofar as both
collect boolean values from the user. The difference is that SwitchPreference uses a
Switch widget that the user slides left and right to toggle between “on” and “off”
states.

The value that will be stored in the SharedPreferences is a boolean — we will
explore how to read and manipulate these values from your own code later in this
chapter.

EditTextPreference

EditTextPreference, when tapped by the user, pops up a dialog that contains an
EditText widget. You can configure this widget via attributes on the
<EditTextPreference> element — in addition to standard preference attributes like
android:key, you can include any attribute understood by EditText, such as
android:inputType. Also, as the sample app shows, you can have
android:dialogTitle to provide the title for the dialog that wraps the EditText
widget.

The value stored in the SharedPreferences is a string.

ListPreference and MultiSelectListPreference

A ListPreference displays a dialog with your choice of entries. Each is accompanied
by a RadioButton, with the checked RadioButton indicating the current value (if
any). A MultiSelectListPreference has the same look, except it has checkboxes for
each entry, and the user can choose multiple values, not just one.

To configure what appears in the list, you provide two attributes in the
ListPreference or MultiSelectListPreference element:

• android:entries provides what the user sees
• android:entryValues provides the corresponding values that are saved in

the SharedPreferences

In the preference XML, these attributes need to point to string-array resources.
String resources hold individual strings; string array resources hold a collection of
strings. Typically, you will find string array resources in res/values/arrays.xml and
related resource sets for translation. The <string-array> element has the name
attribute to identify the resource, along with child <item> elements for the
individual strings in the array.

USING PREFERENCES

577

So, our sample app has a pair of <string-array> resources in res/values/
arrays.xml:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<string-array<string-array name="cities">>
<item><item>Philadelphia</item></item>
<item><item>Pittsburgh</item></item>
<item><item>Allentown/Bethlehem</item></item>
<item><item>Erie</item></item>
<item><item>Reading</item></item>
<item><item>Scranton</item></item>
<item><item>Lancaster</item></item>
<item><item>Altoona</item></item>
<item><item>Harrisburg</item></item>

</string-array></string-array>
<string-array<string-array name="airportCodes">>

<item><item>PHL</item></item>
<item><item>PIT</item></item>
<item><item>ABE</item></item>
<item><item>ERI</item></item>
<item><item>RDG</item></item>
<item><item>AVP</item></item>
<item><item>LNS</item></item>
<item><item>AOO</item></item>
<item><item>MDT</item></item>

</string-array></string-array>
</resources></resources>

(from SimplePrefs/src/main/res/values/arrays.xml)

Here, the actual strings are written in-line. They could just as easily be references to
string resource. For user-facing strings, like those in the cities array, having them
as string resources may make it easier for you to manage your translations.

The sample app then uses those arrays in a ListPreference:

<ListPreference<ListPreference
android:dialogTitle="@string/listDialogTitle"
android:entries="@array/cities"
android:entryValues="@array/airportCodes"
android:key="list"
android:summary="@string/listSummary"
android:title="@string/listTitle"/>/>

(from SimplePrefs/src/main/res/xml/preferences.xml)

USING PREFERENCES

578

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimplePrefs/src/main/res/values/arrays.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimplePrefs/src/main/res/xml/preferences.xml

The dialog will show the strings in the android:entries array. The value that
matches, position-wise, from the android:entryValues array is what gets saved in
the SharedPreferences. So, if the user chooses Pittsburgh as the city, PIT will be
the value saved in the SharedPreferences. If you want the user-visible strings to be
the same as what goes into the SharedPreferences, just use the same string-array
resource for both android:entries and android:entryValues.

A ListPreference saves a string to SharedPreferences. A
MultiSelectListPreference saves a Set of strings to the SharedPreferences.

There is also DropDownPreference, which works like a ListPreference but uses a
drop-down list presentation, rather than a pop-up dialog.

SeekBarPreferenceSeekBarPreference

A SeekBarPreference shows a SeekBar widget, to allow the user to specify a value in
a range. It saves its value as an int to the SharedPreferences.

Working with SharedPreferencesSharedPreferences

At some point, our app needs to use the values that the user provided via the
preference UI. We might also want to save other data in SharedPreferences that is
not part of the preference UI.

Reading Preferences

Call getDefaultSharedPreferences() on android.preference.PreferenceManager
to get the SharedPreferences that is used by the preference UI for its values.

SharedPreferences offers a series of getters to access named preferences, returning
a suitably-typed result (e.g., getBoolean() to return a boolean preference). The
getters also take a default value, which is returned if there is no preference set under
the specified key.

You can read values at any point. If you want to find out when the preference UI (or
other code in your app) changes the preferences, call
registerOnSharedPreferenceChangeListener() on the SharedPreferences to
register an OnSharedPreferenceChangeListener to be notified of when values
change.

USING PREFERENCES

579

The sample app has a ConstraintLayout that shows the values of our three
preferences:

<?xml version="1.0" encoding="utf-8"?>
<layout<layout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools">>

<data><data>

<variable<variable
name="state"
type="androidx.lifecycle.LiveData<com.commonsware.jetpack.simpleprefs.HomeViewState>" />/>

</data></data>

<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".HomeFragment">>

<TextView<TextView
android:id="@+id/checkLabel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="8dp"
android:text="@string/labelCheck"
android:textAppearance="@style/TextAppearance.AppCompat.Large"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<TextView<TextView
android:id="@+id/fieldLabel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="8dp"
android:text="@string/fieldLabel"
android:textAppearance="@style/TextAppearance.AppCompat.Large"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/checkLabel" />/>

<TextView<TextView
android:id="@+id/listLabel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="8dp"
android:text="@string/listLabel"
android:textAppearance="@style/TextAppearance.AppCompat.Large"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/fieldLabel" />/>

<androidx.constraintlayout.widget.Barrier<androidx.constraintlayout.widget.Barrier
android:id="@+id/barrier"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:barrierDirection="end"
app:constraint_referenced_ids="checkLabel,fieldLabel,listLabel" />/>

<TextView<TextView

USING PREFERENCES

580

android:id="@+id/checkValue"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_margin="8dp"
android:text="@{state.isChecked ? @string/checked : @string/unchecked}"
android:textAppearance="@style/TextAppearance.AppCompat.Large"
app:layout_constraintBaseline_toBaselineOf="@id/checkLabel"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@+id/barrier"
tools:text="checked" />/>

<TextView<TextView
android:id="@+id/fieldValue"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_margin="8dp"
android:text="@{state.fieldValue}"
android:textAppearance="@style/TextAppearance.AppCompat.Large"
app:layout_constraintBaseline_toBaselineOf="@id/fieldLabel"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@+id/barrier"
tools:text="Something" />/>

<TextView<TextView
android:id="@+id/listValue"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_margin="8dp"
android:text="@{state.listValue}"
android:textAppearance="@style/TextAppearance.AppCompat.Large"
app:layout_constraintBaseline_toBaselineOf="@id/listLabel"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toEndOf="@+id/barrier"
tools:text="ABE" />/>

<Button<Button
android:id="@+id/edit"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@string/editPrefs"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/listValue" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>
</layout></layout>

(from SimplePrefs/src/main/res/layout/fragment_home.xml)

We are using data binding to populate three of the TextView widgets with certain
values, pulled from a HomeViewState that we get via LiveData. That comes from
HomeMotor implementation of AndroidViewModel:

packagepackage com.commonsware.jetpack.simpleprefscom.commonsware.jetpack.simpleprefs;

importimport android.app.Applicationandroid.app.Application;

USING PREFERENCES

581

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimplePrefs/src/main/res/layout/fragment_home.xml

importimport android.content.SharedPreferencesandroid.content.SharedPreferences;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData;
importimport androidx.preference.PreferenceManagerandroidx.preference.PreferenceManager;

publicpublic classclass HomeMotorHomeMotor extendsextends AndroidViewModelAndroidViewModel {
privateprivate finalfinal SharedPreferencesSharedPreferences prefs;
privateprivate finalfinal MutableLiveDataMutableLiveData<HomeViewStateHomeViewState> states = newnew MutableLiveDataMutableLiveData<>();

publicpublic HomeMotor(@NonNull ApplicationApplication application) {
supersuper(application);

prefs = PreferenceManagerPreferenceManager.getDefaultSharedPreferences(application);
prefs.registerOnSharedPreferenceChangeListener(LISTENER);
emitState();

}

@Override
protectedprotected void onCleared() {

prefs.unregisterOnSharedPreferenceChangeListener(LISTENER);
}

LiveDataLiveData<HomeViewStateHomeViewState> getStates() {
returnreturn states;

}

privateprivate void emitState() {
states.setValue(

newnew HomeViewState(prefs.getBoolean("checkbox", falsefalse),
prefs.getString("field", ""), prefs.getString("list", "")));

}

privateprivate SharedPreferencesSharedPreferences.OnSharedPreferenceChangeListener LISTENER =
(prefs, key) -> emitState();

}

(from SimplePrefs/src/main/java/com/commonsware/jetpack/simpleprefs/HomeMotor.java)

packagepackage com.commonsware.jetpack.simpleprefscom.commonsware.jetpack.simpleprefs

importimport android.app.Applicationandroid.app.Application
importimport android.content.SharedPreferencesandroid.content.SharedPreferences
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData
importimport androidx.preference.PreferenceManagerandroidx.preference.PreferenceManager

classclass HomeMotorHomeMotor(application: ApplicationApplication) : AndroidViewModelAndroidViewModel(application) {
privateprivate valval listener =

SharedPreferencesSharedPreferences.OnSharedPreferenceChangeListenerOnSharedPreferenceChangeListener { _, _ -> emitState() }
privateprivate valval prefs = PreferenceManagerPreferenceManager.getDefaultSharedPreferences(application)
privateprivate valval _states = MutableLiveDataMutableLiveData<HomeViewStateHomeViewState>()
valval states: LiveDataLiveData<HomeViewStateHomeViewState> = _states

init {
prefs.registerOnSharedPreferenceChangeListener(listener)
emitState()

}

USING PREFERENCES

582

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/SimplePrefs/src/main/java/com/commonsware/jetpack/simpleprefs/HomeMotor.java

overrideoverride funfun onCleared() {
prefs.unregisterOnSharedPreferenceChangeListener(listener)

}

privateprivate funfun emitState() {
_states.value = HomeViewStateHomeViewState(

prefs.getBoolean("checkbox", falsefalse),
prefs.getString("field", "") ?: "",
prefs.getString("list", "") ?: ""

)
}

}

(from SimplePrefs/src/main/java/com/commonsware/jetpack/simpleprefs/HomeMotor.kt)

When the motor is created, we call
PreferenceManager.getDefaultSharedPreferences to retrieve the
SharedPreferences object. Then, we call
registerOnSharedPreferenceChangeListener() to be notified of changes, then call
emitState(). That reads the values of our three preferences (using getBoolean()
and getString() methods) and puts them in the HomeViewState for the UI to use.
Later on, when the HomeMotor is cleared, we call
unregisterOnSharedPreferenceChangeListener(), so we no longer get updates
(and so the motor can be garbage-collected).

USING PREFERENCES

583

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/SimplePrefs/src/main/java/com/commonsware/jetpack/simpleprefs/HomeMotor.kt

The net result is that the HomeFragment will show the initial default values, then will
reflect the results of any changes that you make:

Figure 215: HomeFragment, Showing Current Preference Values

Modifying Preferences

Call edit() on the SharedPreferences object to get an “editor” for the preferences.
This object has a set of setters that mirror the getters on the parent
SharedPreferences object. It also has:

1. remove() to get rid of a single named preference
2. clear() to get rid of all preferences
3. apply() or commit() to persist your changes made via the editor

The last one is important — if you modify preferences via the editor and fail to save
the changes, those changes will evaporate once the editor goes out of scope.
commit() is a blocking call, while apply() works asynchronously. If you are on a
background thread already, call commit(); otherwise, call apply().

USING PREFERENCES

584

Requesting Permissions

Some things that your app might want to do — access the Internet, get a GPS fix, get
personal information about the user’s contacts, etc. — will require permission from
the user. Sometimes the user grants permission implicitly, just by installing your
app. Sometimes, the user grants permission explicitly, for things that Google
considers to be “dangerous”. And your app will need to deal with these permissions,
including the possibility that the user decides not to grant you a permission.

In this chapter, we will explore the basics of Android’s permission system.

Frequently-Asked Questions About Permissions
Permissions are frequently a confusing topic in Android app development,
particularly with respect to those “dangerous” permissions. So, here is a FAQ about
Android’s permissions system.

What Is a Permission?

A permission is a way for Android (or, sometimes, a third-party app) to require an
app developer to notify the user about something that the app will do that might
raise concerns with the user. Only if an app holds a certain permission can the app
do certain things that are defended by that permission.

Mechanically, permissions take the form of elements in the manifest, in the form of
a <uses-permission> element.

When Will I Need a Permission?

Most permissions that you will deal with come from Android itself. Usually, the

585

documentation will tell you when you need to request and hold one of these
permissions.

However, occasionally the documentation has gaps.

If you are trying out some code and you crash with a SecurityException the
description of the exception may tell you that you need to hold a certain permission
— that means you need to add the corresponding <uses-permission> element to
your manifest.

Third-party code, including Google’s own Play Services SDK, may define their own
custom permissions. Once again, ideally, you find out that you need to request a
permission through documentation, and otherwise you find out through crashing
during testing.

What Are Some Common Permissions, and What Do They
Defend?

There are dozens upon dozens of permissions in Android. Here are some of the
more common ones:

• INTERNET, if your application wishes to access the Internet through any
means from your own process, using anything from raw Java sockets through
the WebView widget

• READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE, for working with
files directly on external storage

• ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, for determining
where the device is, such as via GPS

• READ_CONTACTS, to get at personally-identifying information of arbitrary
contacts that the user has in their Contacts app

• BLUETOOTH and BLUETOOTH_ADMIN, for communicating with other devices over
Bluetooth

• CAMERA, for taking pictures directly using the camera APIs or wrapper
libraries like the CameraX library

• RECEIVE_BOOT_COMPLETED, to get control when the device reboots

In this book and in casual conversation, we refer to the permissions using the
unique portion of their name (e.g., INTERNET). Really, the full name of a framework
permission will usually have android.permission. as a prefix (e.g.,
android.permission.INTERNET), for Android-defined permissions. Custom
permissions from third-party apps should use a different prefix. You will need the

REQUESTING PERMISSIONS

586

full permission name, including the prefix, in your manifest entries.

What Are “Normal” and “Dangerous” Permissions?

In modern versions of Android, a normal permission is one that we have to request
via the manifest, but the user does not need to approve explicitly. Just by installing
the app, they implicitly grant us the permission. They can find out about these
permissions (e.g., via the Play Store listing), but they cannot deny them, other than
by uninstalling the app. Generally, normal permissions are ones that have limited
user impact (e.g., RECEIVE_BOOT_COMPLETED, which only affects behavior on a
reboot). The biggest exception to that rule is the INTERNET permission, which is a
normal permission because a lot of apps want to be able to access the Internet.

By contrast, a dangerous permission is one that the user must approve explicitly. On
Android 5.1 and older devices, this occurs at install time, either on the device or in
the Play Store (for apps distributed through that channel). On Android 6.0+ devices,
not only must our app have a <uses-permission> element in the manifest, but we
also need to call methods to request that permission at runtime, at the point when
we first need the permission. Mostly, dangerous permissions are ones that have
privacy or security ramifications.

How Do I Request a Permission?

Put a <uses-permission> element in your manifest, as a direct child of the root
<manifest> element (i.e., as a peer element of <application>), with an
android:name attribute identifying the permission that you are interested in.

For example, here is a sample manifest, with a request to hold the
WRITE_EXTERNAL_STORAGE permission:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.jetpack.contenteditor"

xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />/>

<application<application
android:allowBackup="true"
android:requestLegacyExternalStorage="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"

REQUESTING PERMISSIONS

587

android:supportsRtl="true"
android:theme="@style/AppTheme">>
<activity<activity android:name=".MainActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from ContentEditor/src/main/AndroidManifest.xml)

For normal permissions, this is all that you need. For dangerous permissions — such
as WRITE_EXTERNAL_STORAGE — there is more work to be done, as we will explore
later in this chapter.

Note that you are welcome to have zero, one, or several such <uses-permission>
elements. Also note that some libraries that you elect to use might add their own
<uses-permission> elements to your manifest. If you look at the “Merged Manifest”
sub-tab of the manifest editor, you will see all of the <uses-permission> elements
that will be included in your app and where they come from.

Dangerous Permissions: Request at Runtime
In Android 6.0 and higher devices, permissions that are considered to be dangerous
not only have to be requested via <uses-permission> elements, but you also have to
ask the user to grant you those permissions at runtime. What you gain, though, is
that users are not bothered with these permissions at install time, and you can elect
to delay asking for certain permissions until such time as the user actually does
something that needs them.

Let’s explore the runtime permissions system via a new series of questions.

Along the way, we will examine bits of the ContentEditor sample module in the
Sampler and SamplerJ projects. This app implements a tiny text editor, where the
user can edit text from various sources. We will explore the file I/O portions of this
code in an upcoming chapter. Here, we will focus on the WRITE_EXTERNAL_STORAGE
permission that this app needs, as that is a dangerous permission and one that we
have to request at runtime.

REQUESTING PERMISSIONS

588

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ContentEditor
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ContentEditor
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ContentEditor
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ContentEditor

What Permissions Are Affected By This?

Inside Android, permissions are organized into permission groups. For example, in
Android 9.0, there are ten permission groups that contain dangerous permissions:

Permission
Group

Permission

CALENDAR READ_CALENDAR, WRITE_CALENDAR

CALL_LOG PROCESS_OUTGOING_CALLS, READ_CALL_LOG, WRITE_CALL_LOG

CAMERA CAMERA

CONTACTS GET_ACCOUNTS, READ_CONTACTS, WRITE_CONTACTS

LOCATION ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION

MICROPHONE RECORD_AUDIO

PHONE
ADD_VOICEMAIL, ANSWER_PHONE_CALLS, CALL_PHONE,
READ_PHONE_NUMBERS, READ_PHONE_STATE, USE_SIP

SENSORS BODY_SENSORS

SMS
READ_SMS, RECEIVE_SMS, RECEIVE_MMS, RECEIVE_WAP_PUSH,

SEND_SMS

STORAGE READ_EXTERNAL_STORAGE, WRITE_EXTERNAL_STORAGE

This roster changes over time. For example, in Android 6.0, the call log permissions
were in the PHONE category.

REQUESTING PERMISSIONS

589

Users will be able to revoke permissions by group, through the Settings app. They
can go into the page for your app, click on Permissions, and see a list of the
permission groups for which you are requesting permissions:

Figure 216: Dangerous Permissions Control in Android 9.0 Settings App

What Goes in the Manifest?

The same <uses-permission> elements as before. These declare the superset of all
possible permissions that you can have. If you do not have a <uses-permission>
element for a particular permission, you cannot ask for it at runtime, and the user
cannot grant it to you.

How Do I Know If I Have Permission?

Use ContextCompat.checkSelfPermission(). This takes a Context and the full
name of a permission as parameters, and it returns either PERMISSION_GRANTED or
PERMISSION_DENIED to indicate the status of the permission:

privateprivate void loadFromExternalRoot() {
ifif (ContextCompatContextCompat.checkSelfPermission(thisthis,

ManifestManifest.permission.WRITE_EXTERNAL_STORAGE) ==

REQUESTING PERMISSIONS

590

PackageManagerPackageManager.PERMISSION_GRANTED) {
loadFromDir(EnvironmentEnvironment.getExternalStorageDirectory());

}
elseelse {

StringString[] perms = {ManifestManifest.permission.WRITE_EXTERNAL_STORAGE};

ActivityCompatActivityCompat.requestPermissions(thisthis, perms, REQUEST_PERMS);
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java)

privateprivate funfun loadFromExternalRoot() {
ifif (ContextCompatContextCompat.checkSelfPermission(

thisthis,
ManifestManifest.permission.WRITE_EXTERNAL_STORAGEWRITE_EXTERNAL_STORAGE

) == PackageManagerPackageManager.PERMISSION_GRANTEDPERMISSION_GRANTED
) {

loadFromDir(EnvironmentEnvironment.getExternalStorageDirectory())
} elseelse {

valval perms = arrayOf(ManifestManifest.permission.WRITE_EXTERNAL_STORAGEWRITE_EXTERNAL_STORAGE)

ActivityCompatActivityCompat.requestPermissions(thisthis, perms, REQUEST_PERMSREQUEST_PERMS)
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt)

Here, we check to see if we hold the WRITE_EXTERNAL_STORAGE permission. For Java
and Kotlin code, the android.Manifest.permission class has constants for all
Android SDK permissions (e.g., Manifest.permission.WRITE_EXTERNAL_STORAGE) —
it is better to use those than hard-code strings, as the compiler will help prevent you
from introducing typos or other errors.

How Do I Ask the User For Permission?

To ask the user for one of the runtime permissions, call
ActivityCompat.requestPermissions(). This takes your Activity, a String array of
the permissions that you are requesting ,and a locally-unique integer to identify this
request from any other similar requests that you may be making. This int serves in
much the same role as does the int passed into startActivityForResult(), though
you should keep the value to 8 bits (0 to 255) for maximum compatibility.

In the preceding code snippets, if ContextCompat.checkSelfPermission() indicates
that we do not hold Manifest.permission.WRITE_EXTERNAL_STORAGE, we request

REQUESTING PERMISSIONS

591

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt

that permission via ActivityCompat.requestPermissions().

When we call ActivityCompat.requestPermissions(), the user will be presented
with a system dialog with one “page” for each permission group, based on the array
of permissions that we request:

Figure 217: Runtime Permission Dialog, As Initially Displayed

The hope, of course, is that the user clicks “Allow” for each page, granting you all of
the requested permissions.

When the user has proceeded through the dialog pages, your Activity will be called
with onRequestPermissionsResult(). You are passed three parameters:

• the locally-unique integer from your requestPermissions() call, to identify
which requestPermissions() call this is the result for

• a String array of the requested permissions
• an int array of the corresponding results (PERMISSION_GRANTED or
PERMISSION_DENIED)

Whether you use those latter two parameters or simply call
ContextCompat.checkSelfPermission() again is up to you. Regardless, at this point,

REQUESTING PERMISSIONS

592

you should determine what you got, so you know how to react, such as disabling
things that the user cannot use given the lack of permission.

Frequently, you do the same thing in onRequestPermissionsResult() — if you were
granted permission — that you do if your ContextCompat.checkSelfPermission()
call had indicated that you had the permission already. In the case of the sample, we
call a loadFromDir() function:

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

@NonNull StringString[] permissions,
@NonNull int[] grantResults) {

ifif (requestCode == REQUEST_PERMS) {
ifif (grantResults.length == 1 &&

grantResults[0] == PackageManagerPackageManager.PERMISSION_GRANTED) {
loadFromDir(EnvironmentEnvironment.getExternalStorageDirectory());

}
elseelse {

ToastToast.makeText(thisthis, R.string.msg_sorry, ToastToast.LENGTH_LONG).show();
}

}
}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java)

overrideoverride funfun onRequestPermissionsResult(
requestCode: IntInt,
permissions: ArrayArray<StringString>,
grantResults: IntArrayIntArray

) {
ifif (requestCode == REQUEST_PERMSREQUEST_PERMS) {

ifif (grantResults.size == 1 && grantResults[0] == PackageManagerPackageManager.PERMISSION_GRANTEDPERMISSION_GRANTED) {
loadFromDir(EnvironmentEnvironment.getExternalStorageDirectory())

} elseelse {
ToastToast.makeText(thisthis, RR.string.msg_sorry, ToastToast.LENGTH_LONGLENGTH_LONG).show()

}
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt)

When Do I Ask the User For Permission?

That depends a bit on the nature of the permission.

In an ideal world, your app can function without any of the revocable permissions
granted to you, albeit perhaps in a limited fashion. In that case, you might ask for
permission only when the user tries to do something (e.g., taps on an app bar item)

REQUESTING PERMISSIONS

593

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt

for which you definitely need the permission.

However, sometimes you will need permission to be at all useful to the user. In that
case, you will need to ask for permission when the app opens.

In either case, though, bear in mind that while the user will see the dialog asking for
permission, the user may not understand why you are asking for this permission.
You need to make sure that the user understands the cost/benefit trade-off in
granting the permission — in other words, what does the user get out of the deal?

For permissions that you are requesting based on user input, you might pop your
own dialog or other UI explaining what you want and why you want it, before calling
ActivityCompat.requestPermissions(). For permissions that you would want to
ask for when the app starts up, make sure that you clearly explain the need for the
permissions and what the user gets in exchange as part of a one-time introductory
tutorial, one that might also be accessed via an overflow item or nav drawer entry as
part of your app’s help facility.

When Do I Not Ask the User For Permission?

One limitation with the ActivityCompat.requestPermissions() implementation is
that it is oblivious to configuration changes.

For example, suppose that in onCreate() of your activity, you check to see if you
have been granted a runtime permission (via
ContextCompat.checkSelfPermission()), and if you have not, you call
ActivityCompat.requestPermissions() to request it from the user. This displays
the dialog. Now the user rotates the screen. If the user denies the permission, by
default, the user will immediately see the permission dialog again… because your
activity will have been destroyed and recreated, and your onCreate() will see that
you do not have the permission, and so you ask for it again.

In cases like this, you will need to track whether you are in the permission-request
flow (e.g., via a boolean saved in the instance state) and skip requesting the
permission if you have been recreated in the middle of that flow.

What Do I Do If the User Says “No”?

The user can click the “Deny” button for one or more pages in that system dialog
and thereby reject granting you the requested permission(s).

REQUESTING PERMISSIONS

594

If you were requesting permission as a direct response to some bit of user input (e.g.,
user tapped on an app bar item), and the user rejects the permission you need to do
the work, obviously you cannot do the work. Depending on overall flow, showing a
dialog or something to explain why you cannot do what the user asked for may be
needed. In some cases, you may deem it to be obvious, by virtue of the fact that the
user saw the permission-request dialog and said “deny”.

If you were requesting permission pre-emptively, such as when the activity starts,
you will need to decide whether that decision needs to be reflected in the current UI
(e.g., “no data available” messages, disabled app bar items).

One thing you can do to help here is to detect when this has occurred before you
request permissions again. Before you call ActivityCompat.requestPermissions(),
you can call ActivityCompat.shouldShowRequestPermissionRationale(), supplying
the name of a permission. This will return true if the user had previously declined
to grant you permission, in cases where Android thinks that the user might benefit
from learning a bit more about why you need the permission. You can use this to
determine whether you should show some explanatory UI of your own first, before
continuing with the permission request, or if you should just go ahead and call
ActivityCompat.requestPermissions().

REQUESTING PERMISSIONS

595

What Do I Do If the User Says “No, And Please Stop Asking”?

The second time you ask a user for a particular runtime permission, the user will
have a “Don’t ask again” option:

Figure 218: Runtime Permission Dialog, When Redisplayed After Prior Denial

If the user chooses that, not only will you not get the runtime permission now, but
all future requests will immediately call onRequestPermissionsResult() indicating
that your request for permission was denied. The only way the user can now grant
you this permission is via the Settings app.

You need to handle this situation with grace and aplomb.

Choices include:

• Disabling UI input (e.g., app bar items) that cannot be performed because
you lack permission

• Display a dialog, explaining the situation, with a button that links the user
over to your app’s screen in Settings, so the user can grant you this
permission

• Displaying inline messages about why you cannot show data (e.g., a count of

REQUESTING PERMISSIONS

596

contacts that you cannot show because the user did not grant you access),
perhaps with a hyperlink that displays a screen with additional information
about the situation

For permissions that, when denied, leave your app in a completely useless state, you
may wind up just displaying a screen on app startup that says “sorry, but this app is
useless to you”, with options for the user to uninstall the app or grant you the
desired permissions.

Note that ActivityCompat.shouldShowRequestPermissionRationale() returns
false if the user declined the permission and checked the checkbox to ask you to
stop pestering the user.

How Do I Know If the User Takes Permissions Away From Me?

Permissions granted by a user can be revoked in a few ways:

• The user can remove it manually via the Settings app
• On Android 11+, the user can choose to grant a one-time permission, which

your app will only hold until it leaves the foreground
• On Android 11+, the user can opt into having Android revoke the permission

automatically if the user does not use your app for some time

If a permission is revoked, and your app is running at the time, your process is
terminated.

Hence, while your code is running, you will have all permissions that you started
with, plus any new ones that the user grants on the fly based upon your request.
There should be no circumstance where your process is running yet you lose a
permission.

That being said, your app is not specifically notified about losing the permission.
You should be calling ContextCompat.checkSelfPermission() to determine what
you can and cannot do, at least for every process invocation. And, since the call
appears to be reasonably cheap, you should just call it whenever you need to know
whether you can perform a particular operation.

What Happens When I Ship This to an Android 5.1 or Older
Device?

Older devices behave as they always have. Since you still list the permissions in the

REQUESTING PERMISSIONS

597

manifest, those permissions will be granted to you if the user installs the app, and
the user will be notified about those permissions as part of the installation process.
If you are using ContextCompat and ActivityCompat as described above, your code
should just work.

What Happens if the User Clears My App’s Data?

If the user clears your app’s data through the Settings app, the runtime permissions
are cleared as well. Behavior at this point will be as if your app had been just
installed — ContextCompat.checkSelfPermission() will return PERMISSION_DENIED,
and you will need to request the permissions.

REQUESTING PERMISSIONS

598

Handling Files

Most programmers, early on, learn how to read and write files. File I/O has been a
staple of computer programming for decades. And, on Android, you can read and
write files, much as you can with other operating systems.

The biggest difference in Android is where you can read and write files. That is quite
a bit different than what you may be used to. And, increasingly, Google is pushing
developers away from files entirely, steering us in the direction of the Storage Access
Framework, as we saw in the chapter on content.

In this chapter, we will explore where we can read and write files.

The Three Types of File Storage
File storage locations in Android break down into three main types: internal,
external, and removable.

Internal Storage

A user will think that “internal storage” refers to what they get when they plug their
phone into a desktop via a USB cable. From the standpoint of the Android SDK,
though, that is really external storage.

Internal storage, from the Android SDK’s perspective, refers to portions of the on-
board flash that are both:

• Private to your app, and
• Invisible to the user

599

The only way that the user will interact with internal storage is through your app.

We have already worked a bit with internal storage: SharedPreferences are on
internal storage. Later, when we examine Room, its databases are stored on internal
storage by default. In terms of standard Java/Kotlin file I/O code, you find your
internal storage locations via methods on Context. The two most common of those
methods are:

• getFilesDir(), which returns a place where you can read and write files,
create subdirectories, etc.

• getCacheDir(), which returns a separate directory where you can also read
and write files (and so on)… but where the system might delete your files to
free up space for the user

External Storage

What the user thinks is “internal storage” is really “external storage” in the terms
used by the Android SDK documentation. There are two main sets of locations on
external storage that you can use: app-specific locations, and the overall shared
portions of external storage.

App-Specific

There are methods on Context named getExternalFilesDir() and
getExternalCacheDir(). These return locations on external storage that are unique
for your app. And, as with their getFilesDir()/getCacheDir() counterparts, the
“cache” ones are eligible to be cleared by the OS to free up disk space.

Unlike getFilesDir() and getCacheDir(), though, all locations on external storage
can be accessed by the user and may be able to be accessed by other apps on the
device. However, getExternalFilesDir() and getExternalCacheDir() are locations
that are unique for your app — if you put things there, other apps should not
accidentally overwrite or otherwise modify them.

Also, unlike getFilesDir() and getCacheDir(), getExternalFilesDir() and
getExternalCacheDir() take a parameter. Typically, you pass in null.

Shared

Apps running on Android 9.0 and older can work with external storage overall via

HANDLING FILES

600

methods on the Environment class. In particular:

• Environment.getExternalStorageDirectory() returns the root of external
storage

• Environment.getExternalStoragePublicDirectory() returns a specific
common location on external storage, based on a supplied parameter (e.g.,
Environment.DIRECTORY_DOWNLOADS for a Downloads/ directory)

These locations are visible to the user and may be visible to other apps. And, since
they are common and shared, other apps are more likely to manipulate files that you
place here. At the same time, you may be able to manipulate the files of other apps,
or files placed here by the user.

On newer versions of Android, these methods are deprecated, and you will not have
access to them by default. Google is trying to steer you to the Storage Access
Framework as an alternative.

Those location identifiers on Environment, such as DIRECTORY_DOWNLOADS, can also
be passed to getExternalFilesDir() and getExternalCacheDir(), to get access to
an app-specific directory on external storage for that type of material.

Removable Storage

Removable storage refers to micro SD cards, USB thumb drives, or anything else that
the device supports that can be physically removed by the user, without breaking
their phone.

For several years, Android had no official support for removable storage. Nowadays,
not only does the Storage Access Framework work with it, but there are methods on
Context that let you get to app-specific directories on removable storage. Calling
getExternalFilesDirs(), getExternalCacheDirs(), or getExternalMediaDirs()
(note the plural method names) will return an array of File objects representing
directories. The first element in that array will be a location on external storage – in
the case of getExternalFilesDirs() and getExternalCacheDirs(), it should be the
same location as you get from calling getExternalFilesDir() and
getExternalCacheDir(). If the array has 2+ elements, all but the first will point to
an app-specific directory on some removable medium. You can read and write files
here, create subdirectories, etc.

HANDLING FILES

601

What the User Sees
On Android devices:

• Users cannot see any of your files on internal storage, unless they root their
device

• Users can see all of your files on external storage and removable storage

Anything a user can see, a user can read, write, or delete at will.

Note, though, that the user cannot see files on external or removable storage right
away through some apps. Apps that rely on a central index of media called
MediaStore will only find out about your new files when they get indexed. That will
happen at some point automatically. You can use MediaConnection.scanFile() to
force Android to index your new files more quickly — we will see this in action later
in the chapter.

Storage, Permissions, and Access
Android 4.4 through 9.0 had a fairly stable set of rules for when you need
permissions:

Storage
Type

Storage Methods Permissions Required

internal methods on Context none

external methods on Context none

external
methods on
Environment

READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

removable methods on Context none

So, only if you access shared locations on external storage do you need permission.
As the names suggest, READ_EXTERNAL_STORAGE allows you to read those files, while
WRITE_EXTERNAL_STORAGE allows you to write those files. These are dangerous
permissions, so you need to request them both in the manifest and at runtime, as we
saw in the chapter on permissions.

HANDLING FILES

602

Android 10 changed this. You simply have no filesystem-level access to external or
removable storage except by Context methods like getExternalFilesDir().
Everything else is locked down by default. To revert this behavior, you can add
android:requestLegacyExternalStorage="true" to the <application> element in
your manifest. This attribute will give you the Android 9.0-style behavior on:

• Android 10, and
• Android 11, until you raise your targetSdkVersion to 30 or higher

However, on Android 11, you get read access to much of external storage using
READ_EXTERNAL_STORAGE as before. What you lose is write access. For apps that only
need to read from shared locations on external storage, having
android:requestLegacyExternalStorage="true" means that you will have fairly
consistent behavior through the Android versions.

(and, if this all seems overly complicated… it is)

Reading, Writing, and Debugging Storage
Once you have a File object that points to a location of interest to you, everything
else works like standard Java/Kotlin disk I/O. You can use streams (e.g.,
FileInputStream), readers/writers (e.g., OutputStreamWriter), and so on. However,
disk I/O may be slow, so you want to do that I/O on a background thread of some
form.

For debuggable apps — the sort that you normally run from Android Studio — the
IDE will give you somewhat greater ability to view files than ordinary users get.
There is a “Device File Explorer” tool in Android Studio, by default docked on the
right edge. If you have a device (or emulator) available, it will give you a file explorer
for that device that will let you examine the major storage locations of interest to
you.

Introducing the Sample App

In the chapter on permissions, we saw a few code snippets from the ContentEditor
sample module in the Sampler and SamplerJ projects. This app implements a tiny
text editor, where the user can edit text from various sources.

The app mostly is a large EditText widget for typing in some text. Above it is a
TextView that we use to show a Uri representation of the content being shown in

HANDLING FILES

603

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ContentEditor
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ContentEditor
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ContentEditor
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/ContentEditor

the EditText. By default, this will open up a file in the app’s portion of internal
storage:

Figure 219: ContentEditor Sample, As Initially Opened

The Save button will let you save any changes that you made to the file. The overflow
menu lets you switch the editor to different files or to content that you create using
the Storage Access Framework.

Specifying the Location

Our MainActivity manages the options menu, including the “Save” item and the
overflow. It, therefore, indicates where we should be loading our text from (or saving
it to). That is triggered by onOptionsItemSelected():

@Override
publicpublic boolean onOptionsItemSelected(MenuItemMenuItem item) {

switchswitch (item.getItemId()) {
casecase R.id.loadInternal:

loadFromDir(getFilesDir());
returnreturn truetrue;

casecase R.id.loadExternal:
loadFromDir(getExternalFilesDir(nullnull));
returnreturn truetrue;

HANDLING FILES

604

casecase R.id.loadExternalRoot:
loadFromExternalRoot();
returnreturn truetrue;

casecase R.id.openDoc:
trytry {

startActivityForResult(
newnew Intent(IntentIntent.ACTION_OPEN_DOCUMENT)

.setType("text/*")

.addCategory(IntentIntent.CATEGORY_OPENABLE), REQUEST_SAF);
}
catchcatch (ActivityNotFoundExceptionActivityNotFoundException ex) {

ToastToast.makeText(thisthis, "Sorry, we cannot open a document!",
ToastToast.LENGTH_LONG).show();

}
returnreturn truetrue;

casecase R.id.newDoc:
trytry {

startActivityForResult(
newnew Intent(IntentIntent.ACTION_CREATE_DOCUMENT)

.setType("text/plain")

.addCategory(IntentIntent.CATEGORY_OPENABLE), REQUEST_SAF);
}
catchcatch (ActivityNotFoundExceptionActivityNotFoundException ex) {

ToastToast.makeText(thisthis, "Sorry, we cannot create a document!",
ToastToast.LENGTH_LONG).show();

}
returnreturn truetrue;

casecase R.id.save:
motor.write(current, binding.text.getText().toString());
returnreturn truetrue;

}

returnreturn supersuper.onOptionsItemSelected(item);
}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java)

overrideoverride funfun onOptionsItemSelected(item: MenuItemMenuItem): BooleanBoolean {
whenwhen (item.itemId) {

RR.id.loadInternal -> {
loadFromDir(filesDir)
returnreturn truetrue

}

HANDLING FILES

605

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java

RR.id.loadExternal -> {
loadFromDir(getExternalFilesDir(nullnull))
returnreturn truetrue

}

RR.id.loadExternalRoot -> {
loadFromExternalRoot()
returnreturn truetrue

}

RR.id.openDoc -> {
trytry {

startActivityForResult(
IntentIntent(IntentIntent.ACTION_OPEN_DOCUMENTACTION_OPEN_DOCUMENT)

.setType("text/*")

.addCategory(IntentIntent.CATEGORY_OPENABLECATEGORY_OPENABLE), REQUEST_SAFREQUEST_SAF
)

} catchcatch (ex: ActivityNotFoundExceptionActivityNotFoundException) {
ToastToast.makeText(

thisthis,
"Sorry, we cannot open a document!",
ToastToast.LENGTH_LONGLENGTH_LONG

).show()
}
returnreturn truetrue

}

RR.id.newDoc -> {
trytry {

startActivityForResult(
IntentIntent(IntentIntent.ACTION_CREATE_DOCUMENTACTION_CREATE_DOCUMENT)

.setType("text/plain")

.addCategory(IntentIntent.CATEGORY_OPENABLECATEGORY_OPENABLE), REQUEST_SAFREQUEST_SAF
)

} catchcatch (ex: ActivityNotFoundExceptionActivityNotFoundException) {
ToastToast.makeText(

thisthis,
"Sorry, we cannot open a document!",
ToastToast.LENGTH_LONGLENGTH_LONG

).show()
}
returnreturn truetrue

}

RR.id.save -> {
current?.let { motor.write(it, binding.text.text.toString()) }
returnreturn truetrue

}

HANDLING FILES

606

}

returnreturn supersuper.onOptionsItemSelected(item)
}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt)

In the case of the loadInternal and loadExternal items, we call a loadFromDir()
function providing getFilesDir() and getExternalFilesDir(null), respectively.
loadFromDir() just clears out the EditText and passes the location to our
MainMotor and its read() function:

privateprivate void loadFromDir(FileFile dir) {
binding.text.setText("");
motor.read(UriUri.fromFile(newnew FileFile(dir, FILENAME)));

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java)

privateprivate funfun loadFromDir(dir: FileFile?) {
binding.text.setText("")
motor.read(UriUri.fromFile(FileFile(dir, FILENAMEFILENAME)))

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt)

However, we pass the location to read() as a Uri, not a File. You can use
Uri.fromFile() to create a Uri representation of a file. This is perfectly fine within
an app. However, if you try passing such a Uri to another app, such as via an
ACTION_VIEW Intent, you will get a FileUriExposedException on Android 7.0+. You
can use FileProvider to get a safe Uri to pass to another app, as we will see later in
this chapter.

For the loadExternalRoot item, we will wind up calling loadFromDir() providing
Environment.getExternalStorageDirectory() as the location. However, this
requires permission from the user. So, in addition to having the <uses-permission>
element in the manifest, we need to check for this permission at runtime, asking for
it if we do not have it already, as we saw in the chapter on permissions:

privateprivate void loadFromExternalRoot() {
ifif (ContextCompatContextCompat.checkSelfPermission(thisthis,

ManifestManifest.permission.WRITE_EXTERNAL_STORAGE) ==
PackageManagerPackageManager.PERMISSION_GRANTED) {
loadFromDir(EnvironmentEnvironment.getExternalStorageDirectory());

}
elseelse {

HANDLING FILES

607

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt

StringString[] perms = {ManifestManifest.permission.WRITE_EXTERNAL_STORAGE};

ActivityCompatActivityCompat.requestPermissions(thisthis, perms, REQUEST_PERMS);
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java)

privateprivate funfun loadFromExternalRoot() {
ifif (ContextCompatContextCompat.checkSelfPermission(

thisthis,
ManifestManifest.permission.WRITE_EXTERNAL_STORAGEWRITE_EXTERNAL_STORAGE

) == PackageManagerPackageManager.PERMISSION_GRANTEDPERMISSION_GRANTED
) {

loadFromDir(EnvironmentEnvironment.getExternalStorageDirectory())
} elseelse {

valval perms = arrayOf(ManifestManifest.permission.WRITE_EXTERNAL_STORAGEWRITE_EXTERNAL_STORAGE)

ActivityCompatActivityCompat.requestPermissions(thisthis, perms, REQUEST_PERMSREQUEST_PERMS)
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt)

Then, in onRequestPermissionsResult(), if we were granted permission, we go
ahead and call loadFromDir():

@Override
publicpublic void onRequestPermissionsResult(int requestCode,

@NonNull StringString[] permissions,
@NonNull int[] grantResults) {

ifif (requestCode == REQUEST_PERMS) {
ifif (grantResults.length == 1 &&

grantResults[0] == PackageManagerPackageManager.PERMISSION_GRANTED) {
loadFromDir(EnvironmentEnvironment.getExternalStorageDirectory());

}
elseelse {

ToastToast.makeText(thisthis, R.string.msg_sorry, ToastToast.LENGTH_LONG).show();
}

}
}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java)

overrideoverride funfun onRequestPermissionsResult(
requestCode: IntInt,
permissions: ArrayArray<StringString>,
grantResults: IntArrayIntArray

) {

HANDLING FILES

608

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java

ifif (requestCode == REQUEST_PERMSREQUEST_PERMS) {
ifif (grantResults.size == 1 && grantResults[0] == PackageManagerPackageManager.PERMISSION_GRANTEDPERMISSION_GRANTED) {

loadFromDir(EnvironmentEnvironment.getExternalStorageDirectory())
} elseelse {

ToastToast.makeText(thisthis, RR.string.msg_sorry, ToastToast.LENGTH_LONGLENGTH_LONG).show()
}

}
}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt)

For the openDoc and newDoc items, we call startActivityForResult() with a
Storage Access Framework action:

• ACTION_OPEN_DOCUMENT for openDoc
• ACTION_CREATE_DOCUMENT for newDoc

Both will trigger a call to onActivityResult(). And, in our case, we treat both the
same: clear the EditText and pass the Uri to read():

@Override
protectedprotected void onActivityResult(int requestCode, int resultCode,

@Nullable IntentIntent data) {
ifif (requestCode == REQUEST_SAF) {

ifif (resultCode == RESULT_OK && data != nullnull && data.getData() != nullnull) {
binding.text.setText("");
motor.read(data.getData());

}
}
elseelse {

supersuper.onActivityResult(requestCode, resultCode, data);
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java)

overrideoverride funfun onActivityResult(
requestCode: IntInt, resultCode: IntInt,
data: IntentIntent?

) {
ifif (requestCode == REQUEST_SAFREQUEST_SAF) {

ifif (resultCode == ActivityActivity.RESULT_OKRESULT_OK && data != nullnull) {
binding.text.setText("")
data.data?.let { motor.read(it) }

}
} elseelse {

supersuper.onActivityResult(requestCode, resultCode, data)
}

}

HANDLING FILES

609

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.java

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt)

In these cases, we get a Uri from the Storage Access Framework, so we do not need
to convert anything into a Uri.

In the end, no matter which of the options the user chooses, we pass a Uri to the
MainMotor to read. Also, when the user clicks the save item, we pass that Uri and
the current contents of the EditText to a write() function on the MainMotor.

Reading from the Location

Eventually, the read() call on MainMotor turns into a read() call on
TextRepository.

Java

In Java, this creates and returns a LiveStreamReader implementation of LiveData
that reads in the file and returns a StreamResult:

privateprivate staticstatic classclass LiveStreamReaderLiveStreamReader extendsextends LiveDataLiveData<StreamResultStreamResult> {
privateprivate finalfinal UriUri source;
privateprivate finalfinal ContentResolverContentResolver resolver;
privateprivate finalfinal ExecutorExecutor executor;

LiveStreamReaderLiveStreamReader(UriUri source, ContentResolverContentResolver resolver, ExecutorExecutor executor) {
thisthis.source = source;
thisthis.resolver = resolver;
thisthis.executor = executor;

postValue(newnew StreamResultStreamResult(truetrue, nullnull, nullnull, nullnull));
}

@Override
protectedprotected void onActive() {

supersuper.onActive();

executor.execute(() -> {
trytry {

postValue(newnew StreamResultStreamResult(falsefalse, source,
slurp(resolver.openInputStream(source)), nullnull));

}
catchcatch (FileNotFoundExceptionFileNotFoundException e) {

postValue(newnew StreamResultStreamResult(falsefalse, source, "", nullnull));
}
catchcatch (ThrowableThrowable t) {

HANDLING FILES

610

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainActivity.kt

postValue(newnew StreamResultStreamResult(falsefalse, nullnull, nullnull, t));
}

});
}

privateprivate StringString slurp(finalfinal InputStreamInputStream is) throwsthrows IOExceptionIOException {
finalfinal char[] buffer = newnew char[8192];
finalfinal StringBuilderStringBuilder out = newnew StringBuilderStringBuilder();
finalfinal ReaderReader in = newnew InputStreamReaderInputStreamReader(is, StandardCharsetsStandardCharsets.UTF_8);
int rsz = in.read(buffer, 0, buffer.length);

whilewhile (rsz > 0) {
out.append(buffer, 0, rsz);
rsz = in.read(buffer, 0, buffer.length);

}

is.close();

returnreturn out.toString();
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.java)

StreamResult is just an encapsulation of the state, including the text once we have it
loaded:

packagepackage com.commonsware.jetpack.contenteditorcom.commonsware.jetpack.contenteditor;

importimport android.net.Uriandroid.net.Uri;

classclass StreamResultStreamResult {
finalfinal boolean isLoading;
finalfinal UriUri source;
finalfinal StringString text;
finalfinal ThrowableThrowable error;

StreamResultStreamResult(boolean isLoading, UriUri source, StringString text, ThrowableThrowable error) {
thisthis.isLoading = isLoading;
thisthis.source = source;
thisthis.text = text;
thisthis.error = error;

}
}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/StreamResult.java)

Note that we use ContentResolver and openInputStream(). This not only works for

HANDLING FILES

611

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.java
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/StreamResult.java

a Storage Access Framework Uri but also one that we get from Uri.fromFile().
Most of TextRepository does not care what sort of Uri this is, so long as
ContentResolver can open it.

Kotlin

The Kotlin version of TextRepository uses coroutines, returning a StreamResult
directly from read():

suspendsuspend funfun read(context: ContextContext, source: UriUri) =
withContext(DispatchersDispatchers.IOIO) {

valval resolver: ContentResolverContentResolver = context.contentResolver

trytry {
resolver.openInputStream(source)?.use { stream ->

StreamResultStreamResult.ContentContent(source, stream.reader().readText())
} ?: throwthrow IllegalStateExceptionIllegalStateException("could not open $source")

} catchcatch (e: FileNotFoundExceptionFileNotFoundException) {
StreamResultStreamResult.ContentContent(source, "")

} catchcatch (t: ThrowableThrowable) {
StreamResultStreamResult.ErrorError(t)

}
}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.kt)

Also, the Kotlin version of StreamResult is a sealed class representing the loading-
content-error state:

packagepackage com.commonsware.jetpack.contenteditorcom.commonsware.jetpack.contenteditor

importimport android.net.Uriandroid.net.Uri

sealedsealed classclass StreamResultStreamResult {
objectobject LoadingLoading : StreamResultStreamResult()
data classdata class ContentContent(valval source: UriUri, valval text: StringString) : StreamResultStreamResult()
data classdata class ErrorError(valval throwable: ThrowableThrowable) : StreamResultStreamResult()

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/StreamResult.kt)

Writing to the Location

Similarly, when we call write() on the motor, it routes to write() on the
TextRepository.

HANDLING FILES

612

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/StreamResult.kt

Java

The Java version of TextRepository creates and returns a LiveStreamWriter that
wraps up the disk I/O in a LiveData:

privateprivate staticstatic classclass LiveStreamWriterLiveStreamWriter extendsextends LiveDataLiveData<StreamResultStreamResult> {
privateprivate finalfinal UriUri source;
privateprivate finalfinal ContentResolverContentResolver resolver;
privateprivate finalfinal ExecutorExecutor executor;
privateprivate finalfinal StringString text;
privateprivate ContextContext context;

LiveStreamWriterLiveStreamWriter(UriUri source, ContentResolverContentResolver resolver, ExecutorExecutor executor,
StringString text, ContextContext context) {

thisthis.source = source;
thisthis.resolver = resolver;
thisthis.executor = executor;
thisthis.text = text;
thisthis.context = context;

postValue(newnew StreamResultStreamResult(truetrue, nullnull, nullnull, nullnull));
}

@Override
protectedprotected void onActive() {

supersuper.onActive();

executor.execute(() -> {
trytry {

OutputStreamOutputStream os = resolver.openOutputStream(source);
PrintWriterPrintWriter out = newnew PrintWriterPrintWriter(newnew OutputStreamWriterOutputStreamWriter(os));

out.print(text);
out.flush();
out.close();

finalfinal StringString externalRoot =
EnvironmentEnvironment.getExternalStorageDirectory().getAbsolutePath();

ifif (source.getScheme().equals("file") &&
source.getPath().startsWith(externalRoot)) {
MediaScannerConnectionMediaScannerConnection

.scanFile(context,
newnew StringString[]{source.getPath()},
newnew StringString[]{"text/plain"},
nullnull);

}

HANDLING FILES

613

postValue(newnew StreamResultStreamResult(falsefalse, source, text, nullnull));
}
catchcatch (ThrowableThrowable t) {

postValue(newnew StreamResultStreamResult(falsefalse, nullnull, nullnull, t));
}

});
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.java)

We can just use openOutputStream() on ContentResolver, regardless of whether
this is a Storage Access Framework Uri or one representing a file on the filesystem.

However, if the Uri does represent a file on the filesystem, and that file is on external
storage, we want to tell the MediaStore about it. We detect this case by:

• Confirming that the scheme of the Uri is file — the scheme is the first
portion of a URI, such as the https in https://commonsware.com

• Confirming that the path of the Uri starts with the root directory of external
storage, to cover both our external and externalRoot scenarios

If both are true, we then call scanFile() on MediaScannerConnection, passing in:

• A Context
• An array of the paths to be indexed
• An array of the associated MIME types for each of those paths
• A callback object, or null if we do not need one (as is the case here)

Our file may not be indexed immediately, but it should be indexed much more
quickly than if we did not do this bit of work.

Kotlin

The Kotlin version of TextRepository does the same work, but once again it uses
coroutines:

suspendsuspend funfun write(context: ContextContext, source: UriUri, text: StringString) =
withContext(DispatchersDispatchers.IOIO + appScope.coroutineContext) {

trytry {
valval resolver = context.contentResolver

resolver.openOutputStream(source)?.let { os ->

HANDLING FILES

614

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.java

PrintWriterPrintWriter(os.writer()).use { outout ->
outout.print(text)
outout.flush()

}
}

valval externalRoot =
EnvironmentEnvironment.getExternalStorageDirectory().absolutePath

ifif (source.scheme == "file" &&
source.path!!.startsWith(externalRoot)

) {
MediaScannerConnectionMediaScannerConnection

.scanFile(
context,
arrayOf(source.path),
arrayOf("text/plain"),
nullnull

)
}

StreamResultStreamResult.ContentContent(source, text)
} catchcatch (t: ThrowableThrowable) {

StreamResultStreamResult.ErrorError(t)
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.kt)

In particular, we need to worry about the possibility that the user will use back
navigation to leave the activity before our disk write is complete. When the activity
is completely destroyed, its viewmodel is cleared, and that will cancel our coroutine.
For a read operation, this is fine — we will not need that data anyway. But it would
be impolite to fail to write the data to disk (or, perhaps worse, write only part of it)
just because the user left the activity. We need a separate CoroutineScope, one that
will survive past the life of the viewmodel. For that, TextRepository has appScope:

privateprivate valval appScope = CoroutineScopeCoroutineScope(SupervisorJobSupervisorJob())

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.kt)

This CoroutineScope is configured with a SupervisorJob, which treats each job
independently — if one job fails for some reason, other jobs will not be canceled
automatically. We then use appScope (and its CoroutineContext) when launching
our coroutine:

HANDLING FILES

615

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.kt

withContext(DispatchersDispatchers.IOIO + appScope.coroutineContext) {

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.kt)

This has the net effect of ensuring that our disk writes will not be interrupted by the
viewmodel being cleared.

The Motor

Our motor’s job is to work with TextRepository to load and save our text. As with
most things, this is incrementally easier with Kotlin.

Java

Ideally, the activity would have a stable LiveData to observe for getting the content
to display in the editor. However, our TextRepository returns a LiveData for each
load request. Somehow, we need to “pour” all of those individual LiveData objects
into a single LiveData that the activity observes.

The solution for that is MediatorLiveData.

MediatorLiveData can observe one or several other LiveData objects. When values
change in those LiveData objects, MediatorLiveData will invoke a lambda
expression that you provide. There, you can convert the value to whatever you need
and update the MediatorLiveData itself based on that change. You can add and
remove LiveData objects from the MediatorLiveData whenever you need.

So, MainMotor uses a MediatorLiveData as the stable LiveData that the activity
observes. As we change sources of text content, we swap in a new LiveData source
for the MediatorLiveData:

packagepackage com.commonsware.jetpack.contenteditorcom.commonsware.jetpack.contenteditor;

importimport android.app.Applicationandroid.app.Application;
importimport android.net.Uriandroid.net.Uri;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MediatorLiveDataandroidx.lifecycle.MediatorLiveData;

publicpublic classclass MainMotorMainMotor extendsextends AndroidViewModelAndroidViewModel {
privateprivate finalfinal TextRepositoryTextRepository repo;
privateprivate finalfinal MediatorLiveDataMediatorLiveData<StreamResultStreamResult> results = newnew MediatorLiveDataMediatorLiveData<>();
privateprivate LiveDataLiveData<StreamResultStreamResult> lastResult;

publicpublic MainMotor(@NonNull ApplicationApplication application) {

HANDLING FILES

616

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/TextRepository.kt

supersuper(application);

repo = TextRepositoryTextRepository.get(application);
}

MediatorLiveDataMediatorLiveData<StreamResultStreamResult> getResults() {
returnreturn results;

}

void read(UriUri source) {
ifif (lastResult != nullnull) {

results.removeSource(lastResult);
}

lastResult = repo.read(source);
results.addSource(lastResult, results::postValue);

}

void write(UriUri source, StringString text) {
ifif (lastResult != nullnull) {

results.removeSource(lastResult);
}

lastResult = repo.write(source, text);
results.addSource(lastResult, results::postValue);

}
}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainMotor.java)

Note that we do not have a separate view-state class — instead, we just pass
StreamResult along to the activity. That works in this case because we had no
conversions that we needed to perform on the data from the repository.

Kotlin

The Kotlin version is simpler, using MutableLiveData and viewModelScope for
getting the coroutine results over to LiveData and from there to MainActivity:

packagepackage com.commonsware.jetpack.contenteditorcom.commonsware.jetpack.contenteditor

importimport android.app.Applicationandroid.app.Application
importimport android.net.Uriandroid.net.Uri
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData
importimport androidx.lifecycle.viewModelScopeandroidx.lifecycle.viewModelScope
importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.launchkotlinx.coroutines.launch

classclass MainMotorMainMotor(application: ApplicationApplication) : AndroidViewModelAndroidViewModel(application) {
privateprivate valval _results = MutableLiveDataMutableLiveData<StreamResultStreamResult>()

HANDLING FILES

617

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainMotor.java

valval results: LiveDataLiveData<StreamResultStreamResult> = _results

funfun read(source: UriUri) {
_results.value = StreamResultStreamResult.LoadingLoading

viewModelScope.launch(DispatchersDispatchers.MainMain) {
_results.value = TextRepositoryTextRepository.read(getApplication(), source)

}
}

funfun write(source: UriUri, text: StringString) {
_results.value = StreamResultStreamResult.LoadingLoading

viewModelScope.launch(DispatchersDispatchers.MainMain) {
_results.value = TextRepositoryTextRepository.write(getApplication(), source, text)

}
}

}

(from ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainMotor.kt)

The Results

The exact locations of internal, external, and removable storage may vary by device.

HANDLING FILES

618

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/java/com/commonsware/jetpack/contenteditor/MainMotor.kt

On a typical device, each app’s portion of internal storage can be found in /data/
data/.../, where the ... is replaced by the application ID of the app.
Unfortunately, this results in a very long list of apps, because all of the pre-installed
apps get included:

Figure 220: Device File Explorer, Showing (Some) Internal Storage Locations

HANDLING FILES

619

If you type something into the app after you initially launch it, then click “Save”,
then scroll to the /data/data/com.commonsware.jetpack.contenteditor/ directory
in the Device File Explorer, you should see the files/ subdirectory that maps to
getFilesDir(), and in there you should see a test.txt file that contains what you
wrote:

Figure 221: Device File Explorer, Showing Sample App’s Internal Storage Location

If you right-click over a file, a context menu gives you a few operations that you can
perform on that file, such as “Save As” to download it to your development machine
and “Delete” to remove it from the device. “Synchronize” updates the entire tree to
reflect the current contents of the device.

HANDLING FILES

620

/sdcard in the Device File Explorer should give you a view of the root of external
storage. This will include a test.txt file if you created it using the app by choosing
“Load External Root” in the overflow menu, filling in some text, and clicking “Save”:

Figure 222: Device File Explorer, Showing External Storage Root

HANDLING FILES

621

There will be an Android/ directory in the root of external storage, with a data/
directory inside of it. That is akin to the /data/data/ directory, except that it
provides the list of app-specific external storage locations. And, fewer apps store
data on external storage, so the list is more manageable, though it still can be rather
long. If you use “Load External” in the app and save some text there, you will see a
test.txt file in the app’s external storage location:

Figure 223: Device File Explorer, Showing App’s External Storage Location

Dealing with Android 10+

As noted earlier, methods like Environment.getExternalStorageDirectory() and
their associated locations do not work on Android 10 and higher by default.

To deal with Android 10, in the manifest, we have
android:requestLegacyExternalStorage="true" on the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest package="com.commonsware.jetpack.contenteditor"

xmlns:android="http://schemas.android.com/apk/res/android">>

<uses-permission<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />/>

HANDLING FILES

622

<application<application
android:allowBackup="true"
android:requestLegacyExternalStorage="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">>
<activity<activity android:name=".MainActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from ContentEditor/src/main/AndroidManifest.xml)

This gives Android 10 the same sorts of file access as Android 9.0 had.

Android 11, though, will not completely work with just this attribute. Partly, that is
because eventually we will need to raise our targetSdkVersion to 30, at which point
android:requestLegacyExternalStorage="true" no longer works. But, more
importantly, even with that attribute, we do not have write access to the root of
external storage. We have write access to many other places, but not that one. As a
result, we need to block access to the “Load External Root” item in our overflow
menu on those devices.

To do that, we make use of version-specific resources.

In res/values/, each project has a bools.xml file. By convention, this contains
<bool> resources that define a boolean value:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<bool<bool name="isPre11">>true</bool></bool>
</resources></resources>

(from ContentEditor/src/main/res/values/bools.xml)

Here, we define isPre11 to be true.

HANDLING FILES

623

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/AndroidManifest.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/res/values/bools.xml

Each project also has a res/values-v30/ directory. This contains resources are only
relevant on API Level 30+ devices, where API Level 30 corresponds to Android 11. In
there, we have another bools.xml with its own definition of isPre11, setting the
value to false:

<?xml version="1.0" encoding="utf-8"?>
<resources><resources>

<bool<bool name="isPre11">>false</bool></bool>
</resources></resources>

(from ContentEditor/src/main/res/values-v30/bools.xml)

Then, in res/menu/actions.xml, for the “Load External Root” item, we use
android:enabled and point it to @bool/isPre11:

<item<item
android:id="@+id/loadExternalRoot"
android:title="@string/menu_external_root"
android:enabled="@bool/isPre11"
app:showAsAction="never" />/>

(from ContentEditor/src/main/res/menu/actions.xml)

As the name suggests, android:enabled controls whether the item is enabled or not.
This, plus our dual definitions of isPre11, means that:

• On Android 11+ devices, this item will be disabled, as Android will use the
res/values-v30/ edition of isPre11

• On older devices, this item will be enabled, as Android will fall back to the
res/values/ edition of isPre11

Our Java/Kotlin code can remain oblivious to this distinction, simply reacting to that
item if it is chosen… even if on some devices, it cannot be chosen, because it is
disabled.

Serving Files with FileProviderFileProvider

We cannot assume that any other app has access to the files that we create, given
Android’s increasing restrictions on file access. Our app has access to the files, and
those on external or removable storage are accessible by the user. Beyond that,
though, nothing is guaranteed.

If we want to allow another app to have access to our files, we need to use something

HANDLING FILES

624

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/res/values-v30/bools.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ContentEditor/src/main/res/menu/actions.xml

like FileProvider.

Scenarios for FileProviderFileProvider

If we want to use ACTION_VIEW or various other Intent actions, we need to supply a
Uri identifying what the action should be performed upon.

In early versions of Android, you might have written the file to external storage, then
used Uri.fromFile() to get a file:// Uri that points to the file that you created.
However, that has a few problems:

• It has been years since you could assume that every app requested
READ_EXTERNAL_STORAGE

• You are cluttering up the user’s external storage with files that the user may
or may not want there

• On Android 7.0, file:// Uri values were mostly blocked by the OS, if you
try to pass one in an Intent

If you used the Storage Access Framework and wrote your content to a location
specified by one of its Uri values, you can use that Uri with ACTION_VIEW. However,
this implies that the user has a use for this content independent of both apps (yours
and whatever responds to the ACTION_VIEW Intent). That may not be the case. For
example, your app might package a PDF file to serve as a user manual. Your app has
the PDF, and a PDF viewer needs access to it, but the user does not necessarily need
(or even want) that PDF to be stored somewhere public.

Those are the scenarios where FileProvider is useful: for content that your app has,
that other apps need, but the user does not need independently of those apps.

Configuring FileProviderFileProvider

The PdfProvider sample module in the Sampler and SamplerJ projects implements
the scenario outlined above:

• We have a PDF packaged with the app as an asset
• We want to allow a PDF viewer to view that PDF, so the user can read it

One way to handle this is to copy the asset to a file, then use FileProvider to make
it available to the PDF viewer.

HANDLING FILES

625

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/PdfProvider
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/PdfProvider
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/PdfProvider
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/PdfProvider

Metadata XML Resource

We need to teach FileProvider what files we are willing to provide to other apps. To
do that, we need to define an xml resource, in the same res/xml/ directory where we
put our preference screen configuration. res/xml/ is a resource directory that can
hold any XML that you want, including arbitrary XML that you create. Some parts of
Android, like the preference system and FileProvider, will want a resource
matching their desired XML structure.

In the case of FileProvider, that consists of a root <paths> element, followed by
one or more child elements indicating where we want to serve from and what we
want that location to be called:

<?xml version="1.0" encoding="utf-8"?>
<paths><paths>

<files-path<files-path name="stuff" path="/" />/>
</paths></paths>

(from PdfProvider/src/main/res/xml/provider_paths.xml)

<files-path> says “serve from getFilesDir() as a root directory”. That is one of a
few possible element names, including <cache-path> (mapping to getCacheDir())
and <external-files-path> (mapping to getExternalFilesDir(null)).

The path attribute indicates where underneath the specified root location we want
to serve. Here, by using /, we are saying that anything in getFilesDir() is fine. If
there are files in getFilesDir() that you do not want to be available via
FileProvider, set up a designated directory under getFilesDir() for the shareable
files, then put that directory name in the path attribute.

The name attribute is a unique name for this location. No two locations in your
resource can share the same name. This will form part of the Uri that FileProvider
uses to map to your files.

Manifest Element

FileProvider is an implementation of ContentProvider. A ContentProvider, like
an Activity, needs to be registered in the manifest. Instead of an <activity>
element, it uses a <provider> element, but otherwise it fills the same basic role: tell
Android that this class is an entry point for our app and how it can be used.

So, our manifest has a <provider> element, pointing to the AndroidX

HANDLING FILES

626

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/PdfProvider/src/main/res/xml/provider_paths.xml

implementation of FileProvider:

<provider<provider
android:name="androidx.core.content.FileProvider"
android:authorities="${applicationId}.provider"
android:exported="false"
android:grantUriPermissions="true">>
<meta-data<meta-data

android:name="android.support.FILE_PROVIDER_PATHS"
android:resource="@xml/provider_paths" />/>

</provider></provider>

(from PdfProvider/src/main/AndroidManifest.xml)

As with <activity>, the android:name attribute on <provider> points to the class
that is the ContentProvider implementation. Since this one is coming from a
library, we need to provide the fully-qualified class name
(androidx.core.content.FileProvider).

android:authorities is an identifier (or optionally several in a comma-delimited
list). This identifier has to be unique on the device; there cannot be two <provider>
elements with the same authority installed at the same time. Fortunately, the
Android build system lets us use the ${applicationId} macro, which expands into
our application ID. This app’s application ID is
com.commonsware.jetpack.pdfprovider, so our authority turns into
com.commonsware.jetpack.pdfprovider.provider.

android:exported says whether or not third-party apps can initiate
communications on their own with this ContentProvider. FileProvider requires
this to be set to false. The only way another app will be able to work with our
content is if we grant it temporary permission, on a case-by-case basis.

android:grantUriPermissions says whether or not we want to use that “case-by-
case basis” approach or not. true indicates that we do.

Finally, the nested <meta-data> element is a way that you can add configuration
details to the manifest for arbitrary stuff that the build tools nor Android really
know about. In this case, FileProvider expects a <meta-data> element for
android.support.FILE_PROVIDER_PATHS, pointing to the xml resource that we saw in
the preceding section.

With that resource and this manifest element, our FileProvider is ready for use.

HANDLING FILES

627

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/PdfProvider/src/main/AndroidManifest.xml

Employing FileProviderFileProvider

If you have a file in one of the locations listed in your <paths> resource, you can call
FileProvider.getUriForFile() to retrieve the corresponding Uri:

binding.view.setOnClickListener(v -> {
UriUri uri = FileProviderFileProvider.getUriForFile(thisthis, AUTHORITY, state.content);
IntentIntent intent =

newnew Intent(IntentIntent.ACTION_VIEW)
.setDataAndType(uri, "application/pdf")
.addFlags(IntentIntent.FLAG_GRANT_READ_URI_PERMISSION);

trytry {
startActivity(intent);

}
catchcatch (ActivityNotFoundExceptionActivityNotFoundException ex) {

ToastToast.makeText(thisthis, "Sorry, we cannot display that PDF!",
ToastToast.LENGTH_LONG).show();

}
});

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.java)

binding.view.setOnClickListener {
valval uri = FileProviderFileProvider.getUriForFile(thisthis, AUTHORITYAUTHORITY, state.pdf)
valval intent = IntentIntent(IntentIntent.ACTION_VIEWACTION_VIEW)

.setDataAndType(uri, "application/pdf")

.addFlags(IntentIntent.FLAG_GRANT_READ_URI_PERMISSIONFLAG_GRANT_READ_URI_PERMISSION)

trytry {
startActivity(intent);

} catchcatch (ex: ActivityNotFoundExceptionActivityNotFoundException) {
ToastToast.makeText(

thisthis,
"Sorry, we cannot display that PDF!",
ToastToast.LENGTH_LONGLENGTH_LONG

).show()
}

}

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.kt)

Here, state.pdf is a File object, pointing to a PDF file that we have copied from
assets to a file via some code in MainMotor. this is MainActivity. AUTHORITY is the
authority that we used when declaring the FileProvider in the manifest:

HANDLING FILES

628

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.kt

privateprivate staticstatic finalfinal StringString AUTHORITY =
BuildConfigBuildConfig.APPLICATION_ID + ".provider";

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.java)

privateprivate constconst valval AUTHORITY = "${BuildConfig.APPLICATION_ID}.provider"

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.kt)

The equivalent of the ${applicationId} macro in the manifest is to refer to
BuildConfig.APPLICATION_ID, so we are assembling the authority string the same
way.

Given the Uri from FileProvider, we can put it in an ACTION_VIEW Intent and pass
that to startActivity(), to try to view the PDF file. However, by default, third-party
apps have no rights to view the content identified by that Uri. By calling
addFlags(Intent.FLAG_GRANT_READ_URI_PERMISSION) on the Intent, we are telling
Android to grant read access (but not write access) to that content.

Overall, the activity has a pair of buttons, one to copy the PDF from the asset to a
file in getFilesDir():

<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">>

<Button<Button
android:id="@+id/export"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:text="@string/btn_export"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<Button<Button
android:id="@+id/view"
android:layout_width="0dp"

HANDLING FILES

629

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.kt

android:layout_height="wrap_content"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:enabled="false"
android:text="@string/btn_view"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/export" />/>

<TextView<TextView
android:id="@+id/error"
android:layout_width="0dp"
android:layout_height="0dp"
android:layout_marginBottom="8dp"
android:layout_marginEnd="8dp"
android:layout_marginStart="8dp"
android:layout_marginTop="8dp"
android:typeface="monospace"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/view" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>

(from PdfProvider/src/main/res/layout/activity_main.xml)

The work to copy the asset to a file is handled by an exportPdf() function on
MainMotor:

packagepackage com.commonsware.jetpack.pdfprovidercom.commonsware.jetpack.pdfprovider;

importimport android.app.Applicationandroid.app.Application;
importimport android.content.res.AssetManagerandroid.content.res.AssetManager;
importimport java.io.Filejava.io.File;
importimport java.io.FileOutputStreamjava.io.FileOutputStream;
importimport java.io.IOExceptionjava.io.IOException;
importimport java.io.InputStreamjava.io.InputStream;
importimport java.util.concurrent.Executorjava.util.concurrent.Executor;
importimport java.util.concurrent.Executorsjava.util.concurrent.Executors;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData;

publicpublic classclass MainMotorMainMotor extendsextends AndroidViewModelAndroidViewModel {
privateprivate staticstatic finalfinal StringString FILENAME = "test.pdf";
privateprivate finalfinal MutableLiveDataMutableLiveData<MainViewStateMainViewState> states = newnew MutableLiveDataMutableLiveData<>();
privateprivate finalfinal AssetManagerAssetManager assets;
privateprivate finalfinal FileFile dest;
privateprivate finalfinal ExecutorExecutor executor = ExecutorsExecutors.newSingleThreadExecutor();

HANDLING FILES

630

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/PdfProvider/src/main/res/layout/activity_main.xml

publicpublic MainMotor(@NonNull ApplicationApplication application) {
supersuper(application);

assets = application.getAssets();
dest = newnew FileFile(application.getFilesDir(), FILENAME);

ifif (dest.exists()) {
states.setValue(newnew MainViewStateMainViewState(falsefalse, dest, nullnull));

}
}

LiveDataLiveData<MainViewStateMainViewState> getStates() {
returnreturn states;

}

void exportPdf() {
states.setValue(newnew MainViewStateMainViewState(truetrue, nullnull, nullnull));

executor.execute(() -> {
trytry {

copy(assets.open(FILENAME));
states.postValue(newnew MainViewStateMainViewState(falsefalse, dest, nullnull));

}
catchcatch (IOExceptionIOException e) {

states.postValue(newnew MainViewStateMainViewState(falsefalse, nullnull, e));
}

});
}

privateprivate void copy(InputStreamInputStream in) throwsthrows IOExceptionIOException {
FileOutputStreamFileOutputStream out=newnew FileOutputStreamFileOutputStream(dest);
byte[] buf=newnew byte[8192];
int len;

whilewhile ((len=in.read(buf)) > 0) {
out.write(buf, 0, len);

}

in.close();
out.getFD().sync();
out.close();

}
}

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainMotor.java)

packagepackage com.commonsware.jetpack.pdfprovidercom.commonsware.jetpack.pdfprovider

importimport android.app.Applicationandroid.app.Application
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData
importimport androidx.lifecycle.viewModelScopeandroidx.lifecycle.viewModelScope
importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.launchkotlinx.coroutines.launch
importimport java.io.Filejava.io.File
importimport java.io.FileOutputStreamjava.io.FileOutputStream

HANDLING FILES

631

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainMotor.java

importimport java.io.IOExceptionjava.io.IOException

privateprivate constconst valval FILENAME = "test.pdf"

classclass MainMotorMainMotor(application: ApplicationApplication) : AndroidViewModelAndroidViewModel(application) {
privateprivate valval _states = MutableLiveDataMutableLiveData<MainViewStateMainViewState>()
valval states: LiveDataLiveData<MainViewStateMainViewState> = _states
privateprivate valval assets = application.assets
privateprivate valval dest = FileFile(application.filesDir, FILENAMEFILENAME)

init {
ifif (dest.exists()) {

_states.value = MainViewStateMainViewState.ContentContent(dest)
}

}

funfun exportPdf() {
_states.value = MainViewStateMainViewState.LoadingLoading

viewModelScope.launch(DispatchersDispatchers.IOIO) {
trytry {

assets.openopen(FILENAMEFILENAME).use { pdf ->
FileOutputStreamFileOutputStream(dest).use { pdf.copyTo(it) }

}
_states.postValue(MainViewStateMainViewState.ContentContent(dest))

} catchcatch (e: IOExceptionIOException) {
_states.postValue(MainViewStateMainViewState.ErrorError(e))

}
}

}
}

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainMotor.kt)

MainMotor does that work on a background thread, since it might take a few
moments. It emits MainViewState objects to report our loading/content/error
status:

packagepackage com.commonsware.jetpack.pdfprovidercom.commonsware.jetpack.pdfprovider;

importimport java.io.Filejava.io.File;

classclass MainViewStateMainViewState {
finalfinal boolean isLoading;
finalfinal FileFile content;
finalfinal ThrowableThrowable error;

HANDLING FILES

632

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainMotor.kt

MainViewStateMainViewState(boolean isLoading, FileFile content, ThrowableThrowable error) {
thisthis.isLoading = isLoading;
thisthis.content = content;
thisthis.error = error;

}
}

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainViewState.java)

packagepackage com.commonsware.jetpack.pdfprovidercom.commonsware.jetpack.pdfprovider

importimport java.io.Filejava.io.File

sealedsealed classclass MainViewStateMainViewState {
objectobject LoadingLoading : MainViewStateMainViewState()
classclass ContentContent(valval pdf: FileFile) : MainViewStateMainViewState()
classclass ErrorError(valval throwable: ThrowableThrowable) : MainViewStateMainViewState()

}

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainViewState.kt)

MainActivity observes the LiveData of MainViewState, and when the content is
ready, enables the second button. When that button is clicked, we start the PDF
viewer activity to view our content.

packagepackage com.commonsware.jetpack.pdfprovidercom.commonsware.jetpack.pdfprovider;

importimport android.content.ActivityNotFoundExceptionandroid.content.ActivityNotFoundException;
importimport android.content.Intentandroid.content.Intent;
importimport android.net.Uriandroid.net.Uri;
importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.TextViewandroid.widget.TextView;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.jetpack.pdfprovider.databinding.ActivityMainBindingcom.commonsware.jetpack.pdfprovider.databinding.ActivityMainBinding;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport androidx.core.content.FileProviderandroidx.core.content.FileProvider;
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
privateprivate staticstatic finalfinal StringString AUTHORITY =

BuildConfigBuildConfig.APPLICATION_ID + ".provider";

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

finalfinal ActivityMainBindingActivityMainBinding binding =

HANDLING FILES

633

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainViewState.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainViewState.kt

ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

finalfinal MainMotorMainMotor motor = newnew ViewModelProviderViewModelProvider(thisthis).get(MainMotorMainMotor.class);

motor.getStates().observe(thisthis, state -> {
binding.export.setEnabled(!state.isLoading && state.content == nullnull);
binding.view.setEnabled(!state.isLoading && state.content != nullnull);

ifif (binding.view.isEnabled()) {
binding.view.setOnClickListener(v -> {

UriUri uri = FileProviderFileProvider.getUriForFile(thisthis, AUTHORITY, state.content);
IntentIntent intent =

newnew Intent(IntentIntent.ACTION_VIEW)
.setDataAndType(uri, "application/pdf")
.addFlags(IntentIntent.FLAG_GRANT_READ_URI_PERMISSION);

trytry {
startActivity(intent);

}
catchcatch (ActivityNotFoundExceptionActivityNotFoundException ex) {

ToastToast.makeText(thisthis, "Sorry, we cannot display that PDF!",
ToastToast.LENGTH_LONG).show();

}
});

}

ifif (state.error != nullnull) {
binding.error.setText(state.error.getLocalizedMessage());

}
});

binding.export.setOnClickListener(v -> motor.exportPdf());
}

}

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.java)

packagepackage com.commonsware.jetpack.pdfprovidercom.commonsware.jetpack.pdfprovider

importimport android.content.ActivityNotFoundExceptionandroid.content.ActivityNotFoundException
importimport android.content.Intentandroid.content.Intent
importimport android.os.Bundleandroid.os.Bundle
importimport android.widget.Toastandroid.widget.Toast
importimport androidx.activity.viewModelsandroidx.activity.viewModels
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.core.content.FileProviderandroidx.core.content.FileProvider

HANDLING FILES

634

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.java

importimport androidx.lifecycle.observeandroidx.lifecycle.observe
importimport com.commonsware.jetpack.pdfprovider.databinding.ActivityMainBindingcom.commonsware.jetpack.pdfprovider.databinding.ActivityMainBinding

privateprivate constconst valval AUTHORITY = "${BuildConfig.APPLICATION_ID}.provider"

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

valval motor: MainMotorMainMotor byby viewModels()

motor.states.observe(thisthis) { state ->
whenwhen (state) {

MainViewStateMainViewState.LoadingLoading -> {
binding.export.isEnabled = falsefalse
binding.view.isEnabled = falsefalse

}
isis MainViewStateMainViewState.ContentContent -> {

binding.export.isEnabled = falsefalse
binding.view.isEnabled = truetrue
binding.view.setOnClickListener {

valval uri = FileProviderFileProvider.getUriForFile(thisthis, AUTHORITYAUTHORITY, state.pdf)
valval intent = IntentIntent(IntentIntent.ACTION_VIEWACTION_VIEW)

.setDataAndType(uri, "application/pdf")

.addFlags(IntentIntent.FLAG_GRANT_READ_URI_PERMISSIONFLAG_GRANT_READ_URI_PERMISSION)

trytry {
startActivity(intent);

} catchcatch (ex: ActivityNotFoundExceptionActivityNotFoundException) {
ToastToast.makeText(

thisthis,
"Sorry, we cannot display that PDF!",
ToastToast.LENGTH_LONGLENGTH_LONG

).show()
}

}
}
isis MainViewStateMainViewState.ErrorError -> {

binding.export.isEnabled = falsefalse
binding.view.isEnabled = falsefalse
binding.error.text = state.throwable.localizedMessage

}
}

HANDLING FILES

635

}

binding.export.setOnClickListener { motor.exportPdf() }
}

}

(from PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.kt)

What You Should Use
For data that your app needs, but that the user only needs through your app, use
internal storage. This can include data that the user might consume with some other
app, such as in the PDF FileProvider. With internal storage, your app needs to
initiate giving the user the data, whether it is directly in your UI or by serving it up
to other apps.

For data that the user will want independently of your app, use the Storage Access
Framework, due to the long-term limitations of working with external and
removable storage via the filesystem. External or removable storage should be
limited to cases where you are using some third-party library that only accepts a
File as input, or similar cases where you are unable to use a Uri from the Storage
Access Framework.

HANDLING FILES

636

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/PdfProvider/src/main/java/com/commonsware/jetpack/pdfprovider/MainActivity.kt

Accessing the Internet

Nearly every Android device has Internet access. It is fairly likely that you will have
interest in accessing the Internet from your Android app.

Android has a lot to offer here, both in terms of what is part of the OS and in terms
of the wide range of add-on libraries to assist in Internet access.

This chapter covers some general Internet access options for Android apps, then
walks through a sample using two popular libraries: Retrofit and Glide.

NOTE: This chapter will use “the Internet” to refer to any networking. The rules and
options outlined here are not solely for accessing the public Internet but also for
accessing private networks, such as an office network.

An API Roundup
There are lots and lots of ways that your app can access the Internet. Some APIs are
part of the Android SDK, while some are third-party libraries layered atop the SDK.
Here are some of the more popular and better-known options.

SocketSocket

In the end, anything in Java/Kotlin code that is working with the Internet will wind
up using a Socket. If you are trying to create a library that implements some obscure
or new Internet protocol, you might find yourself using Socket to connect to some
server, then implementing all of the communications yourself.

Most developers should not need to do this. Most major protocols have
implementations available for Android, whether in the OS or in a library. All else

637

being equal, you are better served using an existing implementation rather than
“rolling your own”.

HttpUrlConnectionHttpUrlConnection

The original HTTP API in Java centers around HttpUrlConnection and related
classes. Android supports this, and it is the only supported direct HTTP API in the
Android SDK at the present time. However, the HttpUrlConnection API is very old,
and there are better alternatives, such as OkHttp. In fact, Android’s
HttpUrlConnection is built on top of a forked copy of OkHttp.

Apache HttpClient

In early Android versions, the Android SDK also included a copy of Apache’s
HttpClient library. However, that has been removed in more modern versions of
Android. You can still use Apache HttpClient, but you would need to add an
independent copy of the library, rather than use one provided by the Android SDK.

Apache HttpClient has a very rich API, with hundreds of classes and thousands of
methods. As such, it tends to be rather verbose.

WebViewWebView

If your objective is to display Web content to the user, most likely you will want to
use WebView. This is a widget in the Android SDK that renders Web content, much
like a browser. You can put a WebView in your activities or fragments and hand the
WebView the content to display, in the form of HTML strings or URLs.

Conversely, if you are looking to talk to a Web service or otherwise engage in HTTPS
communications without displaying HTML/CSS/JavaScript to the user, you will want
to use something other than WebView.

DownloadManagerDownloadManager

If your objective is to download a file from a publicly-accessible URL, you could use
DownloadManager. This too is part of the Android SDK, and its job is to perform this
sort of download. It handles some of the complexity for you, such as dealing with
network disconnections and picking up the download later from where it left off.

However, DownloadManager has many limitations. For example, you have no means

ACCESSING THE INTERNET

638

https://hc.apache.org/httpcomponents-client-4.3.x/android-port.html
https://hc.apache.org/httpcomponents-client-4.3.x/android-port.html

of providing a session cookie or authentication header to the Web server — the URL
must be one that can be used without additional HTTP stuff. You have limited
places for storing the downloaded result. By default, the user will see a notification
in their status bar, indicating the progress of the download. And so on.

For its narrow purpose, DownloadManager may be OK, but is not designed for
working with arbitrary Web services and does not offer much flexibility.

Volley

Google offers its own add-on library for Internet access, called Volley. Volley offers a
cleaner API for accessing Web services and downloading images than you get with
HttpUrlConnection, even though “under the covers” Volley uses HttpUrlConnection
to do its work. Beyond that, Volley’s primary “claims to fame” are:

• It was created by Google
• It reportedly is used by the Play Store and some other Google apps

As such, some developers prefer to use this, over other options, as it is easier to get
the library approved by decision-makers.

OkHttp

Perhaps the most popular option for generic HTTP requests is OkHttp. Published by
Square, OkHttp is frequently updated and has good developer and community
support. OkHttp is a first-class HTTP client, working directly with Socket (as
opposed to being layered atop HttpUrlConnection). OkHttp has a clean yet rich API
for making and monitoring requests and responses.

You can learn more about OkHttp in the "Contacting a Web
Service" chapter of Exploring Android!

OkHttp also serves as the “plumbing” for various other libraries, including most of
those listed below.

Retrofit

Square’s Retrofit is a library layered atop of OkHttp that aims to simplify making

ACCESSING THE INTERNET

639

https://developer.android.com/training/volley/
https://github.com/square/okhttp
https://commonsware.com/AndExplore
https://square.github.io/retrofit/

REST-style Web service calls. You use annotations on a Java/Kotlin interface to
describe the REST URLs that you wish to access, along with the HTTP operations to
perform (e.g., GET, POST, PUT). If you combine Retrofit with a parsing library suitable
for the Web service — such as a JSON parser for Web services serving JSON
responses — Retrofit allows you to craft an API that feels like it is just a local
function call yet returns an object tree representing the response.

We will examine the use of Retrofit in the sample app.

Apollo-Android

If your server is using GraphQL instead of REST, Apollo-Android is basically
“Retrofit for GraphQL”. You provide your GraphQL in the form of documents in a
graphql/ project directory. Apollo-Android plugins will generate Java/Kotlin classes
that implement that API and represent the responses. You can then use that API at
runtime, with OkHttp handling the HTTPS communications.

Image Loaders

A common need in Android apps is to display images from URLs. There are lots of
image-loading libraries that handle that work for you with a simple API. The two
most popular are Glide and Picasso. Both can integrate with OkHttp, which is
particularly important if you are using OkHttp-based libraries elsewhere and wish to
have a common configuration for things like logging, proxy servers, and so on.

We will examine the use of Glide in the sample app.

Specialized APIs

If you are looking to communicate with an existing third-party Web service, there
might be dedicated libraries for that purpose. That third party might offer their own
SDK, and independent developers may have created other libraries.

In general, if a Web service has an official SDK, you are better off using that. If
nothing else, when it comes time to get support, the Web service developers may be
expecting you to use their SDK and may have difficulty helping you debug your own
manual HTTPS code.

ACCESSING THE INTERNET

640

https://github.com/apollographql/apollo-android
https://bumptech.github.io/glide/
https://github.com/square/picasso

Android’s Restrictions
To a large extent, accessing the Internet on Android is not significantly different
than is accessing the Internet on other platforms. For example, Apache HttpClient,
OkHttp, and Retrofit work with ordinary Java/Kotlin for use on desktops and
servers, in addition to working on Android. Similarly, WebView is backed by the same
Web rendering engine that powers Chrome, not only for Android, but for all
Chrome-supported platforms.

However, Android does have some specific restrictions that will impact how you
work with the Internet. None should be big problems for you, but they will require
some extra care to handle.

The INTERNETINTERNET Permission

To do anything with the Internet (or a local network) from your app, you need to
hold the INTERNET permission. This includes cases where you use things like WebView
— if your process needs network access, you need the INTERNET permission.

Hence, the manifest for our sample project contains the requisite <uses-
permission> declaration:

<uses-permission<uses-permission android:name="android.permission.INTERNET"/>/>

Note, though, that you do not need to request this permission at runtime — just
having the <uses-permission> element in the manifest is sufficient.

NetworkOnMainThreadExceptionNetworkOnMainThreadException

If you attempt to perform network I/O on the main application thread, you will
crash immediately with a NetworkOnMainThreadException. Network I/O can be slow
— even if it is fast for you in the office, it may be slow for users due to differences in
network connectivity. As such, doing network I/O on the main application thread is
very likely to cause your UI to freeze for a bit while that I/O goes on.

Technically, there are ways to disable the code that enforces this exception (a class
called StrictMode). In practice, the right answer is to do your network I/O on a
background thread.

Many of the HTTP options presented above have built-in thread management

ACCESSING THE INTERNET

641

options:

• WebView
• DownloadManager
• Volley
• OkHttp
• Retrofit
• Apollo-Android
• Glide
• Picasso

In some cases, everything is asynchronous (e.g., WebView, DownloadManager). In
other cases, you have your choice between synchronous and asynchronous APIs
(e.g., OkHttp, Retrofit) — you would use the synchronous APIs in cases where you
are doing something else to put the work in the background, such as Kotlin
coroutines.

Cleartext Restrictions

On Android 8.0+, if you attempt to use an http URL, you will crash, as “cleartext”
traffic is not allowed by default.

The best answer is to use an https URL. In particular, if you are working with a
server that you control, please secure it with an SSL/TLS certificate and use https.

If you are not in control over the schemes used in the URLs, though, you can update
your network security configuration to support cleartext traffic from some or all
domains. Consider warning your users, though, when you are about to use an http
URL.

The Reality of Mobile Devices

Mobile devices have an interesting property: they are mobile. Users with mobile
devices have this annoying habit of walking, jogging, running, driving, riding,
dancing, kayaking, skydiving, and so on. When they do that, their network
connection may change:

• They switch from their home or office WiFi to a mobile data connection
• They switch from one mobile tower to another tower while they are “on the

road” (or in the sky, on the water, etc.)
• They return to their home or office and reconnect to the WiFi

ACCESSING THE INTERNET

642

https://developer.android.com/training/articles/security-config

• They get in an elevator, or go into an underground parking garage, or
otherwise move from an area with connectivity options to an area without
them

In all these cases, when the network connection changes, any outstanding socket
connections get dropped. It does not matter whether you are working directly with
Socket or are working with HTTP APIs. So, you might be in the middle of getting a
Web service reply and, all of a sudden, your request gets abandoned, because you
(briefly) lost communication with the server.

In casual apps, like this book’s samples, you largely ignore this issue. In production-
grade apps, typically you handle this by having suitable retry policies. So, if you get
an IOException, you retry the request up to N times before giving up. That way, for a
transient problem like a connectivity change, you get the work done, just a bit more
slowly. Yet, at the same time, you do not retry indefinitely, as if there are lots of
successive failures, it may require user intervention to fix (e.g., the user turned on
airplane mode).

Forecasting the Weather
The Weather sample module in the Sampler and SamplerJ projects shows a weather
forecast for New York City. It gets the forecast from the US National Weather
Service, which offers a Web service for retrieving forecasts. The forecast elements
that the app uses includes the time, projected temperature, and an icon representing
the expected weather (e.g., sunny, partly cloudy, mostly cloudy, rain, snow, fog, alien
invasion, kaiju attack, or zombie infestation).

(OK, perhaps not those last three)

The icon is supplied in the form of a URL from which we can download the icon.

To get the weather forecast itself, we will use Retrofit. To populate ImageView
widgets in a RecyclerView with the weather icons, we will use Glide.

The Dependencies

Glide is simple. Most of the time, you can just use the
com.github.bumptech.glide:glide library:

implementation 'com.github.bumptech.glide:glide:4.11.0'

ACCESSING THE INTERNET

643

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/Weather
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/Weather
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/Weather
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/Weather

(from Weather/build.gradle)

Retrofit is a bit more complicated. You will usually need at least two libraries:

• com.squareup.retrofit2:retrofit, which is Retrofit itself
• A “converter” library that teaches Retrofit how to parse the sort of content

that your Web service returns (JSON, XML, etc.)

The US National Weather Service Web service API supports returning JSON. There
are a few JSON converter options for Retrofit, each of which use a different JSON
parser. If you are using a JSON parser elsewhere in your app. you can try to use the
corresponding Retrofit converter library — that way, you do not wind up bundling
two JSON parsing libraries in your app. The three most popular JSON parsers for
Android are Gson, Jackson, and Moshi, and there are Retrofit converters for each of
those. Moshi happens to be written by Square, the same team that created Retrofit
itself, so this sample app uses Moshi:

implementation "com.squareup.retrofit2:retrofit:2.9.0"
implementation "com.squareup.retrofit2:converter-moshi:2.9.0"

(from Weather/build.gradle)

The Response Classes

The converters that Retrofit supports are designed to take a raw response — such as
a JSON string — and convert them into instances of classes that are designed to
reflect the response structure. The US National Weather Service has some
documentation about their Web service API, and that information can be used to
create classes that match the JSON that they will serve.

Usually, your classes can skip portions of the response that you do not care about.
Moshi or other JSON parsers will skip anything that appears in the JSON but does
not have a corresponding spot in your Java or Kotlin classes.

The JSON that we get back from the Web service looks like this (with the list of
forecast periods truncated to save space in the book):

{
"@context": [

"https://raw.githubusercontent.com/geojson/geojson-ld/master/contexts/geojson-
base.jsonld",

{
"wx": "https://api.weather.gov/ontology#",

ACCESSING THE INTERNET

644

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/build.gradle
https://github.com/square/moshi
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/build.gradle
https://www.weather.gov/documentation/services-web-api
https://www.weather.gov/documentation/services-web-api

"geo": "https://www.opengis.net/ont/geosparql#",
"unit": "https://codes.wmo.int/common/unit/",
"@vocab": "https://api.weather.gov/ontology#"

}
],
"type": "Feature",
"geometry": {

"type": "GeometryCollection",
"geometries": [

{
"type": "Point",
"coordinates": [

-74.0130202,
40.714515800000001

]
},
{

"type": "Polygon",
"coordinates": [

[
[

-74.025095199999996,
40.727052399999998

],
[

-74.0295579,
40.705361699999997

],
[

-74.000948300000005,
40.701977499999998

],
[

-73.996479800000003,
40.723667800000001

],
[

-74.025095199999996,
40.727052399999998

]
]

]
}

]
},
"properties": {

"updated": "2019-06-05T19:48:39+00:00",
"units": "us",

ACCESSING THE INTERNET

645

"forecastGenerator": "BaselineForecastGenerator",
"generatedAt": "2019-06-05T22:38:08+00:00",
"updateTime": "2019-06-05T19:48:39+00:00",
"validTimes": "2019-06-05T13:00:00+00:00/P8D",
"elevation": {

"value": 2.1335999999999999,
"unitCode": "unit:m"

},
"periods": [

{
"number": 1,
"name": "Tonight",
"startTime": "2019-06-05T18:00:00-04:00",
"endTime": "2019-06-06T06:00:00-04:00",
"isDaytime": false,
"temperature": 67,
"temperatureUnit": "F",
"temperatureTrend": null,
"windSpeed": "10 to 14 mph",
"windDirection": "SW",
"icon": "https://api.weather.gov/icons/land/night/

tsra,80?size=medium",
"shortForecast": "Showers And Thunderstorms",
"detailedForecast": "Showers and thunderstorms. Cloudy, with a low

around 67. Southwest wind 10 to 14 mph, with gusts as high as 24 mph. Chance of
precipitation is 80%. New rainfall amounts between a quarter and half of an inch
possible."

},
{

"number": 2,
"name": "Thursday",
"startTime": "2019-06-06T06:00:00-04:00",
"endTime": "2019-06-06T18:00:00-04:00",
"isDaytime": true,
"temperature": 83,
"temperatureUnit": "F",
"temperatureTrend": null,
"windSpeed": "10 mph",
"windDirection": "W",
"icon": "https://api.weather.gov/icons/land/day/rain_showers,50/

rain_showers,20?size=medium",
"shortForecast": "Chance Rain Showers",
"detailedForecast": "A chance of rain showers before 3pm. Partly

sunny, with a high near 83. West wind around 10 mph. Chance of precipitation is 50%.
New rainfall amounts between a tenth and quarter of an inch possible."

},
{

"number": 3,

ACCESSING THE INTERNET

646

"name": "Thursday Night",
"startTime": "2019-06-06T18:00:00-04:00",
"endTime": "2019-06-07T06:00:00-04:00",
"isDaytime": false,
"temperature": 66,
"temperatureUnit": "F",
"temperatureTrend": null,
"windSpeed": "7 to 10 mph",
"windDirection": "N",
"icon": "https://api.weather.gov/icons/land/night/sct?size=medium",
"shortForecast": "Partly Cloudy",
"detailedForecast": "Partly cloudy, with a low around 66. North wind

7 to 10 mph."
}

]
}

}

For the purposes of this app, we only need a small subset of this information. We
need the periods list of objects from the properties property of the root JSON
object. And, for each period, we need the name, temperature, temperatureUnit, and
icon properties. A full-featured US weather app could use a lot more of the
properties, but we will keep this simple.

So, we have these classes to model that response in Java:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather;

importimport java.util.Listjava.util.List;

publicpublic classclass WeatherResponseWeatherResponse {
publicpublic finalfinal PropertiesProperties properties=nullnull;

publicpublic staticstatic classclass PropertiesProperties {
publicpublic finalfinal ListList<ForecastForecast> periods=nullnull;

}
}

(from Weather/src/main/java/com/commonsware/jetpack/weather/WeatherResponse.java)

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather;

publicpublic classclass ForecastForecast {
finalfinal StringString name;
finalfinal int temperature;
finalfinal StringString temperatureUnit;
finalfinal StringString icon;

ACCESSING THE INTERNET

647

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/WeatherResponse.java

publicpublic Forecast(StringString name, int temperature,
StringString temperatureUnit, StringString icon) {

thisthis.name = name;
thisthis.temperature = temperature;
thisthis.temperatureUnit = temperatureUnit;
thisthis.icon = icon;

}
}

(from Weather/src/main/java/com/commonsware/jetpack/weather/Forecast.java)

…and Kotlin:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather

classclass WeatherResponseWeatherResponse {
valval properties: PropertiesProperties? = nullnull

classclass PropertiesProperties {
valval periods: ListList<ForecastForecast>? = nullnull

}
}

(from Weather/src/main/java/com/commonsware/jetpack/weather/WeatherResponse.kt)

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather

data classdata class ForecastForecast(
valval name: StringString,
valval temperature: IntInt,
valval temperatureUnit: StringString,
valval icon: StringString

)

(from Weather/src/main/java/com/commonsware/jetpack/weather/Forecast.kt)

The overall Web service response is a WeatherResponse, which holds a Properties
object, which in turn host a List of Forecast objects.

Moshi does not care about the package structure, so long as it can create instances
of the class and fill in the fields or properties. Here, we have a mix of top-level
classes (WeatherResponse, Forecast) and nested classes (Properties) — you can
organize your classes as you see fit.

ACCESSING THE INTERNET

648

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/Forecast.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/WeatherResponse.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/Forecast.kt

The Retrofit API Declaration

The next step for using Retrofit is to declare an interface that describes the API
that we are invoking on the Web service and maps it to functions that we want to be
able to call from our Java/Kotlin code.

In our case, we are only invoking a single Web service URL, where we tell it a
location for a forecast, and we get back the corresponding forecast data. So, our
interface has only a getForecast() function:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather;

importimport retrofit2.Callretrofit2.Call;
importimport retrofit2.http.GETretrofit2.http.GET;
importimport retrofit2.http.Headersretrofit2.http.Headers;
importimport retrofit2.http.Pathretrofit2.http.Path;

publicpublic interfaceinterface NWSInterfaceNWSInterface {
@Headers("Accept: application/geo+json")
@GET("/gridpoints/{office}/{gridX},{gridY}/forecast")
CallCall<WeatherResponseWeatherResponse> getForecast(@Path("office") StringString office,

@Path("gridX") int gridX,
@Path("gridY") int gridY);

}

(from Weather/src/main/java/com/commonsware/jetpack/weather/NWSInterface.java)

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather

importimport retrofit2.http.GETretrofit2.http.GET
importimport retrofit2.http.Headersretrofit2.http.Headers
importimport retrofit2.http.Pathretrofit2.http.Path

interfaceinterface NWSInterfaceNWSInterface {
@Headers("Accept: application/geo+json")
@GET("/gridpoints/{office}/{gridX},{gridY}/forecast")
suspendsuspend funfun getForecast(

@Path("office") office: StringString,
@Path("gridX") gridX: IntInt,
@Path("gridY") gridY: IntInt

): WeatherResponseWeatherResponse
}

(from Weather/src/main/java/com/commonsware/jetpack/weather/NWSInterface.kt)

Every Retrofit interface function will have at least one annotation, one that indicates

ACCESSING THE INTERNET

649

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/NWSInterface.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/NWSInterface.kt

the HTTP operation to perform and a relative path on which to perform it. In our
case, that is @GET("/gridpoints/{office}/{gridX},{gridY}/forecast"), saying
that we want to perform an HTTP GET operation on… something.

The @GET annotation takes a relative path, where portions of that path can come
from parameters to the annotated function. Our three parameters — office, gridX,
and gridY — are themselves annotated with @Path. @Path says “this function
parameter can be used to help assemble the relative path”. The name given as a
parameter to @Path can be used in the relative path, wrapped in braces. Retrofit will
then replace that brace-wrapped name with the actual runtime value of the
parameter when we call it. So,
"/gridpoints/{office}/{gridX},{gridY}/forecast" will turn into something like
"/gridpoints/OKX/32,34/forecast", if we call getForecast("OKX", 32, 34).

The US National Weather Service Web service API divides its forecasts into gridded
areas served by offices. We are supplying the ID of an office (office) plus the X/Y
coordinates of a particular grid cell (gridX and gridY). We will receive a forecast for
that particular cell of that specific office. There is a separate Web service URL that
gives us the office and cell for a given latitude and longitude. An app that provided
weather information for an arbitrary location — such as one that is retrieved from
LocationManager and the GPS hardware on the device — would use that URL to get
the office and grid, then use the URL associated with getForecast() to get the
weather. Here, we will supply the office and cell from values hard-coded in our
activity, to help simplify the example.

Retrofit has a variety of additional annotations that you can add as needed. In our
case, we have a @Headers annotation to add an HTTP header to our Web service call,
indicating that we want a GeoJSON-encoded response.

The Repository

We have a WeatherRepository that is responsible for working with Retrofit and
obtaining our weather forecast. As with some of the previous samples, the Java and
Kotlin implementations diverge a bit, as Kotlin uses coroutines, while Java returns a
LiveData instead.

Java

Our Java implementation of WeatherRepository looks like this:

ACCESSING THE INTERNET

650

https://geojson.org/

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather;

importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData;
importimport retrofit2.Callretrofit2.Call;
importimport retrofit2.Callbackretrofit2.Callback;
importimport retrofit2.Responseretrofit2.Response;
importimport retrofit2.Retrofitretrofit2.Retrofit;
importimport retrofit2.converter.moshi.MoshiConverterFactoryretrofit2.converter.moshi.MoshiConverterFactory;

classclass WeatherRepositoryWeatherRepository {
privateprivate staticstatic volatilevolatile WeatherRepositoryWeatherRepository INSTANCE;
privateprivate finalfinal NWSInterfaceNWSInterface api;

synchronizedsynchronized staticstatic WeatherRepositoryWeatherRepository get() {
ifif (INSTANCE == nullnull) {

INSTANCE = newnew WeatherRepositoryWeatherRepository();
}

returnreturn INSTANCE;
}

privateprivate WeatherRepository() {
RetrofitRetrofit retrofit=

newnew RetrofitRetrofit.Builder()
.baseUrl("https://api.weather.gov")
.addConverterFactory(MoshiConverterFactoryMoshiConverterFactory.create())
.build();

api = retrofit.create(NWSInterfaceNWSInterface.class);
}

LiveDataLiveData<WeatherResultWeatherResult> load(StringString office, int gridX, int gridY) {
finalfinal MutableLiveDataMutableLiveData<WeatherResultWeatherResult> result = newnew MutableLiveDataMutableLiveData<>();

result.setValue(newnew WeatherResultWeatherResult(truetrue, nullnull, nullnull));

api.getForecast(office, gridX, gridY).enqueue(
newnew CallbackCallback<WeatherResponseWeatherResponse>() {

@Override
publicpublic void onResponse(CallCall<WeatherResponseWeatherResponse> call,

ResponseResponse<WeatherResponseWeatherResponse> response) {
result.postValue(newnew WeatherResultWeatherResult(falsefalse, response.body().properties.periods, nullnull));

}

@Override
publicpublic void onFailure(CallCall<WeatherResponseWeatherResponse> call, ThrowableThrowable t) {

result.postValue(newnew WeatherResultWeatherResult(falsefalse, nullnull, t));
}

});

returnreturn result;
}

}

(from Weather/src/main/java/com/commonsware/jetpack/weather/WeatherRepository.java)

In the constructor, we get an instance of our NWSInterface from Retrofit.
Specifically, we:

ACCESSING THE INTERNET

651

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/WeatherRepository.java

• Create a Retrofit.Builder object
• Provide the base URL to it (https://api.weather.gov), which will combine

with the paths on the individual interface functions to assemble the entire
URL to use

• Teach the Builder that it can use Moshi for converting JSON into objects, via
addConverterFactory(MoshiConverterFactory.create())

• build() the resulting Retrofit object
• Call create() on the Retrofit object, to cause Retrofit to give us an instance

of some generated class that implements our NWSInterface

Retrofit can handle background threading for us. Our Java implementation of
NWSInterface returns our WeatherResponse wrapped in a Call object. The two main
methods on Call are execute() (to perform the Web service request synchronously)
and enqueue() (to perform the Web service request asynchronously, on a Retrofit-
supplied background thread). load() on WeatherRepository uses enqueue(), so
Retrofit will handle our threading for us. We need to then supply a Callback to
receive either our WeatherResponse or a Throwable if there is some problem (e.g.,
the Web service is down for maintenance). In our case, we wrap those results in a
WeatherResult and update a MutableLiveData with that result. WeatherResult
encapsulates an isLoading flag, along with our WeatherResponse and Throwable
from the callback:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather;

importimport java.util.Listjava.util.List;

publicpublic classclass WeatherResultWeatherResult {
finalfinal boolean isLoading;
finalfinal ListList<ForecastForecast> forecasts;
finalfinal ThrowableThrowable error;

WeatherResultWeatherResult(boolean isLoading, ListList<ForecastForecast> forecasts, ThrowableThrowable error) {
thisthis.isLoading = isLoading;
thisthis.forecasts = forecasts;
thisthis.error = error;

}
}

(from Weather/src/main/java/com/commonsware/jetpack/weather/WeatherResult.java)

Hence, if we call load() on our WeatherRepository singleton, we will get a LiveData
that we can observe, where it will give us our WeatherResult as we progress from the
loading state to either the success or failure states.

ACCESSING THE INTERNET

652

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/WeatherResult.java

Kotlin

The Kotlin code is far simpler, because Retrofit (as of 2.6.0) has built-in support for
coroutines. So, our Kotlin NWSInterface returns a WeatherResponse directly
(without the Call wrapper), and its getForecast() is marked with the suspend
keyword. So, our WeatherRepository can just have its own suspend function that
delegates to Retrofit and converts the WeatherResponse or caught exception into
WeatherResult objects:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather

importimport retrofit2.Retrofitretrofit2.Retrofit
importimport retrofit2.converter.moshi.MoshiConverterFactoryretrofit2.converter.moshi.MoshiConverterFactory

objectobject WeatherRepositoryWeatherRepository {
privateprivate valval api = RetrofitRetrofit.BuilderBuilder()

.baseUrl("https://api.weather.gov")

.addConverterFactory(MoshiConverterFactoryMoshiConverterFactory.create())

.build()

.create(NWSInterfaceNWSInterface::classclass.java)

suspendsuspend funfun load(office: StringString, gridX: IntInt, gridY: IntInt) = trytry {
valval response = api.getForecast(office, gridX, gridY)

WeatherResultWeatherResult.ContentContent(response.properties?.periods ?: listOf())
} catchcatch (t: ThrowableThrowable) {

WeatherResultWeatherResult.ErrorError(t)
}

}

(from Weather/src/main/java/com/commonsware/jetpack/weather/WeatherRepository.kt)

In our case, then, we only have Content and Error states — load() returns the end
result of the API call, so it has no opportunity to return a Loading state:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather

sealedsealed classclass WeatherResultWeatherResult {
data classdata class ContentContent(valval forecasts: ListList<ForecastForecast>) : WeatherResultWeatherResult()
data classdata class ErrorError(valval throwable: ThrowableThrowable) : WeatherResultWeatherResult()

}

(from Weather/src/main/java/com/commonsware/jetpack/weather/WeatherResult.kt)

ACCESSING THE INTERNET

653

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/WeatherRepository.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/WeatherResult.kt

The Motor and the View States

The Forecast objects in our WeatherResult have an integer temperature value plus
a temperatureUnit string (e.g., F for Fahrenheit, C for Celsius). For display purposes,
it would be nice to convert those into a single string, one that we can data bind into
a TextView.

So, our MainMotor implementations will have a LiveData of MainViewState objects.
MainViewState, in turn, will have a List of RowState objects, where we have a single
property for the visual representation of the temperature. MainMotor will get the
WeatherResult from the Web service and convert it into a MainViewState object as
they come in.

Java

MainViewState and RowState look a lot like WeatherResult and Forecast, just with
the single temperature field:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather;

importimport java.util.Listjava.util.List;

classclass MainViewStateMainViewState {
finalfinal boolean isLoading;
finalfinal ListList<RowStateRowState> forecasts;
finalfinal ThrowableThrowable error;

MainViewStateMainViewState(boolean isLoading, ListList<RowStateRowState> forecasts, ThrowableThrowable error) {
thisthis.isLoading = isLoading;
thisthis.forecasts = forecasts;
thisthis.error = error;

}
}

(from Weather/src/main/java/com/commonsware/jetpack/weather/MainViewState.java)

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather;

publicpublic classclass RowStateRowState {
publicpublic finalfinal StringString name;
publicpublic finalfinal StringString temp;
publicpublic finalfinal StringString icon;

RowStateRowState(StringString name, StringString temp, StringString icon) {
thisthis.name = name;

ACCESSING THE INTERNET

654

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/MainViewState.java

thisthis.temp = temp;
thisthis.icon = icon;

}
}

(from Weather/src/main/java/com/commonsware/jetpack/weather/RowState.java)

As with some of the previous examples, MainMotor uses MediatorLiveData, to fold
one or more load() calls into a single results field that contains our LiveData of
MainViewState objects:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather;

importimport android.app.Applicationandroid.app.Application;
importimport java.util.ArrayListjava.util.ArrayList;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MediatorLiveDataandroidx.lifecycle.MediatorLiveData;

publicpublic classclass MainMotorMainMotor extendsextends AndroidViewModelAndroidViewModel {
finalfinal privateprivate WeatherRepositoryWeatherRepository repo = WeatherRepositoryWeatherRepository.get();
finalfinal MediatorLiveDataMediatorLiveData<MainViewStateMainViewState> results = newnew MediatorLiveDataMediatorLiveData<>();
privateprivate LiveDataLiveData<WeatherResultWeatherResult> lastResult;

publicpublic MainMotor(@NonNull ApplicationApplication application) {
supersuper(application);

}

void load(StringString office, int gridX, int gridY) {
ifif (lastResult != nullnull) {

results.removeSource(lastResult);
}

lastResult = repo.load(office, gridX, gridY);
results.addSource(lastResult, weather -> {

ArrayListArrayList<RowStateRowState> rows = newnew ArrayListArrayList<>();

ifif (weather.forecasts != nullnull) {
forfor (ForecastForecast forecast : weather.forecasts) {

StringString temp =
getApplication().getString(R.string.temp, forecast.temperature,

forecast.temperatureUnit);

rows.add(newnew RowStateRowState(forecast.name, temp, forecast.icon));
}

}

ACCESSING THE INTERNET

655

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/RowState.java

results.postValue(
newnew MainViewState(weather.isLoading, rows, weather.error));

});
}

}

(from Weather/src/main/java/com/commonsware/jetpack/weather/MainMotor.java)

To create the temperature string, we use a string resource that contains placeholders
for the number and unit:

<string<string name="temp">>%d%s</string></string>

(from Weather/src/main/res/values/strings.xml)

Then, we use getString() on a Context to retrieve that string resource and fill in
those placeholders with our desired values.

Kotlin

The Kotlin implementation is similar, just using the MutableLiveData and
viewModelScope approach that we saw in previous examples:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather

sealedsealed classclass MainViewStateMainViewState {
objectobject LoadingLoading : MainViewStateMainViewState()
data classdata class ContentContent(valval forecasts: ListList<RowStateRowState>) : MainViewStateMainViewState()
data classdata class ErrorError(valval throwable: ThrowableThrowable) : MainViewStateMainViewState()

}

(from Weather/src/main/java/com/commonsware/jetpack/weather/MainViewState.kt)

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather

data classdata class RowStateRowState(
valval name: StringString,
valval temp: StringString,
valval icon: StringString

)

(from Weather/src/main/java/com/commonsware/jetpack/weather/RowState.kt)

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather

importimport android.app.Applicationandroid.app.Application

ACCESSING THE INTERNET

656

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/MainMotor.java
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/res/values/strings.xml
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/MainViewState.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/RowState.kt

importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData
importimport androidx.lifecycle.viewModelScopeandroidx.lifecycle.viewModelScope
importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.launchkotlinx.coroutines.launch

classclass MainMotorMainMotor(application: ApplicationApplication) : AndroidViewModelAndroidViewModel(application) {
privateprivate valval _results = MutableLiveDataMutableLiveData<MainViewStateMainViewState>()
valval results: LiveDataLiveData<MainViewStateMainViewState> = _results

funfun load(office: StringString, gridX: IntInt, gridY: IntInt) {
_results.value = MainViewStateMainViewState.LoadingLoading

viewModelScope.launch(DispatchersDispatchers.MainMain) {
valval result = WeatherRepositoryWeatherRepository.load(office, gridX, gridY)

_results.value = whenwhen (result) {
isis WeatherResultWeatherResult.ContentContent -> {

valval rows = result.forecasts.map { forecast ->
valval temp = getApplication<ApplicationApplication>()

.getString(
RR.string.temp,
forecast.temperature,
forecast.temperatureUnit

)

RowStateRowState(forecast.name, temp, forecast.icon)
}

MainViewStateMainViewState.ContentContent(rows)
}
isis WeatherResultWeatherResult.ErrorError -> MainViewStateMainViewState.ErrorError(result.throwable)

}
}

}
}

(from Weather/src/main/java/com/commonsware/jetpack/weather/MainMotor.kt)

The Image Loading

Eventually, our List of RowState objects makes it over to a WeatherAdapter. This is a
ListAdapter that we use to fill in a RecyclerView that will show the list of forecasts.

We use data binding for the rows, where our row.xml layout has binding expressions
to populate its widgets from a RowState:

ACCESSING THE INTERNET

657

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/MainMotor.kt

<?xml version="1.0" encoding="utf-8"?>
<layout<layout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools">>

<data><data>

<variable<variable
name="state"
type="com.commonsware.jetpack.weather.RowState" />/>

</data></data>

<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:paddingBottom="8dp"
android:paddingTop="8dp">>

<TextView<TextView
android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@{state.name}"
android:textAppearance="@style/TextAppearance.AppCompat.Large"
app:layout_constraintBottom_toBottomOf="@id/icon"
app:layout_constraintEnd_toStartOf="@id/temp"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="@id/icon"
tools:text="Tonight" />/>

<ImageView<ImageView
android:id="@+id/icon"
android:layout_width="0dp"
android:layout_height="64dp"
android:contentDescription="@string/icon"
app:imageUrl="@{state.icon}"
app:layout_constraintDimensionRatio="1:1"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

<TextView<TextView
android:id="@+id/temp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginEnd="16dp"
android:layout_marginStart="16dp"
android:text="@{state.temp}"
android:textAppearance="@style/TextAppearance.AppCompat.Large"

ACCESSING THE INTERNET

658

app:layout_constraintBottom_toBottomOf="@id/icon"
app:layout_constraintEnd_toStartOf="@+id/icon"
app:layout_constraintTop_toTopOf="@id/icon"
tools:text="72F" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>
</layout></layout>

(from Weather/src/main/res/layout/row.xml)

In particular, our ImageView for the weather icon uses
app:imageUrl="@{state.icon}" to pull the icon property out of the RowState and
apply it to the ImageView. ImageView does not have an app:imageUrl attribute,
though — we are using a BindingAdapter that in turn uses Glide to load the image:

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather;

importimport android.widget.ImageViewandroid.widget.ImageView;
importimport com.bumptech.glide.Glidecom.bumptech.glide.Glide;
importimport androidx.databinding.BindingAdapterandroidx.databinding.BindingAdapter;

publicpublic classclass BindingAdaptersBindingAdapters {
@BindingAdapter("imageUrl")
publicpublic staticstatic void loadImage(ImageViewImageView view, StringString url) {

ifif (url != nullnull) {
GlideGlide.with(view.getContext())

.load(url)

.into(view);
}

}
}

(from Weather/src/main/java/com/commonsware/jetpack/weather/BindingAdapters.java)

packagepackage com.commonsware.jetpack.weathercom.commonsware.jetpack.weather

importimport android.widget.ImageViewandroid.widget.ImageView
importimport androidx.databinding.BindingAdapterandroidx.databinding.BindingAdapter
importimport com.bumptech.glide.Glidecom.bumptech.glide.Glide

@BindingAdapter("imageUrl")
funfun ImageViewImageView.loadImage(url: StringString?) {

url?.let {
GlideGlide.with(context)

.load(it)

ACCESSING THE INTERNET

659

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/res/layout/row.xml
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/BindingAdapters.java

.into(thisthis)
}

}

(from Weather/src/main/java/com/commonsware/jetpack/weather/BindingAdapters.kt)

For simple cases like this one, Glide has a really simple API:

• Call Glide.with() to get a RequestManager object, passing in a Context
• Call load() on the RequestManager to ask it to load a URL — this returns a
RequestBuilder

• Call into() on the RequestBuilder to tell it to show the resulting image in
the supplied ImageView

And that’s it. Glide will handle doing the network I/O and populating the ImageView
with the resulting image, using a background thread for the I/O work. It also
handles recycling — if we call into() with an ImageView that already has an
outstanding request, Glide will cancel the old request for us automatically.

The Results

Our MainActivity starts all of this off by calling load() on the MainMotor:

motor.load("OKX", 32, 34)

(from Weather/src/main/java/com/commonsware/jetpack/weather/MainActivity.kt)

Here, OKX, 32, and 34 were determined by manually invoking another Web service
URL, providing the latitude and longitude for One World Trade Center in lower
Manhattan.

MainActivity observes the LiveData from the motor, and for successful Web service
calls forwards the List of RowState objects to the WeatherAdapter that it created
and attached to a RecyclerView.

ACCESSING THE INTERNET

660

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/BindingAdapters.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Weather/src/main/java/com/commonsware/jetpack/weather/MainActivity.kt

If you run the app, you should see an upcoming forecast for New York City:

Figure 224: Weather Sample App, As Initially Launched

Here, we see that there will be a 20% chance of rain today, then clear skies for the
next few days, with no signs of kaiju.

(then again, kaiju can be sneaky…)

ACCESSING THE INTERNET

661

Storing Data in a Room

There are three main options for storing data locally in an Android device:

• SharedPreferences
• SQLite databases
• Arbitrary other files or content

In this chapter, we will look at the second of those: SQLite databases. SQLite is an
embedded relational database, so you can use standard SQL, while the database is a
simple set of files on the device, not some server.

The Jetpack solution for working with SQLite databases is called Room. Google
describes Room as providing “an abstraction layer over SQLite to allow fluent
database access while harnessing the full power of SQLite.”

In other words, Room aims to make your use of SQLite easier, through a lightweight
annotation-based implementation of an object-relational mapping (ORM) engine.

This chapter only scratches the surface of what Room has to offer, though it does
include a section on other Room features. Room is a fairly powerful library, and with
that power comes a fair bit of complexity, once you get past the basics.

The Bookmarker sample module in the Sampler and SamplerJ projects is an app that
tracks bookmarks. You will be able to share Web pages from your favorite Web
browser (if it offers a “Share” option), and Bookmarker will save that URL in a Room
database. It will also present the list of saved bookmarks to you, sorted by page title,
and you can click on an entry in the list to view that Web page in your favorite
browser.

663

https://en.wikipedia.org/wiki/Object-relational_mapping
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/Bookmarker
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/Bookmarker
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/Bookmarker
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/Bookmarker

Room Requirements
To use Room, you need two dependencies in your module’s build.gradle file:

1. The runtime library version, using the standard implementation directive
2. An annotation processor, using the annotationProcessor directive (in Java)

or the kapt directive (in Kotlin)

The Java edition of Bookmarker pulls in both of those:

implementation "androidx.room:room-runtime:2.2.5"
annotationProcessor "androidx.room:room-compiler:2.2.5"

(from Bookmarker/build.gradle)

The Kotlin edition pulls in both of those, along with an additional dependency:

implementation "androidx.room:room-runtime:2.2.5"
implementation "androidx.room:room-ktx:2.2.5"
kapt "androidx.room:room-compiler:2.2.5"

(from Bookmarker/build.gradle)

androidx.room:room-runtime is the runtime library, while androidx.room:room-
compiler is the annotation processor. The third dependency in the Kotlin edition is
androidx.room:room-ktx, which gives Room the ability to work with Kotlin
coroutines for threading purposes.

Room Furnishings
Roughly speaking, your basic use of Room is divided into three sets of classes:

1. Entities, which are simple objects that model the data you are transferring
into and out of the database

2. The data access object (DAO), that provides the description of the Java/
Kotlin API that you want for working with certain entities

3. The database, which ties together all of the entities and DAOs for a single
SQLite database

Entities

In many ORM systems, the entity (or that system’s equivalent) is a simple object

STORING DATA IN A ROOM

664

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/build.gradle

that you happen to want to store in the database. It usually represents some part of
your overall domain, so a payroll system might have entities representing
departments, employees, and paychecks.

With Room, a better description of entities is that they are simple objects
representing tables in your database, with one Java field/Kotlin property usually
mapping to one column in that table.

From a coding standpoint, an entity is a class marked with the @Entity annotation,
such as the BookmarkEntity class:

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker;

importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.room.Entityandroidx.room.Entity;
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey;

@Entity
publicpublic classclass BookmarkEntityBookmarkEntity {

@PrimaryKey
@NonNull
publicpublic StringString pageUrl;
publicpublic StringString title;
publicpublic StringString iconUrl;

}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkEntity.java)

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker

importimport androidx.room.Entityandroidx.room.Entity
importimport androidx.room.PrimaryKeyandroidx.room.PrimaryKey

@Entity
classclass BookmarkEntityBookmarkEntity {

@PrimaryKey
varvar pageUrl: StringString = ""
varvar title: StringString? = nullnull
varvar iconUrl: StringString? = nullnull

}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkEntity.kt)

There is no particular superclass required for entities. The expectation is that often
they will be simple objects, as we see here, where BookmarkEntity is a plain class
with no superclass.

STORING DATA IN A ROOM

665

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkEntity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkEntity.kt

Each of the Kotlin properties (or Java fields) of the class will map to columns in the
database. Usually, this is a 1:1 mapping (each property gets its own column), though
there are ways to change that if needed. By default, the column names match the
names of the properties or fields, so in this case, we have three columns:

• pageUrl
• title
• iconUrl

Besides the @Entity annotation, the only absolute requirement of an entity is that a
column be designated as the primary key, usually via the @PrimaryKey annotation on
a field or property. A primary key needs to be unique — in this case, we do not want
duplicate entries for the same page URL, so we will take steps to avoid adding more
than one when we add bookmarks to the database. Note that a @PrimaryKey needs
to be non-nullable — that is a SQLite requirement that Room (and its associated
Lint checks) helps to enforce.

Beyond these annotations, the rest of the code in your entity class is simply in
support of the app — Room does not need anything else.

DAO

“Data access object” (DAO) is a fancy way of saying “the API into the data”. The idea
is that you have a DAO that provides methods for the database operations that you
need: queries, inserts, updates, deletes, whatever.

In Room, the DAO is identified by the @Dao annotation, applied to either an
abstract class or an interface. The actual concrete implementation will be code-
generated for you by the Room annotation processor.

The primary role of the @Dao-annotated abstract class or interface is to have one
or more methods, with their own Room annotations, identifying what you want to
do with the database and your entities. In the case of Bookmarker, we have a
BookmarkStore interface that serves in this role.

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker;

importimport java.util.Listjava.util.List;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.room.Daoandroidx.room.Dao;
importimport androidx.room.Insertandroidx.room.Insert;
importimport androidx.room.OnConflictStrategyandroidx.room.OnConflictStrategy;

STORING DATA IN A ROOM

666

importimport androidx.room.Queryandroidx.room.Query;

@Dao
publicpublic interfaceinterface BookmarkStoreBookmarkStore {

@Query("SELECT * FROM BookmarkEntity ORDER BY title")
LiveDataLiveData<ListList<BookmarkEntityBookmarkEntity>> all();

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACE)
void save(BookmarkEntityBookmarkEntity entity);

}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkStore.java)

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker

importimport androidx.room.Daoandroidx.room.Dao
importimport androidx.room.Insertandroidx.room.Insert
importimport androidx.room.OnConflictStrategyandroidx.room.OnConflictStrategy
importimport androidx.room.Queryandroidx.room.Query
importimport kotlinx.coroutines.flow.Flowkotlinx.coroutines.flow.Flow

@Dao
interfaceinterface BookmarkStoreBookmarkStore {

@Query("SELECT * FROM BookmarkEntity ORDER BY title")
funfun all(): FlowFlow<ListList<BookmarkEntityBookmarkEntity>>

@Insert(onConflict = OnConflictStrategyOnConflictStrategy.REPLACEREPLACE)
suspendsuspend funfun save(entity: BookmarkEntityBookmarkEntity)

}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkStore.kt)

Most, if not all, functions on a @Dao-annotated interface will have their own Room
annotations. In the case of BookmarkStore, both of the functions have a Room
annotation, indicating what sort of code Room should generate for us to serve as an
implementation. We do not write the SQLite access code ourselves — instead, Room
handles that, while we just use the API that we declare in the @Dao.

@Query@Query

One of our functions has a @Query annotation. Typically, these are for SQL SELECT
statements, though in principle a @Query annotation can be used for any SQL. The
property of the annotation contains the SQL statement to be executed. Note that
this is a SQL statement and needs to use the table and column names. By default,
the table name is the name of the entity class, and the column names are the names

STORING DATA IN A ROOM

667

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkStore.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkStore.kt

of the fields or properties, so it looks like you are referencing the entity itself.

Room supports a wide variety of return types for a query:

• A query can return a single entity, for cases where there should be at most
one result

• A query can return a list of entities, for cases where there may be many
matches

• A query can return other types than entities, for cases where your SQL does
not match an entity (e.g., you are using aggregation functions like SUM)

If a query returns those sorts of types directly, then the function will be
synchronous, blocking until the database I/O is completed. If, however, the query
returns the type wrapped in a reactive type, then the function will perform the
database I/O asynchronously — you will get the results delivered to your observer
when they are ready. Also, with reactive types, if Room thinks that the data may have
been altered, any active observers will get new results delivered to them
automatically, without you having to call the function again.

In this case, the Java code is using LiveData as a reactive type, as that is native to the
Jetpack and requires no additional libraries (e.g., RxJava). The Kotlin code is using
Flow from coroutines, as that is a bit more natural in Kotlin.

You can learn more about Flow in the "Introducing Flows and
Channels" chapter of Elements of Kotlin Coroutines!

@Insert@Insert, @Update@Update, and @Delete@Delete

Our other function has an @Insert annotation. This performs a SQL INSERT
statement, for the entity or entities provided as parameters to the function. There
are also @Update and @Delete annotations, mapping to a SQL UPDATE or DELETE
statement, but BookmarkStore is not using those.

Instead, the app uses the save() function for both inserts and updates. This works
courtesy of the onConflict = OnConflictStrategy.REPLACE property on the
@Insert annotation, which says “if there already is a row in the table for this primary
key, replace it with the contents of the entity”. So, when you call save(), either it will
insert a new row or overwrite the contents of an existing row, depending on whether

STORING DATA IN A ROOM

668

https://commonsware.com/Coroutines

the pageUrl value on the entity is already used in the table or not.

save() is marked with the suspend keyword. The Room annotation processor will
detect this and will generate a coroutine for the implementations of save(). Room
will handle setting up the background thread for you. Without the suspend
keyword, these functions would be synchronous, blocking until the database I/O
completed.

Database

In addition to entities and DAOs, you will have at least one @Database-annotated
abstract class, extending a RoomDatabase base class. This class knits together the
database file, the entities, and the DAOs. In the case of Bookmarker,
BookmarkDatabase fills this role:

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker;

importimport android.content.Contextandroid.content.Context;
importimport androidx.room.Databaseandroidx.room.Database;
importimport androidx.room.Roomandroidx.room.Room;
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase;

@Database(entities = {BookmarkEntityBookmarkEntity.class}, version = 1)
abstractabstract classclass BookmarkDatabaseBookmarkDatabase extendsextends RoomDatabaseRoomDatabase {

privateprivate staticstatic finalfinal StringString DB_NAME = "bookmarks.db";
privateprivate staticstatic volatilevolatile BookmarkDatabaseBookmarkDatabase INSTANCE;

synchronizedsynchronized staticstatic BookmarkDatabaseBookmarkDatabase get(ContextContext context) {
ifif (INSTANCE == nullnull) {

INSTANCE =
RoomRoom.databaseBuilder(context, BookmarkDatabaseBookmarkDatabase.class, DB_NAME).build();

}

returnreturn INSTANCE;
}

abstractabstract BookmarkStoreBookmarkStore bookmarkStore();
}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkDatabase.java)

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database

STORING DATA IN A ROOM

669

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkDatabase.java

importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase

privateprivate constconst valval DB_NAME = "bookmarks.db"

@Database(entities = [BookmarkEntityBookmarkEntity::classclass], version = 1)
abstractabstract classclass BookmarkDatabaseBookmarkDatabase : RoomDatabaseRoomDatabase() {

abstractabstract funfun bookmarkStore(): BookmarkStoreBookmarkStore

companioncompanion objectobject {
@Volatile
privateprivate varvar INSTANCE: BookmarkDatabaseBookmarkDatabase? = nullnull

@Synchronized
operatoroperator funfun get(context: ContextContext): BookmarkDatabaseBookmarkDatabase {

ifif (INSTANCEINSTANCE == nullnull) {
INSTANCEINSTANCE =

RoomRoom.databaseBuilder(context, BookmarkDatabaseBookmarkDatabase::classclass.java, DB_NAMEDB_NAME)
.build()

}

returnreturn INSTANCEINSTANCE!!
}

}
}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkDatabase.kt)

There are two mandatory properties on a @Database annotation:

• entities, providing a list of all of the entity classes whose tables should go
into this database

• version, providing a version number for the database schema (increment
this number when you ship a newer app with a newer set of entities)

Just as the @Database annotation lists the entities, each associated @Dao-annotated
class also needs to be tied into the RoomDatabase subclass. Specifically, you need an
abstract function that returns an instance of the @Dao-annotated type. The name of
the function can be whatever you want, as Room only cares about the return type. In
a typical app, every entity and every DAO is handled by a single RoomDatabase, but
you can have more than one if needed (e.g., one from a library and one for your own
app’s entities).

To retrieve an instance of the generated subclass of BookmarkDatabase, we need to

STORING DATA IN A ROOM

670

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkDatabase.kt

call a function on the Room class:

• databaseBuilder() returns a RoomDatabase.Builder that will create a
database in the file specified by the filename parameter (DB_NAME in the
sample)

• inMemoryDatabaseBuilder() returns a RoomDatabase.Builder that will
create an in-memory database, useful for your test code

inMemoryDatabaseBuilder() is great for testing, as it is fast and disposable. In our
case, we are using databaseBuilder(), and using its result to set up a singleton
instance of BookmarkDatabase.

Tying It All Together

Given all of this, your code “simply” needs to:

• Obtain an instance of your RoomDatabase subclass
• Call the function(s) on it to obtain your DAO objects (e.g.,
bookmarkStore())

• Call the functions(s) on the DAO to perform database operations, including
observing any LiveData results or calling suspend functions inside a suitable
coroutine scope

We have a BookmarkRepository which does all of that, and a bit more, as we will
explore shortly.

Other Fun Stuff in the App
Of course, this app has more to it than just a Room database, because that would
not be sufficient to meet our needs. Plus, it would be really boring.

The Activity and ACTION_SENDACTION_SEND

If you launch the app from the launcher icon (or your IDE), you will see a list of
bookmarks. Initially, that list will be empty, and there is no obvious way to add
bookmarks to it.

However, if you open up a Web browser on the device, browse to a page, and choose
the browser’s “Share” option (e.g., in an overflow menu), Bookmarker should show up
as an option. If you choose it, our activity will pop up, and you should see your

STORING DATA IN A ROOM

671

bookmark:

Figure 225: Bookmarker, Showing a Few Bookmarks

Our activity, in the manifest, has two <intent-filter> elements. One is the
standard one to get the launcher icon. The other is for a different Intent action:
ACTION_SEND.

<activity<activity android:name=".MainActivity">>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.MAIN" />/>
<category<category android:name="android.intent.category.LAUNCHER" />/>

</intent-filter></intent-filter>
<intent-filter><intent-filter>

<action<action android:name="android.intent.action.SEND" />/>
<category<category android:name="android.intent.category.DEFAULT" />/>
<data<data android:mimeType="text/plain" />/>

</intent-filter></intent-filter>
</activity></activity>

(from Bookmarker/src/main/AndroidManifest.xml)

Here we are saying that we want our activity to be started either for the standard
launcher icon Intent (ACTION_MAIN and CATEGORY_LAUNCHER), but also for an Intent

STORING DATA IN A ROOM

672

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/AndroidManifest.xml

that has:

• ACTION_SEND as the action
• CATEGORY_DEFAULT as the category
• text/plain for the MIME type

Browsers that implement a “share” option often use that particular Intent structure,
and from there, we can get the URL of the active Web page.

In our MainActivity, as part of onCreate() processing, we call a saveBookmark()
method:

saveBookmark(getIntent());

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainActivity.java)

saveBookmark(intent)

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainActivity.kt)

getIntent() is how we get the Intent that was used to create this activity instance
— we pass that along to saveBookmark() for processing.

saveBookmark() will try to get the URL, and if it finds one, it will pass it along to
save() on our MainMotor:

privateprivate void saveBookmark(IntentIntent intent) {
ifif (IntentIntent.ACTION_SEND.equals(intent.getAction())) {

StringString pageUrl = getIntent().getStringExtra(IntentIntent.EXTRA_STREAM);

ifif (pageUrl == nullnull) {
pageUrl = getIntent().getStringExtra(IntentIntent.EXTRA_TEXT);

}

ifif (pageUrl != nullnull &&
UriUri.parse(pageUrl).getScheme().startsWith("http")) {
motor.save(pageUrl);

}
elseelse {

ToastToast.makeText(thisthis, R.string.msg_invalid_url,
ToastToast.LENGTH_LONG).show();

finish();
}

}
}

STORING DATA IN A ROOM

673

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainActivity.kt

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainActivity.java)

privateprivate funfun saveBookmark(intent: IntentIntent) {
ifif (IntentIntent.ACTION_SENDACTION_SEND == intent.action) {

valval pageUrl = getIntent().getStringExtra(IntentIntent.EXTRA_STREAMEXTRA_STREAM)
?: getIntent().getStringExtra(IntentIntent.EXTRA_TEXTEXTRA_TEXT)

ifif (pageUrl != nullnull && UriUri.parse(pageUrl).scheme!!.startsWith("http")) {
motor.save(pageUrl)

} elseelse {
ToastToast.makeText(thisthis, RR.string.msg_invalid_url, ToastToast.LENGTH_LONGLENGTH_LONG).show()
finish()

}
}

}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainActivity.kt)

First, we check the action of the Intent and see if it is ACTION_SEND. If it is, we look
in two “extras” of the Intent to try to find the URL:

• First, we check EXTRA_STREAM, which if it exists is always supposed to be a
string representation of a Uri

• If we did not find one there, we then check EXTRA_TEXT, which could be any
sort of text

In principle, for a text/plain ACTION_SEND request, we should get one of those. We
then see if it looks plausible as a URL (starts with http) — if it is, we forward it to
the MainMotor via save(), which in turn forwards it to a BookmarkRepository and its
save() function.

The Repository

We seem to have a slight gap in our data, though. What we get from ACTION_SEND is
a URL. What we have in our BookmarkEntity is a pageUrl, but also a title and an
iconUrl. We need to derive values for title and iconUrl given the page URL.

Making Some (J)Soup

The way a Web browser gets the title and icon for a Web page is by parsing the
HTML and looking for things like a <title> element in the <head> element. We will
need to do the same thing. Fortunately, JSoup can help.

JSoup is an HTML parser for Java (and, by extension, for Kotlin/JVM). It deals with a
lot of the quirks with HTML and gives us a way to navigate the document contents
to find things of interest.

STORING DATA IN A ROOM

674

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainActivity.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainActivity.kt
https://jsoup.org/

This app pulls in JSoup as a dependency:

implementation 'org.jsoup:jsoup:1.13.1'

(from Bookmarker/build.gradle)

We then use JSoup to attempt to read in this Web page and find our title and icon.
In the case of the Java implementation of BookmarkRepository, that is part of a
SaveLiveData that does the work on a background thread supplied by an Executor:

privateprivate staticstatic classclass SaveLiveDataSaveLiveData extendsextends LiveDataLiveData<BookmarkResultBookmarkResult> {
privateprivate finalfinal StringString pageUrl;
privateprivate finalfinal ExecutorExecutor executor;
privateprivate finalfinal BookmarkStoreBookmarkStore store;

SaveLiveDataSaveLiveData(StringString pageUrl, ExecutorExecutor executor, BookmarkStoreBookmarkStore store) {
thisthis.pageUrl = pageUrl;
thisthis.executor = executor;
thisthis.store = store;

}

@Override
protectedprotected void onActive() {

supersuper.onActive();

executor.execute(() -> {
trytry {

BookmarkEntityBookmarkEntity entity = newnew BookmarkEntityBookmarkEntity();
DocumentDocument doc = JsoupJsoup.connect(pageUrl).get();

entity.pageUrl = pageUrl;
entity.title = doc.title();

// based on https://www.mkyong.com/java/jsoup-get-favicon-from-html-page/

StringString iconUrl = nullnull;
ElementElement candidate = doc.head().select("link[href~=.*\.(ico|png)]").first();

ifif (candidate == nullnull) {
candidate = doc.head().select("meta[itemprop=image]").first();

ifif (candidate != nullnull) {
iconUrl = candidate.attr("content");

}
}
elseelse {

iconUrl = candidate.attr("href");
}

ifif (iconUrl != nullnull) {
URI uri = newnew URI(pageUrl);

entity.iconUrl = uri.resolve(iconUrl).toString();
}

store.save(entity);

STORING DATA IN A ROOM

675

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/build.gradle

postValue(newnew BookmarkResultBookmarkResult(newnew BookmarkModelBookmarkModel(entity), nullnull));
}
catchcatch (ThrowableThrowable t) {

postValue(newnew BookmarkResultBookmarkResult(nullnull, t));
}

});
}

}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkRepository.java)

In the case of Kotlin, the save() function on BookmarkRepository handles it directly
in a coroutine:

suspendsuspend funfun save(context: ContextContext, pageUrl: StringString) =
withContext(DispatchersDispatchers.IOIO) {

valval db: BookmarkDatabaseBookmarkDatabase = BookmarkDatabaseBookmarkDatabase[context]
valval entity = BookmarkEntityBookmarkEntity()
valval doc = JsoupJsoup.connect(pageUrl).getget()

entity.pageUrl = pageUrl
entity.title = doc.title()

// based on https://www.mkyong.com/java/jsoup-get-favicon-from-html-page/

valval iconUrl: StringString? =
doc.head().select("link[href~=.*\.(ico|png)]").first()?.attr("href")

?: doc.head().select("meta[itemprop=image]").first().attr("content")

ifif (iconUrl != nullnull) {
valval uri = URIURI(pageUrl)

entity.iconUrl = uri.resolve(iconUrl).toString()
}

db.bookmarkStore().save(entity)

BookmarkModelBookmarkModel(entity)
}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkRepository.kt)

JSoup.connect(pageUrl).get() will synchronously retrieve the HTML page and
parse it, throwing an exception if there is some sort of problem (e.g., cannot retrieve
the page). The Document object that we get back has a title() function to get the
page title, which is nice and easy. To get the icon URL, we have to use some funky
code, owing to multiple standards. In general, we use head() to get to the <head>
section of the Web page, then use select() to use a CSS selector to find a particular

STORING DATA IN A ROOM

676

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkRepository.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/BookmarkRepository.kt
https://www.mkyong.com/java/jsoup-get-favicon-from-html-page/
https://www.mkyong.com/java/jsoup-get-favicon-from-html-page/

element in that page, then use attr() to retrieve an attribute from the first()
element matching that CSS selector. If we get a value, it could be an absolute URL
(e.g., https://somebody.com/favicon.png) or a relative URL (e.g., /favicon.png).
So we use java.net.URI to get an absolute URL given the page URL and the raw
icon URL.

We then put the two URLs and the title into a BookmarkEntity and save() it using
our BookmarkStore.

Listing the Bookmarks

MainMotor has a corresponding MainViewState that follows the loading/content/
error pattern seen elsewhere in the book:

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker;

importimport java.util.Listjava.util.List;

classclass MainViewStateMainViewState {
finalfinal ListList<RowStateRowState> content;

MainViewStateMainViewState(ListList<RowStateRowState> content) {
thisthis.content = content;

}
}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainViewState.java)

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker

sealedsealed classclass MainViewStateMainViewState {
data classdata class ContentContent(valval rows: ListList<RowStateRowState>) : MainViewStateMainViewState()
data classdata class ErrorError(valval throwable: ThrowableThrowable) : MainViewStateMainViewState()

}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainViewState.kt)

MainMotor exposes a LiveData of MainViewState that MainActivity uses to render
the RecyclerView of existing bookmarks. MainMotor uses load() on
BookmarkRepository to get the bookmarks… but this returns a list of BookmarkModel
objects. Our MainViewState uses a list of RowState objects to represent the data
needed to render the UI for the RecyclerView rows:

STORING DATA IN A ROOM

677

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainViewState.java
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainViewState.kt

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker;

importimport android.text.Spannedandroid.text.Spanned;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.core.text.HtmlCompatandroidx.core.text.HtmlCompat;
importimport androidx.recyclerview.widget.DiffUtilandroidx.recyclerview.widget.DiffUtil;

publicpublic classclass RowStateRowState {
publicpublic finalfinal SpannedSpanned title;
publicpublic finalfinal StringString iconUrl;
finalfinal StringString pageUrl;

RowStateRowState(BookmarkModelBookmarkModel model) {
thisthis.title =

HtmlCompatHtmlCompat.fromHtml(model.title, HtmlCompatHtmlCompat.FROM_HTML_MODE_COMPACT);
thisthis.iconUrl = model.iconUrl;
thisthis.pageUrl = model.pageUrl;

}

finalfinal staticstatic DiffUtilDiffUtil.ItemCallback<RowStateRowState> DIFFER =
newnew DiffUtilDiffUtil.ItemCallback<RowStateRowState>() {

@Override
publicpublic boolean areItemsTheSame(@NonNull RowStateRowState oldItem,

@NonNull RowStateRowState newItem) {
returnreturn oldItem == newItem;

}

@Override
publicpublic boolean areContentsTheSame(@NonNull RowStateRowState oldItem,

@NonNull RowStateRowState newItem) {
returnreturn oldItem.title.toString().equals(newItem.title.toString());

}
};

}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/RowState.java)

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker

importimport android.text.Spannedandroid.text.Spanned
importimport androidx.core.text.HtmlCompatandroidx.core.text.HtmlCompat
importimport androidx.recyclerview.widget.DiffUtilandroidx.recyclerview.widget.DiffUtil

classclass RowStateRowState(model: BookmarkModelBookmarkModel) {
valval title: SpannedSpanned =

HtmlCompatHtmlCompat.fromHtml(model.title ?: "", HtmlCompatHtmlCompat.FROM_HTML_MODE_COMPACTFROM_HTML_MODE_COMPACT)
valval iconUrl = model.iconUrl
valval pageUrl = model.pageUrl

STORING DATA IN A ROOM

678

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/RowState.java

companioncompanion objectobject {
valval DIFFER: DiffUtilDiffUtil.ItemCallbackItemCallback<RowStateRowState> =

objectobject : DiffUtilDiffUtil.ItemCallbackItemCallback<RowStateRowState>() {
overrideoverride funfun areItemsTheSame(

oldItem: RowStateRowState,
newItem: RowStateRowState

): BooleanBoolean {
returnreturn oldItem === newItem

}

overrideoverride funfun areContentsTheSame(
oldItem: RowStateRowState,
newItem: RowStateRowState

): BooleanBoolean {
returnreturn oldItem.title.toString() == newItem.title.toString()

}
}

}
}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/RowState.kt)

To map from BookmarkModel to RowState, in Java, MainMotor uses
Transformations.map(). This takes a LiveData and a transformation lambda
expression, one that can convert between two objects types (e.g., from a list of
BookmarkModel to a list of RowState). map() returns another LiveData that emits the
converted objects. In our case, we use it to map between the list of BookmarkModel
objects and a MainViewState wrapping our list of RowState objects:

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker;

importimport android.app.Applicationandroid.app.Application;
importimport java.util.ArrayListjava.util.ArrayList;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MediatorLiveDataandroidx.lifecycle.MediatorLiveData;
importimport androidx.lifecycle.Transformationsandroidx.lifecycle.Transformations;

publicpublic classclass MainMotorMainMotor extendsextends AndroidViewModelAndroidViewModel {
privateprivate finalfinal BookmarkRepositoryBookmarkRepository repo;
privateprivate MediatorLiveDataMediatorLiveData<EventEvent<BookmarkResultBookmarkResult>> saveEvents = newnew MediatorLiveDataMediatorLiveData<>();
privateprivate LiveDataLiveData<EventEvent<BookmarkResultBookmarkResult>> lastSave;
finalfinal LiveDataLiveData<MainViewStateMainViewState> states;

publicpublic MainMotor(@NonNull ApplicationApplication application) {
supersuper(application);

repo = BookmarkRepositoryBookmarkRepository.get(application);
states = TransformationsTransformations.map(repo.load(),

STORING DATA IN A ROOM

679

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/RowState.kt

models -> {
ArrayListArrayList<RowStateRowState> content = newnew ArrayListArrayList<>();

forfor (BookmarkModelBookmarkModel model : models) {
content.add(newnew RowStateRowState(model));

}

returnreturn newnew MainViewState(content);
});

}

LiveDataLiveData<EventEvent<BookmarkResultBookmarkResult>> getSaveEvents() {
returnreturn saveEvents;

}

void save(StringString pageUrl) {
saveEvents.removeSource(lastSave);
lastSave = TransformationsTransformations.map(repo.save(pageUrl), Event::newnew);
saveEvents.addSource(lastSave, event -> saveEvents.setValue(event));

}
}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainMotor.java)

In Kotlin, BookmarkRepository is exposing a Flow rather than a LiveData. So, we can
use the standard map() operator on Flow to convert our list of models into a
MainViewState.Content, then use an asLiveData() extension function supplied by
the Jetpack to convert that Flow into a LiveData:

packagepackage com.commonsware.jetpack.bookmarkercom.commonsware.jetpack.bookmarker

importimport android.app.Applicationandroid.app.Application
importimport androidx.lifecycle.*androidx.lifecycle.*
importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.flow.mapkotlinx.coroutines.flow.map
importimport kotlinx.coroutines.launchkotlinx.coroutines.launch

classclass MainMotorMainMotor(application: ApplicationApplication) : AndroidViewModelAndroidViewModel(application) {
privateprivate valval _saveEvents = MutableLiveDataMutableLiveData<EventEvent<BookmarkResultBookmarkResult>>()
valval saveEvents: LiveDataLiveData<EventEvent<BookmarkResultBookmarkResult>> = _saveEvents
valval states: LiveDataLiveData<MainViewStateMainViewState>

init {
states = BookmarkRepositoryBookmarkRepository.load(getApplication())

.map { models -> MainViewStateMainViewState.ContentContent(models.map { RowStateRowState(it) }) }

.asLiveData()
}

funfun save(pageUrl: StringString) {
viewModelScope.launch(DispatchersDispatchers.MainMain) {

_saveEvents.value = trytry {
valval model = BookmarkRepositoryBookmarkRepository.save(getApplication(), pageUrl)

STORING DATA IN A ROOM

680

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainMotor.java

EventEvent(BookmarkResultBookmarkResult(model, nullnull))
} catchcatch (t: ThrowableThrowable) {

EventEvent(BookmarkResultBookmarkResult(nullnull, t))
}

}
}

}

(from Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainMotor.kt)

What Else Does Room Offer?
Room has a wide array of other capabilities, besides the simple CRUD (create-read-
update-delete) operations seen in these to-do classes, such as:

• You can add properties to the @Entity annotation to rename the table
(tableName), define indexes (indices), and so on

• @Query-annotated functions that have parameters can inject those
parameters into the SQL:

@Query("SELECT * FROM todos WHERE id = :modelId")
funfun find(modelId: StringString): LiveDataLiveData<ToDoEntityToDoEntity>

• @Insert, @Update, and @Delete functions can accept a single entity, a List of
entities, or a variable argument list of entities (e.g., vararg in Kotlin)

• Using @TypeConverter and @TypeConverters annotations, you can teach
Room how to save arbitrary data types into a single column, such as
converting a Calendar or LocalDate into a Long or string

• Room supports @ForeignKey annotations to describe relations between two
entity classes… but the entities cannot directly refer to the other entities via
properties or fields. Room requires you to retrieve those related objects
separately and tie them together on your own.

• When you do update your database schema by adding, changing, or
removing entities, you may need to run some code to convert the older
database contents to the new schema when the user upgrades your app.
Room has a Migration interface and related code to help you set up those
conversions.

• In addition to LiveData and Kotlin coroutines, Room also has add-on
libraries that add support for RxJava (e.g., queries returning an Observable
or Single).

• By default, each SQL statement runs in its own transaction. However,

STORING DATA IN A ROOM

681

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/Bookmarker/src/main/java/com/commonsware/jetpack/bookmarker/MainMotor.kt

through things like the @Transaction annotation, you can define your own
custom transaction boundaries, where you have several SQL operations that
should succeed or fail as a whole.

• Room, in conjunction with the Jetpack Paging library, supports progressive
loading of large data sets, typically based on a user scrolling through a list, to
minimize how much memory is needed at any one point in time.

• Room supports a pluggable database implementation. It defaults to the
standard copy of SQLite that is available to any Android app, but you can
replace that with some other implementation, such as SQLCipher for
Android for an encrypted database.

• Room has support for SQLite’s full-text search (FTS) engine and other SQL
constructs, such as views.

Note that Elements of Android Room covers Room in significantly more depth.

Examining Your Database
Your primary way of interacting with your database will be through your app. After
all, that is likely to be the primary way that your users will interact with your
database.

During development, though, it may be useful to peek at what is in the database.
You have a few options for doing that.

STORING DATA IN A ROOM

682

https://www.zetetic.net/sqlcipher/sqlcipher-for-android/
https://www.zetetic.net/sqlcipher/sqlcipher-for-android/
https://commonsware.com/Room

Android Studio’s Database Inspector

A leading candidate, starting with Android Studio 4.1, is Android Studio itself.
Docked on the bottom edge of the IDE window should be a “Database Inspector”
tool, which opens up into a tool window when clicked:

Figure 226: Database Inspector, As Initially Opened

In the strip just below the title, you will see the particular app that Database
Inspector is offering to inspect. You can switch to something else by clicking on that
entry and choosing the desired device (or emulator) and process from drop-down
menus.

STORING DATA IN A ROOM

683

Database Inspector appears to look for databases in the stock location that Room
and most other apps place them — in this case, it shows bookmarks.db in the tree on
the left. Inside, it shows two tables, BookmarkEntity (that we defined) and
room_master_table (that Room creates in any database that it manages). Folding
open any table gives you some details of the structure:

Figure 227: Database Inspector, Showing Columns of BookmarkEntity Table

In the toolbar above that tree, the toolbar button that looks like a grid with a
magnifying glass will open a tab for you to be able to execute queries against the
selected database:

Figure 228: Database Inspector with Query Tab

STORING DATA IN A ROOM

684

The drop-down towards the upper-left of the tab controls the database, and the field
to the right is where you can enter a SQL expression. Clicking the “Run” button then
executes your SQL expression, with a grid showing you the results:

Figure 229: Database Inspector Showing Query Results

If you make changes to the database via your app, you can update the Database
Inspector output, either by clicking the “Refresh table” button or checking the “Live
updates” checkbox. The latter will auto-refresh the query results based on database
operations that your app performs.

Note that Database Inspector seems slow to start up and identify databases. Once
those steps are completed, it runs reasonably quickly.

Other Options

Database Inspector is not your only option!

There are libraries that embed a tiny server in your debug builds, then offer some
sort of client to work with that server. Facebook’s Flipper is one example, built on
top of Facebook’s experiences with the Stetho predecessor. Stetho integrated with
Chrome Dev Tools; Flipper comes with its own desktop client. With either tool, you
can arrange to inspect your databases, akin to Database Inspector, without
necessarily having Android Studio installed.

Other libraries are designed to expose debugging capabilities within your own app,
and that may include access to your databases.

Also, SQLite is a very popular database file format, and there are many tools for
working with them, such as DB Browser for SQLite. You can find your database

STORING DATA IN A ROOM

685

https://fbflipper.com/
https://github.com/facebookarchive/stetho
https://android-arsenal.com/tag/218?sort=created
https://sqlitebrowser.org/

using the Device File Explorer:

Figure 230: Device File Explorer, Showing Databases

The default location for Room databases is in a databases/ directory for your app’s
portion of internal storage. Sometimes, you will see just the database file. Other
times, such as is shown above, you will see three files:

• The database itself
• A file with the same name as the database and a -shm suffix
• A file with the same name as the database and a -wal suffix

To work with DB Browser for SQLite or similar tools, you will need to select all three
of those files (if they all exist) and save them all to the same directory on your
development machine.

You can learn more about examining your database using
Database Inspector and other tools in the "SQLite Clients"
chapter of Elements of Android Room!

STORING DATA IN A ROOM

686

https://commonsware.com/Room

Inverting Your Dependencies

Android app development winds up using a fair number of singletons, such as the
repositories that we have used in several preceding chapters. So long as those
singletons do not result in an unexpected memory leak, and so long as they are part
of some organized architecture, singletons can be fine.

The problems kick in when you need different “singletons” in different situations.
For example, you might need a singleton that responds in certain ways for testing,
compared to the “real” singleton that you need for your production app use.

So, even though singletons are largely unavoidable in modern Android app
development, how we declare and get those singletons can vary. So far, our
repositories have been static fields in Java or object classes in Kotlin. Those are
simple but inflexible. Dependency inversion allows us to still use singletons, yet be
able to replace them as needed, such as for testing.

The Problem: Test Control
Let’s revisit the diceware samples from earlier in the book. In both DiceLight and
Diceware, we have a PassphraseRepository. In Kotlin, it is declared as an object; in
Java, it is declared as a class with a static field holding a singleton instance. And,
both work, using a SecureRandom as the source of random numbers for use in
generating the passphrase.

But now, suppose we want to test that code.

Random numbers are messy when it comes to tests. Truly random numbers are not
repeatable, and so that makes our tests difficult to write. The way you test data
backed by random numbers is to “seed” the random number generator, so that while

687

it generates random numbers, those random numbers are consistent across uses of
the seed. Two random number generators started with the same seed will generate
the same random numbers. Now, we have repeatable data, suitable for testing… but
we do not want to use a fixed seed for the actual production use of the app. In the
case of SecureRandom, it will seed itself from “sources of entropy” by default, thereby
providing more truly random numbers.

So, for testing, we want a manually-seeded SecureRandom. For production, we want
an automatically-seeded SecureRandom. Yet our singleton repository has just the one
SecureRandom, and we do not have a great way in the PassphraseRepository to
know whether we are running as part of a test or not.

We could say that the PassphraseRepository takes the SecureRandom as a
parameter. Tests can pass in the seeded SecureRandom; production code could pass
in a regular SecureRandom. For this limited scenario, we could make that work.
However, this becomes unwieldy if we have hundreds of things that vary based on
testing and need to pass those objects through several layers of app code.

The Solution: Dependency Inversion
What we want is to be able to configure PassphraseRepository at runtime in two
different ways:

• If we are running normally, use a regular SecureRandom
• If we are running in a test, use a seeded SecureRandom

The recommended approach for this sort of pattern is to use dependency inversion.
Basically, rather than PassphraseRepository creating a SecureRandom or having one
passed in on every call, PassphraseRepository gets created with the desired
SecureRandom instance. We push dependencies (SecureRandom) into the things that
use those dependencies (PassphraseRepository) as part of setting up the
singletons.

Dependency inversion is usually implemented using “dependency injectors”, “service
locators”, or hybrid solutions. The details of the differences between those specific
approaches is beyond the scope of this book — see this Stack Overflow discussion as
an example of the long debates that are had regarding them.

INVERTING YOUR DEPENDENCIES

688

https://stackoverflow.com/q/1557781/115145

Dependency Inversion in Android
When it comes to Android app development, there are a few dependency inversion
options that have become popular.

Java: Dagger 2

The de facto dependency injection standard for Java app development is Dagger. It is
very powerful, but that power comes with a lot of confusion and complexity.

Dagger uses annotations to indicate how the dependencies get connected. In our
example, annotations would indicate that PassphraseRepository needs a
SecureRandom and how that SecureRandom gets created, both for regular code and
for tests. Dagger then generates the “glue code” needed to connect those
dependencies.

Kotlin: Koin and Kodein

You can use Dagger for Kotlin code as well, though the confusion and complexity
increases. For Kotlin-centric projects, there are other options that are simpler to use,
though they focus more on runtime dependency inversion rather than compile-time
code generation.

The two most popular options for Kotlin appear to be Kodein’s dependency injector
and Koin. In this chapter, we will explore the use of Koin.

Koin can be used in Java projects, but it is definitely geared around use in Kotlin. As
such, we will only look at Koin in a Kotlin project. The concepts of dependency
inversion still hold true for Java, but the implementation in something like Dagger
would look quite a bit different.

Applying Koin
With all that in mind, let’s look at the DiceKoin sample module in the Sampler
project, to see how Koin works and what problems it solves.

The Dependency

As with most things, Koin comes from a library. Actually, Koin is made up of several

INVERTING YOUR DEPENDENCIES

689

https://dagger.dev/
https://kodein.org/di/
https://insert-koin.io/
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/DiceKoin
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/DiceKoin

libraries, to handle different scenarios. For example, you can use Koin for non-
Android projects using Kotlin.

In our case, we are using koin-androidx-viewmodel:

implementation "org.koin:koin-androidx-viewmodel:2.1.6"

(from DiceKoin/build.gradle)

This not only pulls in Koin and Koin’s support for Android, but it offers specific
support for the Jetpack edition of ViewModel, as we will see.

PassphraseRepositoryPassphraseRepository

PassphraseRepository is now a class, not an object as it was before. And, it gets a
Context and a SecureRandom in its constructor. This allows us to avoid the Context
parameter on functions like generate() and the locally-initialized SecureRandom
instance:

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware

importimport android.content.Contextandroid.content.Context
importimport android.net.Uriandroid.net.Uri
importimport android.util.LruCacheandroid.util.LruCache
importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.withContextkotlinx.coroutines.withContext
importimport java.io.BufferedReaderjava.io.BufferedReader
importimport java.io.InputStreamjava.io.InputStream
importimport java.io.InputStreamReaderjava.io.InputStreamReader
importimport java.security.SecureRandomjava.security.SecureRandom
importimport java.util.*java.util.*

valval ASSET_URI: UriUri =
UriUri.parse("file:///android_asset/eff_short_wordlist_2_0.txt")

privateprivate constconst valval ASSET_FILENAME = "eff_short_wordlist_2_0.txt"

classclass PassphraseRepositoryPassphraseRepository(
privateprivate valval context: ContextContext,
privateprivate valval random: SecureRandomSecureRandom

) {
privateprivate valval wordsCache = LruCacheLruCache<UriUri, ListList<StringString>>(4)

suspendsuspend funfun generate(wordsDoc: UriUri, count: IntInt): ListList<StringString> {
varvar words: ListList<StringString>?

synchronized(wordsCache) {
words = wordsCache.getget(wordsDoc)

}

returnreturn words?.let { rollDemBones(it, count) }
?: loadAndGenerate(wordsDoc, count)

}

INVERTING YOUR DEPENDENCIES

690

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/build.gradle

privateprivate suspendsuspend funfun loadAndGenerate(wordsDoc: UriUri, count: IntInt): ListList<StringString> =
withContext(DispatchersDispatchers.IOIO) {

valval inputStream: InputStreamInputStream? = ifif (wordsDoc == ASSET_URIASSET_URI) {
context.assets.openopen(ASSET_FILENAMEASSET_FILENAME)

} elseelse {
context.contentResolver.openInputStream(wordsDoc)

}

inputStream?.use {
valval words = it.readLines()

.map { line -> line.split("\t") }

.filter { pieces -> pieces.size == 2 }

.map { pieces -> pieces[1] }

synchronized(wordsCache) {
wordsCache.put(wordsDoc, words)

}

rollDemBones(words, count)
} ?: throwthrow IllegalStateExceptionIllegalStateException("could not open $wordsDoc")

}

privateprivate funfun rollDemBones(words: ListList<StringString>, wordCount: IntInt) =
ListList(wordCount) {

words[random.nextInt(words.size)]
}

privateprivate funfun InputStreamInputStream.readLines(): ListList<StringString> {
valval result = ArrayListArrayList<StringString>()

BufferedReaderBufferedReader(InputStreamReaderInputStreamReader(thisthis)).forEachLine { result.add(it); }

returnreturn result
}

}

(from DiceKoin/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt)

Otherwise, PassphraseRepository is the same as it was, in terms of API and
functionality.

MainMotorMainMotor

MainMotor has a couple of changes as well:

• It gets a PassphraseRepository via its constructor, rather than referencing
the former object form of the repository

• It no longer needs to pass a Context in its calls to the repository, so it can be
a regular ViewModel instead of an AndroidViewModel

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware

importimport android.net.Uriandroid.net.Uri

INVERTING YOUR DEPENDENCIES

691

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/src/main/java/com/commonsware/jetpack/diceware/PassphraseRepository.kt

importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.MutableLiveDataandroidx.lifecycle.MutableLiveData
importimport androidx.lifecycle.ViewModelandroidx.lifecycle.ViewModel
importimport androidx.lifecycle.viewModelScopeandroidx.lifecycle.viewModelScope
importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.launchkotlinx.coroutines.launch

privateprivate constconst valval DEFAULT_WORD_COUNT = 6

classclass MainMotorMainMotor(privateprivate valval repo: PassphraseRepositoryPassphraseRepository) : ViewModelViewModel() {
privateprivate valval _results = MutableLiveDataMutableLiveData<MainViewStateMainViewState>()
valval results: LiveDataLiveData<MainViewStateMainViewState> = _results
privateprivate varvar wordsDoc = ASSET_URIASSET_URI

init {
generatePassphrase(DEFAULT_WORD_COUNTDEFAULT_WORD_COUNT)

}

funfun generatePassphrase() {
generatePassphrase(

(results.value asas? MainViewStateMainViewState.ContentContent)?.wordCount ?: DEFAULT_WORD_COUNTDEFAULT_WORD_COUNT
)

}

funfun generatePassphrase(wordCount: IntInt) {
_results.value = MainViewStateMainViewState.LoadingLoading

viewModelScope.launch(DispatchersDispatchers.MainMain) {
_results.value = trytry {

valval randomWords = repo.generate(wordsDoc, wordCount)

MainViewStateMainViewState.ContentContent(randomWords.joinToString(" "), wordCount)
} catchcatch (t: ThrowableThrowable) {

MainViewStateMainViewState.ErrorError(t)
}

}
}

funfun generatePassphrase(wordsDoc: UriUri) {
thisthis.wordsDoc = wordsDoc

generatePassphrase()
}

}

(from DiceKoin/src/main/java/com/commonsware/jetpack/diceware/MainMotor.kt)

Otherwise, it too is unchanged from before.

KoinAppKoinApp

At some point, though, something needs to be creating an instance of
PassphraseRepository. MainMotor is not doing that — it is expecting something
else to create the instance and supply it to the MainMotor constructor. Similarly,
something needs to be creating that SecureRandom instance to pass to

INVERTING YOUR DEPENDENCIES

692

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/src/main/java/com/commonsware/jetpack/diceware/MainMotor.kt

PassphraseRepository, whenever somebody gets around to making that repository
instance.

The “something” is Koin.

Compared with the Diceware sample, DiceKoin has one new class: KoinApp:

packagepackage com.commonsware.jetpack.dicewarecom.commonsware.jetpack.diceware

importimport android.app.Applicationandroid.app.Application
importimport org.koin.android.ext.koin.androidContextorg.koin.android.ext.koin.androidContext
importimport org.koin.android.ext.koin.androidLoggerorg.koin.android.ext.koin.androidLogger
importimport org.koin.androidx.viewmodel.dsl.viewModelorg.koin.androidx.viewmodel.dsl.viewModel
importimport org.koin.core.context.startKoinorg.koin.core.context.startKoin
importimport org.koin.dsl.moduleorg.koin.dsl.module
importimport java.security.SecureRandomjava.security.SecureRandom

privateprivate valval MODULE = module {
single { SecureRandomSecureRandom() }
single { PassphraseRepositoryPassphraseRepository(androidContext(), getget()) }
viewModel { MainMotorMainMotor(getget()) }

}

classclass KoinAppKoinApp : ApplicationApplication() {
overrideoverride funfun onCreate() {

supersuper.onCreate()

startKoin {
androidLogger()
androidContext(thisthis@KoinApp)
modules(MODULEMODULE)

}
}

}

(from DiceKoin/src/main/java/com/commonsware/jetpack/diceware/KoinApp.kt)

Subclass of ApplicationApplication

We have seen the Application object before. It is a process-wide singleton instance
that we can access at various points, such as calling getApplication() on an
Activity or AndroidViewModel. By default, it is an instance of
android.app.Application.

However, you can create your own subclass of Application and use it instead.

INVERTING YOUR DEPENDENCIES

693

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/src/main/java/com/commonsware/jetpack/diceware/KoinApp.kt

The big reason to do this is to get control every time your process is forked.
Application has an onCreate() function, much like how an Activity does.
onCreate() on an Activity is called when that Activity is created — similarly,
onCreate() on an Application is called when that Application is created. Since the
Application singleton is created when your process starts, your code in onCreate()
will get called when your process starts.

As a result, we tend to use a custom Application subclass for cases where we need
to do some process-wide initialization. Setting up dependency inversion, whether
using Koin or something else, is usually done in a custom Application subclass.

Referenced in the Manifest

To tell Android to create an instance of your Application subclass when your
process starts, you need to add an android:name attribute to the <application>
element itself in the manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest<manifest xmlns:tools="http://schemas.android.com/tools"

package="com.commonsware.jetpack.diceware"
xmlns:android="http://schemas.android.com/apk/res/android">>

<application<application
android:name=".KoinApp"
android:allowBackup="false"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme"
tools:ignore="GoogleAppIndexingWarning">>
<activity<activity android:name=".MainActivity">>

<intent-filter><intent-filter>
<action<action android:name="android.intent.action.MAIN" />/>

<category<category android:name="android.intent.category.LAUNCHER" />/>
</intent-filter></intent-filter>

</activity></activity>
</application></application>

</manifest></manifest>

(from DiceKoin/src/main/AndroidManifest.xml)

Previously, we had only used android:name for things like <activity>. However,

INVERTING YOUR DEPENDENCIES

694

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/src/main/AndroidManifest.xml

android:name fills the same role: identifying the Java or Kotlin class that Android
should use for this component.

An <application> element without android:name defaults to using
android.app.Application. In our case, we are telling Android to use this KoinApp
class.

Defines a Module

Part of what KoinApp does is define a Koin “module”. A module states what objects
Koin can make available to parts of your app.

The simplest way to declare a Koin module is via the module() top-level function.
This takes a lambda expression, in which you have statements that set up each of the
Koin-managed objects (or factories of objects, as we will see).

Two of those statements are calls to single():

single { SecureRandomSecureRandom() }
single { PassphraseRepositoryPassphraseRepository(androidContext(), getget()) }

(from DiceKoin/src/main/java/com/commonsware/jetpack/diceware/KoinApp.kt)

single() in a module() says “hey, Koin, when something asks for an object, here is
one that you can use… but only have one of it for the entire app”. single() takes a
lambda expression that creates an instance of some object, and single() knows
what type of object that is. When something needs an object of that type, Koin can
execute that lambda expression (if needed) and hand over that singleton instance.

The first single() call sets up a Koin-managed singleton instance of SecureRandom.
The second single() call sets up a Koin-managed singleton instance of
PassphraseRepository.

Our lambda expression for creating the PassphraseRepository instance needs to
provide a Context and a SecureRandom to the PassphraseRepository constructor.
For the Context, we use androidContext(), which says, “hey, Koin, you should have
a Context that we can use here!” — we will see where that Context comes from
shortly. For the SecureRandom, we use get(), which says “hey, Koin, search this
module for a supplier of SecureRandom objects, and use that here!”. In our case, we
set up a SecureRandom singleton on the preceding line. So, Koin will take that
singleton SecureRandom and pass it to PassphraseRepository, when it is time to
create our singleton instance of PassphraseRepository.

INVERTING YOUR DEPENDENCIES

695

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/src/main/java/com/commonsware/jetpack/diceware/KoinApp.kt

The third statement in our module is not a single(), but a viewModel():

viewModel { MainMotorMainMotor(getget()) }

(from DiceKoin/src/main/java/com/commonsware/jetpack/diceware/KoinApp.kt)

Courtesy of our koin-androidx-viewmodel, this ties into the Jetpack ViewModel
system. Our lambda expression needs to return a ViewModel, and in this case it
creates an instance of MainMotor. MainMotor takes a PassphraseRepository instance
as a constructor parameter, and our get() call causes Koin to retrieve the
PassphraseRepository singleton, creating it if it does not already exist.

Note that viewModel is not creating a singleton instance. Rather, it will defer to the
Jetpack ViewModel system to return the proper ViewModel for the activity or
fragment that might request one.

Starts Koin

The onCreate() function in KoinApp chains to the superclass implementation of
onCreate(), then calls startKoin():

overrideoverride funfun onCreate() {
supersuper.onCreate()

startKoin {
androidLogger()
androidContext(thisthis@KoinApp)
modules(MODULEMODULE)

}
}

(from DiceKoin/src/main/java/com/commonsware/jetpack/diceware/KoinApp.kt)

As the name suggests, startKoin() starts Koin. By doing that here in onCreate(),
Koin will be ready for use in the rest of our app. Like module(), startKoin() takes a
lambda expression where we can have a series of statements to describe our Koin
configuration. Here, we have three:

• androidLogger(), telling Koin that if it has any messages to log, use Logcat
• androidContext(), telling Koin what Context to return from
androidContext() calls in our module definition — in this case, we provide
the KoinApp itself

• modules(), where we can provide one or more modules that we want Koin to

INVERTING YOUR DEPENDENCIES

696

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/src/main/java/com/commonsware/jetpack/diceware/KoinApp.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/src/main/java/com/commonsware/jetpack/diceware/KoinApp.kt

support

MainActivityMainActivity

MainActivity now needs to use Koin to get its MainMotor. Previously, we used
Jetpack’s viewModels() delegate. Now, we use Koin’s viewModel() delegate:

privateprivate valval motor: MainMotorMainMotor byby viewModel()

(from DiceKoin/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt)

You can learn more about property delegates in the "Property
Delegates" chapter of Elements of Kotlin!

The net effect is that the first time we try using motor, viewModel() will look in the
Koin modules to see if it knows how to create an object of the desired type. In this
case, we configured how to create a MainMotor.

For other types of objects, we would use an inject() property delegate instead of
viewModel(). For example, if we wanted to directly obtain the
PassphraseRepository in MainActivity, we would inject() it. viewModel(), as the
name suggests, has special support for Android’s ViewModel system.

The Dependency Inversion Flow

Here’s how this works in practice, when the user taps our launcher icon.

First, onCreate() of KoinApp gets called. There, we set up our Koin module.
However, none of those Koin-managed objects are actually created yet. For example,
the PassphraseRepository is not created right away, nor is any instance of
MainMotor.

Eventually, MainActivity gets instantiated. When we initialize motor using by
viewModel(), Koin sets up a property delegate to retrieve a MainMotor when needed.

We then reference motor in onCreate() of MainActivity as before:

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

INVERTING YOUR DEPENDENCIES

697

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt
https://commonsware.com/Kotlin

valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

motor.results.observe(thisthis) { viewState ->
whenwhen (viewState) {

MainViewStateMainViewState.LoadingLoading -> {
binding.progress.visibility = ViewView.VISIBLEVISIBLE
binding.passphrase.text = ""

}
isis MainViewStateMainViewState.ContentContent -> {

binding.progress.visibility = ViewView.GONEGONE
binding.passphrase.text = viewState.passphrase

}
isis MainViewStateMainViewState.ErrorError -> {

binding.progress.visibility = ViewView.GONEGONE
binding.passphrase.text = viewState.throwable.localizedMessage
LogLog.e(

"Diceware",
"Exception generating passphrase",
viewState.throwable

)
}

}
}

}

(from DiceKoin/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt)

When we do that, Koin’s property delegate tries to retrieve an existing MainMotor
instance for this activity. That will fail, as this is the first time we are creating a
MainMotor. So Koin executes the lambda expression that we provided to
viewModel(), intending to return that object as our MainMotor from the property
delegate.

That lambda expression has a get() call for a parameter that needs a
PassphraseRepository. So, Koin looks around the module and finds the single()
for PassphraseRepository. Since we have not created an instance of that yet, Koin
executes our lambda expression that we provided to single(), intending to return
that object as our PassphraseRepository from our get() call.

That lambda expression in turn has a get() call that needs a SecureRandom. Once
again, Koin examines the module for a match and finds the SecureRandom single().
Since we have not needed this before, Koin executes that lambda expression, saving
that SecureRandom for future get() or inject() calls, and returns it from the get()

INVERTING YOUR DEPENDENCIES

698

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DiceKoin/src/main/java/com/commonsware/jetpack/diceware/MainActivity.kt

call. That in turn allows the PassphraseRepository to be created and cached by
Koin for future get() or inject() calls. And, that allows us to create the MainMotor
and use it as our ViewModel.

If we rotate the screen and undergo a configuration change, our new MainActivity
instance will once again use Koin to get its MainMotor. This time, Koin will return
the previous MainMotor instance, courtesy of Jetpack’s ViewModel system.

Suppose the user presses BACK, but then immediately re-launches our app (e.g., the
BACK click was by accident). Now, when MainActivity asks Koin for a MainMotor,
since this is a completely new activity instance, we get a completely new MainMotor
instance. However, most likely, this is the same process as before, since the user had
not been gone very long. So, we use the same PassphraseRepository and
SecureRandom as before, since Koin caches them and reuses those instances, as
instructed by the single() rule.

What This Buys Us

In the end, that’s not really much additional code… but it is a bit more complex than
what we had originally. And it may not be obvious what we gained by it, since we
still wind up with all the same objects as before, just connected in a different
fashion.

When it comes time to test MainMotor or MainActivity, though, that is where
dependency inversion starts to become important. As noted before, we will want a
controlled test instance of SecureRandom, one with a stable seed so we get a stable
set of random numbers.

When our instrumented tests run, our KoinApp still gets instantiated and still
configures Koin — that does not change just because we are testing. However, after
that occurs, and before we test our classes, we can change the Koin configuration. In
particular, we can replace the self-seeding SecureRandom with a manually-seeded
SecureRandom, so our tests become predictable. That code resides solely in our tests.
PassphraseRepository, in particular, does not know about this change… because so
long as it gets some SecureRandom instance, PassphraseRepository can do its work.
So, rather than having to teach PassphraseRepository different rules for creating a
SecureRandom instance (“in tests, create it this way, otherwise create it this other
way”), PassphraseRepository receives a SecureRandom. It is our Koin configuration
code — in KoinApp and our tests — that determine which type of SecureRandom we
use.

INVERTING YOUR DEPENDENCIES

699

We will explore this in greater detail in the next chapter.

INVERTING YOUR DEPENDENCIES

700

Testing Your Changes

We saw the basics of testing in Android back in a previous chapter. However, that
was just with some pre-defined tests created by Android Studio’s new-project
wizard.

Presumably, your app will have more code that needs testing.

(if your app is purely the result of the new-project wizard templates, feel free to skip
this chapter)

In this chapter, we will explore a bit more about how to write and run tests in
Android, so that you can test your app code.

A Quick Recap
There are two broad categories of tests in Android: instrumented tests and unit tests.

Instrumented tests:

• Run in Android, on a device or emulator
• Have full access to the Android SDK, so you can test most of your app
• Run relatively slowly

Unit tests:

• Run outside of Android, directly on your development machine or CI server,
in whatever operating system that is running (Windows, macOS, Linux)

• Have no access to the actual Android SDK, so your testing will tend to be
focused on pure-Java/Kotlin code

701

• Run relatively quickly

Both categories of tests will look the same on the surface, in that both use JUnit4
and have similar structures (e.g., @Test-annotated methods or functions).

Which Tests Should I Write?
So, which should we use? Instrumented tests? Unit tests? Both?

If you only wanted to worry about one, choose instrumented tests. Everything can
be tested using instrumented tests, while unit tests cannot readily test everything.

For larger projects — particularly those where tests will be run frequently — the
speed gain from unit tests can be significant. So, a typical philosophy is:

• Test what you can with unit tests
• Test the other stuff with instrumented tests

We will return to this question later in the chapter, after exploring the various
testing options at our disposal.

Writing Unit Tests
First, let’s look at unit tests, the ones that run on your development machine. As
noted above, these reside in the test/ source set of your module.

The ToDoTests sample module in the Sampler contains a couple of unit tests in
Kotlin. A Java project will have a similar setup, just with Java test classes.

ToDoTests is an expanded version of the “To Do” sample app that we explored back
in the chapters on fragments and navigation. It is reminiscent of the sample app
being developed in Exploring Android, with a variety of changes.

Configure Gradle

Gradle knows how to run unit tests “out of the box”. The only thing that you need to
configure in Gradle are dependencies. Just as your app code can depend upon
libraries, so too can your test code. However, instead of implementation (to add
dependencies to your main source set), you use testImplementation (to add
dependencies to your test source set).

TESTING YOUR CHANGES

702

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ToDoTests
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/ToDoTests
https://commonsware.com/AndExplore

ToDoTests has several such dependencies:

testImplementation 'junit:junit:4.13.1'
testImplementation "androidx.arch.core:core-testing:2.1.0"
testImplementation "org.mockito:mockito-inline:2.28.2"
testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.3.6'
testImplementation 'com.jraska.livedata:testing-ktx:1.1.0'

(from ToDoTests/build.gradle)

The two that nearly every project will use are:

• junit:junit, which contains the JUnit unit test framework
• androidx.arch.core:core-testing, which contains the main Jetpack

support for unit testing

Everything else beyond that is particular to the test code that you want to write. We
will see what some of these dependencies give to us later in this chapter, as we
explore the tests that are already here.

Create a Test Class

For your own project, though, you will need to create your own test classes. You will
not be able to download them from some book’s repository.

(sorry!)

Inside the test/ source set, you can have a java/ directory containing your standard
sort of Java packages and Java/Kotlin source files.

How you choose to organize your test code into packages is up to you. Note, though,
that if you place test code in the same package as the code that it is testing, you can
access package-private Java methods, fields, and so forth. For example, if you are
testing a foo.bar.Something class, and your test class is foo.bar.SomethingTest,
SomethingTest can access the package-private members of Something… even when
Something and SomethingTest are in separate source sets. This gives you some
amount of “white box testing”, as you can peek inside more of the objects being
tested. Kotlin does not use Java’s package-private system, so this distinction is less
important in a pure-Kotlin project.

Your test classes are just ordinary Java/Kotlin classes. They do not have to extend

TESTING YOUR CHANGES

703

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/build.gradle

any particular base class, nor does the class necessarily have to have any annotations
to teach JUnit that it is a class containing tests.

Add Test Functions

In your test class, you can add test methods or functions. These need to:

• Be annotated with @Test
• Take no parameters (by default)
• Be public (for Java; Kotlin functions are public by default)
• Return void (in Java) or Unit (the default return type in Kotlin)

In ToDoTests, we have a SillyTest test class with a pair of silly test functions:

packagepackage com.commonsware.todocom.commonsware.todo

importimport org.junit.Assert.assertEqualsorg.junit.Assert.assertEquals
importimport org.junit.Testorg.junit.Test

classclass SillyTestSillyTest {
@Test
funfun `this isis very silly`() {

assertEquals(1, 1)
}

@Test
funfun thisIsEquallySillyButWithoutBackticks() {

assertEquals(4, 2 + 2)
}

}

(from ToDoTests/src/test/java/com/commonsware/todo/SillyTest.kt)

In Kotlin unit tests, you will sometimes find test functions that have a strange
function name syntax, where the function name has spaces and/or punctuation, and
the whole function name is wrapped in backticks. While this looks odd in the code,
when you run the tests, since the function names become part of the test output, it
allows that test output to read a bit more naturally.

You can learn more about backticks in function names in the
"Escaped Method Names" chapter of Elements of Kotlin!

TESTING YOUR CHANGES

704

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/test/java/com/commonsware/todo/SillyTest.kt
https://commonsware.com/Kotlin

Assert Yourself

The bodies of these two test functions both call an assertEquals() method. This
comes from JUnit, and it “does what it says on the tin”: it asserts that two values are
equal. If they are, the test passes. If they are not, the test fails. If there are no
assertion failures in the entire test function, the test succeeds.

There are many libraries available to add more powerful assertion rules than “does X
equal Y?”. We will see one of these — Hamkrest — in the course of this chapter.

Running the Tests

The “gutter” area in the Java/Kotlin editor will show green “run” icons next to the
test class and any test methods or functions:

Figure 231: SillyTest, As Viewed in Android Studio

As you might expect, clicking the “run” icon runs whatever the icon points to: an
individual test method/function or the entire class.

TESTING YOUR CHANGES

705

Also, in the Android Studio toolbar, there is an “Edit Configurations…” item in the
run scope drop-down (the one that you usually use to indicate the module to run):

Figure 232: “Edit Configurations” Drop-Down Option

That will bring up a “Run/Debug Configurations” dialog. Clicking the “+” icon and
choosing “Android JUnit” will allow you to create a new run configuration where you
can arrange to test several test classes at once:

Figure 233: Run Configuration for Testing All Classes in ToDoTests Module

You can then run that configuration from the Android Studio toolbar.

TESTING YOUR CHANGES

706

And, as we saw earlier in the book, whatever you choose to run — a single test, a
single class, or a custom run configuration — the results will appear in a “Run” tool,
docked by default at the bottom of the Android Studio window:

Figure 234: Android Studio Test Results

Executing Code Around the Tests

Each test method or function is executed in an independent instance of the test
class. So, if we run both tests in SillyTest, two instances of SillyTest get created,
one for each of the two test functions.

If you have common initialization or cleanup code that you want to execute around
those test functions, you have several options:

• You can use an ordinary constructor or field/property initializers
• You can have a method or function annotated with @Before — this will be

called before each of the test functions
• You can have a method or function annotated with @After — this will be

called after each of the test functions
• You can have a method or function annotated with @BeforeClass — this will

be called before any of the test functions in the test class get executed
• You can have a method or function annotated with @AfterClass — this will

be called after any of the test functions in the test class get executed

In addition, you can have a field or property annotated with @Rule. A JUnit rule
encapsulates “before” and “after” logic. The rule instance in the @Rule-annotated
field or property will be able to perform some work before each test method/
function and after each test method/function. This allows for easier reuse and
encapsulation of whatever the before/after logic entails.

We will see examples of @Before and @Rule later in this chapter.

TESTING YOUR CHANGES

707

Employing Mocks
In unit tests, we often run into problems where we want to exercise one thing, but
that thing depends upon other things that we lack:

• It depends upon the Android SDK
• It depends upon a server, and that server might not always be running at the

time we would want to run the tests
• It depends upon content that does not exist in an isolated test, such as some

sort of authentication token representing a logged-in user

For those things, we can use mocks.

Why Are We Being Mean?

In this case, “mock” does not mean to ridicule something.

Instead, here, “mock” is used to indicate an object that pretends to be something
that it is not:

• It pretends to be an Android Context
• It pretends to be your repository that ordinarily would talk to some server
• It pretends to be an authenticated user

If we set things up properly, our tests can exercise some specific functionality while
using mock objects for anything that we cannot readily use in our tests. We can set
up the mock objects to respond as we need them to for a given test (“stubs”). We can
even verify that those mock objects were used when we expected them to be.

The Importance of Dependency Inversion

Part of the “set things up properly” is needing to ensure we have a way of getting the
mocks where we need them. That is where dependency inversion comes into play.

In ToDoTests, we have a ViewModel class called SingleModelMotor. It works with a
ToDoRepository to supply the UI with to-do items, plus support actions whereby
users can add, edit, or delete to-do items. In the real app, ToDoRepository is backed
by a Room-powered database. However, that does not work well in a unit test: Room
expects to work with an Android Context object, and Room expects a SQLite
implementation that exists on Android but not necessarily on your development

TESTING YOUR CHANGES

708

https://en.wiktionary.org/wiki/mock

machine.

We could use a mock ToDoRepository… but that implies that we have a way to get
the mock repository over to our SingleModelMotor that we are testing. If
SingleModelMotor was referring to some singleton instance of ToDoRepository —
such as having ToDoRepository be a Kotlin object — then we would be out of luck.

Instead, ToDoTests uses Koin for dependency inversion, as we used in a previous
chapter. As such, SingleModelMotor gets a ToDoRepository in its constructor, so in
testing, we can just supply our mock ToDoRepository when we create a
SingleModelMotor instance.

Add Mockito

The leading mock implementation in use for Android is Mockito. A Java project can
use Mockito directly, but a Kotlin project usually is better served by using Mockito
by means of the Mockito-Kotlin wrapper library.

ToDoTests has two testImplementation lines in its dependencies, to pull in Mockito
and the Mockito-Kotlin wrapper:

testImplementation "org.mockito:mockito-inline:2.28.2"
testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"

(from ToDoTests/build.gradle)

Define and Supply a Mock

Declaring a mock in Kotlin is very easy: call the mock() global function supplied by
Mockito-Kotlin:

privateprivate valval repo: ToDoRepositoryToDoRepository = mock()

(from ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)

The equivalent Java is not much longer:

privateprivate ToDoRepositoryToDoRepository repo = mock(ToDoRepositoryToDoRepository.class);

The resulting object is not a “real” instance of ToDoRepository, but rather an
generated object that offers the same public API.

We can then pass this mock to objects that need it, such as an instance of

TESTING YOUR CHANGES

709

https://site.mockito.org/
https://github.com/nhaarman/mockito-kotlin
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt

SingleModelMotor:

@Before
funfun setUp() {

whenever(repo.find(testModel.id)).doReturn(flowOf(testModel))

underTest = SingleModelMotorSingleModelMotor(repo, testModel.id)
}

(from ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)

Here, setUp() will be called before each of our test functions, since it has the
@Before annotation.

Define Stub Responses

The first line of that setUp() function defines a stub response. Our
SingleModelMotor is going to call a find() function on ToDoRepository, and we
need to indicate what our mock should return when that call is made. By default,
the mock will return null, which is not what we want.

The Mockito-Kotlin recipe for setting up a stub is whenever(...).doReturn(...),
for some values of

The whenever() top-level function wraps the API call that we are expecting
(repo.find(testModel.id)), where testModel is a test ToDoModel instance:

privateprivate valval testModel = ToDoModelToDoModel("this is a test")

(from ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)

The doReturn() function indicates the value that we want to return when that API
call is made. In this case, find() returns a Flow from Kotlin coroutines, and we use
the flowOf() top-level function to create a Flow wrapped around our single test
model object.

You can learn more about Flow in the "Introducing Flows and
Channels" chapter of Elements of Kotlin Coroutines!

The net result of this line is that when SingleModelMotor tries calling find() on our
ToDoRepository, and it passes in the stated id value, our mock will return a Flow of

TESTING YOUR CHANGES

710

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt
https://commonsware.com/Coroutines

our test model object.

Verify Calls

We can even confirm that SingleModelMotor actually calls find() as we are
expecting. We do that in the initial state() test function:

@Test
funfun `initial state`() {

valval observer = underTest.states.test()

mainDispatcherRule.dispatcher.runCurrent()
observer.awaitValue().assertValue { it.item == testModel }

verify(repo).find(testModel.id)
}

(from ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)

The final line of that function starts with verify(). This wraps a mock object with
what amounts to another mock, one that is used for verification. When we call
functions on the verify() mock, that mock confirm that the “real” mock object
received a similar call during our test. If it has not, the test fails. For example, if we
changed that line to:

verify(repo).find("wtf")

We will get a failed test, with an error explaining the problem:

Argument(s) are different! Wanted:
toDoRepository.find(

"wtf"
);
-> at com.commonsware.todo.repo.ToDoRepository.find(ToDoRepository.kt:10)
Actual invocations have different arguments:
toDoRepository.find(

"52362eb4-6c8e-4a85-8691-8081906311ee"
);
-> at com.commonsware.todo.ui.SingleModelMotor.<init>(SingleModelMotor.kt:19)

As originally written, that line confirms that somewhere in this test invocation, we
called find() on the mock ToDoRepository, passing in the id of our test ToDoModel.
As it turns out, SingleModelMotor does that work in a property initializer, so the call
will be made just by creating the SingleModelMotor instance.

TESTING YOUR CHANGES

711

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt

Testing LiveDataLiveData

The ToDoTests project uses a mix of coroutines and LiveData for its threading and
reactive results. In particular, SingleModelMotor has a states property that is a
LiveData, emitting some viewstates that are created by means of that find() call on
our repository.

A convenient way to test LiveData is to use the LiveData Testing library. This
contains some utility classes — and some extension functions in Kotlin — for
capturing results from LiveData and asserting that those results meet with
expectations. The ToDoTests project pulls in the Kotlin edition of that library:

testImplementation 'com.jraska.livedata:testing-ktx:1.1.0'

(from ToDoTests/build.gradle)

The first line of the initial state() test function uses a test() extension function
to create and obtain a TestObserver for our states LiveData:

valval observer = underTest.states.test()

(from ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)

In the third line, we tell that TestObserver to wait for an object to be emitted by the
LiveData, then assert that it meets expectations:

observer.awaitValue().assertValue { it.item == testModel }

(from ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)

Here, we confirm that the viewstate’s item property points to our test model that we
returned from the ToDoRepository via its stub find() implementation.

Using Rules

If we look at the entirety of SimpleModelMotorTest, we see that along with our
setUp() function and the test function we have been examining, we have another
test function… and a pair of strange @Rule things:

packagepackage com.commonsware.todo.uicom.commonsware.todo.ui

importimport androidx.arch.core.executor.testing.InstantTaskExecutorRuleandroidx.arch.core.executor.testing.InstantTaskExecutorRule
importimport com.commonsware.todo.MainDispatcherRulecom.commonsware.todo.MainDispatcherRule
importimport com.commonsware.todo.repo.ToDoModelcom.commonsware.todo.repo.ToDoModel

TESTING YOUR CHANGES

712

https://github.com/jraska/livedata-testing
https://github.com/jraska/livedata-testing
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt

importimport com.commonsware.todo.repo.ToDoRepositorycom.commonsware.todo.repo.ToDoRepository
importimport com.jraska.livedata.testcom.jraska.livedata.test
importimport com.nhaarman.mockitokotlin2.doReturncom.nhaarman.mockitokotlin2.doReturn
importimport com.nhaarman.mockitokotlin2.mockcom.nhaarman.mockitokotlin2.mock
importimport com.nhaarman.mockitokotlin2.verifycom.nhaarman.mockitokotlin2.verify
importimport com.nhaarman.mockitokotlin2.whenevercom.nhaarman.mockitokotlin2.whenever
importimport kotlinx.coroutines.flow.flowOfkotlinx.coroutines.flow.flowOf
importimport kotlinx.coroutines.runBlockingkotlinx.coroutines.runBlocking
importimport org.junit.Beforeorg.junit.Before
importimport org.junit.Ruleorg.junit.Rule
importimport org.junit.Testorg.junit.Test

classclass SingleModelMotorTestSingleModelMotorTest {
@getget:RuleRule
valval instantTaskExecutorRule = InstantTaskExecutorRuleInstantTaskExecutorRule()

@getget:RuleRule
valval mainDispatcherRule = MainDispatcherRuleMainDispatcherRule()

privateprivate valval testModel = ToDoModelToDoModel("this is a test")
privateprivate valval repo: ToDoRepositoryToDoRepository = mock()
privateprivate lateinitlateinit varvar underTest: SingleModelMotorSingleModelMotor

@Before
funfun setUp() {

whenever(repo.find(testModel.id)).doReturn(flowOf(testModel))

underTest = SingleModelMotorSingleModelMotor(repo, testModel.id)
}

@Test
funfun `initial state`() {

valval observer = underTest.states.test()

mainDispatcherRule.dispatcher.runCurrent()
observer.awaitValue().assertValue { it.item == testModel }

verify(repo).find(testModel.id)
}

@Test
funfun `actions pass through to repo`() {

valval replacement = testModel.copy("whatevs")

underTest.save(replacement)
mainDispatcherRule.dispatcher.runCurrent()

runBlocking { verify(repo).save(replacement) }

TESTING YOUR CHANGES

713

underTest.delete(replacement)
mainDispatcherRule.dispatcher.runCurrent()

runBlocking { verify(repo).delete(replacement) }
}

}

(from ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt)

As mentioned earlier, JUnit rules represent encapsulated code that runs before and
after each of our tests. In Kotlin, due to some JUnit4 quirks, we need to use
@get:Rule syntax, saying that the @Rule annotation is being applied to the getter
function for this property.

You can learn more about annotations on generated accessors in
the "Java Interoperability" chapter of Elements of Kotlin!

Sometimes, libraries provide us with rules. InstantTaskExecutorRule is from the
Jetpack. It changes the behavior of Room such that it always uses the current thread
for its work, rather than another Room-supplied thread pool. All we need to do is
instantiate and annotate the InstantTaskExecutorRule and we get this behavior.

Writing Rules

We could use a similar rule for coroutines. SingleModelMotor references
Dispatchers.Main, which in Android will map to the main application thread.
However, Dispatchers.Main has no meaning in a unit test, as we are not running on
Android. We need to define what to use for Dispatchers.Main when running our
tests, and ideally we would use something that makes the tests easier to run.

You can learn more about dispatchers in the "Choosing a
Dispatcher" chapter of Elements of Kotlin Coroutines!

To that end, the ToDoTests project has a MainDispatcherRule, which we use in
SingleModelMotorTest:

TESTING YOUR CHANGES

714

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/test/java/com/commonsware/todo/ui/SingleModelMotorTest.kt
https://commonsware.com/Kotlin
https://commonsware.com/Coroutines

packagepackage com.commonsware.todocom.commonsware.todo

importimport kotlinx.coroutines.Dispatcherskotlinx.coroutines.Dispatchers
importimport kotlinx.coroutines.test.TestCoroutineDispatcherkotlinx.coroutines.test.TestCoroutineDispatcher
importimport kotlinx.coroutines.test.resetMainkotlinx.coroutines.test.resetMain
importimport kotlinx.coroutines.test.setMainkotlinx.coroutines.test.setMain
importimport org.junit.rules.TestWatcherorg.junit.rules.TestWatcher
importimport org.junit.runner.Descriptionorg.junit.runner.Description

// inspired by https://medium.com/androiddevelopers/easy-coroutines-in-android-viewmodelscope-25bffb605471

classclass MainDispatcherRuleMainDispatcherRule() : TestWatcherTestWatcher() {
valval dispatcher =

TestCoroutineDispatcherTestCoroutineDispatcher().apply { pauseDispatcher() }

overrideoverride funfun starting(description: DescriptionDescription?) {
supersuper.starting(description)

DispatchersDispatchers.setMain(dispatcher)
}

overrideoverride funfun finished(description: DescriptionDescription?) {
supersuper.finished(description)

DispatchersDispatchers.resetMain()
dispatcher.cleanupTestCoroutines()

}
}

(from ToDoTests/src/test/java/com/commonsware/todo/MainDispatcherRule.kt)

The simplest way to write a JUnit rule is to extend TestWatcher, then override the
starting() and finishing() functions. Those will be called before and after each
test, respectively.

In the case of MainDispatcherRule, we:

• Create a TestCoroutineDispatcher
• Call pauseDispatcher() on the TestCoroutineDispatcher
• Call Dispatchers.setMain() before the test to have Dispatchers.Main point

to this TestCoroutineDispatcher
• Call Dispatchers.resetMain() after the test to remove the reference to the
TestCoroutineDispatcher

• Clean up the TestCoroutineDispatcher after the test

A TestCoroutineDispatcher is a coroutine dispatcher that operates under manual
control, so our test code can indicate when it should process any queued coroutines.
And, those coroutines run synchronously, on whatever thread we happen to be on.
That is the behavior of TestCoroutineDispatcher when it is in a “paused” state —
we put it in that state at the outset via the pauseDispatcher() call.

TESTING YOUR CHANGES

715

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/test/java/com/commonsware/todo/MainDispatcherRule.kt

Then, in our SingleModelMotorTest, we can apply this rule using @get:Rule syntax.
Also, we can call runCurrent() on the TestCoroutineDispatcher to indicate that it
is time to run any queued coroutines.

So the overall flow of initial state() is:

• Obtain a TestObserver
• Execute any coroutines set up by SingleModelMotor
• Watch for and assert that the viewstate that we get from SingleModelMotor

contains our model object
• Confirm that find() was called on our mock ToDoRepository

Writing Instrumented Tests
Instrumented tests, to some level, work the same as unit tests:

• We use JUnit4, including annotations like @Test
• We can apply rules, using the same @Rule annotation
• We can use mocks, if desired

However, there are some differences, such as not being able to use the backtick
function naming system in Kotlin. And there will be some changes to how we set up
Gradle and the sorts of tests that we wind up writing.

Configure Gradle

Just as testImplementation statements define dependencies for unit tests (test/),
androidTestImplementation statements define dependencies for instrumented tests
(androidTest/).

Our Gradle dependencies include four such lines:

androidTestImplementation 'androidx.test:runner:1.3.0'
androidTestImplementation "androidx.test.ext:junit:1.1.2"
androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

(from ToDoTests/build.gradle)

The first one (androidx.test:runner) gives us our instrumentation testing core
infrastructure. androidx.test.ext:junit and androidx.arch.core:core-testing

TESTING YOUR CHANGES

716

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/build.gradle

provide some JUnit4 rules — notably, androidx.arch.core:core-testing is where
InstantTaskExecutorRule comes from. The final one is tied to Espresso for GUI
testing, as we will explore later in the chapter.

Specify the Test Runner

Earlier in the module’s build.gradle file, we have a testInstrumentationRunner
statement:

testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"

(from ToDoTests/build.gradle)

This tells Android how to run our JUnit instrumented tests. JUnit uses “runner”
classes for this role, and androidx.test.runner.AndroidJUnitRunner is one
supplied by the Jetpack that knows how to run our instrumented tests inside of an
Android environment.

Identify the Test Class

With unit tests, JUnit has a default test runner that is used.

With instrumented tests, not only do we need the testInstrumentationRunner
declaration in Gradle, but we also need to annotate our tests with a @RunWith
annotation, further clarifying what JUnit should run and how it should run the test:

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass RosterListFragmentTestRosterListFragmentTest {

(from ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt)

Some libraries or other frameworks may tell you to use a different
testInstrumentationRunner or a different @RunWith annotation to use. For standard
Jetpack tests, we use androidx.test.runner.AndroidJUnitRunner and
@RunWith(AndroidJUnit4::class), as shown here.

Access the Context

Frequently, in an instrumented test, we are using an instrumented test because
something somewhere needs a Context.

To get a Context in the app being tested, your test code can use

TESTING YOUR CHANGES

717

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/build.gradle
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt

InstrumentationRegistry.getInstrumentation().getTargetContext() (or
InstrumentationRegistry.getInstrumentation().targetContext in Kotlin):

valval context = InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext

(from ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt)

Note that there is also a getContext() method (or context property in Kotlin). This
also returns a Context, but it returns one for your androidTest/ code, not for the
app being tested. Frequently, this is the wrong Context for whatever test you are
trying to write.

Rewiring Koin

As noted earlier, using dependency inversion tends to make it easier for us to
substitute in mocks or other replacement objects in our tests, rather than whatever
code would normally be used.

In the case of the one instrumented test in ToDoTests — RosterListFragmentTest
— we are using Room for a database. Room supports in-memory SQLite databases,
which work just like their normal counterparts, just without the disk I/O. This
executes much faster, and our data goes away once we stop referencing the database.
This automatically cleans up our tests, which is very useful.

As a result, RosterListFragmentTest wants to replace the disk-based ToDoDatabase
that we normally would use with an in-memory one. The ToDoDatabase has a
newTestInstance() companion function that offers this:

packagepackage com.commonsware.todo.repocom.commonsware.todo.repo

importimport android.content.Contextandroid.content.Context
importimport androidx.room.Databaseandroidx.room.Database
importimport androidx.room.Roomandroidx.room.Room
importimport androidx.room.RoomDatabaseandroidx.room.RoomDatabase
importimport androidx.room.TypeConvertersandroidx.room.TypeConverters

privateprivate constconst valval DB_NAME = "stuff.db"

@Database(entities = [ToDoEntityToDoEntity::classclass], version = 1)
@TypeConverters(TypeTransmogrifierTypeTransmogrifier::classclass)
abstractabstract classclass ToDoDatabaseToDoDatabase : RoomDatabaseRoomDatabase() {

abstractabstract funfun todoStore(): ToDoEntityToDoEntity.StoreStore

companioncompanion objectobject {

TESTING YOUR CHANGES

718

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt

funfun newInstance(context: ContextContext) =
RoomRoom.databaseBuilder(context, ToDoDatabaseToDoDatabase::classclass.java, DB_NAMEDB_NAME).build()

funfun newTestInstance(context: ContextContext) =
RoomRoom.inMemoryDatabaseBuilder(context, ToDoDatabaseToDoDatabase::classclass.java).build()

}
}

(from ToDoTests/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt)

However, our Koin module uses newInstance() and a disk-based database, not this
in-memory one:

packagepackage com.commonsware.todocom.commonsware.todo

importimport android.app.Applicationandroid.app.Application
importimport com.commonsware.todo.repo.ToDoDatabasecom.commonsware.todo.repo.ToDoDatabase
importimport com.commonsware.todo.repo.ToDoRepositorycom.commonsware.todo.repo.ToDoRepository
importimport com.commonsware.todo.ui.SingleModelMotorcom.commonsware.todo.ui.SingleModelMotor
importimport com.commonsware.todo.ui.roster.RosterMotorcom.commonsware.todo.ui.roster.RosterMotor
importimport org.koin.android.ext.koin.androidContextorg.koin.android.ext.koin.androidContext
importimport org.koin.android.ext.koin.androidLoggerorg.koin.android.ext.koin.androidLogger
importimport org.koin.androidx.viewmodel.dsl.viewModelorg.koin.androidx.viewmodel.dsl.viewModel
importimport org.koin.core.context.startKoinorg.koin.core.context.startKoin
importimport org.koin.dsl.moduleorg.koin.dsl.module

classclass ToDoAppToDoApp : ApplicationApplication() {
privateprivate valval koinModule = module {

single { ToDoDatabaseToDoDatabase.newInstance(androidContext()) }
single {

valval db: ToDoDatabaseToDoDatabase = getget()

ToDoRepositoryToDoRepository(db.todoStore())
}
viewModel { RosterMotorRosterMotor(getget()) }
viewModel { (modelId: StringString) -> SingleModelMotorSingleModelMotor(getget(), modelId) }

}

overrideoverride funfun onCreate() {
supersuper.onCreate()

startKoin {
androidLogger()
androidContext(thisthis@ToDoApp)
modules(koinModule)

}
}

}

TESTING YOUR CHANGES

719

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/main/java/com/commonsware/todo/repo/ToDoDatabase.kt

(from ToDoTests/src/main/java/com/commonsware/todo/ToDoApp.kt)

Fortunately, Koin lets us change the module contents in our test:

@Before
funfun setUp() {

valval context = InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext
valval db = ToDoDatabaseToDoDatabase.newTestInstance(context)

repo = ToDoRepositoryToDoRepository(db.todoStore())

loadKoinModules(module {
single(overrideoverride = truetrue) { repo }

})

runBlocking { items.forEach { repo.save(it) } }
}

(from ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt)

Here, we:

• Get our Context
• Use that to get an in-memory ToDoDatabase implementation
• Wrap that in a ToDoRepository (held in a repo property)
• Call the loadKoinModules() top-level function to override our normal
ToDoRepository instance with the one that we just created

• Put three test objects into that in-memory database via the repository:

privateprivate valval items = listOf(
ToDoModelToDoModel("this is a test"),
ToDoModelToDoModel("this is another test"),
ToDoModelToDoModel("this is... wait for it... yet another test")

)

(from ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt)

Now, when our test functions execute code that obtains a ToDoRepository from
Koin, they will get the in-memory repository, not the “real” one that we would
normally get.

Running the Tests

The Android Studio Java/Kotlin editor will offer the same sort of “run” gutter icons
as with unit tests, so you can run individual test methods or entire test classes.

TESTING YOUR CHANGES

720

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/main/java/com/commonsware/todo/ToDoApp.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt
https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt

To run all instrumented tests, you can use the “Edit Configurations” option as
before, but this time choose “Android Instrumented Tests” from the add-
configuration drop-down:

Figure 235: Android Instrumented Tests Option in Run/Debug Configurations Dialog

TESTING YOUR CHANGES

721

There, you can simply specify your module and the scope of the tests that you want
to run, such as “All in Module” to run all of them:

Figure 236: Android Instrumented Tests Run Configuration

The test results will appear in the “Run” tool in Android Studio, just like with unit
tests:

Figure 237: Instrumented Tests Results

Writing Basic Espresso Tests
Basic instrumentated tests are fine for testing non-UI logic. They even work

TESTING YOUR CHANGES

722

acceptably for some basic UI testing. The more complex your UI testing gets,
though, the more likely it is that you will find plain instrumented tests to be limiting
and tedious.

Espresso is designed to simplify otherwise-complex UI testing scenarios, such as:

• Testing across screens, such as confirming that tapping a RecyclerView row
in one fragment correctly launches a detail fragment associated with the
model object for that row

• Testing over time, such as waiting for a list to be populated from a database
before actually testing it

Espresso tests are part of your instrumented tests. Espresso simply provides another
API for writing test code; those tests run alongside the rest of your instrumented
tests.

However, Espresso tests are very fragile. They are prone to failing not due to
problems in your code but due to problems when executing the tests.

Add Espresso Dependencies

One of the androidTestImplementation dependencies that we are pulling in is
androidx.test.espresso:espresso-core:

androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

(from ToDoTests/build.gradle)

As you might expect, this contains the core Espresso code, and it is sufficient to
write many Espresso tests. Additional libraries exist for testing things like
RecyclerView.

Disable Animations

One of Espresso’s limitations is that it does not like the stock animated effects that
Android applies to various actions, such as launching activities. You will have better
results if you disable those animations.

In the “Developer options” section of the Settings app, you will want to disable:

• Window animation scale
• Transition animation scale

TESTING YOUR CHANGES

723

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/build.gradle

• Animator duration scale

Figure 238: Developer Options, Showing Disabled Animations

Set Up the Activity or Fragment

To be able to test your UI, we need to actually have that UI appear on-screen. To that
end, we can use ActivityScenario or FragmentScenario. These will launch an
activity or fragment for us, allowing us to then test them afterwards.

The testListContents() test function in RosterListFragmentTest uses
ActivityScenario to launch the MainActivity of this app:

@Test
funfun testListContents() {

ActivityScenarioActivityScenario.launch(MainActivityMainActivity::classclass.java).use {
onView(withId(RR.id.items)).check(matches(hasChildCount(3)))

}
}

}

(from ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt)

TESTING YOUR CHANGES

724

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt

ActivityScenario.launch() launches the activity and returns an ActivityScenario
instance. That class implements Closeable, so we can use use() to execute our tests
and close the scenario (and finish the activity) when we are done.

Find Widgets via Hamcrest Matchers

Writing Espresso tests is often described as having three main steps:

1. Find the widgets you want to examine or manipulate
2. Perform actions on those widgets where needed (and where possible)
3. Check to see if widgets have a certain state

Technically speaking, with Espresso, we do not “find widgets”, though it is often
simplest to phrase it that way. A more accurate description would be “obtain a
ViewInteraction object that pertains to a particular widget”. The ViewInteraction
object in turn allows us to perform actions on the underlying widget and check the
widget to see if it has a certain state.

To do that, we use an onView() static method supplied by Espresso. It will search the
view hierarchy of the current activity for a widget.

How we identify the widget is via a “matcher”. A matcher simply is an object that can
identify whether some other object matches certain criteria. In particular, Espresso
uses Hamcrest matchers.

There are three main sources of matchers that you can use:

1. ViewMatchers contains a number of static methods that return matchers
that find a View with some specific characteristic, such as withId() to find a
View with a particular ID

2. Hamcrest’s Matchers class has a series of static methods that return
matchers that help you combine other matchers (e.g., allOf() to find a View
that matches more than one criteria) or work with plain Java collections
(e.g., empty() to match a collection that is empty)

3. Your own custom matchers

Here, we are using withId() to find some widget in MainActivity that has an ID of
items.

TESTING YOUR CHANGES

725

http://hamcrest.org/JavaHamcrest/

Perform Actions

onView() gives us a ViewInteraction. Given a ViewInteraction, one thing that you
can do is ask it to perform() one or more actions, represented by ViewAction
objects. The ViewActions (note the plural) class contains a series of static methods
that create ViewAction objects. And, once again, the pattern is to use static imports
for those methods. Actions can include things like clicking the widget (click()),
clicking the system BACK button (pressBack()), swiping in a particular direction
(e.g., swipeDown()), and so on.

In this case, we want to test whether MainActivity is showing our three to-do items
(from the in-memory repository) in a RecyclerView (the items widget that we
found). There are no actions that we need to apply here, so we skip that step.

Assert Results

Once the activity is in the desired state via any actions, we can use the
ViewInteraction from onView() to validate that the widgets contain the desired
content or otherwise are set up properly. That is handled by calling check() on a
ViewInteraction, passing in a ViewAssertion that… well… asserts something. A
ViewAssertion basically wraps the assertion calls that you might make directly in
JUnit4, working with the ViewInteraction to confirm that the underlying View has
some particular state.

The simplest ViewAssertion is obtained via the matches() static method. This takes
a Hamcrest matcher and confirms that the widget matches whatever the matcher’s
criteria are.

One of the many static methods on ViewMatchers is hasChildCount(), which
matches whether a ViewGroup (like RecyclerView) has a certain number of children.
So, matches(hasChildCount(3)) is a ViewAssertion that will succeed if the items
RecyclerView has three children and will fail the test if not.

The net effect of the entire test is that we set up the database with three to-do items,
then launch the MainActivity and confirm that it shows those three items:

packagepackage com.commonsware.todo.ui.rostercom.commonsware.todo.ui.roster

importimport androidx.test.core.app.ActivityScenarioandroidx.test.core.app.ActivityScenario
importimport androidx.test.espresso.Espresso.onViewandroidx.test.espresso.Espresso.onView
importimport androidx.test.espresso.assertion.ViewAssertions.matchesandroidx.test.espresso.assertion.ViewAssertions.matches

TESTING YOUR CHANGES

726

importimport androidx.test.espresso.matcher.ViewMatchers.hasChildCountandroidx.test.espresso.matcher.ViewMatchers.hasChildCount
importimport androidx.test.espresso.matcher.ViewMatchers.withIdandroidx.test.espresso.matcher.ViewMatchers.withId
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport com.commonsware.todo.Rcom.commonsware.todo.R
importimport com.commonsware.todo.repo.ToDoDatabasecom.commonsware.todo.repo.ToDoDatabase
importimport com.commonsware.todo.repo.ToDoModelcom.commonsware.todo.repo.ToDoModel
importimport com.commonsware.todo.repo.ToDoRepositorycom.commonsware.todo.repo.ToDoRepository
importimport com.commonsware.todo.ui.MainActivitycom.commonsware.todo.ui.MainActivity
importimport kotlinx.coroutines.runBlockingkotlinx.coroutines.runBlocking
importimport org.junit.Beforeorg.junit.Before
importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith
importimport org.koin.core.context.loadKoinModulesorg.koin.core.context.loadKoinModules
importimport org.koin.dsl.moduleorg.koin.dsl.module

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass RosterListFragmentTestRosterListFragmentTest {

privateprivate lateinitlateinit varvar repo: ToDoRepositoryToDoRepository
privateprivate valval items = listOf(

ToDoModelToDoModel("this is a test"),
ToDoModelToDoModel("this is another test"),
ToDoModelToDoModel("this is... wait for it... yet another test")

)

@Before
funfun setUp() {

valval context = InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext
valval db = ToDoDatabaseToDoDatabase.newTestInstance(context)

repo = ToDoRepositoryToDoRepository(db.todoStore())

loadKoinModules(module {
single(overrideoverride = truetrue) { repo }

})

runBlocking { items.forEach { repo.save(it) } }
}

@Test
funfun testListContents() {

ActivityScenarioActivityScenario.launch(MainActivityMainActivity::classclass.java).use {
onView(withId(RR.id.items)).check(matches(hasChildCount(3)))

}
}

}

(from ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt)

TESTING YOUR CHANGES

727

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/src/androidTest/java/com/commonsware/todo/ui/roster/RosterListFragmentTest.kt

Another Option: UI Automator
Yet another approach for testing Android applications is UI Automator. This is
designed for integration testing, seeing how your app components integrate with the
rest of a device, including integrating with other applications.

UI Automator, as the name suggests, automates UIs. It simulates user input, in the
form of tapping on items and the like. Tests run by UI Automator are implemented
in JUnit, but those tests have limited access to the widgets inside of a UI. Such access
not only allows for directing simulated user input (e.g., “click the OK button”), but
also for asserting that various test conditions are true (e.g., “does the list have five
rows?”). In this respect, UI Automator behaves like traditional Android
instrumented testing.

Wait! I Thought That Was Espresso’s Role!

Espresso also automates UI, simulating user input via JUnit tests. UI Automator tests
even go inside the androidTest/ source set and can intermingle with instrumented
test code.

The difference is that UI Automator can automate the system UI (e.g., “press the
HOME button”) and automate the UIs of other apps (e.g., “click the Send button in
the Google Messages UI”). This is very powerful, but it also has severe limits. The
actual widgets reside in another process, not your own. As a result, we have only
fairly crude forms of interacting with UIs and have even less ability to assert
conditions in the other apps. Espresso gives us more control, but it can only
automate our own app’s UI, and even then only within a single activity.

Scenarios for UIAutomator

UI Automator is mostly used for integration testing:

• Does my activity launch properly from the launcher?
• Does my activity restart properly if I destroy it (e.g., click BACK), wind up at

the home screen, then launch it again?
• My activity uses an Intent to launch an activity from a third-party app (or

from the OS) — does that work correctly?

In these sorts of cases, you are not necessarily looking for a lot of details of the
external activities. For example, in the last scenario, you will want to confirm that

TESTING YOUR CHANGES

728

the third-party activity seems to have started and has received whatever information
you are sending it (if any). But that is an activity from a third-party app, so most
likely it is not your job to test all the functionality of that activity. UI Automator may
suffice for your needs.

Again: What Should I Be Using?
There are a lot of testing options, including some not covered in this chapter.

(yes, this chapter could be much longer…)

There is no “right answer” for testing, so long as you test your app and feel confident
that your users will not encounter bugs. That being said, a reasonably popular
approach is:

• Focus most of your development efforts on testing things “behind” your UI,
such as your viewmodels, repositories, data sources, and similar code. Those
things frequently can be implemented as unit tests. Even if they absolutely
require Android, and need to be instrumented tests, they may not need you
to launch activities or fragments.

• To the greatest extent possible, refactor your application code to move as
much logic out of activities and fragments as is practical. In other words,
optimize your app code to allow the first bullet to cover that much more of
your functionality.

• Resort to Espresso and UI Automator tests where needed, for logic that you
simply cannot test by other means. These tend to be the most “flaky” tests.
For example, your UI Automator tests might break because the third-party
app you are integrating with changed, even though your app logic may still
be fine.

TESTING YOUR CHANGES

729

Working with WorkManagerWorkManager

We have seen how to do work on the main application thread, and we have seen how
to use background threads for things like disk and network I/O.

Sometimes, though, we may need to do work that happens completely
independently of the UI

• The user requests to download a large file but asks for the download to be
performed overnight

• We want to synchronize with a server periodically, such as every couple of
hours

• The user asks us to perform some slow on-device task, such as converting a
video between formats, and we want to do that work when the device is
plugged in and is not being actively used by the user

• And so on

Your primary option for those scenarios is WorkManager.

The Role of WorkManagerWorkManager

This is not to say that WorkManager is the only solution for background work.
WorkManager is designed for “deferrable” work — work that you need to have done
but does not have to happen right away. This includes the possibility that the work
will be done sometime after your current process has terminated, because the user
left your app and a lot of time passes before it is time to do your work.

However, there are scenarios for which WorkManager is optimized. Alternative
scenarios might be better handled using other techniques:

731

• WorkManager is designed for discrete, “transactional” tasks, not ongoing
work. So, for example, WorkManager is not designed to play music
continuously in the background. A “foreground service” is the solution to use
for that, with background threads as needed (e.g., for disk I/O to read in the
playlist details).

• WorkManager is designed for work that will happen sometime, but not at
some specific time. If you need to get control at a specific time — such as to
alert the user about an upcoming calendar event — use
setExactAndAllowWhileIdle() on AlarmManager.

• WorkManager is designed for work that will happen eventually, but perhaps
not immediately. If you have background work that has to be done in real
time in response to user input (e.g., download the video that they just
purchased), use a simple thread or, better yet, a reactive framework (Kotlin
coroutines, RxJava, etc.). If you are concerned that the work might take too
long, and your process might be terminated while that work is ongoing, use a
foreground service.

• WorkManager is designed for work that might happen completely
asynchronously with respect to your current process. Hence, it is not useful
for cases where the work that you are doing only affects the current process,
particularly its UI. So, for example, downloading avatar icons to display in
your app may not make sense once the UI is gone, as you may never need
those icons. For that, use a thread pool, reactive solutions (e.g., RxJava,
Kotlin coroutines), or libraries that in turn use those sorts of things.

Foreground services and AlarmManager are powerful techniques, but ones that we
will not be exploring in this particular book. The Busy Coder’s Guide to Android
Development, while older, offers material on those subjects.

WorkManagerWorkManager Dependencies
The main artifact that you will use for adding WorkManager to your project is
androidx.work:work-runtime. This contains WorkManager and its related classes.

There are a few additional artifacts that you can elect to use, of which two are
general-purpose:

• work-runtime-ktx provides a Kotlin-specific WorkManager API
• work-testing is available for testing your code that uses WorkManager

WORKING WITH WORKMANAGER

732

https://commonsware.com/Android
https://commonsware.com/Android

Workers: They Do Work
The work that you want to have done in the background needs to be wrapped in a
Worker subclass. This is an abstract class with one abstract method: doWork(). In
that method, you put your work to be done in the background.

Note that:

• doWork() will keep the device awake, so you do not have to worry about the
CPU powering down while your work is ongoing

• doWork() is called on a background thread, so you do not need to fork one
yourself

• doWork() needs to return a ListenableWorker.Result object indicating if
the work succeeded or failed, so doWork() should not be starting other
background threads (directly or through libraries)

• doWork() cannot run forever — at best, it might run for 10 minutes before it
is terminated, and it is possible that it will have less time than that

As noted above, doWork() returns a ListenableWorker.Result object. There are
static factory methods on ListenableWorker.Result that you use to create
instances. Those factory methods represent three main result scenarios:

• success(), which is what you are hoping for
• retry(), which indicates that for one reason or another you could not do the

work but would like WorkManager to retry the work in a little while
• failure(), which indicates that the work could not be done and a later retry

is likely to fail as well, so you are giving up

Beyond the return value and the aforementioned limitations on what you can do in
doWork(), the actual business logic is up to you.

The DownloadWork sample module in the Sampler and SamplerJ projects contains a
DownloadWorker class that downloads a file using OkHttp and a companion library
named Okio:

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download;

importimport android.content.Contextandroid.content.Context;
importimport android.util.Logandroid.util.Log;
importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;

WORKING WITH WORKMANAGER

733

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/DownloadWork
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/DownloadWork
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/DownloadWork
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/DownloadWork
https://github.com/square/okio

importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.work.ListenableWorkerandroidx.work.ListenableWorker;
importimport androidx.work.Workerandroidx.work.Worker;
importimport androidx.work.WorkerParametersandroidx.work.WorkerParameters;
importimport okhttp3.OkHttpClientokhttp3.OkHttpClient;
importimport okhttp3.Requestokhttp3.Request;
importimport okhttp3.Responseokhttp3.Response;
importimport okio.BufferedSinkokio.BufferedSink;
importimport okio.Okiookio.Okio;

publicpublic classclass DownloadWorkerDownloadWorker extendsextends WorkerWorker {
publicpublic staticstatic finalfinal StringString KEY_URL="url";
publicpublic staticstatic finalfinal StringString KEY_FILENAME="filename";

publicpublic DownloadWorker(@NonNull ContextContext context,
@NonNull WorkerParametersWorkerParameters workerParams) {

supersuper(context, workerParams);
}

@NonNull
@Override
publicpublic ResultResult doWork() {

OkHttpClientOkHttpClient client=newnew OkHttpClientOkHttpClient();
RequestRequest request=newnew RequestRequest.Builder()

.url(getInputData().getString(KEY_URL))

.build();

trytry (ResponseResponse response=client.newCall(request).execute()) {
FileFile dir=getApplicationContext().getCacheDir();
FileFile downloadedFile=

newnew File(dir, getInputData().getString(KEY_FILENAME));
BufferedSinkBufferedSink sink=OkioOkio.buffer(OkioOkio.sink(downloadedFile));

sink.writeAll(response.body().source());
sink.close();

}
catchcatch (IOExceptionIOException e) {

LogLog.e(getClass().getSimpleName(), "Exception downloading file", e);

returnreturn ListenableWorkerListenableWorker.Result.failure();
}

returnreturn ListenableWorkerListenableWorker.Result.success();
}

}

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadWorker.java)

WORKING WITH WORKMANAGER

734

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadWorker.java

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download

importimport android.content.Contextandroid.content.Context
importimport android.util.Logandroid.util.Log
importimport androidx.work.Workerandroidx.work.Worker
importimport androidx.work.WorkerParametersandroidx.work.WorkerParameters
importimport okhttp3.OkHttpClientokhttp3.OkHttpClient
importimport okhttp3.Requestokhttp3.Request
importimport okio.bufferokio.buffer
importimport okio.sinkokio.sink
importimport java.io.Filejava.io.File
importimport java.io.IOExceptionjava.io.IOException

classclass DownloadWorkerDownloadWorker(context: ContextContext, workerParams: WorkerParametersWorkerParameters) :
WorkerWorker(context, workerParams) {

overrideoverride funfun doWork(): ResultResult {
valval client = OkHttpClientOkHttpClient()
valval request = RequestRequest.BuilderBuilder()

.url(inputData.getString(KEY_URLKEY_URL)!!)

.build()

trytry {
client.newCall(request).execute().use { response ->

valval dir = applicationContext.cacheDir
valval downloadedFile = FileFile(dir, inputData.getString(KEY_FILENAMEKEY_FILENAME)!!)
valval sink = downloadedFile.sink().buffer()

response.body?.let { sink.writeAll(it.source()) }
sink.close()

}
} catchcatch (e: IOExceptionIOException) {

LogLog.e(javaClass.simpleName, "Exception downloading file", e)

returnreturn ResultResult.failure()
}

returnreturn ResultResult.success()
}

companioncompanion objectobject {
constconst valval KEY_URL = "url"
constconst valval KEY_FILENAME = "filename"

}
}

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadWorker.kt)

WORKING WITH WORKMANAGER

735

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadWorker.kt

Worker — from which DownloadWorker inherits — has a two-parameter constructor,
taking a Context and a WorkerParameters object. In many cases, you can just chain
to the superclass constructor, as DownloadWorker does.

Pretty much everything inside of doWork() is just application code that does the
download and returns success() if the download succeeded or failure() if there
was some exception during the download.

This doWork() method is using two methods that we get from Worker:

• getApplicationContext(), which works like the similarly-named method on
Context, returning you the Application singleton, in case you need a
Context

• getInputData(), which we will examine more closely later in the chapter

Performing Simple Work
Having a Worker is part of the puzzle. We still need to tell WorkManager to actually
use that class to do our work.

If we want to perform the work once — perhaps in response to user input — we can
create a OneTimeWorkRequest object to describe that work, then enqueue() it with
WorkManager, as in this Java snippet:

OneTimeWorkRequestOneTimeWorkRequest downloadWork=
newnew OneTimeWorkRequestOneTimeWorkRequest.Builder(DownloadWorkerDownloadWorker.class)

.build();

WorkManagerWorkManager.getInstance(getApplicationContext()).enqueue(downloadWork);

We create a OneTimeWorkRequest via its associated Builder, which takes the Java
Class object for our Worker subclass its constructor. We build() the Builder and
pass the OneTimeWorkRequest to enqueue() on the WorkManager singleton, which we
get by calling getInstance() on WorkManager.

After this code executes, at some point in time, an instance of DownloadWorker will
be created and doWork() will be called. Exactly when that will be is indeterminate.
In this particular case, probably it will be called fairly quickly, with doWork() being
executed on a thread in a WorkManager-managed thread pool. However, it is entirely
possible that the user leaves our app and our process is terminated before this work
can begin. If so, WorkManager will arrange to have the work done later.

WORKING WITH WORKMANAGER

736

Work Inputs
However, doWork() would crash if we scheduled it this way. That comes back to
those getInputData() calls from our doWork() method.

Often, our work needs data describing that work. In the case of DownloadWorker, we
need to know:

• the HTTPS URL to download from
• the name of the file to download to (where the file will be placed in
getCacheDir())

WorkManager has a solution for this, via the Data class (perhaps named after the
android character in Star Trek properties) (or perhaps not).

Data is a key-value store. The values are simple primitives plus arrays of simple
primitives. We can package information into a Data, attach it to the work request,
and then get that information from inside of doWork().

Reading the Data is a matter of calling getInputData() inside of doWork(), then
calling getter methods based on type (e.g., getString()). Those getter methods take
the key under which the data is stored as a parameter. Getters for primitive types
(e.g., getInt(), getBoolean()) also have a second parameter to use for the default
response, if there is nothing associated with that key in the Data.

Putting Data into a request is a matter of creating a Data instance using a
Data.Builder, which contains the corresponding setter methods (e.g.,
putString()), such as in this Java snippet:

OneTimeWorkRequestOneTimeWorkRequest downloadWork=
newnew OneTimeWorkRequestOneTimeWorkRequest.Builder(DownloadWorkerDownloadWorker.class)

.setInputData(newnew DataData.Builder()
.putString(DownloadWorkerDownloadWorker.KEY_URL,

"https://commonsware.com/Android/Android-1_0-CC.pdf")
.putString(DownloadWorkerDownloadWorker.KEY_FILENAME, "oldbook.pdf")
.build())

.build();

WorkManagerWorkManager.getInstance(getApplicationContext()).enqueue(downloadWork);

Here, we fill in the two values that the DownloadWorker is expecting, using
setInputData() to attach the Data to our OneTimeWorkRequest.

WORKING WITH WORKMANAGER

737

https://en.wikipedia.org/wiki/Data_(Star_Trek)
https://en.wikipedia.org/wiki/Data_(Star_Trek)

Note that there is a 10KB limit on the size of the Data. Data is there mostly to
provide identifiers, such as the URL and filename that we are using here. Use the
Data for unique information, stuff that the Worker subclass cannot obtain from
other sources (e.g., your Room database, your SharedPreferences).

Constrained Work
Frequently, the work that we want to do has some requirements. For example, in the
case of DownloadWorker, it helps to have an Internet connection, as otherwise we
may not be able to download the content.

WorkManager exposes a set of constraints. You can constrain your work based on:

• Whether the device has an Internet connection, or perhaps a particular type
of Internet connection (e.g., an unmetered connection)

• Whether the device has a decent amount of battery life remaining, or
perhaps is on a charger

• Whether the device has a decent amount of storage space available
• Whether the device is idle (so your work is less likely to interfere with the

user)

To configure these, we:

• Create a Constraints.Builder,
• Call setter methods on that Builder to specify our constraints,
• build() the Builder, and
• Call setConstraints() on the request Builder to attach the constraints

This Java snippet illustrates what this might look like:

ConstraintsConstraints constraints=newnew ConstraintsConstraints.Builder()
.setRequiredNetworkType(NetworkTypeNetworkType.CONNECTED)
.setRequiresBatteryNotLow(truetrue)
.build();

OneTimeWorkRequestOneTimeWorkRequest downloadWork=
newnew OneTimeWorkRequestOneTimeWorkRequest.Builder(DownloadWorkerDownloadWorker.class)

.setConstraints(constraints)

.setInputData(newnew DataData.Builder()
.putString(DownloadWorkerDownloadWorker.KEY_URL,

"https://commonsware.com/Android/Android-1_0-CC.pdf")
.putString(DownloadWorkerDownloadWorker.KEY_FILENAME, "oldbook.pdf")
.build())

WORKING WITH WORKMANAGER

738

.build();

WorkManagerWorkManager.getInstance(getApplicationContext()).enqueue(downloadWork);

Here, we say that we need a network connection (of any type) and that the battery
should not be low.

Tagged Work
We can also associate one or more tags with our work requests. We can later get
information about our outstanding work based on tags, or cancel work based on
tags.

Tags are meant to be used as categories, to identify similar pieces of work that we
might want to operate on in unison:

• All downloads
• All work associated with some particular database table
• All work associated with some account
• And so on

To add tags, just call addTag() one or more times on the request Builder:

ConstraintsConstraints constraints = newnew ConstraintsConstraints.Builder()
.setRequiredNetworkType(NetworkTypeNetworkType.CONNECTED)
.setRequiresBatteryNotLow(truetrue)
.build();

OneTimeWorkRequestOneTimeWorkRequest downloadWork =
newnew OneTimeWorkRequestOneTimeWorkRequest.Builder(DownloadWorkerDownloadWorker.class)

.setConstraints(constraints)

.setInputData(newnew DataData.Builder()
.putString(DownloadWorkerDownloadWorker.KEY_URL,

"https://commonsware.com/Android/Android-1_0-CC.pdf")
.putString(DownloadWorkerDownloadWorker.KEY_FILENAME, "oldbook.pdf")
.build())

.addTag("download")

.build();

WorkManagerWorkManager.getInstance(getApplication()).enqueue(downloadWork);

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.java)

WORKING WITH WORKMANAGER

739

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.java

valval constraints = ConstraintsConstraints.BuilderBuilder()
.setRequiredNetworkType(NetworkTypeNetworkType.CONNECTEDCONNECTED)
.setRequiresBatteryNotLow(truetrue)
.build()

valval downloadWork = OneTimeWorkRequestOneTimeWorkRequest.BuilderBuilder(DownloadWorkerDownloadWorker::classclass.java)
.setConstraints(constraints)
.setInputData(

DataData.BuilderBuilder()
.putString(

DownloadWorkerDownloadWorker.KEY_URLKEY_URL,
"https://commonsware.com/Android/Android-1_0-CC.pdf"

)
.putString(DownloadWorkerDownloadWorker.KEY_FILENAMEKEY_FILENAME, "oldbook.pdf")
.build()

)
.addTag("download")
.build()

WorkManagerWorkManager.getInstance(getApplication()).enqueue(downloadWork)

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.kt)

Here, we use addTag() to tag this work as download.

Monitoring Work
WorkManager does not provide a built-in means for you to monitor progress inside of
an individual piece of work. It does, however, provide you with an API for
monitoring the gross state changes of a piece of work: is it enqueued, is it running, is
it completed, etc.

Getting the Status Updates

To find out about the general state changes in the life of a piece of work, you can use
getWorkInfoByIdLiveData(), available on WorkManager. Each request has an ID,
generated by the WorkManager system, which you get by calling getId() on the
request:

finalfinal LiveDataLiveData<WorkInfoWorkInfo> liveOpStatus =
WorkManagerWorkManager.getInstance(getApplication()).getWorkInfoByIdLiveData(

downloadWork.getId());

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.java)

WORKING WITH WORKMANAGER

740

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.kt
https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.java

valval liveOpStatus =
WorkManagerWorkManager.getInstance(getApplication())

.getWorkInfoByIdLiveData(downloadWork.id)

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.kt)

The LiveData that we get back will emit WorkInfo updates for the work identified by
this ID. A WorkInfo, in turn, holds a State enum, that indicates what phase of the
WorkManager process this piece of work is in:

• ENQUEUED
• BLOCKED (for use with chained work)
• RUNNING
• SUCCEEDED
• FAILED
• CANCELED (for use with canceling work)

You can then arrange to observe the LiveData or otherwise make use of its updates.

Consuming the Status Updates… In Code

The code shown in this chapter so far that created the OneTimeWorkRequest and
enqueued the work is in a DownloadViewModel:

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download;

importimport android.app.Applicationandroid.app.Application;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MediatorLiveDataandroidx.lifecycle.MediatorLiveData;
importimport androidx.work.Constraintsandroidx.work.Constraints;
importimport androidx.work.Dataandroidx.work.Data;
importimport androidx.work.NetworkTypeandroidx.work.NetworkType;
importimport androidx.work.OneTimeWorkRequestandroidx.work.OneTimeWorkRequest;
importimport androidx.work.WorkInfoandroidx.work.WorkInfo;
importimport androidx.work.WorkManagerandroidx.work.WorkManager;

publicpublic classclass DownloadViewModelDownloadViewModel extendsextends AndroidViewModelAndroidViewModel {
publicpublic finalfinal MediatorLiveDataMediatorLiveData<WorkInfoWorkInfo> liveWorkStatus =

newnew MediatorLiveDataMediatorLiveData<>();

publicpublic DownloadViewModel(@NonNull ApplicationApplication application) {
supersuper(application);

}

WORKING WITH WORKMANAGER

741

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.kt

publicpublic void doTheDownload() {
ConstraintsConstraints constraints = newnew ConstraintsConstraints.Builder()

.setRequiredNetworkType(NetworkTypeNetworkType.CONNECTED)

.setRequiresBatteryNotLow(truetrue)

.build();
OneTimeWorkRequestOneTimeWorkRequest downloadWork =

newnew OneTimeWorkRequestOneTimeWorkRequest.Builder(DownloadWorkerDownloadWorker.class)
.setConstraints(constraints)
.setInputData(newnew DataData.Builder()

.putString(DownloadWorkerDownloadWorker.KEY_URL,
"https://commonsware.com/Android/Android-1_0-CC.pdf")

.putString(DownloadWorkerDownloadWorker.KEY_FILENAME, "oldbook.pdf")

.build())
.addTag("download")
.build();

WorkManagerWorkManager.getInstance(getApplication()).enqueue(downloadWork);

finalfinal LiveDataLiveData<WorkInfoWorkInfo> liveOpStatus =
WorkManagerWorkManager.getInstance(getApplication()).getWorkInfoByIdLiveData(

downloadWork.getId());

liveWorkStatus.addSource(liveOpStatus, workStatus -> {
liveWorkStatus.setValue(workStatus);

ifif (workStatus.getState().isFinished()) {
liveWorkStatus.removeSource(liveOpStatus);

}
});

}
}

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.java)

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download

importimport android.app.Applicationandroid.app.Application
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel
importimport androidx.lifecycle.MediatorLiveDataandroidx.lifecycle.MediatorLiveData
importimport androidx.work.*androidx.work.*

classclass DownloadViewModelDownloadViewModel(application: ApplicationApplication) :
AndroidViewModelAndroidViewModel(application) {
valval liveWorkStatus = MediatorLiveDataMediatorLiveData<WorkInfoWorkInfo>()

funfun doTheDownload() {
valval constraints = ConstraintsConstraints.BuilderBuilder()

WORKING WITH WORKMANAGER

742

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.java

.setRequiredNetworkType(NetworkTypeNetworkType.CONNECTEDCONNECTED)

.setRequiresBatteryNotLow(truetrue)

.build()
valval downloadWork = OneTimeWorkRequestOneTimeWorkRequest.BuilderBuilder(DownloadWorkerDownloadWorker::classclass.java)

.setConstraints(constraints)

.setInputData(
DataData.BuilderBuilder()

.putString(
DownloadWorkerDownloadWorker.KEY_URLKEY_URL,
"https://commonsware.com/Android/Android-1_0-CC.pdf"

)
.putString(DownloadWorkerDownloadWorker.KEY_FILENAMEKEY_FILENAME, "oldbook.pdf")
.build()

)
.addTag("download")
.build()

WorkManagerWorkManager.getInstance(getApplication()).enqueue(downloadWork)

valval liveOpStatus =
WorkManagerWorkManager.getInstance(getApplication())

.getWorkInfoByIdLiveData(downloadWork.id)

liveWorkStatus.addSource(liveOpStatus) { workStatus ->
liveWorkStatus.value = workStatus

ifif (workStatus.state.isFinished) {
liveWorkStatus.removeSource(liveOpStatus)

}
}

}
}

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.kt)

The doTheDownload() method will be called when the user clicks a button in the UI
of MainActivity. That triggers our creation of the work request.

DownloadViewModel takes the MediatorLiveData approach seen elsewhere in the
book. Consumers of the DownloadViewModel, such as our MainActivity, have access
to a liveWorkStatus field that represents the outbound stream of work status
updates. For each doTheDownload() call, we chain the LiveData for this individual
download onto the MediatorLiveData, removing it as a source once the State
reaches a terminal condition (isFinished(), which will be true for a State of
SUCCEEDED, FAILED, or CANCELED).

WORKING WITH WORKMANAGER

743

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.kt

The result is that our MainActivity can observe liveWorkStatus, without having to
worry about individual LiveData objects from individual download requests.

MainActivity observes liveWorkStatus and uses it to display a Toast when the
download is finished:

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.jetpack.work.download.databinding.ActivityMainBindingcom.commonsware.jetpack.work.download.databinding.ActivityMainBinding;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport androidx.databinding.BindingAdapterandroidx.databinding.BindingAdapter;
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider;
importimport androidx.work.WorkInfoandroidx.work.WorkInfo;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
@BindingAdapter("android:enabled")
publicpublic staticstatic void setEnabled(ViewView v, WorkInfoWorkInfo info) {

ifif (info==nullnull) {
v.setEnabled(truetrue);

}
elseelse {

v.setEnabled(info.getState().isFinished());
}

}

privateprivate ActivityMainBindingActivityMainBinding binding;

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

finalfinal DownloadViewModelDownloadViewModel vm= newnew ViewModelProviderViewModelProvider(thisthis).get(DownloadViewModelDownloadViewModel.class);

binding=ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());
binding.setViewModel(vm);
binding.setLifecycleOwner(thisthis);

setContentView(binding.getRoot());

vm.liveWorkStatus.observe(thisthis, workStatus -> {
ifif (workStatus!=nullnull && workStatus.getState().isFinished()) {

ToastToast.makeText(thisthis, R.string.msg_done, ToastToast.LENGTH_LONG).show();
}

});
}

}

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/MainActivity.java)

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download

importimport android.os.Bundleandroid.os.Bundle
importimport android.view.Viewandroid.view.View

WORKING WITH WORKMANAGER

744

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/MainActivity.java

importimport android.widget.Toastandroid.widget.Toast
importimport androidx.activity.viewModelsandroidx.activity.viewModels
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.databinding.BindingAdapterandroidx.databinding.BindingAdapter
importimport androidx.lifecycle.observeandroidx.lifecycle.observe
importimport androidx.work.WorkInfoandroidx.work.WorkInfo
importimport com.commonsware.jetpack.work.download.databinding.ActivityMainBindingcom.commonsware.jetpack.work.download.databinding.ActivityMainBinding

@BindingAdapter("android:enabled")
funfun ViewView.setEnabled(info: WorkInfoWorkInfo?) {

isEnabled = info?.state?.isFinished ?: truetrue
}

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval vm: DownloadViewModelDownloadViewModel byby viewModels()
valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

binding.viewModel = vm
binding.lifecycleOwner = thisthis

setContentView(binding.root)

vm.liveWorkStatus.observe(thisthis) { workStatus ->
ifif (workStatus != nullnull && workStatus.state.isFinished) {

ToastToast.makeText(thisthis, RR.string.msg_done, ToastToast.LENGTH_LONGLENGTH_LONG).show()
}

}
}

}

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/MainActivity.kt)

Consuming the Status Updates… In Data Binding

MainActivity — and its activity_main layout resource — use data binding.
Partially, this is to get control to DownloadViewModel when the user clicks a button.
But we also want to disable the button while the download is going on, to reduce the
likelihood of accidentally triggering multiple downloads.

Data binding has dedicated support for LiveData. If you have a LiveData available
through a <variable>, you can reference the LiveData in a binding expression as if
it were a simple variable representing the data. The data binding framework will

WORKING WITH WORKMANAGER

745

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/MainActivity.kt

take care of the details of observing the LiveData and updating your UI when the
data changes.

To make this work, our layout has a reference to the DownloadViewModel and has a
binding expression on android:enabled that looks at the state:

<?xml version="1.0" encoding="utf-8"?>
<layout><layout>

<data><data>

<variable<variable
name="viewModel"
type="com.commonsware.jetpack.work.download.DownloadViewModel" />/>

</data></data>

<androidx.constraintlayout.widget.ConstraintLayout<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">>

<Button<Button
android:id="@+id/download"
android:layout_width="0dp"
android:layout_height="0dp"
android:text="@string/btn_title"
android:onClick="@{() -> viewModel.doTheDownload()}"
android:enabled="@{viewModel.liveWorkStatus }"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />/>

</androidx.constraintlayout.widget.ConstraintLayout></androidx.constraintlayout.widget.ConstraintLayout>
</layout></layout>

(from DownloadWork/src/main/res/layout/activity_main.xml)

Our MainActivity then does three things in support of all of this:

1. It has a BindingAdapter that can update the enabled status of a view given a
WorkInfo, allowing us to use a binding expression on android:enabled

2. It binds the DownloadViewModel into the binding
3. It calls setLifecycleOwner() on the binding, which the data binding

WORKING WITH WORKMANAGER

746

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DownloadWork/src/main/res/layout/activity_main.xml

framework will use for observing the LiveData:

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download;

importimport android.os.Bundleandroid.os.Bundle;
importimport android.view.Viewandroid.view.View;
importimport android.widget.Toastandroid.widget.Toast;
importimport com.commonsware.jetpack.work.download.databinding.ActivityMainBindingcom.commonsware.jetpack.work.download.databinding.ActivityMainBinding;
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity;
importimport androidx.databinding.BindingAdapterandroidx.databinding.BindingAdapter;
importimport androidx.lifecycle.ViewModelProviderandroidx.lifecycle.ViewModelProvider;
importimport androidx.work.WorkInfoandroidx.work.WorkInfo;

publicpublic classclass MainActivityMainActivity extendsextends AppCompatActivityAppCompatActivity {
@BindingAdapter("android:enabled")
publicpublic staticstatic void setEnabled(ViewView v, WorkInfoWorkInfo info) {

ifif (info==nullnull) {
v.setEnabled(truetrue);

}
elseelse {

v.setEnabled(info.getState().isFinished());
}

}

privateprivate ActivityMainBindingActivityMainBinding binding;

@Override
protectedprotected void onCreate(BundleBundle savedInstanceState) {

supersuper.onCreate(savedInstanceState);

finalfinal DownloadViewModelDownloadViewModel vm= newnew ViewModelProviderViewModelProvider(thisthis).get(DownloadViewModelDownloadViewModel.class);

binding=ActivityMainBindingActivityMainBinding.inflate(getLayoutInflater());
binding.setViewModel(vm);
binding.setLifecycleOwner(thisthis);

setContentView(binding.getRoot());

vm.liveWorkStatus.observe(thisthis, workStatus -> {
ifif (workStatus!=nullnull && workStatus.getState().isFinished()) {

ToastToast.makeText(thisthis, R.string.msg_done, ToastToast.LENGTH_LONG).show();
}

});
}

}

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/MainActivity.java)

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download

importimport android.os.Bundleandroid.os.Bundle
importimport android.view.Viewandroid.view.View
importimport android.widget.Toastandroid.widget.Toast
importimport androidx.activity.viewModelsandroidx.activity.viewModels
importimport androidx.appcompat.app.AppCompatActivityandroidx.appcompat.app.AppCompatActivity
importimport androidx.databinding.BindingAdapterandroidx.databinding.BindingAdapter

WORKING WITH WORKMANAGER

747

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/MainActivity.java

importimport androidx.lifecycle.observeandroidx.lifecycle.observe
importimport androidx.work.WorkInfoandroidx.work.WorkInfo
importimport com.commonsware.jetpack.work.download.databinding.ActivityMainBindingcom.commonsware.jetpack.work.download.databinding.ActivityMainBinding

@BindingAdapter("android:enabled")
funfun ViewView.setEnabled(info: WorkInfoWorkInfo?) {

isEnabled = info?.state?.isFinished ?: truetrue
}

classclass MainActivityMainActivity : AppCompatActivityAppCompatActivity() {

overrideoverride funfun onCreate(savedInstanceState: BundleBundle?) {
supersuper.onCreate(savedInstanceState)

valval vm: DownloadViewModelDownloadViewModel byby viewModels()
valval binding = ActivityMainBindingActivityMainBinding.inflate(layoutInflater)

binding.viewModel = vm
binding.lifecycleOwner = thisthis

setContentView(binding.root)

vm.liveWorkStatus.observe(thisthis) { workStatus ->
ifif (workStatus != nullnull && workStatus.state.isFinished) {

ToastToast.makeText(thisthis, RR.string.msg_done, ToastToast.LENGTH_LONGLENGTH_LONG).show()
}

}
}

}

(from DownloadWork/src/main/java/com/commonsware/jetpack/work/download/MainActivity.kt)

Here, we map the State from a WorkInfo to the boolean value to use for the
android:enabled attribute. Basically, if the WorkInfo is null or is finished, the
button is enabled, otherwise it is disabled. So, as the LiveData emits new WorkInfo
objects, data binding takes each, calls this setEnabled() method, and uses that to
update the enabled state of the Button.

Canceling Work
Frequently, the work that we enqueue into the WorkManager is “fire and forget”,
where either the work succeeds or fails on its own. Occasionally, though, we may
need to try to cancel a piece of enqueued work. For example, we might offer a cancel
button in the UI to allow the user to abandon some enqueued request (e.g., do not
download the thing that the user just requested to download).

WORKING WITH WORKMANAGER

748

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DownloadWork/src/main/java/com/commonsware/jetpack/work/download/MainActivity.kt

For that, you can call cancelWorkById() or cancelAllWorkByTag() on WorkManager.
The former takes the work’s ID (from getId() on the WorkRequest), while the latter
takes a tag. Since IDs are unique, cancelWorkById() will only try to cancel that one
piece of work, while cancelAllWorkByTag() will try to cancel all enqueued work
associated with that tag. So, for example, if you associate the download tag with your
download work requests, cancelAllWorkByTag("download") will try to cancel all of
those requests.

Note, though, that cancellation is “best effort”. In particular, if the work has already
begun, it might not be canceled. In some cases, this is fine. In other cases, you might
want to both cancel the work in WorkManager and take steps to ensure that any
affected running work finds out about the cancellation. For example, you might have
some state field somewhere that the work can monitor to see if it should continue
doing whatever it is doing.

Delayed Work
Typically, we are happy to have our work begin right away, if the conditions allow it.
Occasionally, we may want to intentionally delay that work for a bit.

For this, you can call setInitialDelay() on the OneTimeWorkRequest.Builder as
part of configuring the work. There are two flavors of setInitialDelay():

• one takes a long value and a TimeUnit, where the TimeUnit indicates what
unit of measure the long is in (e.g., TimeUnit.SECONDS)

• one takes a Duration, which is part of Java 8 and only available on API Level
26 and higher

In either case, the work will be delayed by at least that amount of time. However,
depending on circumstances (constraints, Doze mode, etc.), the work might happen
substantially later than the delay period. Do not assume that your work will start
immediately after your delay period.

Parallel Work
Suppose you have N pieces of work to be done in (approximate) parallel. As it turns
out, enqueue() on WorkManager takes either a varargs of WorkRequest or a List of
WorkRequest objects. If you pass in more than one WorkRequest, all will be
enqueued, and all will run when possible, based upon their constraints and the
number of threads in the WorkManager thread pool.

WORKING WITH WORKMANAGER

749

WorkManager has a default thread pool, and in many cases it will be sufficient for
your needs. If you wish to control that thread pool, call the static initialize() on
WorkManager once, such as from onCreate() of a custom Application. initialize()
takes a Context and a Configuration. You get a Configuration through the builder
pattern:

• Create an instance of Configuration.Builder
• Call setExecutor() on that Builder with an Executor that will serve as the

thread pool for the WorkManager
• Call build() on the Builder to get the Configuration

Chained Work
Where WorkManager shines is in its support for chained work. Chained work is where
you set up work requests that in turn depend upon other work requests. Later work
requests in the chain are only performed if the previous ones succeeded. And, work
requests can supply data to the next request in the chain, akin to command-line
pipelines or basic workflow systems.

Why?

On the one hand, chained work may not seem necessary. In principle, what you do
as a series of work requests could be done in one large work request.

The big benefit of splitting the work into separate requests comes with the
application of constraints. For example, the sample app that we will examine
demonstrates chained work by downloading a ZIP file, then unZIPping it.
Downloading a ZIP file requires an Internet connection, but unZIPping it does not.
By providing separate constraints for each work request, you can require a network
connection for the download, yet not require it for the unZIP task, thereby allowing
that work to proceed even if Internet connectivity is lost.

Also, smaller Worker classes can be made more reusable. One can imagine a library
of common Worker classes. Rather than having to write your own CompositeWorker
that used several Worker classes, you can simply set up a chain using existing APIs.

Chained work also helps to address the delivery of status updates as a larger task is
being processed. Each WorkRequest in the chain has its own WorkStatus that can be
monitored via LiveData. This way, you can at least get coarse-grained information
about how the chain overall is proceeding.

WORKING WITH WORKMANAGER

750

How Do We Chain Work?

To enqueue a WorkRequest, we used enqueue() on the WorkManager instance. In
truth, that is a convenience method. This:

WorkManagerWorkManager.getInstance(getApplicationContext())
.enqueue(request);

is really this:

WorkManagerWorkManager.getInstance(getApplicationContext())
.beginWith(request)
.enqueue();

beginWith() returns a WorkContinuation. This is an object that knows a
WorkRequest to process and knows how to be chained.

To have a follow-on WorkRequest in a simple two-element chain, call then() on the
WorkContinuation before the terminal enqueue() call:

WorkManagerWorkManager.getInstance(getApplicationContext())
.beginWith(request)
.then(otherRequest)
.enqueue();

Now, request will be processed, and if it succeeds, then (and only then) will
otherRequest be processed.

How Do We Pass Data Along the Chain?

We provide input to a WorkRequest via its Builder and setInputData(). However,
this is input that is created outside the processing of any individual request; it is
input that is defined when the chain is defined.

In addition, a Worker can provide output data to factory methods like success() on
ListenableWorker.Result. Those factory methods take the same sort of Data object
that setInputData() does. The output data can be used in two places:

• If this request has another request chained after it, that later request receives
the earlier request’s output data as input.

• The output data is available from the WorkInfo once the work is finished, so
consumers of the LiveData status stream can also see the output data.

WORKING WITH WORKMANAGER

751

OK, Where’s the Code?

The UnZIPWork sample module in the Sampler and SamplerJ projects are a variation
on the previous example, this time where we have two requests in a chain.

DownloadWorker is largely the same as before, with two differences:

1. Rather than receiving a filename as input, it decides what the filename will
be, as that will merely serve as a temporary file

2. It passes the path to that file to the next request in the chain via
setOutputData()

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download;

importimport android.content.Contextandroid.content.Context;
importimport android.util.Logandroid.util.Log;
importimport java.io.Filejava.io.File;
importimport java.io.IOExceptionjava.io.IOException;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.work.Dataandroidx.work.Data;
importimport androidx.work.ListenableWorkerandroidx.work.ListenableWorker;
importimport androidx.work.Workerandroidx.work.Worker;
importimport androidx.work.WorkerParametersandroidx.work.WorkerParameters;
importimport okhttp3.OkHttpClientokhttp3.OkHttpClient;
importimport okhttp3.Requestokhttp3.Request;
importimport okhttp3.Responseokhttp3.Response;
importimport okio.BufferedSinkokio.BufferedSink;
importimport okio.Okiookio.Okio;

publicpublic classclass DownloadWorkerDownloadWorker extendsextends WorkerWorker {
publicpublic staticstatic finalfinal StringString KEY_URL="url";
publicpublic staticstatic finalfinal StringString KEY_RESULTDIR="resultDir";

publicpublic DownloadWorker(@NonNull ContextContext context,
@NonNull WorkerParametersWorkerParameters workerParams) {

supersuper(context, workerParams);
}

@NonNull
@Override
publicpublic ResultResult doWork() {

OkHttpClientOkHttpClient client=newnew OkHttpClientOkHttpClient();
RequestRequest request=newnew RequestRequest.Builder()

.url(getInputData().getString(KEY_URL))

.build();

WORKING WITH WORKMANAGER

752

https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/UnZIPWork
https://gitlab.com/commonsguy/cw-jetpack-kotlin/tree/master/UnZIPWork
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/UnZIPWork
https://gitlab.com/commonsguy/cw-jetpack-java/tree/master/UnZIPWork

FileFile dir=getApplicationContext().getCacheDir();
FileFile downloadedFile=newnew FileFile(dir, "temp.zip");

ifif (downloadedFile.exists()) {
downloadedFile.delete();

}

trytry (ResponseResponse response=client.newCall(request).execute()) {
BufferedSinkBufferedSink sink=OkioOkio.buffer(OkioOkio.sink(downloadedFile));

sink.writeAll(response.body().source());
sink.close();

}
catchcatch (IOExceptionIOException e) {

LogLog.e(getClass().getSimpleName(), "Exception downloading file", e);

returnreturn ListenableWorkerListenableWorker.Result.failure();
}

returnreturn ListenableWorkerListenableWorker.Result.success(newnew DataData.Builder()
.putString(UnZIPWorkerUnZIPWorker.KEY_ZIPFILE, downloadedFile.getAbsolutePath())
.build());

}
}

(from UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/DownloadWorker.java)

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download

importimport android.content.Contextandroid.content.Context
importimport android.util.Logandroid.util.Log
importimport androidx.work.Dataandroidx.work.Data
importimport androidx.work.Workerandroidx.work.Worker
importimport androidx.work.WorkerParametersandroidx.work.WorkerParameters
importimport okhttp3.OkHttpClientokhttp3.OkHttpClient
importimport okhttp3.Requestokhttp3.Request
importimport okio.bufferokio.buffer
importimport okio.sinkokio.sink
importimport java.io.Filejava.io.File
importimport java.io.IOExceptionjava.io.IOException

classclass DownloadWorkerDownloadWorker(context: ContextContext, workerParams: WorkerParametersWorkerParameters) :
WorkerWorker(context, workerParams) {

overrideoverride funfun doWork(): ResultResult {
valval client = OkHttpClientOkHttpClient()
valval request = RequestRequest.BuilderBuilder()

.url(inputData.getString(KEY_URLKEY_URL)!!)

WORKING WITH WORKMANAGER

753

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/DownloadWorker.java

.build()

valval dir = applicationContext.cacheDir
valval downloadedFile = FileFile(dir, "temp.zip")

ifif (downloadedFile.exists()) {
downloadedFile.delete()

}

trytry {
client.newCall(request).execute().use { response ->

valval sink = downloadedFile.sink().buffer()

response.body?.let { sink.writeAll(it.source()) }
sink.close()

}
} catchcatch (e: IOExceptionIOException) {

LogLog.e(javaClass.simpleName, "Exception downloading file", e)

returnreturn ResultResult.failure()
}

returnreturn ResultResult.success(
DataData.BuilderBuilder()

.putString(UnZIPWorkerUnZIPWorker.KEY_ZIPFILEKEY_ZIPFILE, downloadedFile.absolutePath)

.build()
)

}

companioncompanion objectobject {
constconst valval KEY_URL = "url"
constconst valval KEY_RESULTDIR = "resultDir"

}
}

(from UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/DownloadWorker.kt)

We now also have an UnZIPWorker. This expects two pieces of input: the file to unZIP
and the directory to unZIP it into. It uses the CWAC-Security library and its
ZipUtils.unzip() method, as that safely handles possibly-malicious ZIP files (e.g.,
zip bombs):

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download;

importimport android.content.Contextandroid.content.Context;
importimport android.util.Logandroid.util.Log;
importimport com.commonsware.cwac.security.ZipUtilscom.commonsware.cwac.security.ZipUtils;
importimport java.io.Filejava.io.File;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;

WORKING WITH WORKMANAGER

754

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/DownloadWorker.kt
https://github.com/commonsguy/cwac-security

importimport androidx.work.ListenableWorkerandroidx.work.ListenableWorker;
importimport androidx.work.Workerandroidx.work.Worker;
importimport androidx.work.WorkerParametersandroidx.work.WorkerParameters;

publicpublic classclass UnZIPWorkerUnZIPWorker extendsextends WorkerWorker {
publicpublic staticstatic finalfinal StringString KEY_ZIPFILE="zipFile";
publicpublic staticstatic finalfinal StringString KEY_RESULTDIR="resultDir";

publicpublic UnZIPWorker(@NonNull ContextContext context,
@NonNull WorkerParametersWorkerParameters workerParams) {

supersuper(context, workerParams);
}

@NonNull
@Override
publicpublic ResultResult doWork() {

FileFile downloadedFile=newnew FileFile(getInputData().getString(KEY_ZIPFILE));
FileFile dir=getApplicationContext().getCacheDir();
StringString resultDirData=getInputData().getString(KEY_RESULTDIR);
FileFile resultDir=newnew FileFile(dir, resultDirData==nullnull ? "results" : resultDirData);

trytry {
ZipUtilsZipUtils.unzip(downloadedFile, resultDir, 2048, 1024*1024*16);
downloadedFile.delete();

}
catchcatch (ExceptionException e) {

LogLog.e(getClass().getSimpleName(), "Exception unZIPing file", e);

returnreturn ListenableWorkerListenableWorker.Result.failure();
}

returnreturn ListenableWorkerListenableWorker.Result.success();
}

}

(from UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/UnZIPWorker.java)

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download

importimport android.content.Contextandroid.content.Context
importimport android.util.Logandroid.util.Log
importimport androidx.work.ListenableWorkerandroidx.work.ListenableWorker
importimport androidx.work.Workerandroidx.work.Worker
importimport androidx.work.WorkerParametersandroidx.work.WorkerParameters
importimport com.commonsware.cwac.security.ZipUtilscom.commonsware.cwac.security.ZipUtils
importimport java.io.Filejava.io.File

classclass UnZIPWorkerUnZIPWorker(context: ContextContext, workerParams: WorkerParametersWorkerParameters) :
WorkerWorker(context, workerParams) {

overrideoverride funfun doWork(): ResultResult {
valval downloadedFile = FileFile(inputData.getString(KEY_ZIPFILEKEY_ZIPFILE)!!)
valval dir = applicationContext.cacheDir
valval resultDirData = inputData.getString(KEY_RESULTDIRKEY_RESULTDIR)
valval resultDir = FileFile(dir, resultDirData ?: "results")

WORKING WITH WORKMANAGER

755

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/UnZIPWorker.java

trytry {
ZipUtilsZipUtils.unzip(downloadedFile, resultDir, 2048, 1024 * 1024 * 16)
downloadedFile.delete()

} catchcatch (e: ExceptionException) {
LogLog.e(javaClass.simpleName, "Exception unZIPing file", e)

returnreturn ResultResult.failure()
}

returnreturn ResultResult.success()
}

companioncompanion objectobject {
constconst valval KEY_ZIPFILE = "zipFile"
constconst valval KEY_RESULTDIR = "resultDir"

}
}

(from UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/UnZIPWorker.kt)

DownloadViewModel now sets up a request chain using both worker classes:

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download;

importimport android.app.Applicationandroid.app.Application;
importimport androidx.annotation.NonNullandroidx.annotation.NonNull;
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel;
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData;
importimport androidx.lifecycle.MediatorLiveDataandroidx.lifecycle.MediatorLiveData;
importimport androidx.work.Constraintsandroidx.work.Constraints;
importimport androidx.work.Dataandroidx.work.Data;
importimport androidx.work.NetworkTypeandroidx.work.NetworkType;
importimport androidx.work.OneTimeWorkRequestandroidx.work.OneTimeWorkRequest;
importimport androidx.work.WorkInfoandroidx.work.WorkInfo;
importimport androidx.work.WorkManagerandroidx.work.WorkManager;

publicpublic classclass DownloadViewModelDownloadViewModel extendsextends AndroidViewModelAndroidViewModel {
publicpublic finalfinal MediatorLiveDataMediatorLiveData<WorkInfoWorkInfo> liveWorkStatus=newnew MediatorLiveDataMediatorLiveData<>();

publicpublic DownloadViewModel(@NonNull ApplicationApplication application) {
supersuper(application);

}

publicpublic void doTheDownload() {
OneTimeWorkRequestOneTimeWorkRequest downloadWork=

newnew OneTimeWorkRequestOneTimeWorkRequest.Builder(DownloadWorkerDownloadWorker.class)
.setConstraints(newnew ConstraintsConstraints.Builder()
.setRequiredNetworkType(NetworkTypeNetworkType.CONNECTED)
.setRequiresBatteryNotLow(truetrue)
.build())

.setInputData(newnew DataData.Builder()
.putString(DownloadWorkerDownloadWorker.KEY_URL,

"https://commonsware.com/Android/source_1_0.zip")

WORKING WITH WORKMANAGER

756

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/UnZIPWorker.kt

.build())
.addTag("download")
.build();

OneTimeWorkRequestOneTimeWorkRequest unZIPWork=
newnew OneTimeWorkRequestOneTimeWorkRequest.Builder(UnZIPWorkerUnZIPWorker.class)

.setConstraints(newnew ConstraintsConstraints.Builder()
.setRequiresStorageNotLow(truetrue)
.setRequiresBatteryNotLow(truetrue)
.build())

.setInputData(newnew DataData.Builder()
.putString(DownloadWorkerDownloadWorker.KEY_RESULTDIR, "unzipped")
.build())

.addTag("unZIP")

.build();

WorkManagerWorkManager.getInstance(getApplication())
.beginWith(downloadWork)
.then(unZIPWork)
.enqueue();

finalfinal LiveDataLiveData<WorkInfoWorkInfo> liveOpStatus=
WorkManagerWorkManager.getInstance(getApplication()).getWorkInfoByIdLiveData(unZIPWork.getId());

liveWorkStatus.addSource(liveOpStatus, workStatus -> {
liveWorkStatus.setValue(workStatus);

ifif (workStatus.getState().isFinished()) {
liveWorkStatus.removeSource(liveOpStatus);

}
});

}
}

(from UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.java)

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download

importimport android.app.Applicationandroid.app.Application
importimport androidx.lifecycle.AndroidViewModelandroidx.lifecycle.AndroidViewModel
importimport androidx.lifecycle.LiveDataandroidx.lifecycle.LiveData
importimport androidx.lifecycle.MediatorLiveDataandroidx.lifecycle.MediatorLiveData
importimport androidx.work.Constraintsandroidx.work.Constraints
importimport androidx.work.Dataandroidx.work.Data
importimport androidx.work.NetworkTypeandroidx.work.NetworkType
importimport androidx.work.OneTimeWorkRequestandroidx.work.OneTimeWorkRequest
importimport androidx.work.WorkInfoandroidx.work.WorkInfo
importimport androidx.work.WorkManagerandroidx.work.WorkManager

classclass DownloadViewModelDownloadViewModel(application: ApplicationApplication) :
AndroidViewModelAndroidViewModel(application) {
valval liveWorkStatus = MediatorLiveDataMediatorLiveData<WorkInfoWorkInfo>()

funfun doTheDownload() {
valval downloadWork = OneTimeWorkRequestOneTimeWorkRequest.BuilderBuilder(DownloadWorkerDownloadWorker::classclass.java)

.setConstraints(

WORKING WITH WORKMANAGER

757

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.java

ConstraintsConstraints.BuilderBuilder()
.setRequiredNetworkType(NetworkTypeNetworkType.CONNECTEDCONNECTED)
.setRequiresBatteryNotLow(truetrue)
.build()

)
.setInputData(

DataData.BuilderBuilder()
.putString(

DownloadWorkerDownloadWorker.KEY_URLKEY_URL,
"https://commonsware.com/Android/source_1_0.zip"

)
.build()

)
.addTag("download")
.build()

valval unZIPWork = OneTimeWorkRequestOneTimeWorkRequest.BuilderBuilder(UnZIPWorkerUnZIPWorker::classclass.java)
.setConstraints(

ConstraintsConstraints.BuilderBuilder()
.setRequiresStorageNotLow(truetrue)
.setRequiresBatteryNotLow(truetrue)
.build()

)
.setInputData(

DataData.BuilderBuilder()
.putString(DownloadWorkerDownloadWorker.KEY_RESULTDIRKEY_RESULTDIR, "unzipped")
.build()

)
.addTag("unZIP")
.build()

WorkManagerWorkManager.getInstance(getApplication())
.beginWith(downloadWork)
.then(unZIPWork)
.enqueue()

valval liveOpStatus = WorkManagerWorkManager.getInstance(getApplication())
.getWorkInfoByIdLiveData(unZIPWork.id)

liveWorkStatus.addSource(liveOpStatus) { workStatus ->
liveWorkStatus.value = workStatus

ifif (workStatus.state.isFinished) {
liveWorkStatus.removeSource(liveOpStatus)

}
}

}
}

WORKING WITH WORKMANAGER

758

(from UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.kt)

Of note:

• downloadWork is defined the same as before, except that we skip supplying
the filename, and the URL now points to a ZIP file instead of a PDF

• unZIPWork does not require an Internet connection, but it does require that
we have a reasonable amount of storage available

• unZIPWork gets the name of a directory to create in getCacheDir() to hold
the unZIPped results

• We use beginWith() and then() to set up the chain, using enqueue() to
enqueue the results

• We monitor the unZIPWork status for the purposes of re-enabling the button
and showing the Toast

In principle, we should be monitoring both requests’ status updates. If the first
request fails for some reason (e.g., HTTP 404 error), the second request will never
run. We could do that by calling getWorkInfosLiveData() on the
WorkContinuation, which returns a LiveData of a list of WorkInfo objects, one for
each request in the chain. That significantly increases the complexity of the sample
(e.g., what do we do for data binding in this case?), and so we cheat for the sake of
brevity.

How Complex Can This Get?

It can get as complicated as you like:

• You can keep chaining work together by successive then() calls:

WorkManagerWorkManager.getIntstance(getApplicationContext())
.beginWith(lets)
.then(go)
.then(crazy)
.enqueue();

• You can have parallel requests as part of a chain, by passing multiple
WorkRequest objects to beginWith() or then()

• You can chain a WorkContinuation onto another WorkContinuation
• You can create InputMerger implementations to help coordinate out the

output data from previous steps in the chain are merged together to form
the input data for successive steps in the chain

• And so on

WORKING WITH WORKMANAGER

759

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/UnZIPWork/src/main/java/com/commonsware/jetpack/work/download/DownloadViewModel.kt

However, while WorkManager is useful for deferrable tasks, it is not a full workflow
system:

• There is limited ability to cancel work, as noted previously
• There is no ability to change enqueued work, except by trying to cancel it

and then enqueuing its replacement
• There are no specifications for how long any individual request or an entire

chain can take, in terms of time
• There are no specifications for how results are handled when it takes

multiple process invocations to complete a chain (e.g., a long chain
extending past the 10-minute limit)

• And so on

As a result, at least for the time being, be careful when trying to create complex
WorkRequest chains.

Periodic Work
So far, all of the work has been for single tasks, using OneTimeWorkRequest. The
other WorkRequest implementation is PeriodicWorkRequest, and as the name
suggests, it is for work that should repeat with a given interval.

The interval is provided via the PeriodicWorkRequest.Builder constructor, either as
a Duration or as a long and TimeUnit pair. There is a minimum allowed period,
defined as PeriodicWorkRequest.MIN_PERIODIC_INTERVAL_MILLIS, presently
defined as 15 minutes. Consider the supplied interval to be a suggestion, rather than
a requirement.

Unique Work
Sometimes, we want to avoid accidentally enqueuing the same work more than
once.

For example, suppose that the app has a Worker that pulls data from a server.
Normally, that is triggered by a push message (e.g., Firebase Cloud Messaging).
However, you also have it set up that user actions can trigger that work to be done,
such as via a manual refresh option (e.g., pull-to-refresh). What you want to avoid is
trying to do two of this bit of work simultaneously, as that might confuse things on
either the device side or the server side.

WORKING WITH WORKMANAGER

760

To handle this, instead of enqueue() on WorkManager, you can use
beginUniqueWork(). This takes a “name” that identifies this logical unit of work. If
you previously used beginUniqueWork(), and you later call beginUniqueWork() with
the same name, and the earlier work is still ongoing, you can specify what should
happen (e.g., ignore the new work request).

Note that this does not support periodic work: you can only coordinate
OneTimeWorkRequest, not PeriodicWorkRequest.

Testing Work
The work-testing artifact offers a WorkManagerTestInitHelper utility class to help
with instrumented testing.

First, it has initializeTestWorkManager(). This configures WorkManager to use a
SynchronousExecutor. This amounts to a mock Executor, one that runs supplied
Runnable objects immediately on the current thread. By using
SynchronousExecutor, your enqueue() calls for WorkManager will happen
immediately and synchronously, rather than asynchronously.

Also, WorkManagerTestInitHelper has a getTestDriver() method, which returns a
TestDriver. This offers a setAllConstraintsMet() method, which takes a work
request ID and tells WorkManager that all of the constraints for that work request are
met. This makes your tests more deterministic, since constraints are normally there
to test the environment, and that might change from run to run of your tests.
However, it is very important to call setAllConstraintsMet() after you enqueue()
the work:

WorkManagerWorkManager.getInstance(context).enqueue(work);
WorkManagerTestInitHelperWorkManagerTestInitHelper.getTestDriver(context).setAllConstraintsMet(work.getId());

Note: calling setAllConstraintsMet() before calling enqueue() results in a crash.

The Work/Download sample app contains a DownloadWorkerTest class that shows the
use of WorkManagerTestInitHelper and TestDriver:

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download;

importimport android.content.Contextandroid.content.Context;
importimport org.junit.Beforeorg.junit.Before;
importimport org.junit.Testorg.junit.Test;
importimport org.junit.runner.RunWithorg.junit.runner.RunWith;

WORKING WITH WORKMANAGER

761

importimport java.io.Filejava.io.File;
importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4;
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry;
importimport androidx.work.Constraintsandroidx.work.Constraints;
importimport androidx.work.Dataandroidx.work.Data;
importimport androidx.work.NetworkTypeandroidx.work.NetworkType;
importimport androidx.work.OneTimeWorkRequestandroidx.work.OneTimeWorkRequest;
importimport androidx.work.WorkManagerandroidx.work.WorkManager;
importimport androidx.work.WorkRequestandroidx.work.WorkRequest;
importimport androidx.work.testing.WorkManagerTestInitHelperandroidx.work.testing.WorkManagerTestInitHelper;
importimport staticstatic org.junit.Assert.assertFalse;
importimport staticstatic org.junit.Assert.assertTrue;

@RunWith(AndroidJUnit4AndroidJUnit4.class)
publicpublic classclass DownloadWorkerTestDownloadWorkerTest {

privateprivate FileFile expected;
privateprivate finalfinal ContextContext context =

InstrumentationRegistryInstrumentationRegistry.getInstrumentation().getTargetContext();

@Before
publicpublic void setUp() {

WorkManagerTestInitHelperWorkManagerTestInitHelper.initializeTestWorkManager(context);

expected = newnew FileFile(context.getCacheDir(), "oldbook.pdf");

ifif (expected.exists()) {
expected.delete();

}
}

@Test
publicpublic void download() {

assertFalse(expected.exists());

WorkManagerWorkManager.getInstance(context).enqueue(buildWorkRequest(nullnull));

assertTrue(expected.exists());
}

@Test
publicpublic void downloadWithConstraints() {

ConstraintsConstraints constraints = newnew ConstraintsConstraints.Builder()
.setRequiredNetworkType(NetworkTypeNetworkType.CONNECTED)
.setRequiresBatteryNotLow(truetrue)
.build();

WorkRequestWorkRequest work = buildWorkRequest(constraints);

assertFalse(expected.exists());

WORKING WITH WORKMANAGER

762

WorkManagerWorkManager.getInstance(context).enqueue(work);
WorkManagerTestInitHelperWorkManagerTestInitHelper.getTestDriver(context)

.setAllConstraintsMet(work.getId());

assertTrue(expected.exists());
}

privateprivate WorkRequestWorkRequest buildWorkRequest(ConstraintsConstraints constraints) {
OneTimeWorkRequestOneTimeWorkRequest.Builder builder =

newnew OneTimeWorkRequestOneTimeWorkRequest.Builder(DownloadWorkerDownloadWorker.class)
.setInputData(newnew DataData.Builder()

.putString(DownloadWorkerDownloadWorker.KEY_URL,
"https://commonsware.com/Android/Android-1_0-CC.pdf")

.putString(DownloadWorkerDownloadWorker.KEY_FILENAME, "oldbook.pdf")

.build())
.addTag("download");

ifif (constraints != nullnull) {
builder.setConstraints(constraints);

}

returnreturn builder.build();
}

}

(from DownloadWork/src/androidTest/java/com/commonsware/jetpack/work/download/DownloadWorkerTest.java)

packagepackage com.commonsware.jetpack.work.downloadcom.commonsware.jetpack.work.download

importimport androidx.test.ext.junit.runners.AndroidJUnit4androidx.test.ext.junit.runners.AndroidJUnit4
importimport androidx.test.platform.app.InstrumentationRegistryandroidx.test.platform.app.InstrumentationRegistry
importimport androidx.work.*androidx.work.*
importimport androidx.work.testing.WorkManagerTestInitHelperandroidx.work.testing.WorkManagerTestInitHelper
importimport org.junit.Assert.assertFalseorg.junit.Assert.assertFalse
importimport org.junit.Assert.assertTrueorg.junit.Assert.assertTrue
importimport org.junit.Beforeorg.junit.Before
importimport org.junit.Testorg.junit.Test
importimport org.junit.runner.RunWithorg.junit.runner.RunWith
importimport java.io.Filejava.io.File

@RunWith(AndroidJUnit4AndroidJUnit4::classclass)
classclass DownloadWorkerTestDownloadWorkerTest {

privateprivate lateinitlateinit varvar expected: FileFile
privateprivate valval context =

InstrumentationRegistryInstrumentationRegistry.getInstrumentation().targetContext

@Before
funfun setUp() {

WorkManagerTestInitHelperWorkManagerTestInitHelper.initializeTestWorkManager(context)

expected = FileFile(context.cacheDir, "oldbook.pdf")

WORKING WITH WORKMANAGER

763

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/DownloadWork/src/androidTest/java/com/commonsware/jetpack/work/download/DownloadWorkerTest.java

ifif (expected.exists()) {
expected.delete()

}
}

@Test
funfun download() {

assertFalse(expected.exists())

WorkManagerWorkManager.getInstance(context).enqueue(buildWorkRequest(nullnull))

assertTrue(expected.exists())
}

@Test
funfun downloadWithConstraints() {

valval constraints = ConstraintsConstraints.BuilderBuilder()
.setRequiredNetworkType(NetworkTypeNetworkType.CONNECTEDCONNECTED)
.setRequiresBatteryNotLow(truetrue)
.build()

valval work = buildWorkRequest(constraints)

assertFalse(expected.exists())

WorkManagerWorkManager.getInstance(context).enqueue(work)
WorkManagerTestInitHelperWorkManagerTestInitHelper.getTestDriver(context)!!.setAllConstraintsMet(work.id)

assertTrue(expected.exists())
}

privateprivate funfun buildWorkRequest(constraints: ConstraintsConstraints?): WorkRequestWorkRequest {
valval builder = OneTimeWorkRequestOneTimeWorkRequest.BuilderBuilder(DownloadWorkerDownloadWorker::classclass.java)

.setInputData(
DataData.BuilderBuilder()

.putString(
DownloadWorkerDownloadWorker.KEY_URLKEY_URL,
"https://commonsware.com/Android/Android-1_0-CC.pdf"

)
.putString(DownloadWorkerDownloadWorker.KEY_FILENAMEKEY_FILENAME, "oldbook.pdf")
.build()

)
.addTag("download")

ifif (constraints != nullnull) {
builder.setConstraints(constraints)

}

returnreturn builder.build()
}

}

(from DownloadWork/src/androidTest/java/com/commonsware/jetpack/work/download/DownloadWorkerTest.kt)

This class tests DownloadWorker both with and without constraints, validating that
the output file exists after the work has been done. Since we are using the
synchronous test configuration of WorkManager, we can test this work without
having to resort to CountDownLatch or similar tricks for testing multithreaded code.

WORKING WITH WORKMANAGER

764

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/DownloadWork/src/androidTest/java/com/commonsware/jetpack/work/download/DownloadWorkerTest.kt

Independent of work-testing, note that Worker has some dependencies on Context,
and it may be difficult to mock that Context since you are not the one providing it.
It may be necessary to consider your Worker as something to be tested with
instrumented tests, as we are doing here. If you wish to have deferred tasks be unit
tested outside of Android, consider isolating that logic in another class that your
Worker then happens to use.

WorkManagerWorkManager and Side Effects
WorkManager has a fairly clean and easy API and hides a lot of the complexity of
scheduling background work that is not time-sensitive.

However, it has side effects.

To be able to restart your scheduled work after a reboot, WorkManager registers an
ACTION_BOOT_COMPLETED receiver named
androidx.work.impl.background.systemalarm.RescheduleReceiver. To be a good
citizen, WorkManager only enables that receiver when you have relevant work and
disables it otherwise. That way, your app does not unnecessarily slow down the boot
process if there is no reason for your app to get control at boot time.

However, enabling and disabling a component, such as a receiver, triggers an
ACTION_PACKAGE_CHANGED broadcast. Few apps directly have any code that watches
for this broadcast, let alone would be harmed by having that broadcast be sent more
times that might otherwise be necessary.

App widgets, though, are affected by ACTION_PACKAGE_CHANGED. Specifically,
ACTION_PACKAGE_CHANGED triggers an onUpdate() call to your AppWidgetProvider.

That too may not be a problem for most app widgets. Ideally, your
AppWidgetProvider makes no assumptions about when, or how frequently, it gets
called with onUpdate(). However, there is one area where this is a problem: with an
AppWidgetProvider scheduling work in onUpdate(). The flow then becomes:

• A “regular” onUpdate() call comes in
• Your AppWidgetProvider schedules some work with WorkManager
• WorkManager enables RescheduleReceiver
• That triggers ACTION_PACKAGE_CHANGED, which triggers an onUpdate() call
• Your AppWidgetProvider schedules some work with WorkManager again
• WorkManager eventually gets through those two pieces of work

WORKING WITH WORKMANAGER

765

• WorkManager disables RescheduleReceiver, since it is no longer needed
• That triggers ACTION_PACKAGE_CHANGED, which triggers an onUpdate() call
• Your AppWidgetProvider schedules some work with WorkManager
• WorkManager enables RescheduleReceiver
• And we’re in an infinite loop

The recommendation from Google is to avoid unconditionally scheduling work with
WorkManager from onUpdate(). Instead, only do it if you know that the work is
needed and that it is safe to do so, meaning that you will not get into the infinite
loop.

That advice may be difficult for some to implement.

This, and any other possible side-effects of WorkManager, are not documented. So,
you need to be a bit careful about your use of WorkManager:

• If your app responds to ACTION_PACKAGE_CHANGED broadcasts, directly or
indirectly, it may not be safe to schedule work there, lest you wind up in the
infinite loop scenario described above.

• If your app responds to ACTION_BATTERY_OK, ACTION_BATTERY_LOW,
ACTION_POWER_CONNECTED, ACTION_POWER_DISCONNECTED,
ACTION_DEVICE_STORAGE_LOW, ACTION_DEVICE_STORAGE_OK,
CONNECTIVITY_CHANGE, ACTION_TIME_SET, or ACTION_TIMEZONE_CHANGED, bear
in mind that WorkManager has receivers for those broadcasts in your app.
These are all disabled at the outset, but presumably WorkManager has code to
enable them based on certain conditions, such as certain constraints that
you set in your work requests. Be careful about scheduling work with
WorkManager on those broadcasts as well.

• If your app responds to ACTION_BOOT_COMPLETED broadcasts, bear in mind
that WorkManager also depends on this broadcast. Your respective receivers
might be invoked in any order. It may not be safe to schedule work here, as
WorkManager might assume that its own ACTION_BOOT_COMPLETED receiver has
completed its work by the time you try scheduling new work. While I would
not expect an infinite loop scenario, this is the sort of edge case that requires
a lot of testing to ensure everything will work as expected.

• WorkManager has a ContentProvider that it bakes into your app as well.
While scheduling your own work from onCreate() of a ContentProvider
would be rather odd, it’s possible that somebody might want to do that. Be
careful, as WorkManager may not be fully ready for operation at that point.
Note that, last time I tested it, all ContentProvider instances are created
before onCreate() of Application, so probably it is safe to schedule work

WORKING WITH WORKMANAGER

766

https://issuetracker.google.com/issues/115575872#comment4

there.

There may be other edge and corner cases beyond these. So, while WorkManager is
nice, make sure that you thoroughly test your use of it.

WORKING WITH WORKMANAGER

767

Part Four: Other Notable Topics

Creating a New Project

Most of the time, you will be doing Android development on an existing project,
such as one created by somebody else on your development team.

But, on occasion, you will want to start development of a brand-new project. You
have two main options for accomplishing that:

1. Clone some existing project. An Android app project is just a directory of
files, so you can make a copy of an existing app directory and modify the
copy to serve as the base for your new project. We will examine that scenario
later in this chapter.

2. Use the Android Studio new-project wizard to create a brand new project.
This will give you a project that resembles the HelloWorld one seen in the
early chapters of this book. We will examine that scenario shortly.

Key Decisions That You Need to Make
Regardless of how you intend to start your new project, you will have a few decisions
that you will need to make towards the outset.

Application ID

The most important one is the application ID. This is the unique identifier for your
app:

• Two apps cannot be installed on the same device at the same time with the
same application ID

• Two apps cannot be distributed through the Play Store at the same time with
the same application ID (and other distribution channels may have similar

771

limitations)

From a technical standpoint, an application ID needs to be a valid Java/Kotlin
package name (e.g., com.commonsware.this.is.valid). Beyond that, though, you
want to try to avoid any accidental collisions with the application IDs of other
developers.

The recommended approach is to:

• Purchase a domain name, perhaps one that you intend to use for marketing
the app

• Reverse the domain name (e.g., if your domain is thisismydomainname.com,
the reversed domain name is com.thisismydomainname)

• Append some segment to it that identifies your app (e.g.,
com.thisismydomainname.superapp)

• Use that as your application ID

The reverse domain name convention reduces the odds of accidental collisions with
other developers. The app-identifying segment at the end reduces the odds of
accidental collisions with other developers in your organization. Even if you are a
solo developer, you might create other Android apps in the future, so having an
application ID that is tied to a specific app, rather than just a domain name, is a
good idea.

Unlike the other decisions in this section, this one will be somewhat difficult to
change. In particular, once you start shipping the app, you cannot change the
application ID. If you do, that will be considered a totally different app by Android
and app distribution channels (e.g., the Play Store).

Project Directory

Your project files need to live somewhere!

Language

You can have a project that:

• Is Java-only
• Allows Kotlin

(there is no simple way to have a Kotlin-only project)

CREATING A NEW PROJECT

772

Switching from a Java-only to a Java-and-Kotlin project is not that difficult. However,
for future-proofing, the best choice is to support Kotlin from the outset, even if you
do not plan on using it for much right away.

Minimum SDK Version

The minSdkVersion indicates how old of an Android version you are willing to
support.

There are competing pressures here:

• The higher the minSdkVersion, the simpler your testing becomes, because
you do not need to worry about as many Android OS versions

• Also, the higher the minSdkVersion, the simpler some aspects of
development become, because you do not have to do quite as many different
things for older versus newer devices

• The lower the minSdkVersion, the more prospective users there will be for
your app, since not everybody has an Android device with an up-to-date
version of Android

From a practical standpoint, a minSdkVersion below 14 will be exceptionally difficult,
as that is the minimum supported API level for the Jetpack. Certain pieces of the
Jetpack have higher minimums than that, though 14 is fairly common.

CREATING A NEW PROJECT

773

The New-Project Wizard
For many developers, the “go-to” approach for creating a new project is via the new-
project wizard. Typically, you get to that wizard via “File” > “New” > “New Project…”
from the main menu:

Figure 239: Android Studio New Project Main Menu Option

If you are at the “welcome dialog” and do not have a project open, there is a “Start a
new Android Studio project” option that opens the new-project wizard.

CREATING A NEW PROJECT

774

Project Template

The first page of the wizard allows you to choose a template for your new project:

Figure 240: Android Studio New Project Wizard, First Page

What You Get

The idea is that you would choose a template that matches the starting point that
you want for the app. The new-project wizard will give you classes, resources, and so
on that are based on the template. The theory is that you could then use those files
as the starting point, tweaking them as needed and blending in your own
application logic.

What Else You Need to Do

In reality, these templates are mostly for samples or scrap projects for
experimentation. Invariably, you will replace or remove a substantial amount of
what they create for you. As such, do not spend a lot of time worrying about which
template to use for a new project. The “Empty Activity” template traditionally has
the least amount of “cruft” to remove.

CREATING A NEW PROJECT

775

However, do not be afraid to play around with the templates in scrap projects. The
output from the templates is not always the absolute best code, but it may help you
learn a bit more about various features of Android, including some stuff not covered
by this book.

Project Details

Once you choose a template and click the “Next” button, you will be taken to the
second page of the new-project wizard, where you can provide the core details of the
project that you want to create:

Figure 241: Android Studio New Project Wizard, Second Page

Core Elements

The “Name” field is the display name for your app. It will be placed in the app_name
string resource and will be used in the manifest as the label for your app and activity.

The “package name” is your application ID. If you create several projects, Android
Studio will remember the top-level domain that you use for your projects and will
pre-fill that in as part of a generated sample application ID.

CREATING A NEW PROJECT

776

“Save location” is where on your development machine’s filesystem you would like
your project to go. Android Studio will create the directory for you if it does not
already exist, and Android Studio may complain if you try creating a project in a
directory that exists and already has files in it.

Choosing the Minimum SDK Version

A drop-down lets you specify your desired minSdkVersion value. The “help me
choose” link beneath it will bring up a dialog showing you highlights of what was
added in each Android release, along with an approximate percentage of Google Play
ecosystem devices run that API level or lower:

Figure 242: Android Platform/API Version Distribution Dialog

What Is “Instant Apps”?

You will also find a “This project will support instant apps” checkbox. Instant Apps is
a means by which users of Google’s search engine can install a piece of your app
directly from search results, without downloading the full app and permanently
installing it. This allows users to perhaps accomplish some specific task using a
native app as opposed to a mobile Web site, or to see how your app looks and works

CREATING A NEW PROJECT

777

before perhaps installing the full thing.

Instant Apps, however, does require a fair bit of custom engineering work, and it is
only relevant for apps where the user might want to run it from Google search
results.

As a result, most apps can safely opt out of Instant Apps, at least at the outset. It is
always possible to turn on Instant Apps support at a later time if and when that
makes sense.

Additional Screens

Most of the templates do not ask for any additional information than what appears
in the “Configure your project” wizard page. However, a few do continue to a third
wizard page. The “Native C++” template is one:

Figure 243: Android Studio New Project Wizard, C++ Template Customization Screen

This template sets up a project where all code is written in C/C++ instead of in Java/
Kotlin. This third wizard page lets you choose what particular C++ version you want
(C++11, C++14, or whatever the default it).

CREATING A NEW PROJECT

778

You’re Done!

Once you click the “Finish” button, Android Studio will create your project to your
specifications. The standard IDE window will appear, showing you what it generated.

Copying an Existing Project
If you prefer, you an use an existing project as the starting point for creating a new
project. An Android Studio project is just a directory tree of files. Copying portions
of that tree gives you a “new” project with all the existing content from the original
one.

After copying the full tree, though, you may want to delete some existing stuff from
the copy, before importing the copy into Android Studio. The items listed in the
.gitignore file in the project root could be deleted. Notably, this usually means
deleting:

• The .gradle/ directory (note the leading .!)
• The .idea/ dierctory
• The build/ directory in the project root and any modules
• The *.iml file in the project root and any modules

All of those will be rebuilt when you import the project into Android Studio, with
proper values for this copy.

Also, if you are copying this directory from some other development machine, delete
local.properties from the project root. This contains values that are unique for
your development machine, and it typically varies in content between machines.

Of course, much (if not all) of the code and layouts in the copy are unnecessary, as
they pertain to the original project, not the copy. Whether you bulk-delete this stuff
or selectively delete or modify what is there is up to you. Also, you will need to edit
things like the applicationId in build.gradle and the corresponding package
attribute on the <manifest> element of AndroidManifest.xml.

If you find yourself doing this sort of thing a lot, you might consider setting up your
own “template” project that you copy from, one that has the settings you want with
the least stuff needing to be edited or deleted.

CREATING A NEW PROJECT

779

Signing Your App

Perhaps the most important step in preparing your application for production
distribution is signing it with a production signing key. While mistakes here may not
be immediately apparent, they can have significant long-term impacts, particularly
when it comes time for you to distribute an update.

Role of Code Signing
We digitally sign our apps to ensure that nobody tampers with those apps in ways
that may harm the user.

App Updates

For example: you distribute your app with an application ID of
com.awesomecorp.fun. What would stop somebody else from trying to distribute
updates to that app, by shipping their own APK with the same application ID and a
higher versionCode?

What prevents that is the digital signature. In order for an APK to be considered a
valid upgrade for an installed app, it needs to:

• Have the same application ID
• Have a higher versionCode
• Be signed by the same signing key that signed the installed app

So long as nobody steals your signing key, and so long as there is no major
breakthrough in falsifying digital signatures, only you can distribute updates to your
app.

781

Tampering by Distributors

A related concern is whether your app distributor — Google, in the case of the Play
Store — can modify your app before they distribute it.

If you sign your app, and you verify that the signature of the distributed app has not
changed, then you know that the distributor did not change the app.

Conversely, if the distributor signs the app, then the distributor can do whatever it
wants with the app. In effect, whoever signs the app really controls what the app is
and does.

What Happens In Debug Mode
Of course, you may be wondering how you got this far in life without worrying about
keys and signatures.

The Android build process creates a debug key for you automatically. That key is
automatically applied when you create a debug version of your application (e.g.,
running the app in your IDE). This all happens behind the scenes, so it is very
possible for you to go through weeks and months of development and not encounter
this problem.

In fact, the most likely place where you might encounter this problem is in a
distributed development environment, such as an open source project. There, you
might have encountered a problem mentioned above, where a debug application
compiled by one team member cannot install over the debug application from
another team member, since they do not share a common debug key. You may have
run into similar problems just on your own if you use multiple development
machines (e.g., a desktop in the home office and a notebook for when you are on the
road delivering Android developer training).

Finding Your Debug Keystore

The debug keystore is a debug.keystore file in your Android SDK data directory.
This directory is not where your SDK is installed, but rather is where the tools store
data unique to your account on your developer machine, such as your emulator
AVDs.

This directory can be found at:

SIGNING YOUR APP

782

• ~/.android/ on macOS and Linux
• C:\Users\...\.android\ on Windows

(where ... is your Windows username)

Synchronizing Your Debug Signing Key

If you have a development team that, for better coordination, should all use the
same debug.keystore, just pick one and copy it to all team members’ development
machines, replacing their generated ones. The debug.keystore file is a binary file
and should be transferable between operating systems (e.g., from Linux to
Windows).

Production Signing Keys
Beyond the debug keystore, though, you will need one for production use.
Distribution channels like the Play Store do not accept apps signed with the debug
signing key. So, you will need to create a key that is acceptable to those channels,
plus arrange to use that key when creating your production apps.

How long your production signing key is valid for is important. Once your key
expires, you can no longer use it for signing new applications, which means once the
key expires, you cannot update existing Android applications.

Note that both the debug signing key and its production counterpart are self-signed
certificates — you do not have to purchase a certificate from Verisign or anyone.
These keys are for creating immutable identity, but are not for creating confirmed
identity. In other words, these certificates do not prove you are such-and-so person,
but can prove that the same key signed two different APKs.

Creating a Production Signing Key

The mechanics of creating a production signing key depend on whether you will use
Android Studio or will create one outside of any IDE.

Android Studio

Android Studio has support to create a production signing key as part of its overall
process for creating a production-signed APK, which is covered later in this chapter.

SIGNING YOUR APP

783

Manually

To manually create a production signing key, you will need to use keytoolkeytool. This
comes with the Java SDK, and so it should be available to you already.

The keytoolkeytool utility manages the contents of a “keystore”, which can contain one or
more keys. Each “keystore” has a password for the store itself, and keys can also have
their own individual passwords. You will need to supply these passwords later on
when signing an application with the key.

Here is an example of running keytoolkeytool:

keytool -genkey-genkey -v-v -keystore-keystore cw-release.keystore -alias-alias cw-release -keyalg-keyalg RSA
-validity-validity 10000 -keysize-keysize 2048

The parameters used here are:

1. -genkey, to indicate we want to create a new key
2. -v, to be verbose about the key creation process
3. -keystore, to indicate what keystore we are manipulating (cw-

release.keystore), which will be created if it does not already exist
4. -alias, to indicate what human-readable name we want to give the key (cw-

release)
5. -keyalg, to indicate what public-key encryption algorithm to be using for

this key (RSA)
6. -validity, to indicate how long this key should be valid, where 10,000 days

or more is recommended
7. -keysize, for indicating the length of the signing key (2,048 bits

recommended, or go higher if you prefer)

If you run the above command, you will be prompted for a number of pieces of
information. If you have ever created an SSL certificate, the prompts will be familiar:

$ keytool -genkey -v -keystore cw-release.keystore -alias cw-release -keyalg RSA
-validity 10000 -keysize 2048
Enter keystore password:
Re-enter new password:
What is your first and last name?

[Unknown]: Mark Murphy
What is the name of your organizational unit?

[Unknown]:
What is the name of your organization?

[Unknown]: CommonsWare, LLC

SIGNING YOUR APP

784

What is the name of your City or Locality?
[Unknown]:

What is the name of your State or Province?
[Unknown]: PA

What is the two-letter country code for this unit?
[Unknown]: US

Is CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US correct?
[no]: yes

Generating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA) with a
validity of 10,000 days

for: CN=Mark Murphy, OU=Unknown, O="CommonsWare, LLC", L=Unknown, ST=PA, C=US
Enter key password for <cw-release>

(RETURN if same as keystore password):
[Storing cw-release.keystore]

Signing with the Production Key

How you will apply this production signing key to sign your production app again
varies by your tool chain. Here, we will focus on using Android Studio itself, though
note that there are options for signing your app via Gradle tasks.

SIGNING YOUR APP

785

Start by opening up your project and going to “Build” > “Generate Signed Bundle/
APK…” from the main menu. This brings up the first page of a signing wizard:

Figure 244: Android Studio Generate Signed APK Wizard, First Page

You have two options: an “Android app bundle” or an APK. While Google would like
you to go with the “app bundle” route:

• You will be limited to distributing your app through the Play Store and
nowhere else

• Google can modify your app as they see fit

SIGNING YOUR APP

786

This chapter will focus on the APK option. Choosing it and clicking “Next” will
advance you in the wizard to where you can choose what to sign:

Figure 245: Android Studio Generate Signed APK Wizard, Second Page

The drop-down at the top will let you choose a module from which to build your
app. In most projects, there will be only one option, such an an app module.

The rest of the dialog is focused on getting your signing key, from a keystore file.

SIGNING YOUR APP

787

If this is the first time you are going to sign a production app, you will need to create
your production signing key, which you can do by clicking the “Create new…” button
in the wizard. This brings up a separate dialog for describing the new signing key:

Figure 246: Android Studio New Keystore Dialog

You will need to provide a path to the keystore, manually or via the folder button to
pick a location via a dialog. You will also need to provide a password (twice) for the
keystore.

You can then supply information for the signing key within the keystore, including:

• “Alias” to indicate what human-readable name we want to give the key
• “Password” and “Confirm”, to specify a password for this specific key in the

keystore (independent of the keystore’s own password)
• “Validity”, to indicate how long this key should be valid, where 25 years or

more is recommended
• Details about you and your organization, asking for the standard

information used in generating SSL-style keys

Clicking “OK” will generate the keystore file and save it where you specified. Be sure
to back up this keystore file and safely record the passwords that you used.

SIGNING YOUR APP

788

If you already have a keystore file, though, back on the first page of the “Generate
Signed APK” wizard, you can click “Choose existing” to bring up a file-open dialog
where you can choose your keystore file. Then, fill in the keystore password, the key
alias, and the key password in the dialog.

Clicking Next in the wizard brings up a page allowing you to determine what will be
generated:

Figure 247: Android Studio Generate Signed APK Wizard, Third Page

You can indicate where the APK file should be written and what build type to use
(e.g., release).

You can also choose which signature versions that you want to use. You have two
options:

1. V1, which is the way APKs have been signed since Android 1.0
2. V2, which is an improved signature format, offering stronger protection and

faster app installs, but only works on Android 7.0+

Ideally, check both signature versions. If for some reason the V2 signature format
causes build problems, uncheck that version and only use V1.

SIGNING YOUR APP

789

Clicking “Finish” will have Android Studio begin generating the APK files. This may
take some time. When it is done, a popup will appear indicating that the work is
completed. In the directory that you specified, Android Studio will create a
subdirectory based on your build type (e.g., release/), and in there will place your
signed APK file.

Two Types of Key Security

There are two facets to securing your production key that you need to think about:

• You need to make sure nobody steals your production keystore and its
password. If somebody does, they could publish replacement versions of
your applications — since they are signed with the same key, Android will
assume the replacements are legitimate.

• You need to make sure you do not lose your production keystore and its
password. Otherwise, even you will be unable to publish replacement
versions of your applications.

For solo developers, the latter scenario is more probable. There already have been
many cases where developers had to rebuild their development machine and wound
up with new keys, locking themselves out from updating their own applications. As
with everything involving computers, having a solid backup regimen is highly
recommended. In particular, consider a secure off-site backup, such as having your
production keystore on a thumb drive in a bank safe deposit box.

For teams, the former scenario may be more likely. If more than one person needs to
be able to sign the application, the production keystore will need to be shared,
possibly even stored in the revision control system for the project. The more people
who have access to the keystore, the more likely it is somebody will wind up doing
something evil with it. This is particularly true for projects with public revision
control systems, such as open source projects — developers might not think of the
implications of putting the production keystore out for people to access.

SIGNING YOUR APP

790

Shrinking Your App

You might think that the app that you create is the smallest that it could be, by
default. After all, why would a build process put extra stuff in your app that you are
not using?

Unfortunately, that’s exactly what happens.

As a result, the APK file that you get from the build process, or from signing your
app, may be larger than is necessary. In some cases, this is not a big problem. In
other cases, though, it may be more of an issue.

So, in this chapter, we will explore what you can do to reduce the size of your APK.

Why We Care
Your users may care about how much it costs to download your app, if they use a
metered data connection and pay by the MB.

Your users may care about how much on-disk space your app consumes, if their
device is short on available space. Note, though, that the amount of disk space that
your app consumes is only partly from the APK — it also comes from any content
that you store locally from within your app, such as in Room databases.

You may care more directly, in that your chosen app distribution channels may
impose limits on the APK size. Google’s Play Store, for example, has a 100MB limit
on the size of an APK.

791

Identify What to Attack
Back in an earlier chapter, we looked at the APK Analyzer and the sorts of output it
can provide:

Figure 248: APK Analyzer Output

That particular app — the HelloWorld project from the earliest chapters — has
about 250KB of resources, with the rest of the APK mostly made up of compiled
code. For a “Hello, World” app, that is rather large, since the app does not really do
anything.

In this case, most of the app size is coming from compiled code. In such a scenario,
you will want to look at removing unnecessary dependencies and otherwise
shrinking your code. For cases where resources dominate the app space, removing
unnecessary dependencies is still useful, but you will also want to see about
removing any unnecessary resources and shrinking your app’s images.

Shrinking Your Dependencies
Your module’s build.gradle file will have a dependencies closure listing all its
dependencies. Lines with implementation, kapt, and api will be the dominant ones,
and those reflect code and resources that are packaged into your APK. By contrast,
things like testImplementation and androidTestImplementation only affect test
code and will not be part of your APK.

Your app may have few or lots of dependencies:

SHRINKING YOUR APP

792

dependencies {
implementation "org.jetbrains.kotlin:kotlin-stdlib-jdk7:$kotlin_version"
implementation 'androidx.appcompat:appcompat:1.2.0'
implementation 'androidx.core:core-ktx:1.3.2'
implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
implementation 'androidx.recyclerview:recyclerview:1.1.0'
implementation 'androidx.fragment:fragment-ktx:1.2.5'
implementation "androidx.lifecycle:lifecycle-livedata:2.2.0"
implementation "androidx.lifecycle:lifecycle-livedata-ktx:2.2.0"
implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:2.2.0"
implementation "androidx.navigation:navigation-fragment-ktx:$nav_version"
implementation "androidx.navigation:navigation-ui-ktx:$nav_version"
implementation "org.koin:koin-core:$koin_version"
implementation "org.koin:koin-android:$koin_version"
implementation "org.koin:koin-androidx-viewmodel:$koin_version"
implementation "androidx.room:room-runtime:$room_version"
implementation "androidx.room:room-ktx:$room_version"
kapt "androidx.room:room-compiler:$room_version"
testImplementation 'junit:junit:4.13.1'
testImplementation "androidx.arch.core:core-testing:2.1.0"
testImplementation "org.mockito:mockito-inline:2.28.2"
testImplementation "com.nhaarman.mockitokotlin2:mockito-kotlin:2.2.0"
testImplementation 'org.jetbrains.kotlinx:kotlinx-coroutines-test:1.3.6'
testImplementation 'com.jraska.livedata:testing-ktx:1.1.0'
androidTestImplementation 'androidx.test:runner:1.3.0'
androidTestImplementation "androidx.test.ext:junit:1.1.2"
androidTestImplementation "androidx.arch.core:core-testing:2.1.0"
androidTestImplementation 'androidx.test.espresso:espresso-core:3.3.0'

}

(from ToDoTests/build.gradle)

This module has nearly 20 dependencies that will go into the APK… and this is a
fairly trivial app.

Plus, each dependency can pull in others, via what is called “transitive
dependencies”. For example, the androidx.room:room-ktx dependency in that
listing:

• Pulls in androidx.room:room-runtime, which pulls in…
• androidx.sqlite:sqlite-framework and androidx.sqlite:sqlite, which

pull in…
• androidx.annotation:annotation
• And so on

If you fold open the “External Libraries” section of your project in the Android

SHRINKING YOUR APP

793

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ToDoTests/build.gradle

Studio explorer tree, you will see all the libraries that this project pulls in. This list
will include test dependencies, so not everything in the list will go into your APK.
But it also shows you the results of resolving all the transitive dependencies.

So… do you need all of that? Perhaps not.

Unfortunately, there is no good way to determine what you could remove. Perhaps
by reviewing the dependencies list, you will recognize some that were from past
experiments and are no longer needed.

The only real way to know if you can skip the dependency is to comment it out (e.g.,
using //), then see if your project builds and your tests run. If they do, presumably
you can now remove the commented-out dependency entirely. If, on the other hand,
there was some build failure, that means you are still referencing things from that
dependency.

If very little of your app refers to things from that dependency, though, perhaps you
could find another way of implementing that functionality that would let you
remove the dependency. For example, HelloWorld uses ConstraintLayout, from the
androidx.constraintlayout set of dependencies. However, ConstraintLayout is
not needed for that simple UI — you could accomplish the same look with
something else, such as a FrameLayout. Rewriting that layout resource to avoid
ConstraintLayout would allow you to remove the androidx.constraintlayout
dependencies, and that would reduce the size of the HelloWorld APK.

Shrinking Your Code
“Your code” refers to both the stuff that you write yourself and the stuff that comes
from the dependencies that you need (including transitive dependencies).

Probably you use all the code that you wrote yourself. Otherwise, why did you write
it?

However, it is very likely that you are not using all of the features from the
dependencies that you are using. Any unused code is simply taking up space in your
APK, and so it would be nice to get rid of it.

Unfortunately, that is a bit tricky.

SHRINKING YOUR APP

794

A Tale of Two Tools

Finding unused code in a Java/Kotlin codebase requires examining all of the code,
what it refers to, and from there determining what isn’t referred to. Then, we need to
actually remove the unused code from what goes into the APK, while not actually
affecting the dependencies themselves.

The original tool for this process was ProGuard. ProGuard has been around for
nearly two decades, and the Android build tools integrated it fairly early on to help
reduce APK size.

More recently, Google has switched to their own tool, R8. R8 is actually the compiler,
and it handles identifying unused code as part of the compilation process.

Enable Code Minification

However, by default, eliminating unused code (“minification”) is disabled. Partly,
that is for build speed, as finding unused code is a time-consuming process.
However, part of the reason why it is disabled is because sometimes the tools will
think something is unused when in reality it is not.

To opt into code minification, we use minifyEnabled true in our module’s
build.gradle file, typically only for the release build type:

buildTypes {
release {

minifyEnabled truetrue
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-

rules.pro'
}

// other stuff here
}

Here, we have a buildTypes closure, where we configure the release build. In there,
we have minifyEnabled true, to override the default and ask that R8 try to remove
unused code.

You are welcome to enable minification for debug builds as well, using a similar
closure. Minification takes time, and so for larger projects it may become impractical
to use minification for the builds that you want to do several times per day.

SHRINKING YOUR APP

795

https://www.guardsquare.com/en/products/proguard

Test and Adjust

Once you enable minification, you will need to test your app, for whatever build
types you elected to use minifyEnabled true. This means both your automated tests
and manual tests.

If you get ClassNotFoundException, MethodNotFoundException, or
NoSuchFieldError crashes with your minified build, whereas you do not in a regular
build, that indicates that minification went too far and removed things that you
really are using.

The proguard-rules.pro file that (probably) is in your module’s directory is a place
to put rules that will be used by R8 (or ProGuard) to configure the minification
process. In particular, -keep rules will tell R8 to keep classes, methods, or fields that
it might otherwise try to remove:

-keep class net.sqlcipher.* { *; }
-keep class net.sqlcipher.database.* { *; }

These lines, for example, tell R8 to keep classes, methods, and fields in the
net.sqlcipher and net.sqlcipher.database packages. The * in the fully-qualified
class name will match all classes in the package, and the { *; } will match all
methods and fields. Or, you can provide names of specific classes, etc. that you want
to keep.

You will need to identify and create -keep rules like these to get R8 to not remove
the things that, when removed, cause the aforementioned crashes.

SHRINKING YOUR APP

796

Remove ABIs

Some of your dependencies might have “native code” (C/C++ libraries) in addition to
Java/Kotlin code. These will show up in a lib/ directory inside the APK Analyzer
output:

Figure 249: Native Code in APK Analyzer

This native code could be large — in this case, it is nearly 1MB. Frequently, the native
code ships for multiple CPU architectures (or ABIs). In this case, we see four:

• x86_64
• x86
• arm64-v8a
• armeabi-v7a

The vast majority of Android devices use one of those latter two ABIs, for ARM CPUs
(32-bit and 64-bit). Your emulator probably uses one of the x86 ABIs, but for a
production release, you may be able to ignore the emulator.

You can eliminate native code for CPU architectures that you do not need by adding
an ndk closure to your module’s build.gradle file, with an abiFilters declaration:

android {
defaultConfig {
// other stuff goes here

ndk {

SHRINKING YOUR APP

797

abiFilters 'arm64-v8a', 'armeabi-v7a'
}

}
}

abiFilters is where you can list the ABIs that you want to keep. Others will be
removed as part of the packaging process.

Removing Unused Resources
Some resources, like strings, are each fairly tiny. Some resources, like layouts, may be
comparable in size to a source file. And some resources, like bitmaps, can be fairly
large.

Ideally, building the app would get rid of any resources that you are not using. As
with shrinking code, this should include both resources that you added to your
project and resources that are being added by libraries.

And, as with code shrinking, removing unused resources is not automatic, but it is
relatively easy to do.

Remove Manually

For your own project resources, you can remove them manually. Choose “Refactor” >
“Remove Unused Resources” from the Android Studio main menu. This will display
a dialog of options:

Figure 250: Android Studio Remove Unused Resources Dialog

SHRINKING YOUR APP

798

The safest thing is to leave the checkbox unchecked, then click the “Preview” button.
This will show you what changes will be made, before they are made:

Figure 251: Android Studio Remove Unused Resources Preview

Here, it shows three resources that are unused: two drawables and a string.

Clicking “Do Refactor” will then remove those resources.

Remove Automatically

If you opted into code shrinking via minifyEnabled true, you can also opt into
automatic resource shrinking via shrinkResources true:

buildTypes {
release {

minifyEnabled truetrue
shrinkResources truetrue
proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'),

'proguard-rules.pro'
}

}

SHRINKING YOUR APP

799

This works automatically, affecting your APK but not your project source code. It
also removes library-supplied resources, whereas “Remove Unused Resources” does
not. On the other hand, it needs to keep removing those resources on every build —
“Remove Unused Resources” can improve your build speed a bit.

Whitelist Resource Sets

Libraries may supply resources that your app is unlikely to ever use.

For example, Jetpack libraries that have string resources often will supply string
resource translations for every language, as the Jetpack developers do not know what
languages your app will support. By default, the build tools also do not know what
languages your app will support, so the build tools will package all translations. You
may know what languages your app will support, in terms of the string translations
that you intend to provide. By teaching the build tools about that language list, the
build tools can strip out translations in other languages that your app is not going to
use.

To do this, in the defaultConfig closure of your module’s build.gradle file, you can
list language prefixes in a resConfigs list:

android {
defaultConfig {

// other cool stuff goes here

resConfigs "en", "es", "zh"
}

}

Here, we indicate that we want the app to contain English, Spanish, and Chinese
resources. Resources targeting other languages will be removed from the APK
automatically by the build tools.

Optimizing Bitmaps
Typically, your largest resources are bitmaps: PNGs, JPEGs, etc. If you can remove
some — such as through the techniques in the preceding sections — that is great!
For those that remain, though, you still have some options for making them take
less space than they do presently.

SHRINKING YOUR APP

800

Switch to Vectors

You may be able to replace some of those bitmaps with vector drawables, the ones
we used in this book for toolbar button icons.

For example, you may get bitmaps to put in your app from a graphic designer. If the
graphic designer can supply you with an SVG image instead, you can use the Vector
Asset wizard to try converting that SVG to a vector drawable. If that drawable looks
good, you can remove the bitmaps.

A vector drawable on its own typically is smaller than an equivalent PNG file. And a
vector drawable is density-independent, so you only need one such drawable to get
good results on all screen densities. With bitmaps, you might have multiple images
in multiple drawable directories (e.g., res/drawable-hdpi/, res/drawable-xhdpi/).
Replacing several bitmaps with a single vector drawable should result in a
substantial reduction in your APK size.

However, do not try swapping your launcher icon mipmap with a vector drawable, as
not all launcher apps are set up to handle that.

Reduce Resolution

The biggest bitmaps of all tend to be photographs. Modern cameras offer very high
resolution, and high-resolution photos take up a lot of disk space.

Moreover, you may not need all of that resolution. For example, it may be that you
only ever show the image as a thumbnail. In that case, you do not need a
20-megapixel photo — you could safely reduce the resolution to be a few hundred
pixels on a side, rather than a few thousand. This will substantially reduce the size of
those images.

Convert to WebP

Several years ago, Google introduced the WebP image format. This format uses a
flexible compression algorithm that supports both lossless compression (like PNG)
and lossy compression (like JPEG). A WebP image may be somewhat smaller than its
PNG or JPEG counterpart.

If you right-click over a PNG or JPEG image in your project, you can choose “Convert
to WebP…” from the context menu. This will bring up a dialog to configure the

SHRINKING YOUR APP

801

conversion:

Figure 252: Android Studio WebP Conversion Dialog

If the image is similar to a photo, you should choose “Lossy encoding”. If the image is
an icon or other types of “line art”, choose “Lossless encoding”. If you have “Skip files
where the encoded result is larger than the original” checked, you are assured that
you will only get a WebP image from the conversion if that image will reduce your
APK size. The “Skip images with transparency/alpha channel” usually can be
unchecked, as this only affects apps that support Android 4.2 and older devices.

SHRINKING YOUR APP

802

If you chose “Lossy Encoding”, there is a checkbox to ask for a preview of the
changes. If you choose that, you will get a preview window showing the original
image and the WebP converted image, so you can see how they compare:

Figure 253: Android Studio WebP Comparison, 75% Quality

SHRINKING YOUR APP

803

Here, with a 75% WebP quality factor, we wind up with an image that is only 30%
the size of the original, with acceptable quality. The “difference” area in the center
shows a comparison of what pixels changed between the images, and by how much.
A very low quality factor starts making more significant changes to the image, for
example:

Figure 254: Android Studio WebP Comparison, 1% Quality

(if you look very closely at that middle area, you will see some pixels showing up)

Once you “Finish” the WebP conversion wizard, your image will be converted to
WebP (only if actually reduce the size, if you checked that one checkbox).

Crunch Your PNGs and JPEGs

If you would prefer to keep your PNGs and JPEGs in their original form, rather than
convert them to WebP, there are a variety of tools available to “crunch” them down
to take up less space. pngquant, jpegoptim, optipng, and others are available for use
from the command line. Web-based equivalents also exist. There are even Gradle
plugins that can automate the process.

SHRINKING YOUR APP

804

Remove Densities

In principle, you could use resConfigs to limit the densities that you support, just
as you use it to limit the languages that you support. If you try this, you will want to
test your app on a variety of screen densities and ensure that your images still look
OK.

Hey, What About App Bundles?
Google’s solution for all of this is the App Bundle.

If you upload an App Bundle, instead of an APK, to the Play Store, Google will
deliver only the pieces that a given user needs:

• Instead of all image densities, Google will send down the densities that make
sense for the user’s device

• Instead of all the languages, Google will send down the languages that make
sense for the user’s device

• Instead of all the ABIs for different CPU architectures, Google will send
down the ABI(s) that make sense for the user’s device

In other words, they handle a lot of the optimization described in this chapter for
you automatically.

The downside is that Google has to sign your app. Once you do that, you no longer
control what Google ships. While Google’s public focus is on what they remove (e.g.,
unused image densities), Google is perfectly capable of adding or replacing other
things in your app… things that you might not want to be added or replaced.

If you trust Google completely and wish to use app bundles, you are welcome to do
so. If you do not trust Google completely, ship APKs that you digitally sign and take
your own steps to shrink them down to size.

SHRINKING YOUR APP

805

Using the AVD Manager and the
Emulator

Some developers focus on using actual Android-powered devices for testing their
Android apps. However, nearly every developer winds up using the Android SDK
emulator for at least some work. We set up the emulator and set up an AVD earlier
in the book. Here, we will explore some more capabilities of the emulator, beyond
the basics of being able to run your Android app.

Notable AVD Configuration Options
When defining an AVD, or editing an existing AVD definition, there are many
configuration options at your disposal, beyond those that we saw in the earliest
chapters of the book.

Hardware Graphics Acceleration

One way to speed up the emulator is to have it use the graphic card or GPU of your
development machine to accelerate the graphics rendering of the emulator window.
By default, the emulator will use software-based rendering, without the GPU, which
is slow in general and worse when running an ARM-based image.

Whether this will work or not for you will depend in part upon your graphics drivers
of your development machine. Also, their use might conflict with other things you
might want to do — on Linux, using hardware GPU mode might break your ability
to take screenshots, for example.

807

This setting is toggled within the AVD Manager, for new and existing AVDs, via the
“Graphics” drop-down list in the “Emulated Performance” group:

Figure 255: AVD Configuration, “Graphics” Dropdown

There are three options:

• “Software” says to render the graphics purely within the emulator software
• “Hardware” says to render the graphics using the GPU of your development

machine
• “Auto” (the default) delegates the decision to the emulator itself, based on its

own heuristics of what will work well

Keyboard Behavior

The Android emulator can emulate devices that have, or do not have, a physical
keyboard. Most Android devices do not have a physical keyboard, and so the
emulator is set up to behave the same. However, this means that typing on your
development machine’s keyboard will not work in EditText widgets and the like —
you have to tap out what you want to type on the on-screen keyboard.

If you wish to switch your emulator to emulate a device with a physical keyboard —

USING THE AVD MANAGER AND THE EMULATOR

808

either “for realz” or just to simplify working with the emulator on your development
machine — you can do so.

In the Android Studio AVD Manager, in the “Advanced Settings” area, there is an
“Enable keyboard input” checkbox that determines whether hardware keyboard
input is honored in the AVD or not:

Figure 256: AVD Configuration, Showing “Enable keyboard input” Checkbox

USING THE AVD MANAGER AND THE EMULATOR

809

Startup Settings

You can also control whether the device starts up in portrait or landscape mode at
the outside, by the toggle buttons labeled “Startup orientation”:

Figure 257: AVD Configuration, Showing “Startup orientation” Options

USING THE AVD MANAGER AND THE EMULATOR

810

Camera Options

In the “Advanced Settings” area, you can control whether or not the emulator
emulates a device with a camera:

Figure 258: AVD Configuration, Showing Camera Options

Whether you can configure both front and back cameras, or just one, is
indeterminate. If you can configure a camera, your options are:

• “None”, to emulate a device without a camera
• “Emulated”, which emulates a device with a camera, but where the camera

images themselves are emulated
• some hardware indicator (e.g., Webcam0), which emulates a device with a

camera, where the camera images are pulled from some camera hardware on
your development machine (e.g., a notebook webcam)

The back camera also will have a “VirtualScene” option, where the camera will
appear to be looking at the interior of a home, in the form of a 3D rendering of that
interior.

However, the emulator’s ability to truly emulate the way Android cameras behave is

USING THE AVD MANAGER AND THE EMULATOR

811

very limited. Serious camera testing needs to be done using Android hardware, not
the emulator.

Memory and Storage Configuration

In the “Advanced Settings” area, you can control how much RAM and storage is used
by the emulator:

Figure 259: AVD Configuration, Showing Memory and Storage Options

Specifically:

• “RAM” controls how much system RAM the emulator emulates. This will be
a subset of the overall RAM of your development machine that the emulator
consumes.

• “VM heap” appears to control the Dalvik/ART heap limit assigned to
applications.

• “Internal Storage” indicates how much space is allocated for the main device
partitions in the emulated device.

• “SD card” is still the misnomer for external storage. Your options are either
to have Android Studio manage this for you, or for you to use tools like
mksdcard to create your own disk image that you attach to the emulator.

USING THE AVD MANAGER AND THE EMULATOR

812

Usually, the defaults are fine.

The Emulator Sidebar
The free-standing emulator sports a “sidebar” that runs alongside the main emulator
window:

Figure 260: Android Emulator, with Sidebar on the Right

This provides you with rapid access to a number of emulator features and controls.
Some of those are hidden behind the “More” button, at the bottom of the sidebar
(looks like an ellipsis, “…”).

Note that the sidebar buttons have tooltips that will tell both the button’s purpose
and the keyboard shortcut, if any, for that button.

USING THE AVD MANAGER AND THE EMULATOR

813

If you click the “More” button, you will open up the “Extended Controls” window:

Figure 261: Android Emulator with Extended Controls

Some of the features are configured via this window.

USING THE AVD MANAGER AND THE EMULATOR

814

Power and Navigation Controls

The top icon in the sidebar is a power button. A quick click on it will simulate
putting your emulator to sleep; clicking it again will “wake it up”. A long-click will
behave like the POWER button on an Android device, bringing up the power menu:

Figure 262: Android Emulator, Showing Power Menu

USING THE AVD MANAGER AND THE EMULATOR

815

Towards the bottom of the sidebar are BACK, HOME, and RECENTS buttons for
navigation:

Figure 263: Android Emulator Sidebar Navigation Buttons

USING THE AVD MANAGER AND THE EMULATOR

816

Screen Orientation

Two buttons on the sidebar allow you to rotate the device clockwise or counter-
clockwise:

Figure 264: Android Emulator Sidebar Rotation Buttons

USING THE AVD MANAGER AND THE EMULATOR

817

This allows you to rotate between all four portait and landscape orientations:

Figure 265: Android Emulator in Landscape

USING THE AVD MANAGER AND THE EMULATOR

818

Screenshots

The camera button on the sidebar allows you to rapidly take screenshots of the
emulator window:

Figure 266: Android Emulator Sidebar Screenshot Button

USING THE AVD MANAGER AND THE EMULATOR

819

These will be stored in a directory controlled by the “Settings” category in the
“Extended controls” window:

Figure 267: Extended Controls, Showing Screenshot Save Location in Settings

Faking the Real World

That “Extended controls” window also allows you to fake real world behavior in your
emulator.

Location

The “Location” category lets you fake GPS fixes, if your app winds up using locations.

There are two tabs: “Single points” and “Routes”. As the names suggest, you use the
“Single points” tab to set the emulator GPS to a specific point, and you use “Routes”
to have the emulator play back a series of GPS fixes with time intervals between
them.

For specifying points for GPS fixes, the emulator needs a latitude and longitude.
Older versions of the emulator let you provide those values directly. Now, instead,

USING THE AVD MANAGER AND THE EMULATOR

820

you get a tiny Google Map and need to provide locations that way:

Figure 268: Extended Controls, Showing Location “Single Points” Tab

You can pan around the map by dragging it using your mouse, and you can zoom it
using the +/- buttons. You can search for a location using the “Search” field, as you
would on the Google Maps Web site or app.

USING THE AVD MANAGER AND THE EMULATOR

821

A simple click will place a marker pin at the clicked point, showing you the address:

Figure 269: Extended Controls, Showing Location “Single Points” Tab with Marker

USING THE AVD MANAGER AND THE EMULATOR

822

The “Set Location” button in the corner of the window will set the simulated GPS fix
to that location. The “Save Point” option in the map window itself will add this
location to a list of saved points to the side of the map, under a name that you
provide:

Figure 270: Extended Controls, Showing Location “Single Points” Tab with Saved
Point

Later, you can click on items in the list to move the map to that location, then click
the “Set Location” button to send that GPS fix.

USING THE AVD MANAGER AND THE EMULATOR

823

The “Routes” tab lets you build up a route from saved points. To start a route, you
need to first save a point in the “Single points” tab, then choose “Start a Route” from
the “…” drop-down menu. This will bring up a typical Google Maps navigation form,
where you can specify start and end addresses:

Figure 271: Extended Controls, Showing Location “Routes” Tab with Suggested Route

USING THE AVD MANAGER AND THE EMULATOR

824

Clicking “Save Route” will save it to the list on the right:

Figure 272: Extended Controls, Showing Location “Routes” Tab with Saved Route

The “Play Route” button will then simulate the device moving along the map-
supplied route, using real-world speeds for that particular route. The “Playback
speed” drop-down lets you speed up the playback, if you get bored waiting for NYC
traffic.

If you have a route in GPX or KML format, you can import that using the “Import
GPX/KML” button. This allows you to use more sophisticated off-emulator tools to
build up your route.

USING THE AVD MANAGER AND THE EMULATOR

825

Network Status

The “Cellular” category controls how the emulator emulates its cellular network
connection:

Figure 273: Extended Controls, Showing “Cellular” Options

USING THE AVD MANAGER AND THE EMULATOR

826

Telephony

The “Phone” category allows you to simulate incoming phone calls and text
messages:

Figure 274: Extended Controls, Showing “Phone” Options

USING THE AVD MANAGER AND THE EMULATOR

827

These will trigger the corresponding apps on the emulator, based on registered
Intent filters, such as responding to an incoming call:

Figure 275: Emulator Simulating an Incoming Call

Miscellanous Features

Additionally, you have:

• A “Battery” section allows you to simulate changes in the power status of the
emulator

• A “Camera” section for controlling what the emulated camera shows, if it is
not using a webcam

• A “Directional pad” section for simulating arrow keys and media buttons
• A “Microphone” section for controlling how the emulator simulates a

headset, including whether your development machine’s microphone should
be used as test input

• A “Fingerprint” section for simulating the user pressing their finger on a
fingerprint sensor

• A “Virtual sensors” section for simulating rotating, shaking, twisting, or
otherwise moving the device

• A “Bug report” section for submitting an issue to the Android issue tracker,

USING THE AVD MANAGER AND THE EMULATOR

828

based on emulator behavior
• A “Snapshots” section for you to save different versions of the emulator AVD,

representing different device states
• A “Record and playback” section for recording screencasts and playing back a

series of touch inputs
• A “Settings” section for controlling other aspects of the emulator behavior,

such as where to save screenshots
• A “Help” section with a list of keyboard shortcuts, links to documentation,

etc.

Emulator Window Operations
Dragging a window edge of the emulator window will change the scale used by the
emulator. The entire emulator window is still there, just smaller or larger than
before. The resulting window will have the proper aspect ratio, so if you drag the left
or right side and shrink the window, it will shrink both vertically and horizontally.

Using your development machine’s native file manager (e.g., Nautilus on Ubuntu
Linux), you can drag-and-drop files into the emulator window. If the file is an APK,
it will be installed automatically. If the file is anything else, it will be uploaded into
the emulator’s Download/ directory on external storage. If your app has permission
to work with external storage, it can read the file from there.

USING THE AVD MANAGER AND THE EMULATOR

829

In-IDE Emulator
Historically, the emulator has run in a separate window, as has been shown in this
chapter and earlier in the book. Android Studio 4.1 added the option for having the
emulator be embedded directly in the IDE window itself:

Figure 276: Android Studio, Showing In-IDE Emulator

USING THE AVD MANAGER AND THE EMULATOR

830

There is an “Emulator” tool, by default docked on the right. When you tap it, an
Emulator tool window will open up… mostly to show you a message about why you
are not seeing an emulator:

Figure 277: Emulator Tool Window, As Initially Opened, with Dock Item Highlighted

That message is:

The Android Emulator is currently configured to run as a standalone
application. To make the Android Emulator launch in this window instead,
select the Launch in a tool window option in the Emulator settings.

USING THE AVD MANAGER AND THE EMULATOR

831

“Emulator settings” is a link, leading you to the appropriate spot in the Settings
dialog:

Figure 278: Settings Dialog, with Tools > Emulator Category Selected

Checking that checkbox and closing the dialog simply changes that message to:

No emulators are currently running. To launch an emulator, use the AVD
Manager or run your app while targeting a virtual device.

USING THE AVD MANAGER AND THE EMULATOR

832

Now, if you run your app and choose an emulator as the launch target, rather than a
separate window opening up, you get the emulator directly in this tool window, as
we saw earlier in this section:

Figure 279: Android Studio, Showing In-IDE Emulator

The zoom controls towards the lower right will let you zoom in and out of the
emulator screen. And there is a toolbar across the top that allows you to stop the
emulator, control the volume, rotate the screen, record a screencast, or capture a
screenshot.

USING THE AVD MANAGER AND THE EMULATOR

833

If you launch multiple emulators, they will show up as tabs, to toggle between them:

Figure 280: Emulator Tool Window, with Two Emulators in Tabs

However, as that original message indicated, you do not have access to the extended
controls when running in this mode. For that, you would need to go back into
Settings, disable this option from the Tools > Emulator category, and run the
emulator normally. With luck, in a future Android Studio update, there will be a way
to get to the extended controls panel from the in-IDE emulator.

USING THE AVD MANAGER AND THE EMULATOR

834

Using the SDK Manager

When you installed Android Studio, along with it came some initial pieces of the
Android SDK. That is enough to get you going, but eventually, you will need to
download more of that SDK. That is handled through an “SDK Manager” portion of
the Settings UI in Android Studio.

You can get to the SDK Manager in three ways:

• Choosing Tools > SDK Manager from the main menu
• Clicking the associated toolbar button:

Figure 281: Android Studio SDK Manager Toolbar Button

• Choosing File > Settings from the main menu, then navigating to
“Appearance & Behavior” > “System Settings” > “Android SDK” in the
category tree on the left (or search for “Android SDK” in the search field)

835

Installing Platform Pieces
The SDK Manager has three tabs. The left-most of these is “SDK Platforms”, and it is
where you can install things that are tied to specific Android OS versions:

Figure 282: Android Studio SDK Manager, SDK Platforms, As Initially Launched

USING THE SDK MANAGER

836

The table lists Android OS versions along with a status of “Installed”, “Partially
installed”, or “Not installed”. Those statuses are not especially accurate — to get a
better understanding of what you have and what you can get, check the “Show
Package Details” checkbox towards the bottom of the dialog. This turns the table
into a tree-table, showing more precise information:

Figure 283: SDK Platforms Tree-Table, Showing Package Details

In general:

• “Android SDK Platform NN” (for some API level value NN, like 29),
represents the stuff needed to allow you to have that version specified in
compileSdkVersion in your module’s build.gradle file.

• “Sources for Android NN” is the source code for the Android SDK for that
API level. This allows you to do things like step into the source code in the
debugger, or to jump to the declaration of an SDK-supplied class or method
in the IDE.

• “… System Image” represent emulator images that you can use as the basis for
an AVD.

If you wish to change what you have installed, check or uncheck the various items,
then click either “Apply” (to make the changes) or “OK” (to make the changes and
close the dialog).

USING THE SDK MANAGER

837

A few times per year, you may find yourself in this tab, downloading SDK bits for a
new Android version (and perhaps uninstalling older bits to free up disk space).

Installing and Upgrading Tools
The second tab is “SDK Tools”. This contains libraries, tools, and other elements of
the Android SDK that are not strictly tied to API level:

Figure 284: Android Studio SDK Manager, SDK Tools, As Initially Launched

Usually, unless some documentation or in-IDE instructions tells you to change
something in here, you can leave it alone.

USING THE SDK MANAGER

838

Adding Third-Party SDK Suppliers
Some third parties distribute their own SDK tools and related items through
Android’s SDK Manager. They may advise you to visit the third tab, “SDK Update
Sites”, and add their sites through it:

Figure 285: Android Studio SDK Manager, SDK Update Sites, As Initially Launched

The “+” and “-” items in the toolstrip on the side of the table allow you to add and
remove rows, while the checkboxes control whether a given SDK source is enabled
or not.

Changing items in this tab is rather unusual. Only change things here if directed to
do so, and then ideally only if you trust the supplier of the SDK.

USING THE SDK MANAGER

839

Configuring Your Project

In many of the samples in the book, we saw various settings in build.gradle files:

• At the top level of the Sampler or SamplerJ projects
• In individual modules, such as Bookmarker

The focus has been on where various settings reside in those files (e.g., stuff that
goes in the dependencies closure, stuff that goes in the android closure).

However, Android Studio offers another way of manipulating those settings, via the
Project Structure dialog. You can open this from the “File” > “Project Structure” main
menu option, and it lets you manipulate many of the same things that we covered,
but using a GUI rather than a text editor.

Risks and Rewards
So… why did we bother with all that build.gradle stuff, if we could use a GUI?

Mostly, it is because not everything can be configured via the Project Structure
dialog. You cannot enable data binding, for example. Nor can you add Gradle
plugins, like the “safe args” plugin for the Navigation component. Once you get past
some fairly basic settings, the Project Structure dialog cannot help you. So,
understanding how build.gradle files are set up is important, for those things that
cannot be manipulated via the Project Structure dialog.

Also, if your build.gradle file does contain things that cannot be managed by the
Project Structure dialog, there is a risk that using the Project Structure dialog will
somehow break those “things”. Bear in mind that a Gradle build file is a Groovy
script — build.gradle is a program that builds an object model with the details of

841

how to build your app. While we have a lot of code generators, in Android and
beyond, usually a code generator is a write-only tool. Using other data as input, the
code generator writes out code. Here, though, the Project Structure dialog needs to
modify code that is otherwise maintained by hand. That is a complex programming
problem, and bugs in the Project Structure dialog might overwrite or otherwise mess
up some of that hand-entered Groovy code.

Google obviously feels fairly confident in the Project Structure dialog, and you are
welcome to use it. This chapter will outline what sorts of things you can configure
using that dialog. Just remember that anything configurable in this dialog can be
configured in by hand, typically in a build.gradle file. And, be sure to keep good
backups or version control history, to be able to recover if Project Structure breaks
the build.

The Project Category
When you open the Project Structure dialog from the “File” > “Project Structure”
main menu option, you will see a series of categories down the left side. Clicking on
those will change the form available on the right side.

Figure 286: Project Structure Dialog, Project Category

CONFIGURING YOUR PROJECT

842

The first of those categories is the “Project” category. Here, you can configure two
things:

• What version of Gradle to use, which affects the value of the
distributionUrl in gradle/wrapper/gradle-wrapper.properties

• What version of the Android Gradle Plugin to use, which controls the
com.android.tools.build:gradle version in the classpath entry in your
buildscript dependencies closure in the top-level build.gradle file

The SDK Location
The “SDK Location” category supplies paths to where the Android SDK, Android
NDK (for C/C++ development), and Java JDK reside on your development machine:

Figure 287: Project Structure Dialog, SDK Location Category

For many Android Studio installations, these will point where Android Studio set up
these development kits. Developers who installed one or more of these manually
(e.g., JDK via a Linux package manager) will have less-typical locations reflected in
these fields.

CONFIGURING YOUR PROJECT

843

The Variables
In our Kotlin files, we sometimes define constants, such as the ext constants in the
top-level build.gradle file:

buildscript {
ext.nav_version = "2.3.1"

repositories {
google()
jcenter()

}

dependencies {
classpath 'com.android.tools.build:gradle:4.1.1'
classpath "androidx.navigation:navigation-safe-args-gradle-plugin:$nav_version"

}
}

(from build.gradle)

You can also attempt to manipulate these from the “Variables” category of the
Project Structure dialog:

Figure 288: Project Structure Dialog, Variables Category

CONFIGURING YOUR PROJECT

844

https://gitlab.com/commonsguy/cw-jetpack-java/blob/v2.0/build.gradle

Here, we see the kotlin_version and nav_version constants that we defined in the
top-level build.gradle file. The fields to the right of the constant name are editable,
so you can use those to change the constants’ values.

In principle, you can use the “+New variable” options to define new variables. In the
opinion of this author, this feature does not work very well.

Also, on the toolstrip on the right, there is a “-” toolbar button that is enabled when
you have selected a variable. Clicking this button will delete the selected variable,
after a confirmation dialog. Just be careful: the IDE does not validate whether you
are still using that variable!

The Modules
The “Modules” category lists all of the modules in your project and allows you to
configure them. In many projects, there will simply be an app module and nothing
else. In the book’s sample projects, there are more modules than normal:

Figure 289: Project Structure Dialog, Modules Category, Properties Tab

The gray undersquiggle underneath the module names means that there is a

CONFIGURING YOUR PROJECT

845

suggestion for changes to the module’s configuration. We will explore those
suggestions more later in the chapter.

Module Properties

There are three tabs in the “Modules” category. The first one is “Properties”, which
allows you configure items from the selected module’s build.gradle file, such as:

• The compileSdkVersion
• The version of the dx compiler, aapt packager, and related tools that you use

(buildToolsVersion, typically left unspecified)
• What version of Java to support, in terms of how that Java gets compiled (the
sourceCompatibility and targetCompatibility values in the
compileOptions closure)

Default Config

The “Default Config” tab lets you configure a variety of items that appear in the
defaultConfig closure of the selected module’s build.gradle file:

Figure 290: Project Structure Dialog, Modules Category, Default Config Tab

CONFIGURING YOUR PROJECT

846

Many of these are beyond the scope of this book. Some of the ones that we have
covered are:

• The applicationId
• The versionCode and versionName
• The minSdkVersion and targetSdkVersion

Signing Configs

In the chapter on signing your app, we saw how to use Android Studio to sign your
APK. There is another option: configuring Gradle to sign your APK. This is mostly
used in cases where the APK will be generated and signed automatically, such as via
a build server.

The “Signing Configs” tab contains a form for you to teach Gradle how to sign your
APK:

Figure 291: Project Structure Dialog, Modules Category, Signing Configs Tab

The details of how this works, and the resulting Gradle constructs, can be found in
the Android SDK documentation.

CONFIGURING YOUR PROJECT

847

https://developer.android.com/studio/build/build-variants.html#signing
https://developer.android.com/studio/build/build-variants.html#signing

Dependencies
The “Dependencies” category lets you maintain the dependencies of your modules…
to an extent:

Figure 292: Project Structure Dialog, Dependencies Category

It shows you the current dependencies listed for a given module. Using the “Details”
form below the list, you can change the version number and dependency type (e.g.,
implementation versus testImplementation).

CONFIGURING YOUR PROJECT

848

The “Resolved Dependencies” tool docked on the right will show you the full set of
dependencies for your module, including transitive dependencies:

Figure 293: Project Structure Dialog, Dependencies Category, Showing Resolved
Dependencies

The tree structure lets you examine scenarios (e.g., debugUnitTest, release) and the
dependencies for each.

The “-” button above the list lets you remove the dependency selected in the list.
The “+” button adjacent to it theoretically lets you add a dependency, but this does
not work very well.

Build Variants
In our build.gradle file for a module, we sometimes define different settings for
different scenarios. For example, many of our modules have had a buildTypes
closure, which can provide different configuration options for debug builds (the ones
that we normally run) and release builds (the ones that users run):

CONFIGURING YOUR PROJECT

849

buildTypes {
release {

minifyEnabled falsefalse
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

}
}

(from ActionBar/build.gradle)

The “Build Variants” category lets you configure those build types to an extent:

Figure 294: Project Structure Dialog, Build Variants Category

The “Flavors” tab is for product flavors, an advanced technique for having different
variants of your app for different distribution scenarios (e.g., free vs. paid, Google
Play Store vs. another distribution site).

CONFIGURING YOUR PROJECT

850

https://gitlab.com/commonsguy/cw-jetpack-kotlin/blob/v2.0/ActionBar/build.gradle
https://developer.android.com/studio/build/build-variants#product-flavors

Suggestions
The “Suggestions” tab, as the name indicates, offers suggestions for changes that
may be appropriate to your modules:

Figure 295: Project Structure Dialog, Suggestions Category

Mostly, it is focused on out of date dependencies. For the selected module, the
suggestions will consist of a set of cards with details of the suggestion and (often) a
button to make the suggested change.

CONFIGURING YOUR PROJECT

851

Configuring Android Studio

There are many things that you can configure about the operation of Android
Studio. Most of those are in the Settings dialog, available from the “File” menu on
Windows and Linux and via “Android Studio” > “Preferences…” on macOS.

In there, you will find a category tree on the left with over 100 different groups of
settings that you can configure.

We will not look at all of them here. You would get bored.

853

Searching for Settings
The search field at the top of the category tree can help you find settings buried in
the overall set of Settings:

Figure 296: Settings Dialog, Showing Search Field and Results

For many of the categories that have settings that refer to your searched-for
keyword, the particular setting(s) will be highlighted, to help draw your eye to the
relevant values.

CONFIGURING ANDROID STUDIO

854

Themes and Colors
Some developers like light-colored IDEs. Others prefer dark-colored IDEs. When you
install Android Studio, you typically get a choice of a theme, and you can change
that choice later on in the “Appearance & Behavior” > “Appearance” category, via the
“Theme” drop-down:

Figure 297: Settings Dialog, Appearance Screen, Theme Drop-Down Highlighted

The stock light-colored theme is “IntelliJ”, named after the IntelliJ IDEA tool that
Android Studio itself is based upon.

CONFIGURING ANDROID STUDIO

855

The stock dark-colored theme is “Darcula”, named after a fictional character with a
couple of letters transposed in the name:

Figure 298: Settings Dialog, Appearance Screen, in Darcula Theme

CONFIGURING ANDROID STUDIO

856

https://en.wikipedia.org/wiki/Dracula

For your code in your editor, you can further customize the colors via the “Editor” >
“Color Scheme” set of categories, particularly the “General” category:

Figure 299: Settings Dialog, Color Scheme Screen

The gear icon to the side of these drop-downs lets you create your own theme based
on one of the stock ones (e.g., the “MLM” color scheme shown here). In the
“General” category, you can customize colors for individual GUI elements, such as
how errors and warnings are highlighted.

Fonts. And Other Fonts.
After the color scheme, perhaps the thing that developers like to customize the most
in an IDE is the font. Android Studio lets you do that… but there are a few different
fonts in play.

CONFIGURING ANDROID STUDIO

857

Back up in the “Appearance & Behavior” > “Appearance” category, for example, there
is a “Use custom font” option, just below the theme drop-down:

Figure 300: Settings Dialog, Appearance Screen, Custom Font Drop-Down
Highlighted

This controls the font used for menus, buttons, captions, and similar things. While
you might want to customize that, the font that developers tend to be more
concerned about is the font used in the editor… and that is determined elsewhere.

CONFIGURING ANDROID STUDIO

858

In the “Editor” > “Font” category, you can control the font used by the editor:

Figure 301: Settings Dialog, Editor Font Screen

CONFIGURING ANDROID STUDIO

859

This provides the default font used by the editor. However, as part of customizing a
color scheme — as shown in the previous section — you can also customize the font
there, in the “Editor” > “Color Scheme” > “Color Scheme Font” category:

Figure 302: Settings Dialog, Color Scheme Font Screen

So, for the editor, the font in the color scheme is used if one is defined there,
otherwise the default editor font is used.

CONFIGURING ANDROID STUDIO

860

There are other miscellaneous fonts that you can configure as well, such as the
default font used in console-style tools like the Terminal:

Figure 303: Settings Dialog, Console Font Screen

By default, your console font will be the same as your editor font.

Code Styles
For you as an individual developer, colors and fonts may be your most important
settings.

If you are part of a development team, though, the code style might be the most
critical. Code style handles everything from how big is a tab to whether wildcard
imports (import android.widget.*) are allowed.

CONFIGURING ANDROID STUDIO

861

Android Studio offers per-language code style configuration, such as for Kotlin:

Figure 304: Settings Dialog, Kotlin Code Style Screen

CONFIGURING ANDROID STUDIO

862

As with color schemes, code styles are also part of a scheme. The IDE has a base set,
and you use “Copy to Project” to have project-specific settings:

Figure 305: Settings Dialog, Kotlin Code Style Screen, “Copy to Project” Option

CONFIGURING ANDROID STUDIO

863

For Kotlin in particular, you might want to adopt the official Kotlin style guide,
created by JetBrains when they created the Kotlin language. To use its settings as
your starting point, you can click the “Set from…” link on the edge of the dialog:

Figure 306: Settings Dialog, Kotlin Code Style Screen, “Set From…” Highlighted

Clicking that will display a fly-out menu tree, and in there is a “Kotlin style guide”
option. Choosing that will update the settings across the various tabs to match the
Kotlin style guide.

CONFIGURING ANDROID STUDIO

864

However, the Kotlin style guide does not specify everything. For example, it does not
state the maximum length of a line of code. If you want to share settings for those
among team members, you can enable EditorConfig support:

Figure 307: Settings Dialog, Code Style Screen, “EditorConfig” Option Highlighted

Then, if your project has an .editorconfig file in the project root directory, Android
Studio will apply those rules as well. The EditorConfig site has the details of the
options that can be specified in that file.

If you reformat your code (e.g., Ctrl-Alt-L for Windows and Linux users), it will
follow the settings you have chosen in Android Studio, including any set in
.editorconfig.

CONFIGURING ANDROID STUDIO

865

https://editorconfig.org/

Inlay Hints
In some of the screenshots of Kotlin code shown in this book, you may have noticed
“inlay hints”:

Figure 308: Kotlin Code Snippet with Inlay Hints Highlighted

In Kotlin, we do not have to manually enter a lot of the data types that we would in
Java — Kotlin’s compiler infers the types on its own. However, that does mean that
we have a bunch of variables and properties for which there is no type information
in our code, which makes reading that code a bit more difficult.

We can enable “inlay hints”, though. That causes Android Studio to use the
compiler-inferred types, displaying them inline as if we had typed them in. The
actual source code does not contain the hints, and they are not editable as text. They
simply act as markers, to show you what the types are.

CONFIGURING ANDROID STUDIO

866

In “Editor” > “Inlay Hints” > “Kotlin”, you can decide whether to show inlay hints and
for what scenarios you want them to appear:

Figure 309: Settings Dialog, Showing Inlay Hints Options for Kotlin

CONFIGURING ANDROID STUDIO

867

Other Settings of Note
Another thing that some developers like to customize is the hotkey bindings for

various operations (e.g., the aforementioned Ctrl-Alt-L to reformat the code in
the current editor). There is a “Keymap” category in Settings that lets you see what
all those key bindings are:

Figure 310: Settings Dialog, Keymap Screen

CONFIGURING ANDROID STUDIO

868

If you double-click on an action, you will be able to clear existing bindings or set up
new ones:

Figure 311: Settings Dialog, Keymap Screen, After Double-Click on Action

Also, Android Studio likes to use a lot of memory. If you have a large project, you
may start running out of memory.

In the IDE main window, in the status bar, you can see the amount of heap space
Android Studio is using, and what the overall limit is:

Figure 312: Android Studio Status Bar, Showing 440MB of 1981MB Heap Space Used

CONFIGURING ANDROID STUDIO

869

If you find that you are coming close to hitting the limit, you can adjust the amount
of heap space that Android Studio is allowed to request from the OS:

Figure 313: Settings Dialog, Memory Screen

CONFIGURING ANDROID STUDIO

870

Coping with New Android Versions

Since 2008, every year we have had a new Android version… except for those years
when we had more than one new Android version.

As a result, dealing with new Android versions is a common process and a common
source of headaches for Android developers. This chapter helps to explain what you
should expect and how generally to go about dealing with changes.

The March of the Versions
There have been four periods of Android releases, with different release frequencies.

2008-2010: So Many Releases

Early on, we had lots of releases:

• Android 1.0
• Android 1.1
• Android 1.5
• Android 1.6
• Android 2.0
• Android 2.1
• Android 2.2
• Android 2.3

This does not include various patch releases, such as Android 2.3.3. A new Android
release with new functionality was never more than a few months away.

871

2011: The Rise of the Tablet

2011 saw a similar cadence of releases. Three of them — 3.0, 3.1, and 3.2 — were
exclusively available for tablets. Android 4.0 brought some of the Android 3.x
changes (e.g., the “holo” widget theme) to phones.

2012-2013: May the Fours Be With You

The next two years saw four point releases in Android 4.x: 4.1, 4.2, 4.3, and 4.4.
While that is a lot, it still represents a bit of a slowdown, with only two releases per
year.

2014 Onwards: Serenity Now

Since the release of Android 5.0 in 2014, the frequency of releases has slowed to one
or two per year. Each year has received a new major release, and some years also
received a “.1” minor release. However, the trend has been towards a single release
per year.

The Typical Release Process
Not only has the release cadence slowed down, but it has normalized in the past
several years. Starting with Android 5.0, we have had a fairly consistent pattern for
when and how Google releases new major versions of Android.

Step #1: The First Developer Preview

In February or March, Google will ship a developer preview or beta release of the
new version. Historically, this has been given a letter designation (e.g., 2019’s
developer preview was Android Q, 2020’s is Android R). The first developer preview
is often referred to as “DP1” for simplicity.

A developer preview includes:

• Explanations of changes to Android, including new features and new
restrictions

• An SDK version based on the name that we can use for compileSdkVersion
(e.g., android-R) and targetSdkVersion (e.g., 'R')

• An emulator that runs a version of Android that supports the new SDK
• Firmware images that can be loaded onto select Android devices (mostly

COPING WITH NEW ANDROID VERSIONS

872

some of Google’s Pixel devices) that allow those devices to run the preview
version of Android

Early adopters can download these things and start experimenting with the changes.

Shortly after this release, the author of this book will start publishing blog posts
about the new Android version, such as this post on Android R DP1. And, shortly
after that, CommonsWare will have a new book for that new Android version, akin
to 2019’s Elements of Android Q and 2020’s Elements of Android R.

Step #2: Additional Early Previews

Roughly once a month thereafter, Google will release another developer preview.
This will contain updates to the same materials that were published as the previous
developer preview. Notably, the updated versions will fix various bugs that were
reported by early adopters… at least those bugs that are considered by Google to be
bugs and not “working as intended”.

Step #3: Google I|O

Google holds their primary developer conference — Google I|O — in May. In recent
years, the conference is held in the Shoreline Amphitheatre complex, just down the
road from Google’s Mountain View offices. Google also livestreams many of the
sessions on YouTube and publishes recordings of them afterwards.

Several of the Google I|O sessions will be about the new Android version. Usually,
there is a “What’s New in Android” that covers all the major changes. And, usually,
there are many dedicated sessions on individual new features or specific changes
that developers need to take into account.

In 2020, Google I|O was cancelled on account of the COVID-19 pandemic.

Step #4: The Stable API Preview

A month or two after Google I|O, Google will ship a developer preview where the
APIs defined in the Android SDK for this version will be considered final and should
not be changing anymore.

Also, we will get official word of the next API level number, which is always the
previous API level number plus one. For example, Android 10 was API Level 29,
following on Android 9’s API Level 28. Also, we will be able to switch to these

COPING WITH NEW ANDROID VERSIONS

873

https://commonsware.com/blog
https://commonsware.com/blog/2020/02/21/random-musings-r-dp1.html
https://commonsware.com/Q
https://commonsware.com/R

numbers for the compileSdkVersion and targetSdkVersion values for our projects.

Step #5: Shipping to Production

After that — where the timing has ranged from August to November — Google will
ship the new Android version to the newer generations of Pixel devices. Other
device manufacturers will start shipping updates to some of their devices in the
coming months. A few devices beyond the Pixels may get updates rapidly, but
usually manufacturers delay shipping OS updates by many months, if ever.

Sometime after this, the author of this book will start updating it for the new
Android version, based on the material from the corresponding Elements book
published earlier.

Step #6: New Official Hardware

Sometime around the production release date, Google will have a press event where
they will unveil their new hardware for the year. This usually includes some new
Pixel devices. These then tend to ship a few weeks after the launch event.

This is important because occasionally Android OS updates include features that are
tied to specific hardware capabilities. If existing Pixels lack that hardware, these new
Pixel devices might be the first ones where we can really use those new OS features.

Things to Worry About
For the past several years, each new version of Android represents an incremental
change over the previous version. Simply put, there are too many Android users for
Android to risk huge changes.

However, even incremental changes may require some amount of response from you
as an app developer.

Breaking Changes

The type of change that worries developers the most are “breaking” changes, ones
that cause your app to no longer function correctly. Occasionally, this results in
crashes. More often, it results in your app just not receiving the data that it expects
or otherwise getting what you planned on from the OS.

COPING WITH NEW ANDROID VERSIONS

874

Examples of breaking changes include:

• Android 6.0’s introduction of runtime permissions
• Android 7.0’s ban on Uri values with a file scheme, necessitating the use of
FileProvider for sharing files with other apps

• Android 9’s ban on cleartext (e.g., http) communications, in favor of
encrypted (e.g., https) communications

• Android 10’s restrictions on external storage

Immediate Breakage

Sometimes, these changes will affect your app immediately. This is relatively
uncommon and usually is not in the APIs that we have covered in this book.

If you find out about such a breaking change, you need to address this before Google
ships the new version of Android to its Pixel devices and other manufacturers start
updating their devices to match. Even sooner than that you will start running into
problems, as some “power users” will be playing with the developer preview builds,
even if they are not actually developers.

Eventual Breakage

The more common type of breakage is tied to your targetSdkVersion. When your
targetSdkVersion reaches the API level for the new release, then you are subject to
the changes. Apps with an older targetSdkVersion would not be subject to the
changes.

While this approach has been used for many years, the results have changed
recently. That is because Google now enforces a minimum targetSdkVersion for
apps on the Play Store, and other app distributors are starting to do the same.
Approximately one year after an Android version ships to devices, you will need to
have a targetSdkVersion matching (or exceeding) that Android version’s API level.
Basically, Google prevents you from shipping an update to your app, or shipping a
new app, unless you meet the targetSdkVersion requirement.

The good news is that gives you nearly 1.5 years from the time of the first developer
preview before you have to address changes that are tied to targetSdkVersion. The
bad news is that developers might well forget what changes are needed by then.
Where possible, try to address even these delayed changes as soon as is practical,
rather than wait until the last minute.

COPING WITH NEW ANDROID VERSIONS

875

Stuff Users Will Expect

Sometimes, Google does not force you to change your app, but your users might.
That is because sometimes your app may need to be adjusted to allow certain new
Android capabilities to work, and users might complain if your app fails to do so.

A good example is Android 10’s dark mode. As we saw back in the chapter on styles
and themes, Android 10 offers a “system wide” dark mode that users can enable. In
reality, Android 10 only makes system UI dark, plus it tells visible activities about the
change. It is up to app developers to actually make a change to support dark mode.
Apps that do not do so simply do not change when dark mode is toggled on or off.
Some users will complain about that missing capability, and if they complain in
highly-visible places (e.g., Play Store reviews), that may have an impact on your app’s
success.

Usually, these sorts of user-facing visible features get touted a lot in blog posts and
other coverage of the new Android version. If you are paying attention to the new
release, you will have a fairly good sense of what users will expect. How easy it will
be for your app to adopt that new feature may vary, but you should budget time for
it as soon as is practical.

COPING WITH NEW ANDROID VERSIONS

876

Deciding Where to Go From Here

Congratulations on completing the book!

(or, at the very least, congratulations for turning to this chapter!)

At this point, you should be “up to speed” on the basics of developing Android apps.
However, Android is vast, and this book only scratches the surface. For example,
while you may think this book is large, The Busy Coder’s Guide to Android
Development was about five times larger… and it did not cover everything in
Android.

So, here are ways to learn more about other areas of Android and to get help in your
ongoing development efforts.

The Rest of the Books
If you subscribed to the Warescription, there are many more books that you can
read as needed. These include:

• Exploring Android, the hands-on counterpart to this book, walking you
through building an app step-by-step

• Elements of Kotlin and Elements of Kotlin Coroutines, if you need more
information about the up-and-coming options for writing apps

• Elements of Android Room, for more breadth and depth on Google’s object/
relational mapping engine for SQLite

The “Elements” series also covers books about newer Android versions, written as
they come out, such as 2020’s Elements of Android R.

877

https://commonsware.com/Android
https://commonsware.com/Android
https://commonsware.com/warescription
https://commonsware.com/AndExplore
https://commonsware.com/Kotlin
https://commonsware.com/Coroutines
https://commonsware.com/Room
https://commonsware.com/R

The aforementioned The Busy Coder’s Guide to Android Development and other older
books are also available to you. Mostly, though, The Busy Coder’s Guide is for
specialized topic areas in Android app development.

Note that all of the books are searchable via the Warescription site, so you can
search on class names or subjects of interest and see what is available across the
entire CommonsWare library.

You might want to follow the CommonsBlog, both for announcements of new books
and updates to books, along with lots of additional information on Android app
development.

Android Developer Support
You’ve got questions. That’s understandable!

There are many places where you can get your Android app development questions
answered, beyond just searching on your topic in a search engine:

• Stack Overflow’s android tag has over a million questions, many with
answers. Questions that you ask there have a decent chance of getting an
answer, particularly if the question is well-written. Warescription subscribers
can also “ping” the author of this book, asking for help with a specific Stack
Overflow question.

• Warescription subscribers can also ask for posting rights to the Android
Development category in the CommonsWare Community. There, you can
ask all sorts of Android app development questions, and the author of this
book will try to answer them.

• Warescription subscribers also have access to “office hours” live chats — you
can see transcripts of past chats here

• If you have questions about Kotlin, JetBrains operates a Slack workspace —
you can ask for an invitation here

• There are many Android developer discussion boards in a variety of
languages to choose from as well

Major Conferences
As was noted in the previous chapter, Google’s main developer conference is Google
I|O. For the past several years, it has been held in May. In 2018 and 2019, Google has
also organized the Android Developer Summit, a two-day Android-focused

DECIDING WHERE TO GO FROM HERE

878

https://commonsware.com/Android
https://wares.commonsware.com/
https://commonsware.com/blog
https://stackoverflow.com/questions/tagged/android
https://stackoverflow.com/questions/tagged/android
https://wares.commonsware.com/app/internal/bump
https://wares.commonsware.com/app/internal/bump
https://wares.commonsware.com/app/internal/forum
https://community.commonsware.com/c/android-development-questions
https://community.commonsware.com/c/android-development-questions
https://wares.commonsware.com/app/internal/officeHours
https://commonsware.com/office-hours/
https://kotlinlang.slack.com/
https://slack.kotlinlang.org/?_ga=2.63883366.856285622.1582030728-1215520910.1565297973
https://commonsware.com/andglobe
https://commonsware.com/andglobe

conference held in October or November. In both cases, the conference sessions are
published on YouTube after the event.

The largest collection of independent conferences is the droidcon series. Past events
have been held in Europe, Asia, Africa, and North America. Each event is
independently operated, and where and how they publish conference videos varies
by event.

There are many other Android-focused events outside of droidcon, such as:

• 360|AnDev in Denver
• Android Makers in Paris
• The Android Summit (not to be confused with Google’s Android Developer

Summit) in Washington DC
• Chicago Roboto, in Chicago

You can find a list of upcoming Android conferences here. Note that many of these
events have moved online or are canceled for 2020, due to the ongoing COVID-19
pandemic.

DECIDING WHERE TO GO FROM HERE

879

https://www.droidcon.com/
https://360andev.com/
https://androidmakers.fr/
https://www.androidsummit.org/
https://chicagoroboto.com/
https://androidstudygroup.github.io/conferences/

	Table of Contents
	Preface
	Prerequisites
	About the Updates
	What’s New in Version 2.0?
	Warescription
	Book Bug Bounty
	Source Code and Its License
	Creative Commons and the Four-to-Free (42F) Guarantee
	Acknowledgments

	Introducing Android
	Focus: Apps, Not Operating Systems
	What You Need
	A Development Machine
	Language Experience
	Java
	Kotlin
	Groovy and Gradle

	An Android Test Environment
	Devices
	Emulators

	Patience and Serenity

	How This Book Is Organized
	“Hello, World!”, Front to Back
	Deeper Dives

	Setting Up the Tools
	But First, Some Notes About Android’s Emulator
	Step #1: Install Android Studio
	Step #2: Running Android Studio for the First Time

	Getting Your First Project
	Step #1: Importing the Project
	Step #2: Get Ready for the x86 Emulator
	Windows
	Mac
	Linux

	Step #3: Set Up the AVD
	Step #4: Set Up the Device
	Windows
	macOS and Linux

	Step #5: Running the Project

	Taking a Tour of Android Studio
	The Project Tree
	The Editing Pane
	The Docked Views
	Popular Menu and Toolbar Options
	Additional Run Options
	Debug
	Open Project/Open Recent
	AVD Manager
	SDK Manager
	Settings

	Android Studio and Release Channels

	Examining Your Code
	The Top Level
	The Project Contents
	The App Module Contents
	The Generated Source Sets
	main/
	androidTest/
	test/

	Language Differences
	Introducing the Activity
	The Role of the Activity
	Examining the Generated Code
	Java
	Kotlin

	Code Commonalities
	AppCompatActivity
	onCreate()
	setContentView()

	Line Numbers
	Per Editor
	All the Time

	Other Things in the Project Tree
	External Libraries
	Scratches and Consoles

	Exploring Your Resources
	What You See in res/
	OS Versions and API Levels
	Decoding Resource Directory Names
	Our Initial Resource Types
	Layouts
	Drawables and Mipmaps
	Strings
	Colors
	Styles and Themes

	About That R Thingy
	The Resource Manager

	Inspecting Your Manifest
	The Root Element
	The Application Element
	The Activity Element (And Its Children)

	Reviewing Your Gradle Scripts
	Gradle: The Big Questions
	What is Gradle?
	What is Groovy?
	What Does Android Have To Do with Gradle?
	Hey, I Thought I Read That Gradle Used Kotlin Scripts?

	Obtaining Gradle
	Direct Installation
	OS Packages
	The gradlew Wrapper

	Examining the Gradle Files
	The Project-Level File
	buildscript
	allprojects
	clean

	The Module-Level Gradle File

	Requesting Plugins
	Android Plugin for Gradle Configuration
	Package Name and Application ID
	compileSdkVersion, minSdkVersion, and targetSdkVersion
	Version Code and Version Name

	Other Stuff in the android Closure
	Libraries and Dependencies

	Inspecting the Compiled App
	What We Build
	APKs
	App Bundles

	Where They Go
	Building the APK
	Analyzing the APK

	Touring the Tests
	Instrumented Tests
	Where They Run
	What You Can Test
	What the Starter Project Has
	The androidTest Source Set
	The Test Class
	The Annotations
	The Test Code

	How You Run Them
	What the Test Results Look Like
	About That testInstrumentationRunner
	The androidTestImplementation Dependencies

	Unit Tests
	Where They Run
	What You Can Test
	What the Starter Project Has
	The Annotations and the Test Code

	How You Run Them
	What the Test Results Look Like
	The testInstrumentation Dependencies

	Introducing Jetpack
	What, Exactly, is Jetpack?
	Um, OK, So, What’s the Point?
	Key Elements of Jetpack
	AppCompat
	Fragment
	Navigation
	Lifecycles, ViewModel, and LiveData
	Room
	WorkManager
	Android KTX
	Testing

	What Came Before: the Android Support Library

	Introducing the Sampler Projects
	The Projects
	Getting a Sampler Project
	Direct From Android Studio
	Manually
	Clone or Download
	Import

	The Modules
	Running the Samples

	Starting Simple: TextView and Button
	First, Some Terminology
	Widgets
	Containers
	Attributes
	Widget IDs
	Size, Margins, and Padding
	Hey, What Are Those @dimen Things?

	Introducing the Graphical Layout Editor
	Palette
	Preview
	Blueprint
	Preview Toolbar
	Component Tree
	Attributes

	TextView: Assigning Labels
	A Sample TextView
	Android Studio Graphical Layout Editor
	Editing the Text
	Editing the ID

	Notable TextView Attributes

	Button: Reacting to Input
	A Sample Button
	Hey, What Is That tools: Thing?
	Android Studio Graphical Layout Editor
	Tracking Button Clicks

	The Curious Case of the Missing R
	Where R Lives
	When R Is Created
	When R Is Not Created
	Package Names

	Debugging Your App
	Get Thee To a Stack Trace
	Running Your App in the Debugger
	Setting Breakpoints
	Launching the Debugger
	Examining Objects
	Stepping Through the Code

	So, Where Did We Go Wrong?

	Introducing ConstraintLayout
	The Role of Containers
	Layouts and Adapter-Based Containers
	ConstraintLayout: One Layout To Rule Them All
	Drag-and-Drop GUI Builders
	Performance
	Library vs. Framework

	Getting ConstraintLayout
	Using Widgets and Containers from Libraries
	Fully-Qualified Class Name
	app: Attributes

	A Quick RTL Refresher
	Simple Rows with ConstraintLayout
	The XML
	The Android Studio Graphical Layout Editor
	The Result

	Starting from Scratch
	ConstraintLayout and the Attributes Pane
	EditText: Making Users Type Stuff
	Graphical Layout Editor
	Notable Attributes

	More Complex Forms
	What We Want
	How We Get There
	Naming the Widgets
	Barrier: You Shall Not Pass
	Your Position Shows Some Bias
	Declaring the Rows

	Turning Back to RTL
	More Fun with ConstraintLayout
	Notes on the Classic Containers
	LinearLayout
	RelativeLayout
	TableLayout
	FrameLayout

	Integrating Common Form Widgets
	ImageView and ImageButton
	Android Studio Graphical Layout Editor
	Reacting to Events

	Compound Buttons
	Switch
	Android Studio Graphical Layout Editor
	Reacting to Events
	Hey, You Have a Typo in android:id!

	CheckBox
	Android Studio Graphical Layout Editor
	Reacting to Events

	RadioButton and RadioGroup
	Android Studio Graphical Layout Editor
	Reacting to Events

	SeekBar
	Android Studio Graphical Layout Editor
	Reacting to Events

	ScrollView: Making It All Fit
	Other Notes About the Sample
	android:gravity
	log()

	Contemplating Contexts
	It’s Not an OMG Object, But It’s Close
	The Major Types of Context
	Context from Components
	Application
	Instrumented Tests

	Key Context Features
	Access to Resources and Assets
	Access to Root Directories
	Access to System Services
	Access to Other Components

	Know Your Context
	Context Anti-Patterns

	Icons
	App Icons… And Everything Else
	Creating an App Icon with the Asset Studio
	Foreground Layer
	Background Layer
	Options
	Generating the Icon
	Using In Your Manifest

	Creating Other Icons with the Asset Studio

	Adding Libraries
	Depending on a Local JAR
	Artifacts and Repositories
	Requesting Dependencies
	Find What You Need
	Configure the Repositories
	Identify the Version That You Want
	Add the Dependencies

	Employing RecyclerView
	Recap: Layouts vs. Adapter-Based Containers
	The Challenge: Memory
	Enter RecyclerView
	A Trivial List
	The Dependency
	The Layouts
	The Activity Layout
	The Row Layout

	The LayoutManager
	The Divider
	The Data
	The ViewHolder
	The Constructor
	The Toast
	The Binding

	The Adapter
	The Base Class
	The Constructor and the “Differ”
	onCreateViewHolder()
	onBindViewHolder()

	Applying the ColorAdapter

	Hey, What About ListView?
	Gesture Navigation and Scrolling Widgets
	A Tale of Three (or More) Nav Patterns
	Impacts on Apps

	Coping with Configurations
	What’s a Configuration? And How Do They Change?
	Configurations and Resource Sets
	Implementing Resource Sets
	Language
	Screen Size and Orientation
	Hey, What About res/layout-large?
	Hey, What About res/layout-land?

	API Level
	Screen Density
	The Full Roster

	Resource Set Rules
	Scenario #1: Something Simple
	Scenario #2: Disparate Resource Set Categories
	Scenario #3: Multiple Qualifiers
	Scenario #4: Multiple Qualifiers, Revisited
	Scenario #5: Screen Density

	Activity Lifecycles
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()
	Stick to the Pairs
	Making the Superclass Happy

	When Activities Die
	Context Anti-Pattern: Outliving It

	Integrating ViewModel
	Configuration Changes
	What We Want… and What We Do Not Want
	Enter the ViewModel
	Applying ViewModel
	The Dependencies
	The ViewModel
	Using the ViewModel
	Java
	Kotlin
	The Older Solution

	The Results

	ViewModel and the Lifecycle
	Changing Data in the ViewModel
	The Event Model
	The New RecyclerView Bits
	The EventViewModel
	Updating the EventViewModel
	The Results

	ViewModel and AndroidViewModel
	ViewModelFactory

	Understanding Processes
	When Processes Are Created
	What Is In Your Process
	BACK, HOME, and Your Process
	Termination
	Foreground Means “I Love You”
	Tasks and Your App
	What is a Task?
	OK, So Why Do I Care?

	Instance State
	Why Are We Passed a Bundle in onCreate()?
	When Do We Fill In the Instance State Bundle?
	When Do We Get the Instance State Bundle?
	What Are the Limits on the Bundle?

	Pondering Parcelable
	Parcelable by Annotation
	Parcelable by Hand
	The Parcelable Interface
	The CREATOR

	A State-Aware ViewModel
	The SavedStateHandle
	The Results

	Binding Your Data
	The Basic Steps
	Enabling Data Binding
	Augmenting the Layout
	Updating the Model
	Applying the Binding
	Creating the Binding
	Pouring the Model into the Binding
	Getting the Root View

	Results

	Why Bother?
	The Major “Gimme the Views” Options
	findViewById()
	Kotlin Synthetic Accessors

	Defining and Using Styles
	Styles: DIY DRY
	Elements of Style
	The Locations Where We Use Styles
	The Available Attributes
	The Possible Values
	The Results

	Themes: Would a Style By Any Other Name…
	The Locations Where We Apply a Theme
	The Theme Declaration
	The Parent, and an AppCompat Recap
	The Style Override
	The Result

	Android 10 Dark Mode
	The Dark-All-The-Time Solution
	The System Override Solution

	The DayNight Solution
	The Material Components for Android
	Context Anti-Pattern: Using Application Everywhere

	Configuring the App Bar
	So. Many. Bars.
	Action Bar
	Toolbar
	App Bar
	Bars and This Book
	Bars Beyond These Bars

	Vector Drawables
	Starting the Vector Asset Wizard
	Using Built-In Vector Artwork
	Importing SVGs

	Menu Resources
	Why “Menu”?
	Defining Menu Resources
	Creating the res/menu/ Directory
	Creating the Menu Resource
	Adding Menu Items

	Using Toolbar Directly
	Adding the Widget
	Tailoring the Theme
	Defining the Menu Resource
	Hey, Why Is the Preview Showing Dark Text and Icons?
	Refresh
	About

	Populating the Toolbar
	Responding to Events

	Using Toolbar as the Action Bar
	Registering the Toolbar
	Populating the Action Bar
	Responding to Events

	Having Fun at Bars

	Implementing Multiple Activities
	Multiple Activities, and Your App
	Creating Your Second (and Third and…) Activity
	Defining the Class and Resources
	Populating the Class and Resources
	Augmenting the Manifest

	Starting Your Own Activity
	Extra! Extra!
	Seeing This In Action
	The Second Activity
	Starting the Activity

	Using Implicit Intents
	Asynchronicity and Results
	The Scenario
	The Layout
	Picking a Contact
	Getting and Retaining the Contact
	Viewing the Contact

	The Inverse: <intent-filter>

	Adopting Fragments
	The Six Questions
	What?
	Where??
	Who?!?
	When?!!?
	WHY?!?!?
	Break the Intent Barrier
	Decomposition
	Screen Sizes

	OMGOMGOMG, HOW?!?!??

	Where You Get Your Fragments From
	Static vs. Dynamic Fragments
	Fragments, and What You Have Seen Already
	ToDo, or Not ToDo? That Is the Question
	What We’re Building
	The Model
	Kotlin
	Java

	A Sidebar About Instant
	The Repository
	The DisplayFragment
	The Layout
	The ViewModel
	The Class Declaration
	The Factory Function
	The Arguments Bundle
	The onCreateView() Function
	The onViewCreated() Function

	The ListFragment
	The Fragment Layout
	The Row Layout
	The Viewmodel
	The Adapter and Row Holder
	The Fragment

	The FragmentTransaction
	Java
	Kotlin

	The Activity
	The Recap

	The Fragment Lifecycle Methods
	onAttach() Versus onAttach()
	View Binding and Fragments
	Java
	Kotlin

	Context Anti-Pattern: Assuming Certain Types

	Navigating Your App
	What We Get from the Navigation Component
	Uniform API/Isolation of Details
	Graphical Representation of Flows
	“Safe Args”
	App Bar Up Integration
	Simpler Support of Advanced Features

	Elements of Navigation
	Navigation Resources
	Navigation Resource Editor
	Destinations
	Actions

	NavHostFragment
	NavController

	A Navigation-ized To-Do List
	The Dependencies
	The Basics
	The KTX Bits
	The Safe Args Code Generator

	The Navigation Resource
	listFragment
	displayFragment

	The Activity Layout
	MainActivity
	Java
	Kotlin

	ListFragment
	DisplayFragment

	So… Was It Worth It?

	Dialogs
	A Tale of Four Dialogs
	Dialog
	AlertDialog
	DialogFragment
	Theme.AppCompat.Dialog

	Using AlertDialog and DialogFragment
	Defining the Dialog
	Displaying the Dialog
	Sharing a ViewModel
	Reacting to the Dialog

	Thinking About Threads and LiveData
	The Main Application Thread
	The UI Thread is for UI
	Introducing LiveData
	Sources of LiveData
	Active and Inactive States

	Colors… Live!
	ColorLiveData
	ColorViewModel Changes
	Observing the Colors
	The Results

	Sources of Owners
	Where Do Threads Come From? Um, Besides From Me?
	Threads from Reactive Frameworks
	Threads from Data Sources
	Threads from Background Processing

	Coroutines and ViewModel

	Adding Some Architecture
	Repositories
	Objective: Isolation
	Repository Structures

	Unidirectional Data Flow
	A UDF Implementation
	The UI
	The View-State
	Java
	Kotlin

	The Repository
	Java
	Kotlin

	The Motor
	Java
	Kotlin

	The Activity
	Revisiting the Unidirectional Data Flow

	States and Events
	Definitions
	Impacts on Delivery
	Java: Single Live Event
	Kotlin: BroadcastChannel

	Working with Content
	The Storage Access Framework
	More Dice!
	The SAF Actions
	Opening a Document
	Why We Want Things To Be Openable
	Consuming the Chosen Content
	DocumentFile and the Rest of the CRUD
	Create
	Update
	Delete

	Getting Durable Access
	Document Trees
	Getting a Tree
	Working in the Tree

	Android 11+ Restrictions

	Using Preferences
	The Preferred Preferences
	Collecting Preferences with PreferenceFragmentCompat
	Defining Your Preferences
	Creating Your Preference Fragment
	The UI

	Types of Preferences
	CheckBoxPreference and SwitchPreference
	EditTextPreference
	ListPreference and MultiSelectListPreference
	SeekBarPreference

	Working with SharedPreferences
	Reading Preferences
	Modifying Preferences

	Requesting Permissions
	Frequently-Asked Questions About Permissions
	What Is a Permission?
	When Will I Need a Permission?
	What Are Some Common Permissions, and What Do They Defend?
	What Are “Normal” and “Dangerous” Permissions?
	How Do I Request a Permission?

	Dangerous Permissions: Request at Runtime
	What Permissions Are Affected By This?
	What Goes in the Manifest?
	How Do I Know If I Have Permission?
	How Do I Ask the User For Permission?
	When Do I Ask the User For Permission?
	When Do I Not Ask the User For Permission?
	What Do I Do If the User Says “No”?
	What Do I Do If the User Says “No, And Please Stop Asking”?
	How Do I Know If the User Takes Permissions Away From Me?
	What Happens When I Ship This to an Android 5.1 or Older Device?
	What Happens if the User Clears My App’s Data?

	Handling Files
	The Three Types of File Storage
	Internal Storage
	External Storage
	App-Specific
	Shared

	Removable Storage

	What the User Sees
	Storage, Permissions, and Access
	Reading, Writing, and Debugging Storage
	Introducing the Sample App
	Specifying the Location
	Reading from the Location
	Java
	Kotlin

	Writing to the Location
	Java
	Kotlin

	The Motor
	Java
	Kotlin

	The Results
	Dealing with Android 10+

	Serving Files with FileProvider
	Scenarios for FileProvider
	Configuring FileProvider
	Metadata XML Resource
	Manifest Element

	Employing FileProvider

	What You Should Use

	Accessing the Internet
	An API Roundup
	Socket
	HttpUrlConnection
	Apache HttpClient
	WebView
	DownloadManager
	Volley
	OkHttp
	Retrofit
	Apollo-Android
	Image Loaders
	Specialized APIs

	Android’s Restrictions
	The INTERNET Permission
	NetworkOnMainThreadException
	Cleartext Restrictions
	The Reality of Mobile Devices

	Forecasting the Weather
	The Dependencies
	The Response Classes
	The Retrofit API Declaration
	The Repository
	Java
	Kotlin

	The Motor and the View States
	Java
	Kotlin

	The Image Loading
	The Results

	Storing Data in a Room
	Room Requirements
	Room Furnishings
	Entities
	DAO
	@Query
	@Insert, @Update, and @Delete

	Database
	Tying It All Together

	Other Fun Stuff in the App
	The Activity and ACTION_SEND
	The Repository
	Making Some (J)Soup

	Listing the Bookmarks

	What Else Does Room Offer?
	Examining Your Database
	Android Studio’s Database Inspector
	Other Options

	Inverting Your Dependencies
	The Problem: Test Control
	The Solution: Dependency Inversion
	Dependency Inversion in Android
	Java: Dagger 2
	Kotlin: Koin and Kodein

	Applying Koin
	The Dependency
	PassphraseRepository
	MainMotor
	KoinApp
	Subclass of Application
	Referenced in the Manifest
	Defines a Module
	Starts Koin

	MainActivity
	The Dependency Inversion Flow
	What This Buys Us

	Testing Your Changes
	A Quick Recap
	Which Tests Should I Write?
	Writing Unit Tests
	Configure Gradle
	Create a Test Class
	Add Test Functions
	Assert Yourself
	Running the Tests
	Executing Code Around the Tests

	Employing Mocks
	Why Are We Being Mean?
	The Importance of Dependency Inversion
	Add Mockito
	Define and Supply a Mock
	Define Stub Responses
	Verify Calls
	Testing LiveData
	Using Rules
	Writing Rules

	Writing Instrumented Tests
	Configure Gradle
	Specify the Test Runner
	Identify the Test Class
	Access the Context
	Rewiring Koin
	Running the Tests

	Writing Basic Espresso Tests
	Add Espresso Dependencies
	Disable Animations
	Set Up the Activity or Fragment
	Find Widgets via Hamcrest Matchers
	Perform Actions
	Assert Results

	Another Option: UI Automator
	Wait! I Thought That Was Espresso’s Role!
	Scenarios for UIAutomator

	Again: What Should I Be Using?

	Working with WorkManager
	The Role of WorkManager
	WorkManager Dependencies
	Workers: They Do Work
	Performing Simple Work
	Work Inputs
	Constrained Work
	Tagged Work
	Monitoring Work
	Getting the Status Updates
	Consuming the Status Updates… In Code
	Consuming the Status Updates… In Data Binding

	Canceling Work
	Delayed Work
	Parallel Work
	Chained Work
	Why?
	How Do We Chain Work?
	How Do We Pass Data Along the Chain?
	OK, Where’s the Code?
	How Complex Can This Get?

	Periodic Work
	Unique Work
	Testing Work
	WorkManager and Side Effects

	Creating a New Project
	Key Decisions That You Need to Make
	Application ID
	Project Directory
	Language
	Minimum SDK Version

	The New-Project Wizard
	Project Template
	What You Get
	What Else You Need to Do

	Project Details
	Core Elements
	Choosing the Minimum SDK Version
	What Is “Instant Apps”?

	Additional Screens
	You’re Done!

	Copying an Existing Project

	Signing Your App
	Role of Code Signing
	App Updates
	Tampering by Distributors

	What Happens In Debug Mode
	Finding Your Debug Keystore
	Synchronizing Your Debug Signing Key

	Production Signing Keys
	Creating a Production Signing Key
	Android Studio
	Manually

	Signing with the Production Key
	Two Types of Key Security

	Shrinking Your App
	Why We Care
	Identify What to Attack
	Shrinking Your Dependencies
	Shrinking Your Code
	A Tale of Two Tools
	Enable Code Minification
	Test and Adjust
	Remove ABIs

	Removing Unused Resources
	Remove Manually
	Remove Automatically
	Whitelist Resource Sets

	Optimizing Bitmaps
	Switch to Vectors
	Reduce Resolution
	Convert to WebP
	Crunch Your PNGs and JPEGs
	Remove Densities

	Hey, What About App Bundles?

	Using the AVD Manager and the Emulator
	Notable AVD Configuration Options
	Hardware Graphics Acceleration
	Keyboard Behavior
	Startup Settings
	Camera Options
	Memory and Storage Configuration

	The Emulator Sidebar
	Power and Navigation Controls
	Screen Orientation
	Screenshots
	Faking the Real World
	Location
	Network Status
	Telephony
	Miscellanous Features

	Emulator Window Operations
	In-IDE Emulator

	Using the SDK Manager
	Installing Platform Pieces
	Installing and Upgrading Tools
	Adding Third-Party SDK Suppliers

	Configuring Your Project
	Risks and Rewards
	The Project Category
	The SDK Location
	The Variables
	The Modules
	Module Properties
	Default Config
	Signing Configs

	Dependencies
	Build Variants
	Suggestions

	Configuring Android Studio
	Searching for Settings
	Themes and Colors
	Fonts. And Other Fonts.
	Code Styles
	Inlay Hints
	Other Settings of Note

	Coping with New Android Versions
	The March of the Versions
	2008-2010: So Many Releases
	2011: The Rise of the Tablet
	2012-2013: May the Fours Be With You
	2014 Onwards: Serenity Now

	The Typical Release Process
	Step #1: The First Developer Preview
	Step #2: Additional Early Previews
	Step #3: Google I|O
	Step #4: The Stable API Preview
	Step #5: Shipping to Production
	Step #6: New Official Hardware

	Things to Worry About
	Breaking Changes
	Immediate Breakage
	Eventual Breakage

	Stuff Users Will Expect

	Deciding Where to Go From Here
	The Rest of the Books
	Android Developer Support
	Major Conferences

