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Churn-reducing strategy Core concepts/customer metrics Book chapters

1. Product improvement
• Make more of the best

features.

• Make the best features easy
to find.

• Cohorts of metrics based on product-
use events identify engaging and
disengaging product features.

• Identify optimal feature-use ratios.

3, 5  and 7,

2. Engagement marketing
• Promote the best features.
• Targeted product insights.

• Metric cohorts provide benchmarks
for healthy levels of product use.

• Segment customers with metrics.

5 and 7

3. Pricing and packaging
• Differentiate pricing to

provide value without
discounting.

• Unit cost and unit value metrics
identify customers getting high/low
value on the product.

• Correlations show relationships between
the use of different features/content.

6 and 7

4. Customer success and
support

• Help customer in need.

• Identify failing customers
proactively.

• Metric cohorts benchmark healthy use
levels.

• Forecast customer risk with regression
and machine learning.

• Metric-driven customer conversations.

5, 8, and 9

5. Channel targeting
• Identify your best

customer channels.

• Find lookalikes.

• Category cohort churn analysis with
confidence intervals.

• Identify the best/worst sales channels
and demographic/firmographic indicators
of success.

10

• Monetize valued groups
of product features.

• Provide training at key
points in customer journey.

• Account tenure cohort analysis measures
risk along the customer journey.
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foreword
This book is a rarity. Although it’s intended primarily for technically oriented people
with some familiarity with coding and data, it also happens to be lucid, compelling,
and occasionally even (gasp!) funny. The first chapter in particular should be manda-
tory reading for anyone who’s interested in running a successful subscription-based
business. Buy a copy for your boss. 

 It’s exciting to think about all the different companies that will benefit from the
sharp analysis in these pages. Data folks from all sectors of the global economy, from
streaming-media services to industrial manufacturers, will be paying close attention to
Carl’s book. Today, the whole world runs “as a service”: transportation, education,
media, health care, software, retail, manufacturing, you name it. 

 All these new digital services are generating vast amounts of data, resulting in a
huge signal-to-noise challenge, which is why this book is so important. I study this
topic for a living, and no one has written such a practical and authoritative guide to
effectively filtering through all that information to reduce churn and keep subscribers
happy. When it comes to running a subscription business, churn rates are a matter of
life and death! 

 Thousands of entrepreneurs are already deeply familiar with Carl Gold’s work. He
is the author of the Subscription Economy Index, a biannual benchmark study that
reflects the growth metrics of hundreds of subscription companies spread across a
variety of industries. As Zuora’s chief data scientist, Carl works with the most timely
and accurate dataset in the subscription economy. He’s a big part of why Zuora is not
only a successful software company but also a respected thought leader.
xv



FOREWORDxvi
 If you’re reading this book, you will soon have the ability to make immediate and
material contributions to the success of your company. But as Carl discusses exten-
sively throughout the book, it’s not enough to do the analysis; you also need to be able
to communicate your results to the business at large. 

 So by all means, use this book to learn how to conduct the proper analysis, but also
use it to learn how to share, execute, and basically excel at your job. There are exam-
ples and case studies and tips and benchmarks galore. How lucky are we? We get to
work in the early days of the subscription economy, and we get to read the first land-
mark book on churn.

—Tien Tzuo, founder and CEO, Zuora



preface
Customer churn (cancelations) and engagement are life-and-death issues for every
company that offers an online product or service. Coinciding with the wide adoption
of data science and analytics, it is now standard to call in data professionals to help in
the effort to reduce churn. But understanding churn has many challenges and pitfalls
not common to other data applications, and until now, there has not been a book to
help a data professional (or student) get started in this area. 

 Over the past six years, I have worked on churn for dozens of products and ser-
vices, and served as the chief data scientist at a company called Zuora. Zuora provides
a platform for subscription companies to manage their products, operations, and
finances, and you will see some Zuora customers in case studies throughout the book.
During that time, I experimented with different ways to analyze churn and feed the
results back to people at companies that were fighting churn. The truth is that I made
a lot of mistakes in the early years, and I was inspired to write this book to save other
people from making the same mistakes that I made.

 The book is written from the point of view of a data person: whoever is expected to
take the raw data and come up with useful findings to help in the fight against churn.
That person may have the title of data scientist, data analyst, or machine learning
engineer. Or they may be someone else who knows a bit about data and code and is
being asked to fill those shoes. The book uses Python and SQL, so it does assume that
the data person is a coder. Although I advocate spreadsheets for presentation and
sharing data (as I detail in the book), I do not recommend attempting the main ana-
lytic tasks of churn fighting in spreadsheets: many tasks must be performed in
xvii



PREFACExviii
sequence, and some of these tasks are nontrivial. Also, there is a need to “rinse and
repeat” the process multiple times. That kind of workflow is well suited to short pro-
grams but difficult in spreadsheets and graphical tools.

 Because the book is written for a data person, it does not go into details on the
churn-reducing actions that products and services can take. So this book does not
contain details on how to do things like run email and call campaigns, create churn-
save playbooks, and design pricing and packaging. Instead, this book is strategic in
that it teaches a data-driven approach to devising your battle plan against churn: pick-
ing which churn-reducing activities to pursue, which customers to target, and what
kinds of results to expect. That said, I will introduce various churn-reducing tactics at
a high level as is necessary to understand the context for using the data.
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about this book
This book was written to enable anyone with a little background in coding and data to
make a game-changing analysis of customer churn for an online product or service.
And if you are experienced in programming and data analysis, the book contains tips
and tricks for churn and customer engagement that you won’t find anywhere else.

Who should read this book
The primary audience for this book is data scientists, data analysts, and machine
learning engineers. You will want this book when you are tasked with helping under-
stand and fight churn for an online product or service. Also, the book is absolutely
suitable for students of computer science and data science, or anyone who knows how
to code and wants to learn more about an important area of data science at a typical
modern company. Because the book begins with raw data and provides the necessary
background on every analytic task described, it reads as a complete hands-on course
in data science, taught on a consistent project: analyzing churn for a small company.
(A sample dataset is provided.) 

 That said, chapters 8 and 9 in part 3 of the book, on forecasting and machine
learning for churn, may entail a steep learning curve for someone who does not have
some experience on the subjects it covers. If you don’t have that background, I think
you can still learn everything you need to know in chapters 8 and 9, but you may have
to spend extra time to read some of the recommended online resources.

 This book should also be read by noncoding business professionals. The book
includes a unique set of case study observations about churn at real companies. The
xxi



ABOUT THIS BOOKxxii
book explains the data typically available for analyzing churn, the practices used to
turn that data into actionable intelligence, and the most typical findings. One empha-
sis of the book is how to communicate data results to businesspeople; consequently, all
the important takeaways are explained in plain English (no jargon!). So if you care about
churn but aren’t a coder, you should skim the book for the takeaways (clearly labeled)
and skip the coding and math. Then share the book with one of your developers to
get help putting the concepts into action.

How this book is organized: A road map
The book is organized to take you step-by-step through a specific process: the process
a data person at an online company should go through when they harness raw data to
drive the fight against churn. As such, the book is best read in order, chapter by chap-
ter. That said, the material in the book is front-loaded in the following two senses:

■ In every chapter, the most important topics are taught first, and details about
less common scenarios come at the end of the chapter. 

■ The most important lessons come in the earliest chapters, and the topics in
later chapters are more specialized.

So if you find yourself near the end of a chapter that doesn’t seem to be relevant to
your scenario, there usually is no harm in skipping to the next chapter. Also, if you are
pressed for time and need to master the basics, you can try to take one of these abbre-
viated reading paths:

■ To get the foundations, read chapters 1–3 plus section 4.5, which corresponds
to reading almost all of part 1 (skipping all but one section of chapter 4).

■ To get an advanced course without the most specialized subjects, read chap-
ters 1–7, which corresponds to reading parts 1 and 2.

More details on these abbreviated courses of reading and how to apply the learnings
are given in chapter 11.

 The book is divided into three parts. Part 1 explains what churn is and how to mea-
sure it, what data companies typically have available to help them understand and
reduce churn, and how to prepare the data to make it useful:

■ Chapter 1 is a general introduction to the field and includes an introduction to
the case studies, highlighting the type of intelligence the book will help you
achieve for your own product and service.

■ Chapter 2 explains how to identify churned customers and measure churn in a
variety of ways. SQL code begins in this chapter.

■ Chapter 3 introduces the creation of customer metrics from the event data that
most online companies collect about their users.

■ Chapter 4 explains how to combine the churn data from chapter 2 with the
metrics from chapter 3 to create an analytic dataset for understanding and
fighting churn.
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Part 2, which contains the core techniques in the book, is devoted to understanding
how customer behavior relates to churn and retention and using that knowledge to
drive churn-reducing strategies:

■ Chapter 5 teaches a form of cohort analysis, which is the primary method for
understanding and explaining the relationship between behaviors and churn.
Chapter 5 also includes many case study examples, and the code is in Python.

■ Chapter 6 looks at how to deal with data that is big in an undesirable way: most
company datasets have closely related measurements of the same underlying
behavior. How you deal with this somewhat-redundant information is important.

■ Chapter 7 returns to the subject of metric creation and uses the information
from chapters 5 and 6 to design advanced metrics, which help explain complex
customer behaviors such as price sensitivity and efficiency.

Part 3 covers forecasting with regression and machine learning. When it comes to
reducing churn, forecasting is less important than having a good set of metrics, but it
can still be useful, and some special techniques are needed to get it right:

■ Chapter 8 teaches how to forecast customer churn probabilities with a regres-
sion and how to interpret the results of those forecasts, including calculating
customer lifetime value.

■ Chapter 9 is about machine learning and measuring and optimizing the accu-
racy of churn forecasts.

■ Chapter 10 covers analyzing demographic or firmographic data in the context
of churn and finding lookalikes for your best customers.

Most readers should start at the beginning and read parts 1 and 2. If, after learning
and applying those techniques, you need to make forecasts or find lookalike custom-
ers, continue to part 3. If you are already using advanced analytics, you may be able to
skip part 1 and start in part 2 and/or 3. For purposes of this book, being advanced in
analytics means that you already have a good set of customer metrics and can identify
and measure churned customers. Otherwise, start with part 1.

About the code 
The book contains code listings in SQL and Python. Each listing represents one small
step in the process of preparing data, understanding why customers churn, and reduc-
ing churn:

■ All the code from the book is available in the author’s GitHub repository at
https://github.com/carl24k/fight-churn.

■ The GitHub repository also provides a Python wrapper program to run both SQL
and Python listings. That program is the recommended way to run the code.

■ The book contains examples you can run on a simulated set of customer data,
designed to look like the data that would be generated by users of a small
online service: a social network with 10,000 customers.

https://github.com/carl24k/fight-churn
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■ The README file of the GitHub repository contains instructions for setting up
the programming environment and running the simulation to create the sam-
ple data for the examples.

liveBook discussion forum
The purchase of Fighting Chum with Data: The Science and Strategy of Keeping Your Custom-
ers includes free access to a private web forum run by Manning Publications, where
you can make comments about the book, ask technical questions, and receive help
from the author and from other users. To access the forum, go to https://livebook
.manning.com/#!/book/fighting-chum-with-data/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest that you try asking him some challenging questions, lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources
I maintain a website, https://fightchurnwithdata.com, that hosts my blog and links to
other resources and information.

https://livebook.manning.com/#!/book/fighting-chum-with-data/discussion
https://livebook.manning.com/#!/book/fighting-chum-with-data/discussion
https://livebook.manning.com/#!/book/fighting-chum-with-data/discussion
https://fightchurnwithdata.com
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
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Part 1

Building your arsenal

Before you can fight churn with data, you need to prepare the data. Knowl-
edge is going to be your weapon in the fight against churn, but for most prod-
ucts and services, the raw data is useless. Although you will never stop building
and honing your data, this part teaches you how to lay the foundations. The goal
of this part is to show you how to accomplish a few foundational tasks: measur-
ing churn, creating metrics for your customers, and combining your customer
data into datasets for performing further analysis and sharing with your busi-
ness colleagues.

 Chapter 1 contains background information about the industry of online
products and services. This chapter also introduces the company case studies
and demonstrates the type of results the book will teach you to create. Finally,
the first chapter introduces the simulated data case study that will be used in
examples throughout the book.

 Chapter 2 teaches the calculation of churn rates using SQL. This skill is nec-
essary so you can measure churn properly before starting to fight it. This chapter
also lays the foundation for some advanced SQL techniques later in the book.

 Chapter 3 is the first chapter on the calculation of customer metrics, which is
one of the main themes of the book. As you will see, carefully designed customer
metrics are the main weapon you will use in the fight against churn.

 Chapter 4 introduces the concept of a dataset and shows you how to create a
dataset for understanding churn from your own raw data. This chapter com-
bines the techniques from chapters 2 and 3 and is the foundation for the tech-
niques in part 2.



 



The world of churn
What is churn? Why do we fight it? And how can data help? In short, why are you
reading this book? If you are reading this book, you are probably

 A data analyst, data scientist, or machine learning engineer
 Working for an organization that offers a product or service with repeat cus-

tomers or users 

Or maybe you are studying to get one of those jobs or filling such a role even
though it’s not your job. 

 Such services are often sold by subscription, but your organization does not
need to sell subscriptions in order to take advantage of this book. All you need is a
product with repeat customers or users and a desire to keep them coming back.
This book teaches a lot of techniques related to subscriptions, but in every case, I
show how the same concepts apply to retail and other nonsubscription scenarios. 

 To get the most out of this book, you should have a background in data analysis
and programming. If that is you, then get ready for a game-changing breakthrough
in the way you think about customers and data. This is not your usual book about
data analysis and data science because, as you will learn, the usual approach doesn’t
work for churn. But you don’t need a degree in data science to take advantage of
this book: I will review enough of the basics so that anyone with a little program-
ming experience can get great results. With that in mind, I refer to you, the reader,
as a data person because this book is written from the point of view of the person
who works with the data. That said, this book is packed with business insights from
real-world case studies, so even if you don’t program, you can still get a lot from
reading the book and then give the book to your developer when it comes time to
3



4 CHAPTER 1 The world of churn
put theory into practice. This book provides a hands-on approach to the subjects of
churn and data.

 If you work with an organization that offers a live service, you probably know all
about churn and want to get on with the fight to prevent it. But I need to provide con-
text for those who are just starting out; and even if you already know about churn, I
need to dispel a few common misconceptions before we begin. 

 This chapter is organized as follows:

 Sections 1.1–1.3 provide the context for the rest of the book: what churn is, how to
fight it, why fighting churn is hard, and why I have selected the topics for the book. 

 Sections 1.4–1.6 make the theory concrete. I describe the business contexts where
these strategies apply and what data different companies have to work with. 

 Sections 1.7–1.8 bring the theory to life by looking at case studies that are fea-
tured throughout the book. By the end of the book, you will be ready to create
those kinds of results for your own product or service.

1.1 Why you are reading this book
A primary goal for any service is to grow by adding customers or users through market-
ing and sales. (This is true for both for-profit and nonprofit enterprises.) When custom-
ers leave, it counteracts the company’s growth and can even lead to contraction.

DEFINITION Churn—When a customer quits using a service or cancels their
subscription.

Most service providers focus on acquisitions. But to be successful, a service must also
work to minimize churn. If churn is not addressed in an ongoing, proactive way, the
product or service won’t reach its full potential. 

 The word churn originated with the term churn rate, which refers to the proportion
of customers departing in a given period, as we will discuss in more detail later. This
leads to the customer or user population changing over time, which is why the term
churn makes sense. The word originally meant “to move about vigorously” (as in
churning butter). In the business context, churn is now used as both a verb—“the cus-
tomer is churning” or “the customer churned”—and as a noun—“the customer is a
churn” or “make a report on last quarter’s churns.”

 Customers not churning from a service can also be framed in a positive sense, if you
prefer to see the glass as half full. In that case, people talk about customer retention.

DEFINITION Customer retention—Keeping customers using a service and renew-
ing their subscriptions (if there are subscriptions). Customer retention is the
opposite of churn.

Reducing churn is equivalent to increasing customer retention, and the terms are
interchangeable to a large degree. When a goal is stated as retaining more customers
longer, then in addition to saving customers who are at risk of churning, there should
also be a focus on keeping customers engaged. There is even the possibility of upselling
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the most engaged customers more advanced versions of the service, typically for more
money. Saving churns, increasing engagement, and upsells are all important goals for
services with repeated customer interactions. The difference between these is a matter
of focus and not a difference in the intention. 

TAKEAWAY Despite the wide variety of products and services with repeat cus-
tomers, there is a single set of techniques for using data to fight churn and
increase engagement, retention, and upsell. 

This book gives you the skills to address engagement and upsells and to fight churn
effectively using data in any kind of recurring user interaction scenario.

1.1.1 The typical churn scenario

If you work in an organization that creates a subscription product, your situation
probably looks something like the one shown in the top of figure 1.1. The key ingredi-
ents are as follows:

 A product or service is offered and used on a recurring basis.
 Customers interact with the product.
 Customers may have subscriptions to receive the product or service. Subscrip-

tions often (but not always) cost money.
 Subscriptions can be ended or canceled, which is known as churn. If there are

no subscriptions, a customer churns when they stop using the product.
 The timing, prices, and payments for the customers and subscriptions (if any)

are captured in a database, typically a transactional database.
 When customers use or interact with the product or service, these events are

often tracked and stored in a data warehouse.

In section 1.4, we’ll look at a wide variety of products that fit this description. If your
scenario is not quite like this but has some of the elements, that’s fine. As described in
section 1.5, the techniques in this book also apply to related situations. What is
described is simply the most common situation. 

 Throughout the book, I interchange the terms subscriber, customer, and user. These
have slightly different connotations, but in general, the same ideas apply (a subscriber
has a subscription, a customer pays, and a user may not do either but you still want
them coming back). The techniques in this book apply regardless of your relationship
with your customers. If I present an example using a persona that is not relevant to
you, then you should mentally substitute one that is appropriate for your product.

1.1.2 What this book is about

Figure 1.1 shows how the techniques in this book work together. The following describes
each step in the process:

1 Churn measurement—Uses subscription data to identify churns and create churn
metrics. The churn rate is an example of a churn metric. The subscription
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database also allows identification of customers who churned and who renewed
and exactly when they did; this data is needed for further analysis.

2 Behavioral measurement—Uses the event data warehouse to create behavioral
metrics that summarize the events pertaining to each subscriber. Creating
behavioral metrics is a crucial step that allows the events in the data warehouse
to be interpreted. 

3 Churn analysis—Uses behavioral metrics for identified churns and renewals.
The churn analysis identifies which subscriber behaviors are predictive of
renewal and which are predictive of churn and can create a churn risk predic-
tion for every subscriber.

At this stage, sources of information in addition to the subscriber database
and event data warehouse can also be brought into the analysis (not shown in
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figure 1.1). These include demographic information about customers or users who
are individual consumers (age, education, etc.) and firmographic information
about subscribers that are businesses (industry, number of employees, etc.). 

4 Segmentation—Based on their characteristics and risks, divides customers into
groups or segments that combine aspects of their risk level, their behaviors, and
any other significant characteristics. These segments target customers for inter-
ventions designed to maximize subscriber lifetime and engagement with the
service. 

5 Intervention—Using the insights and subscriber segmentation rules derived from
the churn analysis, plans and executes churn-reducing interventions, including
email marketing, call campaigns, and training. Another long-term intervention
makes changes to the product or service, and the information from the churn
analysis is useful for this too. 

This is the crucial step that drives the desired outcome (growth!). More
information about types of interventions begins in the next section and is pro-
vided throughout the book, but I cover interventions only in a general way. This
is why figure 1.1 shows interventions as partly outside the scope of this book. 

I will refer back to figure 1.1 in each chapter to make it clear which part of the process
the chapter covers.

1.2 Fighting churn
One motivation for writing this book stems from the challenges of trying to reduce
churn. That said, my motto is to underpromise and overdeliver. I will begin with warn-
ings about how hard reducing churn can be. Later, I will show that the imperfect
options available can still lead to a material impact on your churn and user engagement.

1.2.1 Interventions that reduce churn

Companies use five main strategies to reduce churn. I summarize them here and will
discuss them more throughout the book:

 Product improvement—Product managers and engineers (for software) and pro-
ducers, talent, and other content creators (for media) reduce churn by chang-
ing product features or content, which improves the utility or enjoyment that
customers receive. This can include adding new features and content or repack-
aging to ensure that users find the best parts of the product or service. This is
the primary, most direct method of reducing churn. 

Another (software) method is to increase stickiness, which roughly means
modifying the product to increase the cost for a customer to switch to an alter-
native. Switching cost is increased by providing valuable features that are hard
to reproduce or difficult to transfer from one system to another.

 Engagement campaigns—Marketers reduce churn with mass communications
that direct subscribers to the most popular content and features. This is more
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of an educational function for marketing than a traditional type of marketing.
Remember, subscribers already have access and know what the service is like, so
promises won’t help. Still, marketers often use this function because they are
skilled in crafting effective mass communications.

 One-on-one customer interactions—Customer success and support representatives
prevent churn by making sure customers adopt the product and helping them
if they can’t. Whereas Customer Support is the department that traditionally
helps customers, Customer Success is a new, separate function in many organi-
zations: it’s explicitly designed to be more proactive. Customer Support helps
customers when the customers ask for help; Customer Success tries to detect
customers who need help and reach out to them before they ask for it. Customer
Success is also responsible for onboarding customers and making sure they do
everything necessary to take advantage of the product.

 Rightsizing pricing—The Sales department (if there is one) may be the last resort
in stopping churn, assuming the service is not free. Account managers can
reduce the price or change subscription terms, managing the process through
which a customer can down-sell to a less expensive version. For consumer prod-
ucts without a Sales department, Customer Support representatives who have
similar authority usually take on this role. A more proactive approach is to right-
size sales in the first place: do a better job of selling the product version that is
optimal for the customer rather than selling the most expensive version possible.
This can hurt short-term gains from each sale; but if done correctly, it reduces
churn and ultimately improves the lifetime value of the customer.

 Targeting acquisitions—Different channels where you acquire customers may
produce customers with different retention and churn quality. If that’s the case,
it makes sense to focus on the best channels. Rather than trying to keep the cus-
tomers you have longer, you try to find better customers to replace them. This is
the least direct method to reduce churn and is limited because most products
cannot get unlimited customers from their preferred channels. Still, it is an
important tool, and you should take advantage of it if you can.

All of these methods are most effective when they are data driven, meaning your orga-
nization picks the targets and tailors the tactics based on the correct reading of avail-
able data. Being data driven does not require that you have a certain amount or type
of data or a particular technology. The emphasis in this book is on using the available
data correctly, regardless of what type of product you work on or what type of inter-
vention you ultimately employ to reduce churn.

TAKEAWAY Being data driven when fighting churn means designing product
changes, customer interventions, and acquisition strategies based on a sound
reading of available data.

One thing to note: interventions and service modifications are the final crucial step to
achieving the goal of lower churn and longer retention. How to execute interventions
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is beyond the scope of this book, however. Unlike data analysis techniques, interven-
tions to influence subscriber behavior are generally specific to the type of subscription service.
There is no one-size-fits-all intervention. Also, in general, people other than the data
person make those interventions (product designers or marketers, for example). 

TAKEAWAY There are some general principles for churn-reducing interven-
tions, but these require customization for each product’s circumstances.

The circumstances that shape interventions include not only the particular features of
the product or content but also the technology and resources available for making the
interventions. To give adequate coverage to interventions would be another book (or
even a separate book per industry), and it would be a book aimed at business manag-
ers, not a technical book like this one. Interested readers should look for titles on
“Customer Success” in the business section, or more specifically, under product design,
marketing, customer support, and so on. The tools and techniques in this book will
revolutionize your products’ performance in every one of those areas, but don’t
expect the data person to do it all!

1.2.2 Why churn is hard to fight

Now that you know the goal and the available strategies, I will introduce you to the dif-
ficulties you will face. These motivate my recommendations (in the next section) for
how to use data to fight churn.

CHURN IS HARD TO PREVENT

The bad news is that people are (mostly) rational and self-interested, and your cus-
tomers already know your product. In order to reduce churn long term, and in a reli-
able way, you have to either improve the value delivered by your product or reduce
the cost. Remembering the last time you churned, what would have prevented you
from churning? Better content and features? Maybe. A lower price? Perhaps. How
about an improved user interface? Probably not, unless the user interface was terrible
to begin with. And would more frequent email notifications about the product stop
you from churning? Again, probably not, unless they contained information that you
found valuable. (There’s that value word again!) 

 To reduce churn, you need to increase value, but doing so is harder than getting
people to sign up in the first place. Because your customers already know what the ser-
vice is like, promises made by marketing or sales representatives won’t get much trac-
tion. As the data person, you may be asked for “silver bullets” to reduce churn, but
here is the bad news.

TAKEAWAY If a silver bullet means a low cost and reliable method, there are
no silver bullets to reduce churn!

In the words of the famous startup CEO and venture capitalist Ben Horowitz, “There
are no silver bullets for this, only lead bullets.” He was talking about delivering
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competitive software features in his startup memoir, The Hard Thing About Hard Things
(Harper Business, 2014), but I think this applies equally to fighting churn. It means
there are usually no quick “once and done” fixes; you continuously have to do the
hard work of increasing the value you provide to subscribers. I’m not saying simple
fixes for problems with subscription services never exist. But these types of issues are
usually addressed by people like product managers and content producers. When the
service turns to a data person for help reducing churn, the low-hanging fruit have usu-
ally been picked already. If a data person does discover easy fixes, it is a sign that those
who created the service have not been doing their jobs well. (It’s possible you will find
easy fixes, but you shouldn’t.)

 The alternative, of course, is to reduce the cost of the service. But reducing the
monetary cost is the nuclear option for a paid service; revenue churn or down sells
may be better than a complete and total churn, but it’s still churn. 

WARNING Price reduction is a “diamond bullet” against churn: it always works,
but you can’t afford it.

As you will see in the next chapter, most services consider down sells just another form
of churn.

PREDICTING CHURN DOESN’T WORK (WELL)
Now let’s talk about the usual tool in the data scientists’ toolkit: prediction with a
machine learning system. There are two reasons predicting churn doesn’t work well.
First, and most important, predicting churn risk doesn’t help with most churn-reducing
interventions. Because there is no such thing as a one-size-fits-all intervention, churn
interventions need to be targeted based on factors other than the likelihood of churn.
This is different from other areas like spam email or fraud detection where yes/no
predictions tell you enough to choose an action. If you classify an email as spam, you
put it in the spam folder—done! But if you predict a customer is at risk for churn,
then what? 

 To reduce churn, you can run an email campaign to promote the use of a prod-
uct feature. But a campaign like that should be targeted at users who don’t use the
feature, not sent to all users who are churn risks for any reason. Clogging users’
inboxes with inappropriate content is going to drive them away, not save them!
Churn-risk prediction can be a useful variable in choosing customers for one-on-one
interventions by Customer Success teams, but even then, it is only one variable
defining the targets. 

 This may disappoint you. To reduce churn, it isn’t sufficient to deploy an AI system
that can win a data science competition. If you deliver an analysis that predicts churn
without providing more actionable information, the business will not be able to use it
easily, if at all. Believe me when I tell you that predicting churn is not the focus of
fighting churn with data. This is one of the most important lessons I had to learn
when I started working in this area.
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TAKEAWAY A one-size-fits-all churn intervention doesn’t exist, so predicting
customers at risk of churn is only a little helpful for reducing churn.

The second reason predicting churn doesn’t work well is that churn is hard to predict
with high accuracy, even with the best machine learning. It’s easy to see why, if you
recall your behavior the last time you churned: you probably were not taking full
advantage of the product, but it took you a long time to cancel because you were too
busy or you spent some time researching alternatives. Perhaps you couldn’t make up
your mind, or you forgot. If a predictive system were observing your behavior during
that time, it would have flagged you as at risk and been wrong during all the time it
took you to make up your mind and find the time to cancel. The moment of churn
was shaped by too many extraneous factors to be predicted. 

 Apart from extraneous factors influencing timing, churn is hard to predict because
utility or enjoyment is a fundamentally subjective experience. The likelihood of churn
varies from individual to individual, even under the same circumstances. This is
especially important for consumer services, where churn is usually hardest to pre-
dict. For business products, customers tend to be rational. But neither the customer
nor you have enough information to do a precise cost-benefit analysis on their use
of the product. 

 Finally, churn is normally rare in comparison with retention; it has to be, for any
paid subscription that remains in business. Because churn is rare, false positive predic-
tions are common no matter how you make predictions. 

 Given all these things, churn predictions are inevitably relatively crude. If you
worked on a project where you predicted churn in the past and found it easy to pre-
dict with high accuracy, you might have been predicting churn too late, when it was
not actionable (see chapter 4). I will provide data on churn prediction accuracy and
what constitutes accurate versus inaccurate churn prediction in chapter 9. For now, I
hope I’ve given you enough anecdotal arguments to show why highly accurate predic-
tion usually is not possible. 

TAKEAWAY Extraneous factors, subjectivity, incomplete information, and rar-
ity make it hard to predict churn accurately.

REDUCING CHURN IS A TEAM EFFORT

One of the hardest things about preventing churn is that it is no one’s job, in the
sense that no one person or job function can do it alone. Consider the strategies for
churn reduction described in the last section: product improvement, engagement
campaigns, customer success and support, sales, and pricing. Those functions span
more than half the departments in a typical organization! That means churn reduc-
tion is going to suffer from problems of communication and coordination. If left
unchecked, there will be a tendency for different teams to come up with uncoordi-
nated approaches to reduce churn. It would be counterproductive, for example, for
the product and marketing teams to decide to focus on driving the use of different
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features or content. And those approaches may be based on limited or flawed infor-
mation. Because they aren’t the data experts (that’s you, remember?), there’s no guar-
antee that choices made by independent teams will be properly data driven.

TAKEAWAY Churn-reduction efforts are at risk of miscommunication and
lack of coordination between the multiple teams involved.

Also, in a typical situation, the data person can’t do anything to reduce churn on their
own. Reducing churn depends on actions taken by specialists in different parts of the
business, not by a person who is wrangling the data. These coworkers are diverse, and
I will refer to them as the businesspeople for lack of a better term. I’m not implying that
the data person is not part of the business; but data people usually have no direct
responsibility for concrete business outcomes (like revenue), whereas the people in
those other roles usually do. From the data person’s point of view, the business is the
end user of the data analysis results. 

TAKEAWAY The data person’s goal is to make businesspeople more effective
at churn-reducing interventions. 

1.2.3 Great customer metrics: Weapons in the fight against churn

Churn is hard to fight because different parts of the business are responsible for
reducing churn in different ways. All of these teams have different tools and methods,
and they may not align on the situation and strategies. Also, every method to reduce
churn requires businesses to target interventions to the customers most likely to
respond. As a result, to fight churn, businesses need a shared set of facts or rules for
understanding customers and their engagement with the product. 

 The best way to make data into a weapon in the fight against churn is to use the
data to produce effective customer measurements and get those measurements into
the hands of the business’s churn fighters. As we will explore fully in chapter 3, a mea-
surement of customers is called a metric. 

DEFINITION Customer metric—Any measurement you make on all customers
individually.

As a simple example, a metric can be something like how many times per month each
customer uses a software feature or watches episodes from a certain series. But not
every metric is great for fighting churn.

TAKEAWAY For a customer metric to be great for fighting churn, it should
have the following characteristics: (1) easily understood by the business; (2)
clearly associated with churn and retention, so it is obvious what a healthy cus-
tomer looks like; (3) segments customers in a way that’s useful for targeted
interventions that increase engagement; and (4) useful to multiple functions
of the business (product, marketing, support, etc.).
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To continue the simple example, you may discover business rules like “customers
who use (view) the product feature more than five times a month churn at half the
rate of customers who use it only once a month or less.” Something like using or
viewing more of a particular feature is not very complicated, and the finding about
churn makes it obvious what a healthy customer is. Each part of the business can use
a fact like that differently. Product creators will know the feature is providing value
and can either replicate it or make it easier to find. Marketing can design a cam-
paign to drive users to the feature. And when Customer Success/Support people
talk to a customer, they can ask if the customer is using that feature and encourage
them to try it if not.

 That may sound easy, but coming up with actionable findings that appear simple is
harder than it sounds. Some findings can be misleading (see section 1.8.2 for an
example), and the more common problem is that there are too many potential met-
rics and rules. The challenge then is to find a concise set of metrics for the business to
follow. So just because you are looking for easy-to-understand facts and rules doesn’t
mean your job will be easy!

 I arrived at this focus on delivering great customer metrics by experiencing situa-
tions where the metrics were not great. When I was starting out, the situation usually
went like this: Before we began analyzing churn, the company chose customer metrics,
and we used them as inputs for a predictive model. I often found that the customer met-
rics were poorly designed and weren’t good for predicting and understanding churn,
so the predictive model gave poor results, and no one used it. But they continued using
the mediocre metrics because they needed measurements for segmenting. That’s
when the light bulb went on for me. Data analysis should focus on making sure the
metrics are great for churn because that’s what people will use to do their job. I knew
that as a data expert, I could do a better job of creating customer metrics than the
businesspeople—and so can you.

 The approach I will teach you is like traditional statistical or scientific analysis.
Data people trained as statisticians will likely find this approach more natural than
computer scientists will. The process is to iteratively test different customer metrics,
analyze their relationship to churn and to each other, and evaluate them for inter-
pretability and how useful they are for segmenting and making interventions. You
find the best set of metrics, and that is the main deliverable to the business. You will
also be in a good position to run predictive models for additional use cases, as
described in later chapters.

TAKEAWAY The main deliverable to the business from the data analysis proj-
ect is a set of customer metrics. 
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1.3 Why this book is different
You might suspect by now that this is not your usual book about data science or data
analysis. I will explain these differences now, so you know what to expect.

1.3.1 Practical and in-depth

Table 1.1 summarizes some ways this book differs from a typical book in this field.

This book focuses on one thing: a practical approach to using your data to fight churn.
In contrast, most books on data analysis cover a wide variety of use cases, emphasizing
statistical and computer science algorithms. That said, section 1.5 explains that there
is a whole family of use cases that are similar to churn, and the same techniques apply.
But this book stays focused on churn to make the learning easy; once you are an expert,
it won’t be hard to modify the techniques to related scenarios. 

 In typical data analysis books, the focus is on teaching algorithms. The datasets
used to demonstrate the techniques are given and are known as benchmark datasets.
This book starts with raw data and creates an analytical dataset, which is a large part of
the work. I explain several statistical/machine learning algorithms at the level
required to use them, but I will not teach a lot of theory. Instead, the focus is on teach-
ing the entire process, including application of the results in a real-world scenario.

 An important way in which real-world data problems differ from training is that in
the real world, the job never ends: as soon as one analysis of churn is complete, new
product features or content are created, requiring reanalysis. Or an entirely new type
of data to enhance the original may become available. Also, there are constant changes
in the business environment, such as competition and changing economic conditions.
Such changes can require reanalysis, even if the product isn’t modified. 

 To succeed in this environment, the process of using the data must be parsimonious
and agile. Parsimony means using the minimum amount of data and the fewest analytic
steps required to get the job done. Agility means responding to change quickly and
efficiently. Achieving parsimony and agility has important consequences. I will return
to these themes throughout the book but, for now, here are two key takeaways.

Table 1.1 How this book compares to other data analysis books

This book Most books about data analysis

One scenario from start to finish, including 
applications

Helicopter into many different scenarios but omit 
practical details

Focuses on understanding the data and designing 
metrics (aka feature engineering)

Focus on algorithms

Creates datasets from raw data in an iterative 
process

Use datasets that are fixed benchmarks

Emphasizes interpretability, parsimony, and agility Emphasize maximizing accuracy or other technical 
metrics
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TAKEAWAY Your goal is to deliver actionable knowledge to the businesspeo-
ple. Listen to them, and try to answer their questions first. Do not exhaus-
tively test every hypothesis or evaluation metric.

TAKEAWAY Write code to automate the process. This makes it much easier to
accommodate the inevitable corrections or requests for changes.

Because of the need to communicate with businesspeople to fight churn, a data per-
son’s analysis achieves maximum impact when it provides actionable knowledge. For
this reason, this book tells you how to communicate the analysis results in a way that
nontechnical people understand. This means using relatively simple visualizations
and avoiding technical jargon in favor of a common language. I even recommend
making simplifications when explaining the analysis (but not cutting corners in doing
the analysis). Throughout the book, I give specific examples of explanation strategies
I have found to work.

The importance of data and metric design (aka feature engineering)
Many people who take academic classes on data science or data analysis get a sur-
prise when they start working at a company or on a real research project: the data
they need is not waiting for them in a CSV file or a database table, ready to run
through an algorithm. Most real-world projects involve locating and merging data from
multiple databases or systems, and this process is a large part (usually more than
half) of the work on the project. In academic data science, this is referred to as fea-
ture engineering, but I will stick to the term metric design because of the need to com-
municate with businesspeople (more about this in chapter 3). 

Another common misconception is that the choice of algorithm or analytic method is
the most important thing contributing to model accuracy. The design of the summary
metrics (aka data features to academics) that allow the data to be analyzed is the
most important part of the process, even where accuracy is concerned.

Some data people who are academically inclined may see it as inefficient or even
unworthy of them to prepare their data, viewing it as drudgery. But many small deci-
sions must be made when preparing the data, some of which can have huge conse-
quences for the results, especially if those decisions are not made correctly or not in
the way the data person expects. 

WARNING It is extremely risky to delegate data-preparation tasks to another
team. 

Finally, I want to add that in my own experience, understanding the data and design-
ing the metrics is the most fun, creative part of the entire process! In my opinion, this
is the true “science” in data science: learning from your data through experimenta-
tion, not just running someone else’s algorithm. It’s not drudgery in my book!
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1.3.2 Simulated case study

To meet its goals, this book revolves around an in-depth case study. You will start with a
database of customer and event data and use it to perform all the steps in a real churn-
fighting process: calculating the customer churn rate, understanding customer behavior
by creating and analyzing metrics, discovering how customer behavior relates to churn,
and using all that knowledge to design segments that you can use for targeted interven-
tions (or to make targeted interventions, if it really were your company).

 Because customer data is sensitive, I can’t distribute real customer and product
data to support your learning. Instead, this book includes a highly realistic customer
simulation that you can use to generate your own data. I will also make frequent com-
parisons to case studies made on real companies (described in section 1.7). You will
see that the results you get from your simulation are surprisingly similar to the real
thing. The code for the simulation and instructions to set it up and run it are on the
book’s website (www.manning.com/books/fighting-churn-with-data) and in the book’s
GitHub repository (https://github.com/carl24k/fight-churn).

NOTE The most up-to-date instructions to set up the development environ-
ment and run the simulation and code will always be in the README page at
the root of the book’s GitHub repository. The instructions for setup are not included
in this book.

I’ll tell you more about the company you are going to simulate and study in section 1.7.4,
after I introduce the real case studies. But first, to put the case studies in context, I want
to talk more broadly about the kinds of companies and data to which this book applies.

1.4 Products with recurring user interactions
For those not already familiar with this area, I’m going to summarize the current state
of the world of products that have recurring user interactions or subscriptions. Sub-
scription and recurring payment business models are definitely not new; subscription
news services have existed since at least the sixteenth century, and the recurring pay-
ment of insurance premiums was established in the seventeenth century. The twenti-
eth century saw the rise of ubiquitous recurring payment services for a wide range of
utilities made available by the second industrial revolution: first water, gas, electricity,
and telephone service; and, in the late twentieth century, cable television, mobile
phone service, and, of course, internet service. These services are all based around
recurring payment relationships between consumer and provider. All such relation-
ships can be referred to as subscriptions.

 When we think of subscriptions, we usually think of a fixed fee paid periodically,
although subscription services can collect three types of payments between the con-
sumer and provider:

 Recurring payments—Fixed payments of the same amount for each period of service
 Usage-based payments—Payments for the amount of service used, based on some

unit of measure 

https://github.com/carl24k/fight-churn
http://www.manning.com/books/fighting-churn-with-data
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 One-time payments—Usually fees for setup but also for temporary (nonrecurring)
upgrades to service or one-time (in-app) purchases

The services are sometimes paid for in advance (at the start of each service period)
and sometimes in arrears (after the service is provided). But common to all of these
services is the continuing relationship between consumer and service provider.

 The twenty-first century has seen a new explosion in subscription services, largely
delivered over the internet and created (or at least managed) using cloud computing
platforms. One important characteristic that sets them apart from most of their predeces-
sors is that the new products are usually of a more discretionary nature. While twentieth-
century recurring payment services had few or no options (many utilities are still regu-
lated monopolies), we have a variety of options when it comes to twenty-first-century
subscriptions. There are usually alternative services to choose from, like switching from
one streaming music service to another. Also, there can be alternative means of achiev-
ing the same ends, such as a business developing its own software rather than buying it
with a subscription. And finally, many modern subscriptions are things we can live with-
out (do you need that food delivery subscription when you could shop in a store?).

 In the following sections, I will describe some of the wide variety of subscriptions
that exist today. We will consider these business models in the rest of the book.

1.4.1 Paid consumer products

Most people are familiar with consumer subscription services. These products typically
cost a modest amount each month (less than a fancy meal), and the price typically ends
with “99” (9.99, 49.99, 99.99, etc.). These days, most consumers get a lot of their enter-
tainment this way, and a variety of additional products have become available:

 Desktop software (word processors, spreadsheets, graphics creation tools, anti-
virus programs, etc.), formerly sold through perpetual licenses

 New types of software as a service (identity-theft protection, cloud storage,
home security video monitoring, etc.) 

 Boxes of physical products (shaving and personal grooming items, meals, crafts,
gifts, etc.)

 Personal apparel items (including clothing and watches) 

These products are often referred to as business-to-consumer services (B2C). Another
related term is direct to consumer (D2C), which usually refers to selling video enter-
tainment to consumers without bundling it with other channels in a cable or satellite
entertainment package. (At the time of this writing, many television channels are
available only through cable or satellite subscription, but a streaming service is D2C.)

1.4.2 Business-to-business services

In terms of market value, subscription services for businesses are an enormous market
segment. These are commonly known as business-to-business (B2B) products. Starting
with Salesforce, which created the first cloud-based customer relationship management
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(CRM) system in the 2000s, this market has exploded. Now nearly all new software
products for businesses are offered as a service (software as a service, also known as
SaaS). At the same time, existing on-premises software products have started to shift to
a new model due to the efficiency of cloud deployment and upgrades. These products
exhibit a dizzying variety of payment terms because business products do not shy away
from complex contracts (indeed, they often seem to favor them). The best-known cat-
egories of B2B subscriptions include

 CRM—SaaS to coordinate sales team and marketing interactions
 Enterprise resource planning (ERP)—SaaS for accounting, logistics, and production
 Subscription business management (SBM)—SaaS to manage subscriptions (also sold

on a subscription basis)
 Human resource management (HR)—SaaS for managing employees, including hiring
 Support issue tracking systems (ITS)—SaaS for tracking and managing customer

support interactions or tickets
 Desktop software—Spreadsheets, word processors, email, illustration programs,

and so forth, sold through multiuser subscriptions
 Cloud computing resources—Cloud servers, storage, databases, and content distri-

bution networks (CDNs)
 Business intelligence (BI)—Tools to query and visualize data of a variety of types
 Security products—Virus protection, password managers, network monitoring,

and other tools for ensuring individual computer and corporate system security

This short list does not do justice to the wide variety of SaaS products used by busi-
nesses today. Nearly every modern SaaS company is dependent on a wide array of
other SaaS products to provide the software running the noncore portions of the
operation. A typical SaaS company uses in-house software engineers only to create
what is unique about the service; almost every other part of the operation is run using
software provided by another SaaS venture and paid on a subscription basis. These
include the standard applications listed previously, as well as SaaS products designed
for use by companies in specific verticals:

 Most online news or media services use software to manage comments and dis-
cussions, but that service is not created by those companies—they focus on cre-
ating content. 

 Information services supporting specific verticals used to be common only in
the finance and legal industries, but now industries like real estate, energy,
manufacturing, and agriculture also have vertical-specific information services.

 Services are available to manage invoices and accounts payable functions that
are specific to a single industry or vertical. 

These are just a few examples from a very large and heterogeneous category.
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1.4.3 Ad-supported media and apps

Since the early days of the internet, one of the most common business models (if not
the most common) is to provide free media content (reading material, videos, music,
etc.) but with ads displayed before, during, and/or after. There is no formal subscrip-
tion to use such a product, so the scenario has some important differences from those
in figure 1.1. There is no subscription database, although another database probably
tracks user profile information for the purpose of selecting ads. While the means of
capturing value from the consumer is different, these services share the same discre-
tionary nature as regular paid consumer services and the same obvious concern with
churn: services want their users (ad viewers) to keep coming back. 

 As I will explain, without a subscription, churn can be defined to simply mean that
a customer disappears for an extended period of time. This type of product can also
benefit from the churn analysis techniques taught in this book, as long as some form
of event data warehouse tracks users across multiple sessions.

TAKEAWAY Tracking user events across multiple sessions is the one minimum
requirement to use the techniques in this book.

1.4.4 Consumer feed subscriptions

Another novel type of subscription delivers free information in a feed, such as You-
Tube subscriptions or email updates. This is a variant of the ad-supported media
model in which content is still advertising supported, but the provider creates the
option to upgrade the experience by subscribing for free. This subscription usually
means the consumer consents to product updates via new information pushed to
their inbox or video feed. In this case, the structure of the relationship fits the typical
scenario in figure 1.1, but there are no fixed payments on the subscription; instead,
advertising revenue is derived from events. 

1.4.5 Freemium business models

A freemium offering refers to any subscription service that has both a free version and a
paid, or premium, level of service. For some services, the free version may be time-
limited, giving users a chance to “try before you buy.” For other services, it may be pos-
sible to use the free level of service in perpetuity. Another common variety is to have a
free version with advertisements (as described in section 1.4.3) and a paid version that
is ad-free. 

 As far as churn is concerned, freemium services are just like services without a free
level, but there are two distinct types of churn: churn from the premium service and
churn from the free level of service. The free level is analyzed using techniques
described for nonsubscription, activity-based churn analysis. There is also the transi-
tion from the free to the paid service level, known as free trial conversion, which can be
analyzed with the same techniques as churn (see section 1.5).
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1.4.6 In-app purchase models

A variant on the freemium model are products that are free to use in perpetuity (or
which require only a relatively small one-time payment to use in perpetuity) but that
offer a variety of ways to upgrade the experience by making one-time payments during
use. This is becoming the predominant model in online gaming. To play the game is
free, but if you want a cool-looking skin for your avatar, a better weapon, or a shortcut
to a higher level, it’s going to cost you! 

 This is another type of scenario that fits the model of figure 1.1 but without sub-
scriptions. Instead, a transactional database tracks the one-time purchases (and the
original purchase of the app, if there is an initial fee). Churn can be defined as a user
(customer) going inactive; all of the usual techniques in this book apply as long as
user behavior can be tracked across sessions of use.

1.5 Nonsubscription churn scenarios
The focus of this book is on explicit churns from subscriptions, but the same
approach works in a variety of other common business scenarios. I’ll briefly explain
those here but—for simplicity—teach the techniques focusing mainly on churn from
subscriptions. After you master the techniques, you should have no trouble repurpos-
ing what you have learned for other scenarios. 

1.5.1 Inactivity as churn

User inactivity can be seen as churn for the free tier of a freemium service, and the
same applies for apps or ad-supported products with no explicit subscription. You
choose a time window in which a user must engage with the service (such as one
month or three months). Churn is then defined as users who go inactive for that long.
In contrast to the typical scenario in figure 1.1, there is no subscription transaction
database, only an event data warehouse. But the techniques in the book can be used
as long as one key requirement is satisfied: user behaviors must be tracked consistently
across different episodes or sessions of activity. 

1.5.2 Free trial conversion

As described in section 1.4.5, a freemium model offers both free and paid levels of ser-
vice. Because similar behavioral data is available at the free level as in the paid sub-
scription, it is just as easy to analyze the conversion of subscribers from the free service
to the paid service as it is to analyze churn from the paid service. This is essentially the
opposite of churn, but the scenario looks like that in figure 1.1, so the same analytic
techniques can be used.

1.5.3 Upsell/down sell

Adding new services or moving to a higher-cost plan is known as an upsell, while
removing services or moving to a lower-cost plan (without churning) is known as a
down sell. As with churn, behavioral data and user characteristics can be analyzed to
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determine what scenarios are most likely to lead to an upsell or a down sell. The addi-
tional challenge is that there may be different possible upsell/down sell options to
analyze. In practice, however, additional analysis for upsell/down sell is often unnec-
essary. Most of the time, the customers who are most likely to purchase some form of
upsell are those who are the best customers identified by the churn analysis, while
those customers most likely to move to a lower-cost plan (down sell) are also those
most likely to churn. 

 Upsells are also often related to crossing a specific usage threshold, such as the
number of users (seats) sold for an enterprise software license or the number of giga-
bytes of data in a mobile phone service. In that case, an in-depth analysis is unneces-
sary: you know who is a candidate for an upsell simply by looking at a single relevant
usage metric. 

1.5.4 Other yes/no (binary) customer predictions

Customer churn is an example of a prediction problem where there is a yes or no
answer. In statistics and data science, this is referred to as a binary outcome in reference
to the two possibilities. The methods in this book can be applied without modification
to virtually any situation involving predicting a future customer state that can be
framed as a yes/no question. Examples include whether any kind of insurance policy
will result in a claim (medical, auto, and so on) and whether a borrower will default
on a loan. The one caveat here is that this book tends to focus on rare outcomes
(which also happen to be the case for insurance claims and loan defaults). Slightly dif-
ferent methods can be used if yes and no outcomes are equally common, mainly in
the measurement of accuracy (see chapter 9).

1.5.5 Customer activity predictions

Assuming a subscriber continues a service, it is reasonable to want to analyze what a
subscriber is likely to do in the future. This is especially important for behaviors that
are revenue generating, such as how much the subscriber will use a pay-as-you-go fea-
ture; or how much content the user will consume, and the resulting ad revenue gener-
ated for an ad-supported service. 

 Most of the techniques in this book also work for this sort of analysis, but with the
major caveat that for churn, we use techniques for modeling two-state or binary out-
comes (churn vs. continue), and for activity prediction, we use techniques for model-
ing numeric outcomes. If you have already trained in data science or statistics, it’s not
too hard to adapt the methods in this book to forecast real values, but such extensions
won’t be covered.

1.5.6 Use cases that are not like churn

One use case that is very different from churn and will not be covered in this book is
product recommendation systems. Those are scenarios with a wide variety of products
or content to choose from, where the goal is to recommend the most suitable ones
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based on previous choices. The techniques in this book, however, do apply for custom-
ers choosing among a small number of products like basic, standard, and premium
plans for a subscription. For large catalogs of physical or media products, you should
consult a book or resources specifically about recommender systems.

1.6 Customer behavior data
Given the huge variety of products and services that include recurring customer/user
interactions, there is an even larger variety of possible forms those interactions can
take. One section in one chapter cannot possibly give an exhaustive listing of all the
possibilities, so consider this only an introduction. Almost anything that happens in
software or that can be tracked by software can be considered an interaction or event.

DEFINITION Event—In the context of fighting churn, any user interaction or
result that the data warehouse tracks. Events are time-stamped and pertain to
a single account or user.

1.6.1 Customer events in common product categories

I’ll make the discussion of data concrete by listing typical customer events for com-
mon product categories. What these all have in common is that they refer to individ-
ual events that can happen to one customer or user at any time. For some events, the
simple fact that the event took place for a certain user at a certain time might be the
only information available; for other events, details are tracked along with the event.
Some typical customer events follow: 

 Software—Refers to any software product (SaaS) but can also refer to other types
of products with software interfaces:
– Logins—Logging in to the application is usually tracked as an event.
– User interface (UI) interaction—Almost any click or typing in the user interface

can be tracked as an event. The event usually includes a detailed reference to
the part of the UI.

– Document/record actions—Includes creating, editing, updating, and deleting
records or documents, which are tracked in the application database. The
event can include information about what type of document and specifically
what document field, when appropriate.

– Batch processing—Many applications include processes that users run periodi-
cally. Every item processed can be seen as an event, or the batch job can be
the event. 

 Social networks—Dedicated social networks and also products that have social
functions:
– Liking—Indicating that the user likes something they see is one of the most

ubiquitous interactions with a social network.
– Posting—Sharing any type of media supported by the network.
– Sharing—Usually a specialized post that refers to another user’s post.
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– Connecting—Connecting with other users is usually the most important form
of engagement, as it enriches future user experience.

 Telecommunications (telco for short)—Providers of mobile or fixed-location tele-
communication products and services:
– Calling—Making a voice or video call. Typically, call events are tracked with

the duration and the type of call.
– Data—Data usage is usually tracked with the amount of data.
– App—Using an application and specifically which one.
– Adding/removing a device—Updating devices is an important event in the life-

cycle of using the service.
 Internet of Things (IoT)—Products consisting of connected devices:

– Geospatial—Events about device movement, including location and speed. 
– Sensor—Data received by a sensor can include almost any type of additional

information received from the sensor.
– Device—As with sensors, device activity can refer to almost any kind of activity

and includes device-specific information.
 Media—Any product that provides any type of prerecorded or live-streamed

media including video, audio, images, and text, not only for enjoyment but also
for educational and professional training:
– Viewing/playing—Playing media is the most common event on a media-specific

service and usually includes details about what media was played and how
much was played. This includes articles or pages read for news and books.

– Dwell time —Viewing a page or other content and explicitly capturing the
time spent. 

– Liking—Indicating media preferences by liking (or giving a thumbs down) is
an important event for media.

 Gaming—Any product that is a game:
– Playing—Many events are typically generated during playing a game and can

include information about exactly what parts were played, for how long, and
so on.

– Levels and score—Many games include points or other forms of “leveling,”
and achieving these is often tracked as an event.

 Retail—Shopping websites or services that allow purchase of individually selected
items, which can be either physical or digital products:
– Viewing—Viewing products can be tracked as an event, along with details of

what product is viewed.
– Searching—Searching a product catalog can be tracked as an event, along

with keywords used for the search.
– Adding to cart—Adding products to a shopping cart can be tracked as an event.
– Returns—Returning products is also tracked as an event, along with product

details.
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 Box delivery—Services where curated selections of (usually physical) products
are delivered to customers periodically:
– Delivery—Successful delivery of each box is an important event, as well as any

failures or difficulties in delivery. Tracked information typically includes the
type of box (when there is more than one) and the time it takes to arrive.

– Returns—Many box services allow items to be returned, an important event
indicating user dissatisfaction.

– Retail—Most box delivery products also include retail options, so all retail
events are also relevant.

Some categories of events occur across a variety of kinds of products and services.
Here are some examples:

 Financial—Financial events occur on all products and services that are not free:
– Recurring payments—These are so common they are often nonevents, but

they are tracked and often are more important when they don’t occur than
when they do.

– Nonrecurring purchases—All sales on retail sites, including any extra or in-app
purchases made on games or subscription services.

– Overage charges—Charges that apply when users exceed a threshold.
 Support—Whenever the customer turns to the service for help, whether through a

call, email, chat, or searching support/help documentation:
– Ticket—A support ticket or case, usually tracked with an opening and closing

time and a wide variety of details.
– Call/email/chat—Any kind of interaction between the customer and support

representatives, possibly including the full text of the interaction.
– Documentation—Use of online documentation resources can be tracked as

UI events.
 Plan—Subscription-plan-related events occur for any product or service that has

an actual subscription:
– Plan change—The time/date of plan changes can be tracked as events.
– Billing change—Events like changing the credit card or other payment method,

as well as switching billing details, such as monthly versus annual billing.
– Canceling—Yes, canceling the product or service is also tracked as an event.

But note that when we talk about cancellations as events, we are talking
about the date and time the cancellation change is entered into the system,
not necessarily the time the service contract ends when the user has time
remaining. For this reason, a cancellation event is not the same as a churn. The
churn occurs when the subscriber completes the current term without sign-
ing up for a new one, often allowing a short grace period. Consequently, a
cancellation event does not necessarily mean a churn will occur, because the customer
still might re-sign before much time has passed. This happens often enough that
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the act of cancellation should be considered an event that suggests churn is
likely, but it is still not a certain conclusion.

Note that many products or services contain events from multiple categories; for
example, any product with a software UI will collect software events, while many prod-
ucts have social network features (for example, games) even if they are not exclusively
or primarily social network products.

1.6.2 The most important events

With all this discussion of types of events, you are probably wondering which types are
the most important, and with good reason. With so much variety, it’s important to stay
focused. There are no hard rules for this, but I can give some general guidelines to
frame the discussion for the rest of the book. And to be clear, figuring out which
events are the most important is one of the main points of doing the analyses in this
book because it is different for every product or service. This is just a preview of things
we will look at in depth later.

 The bottom line is that the most important events are those that are closest to the
customer achieving the goal or purpose of the service. That’s vague, but some exam-
ples should make it clear:

 Software products usually have a goal (for example, writing documents). Creat-
ing documents, therefore, is more important than just logging in. In general,
login events are much less important than events that are directly involved with
achieving the goals of the product.

 Many B2B software products are used for making money, so if there is any way
to measure how much money is likely to be made from the events, then those
are the most important. For example, if a product is a CRM system used to track
sales, then closed deals and their value is probably the most important type of
event. Often a product is not that close to the money business customers make,
but you should still focus on events associated with commercial success. For
example, if the product is an email marketing tool, opened emails are import-
ant events.

 For most media services, the purpose is to enjoy the media, so playing content is
generally important as are, more specifically, indicators of enjoying the content
such as watching the whole thing, giving it a like, or sharing it. But you can
never directly measure enjoyment because it’s a subjective state.

 For a dating service, the purpose is to go on dates, so actual meetings are prob-
ably more important than things like searching, viewing profiles, or online
interactions. That presents a challenge because success on the service is well
defined, but the events occur offline. 

 For gaming, the purpose is to have fun. As with media, subjective feelings are
hard to measure, so the most important events may be things like achieving
scores and levels or social interactions with friends.
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There are many important caveats that go along with the takeaway, and I have only
noted a few, but the fact remains.

TAKEAWAY Look for events that are as close as possible to the value created
by using the service, even when that value cannot be measured directly. 

The rest of the book is about bringing rigor to this simple intuition.

1.7 Case studies in fighting churn
A few companies appear in the case studies throughout the book. They all used data
to address their churn problem in a way that made a difference. This section intro-
duces them and provides examples to make the data discussion of the last section
more concrete.

1.7.1 Klipfolio

Klipfolio is a data analytics cloud app for building and sharing real-time business dash-
boards and reports on web browsers, TV monitors, and mobile devices. Klipfolio helps
companies stay in-the-know and in control of their business by giving visibility into the
key performance indicators (KPIs) and metrics that matter most. Klipfolio believes in
empowering people to use and understand their data anytime and anywhere, elimi-
nating the unknown, and making them more competitive. Subscriptions to Klipfolio’s
online app are sold to businesses. Like most B2B SaaS products, the price depends on
the number of users and a variety of extra features. Most subscriptions bill either
monthly or annually and continue until the subscriber cancels. 

 As an extremely data-driven company (its products are all about data!), Klipfolio
was enthusiastic in using data to fight churn and increase customer engagement. It
learned early on that luring customers to stay with down sells and discounts was not
worth it—customers tended to churn anyway as soon as the discount expired. By ana-
lyzing usage and churn patterns, Klipfolio discovered that customers were at risk of
churn if only one person in an organization used the product, so a key metric became
the number of active users per account. The company also found there was a high risk
of churn early in the subscription if the customer did not fully adopt the product, so it
instituted onboarding calls by its support group and free support for the first three
months. Klipfolio also realized that the lifetime value of some customers was too low
to justify. To address the situation, it reconfigured its pricing and packaging to reflect
the more profitable versions of its plan and features. 

 You will see more about how Klipfolio uses their data to achieve those outcomes
throughout the book. For now, we start by taking a quick look at some of the com-
pany’s event data. As the product allows for making Klips and dashboards, the most
common events are viewing the dashboard, editing a Klip, and saving a Klip. Also,
there are events around social features, like sharing, that are related to the Klips.
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More than 80 different events are captured; the most common are listed in table 1.2.
Klipfolio’s events also identify individual users within each company, and some of the
events, like session duration, contain additional data.

1.7.2 Broadly

Broadly changes the way local service businesses grow. It helps thousands of local ser-
vice businesses attract, retain, and “wow” their customers every day through powerful
customer experiences. The company is on a mission to bridge local businesses to mod-
ern consumers by helping them attract and capture leads, streamline their communi-
cations by email and text, monitor their online presence, and gather reviews, all
through one app. Like most B2B SaaS companies, Broadly sells subscriptions with dif-
ferent plans, depending on the size of the buyer and things like the number of users.
Subscriptions are sold on either a monthly or annual basis and include a variety of
add-on products.

 Because Broadly’s products facilitate communications and connections with cus-
tomers, it appreciates the importance of engaging with its customers. Broadly has a
team of customer success managers (CSMs) who reach out to customers struggling
with the product. The CSMs use metrics to guide their conversation with customers:
strengths and weaknesses suggested by the metrics become talking points. Another
tactic Broadly uses is to focus on customers in the midrange of customer engagement
and risk: the company doesn’t try to help customers who haven’t logged in, but
instead focuses on customers showing some signs of usage but below target usage lev-
els. Broadly also found that one of the most important factors in influencing customer
retention was a customer integrating Broadly with their company booking systems.
Now the CSMs help with integrations whenever possible. Broadly also uses email cam-
paigns to drive interest and adoption of new product features. 

 One of the most important aspects of Broadly’s product is finding customers and
persuading customers to review the business. As such, customer data includes events
for adding customers, asking customers to review, and whether customers review posi-
tively or negatively. More than 60 different events from the SaaS product are captured,
and the 10 most common are listed in table 1.3.

 

Table 1.2 Most common Klipfolio customer events

View dashboard Switch orientation

Switch tab Account active today

Klip editor Exit Klip editor

Edit Klip from dashboard Add Klip overlay

Save Klip in editor Reconfigure data source
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1.7.3 Versature

Versature is disrupting the Canadian telecom industry with cloud-based unified com-
munication solutions for businesses. Trusted by clients and partners across the coun-
try, Versature is an award-winning company that is raising the bar with superior, cost-
effective technology and Canadian-based support. Businesses take advantage of Versa-
ture’s unified communication packages with plans that depend on the number of
users, volume of calls, and other online communications services. Most customers are
subscribed to monthly renewing services.

 The systematic study and fight against churn started at telecommunication compa-
nies back in the late twentieth century, following deregulation. As a telecommunica-
tions provider born into the deregulated market, Versature focused on customer
success from day one, with an emphasis on churn prevention. It has experienced
steady growth thanks to negative net churn year after year. The ability to identify at-
risk customers early in their lifecycle dramatically reduced controllable churn and
allows Versature’s CSMs to have value-driven conversations before the customer
reaches the point of no return. 

 Versature’s service combines traditional telecommunications call features with
additional digital features such as a client-accessible administrative portal known as
Sonar, a call data management offering known as Insights, and integration with digital
products like Google Chrome and Salesforce. Customer events are a combination of
traditional telco calls with software events like logins and page views. Versature’s top
10 most common events are listed in table 1.4.

Table 1.3 Most common Broadly customer events

Transaction added Follow-up email sent

Ask presented Review ask decision

Customer added Customer promoter

Thank-you email sent Ask fulfilled

Affinity updated Page view (path: /add_customer)

Table 1.4 Most common Versature customer events

Local call Sonar login

Sonar page view International call

Canada call Sonar call center support

Toll-free call Conference phone number

US call Conference call
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1.7.4 Social network simulation

It is best to learn a new technology by example, so this book is organized around a series
of examples that will guide you through a churn case study. But real churn case studies
involve sensitive data about products and customers, so it was not possible to find a real
set of data for examples in the book. Instead, you will learn the techniques for fighting
churn with data through a case study on a simulated set of customer and product data.

 The simulated product is a simple social network. Eight events are in the simula-
tion, and they are listed in table 1.5. These include the most common events that you
would find in any ad-supported social networking service: making friends, posting, lik-
ing, disliking, and so forth—and, of course, viewing ads. The simulation is designed so
that there are realistic relationships between the occurrence of these events for the
simulated customers and the customers’ simulated churn and renewal. You will dis-
cover these relationships throughout the book.

Churn case studies and privacy protection
The companies described in this book have all generously allowed themselves to be
profiled and have made their data available for demonstrating techniques. However,
these companies are all in business at the time of this writing and have a strategic
need to protect information about their operations. For that reason, detailed informa-
tion that might have been interesting to many readers is nevertheless withheld. In
particular, no churn rates of actual companies are reported anywhere in this book: 

 All numeric examples of churn calculation (like those in chapter 2) use ran-
domly generated data for illustrative purposes.

 All figures showing relationships with churn found through analysis (like those
in the next section and later chapters) show relative, not actual, churn rates.

Other types of information that are obscured throughout the book include facts and
figures that portray or can be used to derive information about the customer base or
pricing of the case study companies when such information is not already available
through other public sources of information. 

Also note, no personally identifiable information (PII) about the case study compa-
nies’ customers was accessed at any point in the production of this book. The book’s
emphasis is on anonymous behavioral analysis that does not involve PII. Although
some PII like geographic information can be useful in some churn analysis (see chap-
ter 10), those parts of this book are illustrated using only simulated data.

Table 1.5 Events in the social network simulation

Ad view New friend

Dislike Post

Like Reply

Message Unfriend
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WARNING Do not take any results in this book from the social network simu-
lation as a guide to what you can expect from your own product or service.
The examples use a realistic-looking set of data for the purpose of demon-
strating the method to use on real data, but nothing more. They cannot be
expected to predict the results for any real product or service.

More information about how to run the simulation that generates the social network
case study data can be found in the README page of the GitHub repository for this
book: https://github.com/carl24k/fight-churn.

1.8 Case studies in great customer metrics
Before getting into technical details in chapter 2, I’m going to show you a few exam-
ples of results from using the techniques in this book. I need to warn you that you will
not be able to make findings like this immediately; you have to learn the techniques to
prepare your data (chapters 2–4) before you start doing churn analysis in chapter 5.

 As I mentioned in the discussion of events, the behaviors that are most closely
related to the value delivered by the service are most important. But choosing the
measurement to make is also crucial. Here are three metrics that I have found to be
especially effective in the fight against churn:

 Utilization—Metrics that show how much of the service the customer uses. If the
service imposes limits on some types of use, a utilization metric shows what per-
centage of the allowed amount the customer took advantage of.

 Success—Metrics that show how successful a user is in activities that have differ-
ent outcomes.

 Unit cost—Metrics that relate to the price the customer pays for the quantity of
the service consumed or used.

Don’t worry if you don’t follow every detail in these case study examples; this is a
quick preview of what the rest of the book is about! The details are presented in
later chapters.

1.8.1 Utilization

Introduced in the last section, Klipfolio is a data analytics cloud app for building and
sharing real-time business dashboards. These dashboards can be created by multiple
users, and a common metric for any product that allows multiple users on one sub-
scription is the number of users who are active. Figure 1.2 shows how the number of
active users per month at a Klipfolio customer is related to churn.

 Figure 1.2 uses a technique called metric cohorts to show the relationship between a
behavior and churn. You will see a lot of these plots in this book and learn how to cre-
ate them, but for now, I will give a brief explanation of how this technique works. 

 Given a pool of customers and a metric like the number of active users per month,
the customers are organized into cohorts by their measurements on the metric. Typi-
cally, 10 cohorts are used, so the first cohort contains the bottom 10% of customers in

https://github.com/carl24k/fight-churn
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terms of the metric, the second cohort contains the next 10%, up to the final cohort,
which contains the top 10% of customers on the metric. Once the cohorts are formed,
you calculate what percentage of customers in each cohort churned. The result is dis-
played in a plot like that shown in figure 1.2. Each point in the plot corresponds to
one cohort, with the x-value of the point given by the average value of the metric for
the customers in the cohort, and the y-value of the point given by the percentage of
churns (the churn rate) in the cohort.

 As mentioned in the sidebar on privacy protections, the case study churn plots in
this book don’t show actual churn rates, only the relative difference between the
cohorts. However, the bottom of the metric cohort plots is always set to zero churn
rate so the distance of the points from the bottom of the plot can be used to compare
relative churn rates. For example, if one point is half as far from the bottom of the plot
as another, that means the churn rate in that cohort is half of the other’s. 

 Turning to the details and what they mean, figure 1.2 shows that the lowest cohort
has less than 1 active user per month (an average over multiple months), and the
highest cohort has an average of more than 25 active users per month. In terms of
churn, the churn rate on the cohort with the lowest active users per month is around
8 times greater than churn in the cohort with the highest number of active users. At
the same time, most of the differences in churn rates occur between around 1 and 5
active users per month.

 While measuring the number of active users is a good metric for fighting churn, an
even better one is shown in figure 1.3. This is the license utilization metric calculated
by dividing the number of active users by the number of seats the user has purchased.
Many SaaS products are sold “by the seat,” meaning the number of users allowed (this
is called the licensed number of seats). If the number of active users is divided by the

The cohort
average for
the metric
active users
is plotted on
the x-axis.

The cohort
churn rate is
shown on the
y-axis on a
relative scale.

Each point shows the average
metric and average churn rate
for one cohort.

Customers with more than 4 active
users per month have around /3 the1
churn rate of customers with only .1

Higher counts
of active users
have less impact
on churn.

Cohort average of active users

0 5 10 15 20 25

C
o

h
o

rt
 c

h
u

rn
 (

re
la

ti
v
e
)

Figure 1.2 Klipfolio churn versus active users
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number of licensed seats, the resulting metric measures the percentage utilization of
the seat license by the customer. 

 The result in figure 1.3 shows that license utilization is an effective metric for fight-
ing churn. The lowest cohort in license utilization has an average utilization just above
0, and the highest cohort has a license utilization around 1.0. The lowest cohort has
around 7 times the churn rate as the highest cohort, and the churn rate varies more
or less continuously across the cohorts. In contrast to figure 1.2 (showing churn and
the number of active users per month), there is not a level at which having higher uti-
lization no longer makes a difference. This makes license utilization more effective for
understanding customer health than active users alone.

As will be explained further in later chapters, active users per month is less effective
for distinguishing churn risk because it conflates two different underlying factors
related to churn: how many seats were sold to the customer and how often a typical
user is active. Utilization is a measure of how active the users are on a relative basis,
which is independent of the number of seats sold. License utilization is generally use-
ful for segmenting customers with respect to their engagement and churn risk.

1.8.2 Success rates

Introduced in the last section, Broadly is an online service that helps businesses man-
age their online presence, including reviews. An important metric for Broadly’s cus-
tomers is the number of times the business is reviewed positively, or promoted. Figure 1.4
shows the relationship between churn and the number of promoters per month that a
Broadly customer has. In the figure, the cohort with the fewest promoters per month
(just above zero promoters on average) has a churn rate that is around 4 times higher
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Figure 1.3 Klipfolio churn versus license utilization
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than the cohorts with the most promoters; most of the reduction in churn happens
between 0 and 20 promoters per month. This is a clear relationship for an important
event, and it is easy to understand why customers who have promoters are more likely
to stay with the Broadly service: receiving positive reviews is one of the main goals for a
business using Broadly!

 Another important event for Broadly’s customers related to the number of pro-
moters is the number of detractors, or the number of times the business is reviewed nega-
tively. Figure 1.5 shows the relationship between churn and the number of detractors
per month that a Broadly customer has. The cohort with the fewest detractors per
month (just above zero) has a churn rate that is around 2 times higher than the
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Figure 1.4 Broadly churn versus customer promoters
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cohorts with the most detractors (average of just under 5 detractors per month); most
of the reduction in churn happens between 0 and 1 detractor per month.

 While this relationship looks a lot like the one for customer promoters shown in
figure 1.4, doesn’t it seem like something is wrong? Getting negative reviews is a bad
thing and presumably not the result that Broadly’s customers are looking for, so why is
having negative reviews associated with reduced churn?

 To understand why more of a bad thing (like detractors) can be associated with less
churn, it helps to look at another, better metric for Broadly’s customers. If you take
the number of detractors and divide it by the total number of reviews (promoters plus
detractors), then the result is the percentage of detractors, which I call the detractor
rate. Figure 1.6 shows the relationship between churn and the detractor rate. This is
probably more the kind of relationship you were expecting for a product event that is
negative for the customer: the higher the detractor rate, the higher the churn, and in
a very significant way.

So why does the relationship to churn show that more detractors are good when you
look at the detractor count in figure 1.5, and that more detractors are bad when you
look at the detractor rate in figure 1.6? The answer is that the total number of detrac-
tors in figure 1.5 is related to the total number of promoters shown in figure 1.4
because Broadly customers who receive a lot of reviews overall are likely to receive
more of both good and bad reviews. When you look at the impact on the relationship
between the number of detractors and churn in the simple way in figure 1.5, it conflates
two underlying factors driving the metric: having a lot of reviews (which is good) and
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having a high proportion of bad reviews (which is bad). When the proportion of bad
reviews is analyzed alone, you get the more useful result shown in figure 1.6. This illus-
trates why success and failure rates can be so effective for understanding churn.

1.8.3 Unit cost

Versature, introduced in the last section, provides telecommunication services for
businesses. As a unified communications provider, many of its most important events
are voice calls that have a duration stored in a field attached to each event. Figure 1.7
shows the relationship between the total time spent on voice calls and churn for Versa-
ture customers. The lowest cohort in terms of local calls has practically zero calls and a
churn rate that is around three times higher than cohorts of customers with local call
times per month in the thousands.

When trying to understand churn, it is important to consider not only the amount of
service that customers use but also how much they pay. Monthly recurring revenue
(MRR) is a standard metric for calculating the amount a customer pays to use a sub-
scription service: it is the recurring amount a customer pays each month to use a ser-
vice, but not including any setup fees or irregular charges. (I will say more about MRR
and how to calculate it in chapter 3.) The amount customers pay can also be analyzed
with a metric cohort approach to look for a relationship with churn, which is shown
for Versature in figure 1.8.

 The metric cohort plot in figure 1.8 does something new. Rather than display-
ing the average MRR of the cohorts directly, it shows the average after every MRR
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measurement is converted to a score. If you are familiar with the concept of grading on
a curve, metric scores are the same idea: the measurements are converted from one
scale to another, but the ordering remains the same. A given cohort like the bottom
10% on the metric is still the same set of customers if the metric is converted into a
score, and the cohort has the exact same churn rate. That means converting a metric
into a score affects only how the cohorts are placed along the horizontal axis of the
cohort plot but not the vertical position of the points, which is the churn rate. Metrics
are converted to scores when rescaling on the horizontal axis makes the result easier
to understand. I will say more about metric scores and teach you how to calculate
them in chapter 3.

 The cohort churn rates in figure 1.8 show that MRR is also related to churn,
although not as strongly as making calls. The churn rates in the different cohorts do
not vary in a totally consistent way, and the lowest cohort churn rates are only about
one-half or one-third less than the highest churn cohorts. But this is another case that
makes you stop and think about what the plot shows: people who pay more, churn
less. Is that what you expected? This may be surprising, but it’s actually quite common,
especially in business products. That’s because business products are sold with higher
prices for bigger customers, and bigger customers churn less for interrelated reasons.
They have more employees, so when it comes to product use like making calls or
using software, customers who pay more for a product generally use it more, too. The
lower churn for customers paying higher MRR (shown in figure 1.8) is related to
the lower churn for customers with more calls (shown in figure 1.7).

 Figure 1.9 shows a different metric for looking at how the amount customers pay
relates to churn: the MRR metric is divided by the metric for the number of calls per
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month. This results in a metric that is the cost per call the customer makes. I call this a
unit cost metric because it explains how much of the service the customer receives for
their money.

As in figure 1.8, figure 1.9 shows the cohort average as a score rather than in dollars.
The metric cohort churn plot for cost per call shows that customers who pay more
really do churn more when the payment is measured in relation to the amount of the
service used. The highest cohort in cost per call has a churn rate that is around six
times higher than the cohorts with the lowest cost per call. Value metrics like this are
key for understanding why customers churn and an important subject that will be
explored fully in later chapters.

 These examples should give you an idea of where the book is going. In the next
chapter, you will start with the basics and learn how to identify churns and calculate
churn rates.

Summary
 The term churn arose in the context of subscription products and means users

quitting or canceling a service. 
 Churn also applies to all products and services where customers or users repeat-

edly interact with the product over long periods of time, whether or not there is
a formal subscription or any form of payment.

 Recent years have seen an explosion in the number of discretionary online ser-
vices for consumers and businesses. The discretionary nature of these services
means churn is a constant problem that needs to be addressed. 

The metric cost
per call is created
by dividing MRR
paid by the
customer by
calls per month.

A high cost per call is strongly associated with higher churn. So, paying a lot to usagerelative
drives customers to churn, but paying a lot when the product is used appropriately does not.
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 People skilled in data analysis are frequently called in to help understand what
causes churn and what can be done to reduce it.

 Online products and services track a wide variety of user interactions with the
service, generically referred to as events. The history of such events is one of the
primary sources of data for fighting churn. 

 Churn is not a situation where a predictive model alone helps to achieve the
goal (churn reduction) because churn-reducing interventions depend on
knowing the causes for churn. 

 To help reduce churn, the data person should create the best possible customer
metrics.

 Great customer metrics have the following characteristics:
– Easily understood by the business
– Clearly associated with churn and retention, so it is obvious what a healthy

customer looks like
– Segment customers in a way that’s useful for targeted interventions, which

increase engagement
– Useful in multiple functions of the business (i.e., product, marketing, sup-

port, and so on)



Measuring churn
You have already learned that the churn rate is a measurement of the proportion of
customers who quit every month or year. If you don’t measure churn correctly, it’s
that much harder to do anything about it. This chapter teaches you multiple defi-
nitions of churn that are suitable for different business scenarios and how to cal-
culate them efficiently from a subscription database. Recalling the overall book
scenario introduced in chapter 1, this chapter focuses on the process highlighted
in figure 2.1.

 Calculating the churn rate really is not rocket science, but you do need to know
some intermediate SQL and a couple of algebraic equations. There are a few things
that make calculating churn rates nontrivial. Part of the challenge is complexity,
and another is logistical. The complexity in calculating churn is that an account
can have multiple subscriptions over its lifetime, including the following:

This chapter covers
 Identifying churned accounts and calculating the 

churn rate

 Calculating the net retention rate and churn rates 
based on monthly recurring revenue 

 Converting churn rates between monthly and 
annual measurements
39
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 Accounts can churn and sign up again any number of times. This is true for all
subscription products and services.

 For many subscription services, accounts can hold multiple subscriptions for
different products simultaneously. This is especially common for B2B products
and services. 

Customer

database

Event data

warehouse

Behavioral metricsChurn metrics

Churn analysis

The situation

Targeted segments

High risk

Power users

Typical

The book

Chapter 2 covers
using data in a
subscription
database and
an event data
warehouse to
calculate metrics
like the churn rate.

Product

use

Online

product/service

C
h
u
rn

-r
e
d
u
c
in

g
 i
n
te

rv
e
n
ti
o
n
s

Figure 2.1 The subjects of this chapter in the process of fighting churn with data
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Normally, there isn’t a field or flag on a subscription or account saying, “This is a
churn.” Rather, churn is a dynamic state for each account that must be determined at
a given point in time. For that matter, if there is a field or flag on an account or sub-
scription that says it’s a churn, you are probably the person who has to calculate it,
because you’re the data person—right?

 There is also a logistical challenge in calculating churn: first, the data is sensitive. For
any subscription product or service, the subscription database is one of its most valuable
assets. The subscription database usually contains personally identifiable information (PII)
for the subscribers and sensitive financial information for the company. This is not data
you want to extract and leave lying around in unsecure locations. The second pitfall is one
that comes with success: if your product or service is successful, this data is big. For both
of these reasons, taking the data out of the database for processing is not a good idea.

 The problem then is that dynamic logic is necessary to calculate churn, but you’re
better off doing what needs to be done in the database without extracting the data. For
that reason, I will show you how to calculate churn using multipart SQL statements that
return the result as the output of a SELECT statement (to be fair, I call these SQL pro-
grams). This is a best practice that recurs throughout the book: do as much of the work
as possible in the database or data warehouse, and extract reduced data only when nec-
essary. This may seem foreign or even frustrating if you are used to doing this sort of
logic and calculation in a procedural language like Python. Although it is possible to do
these tasks in Python, that approach doesn’t scale nearly as well as the in-database
approach taught in this book. Once you get used to processing data in the database with
multipart SQL programs, you will wonder how you ever got by without it!

 Here’s how this chapter is organized:

 Section 2.1 shows you the concept of churn in a diagram and a few equations
before you do any coding.

 Section 2.2 shows you what a typical subscription database looks like; you will
use that sample database structure in churn calculations.

 Section 2.3 begins the churn calculations with net retention, which is a com-
mon metric related to churn. (There is a related net churn measurement—but
as I will explain, people don’t use it much.) Net retention comes first because it
is straightforward conceptually, the easiest to calculate, and sufficient for simple
subscription scenarios.

 Section 2.4 teaches you the standard churn rate calculation, which is more gen-
erally applicable but a little more complicated than net retention.

 Section 2.5 considers the case of churn calculations when there are not sub-
scriptions but customers have repeated use of a product or service. These tech-
niques are suitable for advertising or in-app purchase products.

 Section 2.6 covers revenue churn measurement, known as monthly recurring
revenue (MRR) churn; it is suitable for complex subscription services.

 Section 2.7 explains how to convert a one-year churn rate into a monthly churn
rate and vice versa.
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Code for fighting churn with data
All of the source code for this book is available on the book’s website (www.manning
.com/books/fighting-churn-with-data) and in the book’s GitHub repository (https://
github.com/carl24k/fight-churn). Listings from the book are in the folder /listings.
See the repository README page for detailed setup instructions. In summary, you
need to perform the following steps to run the code listings in this book:

1 Install Python and Postgres. I also recommend installing the free GUI tools to
work with them. If you are already an expert with these tools, then use your
favorites; but if not, follow the setup instructions in the README precisely.

2 Create a database schema with fight-churn/data-generation/churndb.py.
3 Generate simulation data and save it into the Postgres schema with fight-

churn/data-generation/churnsim.py.

The simulation typically runs for around 10 minutes, generating approximately
15,000 customers for an imaginary social network over 6 months. The simulation
creates all of their subscriptions and events such as making friends, making posts,
viewing ads, and liking and disliking posts. More details about the simulation are pro-
vided throughout the book.

After creating the database and generating data, there is a Python wrapper program,
run_churn_listing.py, that you can use to run all the listings in the book. This is
helpful for the SQL listings in chapters 2–4 because the script takes care of details
like variables and connecting to the database; the wrapper program is also used for
the Python functions beginning in chapter 5. Command-line parameters control what
listing is run. For example, to run listing 2.1, you use this program:

fight-churn/listings/run_churn_listing.py --chapter 2 --listing 1

Alternatively, if you want to run the listings with another method, all the listings are
organized by chapter in folders under fight-churn/listings/. For example, listing 2.1 is
in the file fight-churn/listings/chap2/listing_2_1_net_retention.sql. The SQL listings
are all stored as templates containing bind variables beginning with %; they do not
contain specific parameters like dates or event names. You will need to substitute
the values for these variables before you run the queries. The wrapper script
run_churn_listing.py takes care of this for you. 

Bind variables are used in the SQL listings so that they can be easily reconfigured to
run on datasets other than the provided simulation. If you want to use your own data
instead of the simulation, first do the following (after you install Python and Postgres
as explained in the README):

1 Create a schema with fight-churn/data-generation/churndb.py. Set the
schema name by editing that executable and setting the variable schema_name
near the top of the file.

2 Load your subscriptions, events, and schema event tables. (Details of how to
do this are beyond the scope of this book, but a variety of free tools make it
pretty easy to load data into Postgres databases.)

http://www.manning.com/books/fighting-churn-with-data
http://www.manning.com/books/fighting-churn-with-data
http://www.manning.com/books/fighting-churn-with-data
https://github.com/carl24k/fight-churn
https://github.com/carl24k/fight-churn
https://github.com/carl24k/fight-churn
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2.1 Definition of the churn rate
Figure 2.2 illustrates the idea of churn: the two circles represents the subscriber pool at
different points in time. The area of each circle represents either the number of subscrib-
ers or the total amount they pay; the latter is used when subscribers pay different
amounts. But whether churn is based on the number of subscribers or the amount of rev-
enue, the concept is the same. The churn is the downward-facing crescent at the top: the
part of the start circle that does not overlap the bottom (end) circle, which is those sub-
scribers who are no longer with the service. To complete the picture, the overlap between
the two circles is the retained subscribers, and the upward-facing crescent at the bottom
of the end circle (that doesn’t overlap the top circle) represents newly acquired subscrib-
ers. Note that, in general, the size of the two circles is not exactly the same.

3 The listing wrapper program works from parameters stored in a JSON file, fight-
churn/listings/conf/churnsim_listings.json. To run the listings with different
parameters, you must make your own version of that JSON file. For each chap-
ter and listing, there are parameter blocks, with parameters stored as key-value
pairs. You can set these to the appropriate values for your own dataset.

4 Run the listings with the wrapper program and the additional parameter --schema
<your_schema>. 

More details for installation and use are in the README.  
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Each circle represents the

size of the customer base at

a different point in time.

Size of end circle =
size of subscriber
population at the end
of the measurement
period

Area of overlap =
retained subscribers

Area of the start circle
not overlapping with
the end = churn

Area of the end circle
not overlapping with
the start = newly
acquired customers

Size of start circle = size of
subscriber population at the
start of the measurement period

Figure 2.2 Churn Venn diagram showing a growing subscription service where acquisition is 
larger than churn
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2.1.1 Calculating the churn rate and retention rate

Next I show you how to turn the qualitative picture in figure 2.2 into a formula. The
churn rate is defined as the proportion of the start subscribers (start circle) who leave
the service (top crescent). In an equation, this is

                 (Equation 2.1)

where #StartCustomers means the area of the start circle, and #ChurnedCustomers means
the area of the churn crescent. Figure 2.3 shows a simple example.

The product has only five customers in January, and all customers have a monthly
renewal on the same day of the month as when they started. During January, one cus-
tomer does not renew and two new customers sign up, so in February, there are six
customers.

 Equation 2.2 shows the churn rate calculation measured over the month of January:

             (Equation 2.2)

Note that the churn rate does not use the total subscribers at the end or the subscrib-
ers acquired. Look at figure 2.2 to understand why: the churn rate is the portion of
the start circle that is not covered by the end circle, but the size of the end circle
depends on both the retention and the number of new subscriber acquisitions. The

ChurnRate #ChurnedCustomers
#StartCustomers

---------------------------------------------------=

Customers on 1-January Customers on 1-February

AccntID Start Next renewal AccntID Start Next renewalChanges

1 3-October 3-January 3-October 3-January

2 17-October 17-January X

3 2-November 2-January 2-November 2-January

4 11-November 11-January 11-November 11-January

5

1

2

3

4

57-December 7-January 7-December 7-January

+ 6 3-January 3-February

+ 7 15-January 15-February

The customer list is shown for
January and February .1 1

Every customer renews every month, on the same
day of the month as when they signed up.

In January, one customer does not renew
(a churn, shown by the X) and two new
customers sign up (+). But the two new
signups do not influence the churn calculation.

The churn rate is the number who churned
( ) divided by the number who were on1
the service at the start (5), or /5 = 20%.1

Figure 2.3 A simplified example of a churn rate calculation

ChurnRateFigure 2.3
#ChurnedCustomers

#StartCustomers--------------------------------------------------- 1
5--- 20%= = =
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acquisition of new subscribers is an incredibly important subject, but it is a separate
matter from the churns because it results from a different set of processes, so it is
not covered in this book. So, the churn rate is based only on churn in relation to
the subscribers at the start. If the churn were instead divided by the area of the end
subscriber pool, it would be incoherent because that would mix parts of two pools
and confuse the contributions of acquisition and retention with the size of the sub-
scriber pool. 

 The retention rate is defined in equation 2.3:

          (Equation 2.3)

Using the example in figure 2.3, the retention rate is 

          (Equation 2.4)

2.1.2 The relationship between churn rate and retention rate

Here is an important fact about churn rate and retention rate: they are related in a
very precise way and are two sides of the same coin. Look at the parts of the start circle
in figure 2.2. The entire start circle is either the churn portion or the retention por-
tion, represented by this equation:

                (Equation 2.5)

Now come a few algebra manipulations. If you divide both sides of equation 2.5 by the
start subscribers, you get

                 (Equation 2.6)

Next, substitute into equation 2.6 the definitions from equations 2.1 and 2.3 for the
churn and retention rates, and remember that any number divided by itself is 1, or
100%. This equation shows the relationship:

Finally, those terms can be rearranged to show the conclusion:

                     (Equation 2.7)

RetentionRate #RetainedCustomers
#StartCustomers

---------------------------------------------------=

RetentionRateFigure 2.3
#RetainedCustomers

#StartCustomers
--------------------------------------------------- 4

5
--- 80%= = =

Start Churn Retention+=

Start
Start
------------ Churn

Start
---------------- Retention

Start
------------------------+=

100% ChurnRate RetentionRate+=

RetentionRate 100% ChurnRate–=

ChurnRate 100% RetentionRate–=
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Equation 2.7 can also be understood by looking at figure 2.2. Churn and retention
together make up the start circle, so the sum of the two proportions must add up to
the whole circle, or 100%. 

TAKEAWAY Retention rate can be easily calculated from the churn rate and
vice versa. Which measurement you look at is a matter of preference.

Most organizations use the churn rate for internal discussions around reducing
churn. The retention rate is usually used to report to outsiders (for example, inves-
tors) when the emphasis is meant to be positive (“the glass is half full”).

2.2 Subscription databases
As I described in chapter 1, subscription products or services usually have a database
that tracks when subscriptions begin and end, and the examples in this book generally
assume a subscription database is in use. If your business does not have a subscription
database because it is a free or ad-supported product, section 2.5 shows how to calcu-
late churn rates without subscriptions, but I advise that you read this section and the
ones that follow because they build the necessary concepts and techniques. 

 Table 2.1 shows the key elements of a typical subscription database table.

In practice, there are usually more fields than this, but for purposes of illustration, this
subscription data model consists of some core fields you might expect to find in a pro-
duction environment:

 Subscription ID—A unique identifier for each subscription.
 Account ID—An identifier for the account holder or user. These are unique at

the account level but are not assumed to be unique in the subscription table. In
general, accounts can hold multiple subscriptions.

 Product ID—An identifier for the unique product that is subscribed to. This
data model uses one product per subscription, but as mentioned, accounts
can hold multiple products. If a subscription service offers only a single prod-
uct, there might not be a product field; but it is fair to consider this a required

Table 2.1 A typical subscription data table

Column Data type Required?

subscription_id integer or char Yes

account_id integer or char Yes

product_id integer or char Yes

start_date date Yes

end_date date No

mrr double precision Maybe
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field because single-product services that plan to grow normally come up with
new offerings.

 Start date—Every subscription must start on some date. These are simple dates
without times.

 End date—Subscriptions may or may not have end dates. If there is no end date,
the subscription is assumed to last until explicitly canceled.

 Monthly recurring revenue (MRR)—Paid subscriptions have an associated amount
of recurring monthly revenue.

In summary, a subscription is a product sold to a customer, which begins on a specific
start date and for a specified recurring cost. As discussed, there may be an end date,
or there may not.

NOTE Subscriptions with end dates are usually referred to as termed subscriptions,
and the time between the start and the end dates is called the term. Subscriptions
that last forever (until canceled) are usually called evergreen subscriptions.

Note that the database table(s) that contains this information might not be called
Subscriptions. If you work at a B2B company that uses a customer relationship manage-
ment (CRM) system to track deals, your company might store this information as
Opportunities; alternatively, if your company uses a subscription business management
(SBM) product designed to track multiproduct subscription offerings, the table might
be called Product Rate Plan. But as long as all the required data elements are avail-
able, you have what you need to calculate churn. Note also that for any company that
sells paid subscription services, MRR can be considered a required field, although it
can be zero if there is a discount or a free trial (for example, a freemium subscription
at the basic level).

Messy subscription databases
One theme you will see repeatedly throughout this book is that algorithms are
designed to handle irregularities in the subscriptions saved in the database, also
called messy or unclean subscription data. Messy subscription data can come in
many forms: duplicates for the same account, entries for accounts that are not real,
inconsistency in what are supposedly consistent subscription terms (like the duration
and price), unexpected gaps between subscriptions, and end dates that come before
start dates, to name a few. 

If you are still a student or have never worked in a corporate environment, then this
might surprise and even annoy you, because some of the algorithms I use are more
complicated than you may expect or think necessary. But I can assure you that these
complications are necessary most of the time. 

In the real world, clean subscription databases are rare; messy subscription data-
bases are the norm. One problem you might not appreciate yet is that it takes only a
small amount of messy data to throw off some algorithms, and the blast radius can
be larger than just the accounts with the bad data. 
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2.3 Basic churn calculation: Net retention
I begin with net retention because it is the easiest churn measure to calculate,
although I will also show you that it is not always the most useful. Figure 2.2 shows the
retention rate when the circles represent revenue. Like all churn and retention mea-
surements, net retention is measured over a specific period (usually a year). The net
retention rate (NRR) is the proportion of recurring revenue that your company still
receives at the end of the period from the subscribers who were present at the start. 

NOTE If your subscription product is free (has no paid recurring revenue),
you should still read this section. The net retention calculation can be used to
calculate regular (account-based) churn, and it’s a simpler formula than the
more general churn formula presented in section 2.4. 

Like all churn measures, net retention ignores new revenue acquired from signups
during the time period. On the other hand, an important fact about net retention is
that it includes changes in revenue from subscribers who are retained if this occurs.
This can occur for any product or service with multiple product plans, temporary dis-
counts, or pricing plan changes (most paid subscriptions). I will ignore these details
and focus on teaching the calculation of net retention and churn; you will learn about
these different cases in the following sections.

2.3.1 Net retention calculation

Net retention is defined in equation 2.8:

                 (Equation 2.8)

That’s a slightly different definition of retention than the one in equation 2.2. Figure 2.4
extends the example in figure 2.3 to include two different plan types with different
MRRs: a Standard plan for $9.99 a month and a Premier plan for $29.99 a month. In
the figure, one customer on the Premier plan churns, two new customers sign up, and
one customer changes from Standard to Premier. This example shows important dif-
ferences from the count-based churn calculation in figure 2.3: 

 Because the churn calculation is based on MRR, customers who pay more have
a bigger impact on the rate when they churn.

 Changes in MRR for customers who don’t churn also impact the rate.

(continued)
If you work with clean data, be patient with the techniques designed to help the rest
of us who have to deal with messy data, and feel free to simplify the algorithms to
suit an easier situation. And if you work with messy subscription data, take comfort:
you are in good company. The techniques in this book should see you through to
understanding subscriber engagement and reducing churn. (But don’t expect me to
clean up your data for you! I’m a data scientist, not a magician . . .)

NetRetention
MRRretained_account

MRRstart
------------------------------------------=
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Look at the example in figure 2.4 and equation 2.8: the numerator for the net reten-
tion rate is the MRR of all the remaining customers, including the customer who
switched to the Premier plan, or $79.96. The MRR of all the customers at the start is
$89.95, so the net retention is given by

            (Equation 2.9)

There is also a churn measure related to net retention, defined as 100% minus the net
retention rate. Equation 2.10 shows the definition of net churn from net retention:

                 (Equation 2.10)

Net retention is the only churn-related measurement that is more commonly quoted
as a retention rate and not a churn rate. This is due in part to the scenarios that arise
in multiprice subscriptions, particularly the possibility of negative net churn (net
retention, on the other hand, is always positive). In the next section, you will learn
how to calculate the net retention rate with SQL, as well as more details about the use
of PostgreSQL in this book. 

Customers on 1-January Customers on 1-February

ID Start Next renewal Plan

Standard

Premier

Standard

Standard

Standard

Premier

Premier

Premier

Standard

Premier

Standard

MRR Changes ID Start Next renewal Plan MRR

9.99 1 9.99

29.99 X

9.99 3 9.99

29.99 4 29.99

1

2

3

4

5 9.99 ^ 5 29.99

89.95 + 6 9.99

+ 7 29.99

119.94

Every customer has either the Standard plan
for $9.99 or the Premier plan for $29.99 and
renews monthly on the same day of the month
as when they signed up.

In January, one customer on the Premier plan
does not renew (a churn, X), two new customers
sign up (+)—one on the Standard plan and one
on the Premier plan—and one customer switches
from Standard to Premier (^).

The net retention rate is the MRR of the customers
who stayed (the total of customers , 3, 4, and 5 on -Feb,1 1
or 79.96) divided by the MRR of those who were on the
service at the start (89.95), or 79.96/89.95 = 89%.

Note that the two new signups do not
influence the net retention calculation,
but the upgrade from the Standard plan
to the Premier plan does.

3-October 3-January 3-October 3-January

17-October 17-January

2-November 2-January 2-November 2-January

11-November 11-January 11-November 11-January

7-December 7-January 7-December 7-January

3-January 3-February

15-January 15-February

Figure 2.4 A simplified example of a net retention calculation

RetentionRateFigure 2.4
MRRretained_account

MRRstart
------------------------------------------ 79.96

89.95
-------------- 89%= = =

NetChurn 100%
MRRretained_account

MRRstart
------------------------------------------–=
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2.3.2 SQL net retention calculation

As this is the first SQL program in the book, I am going to briefly introduce common
table expressions (CTEs). This SQL program and all the others in the book use CTEs,
which are a relatively new extension to ANSI SQL. CTEs allow the definition of
intermediate, temporary tables in a query, in the order they appear. Compared to
other syntaxes for temporary tables, CTEs are clean and concise. Temporary tables
in a database are the results of SELECT statements that are persisted in the database
and can be used in further SELECTs that are part of the same overall SQL statement
or program. The temporary result, however, is not persisted outside of the current
execution. 

 I use CTEs to teach these techniques because they allow a clear, step-by-step pre-
sentation of the program logic. (I refer to these as SQL programs and not the common
term, SQL statements, which implies a shorter and simpler logic.) The following is a
high-level overview of listing 2.1, which presents our first SQL program, described in
relation to the churn diagram in figure 2.2:

1 Set the start and end times for the measurement.
2 Identify the subscribers and total revenue at the start (top circle in figure 2.2).
3 Identify the subscribers and total revenue at the end (bottom circle in figure 2.2).
4 Identify the retained subscribers and their revenue (intersection of the two cir-

cles in figure 2.2).
5 Divide the retained subscriber revenue by the start subscriber revenue (equa-

tion 2.2).

Another note about this program (which goes for all the others) is that, in general, I
look at the hardest or most complex use case you might encounter. This also means it
might be overpowered for some scenarios, but I would prefer to let some users sim-
plify the program at their own discretion rather than omit guidance that will be
helpful to many others. In particular, the program assumes that subscribers can
hold multiple subscription products with different recurring revenue. If your sub-
scription has only a single product and price and/or no paid recurring revenue, you
can use the same SQL but replace sums of MRRs with the count of accounts. If your
service has only termed subscriptions, you can remove the cases for null end dates.
(As described in section 2.2, a termed subscription has a defined end date at the time
the subscription is created.) The SQL for the program is shown in listing 2.1.

NOTE The date variables in listing 2.1 are set with a configuration parameter,
so in the book’s downloadable code, they appear as bind variables starting
with %. The listing shows the SQL after the variables are bound. The same is
true for all SQL listings in the book.
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date_range AS (     
    SELECT '2020-03-01'::date AS start_date, '2020-04-01'::date AS end_date
), 
start_accounts AS     
(
    SELECT  account_id, SUM(mrr) AS total_mrr         
    FROM subscription s INNER JOIN date_range d ON
        s.start_date<= d.start_date     
        AND (s.end_date>d.start_date or s.end_date is null)
    GROUP BY account_id                      
),
end_accounts AS      
(
    SELECT account_id, SUM(mrr) AS total_mrr          
    FROM subscription s INNER JOIN date_range d ON
        s.start_date<= d.end_date                                 
        AND (s.end_date>d.end_date or s.end_date is null)
    GROUP BY account_id        
), 
retained_accounts AS     
(
    SELECT s.account_id, SUM(e.total_mrr) AS total_mrr           
    FROM start_accounts s 
    INNER JOIN end_accounts e ON s.account_id=e.account_id  
    GROUP BY s.account_id       
),
start_mrr AS (      
    SELECT SUM (start_accounts.total_mrr) AS start_mrr
    FROM start_accounts
), 
retain_mrr AS (       
    SELECT SUM(retained_accounts.total_mrr) AS retain_mrr
    FROM retained_accounts
)
SELECT 
retain_mrr /start_mrr  AS net_mrr_retention_rate,          
    1.0 - retain_mrr /start_mrr AS net_mrr_churn_rate,    
start_mrr,    
retain_mrr
FROM start_mrr, retain_mrr

The following list describes each CTE in the program and the final SELECT statement
and what role each CTE plays in the calculation, numbered according to the calcula-
tion strategy steps outlined before listing 2.1:

Listing 2.1 Net retention SQL program

Sets the period for which the 
program will calculate churn

CTE containing all the account IDs active at the 
start and their total MRR on the start date

Uses the aggregate 
sum so that when 
there are multiple 
subscriptions, the 
SELECT returns 
the total

Criteria for being active on a given date: The 
start date is on or before the date, and the 
end date is after the date or null. 

es the
regate
UP BY
ction,
so the
ELECT
s the

l MRR
r each
ccount

CTE containing all the account IDs active at 
the end and their total MRR on the end date

Criteria for being active 
on a given date: The star
date is on or before the 
date, and the end date is
after the date or null.

CTE containing all the accounts 
that did not churn (were retained)

Uses the aggregate
so that when there
multiple subscripti
the SELECT returns
total

The inner join results
in this containing 
accounts that were 
active at both the 
beginning and the 
end, meaning they 
were retained.

Sums
 total
 of all
ounts
ve on
 start

Sums the total MRR of all 
accounts that were retained

Net retention 
formula: MRR of 
retained accounts 
divided by MRR at 
the start

Net MRR churn
formula: 1.0 minus

net retention
Includes the components of the result 
to show how the MRR was produced
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1 date_range—A table with one row that holds the start and end dates for the
calculation. 

2 start_accounts—A table with one row for each account active at the start. This
table is created by selecting from the subscription table based on the condition
that the account is active at the start of the churn measurement, meaning it
holds a subscription (where the subscription start date is before the churn mea-
surement start date, and the subscription end date is after the churn start date,
or there is no subscription end date). 

3 end_accounts—A table with one row for each account active at the end of the
churn measurement. The condition for being considered active is the same as
for the start accounts, using the churn measurement end date for the criteria.

4 retained_accounts—A table with one row for each account that is active at
both the start and the end. This table is created by a standard join on account
IDs between the start_accounts table and the end_accounts table.

5 start_mrr—A one-row table that sums the total MRR at the start of the churn
measurement, for clarity.

6 retained_mrr—A one-row table that sums the total MRR of all of the retained
accounts, for clarity.

7 Final SELECT statement—Takes the results from the start_mrr and retained_mrr
tables and calculates the final results by plugging the values into equations 2.2
and 2.3.

That is how net retention and net churn (described by equations 2.5 and 2.6) can be
calculated from a typical subscription database in SQL. 

 This SQL program was tested on the simulated dataset produced by the code on
the book’s website (www.manning.com/books/fighting-churn-with-data) and in the
book’s GitHub repository (https://github.com/carl24k/fight-churn) and generated
the result shown in figure 2.5. You should run listing 2.1 by following the README
instructions. If you don’t have data from your own product or service, you can run the
code on a simulated dataset; instructions are in the README at the root of the repos-
itory. If you have generated the simulated data, then run listing 2.1 by executing the
wrapper program run_churn_listing.py with parameters like so:

fight-churn/listings/run_churn_listing.py --chapter 2 --listing 1

The wrapper program prints the SQL it is running, and the final result looks similar to
figure 2.5. This figure and all the SQL outputs in this chapter show the result in a tab-
ular format as it would appear if the query were run in a SQL tool. If you run listing 2.1
using the Python framework provided on GitHub, the result is printed as a line of text.
Also note that your results will differ slightly because the underlying data is randomly
simulated.

https://github.com/carl24k/fight-churn
http://www.manning.com/books/fighting-churn-with-data
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2.3.3 Interpreting net retention

The following scenarios can occur and affect how you interpret net retention:

 All subscriptions pay the same, including free.
 Multiple subscription prices with two cases: 

– Standard case—Churns and down sells outweigh upsells.
– Negative churn case—Upsells outweigh churns and down sells.

Use of PostgreSQL (aka Postgres) in this book
This book presents all the examples using code that was tested and run on Postgre-
SQL 11. I chose PostgreSQL 11 because it is the latest version of PostgreSQL at the
time of writing this book, and it is a popular open source database that has modern
features that make it easy to demonstrate the concepts being taught. If you are work-
ing at a company with another database, it shouldn’t be too hard to convert the SQL
in this book into a version that works for you. The main issue may be the CTEs, which
will have to be converted to temporary tables or subqueries. If you are a student or
just learning these techniques and can choose your database, I strongly recommend
that you use PostgreSQL to simplify using the book code as you are learning.

PostgreSQL, of course, does not have the capability of a big data warehouse; and
while common table expressions are easy to read, they can be computationally
expensive. So this arrangement is suitable for use only on services and products with
relatively small numbers of customers. The company case studies in this book all had
tens of thousands to around 100,000 customers, and PostgreSQL was easily ade-
quate. Depending on the hardware you use and the amount of effort you put into per-
formance tuning, PostgreSQL should scale up well to an analysis of millions of
customers. If you have 10 million customers or more, you will probably end up using
a data warehouse product architected specifically for big data. Fortunately, most
modern data warehouses (like Redshift and Presto) support SQL with common table
expressions, so the techniques in this book should translate directly. Nevertheless,
if you are learning techniques like those in this book for the first time, I strongly rec-
ommend you do your learning on a PostgreSQL database that fits on your laptop. 

net_mrr_retention_rate net_mrr_churn_rate start_mrr retain_mrr

0.9424 0.0576 $103,336.56 $97,382.52

Typical result returned by the net retention SQL (listing 2.1). Your result

will not be exactly the same because the data is randomly simulated.

Monthly recurring revenue (MRR)
from the net retention calculation

Net rate of retention and churn
(retention + churn = .0)1

Figure 2.5 Result of running listing 2.1 on the simulated dataset
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If all subscribers pay exactly the same and no subscribers ever change the amount they
pay, the MRR churn and retention calculated in this section are exactly the same as
the subscriber count-based churn and retention described in section 2.1. Look at the
circles in figure 2.2: if everyone pays exactly the same, then the area of a circle based
on the MRR of subscribers is exactly proportional to the area of a circle based on the
number of subscribers, and this proportionality is the same at both the start and the
end. It’s the same thing if the service is free and the MRR is zero: the net retention
and derived churn are the same as calculating the subscriber-count-based churn,
although in this case, you would have to modify the SQL in listing 2.1 to use a count
aggregation instead of the sum of MRR.

 On the other hand, when the amount subscribers pay varies, then net retention
and churn based on revenue are not the same as the retention and churn (based on
subscriber count). That’s because, over time, the amount that individual subscribers
pay can change, so if the circles in figure 2.2 represent revenue, there are four ways
for the size of the circle to change. This more complex scenario is illustrated in fig-
ure 2.6, which illustrates MRR retention and churn with upsells and down sells. The
four ways the subscriber revenue can change are

 Subscriber acquisitions
 Subscriber churns
 Upsells (retained subscribers change to a higher recurring revenue)
 Down sells (retained subscribers change to a lower recurring revenue)

Acquisition

Upsell

Start

End

T
im

e
 p

a
s
s
e
s

…

Size of start circle =
amount of recurring
revenue at the start
of the measurement
period

Size of end circle =
amount of recurring
revenue at the end of
the measurement period

Area of overlap =
retained revenue

Revenue lost through
complete churns

Revenue gained
from brand-new
customers

Revenue lost due to
customers who stayed
but now pay less

Revenue gained from
existing customers
now paying more

Churn

Retention

Down sell

Figure 2.6 Revenue retention and churn with upsell and down sell
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Net retention and net churn based on revenue are different from the (standard)
churn based on the subscriber count. The impacts of upsells in retained subscribers
can effectively offset churn, and down sells among the retained subscribers can effec-
tively increase churn. 

TAKEAWAY Net retention is known as net because it combines the effects of
churns, upsells, and down sells. 

This netting property of net retention makes it somewhat less useful for fighting
churn than the other definitions of churn. This is because including down sells and
upsells are not the same, and conflating them confuses the issue. It is logical to
include down sells in the churn calculation because that is the part of revenue that
was present at the start but was lost from customer disengagement. The upsell reve-
nue comes from a “different pie”—the end revenue circle in figure 2.6—so the net
retention measure is no longer a ratio between parts of a whole. Also, the expiration
of discounts is a contracted change in price and not related to customer satisfaction.

WARNING Upsells and the expiration of discounts reduce the apparent churn
rate in net retention, which makes it a less specific measurement of churn
and less useful for fighting churn. The standard (count-based) churn and the
MRR churn described in the following sections are more specific measures of
churn and are preferred.

Net retention is not the most useful measure for fighting churn, but it is nevertheless
remarkable because of the following fact about churn-reporting practice.

TIP Net retention is the preferred measure of churn to report to outside inves-
tors in subscription companies. 

Why the preference for net retention in reporting? There are two reasons: a benign
reason is that as an operational metric, net retention summarizes churn, upsell, and
down sell into one convenient number that is, arguably, the most important to outside
investors. A slightly more contrived reason is that whenever upsells are higher than
down sells, the net churn (derived from 100% minus net retention) is less than the
standard (count-based) churn that ignores revenue changes. As I just explained, the
net revenue changes (upsells and discount expiration minus down sells) effectively
hide the true underlying churn rate. For many companies, reporting net retention
rather than one of the more specific churn measurements is a matter of better inves-
tor relations and a slight obfuscation of the business fundamentals. In extreme cases,
the increase in the revenue pool from upsells can be greater than the combined nega-
tive effect of down sells and churns reducing the revenue pool. This is a rare but
highly desirable scenario known as negative churn. 

DEFINITION Negative churn—When the increase in revenue from upsells is
greater than the combined negative effect of down sells and churns. 



56 CHAPTER 2 Measuring churn
This means the revenue of the retained subscribers is greater than the revenue of the
subscribers at the start, even after allowing for churn and down sells. As a result, net
retention is greater than 100%. If net churn is calculated according to equation 2.6 in
section 2.1.2, the result is a negative number. Note that this is not truly a negative
value for the standard churn rate—the standard churn rate can only be a positive
number (or possibly zero, for services with no subscriber cancellations). As described
earlier, this is not the most useful churn measurement for fighting churn with data
because it obscures how much churn is really going on, but it is very impressive to
report to investors!

2.4 Standard account-based churn
The standard account-based churn rate has the simplest meaning because it is unaf-
fected by upsells, down sells, and expiration of discounts. It always simply refers to the
proportion of customers who completely cancel the service. 

DEFINITION Standard churn—Churn measurement based on the customer
count. Also known simply as the churn rate. 

The standard churn rate is often called the account churn rate because it refers to the
complete churn of an account holder who may hold multiple subscriptions. So for the
standard churn rate, an account holder who cancels one subscription but keeps
another subscription is not considered a churn. (This would be considered a down
sell, which I will revisit in the next section.) In the B2B space, the standard churn rate
is also referred to as logo churn because each account holder is a company (a logo). 

 In this section, I demonstrate how to calculate the churn rate directly rather than
calculating it from retention. Direct calculation requires the SQL feature known as an
outer join. It is true that the churn rate could be calculated from account retention
using an inner join like the one used for net retention, but being able to identify
churned accounts with an outer join is a skill you will need later. Because outer joins
are not a basic SQL feature, I will review outer joins in section 2.4.2, after I outline the
query in section 2.4.1.

2.4.1 Standard churn rate definition

Before considering the details, let’s first review the steps to calculate the standard
churn rate based on figure 2.2 and equation 2.1:

1 Set the start and end times for the measurement.
2 Identify and count the subscribers at the start (top circle in figure 2.2).
3 Identify the subscribers at the end (bottom circle in figure 2.2).
4 Identify and count the churned subscribers (upper downward-facing crescent

in figure 2.2).
5 Divide the number of churns by the number of accounts at the start (equa-

tion 2.1).
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2.4.2 Outer joins for churn calculation

The churned accounts are selected from the start and end accounts using an outer
join. I will review outer joins briefly for readers who are not familiar with them. 

 An inner join is the more common type of join, like the join on account_id to cre-
ate the retained_accounts CTE in listing 2.1. It returns all matching rows (according
to the join field) and returns the desired fields from both tables for the matches. An
outer join is different because instead of returning only the matches, it returns all the
rows in one table. The join returns matching rows from a second table, but it fills
fields from the second table with nulls for rows from the first table where there is no
matching row in the second table. This is known as a left outer join because all the rows from
the first table are always selected, which is on the left side of the join statement.
(There is also a right outer join that behaves in the opposite way as far as which table
keeps all its rows, and even a full outer join that returns all rows from both tables. But
left outer joins suffice for churn.)

 An outer join is used to find churned accounts because the point is to find the
accounts present at the start that are not present at the end. If you do an inner join,
it matches those present at both the start and the end, and those are precisely the
ones to remove. A left outer join returns all the accounts present at the start, not just
the ones that churned, and that’s why the CTE to select churned accounts also
needs a WHERE clause. It selects only those accounts from the join where the account
_id from the end accounts is null, meaning it chooses only those rows from the join
that were in the start_accounts CTE for which the matching account_id is not in
the end_account CTE. 

TAKEAWAY Outer joins can be used to find rows that do not match a join cri-
terion, which makes them useful for identifying churns. 

Look again at the churn diagram in figure 2.2: it also provides an illustration of the
logic of inner and outer joins (this is shown in figure 2.7). The retained accounts are
the intersection of the start and end accounts, which are selected by an inner join.
The churned accounts, the left outer join, are found from the starting accounts by
removing all records that have a match at the end with the WHERE clause, selecting
where the end account_id IS NULL. (It follows that the acquired accounts would be
the right outer join with a WHERE clause selecting for a null start account_id, but this is
not needed for the techniques in this book.)

2.4.3 Standard churn calculation with SQL

The SQL for the standard churn calculation is shown in listing 2.2. It is identical to
the net retention query from listing 2.1 for the first three CTEs, in which it creates
temporary tables containing the accounts for the start and end of the measurement.
But after finding the accounts, it creates a table of churned accounts rather than a
table of retained accounts.
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WITH
date_range AS (      
    SELECT  '2020-03-01'::date AS start_date, '2020-04-01'::date AS end_date
), 
start_accounts AS    
(
    SELECT DISTINCT account_id                             
    FROM subscription s INNER JOIN date_range d ON
        s.start_date<= d.start_date    
        AND (s.end_date>d.start_date or s.end_date is null)
),
end_accounts AS       
(
    SELECT DISTINCT account_id                             
    FROM subscription s INNER JOIN date_range d ON
        s.start_date<= d.end_date      
        AND (s.end_date>d.end_date or s.end_date is null)
), 
churned_accounts AS        
(
    SELECT s.account_id
    FROM start_accounts s 

Listing 2.2 Standard (account-based) churn SQL program

Retention

Acquisition

Churn

Start

End

Retention =
start INNER JOIN end

ON account

Churn =
start LEFT OUTER JOIN end

ON account
WHERE end.account IS NULL

Acquisition =
start RIGHT OUTER JOIN end

ON account
WHERE start.account IS NULL

Figure 2.7 Customer calculations showing inner and outer joins

Sets the period for which the 
SQL will calculate churn

CTE containing all the account 
IDs active at the start

Uses a distinct 
query because 
you cannot 
assume every 
account has just 
one subscription

Criteria for being active on a given date: the 
start date is on or before the date, and the 
end date is after the date or null.

CTE containing all the 
account IDs active at the end

CTE containing all the account IDs for 
accounts that churned: those that were 
active at the start but not active at the end
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    LEFT OUTER JOIN end_accounts e ON     
    s.account_id=e.account_id       
    WHERE e.account_id is null                         
),
start_count AS (     
    SELECT     COUNT(*) AS n_start FROM start_accounts
), 
churn_count AS (             
    SELECT     COUNT(*) AS n_churn FROM churned_accounts
)
SELECT 
n_churn::float/n_start::float 
        AS churn_rate,    
    1.0-n_churn::float/n_start::float 
        AS retention_rate,       
n_start,          
n_churn           
FROM start_count, churn_count

The following describes each CTE in the program and the final SELECT statement and
what role each CTE plays in the calculation in relation to the steps described in sec-
tion 2.4.1:

1 date_range—A table with one row that holds the start and end dates for the cal-
culation. This is step 1.

2 start_accounts—A table with one row for each account active at the start. This
table is created by selecting from the subscription table based on the condition
that the account is active at the start of the churn measurement. This is step 2.

3 end_accounts—A table with one row for each account active at the end of the
churn measurement. The condition for being considered active is the same as
for the start accounts, using the churn measurement end date for the criteria.
This is step 3.

4 churned_accounts—A table with one row for each account that is active at the
start but not active at the end. This table is created by the outer join on account
IDs between the start_accounts table and the end_accounts table, and the
WHERE clause that removes accounts where the end account_id is not null. This is
step 4.

5 start_count—A table with one row that sums the total number of accounts at
the start of the churn measurement, for clarity.

6 churn_count—A table with one row that sums the total number of accounts
that churned during the measurement period, for clarity.

The outer join includes 
all the records at the 
start, because it is a 
left outer join.

The join looks for records that match by account ID and fills 
them with NULLs for the end accounts where there is no match.

Removes records where the
was no churn because they 
have a non-null e.account_i
Only accounts that were in 
start_accounts CTE but not
the end_accounts CTE rema

Counts the number of accounts that 
were active at the start

Counts the number of 
churned accounts

Churn rate formula: number 
churned/number at start

Retention rate formula : 
1 – churn rate

Prints the components of the 
calculation to show how the 
churn rate was produced
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7 Final SELECT statement—Takes the results from the start_count and churn_
count tables and calculates the final results by plugging the values into equa-
tions 2.1 and 2.2. This is step 5, the final step in the program.

Now you know how the churn rate and retention rate described by equations 2.1 and
2.2 can be calculated from a typical subscription database in SQL. Listing 2.2 was
tested on the simulated dataset produced by the code on the book’s website (www
.manning.com/books/fighting-churn-with-data) and in the GitHub repository (https://
github.com/carl24k/fight-churn) and generated the result shown in figure 2.7. You
should run listing 2.2 by following the instructions in the README. After setting up
your environment (detailed in the README), run the listing with this command:

fight-churn/listings/run_churn_listing.py --chapter 2 --listing 2

In comparison to figure 2.5, which shows the result for net retention calculated with
listing 2.1, the result in figure 2.8 shows the same churn rate, but instead of revenue, it
was calculated from accounts. This is to be expected because the simulation uses the
same MRR for every customer. 

2.4.4 When to use the standard churn rate

The standard churn rate is used as the main operational metric when all subscribers
pay similar amounts or the subscription is free. If all subscribers pay exactly the same
(meaning no discounts or any variation, or the product is free), standard churn can
be calculated with either a net retention query or the standard churn rate query. But
if there is a modest amount of pricing variation, or if there are temporary discounts,
then you should use the standard churn calculation method given in this section. 

 As you will see later, the standard churn rate also has a special role in churn analy-
sis. Because churn analysis uses a model designed to predict customer (subscription
holder) churn, a correctly calibrated predictive churn model should reproduce the
standard account churn rate. However, for subscriptions with a significant amount of
variation in the amount customers pay or those with extensive use of discounts, the
standard churn rate is not the best churn rate; for those scenarios, you should use MRR
churn, which is taught in section 2.6.

churn_rate retention_rate n_start n_churn

0.0534 0.9466 10331 552

Typical result returned by the churn rate SQL (listing 2.2): churn_rate = n_churn/n_start

Number of customers at the
start and number who churned

Churn rate and retention rate
(retention + churn = .0)1

Figure 2.8 Result of running listing 2.2 on the simulated dataset

http://www.manning.com/books/fighting-churn-with-data
http://www.manning.com/books/fighting-churn-with-data
http://www.manning.com/books/fighting-churn-with-data
https://github.com/carl24k/fight-churn
https://github.com/carl24k/fight-churn
https://github.com/carl24k/fight-churn
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TAKEAWAY If there is a moderate amount of pricing variety, including dis-
counts, then you should use the standard churn calculation method. For this
purpose, moderate pricing variety means most customers pay close to the
same price, but there may be some customers on older plans, discounts, or
currency conversion effects. 

2.5 Activity (event-based) churn for nonsubscription 
products
In chapter 1, I told you that fighting churn is not just for subscription services; it is
for any product or service with repeat customers. Now you will learn the main tech-
nique specifically for nonsubscription scenarios: calculating churn based on cus-
tomer activity. 

 The concept of event-based or activity churn is the same as with standard subscrip-
tion churn, but you need an informal definition of what defines a customer as active
versus churned. To use these techniques, you need only a data warehouse of events,
which are time-stamped facts about customer use of the product. I will say more about
event data in chapter 3, but for the sake of simplicity, a data model with an event time-
stamp is assumed for the examples in this section.

2.5.1 Defining an active account and churn from events

The most common definition of an active customer for nonsubscription products is
simply a customer who has used the product within a recent time window, typically,
one or two months. The concept is illustrated in figure 2.9. User activity tends to be
clustered, so it is natural to think of an active period as a sequence of events without a
large gap between any two successive events. If the maximum time limit is exceeded,
that is considered a churn. Such a time limit should be set long enough that most cus-
tomers who exceed the limit don’t come back, at least for a while.

 Other criteria for an active customer based on events can be things like these: 

 A customer is considered active only if they have certain specific events.
 A customer is considered active only if they have a minimum number of events.

Time

Events for an account
indicate activity.

Short gaps can
be ignored.

Activity can begin again,
which counts as a fresh start.

A churn is recognized when
a previously active account
has no event for a long time.

Max gap

Events

Activity saved in the form of data warehouse events can be
used to calculate churn for services without subscriptions.

Figure 2.9 Event recency defines active periods and churn.
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 A customer is considered active only if they have specific metrics calculated
on events within the recent time period. Examples of specific metrics to make
a customer active (and churn when they fail the test) would be a minimum
(or any) spend on retail purchases or a minimum amount of revenue gener-
ated from ads. 

These different choices don’t change the SQL program that much.

2.5.2 Activity churn calculations with SQL

The SQL program for calculating churn from events is shown in listing 2.3. It is almost
identical to listing 2.2, except it makes no use of the subscription table. Instead, the
CTEs for the accounts at the start of the measurement and end of the measurement
are based on a table of events (a table named event). As described previously, the cri-
terion for an account to be considered active is simply having some recent event. As in
listing 2.2, the parameters controlling the date range are in a CTE. 

 Because products without subscriptions are usually used for a shorter length of
time, listing 2.3 demonstrates churn over a one-month period (monthly churn). Another
difference in this case is that there is another parameter controlling the recency thresh-
old. Other than those changes, the main logic of the program is the same as listing 2.2,
so here I just summarize it:

1 Find accounts active at the start of the churn measurement. Accounts that are
active at the start are those that had an event within a window of time ending at
the (nominal) start time for the churn measurement.

2 Find accounts active at the end of the churn measurement. These are accounts
that had an event within a window of time, which ends at the end for the churn
measurement.

3 Outer join the two sets of accounts to find those accounts that were active at the
start and no longer active at the end. These are the churned accounts.

4 Divide the number of churned accounts by the number of accounts active at
the start to calculate the churn rate.

Listing 2.3 was tested on the simulated dataset produced by the code on the book’s
website (www.manning.com/books/fighting-churn-with-data) and in the GitHub repos-
itory (https://github.com/carl24k/fight-churn) and generated the result shown in
figure 2.10. After setting up your environment, run the listing with this command:

fight-churn/listings/run_churn_listing.py --chapter 2 --listing 3

In comparison to figure 2.7, which shows the result for the standard churn calculated
with listing 2.2, this result shows a similar churn rate but not exactly the same. That’s
to be expected because these are the same customers churning, but listing 2.3 uses
slightly different criteria for determining when the churn takes place.

https://github.com/carl24k/fight-churn
http://www.manning.com/books/fighting-churn-with-data
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WITH
date_range AS (       
    SELECT  '2020-03-01'::TIMESTAMP AS start_date,    
        '2020-04-01'::TIMESTAMP AS end_date,          
        interval '1 months' AS inactivity_interval
), 
start_accounts AS     
(
    SELECT DISTINCT account_id
    FROM event e INNER JOIN date_range d ON
        e.event_time>start_date-inactivity_interval
        AND e.event_time<= start_date)          
start_count AS (                                
    SELECT     COUNT(start_accounts.*) AS n_start FROM start_accounts
), 
end_accounts AS     
(
    SELECT DISTINCT account_id
    FROM event e INNER JOIN date_range d ON
        e.event_time>end_date-inactivity_interval
        AND e.event_time<= end_date            
), 
end_count AS (                                 
    SELECT COUNT(end_accounts.*) AS n_end FROM end_accounts
), 
churned_accounts AS 
(
    SELECT DISTINCT s.account_id
    FROM start_accounts s 
    LEFT OUTER JOIN end_accounts e ON s.account_id=e.account_id
    WHERE e.account_id is null
),
churn_count AS (
    SELECT     COUNT(churned_accounts.*) AS n_churn
    FROM churned_accounts
)
SELECT 
n_churn::float/n_start::float AS churn_rate,

Listing 2.3 Activity (event-based) churn SQL program

churn_rate retention_rate n_start n_churn

0.0463 0.9537 14604 676

Typical result returned by the activity churn rate SQL (listing 2.3)

Number of customers active at the start and
those who churned by becoming inactive

Figure 2.10 Result of running listing 2.3 on the simulated dataset

Sets the time period for which 
the SQL calculates churn

Uses a timestamp for the dates 
because events use timestamps

This CTE is similar to the 
same CTE in listing 2.2. Picks accounts with 

events within the time 
limit of the start date

This CTE is identical to the 
same CTE in listing 2.2.

This CTE is similar to the 
same CTE in listing 2.2. Picks accounts with 

events within the time 
limit of the end date

The rest of the code is 
identical to listing 2.2.
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    1.0-n_churn::float/n_start::float AS retention_rate,
n_start,
n_churn
FROM start_count, end_count, churn_count

One important difference between churn based on subscriptions and churn based on
activity is that activity-based churn requires a wait time for every customer to know
whether they have churned. On a subscription, you know a churn is a churn the day
after the subscription ends without a replacement; but for users on a system without a
subscription, you never know if an event is the last event defining a churn until some
time later. That said, in chapter 4, you will see that the same logic can also apply with
subscriptions if you allow short gaps between subscriptions (typically a few days) with-
out counting a churn.

TAKEAWAY You can calculate the churn rate on nonsubscription products
based on the recency of activity.

2.6 Advanced churn: Monthly recurring revenue (MRR) churn
In the previous sections, you learned that the standard churn rate can have a prob-
lem with multiprice subscription products. The standard churn rate ignores down
sells, which should be considered part of churn, while net retention includes down
sells but also includes upsells, which should not be considered churn. There is
another churn measure made for this situation: MRR churn. This is the most com-
plex calculation for churn, but it is the most accurate when there are multiple sub-
scription products and prices.

TIP Use MRR churn if you have customers who pay a wide range of prices:
that is, your most valued customers pay twice your least valuable rate or more.
In enterprise B2B software, the most valuable customers may pay more like
100 times the least valuable, and MRR churn is an absolute necessity in such
scenarios.

2.6.1 MRR churn definition and calculation

MRR churn is once again a ratio of losses to the starting state, but now the numerator
of the churn rate is the total losses from both churn and down sells, while the
denominator is the revenue of the customers at the start. Referring to figure 2.6,
which illustrates churn calculations with upsells and down sells, the MRR churn
includes outright loss of MRR from complete churns (the top downward-facing cres-
cent in figure 2.6) as well as losses due to down sells (the second downward-facing
crescent in figure 2.6) as the numerator. It includes the retained MRR as the denomi-
nator but not the upsell MRR. For this reason, it is the most accurate measure of
churn for multiprice subscription products.
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 In an equation, MRR churn is defined as shown in equation 2.11, and MRR reten-
tion is shown in equation 2.12.

               (Equation 2.11)

              (Equation 2.12)

In the equations, MRRchurned_accounts means the total MRR of all accounts that churned,
and MRRdownsell means the total reduction in MRR of all accounts that were down sold.

 Figure 2.11 shows an example of an MRR churn calculation by extending the
example from figure 2.4 in section 2.3.1. In the figure, one customer on the Premier
plan churns, two new customers sign up, and two customers change their plans. One
customer upgrades from Standard to Premier, and one downgrades from Premier to
Standard. The example shows an important difference between MRR churn and net
retention: down sells enter into MRR churn, but upsells do not. 

 Using equation 2.11 and filling in the values from the example shown in figure 2.11
gives equation 2.13:

                    (Equation 2.13)

MRRChurn
MRRchurned_accounts MRRdownsell+

MRRstart
-----------------------------------------------------------------------------=

MRRRetention 100%
MRRchurned_accounts MRRdownsell+

MRRstart
-----------------------------------------------------------------------------–=

MRRChurnFigure 2.11
MRRchurned_accounts MRRdownsell+

MRRstart
-----------------------------------------------------------------------------=

 29.99 20+
89.95

------------------------- 56%= =

The MRR churn rate is the MRR of the customers who
left or now pay less (29.99 from customer 2, who churned,
and a 20 change from customer 4, who downgraded, for a
total of 49.99) divided by the MRR of all the customers
at the start (89.95), or 49.99/89.95 = 56%.

In January, one customer on the Premier plan does not renew (a churn, X),
a customer on the Premier plan downgrades to Standard (v), one customer
upgrades from Standard to Premier (^), and two new customers sign up (+).

Note that the two new signups and the upgrade
do not influence the MRR churn calculation,
but the downgrade from the Premier plan
to the Standard plan does.

Customers on 1-January Customers on 1-February

ID Start Next renewal Plan

Standard

Premier

Standard

Standard

Standard

Standard

Premier

Premier

Standard

Premier

Standard

MRR Changes ID Start Next renewal Plan MRR

9.99 1 9.99

29.99 X

9.99 3 9.99

29.99 4 9.99

1

2

3

4

5 9.99 ^ 5 29.99

89.95 + 6 9.99

+ 7 29.99

99.94

3-October 3-January 3-October 3-January

17-October 17-January

2-November 2-January 2-November 2-January

11-November 11-January 11-November 11-January

7-December 7-January 7-December 7-January

3-January 3-February

15-January 15-February

^

Figure 2.11 MRR churn calculation dataset 
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2.6.2 MRR churn calculation with SQL

The SQL for MRR churn calculation is shown in listing 2.4. It includes elements from
both the net retention SQL and the standard churn SQL calculations. First, I outline
the steps in the calculation and how they relate to the MRR churn equation (equa-
tion 2.7) and the down sell/upsell revenue diagram (figure 2.6). After that, I go
through how these are implemented in the SQL program’s CTEs. The steps in the cal-
culation are as follows:

1 Set the start and end times for the measurement.
2 Identify the subscribers and the total revenue at the start (the top circle in fig-

ure 2.6).
3 Identify the subscribers at the end (the bottom circle in figure 2.6).
4 Identify the churned subscribers and their revenue (the top downward-facing

crescent in figure 2.6).
5 Identify the subscribers who were down sells and the amount of the down sell

(the second downward-facing crescent in figure 2.6).
6 Divide the total of churned revenue and down sell subscriber revenue by the

start subscriber revenue (equation 2.11).

Those steps are implemented in the SQL program (listing 2.4) as the following CTEs:

1 date_range—A table with one row that holds the start and end dates for the cal-
culation. This is step 1.

2 start_accounts—A table with one row for each account active at the start. This
table is created by selecting from the subscription table based on the condition
that the account is active at the start of the churn measurement. This is step 2.

3 end_accounts—A table with one row for each account active at the end of the
churn measurement. The condition for being considered active is the same as
for the start accounts, using the churn measurement end date for the criteria.
This is step 3.

4 churned_accounts—A table with one row for each account that is active at the
start but not active at the end. This table is created by the outer join on account
IDs between the start_accounts table and the end_accounts table, and the
WHERE clause that removes accounts where the end account_id is not null. This
is step 4.

5 downsell_accounts—A table with one row for each account that is active at
both the start and the end but that has a lower MRR at the end than at the start.
This is created by a join on account IDs between the start_accounts table and
the end_accounts table and a WHERE clause that selects only those records
where the end MRR is less than the start MRR. This is step 5.

6 start_mrr—A one-row table that sums the total MRR at the start of the churn
measurement.

7 churn_mrr—A one-row table that sums the total MRR of the churned accounts.
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8 downsell_mrr—A one-row table that sums the total MRR of all the retained
accounts.

9 Final SELECT statement—Takes the results from the one-row result tables start
_mrr, churn_mrr, and downsell_mrr and calculates the final results by plugging
the values into equation 2.7. This is step 6, the final step in the program.

WITH
date_range AS (      
    SELECT '2020-03-01'::date AS start_date, '2020-04-01'::date AS end_date
), 
start_accounts AS      
(
    SELECT account_id, SUM(mrr) AS total_mrr       
    FROM subscription s INNER JOIN date_range d ON
        s.start_date<= d.start_date     
        AND (s.end_date>d.start_date or s.end_date is null)
    GROUP BY account_id                           
),
end_accounts AS     
(
    SELECT account_id, SUM(mrr) AS total_mrr        
    FROM subscription s INNER JOIN date_range d ON
        s.start_date<= d.end_date      
        AND (s.end_date>d.end_date or s.end_date is null)
    GROUP BY account_id      
), 
churned_accounts AS        
(
    SELECT s.account_id, SUM(s.total_mrr) 
        AS total_mrr       
    FROM start_accounts s 
    LEFT OUTER JOIN end_accounts e ON      
    s.account_id=e.account_id
    WHERE e.account_id is null       
    GROUP BY s.account_id    
),
downsell_accounts AS     
(
    SELECT s.account_id, s.total_mrr-e.total_mrr
        AS downsell_amount                
    FROM start_accounts s 
    INNER JOIN end_accounts e ON s.account_id=e.account_id    
    WHERE e.total_mrr<s.total_mrr    
),
start_mrr AS (      
    SELECT SUM (start_accounts.total_mrr) AS start_mrr
    FROM start_accounts
), 
churn_mrr AS (            
    SELECT     SUM(churned_accounts.total_mrr) AS churn_mrr
    FROM churned_accounts
), 

Listing 2.4 MRR churn SQL program

Sets the time period for which 
the SQL calculates churn

CTE containing active
accounts and their 
MRR at the start
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accounts that churned 

ms the
 MRR in
e there
ultiple

riptions
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nulls on no match.

Removes records where there 
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is positive by definition.
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down
downsell_mrr AS (       
    SELECT coalesce(SUM(downsell_accounts.downsell_amount),0.0) 
        AS downsell_mrr      
    FROM downsell_accounts
)
SELECT 
    (churn_mrr+downsell_mrr) /start_mrr AS mrr_churn_rate,     
start_mrr,            
churn_mrr, 
downsell_mrr
FROM start_mrr, churn_mrr, downsell_mrr

Listing 2.4 was tested on the simulated dataset produced by the code on the book’s
website (www.manning.com/books/fighting-churn-with-data) and in the book’s GitHub
repository (https://github.com/carl24k/fight-churn) and generated the result shown
in figure 2.12. You should run listing 2.4 by following the README instructions on
GitHub. After setting up your environment (detailed in the README), run the listing
with this command:

fight-churn/listings/run_churn_listing.py --chapter 2 --listing 4

In comparison to figure 2.7, which shows the result for the standard churn rate calcu-
lated with listing 2.2, this result shows the same churn rate. This is to be expected
because the simulation uses the exact same MRR for every customer, so the simulation
has no down sells or reason for this to differ from the standard calculation. That said,
the simulation code can be extended to include the variable MRR, and that would
make this exercise more interesting. I encourage you to do so as an exercise.

2.6.3 MRR churn vs. account churn vs. net (retention) churn

At this point, you have learned about three different churn formulas:

 Net churn, calculated from net retention
 Standard (account-based) churn
 MRR churn

CTE
ning
otal
tion
MRR
rom
 sell

Coalesce fills with zeros in 
case there are no down sells.

MRR churn 
formulaPrints the 

components of 
the calculation

mrr_churn_rate n_start_mrr churn_mrr downsell_mrr

0.0534 $103,206.69 $5,514.49 $0.0

Typical result returned by the MRR churn rate SQL (listing 2.4)

MRR of churned customers
and MRR at the start

The simulation does
not include down sells.

Figure 2.12 Result of running listing 2.4 on the simulated dataset

https://github.com/carl24k/fight-churn
http://www.manning.com/books/fighting-churn-with-data
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You have also learned where each is usually appropriate:

 Net retention and churn—For reporting as an operational metric to investors. Net-
retention-based churn is equivalent to standard churn when all subscribers pay
the same (or all subscribers pay nothing).

 Standard churn—For fighting churn when subscribers pay more or less the
same, but there can be some variety in pricing and discounting that would com-
plicate the interpretation of net retention.

 MRR churn—For fighting churn when there is a large variety in the amounts dif-
ferent subscribers pay.

One fairly common situation where it is not appropriate to use MRR churn is for sub-
scriptions that have an annual plan with lower MRR than the monthly plan. Subscrib-
ers can lock in a low rate but commit to a whole year by paying up front. This is usually
good for the subscription business because if done correctly, it leads to higher lifetime
value for the subscriber, as will be explained in chapter 8. However, it would be consid-
ered a down sell when a subscriber switches from the monthly plan to the annual
plan, and such changes would have a negative impact on the reported churn rate. In
such a situation, it is probably better to use the standard churn rate. 

 MRR churn is most appropriate when there is a truly great difference between
MRR of different types of accounts: in B2B software sales, big accounts can easily pay
10 times or more the amount of small accounts. For companies that do have such vari-
ety in their pricing, there is usually a consistent relationship between the three churn
measures.

TAKEAWAY Standard churn > MRR churn > Net churn

You might expect that MRR churn would normally be higher than the standard churn
measure because MRR churn includes the impact of down sells, but standard churn
does not. However, as I will discuss in later chapters, it is almost always the case that
accounts that pay more churn less often than accounts that pay less for multiprice
products. The subscribers paying the least almost always churn more. This can seem
paradoxical if you do not work on such a product, according to the logic that paying
more should make a customer more unhappy. However, in B2B products, higher
prices go to larger company subscribers that use the product more (have more users),
and larger companies are almost always more stable than smaller companies. Also,
larger companies paying more tend to be more committed to using the product for a
longer time because they have had a longer deliberative process before making the
purchase and have more invested in the setup and operation of the subscription prod-
uct. As a result, the standard churn rate that counts all subscribers equally is almost
always higher than the MRR churn rate for a B2B product. 

 Net churn calculated from net retention is almost always the least of all the churn
measures. This is because, in addition to reflecting the low churn rate of large com-
pany subscribers, it also counts upsells in retained accounts against the churn rate. As
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mentioned previously, it is even possible for the net churn calculated from net reten-
tion to be negative when upsells outweigh down sells and churns.

2.7 Churn rate measurement conversion
So far, the calculations have assumed you want to calculate the churn rate over one
month. As I mentioned, it is possible to calculate churn over any time period, and
most B2B product subscriptions calculate churn as an annual number to better reflect
the typical length of a subscription. That’s fine because the calculation is the same,
and using the same code to calculate annual churn is as easy as changing the start and
end to suitable dates one year apart. But what if a company wants to calculate an
annual churn rate but has been in operation for less than a year or has less than a
year’s data in the database for some other reason? This is not a problem because you
can convert a churn rate from a shorter period (like a month) to a longer period (like
a year). But the relationship between churn measured over one month and churn
measured over one year is not completely straightforward. 

 Spoiler: annual churn is not 12 times monthly churn. This section shows how
churn measurements made over different time frames are related and how to convert
a churn measurement made over a month into an annual churn rate and vice versa.

2.7.1 Survivor analysis (advanced)

Note that this section contains a lot of equations. If you don’t like math, you can skip
to the answer, which is shown at the start of the next section. 

 The key to understanding the relationship between monthly and annual churn is
to think about retained customers as survivors and look at how many survive over
many months. The term survivor comes from population studies in biology, which is
where this kind of analysis originates, but it is perfectly reasonable to think of retained
customers as survivors in a process where churn is like death. This is illustrated in fig-
ure 2.13, which shows what happens to an initial pool of subscribers if there is a
monthly churn rate and, equivalently, a monthly retention rate of one minus the
churn rate, as explained earlier in this chapter. Figure 2.13 shows both a simple con-
crete example (on the left) and the same process in terms of algebraic equations (on
the right).

 Here is how a churn process evolves over a year, starting with 100 accounts and a
10% (0.1) churn rate, which is depicted on the left side of figure 2.13:

1 At the beginning of the first month, there are 100 subscribers. During the first
month, 100 × 0.1 = 10 customers churn, leaving 90. This is equivalent to 100
times the retention rate of 0.9.

2 At the beginning of the second month, there are 90 subscribers, and during the
second month, 90 × 0.1 = 9 customers churn, leaving 81. This is equivalent to
the original 100 multiplied by the retention rate squared because 81 = 100 ×
0.81 = 100 × 0.92. 
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Note that because the churn rate is the percent of accounts that churn, if
there are fewer accounts to begin with, then fewer will churn, although the rate
of churn is the same.

3 At the beginning of the third month, there are 81 subscribers, and during the
third month, 81 × 0.1 ≈ 8 customers churn, leaving 73. This is equivalent to the
original 100 multiplied by the retention rate cubed because 73 = 100 × 0.73 ≈
100 × 0.93.

4 The pattern that continues in subsequent months is that after 12 months, there
are 100 × 0.912 = 28 customers remaining.

In terms of equations (the right side of figure 2.13), this is the process month by
month for the first few months and then showing this general pattern:

1 At the beginning of the first month, there are N subscribers, but during the first
month, cN churn according to the definition of the churn rate. At the end of
the month (1 – c)N or rN subscribers remain.

2 At the beginning of the second month, there are rN = (1 – c)N accounts, and
c(1 – c)N churn during the month. The number of accounts remaining after
month two is (1 – c)N, the starting number, minus c(1 – c)N, the number that
churn, or (1 – c)N – c(1 – c)N. 
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The number of churns in each
month is the churn rate times
the number at the start
of the month.

The number of customers
at the end of the month is
100 times the retention rate
(0.9) taken to the power of the
number of months.

For example, in the second month, 90 accounts
started and 9 churned. This is equivalent to 001
multiplied by 0.9 (the retention rate) squared.

Equations for the survival of accounts
over 2 months of churn. The letter1 N
represents the number of accounts at the
start, and the letter c represents the monthly
churn rate: = – is the retention rate.r c1

After one year, the number of
accounts remaining is Nr12.

Figure 2.13 Survival of accounts over a year of monthly churn
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It is not too hard to work out the algebra and show that from the definition
of the retention rate

(1 – c)N – [c(1 – c)]N = (1 – c)N × (1 – c) = (1 – c)2N

and 

(1 – c)2N = r 2N

3 At the beginning of the third month, there are r 2N = (1 – c)2N, and c(1 – c)2N
churn during the month. The number of accounts remaining after month
three is (1 – c)2N, the starting number, minus c(1 – c)2N, the number that
churn, or (1 – c)2N – c(1 – c)2N. 

It is not too hard to work out the algebra and show that from the definition
of the retention rate

(1 – c)2N – [c(1 – c)2]N = (1 – c)2N × (1 – c) = (1 – c)3N

and 

(1 – c)3N = r 3N

4 The pattern that continues in subsequent months is that after x months, there are 

r xN = (1 – c)xN 

This shows that the number of retained accounts over many months is equal to the
retention rate to the power of the number of months multiplied by the number of
accounts at the start.

2.7.2 Churn rate conversions

The multimonth relationship for retention rates is the key to converting monthly
churn rates to an annual measurement. In the previous section, I showed you that the
number of retained customers after one year in which the month churn rate is c and
the monthly retention rate is r = (1 – c) is 

Nyear = r 12N 

It follows that the one-year retention rate, which is denoted by R, is 

                      R = r 12 (Equation 2.14)
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Equation 2.14 shows how to convert from monthly retention rate r to an annual reten-
tion rate R. This follows directly from the definition because the number of customers
retained after a year must be equal to the number at the start times the annual reten-
tion rate. Also, from the definition, you know that the annual churn rate, which I
denote as C, must be equal to 100% minus the annual retention rate. It follows that
the annual churn rate C must be equal to

C = 100% – R

C = 100% – r 12

                    C = 100% – (1 – c)12 (Equation 2.15)

In a few words, the annual churn rate is equal to one minus one minus the monthly
churn rate to the twelfth power. That sounds complicated, but it’s pretty easy to
understand in terms of the retention rate. The annual retention rate is the monthly
retention rate to the twelfth power. 

TAKEAWAY To convert monthly churn rate to annual, use the fact that annual
retention is monthly retention to the twelfth power, and retention is one
minus churn. 

Note that the annual retention rate is less than the monthly retention rate because
taking a number less than one to any power reduces it further. This makes sense as
more must churn in a year than in a month: the subscribers have 12 times longer to
churn. The annual churn rate, on the other hand, must be greater than the monthly
churn rate, again because there is more time to churn.

 What about converting the annual measurement of the churn rate to monthly? I
won’t go into all the details, but the same relationship holds in reverse. If you refer
back to equation 2.14 and take the twelfth root of both sides, you get

                           (Equation 2.16)

Equation 2.16 shows how to convert from an annual churn R to a monthly churn
rate r. I use the notation that the twelfth root of a number is implemented by taking
the number to the twelfth (1/12) power. If you are not familiar with root operations,
recall that the square root of a number x is that number which when squared gives x.
The twelfth root is defined similarly: the twelfth root of x is the number that when
taken to the twelfth power gives x. Don’t worry. No one calculates twelfth roots and
powers in their head, but it’s a piece of cake in any programming language. Taking
the twelfth root is the same as raising a number to the one-twelfth (1/12) power, and
this is how such roots are implemented in most programming languages. 

r R12 R1/12= =
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 The equivalent monthly retention rate for an annual retention measurement is
just the twelfth root of the annual measurement. Similarly, this equation calculates an
equivalent monthly churn rate from an annual measurement:

                         (Equation 2.17)

Equation 2.17 shows how to convert from an annual churn rate C to a monthly churn
rate c.

TAKEAWAY To convert annual churn rate to monthly, use the fact that monthly
retention is the twelfth root of annual retention, and retention is one minus
churn. 

2.7.3 Converting any churn measurement window in SQL

You can easily convert any churn measurement window into an equivalent churn rate
for any other measurement window. This is a good trick to use if you need to measure
churn for a company with less than one year of data in the subscription database. You
would calculate a churn rate with as much data as is available (whether it is 2, 6, or 10
months) and then convert the result into an annual churn rate. I won’t go into details,
but for any churn measurement, c'  made over any time period of p days is the equiva-
lent annual churn rate C:

                          C = 100% – (1 – c') 365/p (Equation 2.18)

In this case, the power to which the measured retention rate (1 – c' ) is taken to is 365
divided by the length of the time period p. If p were 1 month, this would reduce to
(approximately) 12. Similarly, the monthly churn rate c can be calculated from a
churn rate c'  made over any period of p days with equation 2.19:

                          c = 100% – (1 – c') (365/12)p (Equation 2.19)

Returning to the calculation of churn rates from a subscription database with SQL, it’s
easy to calculate both monthly and annual churn rates from one measurement of
churn made over any time period. Listing 2.5 shows the necessary SQL SELECT state-
ment, assuming the same common table expression as the regular churn rate calcula-
tion in listing 2.2, except that the start and end dates in the date_range CTE can be
any dates (any dates where the end date is after the start date, that is). This SQL
implements equations 2.13 and 2.14 as part of the SELECT statement by calculating the
time period p on the fly.

 
 
 

c 100% 1 C–12– 100% 1 C–( )1/12–= =
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SELECT 
    n_start,     
    n_churn,       
n_churn::float/n_start::float AS measured_churn,     
end_date-start_date AS period_days,                 
1.0-POWER(1.0-n_churn::float/n_start::float,365.0/(end_date-start_date)::float) 
        AS annual_churn,    
1.0-POWER(1.0-n_churn::float/n_start::float,(365.0/12.0)/(end_date-start_date)

::float)
        AS monthly_churn   

An example of the result of using the SELECT statement in listing 2.5 is shown in fig-
ure 2.14. In this case, because the measurement period is between one month and
one year, the equivalent annual churn rate is more than the measured churn rate, and
the equivalent monthly churn rate is less than the measured churn rate.

 Listing 2.5 was tested on the simulated dataset produced with the code on the
book’s website (www.manning.com/books/fighting-churn-with-data) and in the GitHub
repository (https://github.com/carl24k/fight-churn) and generated the result shown
in figure 2.14. You should run listing 2.5 by using this listing wrapper script (the same
command as early in the chapter), changing the listing parameter to --listing 5:

fight-churn/listings/run_churn_listing.py --chapter 2 --listing 5

In comparison to figure 2.8, which shows the result for the standard churn rate calcu-
lated with listing 2.2, this result measures the churn rate over 92 days (a hypothetical
example assuming there is 92 days’ worth of data available to calculate an annual
churn rate). The result includes a monthly version of the churn rate and an annual-
ized version of the churn rate. The monthly churn rate is similar but not exactly the
same as the result in figure 2.8—this monthly churn rate is an average monthly rate
over the entire 92 days.

Listing 2.5 Churn SQL SELECT statement for uneven time periods

Number of subscribers at
the start, as in listing 2.2

Number of subscribers 
that churned, as in 
listing 2.2

Standard churn rate 
calculation (equation 2.1)

Displays the difference in 
days between the start 
and end dates

Equation 2.13 
Equation 2.14 

n_start n_churn measured_churn period_days annual_churn monthly_churn

10393 1394 0.13412 92 0.43525 0.04649

Typical result returned by the time-scaled churn rate SQL (listing 2.5)

Churn can be measured for an arbitrary
time period: in this case, 92 days.

The resulting churn rate is scaled to an
equivalent annual and monthly rate.

Figure 2.14 Result of running listing 2.5 on the simulated dataset

https://github.com/carl24k/fight-churn
http://www.manning.com/books/fighting-churn-with-data
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2.7.4 Picking the churn measurement window

Given that you have a choice, you might be wondering what time frame you should
choose to measure churn. In general, you should measure the churn rate for a time
frame that is close to the typical subscription renewal term (if there are subscriptions).
Then you can use the methods in this section to scale the measurement if you need to
report churn another way.

TAKEAWAY Churn on consumer subscriptions is usually measured as a monthly
rate, and churn on business subscriptions is measured as an annual rate. 

Problems can arise if you measure churn in a time frame that is different from your
typical subscriptions. The issues are a bit different if your subscriptions are mostly
monthly or mostly annual.

 First consider the case of annual subscriptions. If your subscriptions are mostly
annual, and you measure churn over one month, you have to make sure the month
you choose has approximately one-twelfth of your annual renewals. Otherwise, the
churn measurement will be biased. For many businesses, most renewals come in a par-
ticular season; if this is the case, and you measure churn over any other time of year,
you will see an artificially low churn rate. Conversely, if you measure churn over a
month that happens to have a large number of the annual customers up for renewal,
you can end up calculating an artificially high churn rate by seeing much of the year’s
churns in a short time.

 If your subscriptions are mostly monthly, and you measure churn over a year, then
the churn calculation will miss accounts that start and churn in between the two dates.
To see this, note that all the churn calculations in this chapter check the accounts on
just two dates, and accounts that are active in between the two dates would be ignored.
This results in an underestimate of the churn rate. This is a problem, in general, if you
measure churn with a time period that is longer than the shortest subscriptions.

WARNING Measuring churn over a time window that is different from the typ-
ical subscription length (or typical customer active lifetime) can result in
errors in the churn rate.

2.7.5 Seasonality and churn rates

In the previous section, I warned you that calculating churn using a time frame that is
different from the typical subscription length can cause problems. There is one other
type of problem to beware of when calculating churn rates, and it applies mainly to
monthly churn calculations: seasonality.

DEFINITION Seasonality—Variations that occur at particular times of the year. 

Many subscription businesses have seasonal variations in the churn rate, and if you are
measuring churn with monthly time windows, you may find the churn rate moves up
and down throughout the year due to seasonal effects. The challenge is that when you
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start trying to reduce churn, if you do not correct for seasonality, it can be hard to
know if changes you see in the churn rate are due to your churn-fighting efforts or
seasonal variation.

WARNING If you use monthly churn rates, seasonality can make it hard to
assess the impact of churn-reduction efforts.

Seasonality is less of a problem for annual measurement because an annual churn mea-
surement always includes every season of the year. If you make one annual churn
measurement in January and another annual churn measurement in February, both
churn measurements include every season: the difference between two annual churn
measurements made a month apart reflects the difference between the churns in that
month and the same month one year earlier, so the change in churn rate is already
controlled for seasonality. (If many annual renewals occur in one season, then that
season can be a time when the churn rate changes significantly; the rest of the year,
changes in the churn rate are smaller because fewer renewals occur. But having a crit-
ical season in the business when contracts renew is not the same as seasonality.)

 What do you do if you use monthly churn rates? First, measure monthly churn
rates over as many years as possible, and try to determine if there is a significant sea-
sonal pattern. You will need at least two years of history to see if there are seasonal pat-
terns; with just one year of data, you can’t tell if a pattern is seasonal or if it has some
other cause.

 If you do have a seasonal pattern, then you have a couple of choices to correct for
it. An ad hoc approach to dealing with seasonality is just to be aware of the seasonal
trends and look for other changes in churn rate, resulting from churn-reduction
efforts or changes in the business environment that are significantly bigger than the
usual seasonal variation. If you are trained in statistics, you can do this rigorously by
using appropriate techniques for time series analysis. Such advanced statistics is
beyond the scope of this book, but see Analysis of Financial Time Series by Ruey S.
Tsay (3rd ed., Wiley, 2010) if you are interested. There are a few ways to handle sea-
sonality in churn rates that don’t require advanced statistics, but they involve a
slightly more complicated churn calculation and at least two years of data. Going
into a lot of detail on these is too much to put in this book, but I can give you a few
ideas here. 

 One way to calculate a churn rate that controls for seasonality is to make an annual
churn calculation on month-to-month subscriptions but fix the problems using annual
churn on monthly subscriptions. Recall that in the previous section, you learned that if
you make an annual churn calculation on monthly subscriptions, you miss accounts
that signed up and churned midyear. One solution is that instead of looking at all the
accounts active on each date two years apart, you look at all the accounts that were active
within a year prior of each date. The process is as follows: 

1 Find all accounts active any time in year 1. 
2 Find all accounts active any time in year 2. 
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3 Find churned accounts by comparing the two sets with an outer join. 
4 Divide the lost accounts by the number in year 1. 

The churn calculated that way is an annual churn rate that does not miss midyear
churns and includes all seasons. If you repeat the calculation one month (or one
quarter) later, the change in the churn rate reflects the difference between churn in
that month (or that quarter) and the same time one year earlier. It is controlled for
seasonality. 

 One downside of this approach is that it allows a new signup any time within a year,
and the customer won’t be counted as a churn. If you have many accounts that churn
and sign up again later, you should stick with the regular monthly churn calculation
and handle seasonality differently. 

 Another relatively simple way to handle seasonality with monthly churn rates is to
calculate monthly churn rates every calendar month and then make averages over
quarters (or a year) for comparison purposes. Rather than comparing one month’s
churn rate to the next, which can be influenced by seasonality, compare the average
of 12 monthly churn rates from the last year to the average of 12 monthly churn rates
from the previous year. Or compare the average churn rate from the last three
months to the average churn rate from the same three months one year earlier. Then you
can see if anything you have done to improve churn in the last year made a difference
in the churn rate from the same quarter one year ago. Because you are comparing to
the same quarter, you are controlling seasonality. You can take this approach with one
month and compare one month to the same month one year earlier, which also controls
seasonality. Also note that comparing one calendar month’s churn rate to the churn
rate in the same period one year earlier requires only 13 months of data, so this is
probably the best option for new companies.

Summary
 Churn rates measure how many subscribers and/or how much revenue churns

from a service over a period of time. 
 The churn rate and retention rate are interchangeable according to the rela-

tionship retention plus churn equals 100%.
 Different versions of the churn rates can be calculated on a subscription data-

base using SQL.
 Outer joins are used to identify churned accounts in SQL.
 The standard churn rate measures the number of account holders who cancel

their subscriptions and is unaffected by upsells and down sells. The standard
churn rate is most useful for subscription products where there are a few prices
that are not far apart or possibly some discounts.

 Net retention includes the impact of both upsells and down sells, which makes
it less useful for fighting churn, but it is a popular reporting metric. 



79Summary
 If all subscribers pay the same (or pay nothing), net retention equals the stan-
dard retention, and net churn equals standard churn.

 MRR churn includes the impact of down sells but not upsells and is the best
metric for measuring churn when subscribers pay a wide variety of prices, as is
typical for B2B products.

 For nonsubscription products, churn can be measured based on event data by
defining customers as active whenever they have had an event within a recent
time period. Churn is then calculated as the difference between the sets of
accounts that are active on two different dates.

 Churn measured over any time period can be converted into an equivalent
churn rate for any other time period.

 Churn rates are converted from one time period to another by survivor analysis
on retention rates, which are then converted back to churn rates.

 To convert a churn rate, the corresponding retention rate is taken to a power to
increase the time period; a root of the retention rate is used to decrease the
time period.

 Churn is usually measured as a monthly rate for consumer products and an
annual rate for business products.

 Problems may arise if you measure churn on a time scale that is different from
the typical subscription length.

 For monthly churn rates, seasonality can be an issue when interpreting changes
in the churn rate.



Measuring customers
If you are operating a product or service with repeated interactions with users or
customers, then you should be collecting data about those interactions in a data
warehouse. Interactions in this context means interactions between the user and the
product, service, or platform. (It can also include interactions with other users,
mediated by the platform.) It is common to refer to such interactions as events for
short, because interactions tracked in a data warehouse invariably have a timestamp
telling you when they happened. 

DEFINITION Event—Any fact about user behavior, stored in the data ware-
house with a specific timestamp.

This chapter covers
 Measuring counts, averages, and totals of 

customer events

 Running QA tests on metrics

 Choosing time periods and timestamps for 
metrics

 Measuring how long a customer has been 
using a service

 Measuring subscription metrics
80
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I am not going to teach you how to collect that data, but I am going to teach you how
to put that data to good use. The first step in using raw data to fight churn is to turn
the event data into a set of measurements that summarize the events and collectively
produce a profile of the users’ behaviors. These measurements are often called behav-
ioral metrics, or just metrics, for short. 

DEFINITION Metric—Any summary measurement of user behavior. Metrics
also have a timestamp, although they summarize behavior over more than just
one point in time. 

Turning related events into measurements is necessary because each event is like one
tiny dot in a big picture: by itself, one event usually doesn’t mean much. But while we
need to zoom out from each individual interaction, we are not going to zoom out very
far. Each measurement is made individually for each customer, and it is made repeat-
edly over their lifetime as a customer. That’s because user engagement and churn are
dynamic processes for each individual, and you need to watch how those metrics
change over the subscriber’s lifetime to understand subscriber engagement.

 To teach this subject, I assume you have collected events but have not done behav-
ioral measurements on them. If you don’t have your own data, there is a simulation
program in this book’s downloadable code that creates artificial data for you to run
the code on. See the code at www.manning.com/books/fighting-churn-with-data and
https://github.com/carl24k/fight-churn/tree/master/data-generation and the detailed
instructions in the README file. Run the script to install the schema (fight-churn/
data-generation/churndb.py), and then run the simulation that generates custom-
ers, subscriptions, and events on an imaginary social network (fight-churn/data-
generation/churnsim.py). If you already generated data to run the examples in
chapter 2, you’re good!

 If you work with a live product or service and are already making behavioral mea-
surements, you are going to learn some new ideas for metrics and techniques to check
the quality of your data; it will not be hard to use your existing measurements in the
analysis. If you work at a live service and are not collecting data yet, you will achieve an
excellent understanding of what kind of data to collect. In relation to the book’s over-
all scenario, this chapter covers calculating behavioral metrics from an event data
warehouse (figure 3.1, explained in chapter 1).

 This is a big chapter, and not only in terms of length: good behavioral metrics are
the most important step in a successful churn analysis, and this chapter explains a lot
of the pitfalls that can prevent you from getting the best results: 

 In section 3.1, we start with a brief overview of the concept behind making
behavioral metrics from events. 

 Section 3.2 introduces a typical or minimal database schema for an event data
warehouse, which is used in the SQL programs for the rest of the book. 

 Beginning in section 3.3, you learn the most universally useful behavioral met-
rics: counts, averages, and totals measured over specific windows in time. I also

http://www.manning.com/books/fighting-churn-with-data
https://github.com/carl24k/fight-churn/tree/master/data-generation
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teach you some best practices regarding measuring behaviors that follow weekly
cycles and timestamping metric measurements.

 In sections 3.4–3.6, you learn more practical details about how to calculate the
metrics introduced in section 3.3.

Along with learning about calculating metrics, it is only appropriate that you learn to
check the results by running quality assurance (QA) tests. This is necessary because
customer event data in data warehouses is often unreliable. This unreliability can
manifest in different ways; for example, events can be lost on the network before they

Chapter 3 covers using
data in an event data
warehouse to calculate
metrics of how much
customers use the product.

Customer

database
Event data

warehouse

Behavioral metricsChurn metrics
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Figure 3.1 This chapter’s place in the process of fighting churn with data
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reach the data warehouse. In general, event data does not receive a lot of scrutiny, so
the data person doing a churn analysis might be the first person to check if event data
fields are correct. 

 Section 3.7 introduces time-series QA tests for metrics. The QA reveals a com-
mon challenge: not all events are equally frequent, so no single time frame
works well for all types of events. 

 Section 3.8 shows some basic QA on the events that helps to clarify the situation
as far as event frequency.

 In section 3.9, I show you how to use the event QA to solve the problem of
selecting a metric time frame.

NOTE This discussion is out of order from real-world practice. Normally, you
do event QA first and then calculate metrics, but I want to dive in and show
you what the metrics look like before getting into the details of QA.

At the end of the chapter, we change gears:

 In section 3.10, you learn how to make an important measurement of each cus-
tomer: how long they have been customers on the current subscription (or the
current engagement, when there is not a subscription). This is called the cus-
tomer or account tenure (not age) so that it is not confused with the customer’s
actual age. 

 Section 3.11 presents a technique to take data from subscriptions and turn it
into metrics that are comparable with other behavioral metrics.

WARNING The term feature engineering can be confusing to people not trained
in data science, machine learning, or statistics. Avoid it when talking to your
business colleagues; use metric design instead. This is especially true at software
companies.

3.1 From events to metrics
In this section, I first introduce the concept of turning events into metrics without any
code, and then I show you the SQL. Imagine you are collecting login events in your
data warehouse, and you want to turn them into usable information. For each user,
you have a series of events, as illustrated in the top half of figure 3.2. To start, we focus
on only the series for a single event: logins. In typical online product scenarios, there

Feature engineering vs. metric design
People trained in data science, machine learning, or statistics call the topic I just
described feature engineering. The problem with the term feature engineering is that
it is easily confused with software product features and creating such features
through software engineering. Instead, I’ll stick to language business users under-
stand and call this process metric design.
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are many types of events, and the events can occur at any time. For some types of
events, there can even be multiple events at the same time. To find subscribers’ com-
parable metrics, use a time period to make the measurements, as illustrated in the bot-
tom half of figure 3.2.

A time period in this context means a range of time (a start time and an end time) in
which to measure data. But these periods are defined relative to the observation time
of each measurement, so a time period is usually described by its duration or length. 

DEFINITION Time period—In an event-based metric calculation, the window
of time within which events are used for the measurement. Time periods
are described by their duration because the specific window for each mea-
surement (the start and end times) is determined relative to the measure-
ment date.

For example, a metric with a four-week period like the one in figure 3.2 makes repeated
measurements within windows that are four weeks long. The metric calculation may
be to count the number of events in each resulting window, or more complex mea-
surements can be used, as described later in the chapter. I define all my metric peri-
ods as an even number of weeks; I explain why in section 3.4.1.

User 1 logins Time

User 2 logins Time

User 1 logins per

month (4 weeks)
Time
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Count metrics

The login times for two users are shown as ticks on a
time line. Events occur at different times for every user.

Metrics make different users’ events comparable by
calculating summaries at specific times.

The events are used to calculate metrics (bottom) by grouping them into windows
using a fixed time period and counting the total within each window.

Figure 3.2 Events transformed into time-windowed metrics
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 Also note that these metrics are calculated on the day after the period ends, so the
observation of events is complete. For example, on January 29, you can calculate the
number of logins per subscriber in the four weeks covering January 1–28. Then, on
February 26, you can measure the number of logins for the four weeks from January
29–February 25, and so on. I return to this discussion in detail in section 3.4.2.

3.2 Event data warehouse schema
This chapter examines how to calculate metrics with code; but to lay the ground-
work, I need to explain how events are stored in a data warehouse. There are many
types of data warehouses, and I assume you can query the data warehouse with SQL.
You can use a transactional SQL database as your event data warehouse as long as
the data is not too big. The examples in this book were generated in Postgres (or
PostgreSQL).

 Table 3.1 shows the key elements of a typical event data schema. This schema is
used for all the SQL code listings related to events. (See the book’s downloadable
code for detailed instructions on how to set up a database with this schema and popu-
late it with simulated data.) The following is the typical minimum set of fields for this
kind of table:

 account_id—An identifier for the account holder or user, required to track
events back to the customer who created them.

 event_type_id—Because events generally have many types, this is the foreign
key to a separate table describing the types.

 event_time—A timestamp, which every event must have.

Table 3.2 shows an associated event type table so the string names for events are not
duplicated (for performance reasons, as is standard practice in a database or data
warehouse). In summary, an event is something (the event type ID) that happens to
someone (the account ID) at some time (the event time). The following additional
fields can also be included in such a table but are not required:

 event_id—Unique identifiers for events may or may not be included in a data
warehouse. It’s not relevant for the analysis because there is normally no
uniqueness constraint on events.

 user_id—A user ID can be present (in addition to an account ID), especially in
services where there are multiple individuals associated with a single account.

 event_data—Events often have a large number of optional data fields that pro-
vide additional information about the events. These are most often numeric
but can include textual information as well.

If you are familiar with data warehouses, you can see that the schema for events is
pretty typical of any fact table, except that numeric data fields for events are optional
(they are often required for some types of data warehouses).
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3.3 Counting events in one time period
Figure 3.3 is a continuation of the scenario illustrated in figure 3.2: it shows the details
of calculating a metric for one account and one event based on the event schema in
table 3.1. Each event in the table is mapped to a corresponding time period, and the
total count is the result for that period. Because the periods do not overlap, each
event is counted only once. The calculation is repeated for every event and account,
which would be tedious if you were planning to do this by hand or even in a spread-
sheet. Fortunately, SQL offers a concise language for expressing and implementing
this type of calculation.

 Performing these calculations at scale involves a challenge you saw in chapter 2:
this data is likely to be big. Just like calculating churn rates, we do all the work in the
data warehouse with SQL, rather than extracting data and then working on it in a pro-
gramming language like Python. 

NOTE This is another place where you may be used to performing such com-
putations in a procedural language, but I ask that you reserve judgment and
learn what a powerful tool SQL can be for this kind of calculation. 

Listing 3.1 shows the SQL to count the number of events within a single time frame
(like that illustrated in figure 3.2). The main steps in the query are as follows:

1 Set the date to make the measurement, using a common table expression (CTE,
introduced in chapter 2).

Table 3.1 Typical event data schema

Column Type Notes

account_id integer or char

event_type_id integer or char Key for event_type_name

event_time timestamp

event_id integer or char Optional

user_id integer or char Optional

event_data_1 float or char Optional

. . .

event_data_n float or char Optional

Table 3.2 Typical event type data schema

Column Type Notes

event_type_name char Unique

event_type_id integer or char Key for event_type_name
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2 Select all the events in the time frame with the correct type.
3 Aggregate-count the events by account.

If you created the simulated social network dataset, it includes an event for users lik-
ing posts. Listing 3.1 shows the query for counting these events, and figure 3.4 illus-
trates the result. For each account that made any likes within 28 days prior to the
metric calculation rate, there is one count.

account_id event_type_id event_time Period 1 Start 1-January

1 1 12-January End

∑ �

∑ �

∑ �

∑ �

28-January

1 1 17-January Count = 2

1 1 3-February Period 2 Start 29-January

1 1 5-February End 25-February

1 1 12-February Count = 4

1 1 23-February Period 3 Start 26-February

1 1 7-March End 25-March

1 1 12-March Count = 2

1 1 9-April Period 3 Start 26-March

End 22-April

Count = 1

A metric is calculated from
events stored in an event table.

Periods are defined by non-overlapping
date ranges that each span four weeks.

For each period, the events for a single account
are counted, and the result defines the metric
calculated for that account for the period.

This calculation is performed separately for
every account using the SQL GROUP BY
(only one account shown).

Figure 3.3 Metric calculation from an event schema

account_id n_like_perMonth

0 1396

2 119

3 54

4 496

5 23

... ...

Your result will not be exactly the same
because the data is randomly simulated.

The first column is
the account ID, and the
second column is the
number of events in
the last 28 days.

Figure 3.4 Result of the event 
count SQL (listing 3.1) on the 
simulated social network dataset-
like event. Your results will differ 
because the data was randomly 
simulated.
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WITH calc_date AS (                               
    SELECT '2020-05-06'::timestamp  AS the_date   
) 
SELECT account_id, COUNT(*) AS n_like_permonth   
FROM event e INNER JOIN calc_date d ON
    e.event_time <= d.the_date     
    AND e.event_time > d.the_date - interval '28 day'       
INNER JOIN event_type t ON t.event_type_id=e.event_type_id
WHERE t.event_type_name='like'       
GROUP BY account_id;     

Run listing 3.1 to see the result on your own data. If you have generated the default
simulated dataset and set up the environment as specified in the README, you can
run the listing with this command:

fight-churn/listings/run_churn_listing.py --chapter 3 --listing 1

The wrapper program prints the SQL before it connects to the database, executes the
query, and prints some of the results. If you don’t want to use the wrapper program,
the source code for listing 3.1 can be found in fight-churn/listings/chap3 in the book’s
code. Note that the listing code is stored as a template with bind variables (beginning
with %); you can modify the bind variables and run the query with the SQL tool of your
choice. Your result will look similar to figure 3.4, but not exactly the same, because the
data is randomly simulated.

 If you are familiar with SQL, you might have some questions about that query: why
do I use the date condition “less than or equal to” for the end of the window but
“greater than and not equal to” at the end of the query? Why not use the “between”
syntax? This is to avoid double-counting any events on the boundary if you make
repeated measurements. A related question might be why I don’t use SQL window
functions to calculate the results. The reason is that SQL window functions usually
operate on a fixed number of records, but the number of events within a given date
range is not fixed. The boundary for the window is set by the date condition, not the
number of events in the window. 

3.4 Details of metric period definitions
Now that you know how to calculate a metric, I’ll discuss choosing metric periods.
These details may seem trivial, but you would be surprised how much they can impact
the effectiveness of your analysis.

3.4.1 Weekly behavioral cycles

You are probably wondering why I have used metric measurements calculated over
four-week periods and not calendar months. To understand this, you need to realize

Listing 3.1 Counting the number of events in a time window

This CTE sets the date used to 
calculate the measurement.

Selects the account, the 
date, and the count

Sets the period for which 
the measurement is made

Using “greater than but
not equal to” avoids 
double counting.

Selects the event 
we are making the 
measurement for

The GROUP BY aggregation 
yields one measurement 
per account.
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that human activities follow a weekly cycle, so it is likely that the events in your data
warehouse also follow a weekly cycle. If your product is something that people use for
work, then most events will occur on Monday through Friday, and Saturday and Sun-
day will have fewer events. On the other hand, if your product is something people
use for leisure, like watching videos or playing a game, then the heaviest use will be on
Friday through Sunday, and Monday through Thursday may be relatively slow. 

 The reason to use metrics with periods defined as an even number of weeks is that
every measurement window used to make a calculation has the same number of high-
and low-usage days. For example, imagine a consumer product with peak usage on the
weekend. Months that have five weekends will appear to have around 20% more
events than months with only four weekends. But it would be a mistake to think this
represents a real increase in usage because it is an artifact of the fact that the measur-
ing windows are not even.

TIP Most human behaviors follow weekly cycles. Consequently, for metrics
using a period of one month or less, it is best to measure using time windows
that are multiples of seven days.

The user behavior on Klipfolio is a perfect example of weekly behavioral cycles. Klip-
folio is a software as a service (SaaS) company that allows businesses to create online
dashboards of their key metrics (introduced in chapter 1). The weekly cycle of business-
to-business (B2B) software use is illustrated in figure 3.5, which shows the number of
dashboard views per day for Klipfolio. It is obvious that usage is significantly higher on
weekdays and much slower on the weekend: on average, weekdays have 40% more
dashboard views than weekends.

Weekdays are peak
usage days: on
average, weekdays
have 40% more use
per day than
weekend days.

Saturday and Sunday
see less usage but are
still significant; the
exceptions are
holiday weekends.

The (relative)
count of Klipfolio
dashboard
views per day
for a year

Jan Mar May Jul Sep Nov Jan

View dashboard

Figure 3.5 Klipfolio’s total dashboard views per day
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That said, note that making measurements in even numbers of weeks is important for
small measurement windows: if the measurement period is more than around 12
weeks, then adding or subtracting one weekend will not make much difference. For
example, for one-year measurements, there is no reason to choose 52 weeks, or 364
days, rather than 365 days. 

3.4.2 Timestamps for metric measurements

Another important issue is how measurements are timestamped. 

DEFINITION Timestamp—A single date and time to represent the metric, which
is a calculation made on events in a time window.

Measurements like this need to have a timestamp representing the period they cover
because you make the measurements repeatedly and analyze how they change over
time. A seemingly trivial but actually subtle point is as follows. Suppose you measure
the number of logins:

 You measure all events from January 1 through January 28 (inclusive). 
 You make the measurement on January 29.

Which date do you timestamp that measurement with?

1 January 1
2 January 28
3 January 29
4 Some other option

Best practice is to timestamp the metric with the date/time immediately after the
measurement period: in this case, January 29 at midnight for the January 1–28 mea-
surement. This is a convention, and it may seem arbitrary, but the wrong choice leads
to undesirable complications. There are a few reasons you will need to synchronize
the measurements to make a snapshot of a customer at a single point in time. Making
a synchronized snapshot is easiest if you timestamp at the end of the observation win-
dow because then you just select all the metrics for the same timestamp.

TAKEAWAY The best choice for the timestamp on behavioral metrics is the
date and time on which the measurement of the customer would be made,
assuming it was calculated in real time, at the earliest time possible. This is
true even if the measurement is calculated at a later date.

The problems with the alternatives are these:

 Using the start date of the window as the timestamp causes problems if you use
windows of different lengths in a single analysis. In that case, you need to calcu-
late the synchronization date from the timestamp plus the time period.

 The time you make the measurement is not a good timestamp because it could
be days or months after the fact, which introduces uncertainty.
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 Using the last day (at midnight) of the measurement period as a timestamp is
subtly misleading in that it implies you could observe the full period measure-
ment when there is still one day remaining. If you timestamp the measurement
24 hours before it is complete and then need to sync the measurements with
other data sources, it can introduce subtle errors. 

This day-after period timestamp convention may be a bit confusing at first because
many people timestamp measurements for a calendar month with the first of the
month, even though the measurement is not made until the first of the next month.
(It might confuse other people in your organization who are used to that way of think-
ing.) The same goes for using four-week periods rather than calendar months. But
four-week “months” and day-after timestamping facilitate the analysis, and I recom-
mend them as best practice.

3.5 Making measurements at different points in time
To understand churn, you need to compare measurements of subscriber behavior at
different points in their life cycle. This requires a slightly more advanced metric calcu-
lation technique than the one you just learned.

3.5.1 Overlapping measurement windows

To compare customer behavioral measurements as they change over the customer life
cycle, you need to repeat the metric calculation at regularly spaced points in time.
However, there is a problem with the simple approach shown in figure 3.2: if you liter-
ally followed that approach, you would update the metric only once every four weeks.
Four-week intervals between measurements are not very dynamic. A lot can happen in
four weeks, and you might have to check on your customers’ behavior more often. Fig-
ure 3.6 illustrates the solution. The answer is to repeat the four-week measurements at
more frequent intervals: in this case, weekly. 

 As shown in figure 3.6, the resulting four-week windows overlap. You can also see
that the measurement gradually tracks between the monthly measurements shown in
figure 3.2. For subscriber 1, the first four-week, non-overlapping measurements are 2,
4, 2. The overlapping measurements include intermediate points where the value was
3: 2, 3, 4, 3, 2, representing the transition period.

 Details of the calculation illustrated in figure 3.6 are shown in figure 3.7 for the
first four periods. Because the calculation windows overlap, the fourth period has an
end date that is just four weeks after the end date of the first period. Also, each event
is part of the count in multiple periods. With a four-week window staggered one week
apart, every event will be counted in four periods, although this fact is not apparent
from the abbreviated example in figure 3.7. But as in the example calculation with
non-overlapping periods (figure 3.7), each event is mapped into the time periods
based on the beginning and end dates (of the periods), and the result for each period
is the total count. Even more so than for the non-overlapping periods, this is not a
calculation you would want to do by hand! But, remarkably, the SQL that does this
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User 1 logins
per month,
updated weekly

Rather than wait to update the metric
value, recalculate again every week.

Weekly measurements track
gradually among values
observed in the non-
overlapping measurements.
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Figure 3.6 Calculating metrics with overlapping time windows

Period 1 Start 1-January

End 28-January

account_id event_type_id event_time Count = 2

1 1 12-January Period 2 Start 8-January

1 1 17-January End 4-February

1 1 3-February Count = 3

1 1 5-February Period 3 Start 15-January

1 1 12-February End 11-February

1 1 23-February Count = 3

1 1 7-March Period 3 Start 22-January

1 1 12-March End 18-February

1 1 9-April Count = 3

Period 4 Start 29-January

End 25-February

Count = 4

...
...

Periods overlap
so one event is
counted in more
than one period.

A metric is calculated from
events stored in an event table.

Periods are defined with overlapping four-week date periods
so that a new metric value is calculated every week.

For each date range, the events for
a single account are summed.

This calculation is
repeated separately for
every account (only
one account is shown).

∑ →

∑ →

∑ →

∑ →

∑ →

Figure 3.7 Simple metric calculation with overlapping time windows



93Making measurements at different points in time
metric calculation for overlapping periods is no more complex than for calculating
non-overlapping periods.

 Listing 3.2 shows the SQL that implements such measurements, and a sample
result for the simulated churn dataset is shown in figure 3.8. Unlike the result of the
single-day query (listing 3.1 and figure 3.4), there are now multiple results for each
account, but only the first few are shown. Also, each measurement is timestamped
with the time at the end of the measurement period.

The main steps in listing 3.2 are basically the same as in listing 3.1, but now the SQL
works on a range of dates:

1 Choose the sequence of dates to make the measurement. These dates are closer
to each other than the intended period size.

2 For each measurement date, select the events within the time period associated
with that measurement.

3 Aggregate-count the events by account and measurement date.

For step 1, the SQL in listing 3.2 uses the generate_series function to create a CTE
containing a list of the calculation dates. With this list of metric dates included in
the join with the event table, you calculate the count for every account and every
measurement date by including the measurement date in both the SELECT and
GROUP BY statements. As a result, the query calculates the metrics for an entire sequence
of measurement dates at once.

WITH date_vals AS (                         
    SELECT i::timestamp AS metric_date 
    FROM generate_series('2020-01-29', '2020-04-16', 
    '7 day'::interval) i              
)

Listing 3.2  Calculating metrics with overlapping windows

account_id n_like_perMonth

0 124

0 111

... ...

2 1215

2 1421

... ...

3 51

3

metric_date

4/29/20

5/6/20

...

4/29/20

5/6/20

...

4/29/20

5/6/20 46

The query sums the number
of like events per account in
28-day periods, staggered
seven days apart so they
overlap.

There are multiple rows for
each account, where each
row contains the sum for the
different time windows.

Your result will not be exactly
the same because the data is
randomly generated.

Figure 3.8 Result of a multidate event count with SQL (listing 3.2) on the simulated social network 
dataset-like event

CTE for the end dates of the 
windows for metric calculation 

Postgres function to 
generate a series of values
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eks 
.

SELECT account_id, metric_date, COUNT(*) 
    AS n_like_per_month               
FROM event e INNER JOIN date_vals d    
    ON e.event_time < metric_date                            
    AND e.event_time >= metric_date - interval '28 day'      
INNER JOIN event_type t ON t.event_type_id=e.event_type_id
WHERE t.event_type_name='like'
GROUP BY account_id, metric_date        
ORDER BY account_id, metric_date;    

Run listing 3.2 to see the result. If you are using the simulated churn data and the
Python wrapper program, run this command:

fight-churn/listings/run_churn_listing.py --chapter 3 --listing 2

The result of running listing 3.2 should be similar to figure 3.8, but not exactly the
same, due to randomness in the simulation.

3.5.2 Timing metric measurements

In this book, I generally demonstrate techniques using weekly updated measurements
for the same reason mentioned in section 3.4: human behavior generally follows weekly
cycles. But for products where the typical customer lifetime is very short (less than a few
months), it might be necessary to update the measurements more frequently. 

TIP For products where a typical customer lifetime is a few months or less,
you may need to update metrics every day. But for products where a cus-
tomer’s typical lifetime is several months or more, it is usually adequate to cal-
culate metrics once a week.

For products where customer lifetime is even longer, maybe many years, it might be
adequate to update the measurements only once a month (or at four-week intervals).

Alternatives to the generate_series function
In the code examples in this book, I use the Postgres function generate_series to
create sequences of dates that are equally spaced. However, other database sys-
tems do not support this function. The same goal can be achieved by creating a reg-
ular (permanent) table and filling it with the desired date sequence in a one-time load.
Also, if you search the internet for “alternatives to generate_series on XXX” where
XXX is the database or data warehouse of your choice, you might find system-specific
implementations. I apologize to non-Postgres users for the lack of generality, but the
generate_series function is useful for teaching because one short line of code is
all it takes.

Selects the account, 
time, and measurement

Joins on date_vals CTE 
to set the dates

Events are within four we
of the measurement date

Both the account ID 
and the date are in the 
GROUP BY clause.

Sorts the results
for readability
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This is a judgment call you need to make based on the dynamism of your situation; it
has to do with how long it takes a typical customer to see value from your product (or
fail to see value) and decide to churn (or not). In any event, all the same analytic tech-
niques apply, just on different time scales. Most people overestimate the need for real-
time (frequent) updates to measurements like these. Usually, retention and churn is a
war waged over weeks, months, or years; it is not common for it to come down to rapid
up-to-the-minute information and interventions. 

 Another important issue is when to make your measurements. As mentioned previ-
ously, consumer products are usually used most heavily on the weekends, while busi-
ness products are used most heavily during the week. So, it is usually best to make
consumer product measurements at the beginning of the week on Monday or midnight
Tuesday, so they capture the most recent weekend’s activity. For business products, it is
best to measure on the weekend, either Saturday or Sunday, so the measurement
reflects the most recent complete work week. 

TIP Measure products used for entertainment once a week on Monday or
Tuesday at midnight to capture the entire previous weekend’s activity. Mea-
sure products used for work on Friday or Saturday at midnight to capture the
entire previous five-day work week.

3.5.3 Saving metric measurements

Looking at listing 3.2 and the result of the query in figure 3.8, you might be thinking
this type of measurement could produce a lot of data. No problem! You have a data
warehouse, right? Metric calculations should be inserted back into the data warehouse
for storage until later analysis. A typical schema for storing metrics is illustrated in
table 3.3. The SQL code listings related to metrics use this schema. (See the book’s
code for detailed instructions on how to set up a database with this schema and popu-
late it with simulated data.) The following are the typical fields:

 account_id—An identifier for the account holder or user. Account IDs are
required to track metrics back to the customers who created them. This is the
first part of the composite primary key.

 metric_name_id—Metrics generally have many types, and there is typically a
foreign key to a separate table describing the types. This is the second part of
the composite primary key.

 metric_time—Every metric must have a timestamp, as described in section 3.5.1.
This is the third and final part of the composite primary key.

 value—A numeric value for the metric.
 user_id—In addition to account IDs, user IDs may be present in services where

multiple individuals are associated with a single account.

There is also an associated metric name table (shown in table 3.4) so that the string
names of the metrics are not duplicated (for performance reasons, as is standard
practice in a database or data warehouse). The schema for metrics is similar to the
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schema for events (table 3.1), which makes sense because both are fact tables in a
data warehouse. 

 One important difference between metrics and events is that metrics should have a
composite primary key consisting of the account_id, metric_name_id, and metric_time
fields. That means the combination of the account, the metric, and the time of mea-
surement must be unique: only one measurement for each account at any given time.
Another difference between the metric and event schemas is that while an event can
have no data fields or an arbitrary assortment of data fields associated with each
action, a metric always has exactly one data field: the metric value.

If your data warehouse supports inserting SELECT statement results directly back into
the data warehouse, then saving the metric results is easy, as illustrated in listing 3.3. The
code in listing 3.3 is just the same as that in listing 3.2 but with the INSERT keyword that
turns it into an SQL INSERT statement. If your database does not support INSERT SELECT
statements, then the normal practice is to save the result from a query like listing 3.2 in
a delimited (comma-separated values) text file and then load that back into the data
warehouse using whatever mechanism the data warehouse provides.

WITH date_vals AS (      
    SELECT i::timestamp AS metric_date 
    FROM generate_series('2020-01-29', '2020-04-16', '7 day'::interval) i
)
INSERT INTO metric 
  (account_id,metric_time,metric_name_id,metric_value)    

Table 3.3 Typical metric data schema

Column Type Notes

account_id integer or char Composite primary key 1

metric_name_id integer or char Composite primary key 2; foreign key for metric_name

metric_time timestamp Composite primary key 3

value float

user_id integer or char Optional

Table 3.4 Associated metric name data schema

Column Type Notes

metric_name char Unique

metric_name_id integer or char Key for metric_name

Listing 3.3  Inserting metric calculations into the data warehouse

This CTE contains the 
dates for the calculation.

Inserts the result of 
the SELECT into the 
metric table
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SELECT account_id, metric_date, 0,
    COUNT(*) AS metric_value                      
FROM event e INNER JOIN date_vals d                      
    ON e.event_time < metric_date 
    AND e.event_time >= metric_date - interval '28 day'
INNER JOIN event_type t ON t.event_type_id=e.event_type_id
WHERE t.event_type_name='post'
GROUP BY account_id, metric_date;

Run listing 3.3 and see that it writes to your own database schema. If you are using the
simulated data and the Python wrapper program, use the command

fight-churn/listings/run_churn_listing.py --chapter 3 --listing 3

Note that there is no output other than the line printed by the Python wrapper pro-
gram. The result is that data is saved in the database. You should select the result from
the database with a query against the metric table: for example, SELECT * FROM metric
limit 10;. The result of such a query should look like the sample in figure 3.8. 

 Remember that you can run this listing only once, unless you change the configu-
ration or clean the results out of the database. After you have inserted results for one
metric for particular accounts on particular dates, you can’t reinsert new results for
the same accounts and dates. If you insert values for a new metric, you also need to
make a one-time insert into the metric name table (table 3.4). This statement is short
and well known to anyone with basic SQL knowledge, but sample code is shown in list-
ing 3.4 for the sake of completeness. 

 If you inserted a metric with listing 3.3, you must also insert the name by running
listing 3.4 to run later listings in this chapter. Run listing 3.4 using the Python wrapper
program and the parameter --listing 4, or make an equivalent insert through an
SQL tool of your choice. Note that you should never insert the same metric name or
ID twice. (In a relational database, a key constraint should prevent this. The best prac-
tice in a relational database is to insert the metric name first and use a foreign key
constraint on the metric table to prevent loading metrics with no name.)

INSERT INTO metric_name ('like_permonth',0) ON CONFLICT DO NOTHING;

Before moving on, I want to call your attention to the fact that the metric calculation
in listing 3.3 does not insert zeros for accounts with no events. This is a natural prod-
uct of the inner join on events, and you might not have paid attention to it. It is not
much more difficult to define a count metric that produces zeros for accounts with no
events, but storing zero-count metrics scales badly when the number of accounts is
large, and events can be rare. You could even end up storing mostly zeros! The
approach I take is to not store the zeros on counts in the data warehouse; then, during
the analysis phase (beginning in the next chapter), I generate zeros when needed to
analyze accounts with no events.

Listing 3.4 Inserting a metric name into the data warehouse

Includes the ID for 
the metric, which 
we assume is 0

The rest of the SELECT 
statement is the same 
as listing 3.2.
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3.5.4 Saving metrics for the simulation examples

By running listings 3.3 and 3.4, you should have inserted one event count metric for
the number of likes into the database and a name in the metric_name table: likes
_permonth. There are seven more events in the simulated social network dataset: dis-
like, post, new friend, unfriend, adview, message, and reply. The metrics on these
events are used for examples in the rest of this chapter and the book, so you should
insert them into your own database before moving on. To make it easy to do, the list-
ing wrapper program includes the required alternative versions of listings 3.3 and 3.4.
To run them, add the --version flag and a list of version numbers to the execution
command. Also, you can run listings 3.3 and 3.4 together by listing both numbers after
the --listing flag. To run listings 3.3 and 3.4 and insert the next seven count metrics
for the simulation, use this command with the wrapper script:

fight-churn/listings/run_churn_listing.py --chap 3 --listing 3 4 
   --version 2 3 4 5 6 7 8

To insert so many metrics will take at least 10 minutes on most systems, so this is a
good time to take a coffee break. (You might want to run just one first, to see how long
it takes on your system.) Note that the prior runs of listings 3.3 and 3.4 were consid-
ered version 1, so the additional metrics start at version 2. More instructions for run-
ning the listings are in the README file at the root of the GitHub repository. 

3.6 Measuring totals and averages of event properties
So far, we’ve looked only at metrics that are simple counts of events; but when events
have data in additional fields, you will probably want to summarize that data in the
metric. The most typical case is when an event has a numeric value associated with it.
Some of the most typical cases are as follows:

 The event has a duration in time such as the length of a session or playback of
some media.

 The event has a monetary value such as a retail purchase or an overage charge.

In such scenarios, the most common metrics are one of these:

 The total value of all the events
 The average value per event

Either one of these (and many others) can be calculated with similar SQL, shown in
listing 3.5 for the case of a total, assuming the events have a field called time_spent.
The metric represents the total time each user spends in this type of session during a
four-week period. The steps in the metric calculation are as follows:

1 Choose the sequence of dates to make the measurement.
2 For each measurement date, select the events within the time window associ-

ated with that measurement.
3 Sum the time-spent field from the events grouped by account and measure-

ment date.
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The SQL is almost identical to listing 3.2 for the event count metric. The only differ-
ence is in the SELECT statement, where rather than counting the number of events
with the COUNT(*) aggregate function, the SQL sums the total of the time_spent
field with the aggregate function SUM(time_spent).

 Versature (introduced in chapter 1) is a provider of unified telecommunication
services for businesses. As a unified communications provider, one of its most import-
ant events is voice calls that have a duration stored in a field attached to each event. A
few lines of example output from running listing 3.5 on Versature’s local-call event are
shown in figure 3.9. The result in figure 3.9 appears similar to the output of count
metrics in figure 3.8, but the metric value is not the count of events in the time win-
dow: it is the total of the time-spent quantity field in those events.

At the time of this writing, the default simulated data does not include event proper-
ties, so you can’t run this on simulated data out of the box. That said, the simulation
code can be extended to include event properties. I encourage you to do so and then
make a pull request to share your work. Although you cannot run listing 3.5 on the
simulation, it is provided as an example to use with your own data that includes event
properties.

WITH date_vals AS (    
    SELECT i::timestamp AS metric_date 
    FROM generate_series('2020-01-08', '2020-12-31', '7 day'::interval) i
)
SELECT account_id, metric_date::date, 

Listing 3.5 Measuring a sum of an event property

account_id metric_date local_call_duration

1 2020-01-07 140

1 2020-01-14 598

... ... ...

2 2020-01-07 117

2 2020-01-14 766

... ... ...

3 2020-01-07 692

3 2020-01-14 2586

... ... ...

Multiple rows of output
appear for each account.

The data warehouse event
record for a local call
contains a field that stores
the duration of the call.

The metric values calculate
the total call duration in a
rolling four-week window.

Figure 3.9 Result of total duration SQL listing 3.5 for Versature's local-call event

This CTE contains the 
dates for the calculation.
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    SUM(duration) AS local_call_duration     
FROM event e INNER JOIN date_vals d       
    ON e.event_time < metric_date 
    AND e.event_time >= metric_date - interval '28 day'
INNER JOIN event_type t ON t.event_type_id=e.event_type_id
WHERE t.event_type_name='call'     
GROUP BY account_id, metric_date
ORDER BY account_id, metric_date;

3.7 Metric quality assurance
Now that you’ve learned how to calculate a few metrics, I need to take a step back and
teach you some basic techniques to check the results. In the previous sections, I have
shown you only a few examples of the output results, but spot-checking a few lines of
results is not an adequate method for assuring the quality of behavioral metrics. In
case you didn’t catch the last sentence, let me repeat.

WARNING Spot-checking a few rows of results is not an adequate method of
assuring the quality of behavioral metrics. 

Why? You can see from a few lines of code that the formula is correct, right? But your
concern is not just the correctness of the code, as in an ordinary programming proj-
ect. Your concern is also problems like missing or bad data in some accounts but not
others, which you would miss by just spot-checking a few rows. There are many ways to
assure the quality of behavioral metrics, and I will present a few right here, along with
suggestions for what to do about some common problems.

3.7.1 Testing how metrics change over time

One important way to check metrics for problems is to look at how the results change
over time. This can be done with an aggregate query that selects the count, average,
minimum, and maximum separately for each date. This doesn’t tell you everything
about the values of the metric, but it should alert you to any major issues because such
problems usually result in unusual movements in one of these summary statistics. An
example of a plot of this result is shown in figure 3.10, which was created for the
like_per_month metric from the simulated social network. The random simulation
data shows less variability than a real churn dataset, so I’ll show you real examples
from case studies after a quick look at the code in listings 3.6 and 3.7. As you will see,
one listing is a SQL SELECT statement to get the data from the database, and the other
is a short Python listing to make the plot.

 Listing 3.6 shows a query to select the count and average value of one metric over the
entire range of dates calculated. Note that listing 3.6 takes a slightly indirect approach:

1 Create a CTE of the dates to check.
2 Create a CTE of the metric being tested.
3 Use an outer join to calculate the result. 

Assumes the event has a duration 
data field, and SUMs over events

The date criterion is the 
same as in listing 3.2.

Otherwise the SELECT 
statement is the same as 
for the count metric.
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It might seem like there is a simpler alternative, which is to make a single aggregate
SELECT statement on the metric table, grouping by the metric_time column. The rea-
son for the indirect approach is that it gives a result even for days when no metrics
were calculated: for a date with no metrics, the result is null for the average and zero
for the count. Rows like that in the result make it easy to detect days when no metrics
at all were calculated. In contrast, if an aggregate query were made on the metric table
alone, there would be no result at all for days when there were no metrics. When miss-
ing days don’t produce rows in the result, it is easy to miss days when no metrics were
calculated.

TIP When you quality-check metric results, always use methods that make it
obvious when results are not produced in addition to when bad results are
produced. That means picking the dates to check independently from the
data being checked.

Run listing 3.6 on the simulated data using the Python wrapper program with these
arguments:

--chapter 3 --listing 6

WITH
date_range AS (       

Listing 3.6 Measuring the average, min, max, and count of a metric over time
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Figure 3.10 Metric quality assurance using time-series statistics

This CTE contains the 
dates for the calculation.
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Lo

Dat
    SELECT i::timestamp AS calc_date 
    FROM generate_series('2020-04-01', '2020-05-06', '7 day'::interval) i
), the_metric AS (              
    SELECT * FROM metric m
    INNER JOIN metric_name n ON m.metric_name_id = n.metric_name_id
    WHERE n.metric_name = 'like_per_month'
)
SELECT calc_date,  AVG(metric_value), COUNT(the_metric.*) AS n_calc,
       MIN(metric_value), MAX(metric_value)     
FROM date_range LEFT OUTER JOIN the_metric 
    ON calc_date=metric_time      
GROUP BY calc_date    
ORDER BY calc_date     

The code to make the metric QA plot in figure 3.10 is in listing 3.7. To begin, listing 3.7
loads the result of the query (listing 3.6) into a Pandas DataFrame. After that, the list-
ing uses the matplotlib.pyplot package to draw and save the plot. Because there are
four nearly identical subplots, a helper function is used to make each one.

import pandas as pd
import matplotlib.pyplot as plt
from math import ceil

def metric_qa_plot(qa_data_path, metric_name,**kwargs):     
   metric_data_path = qa_data_path + '_' 
      + metric_name + '.csv'                            
   qa_data_df=pd.read_csv(metric_data_path)     
   plt.figure(figsize=(6, 6))               
   qa_subplot(qa_data_df,'max',1,None)     
   qa_subplot(qa_data_df,'avg',2,'--')
   qa_subplot(qa_data_df,'min',3,'-.')
   qa_subplot(qa_data_df,'n_calc',4,':')
   plt.title(metric_name)              
   plt.gca().figure.autofmt_xdate()

   save_to_path=metric_data_path.replace('.csv','.png')    
   print('Saving metric qa plot to ' + save_to_path)
   plt.savefig(save_to_path)
   plt.close()

def qa_subplot(qa_data_df, field, number, linestyle):
   plt.subplot(4, 1, number)
   plt.plot('calc_date', field, data=qa_data_df, marker='', 
      linestyle=linestyle, color='black', linewidth=2, label=field)
   plt.ylim(0, ceil(1.1 * qa_data_df[field].dropna().max()))
   plt.legend()

Listing 3.7 Plotting the metric QA stats over time

Selects the metrics into a 
CTE for the final SELECT

Selects the average and 
number calculated with 
aggregate functions

Left outer join so the 
query has a result 
for every day Groups by calc_date 

Orders by 
calc_date to 
make the 
result more 
readable

Takes kwargs for
default arguments

from the SQL listings

This is the file saved 
by listing 3.6.

ads the
data file

into a
aFrame

Opens a
figure Uses the helper 

function to make 
subplots

Annotates 
the plots

Saves the 
plots
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Note that you run the Python listing the same way as the SQL listings. To run listing 3.7,
use the following command to the Python wrapper program:

fight-churn/listings/run_churn_listing.py --chap 3 --listing 7 

The program makes a printout showing the location of the figure it saved. For example:

Saving metric qa plot to ../../../fight-churn-output/socialnet7/
socialnet7_metric_stats_over_time_like_per_month.png

It should be equivalent to figure 3.10. If you want to run the QA on the other metrics,
there are other prepared versions of the command configuration for you to use. First,
use this command to extract the data for all the metrics:

run_churn_listing.py --chap 3 --listing 6 --version 2 3 4 5 6 7 8

The following command makes the plots for the other metrics:

run_churn_listing.py --chap 3 --listing 7 --version 2 3 4 5 6 7 8

3.7.2 Metric quality assurance (QA) case studies

Figure 3.11 illustrates the result of running the metric QA query shown in listing 3.6 on
one of the Klipfolio application metrics: the count of Klip overlay events per month
(when a user has applied a layer over a Klip). Figure 3.11 shows that for real metrics, the
results for the average and maximum aren’t as smooth as for the simulation.

 Figure 3.12 illustrates one example of a QA result when something is wrong: missing
data was simulated by deleting one month of data for an event. (For an explanation of a
regular metric QA, see figure 3.11.) Broadly (introduced in chapter 1) is a mobile-first
communications platform that ensures businesses looks great online. A customer-
promoter event occurs when a customer writes a positive review, and customer-promoters
per month is an important metric of customer success for the product. Normally, the
average and number calculated for the metric are mildly variable over the year, but
when data is missing, both of these QA measurements fall. They continue to fall until
the metric calculation window passes the period of missing data. The maximum value of
the metric is normally more varied, but in this case, the fall due to the missing data is
even greater.

 When data for an event is missing, the maximum, average, and number calculated
for a metric all decline. If the missing period were longer, those values would reach
zero when there are no events in the metric measurement window; as it is, the period
used to calculate the metric is longer than the period of the missing data, so the met-
rics do not all go to zero.
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Add_Klip_overlay_PerMonth
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Figure 3.11 Results of a time-series QA on a healthy metric for Klipfolio
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Figure 3.12 Results of a time-series QA on a metric with missing event data for Broadly
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Figure 3.13 illustrates a second example of a QA result for Versature, where some-
thing is actually wrong: extreme values were inserted into an event property field. As
mentioned earlier, a local-call event is logged in the database when a customer places
a local call, and the total local-call time summed over a three-month period is an
important metric for Versature’s accounts. Normally, the average and maximum for
the metric are pretty constant over the year, with an increase during the end of the
year. But when there are extreme values in the duration field, both QA measurements
jump. The impact of the bad data is greatest in the maximum values and more muted
in the average. The impact on the average value could almost be mistaken for normal
variability, except for the sudden and discontinuous nature of the change. The
extreme field values have no impact on either the number calculated or the minimum
values. If the extreme values were negative, then the impact would show up as a mini-
mum rather than a maximum value.

Figure 3.13 illustrates the impact of erroneous extreme values on a metric calculation
by showing the QA result (on the left) before and after several extreme amounts in
the local-call duration data are inserted into the event database (on the right). When
there are extreme (positive) values in an event data field, the biggest impact is on the
maximum value, and there is more of a muted impact on the average value. If the
extreme outliers were negative, the impact would be on the minimum value, which is
unaffected in this case. The jump in the metric values lasts as long as the outliers are
in the metric calculation window.

QA of normal local calls QA with one day of extreme values
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Extreme jump
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Figure 3.13 Example results of time-series QA on a metric with extreme values for Versature
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3.7.3 Checking how many accounts receive metrics

Another important question for QA is what percentage of the total population of active
accounts has each metric. Listing 3.6 looks at the number of accounts with the metric
over time, which can show temporal anomalies, but it would not detect an error where
some accounts never have events for a metric. Checking the fraction of customers that
receive a metric value and seeing whether it is lower or higher than you expect is an
important test. 

 The SQL in listing 3.8 calculates what percentage of all active accounts received a
result for each metric in a given time range. The average, minimum, and maximum val-
ues are also calculated. An example of the result for running listing 3.8 for the simulated
social network is shown in figure 3.14. Most metrics cover nearly all accounts (90%+),
except for unfriend_permonth, which only 59% of accounts have received. Does that
seem correct, or is it more likely a data problem? It might be correct because you expect
most people to post and view ads every day but not to unfriend people frequently.

The steps in calculating the percentage of accounts with the metric are as follows:

1 Pick a time frame. The query makes one overall measurement for this window
(not a day-by-day calculation like listing 3.6).

2 Count the number of accounts that had active subscriptions in the time window.
3 Count the number of accounts that had each type of metric in the time window.
4 Calculate the percent of accounts that had each type of metric by dividing the

result of step 3 by the result of step 2.
5 Measure other statistics of the metrics in the time window.

metric_name
count_with

_metric
n_account

pcnt_with

_metric

avg_

value

min_

value

max_

value

earliest_

metric

last_

metric

account_tenure 13714 13747 100%

100%

100%

100%

100%

58.86 0 130 2/2/20 5/10/20

adview_per_month 13684 13747 175.75 1 9545 2/2/20 5/10/20

dislike_per_month 13659 13747 99% 75.38 1 5403 2/2/20 5/10/20

like_per_month 13693 13747 411.11 1 30401 2/2/20 5/10/20

message_per_month 13683 13747 224.71 1 18009 2/2/20 5/10/20

newfriend_per_month 13366 13747 97% 12.69 1 271 2/2/20 5/10/20

post_per_month 13686 13747 184.40 1 8663 2/2/20 5/10/20

reply_per_month 13598 13747 99% 75.82 1 6820 2/2/20 5/10/20

unfriend_per_month 8109 13747 59% 1.16 1 5 2/2/20 5/10/20

Almost all metrics were calculated for all accounts, but only
59% of accounts had the metric for unfriend per month.

Other summary stats are
shown for QA purposes.

Figure 3.14 Result of counting the percent of accounts with a metric (listing 3.8) for the simulated 
dataset
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The SQL in listing 3.8 uses two common table expressions (CTEs):

 date_range—Sets the start and end date for the calculation
 account_count—Calculates the total number of accounts active within the time

frame

The final result is calculated by an aggregation to count the number of accounts with
events and divide that by the result of the account_count CTE to get the percentage.

WITH date_range AS (    
   SELECT  '2020-04-01'::timestamp AS start_date, 
      '2020-05-06'::timestamp AS end_date
), account_count AS (                            
   SELECT COUNT(distinct account_id) AS n_account      
   FROM subscription s INNER JOIN date_range d ON
   s.start_date <= d.end_date        
   and (s.end_date >= d.start_date 
      or s.end_date is null)         
)
SELECT metric_name, 
   COUNT(distinct m.account_id) AS count_with_metric,     
   n_account AS n_account,     
   (COUNT(distinct m.account_id))::float/n_account::float 
       AS pcnt_with_metric,         
   AVG(metric_value) AS avg_value,    
   MIN(metric_value) AS min_value,     
   MAX(metric_value) AS max_value       
   MIN(metric_time)  AS earliest_metric,
   MAX(metric_time) AS last_metric
FROM metric m CROSS JOIN account_count    
INNER JOIN date_range ON       
   metric_time >= start_date
   and metric_time <= end_date
INNER JOIN metric_name  n ON m.metric_name_id = n.metric_name_id
INNER JOIN subscription s 
    ON s.account_id = m.account_id         
    AND s.start_date <= m.metric_time
    AND (s.end_date >= m.metric_time or s.end_date is null)
GROUP BY metric_name,n_account
ORDER BY metric_name;

Run listing 3.8 to confirm the result and check that all your metrics have calculated
properly. If you are using the Python wrapper program, run it with the arguments
--chapter 3 --listing 8. The result is saved in a CSV file and should look similar to
figure 3.14. 

Listing 3.8 Measuring the percent of accounts with metrics (metric coverage)

This CTE sets the start 
and end for the QA. This CTE counts the 

number of accounts.

Counts the number 
of accounts with 
subscriptions

Selects all accounts 
that were active

Counts the number 
of accounts that had 
values for the metric

om the
ccount
nt CTE

Divides the count of the metric 
by the count of subscribers

The
tandard
gregate
unction
for the

average
The standard aggregate 
function for the min

The standard aggregate 
function for the max

Cross-join that duplicates the 
account count on every row

Limits to the time period 
specified by the date-range CTE

Sets a join on 
subscriptions
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3.8 Event QA
In the last section, I showed you how to QA metrics and the percentage of accounts
with a metric, but what about the events? If you check the events first, you have a bet-
ter idea of what you are going to get with the metrics, and it might even change the
way you decide to calculate the metrics. (I show some techniques to do this in the next
section.) You’ve seen how to calculate a few metrics, but I am teaching this out of
order from the way you would do it in practice.

TIP Spend some time checking the quality of your event data before you dive
into calculating metrics. This book teaches the steps in a mixed-up order to
show you the end result first. The correct order is (1) event QA (this section),
(2) calculate metrics (sections 3.5 and 3.6), and (3) metric QA (section 3.7).

3.8.1 Checking how events change over time

Figure 3.15 demonstrates a simple time-series summary QA on an event: counting the
total number of events per day over all accounts. You already saw that most real events
follow weekly cycles (figure 3.5), and the simulation was designed to reproduce that
kind of behavior. In a moment, I’ll show you the results from more case studies, but
first let’s look at the code that produces such figures (listing 3.9).

Listing 3.9 takes advantage of the techniques you saw in earlier sections. A CTE with a
sequence of generated dates (described in section 3.4) is used in an outer join with
event data to ensure that every date has a result from the QA query, even if there are
no events.

Simulated social
network events are
concentrated on
Friday through Sunday;
weekdays are less
busy. But there is a
lot of day-to-day
variability.

There is a gradual
increase in the
number of events
due to the increasing
number of accounts.

Like event count
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20000

10000

0

2020-02-01

2020-03-01

2020-04-01

2020-05-01

2020-06-01

Figure 3.15 Result of counting like events per day (listing 3.9) on the simulated dataset 
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date_range AS (     
    SELECT i::timestamp AS calc_date 
    FROM generate_series('2020-01-01', '2020-12-31', '1 day'::interval) i
)
SELECT event_time::date AS event_date,     
    COUNT(*) AS n_event                      
      /*, SUM(optional_field) AS total _field */     
FROM date_range LEFT OUTER JOIN event e 
    ON calc_date=event_time::date          
INNER JOIN event_type t ON t.event_type_id=e.event_type_id
WHERE t.event_type_name='like'        
GROUP BY event_date       
ORDER BY event_date

Run listing 3.9 on the simulated dataset to confirm that it works with your data. Doing
so makes a CSV file with one event count per row. The program prints a line saying
what it has done:

Saving: ../../../fight-churn-output/socialnet7/socialnet7_events_per_day_like.csv

The script to make the plot (like figure 3.15) is shown in listing 3.10. This listing uses
a Pandas DataFrame to load the data and a standard matplotlib.pyplot plot. To
make the dates on the x-axis readable, a filter is created using a lambda that selects
dates ending in 01, which are the first of each month (2020-02-01, 2020-03-01, etc.).
That list of filtered dates is passed to the matplotlib.pyplot xticks function.

import pandas as pd
import matplotlib.pyplot as plt
from math import ceil

def event_count_plot(qa_data_path, event_name,**kwargs):
   event_data_path = qa_data_path +
       '_' + event_name + '.csv'                 
   qa_data_df=pd.read_csv(event_data_path)   
   plt.figure(figsize=(6, 4))
   plt.plot('event_date', 'n_event', data=qa_data_df, 
       marker='', color='black', linewidth=2)          
   plt.ylim(0, 
       ceil(1.1*qa_data_df['n_event'].dropna().max()))     
   plt.title('{} event count'.format(event_name))
   plt.gca().figure.autofmt_xdate()                  
   plt.xticks(list(filter(lambda x:x.endswith(("01")),
       qa_data_df['event_date'].tolist())))            

Listing 3.9 QA check of events per day

Listing 3.10 Plotting the number of events per day

This CTE contains the 
dates for the calculation.

asts
vent
s to
ates Sums the 

number of events

If the events have 
numeric properties,
sums the properties

A left join on the date series 
ensures a result for every date.

Selects the event that 
is being checked

Groups by 
calculation date

The path to the data 
saved by listing 3.9

ads the
a into a

taFrame

Plots the number of 
events vs. the date

Sets a y-axis limit based 
on the maximum

Rotates
e x-axis

te labels
Makes a list of first-of-month 
dates for x-axis labels
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   plt.tight_layout()                           
   plt.savefig(event_data_path.replace('.csv',
        '_' + event_name + '_event_qa.png'))    
   plt.close()

If you are using the Python wrapper program, you can run listings 3.9 and 3.10 together
to create the data and the plot with one command:

fight-churn/listings/run_churn_listing.py --chap 3 --listing 9 10 

The program prints the location of the figure it saved; it should be equivalent to fig-
ure 3.10. If you want to run the QA on the other metrics, there are other prepared ver-
sions of the command configuration for you to use. First use this command to create
the counts for all of the events:

run_churn_listing.py --chap 3 --listing 9 --version 2 3 4 5 6 7 8

Note that this might take a little longer than the QA on the metrics because it has to
aggregate events for every day. The following commands will make the plots for the
other metrics:

run_churn_listing.py --chap 3 --listing 10 --version 2 3 4 5 6 7 8

To illustrate how you can discover missing events, figure 3.16 shows a real case study
(from Broadly) of the output from running the QA query in listing 3.9 on the true
customer-promoter events (when a customer writes a positive review) and also when
one month of events was deliberately deleted (the same deletions used in figure 3.12).
It is usually easy to notice such problems if you take the time to look, although it can

Ensures that all axis 
labels are visible

Saves the result

QA with one month missing dataQA of normal customer-promoter events
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0

One month of event data was deleted to illustrate the
impact on the QA. Missing data is readily apparent as a gap.

Normal weekly cycle of events in clean data

Figure 3.16 Counting events per day for Broadly customer-promoter events
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be more of a challenge to recognize the problem if data is missing for a short amount
of time.

 To illustrate how you can discover outlier values in an event field, figure 3.17 shows
a second example (for Versature) of the output of running the QA query in listing 3.9
with data in its true state and also after extreme values were deliberately added. These
are the same changes used to make the example in figure 3.13. A local-call event is
logged in the database when a customer places a local call, and the database has a
field that stores the duration of the call. Extreme values in an event field don’t affect
the count of events but are usually obvious if you plot the sum of the event field (the
total call duration) or some other aggregate function of the event field.

3.8.2 Checking events per account

Another important check on events is to look at the overall number of events and how
many there are per account. You should do this to assess the overall number and type
of events. This is similar to checking the percent of accounts with metrics, as shown in
the previous section. 

 An example of the output of this check is shown in figure 3.18 for the social net-
work simulation. The figure shows that the average account has around 75 like events
per month but fewer than one unfriend event. This explains why there were fewer

QA of normal local calls

count count

QA with one day of extreme values

Normal
weekly
cycle of
events

Calls with extreme
outliers were
inserted into the
data for illustration.
The outliers are
obvious in the sum
of total call time
per day.

True high
use period

sum (quantity) sum (quantity)

Count per day
is unchanged.

Mar May JanJul JulSep SepNov NovJan Mar May JanJan Jul Sep Nov

Mar May JanJul JulSep SepNov NovJan Mar May JanJan Jul Sep Nov

Figure 3.17 QA of events per day for Versature local calls
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accounts with unfriend-per-month metrics (figure 3.13). Only around one-third of the
accounts had a nonzero value for the metric, which is consistent with the events per
account per month.

Listing 3.11 contains the SQL to calculate the number of events per account and con-
vert it into a count per month. The steps in the calculation are as follows:

1 Pick a time window.
2 Count the number of accounts that had active subscriptions in the time window.
3 Count the total number of events in the time window.
4 Divide the total number of events twice:

a Divide the total number of events by the number of accounts.
b Divide the total number of events by the number of months that were

measured.

This procedure results in an average count of events per account per month. The start
of the calculation is the same as that in listing 3.8, which calculated metrics per
account. The only new trick here is in the final SELECT statement that makes the mea-
surement: it also selects the number of months in the time frame and divides the
result by that.

WITH 
date_range AS (     
    SELECT  '2020-01-01'::timestamp AS start_date, 
        '2020-12-31'::timestamp AS end_date
), account_count AS (                              
    SELECT COUNT(distinct account_id) AS n_account
    FROM subscription s INNER JOIN date_range d ON
     s.start_date <= d.end_date

Listing 3.11 Measuring the average number of events per account

event_type_name n_event n_account

events_per

_account n_months

events_per

_account_

per_month

like 3,586,812 13,723 261.4 3.5 74.7

message 2,484,742 13,723 181.1 3.5 51.7

post 1,535,130 13,723 111.9 3.5 32.0

adview 1,522,256 13,723 110.9 3.5 31.7

reply 915,902 13,723 66.7 3.5 19.1

dislike 598,919 13,723 43.6 3.5 12.5

newfriend 256,631 13,723 18.7 3.5 5.3

unfriend 11,747 13,723 0.9 3.5 0.2

Typical accounts
have dozens of
these events
per month.

Typical accounts
have less than
one unfriend
per month.

Figure 3.18 Result of counting events per account per month with listing 3.11 for the simulated 
social network

This CTE sets the start 
and end date for the QA.

This CTE determines the 
number of accounts.
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    AND (s.end_date >= d.start_date or s.end_date is null)
)
SELECT event_type_name, 
    COUNT(*) AS n_event,    
    n_account AS n_account,           
    COUNT(*)::float/n_account::float 
        AS events_per_account,      
    extract(days FROM end_date-start_date)::float/28 
        AS n_months,                         
     (COUNT(*)::float/n_account::float)/
         (extract(days FROM end_date-start_date)::float/28.0)  
             AS events_per_account_per_month          
FROM event e cross join account_count           
INNER JOIN event_type t ON t.event_type_id=e.event_type_id
INNER JOIN date_range ON         
    event_time >= start_date
    AND event_time <= end_date
GROUP BY e.event_type_id,n_account,end_date, 
    start_date, event_type_name             
ORDER BY events_per_account_per_month desc;     

This section is about QA, which means checking for problems; but in this case, consid-
ering the number of unfriend events from the example, it seems there is no problem.
Maybe it’s just that people don’t unfriend their friends that much. 

 When you see a low number of events per account per month, you need to use
your knowledge of the product to know whether it is a problem. There is no absolute
standard across all products, because there are many products that should see near-
constant user interaction, while there are others where you would expect interactions
with the product only a few times a year. If you don’t have the expertise to judge
whether the number of events per account is low or high, then you need to talk to
other people in your organization and get them to help. That might not be advice
that some data people want to hear, so let me repeat it.

TIP If your knowledge of the business is not good enough to judge whether
the observed counts of events per month is reasonable, then you must get
help from someone in your organization who does. Do this before you spend
a lot of time calculating behavioral metrics and doing churn analysis.

A table like that in figure 3.18 is usually sufficient to communicate this information to
the business. If there are a lot of events, you should sort them by frequency to show
the most frequent events at the top, because those are the ones your audience is most
likely to be familiar with. Even someone who is familiar with their product might not
know about rare events. This is doubly true if the events do not have intuitive type
names, which is often the case for software and internet services where the event can
be a user hitting a particular URL.

Counts the total 
number of events

Number of accounts from 
the account_count CTE
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counts to
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r account
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number of months

Cross join that duplicates 
the account count on 
every row
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 Run listing 3.11 to confirm the result on your own data. If you are using the Python
wrapper program, do this by changing the argument to --chapter 3 --listing 11.
The result will look similar to figure 3.18 but not exactly the same, due to the random-
ness in the simulation.

3.9 Selecting the measurement period for behavioral 
measurements
Let’s say you know this business, and you know that an event like unfriend is rare, so
seeing a small number of events per account per month like the unfriend event in fig-
ure 3.18 is okay. Does that mean everything is okay with having only 59% of accounts
getting a value for the metric in any given month? (That result is in figure 3.14.) Not
quite. There isn’t anything wrong with the data, but there is something that could be
better about the measurement. 

 Here’s the idea: if an event is rare, use a longer period in the metric definition.
That way, you can catch more customers in the measurement and can compare more
accounts on that behavior. Remember that the metric calculation in listing 3.2 uses
only a 28-day (four-week) period. As it stands, all accounts that had no events of a rare
type in the last 28 days have 0 in the metric. On the other hand, if you measure the
metric with a longer period, there might be some accounts that have the event only
every couple of months, which were missed with the 28-day period but will be picked
up with the longer period. At the same time, there might be some accounts that have
the rare event every month, and they will have an even higher count of the metric if
you use the longer period.

TAKEAWAY Use longer measurement periods when making metrics on rare
events.

Automatic anomaly detection for QA
It’s worth pointing out that there are methods to automatically detect data quality
problems like those mentioned in this section. Automatic detection of data problems
is a field known as anomaly detection. My approach of generating a bunch of plots
and viewing them manually is pretty inefficient in comparison! But the truth is, I never
bother with automatic anomaly detection for a typical churn analysis. For one thing,
if there are dozens of events and metrics (fewer than 100), it doesn’t take long to
look at all of them. I script the generation of a set of plots like the ones shown in this
section, and then I flip through them quickly with an image viewer. 

It’s easy to detect anomalies visually—arguably more effective than almost any algo-
rithm. The other reason I recommend the manual approach is that it’s a good way to
get to know your data. You might discover useful patterns or relationships that you
would miss if you relied on an algorithm. That said, if you have more than around 100
events or metrics, you might need to use a fully automated approach, but automatic
anomaly detection is beyond the scope of this book. 
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What’s a good period to choose? Like many things in fighting churn with data, there
is no strict rule; there are only guidelines. Choosing the measurement period is a
trade-off between the responsiveness of the behavioral metric to changes in time and
the sensitivity of the behavioral metric at picking up accounts with rare events.
Responsiveness of the behavioral metric means the metric for an account changes
rapidly if that account’s event level decreases or increases. For example, if you use a
one-year (365-day) period for calculating a metric and update it every day, then
each day, only 1/365 of the data going into the metric has changed. As a result, if
someone has a high level of the event in the earlier part of the year but the level has
fallen off to zero, it will take a long time before the person has a low value of the
metric. To summarize:

 Behavioral metrics with short time periods are more responsive to changes in
behavior but less sensitive at picking up accounts with low event levels.

 Behavioral metrics with long time periods are less responsive to changes in
behavior but more sensitive at picking up accounts with low event levels.

Which should you choose? Based on the frequency of events, I use a rule of thumb for
the minimum time period you should observe events to make a behavioral metric: pick
the period to be at least twice the time it takes for an average account to have one
event. But due to the weekly behavioral cycle that I mentioned in section 3.4, the
period should never be less than a week, no matter how frequent the events. And
(usually) you should never take a behavioral measurement longer than a year (more
about this in the moment). For example, if there is one event per account per month,
use at least two months for measurement. If there are two events per account per
month, it’s okay to go down to one month. By following this guideline, it’s likely that
most accounts have at least one event in the time period.

TIP The minimum time period for a metric should be at least twice the time
it takes an average account to have one event.

The minimum observation periods recommended by the rule of thumb are summa-
rized in table 3.5.

Table 3.5 Minimum behavioral measurement period (rules of thumb)

Events per account per month Number of months: one event Minimum measurement period

>8 < 0.1 1 week

8 0.125 1 week

4 0.25 2 weeks

2 0.5 1 month

1 1 2 months
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The behavioral measurement rules of thumb in table 3.5 set a minimum, and in gen-
eral, you shouldn’t measure behavior with longer than a one-year period. But what is a
good trade-off between responsiveness and sensitivity within that range? 

 For subscriptions with a fixed term like a month or a year, behavioral measure-
ments should be similar in time scale to the term of the subscription. If you sell one-
year subscriptions, you should probably use a one-year time period for behavioral
measurements; and if you sell a one-month subscription, you should use a one-month
time period for behavioral measurements. The reason for this is to make your behav-
ioral measurements reflect the experience that the customer received from the ser-
vice over the term of the subscription. That said, the experience of the service may be
most important near the end of the term, because that will be more immediate in the
customer’s mind when it is time for renewal. If you want to use something like three to
six months to measure behavior on a one-year subscription, that makes sense, but
don’t use a one-month metric for one-year subscriptions.

 What if the product has no fixed-term subscriptions? Then you should aim to
make your behavioral measurements using a period that is around one-quarter to one-
half of the typical time a subscriber remains active. If customers typically stick around
for six months, use a one- or two-month behavioral measurement. If a customer usu-
ally stays only one month, then make behavioral measurements over just a week or
two, subject to the minimum shown in table 3.5. The rationale here is that you should
make measurements on a short enough time scale that you have completed the mea-
surement period before the average customer might consider churning.

 You should scale the measurement period based on the frequency of the event.
That’s good advice, but it has one problem: if you choose different measurement peri-
ods for different events, it’s going to be confusing. This is especially true if you have a
lot of events. Do you have to set your observation period to be suitable for the rarest
event you are interested in? A problem with this approach is that if you use a lengthy
period to measure behavior, it takes a long time before you have a valid measurement
for a new account. In chapter 7, I show that you can have the best of both worlds:
measure some behaviors over long time periods and others over shorter periods and
still present them in an interpretable way as averages.

0.5 2 4 months

0.333 3 6 months

0.25 4 8 months

0.1666 6 12 months

< 0.1666 > 6 12 months

Table 3.5 Minimum behavioral measurement period (rules of thumb) (continued)

Events per account per month Number of months: one event Minimum measurement period
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3.10 Measuring account tenure
So far, we have considered behavioral measurements based only on events. But there
are important measurements of customers that are based not on events but instead on
subscriptions. The length of time an account has been a customer or active user is one
such measurement. I refer to the length of time an account has been a customer as
the account tenure rather than something along the lines of account age because age
can be confused with the actual age of a person (or company). 

 Account tenure is important in analyzing churn because it can relate to churn in
significant ways: there can be particular points in the customer life cycle when churn
is most (or least) likely, or churn can generally decrease (or increase) with longer
account tenure. I show you how to do those analyses in chapter 5; for now, you will
learn how to calculate account tenure.

3.10.1 Account tenure definition

Account tenure would be easy to calculate if every account had only one subscrip-
tion (or period of activity, if there are no formal subscriptions). This is the duration
of time from the start of the subscription to the time the tenure measurement is
made. But tenure calculations are more complicated in the multisubscription con-
text (or in “messy” subscriptions). You don’t just want the time since the current
subscription started, because the customer might have had earlier subscriptions in
an uninterrupted sequence. In that case, it makes sense to consider them all as one
big subscription for the tenure measurement. If the account was active in the distant
past and then churned, that would not count as an “old” customer because they
have not been active the whole time. If an old customer signs up anew after an
extended absence, they are more like a new customer, so tenure should measure
only the current subscription. Figure 3.19 shows an account tenure definition for a
hypothetical case of multiple subscriptions.

TimeSubscription 1 Subscription 2 Subscription 3 Subscription 4

Observation
time

Earliest
start

Allowed
gap

Large gap

Account tenure

Account tenure measures the length of time for which there
is a continuous subscription for a single account through one
or more subscriptions that can overlap or that can include short gaps.

A large gap between subscriptions
or no previous subscription marks
the earliest start date from which
the tenure is calculated.

Like any account
metric, account tenure
can be measured
relative to any
observation time.

Figure 3.19 Account tenure with multiple subscriptions
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At the same time, it is often a good idea to allow small gaps between subscriptions
and still consider it a continuous subscription for the tenure measurement. For
example, suppose an account fails to renew because the credit card on file was out-
of-date; the account subsequently updates the card and signs up again a few days
later. A few days or a one-week gap in the subscription probably should not alter the
tenure measurement because they are not really a newly signed-up customer. On the
other hand, if there is a multimonth gap (or longer) in the subscription, it is fairer
to consider the new subscription as being a fresh start for the customer and for the
tenure calculation. 

 The exact amount of gap required to consider an account new for tenure calcula-
tion depends on the business. For monthly subscriptions, a gap of up to a month is
usually acceptable. For annual subscriptions, gaps of a month or two or even up to
four can be considered short enough lapses in the subscription to still be ignored for
tenure calculation purposes.

DEFINITION Account tenure—The length of time a customer uses a product on
their current, uninterrupted sequence of subscriptions or their current unin-
terrupted period of activity, possibly including a relatively short time gap
between subscriptions or activity.

Figure 3.19 shows that at some observation time, the account is in the middle of its
fourth subscription. There is no gap between subscription 3 and subscription 4, a
small (allowable) gap between subscription 2 and subscription 3, and a large gap
between subscription 1 and subscription 2. The tenure is the time from the start of
subscription 2 up to the time when the observation is made.

 More details of a tenure calculation based on the illustration in figure 3.19 are
shown in figure 3.20. The tenure starts at 0 on the start of the first subscription and

Subscriptions Date Tenure

Subscription

1

1-Jan 0

15-Jan 14

1-Feb 31

15-Feb 45

1-Mar NULL

15-Mar NULL

Subscription

2

1-Apr 0

15-Apr 14

1-May 30

15-May 44

1-Jun 61

15-Jun 75

Subscription

3

1-Jul 91

15-Jul 105

Subscription
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15-Aug 136
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1-Oct 183
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Tenure starts at zero and
increases day by day.

Tenure is undefined
after churn.

Tenure starts
over on a new
subscription.

Tenure can ignore
short gaps, if such
gaps are rare.

Viewed in a time series, tenure increases
every day when the account is subscribed.

Figure 3.20 Example of an account tenure calculation
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increases by one each day until the first subscription ends in churn. After churn, the
tenure is not defined at all; it is not even zero. Tenure is defined and begins accumu-
lating again only when a new subscription starts. The calculation on any given date
counts the number of days since the relevant subscription start date. As with most met-
ric calculations, this calculation would be tedious or impossible to perform by hand
for every account. But, again, SQL provides a way to perform the calculation for arbi-
trarily complex subscription scenarios.

3.10.2 Recursive table expressions for account tenure

Calculating account tenure in the multisubscription case requires an advanced feature
of SQL known as recursive common table expressions (recursive CTEs). As the name implies,
recursive CTEs allow SELECT statements to run recursively when building a result set.
Recursive CTEs are similar to standard CTEs but differ in that they have two parts:

 A main or “anchor” SELECT statement that defines the columns of the CTE and
fills the table with an initial result set.

 A recursive SELECT statement that adds more rows to the CTE by running
repeatedly until no more rows are produced. The recursive SELECT statement
can reference both the current result set in the CTE and other tables that are
available in the schema.

That might sound abstract, but the problem of calculating account tenure from multi-
ple subscriptions will make a recursive SQL calculation concrete. Here is the recursive
strategy for finding the earliest start date of any subscription that is in an uninter-
rupted sequence with the current subscription, up to an allowed gap of one month:

1 Create the CTE by selecting the currently active subscription with the mini-
mum start date (if there are multiple currently active subscriptions) for every
account. 

2 Select any other subscriptions for the same account with earlier start dates and
end dates that are up to one month before the current earliest start date for the
same account.

If step 2 is repeated until there are no earlier subscription start dates, then the sub-
scription with the earliest start date in the CTE is the one you are looking for: the
earliest start date of any subscription that forms an uninterrupted sequence of sub-
scriptions with the current subscription. Finding the earliest subscription start date fits
easily into the framework of recursive CTEs.

 Figure 3.21 shows an example of how the recursive approach operates on the
hypothetical multisubscription scenario in figures 3.19 and 3.20. The following are
the steps for finding the earliest start date through recursion:

1 On initialization, the start date of subscription 5 (1-Sep) is entered into the
CTE table for this account, which is current because it starts before the current
date and has an end date after the current date.
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2 On the first iteration of the recursive step, the start date (1-Aug) of subscription
4 is entered into the CTE because its end date is after the start date of subscrip-
tion 5, but the start date is earlier.

3 On the second iteration of the recursive step, the start date of subscription 3
(1-Jul) is entered into the CTE because its end date is after the start date of sub-
scription 4, but the start date is earlier.

4 On the third iteration of the recursive step, the start date of subscription 2 (15-
Apr) is entered into the CTE because the gap is small and the end date of sub-
scription 2 is still close enough to the start date of subscription 3.

5 On the fourth iteration of the recursive step, no more rows are entered into the
table for this account because the end date of subscription 1 is too far from the
start of subscription 2. The recursive SELECT statement can make additional
results for other accounts, but this account is finished.

6 After the recursion completes, the minimum start date in the CTE for the hypo-
thetical account is the start date of subscription 2.

Step Subscription
Earliest

start
Explanation

1 Initialization Subscription 5 1-Sep Subscription 5 ends after the current date (15-Oct) and
starts before it. Earliest start is 1-Sep.

2 Recursion 1 Subscription 4 1-Aug Subscription 4 ends after the earliest start date
(1-Aug) and starts before it.

3 Recursion 2 Subscription 3 1-Jul Subscription 3 ends after the earliest start date
(1-Jul) and starts before it.

4 Recursion 3 Subscription 2 15-Apr Subscription 2 ends within the allowed gap before the
earliest start.

5 End Recursion NA NA The next earlier subscription ends more than the allowed
gap before the earliest start.

6 Minimum
(aggregation)

15-Apr The next earlier subscription (5) has an end date that
is more than the allowed gap before the current start.

Flow of
algorithm

1. Initialize
start: 1-Sep

2. Recursion
start: 1-Aug

3. Recursion
start: 1-Jul

Current
date

15-Apr 1-May 15-May 1-Jun 15-Jun 1-Jul 15-Jul 1-Aug 15-Aug 1-Sep 15-Sep 1-Oct 15-Oct

Subscription 4

Subscription 2 Subscription 3 Subscription 5

4. Recursion
start: 15-Apr

5. End
recursion

The initialization ( )1
of the common table
expression captures
the start date of
subscriptions that are
currently active (start
date before the current
date, end date after the
current date, or no
end date).

Recursive steps walk
backward through the
subscriptions for this
account until there are
no more subscriptions
that meet the criteria.
The end date must be
after or within the
allowed gap before the
earliest start date.

When the recursion is complete, a minimum aggregation returns
the earliest start and the difference between the earliest start
and the current date, which is the account tenure. For the example,
on 5 Oct, the account tenure is 83 days.1 1

Figure 3.21 Account tenure recursion calculation example
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Initialize
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The time from that earliest date to the present is the account tenure. This process of
identifying current subscriptions and working backward to the corresponding earliest
start date with a recursive SQL program allows the account tenure calculation to be
performed efficiently for any number of accounts and subscriptions.

3.10.3 Account tenure SQL program

Listing 3.12 shows the SQL that performs the account tenure measurements. Now that
you know the computation strategy, I will explain a few more details about the recursive
CTE with reference to the listing. First a note about recursive CTEs in general.

NOTE The RECURSIVE keyword appears after the WITH keyword for all CTEs
even though the first CTE might not be the recursive one. 

Turning to the details of listing 3.12:

1 The first CTE, date_range, sets the date of the tenure calculation. 
2 The second CTE, earlier_starts, is the recursive one. I chose the name

earlier_starts for it because it recursively finds earlier start dates for sub-
scriptions on the same account. 
a The first half of earlier_starts selects the minimum start date of any cur-

rently active subscription from the subscription table. To select active sub-
scriptions, the query uses the usual check that a subscription is active if it
starts before the calculation date and ends on some future date (or has no
defined end).

b After the first part of earlier_starts are some important SQL keywords.

NOTE Between the two parts of the recursive CTE is the UNION keyword. It
specifies that the results from the recursive query are merged without dupli-
cates with the results already in the CTE. The alternative, which is not used, is
UNION ALL, which preserves duplicates.

c The second, recursive part of earlier_starts finds subscriptions starting
earlier that also meet the end-date condition. To do so, it uses an inner join
between the subscription table and the current CTE result set. The recursive
part of the CTE joins on account IDs because the search for earlier start
dates is performed separately for each account. 

3 The final query after all the CTEs is an aggregation over the result in the recur-
sive CTE, selecting the earliest start date as well as calculating the days since the
earliest start in the current CTE.

WITH RECURSIVE date_range AS (                  
    SELECT '2020-07-01'::date AS calc_date            
),  earlier_starts AS (
    SELECT account_id, MIN(start_date) AS start_date      

Listing 3.12 Measuring account tenure with a recursive CTE

The RECURSIVE keyword 
goes at the beginning.

This CTE sets the date 
for which to calculate.

s with
dates
rrent
tions
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    FROM subscription INNER JOIN date_range  
        ON start_date <= calc_date
        AND (end_date > calc_date or end_date is null)
    GROUP BY account_id
    UNION     
    SELECT s.account_id, s.start_date      
    FROM subscription s INNER JOIN earlier_starts e 
        ON s.account_id=e.account_id           
        AND s.start_date < e.start_date     
        AND s.end_date >= (e.start_date-31)    
    
) SELECT account_id, MIN(start_date) 
    AS earliest_start,                
    calc_date-MIN(start_date) 
        AS subscriber_tenure_days          
FROM earlier_starts cross join date_range    
GROUP BY account_id, calc_date     
ORDER BY account_id;

Figure 3.22 shows an example of the result of running listing 3.12. The output shows
SELECTs from different ranges of accounts and their tenure. The calculation is made
for May 6, 2020, and at that point, the oldest subscribers go back to January 2020 and
have tenure of around 100 days. For more recent dates, there are new accounts that
have tenures of just a few days.

 Run listing 3.12 and see that you get a similar result on your own data. If you are
using the simulated data and the Python wrapper program, then you need to update
the parameter to listing 3.12. The result will look similar to figure 3.22.

 Listing 3.12 and figure 3.22 show the earliest start date to illustrate the tenure cal-
culation. In fact, the goal is to run the calculation like a metric and insert it into the
metric table so that the tenure calculations for a range of dates are available for use in
further metric calculations and analysis (discussed in later chapters). To insert the

s results
 the CTE
without

plication Inserts new account 
IDs and start dates

The new records must be 
for the same account.

Subscriptions that start before 
the one that was already entered

New records must have an end 
date that is within a short gap.

For each account, selects 
the earliest start date

The time from the earliest 
start to the calculation date

Cross join that duplicates 
the calc_date on every row

GROUP BY of all the 
nonaggregate terms in 
the SELECT

account_id earliest_start subscriber_tenure_days

0 2020-01-24 103

2 2020-01-06 121

... ... ...

11541 2020-03-01 66

11543 2020-03-20 47

... ... ...

16604 2020-05-01 5

16605 2020-05-02 4

Typical result of
running the
account tenure
calculation SQL
(listing 3. 0)1

Your result will not
be exactly the same
because the data is
randomly simulated.

Figure 3.22 Result of running the account tenure calculation
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account tenure calculation into the metric schema, a few changes are needed to make
listing 3.12 more like the other metric calculations:

 Make the calculation for a sequence of dates instead of just one calculation date
by using a sequence of dates in the calc_date CTE. 

 The calculation date must go in the recursive CTE SELECT statements and joins.
Otherwise, the recursive CTE is unchanged.

 Do not select the earliest start in the final SELECT; rather, select the calculation
date. This is the measurement observation timestamp for insertion into the
metric table.

 If your data warehouse supports INSERT SELECTs, the appropriate INSERT state-
ments are also needed (see listing 3.3).

A SQL program that has these modifications and that calculates the metric and inserts
it into the database is shown in listing 3.13. Run listing 3.13 to insert the metric (we
analyze it with the others in later chapters). If you are using the wrapper program to
run the listings, the command is

fight-churn/listings/run_churn_listing.py --chap 3 --listing 13

This inserts the account tenure measurement into your local database; you’ll have to
use a SQL query (or the metric QA query in listing 3.6) to check the result. Note that
as with listing 3.3, you can run this listing only once, unless you change the configura-
tion or clean the results from the database. Finally, insert the name for the new metric
(account_tenure) in the metric name table. To do that, you need to reuse listing 3.4.
To make this easier to do, the code that runs the listings has another version of the
listing 3.4 parameters that are already set up for you: rerun listing 3.4, but add the
parameter --version 11 to the executable command:

fight-churn/listings/run_churn_listing.py --chap 3 --listing 4 --version 11

WITH RECURSIVE date_vals AS (                
    SELECT i::timestamp AS metric_date     
    FROM generate_series('2020-02-02', '2020-05-10', '7 day'::interval) i
),
earlier_starts AS      
(
    SELECT account_id, metric_date, 
        MIN(start_date) AS start_date       
    FROM subscription INNER JOIN date_vals
        ON start_date <= metric_date          
        AND (end_date > metric_date or end_date is null)
    GROUP BY account_id, metric_date

Listing 3.13 INSERT SELECT SQL to calculate and save account tenure as a metric

The RECURSIVE keyword
goes at the beginning. This CTE contains 

the dates for the 
calculation.

This CTE is mostly the 
same as in listing 3.12. Starts an entry in 

the recursive CTE 
for every date

Applies the subscription activity 
condition separately per date
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    SELECT s.account_id, metric_date, s.start_date      
    FROM subscription s INNER JOIN earlier_starts e
        ON s.account_id=e.account_id
        AND s.start_date < e.start_date
        AND s.end_date >= (e.start_date-31)
)
INSERT INTO metric                              
(account_id,metric_time,metric_name_id,metric_value)
SELECT account_id, metric_date, 8 AS metric_name_id,    
    extract(days FROM metric_date-MIN(start_date)) 
        AS metric_value             
FROM earlier_starts
GROUP BY account_id, metric_date
ORDER BY account_id, metric_date

3.11 Measuring MRR and other subscription metrics
Other important measurements of customers are made from their subscriptions, like
account tenure, but depend on the details of the subscriptions, not only on the sub-
scription start and end dates. Like the account tenure measurement, these measure-
ments are conceptually straightforward and don’t require much calculation if every
customer has one (and only one) subscription. However, as usual, things become
complicated when customers can have more than one subscription over time or more
than one subscription at the same time. I will demonstrate general techniques that
work with any kind of “messy” subscription data you might encounter, and you can
choose to simplify the approach if the condition of your data warrants.

Calculating account tenure for nonsubscription products and services
If you are working on a product without subscriptions (ad-supported, retail, nonprofit,
and others), it is still important to analyze and understand how account tenure relates
to churn. The only difference is that, rather than working from subscriptions to mea-
sure tenure, you work from events to determine how long someone has been with the
product. If you are thinking that something like the tenure calculation described here
should work for events, you are correct; the program is shown in the next chapter
(section 4.3). The account tenure algorithm described here is an important part of
creating churn analysis datasets for nonsubscription products. 

If your product doesn’t have subscriptions, this would be a good time to skip ahead
to chapter 4 and learn more, because the next section is on metrics that are specific
to subscription products. But start at the beginning in chapter 4: the techniques in
section 4.3 build on sections 4.1 and 4.2.

tric dates
ave to be
cluded in
recursive
SELECT.

The INSERT 
statement is 
mostly the same as 
for earlier metrics.

Enters the account 
tenure metric as 
the metric ID 8

The value of the 
tenure is calculated 
separately for each 
metric date.
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3.11.1 Calculating MRR as a metric

When customers pay for subscriptions, the total monthly recurring revenue (MRR) is
an important measurement. You might not think of MRR as a measurement but see it
instead as a simple fact. Figure 3.23 illustrates that whenever there is a possibility of
multiple subscriptions with potentially different prices, MRR is something you need to
measure at different points in time, just like a regular behavioral measurement.

 Because you have no guarantee of what subscription(s) an account has at any given
time, the MRR at every point you are interested in must be computed separately. And
because the cost of multiple subscriptions adds up, the calculation sums the total
MRR for all subscriptions active on any given date. The example in figure 3.23 illus-
trates how changes in MRR can occur when an old subscription ends or a new sub-
scription begins.

The figure illustrates how the MRR changes over time: 

1 The customer starts with the base plan (MRR = 19).
2 The customer temporarily churns (MRR = 0). 
3 The customer signs up again with the base plan (MRR = 19). 
4 The customer purchases the add-on (MRR = 33). 

Time

MRR 14

MRR 19 MRR 19 MRR 29

19 0 19 33 43 29

Add-on
Upgrade

Base plan

Subscriptions

MRR

No
subscription

There are two possible subscriptions: a base plan for
19 MRR and an upgraded plan for 29 MRR. There is
also an optional add-on for 4 MRR.1

1. The customer
starts with
the base plan
for 9.1

2. The customer
temporarily
churns,
reducing
the MRR to 0.

6. When the
add-on subscription
expires, MRR
is reduced back
to 29 for the
Premium plan.

5. Before the
add-on expires,
the customer
upgrades to the
premium plan,
raising the MRR
to 43, while both
the premium
plan and add-on
are in effect.

4. The customer
then purchases
the add-on,
and the MRR
increases to 33.

3. The customer
then signs up
again with
the base plan,
setting the MRR
back to 9.1

Figure 3.23 Monthly recurring revenue (MRR) metric calculation



126 CHAPTER 3 Measuring customers
5 Before the add-on expires, the customer upgrades to the premium plan
(MRR = 43). 

6 The add-on subscription expires (MRR = 29).

Although MRR can change at any time, if you are calculating all the other behavioral
measurements on a weekly basis (as advised in section 3.5.1), it is sufficient to calcu-
late the MRR for all accounts on those dates when you are making the other metric
calculations. Listing 3.14 shows the SQL query that calculates the total MRR for all
accounts on a sequence of dates defined like any other metric. The strategy to calcu-
late the MRR is as follows:

1 Define a fixed sequence of measurement dates using generate_series (see the
sidebar on alternatives to generate the series function in section 3.4 if you are
using a database other than Postgres).

2 Join the subscriptions with the dates to find all subscriptions active on each date.
A subscription is active if the start date is on or before the measurement date and
if the end date is after the measurement date (or there is no end date).

3 Use a standard aggregation to sum the total MRR for all the subscriptions on
each date.

WITH date_vals AS (      
    SELECT i::timestamp as metric_date 
    FROM generate_series('2020-04-02', '2020-04-09', '7 day'::interval) i
)
SELECT account_id, metric_date, SUM(mrr)as total_mrr      
FROM subscription INNER JOIN date_vals
    ON start_date <= metric_date        
    AND (end_date > metric_date or end_date is null)       
GROUP BY account_id, metric_date     

There is no sample output for listing 3.14. By now, you know there would be an
MRR result for each account and date. At the time of this writing, the default simu-
lated data includes only one subscription per account and only one MRR (price). So
you can run listing 3.14, but if you are using the default simulated data, the results
will not be very interesting. For real companies, MRR often varies across accounts,
and it is rare to see changes in the MRR of individual accounts. Such changes occur
only when the subscription plan(s) for the account changes in between the two mea-
surement dates.

 While this approach to calculating MRR may seem excessively complex or expen-
sive to compute, it is much faster than calculating event-based metrics because cus-
tomers usually have fewer subscriptions than events. It also might seem inefficient to

Listing 3.14 SQL to calculate MRR as a metric

This CTE contains the 
dates for the calculation.

For each account 
and date, sums the 
total MRR

Limits to subscriptions that 
begin by the measurement date

Limits to subscriptions 
that end after the 
measurement date

Aggregates the 
total on each 
account and date
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store MRR that doesn’t change often in a table with weekly (or daily) updates. This is
a fair criticism, but in practice, it’s just one more metric stored in a data warehouse
that typically houses dozens (or more) of metrics throughout the analysis process. The
benefit of storing the MRR metric in a common format with the other behavioral met-
rics outweighs any downside. It makes it much easier to integrate MRR with the other
behavioral metrics, as demonstrated in the next two chapters.

3.11.2 Subscriptions for specific amounts

So far, while discussing subscriptions, I have not talked about the details of what the
subscriptions are for. Or rather, the subscriptions have been presented as being for
products that have names but no other facts or distinguishing details. But many sub-
scriptions are for something specific, in the sense that the subscription entitles the
user to a fixed allowance of a certain type of product usage. 

 For example, in SaaS, it is common that a subscription is for a certain number of
seats, meaning the maximum allowed number of users. For telecommunications and
the Internet of Things (IoT), there is often a set number of handsets or devices, or
possibly data or bandwidth allowances. To refer to such properties of subscriptions
generically, it is common to call what the subscription is for the unit of the subscrip-
tion, and the number of units is the quantity.

DEFINITIONS Unit—For a subscription, a specific type of entitlement offered
by the subscription. Quantity—How many units a subscriber is entitled to.

Table 3.6 shows an expanded subscription table schema that you can use when sub-
scriptions have associated units and quantities. This schema for subscriptions adds a
text field to describe the units and a numeric field to represent the quantity. Note that
in this schema, each subscription is for only a single type of unit, but in practice, mul-
tiple types of units can be sold together. If multiple types of units are sold together, it
usually makes sense to enter them as separate subscriptions in the schema with the
same start and end date. In the terminology of subscription business management
software systems, each individual sale of some number of units for a specific time
period is often referred to as a charge segment, a rate plan charge, or just a charge.

DEFINITION Charge segment—A single recurring contract for a certain quantity
of some units. Also referred to as a rate plan charge or just a charge. 

If charge segment terminology is used, then a subscription is defined as a set of related
charge segments. For simplicity and consistency, in this book I will refer to each such
entry in the subscription table as a subscription but with the understanding that
customers can have multiple subscriptions at any point in time. This is largely a matter
of semantics concerning the parts and the whole of the various recurring products
sold to the customer.
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3.11.3 Calculating subscription unit quantities as metrics

The point of introducing subscriptions with a number of units now is that the quantity
a customer has subscribed to for each type of unit is an important metric, just like the
MRR. Calculating unit quantity metrics relies on almost the same calculation. 

 One difference with the MRR calculation is that instead of summing the MRR
field, the quantity field is summed. And when there is more than one type of unit,
there must be an additional constraint to select the right unit: there should be one
metric for each type of unit sold. The strategy to calculate subscription unit quantities
is as follows:

1 Define a fixed sequence of measurement dates using generate_series (see the
sidebar on alternatives to generate the series function in section 3.5.1 if you are
using a database other than Postgres).

2 Join the subscriptions with the dates to find all the subscriptions active on
each date. A subscription is active if the start date is on or before the measure-
ment date and if the end date is after the measurement date or if there is no
end date.

3 Limit the subscriptions to those with the correct type of units.
4 Use a standard aggregation to sum the total quantity for all matching subscrip-

tions on each date.

The SQL to calculate subscription unit quantities is shown in listing 3.15. As prom-
ised, it is similar to the MRR metric calculation in listing 3.14. You might wonder why,
when summing the unit quantities, I use aggregate SQL that sums the total if there are
multiple subscriptions. Shouldn’t there be only one subscription for each type of unit?
Actually, a quantity increase is a very common type of add-on subscription. If a customer

Table 3.6 Subscription table schema with units, quantity, and billing period

Column Type Notes

subscription_id integer or char Standard subscription fields introduced in 
chapter 2

account_id integer or char

product_id integer or char

start_date date

end_date date

mrr double precision

quantity integer or double How many units this subscription is for

units char or text Units of this subscription

billing_period_(months) integer How many months apart the customer is 
invoiced
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needs more units, and they are midway through an existing subscription, rather than
end-dating the original subscription and entering a new one, it is often easier to make
a second subscription for the additional units with its own price and start and end
date. This is what motivates calculating unit quantities as metrics that can vary over
time and calculating the metric with an aggregation.

WITH date_vals AS (                      
    SELECT i::timestamp as metric_date 
    FROM generate_series('2020-04-02', '2020-04-09', '7 day'::interval) i
)
SELECT account_id, metric_date, SUM(quantity) 
    AS total_seats                               
FROM subscription INNER JOIN date_vals
    ON start_date <= metric_date       
    AND (end_date > metric_date or end_date is null)  
WHERE units = 'Seat'                 
GROUP BY account_id, metric_date      

The default simulated data does not include subscription units or quantities, so you
can’t run this on simulated data. This example is just meant to show you how to do it
when you have your own data that includes unit quantities. But the simulation code can
be extended to include these kinds of details: I encourage you to do so as an exercise.

3.11.4 Calculating the billing period as a metric

Table 3.5 shows an expanded subscription table schema. In the last section, we looked at
making metrics from the subscription unit quantity. Table 3.5 has one more element
that is often relevant when looking at churn: the billing period for the subscription. 

DEFINITION Billing period—Measures how often the customer is billed. Billing
every month is defined as a billing period of 1; annual billing (billing every 12
months) is a billing period of 12; and so on.

The billing period can be important because subscribers with different payment fre-
quencies can churn at different rates. It is often (but not always) the case that people
on longer payment cycles (annual, for example) churn less than people on shorter
payment cycles (monthly, for example). This is especially true when payment is
made in advance of service, and it can be difficult or impossible for customers to
obtain a refund, so they are less likely to churn midterm. Annual billing usually
comes with a discount to entice customers to make the large payment in advance:
the question for the subscription business is whether the discount offered is justified
by the lower churn rate. You will learn how to answer this question when we look at

Listing 3.15 SQL to calculate total unit quantity as a metric

This CTE contains the 
dates for the calculation.

Sums the total quantity 
for the subscription

Limits to subscriptions 
that begin by the 
measurement date

Limits to subscriptions that end 
after the measurement date

Limits to units of Seat

Totals each account 
and date
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the impact of the billing period on churn in the next chapter and customer lifetime
value in chapter 8. 

 The billing period can and should be treated like any metric based on subscrip-
tions. It should be calculated from an aggregation on the subscriptions at the same
interval as behavioral metrics so that it can be easily combined with other metrics in a
churn analysis. The SQL for calculating the billing period as a metric is shown in list-
ing 3.16. It has a lot in common with the subscription metrics shown earlier in this sec-
tion (MRR and unit quantities). One novel point regarding the billing period metric
is that the aggregation to combine multiple billing periods on different subscriptions
is not a sum. This is because having two 12-month (annual) billing periods, for exam-
ple, at the same time does not make a 24-month billing period; billing periods on dif-
ferent subscriptions are not additive. 

 Having multiple subscriptions on different billing cycles is rare. Most customers
pay on the same billing cycle with a single invoice even when they have multiple sub-
scription products. That is definitely the best practice because customers prefer sim-
pler billing! But some kind of aggregation is necessary in the metric calculation to
guarantee that there is one result per account per measurement date, even if there
is more than one subscription active. The choices for the aggregation are the mini-
mum billing period, the average billing period, or the maximum billing period. All
of these choices return the single correct billing period when all subscriptions have
the same period, and they return a number bounded by the minimum and maxi-
mum billing period in use. In listing 3.16, I choose the minimum because if a cus-
tomer gets a bill every month (billing period 1), they are probably going to behave
like a customer who gets a bill every month even if they also have other products
that bill on a longer cycle.

WITH date_vals AS (                  
    SELECT i::timestamp as metric_date 
    FROM generate_series('2020-04-02', '2020-04-09', '7 day'::interval) i
)
SELECT account_id, metric_date, MIN(bill_period_months) 
    AS billing_period                                
FROM subscription INNER JOIN date_vals
    ON start_date <= metric_date         
    AND (end_date > metric_date or end_date is null)       
GROUP BY account_id, metric_date     

You can run listing 3.14 by following the instructions in the book’s code, but if you are
using the default simulated data, then the results might not be very interesting. At
the time of this writing, the default simulated data includes only one billing period
(monthly), but it will show you that every account always has a billing period of one

Listing 3.16 SQL to calculate billing period as a metric

This CTE contains the 
dates for the calculation.

For each account and 
date, sums the total 
quantity

Limits to subscriptions that 
begin by the measurement date

Limits to subscriptions 
that end after the 
measurement date

Totals on 
each account 
and date
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month. That said, the simulation code can be extended to include details like varied
billing periods. I encourage you to do so as an exercise and then make a pull request
to share your work.

Software frameworks for automating metric calculation
If it’s not obvious already, I have to give you some bad news: generating and saving
a lot of metrics that are counts, averages, and totals of customer events gets
tedious pretty quickly. If you have more than a few types of events, use software to
automate as much of this process as possible. If you haven’t already worked on
this kind of project, I should warn you that it’s usually much more work than you
imagine because invariably, you don’t just calculate metrics once. You end up cal-
culating them many times as you and other people in your organization consider
different choices and correct problems found by QA tests. For the simulation, you
don’t have to deal with all that because it’s just a simple simulation and I have set
up reasonable metrics for you.

WARNING In a real-life case study, you will probably calculate your metrics
many times as you test and fix multiple versions.

TAKEAWAY Automation is key to successfully iterating on a variety of met-
rics over the lifetime of an effort to fight churn with data.

The Python script that runs the listings is an example of such an automated frame-
work, but it’s not optimized for the task of calculating metrics. A metric calculation
software framework should include the following features, at a minimum: 

 Storing metric SQL programs generically so the same SQL can be used to cal-
culate metrics on many different events by binding event IDs as the variables
and parameterizing options like the time period in the metric calculation

 Handling the details of inserting generated metrics, including names, into the
data warehouse

 Removing old results when a metric is recalculated

The program wrapper was written to demonstrate a wide variety of listings, and it
accomplishes the first goal but not the second. More advanced metric-calculation
frameworks might include features like controlling date ranges for metric calcula-
tions and automatically updating metrics when new event data arrives in the data
warehouse. 

How to design and implement better metric-calculation frameworks is beyond the
scope of this book because that is a software engineering exercise that depends on
the particular use case. This book is about data analytics and data science. But I
have posted another example of a metric-calculation framework written in Python in
the GitHub repository that goes with this book: https://github.com/carl24k/fight-
churn/tree/master/metric-framework. I used that framework for the customer case
studies before I decided what the book listings would be, and it is more specialized
for metrics.

https://github.com/carl24k/fight-churn/tree/master/metric-framework
https://github.com/carl24k/fight-churn/tree/master/metric-framework
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Summary
 Behavioral measurements, also known as metrics, summarize each customer’s

events at a point in time or at many points in time.
 Metrics make customer accounts comparable by providing a behavioral profile.

This is necessary because the events for different accounts occur at different
rates and disparate times.

 Common metrics are measured over time periods ranging from weeks to a year. 
 For measurements using a time period of one month or less, it is best to use

multiples of seven days because nearly all human activities follow weekly cycles. 
 Common metrics include

– Count of events 
– Averages of event properties like duration, dollar value, or size
– Totals (sums) of event properties like duration, dollar value, or size

 All the common metrics can be calculated with aggregate SQL SELECT statements.
 All events and metrics need to be tested for quality assurance (QA) because

event data is not always reliable and metric calculations can contain bugs.
 The correct procedure for calculating metrics is as follows:

a Run QA tests on the event data.
b Calculate metrics.
c Run QA tests on the metrics.

 An important QA test on metrics is how the number of metrics calculated and
the average, minimum, and maximum values change over time.

 Another important QA test on metrics is what percent of active accounts have
nonzero values for the metric and what average, minimum, and maximum mea-
surements are found for all customers.

 An important QA test on events is to calculate the average number of events per
account per month and confirm this agrees with the opinion of experts in the
business.

 The time period of observation for making event measurements needs to be
longer when events are rare.

 Account tenure measures how long an account has been a customer in its cur-
rent period of subscription or activity, ignoring older periods of subscription or
activity that are not continuous with the present one.

 When accounts can have multiple subscriptions (or churn and re-sign up), then
account tenure should be calculated with a recursive common table expres-
sion (CTE).

 When accounts can have multiple subscriptions at different prices, then the
monthly recurring revenue should be calculated as a metric based on subscrip-
tions at the same frequency as event-based metrics.
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 Subscriptions can entitle a user to a specific amount of a product or feature.
The amount is known as the quantity, and the product or feature is known as
the unit of the subscription.

 When subscriptions can have different quantities and/or units, then the unit
quantities for each customer should be calculated as a metric based on sub-
scriptions at the same frequency as event-based metrics.

 Subscriptions can have different billing periods, meaning the length of time
between payments (monthly, annual, and so on).

 When subscriptions can have different billing periods, then the billing period
of each customer should be calculated as a metric based on the subscriptions at
the same frequency as event-based metrics.



Observing renewal
and churn
The essence of fighting churn with data is learning from the natural experiments that
occur every time a customer chooses to stay with or churn from the service. A natu-
ral experiment in this context means a situation that tests an outcome you are
interested in, but you didn’t set it up like a formal experiment. These experiments
are the churns and renewals that have already occurred, and the results are waiting
for you in your data warehouse. Why aren’t you learning from the results already?
Actually, observing these experiments and reading the results can be a little tricky if
you’ve never done it before. This chapter teaches you the right way to observe the
customer experiments that have already taken place in your own data. 

This chapter covers
 Picking a lead time in advance of churns for 

observation

 Picking observation dates from subscriptions 
or activity

 Creating an analytic dataset by flattening 
metric data

 Exporting a current customer list for 
segmentation
134
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 The scenario in this chapter assumes you have already produced behavioral met-
rics (as described in chapter 3) and calculated some kind of churn rate measurement
(chapter 2). This chapter is a preparation step for the churn analysis. You are going to
collect observations of customer metrics at known times when customers churned or
continued with the service. In relation to the overall book scenario introduced in
chapter 1, this chapter focuses on the processes highlighted in figure 4.1.

Chapter 4
teaches you how
to combine the
behavior metrics
and churn
metrics to form a
dataset for
analysis.
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Figure 4.1 This chapter’s place in the process of fighting churn with data
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The chapter is organized as follows: 

 In section 4.1, I introduce the idea of using a dataset to learn from your customers.
 Section 4.2 discusses how to choose the observations at a conceptual level and

introduces the concept of lead time. 
 Section 4.3 shows how to simplify the data where there are multiple overlapping

subscriptions or gaps between subscriptions. This greatly simplifies the process
of choosing the observation dates. 

 Section 4.4 adapts these techniques for products where there are no actual sub-
scriptions and instead uses customer event data by merging the activity and
then applying the techniques from section 4.3. 

 Section 4.5 teaches you how to generate a set of observation dates for custom-
ers, having prepared the data using the techniques in sections 4.2 and 4.3. 

 Section 4.6 brings it all together by teaching you how to combine the observation
dates with the metrics from chapter 3 to form a dataset for the analysis of churn.

 Section 4.7 adds a related technique: exporting the current, or most recent,
customer snapshot to use for segmentation.

4.1 Introduction to datasets
As in most of these scenarios, the challenge in learning from your customers is partly
due to complexity and partly due to logistical considerations. What makes observing a
lot of customers complex is that they are all at different points in their journey with
your product. It doesn’t make sense to just look at all your customers right now or at
any single fixed point in time. You want to observe them all at the same point (or
points) relative to their life cycle with the product, which makes them comparable. If
you do this incorrectly and observe at the wrong times, it may distort your analysis and
be counterproductive in the fight against churn. This chapter teaches you how to pick
appropriate observation points in the customer life cycle. 

 Then, at all the observation points for all the customers, you take a snapshot of all
the metrics as they were measured at those times. (The metric calculations in the last
chapter were all run at sequences of times to make this possible.) This combined set
of customer snapshots is called a dataset of customer observations, or simply the dataset.
In case you are not already familiar with the term, a dataset is used in data science and
statistics for a collection of data assembled for a particular analysis. 

DEFINITION Dataset—A concise summary of a set of situations (facts) and out-
comes that you are interested in analyzing. Usually, a dataset is a single table
(or file) with the same number of columns for every row and in which every
row contains complete information for one situation and outcome.

When a collection of data is called a dataset, it implies that the data is organized in a
table having the same number of columns for every row. Every row contains complete
information for one instance or observation of the phenomena in question (meaning
separate rows are separate observations), and every column corresponds to one type
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of fact about the situation (typically a measurement or a metric). When you create a
dataset, you ensure that there are no missing fields or null (empty) values. You have to
either come up with sensible defaults for missing measurements or exclude the obser-
vations that contain the missing data.

DEFINITION Churn analysis dataset—A dataset in which every row represents a
customer facing the decision to churn or stay. The outcome is what they do.
The facts about these situations are the customer’s behavioral metric mea-
surements (and possibly other data you have about them).

The logistical challenges in creating this dataset are the same two as in chapters 2 and
3: the data is sensitive and it can be large, so you are better off if you can do all the
data processing in your database or data warehouse. The way to make this work, as in
earlier chapters, is to write short programs in SQL and save key results in the data
warehouse. In the end, a concise dataset with only the minimum possible amount of
sensitive information can be efficiently extracted for further analysis.

4.2 How to observe customers
To observe the natural experiments that occur when customers churn or continue to
use a product, you need to start by asking when to make the observation. First we con-
sider the question at an abstract level (code is coming in later sections).

4.2.1 Observation lead time

When to observe customers is an easy question, right? Observe a customer when they
have churned, isn’t that the point? Not quite. Think about it this way: what will a cus-
tomer’s behavioral metrics for a media-sharing app look like when the customer has
churned? Logins? Zero. Downloads? Zero. Likes? Zero. Because they’ve churned, all
their behaviors on the product should have stopped. Observing a customer when they
have already churned is not very helpful. Also, after someone has churned, you don’t
have much chance of getting them to sign up again: you have a better chance of influ-
encing them before they have made up their mind.

TAKEAWAY It is easier to convince customers to stay before they churn than
to sign up anew after they churn. The period before churn, therefore, is the
focus of the analysis.

Observe customers before they churn. Right! I call this observing customers with a
lead time in making the observation, which means making the observations before the
thing you are really interested in (the renewal or churn). How long before the churn
should you observe a customer: a day before they churned? Maybe, but most likely you
should observe what customers were doing even longer before they churned. That’s
because, often, the customer’s behavior changes in the time immediately before
they churn. This is illustrated in figure 4.2, with a hypothetical example for a media-
sharing service. 
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If someone is planning to churn, some behaviors are likely to be reduced in the
period right before the churn, whereas others may increase. In the example of a hypo-
thetical file-sharing service, uploads might completely stop before churning because
the customer doesn’t want to waste time contributing anything else. Instead, they
focus on downloading content before their access to the service ends. As another
example, logins can increase in the period before churn, before going to zero.

 For some products, these kinds of changes in behavior can make likely churners
easy to spot in the period before churn. But behaviors brought on by imminent churn
are still not what you want to observe because that’s not going to tell you why the cus-
tomer chose to churn in the first place. You want to observe what the customer was
like in the time before they decided to churn, because then you are observing what a
customer looks like when they are still making up their mind. This is important
because when the customer is still making up their mind, you have the best chance to
influence them! I will emphasize the point again.

TAKEAWAY The goal of the analysis is to identify and understand customers
who are still making up their minds about churn, because that is when you
have the best chance of influencing them.

How do you know when customers are still making up their minds about churning or
continuing to use the product? You can’t know exactly, unless you are psychic. You
have to observe customers at a time when it is reasonable to expect them to be think-
ing about their next renewal, not immediately after the last renewal, and not right
before the upcoming renewal where they might churn. The amount of time depends
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on the service, but generally, the longer the commitment and the more expensive the
service, the longer the lead time should be: 

 For monthly subscriptions, observe customers one to two weeks before the
monthly renewal or about one-half to three-quarters of the way through the
current month.

 For annual subscriptions with consumers or small businesses, observe custom-
ers about one month before the annual renewal.

 For annual subscriptions with large businesses, observe customers anywhere
from two to four months before renewal; 90 days is typical.

For nonsubscription products, you don’t pick a lead time. You pick a sequence of regu-
larly spaced observation dates, just like for a subscription product. But since there are
no renewals, you have no guide as to when someone might be considering canceling.

4.2.2 Observing sequences of renewals and a churn

When you create a dataset, you don’t want to observe just customers who churn. You
also want to observe customers who renew. That way, you can compare churns and
renewals and see the difference in your analysis. And you don’t want to choose just a few
renewals: for the purpose of the analysis, you want to pick enough renewals to observe
that the renewal observations in your dataset are in proportion to the true retention rate. 

TAKEAWAY For a churn analysis dataset, try to make the renewals in your
dataset in proportion to the true retention rate. Churns should be in your data-
set in proportion to the true churn rate.

For example, if you have a 5% churn rate and a 95% retention rate, you want to make
a set of observations that is also around 5% churns and 95% renewals. That might
sound complicated to arrange, but it’s straightforward: you just observe every renewal
for every account as well as the churns. This results in about the same proportion of
renewals and churns in your observations as your true churn rate.

 If the subscription does not have a fixed term or it automatically renews, observa-
tions should be made based on when each payment is due. Payments are typically due
at fixed periods after the subscription begins: every month, for most consumer sub-
scriptions. For consistency with the churn observations that have a lead time, you
should also apply the same lead time before each renewal or payment. Figure 4.3 illus-
trates this scenario.

 A subscription has periodic payments (for example, monthly) and continues until
canceled. The observation dates selected are the lead time before each payment is
due. The subscription finally ends after the last paid month ends, and the churn
observation is made in the lead time before the end of that month; that was when the
customer was making the final determination to churn or renew. This is why the title
of this section is “Observing sequences of renewals and a churn.” Typically, you
observe each account many times as they renew and then only once when they churn. 
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What if your product has subscriptions that are on different renewal or payment
cycles? For example, many products have both monthly and annual plans. There are
multiple ways to handle this, but my advice is to observe all customers at the same
frequency by assuming they are all on the same renewal or payment cycle. The
observation frequency to choose is the payment or renewal cycle that is the most
common. Usually this is the period that you use to quote your churn, so the choice
should be obvious:

 For a consumer subscription that reports a monthly churn rate, observe cus-
tomers every month even if some renew or pay on annual contracts.

 For a business subscription that reports an annual churn rate, observe custom-
ers every year, even if some pay or renew on monthly and quarterly schedules.

Remember: when in doubt, if it makes the most sense to quote your churn based on a
particular period (monthly, quarterly, or annual), then that is probably the right period
to use when observing subscribers throughout their lifetime on the product.

 If you think about it, in a way, it doesn’t make sense to observe an annual customer
midway through the year because they don’t have a chance to churn at that point, and
they are probably not thinking about it. But if you observe the annual customers only
once a year, it complicates reproducing the churn and renewal rate in your data and
also makes it harder to interpret the impact of being on the annual plan versus being
on the monthly plan. (I will explain further when you learn how to analyze the churn
impact of plans in chapter 5.) 

4.2.3 Overview of creating a dataset from subscriptions

Now I’ll go over the procedure to create a dataset for the case of having actual sub-
scriptions; the process for when there are no subscriptions is covered in section 4.4.
An overview of the entire process is shown in figure 4.4. The starting point of the
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Figure 4.3 Payment cycle dates, lead time, and observation sequences
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process is the subscription data described in chapter 2 and the metrics you created in
chapter 3 and saved in the data warehouse. 

 The main steps shown in figure 4.4 are as follows:

1 Identify periods when customers are subscribed to one or more subscriptions
that are ongoing at the present time (no churn, yet). These are called active peri-
ods that are ongoing. 

2 Identify periods when each customer is subscribed to one or more subscrip-
tions and when these periods end in churn. These are called active periods end-
ing in churn.

3 Using these active periods, pick sequences of observation dates for each cus-
tomer using the payment or renewal cycle and lead times as described in the
last section. Keep track of which of these observations are made in the lead time
before an actual churn.

4 Use the sequences of observation dates to choose metrics saved in the data
warehouse. The metric values, along with the churn and observation details,
are selected in a single dataset, one observation per customer per row of the
dataset.

I just mentioned an important new concept that will be used throughout the process.

DEFINITION Active period—A span of time when a subscriber has at least one
active subscription. There can be small gaps between subscriptions without
disrupting the active period.

3.
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Figure 4.4 Process for creating a dataset from subscriptions in four steps



142 CHAPTER 4 Observing renewal and churn
Section 4.3 provides details on steps 1 and 2 of this process: creating the active peri-
ods. Section 4.4 takes a detour to explain how this process differs for products where
there is not an actual subscription. Section 4.5 picks up and explains step 3 in this pro-
cess: selecting observation dates. Finally, section 4.6 discusses the final step: merging
the metric data with the observation dates and exporting the dataset.

4.3 Identifying active periods from subscriptions
The goal in this phase of the process is to make regular observations of your subscrib-
ers at appropriate times to understand why they churn. The first step is to handle
problems caused by redundancy or irregularity in the subscriptions. These are the
same issues encountered in chapter 3 when you learned how to calculate account ten-
ure. There can be multiple subscriptions for some customers so that the effective
period the customer is active is longer than any single subscription, and there can be
short gaps between the individual subscriptions that you might not want to consider
churns. Also, some customers have multiple subscriptions at the same time when
there is more than one product or if there is a base product and add-ons. The dates
for these additional subscriptions may not align with the main subscription. 

 If your subscription product does not have any of the complexities that this step is
designed to handle, you can skip to section 4.5. To be clear, skip this section only if your
product’s subscriptions are already guaranteed to consist of single, non-overlapping
periods for each account, with no unintentional gaps.

4.3.1 Active periods

An active period, illustrated in figure 4.5, is a period of time when an account is contin-
uously subscribed, through one or more individual subscriptions. In figure 4.5, there
are a total of seven separate subscriptions, numbered sequentially by their start time.
An active period differs from a subscription in that the active period merges any mul-
tiple subscriptions and ignores short gaps. Each account can be in only one active
period at a time, and any gaps between active periods represent genuine churn fol-
lowed by resubscribing at a later date. 

NOTE If an account is not in an active period, the end of the last active
period was a churn.

In figure 4.5, the first active period is a simple one: a single subscription. Period 2 in
the figure is an example of a complex active period made of three main subscriptions
(numbers 2, 3, and 5). Between subscriptions 2 and 3 is a short gap—short enough
that it should not be considered a churn. Subscriptions 3 and 5 align, so there is no
gap; and another subscription, an add-on (number 4), begins in the middle of sub-
scription 3 and ends in the middle of subscription 5. All of these meet the condition
that they make up one active period. Period 3 is an example of an active period that is
ongoing; this is when the subscription has no end date or an end date in the future at
the time the analysis is done.
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4.3.2 Schema for storing active periods

The active periods are just one step in the process of forming the dataset, and it is conve-
nient to store them in the database. Alternatively, you might choose to combine all the
short programs in this chapter into one large program that produces the dataset without
any permanent storage. Because this book teaches each step in a short program, I
store the results in a table. The schema required to store the active periods is shown in
table 4.1. It has some similarities to the schema for storing subscriptions (chapter 2,
table 2.1) in that each record has an account ID and a start date, which are required, and
another date that is the churn date, which is nullable like the end date on the subscrip-
tion. But an active period record has some important differences from a subscription: 

 The combination of account_id and start_date must be unique for an active
period, so they should be implemented as a compound key or index on the table. 

 Active periods have none of the details associated with a subscription, like the
product or MRR.

(If you need a reminder about how to calculate metrics like the MRR in the context of
multiple subscriptions, see section 3.10.) 

NOTE The constraint on account_id and start_date can be implemented
as a constraint on the table, but there is another implied constraint that must
be implemented by the application logic. For each account, the start dates
and churn dates of active periods must define non-overlapping time periods,
and there can be only one active period without a churn date for each
account: the currently active period.
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4.3.3 Finding active periods that are ongoing

I show you how to find active periods that are still ongoing first because it’s easier
than finding active periods that ended in churn. For ongoing active periods, you
don’t need to find churn dates because you know they don’t end in churn: it’s just a
matter of finding the start date. Look at figure 4.5, and think back to the account
tenure calculation you learned in section 3.10 (see figures 3.19–3.21). Finding the
start date of an active period that is ongoing is basically the same as finding the ten-
ure of every account (the tenure of every account as of today, that is). The only dif-
ference is that the desired result is the start date of the period when customers were
actively subscribed rather than how long they have been an active subscriber. As with
calculating account tenure, you need to find the start of not just the current sub-
scription but the oldest subscription that overlaps or forms a contiguous series up to
the present.

 Listing 4.1 shows a short SQL program that calculates the currently ongoing active
periods. Again, note that the result is simply a list of all accounts that are currently in
the middle of an active subscription and the earliest start date when they entered into
any active subscription that is continuous at present. This is the same as the account
tenure calculation using a recursive common table expression (CTE), described in
the last chapter, but I will go through it again as a quick review. The process is imple-
mented with the following SELECT statements:

1 A CTE holds parameters controlling when and how active periods are found.
2 A recursive CTE in two parts finds sequences of active subscriptions.

– The initialization SELECT statement finds all accounts that are currently active.
– The recursive SELECT statement finds earlier subscriptions that overlap with

or are continuous with but older than the subscriptions currently found.
3 An aggregate SELECT statement finds the earliest start date of any subscriptions

for each account.

Because this result is saved and combined with the results for active periods ending in
churn, the final SELECT statement includes an INSERT statement to save the result in the
table named active_period.

 
 
 

Table 4.1 Active period table schema

Column Type Notes

account_id integer or char Not null; compound key

start_date date Not null; compound key

churn_date date Nullable
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WITH RECURSIVE active_period_params AS     
(
    SELECT interval 7  AS allowed_gap,     
    '2020-05-10'::date AS calc_date     
),
active AS     
(

    SELECT distinct account_id, min(start_date) 
        AS start_date    
    FROM subscription INNER JOIN active_period_params 
        ON start_date <= calc_date
        AND (end_date > calc_date or end_date is null)
    GROUP BY account_id

    UNION

    SELECT s.account_id, s.start_date     
    FROM subscription s 
    CROSS JOIN active_period_params 
    INNER JOIN active e ON s.account_id=e.account_id      
        AND s.start_date < e.start_date                
        AND s.end_date >= (e.start_date-allowed_gap)::date      

) 

INSERT INTO active_period (account_id, start_date, churn_date)      
SELECT account_id, min(start_date) AS start_date, NULL::date AS churn_date  
FROM active
GROUP BY account_id, churn_date     

Run listing 4.1 by following the instructions in the book’s downloadable code at
www.manning.com/books/fighting-churn-with-data or https://github.com/carl24k/
fight-churn. It is preconfigured to run on the default simulated dataset. (Instructions
for the data simulation are in the README page.) After setting up your environment,
run listing 4.1 with this command:

fight-churn/listings/run_churn_listing.py --chapter 4 --listing 1

The wrapper program run_churn_listing prints the SQL it is running. But note that
listing 4.1 performs an insert into the database, so it does not produce any output.
To see the result, run a query using a SQL query method of your choice (see the
README for suggestions); for example:

SELECT * FROM active_period ORDER BY account_id, start_date;

Listing 4.1 Active periods that are currently ongoing

This CTE holds 
constant parameters.

The maximum time 
without subscription 
before churn

Latest
ate to
nsider

This is the same as 
calculating account 
tenure (chapter 3).

Initializes
recursive
CTE with
the start
of every
current

bscription
Inserts new account 
IDs and start dates 
during recursion

The new records 
must be for the 
same account.

The new
records
are for

criptions
hat start

earlier.

New records 
must have an 
end date within 
the allowed gap.

Saves the result to the 
active_period table

Selects the earliest
start date and null
for the churn date

Groups by account_id; 
churn_date must be in 
the GROUP BY 

https://www.manning.com/books/fighting-churn-with-data
https://github.com/carl24k/fight-churn
https://github.com/carl24k/fight-churn
https://github.com/carl24k/fight-churn
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Figure 4.6 shows the results of running listing 4.1 on the default simulated dataset and
then viewing the results with a SELECT statement like the previous one. Use a LIMIT
clause if you have a large amount of data, but you shouldn’t need it for the default
simulation. The result contains accounts that began near the start of the simulation,
as well as accounts that were added at the end of the simulation. Due to the constraint
on the active_period table, you can run listing 7.1 only once without deleting the
data already in the table.

4.3.4 Finding active periods ending in churn

Finding active periods ending in churn is probably the most advanced SQL program
in this book. But this program is not harder than anything you’ve seen; it just com-
bines other techniques you have already mastered: the outer join technique from
chapter 2 used to calculate churn, and the recursive CTE from chapter 3 (and reviewed
in the last section) to find the earliest start of any subscription continuously up to
another subscription. 

 The algorithm for finding all the churns is based on the outer join method demon-
strated in chapter 2 for calculating the churn rate, but it is not exactly the same. It
starts with the observation that every churn must correspond to an end date of a sub-
scription. Further, an end date on a subscription is a churn if there was no other
extension through a new subscription by the same account. 

DEFINITION Extension—Another subscription that begins either before a pre-
vious subscription ends or within the allowed gap period and that has a future
end date. An extension extends an active period. This definition of extension is
specific to the discussion of the current algorithm and is not a term generally
used in the trade.

An extension is so named because it extends the end date of a prior subscription and
prevents that end date from being churn. The key is that a churn is an end date with
no extension. Figure 4.7 provides an example of finding churns by considering end

account_id

0

3

7

...

3480

3493

3498

start_date

2020-01-15

2020-01-23

2020-01-05

...

2020-05-05

2020-05-05

2020-05-03

churn_date

NULL

NULL

NULL

...

NULL

NULL

NULL

There is one record for
each account and active
period, regardless of
how many subscriptions
are in that period.
(Your result will not be
exactly the same—the
underlying data is
randomly simulated.)

The churn dates are
NULL because these
are the ongoing active
periods; the column is
required for inserting
in the table that also
holds churned periods.

Figure 4.6 Result of running listing 4.1 for active periods that are ongoing
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dates and extensions. It’s based on the sequence of subscriptions illustrated in fig-
ure 4.5. To identify churns of one account, you use the following steps:

1 Identify all the end dates of subscriptions for that account. (Subscriptions with
no end dates cannot be churns, so ignore them.) This is limited to end dates
within a time period that ends at the current date and can start as far back as
you are interested in when looking for churns.

2 Identify all extensions that extend those end dates. These are subscriptions that
begin before the other subscriptions’ end date or within the allowed gap time
and end later in the future.

3 Select the end dates that do not have an extension. These are the churns. In
SQL, use an outer join for the end dates with the extensions and select those
subscriptions from step 1 with null on the outer join and the extension sub-
scriptions from step 2. These end dates correspond to active periods ending
in churn.

Figure 4.8 shows the complete process for finding churns and their corresponding
start dates. It consists of first finding churns by considering end dates and extensions
and then finding the start dates of the active periods that ended with a churn. This
takes place in two additional steps (4 and 5):

4 The start dates are found in the same way as the start dates for ongoing active
periods (and for account tenure calculations): using a recursive CTE that
searches for progressively earlier start dates. 

5 Take the minimum of the start dates from the subscriptions that precede the
subscription ending in churn (if any).

1/1 1/15 2/1 2/15 7/1 7/15 8/1 8/15 9/1 9/15 10/1 10/15 11/1 11/15 12/112/15 1/1 6/1 6/15 7/1 7/15 8/1 8/15 9/1 9/15

Subscription 7
Subscription 1 Subscription 2 Subscription 3 Subscription 5 Subscription 6

Current
Date

Subscription End Date

Subscription 1 2/28

Subscription 2 8/31

Subscription 3 11/14

Subscription 4 12/14

Subscription 5 1/14

Start Date Subscription

7/1 Subscription 2

9/15 Subscription 3

10/15 Subscription 4

11/15 Subscription 5

6/1 (+1 year) Subscription 6

X

X

Subscription 2 is not an extension for
Subscription because the end date is too far1
from the start date. Subscription ends in churn.1

Subscription 3 is an extension
for Subscription 2 because the
end date of 2 is close enough to
the start of 3.

Subscription 5
ends in churn. Other extensions

......

To find subscriptions
that ended in churn,
identify subscription
end dates after which
there is no other
subscription that acts
as an extension. The
subscriptions with
no extension are
the churns.

Subscription 4

Figure 4.7 Finding churns from end dates and extensions
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Listing 4.2 is the SQL program that finds the active periods ending in churn. It includes
four CTEs:

 active_period_params—Contains the fixed constants that define when the
program will find churns and the maximum allowed gap between subscriptions
that is not considered a churn.

 end_dates—Contains all subscriptions that have end dates within the desired
periods. As a convenience for the next step, it also calculates the maximum date
for which an extension could occur to extend this end date: the end date plus
the allowed gap defined in the parameters.

 extensions—Contains every subscription end date that has another subscrip-
tion that extends it (an extension). This is any subscription for a matching
account that begins before the maximum extension date (calculated in the
end_dates CTE) and has an end date in the future or a null end date.

 churns—A recursive CTE that performs the key calculation of the algorithm:
– The initializing SELECT statement is an outer join between the end dates and

the extensions, which selects only end dates that don’t have an extension. These
are the churns.

– The recursive SELECT statement finds earlier start dates for subscriptions that
come before the churn for the same account; the earliest of these is the
beginning of the active period.

1. End
dates

Subscriptions

2. Extensions

3. Churn
end dates

4. Active
start dates

5. Active
periods

ending in
churn

Recursion

3. Outer join between end and
extensions to find churns: churns
are the end dates that don’t
have extensions. (     is the
symbol for a left outer join.)

4. Recursive query finds the
earlier start dates of
subscriptions that are
continuous with the
churn subscription.

5. Minimum aggregate
query finds the
earliest start date
of a subscription
that is continuous
with the churn
subscription.

1. Find end dates.
2. Find extensions.

(Both are found
using inner joins
on subscriptions.)

Figure 4.8 Process for finding churns and the corresponding active period start dates
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The final SELECT statement in listing 4.2 finds the minimum start date corresponding
to every end date that is a churn the same way as in listing 4.1 for active periods that
are still active. It also contains the INSERT statement to save this result along with the
ongoing active periods in the active_period table. Crucially, the end dates of the sub-
scriptions that had no extension are the churn dates.

WITH RECURSIVE active_period_params AS     
(

    SELECT INTERVAL '14 day' AS allowed_gap,    
           '2020-05-10'::date AS observe_end,       
           '2020-02-09'::date AS observe_start      

),
end_dates AS      
(

    SELECT distinct account_id, start_date, end_date,     
        (end_date + allowed_gap)::date AS extension_max      
    FROM subscription INNER JOIN active_period_params 
        ON end_date between observe_start 
        AND observe_end       

), 
extensions AS      
(

    SELECT distinct e.account_id, e.end_date      
    FROM end_dates e INNER JOIN subscription s 
        ON e.account_id = s.account_id
        AND s.start_date <= e.extension_max     
        AND (s.end_date > e.end_date 
            OR s.end_date is null)      

),
churns AS      
(

    SELECT e.account_id, e.start_date, 
        e.end_date AS churn_date         
    FROM end_dates e LEFT OUTER JOIN extensions x     
    ON e.account_id = x.account_id          
        AND e.end_date = x.end_date
    WHERE x.end_date is null    

    UNION

Listing 4.2 Active periods that end in churn

This CTE holds
constant parameters.

Maximum time without a 
subscription before churn

Latest date to consider 
for finding churns

Earliest date to consider 
for finding churnsThis CTE contains unique 

start and end dates for 
every account. Uses DISTINCT in case 

multiple subscriptions 
have the same end

Date by which the 
account should be 
re-signed up to 
avoid churnLimit to end dates 

within the period being 
checked for churns

This CTE contains subscriptions 
that extend the end dates.

Uses DISTINCT in case 
multiple subscriptions 
have the same date

Other subscription must 
start by the date the 
extension period ends.

Other subscription must 
have an end date after 
the original.

This CTE identifies 
churns and finds the 
period start dates.

The end date of the subscription 
is the churn date.

Identifies churns 
with an outer join

Joins the end dates 
and extensions

Identifies churns 
that don’t have 
extensions
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    SELECT s.account_id, s.start_date, e.churn_date       
    FROM subscription s 
    CROSS JOIN active_period_params
    INNER JOIN churns e ON s.account_id=e.account_id
        AND s.start_date < e.start_date
        AND s.end_date >= (e.start_date-allowed_gap)::date

) 
INSERT INTO active_period 
    (account_id, start_date, churn_date)       
SELECT account_id, min(start_date) AS start_date, 
    churn_date                       
FROM churns
GROUP BY account_id, churn_date

Run listing 4.2 by following the instructions in this book’s downloadable code. If you
ran the other listings, then by now you know how to do this by changing the parame-
ters of the wrapper program to --chapter 4 --listing 2. Note that listing 4.2 per-
forms an insert into the database, just like listing 4.1. It does not produce any output
(the code that runs the listing prints the SQL that is being run). To see the result after
you have run listing 4.2, run a query like this:

SELECT * FROM active_period WHERE churn_date is not null ORDER BY account_id, 
start_date;

Figure 4.9 shows the results of running listing 4.2 on the default simulated dataset and
then viewing the results with a SELECT statement like the previous one. Use a LIMIT
clause if you have a large amount of data, but you shouldn’t need it for the default
simulation. Active periods ending in churn begin in all parts of the simulation times
and have a variety of lengths. Due to the constraint on the active_period table, you
can run this SQL only once without deleting the data already in the table.

The recursive 
SELECT finds the 
earliest start date.

Inserts the result in the 
active_periods table

Selects the minimum start 
date for each churn

...

account_id

2

4

6

17

...

2923

2977

2995

start_date

2020-01-10

2020-01-08

2020-01-06

2020-01-06

...

2020-04-03

2020-04-01

2020-04-03

churn_date

2020-03-10

2020-03-08

2020-03-06

2020-05-06

2020-05-03

2020-05-01

2020-05-03

Typical result for active
periods ending in churn
(Your result will not be the
same because the underlying
data is simulated.)

Figure 4.9 Result of running listing 4.2 for the active periods ending in churn



151Identifying active periods for nonsubscription products
4.4 Identifying active periods for nonsubscription 
products
Since chapter 1, I have been telling you that the techniques for analyzing churn in this
book apply to products without actual subscriptions, like ad-supported media, apps
with in-app purchases, and retail websites. Now I will (finally) explain how to calculate
the active periods for those accounts. I waited until now because, at this point, you
have learned the necessary techniques. 

4.4.1 Active period definition

In chapter 2, I mentioned that the key to understanding churn in nonsubscription
products is to calculate active periods that reflect the periods when an individual
account was live on the product, similar to a subscription. In this context, a churn is
defined to be whenever an account goes inactive for more than some maximum
allowed time, typically one month or a few months. You should choose this time limit
so that most people who go inactive don’t come back, or if they do, it would be fair to
consider it a fresh start. 

 Figure 4.10 presents the idea of active periods derived from events. The point is to
find, for each account, groups of events in which no events are farther apart than the
allowed gap. Once such active periods are calculated, the churn rate can be calculated
as if these were subscriptions. Also, all the analytic techniques described in the rest of
the book can be applied without any other modifications.

DEFINITION Active period derived from events—A span of time when a user has
had at least one event. There can be gaps between events up to the limit, with-
out disrupting the active period. The definition of active periods from events
is similar to the definition of active periods from multiple subscriptions.

Here’s the basic idea: in the last section, I demonstrated algorithms in SQL to handle
scenarios where accounts can have multiple subscriptions over time. It’s necessary to

Time

Allowed
gap

Active period 1: churned Active period 2: ongoing

Gap
too large

Observation
time

Active periods for users
of nonsubscription
products are found
from events, shown as
ticks on the time line.

Active periods are
defined by groups of
events where there is
no large gap between
any of the events.

If the gap between
events is above a
maximum allowed
gap, then the active
period is defined to
have ended in a
churn, and new
activity will define
a new active period.

Figure 4.10 Active periods from events
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find the earliest start date of any of those subscriptions and to find when sequences of
subscriptions end. All those calculations on subscriptions also include an allowed gap,
in case customers have short periods of time without a subscription. If you think about
it, that’s exactly the calculation that needs to happen with events to determine periods
when accounts are active. The subscriptions and events both have to be grouped so
that no subscription/event in the group is further apart than an allowed gap. The
only difference is that a subscription has a duration (a subscription has an end date
that comes after the start date), but an event is at a single point in time. An algorithm
similar to the one used to find active periods from subscriptions will work to find
active periods from events.

 But there is one important difference between subscriptions and events that
impacts the performance of this algorithm, if not the logic: accounts typically have
only one or a few subscriptions at a time, but accounts can have a very large number of
events. To put it another way, subscriptions are usually small data, whereas events are
often big data. It might not be a good idea, therefore, to apply the active period algo-
rithms from the last section directly to the events. Instead, make a simplification:
define an active week as seven days during which an account has any event. 

DEFINITION Active week —A seven-day period when an account has at least
one event.

The first step is to calculate which weeks are active for all accounts. This can be done by
using an aggregation query and saving the result. This simple first step reduces the size
of the data for the steps that follow. If your users typically have 100 events per week (for
example), then after aggregation, the data representing the activity is one-hundredth
the size. And if customers have 1,000 events per week . . . (you get the drift).

 Of course, such active periods allow accuracy in identifying churn dates only up to
the weekly interval defined for measuring activity in the aggregation step. These active
periods do not tell you the precise date or time the user became active or churned. If
you think the weekly period is not accurate enough for finding the start and end of
the active periods, switch to daily aggregation. Then you can have daily precision in
the computation, which is seven times as much. If that works for the size of your data
and the system you use to run the process, no problem. It’s a trade-off between the
accuracy you want in timing churns versus the size of the data you have and the avail-
able computing resources. I will continue with the examples assuming weekly aggrega-
tion periods, because this is usually the best compromise between accuracy and
computational cost.

4.4.2 Process for forming datasets from events

After the active weeks are calculated, you can use the ongoing active period algo-
rithms (listing 4.1) and the churned active period algorithms (listing 4.2) on active
weeks instead of subscriptions to create the churn analysis dataset. Because those algo-
rithms are designed to merge sequential subscriptions, they can also merge active
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weeks, and you can choose to allow no gaps (or gaps consisting of any number of
weeks) in forming active weeks. (If you choose to work with active days, instead, you
can run the same algorithm in terms of days with an allowed gap defined as a number
of days.) The results of running listings 4.1 and 4.2 on the week are what you are look-
ing for: the dates of continuous periods of time when accounts had events (at least
one per week). Those active periods are known to either have ended in churn in the
past or continue up to the present. Figure 4.11 illustrates the complete process for
forming a churn dataset from events.

If you compare the process for forming a dataset from events without subscriptions
(figure 4.11) to the process of forming a dataset from subscriptions in the last section,
the only difference is one extra step at the beginning: grouping events into weeks of
activity. Because the rest of the process is the same, the weekly grouping is the only
new code necessary. 

4. Observation
dates and
outcome

2. Ongoing
active
periods

5. Churn
dataset

3. Churned
active
periods

Metrics

Events

5. Select metric values at
regularly timed intervals
and the outcome of
continuing activity or churn
in the upcoming time period.

2. Identify sequences of
active weeks that continue
up to the present.

1. Weeks
with activity

1. Create one record per account
per week that the account was
active. This is an extra step in
comparison to creating a dataset
with subscriptions.

3. Identify all the sequences
of one or more weeks of
activity that ended in churn,
defined as a gap of multiple weeks.

4. Create date sequences for
regular observation on a per-
account basis and the outcome
of continuing activity or churn.

Source data:
metric values at
regular intervals

Source data:
event data

Figure 4.11 Process for finding event-based periods of activity
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4.4.3 SQL for calculating active weeks

Because the weeks with activity are stored, you need to create a database table to
hold them, using the schema shown in table 4.2. This is similar to the schemas you
have seen for subscriptions and active periods. For active weeks, the end date is
redundant with the start date because the start date uniquely identifies the end date
for a fixed-length period. But including the end date allows the SQL programs used
for subscriptions in the last section to work with the active weeks without changing
the logic of the queries.

Listing 4.3 provides the SQL for grouping events into weeks with activity. This tech-
nique is known to anyone who knows aggregate GROUP BY queries because the main
logic of the query is to make groups of events defined by one-week periods. The
only remarkable technique in listing 4.3 is using a generated series function to pick
the dates.

WITH periods AS 
(                 
    SELECT i::timestamp AS period_start, 
        i::timestamp + '7 day'::interval AS period_end 
    FROM generate_series('2020-02-09', '2020-05-10', '7 day'::interval) i
)
INSERT INTO active_week 
    (account_id, start_date, end_date)   
SELECT account_id, 
period_start::date,             
period_end::date                
FROM event INNER JOIN periods 
    ON event_time>=period_start     
    AND event_time < period_end                 
GROUP BY account_id, period_start, period_end      

Run listing 4.3 by following the instructions in the book’s downloadable code. Using
the wrapper program, change the parameters to --chapter 4 --listing 3. Note
that listing 4.3 performs an insert into the database, just like listings 4.1 and 4.2, so it

Table 4.2 Active weeks table schema

Column Type Notes

account_id integer or char Not null; compound key

start_date date Not null; compound key

end_date date Not null

Listing 4.3 Grouping events into weeks of activity

This CTE holds a sequence 
of weekly intervals.

Inserts the result into the 
active_periods table

The start and end of each 
period from the sequence

Event time is greater than or 
equal to the period start.

Event time must be strictly 
less than the period end.

GROUP BY account 
ID and period dates
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does not produce any output. (The code that runs the listing prints the SQL that is
being run.) To see the result after you have run listing 4.3, run a query like this:

SELECT * FROM active_week ORDER BY account_id, start_date;

Figure 4.12 shows the results of running listing 4.3 on the default simulated dataset
and then viewing the results with a SELECT statement like the previous one. Use a
LIMIT clause if you have a large amount of data, but you shouldn’t need it for the
default simulation. Note that the code saved in the GitHub repository is not set up to
calculate active periods from the active weeks. I encourage you to make those modifi-
cations yourself.

After calculating active weeks and saving them in a table, you can use the same pro-
grams as in listings 4.1 and 4.2 to find active periods. Modify these to use the
active_week table (table 4.2) instead of the subscription table (table 2.1). Once you
calculate active periods from the active weeks, these can be used in place of subscrip-
tions in the standard churn calculation in chapter 2 (listing 2.2). 

NOTE To use the programs in listings 4.1 and 4.2 with active weeks derived
from activity instead of subscriptions, modify the code by replacing the sub-
scription table in the joins with the active_period table; no other changes
are required.

NOTE To use the program in listing 2.2 to calculate the churn rate from
activity instead of subscriptions, modify the code by replacing the subscrip-
tion table in the joins with the active_period table; also, the churn_date
column in active_period replaces the end_date column from the sub-
scription table.

account_id start_date end_date

0 2020-03-04 2020-03-11

0 2020-03-11 2020-03-18

0 2020-03-18 2020-03-25

... ... ...

3497 2020-05-06 2020-05-13

3498 2020-04-29 2020-05-06

3498 2020-05-06 2020-05-13

Typical result for active
weeks derived from
events (Your result
will not be the same
because the underlying
data is simulated.)

Figure 4.12 Example output from running listing 4.3
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4.5 Picking observation dates
Your goal is to make regular observations of your subscribers at appropriate times to
understand why they churn. Once the subscriptions (or events) have been divided
into active periods (whether from subscriptions or activity), the next step is to pick the
actual observation dates for each account.

4.5.1 Balancing churn and nonchurn observations

As I described in section 4.2, the idea is not only to observe accounts when they churn
but also to take snapshots of accounts when they don’t churn. The churn analysis
works best when the churn and nonchurn observations in the dataset are in the same
proportion as the churn rate and renewal rates. The way to accomplish that is to
observe every account on the same periodic cycle that you use when calculating your
churn rate. Also recall that the observations are offset by a lead time. As described in
section 4.2, the lead time is designed so the observation is made at a point before the
customer has probably made up their mind about churning or staying. This process
was illustrated previously in figure 4.3 and is reproduced in figure 4.13.

As shown, in addition to observing customers before they churn, observations should
be made periodically throughout the subscription. These observations should be
made at the same frequency that the organization measures its churn, which is nor-
mally the same frequency with which customers renew (for termed subscriptions) or
pay their bills (for evergreen subscriptions): annual frequency for B2B (business)
products and monthly frequency for B2C (consumer) or SMB (small and medium
businesses) products. For consistency with churn observations, these observations are
made with a lead time before each payment or renewal.

Payments or renewals every
month (B2C) or year (B2B)

Churn when the
subscription ends

Observations (dashed lines) are made during
the lead time before each payment or renewal
(solid lines).

TimeSubscription 1

Churn
date

Observation

dates

Lead
time

Observation
interval

Figure 4.13 Reprise: payment cycle dates, lead time, and observation 
sequences 
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4.5.2 Observation date-picking algorithm

Considering figure 4.13, the detailed algorithm for picking the observation dates is
as follows:

1 Begin with the start date of every active period for each account.
2 For the first observation: 

a Add the periodic time interval at which you will be making observations (for
example, a month) to the start date separately for all accounts and active
periods. For subscriptions, this is usually the next payment or renewal date.

b Subtract the lead time to find the first observation date in each active period.
c If this observation date is followed by a churn, flag it as a churn observation,

meaning if the active period ends in churn between this observation and one
observation period later, then this is the last observation before the churn.

3 For the second observation on each account: 
a Add two times the observation period to the start dates for each account.
b Subtract the lead time.
c If this observation date is followed by a churn, flag it as a churn observation.

4 Repeat step 3 for each account, incrementing the number of periods added to
the start (and always subtracting the lead time) until the next observation date
is beyond the active period.

An example of running the algorithm for picking monthly observation dates with a
seven-day lead time for two accounts is shown in figure 4.14. It demonstrates that after
some initial calculation, each account is repeatedly observed on the same day of the
month. If there are monthly payments or subscription renewals, the date is timed to be

Account Active

period

start

Start +

1 month

–1 week lead

time =

observation 1

+ 1 month =

observation 2

+1 month =

observation 3

Further

observations

until churn

1 13-Mar 13-Apr 6-Apr 6-May 6-June ...

2 22-Feb 22-Mar 15-Mar 15-Apr 15-May ...

... ... ... ... ... ... ...

2. One month after the
subscription start is the
first renewal or payment.

3. The first observation
is one week (the lead
time) earlier than the
first month.

1. Begin from the start date of the
subscription-based or event-based
activity period for each account.

4. The next observation
is one month after
the first.

5. Subsequent observations
follow by one month,
until churn.

Figure 4.14 Illustration of the observation date-picking algorithm 
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one week before the monthly payment. If this were a product with an annual subscrip-
tion, the observation dates would be on the same day every year. Again, the observations
would be timed to have a lead time before the annual renewal (or payment), and the
lead time would be longer—one to three months, as described in section 4.2—but the
idea is the same.

 To pick observation dates for each account, begin with the start date for each active
period and add the observation period (one month, in this example) less the lead time
(one week) to get the first observation date. To get the second observation date, add two
times the observation period, less the lead time, to the start date. To get the third obser-
vation date, add three times the observation period, less the lead time, and so on.

4.5.3 Observation date SQL program

Because the observation dates are stored, at least temporarily, you need to create
another table for them. Table 4.3 shows the schema to hold the observation dates. This
table contains the account ID and observation date, which together define a compound
primary key on the table, and one additional column: a logical value that tracks whether
the observation is the last observation in an active period ending in churn.

Listing 4.4 provides the SQL program to produce the observation dates. It assumes
there is a table active_period with periods defined from subscriptions. The SQL pro-
gram for generating observation dates uses a recursive CTE, and the strategy for creat-
ing the observation dates recursively is as follows:

1 Initialize the recursive CTE with one observation for every active_period:
a Pick the first observation date to be one observation interval after the start

date, less the lead time. 
b Set a counter to 1 on the observation. This is used to calculate the time of

later observations.
c Set a Boolean indicating whether the churn date is between that observation

date and the next observation date, which will be the observation interval
after this observation date.

2 Recursively insert additional observation dates into the CTE for each active period:
a Increment the counter by one.
b The new observation date is calculated from the start date plus the new

counter value multiplied by the observation period, less the lead time.

Table 4.3 Observation dates table schema

Column Type Notes

account_id integer or char Not null; compound key

observation_date date Not null; compound key

is_churn logical Not null
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c Set a Boolean indicator on every observation so that an observation that
immediately precedes the end of the active period (the churn) is set to true.

d Exit recursion when one of the following conditions is met:
– The next observation date is after the end of the active period.
– The next observation date is after the end of the overall period being con-

sidered.

The SQL program for the observation dates uses just two CTEs: one to set the con-
stant parameters and one for the recursion. After this recursive procedure, the results
are inserted into the observation table. The SQL program in listing 4.4 uses a one-
month observation interval and one week of lead time.

WITH RECURSIVE observation_params AS      
(         

    SELECT interval '1 month' AS obs_interval,      
           interval '1 week'  AS lead_time,     
           '2020-02-09'::date AS obs_start,     
           '2020-05-10'::date AS obs_end        

),
observations AS     
(

    SELECT account_id,    
    start_date,
    1 AS obs_count,  
    (start_date+obs_interval-lead_time)::date 
        AS obs_date,     
    CASE 
        WHEN churn_date >= (start_date +   obs_interval-lead_time)::date 
           AND churn_date <  (start_date + 2*obs_interval-lead_time)::date 
        THEN true 
        ELSE false 
    END AS is_churn         
    FROM active_period INNER JOIN observation_params
    ON (churn_date > (obs_start+obs_interval-lead_time)::date 
        OR churn_date is null)      

  UNION     

  SELECT o.account_id, 
      o.start_date,
      obs_count+1 AS obs_count,      
      (o.start_date+(obs_count+1)*obs_interval-lead_time)::date 
          AS obs_date,   
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th
      CASE 
          WHEN churn_date >= (o.start_date + 
                              (obs_count+1)*obs_interval-lead_time)::date
          AND churn_date  <  (o.start_date + 
                              (obs_count+2)*obs_interval-lead_time)::date
          THEN true 
          ELSE false 
      END AS is_churn       
  FROM observations o INNER JOIN observation_params
  ON  ( o.start_date+(obs_count+1)*obs_interval-lead_time)::date 
      <= obs_end                   
  INNER JOIN active_period s 
      ON s.account_id=o.account_id     
      AND ( o.start_date+(obs_count+1)* obs_interval-lead_time)::date 
          >= s.start_date     
      AND ((o.start_date+(obs_count+1)*obs_interval-lead_time)::date  
          <  s.churn_date or churn_date is null)
) 
INSERT INTO observation (account_id, observation_date, is_churn)
SELECT distinct account_id, obs_date, is_churn
FROM observations
INNER JOIN observation_params ON obs_date BETWEEN obs_start AND obs_end

Run listing 4.4 by following the instructions in the book’s downloadable code. Using
the wrapper program, change the parameters to --chapter 4 --listing 4. Note
that like listings 4.1–4.3, listing 4.4 performs an insert into the database, so it does not
produce any output. (The code that runs the listing prints the SQL that is being run.)
To see the result after you have run listing 4.4, run a query like this:

SELECT * FROM observation ORDER BY account_id, observation_date;

Figure 4.15 shows the results of running listing 4.4 on the default simulated dataset and
then viewing the results with a SELECT statement like the previous one. Use a LIMIT
clause if you have a large amount of data, but you shouldn’t need it for the default

Sets is_churn to true if the churn is between 
the observation and the next period

Don’t add an observation if it 
would go past the date limit.

Joins with
e previous

result by
account

Adds new observations for subscription 
periods that continue

account_id observation_date is_churn

0 2020-03-10 FALSE

0 2020-04-10 FALSE

... ... ...

17 2020-04-01 FALSE

17 2020-05-01 TRUE

... ... ..

3040 2020-05-03 FALSE

3041 2020-05-03 FALSE

Observation date
sequence ending
in churn (Your
result will not be
exactly the same.)

Figure 4.15 Example output of running listing 4.4
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simulation. The observations where is_churn = TRUE are those that occur immediately
before the churn date. For each account, the observation dates are spaced one month
apart, as specified by the observation interval.

 You might wonder why the SQL program in listing 4.4 keeps a counter and multi-
plies it by the observation period duration to calculate each observation date. This
leads to the following expression appearing repeatedly in the code:

  (o.start_date+(obs_count+1)*obs_interval-lead_time)::date

An alternative would be to add the observation period to the last observation date.
Although it would be simpler to add the observation period to dates in sequence,
doing so would lead to poor handling for dates around the month’s end: for example,
if the start date is the 31st. Then when February comes around, the day of the month
would become the 28th. This is how the database defines the result when you add a
month to January 31. But when the next month rolls around, if the algorithm simply
adds the observation period, it does not shift the date back to the 31st; it would use
March 28 and continue to use the 28th in subsequent months. In non-leap years, all
end-of-month renewals would be shifted to the 28th after February. 

 By multiplying the observation period and adding it to the start date anew on each
observation, a renewal on the 31st is treated as the 31st in every month with 31 days.
Although it shifts as necessary in a month with fewer days, it does not change the
result in subsequent months.

4.6 Exporting a churn dataset
The final step in creating the dataset is to select all the metrics for the accounts on the
dates of their observations. In principle, this is simple, but as usual, there are a few
complications. 

 An important part of extracting the dataset is to transform the data from the
convention of database tables to the convention of analytic datasets, which is illus-
trated in figure 4.16. In an analytic dataset, you have to arrange the data so that each
row corresponds to a single observation of an account (that churned or didn’t), and
each column corresponds to one behavioral metric. In the database table, though,
the data is normalized so the values of all metrics are in a single column, and another
column identifies which metrics are on a given row. In the database, the behavioral
snapshot for a single account on a single date is spread over many rows. This is often
referred to as wide data versus tall data. An analytic dataset is wide because it has
many columns for all the different variables; a database table is tall because the data
is all stacked up in one column. Converting data from tall to wide is often known as
flattening the data, and that is what you must do to create the churn dataset. (It is
also referred to as pivoting the data by those who have seen this done with the Pivot
function in a spreadsheet.)
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4.6.1 Dataset creation SQL program

There is a trick to pivoting data in standard SQL; if you know it, feel free to skip
ahead. If you don’t, get ready to either love it or hate it, but I promise you will find
yourself using this trick again! 

 You can flatten a tall table like the metric table illustrated in figure 4.16 into a wide
dataset with a GROUP BY aggregation, where you group all the separate rows of metrics
for each account into one row for each date. You have probably seen the use of aggre-
gation to merge multiple rows into one with a function like a sum or an average that
combines the values. Aggregate functions can also be used to choose specific values
from among multiple rows and put each in a specific column, which is the transforma-
tion needed for flattening. 

 Listing 4.5 shows the trick to flatten data. It uses multiple SUM aggregate functions,
one for each metric that you want to flatten from the tall table to the wide table. To
take the desired value from the column (and not add anything to it), you put a CASE
statement inside each SUM that selects just one type of metric value from the tall table.
A series of such SELECT statements inside a GROUP BY aggregation effectively flattens
the tall data to wide. It isn’t pretty, but it works!

 Another complication is that you might not have calculated metrics for your
accounts every single day. I have encouraged you to calculate metrics just once a week.
If you follow my advice and do not calculate the metrics every day, then when you cre-
ate the dataset, you need to select metrics that are not necessarily on the exact day of
the observation. This leads to using a date range for picking the metrics in the SELECT.

Account Metric Value

A logins_per_month 5

A posts_per_month 2

A likes_per_month 1

A shares_per_month 4

B logins_per_month 8

B ... ...

posts_per_month

2

4

likes_per_month

1

6

shares_per_month

4

2

Account

A

B

...

logins_per_month

5

8

...

Tall data: Different metrics are all stored in one
column with a separate column identifying what
data is stored. The metrics for one account are
spread across multiple rows. This is the standard
format for data in a database or data warehouse.

Flattening : Converting fromdata
tall to wide format. Also known as
pivoting the data.

Wide data: Each metric has its own column. All of the metrics for one account
are in a single row. This is the standard format for data in any kind of analysis.

Figure 4.16 Flattening tall data into wide data
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 One last trick in listing 4.5 is handling cases where a metric was not calculated for
an account around the observation date at all. Recall that in chapter 3, the count and
average value metrics were defined so that when an account had no events, no metric
value was stored. This means for such metrics, there might not be any value for the
JOIN statement in listing 4.5. But one metric always has a value, regardless of the
events for an account: the account tenure. 

 The account tenure must always have a value for a user who has active subscrip-
tions or is in an active period of usage. The fact that account tenure always has a value
means the JOIN in listing 4.5 always finds at least one metric around the observation
date for every account. What about the other metrics? The logic of the CASE statement
means any other metrics being flattened are filled with zero, which effectively handles
the problem of filling missing values for these kinds of metrics.

WARNING If you do not use the account tenure metric or at least one metric
that is guaranteed to have a value for every account every time you calculate
it, then the query in listing 4.5 might drop account observations with no met-
rics. This problem can be solved with an outer join between the metrics and
the observations, but my recommendation is to include the account tenure in
your analysis.

Listing 4.5 uses a CTE to hold constant parameters, including one that is the metric
calculation interval. The INNER JOIN statement uses the metric interval to select the
last metric calculated within the seven days before the observation date. 

NOTE The output of listing 4.5 also includes the account ID and the observa-
tion date. Although not necessary for the analysis, this kind of descriptive data
is often useful for quality-checking the data.

In the next chapter, you’ll spend more time looking at how to check the quality of
datasets extracted in this manner.

WITH observation_params AS     
(
    SELECT interval  interval '7 day'  
        AS metric_period,              
    '2020-02-09'::timestamp AS obs_start,    
    '2020-05-10'::timestamp AS obs_end       
)
SELECT m.account_id, o.observation_date, is_churn,            
SUM(CASE WHEN metric_name_id=0 THEN metric_value ELSE 0 END) 
    AS like_per_month,                                        
SUM(CASE WHEN metric_name_id=1 THEN metric_value ELSE 0 END) 
    AS newfriend_per_month,
SUM(CASE WHEN metric_name_id=2 THEN metric_value ELSE 0 END) 
    AS post_per_month,

Listing 4.5 SQL for dataset creation
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SUM(CASE WHEN metric_name_id=3 THEN metric_value ELSE 0 END) 
    AS adview_feed_per_month,
SUM(CASE WHEN metric_name_id=4 THEN metric_value ELSE 0 END) 
    AS dislike_per_month,
SUM(CASE WHEN metric_name_id=5 THEN metric_value ELSE 0 END) 
    AS unfriend_per_month,
SUM(CASE WHEN metric_name_id=6 THEN metric_value ELSE 0 END) 
    AS message_per_month,
SUM(CASE WHEN metric_name_id=7 THEN metric_value ELSE 0 END) 
    AS reply_per_month,
SUM(CASE WHEN metric_name_id=8 THEN metric_value ELSE 0 END) 
    AS account_tenure,
FROM metric m INNER JOIN observation_params
    ON metric_time between obs_start and obs_end       
INNER JOIN observation o ON m.account_id = o.account_id
    AND m.metric_time > (o.observation_date - metric_period)::timestamp    
    AND m.metric_time <= o.observation_date::timestamp
GROUP BY m.account_id, metric_time, 
    observation_date, is_churn          
ORDER BY observation_date,m.account_id 

Run listing 4.5 by following the instructions in the book’s downloadable code. Using
the wrapper program, change the parameters to --chapter 4 --listing 5. Listing
4.5 ends with a SELECT statement containing the result. If you run it using the code in
the GitHub repository, it saves the result in a CSV file for you. The wrapper program
prints the path to the file; for example: 

Saving: ../../../fight-churn-output/socialnet/socialnet_dataset.csv 

Figure 4.17 shows an example of the result of running listing 4.5. It skips rows to fol-
low a few accounts through the dataset; the dataset observations are arranged by date,
so records for a single account are dispersed throughout.
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Figure 4.17 Example output of running listing 4.5
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Note that listing 4.5 is hardcoded to a fixed number of metrics with predefined names,
so listing 4.5 works only for the default simulated dataset. If you want to run listing 4.5 on
your own data, you need to modify it so that it reflects the specific metrics you have cre-
ated. However, a better option is to automate this step with a script that generates the
right SQL based on whatever metrics are in the database. A function that does that is
also in the book’s code, but not with the listings: the dataset-export folder contains a
script that cleans the results tables and runs all the listings in this chapter with a custom-
generated metric-flattening script as the finale. The README documentation has more
information on how to configure and run that program.

Account key alignment issues 
The code in this section assumes that you can simply link the account IDs on the
subscriptions used to create the active periods with the account IDs on the events
used to create the metrics. Unfortunately, the subscription database and event data
warehouse are often different systems. To keep things simple, this book presents
them as residing in a common database and using a common set of account IDs. To
prepare you for what you may face in the real world, I will explain some of the practical
issues you might face if your subscription (observation) and event (metric) data are
in two different systems. 

You cannot run a program like listing 4.5 with events and subscriptions on different
systems. You must either make the observation dates available to the system with
the metrics or the metrics available to the system with the subscriptions and obser-
vation dates. Usually, it is easiest to generate the active period data from the system
with the subscriptions and load them into the system with the metrics, and then gen-
erate observation dates from the active periods on the system with the metrics. This
minimizes the amount of data you need to transfer. That’s the easy part.

Things get more difficult when the account IDs in the two systems don’t match and
you need a mapping. A lookup table must be created where each row has the unique
matching identifiers for an account in both systems. Such a mapping can be used as
an additional inner join in listing 4.5. That’s not too hard, but the real problem arises
when it is not possible to create a perfect mapping, resulting in dropped accounts,
duplicates, or both. For example, this might occur when event data is tracked by
email, subscriptions are tracked by some kind of database primary key, and there are
emails with the subscriptions, but the emails don’t reliably match the event data.
Another version of the problem can arise in a business context where you have sub-
scriptions at the departmental level, and the event data is tracked by user, but some
users are assigned to multiple departments or no department. Unless you have
worked on a lot of extract-transform-load (ETL) pipelines, it may surprise you that such
mapping problems could occur. I assure you, they are very common. If you find your-
self in this situation, at least you have plenty of company! 

In any event, there is no trick I can teach you that will always fix these kinds of issues.
My approach is to drop incomplete records rather than try to repair them, as long as
you end up with enough data to analyze. The good news is, your data doesn’t have
to be perfect to use it! A small proportion of dropped or duplicated accounts in the
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4.7 Exporting the current customers for segmentation
This chapter taught you how to prepare a dataset to analyze your customers. But eventu-
ally, you will also want to take some actions to try to reduce churn. As I explained in
chapter 1, there are a variety of possible strategies to reduce churn. From a data point of
view, all churn-reduction methods have one thing in common: you have to use the data
to pick the most appropriate customers to target. This is usually called segmentation.

DEFINITION Segmentation—Selecting a set of customers according to a set of
criteria.

For now, you will learn a technique that lays the groundwork for segmentation by making
a snapshot of current customers. More about segmentation is coming in later chapters.

4.7.1 Selecting active accounts and metrics

The first step in segmentation and targeting customers for interventions is to make a
snapshot of how your customers are doing right now. That is the same as a dataset of
the current set of customers and their metrics, but with no history. This is simpler
than constructing the historical dataset.

TAKEAWAY A dataset containing only current customers is used for customer
segmentation.

Listing 4.6 shows a SQL SELECT statement that creates a current customer dataset suit-
able for segmentation. It uses two tricks: first, a CTE selects the most recent date with
metrics using MAX aggregation. You also have the option of simply hardcoding a date,
but presumably the most recent date with any metrics would be the last day you
updated your data. Then listing 4.6 uses the flattening aggregation trick you learned
in the last section. That’s all there is to it! Run the SQL and check that the result is
similar to that from listing 4.5, but with all the accounts observed on a single date: the
most recent.

(continued)

analytic dataset does not invalidate your dataset. By a small proportion, I mean prob-
lematic data should be much less than half the total. Data is clean, in my opinion, if
it is 90% good; and it can be somewhat messy and still be usable. 

It’s also important that the affected data is more or less random in terms of the types
of customers affected. For example, if all the dropped customers use one particular
product feature or come from one sales channel, then your results on those groups
will be off. But if a small number of accounts are dropped randomly or duplicated ran-
domly across all product features and sales channels, then you should have nothing
to worry about. We will review some additional methods to remove problematic
records from datasets in later chapters, but your best bet is to get the mapping as
correct as possible at the start. Just don’t expect it to be perfect.
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with metric_date AS      
(
    SELECT  max(metric_time) AS last_metric_time FROM metric
)
SELECT m.account_id, metric_time,
SUM(CASE WHEN metric_name_id=0 THEN metric_value ELSE 0 END)      
    AS like_per_month,
SUM(CASE WHEN metric_name_id=1 THEN metric_value ELSE 0 END) 
    AS newfriend_per_month,
SUM(CASE WHEN metric_name_id=2 THEN metric_value ELSE 0 END) 
    AS post_per_month,
SUM(CASE WHEN metric_name_id=3 THEN metric_value ELSE 0 END) 
    AS adview_feed_per_month,
SUM(CASE WHEN metric_name_id=4 THEN metric_value ELSE 0 END) 
    AS dislike_per_month,
SUM(CASE WHEN metric_name_id=5 THEN metric_value ELSE 0 END) 
    AS unfriend_per_month,
SUM(CASE WHEN metric_name_id=6 THEN metric_value ELSE 0 END) 
    AS message_per_month,
SUM(CASE WHEN metric_name_id=7 THEN metric_value ELSE 0 END) 
    AS reply_per_month, 
SUM(CASE WHEN metric_name_id=8 THEN metric_value ELSE 0 END) 
    AS account_tenure,
FROM metric m INNER JOIN metric_date 
    ON metric_time =last_metric_time      
INNER JOIN subscription s 
    ON m.account_id=s.account_id     
WHERE s.start_date <= last_metric_time
AND (s.end_date >=last_metric_time or s.end_date is null)
GROUP BY m.account_id, metric_time
ORDER BY m.account_id

Listing 4.6 also uses a join on the subscription table to make sure these customers
are still within an active subscription. The code that calculated the metrics back in
chapter 3 never checked that customers were active, so there can be entries for cus-
tomers who have already churned but still have events in the time period for the
metric. From the point of view of metric calculation, the result is only a few extra
records, so I didn’t bother showing you how to prevent those metrics from being
saved. And in the historical dataset, I took care that every observation corresponded
to an active customer. But for the current customer list, you need to make sure
you’re pulling data only for active subscribers, and the join on the subscription table
takes care of that detail.

NOTE In practice, listing 4.6 would have to include account names or emails,
or whatever identifiers are necessary to link the accounts with other systems
used to make interventions with customers, like email marketing and cus-
tomer relationship management systems. I omit these details from this simu-
lated example.

Listing 4.6 Selecting the currently active accounts

This CTE selects the most 
recent date with metrics.

This is the 
flattening 
aggregation 
taught with 
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Selects the metrics for 
a single date only

Joins subscriptions to ensure that 
customers are currently active
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4.7.2 Segmenting customers by their metrics

Now that you have a list of current customers and all their metrics, the act of segment-
ing is straightforward. If you gave the output of listing 4.6 to your business colleagues,
they would probably know what to do: open it in a spreadsheet and use the filtering
features to explore and select customers who match different behavioral profiles
based on the metrics. You can also define segments by putting criteria in the SELECT
statement of listing 4.6. The hard part is knowing what to choose for the values to define
the segments and which behaviors to focus on in the first place. To do that in a data-
driven way, you need to really understand how the behaviors relate to churn and
engagement, and that’s the subject of the next chapter.

Summary
 A churn analysis dataset is a table of behavioral snapshots of customers, includ-

ing both customers who churned and customers who did not churn. 
 Churn leading indicators are behaviors that suggest a high likelihood of churn

at a time when the customer has not yet made up their mind. Churn leading
indicators are usually the focus in fighting churn.

 Churn lagging indicators are behaviors that customers often engage in after
they have already decided to churn. Churn lagging behaviors are usually not
the underlying cause of churn.

 To focus the analysis on churn leading indicators, a behavioral snapshot of cus-
tomers who churn is made with a lead time before the actual churn occurred.

 Lead times for observing churn are usually a few weeks in advance of churn for
a consumer product and one to three months for a business product.

 It is important to ensure that churns and nonchurns in the dataset are sampled
roughly in proportion to the actual churn rate and renewal rate, respectively.

 Behavioral snapshots of customers who renew are made at the same regular
interval at which churn is measured: typically monthly for a consumer product
and annually for a business product. This ensures that the proportion of churns
in the dataset approximately matches the churn rate.

 For subscription products, behavioral snapshots of customers who did not
churn are made prior to the renewal or payment dates, also with a lead time.

 The first step in creating the churn analysis dataset is identifying active periods
for each customer, when the customer had at least one subscription (for sub-
scription products) or at least one event (for nonsubscription products) within
a short time.

 For nonsubscription products, events are first aggregated into weeks as a single
indicator of whether each account had any events that week. Active periods are
found from the active weeks.
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 After active periods are found, observation dates are selected for each account
in a series based on the start of the active period.

 The dataset is created by merging the observation dates with the previously cal-
culated metrics.

 When the dataset is created, the metrics are flattened, meaning they are con-
verted from a format with different metrics all in one column to a format in
which different metrics are each in their own column.





Part 2

Waging the war

Now that you have the foundations in place, you can start your fight
against churn in earnest. For the data person, that fight mainly means delivering
actionable customer metrics to the churn fighters in your organization: product
managers, marketers, customer success and support representatives, and so on.
Great, actionable customer metrics have a clear relationship to churn and reten-
tion and can be used to segment customers to target churn-reducing interven-
tions. A great set of customer metrics also must be concise so that the churn
fighters stay on target without getting confused by information overload.

 Chapter 5 teaches the methods I use for understanding the relationship
between churn and behavior. This chapter shows you which metrics drive cus-
tomer health and engagement and helps you understand what a healthy cus-
tomer looks like.

 Chapter 6 shows you what to do when you have too many related events and
metrics. This issue is important because most online services today have so much
data that the result is information overload. When you master the techniques in
this chapter, however, there will be no such thing as too much data.

 Chapter 7 teaches you how to make advanced customer metrics, bringing
everything together. These metrics enable more nuanced kinds of understanding
and customer targeting than the simple metrics introduced in chapter 3. What
you learn in chapters 5 and 6 makes this understanding possible.





Understanding churn
and behavior with metrics
If you need to use statistics to understand your experiment, then you ought to have
done a better experiment.

—Ernest Rutherford, Nobel Prize in Chemistry, 1908, known as
“The Father of Nuclear Physics” for his discovery of radioactive decay

It’s time to do what you came here for: understand why your customers are churn-
ing and what keeps them engaged. Although it took a while, the dataset you learned
to create in chapters 3 and 4 is the foundation for what comes next. You might

This chapter covers
 Showing how churn relates to metrics using 

cohort analysis 

 Summarizing the range of customer behaviors 
with dataset statistics

 Converting metrics from their normal scale to 
scores 

 Removing invalid observations from a cohort 
analysis

 Defining customer segments based on metrics 
and churn
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expect that now I’m going to dive into some serious statistics or machine learning to
do the analysis. Instead, I want to call your attention to the quote at the top of the
page, which is my favorite saying by a scientist.

 The quote suggests that something is wrong if you are using statistics to analyze an
experiment. In the age of big data and data science, that might sound like heresy. But
I invite you to hold your judgment and consider what Rutherford was getting at. For
one thing, he was a physicist at a time when electrical laboratory equipment was
assembled by the scientists. If you had a lot of noise in your experimental apparatus,
you could use statistics to deal with it by averaging results over many experiments, but
maybe you should have spent more time setting up an experiment with less-noisy
equipment. For a twenty-first-century data analyst, that can mean that you should
spend a lot of time cleaning your data to get better results, which is completely cor-
rect. But does it justify maligning statistics?

 Maybe I’m reading too much into Rutherford’s advice, but I think there is a
deeper level to it. It might also mean that if an experiment shows a result that is not
obviously a confirmation of the hypothesis, don’t bother with statistics to see whether
you can make the result look better. Instead, come up with a better hypothesis—one
that will really explain the thing you are trying to understand. To achieve that goal,
you should design experiments to search for explanations that strongly drive the
result, not second-order influences. If such a hypothesis is correct, the qualitative
results of an experiment can be read from a single look at a plot of the results. 

 It turns out that the most important results for churn analysis and subscriber
engagement are usually this way: you will know it when you see it, and you will not
need statistics. It’s also important that this property of churn will make it easy to com-
municate to the nontechnical businesspeople in your organization. In the context of
churn analysis and behavioral metrics, look for metrics that show a strong relationship
to churn, and if you don’t find them, keep looking.

TAKEAWAY You are looking for behavioral metrics that show a strong rela-
tionship to churn. When you find one, you will know it when you see the
results, without using statistics.

That said, in the third part of this book, I teach statistical and machine-learning meth-
ods for churn. It’s not that I think there is no place for statistics and machine learning;
the question is emphasis. Also, I won’t use statistics and machine learning yet, but I
didn’t say there won’t be math; I teach a small amount of necessary math in this chap-
ter and the chapters that follow.

 In terms of the overall themes of the book, the topics of this chapter are high-
lighted in figure 5.1. This chapter assumes that you measured churn rates with the
techniques in chapter 2, made behavioral metrics with the techniques in chapter 3,
and created a dataset in chapter 4. This chapter is where everything starts to come
together!
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Here’s how this chapter is organized: 

 Section 5.1 teaches you a technique that I call metric cohorts, which allows you to
investigate the real impact of behaviors that may be related to churn. I demon-
strate this technique with examples from case studies to show what typical results
look like. 

Chapter 5 teaches
you to understand
how behavior
relates to churn
and how to use
that knowledge to
design segments
for churn-reducing
interventions.
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Figure 5.1 This chapter’s place in the process of fighting churn with data
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 In section 5.2, I show you how to see the big picture of your customer behaviors
by summarizing all the behavior in the dataset. What you find in the dataset
summary is useful for refining your cohort analyses. 

 Section 5.3 teaches another supporting technique called scoring, which is a way
to transform customer metrics to improve the quality of analysis. There are no
statistics, but the section includes a few equations. 

 In section 5.4, I discuss when and how to remove invalid or unwanted data that
makes cohort analyses harder to interpret. 

 Section 5.5 goes over how to use cohort analysis to define customer segments.

5.1 Metric cohort analysis
Cohort analysis is a method of analyzing how churn (and other behaviors) depends on
the value of behavioral and subscription metrics, like those taught in chapter 3. 

DEFINITION The following definitions apply throughout the chapter:

 A cohort is a group of individuals that are similar (in the specific sense that
all those individuals have a particular metric within a relatively small range). 

 A metric cohort is a cohort of customers defined by having similar values on
a metric.

 A cohort analysis is a comparison of different cohorts on some other measure-
ment (not the one used to define the cohorts)—possibly another metric.

 A churn cohort analysis is a comparison of churn rates in different metric
cohorts.

I generally use the term cohort analysis for brevity, but it’s implied that these analyses
are metric cohort analyses of churn unless specified otherwise. You will see a lot of
cohort analyses in the rest of the book, so I am going to take the time to introduce
the concept before looking at Python code that does the calculation and plots the
results. After you’ve learned the concept and the code, I illustrate the results in
some real case studies.

5.1.1 The idea behind cohort analysis

Probably the most basic hypothesis of any churn investigation is that people who are
using the product a lot are less likely to churn than people who are using the product
a little or not at all. A cohort analysis of churn that uses common product behaviors to
form the cohorts serves as a test of that hypothesis. Figure 5.2 illustrates the idea. If it
is true that active customers churn less than inactive ones, a group of active customers
should have a lower churn rate than a group of inactive customers. You can check this
hypothesis by dividing the customers into cohorts based on their level of activity and
then measure the churn rate in each group. If an activity is related to lower churn, you
should find that the churn rate on the most active group is the lowest, a less active
group has a higher churn rate, and the least active group has the highest churn rate.
Figure 5.2 illustrates this ideal scenario for three groups.
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TAKEAWAY If customers who use a product less churn more, a group of rela-
tively inactive customers should have a higher churn rate than a group of rel-
atively active customers.

An important point to note is that finding relatively higher and lower churn rates in the
less and more active groups is more realistic than expecting that all active customers
don’t churn and all inactive customers do churn. Churn involves a lot of apparent ran-
domness: sometimes, your best customers quit and your worst stay for reasons that only
they will ever know. Comparing churn rates (which are averages) of groups makes sense,
but you cannot expect all customers to show exactly the same churn behavior.

Next, consider how a cohort analysis is going to work in practice, given the dataset
that you created in chapter 4. When you finished that chapter, you created a dataset,
which is one big table of data, and on each row, you have one observation of a cus-
tomer on a particular date, including several metrics and whether the customer
churned or renewed on that date. The process of making a metric cohort analysis on a
single metric, illustrated in figure 5.3, is as follows:

1 Start from a complete dataset that contains observations of customers, includ-
ing the metric of interest and whether the customers churn. Some customers
can be considered more than once if they renew. The data most likely starts
sorted by date and by account ID, assuming that it was created by means of the
process described in chapter 4.
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Figure 5.2 The concept of metric cohorts
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2 Using the metric and the variable representing churn or nonchurn, sort those
observations by the metric. The identity of the accounts and the observation
date are ignored for the rest of the cohort analysis.

3 Group the observations into the cohorts by dividing the observations into a pre-
selected number of equal-size groups. In a real cohort analysis, you typically use
10 cohorts, so each cohort contains 10% of the data. (In the simple example
shown in figures 5.1 and 5.2, only three cohorts are used.) Note that you do not
decide in advance where the boundaries of the cohorts ought to be; the bound-
aries between cohorts are a result of the analysis.

4 For each cohort, make two calculations:
– The average value of the metric for all observations in the cohort
– The percentage of churns in the cohort observations

5 Plot the average metric values and churn rates with the average metric on the
x-axis and the churn rate on the y-axis.

1. Unsorted dataset 2. Sorted data 3. Cohorts 4. Churn and average
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Figure 5.3 Metric cohort analysis example
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It might surprise you that the identity of the customers and the date of the observa-
tion don’t matter for the cohort analysis. Because our dataset is normally formed with
multiple observations of most customers, the same customer generally appears many
times in your cohorts. Sometimes, a customer appears more than once in one cohort;
at other times, the same customer appears in different cohorts. Though this situation
may be confusing, it makes sense: you are investigating the hypothesis that the behav-
ior represented by the metric is related to churn, not that the identity of the customer
or the timing of the observation is related to churn. 

 That said, you may not want to explain this detail to your business colleagues,
because it can lead to confusion. As discussed in more detail in the sidebar “Analyzing
how cohorts change over time” (section 5.1.4), you can test whether both the behav-
ior and the timing of the observation matter, but for now, we continue to explore
whether the behavior alone is relevant. 

TAKEAWAY Metric cohorts are groups of observations of a customer metric
and churn; they are not the same as groups of customers, because one cus-
tomer can be observed multiple times. 

WARNING It is important to understand that one customer can appear multi-
ple times in a cohort analysis, but you probably should not explain this fact to
your business colleagues, because they might find it confusing. 

5.1.2 Cohort analysis with Python

Figure 5.4 shows a cohort analysis on the simulated dataset that was performed and
plotted with Python. The metric is posts per month and is plotted on the x-axis: the
cohort averages for the metric range are from near 0 to more than 175. The churn
rates are plotted against the y-axis and range from around 0.02 to 0.12. The churn rate
decreases dramatically over the cohorts, so behavior has the expected relationship to
churn for the simulated social network. 

 The pattern shown by the simulated data in figure 5.4 is extremely common in real
churn case studies. Churn falls rapidly as you move up the bottom cohorts, but the fall
in churn rate decelerates and can even level out in the top cohorts. This pattern
makes it easy to identify the metric’s healthy level. For posts per month in the simula-
tion, above 25 is healthy because at that point, further increases don’t have observable
effects on the churn rate.

 I will show you real case studies in section 5.1.3, but first, let’s look at the code to per-
form cohort analysis. Listing 5.1 shows a Python function that performs a single metric
cohort analysis using Pandas DataFrames. The function has the following inputs:

 data_set_path—A path to a dataset saved in a file, given by a string variable
 metric_to_plot—The name of a metric to make the cohort plot, given by a

string variable
 ncohort—The number of cohorts to use, given by an integer variable
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Given these inputs, the following are the main steps you use to create a cohort plot:

1 Load the dataset into a Pandas DataFrame object, and set the DataFrame index.
2 Use the DataFrame member function qcut to divide the observations into

cohorts. This function returns a series. The series length is the same as the
number of observations, and the series values are integers representing the
group assignments.

3 Calculate the average metric and the average churn rate, using the DataFrame
function groupby and passing the qcut result (the series of group identifiers) as
the parameter.

4 Make a new DataFrame from the averages and churn rates.
5 Plot the result, using matplotlib.pyplot, and add the appropriate labeling

before saving.

Note that this procedure has one important difference from the solution to the exam-
ple problem in section 5.1.1: rather than sorting the data, forming the cohorts, and
calculating the averages by using your logic, the code relies on Pandas Data-
Frame.qcut and DataFrame.groupby functions. qcut is short for quantile-based discreti-
zation, which is a technical term for the kind of cohort groups that we are making,
drawing explicitly on the notion of a quantile.

DEFINITION A quantile is a value that results as a dividing point when data is
divided into equal groups, each containing the same fraction of the total num-
ber of observations. A decile is a quantile when the data is divided into 10 groups,
with each of the groups containing 10% of the data. A percentile is a quantile
when the data is divided into 100 groups, each containing 1% of the data.
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Figure 5.4 Cohort analysis of posts per month for the simulated customer dataset
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The first decile is the value of the metric that divides the first 10% of the data from the
second 10% of the data when the data is organized by the metric. The second decile is
the value of the metric that divides the second 10% of the data from the third 10% of
the data, and so on. In a mathematical context, discrete means separate (or not contin-
uous). The groups are discrete in the sense that membership in them is all or nothing
(not discreet in the sense of something secretive or hidden). The qcut function is
named quantile-based discretization because the data is divided into discrete groups
by the values of the quantiles.

import pandas as pd
import matplotlib.pyplot as plt
import os

def cohort_plot(data_set_path, metric_to_plot, ncohort=10):
   assert os.path.isfile(data_set_path),
      '"{}" is not a valid path'.format(data_set_path)   
   churn_data = pd.read_csv(data_set_path,
      index_col=[0,1])                                    
   groups = pd.qcut(churn_data[metric_to_plot], ncohort, 
      duplicates='drop')                                  
   cohort_means = 
      churn_data.groupby(groups)[metric_to_plot].mean()    
   cohort_churns = 
      churn_data.groupby(groups)['is_churn'].mean()     
   plot_frame = pd.DataFrame({metric_to_plot: cohort_means.values, 
      'churn_rate': cohort_})    
   plt.figure(figsize=(6, 4))      
   plt.plot(metric_to_plot, 'churn_rate', data=plot_frame,marker='o', 
             linewidth=2,label=metric_to_plot)                
   plt.xlabel('Cohort Average of  "%s"' % metric_to_plot)    
   plt.ylabel('Cohort Churn Rate (%)'
   plt.grid()
   plt.gca().set_ylim(bottom=0)
   save_path = data_set_path.replace('.csv', '_' + 
      metric_to_plot + '_churn_corhort.png')
   plt.savefig(save_path)                
   print('Saving plot to %s' % save_path)
   plt.close()

Listing 5.1 Metric cohorts in Python

Writing your own algorithms vs. using off-the-shelf module functions
If you are still in a computer science or programming class, you may think it’s cheat-
ing to use a function like DataFrame.qcut to implement an algorithm, because nor-
mally, a computer science education is about writing your own algorithms. Or maybe
you think that in a book like this one, it’s cheating to use such a function because
books are supposed to teach you to write algorithms. In this context, however, using
the Pandas algorithm is the best practice. 
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Given that the DataFrame.qcut and DataFrame.groupby functions perform the main
steps in the algorithm, half of listing 5.1 is concerned with plotting the result. Because
this listing is the first plotting code in this book, I want to briefly mention the impor-
tance of clearly labeling all plots and figures that you produce in your analysis.

WARNING Clearly label all plots produced by your analysis. The business-
people with whom you share your analysis won’t be familiar with the details,
and if you don’t label the results clearly, the plots will be difficult for them
to follow.

Labeling the results also helps you later, when you come back to your analysis and try
to remember what the results mean, especially if you have a lot of events and metrics.
You may have to sift through dozens or even hundreds of cohort plots, which will be
impossible if you don’t build clear annotation into your process.

 If you haven’t done so already, run listing 5.1 to test it with your own data. Assum-
ing that you have set up your environment (instructions are in the README file in
this book’s GitHub repository at https://github.com/carl24k/fight-churn) and are using
the Python wrapper program, run listing 5.1 with the command

fight-churn/listings/run_churn_listing.py --chapter 5 --listing 1

The result should be a .png file with a cohort plot that looks like figure 5.4.

5.1.3 Cohorts of product use

Figure 5.5 displays a first example of a cohort analysis from a real case study that shows
churn in metric cohorts for Broadly’s customers. An important event for Broadly’s
customers is the number of online reviews that are updated, so a metric is calculated
for the number of reviews updated per month.

 Because this figure illustrates the first real metric cohort churn case study in this
book, I need to make an important point that holds true for all other studies in the
book that are based on real companies (not simulations): figure 5.5 does not show
actual churn rates as percentages on the y-axis. Instead, the y-axis is unlabeled, and
the churn rate is described as relative. The actual churn rates are omitted to protect
the privacy and business interests of the companies in the case studies, but you can still
see the significance of the difference in churn between cohorts because the bottom of

(continued)

In case you haven’t noticed, there is plenty of work to do in analyzing churn without
reinventing the wheel by writing an algorithm to divide data into groups. The same
goes for calculating the average and churn rate by using the DataFrame.groupby
function; there’s no reason to write your own logic when a standard module function
does exactly what you need to do. I take this approach throughout the book, always
trying to achieve goals by using algorithms that are part of a standard module.

https://github.com/carl24k/fight-churn
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the cohort plots is always fixed at zero churn. As a result, the distance of the points
from the bottom of the chart shows the relative churn rates of the cohorts.

 For Broadly’s metric, the churn rate is highest in the first cohort and declines over
the first five cohorts; the churn rate in the top three cohorts (on the right side of the
plot, with the highest metric values) is around half the churn rate in the bottom
cohort. You can tell that the churn in the top cohort is around half the churn in the
bottom cohort by noting that it is approximately half the distance to the bottom of the
graph, using the equally spaced grid lines. (To be precise, the churn in the top cohort
of figure 5.5 is a bit more than half the churn rate of the bottom cohort.) Another
point worth noting in figure 5.5 is that the reduction in churn rate occurs between the
cohorts that have around zero review updates per month and those that have four
review updates per month; after four review updates per month, there is no further
reduction in churn rate.

Figure 5.6 shows another example of a metric cohort churn case study for Klipfolio.
This figure shows a case study in metric cohort analysis, using the metric dashboard
edits per month calculated on Klipfolio’s customers. As in figure 5.5, churn rates are
shown on a relative scale, with the bottom of the plot fixed to zero churn. In this
case, the churn rate of the top cohorts is a fraction of that of the bottom cohorts
(about 10%).

The churn
rate is shown
in relative
terms, with
the bottom
of the plot set
to zero churn.

The churn rate is highest among those accounts with zero
reviews updated per month and falls with increasing activity.

Having more
than four reviews
updated per
month is not
associated with
further decreases
in the churn rate.

The cohorts with more than around two reviews updated per month have a churn
rate that is around half the churn rate of the accounts with zero review updates.
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Figure 5.5 Cohort analysis of churn for Broadly’s metric (reviews updated per month)
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Figure 5.7 shows another metric cohort churn example, using Versature’s metric for
total local-call times per month. This figure depicts another fairly typical relationship
between an important behavioral metric and churn. The cohorts with more than 2,500
total local-call times per month churn at around a third the rate of the bottom cohort,
which makes practically no calls. The reduction in churn rate happens between zero
and 2,500, after which the churn rate seems to increase slightly but not significantly.

The churn rate is highest among accounts with zero to one dashboard
edits per month and falls continually with increasing activity.

The cohorts with more
than 50 Klip edits
per month have a churn
rate that is around one-
eighth the churn rate of
the accounts with one
or fewer Klip edits
per month.

The churn rate
is shown in
relative terms,
with the bottom
of the plot set
to zero churn.
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Figure 5.6 Cohort analysis of churn for Klipfolio’s metric (dashboard edits per month)

The churn rate is highest among those accounts with close
to zero calls per month and falls with increasing activity.

For accounts with
more than around
2,500 calls per
month, the churn
rate is less than
one-third the churn
rate of accounts with
no local calls. But
having more than
2,500 calls per
month is not
associated with
further decreases
in the churn rate.

The churn rate
is shown in
relative terms,
with the bottom
of the plot set
to zero churn.
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Figure 5.7 Cohort analysis of churn for Versature’s metric local-call times per month



185Metric cohort analysis
Looking at the distribution of local calls (not churn rates) in figure 5.7, note that most
of the cohorts are compressed on the left side of the graph in the low range. In fact,
seven cohorts occupy a sixth of the figure (the region between 0 and 5,000 calls). This
figure shows that the cohort with the most calls makes a lot more calls than the others,
so even the second-highest cohort has less than a third as many calls on average. This
example shows a skewed behavioral metric.

DEFINITION A skewed metric is one in which the top cohort contains values
several times higher than those of the next-closest cohort. Typically, most of
the lower cohorts have averages within a relatively small range. 

Skew is an important concept in metrics, as I’ll explain in section 5.2.1. Skew can cause
problems in your analysis, beginning with the fact that figure 5.6 is a bit hard to read.
Most of the space is taken up by the top two cohorts; the others are squeezed together.
This arrangement is a natural result of skew in the distribution of metric values, because
the top cohorts are many multiples above the rest. Skew causes another problem when
you try to understand the relationships among metrics, as described in chapter 6. For
that reason, I teach the technique known as scoring metrics in section 5.3.

 I want to call your attention to one more feature of the cohort churn analyses in
figures 5.5, 5.6, and 5.7: they all have the same overall shape, with the cohort churn
rates falling rapidly in the first couple of cohorts; for higher cohorts, the churn rate is
more or less constant. This result is common, and it’s the reason why the simulation
shown in figure 5.4 was crafted to act that way. 

 The fact that churn rates fall with behavior and then level off is both useful and a
problem. It’s useful because it’s easy to identify a healthy level for the metric: the level
where churn rates stop declining. It’s a problem because after a certain point, that
metric no longer helps you understand churn or segment customers based on churn
risk. In terms of intervening to reduce churn, getting users to take more of certain
actions doesn’t make a difference past a certain point. If you want to explain differ-
ences in the churn rate among customers with high values on those metrics and
reduce churn among those customers, you need to do something else. In chapters 6
and 7, you learn techniques to create metrics in which the relationship to churn stays
strong, even up to the top cohorts. 

5.1.4 Cohorts of account tenure

Another common kind of cohort analysis looks at churn based on the length of time
that customers have been customers—a period that I call account tenure. This form
of cohort analysis is the most common, so if you have seen a cohort-based churn anal-
ysis, it was probably based on tenure. 

 This type of cohort analysis is the same as metric cohort analysis except that it
looks at account tenure instead of behavior. Also, you usually expect to find that cus-
tomers who have been customers for a long time are less likely to churn and that
newer customers are more likely to churn. A cohort analysis using account tenure
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serves as a test of that hypothesis. Because account tenure is calculated as an account
metric, this type of cohort analysis is performed with exactly the same code that was
used in the behavioral metric cohort analysis in section 5.1.3.

 Figure 5.8 shows the result of a cohort analysis of account tenure for Klipfolio. The
results are fairly typical:

 Churn is lower for the newest customers (around a month average tenure) than
for customers of longer duration.

 Churn increases in the first half of the year and is about a third higher in the
third cohort.

 Churn decreases for customers between a half-year and one year. But churn
increases for customers at the end of the first year.

 After the first year (cohorts with average tenure greater than 365 days), churn is
lower and declines such that the cohort with the longest tenure (around four
years) has about a third less churn as the newest cohort.

Though tenure-based cohort analysis is the most common form in the literature on
churn, the analysis I demonstrated in figure 5.8 is a bit different. The most common
way to define account tenure cohorts and perform this analysis is to group customers
by the time that they sign up: month, quarter, or year. After that initial cohort assign-
ment, the number of customers remaining in each cohort is tracked over time and
used to derive the churn rates for each cohort at different points in time. By con-
trast, the method I demonstrate observes customers independently on a schedule

Churn rises in
the six months that
a customer is on the
product, peaking
around 80 days1
in cohort 3.

There is less churn in the second half-year but
another peak in churn at 365 days in cohort 5.

After a year, churn is less and generally
decreases the longer a customer stays.

The churn rate for
the customers with
the longest tenure
is less than half the
peak churn rate for
customers in the
first half-year of
their tenure.
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Figure 5.8 Cohort analysis of churn for Klipfolio’s account tenure metric
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determined by their own renewals and forms cohorts from all observations that have
similar values on the tenure measurement. 

 One advantage of this approach is that the churn rate for more seasoned (longer-
tenure) cohorts is estimated on a larger pool of customers, because the older cohorts
combine customers who signed up at different times. A potential disadvantage is that
this cohort analysis does not show how the churn rate in cohorts of a given tenure can
change over time, because the tenure cohort analysis method blends observations of
customers who signed up at different times.

5.1.5 Cohort analysis of billing period

Metrics based on customer subscriptions can be analyzed with cohort analysis. Fig-
ure 5.9 shows an analysis of churn and subscription billing among Broadly customers
with monthly or annual billing periods. The figure illustrates two cohorts because
there are only two distinct values for the billing period, which appear in the plot as
points at 1 and 12 because the billing period is measured in months. Broadly’s cus-
tomers show a typical pattern: customers with annual billing churn at a significantly
lower rate than customers with monthly billing.

 The result in figure 5.9 is based on monthly churn rates, due to monthly observa-
tion. It may seem strange to analyze annual customers this way, however, because an
annual customer has the opportunity to churn only once each year. Another possible
approach is to do separate metric cohort analyses on annual and monthly customers
and then observe the annual customers once a year. That technique can work if you
have a lot of annual customers, but it is usually a problem, because you have far fewer
observations of annual customers than of monthly customers. As a result, you may not
have enough annual customer observations to make a separate behavioral analysis. 

Analyzing how cohorts change over time
Usually, there are no significant differences in churn rates for customers of the same
tenure who signed up a few months apart. Any differences may be due to random vari-
ation or driven by seasonality. But if you wait a year or more, churn patterns might
change considerably. 

To check whether any relationship between churn and a metric has changed, I recom-
mend using the methods in chapter 4 to create different datasets for different peri-
ods and then comparing the results on separate cohort analyses. You might create
one dataset of only observations from the past year and another dataset from obser-
vations of the previous year, for example. (Using one-year periods for the datasets
should control seasonality.) If you see significant differences between the cohort
churn rates for the different datasets, the relationship between churn and tenure
changed between those two years. You can use this approach when changes in your
product or marketing strategy result in different customer behavior during different
time periods. Create a dataset for each time period, and compare your cohort analy-
ses from the different datasets. (See section 5.1.6 for discussion of the minimum
number of observations needed.)
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To understand annual customer behavior, it’s better to combine annual and monthly
customers. You might think it would be a good idea to observe the annual customers
once a year and combine them in a single dataset with monthly customers (by changing
the logic of dataset construction). But then the annual customers would appear to
churn at a higher rate; by observing them once a year, you implicitly calculate an annual
churn rate on their cohort. Imagine figure 5.9 showing that annual customers churn at
a higher rate than monthly customers. If you observe annual billing customers once a
year and want to compare them with monthly customers, you have to convert the
monthly customer churn rate to annual, thereby showing the true relationship: monthly
billing customers have a higher annual churn rate. The best choice is to observe mixed
populations of monthly and annual customers with monthly observations.

5.1.6 Minimum cohort size

An important issue in analyzing churn with cohorts is the number of observations
made in each cohort. You need enough observations in each cohort that when you
estimate the cohort churn rates, the estimates are likely to be accurate. Remember
from the discussion in chapter 1 that churn is affected by a lot of random factors that
are outside your knowledge and influence. When you estimate the churn rate in a
cohort based on the metric, part of the result is due to the influence of the metric and
part is due to all the other things. The idea is that you need a lot of observations to
make all those “other things” cancel out and show the influence of the metric. How

The first cohort
is customers with
monthly billing (billing
period = month).1

Customers with
annual billing
churn at about
one-third the rate
of customers with
monthly billing.

The second cohort is customers with annual billing
(billing period = 2 months). A small number of accounts1
in this cohort also have quarterly or semiannual billing.
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Figure 5.9 Cohort analysis of churn for Broadly's customers having monthly versus annual billing periods
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many is “a lot” depends, but a simple rule of thumb is that you should have 200 to 300
observations in each cohort, and preferably thousands.

TAKEAWAY Every cohort should have at least 200 to 300 observations, and
preferably a few thousand.

Note that I am talking about how many observations should be in each cohort, not how
many customers. If you have 500 customers with monthly renewals, and you observe their
behavior (metrics and churn) for six months, you will have around 3,000 observations.
If you form 10 cohorts, each cohort will have 300 observations, so you should be good.
The problem with minimum cohort size comes up with annual renewals: if you have 500
customers with annual renewals, after an entire year, you have only 500 observations.

 If you have too few observations in each cohort, the first thing you should do is use
fewer cohorts. Given the example of 500 observations, you could form three cohorts
of 167, 167, and 166. At least you’d have more than 100 observations in each cohort, if
not the few hundred that you want. Then your cohorts would represent low, medium,
and high levels of the metric you are analyzing.

WARNING It is more important to have enough observations in a few cohorts
than to have a lot of cohorts in a cohort analysis. Reduce the number of
cohorts accordingly.

If you still have fewer than 200 observations in each cohort, you are getting into a dan-
ger zone where the noise of random events can overwhelm the signal you are looking
for in the metric-based cohorts. Around 100 observations might still work if your churn
rate is relatively high—well in the double digits (greater than 20%). That is because if
the churn rate is fairly high, the influence of random factors on the churn rate is likely
to be relatively small. But when the churn rate is low (below 10%), random external fac-
tors are more likely to be significant in comparison with the influence of the metric. So
if your churn rate is low, you need even more observations to cancel out the noise and
reveal the trend. If your churn rate is low, you should not try to do an analysis until you
have at least 200 observations per cohort, and preferably a lot more. 

 Another rule of thumb is to have at least 100 churns in an analysis. For example, if
your churn rate is 5%, you should have a total of around 2,000 observations (because
to end up with 100 churn observations from a 5% churn rate, you would have to have
100 / 0.05 = 2,000 observations). Usually, the lower limits on the number of observa-
tions and churns aren’t a problem; most companies focus initially on customer acqui-
sition and think about churn only when they have been in operation for some time.
But a variety of issues can limit the number of observations, such as having a short his-
tory of events in the data warehouse, and you should be aware of those limitations.

TAKEAWAY If you have fewer than 100 churns in your data, you should focus
on acquiring new customers and understanding their views qualitatively with
surveys and focus groups. It will be hard to understand churn from data
with so few examples.
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These rough guidelines are based more on practical experience than on rigorous sta-
tistics. Chapters 8 and 10 discuss some statistics you can use to come up with better
answers to questions about sample size.

5.1.7 Significant and insignificant cohort differences

So far I have shown you only cases in which a customer metric is clearly related to
churn. Inevitably, however, you will test some metrics with cohorts and find no signifi-
cant result. Figure 5.10 shows one example for the cloud communication services
provider Versature. In this case, the metric is the number of extension units that cus-
tomers purchased. The churn rate does not have any clear trend: the bottom cohort
has about the same churn rate as the top cohort, and the churn rates in the middle
cohorts bounce around but never differ significantly from the average. This behavior
is not related to churn.

Other cases are less clear-cut but not obviously unrelated. In chapter 8, I go over using
statistics to answer these questions more rigorously, but you can often make a rea-
soned judgment without statistics. If you’re trying to decide whether a metric is related
to churn, the first question to ask is whether other metrics are much more obviously
related to churn.

There is no clear trend in the churn rate with
respect to the number of extension units.

Every cohort
has a churn
rate that is
within 25%
of the average
churn rate.

These facts
suggest that
the number of
extension units
is not related
to churn.

105 15 20 25 30 350

Cohort average of extension_units

C
o
h
o
rt

 c
h
u
rn

 r
a
te

 (
re

la
ti
v
e
)

Figure 5.10 Cohort analysis when the difference in churn is not significant
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TAKEAWAY If you are unsure whether a metric is related to churn, first ask
whether other obvious metrics have strong relationships to churn. If so, focus
on the latter metrics, try to use that knowledge in your retention tactics, and
come back to questionable cases later.

The only cases to worry about are borderline cases:

 When you have few metrics that are strongly related to churn
 When a particular metric was expected to relate to churn and a retention or

engagement strategy has already been planned based on that expectation

In such cases, you should look at whether the change in churn rates is consistent across
cohorts and whether the difference in the lowest and highest churn rate cohorts is sig-
nificant. If churn generally goes from high to low (or low to high), and the difference
between the highest and the lowest is a factor of at least 1.5, it’s reasonable to think
that you’ve found a potentially useful relationship to churn.

 Finally, you should think about the business reasons for the relationship to churn:

 Does the metric measure something that is closely related to the usefulness or
customer enjoyment of the product? 

 Or is the metric peripheral to central features of the product? 

If you strongly believe that the metric should be important, you can give your analysis
the benefit of the doubt and recheck the result when you have more data. On the
other hand, if the data doesn’t support a pet theory, don’t keep trying too long; that’s
an example of being data driven.

 Finally, note that questions of significance are related to sample size, discussed in
section 5.1.6: if you have a lot of samples, you are more likely to see a meaningful rela-
tionship. More advanced methods are used to look at these questions in chapters 8
and 10.

5.1.8 Metric cohorts with a majority of zero customer metrics

Another issue you might face in a cohort analysis is that you can have a lot of observa-
tions with no results for the metric of interest, even when you have plenty of observa-
tions overall. This situation can happen when an event is rare, even if you measure it
over a long period (as described in chapter 3). Figure 5.11 shows an example metric
cohort analysis for Klipfolio. Most accounts have zero for the metric in question: the
number of orientation switches per month that users make when viewing their dash-
boards. In this case, only three cohorts are formed by the Python function Data-
Frame.qcut, even though the parameter for the cohorts was set to 10. 

 The cohort plot in figure 5.11 still shows a relationship with churn, but the plot
does not look quite as expected. If you know the reason, you know that nothing is
wrong, but you will have to explain to your business colleagues why there are only
three cohorts. In section 5.4, I show you how to improve on this sort of analysis by
removing unwanted observations.
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If an event is rare, and the metric has zero value for most customers, that metric is
probably not going to have as significant a relationship to churn as a behavior in
which more accounts participate. To some degree, you should ignore rare events and
focus on the common ones. There could be exceptional cases, of course, if the behav-
ior in question has an important relationship with churn for the few accounts
involved. Another approach to handling rare behavior metrics is to combine them in
behavioral groups, as detailed in chapter 6.

5.1.9 Causality: Are the metrics causing churn?

Now you know how to discover when behavioral metrics are related to churn, and you
have a good sense of when those relationships are significant. But you may be wonder-
ing about causality (and if you aren’t, now is a good time to start). Causality raises
these questions: 

 If you see lower churn when a metric is high, do the event and behavior in ques-
tion cause customer retention? 

 Does a low value for a metric (low counts of an event) cause a customer to churn?

Unfortunately, these questions have no simple answers. Advanced statistics can be
used to analyze questions of causality, but those techniques are beyond the scope of

More than half of the accounts have zero orientation switches. As a result, only three
cohorts are formed, even though there are a large number of observations.
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Figure 5.11 Cohort analysis with a majority of zero observations
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this book. For that matter, I don’t recommend using advanced methods to understand
causality for churn due to the need for a parsimonious, agile analysis (chapter 1).

 My approach to causality is as follows: customers churn or don’t churn because of
the utility or enjoyment they get from using the product or service. Here, I mean util-
ity in the economic sense of usefulness and subjective pleasure. If the event behind
the metric is the act that provides utility to the customer, it is fair to say that the event
is causing both retention and churn. If the event is not the one that provides utility
but something that happens along the way, it’s fair to say that the event and the metric
are associated with customer engagement and retention, but not the cause.

 How do you know which event provides utility to the customer? You should rely on
your knowledge of the product and common sense (and if you don’t know, try talking
to some customers). That said, if you thought that an event provided utility to custom-
ers but find that it’s related only weakly to churn and retention, you may want to
rethink your beliefs—another example of being data driven.

TAKEAWAY You need to rely on your knowledge of the business to decide
whether a metric related to churn is causing retention and churn or only asso-
ciated with churn and retention. To cause churn, the event must be closely
related to customers achieving usefulness from or enjoyment of the product.

The distinction between metrics and events that cause retention or churn and those
that are associated with it does not make much difference in the analysis of churn-
related data, but it does make a big difference in your strategies to drive retention. If
you think an event or metric is associated with retention but not causing it, there is no
point in trying to encourage your customers to take that specific action. 

WARNING If you do not believe that an event is causing customer retention
and churn, do not attempt to encourage customers to take that action, even if
it is strongly associated with churn.

5.2 Summarizing customer behavior
By now, you know a lot about how to perform metric cohort analyses of churn in rela-
tionship to your metrics. You’ve also seen a few issues that might cause results to be
hard to interpret. One issue is that metrics can be skewed, which can make cohort
analyses hard to read and hard to compare. Another problem that might come up is
having a rare event with most of the account metrics resulting in zero. These prob-
lems are fairly typical and not necessarily wrong, but you can do things about them if
they are extreme. First, to help diagnose these problems and make sure that you are
not surprised when they occur, I am going to show you how to check these kinds of
issues by making a summary of your dataset. 

 A dataset summary helps you check for problems and is also a great way to get a
sense of the overall range of behaviors exhibited by your customers. That under-
standing will help you plan your customer segments and interventions to increase
engagement.
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5.2.1 Understanding the distribution of the metrics

A summary of a dataset is a set of measurements of the contents of the dataset—a set of
metrics on your metrics. The results in the dataset summary give you a good idea of
the range and variety of your customers’ behaviors. It can also help you spot many
problems in your data before you waste time doing an analysis. 

TIP You should calculate a set of summary statistics and resolve any data
problems before you start cohort analysis of churn. I taught you cohort analy-
sis first to show you why you want an initial summary.

The distribution of a metric is what statisticians and analysts use to describe these kinds
of properties—things like the minimum, maximum, and typical values. 

DEFINITION The distribution of a metric refers to the overall set of facts about
what values a metric takes for customers. Understanding a distribution means
knowing—at an appropriate level of detail—facts such as how many custom-
ers have the metric, what the typical values are, and what the minimum and
maximum values are.

Figure 5.12 shows such a summary for the simulated social network dataset. Table 5.1
at the end of this section briefly explains the summary statistics, which will be familiar
to anyone who has already taken a statistics course. If you want more information,
many texts and online resources provide in-depth explanation of these measures.

 Following are some key points about the dataset summary in figure 5.12:

1 Most metrics have nonzero values for nearly 100% of accounts except the
unfriend_per_month metric, which shows values for only 25% of accounts.

2 Metrics event count means are usually in the hundreds, and the maximum
event counts are in the thousands. The exceptions are unfriend and new friend,
both of which are rarer.

The table shows
statistics of the
churns because it
is a column in the
dataset too.

Most metrics
have means in the
hundreds and
are skewed to
some degree. Unfriend per month is the only metric that

has much less than 00% nonzero values.1
Account tenure averages 6 days, ranges1
from 0 to 6 days, and is not skewed.11

Metric

is_churn

like_per_month

newfriend_per_month

post_per_month

adview_per_month

dislike_per_month

unfriend_per_month

message_per_month

reply_per_month

account_tenure

count

32316

32316

32316

32316

32316

32316

32316

32316

32316

32316

nonzero

4.6%

99%

90%

98%

98%

95%

25%

98%

91%

100%

mean

.0459

93.7

6.6

39.2

38.5

15.2

0.30

60.1

21.8

61.4

std

0.2

204.7

8.1

72.5

68.9

22.1

0.5

125.9

44.8

29.6

skew

4.9

12.1

3.9

9.8

7.6

6.4

1.9

7.4

6.5

0.2

min

0

0

0

0

0

0

0

0

0

18

1pct

0

1

0

0

0

0

0

0

0

19

25pct

0

16

2

8

8

4

0

9

2

26

50pct

0

39

4

19

19

9

0

24

8

54

75pct

0

95

8

43

43

18

1

59

22

83

99pct

1

826

38

315

304

102

2

566

213

116

max

1

6867

136

2148

1566

633

5

2676

840

116

Figure 5.12 Examples of summary statistics from the social network simulation dataset
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3 Most metrics are skewed to varying degrees; events with higher counts have
higher skews.

4 The statistics for the account_tenure metric show that all accounts have a mea-
surement because the nonzero measurement (column 2) is 100%. The mean
(average) is 61 days, and the skew of account tenure is 0.2, indicating that it is
more or less evenly distributed around its mean.

5 The table also shows statistics of churn in the dataset: 4.6% of the observations
are churns.

Real churn case study data usually is similar in terms of the distribution and skew of
metrics, but real company data typically has many more metrics, for which only a small
fraction of accounts have nonzero values. (I deliberately put one in the simulation for
you to learn from while still keeping the simulation parsimonious.)

Table 5.1 Metric distribution summary statistics

Summary 
statistic

Explanation

Percentage 
nonzero

The percentage of observations in the dataset in which the metric is not zero—an 
important check on how rare a behavior is.

Mean The measure of a typical value for a metric (also known as average). It is calculated by 
summing the metric on all observations and dividing by the number of observations.

Standard 
deviation

A measure of how varied the values of the metric are in the sense of whether all the val-
ues are relatively close to the typical value. A high standard deviation occurs when many 
values are far from a typical value. Sometimes, it is convenient to refer to a metric value 
by how many standard deviations the value is from the mean. If the mean is 20 and the 
standard deviation is 5, for example, a metric observation of 25 is said to be 1 standard 
deviation above the mean. In that case, 30 would be called 2 standard deviations above 
the mean, and so on. This terminology is useful because it conveys a sense of how a 
metric observation compares with typical values without requiring you to remember the 
typical value for every metric.

Skew A statistical measure of how symmetric or lopsided the distribution of the metric is. This 
kind of lopsidedness occurs in the cohort analyses earlier in this chapter. If the skew is 
zero, the low and high values are symmetrically distributed around the mean. If the skew is 
positive, there are more observations of the metric that are higher than the mean than 
observations that are smaller than the mean. If the skew is negative, the opposite is true: 
more observations are smaller than the mean than those that are greater than the mean. 
(You are not likely to see that result in typical behavioral metrics.) Generally, skews below 3 
or 4 are not significant, but metrics with skews of 5 or greater are significantly skewed.

Quantiles 
(1%, 5%, and 
so on)

Quantiles are the metric values required to find a fixed percent of the observations below 
that value. The 1% quantile, for example, is the metric value that 1% of observations 
have a value less than; the other 99% of observations have a value greater than the 1% 
quantile. The 5% quantile is the metric value that 5% of the observations are less than 
and 95% are greater than. This pattern continues for all the higher quantiles. Looking at 
the sequence of quantiles in the summary is a good way to get a sense of what percent-
age of customer values are in what range. If you see that the 25th percentile of logins is 
20 and the 75th percentile of logins is 100, 50% of customers (75 – 25 = 50) have 
between 20 and 100 logins.
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5.2.2 Calculating dataset summary statistics in Python

Taking a set of summary measurements on a dataset is a common task in data analy-
sis, so Python’s Pandas module already provides a function to do it—DataFrame

.describe. This function calculates a set of measurements for every column in the
dataset. Recall that each column of the dataset contains the observation values for one
metric. Calling the describe function produces a set of summary statistics for each
metric.

 Listing 5.2 shows a complete program that uses the Pandas function and adds a few
fields to the summary, which I find useful for understanding customer behavior. The
main steps in listing 5.2 are as follows:

Median (50% 
quantile)

Another measure of a typical value for a metric, like the mean. The median is the value 
that half of the observations are greater than and half are less than (same as the 50% 
quantile). The median is a better measure of the typical value of a metric than the mean 
when the data includes extreme outliers—when the metric has a high skew. Extreme 
outliers raise the mean but not the median, so the median always reflects a customer 
in the middle. 

Minimum 
and 
maximum

The lowest and highest values observed for any customer.

Normal and fat-tailed distributions
In the famous normal (bell curve) distribution, around two-thirds of all the values are
within 1 standard deviation of the mean, and almost all the values are within 3 stan-
dard deviations of the mean. If the mean is 20, and the standard deviation is 5, 3
standard deviations means 3 x 5 = 15. In that case, most of the observations have
values between 5 and 35 (because 20 – 15 = 5, and 20 + 15 = 35). For a normal
distribution, it is extremely rare to have values that are 5 or more standard deviations
from the mean.

But behavioral metrics typically have more outliers than a normal distribution, so
those relationships probably won’t hold in your data. A distribution with more extreme
outliers than the normal distribution is often called a fat-tailed distribution. The tails
of the distribution are the extremes, and if the tails are fat, a lot of observations are
extreme. For most of your own metrics, fewer than two-thirds of observations will be
within 1 standard deviation of the mean, and more will be farther away; maybe a third
of the observations will be within 1 standard deviation of the mean. Having behavioral
metric values that are 5 to 10 standard deviations from the mean (or more) is com-
mon for most products.

Table 5.1 Metric distribution summary statistics (continued)

Summary 
statistic

Explanation
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1 Load the dataset into a Pandas DataFrame, given a path.
2 Call the Pandas function DataFrame.describe to get a basic summary. The

basic summary includes the mean, standard deviation, minimum and maximum,
and 25th, 50th, and 75th percentiles. The summary data is returned as another
Pandas DataFrame.

3 Calculate some additional statistics, and add them to the summary result. These
additional statistics are 
– The skew, calculated with the Pandas function DataFrame.skew
– The 1st and 99th percentiles, calculated with the Pandas function Data-

Frame.quantile

– The percentage of nonzero observations of each metric, which is calculated
using a little trick: converting the column to a Boolean type and summing it
gives the count of nonzero values; then dividing by the number of rows con-
verts it to a percentage

4 The columns of the final results are reordered more logically.
5 The result is saved.

Listing 5.2 will be used again later in this chapter, as some of these summary statistics
are needed for further analysis of your dataset.

import pandas as pd
import os

def dataset_stats(data_set_path):
   assert os.path.isfile(data_set_path),
      '"{}" is not a valid path'.format(data_set_path)   
   churn_data = 
      pd.read_csv(data_set_path,index_col=[0,1])      

   if 'is_churn' in churn_data:
      churn_data['is_churn']=
         churn_data['is_churn'].astype(float)     

   summary = churn_data.describe()     
   summary = summary.transpose()     

   summary['skew'] = churn_data.skew()     
   summary['1%'] = churn_data.quantile(q=0.01)    
   summary['99%'] = churn_data.quantile(q=0.99)        
   summary['nonzero'] = churn_data.astype(bool).sum(axis=0) / 
                        churn_data.shape[0]                        

Listing 5.2 Statistics of a churn analysis dataset

Checks the
dataset path Loads data 

into a Pandas 
DataFrame 
object and 
sets the index

Converts the 
churn indicator 
to a float 

Provides a standard set 
of summary statistics

The results are easier to read 
with the metrics in the rows.

Measures the skew with a 
standard dataset function

Uses the quantile function to 
measure the 1st percentile

Uses the quantile function to 
measure the 99th percentile Calculates the fraction 

of values that are not 
equal to zero
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   summary = summary[ ['count','nonzero','mean','std','skew','min','1%',
                       '25%','50%','75%','99%','max']]       
   summary.columns = summary.columns.str.replace("%", "pct")

   save_path = data_set_path.replace('.csv', '_summarystats.csv')
   summary.to_csv(save_path,header=True)
   print('Saving results to %s' % save_path)

You should run listing 5.2 on the simulated dataset yourself. Assuming that you are
using the Python wrapper program, change the parameters to

fight-churn/listings/run_churn_listing.py --chapter 5 --listing 2

A typical result of running listing 5.2 was presented in figure 5.12; your result may be
somewhat different because the data is randomly simulated. 

5.2.3 Screening rare metrics

After creating the dataset summary statistics, you should check what percentage of
accounts have nonzero values on all of your metrics. At this point, you should have
already picked longer observation windows for rare metrics, as described in chapter 3.
If you still have metrics in which only a small percentage of accounts has a nonzero
value, then that’s probably the best you can do. If that’s the case, I recommend that
you remove those metrics with fewer than around 5% nonzero values from your data-
set and analysis. The precise cutoff depends on how many “good” metrics you have. If
you have a lot of metrics in which most accounts have nonzero values, you should use
a higher threshold—maybe 10%. On the other hand, if you have a lot of rare events
and metrics with zero values, you may want to use a lower threshold for this kind of
screening, such as 1%.

 You can make exceptions to this approach if you find that one of these rare metrics
is strongly related to churn or if you know it is of particular interest to the business.
The principle guiding this approach is parsimony: if a metric applies to only a small
percentage of accounts, it is not likely to be useful, even if it has a strong relationship
to churn and retention.

5.2.4 Involving the business in data quality assurance

A good time to involve the businesspeople in your organization in quality assurance is
after you produce the dataset summary statistics. I recommend that you have one or
more meetings with people who represent different parts of your business and review
the summary statistics with them. You should do this before you show them the results of
your cohort analyses. I taught you how to do the cohort analysis first so that you could
do some real churn analysis before spending time on more data quality assurance, but
you should do the quality assurance first and the churn analysis afterward.

 Such a review with the business stakeholders is a chance to confirm with people
who should know it well that the data is of good quality. In particular, you want to ask
the representatives of the business whether the distribution of metric values meets

Reorders 
the columns
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their expectations. Is the percentage of accounts with a metric lower than they
expected or the maximum value higher than they expected? It is important to get this
information before you share findings about churn with the business, because your
findings may change if you have to make additional corrections or modifications in
your dataset.

WARNING Complete your quality assurance checks on the data, including
review of the summary statistics with the business, before sharing cohort anal-
ysis results. You might lose credibility with the business if you share cohort
analyses that you later need to retract due to data quality issues.

5.3 Scoring metrics
One problem we saw when we looked at the cohort analyses in section 5.1 was that for
some of the metrics, most of the cohorts occupy only a small portion of the total range
of the metric. In section 5.2, you learned that this type of distribution can be identi-
fied by looking at the skew statistic of the metrics as part of the dataset summary. In
this section, you learn the technique of scoring metrics as a way to improve the inter-
pretability of cohort analysis when your metric is highly skewed. In chapter 6, you
learn that metric scores have other important uses, so this section is an introduction.

5.3.1 The idea behind metric scores

The idea behind metric scores is that it is a rescaled version of the metric you started
with. In this context, rescaled means that the scores will be in a different range of num-
bers from the original metric. 

DEFINITION A metric score (or score, for short) is a rescaled version of a metric. 

Rescaling also implies that a larger metric observation always converts to a larger
score, and two customers with the same metric would end up with the same score. As a
result, if the customers are ordered by metric value from greatest to least, and then
the same customers are ordered by metric score, the order is exactly the same. The
cohorts created from your metric will also be exactly the same as the cohorts based on
the score. Figure 5.13 illustrates this process.

Scoring vs. normalizing the data
If you are trained in statistics or data science, you probably know the subject I’m call-
ing scoring as the normalization or standardization of data. I have found that busi-
nesspeople find those terms intimidating and confusing. I have had better results
referring to the whole process as scoring and the transformed data as scores rather
than normalized data. Businesspeople seem to find these terms easier to relate to.
For that reason, I describe the process in those terms rather than conventional sta-
tistical language.
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Scores have some characteristics that make them useful for further analysis of your
metrics and churn. Here are a few of those characteristics:

 Whereas metrics can take on any value, scores are always small numbers, posi-
tive and negative, but close to zero. Typical scores are –1, 0, or 1. An extreme
value for a score might be 3 or 5, so the typical range of a score is around –5 to 5,
no matter what the original range of the metric was.

 If the metric is skewed, the score will not be as skewed. Equivalently, the metric
can have many observations close to zero and a small number of much larger
values, but the score values will be more evenly distributed across the entire
range that the scores occupy (approximately –5 to 5).

 The average score is always zero, no matter what the original average of the
metric was. You can see at a glance whether a customer is average on the metric
by looking at the score, even if you don’t know the average value of the metric.

 The standard deviation of a metric score is always 1. This property is useful
because you also know how far from the average a given score is. A score of 1
means the customer had an original metric that was 1 standard deviation above
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average, and a score of –1 means that the customer had an original metric that
was 1 standard deviation below the average.

These properties make scores useful for looking at customer metrics and churn. You
learn more useful properties of metric scores later in the book.

5.3.2 The metric score algorithm

Now you’re going to look at the formula you use to calculate scores from metrics. You
can use an algorithm to determine a score formula based on the data, not a single for-
mula. Figure 5.14 illustrates this procedure and is summarized as follows:

1 Determine whether the metric is significantly skewed by checking the skew sta-
tistic (section 5.2). A typical threshold considers the skew to be significant when
it is above 4, although you can adjust the threshold depending on your prefer-
ence. Also, you must confirm that the minimum metric value (before any trans-
formation) is zero. If the metric is not significantly skewed or has negative values,
skip to step 4.

1. Metric 2. Metric+1 3. Log(Metric+1)
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2 Add 1 to the skewed customer metrics, so that a customer that has a zero event
count now has 1, a customer with 1 now has 2, and so on.

3 Take the logarithm of all the skewed metrics. The natural logarithm (log base e)
is normally used, but the base of the logarithm does not matter.

4 Calculate the mean and the standard deviation of the metric values at this point
in the process. If the metric was not skewed, these values are simply the original
metrics. If the metric was skewed, use the logarithm of 1 plus the original cus-
tomer metrics.

5 Subtract the average from all values.
6 Divide all the values by the standard deviation. The results are the scores.

Taking the logarithm is a key step in making the data less skewed. A difference in
order of magnitude between two numbers becomes a small difference in the resulting
logarithms of those two numbers. But the logarithm can be taken only on positive
numbers, which is why you check that the minimum is zero and then add 1. (An
approach for negative metrics is introduced in chapter 7.)

 Subtracting the average and dividing the metrics by the standard deviation makes
the average of the final scores 0 and the standard deviation 1. The derivation is covered
in detail in textbooks on statistics, but you can understand it by noting the following:

 The average is calculated by summing all the metrics and dividing by the num-
ber of observations. If you subtract a specific number from every observation,
the new average is reduced by the amount you subtracted. If you subtract the
original average from every observation, the new average must be zero.

 Suppose that the average is zero and the standard deviation is any number;
then divide all the observations by the standard deviation. An observation that
was originally equal to the standard deviation now has the value of 1 because it
was the standard deviation; then it was divided by the same. In fact, after divid-
ing by the original standard deviation, every observation is converted to a value
that is the number of standard deviations the observation was from the average.
This result is the same as the metric’s having a standard deviation of 1.

Creating a score from an individual metric is the same as calculating the formula in
equation 5.1:

where

                     m' = ln(metric + 1) (Equation 5.1)

In equation 5.1, μm′ indicates the mean of the distribution of m ′, σm′ is the standard
deviation of the distribution of m ′, and ln is the natural logarithm function. If the met-
ric is not skewed, use the original metric instead of m ′.

score metric( ) m′ μm′–
σm′

------------------=
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5.3.3 Calculating metric scores in Python

Listing 5.3 shows a Python function that implements the score calculation. Note that
this function calculates the scores for all the metrics in a dataset, not just one. The
function metric_scores in listing 5.3 has the following inputs:

 data_set_path—A path to a dataset saved in a file, given by a string variable 
 skew_thresh—The threshold for determining whether a metric should be con-

sidered to be skewed

Given these inputs, the following are the main steps to take in calculating the scores:

1 Load the dataset into a Pandas DataFrame object, set the DataFrame index, and
make a copy. The scores are written to the copy.

2 Remove the churn indicator column because it will not be converted to a score;
it will be reattached as is after the scores are calculated.

3 Load the dataset stats file saved by listing 5.2.
4 Using the summary stats, determine which columns are significantly skewed by

comparing the skew statistics with the threshold.
5 For each column that is significantly skewed, add 1, and take the logarithm.
6 For all columns, subtract the averages, and divide by the standard deviation.
7 Reattach the churn indicator column. The resulting DataFrame will be saved.

One thing to note about listing 5.3 is that it does not follow my advice from section 5.1
about using standard Python functions. This listing does not use a standard Python
Pandas function to calculate scores; there is one, but listing 5.3 doesn’t use it because
the standard Pandas function does not include the option to take the logarithm for
skewed variables.

import pandas as pd
import numpy as np

def metric_scores(data_set_path,skew_thresh=4.0):

   assert os.path.isfile(data_set_path),
      '"{}" is not a valid path'.format(data_set_path)   
   churn_data = 
      pd.read_csv(data_set_path,index_col=[0,1])      
   data_scores = churn_data.copy()                  
   data_scores.drop('is_churn',axis=1)    

   stat_path = data_set_path.replace('.csv', 
      '_summarystats.csv'))    
   assert os.path.isfile(stat_path),
      'You must running listing 5.2 first to generate stats'
   stats = pd.read_csv(stat_path,index_col=0)    
   stats=stats.drop('is_churn')       

Listing 5.3 Calculating metric scores in Python

Checks the
dataset path

Loads the dataset 
into a Pandas 
DataFrame object

Works on a copy of 
the data to calculate 
the scores

The churn column 
should not be converted 
to a score.

hecks the
summary
statistics

file

ads the
ummary
tatistics

Drops the churn row 
from the summary 
statistics
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   skewed_columns=(stats['skew']>skew_thresh) & 
                  (stats['min'] >= 0)       
   skewed_columns=skewed_columns[skewed_columns]      

   for col in skewed_columns.keys():  
       data_scores[col]=np.log(1.0+data_scores[col])    
       stats.at[col,'mean']=data_scores[col].mean()    
       stats.at[col,'std']=data_scores[col].std()

   data_scores=(data_scores-stats['mean'])/stats['std']      
   data_scores['is_churn']=churn_data['is_churn']     

   score_save_path=
       data_set_path.replace('.csv','_scores.csv')     
   print('Saving results to %s' % score_save_path)
   data_scores.to_csv(score_save_path,header=True)

If you are following the examples in the chapter, you should run listing 5.3 on the sim-
ulated dataset yourself. Assuming that you are using the Python wrapper program, set
the parameters to --chapter 5 --listing 3. That action creates the file socialnet_
dataset_scores.csv in the output directory. The wrapper program that runs the listings
prints the output directory. 

 If you want to check how the scores dataset differs from the original, one option is
to open it in a text editor or spreadsheet. You should be able to see that all the metrics
are small numbers (close to zero) and both positive and negative. A better option is to
rerun the dataset summary program (listing 5.2) on the new dataset. You can run a
second version of the dataset summary listing by adding the argument --version 2 to
the Python wrapper program, so run the wrapper program with these arguments:

--chapter 5 --listing 2 --version 2 

The wrapper program saves the result in a file called socialnet_dataset_scores_summary
.csv. If you check the result file, all the metrics should be like the one shown in figure 5.15:

 The mean is a small rounding error close to zero. In figure 5.15, the mean is
-2.65E-16, which means 10 to the minus 16th power (an extremely small number).

 The standard deviation is 1.
 The minimum and maximum value are around –4 and 4, respectively.
 Although the original metric was heavily skewed (15.5 in figure 5.12), the score

has practically no skew.
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metric count nonzero mean std skew min 1% 25% 50% 75% 99% max

like_per_month 32316 100% −2.65E-16 1 −0.01 −4.42 −2.29 −0.67 0.00 0.68 2.34 4.36

Figure 5.15 Example of summary statistics of a metric in the dataset of scores for the simulated 
dataset
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5.3.4 Cohort analysis with scored metrics

When you have created the dataset of scores from your original dataset, you do cohort
analysis exactly the way that you learned in section 5.1, using the same code. If you
look back to listing 5.1 (section 5.1.2), you will find that nowhere in the cohort analy-
sis function does it matter whether the data is original metrics (on their natural scale)
or the scored metrics on the transformed scale. Also remember that because convert-
ing metrics to scores preserves the order of customers by the metric, the cohorts you
find with scores are the same: using scores for the cohort analysis changes only how
the data is distributed on the horizontal axis of the cohort plot.

 You should run your own cohort analysis on the score metrics from the social net-
work simulation with the Python wrapper program. You can run a second version of
the cohort plot (listing 5.1) with these arguments: 

--chapter 5 --listing 1 --version 2  

The result looks like figure 5.16, in which the horizontal axis is relabeled as a score
ranging from –1.5 to 1.5 (cohort averages). The churn rate in each cohort is the same
as shown in figure 5.4. But after converting to scores, the cohort positions are more
evenly spread across the figure. At the same time, the churn rate of every point in the
scored metric cohort matches the churn rate from one of the original cohorts.

Figure 5.17 shows an example comparing the cohort churn plot for one metric on
both its natural scale and as a score for Broadly, a service that helps businesses manage

Metric cohorts of the unscaled
metric (same as figure 5.4).

The metric is rescaled on the
x-axis so that the mean is zero
and the minimum and maximum
cohort averages are less than 2.
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the cohorts are distributed.
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their online presence. An important event for Broadly’s customers is adding new trans-
actions, and a metric was calculated for the number of transactions added per month.
The metric transactions added per month are highly skewed, having a statistic of 23. As
a result, when the cohort plot is made using the metric on its natural scale, all the
cohorts except one lie in a horizontal range that is around one-eighth of the entire plot.
The cohort average values lie between 0 and 250, and the top cohort averages 2,300. By

The cohorts plotted
with the actual cohort
average of transactions
added per month on
the x-axis

The distribution is highly skewed, with most cohorts less than 00 per1
month, but the top cohort averages close to 2,000 per month.

As a result,
most cohorts
are displayed
in a small
portion of
the plot.

With the cohorts
plotted with scores
of the metric on the
x-axis, the cohorts
are more evenly
distributed across
the plot.
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Figure 5.17 Scored metric and churn example for Broadly's transactions added per month
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contrast, the cohorts based on the metric scores are distributed more or less evenly
between scores of –1.5 and 2.0. Also, it is clear now how the cohorts compare with the
average, which is 0. The first three cohorts are below average, and most of the reduction
in churn rates goes from the lowest cohort to cohorts near the average.

TAKEAWAY Cohort analysis with scored metric cohorts makes it easy to see
how the cohorts relate to the average metric value, which is always the score
equal to zero. 

5.3.5 Cohort analysis of monthly recurring revenue

In chapter 3, you learned that monthly recurring revenue (MRR) should be calcu-
lated as a metric, but so far, we have not looked at any cohort analysis results for it.
Now I will demonstrate a typical result for MRR cohort analysis, using the metric
scores technique introduced in section 5.3.4. I demonstrate a cohort analysis of MRR
and churn that uses scores for two reasons:

 MRR is typically highly skewed for business to business (B2B) products because
the largest customers, which can be large corporations, typically pay prices
many times higher than those paid by the smallest customers, which can be sole
proprietorships.

 Presenting this cohort analysis with scores maintains the confidentiality of the
pricing information from the case study.

Figure 5.18 shows the results of the scored MRR churn analysis. But before you look at
the results, stop to think about what you expect the result to be. (Okay, some of you
may remember the answer from chapter 1.) Will cohorts of higher-paying customers
have churn rates that are

A Higher than the churn rates of customers who pay less?
B Lower than the churn rates of customers who pay less?
C About the same as the churn rate of customers who pay less?

Figure 5.18 shows that the answer is B: cohorts of customers that pay more on average
churn at a lower rate, although the trend is a little bit noisy. The higher-paying cus-
tomers churn at a rate around one-third to one-half less than that of the lowest-paying
cohorts.

 This result may surprise you. The usual thinking is that high prices make custom-
ers less satisfied, and as a result, they churn at a higher rate. The opposite is usually
true, however. On average, customers who pay more usually churn at a lower rate, for
multiple reasons. The first reason for lower churn among customers who pay more
has to do with passive churn. Passive churn (also known as involuntary churn) occurs
due to a failed payment when the customer has not indicated a choice to churn
(hence the term passive). The most common scenario for passive churn is an expired
payment card or insufficient available balance. Because customers who are paying
more sign up at a higher plan level, they generally have more money and, thus, are
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less likely to have those kinds of problems. (To reduce passive churn, most companies
retry credit cards multiple times until a transaction goes through, but this method of
reducing churn is beyond the scope of this book.)

 There is a second and usually more important reason customers with higher
MRR churn at a lower rate, especially for business products: business products are
sold at higher prices to bigger customers, and bigger customers churn less for multi-
ple reasons related to their size. Bigger companies have more employees, so when it
comes to product use such as making calls or using software, bigger customers usu-
ally use more of the available services. Also, a big business customer invests more to
set up a system, so it is less likely to walk away from the investment. You may be sur-
prised to learn that the same pattern often holds for consumer products. Customers
who sign up for more expensive plans tend to be more invested and use the product
more, and as a result, they churn at a lower rate than customers who signed up for
lower-cost plans.

 MRR is associated with lower churn, but it’s not the cause. If you see a relationship
like this one, do not try to raise MRR to reduce churn. This understanding is intuitively
unsatisfying, because paying too much for something ought to be a cause for churn, and
getting a good deal ought to be a cause for retention. A better way to understand the
relationship between what customers pay and churn is to use a different metric—one

Those customers who pay more tend to churn less than the customers
who pay less; this is the typical relationship between MRR and churn.
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Figure 5.18 Scored MRR and churn example for Versature's MRR scores
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that reflects the value that customers receive rather than what they pay. These topics are
among the main subjects of chapters 6 and 7.

5.4 Removing unwanted or invalid observations
Another useful technique that should be part of your toolkit for cohort analyses is
removing unwanted observations from a cohort analysis. Despite your best efforts to
do quality assurance and clean your data, some observations may be invalid (bad
data), or they may not be invalid but you don’t want them because they make your
cohort analysis harder to understand. I’m going to show you two motivating case stud-
ies in which some observations are removed from a cohort analysis and a Python func-
tion that performs the removal.

5.4.1 Removing nonpaying customers from churn analysis

One common scenario in which you may need to remove some observations from your
analysis is when you have both paying and nonpaying customers. Customers who don’t
have to pay may be on temporary free trials, or they may be in some special category of
customers, like partners who have permanent free use of the product. You might have a
similar situation when some customers pay a nominal amount that is much less than
what usual customers pay. The problem with nonpaying (or low-paying) customers is
that they tend not to churn because the product doesn’t cost them anything, but they
don’t necessarily use the product much. So nonpaying customers don’t have the normal
relationship between behavior and churn, and if you have more than a small number of
nonpaying customers, they can ruin the results of your analysis.

 Figure 5.19 demonstrates the impact of free customers by adding simulated non-
paying customers to Versature’s MRR and local-call observations, which are analyzed
in section 5.3.5. These nonpaying customers are not real; they are randomly gener-
ated observations with $0 MRR. The simulated nonpaying customers were assigned a
local-call metric that was also randomly generated to be within the bottom two deciles of
the real customers. Enough simulated nonpaying customers were added to make up
15% of the total data. When the cohort plots are regenerated, as shown in figure 5.19,
they are significantly distorted by the presence of the nonpaying customers, and the
relationships between the metrics and churn appear to be much less significant.

 If you have customers who pay and some who do not, you should remove the non-
paying customers before trying to do cohort analysis or the other analyses described
in later chapters. Ideally, you might be able to remove such customers when generat-
ing your observations (as described in chapter 4) by using some kind of SQL logic
based on the plans the customers use. But that approach may be complicated by the
presence of multiple subscriptions. A customer might have some $0 MRR subscrip-
tions and others that have a cost attached, so to be sure a customer pays nothing, you
must use the MRR metric calculated in chapter 3. This example illustrates why it may
be necessary to remove such customers after the dataset has been generated. The
Python program in section 5.4.2 shows you how.



210 CHAPTER 5 Understanding churn and behavior with metrics
5.4.2 Removing observations based on metric thresholds in Python

One way to remove observations from a churn analysis is to define a minimum value
for a metric, a maximum value for a metric, or both. Any observations in which the
metric is below the minimum or above the maximum can be removed, and a new
dataset that is a subset of the original is produced.

 Listing 5.4 shows a Python function that performs these operations. The function
remove_invalid has the following inputs:

 data_set_path—A path to a dataset saved in a file, given by a string variable. 
 min_valid—A dictionary containing the minimum valid values of any metric to

be screened. Entries are assumed to be key-value pairs, in which the key is the
name of a metric (a string), and the value is the minimum to be applied for
screening that metric. Any number of criteria can be specified in this way.
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 max_valid—A dictionary containing the maximum valid values of any metric to
be screened. Entries are assumed to be key-value pairs, in which the key is the
name of a metric (a string), and the value is the maximum to be applied for
screening that metric. Any number of criteria can be specified in this way.

 save_path—A path to a file in which the scores will be saved.

Given these inputs, following are the main steps to take to create a new dataset with
invalid observations removed:

1 Load the dataset into a Pandas DataFrame object, set the DataFrame index, and
make a copy. The cleaned data is written to a copy of the DataFrame.

2 For each metric specified in the min_valid dictionary parameter, remove those
observations from the DataFrame where the value is below the minimum.

3 For each metric specified in the max_valid dictionary parameter, remove those
observations from the DataFrame where the value is above the maximum.

4 Save the resulting DataFrame to a file.  

An example of using this algorithm is presented in figure 5.19 earlier in this chapter.
The left side of the figure was produced from a dataset cleaned by listing 5.4; the right
side of figure 5.19 was made from the original, unclean data.

import pandas as pd
import os

def remove_invalid(data_set_path,min_valid=None,max_valid=None):
   assert os.path.isfile(data_set_path),
      '"{}" is not a valid path'.format(data_set_path)      
   churn_data = 
      pd.read_csv(data_set_path,index_col=[0,1])     
   clean_data = churn_data.copy()                   

   if min_valid and isinstance(min_valid,dict):
      for metric in min_valid.keys():             
          if metric in clean_data.columns.values:     
              clean_data=clean_data[clean_data[metric] > 
                         min_valid[metric]]              
          else:
              print('metric %s not in dataset %s' % (metric,data_set_path))

   if max_valid and isinstance(max_valid,dict):
      for metric in max_valid.keys():               
          if metric in clean_data.columns.values:     
              clean_data=clean_data[clean_data[metric] < 
                         max_valid[metric]]       
          else:
              print('metric %s not in dataset %s' % (metric,data_set_path))

Listing 5.4 Removing invalid observations

Checks the dataset path

Loads data into a 
Pandas DataFrame, 
setting the index

Makes a
py of the
original

taFrame

Iterates over variables 
specified for cleaning 
with a minimum

onfirms that
 metric is in

e DataFrame

Removes rows in which 
the metric is less than 
the minimum

Iterates over variables 
specified for cleaning 
with a maximum 

oves rows in which
e metric is greater
than the maximum
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   score_save_path=
      data_set_path.replace('.csv','_cleaned.csv')    
   print('Saving results to %s' % score_save_path)
   clean_data.to_csv(score_save_path,header=True)

The simulated dataset for this book doesn’t contain any free-trial users or other rea-
sons to remove unwanted data, so there is no example on which to run listing 5.4.

5.4.3 Removing zero measurements from rare metric analyses 

Another situation in which you might want to remove observations from a cohort
analysis occurs when a metric measures a rare event and, as a result, most customers
have zeros on the metric. This situation is illustrated in section 5.1.7. The function in
listing 5.4 provides an easy way to see what the cohorts look like when you consider
only those customers who have the event (and a nonzero value on the metric). 

 Figure 5.20 shows the analysis of Klipfolio’s orientation switch event, both with and
without customers with zero metric counts.

Saves the resulting 
DataFrame to a file

All data
including accounts not using feature

Reduced data
accounts not using feature removed
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Figure 5.20 Cohorts of rare behaviors for Klipfolio
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The version without zero metric customers was created by running listing 5.4 on the
dataset to remove customers with zero on the metric and then saving it. Afterward,
the cohort analysis was run using five bins because only around 25% of the observa-
tions remained.

5.4.4 Disengaging behaviors: Metrics associated with increasing churn

So far, I have showed you cohort analyses of behaviors associated with reduced churn.
You may wonder about behaviors associated with increased churn. I call these behav-
iors disengaging behaviors.

DEFINITION A disengaging behavior is a customer behavior that leads to an
increased risk of churn the more often it is performed.

I have not avoided disengaging behaviors to put a positive spin on the case studies.
The fact is that disengaging behaviors are rare in churn case studies and often cannot
be detected with simple count and average metrics like the ones you have learned so
far. For one thing, it is the product creators’ jobs to make features that are engaging,
so if the creators are doing their jobs, disengaging behaviors should be rare. Normally,
customers who don’t even use the product have an even higher churn rate than the
customers who perform the disengaging behavior. As a result, if disengaging behav-
iors exist, their relationship to churn is likely to be weak and can easily be missed.

TAKEAWAY Disengaging behaviors usually show a weak relationship with
increasing churn—typically less than the reduction in churn that comes from
using the product even a small amount.

An example of a disengaging feature from Klipfolio, an SaaS product for business
dashboards, is shown in figure 5.21. The case study shows two versions of the cohort
analysis. One version uses all customers, including those who don’t use the product or
feature, and the other includes only customers who use the feature. If you include all
customers, you might miss that the feature is disengaging. The most notable feature
of the cohort analysis is that customers who don’t use the feature have the highest
churn rate. It’s easy to miss the fact that customers who use the feature churn at a
slightly higher rate the more often they use it. When customers who don’t use the fea-
ture are removed from the analysis, the increasing churn rate among users of the
feature is clearer.

 All things considered, the increasing churn among the disengaging feature users
shown in figure 5.21 is small compared with the reduced churn associated with using
the main product features shown in section 5.1. This result is typical for disengaging
behaviors measured with simple metrics. In chapter 7, you learn advanced techniques
to create metrics that detect more significant disengaging behaviors.

 Your instinct probably is to think that disengaging behaviors must be bad, in the
sense of experiences that customers do not like. But I have seen cases in which dis-
engaging behaviors are good, such as when the behavior serves to complete the
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purpose of a product that gave the users exactly what they wanted. Disengaging
behavior can also occur when the product has only one purpose for some users and
that purpose can be completed. A common example is watching a popular video
series. If there is only one popular series, people may churn when they have
watched every episode. In that case, watching the best content leads to churn. Cre-
ators must make more equally desirable content to change this pattern. To reach
that kind of conclusion, you need to use your business knowledge. Usually, people
know when a feature or content is good without the churn analysis (but survey
users if you’re not sure).

5.5 Segmenting customers by using cohort analysis 
Now you know how to understand customer behavior and churn using a cohort analy-
sis. The next step in fighting churn is using what you’ve learned to segment your cus-
tomers and plan interventions. You’re going to learn even more about your customers
in chapters 6 and 7, but you don’t need to wait any longer to get started. As I men-
tioned in chapter 1, I’m not going to go into details about different types of customer
interventions because they are specific to each company’s product and situation. But
the data-based procedures for creating customer segments based on churn data are
pretty much universal.

All data
including accounts not using feature

Reduced data
accounts not using feature removed
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Figure 5.21 Cohorts of a disengaging behavior for Klipfolio
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5.5.1 Segmenting process

Most of the companies I have worked with find segmenting to be pretty straightfor-
ward, so this explanation is brief. The main steps are as follows:

1 Use a current customer dataset (which you learned how to create at the end of
chapter 4) to create segments. Do not use the historical dataset on which you
did the cohort analyses. 

2 Segmenting is usually performed on spreadsheets by the businesspeople who
are going to make the customer interventions. In a large company, a business
intelligence system might be used.

3 Define a segment of customers at risk of churn by choosing the metric level
based on the result of your cohort analysis. Assuming that the metric is one in
which higher values are associated with lower churn, the at-risk customers are
those whose metric is below a level that you choose. 

4 The resulting customer list can be loaded into another system, such as an email
marketing tool or customer relationship management system, if necessary.

This procedure is basic, but there are some nuances in setting the segment criteria.

5.5.2 Choosing segment criteria

You can use a few strategies in setting a metric level to define a segment. One com-
mon approach is to set the metric level based on churn risk, such as picking all cus-
tomers whose churn risk is above a certain level as suggested by the results of the
cohort analysis. Suppose that your cohort analysis shows that customers who don’t use
the product churn at a 20% rate, and at some level of a metric, the risk is reduced to
5%. To define a segment of at-risk customers, you choose the metric level at which
churn risk is significantly higher than the lowest churn. You might choose the metric
values with a churn rate of 10%, for example. Another strategy is to pick the level of
the metric at which most of the churn reduction from increased usage has been
achieved (assuming such a level exists, as detailed in section 5.1).

 Many companies also have some kind of resource budget or other constraint on the
number of customers they will work with for a particular intervention. An alternative
way to define a segment is something like picking the 500 customers who have the low-
est measure on some behavior. This approach makes sense when the number of custom-
ers at risk is greater than your resources, and you need to triage your efforts. To create
such a segment, sort the current customer dataset according to the metric of interest
and pick a predetermined number of customers from the bottom (or top) of the list.

 It is also common to use interventions (such as emails, calls, or training) to target
the customers at some intermediate level of risk. 

TAKEAWAY You usually don’t intervene to reduce churn with the most disen-
gaged customers.

The reasoning is that the highest-risk (lowest-use) customers can be so disengaged
that intervention will have no effect and would be wasted. This consideration is most
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important when intervention has a cost associated with it or when you think that
unwanted communication might disengage customers further.

Summary
 Cohort analysis compares the churn rates on groups of customer observations,

with the groups based on measurements of a single metric.
 Metric cohort analysis usually shows that customers who use a product more

churn less.
 Each cohort should have at least 200 to 300 observations, and preferably thou-

sands. If you don’t have a lot of observations for your customers, use fewer cohorts.
 Cohort analysis can be applied to subscription metrics such as tenure, MRR,

and billing period.
 A statistical summary of a dataset consists of a set of measures (such as the aver-

age, minimum, and maximum) taken for every metric in a dataset.
 A statistical summary of a dataset is a good quality assurance check on your data

and can alert you to conditions for which you need to adjust your cohort analysis.
You should check a set of summary statistics before you do your cohort analysis.

 You should discuss the dataset summary statistics with people in the business
and correct any data issues before performing cohort analyses.

 A metric is skewed when most of the observed values are within a small range
but a relatively small number of observations are much larger.

 A score created from a metric is a rescaling of every metric observation so that
the rescaled values lie on a small range close to zero. But the order of the obser-
vations according to the score is the same as the order according to the metric.
(A larger metric value always maps to a higher score.)

 When a metric is skewed, a cohort analysis that uses the metric scores is easier
to read than a cohort analysis that uses the untransformed metric.

 If nonpaying users are mixed with paying customers, you should remove the
nonpaying users before performing cohort analysis. Nonpaying users tend not
to churn, regardless of how much they use the product, and therefore distort
the relationships in cohort analyses.

 For metrics based on rare events, you may want to remove the customers with
zero metric values so that the cohorts reflect the differences between customers
who have events.

 Disengaging behaviors are behaviors where customers who perform the behav-
ior more have higher churn.

 Disengaging behaviors rarely show up in simple behavioral count metrics; often,
you must remove nonusers from the cohort analysis to see the trend with cohort
analysis on these behaviors.

 You find segments of at-risk customers to target for interventions by choosing a
minimum metric level based on the results of cohort analysis.



Relationships between
customer behaviors
For most products and services, analyzing whether individual metrics are related to
churn is the beginning but not the end of using your data to reduce churn. This
chapter teaches you how to address a common problem: having an overabundance of
data available for fighting churn. In the age of big data, some companies collect a
lot about their customers. That should make it easier to fight churn with data,
right? Not quite. 

 Many customer behaviors are closely related, so metrics based on those behav-
iors have similar relationships to churn. A cohort churn analysis on a typical com-
pany’s database of events and metrics probably won’t give you just a few cohort
churn plots: you probably have dozens or more. This can actually cause more con-
fusion than good. When behaviors measured by metrics are not the specific acts
that give enjoyment or utility to the user, then the relationships to churn are just

This chapter covers
 Analyzing relationships between pairs of metrics 

 Calculating matrices of correlation coefficients

 Calculating averages of correlated metric scores

 Segmenting customers using averages of metrics 

 Discovering metric groups with clustering
217
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associations and not causal. When you have a lot of metrics that are associated with
churn but not causal, you don’t have a good way to understand how they act together.

 To fight churn effectively with your data, you need to do more than understand
how individual customer behaviors are related to churn. You need to understand how
customer behaviors are related to each other. When you do that instead of just look-
ing at how single behaviors are related to churn, you can look at how groups of behav-
iors are related to churn. That way, you turn the problem of having too much data
into an asset because groups of behaviors often show a clearer relationship to churn
than do individual behaviors alone.

 This chapter is organized as follows:

 In section 6.1, the chapter starts with some case studies to demonstrate what it
means for behaviors to be correlated and then teaches you how to calculate cor-
relations in your own data with Python and with something called a correlation
matrix, which is an important way of looking at correlations among a large num-
ber of metrics. 

 In section 6.2, you’ll learn a technique for forming averages of the metric scores
of correlated behaviors and then analyze churn using the average score. This is
a key technique that you’ll use to reduce information overload from having too
many metrics associated with churn. 

 Last, in section 6.3, you’ll learn a technique to automatically find groups of cor-
related metrics in a large dataset using an algorithm called a clustering algorithm.
By mastering these techniques, you’ll be ready to handle big datasets with lots
of correlated metrics and behaviors to be even more effective in your fight
against churn.

Grouping behaviors vs. dimension reduction
If you have formal training in data science or statistics, you’ll probably recognize that
this chapter covers the idea and practice of dimension reduction and is a crash
course in linear algebra. But because of the need to communicate the concepts to
businesspeople, I refer to it as behavioral grouping, which describes the key result in
plain English. If you are formally trained, you’ll also find that I stick to a basic and
intuitive kind of dimension reduction, but I want to caution you against thinking of this
as a “dumbed-down” approach. The approach taken is deliberately simple. But while
it is not optimal in the usual statistical sense, it is optimized for explainability. It is
also excellent for robustness and out-of-sample predictive performance in the face of
messy data and a problem that never stops changing (churn is nonstationary). In my
experience, extracting the maximum information from a dimension reduction with
more complicated methods does not lead to better performance in churn prediction.
For interested readers, this chapter ends with a sidebar comparing the results using
the methods in this chapter with results obtained from standard dimension reduction
using principal component analysis (PCA). 
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6.1 Correlation between behaviors
If you have two customer behaviors that you think are related, start by objectively mea-
suring how they are related. The most practical way to do this is by measuring correla-
tion, which is the subject of this section. You will learn what correlation between
customer behaviors means and see demonstrations in customer behavioral data with
case studies. Then you’ll learn how to calculate and visualize correlations between
pairs of metrics as well as between all the metrics in a dataset.

6.1.1 Correlation between pairs of metrics

Two metrics or behaviors are said to be correlated when a customer who has a high
value on the first metric also has a high value on the second metric, and a different
customer with a low value on the first metric also has a low value on the second. You
can also describe correlation by saying that an increase in the first metric is associated
with an increase in the second metric, in the sense that if a customer increased one
behavior, they also tend to increase the other behavior (and the associated metrics).

DEFINITION Correlation between a pair of metrics or behaviors is a measure of
the consistency with which an increase (or decrease) in one metric or behav-
ior is associated with an increase (or decrease) in the other.

That’s the idea of correlation. There is also a measurement of correlation called the
correlation coefficient, which is also often simply called the correlation.

DEFINITION The correlation coefficient is a measurement of correlation that can
range from –1.0 to 1.0: 

 1.0 correlation between two metrics means that an increase in one metric is
always associated with the same increase in another metric. 

 Negative correlation means that the association is a decrease of one metric when
the other metric increases. 

It is easiest to imagine 1.0 correlation when the increase is 1:1 (an increase of 1 in the
first metric corresponds to an increase of 1 in the second metric), but it can also be
any ratio (1:2, 2:1, and so forth) when the correlation is the same. That’s why the cor-
relation depends on the consistency of the association between two metrics but not the
exact magnitude of the ratio. Correlation can also be between two metrics with any
measurement units or scale (logins, downloads, views, etc.). 

NOTE Consistency in the relationship means that a certain amount of increase
in one metric results in a proportional amount of increase in the other as
given by a specific ratio.

Figure 6.1 shows example pairs of metrics with different degrees of correlation, taken
from the case studies of companies introduced in earlier chapters. Scatterplots show
the values of two different metrics by plotting each observation as a point with one
metric on each axis. Each point in figure 6.1 represents two metrics from a single
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observation out of the dataset; the complete set of points is all the paired values from
those two metrics.

 Figure 6.1A shows highly correlated metrics with a correlation above 0.95 (0.98, to
be exact). In practice, you’ll never see a 1.0 correlation between two metrics (unless
you accidentally calculate the same metric twice), but you might see metrics that are
highly correlated, like those shown in figure 6.1A. These are closely related metrics
from Klipfolio’s dashboard editor. (Klipfolio, introduced in chapter 1, is an SaaS
product for business dashboards.) 

 When you plot a set of observations that are highly correlated, they are arranged in
an almost diagonal line. At a 1.0 correlation, the points would be precisely on a diago-
nal line.

 Correlation measurements higher than 0.7 are considered a high correlation. Fig-
ure 6.1B shows a pair of metrics from Broadly for the number of customers added and
the number of asks presented, which have 0.88 correlation. (Broadly, introduced in
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chapter 1, helps businesses manage their online presence.) Another metric showing a
moderately high degree of correlation (0.75) is shown in figure 6.1C, which is the
metric scores for local calls and domestic calls from Versature. (Versature, introduced
in chapter 1, provides cloud-based business communication solutions.) For metrics
with a relatively high correlation, points in these scatterplots tend to lie in some kind
of ellipse or oval that is at a diagonal orientation.

 Correlation measurements in the range of around 0.3 to 0.7 are moderately cor-
related and are illustrated in figures 6.1D and 6.1E. Figure 6.1D is a moderate correla-
tion of 0.57 and shows the same two metrics for local and domestic calls from
Versature. In this case, the metrics are shown on their natural scale rather than as
scores. Note that the metric scores are significantly more correlated than the underly-
ing metric. This is often the case when metrics are skewed, as described in chapter 5.

TAKEAWAY Metric scores are often more correlated than the underlying met-
rics on their natural scale, especially when the metrics are heavily skewed.
This is another important reason for using metric scores in your analysis.

Figure 6.1E shows two metrics for Klipfolio with weaker but still moderate correla-
tion (0.31). These are the metric scores for the number of data sources and the num-
ber of Klips edited. In scatterplots for moderately correlated metrics, the points tend
to lie closer to the diagonal than not, but there is much less structure. Figure 6.1F shows
two metrics for Broadly that are even more weakly correlated (0.18). These are met-
rics for the number of transactions added and the number of customer promoters
(customers who give positive reviews). Businesses with more transactions tend to
have more promoters, but the relationship is weak, and there are many outliers:
some observations are high in one metric but low in another, leading to points close
to both axes.

 Figure 6.2 shows examples of metrics that have zero correlation or close to it; these
are commonly called uncorrelated. Although scatterplots of metrics with a high correla-
tion usually look similar, there is a lot more variety in metrics with low and near-zero
correlations. Figure 6.2A shows two metrics from Broadly that have exactly 0.0 correla-
tion. These metrics are for viewing the customer list and sending follow-up emails. In
this case, there is no relationship, and the points tend to lie close to the origin
(equally spaced with respect to both axes). Figure 6.2B shows Versature’s metric for
local calls and account tenure. Account tenure is uniformly distributed across the
x-axis up to the maximum, but there is no relationship with the number of local calls.
Figure 6.2C shows an example from Klipfolio of near-zero correlation between the
metrics for adding templates and switching orientations. The add template metric is
rare, so most observations have values near zero on that axis, and there is no relation-
ship to the other metric (orientation switches).

 Figure 6.3 shows correlation patterns that you are unlikely to see in your data. No
examples were available from case studies, so these were made from simulated data using
the code on the book’s website (www.manning.com/books/fighting-churn-with-data)

http://www.manning.com/books/fighting-churn-with-data
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and in this book’s GitHub repository (https://github.com/carl24k/fight-churn/tree/
master/data-generation). Figure 6.3A shows an example where two behavioral metrics
both lie in a nonzero range with few outliers and no skew and yet still have no correla-
tion. Scatterplots of such metrics have points that tend to lie in a sphere, and this is
the classic example of uncorrelated metrics in a statistics textbook. But surprisingly, it
is rare to see it in customer behaviors. Usually, when two customer metrics have few
zeros and no extreme values, there is some degree of correlation.

In the figure, 6.3B and 6.3C show examples of low and moderate negative correla-
tions, respectively. Like positive correlations, the points in a scatterplot tend to lie in
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an ellipse, but in this case, the ellipse is at a diagonal orientation sloping down to the
right rather than up to the left. This shows that an increase in one behavior is associ-
ated with a decrease in the other behavior.

 It’s rare that you’ll observe negative correlations between count metrics based on
customer events because generally customers with more events do more of everything.
That said, there are other types of more advanced behavioral metrics (see the next
chapter) that can have negative correlations with other metrics in your dataset.

6.1.2 Investigating correlations with Python

Listing 6.1 shows a short Python program to create scatterplots and correlation mea-
surements like the ones shown in the last section. The program assumes a dataset was
created and saved using the code in chapter 4 (specifically listings 4.1, 4.2, 4.4, and
4.5). Most of listing 6.1 handles the details of loading the dataset and making the scat-
terplot with annotations. 

 The correlation is calculated in a single call to the Pandas function Series.corr. If
you want to know how the correlation coefficient was calculated, there are many
resources online and in statistics textbooks (search for “Pearson” correlation coeffi-
cient, for example). The scatterplot is created with a call to the Matplotlib function
pyplot.scatter. As in previous plot examples, it is important to provide detailed
labeling and annotation of the plot, so your business colleagues know what they are
looking at (and so you can remember what you plotted when you look at it some-
time later).

 Figure 6.4 shows the result of running listing 6.1 on the default simulated dataset.
You should try it out on a pair of metrics yourself. Assuming you have set up your envi-
ronment (instructions in the README for the book in the GitHub repository at
https://github.com/carl24k/fight-churn), and you are using the Python wrapper pro-
gram, run listing 6.1 with

fight-churn/listings/run_churn_listing.py --chapter 6 --listing 1 --version 1 2

That should give you a .png file with a scatterplot between the metrics post_per_month
and like_per_month, which looks like figure 6.4. You can also check the results on dif-
ferent pairs of metrics by running the alternative versions by adding the version argu-
ments up to 16: 

--version 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

That command generates the pair plots of posts per month as both scores and natural
scale metrics. That’s just a small number out of all the possible pair plots from the data-
set, but it will show you a little variety for possible correlation patterns and the differ-
ence it makes when the metrics are converted to scores.

https://github.com/carl24k/fight-churn
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import pandas as pd
import matplotlib.pyplot as plt
import os

def metric_pair_plot(data_set_path):
   assert os.path.isfile(data_set_path),
      '"{}" is not a valid path'.format(data_set_path)  
   churn_data = 
      pd.read_csv(data_set_path,index_col=[0,1])    

   met1_series = churn_data[metric1]     
   met2_series = churn_data[metric2]

   corr = met1_series.corr(met2_series)    

   plt.scatter(met1_series, met2_series, marker='.')      

   plt.xlabel(metric1)       
   plt.ylabel(metric2)
   plt.title('Correlation = %.2f' % corr)      

   plt.tight_layout()     
   plt.grid()
   save_name = 
      data_set_path.replace('.csv','_'+metric1+'_vs_'+metric2+'.png')
   plt.savefig(save_name)                  
   print('Saving plot to %s' % save_name)
   plt.close()

Listing 6.1 Analyzing correlation in pairs of metrics
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Each point represents a paired observation
of likes per month and posts per month.
The correlation of 0.5 is moderate.

For scores of the same metrics, the correlation is
noticeably higher: 0.66. Discretized scores at the
low end represent counts of 0, , 2, and so on.1

Figure 6.4 Result of running listing 6.1 on the simulated metrics, showing scores for likes per month and 
posts per month
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6.1.3 Understanding correlations between sets of metrics 
with correlation matrices

Scatterplots are useful for understanding the relationships between pairs of metrics
that you are interested in, but they are an inefficient way to investigate the correla-
tions between the pairs in a large set of metrics. That’s because if you have a moderate
number of metrics, there will be a much larger number of combinations (for the
mathematically inclined, for N metrics, there are N × (N – 1) / 2 combinations, as
illustrated later). You will learn a much more efficient way to look at a large number of
correlations in a dataset next; this is called a correlation matrix. A matrix is a table (of
data) where all of the entries are numbers, and a correlation matrix is a table of all the
correlations in a dataset. That is, every entry in the correlation matrix is a correlation
coefficient between two metrics.

DEFINITION A correlation matrix is a table of all of the pairwise correlation
coefficients between the metrics in a dataset.

Figure 6.5 shows an example of creating a correlation matrix from a simple dataset.
The dataset was simulated to have five metrics, all counts per month of events (likes,
reads, replies, sends, and writes) in a messaging application. The metrics are con-
verted to scores because that can show more of a correlation. Each pair of metrics has
its own relationship that can be investigated with a scatterplot and an individual cor-
relation calculation. To display all of the correlations in a single matrix, the metrics
are put on both the rows and the columns of a table (in the same order). The correla-
tion between each pair is entered at the intersection of that pair of metrics in the
table. That way, every correlation can be looked up in a single table. 

NOTE Correlation matrices are often color coded by value because it makes it
easier to identify high and low correlations visually; a color-coded correlation
matrix is often referred to as a heatmap.

The correlation matrices in this book are grayscale so they can be printed, but I rec-
ommend using full-color heatmaps in all other situations (both for your own analysis
and for presentations to your colleagues).

 Because metrics are in the rows and the columns of the correlation matrix, there
are two intersections in the matrix for every pair of metrics. These are in locations that
are symmetrical with respect to a diagonal line drawn through the matrix from the top
left to the bottom right. There are two options to deal with this redundancy: show
every entry twice, or omit half the matrix. The most common approach is to show
every entry twice; consequently, the correlation matrix is symmetrical across the diago-
nal. That can make it easier to find the correlation you are looking for because,
whether you start from a row or a column, you find the entry just as fast either way.
The alternative approach is to omit half of the matrix either above or below the diago-
nal. This leads to a cleaner look that is better for presentations. Also, every metric has
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an intersection with itself in the correlation matrix, and this lies on the diagonal of
the matrix because the metrics are in the same order in the rows and columns. 

 By definition, every metric has a correlation of 1.0 with itself. Although that infor-
mation is useless, it is mathematically necessary for algorithms involving correlation
matrices. But showing the diagonal 1.0s in a matrix can be distracting in a presenta-
tion, and therefore it can be omitted.

Like Read Reply Login Send Write

Like .49 .21 .19 −.08 −.46

Read .49 .89 .82 −.11 −.34

Reply .21 .89 .69 −.16 −.12

Login .19 .82 .69 −.15 −.31

Send −.08 −.11 −.16 −.15 .66

Write −.46 −.34 −.12 −.31 .66
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observations in the dataset, which has been
converted to scores, and all the scores are
between –2 and 2.
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arranged
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(mirrored) across
the diagonal.

Each metric pair has a
separate relationship and
correlation, as illustrated in
the center row of the
scatterplots (4 out of 01
scatterplots shown).

The correlation matrix shows all these paired
relationships in a grid where the intersection of each
metric row and column shows the correlation.

In this example, there are 6 metrics and 01

Figure 6.5 A correlation matrix (bottom) summarizes all pairwise correlations among the metrics in a 
dataset (top). 
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6.1.4 Case study correlation matrices

Figure 6.6 shows a correlation matrix from Klipfolio’s case study as a heatmap. There
are around 70 metrics, and they are ordered to show the relationships of high correla-
tion between different types of metrics. Six groups of metrics are highly correlated.
The single largest group comprises metrics for the most common ways to use the
product. There are also five other smaller groups of metrics that relate to other
aspects of the products, and some metrics are not strongly correlated to any other
metrics. This structure is fairly typical, although there are not always so many well-
defined groups. The technique to produce this order is shown later in listing 6.4.

1 0.562163 0.389359 0.382263 0.421245 0.427134 0.366701 0.343071 0.436066 0.700734 0.503412 0.421495 0.3909 0.417428 0.354571 0.550312 0.324192 0.436887 0.524254 0.566796 0.556055 0.437117 0.391215 0.48616 0.316567 0.526272 0.367005 0.765726 0.100562 0.087954 0.134176 0.178781 0.115759 0.111043 0.099732 0.20112 0.063772 0.236856 0.088479 0.05571 0.179252 0.151015 0.380027 0.443024 0.396854 0.260435 0.263507 0.188744 0.270929

-

0.144517 0.111526

0.35

6758 0.115582 0.308107 0.317141 0.324604 0.07378 0.079798 0.171665 0.276691 0.005865 0.072007 0.059558 0.123883 0.161453 0.04388 0.091637

-

0.016003

0.562163 1 0.681565 0.46824 0.616455 0.500358 0.424902 0.382371 0.471702 0.451619 0.67847 0.467597 0.435226 0.452948 0.395825 0.58639 0.383417 0.481347 0.598827 0.600912 0.575034 0.490717 0.529429 0.578431 0.354791 0.637855 0.688168 0.729637 0.143482 0.123625 0.162657 0.201337 0.143312 0.15336 0.13845 0.222667 0.107955 0.271688 0.146925 0.141807 0.399514 0.338067 0.390376 0.480079 0.413479 0.480247 0.444972 0.093234 0.455845

-

0.283006 0.183006

0.40

8277 0.176271 0.442024 0.331592 0.340239 0.12058 0.091862 0.227835 0.205482 0.027385 0.127504 0.051284 0.155586 0.089493 0.058799 0.02959

-

0.010687

0.389359 0.681565 1 0.198097 0.385878 0.311288 0.251171 0.216036 0.268721 0.311244 0.475987 0.270473 0.256241 0.273603 0.217673 0.377296 0.260018 0.275026 0.374876 0.388974 0.37362 0.316624 0.2784 0.406054 0.233333 0.435103 0.530862 0.50365 0.061624 0.044868 0.080802 0.127614 0.080194 0.067752 0.055661 0.054588 0.018133 0.074542 0.034554 0.10965 0.060304 0.122781 0.366702 0.428712 0.383972 0.380904 0.350276

-

0.022365 0.033665

-

0.090141 0.037366

0.14

7085 0.121848 0.276137 0.212354 0.217153 0.030809 0.06067 0.130115 0.064924 0.017519 0.017711 0.032944 0.059008 0.262846 0.215937 0.005631

-

0.011088

0.382263 0.46824 0.198097 1 0.668106 0.620945 0.63497 0.527297 0.679996 0.352176 0.42662 0.625174 0.603787 0.518741 0.56628 0.565854 0.422229 0.689914 0.588082 0.574131 0.566878 0.458923 0.71572 0.606306 0.432992 0.385281 0.562387 0.465922 0.311206 0.291998 0.367834 0.386175 0.332559 0.326873 0.308209 0.178855 0.042277 0.241037 0.093323 0.079882 0.301692 0.242094 0.197926 0.254297 0.205751 0.353117 0.287311 0.001217 0.310579

-

0.191773

-

0.021739

0.36

0159 0.196445 0.42693 0.430972 0.483308 0.319773 0.19263 0.271142 0.573588 0.106615 0.306625 0.016464 0.262221

-

0.071391 0.014883 0.116935 0.031451

0.421245 0.616455 0.385878 0.668106 1 0.57329 0.552069 0.473194 0.571486 0.353349 0.505697 0.571601 0.555422 0.524182 0.505553 0.569177 0.432289 0.632214 0.60302 0.56966 0.563883 0.49174 0.847057 0.628242 0.389432 0.542088 0.637771 0.530911 0.302866 0.282772 0.300909 0.322865 0.267327 0.314216 0.312232 0.133216 0.006143 0.173989 0.034898 0.099893 0.320433 0.262522 0.368506 0.441543 0.381409 0.494732 0.418458 0.031314 0.328573 -0.20781 0.053735

0.31

9471 0.219539 0.459379 0.406844 0.409779 0.284671 0.141408 0.250305 0.378986 0.059264 0.351092 0.0365 0.153118

-

0.058118 0.032191 0.073965 0.021704

0.427134 0.500358 0.311288 0.620945 0.57329 1 0.739019 0.586601 0.6378 0.559745 0.603689 0.701315 0.6521 0.560992 0.626532 0.819044 0.440705 0.697779 0.827006 0.842495 0.814512 0.577039 0.598066 0.660039 0.365286 0.591827 0.40212 0.634408 0.452262 0.422931 0.511571 0.568654 0.486147 0.471005 0.435254 0.287339 0.189126 0.346085 0.242922 0.145604 0.228979 0.218556 0.234697 0.286016 0.282618 0.399487 0.351347 -0.08971 0.243726

-

0.149793

-

0.019979

0.30

3168 0.201986 0.354067 0.470567 0.400459 0.291183 0.19683 0.183404 0.420098 0.137807 0.237486 0.020612 0.495775 0.06459 0.052679 0.184127

-

0.001683

0.366701 0.424902 0.251171 0.63497 0.552069 0.739019 1 0.615504 0.697416 0.426423 0.470414 0.732441 0.711974 0.5345 0.683273 0.679645 0.422777 0.551234 0.678102 0.669534 0.653983 0.444967 0.569161 0.630795 0.36021 0.450422 0.408785 0.503789 0.360808 0.330605 0.418609 0.49702 0.38759 0.378575 0.338854 0.222114 0.119176 0.288369 0.180766 0.115205 0.214775 0.198888 0.179382 0.226657 0.230953 0.394147 0.345307

-

0.046991 0.228734

-

0.140079

-

0.017883
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3087 0.166599 0.355358 0.467116 0.320001 0.256241 0.201362 0.192168 0.448065 0.106785 0.224658 0.008205 0.365252 0.014657 0.043437 0.132545 0.002178

0.343071 0.382371 0.216036 0.527297 0.473194 0.586601 0.615504 1 0.780713 0.371715 0.397997 0.843812 0.781631 0.658902 0.900806 0.562428 0.400527 0.535359 0.587203 0.576079 0.558371 0.439965 0.487541 0.5993 0.34771 0.355962 0.362953 0.443694 0.361445 0.326552 0.370051 0.407254 0.326568 0.372034 0.337861 0.248436 0.176439 0.240274 0.162826 0.147166 0.214658 0.204319 0.149068 0.188632 0.183034 0.32077 0.287896

-

0.064847 0.21673

-

0.136374

-

0.022375

0.21

2728 0.164707 0.250465 0.434214 0.422352 0.258986 0.228606 0.153138 0.376813 0.116648 0.242521 0.025975 0.316551 0.00873 0.039033 0.155324

-

0.007479

0.436066 0.471702 0.268721 0.679996 0.571486 0.6378 0.697416 0.780713 1 0.435068 0.466439 0.911647 0.895829 0.674403 0.822118 0.640283 0.465537 0.604955 0.663624 0.657898 0.654092 0.517406 0.580444 0.68358 0.460799 0.380558 0.492735 0.528916 0.32901 0.298879 0.365055 0.417446 0.324979 0.34402 0.3081 0.266685 0.165587 0.27232 0.163222 0.154549 0.257314 0.237976 0.201284 0.251339 0.237999 0.331008 0.292527

-

0.019453 0.267261

-

0.161083

-

0.021638

0.28

6031 0.2018 0.36551 0.485113 0.564453 0.281832 0.252025 0.225061 0.471813 0.142392 0.263154 0.062328 0.349968 0.007235 0.044558 0.164001 0.019338

0.700734 0.451619 0.311244 0.352176 0.353349 0.559745 0.426423 0.371715 0.435068 1 0.840992 0.46764 0.421096 0.406312 0.393911 0.677439 0.303725 0.418973 0.615877 0.70052 0.667493 0.455265 0.364433 0.479668 0.265937 0.582251 0.198979 0.929497 0.218974 0.20412 0.248823 0.290094 0.22895 0.231499 0.213214 0.342725 0.245404 0.400849 0.299916 0.060976 0.072696 0.071753 0.370101 0.402035 0.352274 0.198173 0.20751 0.075828 0.19854

-

0.055986 -6.61E-05

0.35

9924 0.104043 0.254827 0.327198 0.281409 0.133737 0.125907 0.119426 0.257356 0.095572 0.116984 0.0436 0.295407 0.295423 0.030026 0.155177

-

0.027606

0.503412 0.67847 0.475987 0.42662 0.505697 0.603689 0.470414 0.397997 0.466439 0.840992 1 0.499368 0.456047 0.442918 0.42354 0.696293 0.351365 0.465196 0.666591 0.712991 0.675828 0.497602 0.473543 0.545578 0.304641 0.655731 0.414285 0.905878 0.226553 0.20705 0.250308 0.291644 0.229725 0.238934 0.218492 0.269256 0.171671 0.323798 0.220052 0.081386 0.196444 0.167618 0.43252 0.474287 0.407729 0.34241 0.32393 0.068433 0.298266

-

0.135218 0.064245

0.36

6712 0.153915 0.344651 0.348421 0.306331 0.156358 0.125435 0.161662 0.219035 0.102366 0.144625 0.034317 0.272636 0.208521 0.033515 0.112608

-

0.014328

0.421495 0.467597 0.270473 0.625174 0.571601 0.701315 0.732441 0.843812 0.911647 0.46764 0.499368 1 0.913202 0.723179 0.902246 0.689638 0.495124 0.624795 0.714173 0.708402 0.685993 0.537604 0.586776 0.723196 0.423566 0.450344 0.440924 0.551429 0.386867 0.351017 0.419449 0.473042 0.37739 0.402769 0.364054 0.282875 0.192194 0.288717 0.191485 0.155755 0.24387 0.22667 0.202728 0.250643 0.235277 0.383036 0.339246

-

0.052604 0.259611

-

0.151451 -0.01798

0.27

0767 0.203696 0.339388 0.51811 0.504488 0.280472 0.246546 0.198351 0.431257 0.137753 0.259682 0.034146 0.398211 0.02716 0.040519 0.179293 0.013198

0.3909 0.435226 0.256241 0.603787 0.555422 0.6521 0.711974 0.781631 0.895829 0.421096 0.456047 0.913202 1 0.625095 0.83783 0.641913 0.444605 0.592362 0.657613 0.656374 0.667291 0.513532 0.565496 0.651443 0.383894 0.425555 0.423959 0.503727 0.332377 0.30339 0.370251 0.42425 0.33406 0.346298 0.314422 0.254137 0.16069 0.258889 0.158231 0.130766 0.225275 0.20677 0.189112 0.235953 0.225467 0.362035 0.314914

-

0.046161 0.23314

-

0.143239

-

0.012398

0.26

4806 0.213404 0.344503 0.480365 0.489311 0.241207 0.216129 0.195819 0.418677 0.115257 0.229348 0.065854 0.3648 0.013953 0.041666 0.176657 0.008936

0.417428 0.452948 0.273603 0.518741 0.524182 0.560992 0.5345 0.658902 0.674403 0.406312 0.442918 0.723179 0.625095 1 0.655672 0.585416 0.46321 0.567809 0.629584 0.603952 0.577164 0.652256 0.515865 0.658032 0.408388 0.42901 0.410147 0.50078 0.290921 0.261373 0.300508 0.332412 0.261518 0.301098 0.272976 0.253335 0.156225 0.230699 0.125657 0.119959 0.220837 0.199435 0.258086 0.294581 0.274937 0.338428 0.312332

-

0.011141 0.241728

-

0.145348 0.014028

0.26

3201 0.205985 0.330425 0.467228 0.449331 0.219603 0.210292 0.184897 0.340445 0.092853 0.208697 0.033553 0.287892 0.025095 0.032208 0.157909

-

0.005738

0.354571 0.395825 0.217673 0.56628 0.505553 0.626532 0.683273 0.900806 0.822118 0.393911 0.42354 0.902246 0.83783 0.655672 1 0.606435 0.414029 0.551747 0.628047 0.610915 0.593286 0.446269 0.522747 0.620535 0.353418 0.378825 0.380702 0.466266 0.389993 0.355722 0.4077 0.450029 0.365793 0.401636 0.366028 0.25944 0.17924 0.26288 0.176834 0.141454 0.222215 0.207668 0.156062 0.19575 0.187193 0.333804 0.295095

-

0.059499 0.227238

-

0.141106

-

0.018219

0.23

8115 0.165004 0.277162 0.458833 0.430118 0.276959 0.224899 0.167721 0.398755 0.122248 0.260822 0.025652 0.340341 0.007969 0.038433 0.15433 0.009084

0.550312 0.58639 0.377296 0.565854 0.569177 0.819044 0.679645 0.562428 0.640283 0.677439 0.696293 0.689638 0.641913 0.585416 0.606435 1 0.461805 0.648266 0.93162 0.976192 0.945818 0.657686 0.574066 0.685678 0.400788 0.675525 0.426458 0.760389 0.287338 0.262017 0.339027 0.397007 0.309495 0.305181 0.277008 0.306545 0.164925 0.394252 0.246466 0.126409 0.237915 0.216586 0.290968 0.361566 0.34375 0.373001 0.348351

-

0.008078 0.290972

-

0.173215 0.034185

0.39

0204 0.199817 0.426413 0.481717 0.376588 0.191483 0.199243 0.212857 0.401448 0.107701 0.179222 0.020594 0.549897 0.110247 0.044241 0.191192

-

0.001554

0.324192 0.383417 0.260018 0.422229 0.432289 0.440705 0.422777 0.400527 0.465537 0.303725 0.351365 0.495124 0.444605 0.46321 0.414029 0.461805 1 0.454848 0.493938 0.47847 0.467971 0.392244 0.420676 0.748932 0.848714 0.334914 0.394639 0.392803 0.182194 0.162667 0.208937 0.262581 0.192548 0.196788 0.175868 0.114602 0.045851 0.143074 0.068946 0.090318 0.17743 0.161644 0.190512 0.243828 0.210871 0.326942 0.276372 -0.00997 0.187813

-

0.111476 0.01898

0.17

8648 0.149501 0.285458 0.454712 0.381922 0.147415 0.201847 0.183917 0.27038 0.063214 0.152479 0.021378 0.232213 0.007673 0.03973 0.114814 0.010981

0.436887 0.481347 0.275026 0.689914 0.632214 0.697779 0.551234 0.535359 0.604955 0.418973 0.465196 0.624795 0.592362 0.567809 0.551747 0.648266 0.454848 1 0.66698 0.660367 0.654588 0.539431 0.643024 0.644311 0.407912 0.485815 0.472871 0.524149 0.232032 0.213347 0.254891 0.288668 0.219155 0.246488 0.227231 0.184026 0.052011 0.254864 0.113363 0.11793 0.262266 0.22905 0.230573 0.28559 0.287063 0.364402 0.313643

-

0.009423 0.277172 -0.18289 5.42E-05

0.32

9434 0.223775 0.414192 0.446095 0.496295 0.188418 0.177722 0.226119 0.458672 0.080334 0.197308 0.020467 0.318173 -0.00788 0.031771 0.156393 0.019102

0.524254 0.598827 0.374876 0.588082 0.60302 0.827006 0.678102 0.587203 0.663624 0.615877 0.666591 0.714173 0.657613 0.629584 0.628047 0.93162 0.493938 0.66698 1 0.934817 0.888874 0.675605 0.606152 0.722818 0.426108 0.664179 0.461293 0.721432 0.295152 0.267172 0.339802 0.395333 0.304835 0.312594 0.282149 0.275169 0.139393 0.345253 0.20209 0.131427 0.26382 0.233763 0.29203 0.361396 0.344143 0.39801 0.364749

-

0.012007 0.308542

-

0.185718 0.040988

0.37

1771 0.226553 0.438498 0.505637 0.435112 0.208726 0.213859 0.220387 0.399685 0.108784 0.197391 0.026194 0.517759 0.074852 0.034292 0.198337 0.007002

0.566796 0.600912 0.388974 0.574131 0.56966 0.842495 0.669534 0.576079 0.657898 0.70052 0.712991 0.708402 0.656374 0.603952 0.610915 0.976192 0.47847 0.660367 0.934817 1 0.964516 0.672587 0.577393 0.711094 0.413776 0.680059 0.429863 0.782078 0.289838 0.263419 0.340384 0.398548 0.309686 0.307667 0.279053 0.310334 0.175783 0.39654 0.256519 0.140902 0.239366 0.221832 0.293914 0.366026 0.343626 0.379096 0.354837

-

0.021093 0.291579

-

0.172845 0.025066

0.38

7093 0.204827 0.420763 0.498249 0.427269 0.192639 0.20431 0.210555 0.403285 0.120654 0.177789 0.033545 0.605462 0.125666 0.048267 0.203231

-

0.003476

0.556055 0.575034 0.37362 0.566878 0.563883 0.814512 0.653983 0.558371 0.654092 0.667493 0.675828 0.685993 0.667291 0.577164 0.593286 0.945818 0.467971 0.654588 0.888874 0.964516 1 0.679009 0.568529 0.685977 0.404589 0.655429 0.427598 0.748195 0.258588 0.235431 0.312718 0.36824 0.28275 0.276241 0.249995 0.274646 0.141669 0.365259 0.227273 0.137052 0.232898 0.214864 0.28259 0.356275 0.332887 0.372719 0.345873

-

0.026306 0.279479 -0.16579 0.015528

0.37

0428 0.223651 0.419455 0.487102 0.432737 0.172125 0.198319 0.214708 0.402647 0.116169 0.161716 0.095702 0.57017 0.111611 0.046761 0.224861 0.000847

0.437117 0.490717 0.316624 0.458923 0.49174 0.577039 0.444967 0.439965 0.517406 0.455265 0.497602 0.537604 0.513532 0.652256 0.446269 0.657686 0.392244 0.539431 0.675605 0.672587 0.679009 1 0.473607 0.558125 0.347713 0.52324 0.379855 0.55481 0.200267 0.181695 0.214534 0.23866 0.181816 0.209266 0.191672 0.240546 0.121293 0.238513 0.109057 0.085578 0.216333 0.184426 0.282675 0.334603 0.311984 0.322312 0.301292 0.024496 0.243828

-

0.160218 0.044832

0.31

1436 0.221603 0.388394 0.379841 0.387276 0.148708 0.140329 0.205646 0.295244 0.057738 0.142811 0.068858 0.317571 0.052656 0.030473 0.172133 0.003309

0.391215 0.529429 0.2784 0.71572 0.847057 0.598066 0.569161 0.487541 0.580444 0.364433 0.473543 0.586776 0.565496 0.515865 0.522747 0.574066 0.420676 0.643024 0.606152 0.577393 0.568529 0.473607 1 0.613612 0.375208 0.478762 0.545253 0.50132 0.316385 0.298882 0.335724 0.35539 0.300558 0.330469 0.319819 0.171754 0.055251 0.222013 0.09587 0.078907 0.295016 0.231767 0.256917 0.314299 0.270282 0.404706 0.336424 0.039412 0.313301

-

0.178685 0.047628

0.31

1011 0.213319 0.415132 0.41206 0.420557 0.294056 0.146576 0.241311 0.413752 0.080359 0.329308 0.027013 0.212457

-

0.040618 0.009259 0.096834 0.015216

0.48616 0.578431 0.406054 0.606306 0.628242 0.660039 0.630795 0.5993 0.68358 0.479668 0.545578 0.723196 0.651443 0.658032 0.620535 0.685678 0.748932 0.644311 0.722818 0.711094 0.685977 0.558125 0.613612 1 0.647723 0.503721 0.552074 0.607166 0.309389 0.278226 0.344595 0.40972 0.317341 0.327583 0.296044 0.185981 0.091892 0.228323 0.128175 0.147534 0.260688 0.242926 0.282927 0.352828 0.306683 0.461459 0.401013

-

0.026315 0.278757

-

0.172814 0.008398

0.26

551 0.205354 0.408383 0.574026 0.519257 0.232647 0.283376 0.233104 0.387303 0.130518 0.225036 0.037482 0.350571 0.032014 0.059926 0.163211 0.012376

0.316567 0.354791 0.233333 0.432992 0.389432 0.365286 0.36021 0.34771 0.460799 0.265937 0.304641 0.423566 0.383894 0.408388 0.353418 0.400788 0.848714 0.407912 0.426108 0.413776 0.404589 0.347713 0.375208 0.647723 1 0.263057 0.401279 0.351815 0.133515 0.117074 0.156547 0.205018 0.14465 0.145301 0.127111 0.101652 0.027622 0.127672 0.047349 0.081824 0.169044 0.154303 0.177956 0.225959 0.193989 0.251024 0.2113 0.021776 0.182101

-

0.107106 0.023476

0.18

5047 0.128115 0.27816 0.394726 0.379294 0.135087 0.205822 0.186893 0.280729 0.05062 0.139194 0.019529 0.189491 -0.00098 0.038728 0.092944 0.004129

0.526272 0.637855 0.435103 0.385281 0.542088 0.591827 0.450422 0.355962 0.380558 0.582251 0.655731 0.450344 0.425555 0.42901 0.378825 0.675525 0.334914 0.485815 0.664179 0.680059 0.655429 0.52324 0.478762 0.503721 0.263057 1 0.374661 0.707975 0.190059 0.175986 0.205608 0.24024 0.18417 0.200656 0.189728 0.253217 0.061456 0.302031 0.092311 0.044288 0.23652 0.19381 0.432069 0.511295 0.448056 0.451331 0.411865 0.086616 0.318989

-

0.194462 0.144917

0.45

5261 0.16644 0.382915 0.331863 0.213996 0.116529 0.071345 0.162918 0.217252

-

0.024651 0.112839 0.037667 0.224178 0.107306 0.042087 0.11368

-

0.007361

0.367005 0.688168 0.530862 0.562387 0.637771 0.40212 0.408785 0.362953 0.492735 0.198979 0.414285 0.440924 0.423959 0.410147 0.380702 0.426458 0.394639 0.472871 0.461293 0.429863 0.427598 0.379855 0.545253 0.552074 0.401279 0.374661 1 0.440151 0.142976 0.123664 0.164479 0.190995 0.14314 0.152334 0.138283 0.023323

-

0.054638 0.056214

-

0.029489 0.13628 0.357459 0.299207 0.308653 0.370965 0.318122 0.483445 0.390244 0.025225 0.326256

-

0.257043 0.047277

0.19

8267 0.185238 0.424388 0.322055 0.391261 0.158712 0.14104 0.282444 0.259601 0.074595 0.1753 0.032678 0.072117

-

0.138919 0.041023 0.013557 0.042081

0.765726 0.729637 0.50365 0.465922 0.530911 0.634408 0.503789 0.443694 0.528916 0.929497 0.905878 0.551429 0.503727 0.50078 0.466266 0.760389 0.392803 0.524149 0.721432 0.782078 0.748195 0.55481 0.50132 0.607166 0.351815 0.707975 0.440151 1 0.220286 0.200913 0.251803 0.299471 0.228398 0.233946 0.213896 0.294483 0.165626 0.351471 0.21408 0.093905 0.221663 0.192828 0.449503 0.511129 0.445497 0.35532 0.348408 0.112933 0.334481

-

0.161735 0.085882

0.41

5923 0.153781 0.379254 0.389093 0.358023 0.149961 0.135128 0.186646 0.281204 0.078696 0.140658 0.053012 0.269735 0.229471 0.04699 0.128153

-

0.017913

0.100562 0.143482 0.061624 0.311206 0.302866 0.452262 0.360808 0.361445 0.32901 0.218974 0.226553 0.386867 0.332377 0.290921 0.389993 0.287338 0.182194 0.232032 0.295152 0.289838 0.258588 0.200267 0.316385 0.309389 0.133515 0.190059 0.142976 0.220286 1 0.967752 0.875939 0.768255 0.846965 0.990337 0.950594 0.332436 0.320669 0.287714 0.271636 0.122488 0.108098 0.131811 0.03035 0.026209 0.047016 0.206607 0.164702 -0.14433 0.094508 -0.04882

-

0.094298

0.10

985 0.048237 0.10715 0.208546 0.117203 0.608823 0.140226 0.063588 0.235794 0.11188 0.496266 -0.00105 0.199884 0.007152 0.059775 0.063105 0.004204

0.087954 0.123625 0.044868 0.291998 0.282772 0.422931 0.330605 0.326552 0.298879 0.20412 0.20705 0.351017 0.30339 0.261373 0.355722 0.262017 0.162667 0.213347 0.267172 0.263419 0.235431 0.181695 0.298882 0.278226 0.117074 0.175986 0.123664 0.200913 0.967752 1 0.857885 0.741161 0.832856 0.967849 0.954066 0.32929 0.316085 0.280628 0.262161 0.111869 0.102811 0.125797 0.027004 0.021203 0.039986 0.17816 0.140147

-

0.133797 0.091858

-

0.048398

-

0.087938

0.11

0017 0.043633 0.10116 0.182938 0.095665 0.580267 0.131503 0.057548 0.229621 0.10035 0.491714

-

0.002796 0.181937

-

0.001309 0.058904 0.057709 0.004328

0.134176 0.162657 0.080802 0.367834 0.300909 0.511571 0.418609 0.370051 0.365055 0.248823 0.250308 0.419449 0.370251 0.300508 0.4077 0.339027 0.208937 0.254891 0.339802 0.340384 0.312718 0.214534 0.335724 0.344595 0.156547 0.205608 0.164479 0.251803 0.875939 0.857885 1 0.880922 0.971839 0.890224 0.85817 0.295394 0.280855 0.278784 0.26234 0.113042 0.105662 0.126882 0.045185 0.047338 0.066712 0.229801 0.186713

-

0.134437 0.087467

-

0.046066

-

0.087317

0.11

512 0.04975 0.120071 0.252303 0.144355 0.550773 0.145294 0.069927 0.267173 0.115939 0.372596

-

0.002024 0.232322 0.016842 0.062745 0.067487

-

0.000302

0.178781 0.201337 0.127614 0.386175 0.322865 0.568654 0.49702 0.407254 0.417446 0.290094 0.291644 0.473042 0.42425 0.332412 0.450029 0.397007 0.262581 0.288668 0.395333 0.398548 0.36824 0.23866 0.35539 0.40972 0.205018 0.24024 0.190995 0.299471 0.768255 0.741161 0.880922 1 0.902884 0.790539 0.739739 0.279023 0.257345 0.27397 0.250414 0.104274 0.099299 0.124858 0.068649 0.081623 0.10081 0.280252 0.232397

-

0.124977 0.080722

-

0.045665

-

0.072929

0.12

5448 0.055419 0.144288 0.307034 0.172694 0.468803 0.155329 0.08247 0.283292 0.119576 0.334145

-

0.002331 0.263563 0.03533 0.081521 0.072329

-

0.004403

0.115759 0.143312 0.080194 0.332559 0.267327 0.486147 0.38759 0.326568 0.324979 0.22895 0.229725 0.37739 0.33406 0.261518 0.365793 0.309495 0.192548 0.219155 0.304835 0.309686 0.28275 0.181816 0.300558 0.317341 0.14465 0.18417 0.14314 0.228398 0.846965 0.832856 0.971839 0.902884 1 0.860487 0.831967 0.278862 0.26801 0.261624 0.2488 0.098335 0.083291 0.11018 0.039735 0.04237 0.064105 0.227595 0.184055

-

0.132171 0.063814

-

0.033836

-

0.082741

0.10

2434 0.038165 0.111875 0.232689 0.116156 0.517161 0.134822 0.061384 0.242062 0.109612 0.342693

-

0.003531 0.217104 0.023402 0.072115 0.056011

-

0.004118

0.111043 0.15336 0.067752 0.326873 0.314216 0.471005 0.378575 0.372034 0.34402 0.231499 0.238934 0.402769 0.346298 0.301098 0.401636 0.305181 0.196788 0.246488 0.312594 0.307667 0.276241 0.209266 0.330469 0.327583 0.145301 0.200656 0.152334 0.233946 0.990337 0.967849 0.890224 0.790539 0.860487 1 0.955114 0.332838 0.319202 0.292371 0.274593 0.126017 0.112244 0.136107 0.03418 0.03252 0.054005 0.21613 0.17188

-

0.146044 0.098876 -0.05209

-

0.093979

0.11

5294 0.052422 0.112575 0.222746 0.127298 0.600218 0.142758 0.068819 0.248074 0.113088 0.493409 -0.00068 0.209544 0.0077 0.0615 0.066297 0.006146

0.099732 0.13845 0.055661 0.308209 0.312232 0.435254 0.338854 0.337861 0.3081 0.213214 0.218492 0.364054 0.314422 0.272976 0.366028 0.277008 0.175868 0.227231 0.282149 0.279053 0.249995 0.191672 0.319819 0.296044 0.127111 0.189728 0.138283 0.213896 0.950594 0.954066 0.85817 0.739739 0.831967 0.955114 1 0.331442 0.317063 0.285441 0.265905 0.117597 0.109664 0.132025 0.033471 0.032433 0.053383 0.195031 0.156098

-

0.138977 0.097023

-

0.053492

-

0.088985

0.11

2621 0.046154 0.106223 0.198181 0.113317 0.631681 0.132158 0.062012 0.234137 0.104916 0.551414

-

0.001654 0.189478

-

0.000209 0.059984 0.058546 0.005057

0.20112 0.222667 0.054588 0.178855 0.133216 0.287339 0.222114 0.248436 0.266685 0.342725 0.269256 0.282875 0.254137 0.253335 0.25944 0.306545 0.114602 0.184026 0.275169 0.310334 0.274646 0.240546 0.171754 0.185981 0.101652 0.253217 0.023323 0.294483 0.332436 0.32929 0.295394 0.279023 0.278862 0.332838 0.331442 1 0.876752 0.895453 0.754394

-

0.003518 0.082964 0.059681 0.021663 0.036438 0.059466 0.026602 0.02128 0.094172 0.189897

-

0.067247 0.043913

0.51

2198 0.039509 0.148995 0.134802 0.047665 0.205993 0.049447 0.059697 0.171894 0.002582 0.175785 0.014425 0.268211 0.188469 0.005298 0.077697

-

0.040348

0.063772 0.107955 0.018133 0.042277 0.006143 0.189126 0.119176 0.176439 0.165587 0.245404 0.171671 0.192194 0.16069 0.156225 0.17924 0.164925 0.045851 0.052011 0.139393 0.175783 0.141669 0.121293 0.055251 0.091892 0.027622 0.061456

-

0.054638 0.165626 0.320669 0.316085 0.280855 0.257345 0.26801 0.319202 0.317063 0.876752 1 0.748635 0.873198 0.083035 0.011315 0.035835 -0.06769 -0.0796 -0.04366

-

0.014979

-

0.012316

-

0.082785 0.061492 0.02332

-

0.073411

0.14

663 0.004628 0.006184 0.063046 0.003396 0.181199 0.059303

-

0.003798 0.079471 0.056514 0.148353 0.010405 0.242135 0.200202 0.030182 0.05787

-

0.052421

0.236856 0.271688 0.074542 0.241037 0.173989 0.346085 0.288369 0.240274 0.27232 0.400849 0.323798 0.288717 0.258889 0.230699 0.26288 0.394252 0.143074 0.254864 0.345253 0.39654 0.365259 0.238513 0.222013 0.228323 0.127672 0.302031 0.056214 0.351471 0.287714 0.280628 0.278784 0.27397 0.261624 0.292371 0.285441 0.895453 0.748635 1 0.850046 -0.00117 0.09398 0.061311 0.016227 0.04543 0.076209 0.041621 0.031537 0.079187 0.213373

-

0.081774 0.014622

0.57

5028 0.047632 0.197319 0.162592 0.068003 0.19145 0.069935 0.081804 0.228273 0.027911 0.17637 0.011388 0.344567 0.212856

-

0.017307 0.086973 -0.03365

0.088479 0.146925 0.034554 0.093323 0.034898 0.242922 0.180766 0.162826 0.163222 0.299916 0.220052 0.191485 0.158231 0.125657 0.176834 0.246466 0.068946 0.113363 0.20209 0.256519 0.227273 0.109057 0.09587 0.128175 0.047349 0.092311

-

0.029489 0.21408 0.271636 0.262161 0.26234 0.250414 0.2488 0.274593 0.265905 0.754394 0.873198 0.850046 1 0.096223 0.014201 0.033748

-

0.081972

-

0.083091

-

0.037074

-

0.004095

-

0.005877

-

0.116954 0.074252 0.017994

-

0.118565

0.17

6463 0.009972 0.043146 0.086102 0.020712 0.165049 0.082342 0.012974 0.130873 0.090872 0.148047 0.006757 0.324669 0.229754 0.007044 0.066174

-

0.046602

0.05571 0.141807 0.10965 0.079882 0.099893 0.145604 0.115205 0.147166 0.154549 0.060976 0.081386 0.155755 0.130766 0.119959 0.141454 0.126409 0.090318 0.11793 0.131427 0.140902 0.137052 0.085578 0.078907 0.147534 0.081824 0.044288 0.13628 0.093905 0.122488 0.111869 0.113042 0.104274 0.098335 0.126017 0.117597

-

0.003518 0.083035 -0.00117 0.096223 1 0.374453 0.671587 0.029737 0.036337 0.036431 0.092915 0.092416 -0.53168 0.338357 -0.13173

-

0.011457

-

0.15

3232 0.03514

-

0.022533 0.064609 0.115651 0.07988 0.102321 0.009767 0.117495 0.104769 0.063363 0.021457 0.120833

-

0.297509 0.442449 0.032374

-

0.074057

0.179252 0.399514 0.060304 0.301692 0.320433 0.228979 0.214775 0.214658 0.257314 0.072696 0.196444 0.24387 0.225275 0.220837 0.222215 0.237915 0.17743 0.262266 0.26382 0.239366 0.232898 0.216333 0.295016 0.260688 0.169044 0.23652 0.357459 0.221663 0.108098 0.102811 0.105662 0.099299 0.083291 0.112244 0.109664 0.082964 0.011315 0.09398 0.014201 0.374453 1 0.863864 0.086908 0.121318 0.105128 0.220073 0.209623

-

0.087139 0.498307

-

0.661524 0.402019

0.18

0348 0.081381 0.195865 0.136995 0.15299 0.114618 0.050698 0.10812 0.196007 -0.01173 0.132708 0.016353 0.075204

-

0.504142 0.272127 0.021537 0.019608

0.151015 0.338067 0.122781 0.242094 0.262522 0.218556 0.198888 0.204319 0.237976 0.071753 0.167618 0.22667 0.20677 0.199435 0.207668 0.216586 0.161644 0.22905 0.233763 0.221832 0.214864 0.184426 0.231767 0.242926 0.154303 0.19381 0.299207 0.192828 0.131811 0.125797 0.126882 0.124858 0.11018 0.136107 0.132025 0.059681 0.035835 0.061311 0.033748 0.671587 0.863864 1 0.078056 0.10755 0.095768 0.207787 0.205953

-

0.312689 0.442813

-

0.539999 0.314822

0.06

1198 0.0663 0.122603 0.118336 0.146929 0.113993 0.067267 0.077491 0.193059 0.000821 0.11907 0.017423 0.099306

-

0.520528 0.604545 0.022203

-

0.033491

0.380027 0.390376 0.366702 0.197926 0.368506 0.234697 0.179382 0.149068 0.201284 0.370101 0.43252 0.202728 0.189112 0.258086 0.156062 0.290968 0.190512 0.230573 0.29203 0.293914 0.28259 0.282675 0.256917 0.282927 0.177956 0.432069 0.308653 0.449503 0.03035 0.027004 0.045185 0.068649 0.039735 0.03418 0.033471 0.021663 -0.06769 0.016227

-

0.081972 0.029737 0.086908 0.078056 1 0.831188 0.706263 0.222655 0.206185 0.061406 0.114176

-

0.077606 0.049742

0.19

8407 0.075191 0.184293 0.194633 0.177464 0.027361 0.035791 0.081646 0.079403 0.01612 0.026007 0.009296

-

0.070295 0.059852 0.030603 0.021702 0.002029

0.443024 0.480079 0.428712 0.254297 0.441543 0.286016 0.226657 0.188632 0.251339 0.402035 0.474287 0.250643 0.235953 0.294581 0.19575 0.361566 0.243828 0.28559 0.361396 0.366026 0.356275 0.334603 0.314299 0.352828 0.225959 0.511295 0.370965 0.511129 0.026209 0.021203 0.047338 0.081623 0.04237 0.03252 0.032433 0.036438 -0.0796 0.04543

-

0.083091 0.036337 0.121318 0.10755 0.831188 1 0.736631 0.272112 0.249512 0.08158 0.155612 -0.10663 0.072811

0.25

7181 0.104753 0.251496 0.234096 0.211306 0.02954 0.048473 0.115569 0.110537 0.017216 0.034255 0.018736 -0.04568 0.064711 0.037518 0.03517 0.003329

0.396854 0.413479 0.383972 0.205751 0.381409 0.282618 0.230953 0.183034 0.237999 0.352274 0.407729 0.235277 0.225467 0.274937 0.187193 0.34375 0.210871 0.287063 0.344143 0.343626 0.332887 0.311984 0.270282 0.306683 0.193989 0.448056 0.318122 0.445497 0.047016 0.039986 0.066712 0.10081 0.064105 0.054005 0.053383 0.059466 -0.04366 0.076209

-

0.037074 0.036431 0.105128 0.095768 0.706263 0.736631 1 0.234233 0.217943 0.064887 0.127351

-

0.097443 0.060035

0.22

8705 0.073321 0.215061 0.194478 0.187708 0.036722 0.039387 0.105832 0.097716 0.013564 0.033234 0.005594

-

0.027988 0.058835 0.038766 0.01922 0.008327

0.260435 0.480247 0.380904 0.353117 0.494732 0.399487 0.394147 0.32077 0.331008 0.198173 0.34241 0.383036 0.362035 0.338428 0.333804 0.373001 0.326942 0.364402 0.39801 0.379096 0.372719 0.322312 0.404706 0.461459 0.251024 0.451331 0.483445 0.35532 0.206607 0.17816 0.229801 0.280252 0.227595 0.21613 0.195031 0.026602

-

0.014979 0.041621

-

0.004095 0.092915 0.220073 0.207787 0.222655 0.272112 0.234233 1 0.846385

-

0.068431 0.186442

-

0.168207 0.043905

0.11

7932 0.140935 0.276825 0.291866 0.224865 0.147926 0.095827 0.133855 0.175462

-

0.000548 0.141012 0.025871 0.113926

-

0.042637 0.086874 0.030111 0.019046

0.263507 0.444972 0.350276 0.287311 0.418458 0.351347 0.345307 0.287896 0.292527 0.20751 0.32393 0.339246 0.314914 0.312332 0.295095 0.348351 0.276372 0.313643 0.364749 0.354837 0.345873 0.301292 0.336424 0.401013 0.2113 0.411865 0.390244 0.348408 0.164702 0.140147 0.186713 0.232397 0.184055 0.17188 0.156098 0.02128

-

0.012316 0.031537

-

0.005877 0.092416 0.209623 0.205953 0.206185 0.249512 0.217943 0.846385 1

-

0.069575 0.167711

-

0.157493 0.047453

0.10

3542 0.114622 0.243772 0.264437 0.195541 0.112377 0.093953 0.109199 0.157872

-

0.008416 0.107932 0.026635 0.104346

-

0.010323 0.105521 0.027249 0.002265

0.188744 0.093234

-

0.022365 0.001217 0.031314 -0.08971

-

0.046991

-

0.064847

-

0.019453 0.075828 0.068433

-

0.052604

-

0.046161

-

0.011141

-

0.059499

-

0.008078 -0.00997

-

0.009423

-

0.012007

-

0.021093

-

0.026306 0.024496 0.039412

-

0.026315 0.021776 0.086616 0.025225 0.112933 -0.14433

-

0.133797

-

0.134437

-

0.124977

-

0.132171

-

0.146044

-

0.138977 0.094172

-

0.082785 0.079187

-

0.116954 -0.53168

-

0.087139

-

0.312689 0.061406 0.08158 0.064887

-

0.068431

-

0.069575 1 0.230111

-

0.054301 0.328905

0.31

3553 0.001996 0.139317

-

0.004002

-

0.048699

-

0.071582

-

0.153535 0.053047

-

0.065876

-

0.202095

-

0.057931

-

0.005556

-

0.129422 0.116296

-

0.317918

-

0.028932 0.09368

0.270929 0.455845 0.033665 0.310579 0.328573 0.243726 0.228734 0.21673 0.267261 0.19854 0.298266 0.259611 0.23314 0.241728 0.227238 0.290972 0.187813 0.277172 0.308542 0.291579 0.279479 0.243828 0.313301 0.278757 0.182101 0.318989 0.326256 0.334481 0.094508 0.091858 0.087467 0.080722 0.063814 0.098876 0.097023 0.189897 0.061492 0.213373 0.074252 0.338357 0.498307 0.442813 0.114176 0.155612 0.127351 0.186442 0.167711 0.230111 1

-

0.307067 0.260796

0.32

9126 0.092239 0.256964 0.156585 0.14906 0.106166 0.047231 0.136893 0.173369

-

0.041539 0.126332 0.024603 0.086198

-

0.301225 0.030418 0.035776 0.050699

-

0.144517

-

0.283006

-

0.090141

-

0.191773 -0.20781

-

0.149793

-

0.140079

-

0.136374

-

0.161083

-

0.055986

-

0.135218

-

0.151451

-

0.143239

-

0.145348

-

0.141106

-

0.173215

-

0.111476 -0.18289

-

0.185718

-

0.172845 -0.16579

-

0.160218

-

0.178685

-

0.172814

-

0.107106

-

0.194462

-

0.257043

-

0.161735 -0.04882

-

0.048398

-

0.046066

-

0.045665

-

0.033836 -0.05209

-

0.053492

-

0.067247 0.02332

-

0.081774 0.017994 -0.13173

-

0.661524

-

0.539999

-

0.077606 -0.10663

-

0.097443

-

0.168207

-

0.157493

-

0.054301

-

0.307067 1

-

0.300081

-

0.18

6059 -0.046602

-

0.157117

-

0.091479

-

0.085357

-

0.057591

-

0.018888

-

0.066592

-

0.125919 0.052281 -0.086

-

0.006686

-

0.048151 0.405208

-

0.070832

-

0.009835

-

0.013196

0.111526 0.183006 0.037366

-

0.021739 0.053735

-

0.019979

-

0.017883

-

0.022375

-

0.021638 -6.61E-05 0.064245 -0.01798

-

0.012398 0.014028

-

0.018219 0.034185 0.01898 5.42E-05 0.040988 0.025066 0.015528 0.044832 0.047628 0.008398 0.023476 0.144917 0.047277 0.085882

-

0.094298

-

0.087938

-

0.087317

-

0.072929

-

0.082741

-

0.093979

-

0.088985 0.043913

-

0.073411 0.014622

-

0.118565

-

0.011457 0.402019 0.314822 0.049742 0.072811 0.060035 0.043905 0.047453 0.328905 0.260796

-

0.300081 1

0.20

6412 0.014202 0.08945

-

0.008016

-

0.057903

-

0.065764

-

0.133056 0.025608

-

0.033266

-

0.169449

-

0.050394

-

0.007494

-

0.054853

-

0.218589 0.107473 -0.01902 0.010263

0.356758 0.408277 0.147085 0.360159 0.319471 0.303168 0.273087 0.212728 0.286031 0.359924 0.366712 0.270767 0.264806 0.263201 0.238115 0.390204 0.178648 0.329434 0.371771 0.387093 0.370428 0.311436 0.311011 0.26551 0.185047 0.455261 0.198267 0.415923 0.10985 0.110017 0.11512 0.125448 0.102434 0.115294 0.112621 0.512198 0.14663 0.575028 0.176463

-

0.153232 0.180348 0.061198 0.198407 0.257181 0.228705 0.117932 0.103542 0.313553 0.329126

-

0.186059 0.206412 1 0.088845 0.361222 0.192006 0.123388 0.107597 0.000408 0.166326 0.237819

-

0.058301 0.106304 0.020205 0.174897 0.112829

-

0.081367 0.065747 0.004828

0.115582 0.176271 0.121848 0.196445 0.219539 0.201986 0.166599 0.164707 0.2018 0.104043 0.153915 0.203696 0.213404 0.205985 0.165004 0.199817 0.149501 0.223775 0.226553 0.204827 0.223651 0.221603 0.213319 0.205354 0.128115 0.16644 0.185238 0.153781 0.048237 0.043633 0.04975 0.055419 0.038165 0.052422 0.046154 0.039509 0.004628 0.047632 0.009972 0.03514 0.081381 0.0663 0.075191 0.104753 0.073321 0.140935 0.114622 0.001996 0.092239

-

0.046602 0.014202

0.08

8845 1 0.175522 0.159419 0.18092 0.041867 0.062157 0.130491 0.127818 0.009778 0.058125 0.179306 0.083264

-

0.015489 -0.0049 0.633175

-

0.003529

0.308107 0.442024 0.276137 0.42693 0.459379 0.354067 0.355358 0.250465 0.36551 0.254827 0.344651 0.339388 0.344503 0.330425 0.277162 0.426413 0.285458 0.414192 0.438498 0.420763 0.419455 0.388394 0.415132 0.408383 0.27816 0.382915 0.424388 0.379254 0.10715 0.10116 0.120071 0.144288 0.111875 0.112575 0.106223 0.148995 0.006184 0.197319 0.043146

-

0.022533 0.195865 0.122603 0.184293 0.251496 0.215061 0.276825 0.243772 0.139317 0.256964

-

0.157117 0.08945

0.36

1222 0.175522 1 0.276748 0.243508 0.097815 0.067732 0.290449 0.222486 0.002981 0.108729 0.034297 0.142549

-

0.009178

-

0.039218 0.067441 0.01843

0.317141 0.331592 0.212354 0.430972 0.406844 0.470567 0.467116 0.434214 0.485113 0.327198 0.348421 0.51811 0.480365 0.467228 0.458833 0.481717 0.454712 0.446095 0.505637 0.498249 0.487102 0.379841 0.41206 0.574026 0.394726 0.331863 0.322055 0.389093 0.208546 0.182938 0.252303 0.307034 0.232689 0.222746 0.198181 0.134802 0.063046 0.162592 0.086102 0.064609 0.136995 0.118336 0.194633 0.234096 0.194478 0.291866 0.264437

-

0.004002 0.156585

-

0.091479

-

0.008016

0.19

2006 0.159419 0.276748 1 0.391769 0.161942 0.145234 0.162468 0.292291 0.081581 0.16008 0.023535 0.267278 0.039499 0.015129 0.135508 0.011762

0.324604 0.340239 0.217153 0.483308 0.409779 0.400459 0.320001 0.422352 0.564453 0.281409 0.306331 0.504488 0.489311 0.449331 0.430118 0.376588 0.381922 0.496295 0.435112 0.427269 0.432737 0.387276 0.420557 0.519257 0.379294 0.213996 0.391261 0.358023 0.117203 0.095665 0.144355 0.172694 0.116156 0.127298 0.113317 0.047665 0.003396 0.068003 0.020712 0.115651 0.15299 0.146929 0.177464 0.211306 0.187708 0.224865 0.195541

-

0.048699 0.14906

-

0.085357

-

0.057903

0.12

3388 0.18092 0.243508 0.391769 1 0.125569 0.171085 0.189293 0.320687 0.128696 0.123209 0.049246 0.229627 0.025023 0.026187 0.109156 0.014767

0.07378 0.12058 0.030809 0.319773 0.284671 0.291183 0.256241 0.258986 0.281832 0.133737 0.156358 0.280472 0.241207 0.219603 0.276959 0.191483 0.147415 0.188418 0.208726 0.192639 0.172125 0.148708 0.294056 0.232647 0.135087 0.116529 0.158712 0.149961 0.608823 0.580267 0.550773 0.468803 0.517161 0.600218 0.631681 0.205993 0.181199 0.19145 0.165049 0.07988 0.114618 0.113993 0.027361 0.02954 0.036722 0.147926 0.112377

-

0.071582 0.106166

-

0.057591

-

0.065764

0.10

7597 0.041867 0.097815 0.161942 0.125569 1 0.100134 0.090447 0.211845 0.095872 0.604539 0.004008 0.112014

-

0.027781 0.027984 0.034225 0.015132

0.079798 0.091862 0.06067 0.19263 0.141408 0.19683 0.201362 0.228606 0.252025 0.125907 0.125435 0.246546 0.216129 0.210292 0.224899 0.199243 0.201847 0.177722 0.213859 0.20431 0.198319 0.140329 0.146576 0.283376 0.205822 0.071345 0.14104 0.135128 0.140226 0.131503 0.145294 0.155329 0.134822 0.142758 0.132158 0.049447 0.059303 0.069935 0.082342 0.102321 0.050698 0.067267 0.035791 0.048473 0.039387 0.095827 0.093953

-

0.153535 0.047231

-

0.018888

-

0.133056

0.00

0408 0.062157 0.067732 0.145234 0.171085 0.100134 1 0.055068 0.164186 0.173029 0.103779 0.008056 0.145994 0.004138 0.017558 0.081351 0.00387

0.171665 0.227835 0.130115 0.271142 0.250305 0.183404 0.192168 0.153138 0.225061 0.119426 0.161662 0.198351 0.195819 0.184897 0.167721 0.212857 0.183917 0.226119 0.220387 0.210555 0.214708 0.205646 0.241311 0.233104 0.186893 0.162918 0.282444 0.186646 0.063588 0.057548 0.069927 0.08247 0.061384 0.068819 0.062012 0.059697

-

0.003798 0.081804 0.012974 0.009767 0.10812 0.077491 0.081646 0.115569 0.105832 0.133855 0.109199 0.053047 0.136893

-

0.066592 0.025608

0.16

6326 0.130491 0.290449 0.162468 0.189293 0.090447 0.055068 1 0.168832 0.031284 0.08094 0.012036 0.06621

-

0.019459

-

0.015597 0.023211 0.005588

0.276691 0.205482 0.064924 0.573588 0.378986 0.420098 0.448065 0.376813 0.471813 0.257356 0.219035 0.431257 0.418677 0.340445 0.398755 0.401448 0.27038 0.458672 0.399685 0.403285 0.402647 0.295244 0.413752 0.387303 0.280729 0.217252 0.259601 0.281204 0.235794 0.229621 0.267173 0.283292 0.242062 0.248074 0.234137 0.171894 0.079471 0.228273 0.130873 0.117495 0.196007 0.193059 0.079403 0.110537 0.097716 0.175462 0.157872

-

0.065876 0.173369

-

0.125919

-

0.033266

0.23

7819 0.127818 0.222486 0.292291 0.320687 0.211845 0.164186 0.168832 1 0.08016 0.200422 0.011096 0.256694

-

0.052187 0.058788 0.122797 0.012594

0.005865 0.027385 0.017519 0.106615 0.059264 0.137807 0.106785 0.116648 0.142392 0.095572 0.102366 0.137753 0.115257 0.092853 0.122248 0.107701 0.063214 0.080334 0.108784 0.120654 0.116169 0.057738 0.080359 0.130518 0.05062

-

0.024651 0.074595 0.078696 0.11188 0.10035 0.115939 0.119576 0.109612 0.113088 0.104916 0.002582 0.056514 0.027911 0.090872 0.104769 -0.01173 0.000821 0.01612 0.017216 0.013564

-

0.000548

-

0.008416

-

0.202095

-

0.041539 0.052281

-

0.169449

-

0.05

8301 0.009778 0.002981 0.081581 0.128696 0.095872 0.173029 0.031284 0.08016 1 0.074373 0.003038 0.123817 0.043145

-

0.046819 0.02675 0.022

0.072007 0.127504 0.017711 0.306625 0.351092 0.237486 0.224658 0.242521 0.263154 0.116984 0.144625 0.259682 0.229348 0.208697 0.260822 0.179222 0.152479 0.197308 0.197391 0.177789 0.161716 0.142811 0.329308 0.225036 0.139194 0.112839 0.1753 0.140658 0.496266 0.491714 0.372596 0.334145 0.342693 0.493409 0.551414 0.175785 0.148353 0.17637 0.148047 0.063363 0.132708 0.11907 0.026007 0.034255 0.033234 0.141012 0.107932

-

0.057931 0.126332 -0.086

-

0.050394

0.10

6304 0.058125 0.108729 0.16008 0.123209 0.604539 0.103779 0.08094 0.200422 0.074373 1 0.000437 0.101861

-

0.058609 0.017004 0.045329 0.014131

0.059558 0.051284 0.032944 0.016464 0.0365 0.020612 0.008205 0.025975 0.062328 0.0436 0.034317 0.034146 0.065854 0.033553 0.025652 0.020594 0.021378 0.020467 0.026194 0.033545 0.095702 0.068858 0.027013 0.037482 0.019529 0.037667 0.032678 0.053012 -0.00105

-

0.002796

-

0.002024

-

0.002331

-

0.003531 -0.00068

-

0.001654 0.014425 0.010405 0.011388 0.006757 0.021457 0.016353 0.017423 0.009296 0.018736 0.005594 0.025871 0.026635

-

0.005556 0.024603

-

0.006686

-

0.007494

0.02

0205 0.179306 0.034297 0.023535 0.049246 0.004008 0.008056 0.012036 0.011096 0.003038 0.000437 1 0.018977 0.021305 0.003076 0.226873 0.001372

0.123883 0.155586 0.059008 0.262221 0.153118 0.495775 0.365252 0.316551 0.349968 0.295407 0.272636 0.398211 0.3648 0.287892 0.340341 0.549897 0.232213 0.318173 0.517759 0.605462 0.57017 0.317571 0.212457 0.350571 0.189491 0.224178 0.072117 0.269735 0.199884 0.181937 0.232322 0.263563 0.217104 0.209544 0.189478 0.268211 0.242135 0.344567 0.324669 0.120833 0.075204 0.099306

-

0.070295 -0.04568

-

0.027988 0.113926 0.104346

-

0.129422 0.086198

-

0.048151

-

0.054853
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Figure 6.6 Klipfolio’s metric correlations, ordered to show the relationships of high correlation
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Figure 6.7 shows the correlation matrix from Klipfolio’s case study with the metrics
organized alphabetically. These are the same metrics as in figure 6.6; only the order is
different. The organized matrix in figure 6.6 shows much more structure than the
alphabetized matrix in figure 6.7. But something like figure 6.7 is what you are more
likely to see the first time you look at your correlations in a heatmap (listing 6.2).
Alphabetic ordering of the metrics reveals a structure where metrics that start with the
same word are usually related. Still, there are many exceptions, so the related groups
are not as evident as in figure 6.6.

6.1.5 Calculating correlation matrices in Python

Listing 6.2 is a short Python program to create correlation matrices like those shown
in figures 6.6 and 6.7. The result of running listing 6.2 on the simulated dataset is
illustrated in figure 6.8. The program assumes that a dataset was created and saved
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If the metrics are ordered
alphabetically rather than
arranged into correlated
groups, the correlation will
have some structure but not
much; correlations appear
to be mostly random.

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.7 Klipfolio’s correlation matrix showing alphabetically arranged metrics 



229Correlation between behaviors
using the code in chapter 4. Recall that this dataset is a table with one observation of a
customer on each row, and one metric in each column. Most of listing 6.1 handles the
details of loading a dataset and saving the result. The formatting was done in a free
spreadsheet, as described later.

In listing 6.2, the correlation matrix is calculated with a call to the Pandas Data-
frame.corr function. Note that listing 6.2 does not attempt to create a heatmap
image like the examples in figures 6.6 and 6.7; the function stops after saving the cor-
relation matrix data in a comma-separated (.csv) file. The reason for this is that it’s
not practical to make a heatmap for a large number of metrics in Python. If there are
more than 15 to 20 metrics, either the heatmap image must be enormous, or the met-
ric names and correlation values are too small to read (see figures 6.6 and 6.7 for
examples).

TIP It’s not practical to explore large correlation heatmaps in static images.
You should definitely inspect the correlation heatmap closely, but it is usually
easier to view it in a spreadsheet application. Fix the metric name row and col-
umn to make the matrix scrollable, and use conditional formatting to add the
heatmap colors. For presentations, you can export various formatted versions.

import pandas as pd
import os

def dataset_correlation_matrix(data_set_path):

   assert os.path.isfile(data_set_path),
      '"{}" is not a valid path'.format(data_set_path)    
   churn_data = 
      pd.read_csv(data_set_path,index_col=[0,1])        

Listing 6.2 Calculating the correlation matrix for a dataset in Python 

account
_tenure

adview_
per_

month

dislike_
per_

month

is_churn
like_
per_

month

message
_per_
month

newfriend
_per_
month

post
_per_
month

reply
_per_
month

unfriend
_per_
month

account_tenure 0.05 0.06 0.00 0.06 0.05 0.09 0.06 0.04 0.06

adview_per_month 0.05 0.34 −0.03 0.56 0.06 0.56 0.56 0.05 0.02

dislike_per_month 0.06 0.34 −0.03 0.37 0.08 0.37 0.34 0.05 0.01

is_churn 0.00 −0.03 −0.03 −0.04 −0.06 −0.08 −0.05 −0.05 0.04

like_per_month 0.06 0.56 0.37 −0.04 0.06 0.57 0.59 0.04 0.01

message_per_month 0.05 0.06 0.08 −0.06 0.06 0.07 0.04 0.93 0.01

newfriend_per_month 0.09 0.56 0.37 −0.08 0.57 0.07 0.57 0.04 0.02

post_per_month 0.06 0.56 0.34 −0.05 0.59 0.04 0.57 0.03 0.02

reply_per_month 0.04 0.05 0.05 −0.05 0.04 0.93 0.04 0.03 0.00

unfriend_per_month 0.06 0.02 0.01 0.04 0.01 0.01 0.02 0.02 0.00

The grayscale
heatmap was
applied in a
spreadsheet
application.

Metrics are
alphabetized.

Figure 6.8 Result of running listing 6.2 on the simulated dataset 

Checks the path

Loads the dataset 
into a DataFrame 
and sets the index 
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alp
   churn_data = 
      churn_data.reindex(sorted(churn_data.columns), axis=1)     

   corr_df = churn_data.corr()                              
   save_name = data_set_path.replace('.csv', '_correlation_matrix.csv') 
   corr_df.to_csv(save_name)     
   print('Saved correlation matrix to' + save_name)

You should run listing 6.2 and confirm that it gives you a similar result on your own
dataset. If you are using the wrapper program to run the listings, by now you know
that means changing the command-line parameters to --chapter 6 --listing 2. The
program saves the data in a .csv file (the location of which will be printed by the wrap-
per program). 

6.2 Averaging groups of behavioral metrics
Suppose that you have 5 or 10 customer behaviors where the metrics are moderately
to highly correlated. What do you do? A foundational technique for handling highly
correlated metrics is to average the scores of the correlated metrics together.

6.2.1 Why you average correlated metric scores

Handling multiple correlated metrics individually in churn analysis and customer seg-
mentation is problematic for two interrelated reasons: 

 The churn relationships you observe in two different cohort analyses are not
integrated in the sense that there is no way to understand how customers in dif-
ferent cohorts on different metrics relate to each other. What does it mean if a
particular customer is in the third cohort on one metric and the sixth cohort on
another in two related activities? Averaging them together is a way to handle
this, as will be explained.

 An information overload comes from looking at too many metrics. Remember
that behavioral metrics usually do not measure something that is directly causal
of churn or retention. It is more common that your behavioral metrics are only
associated with churn. Given a large number of metrics associated with churn
(but not causal), there is no way to know which metrics and events are most
important.

After the correlated metric scores are averaged together, they are often easier to use
in a churn cohort analysis for customer segmentation. As explained in the last chap-
ter, averaging together many customers to form the cohorts shows the influence of a
metric on churn by averaging away the individual circumstances that shape behav-
ior. In the same way, averaging together groups of metrics further reduces random
variation and makes the underlying relationship between churn and a set of behav-
iors clearer.

Sorts the
columns

habetically

Calculates the correlation matrix
with the Dataframe.corr function

Saves the correlation 
matrix in .csv format
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 What does it mean to average different metric scores together? Remember that dif-
ferent metrics usually mean completely different things, like logging in and editing a
document or viewing a video and liking it. Does it even make sense to average logins
and edits? Because there are probably going to be a lot more edits than logins, it
would be unbalanced. And does it make sense to average views and likes of content?
There are going to be a lot more views than likes, so it’s not clear such an average is
meaningful. The problem is worse if different metrics have units like monetary values
or time. Considering the telecommunications context, what would an average of total
call duration and overage charges mean? Actually, this is no problem at all; this is
another advantage of having converted the metrics to scores. 

TAKEAWAY Because each metric score measures the position of the customer
with respect to the average, it is okay to average together scores of different
types of metrics. 

It does not make sense to average together different types of metrics when those met-
rics refer to different things if you are using the original units. But it is okay with
scores: the average score describes the overall area of activity that those different met-
rics relate to. If someone is above average in both logins and edits with an SaaS prod-
uct, it’s fair to call them an above-average user overall. If someone is below average in
views and likes on a streaming video product, it makes sense to consider them a below-
average user overall. And if someone is below average in calls and above average in
overage charges on a telecommunications product, if you average the scores, they are
just an average user.  

 In fact, an average score on a group of metrics is often more useful than the sepa-
rate scores. That’s because different metrics provide different ways of looking at the
same area of activity that can substitute for each other. If a customer does not use a
particular product feature but instead uses a related one, the average picks it up
either way. You would miss the activity for some customers if you relied on a single
metric. If a customer is high on one metric and low on another, in one churn cohort
they would be in a low-risk cohort, and in the other they would be in a high-risk
cohort. By averaging the two together, you get a better picture of the overall activity.

6.2.2 Averaging scores with a matrix of weights (loading matrix)

Averaging together groups of correlated metric scores is a straightforward concept, but
the implementation is a bit tricky because you may be doing this for a lot of metrics and
observations. You are going to use a technique where you encode the groups in a matrix
of weights to keep track of which metrics are in which groups and the weights needed to
form the averages. Recall that a matrix is just a table where all the entries are numbers.
A weight in this context means the multiplicative factor, 1/n, is needed to turn a sum into
an average. This matrix of weights is known as a loading matrix.

DEFINITION A loading matrix is a table of weights to apply to metrics in order
to form averages.
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The loading matrix not only keeps track of the metrics in each group but also pro-
vides an efficient implementation of the averaging computation (more in the next
section). I’m going to walk you through an example with just a small number of met-
rics. The technique might seem overly complex for a toy problem like the example,
but it scales well to dozens or even hundreds of metrics and large datasets.

 Figure 6.9 demonstrates the averaging technique for a small dataset with 10 obser-
vations and 6 metrics, continuing the example from figure 6.5. Here is how it works:

1 The metrics for login, read, and reply events are averaged into one group
because they are highly correlated. The metrics for send and write are averaged
into another group, and the metric for like is left alone. These decisions are
driven by an inspection of the small correlation matrix. (Later in this chapter,

Group 1 Group 2

1. Original scored metrics

5. Group averages of scored metrics

3. Averaging weights

2. Each metric score is multiplied by
corresponding averaging weights
for the various groups.

4. The results are summed
to form averages of the
metrics within each group.

Account
Login
score

Read
score

Reply
score

Send
score

Write
score

Like
score

1 0.4 0.8 1.0 −1.6 1.4 0.0

2 1.4 0.2 −0.2 1.1 0.0 −0.3

3 −1.7 −1.4 −1.3 1.5 1.3 1.2

4 −0.3 0.5 0.9 1.1 1.7 0.2

5 −1.2 −1.4 −1.6 −0.8 −0.7 −0.4

6 −0.5 −0.5 −0.7 −0.4 −0.4 1.7

7 0.0 −0.7 −0.2 −0.8 1.0 −1.3

8 1.2 1.6 1.5 −0.3 −0.4 0.3

9 −0.1 −0.2 0.5 −0.1 −0.3 −0.6

10 0.9 1.0 0.1 0.2 −0.9 1.6

Weight
Read
weight

Reply
weight

Send
weight

Write
weight

Like
weight

Group 1 0.33 0.33 0.33 0.0 0.0 0.0

Group 2 0.0 0.0 0.0 0.5 0.5 0.0

Group 3 0.0 0.0 0.0 0.0 0.0 1.0

Account

Group 1:
Login, read, and

reply score

Group 2:
Write and
send score

“Group” 3:
Like score

1 0.7 −1.5 0.0

2 0.5 0.6 −0.3

3 −1.5 1.4 −1.2

4 0.3 1.4 0.2

5 −1.4 −0.8 −0.4

6 −0.6 −0.4 1.7

7 −0.3 0.1 −1.3

8 1.4 −0.3 0.3

9 0.1 −0.2 −0.6

10 0.7 −0.3 1.6

= 0.33 × 0.4 + 0.33 × 0.8 + 0.33 × 1.0 + 0 + 0 + 0
= 0.7

= 0 + 0 + 0 + 0.5 × 1.1 + 0.5 × 0.0
= 0.6

= 0 + 0 + 0 + 0 + 0 + 1.0 × 0.2
= 0.2

Group 1 Avg=
Wlog × Login + Wread × Read + Wrep × Reply

Figure 6.9 The process of grouping related metrics into averages using a matrix of weights
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you will learn how to automatically discover groups in datasets with large num-
bers of metrics.)

2 A loading matrix is defined with a shape that is the number of metrics by the
number of groups (three by five, for the example). Also in the example, the
weight matrix is shown with the groups arranged on the rows and the metrics in
the columns; in practice, it is usually stored the other way (metrics in the rows
and groups in the columns), but see the next section for details.

3 Each row for a group contains weights to form an average from the appropriate
metrics and zeros for the others. The weight to form an average is one divided
by the number of metrics in the group:
– For the row corresponding to group 1, there are weights of 1/3 (0.33) in

each of the three columns for login, read, and reply, and zeros in the others.
To form group 1, the weight of 0.33 is applied to the scores for login, read,
and reply events. For the other metrics, zeros are shown in their place, indi-
cating these are not used in group 1. 

– For the row corresponding to group 2, there are weights of 1/2 (0.5) in each
of the two columns for write and send, and zeros in the other.

– For the row corresponding to group 3, the likes, there is a 1 in the weight col-
umn for it.

4 To calculate the group averages, the metrics for each account are multiplied by
the weights for each group, and then the results are added together.

5 The resulting sums are the averages for each group.

6.2.3 Case study for loading matrices

Figure 6.10 shows the loading matrix created for the simulated social network data.
Two groups are created: 

 A metric group for ad views, likes, and posts: the three most common metrics
 A metric group for messages and replies

If you look at the correlation matrix in figure 6.8, you can easily convince yourself
that the metrics in these groups are highly correlated to each other and to the oth-
ers, less so. (The formal method for discovering groups automatically is coming later
in the chapter.)

 At this point, I must call your attention to one feature of figure 6.10 that you are
not expecting: the weights groups in the real loading matrices are a bit higher than
1/N, where N is the number of metrics in the group.

 The loading matrix still forms an average from the correlated scores, but the weights
are boosted slightly above 1/N. I did not mention this detail earlier because the mean-
ing is the same, and the concept is clearer when explained with 1/N weights. For three
metric groups, the weights are 0.41 instead of 0.33; and for two metric groups, the
weights are 0.62 instead of 0.5. The detail of the reasoning is explained in section 6.3.3
(it has to do with adjusting the standard deviation of the combined score).
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Figure 6.11 shows the real loading matrix created in Klipfolio’s case study. Now the
matrix is shown with the metrics on the rows and the groups in the columns; this is the
transposition of the view in figure 6.9. (Figure 6.9 shows the loading matrix trans-
posed so the weights would visually align with the columns of data for illustrative pur-
poses.) The reason for arranging the metrics in the rows and the groups in the
columns is clear from figure 6.11: there are typically many more metrics than groups,
so it’s much easier to read this way. Arranging the metrics along the rows is also the
correct orientation for implementation of the averaging calculation, which the next
section shows.

 In the figure, you can see that the average weights are also not exactly 1/N : the
first group of metrics consists of 28 metrics, so each metric is assigned a weight of
0.041, but 1/28 = 0.0357. There are five other groups consisting of fewer than 10 met-
rics each, which all receive weighted entries in the matrix that are a bit above 1/N.
There are also a few dozen other metrics that were not highly correlated enough to be
grouped; these are only partially shown in figure 6.11.

6.2.4 Applying a loading matrix in Python

Listing 6.3 shows the code that applies a loading matrix to a dataset to calculate the aver-
age scores. Most of this listing is the usual reading of the dataset and saving the results,
and this time also reading in a loading matrix (created by listing 6.4). The heart of the
listing is the following single line:

grouped_ndarray = np.matmul(ndarray_2group, load_mat_ndarray)

Less-correlated
metrics

Main group of
correlated metrics

Secondary
group

Metric

metric_

group_1

metric_

group_2

account_

tenure

dislike_

per_month

newfriend_

per_month

unfriend_

per_month

adview_per_month 0.413 0 0 0 0 0

like_per_month 0.413 0 0 0 0 0

post_per_month 0.413 0 0 0 0 0

message_per_month 0 0.620 0 0 0 0

reply_per_month 0 0.620 0 0 0 0

account_tenure 0 0 1.0 0 0 0

dislike_per_month 0 0 0 1.0 0 0

newfriend_per_month 0 0 0 0 1.0 0

unfriend_per_month 0 0 0 0 0 1.0

There are three metrics
in the first group, and the
weights are 0.4 .1

There are two metrics in
the second group, and the
weights are 0.62.

Metrics are shown on the rows, and groups are shown on
the columns. A nonzero entry indicates group membership.

Four metrics are
not grouped.

Figure 6.10 Loading matrix for the simulation case study
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That line performs a matrix multiplication of the data by the loading matrix, which
does the averaging calculation described in the last section. 

DEFINITION Matrix multiplication is an operation on two matrices that creates a
result matrix. Each element in the first row of the result matrix is given by
multiplying the first row of the first matrix by each column of the second
matrix and then adding the results for each column; the second row of the
result matrix is given by doing the same with the second row of the first
matrix and all of the columns of the second matrix in turn, and so on.

1. Dashboard view
and edit metrics

5. Orient and
refresh metrics

4. API calls and
dashboard metrics

3. Data source metrics

2. Template gallery
metrics

6. Tour metrics

G1 G2 G3 G4 G5 G6 M48 M49 M50

Metric 1 0.041 0 0 0 0 0 0 0 0
Metric 2 0.041 0 0 0 0 0 0 0 0
Metric 3 0.041 0 0 0 0 0 0 0 0
Metric 4 0.041 0 0 0 0 0 0 0 0
Metric 5 0.041 0 0 0 0 0 0 0 0
Metric 6 0.041 0 0 0 0 0 0 0 0
Metric 7 0.041 0 0 0 0 0 0 0 0
Metric 8 0.041 0 0 0 0 0 0 0 0
Metric 9 0.041 0 0 0 0 0 0 0 0
Metric 10 0.041 0 0 0 0 0 0 0 0
Metric 11 0.041 0 0 0 0 0 0 0 0
Metric 12 0.041 0 0 0 0 0 0 0 0
Metric 13 0.041 0 0 0 0 0 0 0 0
Metric 14 0.041 0 0 0 0 0 0 0 0
Metric 15 0.041 0 0 0 0 0 0 0 0
Metric 16 0.041 0 0 0 0 0 0 0 0
Metric 17 0.041 0 0 0 0 0 0 0 0
Metric 18 0.041 0 0 0 0 0 0 0 0
Metric 19 0.041 0 0 0 0 0 0 0 0
Metric 20 0.041 0 0 0 0 0 0 0 0
Metric 21 0.041 0 0 0 0 0 0 0 0
Metric 22 0.041 0 0 0 0 0 0 0 0
Metric 23 0.041 0 0 0 0 0 0 0 0
Metric 24 0.041 0 0 0 0 0 0 0 0
Metric 25 0.041 0 0 0 0 0 0 0 0
Metric 26 0.041 0 0 0 0 0 0 0 0
Metric 27 0.041 0 0 0 0 0 0 0 0
Metric 28 0.041 0 0 0 0 0 0 0 0
Metric 29 0 0.165 0 0 0 0 0 0 0
Metric 30 0 0.165 0 0 0 0 0 0 0
Metric 31 0 0.165 0 0 0 0 0 0 0
Metric 32 0 0.165 0 0 0 0 0 0 0
Metric 33 0 0.165 0 0 0 0 0 0 0
Metric 34 0 0.165 0 0 0 0 0 0 0
Metric 35 0 0.165 0 0 0 0 0 0 0
Metric 36 0 0 0.289 0 0 0 0 0 0
Metric 37 0 0 0.289 0 0 0 0 0 0
Metric 38 0 0 0.289 0 0 0 0 0 0
Metric 39 0 0 0.289 0 0 0 0 0 0
Metric 40 0 0 0 0.381 0 0 0 0 0
Metric 41 0 0 0 0.381 0 0 0 0 0
Metric 42 0 0 0 0.381 0 0 0 0 0
Metric 43 0 0 0 0 0.381 0 0 0 0
Metric 44 0 0 0 0 0.381 0 0 0 0
Metric 45 0 0 0 0 0.381 0 0 0 0
Metric 46 0 0 0 0 0 0.577 0 0 0
Metric 47 0 0 0 0 0 0.577 0 0 0
Metric 48 0 0 0 0 0 0 1 0 0
Metric 49 0 0 0 0 0 0 0 1 0
Metric 50 0 0 0 0 0 0 0 0 1

There are five other
groups consisting
of 7, 4, 3, 3, and 2
metrics, respectively,
corresponding.

Secondary groups

Metrics are shown
on the rows, and
groups are shown
on the columns.
A nonzero entry
indicates group
membership.

The first group of
metrics consists
of 28 metrics,
and each metric
is assigned a
weight of 0.04 .1

There are 2 metrics1
that are not strongly
correlated with others
and are not grouped.
Only the first three of
these metrics are
shown.

Main group

Figure 6.11 Loading matrix for Klipfolio’s case study 
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Note that for matrix multiplication to work, the number of columns in the first matrix
has to equal the number of rows in the second matrix; this condition is met when the
loading matrix has the metrics along the rows.

import pandas as pd
import numpy as np
import os

def apply_metric_groups(data_set_path):
   score_save_path=
      data_set_path.replace('.csv','_scores.csv')  
   assert os.path.isfile(score_save_path),
      'Run listing 5.3 to save metric scores first'
   score_data = 
     pd.read_csv(score_save_path,index_col=[0,1])     

   data_2group = score_data.drop('is_churn',axis=1)      

   load_mat_path = data_set_path.replace('.csv', '_load_mat.csv')
   assert os.path.isfile(load_mat_path),
      'Run listing 6.4 to save a loading matrix first'
   load_mat_df = pd.read_csv(load_mat_path, index_col=0)    

   load_mat_ndarray = load_mat_df.to_numpy()    

   ndarray_2group = 
      data_2group[load_mat_df.index.values].to_numpy()       
   grouped_ndarray = 
      np.matmul(ndarray_2group, load_mat_ndarray)       
   churn_data_grouped
      = pd.DataFrame(grouped_ndarray,
                     columns=load_mat_df.columns.values, 
                     index=score_data.index)    

   churn_data_grouped['is_churn'] = 
      score_data['is_churn']    
   save_path = data_set_path.replace('.csv', '_groupscore.csv')
   churn_data_grouped.to_csv(save_path,header=True)       
   print('Saved grouped data to ' + save_path)

Figure 6.12 illustrates the definition of matrix multiplication in terms of averaging
scores. The definition may sound complicated, but it’s what you just learned in the last
section:

 The first average score for Account 1 is calculated by multiplying the Account 1
row of the data by the first group of loading weights in the first column and
summing it together.

 The second average score for Account 1 is calculated by multiplying the Account 1
row of the data by the second group of loading weights in the second column,
and so on.

Listing 6.3 Applying a loading matrix to a dataset in Python

Listing 5.3 saved 
this score data.

Reloads the file into 
a DataFrame and 
sets the index

The churn indicator 
is removed for now; 
this returns a copy.

Reads a loading 
matrix from a file

Converts the loading 
matrix to a NumPy array

Rearranges data 
columns to the 
order of the loading 
matrix rows

Uses matrix 
multiplication on 
ndarray to do the 
grouping 

Creates a
DataFrame

from the
ndarray

result

dds back
he churn

status
column Saves the result
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Matrix multiplication is a concise and efficient way to apply the loading weights to cal-
culate averages in large datasets with any number of metrics and groups.

 At this point, you probably want to run listing 6.3 on some data and check out the
results, but you might be wondering where exactly you get the loading matrix from.
You’re right to wonder, because I’m teaching you how to use a loading matrix first so
you understand its purpose. The next section shows you how to create one from
scratch. Be patient: you’ll see some case studies to further convince you of the useful-
ness of grouping metrics with loading matrices, and then in section 6.3, you’ll learn
how to run the code to make one. Then you can come back and run listing 6.3 using
the loading matrix you created.

Account
Login
score

Read
score

Reply
score

Send
score

Write
score

Like
score

1 0.4 0.8 1.0 −1.6 −1.4 0.0

2 1.4 0.2 −0.2 1.1 0.0 −0.3

3 −1.7 −1.4 −1.3 1.5 1.3 −1.2

4 −0.3 0.5 0.9 1.1 1.7 0.2

5 −1.2 −1.4 −1.6 −0.8 −0.7 −0.4

6 −0.5 −0.5 −0.7 −0.4 −0.4 1.7

7 0.0 −0.7 −0.2 −0.8 1.0 −1.3

8 1.2 1.6 1.5 −0.3 −0.4 0.3

9 −0.1 −0.2 0.5 −0.1 −0.3 0.6

10 0.9 1.0 0.1 0.2 −0.9 1.6

Account

Group 1:
Login, read,

and reply
score

Group 2:
Write and

send
score

“Group” 3:
Like

score

1 0.7 −1.5 0.0

2 0.5 0.6 −0.3

3 −1.5 1.4 −1.2

4 0.3 1.4 0.2

5 −1.4 −0.8 −0.4

6 −0.6 −0.4 1.7

7 −0.3 0.1 −1.3

8 1.4 −0.3 0.3

9 0.1 −0.2 −0.6

10 0.7 −0.3 1.6

Group 1 Group 2 Group 3

Login
weight 0.33 0 0

Read
weight 0.33 0 0

Reply
weight 0.33 0 0

Send
weight 0 0.5 0

Write
weight 0 0.5 0

Like
weight 0 0 1.0

Matrix 1 (scores)

M
a

tr
ix

 2
 (

lo
a

d
in

g
)• In matrix multiplication,

two matrices produce a
result matrix.

• Each element of the result
matrix is the sum of the
elementwise multiplication
of a row of the first matrix
and a column of the second.

• This implements averaging
scores with a loading matrix.

Result matrix

Figure 6.12 Matrix multiplication is an operation that implements the averaging of scores by a 
loading matrix.
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6.2.5 Churn cohort analysis on metric group average scores

Once you have grouped correlated metrics into average scores for the related behav-
iors, you can perform a churn analysis on the average group. No new code is needed
to do so. The procedure is as follows:

1 Use listing 6.3 and save the grouped scores in a new dataset file. It will have the
same name as the original dataset except it now ends in group_scores.

2 Use listing 5.1 to create a cohort plot from the grouped dataset by substituting
the new filename and the variable name metric_group_1 for the first group,
and so forth (see listing 6.3 for details).

Figure 6.13 illustrates the results of a churn cohort analysis for Klipfolio’s main group
of metrics for viewing and editing dashboards. This is the first group that was illus-
trated in the correlation matrix of figure 6.6 and in the loading matrix of figure 6.11.
Churn cohort analysis was introduced in chapter 5, so I will just briefly summarize the
main features. Each point represents the customers in a cohort defined by one decile
in the scores. The vertical axis shows the churn rate in the cohort on a relative scale,
and the bottom of the graph is fixed at zero. If a cohort is twice as far from the bottom
of the plot as another, then it has twice the churn rate.

 Figure 6.13 shows that the average of the main group of metric scores for Klipfolio
reveals a powerful relationship to churn: the cohort with the highest average scores
has a churn rate that is less than one-tenth of the churn rate for the lower cohorts.
Another nice property of this relationship is that the churn rate keeps declining, up to
the highest cohorts. The average of this group of scores shows a stronger relation-
ship to churn than the individual behaviors that were shown in the last chapter in
figure 5.6.

The primary metric group in the
Klipfolio case study represents
viewing and editing dashboards.
The figure shows the churn
rate in cohorts based on the
scores for this group.

The churn rate
(shown on the
vertical axis) is
shown relative
to the bottom of
the plot set to
zero churn.

The churn rate is highest among
those accounts with the lowest
scores and falls with increasing
scores. There is little churn in the
cohort with the highest scores.

0.5 1.0 1.50.0−1.0 −0.5

Cohort average of metric_group_1

C
o
h
o
rt
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h
u
rn
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a
te

Figure 6.13 Cohort analysis of churn for Klipfolio’s primary metric group scores 
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Figure 6.14 shows an example of a churn cohort analysis for the average of the main
group of scores for Broadly. The main group of correlated metrics all relate to add-
ing customers and transactions to the system, making requests to customers for
reviews and recommendations, and the result of those requests. The cohort analysis
based on this group of scores is another example of a strong relationship to churn. In
this case, the top cohort has a churn rate around one-seventh the churn rate in the
bottom cohorts.

Figures 6.13 and 6.14 both show that in real case studies, averages of groups of metric
scores often show relationships to churn more effectively than individual metrics
alone. Your own results might not show results that are this strong, but it is still prefer-
able to analyze correlated metrics in groups. That’s because it avoids information over-
load from too many metrics.

TAKEAWAY For correlated metrics, it is better to analyze churn in cohorts
using the average score in place of individual metrics.

6.3 Discovering groups of correlated metrics
You now know how to average groups of metrics, but there’s one last thing: I did not
explain how to find those groups of metrics in large datasets. For simple cases with just
a few metrics, you can probably identify groups of metrics by looking at the correla-
tion matrix. That’s the case for the small dataset used in the examples of figures 6.5
and 6.9. But if you have a correlation matrix with dozens of metrics (or more), like the
one from the case study (figure 6.7), it’s not as simple. Fortunately, there is a standard
algorithm that will do it for you.

The primary metric group
in the Broadly case study
represents adding customers
and asking them to give a
review. The three cohorts
with the highest scores
churn at a rate that is around
one-fourth of the churn in
the three cohorts with the
lowest scores.

0.5 1.0 1.5 2.00.0−1.0 −0.5

Cohort average of metric_group_2
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Figure 6.14 Cohort analysis of churn for Broadly's primary metric group scores
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6.3.1 Grouping metrics by clustering correlations

The algorithm that you use to find groups of correlated metrics is called a clustering
algorithm. 

DEFINITION A clustering algorithm is an automatic procedure for grouping
together similar items based on data. 

Technically, the procedure of the clustering algorithm is distinct from how similarity
between items is measured. To group together metrics, you’ll use the correlation coef-
ficient; the higher the correlation, the more similar the metrics. The clustering proce-
dure you’ll use is called hierarchical clustering.

DEFINITION Hierarchical clustering is a greedy, agglomerative clustering algorithm:

 Agglomerative means the algorithm works by combining similar items in a bottom-
up manner. Groups are formed starting from just two similar elements, and
more elements are added to form larger groups of similar items as the algo-
rithm progresses.

 Greedy means that the algorithm works by picking the two elements that appear
most similar, and after those two are grouped, the next most similar item is
grouped at each stage.

 Hierarchical in this context refers to the fact that greedy agglomeration implies a
structure or hierarchy between the items. There are the two most similar items,
and after that, there is the next most similar, and so on.

Figure 6.15 illustrates hierarchical clustering, continuing the example of the small
dataset that was shown in figures 6.5, 6.9, and 6.12. The algorithm starts with the cor-
relation matrix from figure 6.5 and finds the single highest correlation between any
two metrics (figure 6.15.1). The two most correlated metrics form the first group: this
is the 0.93 correlation between the metrics for reading and replying to messages.

 The second step in the hierarchical clustering algorithm (figure 6.15.2) is to create
a loading matrix that converts the original dataset into a new dataset where the two
most correlated metrics are grouped, but all the other metrics remain separate. This
loading matrix has one fewer column than there are metrics because there is just one
group of metrics. The third step in the algorithm (not shown in figure 6.15) is to use
the new loading matrix to create a new version of the dataset, following the procedure
shown in the last section. The fourth step in the hierarchical clustering algorithm (fig-
ure 6.15.3) is to calculate the new correlation matrix for the data after the first two
metrics are grouped. 

 Having a new correlation matrix, the algorithm starts on a new iteration: find the
next highest correlation. In the example, the next highest correlation is the 0.77 cor-
relation between the metric for logins and the group metric for reading and replying,
created in the last step (figure 6.15.3). The login metric is added to the first group in
a new iteration of the loading matrix (figure 6.15.4), leading to a new version of the
dataset and correlation matrix (figure 6.15.5), and so on.
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The algorithm stops when enough metrics have been grouped so that nothing is left
that is moderately or highly correlated. The exact level of correlation at which the
algorithm should stop trying to group things is a parameter that controls the level of
grouping. Generally, you set the threshold at a moderate level of correlation. I typi-
cally set it in the range of 0.5 or 0.6 in the analyses that I do. I will provide more details
about how to set this parameter in section 6.3.3. For now, let’s look at how the exam-
ple in figure 6.15 ends. After login, read, and reply are in one group, and write and
send are in another group (figure 6.15.6), the remaining correlations (figure 6.15.7)
are all between –.28 and .27; these are only weak correlations, so the algorithm stops.
The result of the algorithm is to produce the loading matrix that was first shown in fig-
ure 6.9. (Figure 6.15.6 is a transposed and slightly reordered version of the loading
matrix in figure 6.9.)

Read and
reply

and login Write Like Send

Read and reply
and login −0.27 0.27 -0.16

Write −0.36 0.73

Like −0.15

Send

Read
and
reply Write Like Login Send

Read and
reply −0.19 0.31 0.77 −0.16

Write −0.36 −0.31 0.73

Like 0.19 −0.15
Login −0.15

Send

Write Like Login Read Reply Send

Write −0.36 −0.31 −0.27 −0.11 0.73

Like 0.19 0.38 0.23 −0.15

Login 0.82 0.69 −0.15

Read 0.93 −0.15

Reply −0.16

Send

Write 0 0.5 0

Like 0 0 1

Login 0.33 0 0

Read 0.33 0 0

Reply 0.33 0 0

Send 0 0.5 0

Write 0 1 0 0

Like 0 0 1 0

Login 0.33 0 0 0

Read 0.33 0 0 0

Reply 0.33 0 0 0

Send 0 0 0 1

Write 0 1 0 0 0

Like 0 0 1 0 0

Login 0 0 0 1 0

Read 0.5 0 0 0 0

Reply 0.5 0 0 0 0

Send 0 0 0 0 1

1. Initial correlations 2. First loading matrix

3. Correlations after first merge
4. Second loading matrix

5. Correlations after second merge

6. Third loading matrix

7. Final correlations

Write and
send

Read and
reply

and login Like

Write and
send −0.23 −0.28

Read and reply
and login 0.27

Like

1. Grouping begins with the initial
correlation matrix. The highest
correlation is between read
and reply.

3. A new correlation
matrix is calculated
after the first
grouping.

4. The second
matrix of
weights for
grouping
combines
login with read
and reply. The
weights are
reassigned to
0.33 now that
there are
three metrics
in the group.

5. A new correlation
matrix is calculated
after the second
grouping.

6. The third
matrix of
weights for
grouping
puts 0.5
weight on
send and
write in
a new group.

2. The initial weight matrix
groups read and reply with
0.5 weight on each.

7. A new correlation matrix is
calculated after the third grouping.
There are no longer any high
correlations, and the algorithm ends.

Figure 6.15 Discovering metric groups by clustering correlations
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 To review, here is the how the hierarchical clustering algorithm works at each step:

1 Identify the highest correlation.
2 Update the loading matrix to group together the two most correlated elements.
3 Create a new grouped dataset using the loading matrix on the original dataset

of scores.
4 Calculate a new correlation matrix.
5 Repeat steps 1 through 4 until all of the remaining correlations are below a pre-

determined threshold.

6.3.2 Clustering correlations in Python

Now that you know how hierarchical clustering based on a correlation matrix works,
you are ready to learn the Python code that implements it in practice. Listing 6.4
shows the program. Spoiler: the code uses prewritten open source package functions
to implement the clustering. Listing 6.4 is mainly concerned with preparing the input
to make it ready for the package functions and receiving the output from the package
functions and turning those into the loading matrix that you need. The overall pro-
cess is broken down into three steps that are separate functions in listing 6.4. I explain
each one in turn.

 The actual clustering in listing 6.4 is in the function find_correlation_clusters.
SciPy provides an implementation of hierarchical clustering in the package scipy
.cluster.hierarchy with two functions: linkage and fcluster. The function linkage
is the one that really does the work. It can work either on a raw dataset or on a pre-
computed measurement of the distance between points in a dataset, which is what
happens in listing 6.4. But the result of the linkage function is not actually the clusters;

Efficiency of hierarchical clustering and correlation calculations for large
datasets
You might read in other references that hierarchical clustering is inefficient and not
suited for big data. But there is a crucial difference here: the correlation matrix is not
big data even when your data is big! The size that matters for the run time of hierar-
chical clustering is the number of metrics in your dataset, not the number of custom-
ers (observations). The number of metrics is reduced by one at every step, so the
maximum number of iterations is the number of metrics. There is no problem using
hierarchical clustering for larger datasets. 

If you do have a lot of customers (a lot of observations), you’ll find that calculating
the correlation matrix is actually the most expensive step. If your data is truly big, you
should look at optimization or approximation of the correlation matrix calculation and
don’t worry about the hierarchical clustering. As you’ll see in the next section, you
really calculate the correlation matrix only once. My explanation of the algorithm pres-
ents it as if you recalculate the correlation matrix at each step, but in practice, the
correlation matrix at each step can be deduced using the loading matrix (this detail
is beyond the scope of this book).
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instead, the linkage function returns a description of the structure of the distance
relationships between the data points, which is the hierarchy of distances referred to
in the algorithm name. 

 I am not going to explain the details of how the hierarchy is represented because
there is another function that you can pass the result into to get the clusters you want:
that is fcluster. The function fcluster takes the hierarchy description from link-
age and a cutoff threshold to form clusters. In our case, this threshold is the correla-
tion cutoff for what we consider to be highly correlated. The result of fcluster is an
assigned cluster for each of the original items in the form of a numpy Series.

import pandas as pd
import numpy as np
import os
from collections import Counter
from scipy.cluster.hierarchy import linkage, fcluster    
from scipy.spatial.distance import squareform            

def find_correlation_clusters(corr,corr_thresh):
   dissimilarity = 1.0 - corr                  

   diss_thresh = 1.0 - corr_thresh             

   hierarchy = linkage(squareform(dissimilarity), 
                       method='single')      

   labels = fcluster(hierarchy, diss_thresh, 
                     criterion='distance')    
   return labels

def relabel_clusters(labels,metric_columns):
   cluster_count = Counter(labels)            

   cluster_order = {cluster[0]: idx for idx, cluster in     
                    enumerate(cluster_count.most_common())}

   relabeled_clusters = [cluster_order[l] 
                           for l in labels]    

   relabeled_count = Counter(relabeled_clusters)    

   labeled_column_df = pd.DataFrame({'group': relabeled_clusters, 
      'column': metric_columns}).sort_values( 
      ['group', 'column'], ascending=[True, True])    
   return labeled_column_df, relabeled_count

def make_load_matrix(labeled_column_df,metric_columns,relabeled_count, corr):
   load_mat = np.zeros((len(metric_columns), 
      len(relabeled_count)))   

Listing 6.4 Finding metric groups and creating a loading matrix in Python
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   for row in labeled_column_df.iterrows():      
      orig_col = metric_columns.index(row[1][1])
       if relabeled_count[row[1][0]]>1:              
            load_mat[orig_col, row[1][0]] = 1.0/(np.sqrt(corr) * 
               float(relabeled_count[row[1][0]])  )      
       else:
            load_mat[orig_col, row[1][0]] = 1.0     

    is_group = load_mat.astype(bool).sum(axis=0) > 1    
    column_names=
       ['metric_group_{}'.format(d + 1) 
          if is_group[d]       
          else 
             labeled_column_df.loc[     
                labeled_column_df['group']==d,'column'].item()
                                    for d in range(0, load_mat.shape[1])]
   loadmat_df = pd.DataFrame(load_mat, 
      index=metric_columns, columns=column_names)     

   loadmat_df['name'] = loadmat_df.index       

   sort_cols = list(loadmat_df.columns.values)    

   sort_order = [False] * loadmat_df.shape[1]    

   sort_order[-1] = True       

   loadmat_df = loadmat_df.sort_values(sort_cols, 
      ascending=sort_order)                      

   loadmat_df = loadmat_df.drop('name', axis=1)   
   return loadmat_df

def find_metric_groups(data_set_path,group_corr_thresh=0.5):
   score_save_path=
      data_set_path.replace('.csv','_scores.csv')       
   assert os.path.isfile(score_save_path),
      'You must run listing 5.3 to save metric scores first'
   score_data = pd.read_csv(score_save_path,index_col=[0,1])
   score_data.drop('is_churn',axis=1,inplace=True)
   metric_columns = list(score_data.columns.values)     

   labels =     
      find_correlation_clusters(score_data.corr(), group_corr_thresh)
   labeled_column_df, relabeled_count = 
      relabel_clusters(labels,metric_columns)
   loadmat_df = make_load_matrix(labeled_column_df, metric_columns, 
      relabeled_count,group_corr_thresh)
   save_path = data_set_path.replace('.csv', '_load_mat.csv')
   print('saving loadings to ' + save_path)
   loadmat_df.to_csv(save_path)

   group_lists=                           
      ['|'.join(labeled_column_df[labeled_column_df['group']==g]['column'])
                    for g in set(labeled_column_df['group'])]
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   save_path = data_set_path.replace('.csv', '_groupmets.csv')
   print('saving metric groups to ' + save_path)
   pd.DataFrame(group_lists,                        
               index=loadmat_df.columns.values,
                columns=['metrics']).to_csv(save_path)

Getting your data into the cluster algorithm is not that hard. The most important
detail is the fact that the linkage function is written to work on data in terms of dissim-
ilarity, but so far we have thought about correlation, which is a measure of similarity.
The solution is as follows: you take 1.0 minus the correlation, and what was a measure
of similarity becomes a measure of dissimilarity. What does that mean? Consider: the
highest correlation (the most similarity) was 1.0, which becomes 0.0 after being sub-
tracted from 1.0. That is now the least dissimilar two items can be. The most dissimilar
in terms of correlation would be –1.0, but that becomes 2.0 when subtracted from 1.0
(1 – –1 = 1 + 1 = 2); that is now the most dissimilar. Both the correlation matrix and
the correlation threshold are converted by (element-wise) subtraction from 1.0 before
they are used in the SciPy functions linkage and fcluster. That’s all the preparation
needed to run the clustering algorithm.

 Unfortunately, the result of the clustering algorithm is not exactly what you want.
What you want is a loading matrix and in a particular order. It is easiest to interpret
when the largest group comes first, and they are then ordered in descending size. The
fcluster function returns the assigned clusters for the groups, but they are not in any
particular order sizewise. There are two main parts to the postprocessing after calling
linkage and fcluster: first comes sorting and relabeling the clusters, and after that,
the creation of the loading matrix.

 The second function in listing 6.4, relabel_clusters, is the first step of postpro-
cessing. To sort and relabel the clusters, a Python set is used to find the unique clus-
ters, and a Python Counter is used to count the occurrences of each label in the result
of fcluster. The Counter object also has a utility function to iterate through the ele-
ments in order from most common to least: that is the function Counter.most_com-
mon. After the relabeled cluster names are found, the result is saved in a new Series of
labels. Two objects are created to represent the clusters for later: a two-column Data-
Frame that lists the original metrics and the groups they were placed in, and a new
Counter object that counts the new labels.

 The third function in listing 6.4, make_load_matrix, is the final step. The loading
matrix is initialized as an ndarray of zeros in the right size: the number of rows is the
number of metrics, and the number of columns is the number of groups. The func-
tion relabel_clusters creates a DataFrame that lists each metric and its group. That
is used to iterate over the metrics and fill in an appropriate entry under the right
group in the loading matrix. That ndarray is turned into a DataFrame using the met-
ric names as the index. 

 The weight for each entry in the loading matrix is calculated with 1.0 divided by
the number of elements in the group: the number of elements in the group is

Saves the 
loading matrix
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relabeled_count[row[1][0]] in the code. relabeled_count is a counter object, and
row[1][0] selects the appropriate element. But there is also another term in the
denominator of the weight calculation, which is the square root of the correlation
threshold used for clustering: np.sqrt(corr). That extra term is what makes the
weights a bit higher than 1/N, as I mentioned back when I first showed you the load-
ing matrix in section 6.2.3. I’ll explain the reasoning for that choice in the next sec-
tion, after I finish explaining the algorithm.

 The rest of the function make_load_matrix sorts the loading matrix in the order
that makes it easiest to read: the largest group comes first and then the second largest,
and so forth. Within each group, the metrics are sorted alphabetically by name. This is
accomplished using Pandas DataFrame.sort_values with appropriate parameters.
The function sort_values takes a list of columns to sort by and a list of Booleans for
whether each column is in ascending or descending order. The name of the metrics is
added as a column (it was previously the index), and all of the columns are used to
sort. The columns for group weights come first and are sorted in descending order,
while the column for the name comes last and is sorted in ascending order. Because
the columns indicating group membership are in order from largest to smallest, this
achieves the desired ordering of the loading matrix: grouped from largest to smallest
and sorted alphabetically within each group. Also, the columns are labeled with a
label (metric_goup_x, where x is the group number for the groups or just the metric
name when a group is just a single metric).

 The main function that runs all the steps together is at the end of listing 6.4: find-
_metric_groups. This function loads a dataset and then calls the other steps in the
algorithm. find_metric_groups returns the loading matrix as the result, and the
default option is to save it to a .csv file. Note that the program outputs only a simple
confirmation that it is running and where it saves the result. 

 If you use the simulated data, then the resulting loading matrix should look like
the one figure 6.16 when you open the file in a spreadsheet or text editor. There are
two groups of metrics: one for the most common behaviors that are correlated to each

Metric

metric_

group_2

account_

tenure

dislike_

per_month

newfriend_

per_month

unfriend_

per_month

adview_per_month 0 0 0 0 0

like_per_month 0 0 0 0 0

post_per_month 0 0 0 0 0

message_per_month 0.620 0 0 0 0

reply_per_month 0.620 0 0 0 0

account_tenure 0 1.0 0 0 0

dislike_per_month 0 0 1.0 0 0

newfriend_per_month 0 0 0 1.0 0

unfriend_per_month

metric_

group_1

0.413

0.413

0.413

0

0

0

0

0

0 0 0 0 0 1.0

Figure 6.16 Result of running listing 6.4 on the default simulated dataset (a reproduction of 
figure 6.10)
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other (which are posts, viewing ads, and likes) and a smaller group for reading and
replying to messages. The metrics for account tenure, disliking, and unfriending are
not correlated enough, so they don’t enter into any group. Note that the weights are
not exactly the 1/N for a standard average, but these are modified using equation 6.3
(section 6.3.2) to make the averages work as scores themselves.

 Now that you have a loading matrix, you can produce an ordered correlation matrix
like figure 6.6. For the simulated dataset, this result is shown in figure 6.17. From the
ordered correlation heatmap, you can see the higher correlations between the two
groups and the lower correlations between other metrics. Figure 6.17 was created by
running listing 6.5 and then formatting the resulting data in a spreadsheet.

Listing 6.5 shows that the code to create the ordered matrix is almost exactly the same
as that for creating a regular correlation matrix. The only difference is that you read
in the loading matrix and reorder the dataset columns according to the order of the
metrics in the loading matrix before calculating the correlation matrix. Reordering is a
one liner because you already went to the trouble of ordering the loading matrix cor-
rectly by groups: just reuse that order.

import pandas as pd
import os

def ordered_correlation_matrix(data_set_path):
   
   churn_data = pd.read_csv(            
      data_set_path.replace('.csv','_scores.csv'),index_col=[0,1])

Listing 6.5 Creating an ordered correlation matrix
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month

adview_per_month 1.00 0.69 0.69 0.15 0.11 0.08 0.49 0.55 0.02

like_per_month 0.69 1.00 0.68 0.12 0.09 0.09 0.49 0.55 0.02

post_per_month 0.69 0.68 1.00 0.11 0.09 0.11 0.49 0.55 0.02

message_per_month 0.15 0.12 0.11 1.00 0.93 0.09 0.16 0.09 0.01

reply_per_month 0.11 0.09 0.09 0.93 1.00 0.09 0.13 0.06 0.01

account_tenure 0.08 0.09 0.11 0.09 0.09 1.00 0.08 0.09 0.06

dislike_per_month 0.49 0.49 0.49 0.16 0.13 0.08 1.00 0.39 0.01

newfriend_per_month 0.55 0.55 0.55 0.09 0.06 0.09 0.39 1.00 0.02

unfriend_per_month 0.02 0.02 0.02 0.01 0.01 0.06 0.01 0.02 1.00

The grayscale heatmap was
applied in a spreadsheet
application.

Groups
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figure 6. 6.1

Group 1 Group 2

Figure 6.17 Ordered correlation matrix for the simulated data
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   load_mat_df = pd.read_csv(                                          #B
      data_set_path.replace(‘.csv’, ‘_load_mat.csv’), index_col=0)
   churn_data=churn_data[load_mat_df.index.values]      

   corr = churn_data.corr()     

   save_name =   
      data_set_path.replace('.csv', '_ordered_correlation_matrix.csv')
   corr.to_csv(save_name)
   print('Saved correlation matrix to ' + save_name)

6.3.3 Loading matrix weights that make the average of scores a score

There is one technical detail about loading matrices that I haven’t explained yet, and it
has to do with exactly what weights you should use in the loading matrix. The upshot,
mentioned in the last section, is that you don’t use weights in the loading matrix that are
exactly 1/N. I said 1/N when I first taught you the idea of the loading matrix so you
would learn the concept easily, and the concept doesn’t change: the loading matrix
transformation still represents taking an average of the metric scores. But the weights
need to be changed a bit. 

 1/N is the correct weight to make an equally weighted average when all of the
numbers in the average have the same scale or unit. But it’s a little different with
scores because there is no natural unit. (Note that if you don’t like equations, this
would be a fine time to skip to the next section, after you read the takeaway.)

TAKEAWAY The weights in the loading matrix will be a bit higher than 1/N,
but the meaning is still the same.

The problem with using 1/N weights to make an average of scores is that then the
average of the metric scores is not a score anymore. What does that mean? A score was
defined as a scaled version of a metric, and it has some particular properties: the aver-
age (mean) score is 0, and the standard deviation of the scores is 1. These facts make
the scores comparable. 

 The good news is that if you make an average of scores with any equal weights, the
mean (average) of the scores will still be zero. But the bad news is that the standard
deviation of the average of scores will not be 1, and instead, it will be less than 1.0.
How much less depends on how many metrics you average together and how cor-
related they are. But I’m going to teach a modification to the weights in the loading
matrix that will make the average scores have (almost) the 1.0 standard deviation they
are supposed to. That adjustment makes the average still a score regardless of how
many metrics you are averaging together. 

 First I need to remind you what a variance is: the variance is the standard deviation
squared. When the standard deviation is 1, the variance is also 1 (because 1 squared
is 1). In what follows, I write σ for the standard deviation and σ2 for the variance;
that’s the Greek letter sigma, and in math books, it is the usual letter for indicating
standard deviation and variance. The thing about standard deviations is that when you
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sum metrics or other variables and each metric has its own standard deviation, the
standard deviation of the sum doesn’t stay the same; they sum up scaled by the weight.
The relationship is easier to understand in terms of the variance, which is why I
reminded you what the variance is. I’ll show you how you get the variance for a sum of
metrics that all have their own variance. Assuming you multiply each metric by a
weight to form an average, the variance of a weighted sum of metrics is given in equa-
tion 6.1:

                    σ2(wx1 + wx2 + ... + wxN) = Σij w2σi σj cij (Equation 6.1)

In equation 6.1, the notation Σij ... is shorthand for the sum of all the different ele-
ments’ index by the subscripts (in code, that’s like adding a sum in a doubly nested
loop). What equation 6.1 says is that the variance of a sum of metrics is the sum of
the pairwise products of all the standard deviations, multiplied by the pairwise cor-
relation coefficients. That’s kind of complicated, and hopefully gives you an idea for
why the standard deviation of a sum of metrics will be 1 only under certain condi-
tions. Now I’ll show you what those conditions are. First, however, I’m going to make
some simplifications:

 In our case, all the standard deviations are 1 because they are all scores, so the
terms σi/j drop out. 

 You don’t know exactly what all the correlations cij between the metrics are, but
you do know this: if you are grouping them together into an average, then they
are highly correlated. They probably have individual correlations that are at
least as high as your correlation threshold. So instead of using cij , I approximate
it with cthresh, the threshold used to form the clusters.

With those simplifications, equation 6.1 for the variance of the sum is given approxi-
mately in equation 6.2:

                     σ2(wx1 + wx2 + ... + wxN) ≈ N 2w2 (Equation 6.2)

There are N 2 terms in the sum of pairwise correlations; that’s where the N 2 in equa-
tion 6.2 comes from. Equation 6.2 is an approximation because the correlations aren’t
really cthresh (most notably the self-correlations for every metric are 1), but it’s close
enough. The next step is to solve the equation for the weight w that makes the vari-
ance (and the standard deviation) equal to 1. The result is shown in equation 6.3:

                    (Equation 6.3)

w2 1
cthreshN 2-------------------=

w 1
N----

1
cthresh
------------=
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After all the equations, there is a reasonably straightforward change: instead of using
1/N as the weights to make the averages in the loading matrix, you multiply 1/N by an
extra factor, which is the square root of 1/cthresh , the correlation threshold used in the
clustering algorithm. Because the correlation threshold is less than one (typically
around 0.5 or 0.6), 1 divided by it is greater than 1 (typically between 1 and 2), and
the square root doesn’t change that. As a result, the weights you use to average scores
will be a bit bigger than the usual 1/N in a standard average. It’s a technical detail, but
keeping your average scores as scores by making this adjustment will make your analy-
sis easier to interpret because the standard deviation of your metric scores will still
be 1.

6.3.4 Running the metric grouping and grouped cohort analysis listings

Now that you have a loading matrix (produced by running listing 6.4), you can go back
and run listing 6.3. Listing 6.3 applies the loading matrix to the dataset of scores to cre-
ate the grouped average scores. Note that running listing 6.3 produces only a line of
output showing it is running, and the real result will be a new .csv dataset (the result
prints where it is saved). Figure 6.18 shows a small sample of the dataset saved from run-
ning listing 6.3. Instead of metric names, the column headers show group numbers.

With a dataset of grouped metrics, it’s also the time to try a cohort analysis (listing 5.1)
using a grouped metric. This is the technique that was demonstrated in section 6.2.4.
To do this, there is another version of listing 5.1 that you can run by passing the
arguments --chapter 5 --listing 1 --version 3 to the Python wrapper program.
Figure 6.19 shows the result of running the cohort analysis on the main group of
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... ... ...
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−0.94
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−0.94

0.12

0.12
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−0.94
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Figure 6.18 Result of running listing 6.3 on the default simulated dataset 
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correlated metrics in the simulated data. The grouped metrics show a strong relation-
ship with churn. (Because the dataset is randomly simulated, your result might not be
exactly the same.)

6.3.5 Picking the correlation threshold for clustering

In explaining the clustering algorithm, I mentioned the threshold for clustering cor-
relations; recall that this threshold determines when metrics should be grouped
together or left apart. I did not explain in detail how to set this parameter because I
wanted you to learn how the grouping is supposed to work before getting into the
technical details. But the clustering threshold parameter is really crucial for the suc-
cess of behavioral grouping. If you set this parameter at too low a value, then you can
wind up with every metric grouped together in one big group, even when they are not
all related to each other. And if you set the correlation threshold parameter at too high
a value, then metrics that are strongly related still won’t get grouped, and you’ll end
up with (almost) as many groups as you had metrics to begin with.

 Unfortunately, there is no best value that works in every case, so you might have to
experiment a bit. I also don’t advise any measure of the grouping to evaluate your
choice. Rather, I advise you to understand the business (or learn about it from some-
one who does) and what the correlation matrix tells you about the business. Then ask
yourself: do the metrics that are grouped together make sense? Would the grouping
make more sense and/or be more useful if a few more metrics were grouped together
or split apart? 

The cohorts with the
highest scores have
less than one-eighth the
churn rate of the
lowest cohorts.

The churn rate
continues to decline,
even in the cohorts
with high scores.

0.5 1.0 1.5 2.00.0−1.0−1.5−2.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

−0.5

Cohort average of metric_group_1

C
o
h
o
rt

 c
h
u
rn

 r
a
te

Figure 6.19 Result of running listing 5.1 on the first group of metrics generated by the default 
simulated dataset
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 For example, suppose you know that some metrics relate to a product feature or
content area normally used together. In that case, it’s reasonable to adjust the param-
eter a bit (if necessary) to break those out into their own group or to keep those from
being split. (That’s an example of using your prior knowledge to guide the analysis.)
On the other hand, if the correlation matrix is telling you some activities are highly
correlated, but some of your business colleagues want you to split them to make more
groups, it might be their own wishful thinking or office politics dictating that decision.
Use your prior knowledge to help decide on close calls, but don’t ignore the results of
your analysis!

 Here are some rules of thumb that I use when setting the correlation levels in my
own analyses:

 You should usually end up with the correlation threshold parameter set at the level
of a moderate or moderately high correlation in the range between 0.4 and 0.7—
never at very high or low correlation, meaning, don’t go above 0.8 or below 0.3.

 It’s usually better to start out too low, with a threshold value of 0.5 or less, and
have all (or most) of the metrics grouped together in one big group:

If every metric has a high correlation (> 0.7) to at least a few of the other
metrics, then you probably should group them all in one group. This might be
the case for a small product that does not have a wide variety of features or con-
tent, or if the events you track do not vary widely.

 Use a simple binary search on the range of 0.5 to 0.7: if 0.5 looks too low, try 0.6
(halfway between 0.5 and 0.7). If 0.6 still seems too low, try 0.65 (halfway
between 0.6 and 0.7); if 0.6 is too high, try 0.55, and so forth. You’ll quickly
exhaust the plausible range and get a sense of where the best value lies.

Use a manual search, not an algorithm—I have never found a stopping crite-
rion that works all the time. The search usually doesn’t take very long anyway.

 Use color-coded correlation heatmaps and an aesthetic criteria (honestly): a
pattern of squares on the diagonal looks well ordered (see figure 6.7), but if
you go too far in either direction (too much or too little correlation), it breaks
up the symmetry. Once you’ve done it a few times, this is pretty intuitive.

 The biggest challenge is that sometimes small changes in the correlation can
have a highly disproportionate impact on the grouping. This means that a
small change of 0.01 or 0.02 in the threshold occasionally has a big impact
on how many groups there are, possibly changing from just 1 or 2 groups to 5
or 10.

In my own studies, I have written an alternative version of the grouping algo-
rithm in listing 6.4, where the parameter is the number of blocks to produce. It
uses an algorithmic search to return the grouping with the desired number of
groups. This is a nice programming exercise that I leave for you to try; it is help-
ful if you have a hard time finding a correlation threshold due to irregular
responses to small changes. But you can use this approach (choosing a number
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of blocks) only if you have already experimented enough to have a good idea of
what to choose.

In chapter 8, when we look at statistics, you’ll learn more about this subject. When you
use statistical analysis, there can be some real problems if you group behaviors incor-
rectly by using too high a correlation threshold. But, for now, you know enough to do
a good job on your own data.

6.4 Explaining correlated metric groups to businesspeople
This chapter demonstrated the following:

 The importance of understanding correlation between your metrics
 How to discover groups of related metrics
 How to perform churn analysis on metric group average scores 

This chapter got pretty technical, and you might have learned some new terms: cor-
relation matrix, loading matrix, and clustering (not to mention the real monster, hier-
archical agglomerative clustering!). Now let’s take a deep breath and think about how
you are going to explain all this to your business colleagues. This isn’t an issue if you
are reading this book for educational purposes only, but this is a very big issue if you
are trying to apply these techniques in a business context.

 The concepts in this chapter are not that hard to understand, but there are a lot of
technical details and jargon. I recommend starting simply and making sure to explain
each concept with actual data from your own company. You can leave out the details
of how everything gets done and just communicate the final results.

TAKEAWAY Your job is to shield your business colleagues from as much of
the jargon as possible. So do not try to impress them with technical terms!
Rather, try to simplify things to a common language.

Here is how I usually handle it when I present case study results to a business audience
for the first time:

1 Before you begin, ask the businesspeople how much statistics they know. You
should adapt your explanations based on their level of knowledge. In what fol-
lows, I’ll explain how to go through the concepts, assuming an average group of
business users who do not have any statistics training but also aren’t scared of
statistics.

2 Teach (or remind) everyone what correlations are by showing them scatterplots
(like the ones in figure 6.1) that you created from the business’s own data. It’s
fine (and necessary) to use the term correlation with the business, but you should
probably drop the term coefficient. Even nonmathematical people understand
correlations easily when they know which product behaviors go together. Show-
ing them scatterplots and the correlation number is giving them a nice new way
to look at something they already know.
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3 Show the heatmap, organized (after you have formed the groups) and format-
ted more or less like the one in figure 6.5 (except use full color). I try to avoid
the term matrix with businesspeople, so I usually just describe it as a correlation
heatmap and not a correlation matrix. After they have learned about individual
correlations, they usually understand the overall pattern shown by the heatmap
too. Again, this is showing something they already know intuitively, so they like
it (and heatmaps look cool!).

4 Show them the metrics that form the groups, both by outlining them in the
heatmap (see figure 6.5) and by giving them a list of what metrics are in each
group. You need to explain that the groups are formed automatically and based
on the data (they must understand you did not choose the groups). Do not
attempt to explain the details of the algorithm. but you can mention it is a clus-
tering algorithm if there are relatively technical people in the group:

They might debate the grouping, and that’s healthy. If they challenge the
grouping in a sensible way, you might want to try adjusting the threshold as
described in section 6.3.4. But make sure they realize that you cannot (or at least
should not) manually choose the groups.

5 Show them the behavioral cohort analysis that was done on the grouped met-
rics and how it compares to the cohort analysis on the individual metrics (just a
selection of individual metrics, if there are a lot).

That’s it! You’re done. In particular, you do not need to discuss the following terms or
algorithms with businesspeople:

 Matrix (either for the correlation matrix or the loading matrix)
 Loading 
 Matrix multiplication
 Clustering (or even worse, hierarchical agglomerative clustering)

Hierarchical clustering vs. principal component analysis
If you studied statistics or data science, there is a good chance you learned a tech-
nique called principal component analysis (PCA). PCA is similar to hierarchical cluster-
ing (HC) in that it reduces the number of metrics in a dataset by multiplication with a
loading matrix. But the loading matrix from PCA is derived using a different technique
than HC. PCA has some nice properties that statisticians like, but it is beyond the
scope of this book because it’s not very useful for churn, and the loadings it produces
are too difficult to interpret for most people. However, the loadings produced by HC
and PCA have a lot in common, which this figure illustrates.
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Comparison of the loading matrices for hierarchical clustering (HC) and principal component 
analysis (PCA) 

This figure was created by calculating a PCA loading matrix and ordering the metrics
in the same order as the HC groups. When run on the same data, the blocks discov-
ered by HC are usually similar to clusters of high weights in the PCA loading matrix.
You can see that the two algorithms are capturing some of the same underlying prop-
erties of the data. But the PCA loading matrix has both positive and negative weights,
and every entry in the loading matrix is nonzero. Details of how to interpret a PCA load-
ing matrix are beyond the scope of this book. 

Main
groups

Other
groups

Hierarchical cluster weights Principal component weights

Metric # 1 2 3 4 5 6

1 0.04 0 0 0 0 0

2 0.04 0 0 0 0 0

3 0.04 0 0 0 0 0

4 0.04 0 0 0 0 0

5 0.04 0 0 0 0 0

6 0.04 0 0 0 0 0

7 0.04 0 0 0 0 0

8 0.04 0 0 0 0 0

9 0.04 0 0 0 0 0

10 0.04 0 0 0 0 0

11 0.04 0 0 0 0 0

12 0.04 0 0 0 0 0

13 0.04 0 0 0 0 0

14 0.04 0 0 0 0 0
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Summary
 Correlation in the positive sense refers to when a high value on one metric is con-

sistently associated with a high value on another metric, or when an increase in
one metric is consistently associated with an increase in another.

 Negative correlation refers to when an increase in one metric is associated with
a decrease in another. Negative correlation is rare in customer behavioral met-
rics on events. 

 The correlation coefficient is a statistical measure of correlation that ranges
between –1 and 1, where 1 means perfect positive correlation, and –1 means
perfect negative correlation.

 Correlation coefficients measure the consistency of the relationship between two
metrics but are insensitive to the ratio implied by the relationship. Equivalently,
the units or scale of the metrics is irrelevant to correlation.

 Pairwise metric scatterplots are a good way to visualize individual correlations
in your data, but there can be too many pairs to look at them all.

 A correlation matrix is a table of all the pairwise correlation coefficients in a
dataset and is an efficient way to explore a large number of correlations.

 When metrics are highly correlated, you can improve a churn analysis by aver-
aging together the scores of the correlated metrics.

 A loading matrix is a table of the weights used to average metrics. It is used in
the calculation of the average scores.

 Matrix multiplication of the loading matrix by the dataset is the operation that
efficiently performs the averaging of grouped metrics.

 After averaging metric scores together with a loading matrix, you can do behav-
ioral cohort analysis of churn using the averaged scores. This often gives stron-
ger results than the individual metrics.

(continued)

One important point to note is that because the PCA matrix has negative as well as
positive weights, the resulting grouped metrics are not simply averages but also dif-
ferences between the (scored) metrics. A difference between two subscriber metrics
means a derived metric that is high when one metric is high and the other is low, in
contrast to an average or total, which is high when both metrics are high. Differences
between scored subscriber metrics are not very intuitive but can be important
because they measure how much one behavior exceeds another. For example, if you
had scored metrics for local calls and international calls on a telecommunications
service, the difference would show whether a subscriber is more or less an interna-
tional or local caller. Differences like that can be important for understanding engage-
ment, but differences between scored metrics produced by loading matrices with
negative entries are difficult to interpret. The next chapter teaches techniques to cap-
ture information about differences between behaviors in a way that is easily under-
standable by businesspeople and data people alike.



257Summary
 Clustering means to group together related items based on some measure of
similarity among their data.

 Hierarchical clustering is an algorithm that can be used to group together cor-
related metrics. The algorithm stops at a threshold in the correlation level so
that all strongly correlated metrics become grouped.

 After running hierarchical clustering, you use the result to create a loading
matrix.



Segmenting customers
with advanced metrics
You’ve learned a lot about understanding churn with metrics derived from events
and subscriptions. You’ve seen that simple behavioral measurements can be power-
ful for segmenting customers who may be at risk for churn and who have different
levels of engagement. But you’ve also seen some of the limitations of simple behav-
ioral metrics. 

 Many simple metrics are correlated, and correlations arise because customers
who have a lot of product-related events tend to have a lot of other events as well.
Correlations make it harder to tell which types of behaviors are most important.

This chapter covers
 Metrics made from ratios of other metrics

 Metrics that measure behavior as a percentage 
of a total

 Metrics that show how behavior changes over 
time

 Metric conversions from long periods to short 
periods, and vice versa

 Metrics for multiuser accounts

 Choice of ratios to use
258
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The problem is deeper than a lack of refinement. In this chapter, you’ll learn that cor-
relation between metrics can make you misread the influence of a behavior. A behav-
ior that’s negative (in the sense that it takes utility and enjoyment away from
customers) can appear to enhance engagement when it’s correlated with other behav-
iors that provide utility and enjoyment. 

 Also, you may have been wondering about relationships among behaviors. Many
common hypotheses about churn ask whether combinations of behaviors have an
effect that is greater than the sum of their parts. You may wonder, for example,
whether it’s better for users of a document-editing and file-sharing app to create a lot
of documents even if they don’t share, or whether it’s better for users to share every-
thing they create, even if they don’t create a lot. Another question not yet addressed is
whether changes in behavior over time tell you anything. Is a surge in use a sign that a
customer is getting more engaged, for example, or having one last binge before they
churn? If you think that the simple behavioral metrics you learned in chapter 3 can-
not answer these questions, you’re right.

 In terms of the themes outlined at the start of the book, this chapter relates to all
the areas shown in figure 7.1. Behavioral metrics and churn analysis are presented
together, which can generate ideas about segmenting your customers for churn-
reduction strategies.

 In this chapter, you are going to create a type of metric that allows you to under-
stand complex combinations of behaviors and see what they tell you about churn and
retention of your customers. I call this metric a ratio metric.

DEFINITION A ratio metric is any customer metric calculated by taking the ratio
of one metric to another; equivalently, one metric is divided by the other.

Here’s how this chapter is organized:

 Section 7.1 teaches you the main ratio metric technique and includes several
case studies to motivate their use and illustrate typical results.

 Section 7.2 teaches you how to make metrics that are ratios from a part to a
whole, which makes the ratio a percentage of a total.

 Section 7.3 covers ratios between one metric at two different points in time,
which measures change in behavior, typically as a percentage. This section also
covers a metric for the amount of time a customer has been inactive.

 Section 7.4 changes gears to non-ratio advanced metrics: this section covers
scaling the metric-measurement time period just like a churn rate. That allows
you to estimate metrics quickly, using a shorter measurement window for new
customers but still makes better estimates for seasoned users.

 Section 7.5 teaches you how to make measurements for multiuser systems
(when multiple individuals share one subscription or account with a product).
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Figure 7.1 Themes in chapter 7 include behavioral metrics, churn analysis, and subscriber 
segments.
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7.1 Ratio metrics
You’re about to learn the single most important technique in the book (if I had to
pick only one): using metrics that are ratios of other behavioral measurements. These
metrics provide powerful, easy-to-understand explanations of customer behavior.

7.1.1 When to use ratio metrics and why

Figure 7.2 provides a case study illustrating when you need to look more closely at
the relationship between two metrics. The figure reproduces some cohort analyses
from chapter 5 for Versature, a provider of integrated cloud communication services.
In the figure, churn is somewhat lower for customers who pay higher monthly fees
for their service. This figure probably defies your intuition that paying more is a bad
thing for customer engagement. At the same time, figure 7.2 shows that paying more
is highly correlated with making more calls—something you learned to analyze in
chapter 6. And, of course, customers who make a lot of calls churn less than custom-
ers who don’t, which is a stronger relationship with churn than monthly recurring
revenue (MRR).

Paying more (MRR) is expected to cause
churn, but it is associated with less churn.

But paying more is also correlated
with making more calls.

And making calls is even more strongly
associated with less churn.0.5 1.00.0−2.5
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Figure 7.2 Case study that motivates a ratio metric
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The reason paying more (higher MRR) looks like it reduces churn is that, typically,
customers who pay more also make more calls—enough to justify paying the higher
MRR. But what about a customer who pays more but doesn’t make enough calls to jus-
tify the higher MRR? Those customers probably are most at risk for churn, but they
don’t show up in your metrics that look at MRR and calls separately. To find the cus-
tomers who pay more but don’t make a lot of calls (and see whether they churn at a
higher rate), you need to create a third metric that captures the relationship between
the first two: the ratio of the first two metrics. 

DEFINITION A ratio metric is a metric that is made by taking the ratio of the val-
ues of two other metrics. Each value of the new metric is a value of one metric
divided by the value of another metric.

In the following sections, I’ll explain the details of how you calculate such a metric
and why, and try to persuade you that this way is the best way. For now, let’s start with
the results. 

 If you take a metric that is the amount a customer pays (MRR) and divide it by the
amount of calls they make, the result is the average cost per call—a measure of the unit
cost the customers pay, similar to price per gallon of gasoline or liter of milk. The differ-
ence is that the ratio of MRR to calls is an effective recurring unit cost, not a contractual
one, because the product is not priced and packaged for customers to pay by the call. 

 Figure 7.3 shows the churn cohort analysis performed for Versature’s customers,
using MRR per call as the metric. This metric shows a strong relationship with increas-
ing churn following increasing values of the metric. It’s true that customers who pay
more churn more, but you have to measure the effective unit cost with a ratio metric
to see that result. Figure 7.3 also shows the correlations of the MRR per call metric
with the MRR and call metrics that were used to create it. MRR per call is correlated
weakly (negatively) with calls and is practically uncorrelated with MRR. All these facts
make MRR per call a great metric for understanding customer engagement and
churn. In section 7.1.2, you’ll learn how to calculate a ratio metric like this one and
practice doing so with the churn simulation data you’ve used throughout the book.

TAKEAWAY An effective recurring unit cost metric is created from the ratio
of MRR to some outcome achieved by the customers. A recurring unit cost
metric usually shows increasing churn with increasing unit cost. By contrast,
a simple recurring cost metric (MRR) usually shows decreasing churn with
increasing cost due to correlation with the utility or enjoyment derived from
using the product.

Figure 7.4 shows a situation in the social network simulation case study similar to the
ones in figures 7.2 and 7.3. You expect one metric—ads viewed per month—to be bad
because most people don’t like viewing ads. But when you run a churn cohort analysis,
you find that the more ads people watch, the less they churn. At the same time, you
find that viewing ads is correlated with making posts, and customers who make a lot of
posts churn at a low rate.



263Ratio metrics
Total calls 57%

MRR per call −14%

MRR

The metric cost per call created by dividing MRR by calls
per month is strongly associated with increasing churn.

Cost per call is less correlated with MRR and total
calls than those metrics are with each other.
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Figure 7.3 Case study churn cohort analysis of cost per call for Versature

Making more posts is even more
strongly associated with less churn.

Seeing more ads is expected to cause
churn, but it is associated with less churn.

Seeing more ads is also correlated
with making more posts.
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Figure 7.4 Simulation case study scenario motivating a ratio metric
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Before going on to the next section, you should reproduce the results in figure 7.4,
using the simulated churn data and the code in this book’s GitHub repository (https://
GitHub.com/carl24k/fight-churn). This task is the first step in the code exercises for
this chapter. By reproducing the plots in figure 7.4, you will confirm that your data
and metrics are ready for what comes next. 

 You should have calculated the metrics for ads viewed per month and posts per
month back in chapter 3. If you did not calculate the metrics then, after setting up
your environment as explained in the repository’s README file, you can calculate all
the metrics with the Python wrapper program by using the following command:

fight-churn/listings/run_churn_listing.py --chapter 3 --listing 3 4 --version 
1 2 3 4 5 6 7 8

If you ran the listing code in chapter 5, you should already have created a cohort
analysis of posts per month like the one shown in figure 7.4. If you did not, you can
do it now by running the Python wrapper program with the parameters --chapter 5
--listing 1. To create a new cohort analysis for ads viewed per month, you can run
another version of listing 5.1 by adding the argument --version 3. All together, the
parameters to add are --chapter 5 --listing 1 --version 3.

 The same goes for recreating the metric pair scatterplot in chapter 6 (listing 6.1). You
can rerun the Python wrapper program with the parameters --chapter 6 --listing 1
--version 2 to recreate a scatterplot like the one in figure 7.4.

7.1.2 How to calculate ratio metrics

Now that you know what a ratio metric is, it’s time to get into the details of how to
calculate it. The calculation of a ratio metric is illustrated with a little sample data
(figure 7.5). When I said that you divide one metric by the other, I meant it literally.
You start with two metrics that were already saved in the database. To calculate the
ratio metric, you match the two metrics, account by account and date by date; it is
assumed that you calculated and saved the other two metrics at all the same dates, as
demonstrated in chapter 3. For every account and date, the ratio is the value of one
metric for that date and account divided by the other metric for the same date and
account. There’s not much to the process, although you need to watch out for the
following two “gotchas”:

 The denominator metric (the metric you are dividing by) must be greater than
zero.

 The numerator metric can be zero but should not be negative. We have not
looked at metrics that can be negative so far, but you’ll see some in section 7.3.
You might already have metrics that can be negative if you make metrics from
event properties in your own data, like sums of currency amounts that can be
both positive or negative.

https://GitHub.com/carl24k/fight-churn
https://GitHub.com/carl24k/fight-churn
https://GitHub.com/carl24k/fight-churn
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If the metric in the denominator of the ratio is zero for an account, the ratio is
undefined. You’ll get an error if you try to divide by zero in any program language.
And if either metric can be negative sometimes, the ratio is mathematically okay,
but it lacks the usual meaning of a ratio of two other measurements: a unit cost or a
rate of an event relative to another event. Otherwise, calculating ratios is pretty
straightforward.

 Listing 7.1 provides a short SQL program that calculates a ratio metric, and fig-
ure 7.6 illustrates a few lines of the output. The short SQL program shown in listing 7.1
also returns the numerator and denominator of the metric for illustrative purposes.
Otherwise, the calculation strategy in listing 7.1 closely mirrors figure 7.5: two com-
mon table expressions (CTEs) select the results for the two metrics that are going to
form the ratio. The final SELECT statement is a LEFT OUTER JOIN with the denominator
in the left position. As a result, the ratio metric will be calculated for any account on a
date when the denominator is available. Let’s look at the figure first.

Account ID Date adview_per_month

1 1/1/20 75

1 2/1/20 50

2 1/1/20 30

2 2/1/20 20

3 1/1/20 100

3 2/1/20 90

Account ID Date post_per_month

1 1/1/20 60

1 2/1/20 45

2 1/1/20 50

2 2/1/20 45

3 1/1/20 80

3 2/1/20 110

Account ID Date Division Ratio

1 1/1/20 = 75/60 = 1.25

1 2/1/20 = 50/45 = 1.67

2 1/1/20 = 30/50 = 1.50

2 2/1/20 = 20/45 = 1.67

3 1/1/20 = 100/80 = 0.94

3 2/1/20 = 90/110 = 0.68

Metrics for ad views and posts are
already calculated in the database.

To calculate the ratio:
1. Match the

two metrics
for each
account.

2. Divide one
by the other.

3. The result
of the division
is the ratio.

Figure 7.5 Mechanics of calculating a ratio metric
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The SQL uses a CASE statement as part of the calculation to guard against a zero met-
ric in the denominator. If you use count metrics as in chapter 3, you don’t store zeros,
but it’s a best practice to guard against dividing by zero in case you work with metrics
imported from other systems. When you use a CASE statement, a zero denominator
metric produces a zero ratio. That result would be the same as the result of a zero
numerator, which is mathematically fine and produces zero. That said, if you didn’t
store the zeros for the numerator metric, you won’t produce the ratio, but you’ll still
fill the result with zero in your churn analysis dataset for any account that doesn’t get
the ratio (as described in chapter 4).

NOTE Accounts that are missing the values or have zeros for either metric in
a ratio get zeros for the metric in the churn analysis dataset.

You should run listing 7.1 and confirm that your result is similar to figure 7.6. If you
are using the wrapper program to run the listings, use the parameters --chapter 7
--listing 1 like so:

fight-churn/listings/run_churn_listing.py --chapter 7 --listing 1 

WITH num_metric AS (
    SELECT account_id, metric_time, metric_value AS num_value
    FROM metric m INNER JOIN metric_name n ON 

n.metric_name_id=m.metric_name_id
    AND n.metric_name = 'adview_per_month'     
    AND metric_time BETWEEN '2020-04-01' AND '2020-05-10'
), den_metric AS (
    SELECT account_id, metric_time, metric_value AS den_value
    FROM metric m INNER JOIN metric_name n ON 

n.metric_name_id=m.metric_name_id
    AND n.metric_name = 'post_per_month'     
    AND metric_time BETWEEN '2020-04-01' 
        AND '2020-05-10'       
)

Listing 7.1 SQL ratio metric calculation

account_id metric_time num_value den_value metric_value

3491 5/10/20 15 13 1.15

3490 5/10/20 5 8 0.63

3489 5/10/20 11 18 0.61

3488 5/10/20 11 8 1.38

3487 5/10/20 20 18 1.11

The metric value is the
ratio of the numerator
and denominator.

The SELECT shows numerator and denominator
of the metric for illustrative purposes.

Figure 7.6 Output of running listing 7.1

Picks the metric 
for the numerator

Picks the metric for 
the denominator

Matches the date range for the 
numerator and denominator 
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SELECT d.account_id, d.metric_time, 
    num_value, den_value,       
    CASE WHEN den_value > 0         
        THEN COALESCE(num_value,0.0)/den_value       
        ELSE 0                                   
    END AS metric_value
FROM den_metric d  LEFT OUTER JOIN num_metric n   
    ON n.account_id=d.account_id
    AND n.metric_time=d.metric_time;

You also need to save the result to the database to continue with the examples, but
because listing 7.1 selects the numerator and denominator of the metric for illustra-
tive purposes, it’s not suitable for inserting a metric into the database. A prewritten
SQL statement in the listing framework does this: insert_7_1_ratio_metric.sql (which
is the same as listing_7_1_ratio_metric.sql except for insert rather than listing in the
SQL filename). To run the version of listing 7.1 designed for inserting the result, add
the --insert flag to the arguments for the script that runs the listing. If you are using
the Python wrapper program to run the listings, the command follows:

fight-churn/listings/run_churn_listing.py --chapter 7 --listing 1 --insert

That insert shows you the SQL it uses, but it won’t print any result. You should make
your own SELECT statement to verify the result or, better, run the metric quality assur-
ance query from chapter 3 (listing 3.6) to look at a summary of the result over time.
This pattern of learning and then inserting metrics into your database will repeat
throughout the chapter:

 The listings shown in the book include extra columns for illustrative purposes.
 If the metric needs to be saved in your database to follow the examples, a sec-

ond version of the listing in the repository performs the insert. You run it by
adding the --insert flag to the wrapper script command.

 The illustrative version of the listing has a path like listings/chap7/listing_7_,
and the version of the listing written to insert into the database has a path like
listings/chap7/insert_7_.

After saving the new ads per post metric to the database, you should analyze it for cor-
relations and the relationship to churn. Remember that to run the cohort analysis,
you first need to reexport your churn dataset with SQL. The code that exports the
dataset with your new metric (and all the other metrics you create in this chapter) is
shown in listing 7.2, which is an update of listing 4.5. 

 You should run listing 7.2 to save a new dataset that allows you to run the cohort
analysis on the new metric ads per post. Review chapter 4, and specifically listing 4.5, if
you don’t remember how listing 7.2 works; it is exactly the same. Don’t worry that you

Selects the numerator 
and denominator value 
for illustration

The ratio is undefined when the 
denominator is not positive.

Calculates the ratio; 
coalesces for zero null 
numerator

Fills with zeros when 
the denominator is 
missing

LEFT OUTER JOIN
makes a result
whenever the

denominator is
available.
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haven’t yet created all the metrics in listing 7.2; you will create them throughout the
chapter. For now, any metric you didn’t create will be filled with zeros in the dataset.

WITH observation_params AS     
(
    SELECT  interval '7' AS metric_period,
    '2020-03-01'::timestamp AS obs_start,
    '2020-05-10'::timestamp AS obs_end
)
SELECT m.account_id, o.observation_date, is_churn,
SUM(CASE WHEN metric_name_id=0 THEN metric_value ELSE 0 END)
    AS like_per_month,
SUM(CASE WHEN metric_name_id=1 THEN metric_value ELSE 0 END)
    AS newfriend_per_month,
SUM(CASE WHEN metric_name_id=2 THEN metric_value ELSE 0 END)
    AS post_per_month,
SUM(CASE WHEN metric_name_id=3 THEN metric_value ELSE 0 END)
    AS adview_per_month,
SUM(CASE WHEN metric_name_id=4 THEN metric_value ELSE 0 END)
    AS dislike_per_month,
SUM(CASE WHEN metric_name_id=5 THEN metric_value ELSE 0 END)
    AS unfriend_per_month,
SUM(CASE WHEN metric_name_id=6 THEN metric_value ELSE 0 END)
    AS message_per_month,
SUM(CASE WHEN metric_name_id=7 THEN metric_value ELSE 0 END)
    AS reply_per_month,
SUM(CASE WHEN metric_name_id=8 THEN metric_value ELSE 0 END)
    AS account_tenure,
SUM(CASE WHEN metric_name_id=21 THEN metric_value ELSE 0 END) 
    AS adview_per_post,                                          
SUM(CASE WHEN metric_name_id=22 THEN metric_value ELSE 0 END)
    AS reply_per_message,
SUM(CASE WHEN metric_name_id=23 THEN metric_value ELSE 0 END)
    AS like_per_post,
SUM(CASE WHEN metric_name_id=24 THEN metric_value ELSE 0 END)
    AS post_per_message,
SUM(CASE WHEN metric_name_id=25 THEN metric_value ELSE 0 END)
    AS unfriend_per_newfriend,
SUM(CASE WHEN metric_name_id=27 THEN metric_value ELSE 0 END)
    AS dislike_pcnt, 
SUM(CASE WHEN metric_name_id=28 THEN metric_value ELSE 0 END)
    AS unfriend_per_newfriend_scaled,
SUM(CASE WHEN metric_name_id=30 THEN metric_value ELSE 0 END)
    AS newfriend_pcnt_chng,
SUM(CASE WHEN metric_name_id=31 THEN metric_value ELSE 0 END)
    AS days_since_newfriend,
SUM(CASE WHEN metric_name_id=33 THEN metric_value ELSE 0 END)
    AS unfriend_28day_avg_84day_obs,
SUM(CASE WHEN metric_name_id=34 THEN metric_value ELSE 0 END)
    AS unfriend_28day_avg_84day_obs_scaled
FROM metric m INNER JOIN observation_params
ON metric_time BETWEEN obs_start AND obs_end    

Listing 7.2 Exporting the dataset with chapter 7 metrics

This listing starts the 
same as listing 4.5.

New metrics 
begin here.
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INNER JOIN observation o ON m.account_id = o.account_id
    AND m.metric_time > (o.observation_date - metric_period)::timestamp    
    AND m.metric_time <= o.observation_date::timestamp
GROUP BY m.account_id, metric_time, observation_date, is_churn    
ORDER BY observation_date, m.account_id

After creating the new version of the dataset, you can run a cohort analysis to see how
it relates to churn. The listing version is --chapter 5 --listing 1 --version 5. Run
the Python wrapper program with those arguments to create the cohort plot. 

 Figure 7.7 shows the typical result of these analyses: a higher ratio of ads per post is
associated with higher churn, not higher retention. That result confirms the intuition
that seeing more ads exacts a price in terms of customer satisfaction (or, rather, con-
firms that the simulation was crafted so that more ad viewing reduces satisfaction).
But to see the negative effect of seeing more ads, you have to disentangle the metric
from the correlation with other behaviors that lead to customer satisfaction. Figure
7.7 also shows the correlations between the new adview_per_post metric and the orig-
inal ads per month and post per month. Ads per post has a weak positive correlation
with viewing ads and a moderate negative correlation with viewing posts. (You can
check by rerunning listing 6.2 on your new dataset.)

 The correlations in figure 7.7 are typical for many ratio metrics. It is natural for the
ratio to have positive correlation with the numerator metric because the ratio tends to
be larger when the numerator is larger. It is also normal for the ratio to have negative
correlation with the denominator metric because all else being equal, a larger denomi-
nator leads to a lower ratio. The precise results depend on the nature of the relationship
between the two metrics themselves, however. If you look at real case studies, you’ll find
results that vary widely from the typical scenarios shown in figure 7.3 and figure 7.7.

Metric correlations

Posts 57%

Ads per post 26% −40%

Ads Posts

The metric adview_per_post,
created by dividing ad views
per month by posts per
month, is associated
with .increasing churn

Ads per post is less correlated with ads and
posts than those metrics are with each other.

High churn in the first cohort represents
customers who don’t use the product at all.

3 4 5 6 70
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Figure 7.7 Simulation case study of the metric adview_per_post, churn, and correlation analysis
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7.1.3 Ratio metric case study examples

Ratio metrics are useful not only when you have a metric that you think causes disen-
gagement but also when you have two behaviors whose interaction is relevant to
customer engagement and churn. By interaction, I mean a situation in which the rela-
tionship between the two metrics matters—not whether the two metrics are big or
small, but which one is bigger or smaller than the other. This section contains a few
more examples from case studies to show this interaction.

 One scenario in which the ratio of two metrics matters deals with efficiency. Many
behaviors have a relationship in which one event leads to the other in a process, and
the more events that occur at the end of the process, the better. Figure 7.8 shows an
example for the SaaS service Broadly, which helps businesses manage their online
presence. Broadly keeps track of both customers and transactions, and transactions
always follow a customer signup, so it’s natural that numbers of customers and num-
bers of transactions are correlated (at 0.93). A high ratio of transactions per customer
is usually good for a business; it can also be relevant for engagement and success on
the Broadly platform. Figure 7.8 shows that businesses on Broadly with above-average
transactions per customer (score greater than 0.0) churn at a significantly lower rate
than businesses with below-average transactions per customer. Such businesses are
probably more successful, so they are less likely to be more engaged with Broadly,
leading to higher customer engagement and lower churn.

TAKEAWAY If one event is downstream from another in a process, the ratio of
a metric on the downstream event to a metric on the precursor event can be
viewed as an efficiency measurement for the process.

Metric correlations

Transactions 93%

Transactions per
customer

57% 79%

Customers Transactions

A higher ratio of
transactions per
customer is
associated with
reduced churn.

Transactions per
customer is still
moderately
correlated with
transactions and
customers but
less so than they
are with each other.

0.5 1.0 1.50.0−1.0 −0.5
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Figure 7.8 Case study showing a cohort analysis of the ratio metric transactions per customer for Broadly
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Figure 7.9 shows a case study of churn with another ratio from Broadly: the review-ask
acceptance rate. Asking for reviews from customers is one of the most important uses
of Broadly, and the rate at which customers accept such requests is a measure of effi-
ciency in using the product. This rate can also be seen as a success rate, because each
attempt at the activity either succeeds or fails. 

Figure 7.9 might surprise you because it shows that other than the bottom cohort, which
has the highest churn, increasing success rate shows a modest relationship with increas-
ing churn. This pattern is typical for a disengaging behavior (introduced in chapter 3).
The bottom cohorts are those with zero metrics because they don’t have one behavior
or both. But for customers who use the product, a higher review-ask acceptance rate is
associated with increased churn probability, which can be surprising, because you would
expect that more successful customers would churn less. But this result can happen with
products that have a specific purpose. If a customer is more successful faster, it could
hasten their churn. In this case, most businesses using Broadly need a certain number of
reviews to make themselves look good. When it has enough reviews, a business may be at
heightened risk of churn because it achieved its goal and no longer sees Broadly as
being useful. The highest risk of churn for Broadly’s customers comes when customers
don’t use the product much (the bottom cohorts).

TAKEAWAY The ratio of two event metrics, in which one event represents a
successful result of the first event, defines a success rate metric.

Klipfolio is an SaaS company that allows businesses to create online dashboards of
their key metrics. Figure 7.10 shows a case study of another kind of efficiency rate

Metric correlations

Review ask 89%

Ask success rate 32% 47%

Review accept Review ask

The first cohort
represents customers
who don’t use the
product much and
has the highest
churn rate.

The ask success rate is
not highly correlated
with asks for reviews or
the number of asks
accepted.

Among customers who
use the product at
least a moderate
amount, a high ask
success rate is
associated with a
moderately higher
churn rate. In some
situations, more
efficient customers
churn faster.

0.5 1.0 1.5 2.0−1.0 −0.5 0.0

Cohort average of ask_success_rate

C
o
h
o
rt

 c
h
u
rn

 r
a
te

Figure 7.9 Case study showing a cohort analysis of the review-ask acceptance rate for Broadly
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from Klipfolio: the number of dashboard edits per month divided by the number of
saves. In this case, the rate is probably better described as an inefficiency rate, because a
lot of editing without a lot of saving probably indicates that it takes the user more
effort to achieve acceptable results that they want to save. Figure 7.10 shows that cus-
tomers with this kind of inefficiency (a high score on the ratio) are, in fact, at higher
risk of churn than Klipfolio users who are more efficient in this regard.

I hope that these examples have given you some idea of the wide range of situations in
which you can use ratio metrics. They are powerful tools! The next sections teach you
some different, more specialized ratios. Near the end of the chapter, I return to the
question of when all these types of ratios are appropriate and how to find ratio metrics
that are useful for your particular situation.

7.1.4 Additional ratio metrics for the simulated social network

Before you move on, try a few more ratio metrics on the simulated social network. I’ll
say more about how to choose ratios when you have a lot of metrics in section 7.6. For
now, I’ll say only that the following group of metrics tests some interesting relationships:

 Replies per message
 Likes per post
 Posts per message
 Unfriends per new friend

All these metrics have prepared versions of listing 7.1 that you can run with the follow-
ing command in the Python wrapper program:

run_churn_listing.py --chapter 7 --listing 1 --insert --version  2 3 4 5

Metric correlations

Edits per month 93%

Edits per save

Saves per
month

Edits per
month

A high number
of edits per save
is probably a sign
of inefficiency.
Customers with
a high number
of edits per save
churn at a
higher rate. Editing and saving are

highly correlated, but
edits per save is not
strongly correlated
with either.

1 2 3 4 5

Cohort average of edits_per_save

C
o
h
o
rt

 c
h
u
rn

 (
re

la
ti
v
e
)

−33%−2%

Figure 7.10 Case study showing a cohort analysis of edits_per_save ratio for Klipfolio
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IMPORTANT You must have already calculated the underlying metrics for the
ratios, as explained in section 7.1.2. 

Then, as an exercise, check how these new ratio metrics relate to churn with addi-
tional versions of the metric cohort plots with the following command in the Python
wrapper program:

run_churn_listing.py --chapter 5 --listing 1 --version 11 12 13 14 15 16

You see more about how these additional metrics help you analyze and predict churn
in chapter 8.

7.2 Percentage of total metrics
A percentage is a specialized case of a ratio: a measurement of a part of something for
the numerator divided by the whole amount of that something in the denominator.
Percentage metrics can be used to make a more interpretable version of a ratio when
only two outcomes are possible. A set of percentage metrics can be used to analyze the
relationship between a group of correlated metrics in which each metric measures
one specific type of a general behavior.

7.2.1 Calculating percentage of total metrics

Figure 7.11 illustrates a fictional streaming service and a typical situation in which you
would want to make metrics that measure percentage of a total. The service has four
types of content: Action, Comedy, Drama, and Romance. For any product with one
main activity and subcategories, a count per period metric on each activity area is gen-
erally highly correlated with the other activity areas; customers who use the service a
lot tend to use it more in all areas. The way to understand whether the relative
amount of the activities is relevant to customer engagement and churn is to calculate
an additional ratio metric for each category: activity in that category divided by total
activity in all categories. As shown in figure 7.11, the total in all categories is exactly
the number of events in all the categories, and the percentages are the relative pro-
portions of activities in each category.

 Percentage of total is a special kind of ratio metric, in that it is calculated like any
other kind of ratio metric (refer to listing 7.1). What makes a percentage metric dif-
ferent is that the denominator in the ratio is a total of the other metrics that represent
the categories. To make these ratios, the only thing you need (in addition to listing 7.1)
is a suitable total to use as the denominator.

TAKEAWAY Percentage of total metrics reveals the relative balance between a
set of closely related, highly correlated activities.

You’ve been introduced to the idea of calculating a metric from other metrics in a
ratio calculation, and here is another area in which this trick comes in handy. If you
need to calculate a metric that is the total of different categories to use as the denom-
inator in a ratio, you can sum the values of all the metrics you are going to use in the
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numerator. This calculation strategy, summarized in figure 7.12, is similar to the calcu-
lation of a ratio metric in that the accounts and dates of calculation for the other met-
rics must be matched. One important difference is that the sum of other metrics can
operate on multiple other metrics. Figure 7.11 shows four metrics for four content
areas, and there could be more in a real streaming service. Other examples could be
total purchases in different categories and calls in different regions; see the example
in section 7.2.2.

 The SQL statement to calculate a total of other metrics is shown in listing 7.3,
which shows the total likes and dislikes for accounts in the churn simulation from the
GitHub repository. Figure 7.13 shows typical output. Note that listing 7.3 selects a
string aggregation of the metrics being summed for illustrative purposes. The SQL
statement for the total metric is simpler than the calculation in figure 7.12: the SQL
statement uses a SUM aggregation grouped by date and account when the metrics are
provided in a list. This approach is easier than using CTEs for the ratio metric
(implied by figure 7.12). The simpler approach is possible because the metric order
does not matter, and SQL provides a standard SUM aggregation.

 You may be wondering whether you can calculate the total of other metrics directly
by making a total of the events that go into the other metrics—making a SELECT to
count multiple event types rather than adding separate counts of the different event
types. The answer is that you can do that and get the same result. The advantage of
adding precalculated category metrics is that it can be much faster than recounting
the total underlying events if your dataset is big. That said, adding precalculated

Action

19%

Comedy

12%

Drama

42%

Romance

27%

Action

Comedy

Drama

Romance

Total

Different events are all part of the same category, like viewing different
types of videos. Each event can be counted in its own metric.

You can also count the total from all
categories, like the total number of videos.

Percentage of total metrics compares
each category metric with the total
across all categories.

Figure 7.11 The percentage of total metrics for a fictional content-streaming service



275Percentage of total metrics
Acct

ID Date

action_view_

per_month

1 1/1/20 3

1 2/1/20 5

2 1/1/20 6

2 2/1/20 6

3 1/1/20 4

3 2/1/20 2

Acct

ID Date

comedy_view

_per_month

1 1/1/20 7

1 2/1/20 8

2 1/1/20 2

2 2/1/20 1

3 1/1/20 NULL

3 2/1/20 4

Account ID Date Add Total

1 1/1/20 = 3+7 = 10

1 2/1/20 = 5+8+1 = 14

2 1/1/20 = 6+2+4 = 12

2 2/1/20 = 6+1+8 = 15

3 1/1/20 = 4+3 = 7

3 2/1/20 = 2+4+1 = 7

Metric for different types of video views are
already calculated in the database.

To calculate the total:
1. Select the metrics for

all accounts and
categories.

2. Group the metrics by
account and date.

3. Aggregate by
summing the category
metric values.

Acct

ID Date

drama_view_

per_month

1 1/1/20 NULL

1 2/1/20 1

2 1/1/20 4

2 2/1/20 8

3 1/1/20 3

3 2/1/20 1

Figure 7.12 Percentage of total metrics calculation

account_id metric_time metric_sum metric_total

1 4/5/20 224 + 46 270

2 4/5/20 17 + 38 55

3 4/5/20 242 + 46 288

4 4/5/20 41 + 254 295

7 4/5/20 99 + 10 109

The SELECT shows sum terms as a string for illustrative purposes.

The SUM
aggregation
result is the
value for the
new metric.

Figure 7.13 Output of running listing 7.3 on the default simulated dataset from the GitHub 
repository
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metrics introduces a dependency into the order of your metric calculation. You’ll
have to decide what makes the most sense in your particular case.

SELECT account_id, metric_time,
    STRING_AGG(metric_value::text,'+') AS metric_sum,     
SUM(metric_value) AS metric_total                 
FROM metric m INNER JOIN metric_name n 
    ON n.metric_name_id=m.metric_name_id           
AND n.metric_name in 
    ('like_per_month', 'dislike_per_month)     
WHERE metric_time BETWEEN '2020-01-01' AND '2020-02-01'
GROUP BY metric_time, account_id     

You should run listing 7.3 on the simulated dataset created with the code in this
book’s GitHub repository. If you are using the Python wrapper program, run it with
the following parameters:

--chapter 7 --listing 3

Your output won’t be exactly the same, because the simulated data is randomly gen-
erated. Note that listing 7.3 selects a string aggregation of the metrics being
summed for illustrative purposes. To calculate such a metric and save it in a data-
base, you would have to remove that part of the SELECT and select the metric’s ID in
an insert statement. 

 A prewritten SQL version of listing 7.3 in the listing code folder performs the
insert. (The insert version has the same path but a filename beginning with insert_7_3
instead of listing_7_3.) Run the insert SQL statement by adding the --insert flag to
arguments for the script that runs the listing; you’ll need the saved result to continue
with the examples. That listing shows you the SQL it uses but won’t print a result. You
should make your own SELECT statement to verify the result or run the metric_qa
code from chapter 3 (listing 3.6).  

 After saving the total metric, you still need to create the ratio metric that will be a
percentage of the total. To do so, use listing 7.1 (the ratio metric) again. An additional
version of listing 7.1 with the parameters is already prepared: the numerator metric is
the metric named dislikes_per_month, and the denominator is the new metric cre-
ated with the insert version of listing 7.3 (named total_opinions). Run that insert
statement by adding the arguments --version 2 --insert when you run listing 7.1.
All together, the arguments are as follows:

fight-churn/listings/run_churn_listing.py --chapter 7 --listing 1 --version 2 
--insert

Listing 7.3 Total of metrics

STRING shows metrics 
being summed for 
illustration.

Calculates the total with a 
GROUP BY aggregation

Uses an INNER JOIN; 
available metrics will 
be part of the sum.

Lists the metrics that 
contribute to the total

Aggregates the results 
by date and account
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7.2.2 Percentage of total metric case study with two metrics

After creating the total metric for total likes and dislikes in the simulation and a new
metric for the simulation customer percentage of dislikes, you should complete a new
churn cohort analysis for the metric. To perform the cohort analysis for the dislike
percentage, follow these steps:

1 Rerun listing 7.2 to export a version of the dataset to a .csv file with your new
metric using the arguments --chapter 7 --listing 2.

2 Rerun listing 5.1 to create the new cohort analyses using the version arguments
6, 7, and 8: --chapter 5 listing 1 --version 6 7 8. That code will run the
cohort analyses for three metrics: likes per month, dislikes per month, and dis-
like percent. All together, the arguments are

--chapter 5 --listing 1 --version 6 7 8.

Figure 7.14 shows a typical result of this analysis. The number of likes per month and
the number of dislikes per month are associated with reduced churn and correlated

A higher number of dislikes is also
associated with reduced churn.

A higher number of likes is strongly
associated with lower churn.

The numbers
of likes and
dislikes are
moderately
correlated.

A higher percentage of dislikes is strongly
associated with increased churn.
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Figure 7.14 Percent dislike simulation case study illustrating the use of a percentage of total metric
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with each other, but the dislike percentage shows increasing churn risk for a higher
percentage of dislikes. The result of this analysis is similar qualitatively to the analysis
of ad views presented in section 7.1.1. In that analysis, a behavior-reducing engage-
ment was correlated with a behavior that increases engagement, and a ratio metric
made this fact apparent. The difference is that, this time, you used a percentage rather
than a simple ratio.

 If you think that the results would not have been that different if you used the sim-
ple ratio (of dislikes and likes), you are right. So why bother with the percentage? The
reason I recommend using a percentage rather than a simple ratio in cases like this
one is interpretability. Because likes and dislikes form a category, it’s more intuitive to
describe this kind of relationship with a percentage. My advice is to use a percentage
ratio when the two metrics are related as parts of a whole (likes and dislikes, for exam-
ple) and to use a simple ratio when two metrics are not two parts of a whole (ad views
and posts, for example).

TAKEAWAY When two metrics are two parts of a whole, a percentage ratio is
more interpretable than a simple ratio.

A similar case study occurs for Broadly. Illustrated in figure 7.15, this case study
shows the results for the metrics customer promoter per month, customer detractor
per month, and percentage of detractors. A customer promoter event occurs when a
customer leaves a positive review, so this event is expected to provide value to a
business that uses Broadly and make the customer less likely to churn, which it
appears to do in figure 7.15. A detractor event occurs when a customer leaves a bad
review, which is expected to displease the business that uses Broadly, but it appears
to be associated with reduced churn as well. Figure 7.15 also shows the churn
cohort result for the percentage of detractors, which is the ratio made by dividing
the number of detractors by the total number of promoters and detractors. Higher
percentages of detractors are strongly associated with churn, and businesses with
the lowest percentage of detractors—around 2%—had virtually no churn during
the study period.
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7.2.3 Percentage of total metrics case study with multiple metrics

Percentage of total metrics is useful for making a ratio from two categories more inter-
pretable. But percentage of total metrics really shines when you have many subcate-
gories that together form a total. Figure 7.16 shows an example for Versature, an
integrated telecommunications provider. Versature provides service in four geograph-
ical regions, labeled 1 through 4 in figure 7.16. The correlation matrix in figure 7.16
shows that the numbers of calls per month in all four regions are moderately to highly
correlated.

 As a result of the correlation between the numbers of calls in the four regions, try-
ing to analyze churn by using simple count metrics tells you only one thing: more calls
by customers reduces churn. But the percentage of total metrics (shown on the right
side of figure 7.16) can provide some more information. In region 1, lowest churn
occurs when the percentage is high but not the highest. Region 1 has the most calls, but
when customers make calls only in region 1, those calls seem to lead to less engagement.
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Figure 7.15 Detractor percentage case study
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Regions 2 and 3 show a relationship to churn in which a moderate percentage of calls in
the region is optimal; either too few or too many lead to higher churn. 

 Also as shown in figure 7.16, the correlations between the percentage of total met-
rics in all four regions are weakly correlated. Because region 1 has the most calls over-
all, the percentage in region 1 shows weak to moderate negative correlation with the
other percentage metrics: a high percentage in region 1 generally leaves few calls in
the other regions. The other three regional percentages of total metrics are cor-
related weakly with one another and with the call amount metrics, indicating that
these metrics provide new information for understanding customer engagement and
churn (distinct from the information in the call amounts).

7.3 Metrics that measure change
So far, you have looked at measurements of customer behavior around the time the
measurements are made. But change in behavior can give you additional clues to
engagement. To understand how change in customer behavior relates to engagement
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Figure 7.16 Regional percentages case study for Versature
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and churn, you’ll create a few more metrics specifically for this purpose and then ana-
lyze the change measurements, using the same techniques you’ve already learned.

7.3.1 Measuring change in the level of activity

Because you’ve calculated metrics on sequences of dates, it’s easy to see whether the
behavior of a customer is changing by looking at their metrics and comparing the cur-
rent value with the previous value. If the metric has gone up, you know that the behav-
ior is increasing; if the metric has gone down, the behavior is decreasing. That result is
one reason why you calculate metrics at different points over time. But if you want to
understand how change relates to churn and engagement, you need to look at change
as another natural experiment and compare customers whose behavior has increased
with customers whose behavior has decreased. To do so, you need metrics that repre-
sent change; then you can apply the cohort analysis technique that you’ve learned. 

 A metric that represents change is a derived metric representing the change in a
primary metric you are interested in. Because you’ve already learned about making
metrics from other metrics, this idea should not seem as strange to you as it might
have before you picked up this book. Figure 7.17 illustrates a hypothetical scenario for
measuring change in the number of logins for two accounts and introduces the con-
cept of percentage change as a metric.
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DEFINITION The percentage change is a ratio that takes the change in a metric
over time and divides that change by the value of the metric at the start of the
period. 

Suppose that two accounts have different amounts of logins; one account logs in
much more than the other. Also suppose that both accounts’ logins per month are
increasing. If you look at how much the number of logins changes over time, you’ll
probably find that the size of the change is larger for the account that had more log-
ins to begin with. That is, the size of change in a metric is correlated with the level of
the metric. Because the size of change is often correlated with the starting level of a
metric, a simple difference is not the best metric for representing change. You can
see this result if you look at the change in the number of logins in a chart where
each account gets its own y-axis scale. The relative change can be seen as the same if
you allow each account its own scale. Because you’ve learned that using ratios is a
way to rescale metrics to emphasize relative amounts, you can probably see where
this example is going.

 This ratio calculation makes a measurement of change that is less correlated to
how high the level of the metric was at the beginning. Figure 7.17 shows that for those
two accounts, the percentage change is the same, which shows the similarity in their
increase despite the big difference in the starting points. Equation 7.1 shows the defi-
nition of the percentage change in a mathematical formula. 

            Percentage Change = (Equation 7.1)

In equation 7.1, Metric@start means the metric at the start of the measurement window,
and Metric@end means the metric at the end. Equation 7.1 also shows a simplification:
the percentage change is actually the ratio of the metric at the start to the metric at the
end, minus 1.0, because the fraction is separable into the ratio of the end metric to
the start metric, minus the ratio of the start metric to itself. This simplification is based
on the fact that any number divided by itself is 1.0.

TAKEAWAY Use percentage change metrics to see whether behavior has
changed. Do not include either the (old) metric start values or the absolute
change values in your analysis directly; those values are correlated with the
overall level of activity captured by the ending metric value.

To make this example more concrete, figure 7.18 shows the details of the calculation
of the percentage change as a metric. This figure continues the imaginary example of
logins from figure 7.17, with one important difference: like every other metric, this
one is calculated repeatedly on a sequence of dates. This type of calculation is some-
times called a rolling percentage change calculation. 

 In figure 7.18, a period of four weeks is used. For each week, the calculation
applies equation 7.1 on the metric for that week (as the end metric) and the metric

Metric@end Metric@start–
Metric@start

-----------------------------------------------------------
Metric@end
Metric@start
--------------------------- 1.0–=
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from four weeks earlier (as the start metric). As shown on the right of figure 7.18, the
resulting rolling percentage change measurements are not constant; they fluctuate,
depending on the precise ups and downs of the underlying metric. For the period of
illustration in which both metrics are fairly consistent, an increase in the four-week
percentage change ranges from around 5% to around 25%.

Figure 7.19 displays the sample output of the SQL statement to calculate percentage
change (listing 7.4). The figure shows that this metric has something new to this book:
negative values. If you were familiar with percentage change before reading this book,
that fact comes as no surprise. If the term is new to you, negative percentage change
means that the metric in question has gone down over the measurement period.
Recall from equation 7.1 that the percentage change is

when the end metric is less than the start metric and the fraction is less than 1.0, so
after subtracting 1, the percentage change becomes negative.
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Because the percentage change is a ratio metric minus 1.0, listing 7.4 is similar to cal-
culating a regular ratio metric. The differences between listing 7.4 and a regular ratio
calculation are

 The numerator and denominator are from the same metric instead of two dif-
ferent metrics.

 The denominator metric (the start value) is selected from sometime earlier
than the end value (four weeks, in the example). (This selection has to be
accounted for in both the JOIN and SELECT statements.)

 In listing 7.4 (the percentage change), the number 1 is subtracted from the
ratio in the final calculation.

WITH end_metric AS (                                    
    SELECT account_id, metric_time, metric_value AS end_value
    FROM metric m INNER JOIN metric_name n 
        ON n.metric_name_id=m.metric_name_id
    AND n.metric_name = 'new_friend_per_month'
    AND metric_time BETWEEN '2020-04-01' AND '2020-05-10'
), start_metric AS (                                       
    SELECT account_id, metric_time, metric_value AS start_value
    FROM metric m INNER JOIN metric_name n 
        ON n.metric_name_id=m.metric_name_id
    AND n.metric_name = 'new_friend_per_month'        
    AND metric_time BETWEEN                       
        ('2020-04-01'::timestamp -interval '4 week')
        AND ('2020-05-10'::timestamp -interval '4 week')
)
SELECT s.account_id, s.metric_time + interval '4 week',
    start_value, end_value,       
    COALESCE(end_value,0.0)/start_value - 1.0 
        AS percent_change     

Listing 7.4 Percentage change in a metric

account_id metric_date start_value end_value percent_change

1 4/5/20 9 11 22%

1 4/12/20 7 10 43%

1 4/19/20 7 10 43%

... ... ... ... ...

2 4/5/20 9 4 −56%

2 4/12/20 11 1 −91%

2 4/19/20 10 NaN −100%

The ratio
percentage
change result is
the value for the
new metric.

The SELECT shows the start and end value
of the underlying metric for illustration.

Figure 7.19 Output of running listing 7.4, showing negative results

This CTE selects all 
the metrics for the 
numerator.

This CTE selects all 
the metrics for the 
denominator.

Uses the same metric for both 
numerator and denominator

Offsets the dates for 
the denominator by 
the change period

Uses the
me from
he more

recent
etric for
the ratio

The percentage change 
according to equation 7.1
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FROM start_metric s LEFT OUTER JOIN end_metric e     
    ON s.account_id=e.account_id
    AND e.metric_time
        =(s.metric_time + interval '4 week')   
WHERE start_value > 0     

Also note that listing 7.4 selects the start and end values used in the calculation for
illustrative purposes. If you calculate the percentage change as a metric to save in
the database, you have to leave out the illustration columns and include an INSERT
statement with a metric ID. You should run listing 7.4 with the Python wrapper pro-
gram in the usual way to see the output like figure 7.19 and then rerun listing 7.4
with the --insert flag to save it to the database like this:

fight-churn/listings/run_churn_listing.py --chapter 7 --listing 4 --insert

You may be wondering whether it would make more sense to use start_value as the
second argument in the COALESCE in listing 7.4 so that the result of the calculation
returns 0 when end_value is null. But note that start_value has to be greater than 0
due to the WHERE clause. Then, if there is no end_value, the change is defined –100%
because you went from something (the nonzero start_value) to nothing, so that the
COALESCE around the end_value gives the correct result.

 You should run a cohort analysis on your new metric for percentage change in new
friends. The steps are similar to those you saw in section 7.1:

1 Rerun listing 7.2 to reexport the dataset, including the new metric.
2 Run listing 5.1 with the argument --version 9 to plot the cohort analysis of

percentage change in new friends. All together, the arguments are

 --chapter 5 --listing 1 --version 9

Figure 7.20 shows a typical result for this analysis. Cohorts with a significant drop in
new friends per month are found to be at elevated risk of churn.

7.3.2 Scores for metrics with extreme outliers (fat tails)

A problem with percentage change metrics is that these metrics can have extreme val-
ues. This problem is not apparent in the simulated data because it tends to be less
extreme than real human behavior. Actually, any ratio can have extreme values when
the denominator is small (less than 1) because then the value of the ratio becomes
quite large. But for most common ratios, this problem doesn’t exist because things
like unit costs and efficiency measurements such as transaction per customer are con-
strained by the nature of the business, and percentages must be between 0% and
100% by design. When a customer has a low value in a metric, and their next measure-
ment is large, the percentage change can be huge. But if a customer goes from a high
metric value to zero (or near zero), will the metric go extremely negative? Not quite:

LEFT OUTER JOIN; if the 
end metric is NULL, the 
change is –100%.

The JOIN adjusts for the 
offset between the start 
and end.

Guards against 
divide-by-zero 
errors
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the lowest possible percentage change measurement is –100% because that’s the per-
centage change when any nonzero metric goes to zero. 

 Figure 7.21 shows measurements of the distribution of percentage change metrics
from the social network simulation and from the case study of Versature. To repro-
duce the statistics for the case study, use the Python wrapper program as follows:

1 Rerun listing 7.2 to export a version of the dataset to a CSV file with your new
metric with the arguments --chapter 7 --listing 2.

2 Rerun listing 5.2 to save a table of the dataset summary statistics with the argu-
ments --chapter 5 --listing 2 --version 2.

A large decline
in the number
of new friends is
a significant
churn risk.

Customers with zero
new friends per
month in both past
two months have zero
change but high
churn risk. This
contributes to the
high risk in the
fourth cohort.
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Figure 7.20 Simulation percentage change in friends per month for the churn cohort case study

Metric

%

Non-

Zero mean skew min 1% 5% 10% 25% 50% 75% 90% 95% 99% max

Simulation % change:
new friends per month,

4 weeks 70% 8% 5.2 −100% −78% −50% −36% −6% 0% 5% 50% 100% 233% 1200%

Versature % change in
calls, 12 weeks 39% 89.9 −100% −83% −54% −39% −17% 0% 25% 71% 123% 423% 117150%

The minimum percentage change is
− 00%, which is a customer who used1

the product and then stopped completely.

The maximum percentage change can
be large when a customer had a small
value at the start of the measurement.

The skew on percentage change
metrics can be large.

Figure 7.21 Versature percentage change in calls statistics
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Your results will include the stats from the simulation metric percentage change in
new friends shown in the first row of figure 7.21. The values from the simulation
aren’t too extreme, because the percentage change is for a four-week period, and the
simulated customers don’t change that much. Still, the maximum is 1,200%, indicat-
ing that at least one customer went from one new friend per month to 12 new friends
per month; the minimum is –100%, as promised. 

 The Versature case study metric is more like what you should expect in real cus-
tomer data: the minimum is also –100%, and the maximum is 117,150%. That’s an
11,000 times increase! Somewhere in the dataset is a customer who went from one call
per month three months ago to 11,715 calls 12 weeks later—an extreme case of a big
customer that started the service at the start of the percentage change measurement.
The 99th percentile of the change is 423%, meaning that 99% of the customers had
increases less than 4.23 times.

 Another important point to note is that the median change is 0% (the 50th per-
centile shown in the 50% column in figure 7.21). About as many customers increased
their number of calls as decreased their number of calls. This result usually occurs for
a percentage change metric. You may not realize that fact if you look at the average,
which is usually greater than 0%. This is the case for both the simulation percentage
change metric and Versature’s percentage change metric in figure 7.20. The reason
that the average is greater than 0% when equal numbers of customers have positive
and negative change metrics is that the positive percent change measurements may be
much greater in magnitude than negative percent change measurements.

 Something else to notice in figure 7.21 is the skew around 5 for the simulation and
nearly 90 for the real data. As you may recall from chapter 5, skew means that most of
the metric values are packed together, but a few are way out there. A skew of 5 quali-
fies as moderately skewed; a skew of 90 is highly skewed. When a metric is highly
skewed, you should turn it into a score to make it easier to understand your cohort
analysis (see chapter 5). 

 But there is a problem. You can’t use the skewed metric version of the scoring
transformation if a metric is zero or negative, but percentage change is often zero and
negative. To solve this problem, you can use another scoring formula, which I call the
fat-tails formula because it transforms a metric into a score when there are extreme
outliers in both negative and positive directions. The condition of having both posi-
tive and negative extreme values is called fat tails because tails refer to the extremes of
the distribution. When a distribution is normal or has thin tails, the most extreme val-
ues aren’t too extreme relative to the middle of the distribution. If the distribution of
a metric has fat tails, the extreme values are farther from the middle of the range, and
there are more extreme values.

 Equation 7.2 shows the fat-tails score formula:
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where

                     (Equation 7.2)

Equation 7.2 has the same format as the score formula in chapter 5 (equation 5.1):
you are going to transform the metric and then subtract the mean and divide by the
standard deviation of the transformed metric. In equation 7.2, μm ′ stands for the
mean of the distribution of the transformed metric m ′, and σm ′ stands for the standard
deviation of the transformed metric. 

 The metric transformation in the fat-tails score formula is only a little bit different
from the regular score formula: the second part of equation 7.2 says that the trans-
formed metric m ′ is created by taking the logarithm of the original metric m plus the
square root of the original metric squared plus 1. Recall that in the chapter 5 score
formula, you used the logarithm of the original metric plus 1 (without squaring or tak-
ing the square root).

 The fat-tails score formula works for negative values because when the original
metric m is negative, the term in the square root is always positive and a little bit
greater in absolute value then the negative term. Negative values end up as small num-
bers closer to zero, and positive values get pushed out. After applying the log function,
subtract the mean and divide by the standard deviation of the transformed variable.

  The second half of equation 7.2 with the logarithm is also known to scientists and
mathematicians as the inverse hyperbolic sine transform, which is a mouthful that you
don’t have to remember. This transform is used in certain types of engineering and
geometry calculations. Regardless of what you call it, the fat-tails score transform is a
great trick for transforming metrics with extreme values.

TAKEAWAY Use the fat-tails transformation to create scores from metrics with
extreme values that are both positive and negative.

Listing 7.5 updates listing 5.3 to include the fat-tails score transform. (I skipped this
added complication in chapter 5 because we weren’t looking at metrics that needed
it.) The expanded listing does all the same things, and it makes an additional check
for skewed columns with negative values. If there are any such columns, the score for-
mula defined by equation 7.2 is applied, in addition to the regular score transforma-
tions for skewed and nonskewed columns.

NOTE Another test for fat-tailed metrics is to check for a high value on the
statistic called kurtosis, a measurement designed to detect fat-tailed distribu-
tions. I am omitting it for simplicity because in churn cases, the fat-tailed met-
rics are also skewed.

score metric( ) m′ μm′–
σm′

-------------------=

m′ m m2 1++( )ln=
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import pandas as pd
import numpy as np
import os

def transform_skew_columns(data,skew_col_names):    
    for col in skew_col_names:
        data[col] = np.log(1.0+data[col])     

def transform_fattail_columns(data,fattail_col_names):   
    for col in fattail_col_names:         
        data[col] = np.log(data[col] + 
                    np.sqrt(np.power(data[col],2) + 1.0))    

def fat_tail_scores(data_set_path, 
                    skew_thresh=4.0,**kwargs):    

   churn_data = 
       pd.read_csv(data_set_path,index_col=[0,1])     
   data_scores = churn_data.copy()
   data_scores.drop('is_churn',inplace=True, axis=1)

   stat_path = data_set_path.replace('.csv', '_summarystats.csv')
   assert os.path.isfile(stat_path),'You must running listing 5.2 first to 

generate stats'
   stats = pd.read_csv(stat_path,index_col=0)
   stats.drop('is_churn',inplace=True)

   skewed_columns=(stats['skew']>skew_thresh) & (stats['min'] >= 0)
   transform_skew_columns(data_scores,skewed_columns[skewed_columns].keys())

   fattail_columns=(stats['skew']>skew_thresh) 
       & (stats['min'] < 0)          

   transform_fattail_columns(data_scores,
                             fattail_columns[fattail_columns].keys())

   mean_vals = data_scores.mean()              
   std_vals = data_scores.std()
   data_scores=(data_scores-mean_vals)/std_vals
   data_scores['is_churn']=churn_data['is_churn']

   score_save_path=data_set_path.replace('.csv','_scores.csv')
   data_scores.to_csv(score_save_path,header=True)

    print('Saving results to %s' % score_save_path)
    param_df = pd.DataFrame(
        {'skew_score': skewed_columns,     
         'fattail_score': fattail_columns,
         'mean': mean_vals,
         'std': std_vals}
    )

Listing 7.5 Scoring metrics with fat tails

Wraps the skewed 
data transform 
from listing 5.3

The transform for 
skewed scores

A new transform 
for fat-tailed data

Loops
ver all

olumns
ith fat

tails

Applies the fat-tails 
score formula 
(equation 7.2)

Uses kwargs to 
ignore the default 
listing parameters

Most of
this code

is the
same as

isting 5.3.

Fat-tails score when 
skew is high and negative 
values are present

This rescaling is the 
same as listing 5.3.

Saves what columns are 
transformed and the 
parameters
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    param_save_path=data_set_path.replace('.csv','_score_params.csv')
    param_df.to_csv(param_save_path,header=True)
    print('Saving params to %s' % param_save_path)

You can try listing 7.5 on your own data by making the following calls to the Python
wrapper program:

1 If you have not done so already, run listing 7.4 with the --insert flag to save
the new metric.

2 Rerun listing 7.2 to recreate your saved dataset, using the arguments --chapter 7
--listing 2. This dataset includes your new percentage change metric.

3 Run listing 7.5 to create the dataset of scores, using the arguments --chapter 7
--listing 5.

4 Rerun listing 5.2, version 2, to check the statistics on the scores, using the argu-
ments --chapter 5 --listing 2 --version 2.

Figure 7.22 shows the analysis of the percentage change in calls with data from Versat-
ure. For this case study, the metric is the percentage change in the number of calls per
month, measured over the past 12 weeks. The cohort with the greatest reduction in
calls shows an elevated churn risk. Because the metric is measured over a longer
period than the lead time before churn, with which the observation is made, this indi-
cator probably is not a churn leading indicator, as discussed in chapter 4. That is, if
two weeks before a customer comes up for renewal, you see that their use is way down
from three months earlier, there is a good chance that they have already made up
their mind to churn. On the other hand, with two weeks left before the actual
renewal, there may be time to resolve an issue, if there is one.

A large decline in
the amount of local
calls is a significant
churn risk.

Customers with zero
calls per month in both
of the past two months
have zero change but
high churn risk. This
contributes to the high
risk in the third cohort.
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Figure 7.22 Churn cohort case study for Versature’s percentage change in calls
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7.3.3 Measuring the time since the last activity

Percentage changes are a good way to know whether a user’s behavior has dropped or
increased. A useful related measurement is time since last activity. Time since last
activity is not a measurement of change in behavior, but it relates how a customer’s
current behavior compares with their past behavior. In particular, time since last activ-
ity distinguishes customers who are newly inactive from those who may have been
inactive for a long time.

 Figure 7.23 illustrates the concept with a simple example on the event series for
one account. Any time you calculate the metric, time since last activity is the time dif-
ference between the most recent event before the measurement date and the mea-
surement date. If a customer has an event on the day of the measurement, the metric
is zero. If the customer has no events for an extended period, the metric increases by
one every day until another event occurs.

Like all the metrics we use, time since last activity would be tedious to calculate by
hand. Fortunately, that calculation isn’t hard to make with SQL CTEs and aggrega-
tions. Figure 7.24 shows a sample of the typical output from SQL that calculates the
days since the last event. Note that this output includes the date of the last event in the
SELECT statement for illustrative purposes.

 Listing 7.6 gives the SQL program to calculate the time since the last event. The
basic strategy is to use a MAX aggregation on the event times (constrained to events
before the measurement date) to find all the most recent events. The most recent
event dates are stored in a CTE. After that, the metric is the difference between that
event date and the measurement date. The only thing that makes this calculation a bit

Account 1
events

Time

Date

2
-J

a
n

3
-J

a
n

4
-J

a
n

5
-J

a
n

6
-J

a
n

7
-J

a
n

8
-J

a
n

9
-J

a
n

1
0
-J

a
n

11
-J

a
n

1
2
-J

a
n

1
3
-J

a
n

1
4
-J

a
n

1
5
-J

a
n

1
6
-J

a
n

1
7
-J

a
n

1
8
-J

a
n

1
9
-J

a
n

2
0
-J

a
n

2
1
-J

a
n

2
2
-J

a
n

Event

Days since event 1 8

The number of
days since the
last event on
January 8 is .1

With no new events, on
January 5 it has been 8 days1

since the last event.

With an event on the
same day, the days since
the last event is zero.

� � � � � �

0

Figure 7.23 Measuring the time since the last activity: an event
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complicated is that, as for all the metrics, the calculation is performed simultaneously
for a series of measurement dates. The query is not finding only one last event date
per account but a whole series of last event dates for every account. 

 You should run listing 7.6 on the simulated dataset, following the usual pattern with
the Python wrapper program, and confirm that the output looks similar to figure 7.24.
Also following the usual pattern, to insert the metric in the database, you need to
remove the illustrative (extra) column and include the metric name ID in an insert
statement. The GitLab repository has a version of the listing that you can run by passing
the --insert flag as an argument to the program that runs the listings as follows:

fight-churn/listings/run_churn_listing.py --chapter 7 --listing 6 --insert

WITH date_vals AS (              
  SELECT i::date AS metric_date
    FROM generate_series('2020-05-03', '2020-05-10', '7 day'::interval) i
),
last_event AS (                
    SELECT account_id, metric_date, 
        MAX(event_time)::date AS last_date     
    FROM event e INNER JOIN date_vals d
    ON e.event_time::date <= metric_date   
    INNER JOIN event_type t 

Listing 7.6 SQL for measuring time since an event

account_id metric_date last_date days_since_event

0 5/3/20 2/14/20 79

0 5/10/20 2/14/20 86

1 5/3/20 5/3/20 0

1 5/10/20 5/10/20 0

2 5/3/20 3/20/20 44

2 5/10/20 5/6/20 4

3 5/3/20 5/3/20 0

3 5/10/20 5/10/20 0

The days since the
last event is the value
for the new metric.

The SELECT shows the last event
date for illustrative purposes.

Figure 7.24 Output of running listing 7.4. For each account and date, the date of the last event is 
selected for illustration; the metric value is the number of days from the last event to the date of the 
measurement.

CTE for a sequence of dates on 
which to calculate the metrics

CTE for a temporary result: 
the date of the last event

SELECTs the last date 
with a MAX aggregation

Use the date of the last event 
up to each measurement date.
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        ON t.event_type_id=e.event_type_id
    WHERE t.event_type_name='like'          
    GROUP BY account_id, metric_date       
)
SELECT account_id, metric_date, 
last_date,                             
metric_date - last_date AS days_since_event     
FROM last_event

After running the version of listing 7.6 that inserts the metric, you can regenerate the
dataset and run a cohort churn analysis on it. All together, the runs of the Python
wrapper program are

1 Run listing 7.6 with the insert flag to save the new metric: --chapter 7 --list-
ing 6 --insert.

2 Rerun listing 7.2 to reexport the dataset: --chapter 7 --listing 2.
3 Run a new cohort analysis using listing 5.1, version 10: --chapter 5 --listing

1 --version 10.

Figure 7.25 shows the output of the cohort analysis. A gap of more than around five
days since the last new friend event is associated with an increasing risk of churn. The
increase in risk is gradual but becomes fairly significant for the cohort with the longest
time since the event.

 Figure 7.26 shows a churn cohort analysis for the number of days since the last
dashboard edit for Klipfolio. In the real case study, days since last edit is a significant

SELECTs the event 
to measure

Aggregates over each 
account and date

The date of the last event 
is selected for illustration.

The result is the number of
days since the last event.

A large number
of days since
having a new
friend is
strongly
associated with
higher churn.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1050 15 20 25 30 35

Cohort average of day_since_newfriend

C
o
h
o
rt

 c
h
u
rn

 r
a
te

Figure 7.25 Case study of churn and days since the last new friend event
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predictor of churn risk: risk increases substantially over the first month. Unlike in the
simulated data, the risk increases only modestly in the cohorts with the longest time
since activity.

 When a customer has been inactive for a long time, they can forget about the sub-
scription. At that point, some practitioners argue, the best churn-reducing strategy is
to do nothing and let sleeping dogs lie by not reminding the customer that they have
the subscription. It is a plausible hypothesis, although a somewhat dubious business
strategy, to depend on people forgetting about you to boost your retention. In any
event, figure 7.26 does not suggest that churn risk decreases when the time since the
last action gets longer. The question of whether interventions with people that far
gone have positive return on investment is one that must be answered empirically by
any company that is considering such an approach.

7.4 Scaling metric time periods
In chapter 3, when you learned how to calculate behavioral metrics, I recommended
that you scale the metric measurement window for simple metrics based on the fre-
quency of the event, using longer measurement windows for rarer events. That advice
is good, but it introduces a couple of problems:

 Choosing different measurement windows for different events is going to be
confusing.

 If you use a long measurement period for rare events, you have to wait a long
time to observe your customers properly. This problem is compounded if you
want to make percentage change metrics like the ones introduced in section 7.3.

A large number
of days since
making an edit
is strongly
associated with
higher churn.

Churn is extremely
low among customers
who have made
an edit within the
past couple of days.
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Figure 7.26 Case study of churn and days since last dashboard edit for Klipfolio



295Scaling metric time periods
This section teaches scaling techniques that address both these issues by scaling mea-
surements from one time frame to another. These techniques are similar to the scal-
ing of churn rates you learned in chapter 2, but they work a bit differently for metrics
than for churns.

7.4.1 Scaling longer metrics to shorter quoting periods

Using different measurement periods for different metrics can be confusing, espe-
cially if you have a lot of events. It’s easier to compare behaviors when all the measure-
ments are on the same scale.  

WARNING Reporting a lot of metrics measured on different time scales will
confuse people.

How can you reconcile that advice with the advice in chapter 3 to use long time
frames to measure rare events? It’s easy: you can describe your behavioral measure-
ments on a different time scale than the window you used to make the measurement.
Figure 7.27 illustrates this concept. In essence, you are going to describe the metric as
an average count of something per month rather than a total count measured over
multiple months.

You can measure behavior over a one-year period, for example, but convert it to a
monthly value by dividing the number you measured over the year by 12, because
the average number of events per month is the number of events per year divided by
12. This idea is the same as scaling churn measurements (chapter 2) but with sim-
pler math. You don’t need any complicated reasoning about survival rates to scale
standard behavioral metrics in time. This time, the technique is straight multiplica-
tion and division.
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2 events in 6 months is equivalent to
an average of 0.33 events per month.

Figure 7.27 Quoting a long-period count metric as a short-period average
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TAKEAWAY Do not confuse the time period over which you make an average
behavioral measurement with the time period with which you choose to
describe the behavior. The time periods don’t have to be the same. You can
describe all your metrics on one time scale, even if the metrics are measured
over different-length time windows.

Equation 7.3 shows the multiplication and division necessary to convert an event
count taken during any time period of measurement (TMeasure) to an average at any
other time period for describing the behavior (TDescribe).

                      (Equation 7.3)

Plugging the formula into the simple example of annual measurement with a monthly
description, the ratio is four weeks description period divided by 52 weeks measure-
ment period, or one-thirteenth. Or if you like to do this calculation in days, that’s 30.4
(the average number of days in a month) divided by 365 days in a year, or one-thirteenth.
Remember that you have to use the same units for the time period of both the descrip-
tion and the count, whether those units are days, months, or years.

 Better yet, how about calculating the scaling on the fly with your measurement?
Listing 7.7 shows an event per period behavior measurement (like listing 3.2) that
automatically scales the measurement to a monthly description period average.

 Equation 7.3 also applies to metrics that are totals of event properties, such as the
total time spent on some activity. But scaling is not necessary; in fact, it’s incorrect if
the metric is an average of an event property. If the events are in-app purchases, for
example, and you want to make a metric of the average purchase amount, this metric
doesn’t depend on the length of time for which you make the measurement because
the average of an event property is defined as a per-event measurement, even though
you can measure it over a longer time frame. 

WARNING Do not time-scale metrics that are averages of the value of event
properties. Only metrics that are counts or sums should be scaled.

You should run listing 7.7 by using the Python wrapper program as usual (with the
arguments --chapter 7 --listing 7). Figure 7.28 shows a typical result. 

WITH date_vals AS (                       
     SELECT i::timestamp AS metric_date 
     FROM generate_series('2017-12-31', '2017-12-31', '7 day'::interval) i
)
SELECT account_id, metric_date,  COUNT(*) AS total_count,
(28)::float/(84)::float * COUNT(*) AS n      
FROM event e INNER JOIN date_vals d
ON e.event_time <= metric_date 

Listing 7.7 Scaling a number of events per account metric

AverageTDescribe
TDescribe
TMeasure
-------------------CountTMeasure=

This SQL is mostly the 
same as listing 3.2.

The count is scaled from an 84-day 
to 28-day period (equation 3.1).
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AND e.event_time > metric_date - interval '84 day'        
INNER JOIN event_type t ON t.event_type_id=e.event_type_id
WHERE t.event_type_name='unfriend'
GROUP BY account_id, metric_date
GROUP BY account_id, metric_date;

Note that listing 7.7 includes a total count column that is shown for illustrative pur-
poses. To insert metrics like this one into the database, you need to remove that col-
umn, replace it with a metric name ID, and add an INSERT statement. As usual, the
repository also contains an insertable version of the metric that you can run by adding
the --insert flag to the execution command as follows:

fight-churn/listings/run_churn_listing.py --chapter 7 --listing 7 --insert

After you’ve inserted the unfriend_per_month metric from listing 7.7 into the data-
base, perform the following steps to check your result:

1 Regenerate the dataset by rerunning listing 7.2 with the arguments: --chapter 7
--listing 2.

2 Rerun the dataset summary statistics by rerunning listing 5.2 with these argu-
ments: --chapter 5 --listing 2 --version 1.

Figure 7.29 shows a typical result for the summary statistics of the original unfriend_
per_month metric and the new averaged unfriend per month measured over 84 days
(unfriend_28day_avg_84day_obs). The average covers 50% of accounts with a non-
zero measurement, but the original count covered only 26% of accounts. At the same
time, the mean value and the percentiles are similar, not three times larger, because
the metric was measured over a time frame three times as long. In fact, the new metrics

Counts over 
84 days

account_id metric_date total_count

unfriend_28day_

avg_84day_obs

0 4/1/20 2 0.67

1 4/1/20 4 1.33

5 4/1/20 1 0.33

8 4/1/20 2 0.67

10 4/1/20 2 0.67

14 4/1/20 1 0.33

The total count divided
by 3 (84/28) is the
value for the metric.

The SELECT shows the total
count for illustrative purposes.

Figure 7.28 Sample output from listing 7.7
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are somewhat lower: not only is the mean lower, but so are the quantiles of the distri-
bution. Think about why that is. (You’ll find out the answer in section 7.4.2.)

 Another benefit of using metrics with longer observation periods than description
periods is that metrics estimated this way are robust when temporary changes in cus-
tomer activity occur. If you measure some behavior with a one-month period, for
example, a customer taking a two-week vacation can appear to have a low level of activ-
ity. Similarly, some customers can go through a brief and intense period of activity. In
either case, if you measure the average behavior over a three-month period, these
temporary variations won’t make as much of an impact.

 But one downside of using long observation periods for metrics is that the metric is
no longer up to date as to the latest changes in behavior. With a long observation
period, when behavior changes, it takes longer for the change to register in the met-
ric. The best way to handle this situation is to use the long-observation window metrics
for most behaviors in combination with a few metrics that measure percentage change
in behaviors. That way, you have stable estimates of the average level of behavior but
also a few indicators that will rapidly reveal recent changes.

 One other important problem with measuring behavioral metrics over long time
frames is taking measurements of new accounts. The problem exists for any measure-
ment window, but it is exacerbated when the measurement window is long. If an
account has been using the service for only a short duration (a tenure shorter than the
measurement period), the measurement is not valid. Suppose that an old customer has
only one login per month, so they are a light user of the product and at risk for churn. A
new customer who joined yesterday can also have only one login in the past month, but
that’s not the same as the old customer having only one login per month. 

NOTE Event count measurements made on new customers are not compa-
rable with normal accounts that have been around for the entire measure-
ment period. 

This situation typically applies to customers measured at the time of their first renewal.
For a monthly renewal subscription, the first measurement of customers in your dataset

metric count
non-

zero mean std skew min 1pct 25pct 50pct 75pct 99pct max

unfriend_per_month 25168 26% 0.31 0.56 1.78 0 0 0 0 1 2 4
unfriend_28day_avg
_84day_obs 25168 50% 0.24 0.29 1.27 0 0 0 0.33 0.33 1 2

The metric with the long
observation window produces
nonzero results for more accounts.

For the 84-day metric, the minimum value
above zero is 0.33, corresponding to one
event in the 84-day observation period.

Figure 7.29 Statistics comparing rare simulation events measured at short and long 
time periods
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is made after two to three weeks, due to the lead time used in observing customers
before renewal (as described in chapter 4). If you use four-week metric measurement
periods, new customers had only one-half to three-quarters of the full period, and
their metrics are probably underestimated. This problem is amplified if you use met-
ric observation periods longer than one month. The first renewal is critical, so you
don’t want to make this kind of mistake.

7.4.2 Estimating metrics for new accounts

As described previously, any metric you measure over a period of several weeks or
months is not valid for new accounts that have not been using the product that long.
Fortunately, you have a straightforward way to handle this problem that is consistent
with the averaging technique you learned in section 7.4.1: you can estimate an average
by using a shorter time period than you are describing the average for. This technique
is similar to calculating an average over a long time period and describing it as a
shorter time period but in reverse. Figure 7.30 illustrates the concept.

The idea is as follows: Suppose that an account has been on a product for two weeks
and has 10 logins per month. You don’t know how many logins it will have after four
weeks, but you can make an educated guess—after four weeks, there should be twice

Customer 2
sign-up: 1-Jan

Time

Customer 3
sign-up: 10-Jan

Customer 4
sign-up: 28-Jan

Customer 1 Customer 2 Customer 3 Customer 4

Sign-up date 15-Dec 1-Jan 10-Jan 28-Jan

Tenure on 29-Jan 45 28 19 1

# of events in history 21 11 9 1

Scaling factor 28/45 = 0.62

Events per month 21*0.62 = 13

Customer 2 has
tenure of 28 days,
so events per month is
calculated without scaling.

Customer 3 has
tenure of 9 days,1

so events per month
is scaled up.

Customer 4 has
tenure of day,1

so events per month
is not calculated.
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sign-up: 15-Dec

Time
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so events per month
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Figure 7.30 Estimating long-period metrics with short histories
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as many logins as after two weeks. This idea can be extended to scale a measurement
over any shorter time period to make an estimate of what the average measured over a
longer time period would be.

 One important caveat is for new customers: if an account has one login after one
day, does it make sense to estimate that it will have 28 logins after 28 days? Superficially,
yes, but in practice, no. The problem is that if you estimate starting from a short length
of time, such as one day, the estimate will be unstable and jump around. Suppose
that after one day and one login for a customer, you estimate 28 logins per month.
But on day two, the customer doesn’t log in, so your estimate becomes 14. (One login
in two days implies 14 logins in 28 days.) That activity is a big jump in the estimate
of logins_per_month metric in one day. That kind of volatility is normal in estimates
made from only a few days’ worth of data; it usually takes at least 5 to 10 days of data for
this kind of estimate to settle down. In chapter 3, you learned that most customer
behaviors follow weekly cycles, so in general, you should use the following rules:

 Do not make estimates for one-month averages until you’ve observed at least
one week of behavior, and preferably two. 

 Similarly, if you are making averages to estimate quarterly or annual counts and
totals, you should not estimate a metric until you’ve observed a month or more
of the behavior of interest.

Equation 7.4 provides the math and logic for estimating count metrics for new
accounts, which also includes the kind of scaling of an average count that you learned
in section 7.4.1. The term CountTmeasure in equation 7.4 refers to the actual trailing
count of events, and there are three time-period parameters in equation 7.3:

 Tmin is the minimum tenure for an account to receive an estimate of this met-
ric (one to two weeks for a monthly metric and two to three months for an
annual metric).

 Tdescribe is the time period that’s used to describe the average (four weeks).
 Tmeasure is the time period that’s used to make the measurement (for an old

customer).

Also in equation 7.4, there are three cases based on the subscriber tenure:

 If the tenure is less than Tmin, no metric value is calculated.
 If the tenure is greater than Tmin but less than the time period for describing

the metric, the count is scaled up by the ratio of the description period to the
account tenure. This count is the estimated average.

 If the tenure is greater than the description period, the count is scaled down by
the ratio of the description period to the measurement period. This count is an
average calculated over a longer period.

If tenure < Tmin 

AverageTDescribe NULL=
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COU
nu
Else If Tmin <= tenure <= Tdescribe

Else

                      (Equation 7.4)

The third case in equation 7.4 is the same as in equation 7.3. This equation adds the
logic in the second case, using account tenure. 

 Listing 7.8 gives the SQL that implements equation 7.4 as a metric. This metric is a
little different from any you’ve seen before: it uses the account tenure metric (assumed
to be saved in the database already), and, at the same time, it makes a count of events.
The saved account tenure metric defines the sequence of dates for which the new event
count metric will be calculated, and the tenure value enters into the logic and scaling.

 You might expect there to be an IF or CASE statement in listing 7.8 to implement the
case logic from equation 7.4. Instead, this logic is implemented in two separate places:

 The case that there should be no result for accounts with tenure below the min-
imum is implemented with the WHERE clause constraint that the tenure metric
value must be above a minimum.

 The difference between the cases in which the tenure is below the description
period and those in which the tenure is above the description period is imple-
mented by using the LEAST function in the denominator of the scaling:
– When tenure is below the description period, it is the result of the LEAST func-

tion, and the tenure is the denominator for the scaling (the second case).
– When the tenure is above the description period, the description period is

the result of the LEAST function, and the description period is the denomina-
tor of the scaling term.

This logic works as long as the description period is longer than the minimum tenure,
which should be the case when you use this kind of metric.

SELECT m.account_id, metric_time, 
    m.metric_value AS tenure_metric,      
    COUNT(*) AS count_unscaled,     
    (28/ LEAST(84,m.metric_value))  AS scaling,       
    (28/ LEAST(84,m.metric_value))  * COUNT(*) 
        AS message_permonth_84day_avg        
FROM event e INNER JOIN metric m         
    ON m.account_id = e.account_id     
    AND event_time <= metric_time

Listing 7.8 Scaled count metric with new account estimates

AverageTDescribe
Tdescribe

tenure
-----------------------CountTmeasure=

AverageTDescribe
Tdescribe
Tmeasure
------------------------CountTmeasure=

SELECTs the previously 
calculated tenure metric

NTs the
mber of

events
Calculates the scaling 
multiplier (equation 3.2)

The scaling multiplied 
by the raw count

INNER JOIN calculates 
only the metric for 
accounts with tenure.JOINs on account ID
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s 
te 
    AND event_time >  metric_time-interval '84 days'         
INNER JOIN event_type t ON t.event_type_id=e.event_type_id
INNER JOIN metric_name  n ON m.metric_name_id = n.metric_name_id
WHERE t.event_type_name='unfriend_per_month'       
    AND n.metric_name='account_tenure'      
    AND metric_value >= 14   
GROUP BY m.account_id, metric_time, metric_value   
GROUP BY m.account_id, metric_time, metric_value

You should run listing 7.8 by using the code in the GitHub repository for the Python
wrapper program with the arguments --chapter 7 --listing 8 to calculate a new
scaled version of the unfriend_per_month metric. Figure 7.31 shows typical output
from listing 7.8 on the default simulated dataset. Note that listing 7.8 outputs the
count and scaling factor in addition to the final metric value for illustrative purposes.
Figure 7.31 also illustrates accounts that fall into the different cases of equation 7.4:

 An older account (ID 21) starts with a tenure of 58 days, which is above the
description period and below the measurement period. The scaling factor is
always below 1.0, and it reaches a minimum of 0.33 after the tenure is greater
than the measurement period of 84 days.

 Account 12371 appears in the result when it reaches 14 days’ tenure; at this
point, the scaling factor is 2.0 to produce an estimate of a 28-day average from

Limits the event
to the appropria
time range

The event for 
which the metric is 
calculated

The metric ID for 
the account tenure 
metric

Sets the minimum 
tenure of accounts for 
which to calculate

Includes nonaggregated
parts of the SELECT

statement (required)

account_id metric_time
tenure_

metric

count_

unscaled scaling
unfriend_28day_avg_

84day_obs_scaled

21 3/29/20 58 1 0.48 0.48

21 4/5/20 65 4 0.43 1.72

21 4/12/20 72 4 0.39 1.56

21 4/19/20 79 5 0.35 1.77

21 4/26/20 86 5 0.33 1.67

21 5/3/20 93 5 0.33 1.67

... ... ... .. ... ...

12371 4/5/20 14 1 2 2

12371 4/12/20 21 1 1.33 1.33

12371 4/19/20 28 1 1 1

12371 4/26/20 35 1 0.8 0.8

12371 5/3/20 42 1 0.67 0.67

The SELECT shows the account tenure, the count,
and the scaling factor for illustrative purposes. The product of the count

and the scaling is the
value for the metric.

For seasoned accounts,
the scaling is greater
than , so the metric is1

an average.

For new accounts, the
scaling is greater than ,1

so the metric is an estimate.

Figure 7.31 Sample output for listing 7.8 on the default simulated dataset
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14 days of data. As the tenure increases, the scaling factor falls. At 28 days’ ten-
ure, the scaling factor is 1.0; at this point, the metric is equivalent to an exact
28-day count. After the tenure increases above 28 days. the scaling factor falls
below 1.0.

To save the metric in the database, you need to remove the unscaled count and scal-
ing columns and then supply the metric name ID as part of an INSERT statement. A
version of the listing that has these changes is in the GitHub repository and can be
run by adding the --insert argument to the script executable statement. You should
take the following steps:

1 Save the result of listing 7.8 to the database with the arguments --chapter 7 --
listing 8 --insert.

2 Regenerate the dataset by rerunning listing 7.2 with the arguments --chapter 7
--listing 2.

3 Rerun the dataset summary statistics by rerunning listing 5.2 with the argu-
ments --chapter 5 --listing 2 –-version 1.

Figure 7.32 shows typical results of the summary statistics. The summary statistics show
that the new metric (labeled unfriend_28day_avg_84day_obs_scaled) has the same
account coverage as the 12-week period metric (unfriend_28day_avg_84day_obs)
taught in section 7.4.1, but the metric values are somewhat higher, and, in general,
they are a better match for the simple count metric. The reason is that the unscaled
metric increases coverage by using a long observation period but does not correct for
the fact that not all accounts have sufficient tenure to cover that observation period.
The new metric corrects for this situation with scaling on new accounts.

Because you have the final unfriend_per_month metric, you should also recalculate
the ratio metric it was used in—unfriend per new friend—and recheck the cohort
analysis. Following are the additional versions of the program arguments to use:

1 Calculate a new unfriend_per_new_friend metric (--chapter 7 --listing 1
--version 7 --insert).

metric count nonzero mean std skew min 1pct 25pct 50pct 75pct 99pct max

unfriend_per_month 25168 26% 0.31 0.56 1.78 0 0 0 0 1 2 4

unfriend_28day_avg
_84day_obs 25168 50% 0.24 0.29 1.27 0 0 0 0.33 0.33 1 2

unfriend_28day_avg
_84day_obs_scaled 25168 50% 0.31 0.40 1.61 0 0 0 0.33 0.54 1.56 4

In comparison with the metric without
scaling, the average value is greater.

The metric with scaling also results
in higher values for the percentiles.

Figure 7.32 Statistics comparing rare simulation events measured at short and long time periods
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2 Regenerate the dataset by rerunning listing 7.2 (--chapter 7 --listing 2).
3 Run the cohort analyses for unfriend per month and unfriend per new friend

by rerunning listing 5.1, versions 14 and 16 (--chapter 5 --listing 1

--version 14 16).

Now that you know about scaled metrics based on account tenure, you’re probably
expecting a case study showing this new technique used in a company. I hate to disap-
point you, but I don’t have a new company case study to add—because every company
case study in the book uses metrics with this type of scaling. I didn’t mention this fact
until now because it would have been too much information for you before you
learned all the other techniques. 

 I always use metrics with the form like listing 7.8 for my case studies because these
metrics have so many advantages, including highest possible coverage of accounts and
robust estimation of the metric, without sacrificing the best possible estimate for new
accounts. The only modest downside is that the metric calculation is a bit compli-
cated, which means that you tell your businesspeople it is an average (without going
into details).

TAKEAWAY To understand churn, you should use average metrics with lon-
ger observation periods than the description periods and scaling to make
comparable estimates of the averages for new accounts. Simple count metrics
should be used only to measure use of a contracted quantity, in which case
the exact count in the contract period matters.

I use the following standard metrics for churn studies, depending on whether the
product uses primarily monthly or annual subscriptions:

 For monthly subscriptions, scaled count metrics with the following parameters:
– Tmin = 14 days (2 weeks)
– Tdescribe = 28 days (4 weeks)
– Tmeasure = 84 days (12 weeks)

 For annual subscriptions, scaled count metrics with the following parameters:
– Tmin = 28 days (1 month)
– Tdescribe = 28 days to 84 days (4–12 weeks, 1 month to 1 quarter)
– Tmeasure = 365 days (1 year)

7.5 User metrics
One final area of behavioral measurement you should know about is how to handle
products with multiple users. These products include multiseat licenses for enterprise
software and family plans for consumer products.
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7.5.1 Measuring active users

The first thing to understand about multiuser products is that it’s still best to under-
stand churn at the subscription or account level because all the users share one sub-
scription; if the subscription is not renewed, all the users churn together. 

NOTE Churn does not occur when individual users become inactive on a
multiuser product.

If you are interested in analyzing user health, you can perform an analysis of user
activity and inactivity by modifying the techniques for activity-based churn analysis
from chapter 4. The goal is still to understand churn at the account level, not the user
level, and to take advantage of the information about the behavior of individual users.

 To understand how individual user behavior affects churn, the first important
question to answer is how many active users there are. This question can be answered
with a metric based on events, as illustrated in figure 7.33. It’s similar to making a met-
ric by counting events in a time period, but, instead, you count the number of distinct
users who produced the events. To count the number of active users programmati-
cally, you have to have user identifiers stored with the events in the database or data
warehouse, which requires one additional field in comparison with the standard event

Each account has multiple
users who have events
at different times.

Users are considered
active in any time period
when they have any events.

The metric is the total
number of users active in the
period at the account level.
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Time
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Figure 7.33 Calculating the number of active users from events
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table schema (table 7.1). You may recall from chapter 3 that, in general, events can
contain optional fields with additional event information, so this situation is not too
different.

Listing 7.9 shows a short SQL program that counts the number of active users as a
metric. This listing is practically identical to the simple event count metric in chapter
3 with one crucial difference: instead of counting the number of events, the aggrega-
tion is on the number of DISTINCT user IDs. Another difference between this metric
and standard event count metrics is that this one does not specify the type of event:
any event indicates user activity. (That option is available, of course, and if you want to
determine user activity only from certain events, that change is easy to make.)

TAKEAWAY Counting the number of active users is easy to do with a DISTINCT
aggregation on the user IDs. 

One subtle difference between the active user count metric and event count metric is
that the count of active users should not be scaled by the tenure or anything having to
do with the tenure or measurement period. The number of distinct active users is an
example of an aggregate metric that does not scale in that way. If an account has two
active users in the first two weeks of a four-week period, it doesn’t follow that there will
be four active users in four weeks. Mathematically, the DISTINCT aggregative is not
additive, like a COUNT aggregation.

WITH date_vals AS (                     
     SELECT i::timestamp AS metric_date
     FROM generate_series('2018-12-01', '2018-12-31', '7 day'::interval) i
)
SELECT account_id, metric_date, 
    COUNT(DISTINCT user_id) AS n_distinct_users      
FROM event e INNER JOIN date_vals d
ON e.event_time <= metric_date   
AND e.event_time > metric_date - interval '84 days'
GROUP BY account_id, metric_date    
GROUP BY metric_date, account_id;

Table 7.1 Event table with user IDs

Column Type

account_id Integer or char

event_type_id Integer or char

event_time Timestamp

user_id Integer or char

Listing 7.9 Counting the number of active users

This CTE defines the dates on 
which users will be counted.

Counts the number of 
users with a COUNT 
DISTINCT aggregation

SELECT limits the query to 
any events within 12 weeks.

GROUP BY so the number of users 
is measured at account level.
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The default churn simulation on GitHub does not include users in the simulation, but
it’s possible to extend the simulation framework to include users. If you are interested
in the subject, consider extending the framework this way as an exercise.

7.5.2 Active user metrics

Figure 7.34 shows a case study in measuring the number of active users for Klipfolio.
The product is sold in multiseat licenses, so there is a metric for the number of active
users as in listing 7.9, as well as a metric for the number of seats sold, using the unit
quantity metric pattern as described in chapter 3. Figure 7.34 shows that the number
of active users is strongly related to churn in a pattern that should be familiar by now:
churn falls rapidly between one and four active users, but then the decrease in risk
slows, and there is little difference in the churn for customers with dozens of users or
more. At the same time, the number of licensed users does not appear to be strongly
related to churn.

 License utilization is a metric that is defined as the ratio of the number of users to
the maximum number of allowed users. Sometimes, the number of users is measured
by creation of user accounts, but for churn, I prefer to measure the actual or active
license use by making a ratio of the active users divided by the number of licensed
users. Figure 7.34 also shows the churn cohort analysis for license utilization defined

Active users are strongly
associated with reducing
churn, but that association
doesn't explain the difference
between churn rate in the cohorts
with the most active users.

The number of seats
(users) licensed is
not strongly related
to churn.

License utilization, the ratio of active users
to licensed users, is strongly associated with
reduced churn at all levels of the metric. 0.2 0.6 1.0
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Figure 7.34 Cohort analysis of churn for Klipfolio’s active users per month metric
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this way for Klipfolio. License utilization shows a strong relationship to churn—stron-
ger than active users alone. The decrease in churn risk with increasing license utiliza-
tion is fairly continuous for every cohort. License utilization is clearly a useful metric
for measuring customer engagement.

TAKEAWAY License utilization is a ratio of the number of active users to the
number of users allowed, and it usually is an important measure of engage-
ment for products sold by the user or seat.

Figure 7.34 illustrates another type of user metric with another example from the
Klipfolio case study: dashboard views per user per month. This ratio is made from the
measurement of dashboard views per month and the number of active users. Many
metrics of this type are possible. Pretty much any behavior you’ve measured at the
account level can be divided by the number of active users to form a per user ratio.
Because the total amount of most behaviors is correlated to total number of active
users, this type of ratio can result in useful metrics that are less correlated to the num-
ber of active users, the overall behavior of users, or both.

7.6 Which ratios to use
You now know a lot about the design and interpretation of customer metrics and case
studies in customer churn and behavior. In this section, I will tie together a few
themes and answer a few common questions.
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A high number of
dashboard views
per active user is
strongly associated
with lower churn.

Figure 7.35 Cohort analysis of churn for Klipfolio’s dashboard views per user metric
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7.6.1 Why use ratios, and what else is there?

I have spent a lot of time in this chapter on metrics that are ratios and not much time
on anything else. I taught you that ratio metrics are a great way to understand the rela-
tionships between customer behaviors, but are there any other options? There are
other options, but in my experience, none is as useful. If you have a statistics or data
science background, you probably have heard of an interaction measurement. This
concept is similar to a ratio, but instead of dividing one metric by another, you multi-
ply the two metrics.

DEFINITION An interaction metric is the product (multiplication) of two other
metrics.

Interaction measurements, like ratios, are ways to understand the relationships between
behaviors. In fact, in classical statistics, this method is the main one for understanding
the relationships between measurements. To have a high measurement on the inter-
action term, for example, you must have a high value on both underlying metrics. As in
a ratio, a zero in either metric means a zero in the interaction. 

 An interaction term is a bit like an and operation in computer science. If you have
a computer science background, you may be thinking that you could make metrics
with a Boolean operation like “Assign a 1 when two metrics are both above a certain
level.” You can think of a multiplicative interaction as being a more nuanced alterna-
tive. An interaction isn’t just 0 or 1 when both metrics are high; it measures how high
both metrics are as a real value. Interaction terms also have interesting statistical prop-
erties when applied to scores or metrics that can take negative values, because when
either one metric or the other is negative, the interaction measurement takes on a
negative value.

 If interaction measurements are so interesting and widely used in statistics, you
may be wondering why I don’t recommend them for churn analysis. The simple
answer is that no one in the business world understands interaction terms, but ratios
are easy to understand. That is, metrics that result from the multiplication of two
other metrics usually have unintuitive units in comparison to ratios. The ratio of the
amount paid and the number of calls (or videos viewed, and so on) is the amount
paid per call (or video, and so on), but the multiplication of an amount paid and the
number of calls (or any behavior) does not have a conventional meaning. 

 If you took a physics class, you may remember that the multiplication of different
types of quantities, such as mass (kilograms) and distance (meters), results in com-
bined units like kilogram meters. Usually, these units are not too understandable.
(What’s a dollar call?) The exception that proves the rule is when one of the metrics is
time and the other metric is a measure of intensity, like a kilowatt hour in electricity
sales. I have never found a cognitive study that explains why ratio units are easy to
understand and multiplicative units are not, but that fact is clear from everyone’s
experience. My advice is to use multiplicative interaction metrics only when you
already have a business case that gives it an obvious meaning.
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 Another alternative that is familiar to data scientists and statisticians is making met-
rics from differences (subtraction) of scores rather than ratios (of natural scale met-
rics). In the sidebar in chapter 6 on principal component analysis (PCA), I pointed
out that PCA does such subtractions implicitly. The idea is that if you want to under-
stand the relationship between two metrics, you can look at the difference by subtract-
ing one from the other in the same way as taking the ratio. This method is not really
logical if the metrics are for different things. You don’t get a meaningful metric by
subtracting the calls someone makes on a telco product from the MRR paid, but it is
okay to do so after converting the metrics to unitless scores. You saw that trick used in
chapter 6 for taking average groups: scores show whether someone is above average
(greater than zero), average (near zero), or less than average (a negative number). 

 The difference (subtraction) of a calls score and an MRR score is a measure of pro-
pensity to make calls in relation to the amount paid. So differences between metric
scores can work like ratios, but once again, the problem is in the interpretation. You
can tell your businesspeople that you made a metric for dollars per call, and they
think that’s great; it’s not as easy to explain a metric for the subtraction of the calls per
month score from the MRR score. When it comes to understandable metrics that cap-
ture the relationship between two behaviors, ratios are the only option. The only
exception is if you have technical businesspeople who understand the less-intuitive
approaches.

7.6.2 Which ratios to use?

I hope that at this point, you are convinced that ratio metrics are useful for under-
standing the relationships between different behaviors and how they relate to churn
and customer engagement. Now is the time to think more generally about what ratios
to investigate. 

 First, note that not all metrics can form useful ratios. One requirement is that both
of the metrics should be nonzero for most customers (and they should have no nega-
tive values, which is less of a problem). One simple criterion is whether a lot of cus-
tomers have nonzero values for both metrics. Even if you find a strong relationship to
churn and engagement, a metric that applies to a small number of customers is not as
useful as one that applies to a lot of customers.

 A lot of metrics could define ratios in a typical dataset that has dozens of event types.
If you are familiar with probability and combinatorics, you may recall that the number
of possible pairs chosen from N items is N × (N – 1). If you have N possible metrics,
you could choose the numerator of the ratio with N different metrics and have N – 1
left over to go in the denominator. That result is a lot of combinations, and it raises an
additional question: which metric should go into the numerator, and which should go
into the denominator? The first important thing to realize is that you should not try
every possible combination.

WARNING Do not create every possible pair of metrics for a possible ratio to
check the relationship to churn.
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The reason is that, typically, there are too many combinations, and most will not be
meaningful. Even so, you risk finding a spurious relationship to churn and engage-
ment by checking a lot of metrics.

DEFINITION A spurious relationship between a metric and an outcome is a rela-
tionship that occurred due to random chance, not due to a repeatable, causal
relationship. As a result, the relationship is not likely to recur.

If you are new to data analysis, it may sound strange to hear that you can see a rela-
tionship in your data that is somehow not true, but this problem is well known in data
science. If you check enough metrics, eventually, you’ll find some that appear to be
related even though they are not. The problem can be helped by using strict criteria
to decide when a relationship is strong or weak, which is the subject of chapter 8. But
the best practice is to not consider relationships that don’t seem to be intuitive to
begin with.

TAKEAWAY You mainly consider ratio metrics that make intuitive sense to
someone in the business.

As you can see, no rule always works; you’ll need to use your knowledge of the situa-
tion. The same answer goes for which metric should be in the numerator and which
should be the denominator: whichever one makes more sense. You can try the two fol-
lowing approaches:

 Sometimes, interesting relationships (and good ratio metrics) can exist when
two metrics are in different parts of a related set of activities. Try looking at the
ratios of the most common metrics in a correlated group (as described in chap-
ter 6); ignore the group members that are less common.

 Sometimes, there are interesting relationships between different areas of activ-
ity. Try testing a ratio of the most common metrics in one correlated group with
the most common metric in another correlated group. Again, don’t bother with
any less common metrics.

Table 7.2 summarizes the most common cases for engagement and churn that are cov-
ered in this chapter. 

Table 7.2 Summary of ratio metrics for customer engagement

Name Ratio Correlation Information

Unit cost MRR/Use Customers on more expen-
sive plans typically use the 
product more.

Unit cost shows whether the per 
unit price is high or low in com-
parison to other customers.

Unit value Use/MRR Customers on more expen-
sive plans typically use the 
product more.

Unit value shows whether use is 
high or low relative to the price 
paid.
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A lot of interesting ratio metrics are not listed in table 7.2, so think of this table as being
illustrative rather than exhaustive. But the table should be enough to get you going.

Summary
 Metrics created from ratios of other metrics can reveal how the balance between

behaviors is related to churn and engagement.
 Ratio metrics are usually less correlated with the numerator and denominator

metrics than those metrics are with each other.
 A recurring unit cost metric is the ratio of some cost of using the product (such

as paying MRR or watching ads) to an outcome of using the product (such as
making calls or viewing content).

 Churn usually increases with increasing values of a recurring unit cost metric,
even when the nonunit recurring cost metric itself (plain MRR or number of
ads) does not show increasing churn.

 The ratio of a downstream event in some process to an upstream event can be
viewed as an efficiency measure. Examples include transactions per customer or
saves per edit of a document.

 The ratio of the completion, or successful outcome, of a process to the number
of attempts is a success rate. An accepted request rate is an example of such a
metric.

 Churn can increase or decrease with increased values on efficiency and success
ratio metrics, depending on the characteristics of the business.

 A percent of total ratio is a special case of a ratio in which the numerator is part
of an overall total represented by the denominator. Examples include percentage

Utilization Use/Allowance Customers on a plan that 
allows a lot of use usually 
use more.

Utilization shows whether use is 
close to the limit.

Success rate 
(or efficiency)

Successes/
Total attempts

Customers who attempt 
something a lot succeed 
more by sheer persistence.

Success rate shows whether the 
customer is relatively successful 
or efficient at an activity.

Percent of total Part/Whole Assume that some activity 
falls into mutually exclusive 
categories: customers who 
use the product a lot use a 
lot in all categories.

Percent of total shows whether a 
customer is relatively high or low 
in the categories, apart from the 
overall level of use.

Percentage 
change

(Current metric/
Past metric) –1.0

If a customer uses the prod-
uct a lot now, they probably 
used it a lot in the past.

Percentage change shows 
whether use is high or low relative 
to the customer’s own history.

Table 7.2 Summary of ratio metrics for customer engagement (continued)

Name Ratio Correlation Information
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of calls made to different regions and percentage of shows viewed in different
categories (Action, Comedy, Drama, and so on).

 Percent of total metrics can be used to understand how the balance of behavior
in different categories relates to churn and engagement when the level in all
categories is correlated.

 A percentage change metric is the ratio of the change in a metric value over
some period of time to the value of the metric at the start of the time period. An
example is the percentage change in the number of logins from one month to
the next.

 Percentage change metrics can be used to analyze whether increases or decreases
in any behavior predict future churn and engagement.

 Time since last event is a metric for understanding how periods of inactivity
relate to future churn.

 Active users can be measured when a product tracks multiple user IDs.
 Active users can be used to form a variety of ratio metrics, such as license utiliza-

tion, which is the ratio of active users to the number of users allowed.
 Any count metric measured on a time period can be described as an average for

a shorter time period or as an estimate for a longer time period.
 A single scaled metric can combine estimates for new accounts with averages for

mature accounts. This method is the best way to calculate count and total met-
rics for analyzing churn and engagement.





Part 3

Special weapons
and tactics

I call the techniques in this part “special” weapons and tactics because not all
companies need to use them. In my opinion, however, all companies fighting
churn need a great set of customer metrics. To someone who trained as a data
scientist, this may be a surprise because the subjects in this part include what
most people think of as the heart of data science: prediction! But I explained
back in chapter 1 that churn is different: predicting churn has only a few use
cases, whereas there are many more use cases for great customer metrics. Never-
theless, prediction can be an important weapon in your arsenal, with a few wrin-
kles unique to churn. 

 If you have never worked on any predictive analytics before, you might find
that chapters 8 and 9 have a steep learning curve. That said, these chapters do
cover all the basics, and I think anyone who learned the techniques in parts 1
and 2 can master the part 3 techniques as well. But if you have no experience in
predictive analytics, you may need to put in a little extra time and use some of
the recommended online resources.

 Chapter 8 teaches you how to forecast churn probability with logistic regres-
sion. With this technique, you can see the combined influence of all factors that
affect churn and rank them in importance. Regression also gives you a forecast
that you can use to calculate customer lifetime value.

 Chapter 9 goes over how to measure the accuracy of churn forecasts; the
usual rules don’t apply to churn. This chapter also introduces machine learning,



which you can use to get the most accurate forecasts possible. But you’ll also see that
the great customer metrics you worked so hard on in part 2 begin to pay off in fore-
casting accuracy.

 Chapter 10 is a standalone chapter on using demographics and firmographics in
the fight against churn. You can’t change a customer into someone different from
who they are, but you may be able to find more customers similar to your best ones.
This chapter shows you how.



Forecasting churn
At this point, you know all the steps necessary to analyze churn and to design great
customer metrics. Those metrics will allow businesspeople to make targeted inter-
ventions that should reduce the churn on their product. And those things are the
most important for most products, so that’s why the techniques beginning in this
chapter (part 3 of the book) can be considered to be special or extra tactics: you
can use them if you need to, but they are not always necessary. The most important
thing in fighting churn is that the business should make data-driven decisions when
segmenting customers and making targeted interventions.

 This chapter is devoted to the topic of forecasting how likely customers are to
churn, given the combination of all their behaviors. So far, I have showed you only
how to evaluate customer health, one behavior at a time, by looking at churn rates

This chapter covers
 Predicting the probability of customer churn with 

logistic regression

 Understanding the relative influence of different 
behaviors on churn 

 Checking the calibration of your forecasts

 Using churn forecasts to estimate customer 
lifetime and lifetime value
317



318 CHAPTER 8 Forecasting churn
in metric cohorts. But how do you integrate these multiple views of the customer?
What if a customer is in a top cohort with a low churn risk for one behavior but in one
of the bottom cohorts with a much higher churn risk for another behavior? Given the
usual correlations between customer behaviors, what I’ve described is an edge case,
but it still would be good to know how to handle it.

 A related question that would be good to know the answer to is which behavior
makes the most difference for customer health and churn. The relative importance
of different behaviors can be an important piece of information in deciding which
churn-reducing interventions or product modifications to pursue. So far, you know
only how to look at this information qualitatively by comparing the relationships in
cohort plots. That approach can work for a few metrics (or groups of metrics), but if
you have a lot of metrics, you need a more systematic approach. This chapter
teaches you how to use the statistical model known as logistic regression to answer
these questions.

DEFINITION Logistic regression is a statistical model that forecasts the probability
of an event occurring, given multiple factors that can influence the outcome.

Logistic regression is frequently used to evaluate medical data to discover the cause of
disease. It is appropriate for churn because you are discovering the causes of good
and bad customer health. Because logistic regression is the only regression model cov-
ered in this book, I sometimes use the term regression for short. This chapter is designed
as follows:

 The first section (section 8.1) shows you the concepts behind logistic regression.
 Section 8.2 reviews all the data-preparation steps that you have used throughout

the book to make sure you are ready to run the logistic regression algorithm. 
 Section 8.3 shows you how to run the regression algorithm and interpret the

results. 
 Section 8.4 teaches you how to make forecasts using the model you created.
 Section 8.5 explains some pitfalls and problems you may encounter along the way. 
 The final section (section 8.6) is devoted to customer lifetime estimation and

measuring customer lifetime value, which are derived from churn probability
forecasts.

8.1 Forecasting churn with a model
I start with a summary of the theory of logistic regression for readers who are not famil-
iar with it. The explanations are for the specific case of predicting churn and retention.

8.1.1 Probability forecasts with a model

When I talk about a customer churn- or retention-probability forecast, I am talking
about an estimate that is made individually for each customer, like a metric. But
unlike a metric, a churn-probability forecast is not a measurement of something that
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happened: it’s an estimate of the probability that something will happen in the future,
namely, churn.

DEFINITION A churn probability forecast for a customer is a prediction that if you
have a cohort of customers with that same forecast, you expect the percentage
given by the probability to churn. A churn probability forecast never tells you
whether a single customer definitively will or won’t churn.

Given that the forecast is specific to an individual customer, like a metric, it is a bit
counterintuitive that the definition of the forecast probability is not about whether
the individual customer will be retained or will churn. Understand that for an individ-
ual customer, things can always go either way. Although I won’t mention this fact most
of the time, a time horizon is implied in the forecast. To be precise, the forecast is the
probability a customer will churn during the lead time before their next renewal
(defined in chapter 4). This timing is implied because that is how the historical data-
set was designed, and that dataset will be used to determine the forecast. 

 A forecast is a statement about how a group of similar customers would behave.
Even if a customer is forecast to have a 99% chance to churn, it doesn’t mean that
they will definitely churn. It means that in a group of 100 such customers, you expect
99 to churn during the lead time before their next renewal. The point is that if you
are looking at an individual customer, that customer may turn out to be the one who
stays. (If you forecast a 99% chance of churn, there may be problems with your data;
see section 8.5.) The same applies for retention: if you forecast a retention probability,
and you have a hypothetical cohort of customers with a 90% retention probability, you
expect 90% of the cohort to be retained. 

 I’m going to teach you everything in terms of forecasting retention probabilities
because that context is easier to understand. Churn probabilities will be found from
100% minus the retention probability. I’ll point out why forecasting retention is easier
in section 8.1.2.

 You’re going to learn to make forecasts with a mathematical forecasting model:
logistic regression. A model in this context means something that works like the real
thing, but I want to caution you against thinking that the model is real. The model
assumes that customer engagement and retention work a certain way, but it does so
because the assumptions work for the purpose of forecasting, not because the world is
that way. Suspend your disbelief. Remember that the model is a construct that closely
matches reality, but not every part of it is real, and not every part needs to be perfect
for the model as a whole to be useful.

8.1.2 Engagement and retention probability

The first concept of logistic regression in forecasting retention is that increasing cus-
tomer engagement leads to increasing chance of retention. By engagement, I mean a
subjective state that cannot be measured. Different people have different ideas, but
following is my working definition of engagement.
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DEFINITION Engagement is a state of involvement and commitment.

For this discussion, involvement means use of the product, and commitment means likeli-
hood of renewal. It makes sense that more engagement should lead to a higher
chance of retention. For now, don’t worry that engagement itself is a subjective state. 

 A key feature of the model for forecasting churn and retention is that the rela-
tionship between engagement and retention is subject to diminishing returns on
the effect of the engagement. Even the most engaged customer has a chance of
churning. A consequence (or requirement) is that the more engaged a customer is,
the less difference additional engagement makes in further increasing retention
probability. The converse should also be true: the less engaged a customer is, the
less likely they are to be retained. But even the least-engaged customers still have a
chance of being retained. Also, the less engaged a customer is, the less difference
further decreases in engagement make in the probability of retention. Figure 8.1 illus-
trates this concept.

 The diminishing relationship between engagement and retention at both the
high and low ends makes an S curve like the one shown in figure 8.1. The rate of
change of the probability must peak in the middle ranges of engagement and flatten
at the extremes.
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8.1.3 Engagement and customer behavior

In my explanation of the relationship between engagement and retention, I spoke of
a customer’s engagement as though it were measurable, like any other behavioral
metric. That definition is a good one for a model because the way I framed it, engage-
ment is the underlying driver of retention and churn. But engagement still is not mea-
surable. Logistic regression solves the problem this way: you believe that engagement
exists, even if you cannot measure it, so you assume that engagement can be estimated
from behavioral measurements and churn observations. 

TAKEAWAY Customer engagement cannot be measured directly, but you can
estimate it from customer metrics for the purpose of predicting churn proba-
bility by matching the observed churn with the S curve.

If that explanation seems like circular reasoning, you have to accept that it is a model;
you’ll see in a moment that it works. The process of estimating churn and retention
probabilities has intermediate steps for estimating engagement for each customer.
The model assumes that engagement measurement takes a form like a metric score.
Engagement estimates will be numbers, mostly in the range of –4 to 4, and the average
engagement of your customers will be set at zero. As in a metric score, a positive num-
ber means above-average engagement, and a negative number means below-average
engagement. This definition is arbitrary, given that you can’t measure engagement,
but it is convenient for making forecasts. 

 Figure 8.2 illustrates the model for estimating engagement from behavior and turn-
ing it into a retention-probability estimate. The key concept is that each behavioral met-
ric score is multiplied by an engagement strength, which I call a weight, that captures how
much the behavior contributes to engagement. The weight can also be negative, indicat-
ing that the behavior is associated with disengagement and an increase in churn rather
than retention. Overall engagement is the sum of the contribution of each behavior.

TAKEAWAY Customer engagement is estimated from a model in which engage-
ment weights are multiplied by the scores for each metric and then added
together.

The forecasting model in figure 8.2 consists of the following steps:

1 Begin with scores for all your metrics.
2 Assume that each metric has a weight that represents how strongly the values of

the metric score contribute to engagement. 
– The engagement contribution of each metric score is the engagement weight

for that metric multiplied by the score value.
– The total engagement estimate is the sum of all the contributions from each

metric.
3 After calculating the total engagement, get the retention probability by apply-

ing the S curve to the engagement estimate.
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The weights are also referred to as coefficients because a coefficient is a number that
multiplies another number. The Python packages use the term coefficient, but I prefer
weight because it is a more functional description (keeping with the goal of communi-
cating with businesspeople in plain English).

 This approach of estimating engagement from behavior sidesteps the problem
that engagement can’t be measured by assuming engagement follows a simple model.
But a new problem is that you don’t know what the engagement weight of your various
metrics ought to be. I suggest that you replace one thing you can’t measure—the level
of engagement of a customer—with another thing that you can’t measure—the engage-
ment weights of behaviors. 

 If this approach seems like cheating, I want to remind you (again) that this scenario
isn’t real; it’s a model that’s going to work as though it’s real. The problem of finding
the engagement weights is solved by the logistic regression algorithm itself (see section
8.3). But before you learn how to run the algorithm and find the weights, you need to
learn more about matching the prediction model to the details of your data. Section
8.1.4 shows how the regression model exactly fits the churn rate of your customers.

8.1.4 An offset matches observed churn rates to the S curve

One important detail to understand about the model is how the S curve can match
products with a particular churn rate. First, recall that the average on each metric score
is 0 because that’s how the metric scores were defined. As a result, a perfectly average
user has zero engagement in the model. Because engagement comes from multiplying
weights by scores, and all the scores are 0, the engagement must also be zero. Figure 8.3
illustrates this concept.

 As shown in the figure, a default version of an S curve would match 0 engagement
with 50% retention probability (and 50% churn probability) because it is defined sym-
metrically. But that result would be correct only if the average user of a product really
had a 50% retention probability. There has to be a way to adjust the model so that an
average user has a realistic probability forecast for retention and churn.

 The solution to this problem comes from another feature of the model. The S rela-
tionship between engagement and retention probability can include an offset so that
an average user maps to an average probability of retention. The offset means that the
S curve is shifted to the left or right relative to the default. The offset is also referred
to as an intercept because the offset determines where the S curve intersects the zero
engagement line. (Intercept means the value at an intersection. The Python packages
use the term intercept, but I use offset because it describes what the quantity does, not
only what it is.) 

 In figure 8.3, it is assumed that the retention probability is around 90%. In that
case, the S curve must be offset by around 2 so that a user with 0 (average) engage-
ment ends up with a retention probability forecast around 90%. 

TAKEAWAY The logistic regression model includes an offset that allows a stan-
dard S curve to match any average retention probability.
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Once again, you may be wondering how to come up with the correct value for this
new variable. This problem is also taken care of by the logistic regression algorithm.
Together, the engagement weights and the S-curve offset are the main outputs of the
algorithm, and that’s all you need to make a realistic churn- and retention-probability
forecast for your customers.
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8.1.5 The logistic regression probability calculation

Now that I’ve explained all the concepts, I will show you the set of equations that
define the mathematical model. Like the rest of the math in this book, this math is
designed to help the mathematically inclined in their understanding. If that’s not you,
don’t worry. If you have understood the concepts explained up to now, you’ll be ready
to do your forecasting whether or not you study the equations in this section.

 These equations use vectors, in the sense of a list of numbers, to represent the met-
rics and the engagement weights. A bar above the variable indicates that it is a vector,
so I will use  to stand for the vector of all the metric scores for one account and  to
represent the vector of all the engagement weights. In that case, the engagement (E)
of an account is given by equation 8.1:

                           (Equation 8.1)

The dot (·) indicates the dot product operation, which is the element-by-element mul-
tiplication of the two vectors followed by the summing of the results of those multipli-
cations. The dot product is the procedure that I described when explaining how the
metric scores are combined with the engagement weights to get the total engagement
for an account. Given the engagement, the rest of the model for the retention proba-
bility, P, is

                         (Equation 8.2)

where E is the engagement, off  is the offset, and S(…) is the S-curve function. The
S-curve function referenced in equation 8.2 is given by equation 8.3:

                        (Equation 8.3)

Note that the little e in equation 8.3 stands for the number known as the base of the
natural logarithm, or e ≈ 2.72. But you don’t need to learn what the natural logarithm
is to understand equation 8.3. To understand it, first remember the following facts
about exponentiation (or taking a number to a power):

 For any positive number greater than 1.0, if you exponentiate it with a positive
value, it gets bigger. (The only thing you need to know about e is that it is a pos-
itive number greater than 1.0.)

 If you exponentiate such a number with a negative value, it gets smaller because
exponentiation with a negative value is 1 divided by the number exponentiated
with a positive power: x–y = 1.0/xy. 

In equation 8.3, x represents the engagement plus the offset, and x has a negative sign
on the variable for the exponentiation of e. The negative sign reverses the usual effect

m w

E m w⋅=

Pretain S E off+( )=
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of exponentiation so that when x gets bigger, the e term gets smaller, and when x is
negative, the e term gets bigger. As a result:

 When x (engagement) is positive and the e term is small, the denominator gets
close to 1 and the fraction also goes toward 1, which corresponds to retention
going to 100% when engagement is high.

 When x (engagement) is negative and the e term is large, the denominator gets
large and the fraction goes toward 0, which corresponds to retention going to
0% when engagement is low.

Understanding equation 8.3 doesn’t have anything to do with using e and natural log-
arithms. There is a reason why equation 8.3 uses the base of the natural logarithm and
not some other number, and that reason has to do with technical details in the logistic
regression algorithm, not because it is necessary to produce the S curve.

 This section completes the explanation of the model for churn-probability fore-
casting going from metric scores to forecasting retention probabilities. The next thing
you need to know is how to come up with the engagement weights for the metrics and
the offset to use in the S curve. That task is handled by the logistic regression algo-
rithm when you run it on your data. 

8.2 Reviewing data preparation
Before I show you the details of running the logistic regression algorithm, let’s review
all the steps that you took to produce the data. This review will ensure that your data is
ready for what comes next, and having these steps fresh in your mind will help you
when it comes time to make your probability forecasts.

 The first step in preparation is exporting a slightly modified version of the dataset.
In chapter 7, you experimented with a few versions of the metric for the rare event
unfriend_per_month. To avoid confusion, you will now export a version of the dataset
that has only the final scaled version of the unfriend_per_month metric. In a case
study of a real company, you will also experiment with different metric versions and
then choose a subset for your dataset. This final dataset also omits the account_tenure
measurement. In a real service, you should include account_tenure in your analysis,
but it is not meaningful for the simulation. Because you have already seen the dataset
export several times (in listings 4.5, 4.6, and 7.2), I do not present this SQL in the
book. The code is in the chapter 8 listings folder, if you want to take a look. To match
the results presented in this chapter, you should extract the new version of the dataset
with the following command line for the Python wrapper program: 

fight-churn/listings/run_churn_listing.py --chapter 8 --listing 0

Figure 8.4 shows a summary of all the functions used to prepare the data after it is
exported from the database. The steps are as follows: 

1 Calculate a set of summary statistics about the data. Those summary statistics
are saved in a table (listing 5.2).
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2 Use the summary statistics to convert the metrics from their natural scale to
scores. This step saves the second version of the dataset and another table of the
mean and standard deviations used to create the scores, as well as the metrics
transformed for skew and fat tails (listing 7.5).

3 Find correlated metrics that are combined in groups, and save a loading matrix
that explains the groupings. This matrix is used to implement the averaging of
scores (listing 6.4).

4 Use the loading matrix to create the third and final version of a dataset in
which correlated metric scores are averaged (listing 6.3; I taught this before list-
ing 6.4 so that you would understand what the loading matrix was before you
set out to create one).
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Figure 8.4 Data preparation steps for churn analysis and forecasting
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Listing 8.1 shows all the steps in the data preparation, and you can use listing 8.1 to
prepare your own data if you have not taken all these steps already. Chapter 7 did not
explicitly tell you to rerun your statistics, scores, or grouping. If you were following the
instructions as they were given, this listing is for you. Running listing 8.1 creates sev-
eral items in your output directory: two additional versions of the dataset, and three
tables of statistics and derived parameters used in the process.

from listing_5_2_dataset_stats import dataset_stats
from listing_7_5_fat_tail_scores import fat_tail_scores
from listing_6_4_find_metric_groups import find_metric_groups
from listing_6_3_apply_metric_groups import apply_metric_groups
from listing_6_5_ordered_correlation_matrix 
   import ordered_correlation_matrix

def prepare_data(data_set_path='',group_corr_thresh=0.55):
   dataset_stats(data_set_path)                               
   fat_tail_scores(data_set_path)                          
   find_metric_groups(data_set_path,group_corr_thresh)       
   apply_metric_groups(data_set_path)             
   ordered_correlation_matrix(data_set_path)

If you have not performed all these steps, run listing 8.1 with the Python wrapper pro-
gram and these arguments:

fight-churn/listings/run_churn_listing.py --chapter 8 --listing 1 

When you learned about advanced metrics in chapter 7, the focus was on the motiva-
tion and code for the new metrics and testing the relationships to churn. I never
demonstrated the final result for correlations and metric groups with all the chapter 7
metrics using the techniques of chapter 6. Figure 8.5 shows the result you should have
for the loading matrix, which summarizes the grouping.

 If you run the metric grouping algorithm on the dataset from chapter 7 with the
default parameters, you should find two multimetric groups, with several metrics
remaining independent. The first metric group consists of three metrics representing
the most common behaviors: posting, liking, and viewing ads. The second group aver-
ages the metrics for messaging, including replies. The metrics that were not cor-
related enough to go into groups were the metric for unfriending, the advanced
metrics for adviews_per_post, days_since_new_friend, and the percentage change in
the rate of new friend events. 

 If running your code returned something that looks like figure 8.5, you are ready
to run the examples of logistic regression in section 8.3.1. If you have something else,
the most likely explanation is that you did not create all the new metrics in chapter 7.

Listing 8.1 Data preparation listings combined

Finds the average, 
skew, and percentiles 
of the distribution

erts the
ta from

etrics to
scores

Finds what metrics are 
correlated, and decides 
which to group 

Creates a dataset with grouped
metrics averaged together
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To make sure that you have all the metrics, you can use the following two sets of argu-
ments to run the Python wrapper program and generate them now.

 The first run of the wrapper program creates the days_since_new_friend, new-
friend_pcnt_chng, tenure-scaled version of unfriend_per_month, and metric for the
total number of likes and dislikes (labeled as the number of opinions):

run_churn_listing.py --chap 7 --listing 3 4 6 8 --insert

The second command runs all the versions of the ratio metric to create the adview
_per_post, reply_per_message, like_per_post, unfriend_per_newfriend, and dislike_
pcnt metrics:

run_churn_listing.py --chap 7 --listing 1 --version 1 2 3 4 5 6 --insert

After creating all the metrics, you should be able to run listing 8.1 and get the loading
matrix shown in figure 8.5. 

8.3 Fitting a churn model
Now that your data is ready and you know how a regression forecasting model works,
it’s time to run the algorithm that gives you the weights and the offset to match your
data. Finding the weights and offset that match the data is called fitting the model.

DEFINITION Fitting a statistical model means finding the values for the key
parameters that make the model match the sample data as closely as possible.
Fitting a model is also sometimes called training a model.

I’ll show you how to read the results and then how to create them.
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8.3.1 Results of logistic regression

Figure 8.6 shows the weights and offset resulting from fitting logistic regression on the
simulated churn dataset. (This result will be in a file after you run listing 8.2.) Each
row in the file shows the result for one metric or group of metrics. The result consists
of the following two numbers:

 The engagement weight
 A measurement of the impact of the metric on the retention (churn) probabil-

ity, which I call the retention impact

The engagement weights are small numbers, typically less than 1, as I suggested ear-
lier. That makes sense, because the multiplication of the engagement weights and the
metric scores is going to add up to the total engagement, which has a scale similar to a
score. A positive weight indicates that the metric (or group) is associated with increas-
ing engagement, and a negative weight indicates that the metric is associated with
reduced retention (increased churn). For this reason, setting up the model to predict
retention makes it easier to interpret: a positive number to represent something good
is more intuitive than a negative number, and if you had set up the model to predict
churn, all the things that increase engagement would have had negative weights.

TAKEAWAY Forecasting retention probabilities is easier to interpret than fore-
casting churn probabilities because that way, positive weights in the numeric
sense associate with positive outcomes in the sense of engagement.

The measurement of a metric’s impact on churn is shown as a percentage change in
the retention probability. I will show you the details of the calculation in a moment,
but first, I will explain what it means. 

DEFINITION The retention impact of a metric or group of metrics is the differ-
ence that it makes to the retention probability for a customer to be one stan-
dard deviation above the average in this metric, assuming that all the other
metrics are exactly average.

If the retention impact for a metric is 2%, a customer who is one standard deviation
above average on that metric and average in all the other metrics has a forecast reten-
tion probability 2% higher than the average retention probability. That probability is
2% less than the average churn probability, so you can describe it either way, as long as
you keep track of the direction of the impact. The churn impact is not a standard met-
ric taught in statistics classes, but I have found it useful in explaining logistic regres-
sion models to businesspeople.

TAKEAWAY The impact of a metric on retention and churn probability is
important for communicating regression results to businesspeople.

Remember two other things when you interpret churn and retention impacts:

 If a metric is below average rather than above average, it has approximately an
equal and opposite effect on churn rate.
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 The cumulative effect of multiple metrics that are above (or below) average has
a diminishing effect on churn rate due to the way that the S curve shapes the
probability forecast. The same goes for a metric that is more than one standard
deviation above average: a metric two standard deviations above average will
have less than two times the churn impact shown in the result.

The result for the offset is an extra row at the bottom of figure 8.6: the number in the
weight column for the offset is not a weight but the amount of the offset.

I previously suggested that the offset would be about 2 for around a 90% retention
rate. In figure 8.6, you see an offset of 3.7 for the simulation retention rate, which is
around 95.4%. The number in the retain_impact column for the offset is the reten-
tion probability forecast for a perfectly average customer. Recall that a perfectly aver-
age customers has zero on all the metric scores, so in equation 8.2, for the probability
(Pretain = S(E + off )), the only term is the offset.

 Note that the forecast probability for the perfectly average customer is 2.4% (100% –
97.6%, the retention rate in figure 8.6), but the churn rate in the simulation is around

group_metric_offset weight retain_impact group_metrics

metric_group_1 0.35 0.70%
adview_per_month|like_per_month|
post_per_month

metric_group_2 0.68 1.18%
message_per_month|reply_per_
month

newfriend_per_month 0.48 0.91%

dislike_per_month –0.02 –0.06%

unfriend_per_month –0.16 –0.41%

adview_per_post –0.47 –1.41%

reply_per_message –0.01 –0.03%

like_per_post 0.18 0.39%

post_per_message –0.04 –0.10%

unfriend_per_newfriend 0.01 0.03%

dislike_pcnt –0.14 –0.34%

newfriend_pcnt_chng 0.11 0.25%

days_since_newfriend –0.17 –0.43%

offset 3.70 97.6% (baseline)

Each group (or single
metric) gets a weight for
engagement impact. The
offset is shown last.

In the column, the valueretain_impact
for the offset is actually the baseline
model retention probability.

The is how much difference in theretain_impact
retention probability it would make to be one standard
deviation above average in this area, assuming a
customer was average in all other respects.

group_metrics shows you
what metrics comprise the
groups (from the loading matrix).

Figure 8.6 Output of logistic regression for the simulated dataset
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4.6% (see chapter 5, figure 5.12). You probably would expect a perfectly average cus-
tomer to have a churn probability equal to the overall or average churn rate, but this
is not quite the case. 

NOTE The forecast churn probability for a perfectly average customer nor-
mally is close to the overall churn rate but not equal to it. 

Here is how the churn impact is calculated. If a customer is perfectly average, they
have zero in all scores, and the probability of retention becomes equal to equation 8.4:

                       (Equation 8.4)

On the other hand, if a customer is perfectly average in all respects except for being one
standard deviation above average on a single metric or group, the multiplication of the
weights by the scores reduces to exactly the weight for the one score on which they are
one standard deviation above average. In that case, if the variable w stands for the value
of the one weight in the engagement equation, equation 8.4 leads to equation 8.5:

                       (Equation 8.5)

The churn impact is calculated as the difference between equation 8.4 and 8.5 for
each engagement weight. 

8.3.2 Logistic regression code

Listing 8.2 provides the code for logistic regression analysis. This listing is a lot more
than simply fitting the regression, which is only two lines. The rest of the code pre-
pares the data, does some analysis of the result, and saves everything. The listing is
divided into seven functions, described here in the order in which they are called:

 logistic_regression_analysis (the main function)—After calling a helper
function to create the data, the function creates the sklearn LogisticRegression
object and calls the fit method to run the model fitting. Then it calls more
helper functions to analyze and save the results.

 prepare_data—The function loads the saved dataset of grouped scores and
separates the columns indicating churn. The churn indicator is reversed so that
it indicates retention. Using the grouped scores is an option controlled by a
default argument because (in chapter 9) it is used to load other files.

 save_regression_summary—The function makes a DataFrame where one col-
umn is the regression model weights and offset, and the other column is the one
standard deviation impact. Note that this method (and the following two) have
an optional extension argument that is used to save additional versions in chap-
ter 9; this is the table of data illustrated in figure 8.6. It calls calculate_impacts
to get the churn impact numbers and then takes the weights from the Logistic-
Regression object; these values are stored in a field called coef_. (coef is short

Pretain S off( ) 1
1 e off–+
-----------------= =

Pretain S w off+( ) 1
1 e w off––( )+
--------------------------= =
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for coefficient, which is a generic term for a number that multiplies another num-
ber.) These results are combined with the names of metrics and groups in a
DataFrame and then saved.

 calculate_impacts—This function calculates the impact of a one standard devi-
ation score on the retention probability, using the equations described earlier.
It calls the s_curve function on the offset, which is the variable intercept_ of
the regression object, to get the baseline retention probability. It also calls the
s_curve function on the difference between the offset and the weights, which is
stored in the variable coef_ of the regression object. The result of the function
is both the vector of retention impacts and the baseline retention probability. 

 s_curve—This function implements equation 8.2.
 save_regression_model—This function saves the regression object to a pickle

file so that it can be reloaded and used to forecast later.
 save_dataset_predictions—This function calculates what the churn and

retention probabilities would have been on the observations in the dataset used
to create the model. It calls the predict_proba function on the regression
object with the dataset as the parameter. The results are saved in a .csv file,
which is explained further in section 8.3.5.

You should run listing 8.2, using the Python wrapper program in the usual way with
these arguments:

fight-churn/listings/run_churn_listing.py --chapter 8 --listing 2

The program prints a few lines of output telling you where it saved the three results,
which are

 The file containing the weights and one standard deviation impact
 The file containing the pickle of the model
 The file containing the historical churn and retention probabilities 

You should open the summary file, churnsim_logreg_summary.csv, and confirm that it
is similar to figure 8.5. It won’t be exactly the same because the data is randomly simu-
lated. I talk more about the results in the historical probability file in section 8.3.5 and
how to use the pickle file in section 8.4.

import pandas as pd
import numpy as np
import os
from sklearn.linear_model import LogisticRegression
from math import exp
import pickle

def logistic_regression_analysis(data_set_path=''):
   X,y = prepare_data(data_set_path)         

Listing 8.2 Logistic regression analysis

Calls the helper 
function prepare_data
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   retain_reg = LogisticRegression(fit_intercept=True, 
      solver='liblinear', penalty='l1')            
   retain_reg.fit(X, y) 
   save_regression_summary(data_set_path,retain_reg)      
   save_regression_model(data_set_path,retain_reg)           
   save_dataset_predictions(data_set_path,retain_reg,X)   

def prepare_data(data_set_path,ext='_groupscore',   
                 as_retention=True):
   score_save_path = data_set_path.replace('.csv', '{}.csv'.format(ext))
   assert os.path.isfile(score_save_path), 'You must run listing 6.3 first'
   grouped_data = 
      pd.read_csv(score_save_path,index_col=[0,1])   
   y = grouped_data['is_churn'].astype(np.bool)   
   if as_retention: y=~y
   X = grouped_data.drop(['is_churn'],axis=1)     
   return X,y

def calculate_impacts(retain_reg):                  
   average_retain=s_curve(-retain_reg.intercept_)   
   one_stdev_retains=np.array( 
      [ s_curve(-retain_reg.intercept_-c) 
       for c in  retain_reg.coef_[0]])        
   one_stdev_impact = 
      one_stdev_retains - average_retain     
   return one_stdev_impact, average_retain

def s_curve(x):    
   return 1.0 - (1.0/(1.0+exp(-x)))

def save_regression_summary(data_set_path,
                            retain_reg,ext=''):        
   one_stdev_impact,average_retain = 
      calculate_impacts(retain_reg)     
   group_lists = pd.read_csv(   
                             data_set_path.replace('.csv', '_groupmets.csv'),
                             index_col=0)
   coef_df = pd.DataFrame.from_dict(           
       {'group_metric_offset':  np.append(group_lists.index,'offset'),
        'weight': np.append(retain_reg.coef_[0],retain_reg.intercept_),
        'retain_impact' : np.append(one_stdev_impact,average_retain),
        'group_metrics' : np.append(group_lists['metrics'],'(baseline)')})
   save_path = 
      data_set_path.replace('.csv', '_logreg_summary{}.csv'.format(ext))
   coef_df.to_csv(save_path, index=False)
   print('Saved coefficients to ' + save_path)

def save_regression_model(data_set_path,retain_reg,ext=''):   
   pickle_path = 
      data_set_path.replace('.csv', '_logreg_model{}.pkl'.format(ext))
   with open(pickle_path, 'wb') as fid:
       pickle.dump(retain_reg, fid)         
   print('Saved model pickle to ' + pickle_path)
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def save_dataset_predictions(data_set_path, 
                             retain_reg, X,ext=''):    
   predictions = retain_reg.predict_proba(X)  
   predict_df = pd.DataFrame(predictions,        
                             index=X.index,
                             columns=['churn_prob','retain_prob']) 
   predict_path = 
      data_set_path.replace('.csv', '_predictions{}.csv'.format(ext))
   predict_df.to_csv(predict_path,header=True)
   print('Saved dataset predictions to ' + predict_path)

The LogisticRegression object in listing 8.2 takes a few parameters. fit_intercept
=True tells the logistic regression that you are going to include an offset in the model.
It’s optional because there are other uses of logistic regression in which you would not
include an offset. The other parameters, solver='liblinear' and penalty='l1',
control what method is used to find the weights and the offset. You can use different
methods to fit the model, but this book focuses on the application of logistic regres-
sion to fighting churn (and I won’t go into details). These parameters correspond to
the method known as ridge regression (also known as Tikhonov regularization), and
it is easy to find additional explanations of this in statistics textbooks or online.

DEFINITION Ridge regression is a modern method of fitting regression parame-
ters that performs well when many metrics can have correlation.

The fact that ridge regression works well when a large number of metrics can be some-
what correlated makes it suitable for the typical data used for customer churn. You
learn more about ridge regression and the parameters for the LogisticRegression
object in chapter 9. But first, let’s talk about how to explain the regression results to
your business colleagues.

8.3.3 Explaining logistic regression results

The regression result shows you which metric or group of related metrics has the big-
gest impact on churn and retention. This finding is an important one to share with
your business colleagues because it is an objective estimate of what behaviors or aspects
of the product cause the most engagement (and disengagement) with your custom-
ers. The results for both the weight estimate and the retention probability impact
show the relative importance; both tell the same story about what has the biggest
impact. This result is illustrated in figure 8.7, which shows the weights and impact on
retention ordered from most positive for retention to most negative for retention. 

 In figure 8.7, you can sort by either weight or retention impact, and the order is
the same, which makes sense if you consider the shape of the S curve. More engage-
ment always leads to higher retention probability, so the bigger the impact on engage-
ment (which is what the weight represents), the more impact on retention probability.

 It’s important to understand the weights from the regression, but I don’t recom-
mend talking about them with businesspeople. To explain the impact of the different
behaviors on retention to your business colleagues, I recommend that you use only

predict_proba 
predicts both churn 
and retentionkes a new

ataFrame
saves the
edictions
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the impact on retention probability. The engagement and weights used by the regres-
sion are abstract concepts but don’t exist, and this can be confusing. The benefit of
using the impact on retention probability is that the probability of retention is a con-
crete business metric that people already understand from the retention rate.

 Before you explain the impact of the metrics on retention and churn, you need to
make sure that the businesspeople understand the following concepts:

 What a probability is and what your product’s churn and retention rates are. In
this area particularly, make sure that people understand the following:
– The churn rate is equivalent to a probability.
– The churn and retention probabilities add up to 100%.

 What a standard deviation is, in a general sense. Most people have heard of
standard deviation but don’t have a concrete working knowledge of it. They
need to understand that someone who is one standard deviation above average
is noticeably above average but not extremely so. They also need to understand
that you can talk about being below average in standard deviations too.

Figure 8.8 demonstrates a good way to present this result to businesspeople: a bar
chart. Putting the retention impact in a bar chart makes seeing the relative impor-
tance easy. I also recommend sorting the metrics and groups by importance from
most positive to most negative. Label the metric groups with descriptive names.

 The reason I like to show a bar chart to businesspeople to explain retention proba-
bility is that a metric or behavior that is good for engagement is shown as a positive
number, whereas a metric or behavior that is bad for engagement is shown as a nega-
tive number. At the same time, it’s convenient to talk in terms of the impact on the
churn probability for individual customers. If you find that being one standard devia-
tion above average in social feeds use leads to a 2% increase in retention probability,

You can sort the
metrics by either
weight or retention
impact, and the
order is the same.

group_metric_offset weight retain_impact

metric_group_2 0.68 1.18%

newfriend_per_month 0.48 0.91%

metric_group_1 0.35 0.70%

like_per_post 0.18 0.39%

newfriend_pcnt_chng 0.11 0.25%

unfriend_per_newfriend 0.01 0.03%

reply_per_message –0.01 –0.03%

dislike_per_month –0.02 –0.06%

post_per_message –0.04 –0.10%

dislike_pcnt –0.14 –0.34%

unfriend_per_month –0.16 –0.41%

days_since_newfriend –0.17

–0.47

–0.43%

adview_per_post –1.41%

Figure 8.7 Comparison of regression coefficients and retention probability impact
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you’re more likely to say that it decreases a customer’s churn probability from 10% to
8%, rather than increasing the retention probability from 90% to 92%. The impact is
more tangible in terms of the churn probability, which is a smaller number.

 After you have shown the businesspeople the bar chart demonstrating the impact
of being above average in behavior, you should make sure to explain the following
additional facts to them:

 Being below average has approximately the equal and opposite effect as being
above average. It’s not exactly equal and opposite, but the relative impact of the
different metrics will be the same.

 If a customer is multiple standard deviations above average, there are diminish-
ing returns, meaning that each additional standard deviation above average has
less impact on the churn or retention probability.

 The same diminishing returns goes for being above average in multiple respects:
the combined churn probability reduction will be lower than the sum of the
quoted retention probability impacts.

Usually, these points cover most of the questions people have and should give them a
good idea of how impactful the different behaviors are for retention and churn.

Show only the retention probability impact.·
· Order the groups and metrics by the impact.
· Remove metrics/groups with very low impact.

To explain the regression result to
businesspeople, label the metrics and
groups in plain language, not metric
name strings from the database.
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Figure 8.8 Bar chart explaining the impact of behaviors on churn probability
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8.3.4 Logistic regression case study

Figure 8.9 shows an example result from the logistic regression case study for Broadly,
an SaaS product that helps businesses manage their online presence. About 80 met-
rics were analyzed in the case study. The two largest groups contain about 20 metrics
each, and both groups received strong positive weights in the regression. Five smaller
groups and nine metrics remained separate in the grouping, and some of those met-
rics appeared in earlier case studies in the book, including account_tenure, billing_
period, and detractor_rate. 

 As you can see in figure 8.9, a real case study can have a lot more metrics than a
simulation. Although grouping correlated metrics may seem to be unnecessary in the
simulation, in a real case study, it is important to group the correlated metrics; other-
wise, the result would have too many metrics to make sense. In section 8.4, you’ll see
another way in which grouping is essential for understanding churn with a large num-
ber of metrics. 

TAKEAWAY Grouping correlated metrics helps reduce information overload
when there are many metrics in regression analysis. 

Another feature of the weights in the Broadly case study is that several metrics and
groups have weights that are small, such as 0.01 or 0.03. By comparison, the strongest
engagement weights in the table are around 0.6, so those small weights are 1/20th or
less of the strong metrics, which is insignificant for engagement. These small weights
correspond to metrics where the cohort analysis would have shown no significant rela-
tionship to churn as well. You’re not going to use those kinds of metrics for segment-
ing your customers or making any interventions to reduce churn. If the small weights
were removed, the result in figure 8.9 would be more manageable but still as meaning-
ful. In chapter 9, you learn how to remove the small and insignificant weights from
the regression by using a technique that also maximizes the accuracy of the model. 

TAKEAWAY It’s normal for many of your metrics to show relatively small
engagement weights, and they correspond to customer metrics that are not
significant for churn and retention. 

If your data produces a table that looks like figure 8.9, you should definitely remove
the low-weight metrics before you make a bar chart. Chapter 9 shows you the best way.

8.3.5 Calibration and historical churn probabilities

One other output from listing 8.2 is the regression analysis, which is the result of
applying the churn probability forecast model to the dataset. This isn’t forecasting
because there’s no point in making a forecast for something that has already hap-
pened; the customers represented by the dataset have already either churned or been
retained. I will refer to these outputs for the dataset as being churn probabilities rather
than forecasts. In any event, it’s instructive to look at this output so that you know
what to expect when you forecast active customers.
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Figure 8.10 shows a small sample, which is like the dataset in that each row is for one
account and one observation date. But instead of having metrics for the rest of the
columns, the figure has one column for churn probability and one column for reten-
tion probability. Also, because the dataset is made up of historical observations, a sin-
gle account can appear more than once on different dates until it churns.

 These historical probabilities are also useful for checking the model. One import-
ant check of a forecasting model is that the forecasts it produces should correspond
closely to the real observed churn rate from your product. This check is called model
calibration.

DEFINITION Calibration refers to the degree of correspondence between the
estimated probabilities of churn and retention produced by the model and
the actual churn experienced by the customers.

group or metrics weight group metrics

metric_group_1 0.16 Customers and Messages: 22 metrics

metric_group_2 0.55 Reviews: 22 metrics

metric_group_3 0.1 6 metrics

metric_group_4 –0.01 3 metrics

metric_group_5 –0.07 3 metrics

metric_group_6 –0.01 2 metrics

metric_group_7 0.07 2 metrics

metric_group_8 0.03 2 metrics

metric_group_9 –0.1 2 metrics

metric_group_10 0.18 2 metrics

metric_group_11 0.06 2 metrics

account_tenure 0.63

... 0.06

billing_period 0.34

... –0.01

... –0.05

... 0.2

... 0.01

... 0.21

detractor_rate –0.07

... –0.03

... 0.11

... –0.07

... –0.19

The top two groups
have around 20
metrics each and
strong positive
engagement weights.

There are nine other
groups, but some have
engagement weights
only around 0.0 .1

With 24 metrics and
weights, many of
them insignificant, a
table like this has too
much information.

Figure 8.9 Example results from logistic regression for Broadly
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In section 8.6.2, you’ll see how to use churn-probability forecast to estimate customer
lifetime value, which can be an important metric in deciding on interventions. As the
name implies, customer lifetime value measures how much a customer is worth to you
over their lifetime. The customer lifetime value estimates will be accurate only if the
model is well calibrated. The same goes for any reasoning about the impacts of behav-
iors on churn: if the model isn’t calibrated, the retention impacts aren’t as useful.

 The most important check of calibration is that the average churn rate predicted
by the model should match the churn rate in the data. Figure 8.11 repeats the churn-
rate measurement for the simulated dataset, which was produced from listing 5.2 by
running the dataset summary function with the following arguments:

run_churn_listing.py --chap 5 --listing 2

Comparing the average historical probability from figure 8.10 with the churn rate in
figure 8.11, you can see that these figures are close, within 1/100 of a percentage. You
should make a similar comparison with your own simulated dataset and with any data-
set you work on for a real case study. For datasets with a reasonable number of obser-
vations of both churn and retention and without extreme outliers or missing values in
the metrics, you should find that the dataset churn rate and the average predicted
forecast are always close.

account_id
observation
_date churn_prob retain_prob

3/1/20 0.117346 0.882653
35 3/1/20 0.026151 0.973848
... ... ... ...
12 4/1/20 0.108008 0.891992
35 4/1/20 0.015863 0.984136
... ... ... ...
12 5/1/20 0.070167 0.929832
35 5/1/20 0.013329 0.986670
... ... ... ...

Average

Results are
ordered by
date and
account.

Predictions
include both
churn and
retention
probabilities.

The average is
shown for
illustration;
it is not part
of the data file.

12

0.0459452 0.9540548

Figure 8.10 Historical churn probability estimates for the simulated dataset. The average is 
calculated in a spreadsheet or analysis program (not saved with the dataset).

count nonzero mean

is_churn 32316 4.59% 0.04591

The churn rate in the
sample dataset is very
close to the average
forecast from the
regression.

Figure 8.11 Historical churn probability estimates for the simulated dataset produced 
by using listing 5.2
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In figure 8.6, you saw that the churn probability of the average customer was 2.4%
(from 100% minus the retention rate, shown to be 97.6% in the figure), not 4.6%; the
average customer did not have a churn probability equal to the average churn rate.
That’s fine. For calibration, you need the average predicted churn probability to
match the true churn rate, but the average customer doesn’t have to match the aver-
age churn rate. In fact, the presence of outlier churn probabilities usually guarantees
that the average customer will not have an average churn probability: the average cus-
tomer usually has a churn probability that is a bit lower than the churn rate, as in the
social network simulation.

 There are also more advanced ways to measure calibration. As you divided the cus-
tomers into deciles when making churn cohort plots, for example, you can test calibra-
tion in deciles. With that approach, you would order the customers by the predicted
cohort average forecast, divide them into 10 cohorts, and then check how the true
churn rate in each cohort compares with the cohort average forecast. The result would
tell you whether your prediction model is well calibrated to forecast probabilities for
customers who are likely or unlikely to churn (customers far from the average). I
don’t recommend that you do that kind of calibration check routinely, but this tech-
nique is a good one to be aware of. 

 You may want to check calibration with that level of detail if you are planning
expensive interventions specifically for high- or low-churn-probability customers. Then
it’s particularly important to know whether your model was accurate in estimating the
churn probability for those customers. As you see in chapter 9, a model can still iden-
tify the most and least at-risk customers when the calibration is not perfect.

 One last thing to note: calibration is only one measure of how well your model
matches the data. Other important measures of the quality of your model are intro-
duced in chapter 9.

8.4 Forecasting churn probabilities
Forecasting means making a prediction about something that hasn’t happened yet. In
the context of churn, forecasting means taking all of your customers who are cur-
rently active and predicting their probability of churning before their next renewal.
This section also covers how to prepare data for segmenting with grouped metrics, a
topic that was not covered in chapter 6.

8.4.1 Preparing the current customer dataset for forecasting

The first step in forecasting for your current customers is creating a dataset of those
customers who are active at the present time, including the most recent measurement
of all their metrics. You saw how to do this in chapter 4 when you learned how to extract
such a dataset for segmenting the active customers. Then, in chapter 7, you updated the
dataset to include more metrics, so you need to update the code to extract the current
dataset, as you updated the code to extract the historical dataset at the beginning of
this chapter. 



342 CHAPTER 8 Forecasting churn
 Listing 8.3 provides the code to extract the dataset with all the metrics created in
chapter 7. This listing is almost like listing 4.6 but has more metrics. The short com-
mon table expression at the beginning of the query selects the most recent available
date; then the main SELECT statement uses the flattening aggregation trick that you
learned in chapter 4 (section 4.6). 

 There is one new element in listing 8.3: the SELECT is limited to accounts with
more than 14 days of tenure. The CTE account_tenures selects all accounts with at
least 14 days’ tenure, and an inner join in the main SELECT limits the dataset to those
customers. This constraint makes sure that customers have been observed for at least
a few weeks before their metrics are used. Otherwise, most new customers will have
low metrics due to the short observation period. 

 In chapter 7, you learned that customers with short tenure can get more accurate
first-month metric forecasts through scaling. You used that technique to make more
accurate estimates of the rare metric unfriend_per_month. For your own case studies,
I recommended that you use this pattern for all metrics, and in that case, you would
match the two-week minimum for observations. (I did not ask you to recalculate all
those metrics to save time.)

WITH metric_date AS       
(
   SELECT  max(metric_time) AS last_metric_time FROM metric
),
account_tenures AS (
   SELECT account_id, metric_value AS account_tenure
   FROM metric m INNER JOIN metric_date ON metric_time =last_metric_time
   WHERE metric_name_id = 8
   AND metric_value >= 14
)
SELECT s.account_id, metric_time,
SUM(CASE WHEN metric_name_id=0  THEN metric_value ELSE 0 END) 
    AS like_per_month,                                            
SUM(CASE WHEN metric_name_id=1  THEN metric_value ELSE 0 END) 
    AS newfriend_per_month,
SUM(CASE WHEN metric_name_id=2  THEN metric_value ELSE 0 END) 
    AS post_per_month,
SUM(CASE WHEN metric_name_id=3  THEN metric_value ELSE 0 END)
    AS adview_per_month,
SUM(CASE WHEN metric_name_id=4  THEN metric_value ELSE 0 END)
     AS dislike_per_month,
SUM(CASE WHEN metric_name_id=27 THEN metric_value ELSE 0 END)
     AS unfriend_per_month,                                  
SUM(CASE WHEN metric_name_id=6  THEN metric_value ELSE 0 END)
     AS message_per_month,
SUM(CASE WHEN metric_name_id=7  THEN metric_value ELSE 0 END)
     AS reply_per_month,
SUM(CASE WHEN metric_name_id=21 THEN metric_value ELSE 0 END)
     AS adview_per_post,                                    
SUM(CASE WHEN metric_name_id=30 THEN metric_value ELSE 0 END)

Listing 8.3 Revised current dataset

This CTE selects the 
most recent date.

Selects the basic 
metrics with the 
flattening 
aggregation

This is the scaled 
metric from 
listing 7.7.

This is the ratio 
metric from 
listing 7.1.
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     AS reply_per_message,
SUM(CASE WHEN metric_name_id=31 THEN metric_value ELSE 0 END)
     AS like_per_post,
SUM(CASE WHEN metric_name_id=32 THEN metric_value ELSE 0 END)
     AS post_per_message,
SUM(CASE WHEN metric_name_id=33 THEN metric_value ELSE 0 END)
     AS unfriend_per_newfriend,
SUM(CASE WHEN metric_name_id=23 THEN metric_value ELSE 0 END)
     AS dislike_pcnt,                                       
SUM(CASE WHEN metric_name_id=24 THEN metric_value ELSE 0 END)
     AS newfriend_pcnt_chng,                                  
SUM(CASE WHEN metric_name_id=25 THEN metric_value ELSE 0 END)
     AS days_since_newfriend                    
FROM metric m INNER JOIN metric_date d 
    ON m.metric_time =d.last_metric_time   
INNER JOIN subscription s ON m.account_id=s.account_id
WHERE s.start_date <= d.last_metric_time                   
AND (s.end_date >=d.last_metric_time OR s.end_date IS null)
GROUP BY s.account_id, d.last_metric_time    
ORDER BY s.account_id

You should run listing 8.3, using the Python wrapper program and these arguments: 

run_churn_listing.py --chap 8 --listing 3

Running listing 8.3 saves a dataset of current customers and their metrics in a file.
This chapter doesn’t contain an example of the output because, by now, you know
what a dataset looks like.

 In section 8.1, you reviewed all the steps to prepare a dataset before using it in the
regression (in particular, see figure 8.4). Those steps were as follows:

1 Calculate statistics on the dataset.
2 Convert metrics to scores using the statistics.
3 Save a score parameter table summarizing the parameters used to make the scores.
4 Find groups using the correlation matrix, and create a loading matrix.
5 Calculate average scores for all the groups, using the loading matrix.

But there is a key difference when repeating the process for the current customer
dataset: you don’t want to calculate new statistics to convert the metrics into scores.
Neither do you want to create a new loading matrix to group the correlated metrics.
For the current dataset, you want to repeat the process using the same statistics and
loading matrix that you derived from the historical customer dataset when you ana-
lyzed it in chapters 5 and 6. You have to reuse the same parameters and loading
matrix for the current customers to ensure that every column in the current customer
dataset that you put in the regression has the same meaning that the same column
had in the historical dataset. 

 Consider what would happen if you calculated a new loading matrix on the cur-
rent customer dataset and found a different number of groups. That could happen if

This is the 
percentage 
metric from 
listing 7.1, 
version 2.

s is the
entage
 metric
ing 7.4.

This is the 
days_since_event 
metric from listing 7.6.cts the

rics for
e most
nt date

JOIN on subscription 
to ensure only active 
accounts.

The GROUP BY aggregation
completes the flattening.
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the current dataset metrics had correlations different from the historical dataset met-
rics. You would have no way to map the current customers’ grouped metrics to those
that the regression expected from fitting on the historical dataset. Even the mean and
standard deviation used for scoring should be those calculated on the historical data.
Because the mean and standard deviation used for the scaling were not derived from
the current customer data, for the current customer scores, the mean may not be
exactly zero, and the standard deviation may not be exactly one. But this result is cor-
rect as long as those differences reflect the true difference between the current cus-
tomers and the historical customers. The scoring process for the current customer
dataset involves the following four steps:

1 Reload the score parameters saved from the historical customer dataset.
2 Convert the current customer metrics to scores, using the historical dataset

statistics.
3 Reload the loading matrix created from the historical dataset.
4 Calculate average group scores for the current customers, using the reloaded

loading matrix.

Now you can see a second reason why the listing that made the scores saved all those
details in a table: the same information will be needed again if you are going to make
churn and retention probability forecasts.

TAKEAWAY When you prepare the current customer dataset for forecasting,
you need to reuse the scoring parameters and loading matrix that you created
when you originally analyzed the historical dataset. 

Listing 8.4 gives the code to score the current customer dataset. (Again, this chapter
does not show an example of the output.) Because listing 8.4 has to reload so much
data created by the earlier listings, it contains a function to reload an individual
dataset by name and listing number. After loading the current customer dataset and
the old score parameters and loading matrix, listing 8.4 performs the following
main steps:

1 Validates the inputs by making sure that the metric columns named in the data-
set, score parameters, and loading matrix match. These inputs could become
out of sync if you are iterating on creating different versions of a dataset and
calculating statistics and different versions of the grouping. 

2 Transforms the skewed and fat-tailed columns on columns indicated in the
score parameter table, using the transforms from listing 7.5.

3 Subtracts the mean from the metrics and divides by the standard deviation,
using the mean and standard deviation from the score parameter table. This
task is done in the new helper function score_current_data.

4 Multiplies the scaled data by the loading matrix to calculate averages for the met-
ric groups. This step happens in the new helper function group_current_data.

5 Saves the results.
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A final helper function call prepares a version of the dataset for segmenting, which is
described after the listing.

import pandas as pd
import numpy as np
import os
from listing_7_5_fat_tail_scores import 
   transform_fattail_columns, transform_skew_columns     

def rescore_metrics(data_set_path=''):

   load_mat_df = reload_churn_data(data_set_path,
      'load_mat','6.4',is_customer_data=False)      
   score_df = reload_churn_data(data_set_path,
      'score_params','7.5',is_customer_data=False)    
   current_data = reload_churn_data(data_set_path,
      'current','8.3',is_customer_data=True)         
   assert set(score_df.index.values)==set(current_data.columns.values),
       "Data does not match score params"    
   assert set(load_mat_df.index.values)==set(current_data.columns.values),
        "Data does not match load matrix"          

   transform_skew_columns(current_data,
      score_df[score_df['skew_score']].index.values)  
   transform_fattail_columns(current_data,
      score_df[score_df['fattail_score']].index.values)   
   scaled_data = score_current_data(current_data,score_df,data_set_path)
   grouped_data = group_current_data(scaled_data, load_mat_df,data_set_path)
   save_segment_data(grouped_data,current_data,load_mat_df,data_set_path)

def score_current_data(current_data,score_df, data_set_path):
   current_data=current_data[score_df.index.values]    
   scaled_data=(current_data-score_df['mean']) / 
      score_df['std'] 
   score_save_path=data_set_path.replace('.csv','_current_scores.csv')
   scaled_data.to_csv(score_save_path,header=True)
   print('Saving score results to %s' % score_save_path)
   return scaled_data

def group_current_data(scaled_data,load_mat_df,data_set_path):
   scaled_data = scaled_data[load_mat_df.index.values]         
   grouped_ndarray = np.matmul(scaled_data.to_numpy(), 
                               load_mat_df.to_numpy())           
   current_data_grouped = pd.DataFrame(grouped_ndarray,     
                                       columns=load_mat_df.columns.values,
                                       index=current_data.index)
   score_save_path=     
      data_set_path.replace('.csv','_current_groupscore.csv')
   current_data_grouped.to_csv(score_save_path,header=True)
   print('Saving results to %s' % score_save_path)
   return current_data_grouped

Listing 8.4 Rescoring the current dataset
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def save_segment_data(current_data_grouped, 
                      current_data, load_mat_df, data_set_path):
   group_cols =    
      load_mat_df.columns[load_mat_df.astype(bool).sum(axis=0) > 1]
   no_group_cols =                                               
      load_mat_df.columns[load_mat_df.astype(bool).sum(axis=0) == 1]
   segment_df =  
      current_data_grouped[group_cols].join(current_data[no_group_cols])
   segment_df.to_csv(data_set_path.replace('.csv',
                     '_current_groupmets_segment.csv'),header=True)

def reload_churn_data(data_set_path, suffix,
                      listing,is_customer_data):   
   data_path = data_set_path.replace('.csv', '_{}.csv'.format(suffix))
   assert os.path.isfile(data_path),                  
      'Run {} to save {} first'.format(listing,suffix)
   ic = [0,1] if is_customer_data else 0        
   churn_data = pd.read_csv(data_path, index_col=ic)
   return churn_data

You should run listing 8.4 in the usual way, using the Python wrapper program, so that
you can be ready to calculate the current customer forecast for your own data. Here
are the arguments:

run_churn_listing.py --chap 8 --listing 4

8.4.2 Preparing the current customer data for segmenting

One subject that was not covered when you learned about grouping metrics was how
to create a dataset of current customers with metrics grouped into average scores.
That’s what you need to do if the businesspeople in your organization are going to
plan interventions based on averages of metric scores. If you read section 8.4.1, you
can see the reason why I waited to explain it until now: the process is not completely
straightforward. Now that you have reprocessed the current dataset for forecasting,
you can reuse the work you did there (which is why the technique is included in the
last section of listing 8.4). But I don’t recommend that you use your forecasting data-
set for segmenting. Rather, I recommend the following hybrid version of the dataset:

 Use scores for all metric groups.
 Use regular (natural scale) metrics for any metrics that were not grouped.

The advantage of this approach is that it’s much easier for businesspeople to use.
Groups are useful for reducing the number of metrics, and if you explained scores
and metric groups by following my advice in chapter 6 (section 6.4), the businesspeo-
ple should be ready to interpret and use the metric scores and groups. It’s usually not
easy to segment with a metric when it is not on its natural scale, however, so if you
don’t have to convert a metric to a score for segmenting, it’s probably better not to.

 Given the current dataset of metrics, the scores, and the loading matrix, the helper
function in listing 8.4, save_segment_data, takes the columns for the groups and
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then adds the original unscaled metrics. The function is a few lines of Pandas manipu-
lation, but it can make life much easier for your business colleagues who are trying to
reduce churn.

 You may be thinking that for the simulated dataset that has fewer than 10 events
and not many more metrics, the idea of using grouped metrics for segmenting doesn’t
make much sense. Regular metrics are easier to understand, and grouping removes
only a few metrics. For the simulated dataset, you’re probably right. But if you work on
a product or service with dozens (or hundreds) of events and metrics, your business
colleagues may really need to use the average scores to cut down on information over-
load from so many metrics. 

8.4.3 Forecasting with a saved model

In this section, you’ll learn the code to make forecasts on the current customers. Fig-
ure 8.12 shows an example of what this output will look like. It’s similar to the forecast
outputs for the historical customer dataset, except now, you have only one observation
date and a single observation for every customer.

A second output of listing 8.5 is a visual display of the distribution of churn forecasts
in a plot known as a histogram (figure 8.13). A histogram helps you visualize a distribu-
tion by dividing the distribution into ranges and showing the number of observations
in each range with the height of a bar on the plot. Unlike in the cohort plots, the ranges
used to divide the customer observations in a histogram are fixed, and the number of
customers within each range varies. Instead of showing you the average churn rate for
groups of fixed size, a histogram shows you the size of the group that has a particular
(forecast) churn rate.

 In figure 8.13, you can see that the range of churn forecasts with the most custom-
ers is between 0% and 5%. Most customers have a churn probability that is less than
20%, but a small number have higher churn probabilities (between 20% and 50%).

account_id churn_prob retain_prob
observation

_date

1 5/10/20 0.114500 0.885499

2 5/10/20 0.005148 0.994851

3 5/10/20 0.027381 0.972618

4 5/10/20 0.003928 0.996071

6 5/10/20 0.037595 0.962404

... ... ... ...

Forecasts for the
current dataset
have one
forecast per
account, all on
the same date.

Figure 8.12 Output of forecasting on the current customer dataset (listing 8.5)
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You learned the term for the tail of a distribution when you saw fat-tailed distributions
in chapter 7. The narrow strip of customers with higher churn probabilities in figure
8.13 is referred to as the tail of the churn probability distribution.

Listing 8.5 gives the code to make the forecast. These are the main steps:

1 Load the pickle of the logistic regression object that was saved by listing 8.2.
2 Load the dataset of grouped scores for the current customers that was saved by

listing 8.4.
3 Call the predict_proba function on the logistic regression object, passing in

the customer dataset as a NumPy ndarray. The result is a two-column ndarray
of predictions for churn and retention probability.

4 Save the forecasts in a file like the one shown in figure 8.12.
5 Create and save a churn probability histogram like the one shown in figure 8.13.

The histogram is created in a separate function. The histogram function calls
the matplotlib.pyplot package function hist and then adds appropriate anno-
tation before saving the result as an image. The counts from the histogram are
also saved in a file.

The listing for forecasting is similar to the listing for fitting the regression model, in
the sense that the algorithmic tasks take a single function call to the package object.
But much of the work is preparing the data and analyzing and saving the results.

The greatest number of
accounts is close to the
average churn probability,
which is around 4.5%.

There is a tail
of accounts with
significantly higher
churn probability,
but no accounts
have anywhere
near 00% churn1
probability. Most
have less than 20%
churn probability.

Each bar in the
histogram shows
the number of
accounts with a
churn probability
in a small range.

Histogram of active customer churn probability (reg)
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Figure 8.13 Distribution of a simulation forecast and churn probabilities
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import pandas as pd
import os
import pickle
import matplotlib.pyplot as plt

from listing_8_4_rescore_metrics 
   import reload_churn_data        

def churn_forecast(data_set_path=''):
   pickle_path =                           
      data_set_path.replace('.csv', '_logreg_model.pkl')
   assert os.path.isfile(pickle_path), 
      'You must run listing 8.2 to save a logistic regression model first'
   with open(pickle_path, 'rb') as fid:
       logreg_model = pickle.load(fid)

   current_score_df = reload_churn_data(data_set_path,    
                           'current_groupscore','8.4',is_customer_data=True)

   predictions =      
      logreg_model.predict_proba(current_score_df.to_numpy())

   predict_df =         
      pd.DataFrame(predictions, index=current_score_df.index,
                   columns=['churn_prob', 'retain_prob'])
   forecast_save_path = 
      data_set_path.replace('.csv', '_current_predictions.csv')

   print('Saving results to %s' % forecast_save_path)
   predict_df.to_csv(forecast_save_path, header=True)
   forecast_histogram(data_set_path,predict_df)        

def forecast_histogram(data_set_path,predict_df,ext='reg')
   plt.figure(figsize=[6,4])
   n, bins,_ = plt.hist(predict_df['churn_prob'].values,    
                        bins=20)
   plt.xlabel('Churn Probability')    
   plt.ylabel('# of Accounts')
   plt.title(
       'Histogram of Active Customer Churn Probability ({})'.format(ext))
   plt.grid()
   plt.savefig(
      data_set_path.replace('.csv', '_{}_churnhist.png'.format(ext)), 

format='png')
   plt.close()
   hist_df=pd.DataFrame({'n':n,'bins':bins[1:]})     
   hist_df.to_csv(data_set_path.replace('.csv', '_current_churnhist.csv'))

You should run listing 8.5 on your own simulated dataset and confirm that you get
results like those shown in figures 8.12 and 8.13. Assuming that you have created the

Listing 8.5 Forecasting on the current customer dataset
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current customer grouped metric scores (using listing 8.4), you can create the fore-
cast from listing 8.5 by using this command: 

run_churn_listing.py --chap 8 --listing 5

8.4.4 Forecasting case studies

Figure 8.14 shows some example histograms of predicted churn probabilities from the
case studies you have seen throughout the book. These histograms have basic features
in common with the result in figure 8.13 from simulation: a small peak representing a
range with most of the churn probabilities and a tail made up of customers with
higher churn probabilities.

In figure 8.14, the three case studies show three fairly common variations on how the
tail of a churn probability distribution can appear:

 A fat tail in the churn probability distribution is when the number of custom-
ers with higher churn probabilities is large enough to show up clearly in the
histogram.

 A spiked tail in the churn probability distribution is when there are certain
ranges of churn probabilities in the tail with abnormally high numbers of cus-
tomers. Sometimes, these numbers are related to identifiable behaviors such as
lacking a particular behavior or having monthly versus annual billing. 

 A multipeak distribution is another way to describe this type of distribution,
although you usually describe the churn probability distribution as multipeak
only when two or more peaks in the histogram shape have similar height. No
case study example of this type was available.

 A thin tail is when most of the customers are packed in a narrow probability range,
but there is a small number of customers with much higher churn probability.

Fat tail: more accounts
have churn probabilities
significantly above average.
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Figure 8.14 Case study distributions of forecast churn probabilities
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In a thin tail, the number is so small that these customers are not visible in the
histogram; that’s when you look at the saved .csv file to see exactly how many
such customers there are.

In fact, the churn probability distributions resulting from real case studies are usually
less smooth and regular looking than the distribution resulting from the simulation
(shown in figure 8.13).

8.4.5 Forecast calibration and forecast drift

When you first fit the regression model, I showed you how to check the calibration by
comparing the average churn probability prediction to the churn rate in the histori-
cal dataset. You should also check the calibration of the forecasts made for your cur-
rent customer dataset. But in this case, you can’t compare the average with the churn
rate in the current customer data because no customers in the current customer
dataset have churned yet (of course). Instead, you can compare the average forecast
on the current customer dataset with the churn rate in the historical dataset, or with a
churn measurement made on recent customers, by using the methods you learned in
chapter 2.

TAKEAWAY Check the forecast calibration by comparing the average forecast
churn with the historical dataset churn probability or a recent churn rate
measurement (keeping in mind possible seasonality in the timing of a recent
measurement).

The top of figure 8.15 shows an example of such a comparison for the simulated data-
set. In this case, it shows that the average churn probability forecast on the current
dataset is about three-tenths of a percent less than the average churn forecast and
churn rate in the historical dataset (4.3% compared with 4.6%). That difference may
not seem like much, but it is noticeable, especially considering that the historical aver-
age and forecast are so close.

 When you find that the current forecasts are noticeably different from the histori-
cal numbers, you should investigate a little further to make sure that you understand
what caused the difference. What could cause this kind of difference? The churn
probability model is based on customer metrics, so if the current forecasts are differ-
ent from the historical forecast, the current metrics must be different in some way
from the historical metrics.

TAKEAWAY If the current customer churn probability forecast doesn’t match
the historical churn probability forecast, it must be because of differences
between current and historical metrics.

When you find this type of difference, you can investigate it by comparing the current
metrics with the historical metrics. The easiest way is to use the dataset summary statis-
tics that you already know how to create. The bottom of figure 8.15 illustrates a compar-
ison of the summary statistics from the historical dataset with the summary statistics
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from the current dataset. This comparison was made in a simple spreadsheet. You can
do the same thing or write a short script of your own. To create the summary statistics in
the current dataset, you can run an extra version of the summary statistics listing with
the arguments --chapter 5 --listing 2 --version 4 in the Python wrapper program.

 The comparison of metrics in figure 8.15 shows that the average values of the cus-
tomer metrics in the current dataset are a little higher than the average values of
customer metrics in the historical dataset (by around 5% in most cases). The metric
for percent change in new friends shows a big change because it is estimated as zero
in a new account, due to the requirement to have history for calculating the change.
The current sample has more tenants with the required history, leading to the differ-
ence in the average. Because most of the customer metrics have a positive impact,
higher metrics in the current dataset explain lower churn probability forecast for the
current dataset. 

 In the case of the simulated dataset, the difference between the average metric in
the current and historical datasets is correct but not meaningful. In the simulation,
the service came into existence a short time ago, so the average tenure of the custom-
ers is increasing. At the same time, most of the metrics are not corrected for recent
sign-ups, and as a result, new customers (on average) have slightly lower metrics.
From those considerations, it is fair to say that the average churn forecast on the cur-
rent dataset is reasonable, and the difference with the historical forecasts is not some-
thing to be concerned about.

 For analysis of churn on a real product, if you find that the metrics for current cus-
tomers are significantly different from historical dataset customers, you should do
some additional quality assurance to make sure that the results are correct. If you have
legitimate metric differences between the current dataset and historical dataset, it is
reasonable to conclude that the churn rates for your current customers may be differ-
ent from the churn rates you saw in the past. On the other hand, if the behavior of
your current customers is substantially different from the historical customers due to
material changes in the product or your market environment, you should be skeptical
of the reliability of the churn forecasts. You may have to wait until you can form a new
historical dataset under the current conditions to forecast churn probabilities reliably. 

 Another issue is that outliers in the current dataset can cause some churn probabil-
ities to be different from the historical dataset, altering the average. You can assess dif-
ferences in extreme outliers in the metrics by comparing the maximum and higher
percentiles in the summary statistics (not shown in figure 8.15). This area is another
one in which you have to use your judgment in evaluating the differences.

8.5 Pitfalls of churn forecasting
You now know how to fit a churn probability model and how to forecast for active cus-
tomers under normal circumstances. This section covers a few pitfalls you should be
aware of, because they can prevent you from getting the best possible results in some
circumstances.
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8.5.1 Correlated metrics 

You have learned about grouping correlated metrics and that you should do this
grouping as part of metric cohort churn analysis before you use customer datasets for
forecasting. So far, I have taught you that grouping correlated metrics is desirable
because it makes your results easier to understand. But using a regression model adds
a new imperative for using grouping: the regression algorithm is designed under the
assumption that the metrics you use in it are not highly correlated. Because regression
is not intended for high correlation between metrics, the result might not be sensible
if they are.

TAKEAWAY Regression is designed for uncorrelated or moderately correlated
metrics. Do not use highly correlated metrics in a regression.

measurement of churn average

current forecasts 0.04334235

historical forecasts 0.04594520

historical average

The average forecast
on the historical dataset
matches the sample
churn rate out to three
significant figures.

The average forecast on the
current dataset is different from
the historical forecasts by a
noticeable amount in the second
significant figure 0.043, as
compared to .046.

Comparison of churn rates:

Comparison of metrics:

The current dataset
for the simulation has
higher average values
for the metrics than
the historical data,
and these are mostly
associated with
increased engagement.
This explains the
difference in the churn
rate forecast.

metric
historical
mean

current
mean

current/
historical

like_per_month 95.6 98.9 103%

newfriend_per_month 6.72 7.14 106%

post_per_month 40.1 41.7 104%

adview_per_month 39.3 40.7 103%

dislike_per_month 15.5 16.2 105%

unfriend_per_month 0.31 0.31 102%

message_per_month 61.6 64.4 104%

reply_per_month 22.4 23.5 105%

adview_per_post 1.63 1.65 101%

reply_per_message 0.39 0.40 103%

like_per_post 3.75 3.83 102%

post_per_message 3.81 3.66 96%

unfriend_per_newfriend 0.09 0.08 97%

dislike_pcnt 0.23 0.23 101%

newfriend_pcnt_chng 0.19 0.24 129%

days_since_newfriend 7.43 8.12 109%

0.04590566

Figure 8.15 Calibration and forecast drift 
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One reason not to use highly correlated metrics in regression is that it makes the
engagement weights harder to interpret. Highly correlated metrics make the engage-
ment weights harder to interpret because when you think about the churn probability
impact of a correlated metric, you have to remember that it is typically paired with
impacts from the other correlated metrics. Suppose that two metrics have a correla-
tion of 0.75. In that case, if a customer is one standard deviation above average on one
metric, they are expected to be well above average on the other. You need to think
about these relationships when you reason about the impact of different behaviors on
retention. This fact remains true, even when metrics are weakly or moderately cor-
related; the impact is smaller, so ignoring it isn’t as problematic.

 If you learned about regression in the past, you may remember a condition called
collinearity. Collinearity is related to correlation; it is a condition of perfect correlation
between two metrics or between the sum of some group of metrics in the data. (Sum-
ming is in the sense of metrics such as totals, but collinearity refers to the condition
when the addition of some metrics could result in correlated pairs, not that you make
the metric sums.) Collinearity is a serious problem with some regression algorithms
and can cause them to fail. But newer regression algorithms, like the ridge regression
you used in listing 8.2, generally do not suffer from that kind of failure, even when the
data includes correlated or collinear metrics.

 A more subtle problem occurs in the regression if you use highly correlated met-
rics. Sometimes, if you use multiple highly correlated metrics and do not average
them into groups, you may find that the weights produced by the regression have non-
sensical relationships to engagement and churn. Some of the metrics are assigned
weights that are good for retention, and some are assigned weights that are bad for
retention, but clearly, all should have a similar influence.

 Figure 8.16 is an example from a real case study of Klipfolio, an SaaS tool for creat-
ing and sharing dashboards of company metrics. The case study had four versions of met-
rics that measured dashboard views in slightly different ways: dashboard views per day,
dashboard views per month calculated with a fixed period, dashboard views per month
calculated with account-tenure-scaled metric periods, and dashboard views per user per
month. These four metrics are highly correlated.

 All four metrics showed strong relationships to retention in cohort analysis in the
same way. Normally, such metrics should be grouped into an average score, but if that
grouping is not done and the four metrics are put into regression as independent
metrics, a strange result occurs: two of the metrics receive positive weights, indicat-
ing that the behavior increases engagement, and two of the metrics receive negative
weights, suggesting that the behaviors reduce engagement. These weights are not
meaningful, however. 

 Strangely, such models generally forecast as well as, and sometimes better than, the
models when all the engagement weights are meaningful. The opposing weights
result from the correlations and imbalance between the engagement strength of the
correlated metrics that are the real patterns in the data. But it is usually not a good
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idea to create this kind of model. You learn about accuracy comparison and machine
learning models that are not interpretable in chapter 9.

 This situation happens if you use a high correlation threshold in the metric group-
ing algorithm from chapter 6. The motivation typically is to keep correlated metrics
separate to try to determine the relative importance of churn and retention by seeing
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per_user_
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–1.5 –1.0 –0.5 0.0 0.5

Cohort average of “dash_views_per_user_per_month”

1.0 1.5 –1.0 –0.5 0.0 0.5

Cohort average of “dashboard_views_per_day”
1.0 1.5 2.0

–1.0 –0.5

Cohort average of “view_dashboard_permonth_scaled”

1.0 1.5–1.0 –0.5

Cohort average of “view_dashboard_permonth_unscaled”

1.0 1.5

0.83

dash_views_per_user_per_month 0.79 0.66

view_dashboard_permonth_unscaled 0.86 0.72 0.66

Metric Coefficient

dash_views_per_user_per_month 0.63

dashboard_views_per_day –0.33

view_dashboard_permonth_unscaled 0.20

view_dashboard_permonth_scaled

If correlated metrics are used in a regression
without averaging scores, they may receive both
positive coefficients and negative coefficients.
But this assignment of positive and negative
influence is an artifact: it is not meaningful.

The four metrics are
highly correlated.

The four metrics all show strong
churn reduction for higher product
use, and the relationship is causal.

–0.41

0.0 0.5 0.50.0

Figure 8.16 Misleading regression weights from correlated metrics
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which regression weight is the largest. It is ironic that an analysis like this can result in
nonsensical weights that prevent you from seeing a meaningful relationship. The solu-
tion is to use the methods described in chapter 6 and 7 to group the correlated met-
rics into averages and then investigate whether the relationships between the metrics
are significant by forming a ratio of the two metrics and checking the ratio’s relation-
ship with churn and retention. If the ratio is not correlated with either part of the
original pair, it can be tested in regression.

8.5.2 Outliers

Another pitfall that can prevent you from getting the best results in churn forecasting
occurs when you have extreme outliers in your data. In chapter 3, when you were
learning to create metrics, I showed you some techniques for detecting and removing
records that contain incorrect or inappropriate data. Now you’re going to learn about
something a little different: how to deal with data when it is a correct measurement
but so extreme that it causes problems in some aspect of churn forecasting. This situa-
tion is not too common if you are converting all your metrics to scores by using the
transforms for skewed and fat-tailed data. Those transforms reduce problems with
outliers because the transformed scores have less extreme values than the original
distribution. Also, extreme outliers are incredibly common if you do not use those
transforms, which is why I recommended using them as a standard practice. Still, I’m
going to alert you to two potential problems so that you’ll know the signs and what to
do about them.

 Outliers can cause problems with fitting the model and forecasting after the model
has been fit. Many statistics and data science classes emphasize the problem that outli-
ers cause with fitting the model. But for most churn use cases, I have seen more prob-
lems with outliers when forecasting. Outliers can cause severe problems in fitting a
model when few observations are used in the regression. If you have fewer than 100
observations in a regression, and there are extreme outliers, your results can be
severely affected by the outliers. But most churn scenarios have thousands of data
points. If you have tens of thousands of observations, a few outliers usually have little
impact on the regression. 

 In any event, you are likely to notice the presence of extreme outliers in your fore-
casting, and you will probably see them when you have forecast churn or retention
probabilities that are close to 0% or close to 100%. Figure 8.17 illustrates what I’m
talking about.

 I mentioned previously that it is rare to have accounts with churn probability
close to 100%, so if any account receives a churn probability forecast that is above
99% (or even 100%), that result is probably due to some extreme outlier on one or
more of the metrics. The same goes for accounts that are forecast to have a churn
probability that’s exactly 0%. Churn probabilities that are exactly 0% or 100% don’t
make sense because in the real world, there is always a chance that a customer will
churn or be retained. 
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If you know that these extreme probabilities are probably not accurate, the simplest
thing to do is ignore them. Remember that an account shown with 100% churn prob-
ability is not that likely to churn, but it’s probably still significantly at risk, which is
good to know. The problem I usually have with extreme forecasts is that they can be
distracting to businesspeople. Businesspeople can become obsessed with knowing why
some accounts have such high or low churn probabilities, and it may cause them to
doubt the otherwise reasonable predictions of the model. 

TAKEAWAY Forecasts for extreme outliers can cause confusion and doubt for
businesspeople when you present the model results to them.

The problem with extreme outliers when they are real customers in your current data-
set is that you cannot remove them as you would when you are constructing the histor-
ical dataset. Often, the context for making churn probability forecasts on the current
customers is segmentation or some other analysis in which you need forecasts for
all customers who are currently active. Often, the extreme outliers are high- or low-
risk customers; the modeling can exaggerate the true level of risk. The solution that
keeps the customers and allows you to make more reasonable forecasts for them is
called outlier clipping.

DEFINITION Outlier clipping means reducing the value of extreme outliers so
that they are still near the high (or low) end of possible values but not quite
as extreme.

Outlier clipping is different from the related concept of outlier removal in that the out-
liers are kept in the data at a reduced level. Figure 8.18 illustrates the most common

account_id
last_metric

_time churn_prob retain_prob

12821 5/10/20 18 8E-109

11237 5/10/20 0.99995 5E-05

… …

12589 5/10/20 0.72 0.28

9842 5/10/20 0.61 0.39

… …

7051 12/30/18 0.00939 0.990336

7059 12/30/18 0.00192 0.99808

… …

…

…

…

…

…

…

6909 12/30/18 1.34E-08 0.99999999

7052 12/30/18 0

As a result of outlier metrics, churn
probabilities may be predicted
exactly or very close to 00%.1

Plausible high churn probabilities

Plausible low churn probabilities

Very low predicted churn probabilities
due to outlier metrics1

Figure 8.17 Churn probabilities resulting from outliers
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approach to outlier clipping. Outlier clipping modifies the observations of a metric
that are above the 99th percentile by setting them equal to the 99th percentile value.
By definition, this transformation affects only 1% of the observations for each metric
you apply it to. The values that formerly were above the 99th percentile are still high
in comparison with most of the distribution but not quite as high as they were before.
Usually, outlier trimming is for high metric values, but the same approach can be
used for low metric values. Extremely low metric values are unusual in count met-
rics, in which the minimum is usually zero, but they can occur in ratios or percent-
age change metrics.

Listing 8.6 shows an example of code you can use to perform outlier clipping on a data-
set. In listing 8.6, clipping is performed as part of the process of transforming the cur-
rent customer dataset into group scores, so listing 8.6 is a variant of listing 8.4. The
clipping thresholds used are the 1st and 99th percentiles of all the metrics, which are in
the saved dataset summary statistics. Clipping occurs after the data is loaded and before
the metrics are converted to scores. Otherwise, listing 8.6 is the same as listing 8.4. 

 Note that listing 8.6 clips all the variables, but it’s not hard to create a similar func-
tion that clips only a select group of variables that you specify in a parameter. In gen-
eral, it is better to clip data only when necessary when outliers are extreme enough to
cause unreasonable forecasts. That said, in some real datasets with many events and
metrics, it can be difficult to identify precisely which extreme metrics are causing the
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Figure 8.18 Outlier clipping
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unreasonable forecasts. In that case, the quick solution is to proceed as shown in list-
ing 8.6 and clip everything.

import pandas as pd
import numpy as np
from listing_7_5_fat_tail_scores         
   import transform_fattail_columns, transform_skew_columns
from listing_8_4_rescore_metrics 
   import reload_churn_data    
 
def clip_hi_cols(data, hi_vals):        
   for col in hi_vals.index.values:
       data.loc[data[col] > hi_vals[col],col] 
          = hi_vals[col]                     

def clip_lo_cols(data, lo_vals):             
   for col in lo_vals.index.values:
       data.loc[data[col] < lo_vals[col],col] 
          = lo_vals[col]    

def rescore_metrics(data_set_path):   

   current_data =   
      reload_churn_data(data_set_path,'current','8.2',is_customer_data=True)
   load_mat_df = reload_churn_data(data_set_path,
      'load_mat','6.4',is_customer_data=False)
   score_df = reload_churn_data(data_set_path,
      'score_params','7.5',is_customer_data=False)
   stats = reload_churn_data(data_set_path,
      'summarystats','5.2',is_customer_data=False) 
   stats.drop('is_churn',inplace=True)                 
   assert set(score_df.index.values)==set(current_data.columns.values),
      "Data does not match transform params"
   assert set(load_mat_df.index.values)==set(current_data.columns.values),
      "Data does not match load matrix"
   assert set(stats.index.values)==set(current_data.columns.values),
      "Data does not match summary stats"

   clip_hi_cols(current_data, stats['99pct'])       
   clip_lo_cols(current_data, stats['1pct'])       

   transform_skew_columns(current_data, 
      score_df[score_df['skew_score']].index.values)     

   transform_fattail_columns(current_data, 
      score_df[score_df['skew_score']].index.values)

   current_data=current_data[score_df.index.values]
   scaled_data=(current_data-score_df['mean'])/score_df['std']

   scaled_data = scaled_data[load_mat_df.index.values]
   grouped_ndarray = np.matmul(scaled_data.to_numpy(), 
                               load_mat_df.to_numpy())

Listing 8.6 Clipping scores in Python

Reuses the fat-tails 
and skew transform 
functions

ses the
helper
ion for
oading
n data

Clips values in the 
data above those in 
the hi_vals parameter 

Sets values above the 
threshold to the threshold

Clips values in the 
data below those in 
the lo_vals parameter

 values
ow the
eshold
to the
eshold

This function is similar 
to that in listing 8.4.

Reloads
ed data,
loading
matrix,
meters,
nd stats Don’t use the churn 

measurement in the 
summary stats!

s values
he 99th
rcentile

Clips values below 
the 1st percentile

The rest of this 
listing is the same 
as listing 8.4.
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   current_data_grouped = pd.DataFrame(grouped_ndarray,
                                       columns=load_mat_df.columns.values, 
                                       index=current_data.index)

   score_save_path=data_set_path.replace('.csv','_current_groupscore.csv')
   current_data_grouped.to_csv(score_save_path,header=True)
   print('Saving results to %s' % score_save_path)

If you need to use clipping because you had some extreme forecasts, you may also
want to check whether the outliers have made a significant difference in fitting the
regression itself. To do so, you should use the clipping functions in listing 8.6 in the
function that creates the scores for the historical dataset.

8.6 Customer lifetime value
Now that you know how to forecast churn probabilities, I will introduce you to one
great application of churn forecasting: estimating customer lifetime value (CLV). Esti-
mates of CLV let you know how much a customer is worth to you over their entire life-
time. This information is crucial for evaluating the return on investment of your
acquisition and retention efforts. It may surprise you, but the key to estimating CLV is
the churn rate. Customer churn probability forecasts (like the ones you have learned
how to make) allow you to tailor CLV estimates individually to each customer.

8.6.1 The meaning(s) of CLV

The first thing to understand is that CLV is a forecast about expected customer values,
not only the sum of past payments from particular customers.

DEFINITION Customer lifetime value is the amount you expect a customer to be
worth to your business, including the revenue and costs you foresee, over the
customer’s entire lifetime. This forecast includes future payments.

CLV needs to include both the revenue that a customer is expected to bring in and
the cost of acquiring and keeping them as a customer, as illustrated in figure 8.19.

DEFINITIONS Customer acquisition cost (CAC) is the total amount spent on mar-
keting and sales per customer acquired. CAC usually depends on the channel
or campaign through which the customer was acquired. Cost of goods sold
(COGS) is the total amount spent to maintain the service for existing custom-
ers, including things like cloud computing costs and the cost of providing cus-
tomer support. COGS can depend on the type of customer. 

NOTE In this section, it is assumed that you know the CAC and COGS for
your customers. The focus in this section is on the recurring part of CLV,
which depends on the churn rate.

The revenue from the customer is recurring over their lifetime, which you were previ-
ously introduced to as monthly recurring revenue (MRR). For now, I will refer to the
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revenue generically as recurring revenue (RR) without respect to the time period, which
could be monthly or annually. Recurring revenue can include subscription payments
and also any revenue generated by ads, in-app purchases, or use charges.

 The name customer lifetime value implies that it combines all the costs and recur-
ring revenue over the customer’s expected lifetime. You can write CLV as shown in
equation 8.6:

               CLV = –CAC +  RR – COGS (Equation 8.6)

In the equations in this section, the Σ symbol stands for summation of all of the terms
indicated by the subscript beneath it, so Σlifetime means all the revenue and costs over
the entire customer lifetime, summed together. 

 That’s CLV. Next, I need to teach you about a second lifetime value related to CLV
that ignores acquisition costs and the first period’s revenue and costs.

DEFINITION Future lifetime value (FLV) is the sum of the recurring payments
and maintenance costs, at any time after the first period.

You want to use FLV (without acquisition costs and the first period revenue and cost)
when you are evaluating customers who have already signed up and are trying to
decide how much it is worth to retain them. If you are trying to decide how much a

–CAC

+RR

–COGS

+RR

–COGS

+RR

–COGS

Customer
acquisition cost

Sign-up Churn

Cost of goods sold

Recurring revenue

Certain revenue

…

and costs in the
first period

Revenue and cost
for the customer
lifetime, until churn

Acquisition Retention

Figure 8.19 Components of CLV
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customer is worth after they have signed up, the acquisition cost is irrelevant (a sunk
cost in financial terminology). Similarly, the payment from the sign-up was never at
risk for churn, so you ignore the first period payment (and costs). Instead, you care
only about the expected future recurring revenue and costs after sign-up, as shown in
equation 8.7

                       FLV =  RR – COGS, (Equation 8.7)

where the sum Σfuture ... means all the payments expected in the future. For the pay-
ment and cost sequence shown in figure 8.19, the future payments are those after the
sign-up period. But this valuation stays the same throughout the customer lifetime,
without regard to past periods of recurring revenue and costs. 

TAKEAWAY At any point in a customer’s lifetime, FLV is based only on expected
future payments, and all costs and revenue in the past are seen as a sunk costs
or benefits.

FLV is especially relevant to churn; you’re going to use it to evaluate return on invest-
ment on churn interventions. Also note that the difference between CLV and FLV is
only the acquisition cost and one period of recurring revenue (RR in the equations)
and one period of costs (COGS in the equations). The difference between the two
lifetime value calculations is not an estimate or a forecast, because those are known
quantities in the sense that you can calculate them from the data in your accounting
system. By contrast, FLV is a forecast or an estimate of the future because the future
lifetime of the customer is not known with certainty. For this reason, when you are
talking about CLV, the emphasis is often on FLV.

TAKEAWAY FLV emphasizes the future view of CLV for retention, which ignores
acquisition and past revenue and costs. 

Because FLV is the hard part to estimate and is closely related to churn and retention,
FLV is going to be the focus for the rest of the chapter. As I’ve mentioned, you can
always get CLV from FLV by subtracting CAC and one period of COGS and then add-
ing RR (equation 8.8):

                 CLV = FLV – CAC – COGS + RR (Equation 8.8)

One last thing to note about the definition is that COGS is usually summarized by the
margin defined in equation 8.9:

                  (Equation 8.9)

 
future


m RR COGS–
RR

----------------------------=
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Most companies summarize their costs with a margin, and it is assumed that you know
the margin for your customers. With that definition, you can rewrite the FLV formula
by combining equations 8.8 and 8.9 to get equation 8.10:

                     FLV = m RR (Equation 8.10)

NOTE If you don’t know the margin for your customers, don’t worry, because
all the rest of the instruction on CLV and FLV applies, and you can always add
the margin when you know it.

8.6.2 From churn to expected customer lifetime

To calculate the expected sum of a customer’s RR to use in the FLV formula (equation
8.11), you need to estimate the expected future lifetime of a customer. You might
expect that estimating a customer’s expected lifetime would be complicated, and you
would have to do something like go back to the database and measure the average
account tenures at the time of churn. But estimating customer lifetime is simple as
long as you know a customer’s churn probability. I’ll tell you the answer first and then
persuade you that it’s right. If you know that a customer has a certain churn probabil-
ity, the expected future lifetime of the customer is given in equation 8.11:

                      (Equation 8.11)

Note that in equation 8.11, the units for the lifetime are the same as the time period
for measuring churn: months or years (typically). 

TAKEAWAY In plain English, equation 8.11 says that if the churn probability
is a monthly period forecast, the expected lifetime of a customer is 1 divided
by the churn probability in months. If the churn probability is an annual
period forecast, the expected lifetime of a customer is 1 divided by the churn
probability in years. 

If the churn probability is 5% per month, the expected customer lifetime is 1.0/0.05 =
20 months. If the churn probability is 30% per year, the expected customer lifetime is
1.0/0.30 = 3.33 years.

 That sounds simple, and it is, as long as you have the churn probabilities for your
customers. Here is why equation 8.11 makes sense: 

 What would the churn rate be if every customer had a lifetime of 20 months? If
every customer churns once every 20 months, the churn rate would be 1/20, or
5% per month.

 What would the churn rate be if every customer had a lifetime of three years? If
every customer churns once every three years, the churn rate would be one-
third, or 33% per year.

 
future


L 1
churn--------------=
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Those examples show that (in an average sense) the churn rate is 1 divided by the life-
time, and equation 8.11 is turning that relationship around. In reality, not every cus-
tomer has the same lifetime, even if they have exactly the same churn probability.
Many factors external to the service and missing information prevent you from esti-
mating churn probability perfectly. But for every customer, expected lifetime in the
sense of an estimate or a forecast is 1 divided by churn probability. 

 If you want to read more details about why the expected lifetime is 1 divided by
the churn rate, you should read about exponential decay models, which are where
the approximations are derived from.

NOTE If you don’t make individual customer churn probability forecasts, you
can use the average churn rate in equation 8.11 and estimate the average cus-
tomer lifetime. 

8.6.3 CLV formulas

The next step isn’t exactly FLV or CLV but an intermediate step: the expected total
profit over the customer’s lifetime, not including CAC. Combine the expected life-
time (equation 8.11) with the margin equation for profit (equation 8.10) to get equa-
tion 8.12:

                          (Equation 8.12)

The expected lifetime profit (excluding acquisition) is the margin multiplied by RR
divided by the churn rate. Note that mRR here is the margin (m) multiplying recur-
ring revenue (RR), not MRR for monthly recurring revenue. (This notation is unfor-
tunate but standard.) Note that the expected lifetime from the churn probability can
be a number that is uneven, and usually, it will be. If the churn rate is 12% per
month, the expected lifetime is 1/.12 = 8.3 months. But you multiply that lifetime by
the per-period profit to get the expected lifetime profit. This result is okay because an
estimate is an average. In the example of an expected 8.3-month lifetime, no cus-
tomer will pay for 8.3 periods, but some may pay for 8, and some pay for 9, so the
average is 8.3.

 Also note that FLV doesn’t depend on the account tenure or how long that cus-
tomer has been a customer. It doesn’t matter whether a customer completed their first
period after they were acquired or their hundredth: the expected future lifetime
profit depends only on churn probability. (It may be true that the churn probability
forecast depends on account tenure, so there can be a second-order, indirect effect.)
As a result, FLV is forward-looking in that account tenure matters only to the extent
that it affects the churn probability forecast, which is also forward-looking.

TAKEAWAY FLV does not depend directly on the length of time a customer
has been a customer. It is a forward-looking estimate. Only expected future
revenue matters when evaluating how much it is worth to save a customer.

m RR
future
 mRR

churn
--------------=
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In any event, equation 8.12 is not FLV yet because it is the profit from the recurring
payments over the entire lifetime. But FLV is supposed to ignore the payments in the
first payment period (because those payments form part of the certain cost and pay-
ment from each customer). The answer is to subtract one period’s worth of RR (and
COGS) to get equation 8.13:

                        (Equation 8.13)

On the other hand, to get the CLV from equation 8.12, you need to subtract the acquisi-
tion cost, which leads to equation 8.14:

                           (Equation 8.14)

WARNING Many people use equation 8.12 alone for CLV because it is an easy
simplification. But equation 8.12 alone is not the correct formula for either
CLV or FLV! Equation 8.12 is an overestimate in both cases because both
equations 8.13 and 8.14 subtract from it. Because it is an overestimate, equa-
tion 8.12 is sometimes used for reporting CLV to outside investors but not for
evaluating the return on investment of acquisition or retention of customers.

You should be aware of an additional form of FLV necessary only for companies with
low churn. If churn is less than 20% per year, customers are expected to have lifetimes
longer than five years. If customers are expected to stay that long, it’s not reasonable
to assume that their FLV is the full amount suggested by their expected lifetime. With
such a long lifetime, there are more risks to the customer’s making all those payments
than churn alone. A recession might occur, or a new competitor may change the mar-
ket, or any number of things could happen over five or more years. 

 The way to handle this uncertainty is to add a cash-flow discount factor like the
kind that is used in evaluating capital investment projects. Explaining the formula is
beyond the scope of the book, but it looks like equation 8.15:

                      (Equation 8.15)

The formula in equation 8.15 uses the retention rate instead of the churn rate, and
the discount variable in the denominator is the discount rate that your company uses
to evaluate long-term investments. (If your company does not have such a discount
rate, you probably don’t need to use this formula.) For details on this long-customer-
lifetime version of FLV and CLV, I recommend “Customers as Assets,” by Sunil Gupta
and Donald Lehman, in the Journal of Interactive Marketing. The article is available for
download at www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/721/gupta_
customers.pdf.

FLV mRR 1
churn-------------- 1– 
 =

CLV mRR
churn
-------------- CAC–=

FLV mRR retention
1 discount retention–+( )--------------------------------------------------------------=

http://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/721/gupta_customers.pdf
http://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/721/gupta_customers.pdf
http://www0.gsb.columbia.edu/mygsb/faculty/research/pubfiles/721/gupta_customers.pdf
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Summary
 Forecasting churn probabilities is done with a model known as logistic regression.
 Logistic regression models retention as an S-shaped function of engagement.
 For the purpose of forecasting, engagement is modeled as the multiplication of

a set of engagement weights by the scores for each metric.
 The logistic regression algorithm determines the engagement weights that best

fit the data.
 A churn forecasting model is calibrated if the probabilities of churn that it pre-

dicts are in agreement with the churn rates observed on real customers.
 You check the calibration of forecasts by comparing the average forecast with

the churn rate in the dataset used to create the model.
 To make forecasts on currently active customers, you must transform the cur-

rent customer dataset in the same way that the historical customer dataset was
transformed before fitting the model.

 The expected lifetime for any customer is 1 divided by their predicted churn
probability with the same units as the churn probability (months or years).

 The expected lifetime can be used to estimate customer lifetime value (CLV).



Forecast accuracy
and machine learning
You know how to forecast the probability of customer churn, and you also know
how to check the calibration of your forecasts. Another important measurement of
a forecasting model is whether the customers predicted to be highly at risk are
really more at risk than those predicted to be safe. This type of predictive perfor-
mance is generally known as accuracy, although as you will see, there is more than
one way to measure accuracy. 

This chapter covers
 Calculating measurements of forecasting 

accuracy for churn

 Backtesting a model in a historical simulation

 Setting the regression parameter for the 
minimum metric contribution

 Picking the best value of the regression 
parameter by testing (cross-validation)

 Forecasting churn risk with the XGBoost machine 
learning model 

 Setting the parameters of the XGBoost model 
with cross-validation
367
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 Back in chapter 1, I told you that forecasting churn with a predictive model was
not the emphasis of this book because it isn’t helpful in many situations. The focus of
this book is on having a good set of metrics that segment customers into healthy and
unhealthy populations based on behavior. But there are a few reasons why it’s good to
have accurate predictive churn forecasts, so this chapter will round out your skill set
and ensure that you can forecast accurately when necessary.

 One time when it can be useful to forecast churn risk accurately is when an inter-
vention is particularly expensive. An onsite training session with a product expert will
be more expensive to deliver than an email, for example. If you’re selecting customers
for onsite training with the intention of reducing churn risk, it makes sense to select
only customers who have a high churn risk so that you enroll only customers with a suit-
able risk profile. Alternatively, you might not select the most at-risk customers because
they may be beyond saving; it is often better to select customers with above-average
but not maximum risk. (Also, you probably would screen the customers by particular
metrics to make sure that they would benefit from this hypothetical training.)

 Another reason it is worth your time to forecast churn accurately is that doing so
validates your entire data and analytic process; you can compare the accuracy of your
predictions with known benchmarks, as I explain in this chapter. If you find that the
performance of your process is below typical, that result suggests that you need to cor-
rect some aspect of your data or process. You may need to improve the way you clean
your data by removing invalid examples, for example, or you might need to calculate
better metrics. On the other hand, if you find that the performance of your analysis is
in the high range of the benchmark, you can be confident that you have done a thor-
ough analysis and there may not be much more to discover. You may even find that
your accuracy is impossibly high, which might suggest the need for corrections and
improvements in your data preparation, such as increasing the lookahead period you
use to make your observations (chapter 4).

 This chapter is organized as follows:

 Section 9.1 explains ways to measure forecasting accuracy and teaches you some
accuracy measurements that are particularly useful for churn.

 Section 9.2 teaches you how to calculate accuracy measurements using a histor-
ical simulation. 

 Section 9.3 returns to the regression model from chapter 8 and explains how
you can use an optional control parameter to control the number of weights
that the regression uses.

 Section 9.4 teaches you how to pick the best value of the regression control
parameter based on the accuracy test results. 

 Section 9.5 teaches you how to predict churn risk by using a machine learning
model called XGBoost, which is usually more accurate than regression. You also
learn about some of the pitfalls of the machine learning approach and see
benchmark results from real case studies. 
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 Section 9.6 covers some practical issues involved in forecasting with the machine
learning model.

The sections build on one another, so you should read them in order.

9.1 Measuring the accuracy of churn forecasts
To start, you learn what accuracy means in the context of churn forecasting and how to
measure it. In fact, measuring the accuracy of churn forecasts is not straightforward. 

9.1.1 Why you don’t use the standard accuracy measurement for churn

When you’re talking about the accuracy of a forecast (such as churn probability pre-
dictions), the word accuracy has both a general and a specific meaning. First, the gen-
eral definition.

DEFINITION Accuracy (in the general sense) means the correctness or truthful-
ness of forecasts.

All methods of measuring the accuracy of churn forecasting involve comparing the
predictions of risk with actual churn events, but there are many ways to measure accu-
racy. To make matters more confusing, one particular measurement of forecasting
accuracy is called accuracy. This measurement is specific, but it is not a useful measure-
ment for churn, as you’re about to see. I am going to start with that measurement,
which I will call the standard accuracy measurement to prevent confusion with the
more general meaning of accuracy. (When I say accuracy, I mean the word in the gen-
eral sense.)

 Figure 9.1 illustrates the standard accuracy measurement. In chapter 8, you
learned how to assign a churn or retention forecast probability to each customer.
The standard accuracy measurement further assumes that on the basis of those fore-
casts, you divide the customers into two groups: those who are expected to be retained
and those who are expected to churn. I will return to the question of how you might
divide customers into those two groups when I finish explaining the standard accu-
racy measurement.

 After customers are divided into expected retention and expected churn groups,
the assigned categories are compared with what really happened. To define the stan-
dard accuracy measurement, you need to use the following terms: 

 A true-positive (TP) prediction is a predicted churn that churns.
 A true-negative (TN) prediction is a predicted retention that stays.
 A false-positive (FP) prediction is a predicted churn that stays instead of churning.
 A false-negative (FN) prediction is a predicted retention that churns.

Using these definitions, the standard accuracy measurement is defined as follows.

DEFINITION The standard accuracy is the percentage of forecasts that are
either true positives or true negatives. In an equation, this would be Standard
Accuracy = (#TP + #TN)/(#Total).
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Standard accuracy is meant to represent the percentage of predictions that were cor-
rect in a particular literal sense: the percentage of the category assignments that came
true. That sounds reasonable, but in fact, standard accuracy is inappropriate for mea-
suring the validity of churn forecasts. Standard accuracy has two problems when it
comes to churn: 

 Churn is rare, so standard accuracy is dominated by nonchurns. 
 The basic assumption of the standard accuracy measurement is that you divide

customers into two groups: expected churns and expected retentions. But that
division isn’t a useful portrayal of customer segmentation use cases.

I will explain each of these problems in detail.
 Standard accuracy is dominated by nonchurns because churns are rare, so true

positives cannot possibly have much impact on the numerator in the standard accu-
racy ratio. As a result, the measurement doesn’t always do a good job of showing
whether forecasts are appropriate. To make this point, note that there is an easy way
to get a high standard accuracy measurement, as illustrated in figure 9.2. If you were
to predict that no customers would churn (all customers in the nonchurn group),
you would have true-negative predictions for the majority. If you have all the true
negatives correctly assigned, the resulting accuracy is the retention rate, and you
would have a high standard accuracy measurement without having predicted any-
thing about churn.

Predicted churns

False positives (FP) =
predicted churn that
stays (3)

False negatives (FN) =
predicted nonchurn
that churns (3)

True positives (TP) =
predicted churn that
really churns (2)

True negatives (TN) =
predicted nonchurn
that stays (42)

Because churn is
rare, accuracy is
dominated by true
negatives, not churn
predictions.

Accuracy =               =            = 88%TP + TN
Total

2 + 42
50

Increasing risk

Figure 9.1 The standard accuracy measurement
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TAKEAWAY The standard accuracy measurement is inappropriate for churn
because churn is rare, so the measurement can be gamed by predicting that
no one will churn. More generally, accuracy on churned customers makes only
a small contribution to the measurement.

One possible remedy for this weakness in the standard accuracy measurement is to
augment it with measurements based on not only true positives and true negatives but
also false positives and false negatives. I don’t recommend this approach either, how-
ever, because there is another way in which standard accuracy measurement is inap-
propriate for churn use cases. Calculating standard accuracy relies on the assumption
that you divided the customers into two groups: expected churns and expected reten-
tions. Dividing predictions into two exclusive groups is standard for some forecasting
use cases, but it is rarely done that way for customer churn.

 As mentioned at the start of the chapter, the most common use case for churn and
retention forecasts is to select customers for relatively expensive interventions to reduce
churn. In that case, the churn or retention probability is used like any other segmenting
metric, in that the department organizing the intervention orders the customers by the
metric and then uses its own criteria to pick the most appropriate customers. If the inter-
vention has a specific budget, for example, the department might pick a fixed number
of customers who are most at risk for churn or a fixed number of customers who are not
most at risk. A common strategy is to select customers with above-average risk who still
use the product a little because the most at-risk customers who do not use the product
may not be savable. You (the data person) aren’t dividing the customers into expected
churns and nonchurns as presumed by the standard accuracy measurement.

TAKEAWAY Churn forecasting use cases rely on using the ranking provided
by the churn forecast as a segmenting metric but do not involve categorizing
the customers into two groups: expected churns and nonchurns.

Increasing risk

Predict that no
one churns

Accuracy =               =            = 90%TP + TN
Total

0 + 45
50

Figure 9.2 Gaming the standard accuracy measurement for churn



372 CHAPTER 9 Forecast accuracy and machine learning
Because real churn use cases depend on the model’s ability to rank customers by risk
but not divide them into two groups per se, it makes more sense to turn to alternative
(nonstandard) measurements of accuracy that better reflect the situation. As described
in section 9.1.2, these measurements also remedy the problems in the standard accu-
racy measurement caused by the rarity of churn.

9.1.2 Measuring churn forecast accuracy with the AUC

The first accuracy measurement that you should use for churn is area under the curve
(AUC), where the curve refers to an analytic technique known as the receiver operating
curve. This naming is unfortunate, because AUC is a technical description of the way in
which the metric is calculated but doesn’t convey clearly what it means. But everyone
uses this name, so we have no choice but to stick with it; I won’t refer to the receiver
operating curve anymore because it is not necessary for understanding or applying the
metric. As you will see, my advice is not to even mention this measurement to your busi-
ness colleagues. If you want more details, it is easy to find resources online.

 The meaning of AUC is simpler than the name, as summarized in figure 9.3. As in
the standard accuracy measurement, you start with a dataset in which you made a fore-
cast for every customer and know which customers churned. Consider the following
test. Take one customer who churned and one customer who didn’t churn. If your model
is good, it should have forecast a higher churn risk for the customer who churned than
for the one who didn’t. If the model did so, consider that comparison to be a success.
Now consider the same test for every possible comparison. One by one, compare every
churn with every nonchurn to see whether the model predicted higher churn risk for
true churn. The overall proportion of successful predictions is the AUC.

DEFINITION AUC is the percentage of comparisons in which the model fore-
casts higher churn risk for a churn than for a nonchurn, considering pairwise
comparisons of all churns and nonchurns.

Compare the churn probability forecast
of every nonchurn to every churn.
(# Nonchurn * # Churn comparisons)

?

AUC = percentage of comparisons where
the churn received a higher-risk forecast
than the nonchurn

Nonchurns

Churns

Figure 9.3 Measuring accuracy with the AUC
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AUC avoids the problem in standard accuracy, which is that prediction on churns
doesn’t matter much because churns are such a small percentage of the population.
In the AUC calculation, accurate prediction of churns is central because every com-
parison involves one churn, even if churns are only a small percentage of the data. At
the same time, AUC is based on the ranking of risks and doesn’t require an artificial
categorization of customers into two groups.

 If you think about the definition of AUC, that measurement could involve a lot
of comparisons. The total number of pairwise comparisons is the product of the num-
ber of churned customers and the number of nonchurned customers. Fortunately,
there is a more efficient way to do the calculation, involving that receiver operating
curve, but I’m not going to teach you how to use it. Instead, you will use an open
source package to do the calculation (listing 9.1). It’s true that AUC is more expen-
sive to calculate than the standard accuracy metric, but the difference is not enough
to cause concern.

 If you run listing 9.1, you’ll see the short output in figure 9.4—a first demonstra-
tion. You will be using the AUC measurement throughout this chapter.

To demonstrate the AUC, listing 9.1 reloads the logistic regression model that you
saved in chapter 8; it also reloads the dataset used to train the model (the historical
dataset with labeled churns and retentions, not the current customer dataset). The
model’s predict_proba function is used to create forecasts, and these forecasts are
passed to the function roc_auc_score from the sklearn.metrics package. You should
run listing 9.1 on your own saved data and regression model with the following stan-
dard command and these arguments:

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 1 

import os
import pickle
from sklearn.metrics import roc_auc_score      
from listing_8_2_logistic_regression import prepare_data        

def reload_regression(data_set_path):    
   pickle_path = data_set_path.replace('.csv', '_logreg_model.pkl')
   assert os.path.isfile(pickle_path), 'Run listing 8.2 to save a log reg model'

Listing 9.1 Calculating the forecast model AUC

Running 9 listing listing_9_1_regression_auc on schema socialnet7
Regression AUC score=0.766

Listing 9. produces only one line of output:1

the AUC measurement for the forecasts.

Figure 9.4 Output of listing 9.1 for calculating the forecast model AUC 

sklean has a 
function to 
calculate the AUC. Reuses the 

prepare_data 
function from 
listing 8.2

 the
sion
odel
ickle
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   with open(pickle_path, 'rb') as fid:
       logreg_model = pickle.load(fid)
   return logreg_model

def regression_auc(data_set_path):
   logreg_model = reload_regression(data_set_path)     
   X,y = prepare_data(data_set_path)                 
   predictions = logreg_model.predict_proba(X)         
   auc_score = roc_auc_score(y,predictions[:,1])      
   print('Regression AUC score={:.3f}'.format(auc_score))

You should find that the regression model has an AUC of around 0.7, which raises the
question of whether 0.7 is good. AUC is a percentage, like accuracy, and 100% is
the best possible. If you had 100% AUC, all the churns were ranked higher in risk
than all the nonchurns. But you will never find a real churn-prediction system that has
an AUC anywhere near that high.

 On the other hand, consider the worst you could possibly do. Zero percent sounds
bad, but that result would mean that you had all the nonchurns ranked as a higher
risk than the churns. If you think about it, that result would be fine, because then you
could use your model as a perfect predictor of retention. Probably, though, some-
thing went wrong in your model setup to make it predict backward. 

 In fact, the worst AUC would be 0.50, which would mean that your predictions were
like coin flips: right half the time and wrong half the time. If a forecast model has an
AUC of 0.5, it has the worst possible performance—the same as random guessing.

TAKEAWAY AUC ranges from 0.5, which is equivalent to random guessing (no
predictive power), to 1.0, which is perfect ranking of churns versus nonchurns.

Table 9.1 shows a list of benchmarks for what you can consider to be healthy and
unhealthy AUC. Generally, churn forecasting AUC is healthy in the range from
around 0.6 to 0.8. If it’s less than 0.6 or greater than 0.8, something is probably wrong,
and you need to check the data in your model. You may not think that high accuracy
would be cause for concern, but it could be. I’ll say more about that subject in sec-
tion 9.2.3. 

Table 9.1 Churn forecasting AUC benchmarks

AUC result Diagnosis

< 0.45 Something is wrong! The model is predicting backward. Check your data and the code 
calculating the AUC; is it using the wrong column of the predict_proba result?

0.45–0.55 No different from random guessing (0.5). Check your data.

0.55–0.6 Better than random guessing but not good. Check your data, collect better events, or 
make better metrics.

0.6–0.7 Healthy range for weakly predictable churn.

0.7–0.8 Healthy range for highly predictable churn.

Calls the
reload_regression

function Calls the 
prepare_data 
function from 
listing 8.2

predict_proba 
returns probability 
predictions.

alls the
ction to
alculate
the AUC
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NOTE The AUC benchmarks in table 9.1 apply only to customer churn. For
other problem domains, the expected range of forecasting AUC can be higher
or lower.

AUC is used throughout the rest of this chapter, but first, you should be aware of one
other nonstandard accuracy measurement: the lift.

9.1.3 Measuring churn forecast accuracy with the lift

AUC is a useful metric, but it has one downside: it is abstract and hard to explain. I
recommend a different metric for churn accuracy, primarily because it is easy for busi-
nesspeople to understand. In fact, this metric, known as the lift, originated in mar-
keting. I’ll explain first the general use of lift in marketing and then its specific
application to churn.

DEFINITION Lift is the relative increase in responses due to some treatment
relative to the baseline.

If 1% of people who visit a website sign up for the product, and a promotion increases
the sign-up rate to 2%, the lift caused by the promotion is 2.0 (2% divided by 1%).
According to that definition, a lift of 1.0 means no improvement. One thing to notice
about lift is that it emphasizes improvement over the baseline, so it is suitable for mea-
suring improvement in things that are rare to begin with. For measuring the accuracy of
prediction models, you can use a more specific version of lift called the top decile lift.

DEFINITION The top decile lift of a predictive churn model is the ratio of the
churn rate in the top decile of customers predicted to be most at risk to the
overall churn rate.

Figure 9.5 illustrates this definition. The top decile lift is like a regular lift measure-
ment, but the baseline is the overall churn rate, and the treatment is that you picked
the 10% most at-risk customers according to the model.

IMPORTANT Because this definition is the most common definition of lift for
churn forecasting, when I use the term lift, you should be aware from the con-
text that I mean top decile lift.

0.8–0.85 Extremely predictable churn. This result is suspicious for a consumer product and 
usually is possible only for a business product with informative events and advanced 
metrics.

> 0.85 Something probably is wrong. Normally, churn is not this predictable, even for business 
products. Check your data to make sure that you’re not using too short of a lead time 
to construct the dataset and that there are no lookahead events or customer data 
fields (described in section 9.2.3). 

Table 9.1 Churn forecasting AUC benchmarks (continued)

AUC result Diagnosis
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Why is the overall churn rate the baseline? That’s how accurate you would be in pre-
dicting churn if you were randomly guessing. If you have a 5% churn rate, you will
find churns 5% of the time if you pick customers at random. If you can do better than
random guessing (lift greater than 1.0), your result improves. You might respond that
you could do better than guessing randomly, and you probably could, especially if you
use segments based on data-driven metrics like the ones you learn how to make in this
book. But the point is that the overall churn rate is a reasonable baseline at all compa-
nies, regardless of whatever else you might be doing.

TAKEAWAY Top decile lift is good for measuring accuracy because it empha-
sizes improvement from a low baseline level of prediction.

Listing 9.2 shows how to calculate the lift with Python, assuming that you have a model
saved (as in listing 9.1). Again, the output, as shown in figure 9.6, is a simple printout
of the results and only a demonstration.

Listing 9.2 doesn’t use an open source package to calculate the lift. At the time
of this writing, no open source package makes this calculation, so I have made an

Model prediction of
top decile ( 0%)1

most at risk

Increasing risk

5 churns in the entire
dataset, out of 50
observations: 0% churn1 2 churns in the top

10% most at risk:
40% churn rate in
the top decile

Lift =

=             = 4.0

Top decile churn
Overall churn

40%
10%

Figure 9.5 Measuring accuracy with the lift

Listing 9. produces only one line of output:1

the lift measurement for the forecasts.

Running 9 listing listing_9_2_top_decile_lift on schema socialnet7
Regression Lift score=4.284

Figure 9.6 Output of listing 9.2 (lift)
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implementation for you in the function calc_lift. The steps to calculate the lift
are as follows:

1 Validate the data to make sure you have a sufficient number of distinct forecasts.
2 Calculate the overall churn rate in the sample.
3 Sort the predictions by the churn risk forecast.
4 Locate the position of the top decile.
5 Calculate the number of churns in the top decile and the top decile churn rate.

The result is the top decile churn rate divided by the overall churn rate.

The lift calculation I provide requires at least 10 unique values or levels for the fore-
casts. Not enough forecasts can be a problem with bad data or a misspecified model.
The most common manifestation of bad data or a bad model is that all accounts get
the same forecast, but other variants are possible. The criteria of 10 is a rule of thumb,
not a hard rule. (In principle, the forecasts should allow you to select exactly 10% of
the customers who are most at risk for the comparison. For example, it would be okay
for the purpose of calculating lift to have just two distinct predictions coming from
the model as long as exactly 10% of the population gets one prediction or the other.
The 10-unique-values rule of thumb catches the most egregious model or data fail-
ures, and matching the condition precisely is not really necessary anyway.)

from listing_8_2_logistic_regression 
   import prepare_data      
from listing_9_1_regression_auc 
   import reload_regression    
import numpy

def calc_lift(y_true, y_pred):      
   if numpy.unique(y_pred).size < 10:     
       return 1.0
   overall_churn = sum(y_true)/len(y_true)     
   sort_by_pred=
      [(p,t) for p,t in sorted(zip(y_pred, y_true))]     
   i90=int(round(len(y_true)*0.9))      
   top_decile_count=
      sum([p[1] for p in sort_by_pred[i90:]])    
   top_decile_churn = 
      top_decile_count/(len(y_true)-i90)    
   lift = top_decile_churn/overall_churn
   return lift  

def top_decile_lift(data_set_path):
   logreg_model = reload_regression(data_set_path)    
   X,y = prepare_data(data_set_path,as_retention=False)     
   predictions = logreg_model.predict_proba(X)
   lift = calc_lift(y,predictions[:,0])     
   print('Regression Lift score={:.3f}'.format(lift))

Listing 9.2 Calculating the forecast model lift

ses the
re_data
on from
ting 8.2

Uses the reload_regression 
function from listing 9.1

Parameters are series of 
true churn outcomes 
and predictions.

ecks to
ke sure

that the
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Calculates the overall 
churn rate
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You should run listing 9.2 with the following arguments to check the result yourself:

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 2 

You should find that the regression model achieves a lift of around 4.0 on the simu-
lated data. I’ve already mentioned that the minimum lift is 1.0, which indicates that
your model is no better than random guessing because it can’t find more churns than
the overall churn rate. A lift less than 1.0 is akin to an AUC less than 0.5, which means
that your model is predicting risk in reverse because the top decile has fewer churns
than the overall sample.

 You can also deduce the maximum possible lift if the top decile of customers most
at risk contained only customers who churned. The lift would be 100% divided by the
overall churn rate. So the maximum lift depends on the overall churn rate. Here are
some examples:

 If the churn rate is 20%, the maximum possible lift would occur if the top
decile of forecasts were all churns. Then the lift would be 5 (100%/20% = 5). 

 If the churn rate is 5%, the maximum lift would be if all those 5% churns were
in the top decile forecast group. Then the top decile churn rate would be 50%,
and the lift would be 10 (50%/5% = 10). 

The pattern is that the higher the overall churn rate is, the lower the maximum possi-
ble lift. You are not going to get anywhere close to those maximums, but the relation-
ship between churn rates and more typical lift values is the same.

TAKEAWAY The higher the overall churn rate, the lower the lift you should
expect from a predictive model. 

Table 9.2 lists benchmarks for what you can expect to find for lift in real churn predic-
tion use cases. Unlike for the AUC, the reasonable range of lift values depends on the
churn rate. If the churn rate is low, it’s easier to get a somewhat greater lift. If the churn
rate is high (greater than 10%), the lift is likely to be lower. As explained in the preced-
ing paragraph, the maximum lift is reduced when the churn rate is high. That property
carries over to expecting lower lift scores generally because you’re not likely to find so
many churns in the top decile. For low-churn products, a healthy lift is in the range
from 2.0 to 5.0, whereas for high-churn products, the healthy range is around 1.5 to 3.0.

Table 9.2 Churn forecasting lift benchmarks

Low churn (< 10%) 
lift result

High churn (> 10%) 
lift result

Diagnosis

< 0.8 < 0.8 Something is wrong! The model is predicting backward. 
Check your data and the code calculating the lift. Is it 
using the wrong column of the predict_proba result?

0.8–1.5 0.8–1.2 Random guessing (1.0), or not very different from ran-
dom guessing. Check your data.
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I like to use the lift when I explain accuracy to businesspeople because the term is
intuitive and related to metrics that they already understand. But there is one prob-
lem with the lift: it can be unstable, particularly with small datasets. Small changes in
the metrics or model you use to predict may create big changes in the result. 

WARNING The lift can be unstable, especially for small datasets. The result
can vary significantly, comparing different time periods and forecasting mod-
els. To measure lift, you should have thousands of observations and hundreds
of churns in the dataset (or more). The lower the churn rate, the more obser-
vations you need to make the lift measurement stable.

Suppose that you have only 500 customer observations and a 5% churn rate, so you
have only 25 churns. In that case, the lift is based on how many of those 25 are in the
top 10% forecast at risk, with the baseline being an expected (average) 2.5. The addi-
tion or removal of a few churns from the top decile will make big swings in the lift.
Generally, you should use the lift when you have thousands of observations or more.
The AUC avoids this type of problem because it always uses every churn in the dataset
and maximizes their use (by comparing every churn with every nonchurn).

TAKEAWAY Use the AUC to evaluate your model accuracy for your own under-
standing. Use the lift to explain the churn accuracy to businesspeople.

Another nice property of the lift is that it makes the imprecise business of forecasting
churn sound more impressive. Compare these two statements:

 This model is three times better than the baseline.
 This model ranks a customer who churns 70% of the time as more risky than a

customer who doesn’t. 

1.5–2.0 1.2–1.5 Better than random guessing but not good. Check your 
data, collect better events, or make new metrics.

2.0–3.5 1.5–2.25 Healthy range of weakly predictable churn.

3.5–5.0 2.25–3.0 Healthy range of highly predictable churn.

5.0–6.0 3.0–3.5 Extremely predictable churn. This result is suspicious 
for a consumer product and usually is possible only for 
a business product with good events and metrics.

> 6.0 > 3.5 Something probably is wrong. Normally, churn is not 
this predictable, even for business products. Check 
your data to make sure you’re that not using too short 
of a lead time to construct the dataset and that there 
are no lookahead events or customer data fields 
(described in section 9.2.3). 

Table 9.2 Churn forecasting lift benchmarks (continued)

Low churn (< 10%) 
lift result

High churn (> 10%) 
lift result

Diagnosis
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Even though both statements imply the same level of improvement above random
guessing, three times is a more impressive statistic than 70%.

9.2 Historical accuracy simulation: Backtesting
Now you know the right way to measure accuracy of churn forecasts and what is typical
in churn forecasting. But I ignored an important detail: the observations on which
you should measure accuracy. As with many parts of the analysis, the situation is a little
different for churn.

9.2.1 What and why of backtesting

Earlier, I demonstrated the accuracy measurements you learned by calculating the
accuracy of the forecast on the dataset with which you created the model. This
demonstration is not the best practice, however; it’s like testing a student on questions
that they have already seen in the sense that the same customer observations were
used to fit the model. The best practice in forecasting is to test the accuracy of a
model on observations that were not used to fit the model. This type of testing is
known as out-of-sample testing because it tests observations that were not in the data
sample given to the algorithm for determining the model. 

 In general, accuracy is lower for new customer observations than for the ones used
in the model fitting. How different in-sample and out-of-sample accuracy are depends
on many factors. For regression on churn problems, the difference is usually slight;
for the machine learning model shown in section 9.5, using in-sample observations
for testing can create a large overestimate of accuracy.

TAKEAWAY Forecasting models should be tested on out-of-sample data that
was not used to fit the model.

Do you need to wait to see how well the model predicts new churns on live customers
to see how accurate it is? Waiting would work, and you should do that, but there’s an
easier way: hold back some of the observations from the data when you fit the model
and then test the accuracy on those held-back observations. Then you can see how
accurate the model would be on new customers it hasn’t seen without waiting to get
fresh new customers. After testing, you refit the model on all the data without hold-
ing anything back and use that final version to make the real new forecasts on active
customers.

 The next question is which data to use and how much you should hold back for
testing. The most realistic way to test the accuracy of a churn-forecasting model is to
use a historical simulation. This procedure is called backtesting and is illustrated in
figure 9.7.

DEFINITION Backtesting is the historical simulation of a forecasting model’s
accuracy, as though it had been repeatedly fit and then used to forecast out of
sample for consecutive periods in the past. 
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Here’s how backtesting works: 

1 Decide on a point in time in the past that is somewhere around one-half to one-
third of the time in the period spanned by your dataset.

2 Use all the observations that correspond to points in time before that date to fit
your model.

3 Use the observations in the time from one to three months after the date you
chose to test. This procedure tests what the accuracy of your model would have
been if it were forecasting churn in the past but still forecasts on customer data
that came in after the model was fit.

4 Assuming that you have more data, advance the target date to the end of your
test period. 

5 Repeat the process by refitting the model on all the data from the first fit, plus
the observations you used to test on, and test the next one to three months.

My advice for churn forecasting is a bit different from what is taught in most data sci-
ence and statistics courses, which rarely mention backtesting. Students usually learn a
random shuffling procedure to create out-of-sample tests that don’t pay attention to tim-
ing. The procedure of backtesting originated in financial forecasting on Wall Street.
Backtesting was created due to the observation that markets are changing all the time,
so predictive models perform differently on randomly shuffled accuracy tests than on
live forecasting. Accuracy tests based on a realistic historical simulation do the best job
of estimating how a model would have done if had been live at the time. 

 The reason why live-prediction accuracy can differ from a shuffled data test is that
if economic conditions change, such as at the start of a recession, a live model fit
before the recession probably won’t predict as well under the new recession condi-
tions. For the model to do better, the new conditions have to be observed for some

January February March April May JuneFor a first test,
fit the model
on January and
February. Test
on March and
April.

The complete dataset spans six months.

For a second test,
fit the model on
January through
April. Test on
May and June.

Model-fitting data from “past” data
for out-of-sample test from “future”

Fix a hypothetical, historical model-creation date.

Time

Figure 9.7 The backtesting process for measuring forecasting performance 
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time; then the model could be refit. But with a shuffled data test, it is as though you fit
a model that knows about the recession by observing the future before it happened.
Such a model can appear to forecast well, but the real results will likely be worse than
the test.

 The same reasoning applies to churn forecasting. If your market, product, or com-
petition changes during the time spanned by your dataset, it might be hard to forecast
churn accurately in the time after the change. If you shuffle the data, you can get a dif-
ferent result than you would have if you had been forecasting for your customers at
that time. The most realistic simulation is to have your model run through the data
and forecast out of sample in the order in which events happened. You may not know
whether the conditions driving your customer churn behavior changed during your
period of observation. But what you don’t know can hurt you, so backtesting is the
best practice. Although the historical simulation I described sounds complicated,
open source packages take care of all the details for you. 

9.2.2 Backtesting code

Open source Python packages provide functions that run historical simulations like
the one described in section 9.2.1. You provide the package your data and the type of
model you’re fitting and tell it how many tests you want to divide your data into. 

 Figure 9.8 shows example output from a historical simulation, including the lift
and the AUC for each out-of-sample test as well as the averages. For the simulated
dataset, you will probably find that the AUC and lift in the backtest are similar to the
AUC and lift from the in-sample data, but that will not necessarily be the case for a
real product dataset.

In figure 9.8, each testing period is known as a split, in reference to the fact that the
data is split into a dataset for fitting the model and a holdout dataset for testing.

DEFINITION Split is a generic term for the division of a dataset into separate
parts for model fitting and testing. 

Listing 9.3 contains the Python code that produced the output shown in figure 9.8.
This listing contains many of the same elements as the regression fitting code in

Timing
statistics

The lift in
each test

Statistics of
the lift

The AUC in
each test

Statistics of
the AUC

See sections
9.3. and 9.4

mean
_fit_
time

std_
fit_
time

mean_
score_
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param
_C
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split0
_test
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test_
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split0
_test
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_test
_AUC
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0.0447 0.0135 0.0127 0.0003 1 {‘C’: 1} 4.028 4.027 4.027 0.000 1 0.7386 0.7432 0.7409 0.0023 1

Figure 9.8 Output of backtesting (listing 9.3)
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chapter 8 and the accuracy measurements discussed in section 9.1. But there are
three important new classes from the sklearn.model_selection package:

 GridSearchCV—A utility that performs a variety of tests on forecasting models.
The name of the class derives from the fact that it specializes in searching for
the best models through a process known as cross-validation (the CV in Grid-
SearchCV). You’ll learn more about cross-validation in section 9.4; for now, you
use the object to test a single model.

 TimeSeriesSplit—A helper object that tells GridSearchCV that the testing
should be performed by historical simulation, rather than another type of test
(typically, random shuffling). The name of the class is TimeSeriesSplit, but I
recommend that you stick with the original Wall Street term that your business
colleagues are most likely to understand: backtesting.

 scorer—An object that wraps a scoring function. When you use a nonstandard
scoring function with GridSearchCV, you must wrap it in such an object. This
task is easy: call the make_scorer function, provided by the package for this pur-
pose. You pass your scoring function as a parameter when making the scorer
object. In listing 9.3, this technique is used for the top decile lift calculation.

Other than TimeSeriesSplit, the parameters required to create GridSearchCV are
the regression model object and a dictionary containing the two accuracy measure-
ment functions. The lift measurement function is passed with the scorer object, and
the AUC scoring function is passed as a string (naming it because this scorer object is
a Python standard). 

 Other parameters that control the details of the test include the following:

 return_train_score—Controls whether to also test for in-sample accuracy
(also known as training accuracy)

 param_grid—Tests parameters to find a better model (a subject you learn more
about in section 9.4)

 refit—Tells the model to refit a final model on all the data (which you will do
in section 9.4) 

In other respects, listing 9.3 combines elements you have already seen: loading and
preparing data, creating a regression model, and saving results. One thing to note is
that the test is triggered by calling the fit function on GridSearchCV rather than on
the regression object itself. 

import pandas as pd
from sklearn.model_selection 
   import GridSearchCV, TimeSeriesSplit   
from sklearn.metrics import make_scorer           
from sklearn.linear_model import LogisticRegression

Listing 9.3 Backtesting with Python time-series cross-validation

These classes 
run the tests.

Defines a custom score 
function: the lift score
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from listing_8_2_logistic_regression 
   import prepare_data              
from listing_9_2_top_decile_lift 
   import calc_lift         

def backtest(data_set_path,n_test_split):

   X,y = prepare_data(data_set_path,as_retention=False)    

   tscv = TimeSeriesSplit(n_splits=n_test_split)    

   lift_scorer = 
      make_scorer(calc_lift, needs_proba=True)    
   score_models = 
      {'lift': lift_scorer, 'AUC': 'roc_auc'}   

   retain_reg = LogisticRegression(penalty='l1',     
                                   solver='liblinear', fit_intercept=True)

   gsearch = GridSearchCV(estimator=retain_reg,      
                          scoring=score_models, cv=tscv,
                          return_train_score=False,  param_grid={'C' : [1]}, 

refit=False)

   gsearch.fit(X,y)   

   result_df = pd.DataFrame(gsearch.cv_results_)       
   save_path = data_set_path.replace('.csv', '_backtest.csv')
   result_df.to_csv(save_path, index=False)
   print('Saved test scores to ' + save_path)

You should run listing 9.3 on your own data from the social network simulation (chap-
ter 8) and confirm that your result is similar to the one in figure 9.8. With the Python
wrapper program, the command to run is the following:

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 3 

9.2.3 Backtesting considerations and pitfalls

For the simulation, only two tests were used because the entire dataset spans only six
months. If more tests were specified for a larger dataset, the additional results would
appear as additional columns in the same file. But in backtesting for churn predic-
tion, it is typical to test with a few splits. By contrast, the procedure you may have
learned for randomly shuffled tests usually calls for 10 random tests or more. You
should pick the number of splits based on the length of time spanned by your data
sample and how often you would be likely to refit the model. 

 Although you may optimistically think you would refit a new model every month,
in reality, many companies “set it and forget it.” Even if you are very determined, you will
probably refit your own model only a few times a year after you finish the initial develop-
ment. (Refitting the simulation model every two months may be overly optimistic; I use
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this example for demonstration purposes.) Also, frequent model changes are confus-
ing to businesspeople. In fact, some companies mandate an annual refitting of pro-
duction models to prevent “moving the goal posts” when business metrics are tied to
the model outputs. For example, if customer support representative compensation
is linked to reducing churn probability, then the model must remain fixed for the
fiscal year.

 If you’re worried that using a few splits for the test is not as rigorous as using 10
tests, don’t worry. These measurements should be made with the spirit of agility and
parsimony that I advocated in chapter 1. Using a few tests will tell you whether you are
predicting well or have work to do on your model; doing more tests wastes time. Also,
if a high number of test splits implies an unrealistic rate of refitting your model when
it is live, your test may overestimate the accuracy you would achieve in the real world,
where you refit less often. 

 One other pitfall to be aware of in backtesting for accuracy is the possibility of
adverse effects due to mistakes in how times are recorded in your database or data
warehouse. This problem occurs mainly if events, subscriptions, or other customer
data records were backdated when they were added to your database. In that case, you
would calculate historical metrics and run your test with information that may not be
available in real time for live forecasting on active customers. This type of error is
known as a lookahead error or bias in forecasting.

DEFINITION A lookahead bias is an error that occurs when you estimate accu-
racy in a historical simulation using information that would not be available
in real time for forecasting on active customers.

WARNING Backdated records for events, subscriptions, or other customer
data can lead to lookahead bias in your forecasts and cause the backtest to
appear more accurate than what you would achieve in real-time forecasting.

The fix for lookahead bias is to be aware of any backdating of records in your database
and, if necessary, to correct it with custom lags in the event selection when you calcu-
late metrics. If you know that all events are loaded into the data warehouse with a one-
week delay and backdated to the time the event occurred, for example, you should
include this delay when you calculate your metrics. The trick is that you won’t notice
the one-week delay when you run your historical analysis, but you will when you try to
forecast churn probabilities in real time and find that all your metrics are a week old.

9.3 The regression control parameter
After measuring the accuracy of your forecasts, you’re probably wondering whether
there is any way to be more accurate. Another problem I’ve mentioned is that a
regression can result in many small weights on unimportant metrics. You have a way to
adjust the regression that can help with both issues.
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9.3.1 Controlling the strength and number of regression weights

In chapter 8, I mentioned that regression models can have too many small weights and
that you can remove them. This technique is illustrated in figure 9.9, which shows the
relative size of the regression weights from the social network simulation (figure 8.7 in
chapter 8). Most of the weights are greater than 0.1, one weight is 0.00, and two weights
are 0.01; those 0.01 weights are extraneous. Two small weights may not seem like a prob-
lem, but remember that real data can have a dozen or more smaller weights, which can
make it harder for you and the businesspeople to understand the result. 

It might seem that the simplest thing to do would be to set those very small weights
to zero. But the decision about which weights to keep and which to remove may not
be so clear-cut. Also, if some weights are removed, others should be readjusted. The
regression algorithm has a more principled way to handle this situation with a param-
eter controlling the total weight available for the algorithm to distribute across all
the metrics.

 When the control parameter is set to a high value, the regression weights tend to
be larger, and there will be fewer zeros. When the control parameter is set to a low
value, the weights tend to be lower, and the lower the parameter is set, the more
weights will be zero. The precise weights are optimized by the algorithm. Unfortu-
nately, this controlling parameter has no good, generally accepted name. Because
there is only one relevant parameter for the regression, I will call it the control param-
eter. Conveniently, the Python code refers to the parameter as (capital) C, so calling it
the control parameter is clear.

Group/metric

metric_group_2 0.68 0.68

newfriend_per_month 0.48 0.48

adview_per_post –0.47 0.47

metric_group_1 0.35 0.35

like_per_post 0.18 0.18

days_since_newfriend –0.17 0.17

unfriend_per_month –0.16 0.16

dislike_pcnt –0.14 0.14

newfriend_pcnt_chng 0.11 0.11

post_per_message –0 04 0 04

dislike_per_month –0.02 0.02

reply_per_message –0.01 0.01

unfriend_per_newfriend 0.01 0.01

Weaker weights
may be removed
when they make a
trivial contribution
to the regression.
In this case, weights
below around 0.1
could be removed.

?

Weight |Weight|

Figure 9.9 Regressions result in small weights that can be removed.
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DEFINITION The regression control parameter sets the size and number of weights
that result from a regression. Higher C settings yield more and higher weights,
and lower C settings yield fewer and lower weights.

The Python nomenclature C derives from something called a cost parameter in the
regression algorithm. It’s called a cost because the algorithm includes a penalty cost
for the size of the weights. But the documentation states that the cost is 1/C, so C is the
inverse or reciprocal of the cost. It is confusing to have a parameter that you call the cost,
but where the cost is higher for lower parameter values, so I stick with calling it a con-
trol parameter, or C.

9.3.2 Regression with the control parameter

Listing 9.4 shows a new version of the regression using the control parameter. This list-
ing reuses all the helper functions from listing 8.2 (chapter 8), so there’s not much to
it. The only difference is that listing 9.4 takes a value for C in the function call, passes
it in when it creates the object, and then passes it as an extension to the output files.
The output files are the same as those produced by listing 8.2. 

 You should run listing 9.4 on your simulated data. To see the effect of setting the C
parameter, you can run three versions. These three versions have the C parameter set
to 0.02, 0.01 and 0.005, respectively. Run these versions with the Python wrapper pro-
gram, using the version argument as follows:

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 4 --version 1 2 3

The results of running the two versions of listing 9.4 are compared in figure 9.10,
along with the result from the original regression (listing 8.2):

 In the original listing, all but one weight is nonzero, and the highest-magnitude
weight is 0.68.

 With the C parameter set to 0.02, four weights are zero, and the highest-
magnitude weight is 0.61.

 With the C parameter set to 0.005, eight weights are zero, and the highest mag-
nitude weight is 0.42.

This overall pattern is what happens as the C parameter is reduced.

from sklearn.linear_model import LogisticRegression
from listing_8_2_logistic_regression 
   import prepare_data, save_regression_model     
from listing_8_2_logistic_regression 
   import save_regression_summary, save_dataset_predictions

def regression_cparam(data_set_path, C_param):    
   X,y = prepare_data(data_set_path)

Listing 9.4 Regression using the control parameter C

This listing uses all 
the helper functions 
from listing 8.2.

There is an additional 
parameter, C, for the 
regression.
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   retain_reg = LogisticRegression( C=C_param,       
                                    penalty='l1',
                                    solver='liblinear', fit_intercept=True)
   retain_reg.fit(X, y)                                    
   c_ext = '_c{:.3f}'.format(C_param)           
   save_regression_summary(data_set_path,retain_reg,ext=c_ext)      
   save_regression_model(data_set_path,retain_reg,ext=c_ext)
   save_dataset_predictions(data_set_path,retain_reg,X,ext=c_ext)

Note that the response of the algorithm to the C parameter setting is irregular. Chang-
ing the C parameter from 1 to 0.02 removes two additional metrics from the regres-
sion results, and a further reduction from point 0.02 to 0.005 removes three more.
The way that the parameter is defined in the algorithm, you need to consider values of
the control parameter that vary in a range below 1.0 (the default) and above zero,
but the impact varies on a logarithmic scale as the parameter gets smaller. 

 When I say that the impact varies on a logarithmic scale, I mean that changes in
the parameter must be significantly different in the logarithm of the parameter to
make a big difference in the algorithm. The impact of going from 1.0 to 0.9 is not
going to be much, and the impact of going from 1 to 0.1 is likely to be about the same
as going from 0.1 to 0.01. It is inefficient to test the range of parameters between 1
and 10 on a linear scale like [1, 0.9, 0.8, ..., 0.1] because the best value can be below
0.1, and you will probably not see that much change between values like 0.9 and 0.8.
Instead, you should test parameters decreasing by a divisive factor, such as dividing by
10: [1, 0.1, 0.01, 0.001]. How small you have to go to see the right impact depends on

es the
meter
en the
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reated

Fits the 
regression, 
as in 
listing 8.2

Adds the parameter to 
the result filename

Calls the save
functions

Group/Metric

metric_group_1 0.35 0.31 0.30 0.28

metric_group_2 0.68 0.61 0.54 0.42

newfriend_per_month 0.48 0.27 0.14

dislike_per_month –0.02 0 0 0

0

unfriend_per_month –0.16 –0.11 –0.06 0

adview_per_post –0.47 –0.36 –0.27 –0.18

reply_per_message –0.01 0

0

0

like_per_post 0.18 0.08 0

0

0

0

post_per_message –0.04 00

0unfriend_per_newfriend 0.01 0

dislike_pcnt –0.14 –0.15 –0.14 –0.08

newfriend_pcnt_chng 0.11 0.08 0.04 0

days_since_newfriend –0.17 –0.17 –0.16 –0.14

When the regression is
run with the C parameter
set to a low level, lower
weights are used overall
and more weights are set
to zero by the regression.

The zeroed weights are not
exactly those that had the
lowest contribution in
the original regression:
the C parameter is not
an explicit cutoff.

C=0.005C=0.01C=0.02C=1

Figure 9.10 Comparison of regression weights resulting from different values of the control 
parameter, C
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your data. If you want to do a more detailed search of the parameter space, divide by a
smaller factor like 2, as in [0.64, 0.32, 0.16, ...].

TAKEAWAY When you check smaller values of C, you must check values that
are orders of a magnitude smaller than 1.0. Usually, a C parameter around 1.0
assigns weights to all (or most) of the metrics that are even a little bit related
to churn. To reduce the number of nonzero weights, try values of C like 0.1,
0.01, and 0.001.

9.4 Picking the regression parameter by testing 
(cross-validation)
At this point, you should be wondering how low you should go with the control
parameter. It makes sense to remove metrics with small weights, but at what point
should you stop? This decision is best made by looking at the accuracy that results
from each parameter setting.

9.4.1 Cross-validation

It should come as no surprise that you can remove metrics with small weights from a
regression, and it won’t make much difference in the accuracy. (Because these weights
are the small weights, they don’t make much difference.) A logical approach is to
remove weights until you find that doing so harms accuracy. What can be more sur-
prising is that removing some metrics improves accuracy. 

 You’re going to take different values of the C parameter and run a backtest with the
parameter to see how accurate the resulting models are. At the same time, you can
check how many metrics get zero and nonzero weights in the regression. Figure 9.11
illustrates this process. The general term for this type of procedure in machine learn-
ing and statistics is cross-validation.

…

Backtest 1: Regression C=0.02

AUC 1

Backtest 2: Regression C=0.01

AUC 2
Cbest

Pick C to
maximize
AUC and
minimize
weights

Repeat a complete test, and find
an average AUC for multiple choices
of the C param.

Choose the value of C that
maximizes AUC and minimizes
the number of nonzero weights.

Additional tests…

Backtest 3: Regression C=0.005

AUC 3

Figure 9.11 Cross-validation to select the regression parameter
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DEFINITION Cross-validation is the process of optimizing a forecasting model
by comparing the accuracy and other characteristics of models created with
different parameters.

Cross-validation is a common task in data science and machine learning, and what the
CV means in the GridSearchCV object you were introduced to earlier. The GridSearch
part of the name refers to the fact that a typical cross-validation works on a sequence
or multiple sequences of parameters. If there were two parameters, each with its own
sequence of values, the combinations of those two sequences would define a grid. In
fact, there can be any number of parameters. For the regression model, you will do a
cross-validation of one parameter. Later, you use higher-dimensional cross-validation
for a machine learning model. 

9.4.2 Cross-validation code

Figure 9.12 shows the main result of cross-validation, which plots the AUC, the lift,
and the number of weights that you get when running the regression for a sequence
of values from the C parameter. This result confirms that small-weight metrics can be
removed, and accuracy will not suffer: the number of metrics can be reduced from
13 to 9 before any noticeable change in accuracy occurs. In the simulation, there
was a slight gain in the lift, but no gain in the AUC when the less important metrics
were removed.

 Listing 9.5 contains the code that produced figure 9.12. The listing contains multi-
ple function definitions, but note that much of the code is for plotting and analysis.
The Python open source package takes care of the cross-validation in a few lines. The
functions in listing 9.5 follow:

 crossvalidate_regression—This main function performs cross-validation, and
it is almost the same as that in listing 9.4. The most important difference is
that a sequence of C parameter values is passed instead of a single value. The
other difference is that after the fit function on the GridSearchCV object
returns, helper functions are called to perform additional analysis and to save
the results. 

 test_n_weights—The GridSearchCV object tests each parameter for the accu-
racy of the model on the backtest, but it doesn’t test the number of weights
returned by the regression. A separate loop is called to fit a regression at each C
parameter in the sequence, and the number of nonzero weights is counted.
This is done on the full dataset, so it is not a backtest but a measurement of the
final model.

 plot_regression_test—This function creates the plot shown in figure 9.12 by
combining the results for AUC, lift, and the number of metrics with nonzero
weights.

 one_subplot—This helper function creates and formats each subplot. 
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Listing 9.5 also saves the results from figure 9.12 in a .csv file, shown in figure 9.13.
This result is the output from GridsearchCV (as in section 9.2), but instead of a single
row, there is one row in the table per value of the C parameter that was tested. There is
also an extra column with the result from testing the number of weights. The output
from the cross-validation with multiple parameters shows that the columns labeled
rank_test_lift and rank_test_AUC refer to the ranking of the models fit with the differ-
ent parameter values on the accuracy metrics. (Some of these columns may have
seemed extraneous when you first saw them in section 9.2.)

 You should run listing 9.5 with the following command-line arguments to generate
your own plot like figure 9.12 and a .csv file like figure 9.13:

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 5

The plot summarizes
results over a range of
values for the C parameter.

The AUC is almost constant for
higher values of C and declines
for lower values of C.

The number of weights
that are nonzero declines
steadily for lower values
of the C parameter.

The lift is fairly constant for
higher values of C and declines
at the lower values of C.

For this case, the best balance
is around C = 0.0 . At that point,1

the number of weights is reduced
from 3 to 8, and there is no1

material impact on the AUC.

socialnet7_dataset2.csv

mean_test_lift

mean_test_AUC

n_weights

0.64    0.32     0.16     0.08     0.04     0.02     0.01  0.0050   0.0025

0.64    0.32     0.16     0.08     0.04     0.02     0.01  0.0050   0.0025
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Figure 9.12 Cross-validation result plot
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import pandas as pd
import ntpath
import numpy as np
from sklearn.model_selection import GridSearchCV, TimeSeriesSplit
from sklearn.metrics import make_scorer
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt

from listing_8_2_logistic_regression import prepare_data
from listing_9_2_top_decile_lift import calc_lift

def crossvalidate_regression(data_set_path,
                             n_test_split):     

   X,y = prepare_data(data_set_path,as_retention=False)
   tscv = TimeSeriesSplit(n_splits=n_test_split)
   score_models = {                                  
      'lift': make_scorer(calc_lift, needs_proba=True), 
      'AUC': 'roc_auc'
   }
   retain_reg = LogisticRegression(penalty='l1', 
                                   solver='liblinear', fit_intercept=True)
   test_params = {'C' : [0.64, 0.32, 0.16, 0.08,     
                         0.04, 0.02, 0.01, 0.005, 0.0025]}
   gsearch = GridSearchCV(estimator=retain_reg,            
                          scoring=score_models, cv=tscv, 
                          verbose=1,return_train_score=False,
                          param_grid=test_params, refit=False)
   gsearch.fit(X,y)

Listing 9.5 Regression C parameter cross-validation

The lift in
each test

Statistics
of the lift

The AUC in
each test

Statistics

of the AUC

Parameter Rank of
the lift

Rank of
the AUC

Number of
regression

weights

Each row summarizes tests with a different C parameter (timing information omitted).

Differences in the AUC are pretty small until the final row.

param
_C params

split0_
test_

lift

split1_
test_
lift

mean_
test_
lift

std_
test_
lift

rank_
test_
lift

split0_
test_
AUC

split1_
test_
AUC

mean_
test_
AUC

std_
test_
AUC

rank_
test_
AUC

n_
weights

0.64 {'C': 0.64} 3.969 4.586 4.278 0.308 6 0.7720 0.7896 0.7808 0.0088 1
0.32 {'C': 0.32} 3.969 4.621 4.295 0.326 2 0.7719 0.7895 0.7807 0.0088 2
0.16 {'C': 0.16} 3.969 4.621 4.295 0.326 2 0.7717 0.7894 0.7805 0.0088 3
0.08 {'C': 0.08} 3.969 4.621 4.295 0.326 2 0.7710 0.7890 0.7800 0.0090 4
0.04 {'C': 0.04} 3.995 4.586 4.291 0.296 5 0.7692 0.7882 0.7787 0.0095 5

9
8
5
4

0.02 {'C': 0.02} 3.995 4.621 4.308 0.313 1 0.7648 0.7863 0.7756 0.0107 6
0.01 {'C': 0.01} 3.842 4.517 4.180 0.338 7 0.7595 0.7821 0.7708 0.0113 7

0.005 {'C': 0.005} 3.206 4.379 3.793 0.587 8 0.7225 0.7790 0.7507 0.0282 8
0.0025 {'C': 0.0025} 1.000 3.793 2.397 1.397 9 0.5000 0.7604 0.6302 0.1302 9

13
13
12
11
10

Figure 9.13 Cross-validation result table
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   result_df = pd.DataFrame(gsearch.cv_results_)    
   result_df['n_weight']= 
      test_n_weights(X,y,test_params)         
   result_df.to_csv(data_set_path.replace('.csv', '_crossval.csv'), 

index=False)
   plot_regression_test(data_set_path,result_df)    

def test_n_weights(X,y,test_params):       
   n_weights=[]
   for c in test_params['C']:     
       lr = LogisticRegression(penalty='l1',C=c,       
                               solver='liblinear', fit_intercept=True)
       res=lr.fit(X,~y)    
       n_weights.append(
          res.coef_[0].astype(bool).sum(axis=0))    
   return n_weights

def plot_regression_test(data_set_path, result_df):    
   result_df['plot_C']=result_df['param_C'].astype(str)   
   plt.figure(figsize=(4,6))
   plt.rcParams.update({'font.size':8})
   one_subplot(result_df,1,'mean_test_AUC',     
               ylim=(0.6,0.8),ytick=0.05)
   plt.title(   
      ntpath.basename(data_set_path).replace(
                                       '_dataset.csv',' cross-validation'))
   one_subplot(result_df,2,'mean_test_lift',    
               ylim=(2, 6),ytick=0.5)
   one_subplot(result_df,3,'n_weight',     
               ylim=(0,int(1+result_df['n_weights'].max())),ytick=2)
   plt.xlabel('Regression C Param')                                        
   plt.savefig(data_set_path.replace('.csv', '_crossval_regression.png'))
   plt.close()

def one_subplot(result_df,plot_n,var_name,ylim,ytick):
   ax = plt.subplot(3,1,plot_n)     
   ax.plot('plot_C', var_name,        
           data=result_df, marker='o', label=var_name)
   plt.ylim(ylim[0],ylim[1])                           
   plt.yticks(np.arange(ylim[0],ylim[1], step=ytick))     
   plt.legend()
   plt.grid()

9.4.3 Regression cross-validation case studies

Figure 9.14 shows examples of regression cross-validation from real company case
studies. The number of nonzero weights is shown as a percentage rather than a count;
otherwise, these results are read the same way as figure 9. 12.
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Following are some interesting features of the case study results: 

 The forecasts have AUC in the range 0.6 to 0.8.
 The forecasts have lift in the range 2.0 to 3.5. 
 For two of the three case studies, a noticeable improvement in AUC and lift

occurs when many metrics get zero weight from the regression. (This result is a
clear example of simplicity also benefiting accuracy.) In these cases, the optimal
values of the C parameter are in the range of around 0.02 to 0.08. The improve-
ment over including all the features is a few percentage points of AUC.

 For the third simulation, the optimal AUC is achieved with all the metrics;
removing any metrics results in significant loss of accuracy.

These results are typical, but you may see more diversity in real case studies than I can
present here. 

9.5 Forecasting churn risk with machine learning
So far, you have learned about forecasting churn with a regression in which predic-
tions are made by multiplying metrics by a set of weights. You can also predict churn
with other kinds of forecasting models that are collectively known as machine learn-
ing. There is no official definition of what constitutes a machine learning model, but
for the purpose of this book, I use the following.

Case study : the maximum1

AUC is achieved with around
30% of the metrics.

Case study 3: the maximum
AUC is achieved with all
of the metrics.

Case study 2: the maximum
AUC is achieved with around
65% of the metrics.
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Figure 9.14 Cross-validation case study results
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DEFINITION A machine learning model is any predictive algorithm that has the
following two characteristics: (1) the algorithm learns to make the prediction
by processing sample data (as compared with making predictions with rules
set by a human programmer), and (2) the algorithm is not the regression
algorithm.

The second condition may seem strange because the regression algorithm certainly
meets the first condition. The distinction is historical because the regression approach
predates machine learning methods by decades. 

9.5.1 The XGBoost learning model

This book covers only one machine learning algorithm—XGBoost—but the same
techniques for fitting the model and forecasting apply to most other algorithms you
may consider. The XGBoost algorithm is based on the concept of a decision tree, illus-
trated in figure 9.15. 

DEFINITION A decision tree is an algorithm for predicting an outcome (such as
a customer’s churning or not churning) that consists of a binary tree made up
of rules or tests. 

Each test in a decision tree takes a single metric and checks whether it is greater than
or less than a predetermined cut point. The prediction for an observation (of a cus-
tomer) is determined by starting at the root of the tree and performing the first test.
The result of the test determines which of the two branches to follow from the node
leading to one of the second-level tests. The result of all the tests determines a path
through the tree, and each leaf of the tree has a designated prediction. 

Posts
per month

< 200?

Adview
per post

> 2?
Friends

per month
> 5?

Message
per month

> 250?

Reply
per month

> 200?

Dislike
percent
> 0.25?

Adview
per month

< 100?

churn retain churn retain churn retain churn retain

?

Rule tree:
each node
is a test.

Input customer
observation.

Terminal
nodes are
predictions.

The prediction for one
customer is made by
following the tree according
to the tests until the final
node makes a prediction.

Figure 9.15 Making predictions with a tree of rules
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 Small decision trees seem to be simple, and they were once considered to be easy-
to-interpret machine learning models. But in practice, large decision trees for datasets
with many metrics become hard to interpret. Fortunately, no one has to read the rules
in the tree to make a prediction. 

 An algorithm is used to test metrics and decide on the cut points to optimize per-
formance when making predictions using the sample data. If a backtest shows that the
results are accurate, you can make predictions by using a decision tree without being
too concerned about the substance of the rules. Methods to interpret a decision tree
exist, but they are beyond the scope of this book. If you have more than a few metrics,
understanding the influence of metrics on the likelihood of churn is best done
through the grouping and regression methods shown in earlier chapters, so I won’t
spend time on interpreting decision trees.

 Apart from being difficult to interpret, decision trees are no longer state of the art
in terms of prediction accuracy. But decision trees are actually the building blocks for
more accurate machine learning models. One example is a random forest, illustrated
in figure 9.16. 

DEFINITION A random forest is an algorithm for predicting an outcome such as
a customer’s churning by randomly generating a large set of decision trees (a
forest). All the trees try to predict the same outcome, but each does so accord-
ing to a different set of learned rules. The final prediction is made by averag-
ing the predictions of the forest.

The random forest is an example of what is called an ensemble prediction algorithm
because the final prediction is made from the combination of a group of other
machine learning algorithms. Ensemble means a group evaluated as a whole rather

A set (forest) of decision
trees is generated with a
partly random algorithm.

Each tree makes a
separate prediction. An average of the

forest votes is the
final prediction.

Extra weight is assigned to
trees that correctly classified
hard-to-predict customers
during model fitting.

Figure 9.16 Making predictions with a forest of rule trees
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than individually. A random forest is a simple type of ensemble in that each tree gets
an equal vote in the outcome, and additional trees are added at random. Boosting is a
name for machine learning algorithms that make some important improvements over
ensembles such as random forest.

DEFINITION Boosting is a machine learning ensemble in which the ensemble
members are added so that they correct the errors of the existing ensemble.

Rather than randomly adding decision trees, as in a random forest, you create each
new tree in a boosting ensemble to correct wrong answers made by the existing
ensemble, rather than repredicting on the correct examples. Internal to the boosting
algorithm, successive trees are generated to correct the observations that were not
correctly classified by earlier trees. Also, the weight assigned to successive trees in the
vote is made to best correct the mistakes, not an equal vote like in random forests.
These improvements make boosted forests of decisions trees more accurate than a
truly random forest of decision trees.

 XGBoost (short for extreme gradient boosting) is a machine learning model that (at
the time of this writing) is the most popular and successful model for general-purpose
prediction. XGBoost is popular because it delivers state-of-the-art performance, and
the algorithm to fit the model is relatively fast (compared with other boosting algo-
rithms, but not as fast as regression). Details about the XGBoost algorithm are beyond
the scope of this book, but there are many excellent free resources online.

9.5.2 XGBoost cross-validation 

Machine learning algorithms like XGBoost can make accurate predictions, but this
accuracy comes with some additional complexity. One area of complexity is that the
algorithms have multiple optional parameters that you must choose correctly to get
the best results. The optional parameters for XGBoost include ones that control how
the individual decision trees are generated, as well as parameters that control how the
votes of different decision trees are combined. Here are a few of the most important
parameters for XGBoost:

 max_depth—The maximum depth of rules in each decision tree
 n_estimator—The number of decision trees to generate
 learning_rate—How heavily to emphasize the weight of votes from the best

trees
 min_child_weight—The minimum weight of each tree in the vote, regardless

of how well it did

Because there is no straightforward way to select the values for so many parameters,
the values are set by out-of-sample cross-validation. You used this approach for the
control parameter on the regression in section 9.4. 

TAKEAWAY State-of-the-art machine learning models have so many parame-
ters that the only way to make sure you pick the best values is to cross-validate
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a large number of them. That is, you test a sequence of plausible values for
each parameter and choose the ones that have the best values on a cross-
validation test.

Figure 9.17 shows an example of such a cross-validation result.

Figure 9.17 was created by running listing 9.6 on the simulated social network dataset
used in earlier chapters. It is similar to the cross-validation results you saw for picking
the regression C parameter, but it has both more columns and more rows:

 There are four columns of parameters because four parameters were part of
the test: max_depth, n_estimator, learning_rate, and minimum_child_weight.

 There are many more rows in the output table—256 parameter combinations,
to be precise. The reason for 256 parameter combinations becomes clear when
you inspect listing 9.6: the test is made over four parameters, and the sequence
of values for each parameter has four entries. The total number of combina-
tions is the product of the number of values for each parameter—in this case,
4 × 4 × 4 × 4 = 256.
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{'learning_rate': 0.3, 'max_depth': 1,
'min_child_weight': 12,
'n_estimators': 120}
{'learning_rate': 0.3, 'max_depth': 1,
'min_child_weight': 12,
'n_estimators': 80}
{'learning_rate': 0.3, 'max_depth': 1,
'min_child_weight': 6, 'n_estimators':
120}
...... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

3

6

6

6

{'learning_rate': 0.4, 'max_depth': 6,
'min_child_weight': 6, 'n_estimators':
120}
{'learning_rate': 0.4, 'max_depth': 6,
'min_child_weight': 3, 'n_estimators':
120}
{'learning_rate': 0.3, 'max_depth': 6,
'min_child_weight': 6, 'n_estimators':
120}

The best parameter
set results in an
average AUC 0.798.

The best parameter
set results in an
average lift of 4.68.
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0.7323.56 3.83 3.69 0.13 255 0.703 0.761 0.029 256

Figure 9.17 XGBoost code output
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You should run listing 9.6 on your own simulated data, using the following usual Python
wrapper program command with these arguments: 

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 6

Do not be surprised if the cross-validation for the XGBoost model takes a lot longer
than it did for the regression. There are a lot more parameter combinations to test,
and each time a model is fit, the process takes significantly longer. The precise time
can vary (depending on your hardware), but for me, the XGBoost model takes about
40 times longer to fit in comparison with the regression model. As shown in figure 9.8,
the regression takes only a few hundredths of a second to fit on average; figure 9.17
shows that the XGBoost fits take around 1 to 4 seconds.

NOTE XGBoost is in its own Python package, so if you have not used it
before, you need to install it before running listing 9.6.

import pandas as pd
import pickle
from sklearn.model_selection import GridSearchCV, TimeSeriesSplit
from sklearn.metrics import make_scorer
import xgboost as xgb            

from listing_8_2_logistic_regression import prepare_data
from listing_9_2_top_decile_lift import calc_lift

def crossvalidate_xgb(data_set_path,n_test_split):

   X,y = prepare_data(data_set_path,ext='',as_retention=False)    
   tscv = TimeSeriesSplit(n_splits=n_test_split)
   score_models = {'lift': make_scorer(calc_lift, needs_proba=True), 'AUC': 

'roc_auc'}

   xgb_model = xgb.XGBClassifier(objective='binary:logistic')    
   test_params = { 'max_depth': [1,2,4,6],   
                   'learning_rate': [0.1,0.2,0.3,0.4],    
                   'n_estimators': [20,40,80,120],        
                   'min_child_weight' : [3,6,9,12]}      

   gsearch = GridSearchCV(estimator=xgb_model,n_jobs=-1, 
scoring=score_models,    

                          cv=tscv, verbose=1, return_train_score=False,                                   
                          param_grid=test_params,refit='AUC')  
   gsearch.fit(X.values,y)   

Listing 9.6 XGBoost cross-validation
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t of this
ction is
ame as
9.5: the
ression
cross-

idation.

Creates an 
XGBClassifier 
object for a 
binary outcome

sts tree
depths
 1 to 6

Tests learning
rates from
0.1 to 0.4

Tests the number of 
estimators from 20 to

Tests minimum 
weights from 3 to 12

Creates the GridSearchCV object 
with the XGBoost model object, 
and tests parameters

Refits the best 
model according
to AUC after 
cross-validation

Passes as values, not a 
DataFrame, to avoid a 
known package issue at 
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   result_df = pd.DataFrame(gsearch.cv_results_)  
   result_df.sort_values('mean_test_AUC',ascending=False,inplace=True) 
   save_path = data_set_path.replace('.csv', '_crossval_xgb.csv')
   result_df.to_csv(save_path, index=False)
   print('Saved test scores to ' + save_path)

   pickle_path = data_set_path.replace('.csv', '_xgb_model.pkl')   
   with open(pickle_path, 'wb') as fid:
       pickle.dump(gsearch.best_estimator, fid)    
   print('Saved model pickle to ' + pickle_path)

The code in listing 9.6 is similar to the one for cross-validating the regression (list-
ing 9.5). The main steps are

1 Prepare the data.
2 Create a model instance (in this case, an XGBoost model).
3 Define the accuracy measurement functions to use (lift and AUC).
4 Define the sequences of parameters to test.
5 Pass the prepared parameters to the GridSearchCV object and call the fit

function.
6 Save the results (with no additional analysis, as in the regression cross-validation).

One important and slightly subtle difference between listing 9.6 and the regression
cross-validation in listing 9.5 is that the dataset is created from the original unscaled
metrics, and it doesn’t use scores or groups as you do for the regression. There is no
reason to rescale metrics for XGBoost (or decision trees generally) because the cut
points in the rules operate as well on the metrics, regardless of scale or skew. Also,
grouping correlated metrics doesn’t provide any benefit; in fact, it can hurt the per-
formance of this type of machine learning model. Grouping correlated metrics is ben-
eficial for interpretation and averts the problems that correlated metrics can cause in
regression. 

 On the other hand, for XGBoost, a diversity of metrics is beneficial, and correla-
tion does no harm. (If two metrics are correlated, either can make a suitable rule
node in a tree.) For these reasons, the prepare_data function from chapter 8 is called
with an empty extension argument so that it loads the original dataset rather than the
grouped scores (the default behavior).

9.5.3 Comparison of XGBoost accuracy to regression

Because XGBoost takes much longer to fit the larger number of parameters, you
should expect that it provides some improvement in forecasting accuracy. This expec-
tation is confirmed in figure 9.18, which compares the AUC and lift achieved by
regression and the XGBoost models for the simulation, as well as three real company

sfers the
sults to a
ataFrame

Sorts the result so
the best AUC is first

Creates a
pickle of the

best result
The best result is in the best_estimator 
field of the GridSearchCV object.
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case study datasets for the companies introduced in chapter 1. The AUC improve-
ment ranges from 0.02 to 0.06, and XGBoost always produces more accurate forecasts
than does regression. In terms of lift, the improvement is 0.1 to 0.5.

 Are those improvements significant? Remember that the full range of AUCs
you’re likely to see in churn forecasting is around 0.6 to 0.8. The maximum AUC,
therefore, is 0.2 more than the minimum, and in relative terms, an improvement of
0.02 in AUC represents a 10% improvement in terms of overall possible range. By
the same token, a 0.05 improvement in AUC represents 25% of the difference
between worst and best in class, so these improvements are significant. Still, the forecast-
ing is not perfect, even with machine learning, which why I advised in chapter 1 that

0.78
0.80

0.6

0.65

0.7

0.75

0.8

0.85
A

U
C

Social network simulation

0.69
0.71

Case study 1

0.77

0.82

Case study 2

0.64

0.70

RegressionRegressionRegressionRegression

Regression

Case study 3

Social network simulation Case study 1 Case study 2 Case study 3

XGBoost achieves higher AUC than does regression by 2 to 6%.

AUC of best regression model AUC of best XGBoost model

4.3

4.7

2

2.5

3

3.5

4

4.5

5

Li
ft

2.6

2.8

2

2.5

3

3.5

4

3.5

4.0

2

2.5

3

3.5

4

3.4
3.5

2

2.5

3

3.5

4

Corresponding lift for the
models with the best AUC

XGBoost achieves higher lift; the
amount of improvement varies.

XGBoostXGBoost XGBoost XGBoost

XGBoost Regression XGBoost Regression XGBoost Regression XGBoost

Figure 9.18 Comparison of regression and XGBoost lift



402 CHAPTER 9 Forecast accuracy and machine learning
predicting churn with machine learning is not likely to live up to some of the hype
in the machine learning field.

TAKEAWAY Though machine learning algorithms can produce forecasts that
are significantly more accurate than regression, churn will always be hard to
predict due to factors such as subjectivity, imperfect information, rarity, and
extraneous factors that influence the timing of churn. 

9.5.4 Comparison of advanced and basic metrics

Another important question is how much improvement in accuracy can be attributed
to the work you did to create advanced metrics back in chapter 7. So far, you may
have assumed that because the advanced metrics showed a relationship to churn in
cohort analysis, they must have improved the model. But as you want to validate
your data and modeling by showing that your model can predict out of sample, it
makes sense to confirm that the work you did creating more metrics contributed
something empirically.

 To make the comparison on the simulated social network datasets, you can run
additional versions of the cross-validation testing command on the original dataset
from chapter 4. That is, you run the dataset without the advanced metrics from
chapter 7—you use only the basic metrics from chapter 3. To run the regression cross-
validation on the basic metric dataset, use the following:

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 5 --version 1

The result is a cross-validation table like one shown in figure 9.13. You will probably
find that the maximum accuracy of any model is somewhat less for data with basic met-
rics than for data with advanced metrics. As illustrated in the bar chart in figure 9.19,
the maximum accuracy that I got on my regression simulation with basic metrics was
0.63; for the regression on the simulated data with advanced metrics, the maximum
AUC was 0.75. The time spent creating advanced metrics was well spent. In fact, the
regression accuracy with advanced metrics is significantly better than when using
XGBoost with basic metrics, and the additional improvements for the machine learn-
ing algorithm when it uses advanced metrics are relatively small.

 You can perform the same check on the XGBoost model by running the second
version of the XGBoost cross-validation command with these arguments: 

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 6 --version 1

In this case, you will probably find that the XGBoost forecasts did a bit better with the
advanced metrics. I got an AUC of 0.774 by using XGBoost with basic metrics com-
pared with 0.797 for XGBoost with advanced metrics; the improvement attributable to
advanced metrics is 0.023.

 Figure 9.18 also contains similar comparisons for forecasts made on three real
company case studies introduced in chapter 1. These comparisons show different
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relationships between accuracy with and without advanced metrics. These three cases
illustrate the range of scenarios you may encounter in your own case studies:

1 In the first case study, the regression accuracy is significantly improved by the
advanced metrics, but XGBoost doesn’t get any improvement, and XGBoost is
best overall. This result shows that you can’t always expect advanced metrics to
improve machine learning.

2 In the second case study, both the regression and XGBoost are significantly
improved by the addition of advanced metrics. The regression accuracy with
advanced metrics is about the same as the XGBoost accuracy with basic metrics.
The XGBoost accuracy with advanced metrics is the highest of all by a signifi-
cant amount: around 0.1 more than regression with basic metrics.
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3 In the third case study, the regression using advanced metrics has higher accu-
racy than XGBoost without advanced metrics. But the highest accuracy of all is
achieved by XGBoost using advanced metrics: more than 0.1 improvement over
basic metrics and regression. This case study is most similar to the social net-
work simulation.

These cases demonstrate that if high accuracy on churn forecasts is a high priority for
you, both machine learning and advanced metrics are important. In my experience,
advanced metrics usually improve the accuracy of churn forecasts for both regression
and machine learning models like XGBoost.

9.6 Segmenting customers with machine learning 
forecasts
Listing 9.6 found a set of parameters that produces a machine learning model with
high accuracy. The program also saved the best model in a pickle file. If you want to
use the model to forecast on your active customers, you need to reload the saved
model and use it on an active customer list. The code is demonstrated in listing 9.7.
Listing 9.7 is practically the same as listing 9.5, which you used to make forecasts with
the saved regression model. The listing does the following:

1 Reloads the saved model pickle
2 Loads the current customer dataset
3 Calls the predict_proba function on the model, passing the data as a parameter
4 Saves the results as a DataFrame of predictions and a histogram summarizing

the result

As in the XGBoost classification in listing 9.6, the data is kept in its original form,
unscaled and ungrouped. The preparation of the data for forecasting must match the
way the data was prepared when the model was trained.

import pandas as pd
import os
import pickle
from listing_8_4_rescore_metrics import reload_churn_data
from listing_8_5_churn_forecast import forecast_histogram

def churn_forecast_xgb(data_set_path):
   pickle_path = 
      data_set_path.replace('.csv', '_xgb_model.pkl')   
   assert os.path.isfile(pickle_path), 
      'Run listing 9.6 to save an XGB model'
   with open(pickle_path, 'rb') as fid:
       xgb_model = pickle.load(fid)

   curren_df = reload_churn_data(data_set_path,     
                                 'current','8.3',is_customer_data=True)

Listing 9.7 XGBoost forecasting

Reloads the XGBoost 
model saved in the 
pickle file

Reloads the 
current customer 
metric data
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Ma
pre
   predictions = 
      xgb_model.predict_proba(current_df.values)    
   predict_df = pd.DataFrame(predictions,             
                             index=current_df.index,
                             columns=['retain_prob','churn_prob'])

   forecast_save_path = 
      data_set_path.replace('.csv', '_current_xgb_predictions.csv')
   print('Saving results to %s' % forecast_save_path)
   predict_df.to_csv(forecast_save_path, header=True)

   forecast_histogram(data_set_path,         
                      predict_df,ext='xgb')

Listing 9.7 also creates a histogram of the XGBoost churn forecasts on current cus-
tomers. It’s not shown because it is similar to the plot that you made for the churn
probability forecasts with the regression model (made with the same function). 

NOTE You should check the calibration and distribution of XGBoost fore-
casts as you learned to do for the regression forecasts in chapter 8.

For the social network simulation, the distribution and calibration of XGBoost fore-
casts turned out to be similar to the regression, but this result is a coincidence, not
something you can always expect. You can’t expect XGBoost forecasts to be calibrated
and distributed like the regression forecasts because the XGBoost forecast probabili-
ties are not probabilities in the same sense as the regression forecast probabilities.

 Recall that calibration refers to the property that your forecasts are in accordance
with the true probability of the events occurring. On the other hand, accuracy mea-
sured by the AUC and lift depends on the ordering or ranking of the forecasts, not
the precise values. The regression model is designed so that the forecast probabilities
are calibrated to the sample data, as well as being as accurate as the model allows.
When the XGBoost model gives a forecast probability, it is the weighted voted of the
ensemble decision trees. Those votes are optimized to rank the risk of churn—some-
thing at which XGBoost is successful, as shown by the accuracy results. But the vote of
the ensemble decision trees is not designed to produce forecasts calibrated to actual
churn rates.

TAKEAWAY XGBoost doesn’t necessarily give calibrated churn probability
forecasts. The XGBoost model is optimized for accuracy as measured by the
classification of churns, not matching observed churn rates.

As a consequence of the forecasts from the XGBoost model’s not being reliably cali-
brated, the XGBoost forecasts are not suitable to use for estimating customer lifetime
value, as was demonstrated in chapter 8. 

WARNING Do not use XGBoost for predicting customer lifetime value or any
other use case that depends on the churn probability forecasts matching real
churn probabilities. The same applies to most machine learning models: read

kes the
dictions

Makes a DataFrame 
from the predictions

This function from listing 
8.5 makes a histogram.
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the literature for the model you’re using to confirm whether it produces fore-
casts that are calibrated in addition to being accurate.

Summary
 Because of the rarity of churn, the accuracy of churn forecasts cannot be mea-

sured with the standard accuracy measurements.
 The area under the curve (AUC) is the percentage of times that the model

ranks a churn as having higher risk than a nonchurn, considering all pairs of
churns and nonchurns.

 The lift is the ratio of the churn rate in the top decile of churn risk forecasts to
the overall churn rate.

 The AUC and lift are good measurements for the accuracy of churn forecast.
 Accuracy should be measured on samples that were not used to train the model.
 For churn, accuracy should be measured in a backtesting (historical) simulation

that reflects the fact that product and market conditions may change over time.
 The regression model taught in this book includes a control parameter that sets

the overall size of the weights and the number of nonzero weights.
 The best value to use for the regression control parameter can be found by test-

ing the accuracy of versions of the model using different values of the regres-
sion parameter. 

 Setting a forecasting model parameter by testing is known as cross-validation.
 For regression, you choose the value of the control parameter that minimizes

the number of nonzero weights and helps or doesn’t harm accuracy.
 Usually, a significant fraction of the metrics can be assigned zero weights in a

regression; the accuracy either improves or doesn’t get worse.
 A machine learning model is a forecasting model that is fit from the data (not

programmed) and is not the regression model.
 A decision tree is a simple machine learning model that forecasts by analyzing

customers with a tree of metric comparison rules.
 XGBoost is a state-of-the-art machine learning model that uses an ensemble of

decision trees and weights their predictions together to maximize accuracy.
 XGBoost and other machine learning models have many parameters that must

be set using cross-validation.
 The accuracy of XGBoost forecasts generally exceeds the accuracy of regression

forecasts.
 Using advanced metrics in addition to basic metrics usually makes forecasts

more accurate for both regression and machine learning models.
 XGBoost churn probability forecasts are not calibrated to actual churn rates, so

XGBoost churn forecasts should not be used for customer lifetime value or
other use cases that depend on matching the actual churn probabilities.



Churn demographics
and firmographics
You now know all about using customer behavior data to segment your customers
for the purpose of creating interventions to increase engagement. These strategies
are the most important ones for increasing customer engagement and retention,
which is why they are the focus of the book. But one other way to reduce your cus-
tomer churn is not about intervening with your existing customers: find new cus-
tomers who are more likely to be engaged to begin with. Identify facts about
customers who tend to be more engaged, and then focus your customer acquisition
efforts on finding more customers like them. Such facts are generally known as

This chapter covers
 Creating a dataset that includes demographic 

or firmographic information 

 Converting date information to intervals and 
analyzing the relationship to churn

 Analyzing text categories for the relationship 
to churn

 Forecasting churn probability with demographic 
or firmographic information

 Segmenting customers with demographic or 
firmographic information
407
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demographic data (data about individuals) and firmographic data (data about compa-
nies). For the purpose of this discussion, I use the following definitions.

DEFINITION Demographics are facts about individual customers, and firmographics
are facts about customers that are companies (firms). 

Demographics and firmographics generally are unchanging facts about the customer
or facts that change only rarely. Demographics and firmographics do not include
product use or subscription-derived metrics, but they can include facts about how the
customer signed up or about the hardware a customer uses to access an online service.
Normally, a business-to-consumer (B2C) or direct-to-consumer (D2C) company uses
demographic data, whereas a business-to-business (B2B) company uses firmographic
data. As you will see, demographics and firmographics differ in the specific pieces of
information that are normally available. But the characteristics of that information are
similar in either case, and for that reason, the techniques for handling demographics
and firmographics are the same. 

NOTE This chapter uses the example of the social network simulation from
the GitHub repository for the book (https://github.com/carl24k/fight-churn),
which is a consumer product. For that reason, I generally speak about demo-
graphics, but the same techniques apply to firmographics.

It is worth noting at the outset that targeting demographics is the least direct method
of reducing churn because it doesn’t help your existing customers become more
engaged. You can sometimes influence your customer’s behavior, but you cannot
change the demographic or firmographic facts about them! Also, targeting acquisi-
tions usually has limited impact because most products and services cannot get all the
customers they would like from only one or a few preferred channels. Still, this
approach can move the needle on churn over time, and it is worth your while to try
every means at your disposal.

 This chapter is organized as follows:

 Section 10.1 describes typical demographic and firmographic data types and
database schemas that contain it and teaches you how to extract such data as
part of a dataset.

 Section 10.2 shows you how to individually analyze textual demographic data
fields with category cohort analysis, which is a bit different from metric cohort
analysis because it uses a new concept: confidence intervals.

 Section 10.3 teaches you to handle large numbers of demographic categories by
combining them.

 Section 10.4 demonstrates analyzing a date field for its relationship to churn
(the same as metric cohort analysis after the date has been converted to a time
interval).

 Section 10.5 teaches you the techniques necessary to fit churn probability models
like regression and XGBoost when your data includes demographic data fields.

https://github.com/carl24k/fight-churn
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 Section 10.6 extends the modeling in section 10.5 to forecasting and segment-
ing active customers by using demographic fields.

NOTE No real personal information was used to create this chapter. All
examples are created from simulated data, designed to be similar to real case
studies I have worked on.

10.1 Demographic and firmographic datasets
First, I will explain what exactly I mean by demographic and firmographic data and
how it differs from the metrics you have looked at throughout most of this book. Then
I will use a social network simulation to demonstrate a typical method for creating a
dataset that includes demographic data along with metrics.

10.1.1 Types of demographic and firmographic data

Table 10.1 provides examples of demographic and firmographic data. Although this
table covers the most common examples, there are many more possibilities. As you can
see, some types of data are common to both consumers and firms in slightly different
forms. An individual has a birthdate, and a company has a founding date, for example; a
household has a number of members, and a company has a number of employees.
Other items are specific to a consumer or businesses, such as a person’s education level
or the company’s industry. Table 10.1 also shows the data type for the items listed.

In principle, there isn’t much difference between using demographic facts and met-
rics to understand churn and segment customers. 

TAKEAWAY To understand churn and form customer segments with demo-
graphic data, you form cohorts of customers based on the values of the demo-
graphic fields and compare the churn rates in each cohort. 

The non-numeric types are the reason why separate techniques are needed for demo-
graphic and firmographic data in comparison with metrics. If you are looking at

Table 10.1 Examples of demographic and firmographic data

Demographic Firmographic Data type

Date of birth Founding date Date

Sales channel Sales channel String

Place of residence Company domicile or geography String

Occupation Industry or vertical String

Hardware and OS information Technology stack information String

Number of household members Number of employees Number

Education level attained Company stage (start-up, funding round, or public) String

Gender B2B or B2C business model String
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numeric demographic data, the technique is the same as for metrics except for where
the data comes from. 

10.1.2 Account data model for the social network simulation

Because demographic data is tied to each account and rarely changes, it is standard
to store it in a single database table indexed by account ID, as shown in table 10.2.
Table 10.2 includes some of the demographic fields that are part of the social net-
work simulation:

 Channel (short for the sales channel)—The sales channel refers to how the cus-
tomer found the product and signed up. All users sign up through one method,
so the channel is a required field with no null values in the social network simu-
lation. In the simulated social network dataset, the different sales channels are
as follows:
– App store 1
– App store 2
– Web sign-up

 Date of birth—Many products require a customer to enter their date of birth as a
statement that they are of (or older than) the minimum age to use the product.
Because all users are required to enter something, the date of birth is a
required field with no null values for the social network simulation.

 Country—The country in which the user lives can often be derived from the
user’s payment information or their localization choices in the software. In
the social network simulation, users come from more than 20 countries, which
are represented by two-character codes (from the International Standards
Organization ISO 3166-1 alpha-2 standard). For the social network simulation,
the country field can include missing values (null values in the database). It is
assumed that this setting is an optional setting; some users don’t bother to set it.

These three fields represent the minimal set necessary to demonstrate the techniques
in this chapter. In a real product, there probably would be more fields, although the
number varies considerably by product area. Many B2B companies know a great deal
about their customers, but demographics can be sparse for consumer products with
minimal sign-up requirements.

Table 10.2 Typical account data schema

Column Type Notes

account_id integer or char The account ID linking to subscriptions, 
events, and metrics

channel char The channel through which the customer pur-
chased the app

date_of_birth date The birthdate entered by the customer for age 
verification when they signed up
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In the rest of this section, I’ll show you how to put the data in such a schema to work
fighting churn.

10.1.3 Demographic dataset SQL

Given a schema of demographic data keyed by the account ID, the first step is export-
ing it from the database along with the dataset you usually create for the metrics. This
way, you reuse all the existing code you have, showing when accounts renew and who
has churned. Also, you will eventually combine the demographic data with the metrics
in a single forecasting model, and by exporting the metrics and demographic fields
together, you start with everything you are going to need.

 Figure 10.1 shows a typical result of such a data extraction. As in the dataset you
have used since chapter 4, each row starts with the account ID, the observation date,
and the churn indicator. The demographic fields come after those fields and before
the metrics.

Listing 10.1 shows the SQL statement that creates a dataset like the one shown in fig-
ure 10.1. Instead of the date_of_birth field, which was in the database, the dataset

country char The country in which the user lives, repre-
sented by a two-character string

... ... ...

optional fields char, float, int, or date Optional; platform specific

Table 10.2 Typical account data schema (continued)

Column Type Notes

account
_id

observation
_date is_churn channel country

customer
_age

like_per
_month ...

36 3/1/20 FALSE appstore2 DE 49.7 36 ...

92 3/1/20 TRUE appstore1 BR 17.8 31 ...

103 3/1/20 FALSE appstore1 CN 20.1 51 ...

112 3/1/20 FALSE appstore2 CA 63.9 69

5

...

115 3/1/20 TRUE web BR 21.2 ...

127 3/1/20 FALSE web JP 71.9 178 ...

... ... ... ... ... ... ... ...

The demographic fields are between the fields identifying the
observation and the metrics. The date_of_birth field has been
converted to customer_age at the time of the observation date.

Figure 10.1 Social network simulation dataset with demographic fields (result of 
listing 10.1)



412 CHAPTER 10 Churn demographics and firmographics

e date 
 the 
date
contains a field called customer_age. The one new technique listing 10.1 introduces is
the conversion of the date field for the birthdate to a time interval in years: the cus-
tomer’s age. 

TAKEAWAY You convert demographic date fields to time intervals because
then the numeric interval can be used for customer analysis and segmenta-
tion in the same way as a metric. 

At a high level, the conversion is accomplished by subtracting the demographic date
from the observation date, or vice versa:

 When the demographic date is in the past (such as a birthdate), you subtract
the demographic date from the observation date, and the result is a positive
interval representing the time since the demographic field at the time of the
observation.

 If the demographic date is in the future (such as the day of college graduation),
subtract the observation date from the future date to keep the interval positive.
Then the interval represents the time from the observation date until the date
from the demographic data.

Because the birthdate is in the past, listing 10.1 subtracts the birthdate from the obser-
vation date to get the customer’s age. In PostgreSQL, the interval is converted to an
age in years by using the date_part function with the 'days' parameter to get the
interval length in days and then dividing by 365 (taking care with type conversions).

WITH observation_params AS      
(
   SELECT  interval '%metric_interval' AS metric_period,
   '%from_yyyy-mm-dd'::timestamp AS obs_start,
   '%to_yyyy-mm-dd'::timestamp AS obs_end
)
SELECT m.account_id, o.observation_date, is_churn,
a.channel,                                         
a.country,                                            
date_part('day',o.observation_date::timestamp       
        - a.date_of_birth::timestamp)::float/365.0 AS customer_age,
SUM(CASE WHEN metric_name_id=0 THEN metric_value else 0 END)
    AS like_per_month,
SUM(CASE WHEN metric_name_id=1 THEN metric_value else 0 END)
    AS newfriend_per_month,
SUM(CASE WHEN metric_name_id=2 THEN metric_value else 0 END)
    AS post_per_month,
SUM(CASE WHEN metric_name_id=3 THEN metric_value else 0 END)
    AS adview_per_month,
SUM(CASE WHEN metric_name_id=4 THEN metric_value else 0 END)
    AS dislike_per_month,
SUM(CASE WHEN metric_name_id=34 THEN metric_value else 0 END)
    AS unfriend_per_month,

Listing 10.1 Exporting a dataset with demographic data fields

Most of this listing is the 
same as listings 7.2 and 4.5.

The channel string from 
the account table

The country string from 
the account table

Subtracts th
of birth from
observation 
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JOINs
the acc
SUM(CASE WHEN metric_name_id=6 THEN metric_value else 0 END)
    AS message_per_month,
SUM(CASE WHEN metric_name_id=7 THEN metric_value else 0 END)
    AS reply_per_month,
SUM(CASE WHEN metric_name_id=21 THEN metric_value else 0 END)
    AS adview_per_post,
SUM(CASE WHEN metric_name_id=22 THEN metric_value else 0 END)
    AS reply_per_message,
SUM(CASE WHEN metric_name_id=23 THEN metric_value else 0 END)
    AS like_per_post,
SUM(CASE WHEN metric_name_id=24 THEN metric_value else 0 END)
    AS post_per_message,
SUM(CASE WHEN metric_name_id=25 THEN metric_value else 0 END)
    AS unfriend_per_newfriend,
SUM(CASE WHEN metric_name_id=27 THEN metric_value else 0 END)
    AS dislike_pcnt,
SUM(CASE WHEN metric_name_id=30 THEN metric_value else 0 END)
    AS newfriend_pcnt_chng,
SUM(CASE WHEN metric_name_id=31 THEN metric_value else 0 END)
    AS days_since_newfriend
FROM metric m INNER JOIN observation_params
ON metric_time BETWEEN obs_start AND obs_end
INNER JOIN observation o ON m.account_id = o.account_id
   AND m.metric_time > (o.observation_date - metric_period)::timestamp
   AND m.metric_time <= o.observation_date::timestamp
INNER JOIN account a ON m.account_id = a.id             
GROUP BY m.account_id, metric_time, observation_date, 
         is_churn, a.channel, date_of_birth, country    
ORDER BY observation_date,m.account_id

Most of listing 10.1 is the same as the previous listings you’ve used to extract a dataset:
observation dates are selected from the observation table and joined with metrics by
using an aggregation to flatten the data. The other new aspects of listing 10.1 follow:

 The query makes an INNER JOIN on the account table (table 10.1) to select the
fields for the channel, country, and date of birth. 

 Because these demographic fields are one per account in the account table,
there is no need to aggregate these fields. Instead, the demographic fields are
included in the GROUP BY clause.

You should run listing 10.1 on the social network simulation to create the dataset that
will be used throughout the rest of the chapter. Assuming that you are using the
Python wrapper program to run the listings, the command is

fight-churn/listings/run_churn_listing.py --chapter 10 --listing 1 

The result of listing 10.1 (saved in the output directory) should appear similar to fig-
ure 10.1 at the start of this section.

 with
ount
table

Includes the 
demographic fields in 
the GROUP BY clause
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10.2 Churn cohorts with demographic and firmographic 
categories
Now that you’ve got a dataset with demographic data, you will compare the demo-
graphic cohorts by their churn rates to see how the demographic data is related to
churn. At the start of the chapter, I told you that there are three types of demograph-
ics fields: dates, numbers, and strings. Earlier, I showed you that you should convert
the dates to numeric intervals. In the cohort analysis, there are only two types: num-
bers and strings. 

 Churn cohort analysis with numeric demographic data is exactly the same as
cohorts based on metrics, as I will show briefly in section 10.4. This section is about
the new subject of comparing churn rates in cohorts by using demographic informa-
tion described by strings.

 
 

Tracking demographic and firmographic data changes and avoiding looka-
head biases
In this section, I describe storing demographic data as a single, unchanging value.
But not all demographic or firmographic fields are truly unchanging: people and com-
panies can move, companies can achieve new stages of development, people can
achieve higher levels of education, and so on. To model such changes better, some
companies track demographic data in a time-sensitive manner, either by adding
effective-date timestamps to the account table or by tracking demographic fields in
separate tables from the account itself (known as slowly changing dimensions in data
warehouse terminology). Because these more advanced methods are not common, I
don’t cover them in this book. If that situation is your situation, listing 10.1 is modi-
fied to join the demographic data effective dates to the observation date. 

The reason why the more complicated approach can be advantageous is that in some
scenarios, treating demographic fields as static when they are not can result in a kind
of lookahead bias in predicting churn using the demographic field. You see something
about a customer in your historical dataset paired with a churn or renewal status in
the past, but in a nonhistorical context (at the time of the observation timestamp),
you would not have known that information. To make an example from firmographics,
consider the company stage at a start-up or public company. Start-ups that go public
must be successful and are less likely to go out of business and churn. If the data
includes start-ups that went public in the past, the firmographic data identifies them
as public companies because that was the current status when you created the data-
set. But only successful start-ups go public, so the data becomes biased. 

Such a bias can also confer unrealistic forecasting accuracy to a model. That said,
this type of scenario is usually a second-order effect, which justifies the usual prac-
tice of ignoring the time-changing component of demographic and firmographic data.
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10.2.1 Churn rate cohorts for demographic categories

The section is about demographic categories, so I start with a definition.

DEFINITION For the purposes of this book, a category is one possible value of a
demographic field described by a string.

In the social network simulation, the categories associated with the channel field are
appstore1, appstore2, and web. The categories associated with the country field are two-
character codes such as BR, CA, and CN. It is possible for a value to be missing in a
demographic field, so you can consider no value (null in the database) to be one addi-
tional category for every field.

NOTE For each demographic field, a customer can belong to only one cate-
gory or have no value as a category.

In principle, churn cohort analysis for demographic categories is simple: define a
cohort with each category, and calculate the churn rates. But there are important dif-
ferences between cohorts made from categories and cohorts made from metrics. As a
result, you need to be more careful in how you compare the churn rates in cohorts
defined by categories. Following are some important differences between cohorts
based on metrics and cohorts based on categories:

 With metrics, the cohorts have a natural order given by the metrics. In most
cases, categories do not have a meaningful order. Category-based cohorts, there-
fore, are harder to interpret because you cannot use the trend you see across
categories as a guide for interpreting the differences in the churn rates. 

 For metrics of product use, you have natural expectations, such as “More use
leads to lower churn” and “More cost for use leads to higher churn.” But there
is no obvious expectation with categories. 

 When you define metric cohorts, you guarantee that each cohort has a signifi-
cant portion of the observations—typically, 10% or more. With category-based
cohorts, there is no guarantee of the minimum or maximum percentage of the
data that might be captured in each cohort.

Based on my own experience, cohorts from demographics have weaker relationships
to churn than cohorts based on product-use metrics. 

TAKEAWAY You must be more careful making comparisons of churn rates in
cohorts based on demographic categories than in cohorts based on metrics.

By careful, I mean that you need to rely on strong evidence to make sure that the dif-
ference is significant. For that reason, you will use a new technique known as confi-
dence intervals to make the comparison.
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10.2.2 Churn rate confidence intervals

To be more careful with churn rate comparisons between demographic cohorts, you
should not simply calculate the churn rates in each cohort; you should also estimate
best- and worst-case scenario churn rates in each cohort. This process is known as cal-
culating confidence intervals.

DEFINITION Confidence intervals for a metric like the churn rate are the range
from the best-case (lowest) estimate of the churn rate to the worst-case (high-
est) estimate for the churn rate.

Understanding confidence intervals starts with realizing that the churn rate you cal-
culate on your customers is not the churn rate you want to measure. Consider the
following:

 What you want to know is what the churn rate would be on all the possible cus-
tomers in the world who would match your cohort demographic category. That
estimate would be the best estimate of future churn for that type of customer.

 You can measure only the churn rate you have seen for the customers you
have had.

This scenario is illustrated in figure 10.2. You can’t be sure that the churn rate you
have seen in past customers is what the churn rate is going to be for future customers.
You may see a different churn rate in the future. Maybe you got lucky in the past and
got better-than-average customers, or maybe the opposite is true; you never know. But
you can expect two things:

 The churn rate you would see in the full universe of customers should be close
to what you have seen in the past, assuming that you observed a reasonable
number of customers in each cohort. 

 The more customers you see, the closer the churn rate you have seen in the past
should be to the churn rate in the entire universe. Put another way, the more cus-
tomers you see, the less uncertainty exists about the range of possible churn
rates for the universe.

For this reason, people usually talk about confidence intervals as the range around the
measured churn rate, which is known to be near the center of the best- and worst-case
scenarios (but, as you will see, not necessarily at the center). To describe the measured
churn and the best-case and worst-case estimates, we’ll use the following definitions.

DEFINITION The measured churn rate on past customers is referred to as the
expected value, and it is considered to be the most likely value for the universal
churn rate. The upper confidence interval is the range from the expected churn
rate to the worst-case estimate, described by the size of that range, or the
worst-case churn minus the expected churn. The lower confidence interval is the
range from the best-case estimate to the expected churn, described by the size
of that range, or the expected churn minus the worst-case estimate.
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Figure 10.2 illustrates the differences among the universal churn rate, your estimate,
and the upper and lower confidence intervals for the estimate.

I said the churn rate in each cohort should be close to the universal churn rate for
such customers, assuming that you observed enough of them. How many is enough
was discussed at length in chapter 5: ideally, you want to observe thousands of custom-
ers in each category, but hundreds may be enough. 

 When you use confidence intervals, the number of customers you use translates to
the size of the confidence intervals. The more customers you measure the churn on, the
narrower is the range of uncertainty around the churn rate. In section 10.2.3, you will
learn how to calculate confidence intervals and compare them.

TAKEAWAY Because you can’t calculate the universal churn rate measure-
ment, you will instead calculate best- and worst-case estimates for the univer-
sal churn rate, given the available data. 

10.2.3 Comparing demographic cohorts with confidence intervals

Figure 10.3 shows an example of comparing demographic cohorts with confidence
intervals, which is the result for the channel category in the social network simulation.
The basic idea is the same as the metric cohort plots you saw in earlier chapters, but
there are a few significant differences:

 The data is displayed in a bar chart instead of a line chart. The churn rate in
each cohort is shown by the height of each bar.

Universe of
possible customers Your

customers

c=
observed
churn rate

≈

Best- and worst-case
estimates of the universe

Cworst

Cbest

high confidence interval = Cworst - c
low confidence interval = c - Cbest

1. You would like to
know the churn
rate for the entire
universe of possible
customers you might
acquire, but you can
never know it exactly.

2. You acquire a smaller set of customers that is representative
of the universe and observe the churn rate.

3. Given how many
customers you observe
and the number of churns,
statistics are used to
estimate best-/ worst-case
scenarios for the universal
churn rate.

4. The difference between the best-/worst-case estimates and
the observed churn is known as the confidence interval.

c=
true churn

rate

Figure 10.2 Confidence intervals assess best- and worst-case scenarios.
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 Each bar has a pair of lines above and below the main bar, showing the extent
of the confidence intervals. The lines showing the confidence intervals in a plot
are often known as error bars or whiskers.

 The x-axis still identifies the cohort, but now it is a string label showing the cat-
egory that the cohort represents.

In the category cohort plot, you are looking at not only the expected universal churn
rates but also the best- and worst-case estimates, so you should use the confidence
intervals as a guide to compare the significance of the difference between the cate-
gory churn rates. This technique is known as statistical significance. 

DEFINITION The difference between the churn rates in two different catego-
ries is statistically significant if the best-case churn rate (lower confidence inter-
val) for one category is greater than the worst-case churn rate (upper confidence
interval) for the other category. In that case, the two confidence intervals do
not overlap.

Considering figure 10.3, you would say that the difference between the churn rates for
the appstore1 and appstore2 categories is statistically significant because the confidence
intervals are far apart. The worst-case churn rate for appstore2 is around 3.5%, and the
best-case churn rate for appstore1 is around 4.5%, so the two are not touching.

The height of the bar shows
the observed churn rate.
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The “whiskers” show the
edges of the confidence
intervals.

When the edges of the
confidence intervals for
the churn rates in
different categories do
not overlap, the churn
rates in those categories
are significantly different.

Figure 10.3 Channel churn rates with confidence intervals (output of listing 10.2)
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a 

 

 But the difference between the churn rates for the appstore1 and the web custom-
ers is on the borderline for statistical significance because the confidence intervals are
practically touching. The best-case churn for the web channel is around 5.4%, and the
worst-case churn for appstore1 is also around 5.4%. According to a strict definition,
you might say that the difference is not statistically significant. But in practice, statisti-
cal significance is not applied as a hard rule. If you have some reason to think that a
difference is significant, you might still act on a difference in churn rates when there
is a little overlap in the confidence intervals. In this case, I would say the fact that app-
store2 is so different lends credibility to differences between the channels and, by
extension, the differences between web and appstore1. As you will see in figure 10.4,
the confidence intervals for the web and appstore2 churn rates are not touching by
just 0.02%, which you can’t tell in the figure. But whether confidence intervals overlap
or don’t by such a small amount shouldn’t make a difference in your interpretation.

TAKEAWAY In practice, whether a difference in churn rates is statistically sig-
nificant or not is not black and white when the edges of the confidence inter-
vals are nearly touching or overlap a little bit.

Listing 10.2 shows the code that produces figure 10.3. Listing 10.2 consists of a main
function, category_churn_cohorts, that calls three helper functions:

 prepare_category_data—Loads the data and fills any missing categories with the
string '-na-'. This string clearly marks any customers that are missing a category.

 category_churn_summary—Calculates the churn rates and the confidence inter-
vals and puts all the results in a DataFrame, which is saved as a .csv file. (Details
on the calculation follow the listing.)

 category_churn_plot—Plots the results in a bar chart, showing the confidence
intervals and adding annotations. Confidence intervals are added by setting the
yerr param of the bar function, which stands for y error bar.

import pandas as pd
import matplotlib.pyplot as plt
import os
import statsmodels.stats.proportion as sp

def category_churn_cohorts(data_set_path, cat_col):  
   churn_data =                                           
      prepare_category_data(data_set_path,cat_col)
   summary =                                                     
      category_churn_summary(churn_data,cat_col,data_set_path)
   category_churn_plot(cat_col, summary, data_set_path)     

def prepare_category_data(data_set_path, cat_col): 
   assert os.path.isfile(data_set_path),
      '"{}" is not a valid dataset path'.format(data_set_path)
   churn_data = pd.read_csv(data_set_path,index_col=[0,1])

Listing 10.2 Analyzing category churn rates with confidence intervals

Main function 
for the category 
analysis and plot

Helper function 
prepare_category_dat
reads the dataset.

Calls category_ 
churn_summary
to perform the 
analysis

Calls category_ 
churn_plot to 
make the plot
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   churn_data[cat_col].fillna('-na-',inplace=True)   
   return churn_data

def category_churn_summary(churn_data,               
                           cat_col, data_set_path):
   summary = churn_data.groupby(cat_col).agg(     
      {
         cat_col:'count',
         'is_churn': ['sum','mean']
      }
   )

   intervals = sp.proportion_confint(summary[('is_churn','sum')],
                                     summary[ (cat_col,'count')],
                                     method='wilson')             

   summary[cat_col + '_percent'] = (                     
      1.0/churn_data.shape[0]) * summary[(cat_col,'count')]

   summary['lo_conf'] = intervals[0]    
   summary['hi_conf'] = intervals[1]

   summary['lo_int'] =      
      summary[('is_churn','mean')]-summary['lo_conf']
   summary['hi_int'] =      
      summary['hi_conf'] – summary[('is_churn','mean')]
   save_path =                                          
      data_set_path.replace('.csv', '_' + cat_col + '_churn_category.csv')
   summary.to_csv(save_path)
   return summary

def category_churn_plot(cat_col,    
                        summary, data_set_path):
   n_category = summary.shape[0]

   plt.figure(figsize=(max(4,.5*n_category), 4))   
   plt.bar(x=summary.index,
           height=summary[('is_churn','mean')],    
           yerr=summary[['lo_int','hi_int']].transpose().values,
           capsize=80/n_category)                     
   plt.xlabel('Average Churn for  "%s"' % cat_col)   
   plt.ylabel('Category Churn Rate')
   plt.grid()
   save_path = 
      data_set_path.replace('.csv', '_' + cat_col + '_churn_category.png')
   plt.savefig(save_path)
   print('Saving plot to %s' % save_path)

You should run the Python wrapper program to produce your own plot like figure 10.3
for the simulated dataset. The command and its arguments to the wrapper program are

fight-churn/listings/run_churn_listing.py --chapter 10 --listing 2

Fills any missing 
values with a 
string '-na-'

Uses category_churn_ 
summary to analyze 
the categories

Uses the Pandas 
aggregation function to 
group data by the category 

Calculates the 
confidence 
intervals

Divides the category 
count by the total 
number of rows

pies the
results

into the
mmary
aFrame

Lower confidence interval = mean 
minus lower confidence bound

Upper
fidence
erval =

upper
fidence
s mean

Saves the result

Uses category_churn_plot 
to plot the result

Scales the size of 
the plot based on the 
number of categories

The
ercentage
of churns
is the bar

height.

The Y error bar is 
given by confidence 
intervals.

notates
e figure
 saves it
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Turning to the details of the calculation of the cohort churn rates in listing 10.2, the
average churn rate is calculated in the category_churn_summary function, using the
Pandas DataFrame groupby and agg functions:

summary = churn_data.groupby(cat_col).agg({cat_col:'count','is_churn': 
['sum','mean']}) 

The following breaks down the details of this dense line:

1 The groupby function is called with the category as the grouping variable. The
result of this function is a specialized DataFrameGroupBy object that can be used
to retrieve different results based on the grouping. 

2 After grouping, the desired measures are found by calling the aggregation func-
tion agg on DataFrameGroupBy. The results to be created by DataFrameGroupBy
are specified in a dictionary where each dictionary key is a column to calculate
aggregate functions and the value for the keys are one or more aggregate func-
tions. In this case, you use the following:

{
cat_col :'count',
'is_churn': [
'sum',
'mean']
}

– The first entry in the dictionary indicates that the column containing the cat-
egory (the variable cat_col) should be aggregated with a count. For every
category, show the number of rows in the dataset that had the category.

– The second entry in the dictionary indicates that the column containing the
churn indicator should be aggregated by summing the number of churns
and also calculating the mean, which results in the observed churn rate for
the category.

The result of the call to the function is a DataFrame with one row per category and
columns containing the three aggregation results. The columns are labeled by tuples,
combining the column and the aggregation. The column labeled cat_col,'count'
contains the row count for the categories, for example, and the column labeled
'is_churn','mean' contains the mean of the churn indicator, which is the churn rate.

 The function category_churn_summary in listing 10.2 uses the statsmodels mod-
ule to calculate the confidence intervals. The function used is statsmodels.stats
.proportion.proportion_confint, which is for calculating confidence intervals on
measurements of percentages resulting from binary trials (which is what measuring
churn rates amounts to, from a statistician’s point of view). The function proportion
_confint takes as parameters the count in each category and the number of churn
observations (passed by selection from the aggregation result DataFrame using the
tuple labels I’ve described). 
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 As mentioned early in the chapter, the number of observations and number of
churns form the basis for calculation of the confidence intervals using statistics. The
call to proportion_confint also passes the optional method parameter method=
'wilson'. The Wilson method for calculating confidence intervals is the best choice
for churn because it is known to produce the most accurate results when the propor-
tion of events (in this case, churns) in the binary trials is small. I won’t go into details
on how the Wilson method calculates confidence intervals, but there are many good
resources online.

 Figure 10.4 shows the data file output from the category churn cohort analysis with
confidence intervals. This output contains all the information used to produce the
channel cohort bar chart (figure 10.3) and more details. One important piece of
information available in this file and not in the bar chart is the percentage of observa-
tions from each channel. Most organizations that acquire customers through different
channels already have a good idea of the percentage of customers acquired through
each channel. In such a case, you should compare the number in your dataset with
the number measured by the sales department for quality assurance (to make sure
that there are no problems in the data feed and so on). 

 The file output of listing 10.2 also shows the size of the low- and high-confidence
intervals. In figure 10.4, you can see that the high interval is a little larger than the low
interval. This asymmetry occurs because the churn probability is a small percentage. If
the churn rate were 50%, the size of the confidence intervals would be symmetric.

The other demographic field with categories in the simulated social network is the
country. Figure 10.5 shows the churn cohort plot for the country categories. The
churn cohort results for the country are different from the plot of the churn cohorts
for the channel because there are many more countries. Because some of the countries

Churn rate in the channel Percentage of customers
represented by channel

Low and high
confidence boundary

Low and high
confidence interval

Pandas writes tuple column
headings on two lines.

channel is_churn is_churn
channel_
percent lo_conf hi_conf

channel count sum mean

appstore1 7504 366 4.88% 29.82% 4.41% 5.39% 0.46% 0.51%

appstore2 14067 476 3.38% 55.89% 3.10% 3.70% 0.29% 0.31%

web 3597 221 6.14% 14.29% 5.41% 6.98% 0.74% 0.83%

hi_intlo_int

Figure 10.4 Data output of category churn cohorts for the channel field
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have only a small percentage of the customers, some of the confidence intervals are
large compared with the churn rates. In fact, as a result of the large confidence inter-
vals, there are no statistically significant churn rate differences among the countries.
All the confidence intervals in the country categories overlap the confidence intervals
of the other categories by a large amount. (Figure 10.5 shows no cases in which the
confidence intervals overlap by a bit.)

Figure 10.6 displays the data file output for the country cohort churn analysis. It
shows that most countries have less than 10% of the data and that some have as little
as 1%. The countries with the smallest number of customer observations have the
largest confidence intervals for the churn rate. SE had just 1% of the observations
(236 observations), and with a measured churn of 5.9%, the lower end of the confi-
dence interval is 3.6% and the upper end is 9.7%: a span of around 6%. US, on the
other hand, represents 15% of the observations (3,710 observations) with a similar
observed churn rate of 5.3%, and the confidence intervals range from 4.7% to
6.1%—a span of only 1.5%.

 The results in figures 10.5 and 10.6 show that having too many categories is a prob-
lem for doing an effective churn cohort analysis. Section 10.3 teaches you a simple
and effective way to deal with this problem.

When the edges of the
confidence intervals overlap,
the difference between the
churn rates in those categories
is not significant. This is true
even if the difference between
the averages appears large.
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Categories with relatively
few observations, like GR,
have larger confidence
intervals. This reflects the
uncertainty in the estimate
of the true churn rate.

Categories with more
observations, like US, have
narrower confidence intervals.
More observations lead to
higher certainty about the
churn rate.
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Figure 10.5 Country cohort churn rates with confidence intervals (output of listing 9.2)
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The significance level of the confidence intervals
The function proportion_confint has another parameter: the significance level,
which I leave at the default value in my code. If you check the documentation for
proportion_confint, you will find that the default significance level is 0.05. This
parameter corresponds to what people call the 95% confidence level and represents
the degree of certainty that the true universal churn rate is within the range defined
by the best- and worst-case estimates. 

Like most things in statistics, the best- and worst-case churn rates are estimates,
and the significance level determines the possibility that these estimates are also
wrong. When people say “95% confidence,” they’re saying 100% minus this signifi-
cance level. In other words, there is a 5% chance that the true universal churn rate
is not within the stated bounds and a 95% chance that the universal churn rate is
within the bounds.

Lowering the significance-level parameter less than 0.05 results in larger confidence
intervals, or a large difference between the best-case and worst-case estimates. If
you use a lower significance level, it takes a larger difference between the churn rates
for two categories to qualify as statistically significant (by having the confidence inter-
vals that do not touch). On the other hand, a higher significance level (greater than
0.05) makes smaller confidence intervals, and it will be easier to say that differences
are statistically significant, but you will be less sure that the universal churn rate for
the category was within the stated bounds.

Choosing the significance level and interpreting confidence intervals is a controver-
sial topic in statistics, and I’m trying to give you some simple best practices. My
advice is to leave the significance parameter as the default. In principle, you should

Categories with relatively few observations,
like SE, have larger confidence intervals.
This reflects the uncertainty in the estimate
of the true churn rate.

Categories with more observations, like
US, have narrower confidence intervals.
More observations leads to higher certainty
about the churn rate.

country is_churn is_churn
country_
percent lo_conf hi_conf

country count sum mean

-na- 2837 99 3.5% 11.3% 2.9% 4.2% 0.6% 0.7%

AR 786 39 5.0% 3.1% 3.7% 6.7% 1.3% 1.7%

AU 876 40 4.6% 3.5% 3.4% 6.2% 1.2% 1.6%

BR 1269 58 4.6% 5.0% 3.6% 5.9% 1.0% 1.3%

... ... ... ... ... ... ... ... ...

RU 495 24 4.8% 2.0% 3.3% 7.1% 1.6% 2.3%

SE 239 10 4.2% 0.9% 2.3% 7.5% 1.9% 3.3%

US 3890 175 4.5% 15.5% 3.9% 5.2% 0.6% 0.7%

lo_int hi_int

Figure 10.6 Data output of category churn cohorts for the country field
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10.3 Grouping demographic categories
In section 10.2.3, I showed you that if you have a lot of categories, you run the risk that
the number of observations in the rare categories will be too small to produce useful
results. With few observations, the confidence intervals can become large, depending
on the amount of data you have to work with. If you have millions of customers, you
can have statistical significance for the results in even the rarest categories. Still, infor-
mation overload can be a problem, and it can be desirable to look at fewer categories
for that reason as well.

10.3.1 Representing groups with a mapping dictionary

The solution to the problem of having a lot of categories that represent small fractions of
the data is grouping rare categories that are related. Countries can be grouped into
regions, for example. Figure 10.7 illustrates mapping countries into regions by using a
Python dictionary. The dictionary in figure 10.7 is literally a mapping from regions to lists
of countries because that mapping is a more efficient way to express the relationship.

The code on which figure 10.7 is based is in the GitHub repository for this book, in
the file fight-churn/listings/conf/socialnet_listings.json; look for the chapter 10 sec-
tion and the key listing_10_3_grouped_category_cohorts. I’ll say more about how and

use a lower significance level for a demographic field that has a large number of cat-
egories (more than a few dozen). That way, you would apply more stringent criteria in
determining which differences are significant. 

In section 10.3, I will teach you another way of handling a large number of categories:
grouping those that are less common. Overall my advice is to leave this parameter
unchanged. I mention it here only because you might be asked what significance level
you use to calculate the confidence intervals. (The answer is that you use the stan-
dard 0.05 significance level.)

{

"APac" :    ["AU","ID","IN","JP","KR","NZ"],

"Eur"  :    ["CH","DE","DK","ES","FR","GB","GR","IT","NL","NO","PT","RU","SE"],

"LaAm" :    ["AR","BR","CO","MX"],

"NoAm" :    ["US","CA"]

}

Keys in the mapping represent the groups
for the categories, which in this case are
geographic and cultural regions: APac =
Asia and Pacific; Eur = Europe; LaAm =
Latin America; NoAm = North America

The values in the mapping are lists of countries
that should map to the region. It is assumed that
each country appears once or not at all; countries
not listed will remain separate from any group.
In this case, CN will be kept separate.

Figure 10.7 Mapping group-simulated country categories into regions
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why this particular mapping was chosen later, but for now, I will show you how this
kind of grouping helps with the category cohort analysis.

10.3.2 Cohort analysis with grouped categories

Figure 10.8 shows the result of rerunning the cohort analysis based on regions instead
of countries. As a result of the grouping, there are six categories. If you look at the
data output that goes with the plot (not shown in the figure), you will see that every
one of the new categories represents no less than 10% of the data; the smallest category
is now the customers who do not have any country (-na-), which is 11%. As a result of
the larger number of observations, the size of the confidence interval on every cate-
gory in figure 10.8 is smaller than when the countries were separate (figure 10.5). 

TAKEAWAY If your demographics include rare categories, you can simplify by
grouping related categories. This approach reduces the churn rate confi-
dence intervals and information overload. 

Despite the smaller confidence intervals, figure 10.8 shows no statistically significant
differences between the churn rates in any region. The confidence intervals around
the churn rate in every region overlap significantly with all the others. The fact that
there is no statistically significant difference in this simulated dataset doesn’t mean
that you won’t find important relationships in your own product or service.

 Listing 10.3 provides the code for performing the grouping and rerunning the cat-
egory cohort analysis. This listing uses all the helper functions from the category cohort

After grouping the countries
into regions, the confidence
intervals are all reasonably
narrow. Still, the confidence
intervals overlap, so there is
not a statistically significant
difference among the groups.
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Figure 10.8 Churn cohorts for country categories grouped in regions
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churn analysis (without grouping), and it adds only one new function to perform the
grouping: group_category_column. This function has two main parts:

 The first part inverts the mapping dictionary so that it is a mapping from coun-
try to region rather than from region to country. Inverting a dictionary can be
done in a Python one-liner, using a double list comprehension. The first list
comprehension iterates over the keys that were the regions, and the second list
comprehension iterates over the values in each key, which were the countries. A
dictionary mapping the old values to the old keys (country to region) is formed
from the results.

 After the mapping dictionary has been inverted, a new column is created in the
DataFrame, using the DataFrame apply function. The apply function takes
another function as a parameter, and that function is applied to all the ele-
ments in the column. In this case, the purpose is to look up the value in the
inverted dictionary if one is present; otherwise, it returns the original value.
The result of applying this function to the column is that every country that is
part of one of the region groups will be mapped, and any country that is not will
be copied as is. After this mapping, the code in listing 10.3 uses the analysis and
plotting functions from listing 10.2, which did category cohort analysis on
ungrouped categories. 

The group_category_column function makes a name for the new column by prepend-
ing the word group to the original column name and dropping the original column
from the result.

import pandas as pd
import os

from listing_10_2_category_churn_cohorts import category_churn_summary, 
   category_churn_plot, prepare_category_data                    

def grouped_category_cohorts(data_set_path,               
                             cat_col, groups):
   churn_data = prepare_category_data(data_set_path,cat_col)
   group_cat_col =      
      group_category_column(churn_data,cat_col,groups)
   summary =              
      category_churn_summary(churn_data,group_cat_col,data_set_path)
   category_churn_plot(group_cat_col, summary, data_set_path)

def group_category_column(df, cat_col, group_dict):     
   group_lookup = {                             
                     value: key for key in group_dict.keys() 
                                for value in group_dict[key]
                  }
   group_cat_col = cat_col + '_group'     

Listing 10.3 Grouped category cohort analysis

This listing reuses the helper
functions from listing 10.2.
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   df[group_cat_col] = df[cat_col].apply(lambda x:    
                                group_lookup[x] if x in group_lookup else x)

   df.drop(cat_col,axis=1,inplace=True)           
   return group_cat_col     

You should run listing 10.3 to create your own cohort analysis where the countries are
grouped into regions. Do this with the usual command to the Python wrapper pro-
gram and these arguments:

fight-churn/listings/run_churn_listing.py --chapter 10 --listing 3

You should get a result that is qualitatively similar to figure 10.8, but don’t expect to
get the specific churn rates in each group when you create your own version. The rea-
son is that in the simulation, the countries have no relationship to churn and engage-
ment and thus are random. (Believe me: I know because I created the simulation.)
Although you should get confidence intervals of similar size to those in figure 10.8,
don’t expect to get the same churn rates.

NOTE For the most part, this book has avoided having you analyze anything in
the simulation that did not relate to churn in some way, to save you the time of
generating and exploring meaningless data. But in real data from actual prod-
ucts and services, you should expect to find both events and demographic
information that are unrelated to customer retention and churn.

WARNING Do not take the results from the social network simulation from
the book’s GitHub repository as a guide to what you can expect from your
own product or service. The examples are a realistic-looking set of data for
the purpose of demonstrating the methods to use on real data, but nothing
more. The simulated results cannot be expected to predict the results for any
real product or service.

10.3.3 Designing category groups

Now that you know how to implement category groupings for a cohort analysis, I will
give you some advice on how to pick such groupings. First, consider the scenario that
you do not have a lot of data, so you are grouping categories to find enough observa-
tions in your cohorts (so that you end up with reasonable-size confidence intervals
around the churn rates). If this situation is your situation, you don’t have the option
to do something that is data driven based on your own data; you don’t have enough
data to analyze the differences between the categories, and that’s the problem. In this
case, you should group categories based on your knowledge of how the categories
relate to one another. Apart from the country region example, some sensible group-
ings you may want to use include the following:

Transforms data with the DataFrame 
apply method and lambda

Drops the original 
category columnReturns the new 

column name as 
the result 
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 If you have a lot of categories for operating system versions, you can group them
by major releases.

 If you have categories for industry sectors, you can group related ones such
as banking and finance in one group and consumer products and retail in
another.

 If you have categories for occupations, you can group related fields such as
doctors and dentists in one group and software engineers and data scientists
in another. 

 If you have categories for education levels, you can group rare ones such as mas-
ter’s degrees, doctorates, and so on.

Remember that your goal is to group the rare categories in a reasonable way and try to
get a sense of any relationships. If you find some relationships, you can always revise
your grouping to take advantage of the structure you discovered (as described later in
this section). 

 Also note that you don’t have to slavishly follow standard definitions of groups: you
should customize them based on the details of your product or service. In my own
mapping from country to region, I made the following editorial decisions:

 I didn’t include China (CN) in the Asia Pacific (APac) group because China alone
represented more than 10% of the data samples, which is enough on its own.

 I chose to include Mexico (MX) with Latin America (LaAm) and not North
America (LaAm) because if this were a real social network, I would expect that
language and culture would be more significantly related to engagement than
geography is related to engagement. (If my product or service had to do with
industrial manufacturing and transportation, I probably would have focused on
geographical rather than cultural relationships.)

These are examples of some of the considerations you might want to use. My last piece
of advice on the subject follows.

WARNING Do not overthink your category groups or spend too much time
on them. Remember the need for agility in your analysis. Do something that
gives you a manageable result for a first pass, take feedback from your busi-
ness colleagues, and iterate from there. 

On the other hand, consider that you have enough data to have narrow confidence
intervals around every churn rate, and your problem is the information overload from
too many categories (or after your first attempt at grouping, you achieved a similar
result). Then you can take a more data-driven approach:

 Run the category cohort analysis on the ungrouped categories; then use the
churn rates you see from the first iteration to decide on groups to use in a sec-
ond iteration: 
– Group categories that are related according to your knowledge and that have

similar churn rates.
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– In this context, a similar churn rate means that the two categories do not have
a statistically significant difference in their churn rates. (Confidence inter-
vals overlap.)

– If the two churn rates are different by a statistically significant amount (confi-
dence intervals do not overlap), do not group them, even if you know that
the categories are related.

 You should still use groups based on knowledge as described. Do not group cat-
egories only on the grounds that the two categories have similar churn rates or
other metrics.

You can also use the correlation analysis described in section 10.5 as an additional way to
assess the similarity between your groups based on their relationship to other metrics.
But as you will see, the grouping algorithm you used for metrics does not work for cate-
gories, and I do not recommend using an automated method for this kind of grouping. 

 If you have too many categories to handle by designing a grouping scheme from
your knowledge (hundreds or thousands of categories), chances are that the informa-
tion is not going to be helpful in your fight against churn. The businesspeople proba-
bly wouldn’t segment customers into such confusing categories.

10.4 Churn analysis for date- and numeric-based 
demographics
As I mentioned earlier, you should look at numeric demographic information with
cohorts the same way that you do metrics. In section 10.1, I taught you that date type
demographic and firmographic information can easily be converted to numeric inter-
vals, so you can also use metric-style cohort analysis with date type demographic data.
Because you learned how to analyze numeric customer data in chapter 5, this section
is going to be a short demonstration.

 The demographic information for the social network simulation includes the date
of birth that the customer entered when they signed up, and listing 10.1 converted
this date to a numeric field in the social network simulation dataset: customer_age.
Figure 10.9 shows the result of running a standard metric cohort analysis on customer
age. The figure shows that in the social network simulation, the higher customer age
is associated with higher churn. The lowest age cohort, with an average age around
15 years, has a churn rate around 4%, whereas the higher age cohorts (older than 60
years) have an average churn rate around 5.5%. The change in churn rates across
cohorts is a little irregular, but it is consistent with the finding that older customers
churn more (the effect is weak compared with the influence of their behavior that was
demonstrated in chapters 5 and 7).

 To create your own version of figure 10.9 from the data you simulated, you must
reuse the metric cohort listing 5.1 (with the filename listing_5_1_cohort_plot.py).
The configuration already has a version that you run as follows:

run_churn_listing.py --chapter 5 --listing 1 --version 17 
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Your result can be somewhat different from figure 10.9 because the relationship is not
strong and the data is randomly simulated. This example demonstrates that after you
extract demographic information in numeric format in your dataset, you can analyze
it with cohorts the same way that you would a metric.

 

Confidence intervals for metric cohorts
I interpret metric cohorts based on the consistency of the trend, but by now, you have
probably realized that you could add confidence intervals around every point in a met-
ric cohort plot. I don’t do this normally because it makes the plots too cluttered to
show to businesspeople, and it’s usually not necessary for interpretation of the rela-
tionship to churn. But confidence intervals can help interpret metric cohort plots
when the trend and significance are weak. Here’s one strategy I have used:

1 Divide the metric into three cohorts. You are comparing customers who are
low versus medium versus high in the metric. Large groups help make narrow
confidence bounds.

2 Plot the cohort averages with confidence bounds, and see whether the confi-
dence bounds overlap. If the confidence intervals overlap, statistically signifi-
cant differences exist between customers who are low versus medium versus
high in the metric.

I leave this exercise to interested readers.

Because customer age is a
numeric field, you should look
at it with ordered cohorts, just
like a behavioral metric.

Higher age is associated with
higher churn in the social
network simulation, but the
effect is less than most of the
behavioral metrics.
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Figure 10.9 Customer demographic age cohort analysis
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10.5 Churn forecasting with demographic data
You have learned the techniques to analyze single demographic fields for their rela-
tionship to customer churn and retention. As with metrics, you may want to look at
the influence on churn for all your demographic fields together to see how the com-
bination predicts churn. Also, you should test forecasting with the demographic or
firmographic data combined with your metrics. To do that, you need to convert demo-
graphic information in strings to an equivalent form as numeric information because
the regression and XGBoost forecasting algorithms that you learned require only
numeric inputs.

10.5.1 Converting text fields to dummy variables

To use your string-type demographic information for forecasting, you will convert it to
numeric data by using a technique known as dummy variables.

DEFINITION A dummy variable is a binary variable that represents membership
in a category, with 1 representing all customers in the category and 0 repre-
senting all customers that are not in the category.

If you studied data science in a computer science or engineering program, you may
have learned about this technique, called one-hot encoding. 

 Figure 10.10 shows the process of creating dummy variables. Using dummy vari-
ables is similar to flattening metric data to create a dataset. In this case, a string demo-
graphic field is a tall data format in the sense that all the possible categories are stored
in one column (using strings). To replace the column of strings with numeric data,
you add one dummy variable column per unique string in the original data. Each col-
umns is the dummy variable for one string category: all the customers who had a
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Figure 10.10 Flattening a string variable to dummy variable columns
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particular string get 1 in the column for that category and 0 in all the other columns.
Then you drop the original string column and are left with a purely numeric dataset
that still represents the same category information as the dataset that included strings.

 Figure 10.11 shows the result of creating dummy variables for the social network
simulation. You can see that the string category labels for the channel and country are
removed from the dataset. Instead, a set of new columns containing only zeros and
ones represents the categories. Figure 10.11 also shows dummy variable columns for
the country field grouped into regions, as they were earlier. The countries are still
grouped because the same concerns about an overabundance of sparsely populated

account
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In the extracted data, the demographic data
is stored as strings after the observation identifiers.

In the transformed data,
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converted to dummy
variable columns.
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variables, the countries were grouped
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The churn column is included so this dataset
can be used to forecast without the metrics.
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Figure 10.11 Result of creating dummy variables for the simulated social network dataset  
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categories apply to forecasting, the same way that they did when you were looking at
the country alone. 

 Listing 10.4 provides the code to create a dataset with dummy variables like the
one in figure 10.11. Creating dummy variables is a standard function of a Pandas
DataFrame (called get_dummies). This function automatically detects all the string-
type columns in your dataset and replaces them with appropriate binary dummy vari-
ables. The names for the dummy variable columns are created by concatenating the
original column name with the category string.

import pandas as pd

from listing_10_3_grouped_category_cohorts import group_category_column   

def dummy_variables(data_set_path, groups={},current=False):
   raw_data = pd.read_csv(data_set_path,    
                          index_col=[0, 1])

   for cat in groups.keys():                
       group_category_column(raw_data,cat,groups[cat])        

   data_w_dummies = 
      pd.get_dummies(raw_data,dummy_na=True)    

   data_w_dummies.to_csv(   
      data_set_path.replace('.csv', '_xgbdummies.csv')

   New_cols = sorted(list(set(                            
                  data_w_dummies.columns).difference(set(raw_data.columns))))
   cat_cols = sorted(list(set(    
                  raw_data.columns).difference(set(data_w_dummies.columns))))

   dummy_col_df =                                     
      pd.DataFrame(new_cols,index=new_cols,columns=['metrics'])
   dummy_col_df.to_csv(
      data_set_path.replace('.csv', '_dummies_groupmets.csv'))

   if not current:    
      new_cols.append('is_churn')
   dummies_only = data_w_dummies[new_cols]    
   save_path =                                             
      data_set_path.replace('.csv', '_dummies_groupscore.csv')
   print('Saved dummy variable (only) dataset ' + save_path)
   dummies_only.to_csv(save_path)

   raw_data.drop(cat_cols,axis=1,inplace=True)            
   save_path = data_set_path.replace('.csv', '_nocat.csv')
   print('Saved no category dataset ' + save_path)
   raw_data.to_csv(save_path)

Calling the package function get_dummies is not all that happens in listing 10.4. First,
listing 10.4 applies the optional grouping of categories that you learned in section 10.2.

Listing 10.4 Creating dummy variables
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Then it is saved in three versions: the part with the original metrics and any numeric
demographic information, a part with only the dummy variables, and everything
together. Each version has a purpose, as follows:

 The metrics and numeric demographic information must be converted to
scores and run through the metric grouping algorithm. This process should
happen without the dummy variables.

 Saving the dummy variables by themselves facilitates running a regression anal-
ysis on the dummy variables alone.

 The version with everything together is for XGBoost, which uses the untrans-
formed metrics together with the dummy variables.

These points will be explained further throughout the rest of this chapter, but for
now, I will focus on explaining the rest of listing 10.4. This code is mostly a mechanical
use of the Pandas library, separating out the parts of the dataset. The only trick is
using sets and operations related to the differences between sets to figure out which
columns were added by making the dummy variables. 

 Listing 10.4 saves multiple versions of the dataset with different filename extensions:

 The file with the postfix .dummies is the dataset with only the dummy variables.
This file is also saved with the postfix .groupscore because that convention will
be expected when you use the regression code on it. A listing of the columns is
also saved with the postfix .groupmets because that also will be expected by the
regression code, even though for the dummy variables, there will be no groups.

 The file with the postfix .nocat is the file with numeric metrics and demo-
graphic fields. This file is simply saved and will be run through the usual scoring
and grouping.

 The file with the postfix .xgbdummies will be reloaded by the XGBoost cross-
validation.

You should run listing 10.4 to create your own version of the dataset with the string
categories replaced by dummy variables (and the files described previously). If you are
using the Python wrapper program, use the usual form of the command and these
arguments:

fight-churn/listings/run_churn_listing.py --chapter 10 --listing 4

Your results should look similar to figure 10.11, although the precise accounts and
their demographics will be different because the data is randomly generated. 

10.5.2 Forecasting churn with categorical dummy variables alone

Now that you have a dataset with demographic dummy variables, it is instructive to try
churn forecasting in a regression model with the demographic data alone. This exer-
cise is intended to increase your understanding of the combined influence of the
demographic variables on churn probabilities. As you will see, if you want to forecast
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churn as accurately as possible, use the demographic dummy variables and the met-
rics together, as described in section 10.5.4.

 If you run a regression cross-validation and then fit the model at the optimal C
parameter, the results that you get are shown in figure 10.12. The results show that the
demographic dummy variables are weakly predictive of churn. The best AUC mea-
surement found in the cross-validation is around 0.56, and the maximum lift is
around 1.5. If you recall from chapter 9, the regression using metrics resulted in an
AUC higher than 0.7 and a lift higher than 4.0. A low value of the C parameter can be
used and then most of the dummy variables removed without affecting the AUC sig-
nificantly, but the lift is best with a higher value of the C parameter: 0.32 or greater. 

 Figure 10.12 also shows the regression coefficients and impact on retention
probability with the C parameter set to 0.32. The dummy variables for the two app-
store channels are assigned fairly large weights, which translates into a positive
retention impact of 1.2% and 2.8%, respectively (churn reducing). The web chan-
nel gets zero weight, which reflects the fact that it has the highest churn because
both of the other two channels were shown to have a positive impact. In this sense,
the zero weight means that it is like the default, or baseline, and the other catego-
ries represent improvements. 

 The get_dummies function also created a variable for a channel not available
(nan), and this channel also got zero weight, because in this dataset, all customers
have the channel assigned. (Pandas makes a nan column for every variable when the
na_default parameter is set.) These effects are in line with the churn-rate differences
you saw in the category cohort plot (figure 10.3). 

 Figure 10.12 also shows much smaller coefficients and retention impacts for the
country group dummy variables. In this case, CN, Eur, and the missing data have a
slight positive retention impact (churn rate lower), and LaAm and APac have a nega-
tive retention impact (churn rate higher). Again, these results are in line with what
you saw in the cohort plot for the country groups (figure 10.8).

 Figure 10.12 was created from the listings from previous chapters, and there are
already versions of the configuration prepared for you to do this. To create the regres-
sion cross-validation chart from figure 10.12, use the command for regression cross-
validation, version 4, as follows:

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 5 --version 2

To find the coefficients with the C parameter fixed at 0.32, use the command to run
the regression with a fixed value of C:

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 4 --version 4

Your result for cross-validation should be similar to figure 10.12, and so should your
result for coefficients on the channels, which are randomly assigned to customers
but in such a way that they produce consistent results in the simulation. You may get
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different results for the small weights and impact of the country group because in the
simulation they are random. 

10.5.3 Combining dummy variables with numeric data 

In earlier sections, I mentioned that you cannot use the type of grouping that you use
for metrics when you are working with dummy variables derived from categories.
Instead, I suggested separating the dummy variables from the metrics and processing
the metrics as usual. In this section, I provide details on the reason and this process. I
start by explaining some facts about correlations involving dummy variables because
that will help make it clear why you do not group categorical dummy variables along
with the metrics.

 Figure 10.13 shows the portion of the correlation matrix from the social network
simulation that relates the demographic categories for channel and country to one
another and to the metrics. (You haven’t run the code to create this correlation
matrix yet, but you will soon.) The portion of the correlation matrix with metric-to-
metric correlations is omitted in figure 10.13. One distinctive feature that might sur-
prise you is the categories; dummy variables from each field are negatively correlated

Both app store channels
have strong positive retention
impact (reducing churn)
similar to the benefit seen
in the cohort analysis; the web
channel has no retention impact,
indicating that it is the worst.

The demographic
categories alone are
weakly predictive of
churn, having an AUC
just above 0.55 and a
lift around 2.0 (when
the C parameter 0. 61

or greater is used).

The country groups have weak
retention impacts, similar to the
relative churn rates seen in the
cohort analysis.

group_metric_offset weight retain_impact

channel_appstore1 0.22 1.20%

channel_appstore2 0.60

0

0

2.81%

channel_nan 0

channel_web 0

country_group_APac –0.04 –0.23%

country_group_CN 0.27 1.44%

country_group_Eur 0.12 0.70%

country_group_LaAn –0.05 0.31%

country_group_NoAm 0.00 0.00%

country_group_nan 0.22 1.22%
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Figure 10.12 Regression results with a dummy category variable dataset
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with the other dummy variables from the same field. This is especially true for the chan-
nel field, which had only three categories where the correlation is as low as –0.74. For
the country groups, the negative correlations between the regions are around –0.2.

 The reason for the negative correlations between the categories is due to the
exclusive nature of category membership: if a customer is in one category, it gives
them 1 for that category’s dummy variable, and it requires that they have 0 for the
other dummy variables from the same field. That exclusivity for the binary indicator
results in a negative measured correlation from the definition of the correlation coef-
ficient: when one dummy variable takes a high value (1), the others take low values
(0). This explains why the kind of grouping you used for the metric variables will not
group demographic categories from the same demographic field. That algorithm uses
a high correlation to indicate that the variables should form group members. 

 Considering the rest of figure 10.13, the demographic category dummy variables
are mostly uncorrelated with the metrics, but there are a few exceptions: 

 The channels appstore1 and web have negative correlation with messages and
replies.

 The channel appstore2 has positive correlation with messages and replies.
 The channel web also has positive correlation with posts.

When you use demographic categories to understand customer churn and retention,
it can be worthwhile to look at the correlation matrix using the dummy variables,
because it can reveal things about how different groups of your customers use the
product. But you should not group the demographic dummy variables with your met-
ric groups, even when they are correlated. 

TAKEAWAY The correlations between demographic dummy variables and other
metrics can help you understand your customers better, but you should not
group dummy variables with other dummy variables or with metrics. 

Back in chapter 6, I advised you to use correlation between metrics as a way of assess-
ing the relatedness of the metrics and determining which should be grouped. But
there are a few reasons why this same approach doesn’t carry over with dummy vari-
ables created from demographic categories:

 You can calculate correlation coefficients for 0/1 binary variables, but correla-
tion coefficients are not meant for this purpose. In statistics, other metrics are
better for measuring relatedness between binary variables. When you calculate
correlation coefficient with your dummy variables, it’s not as good a measure of
relatedness as correlation between metrics.

 The demographic categories are not related in the same way as behaviors that
you group by using correlation. When two behaviors (such as using two product
features) are correlated, usually they are part of a single activity or process.
Therefore, it is reasonable to represent the overall process with an average of
the scores, which is not normally the case for a demographic category and any
other metric. 
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For these reasons, my advice is that if you want to use demographic dummy variables
to forecast churn, you should keep all dummy variables separate from the groups. 

TAKEAWAY Run the metrics and numeric demographic fields through a stan-
dard preparation process without demographic dummy variables, and then
combine them with dummy variables at the end. 
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appstore and web customers have somewhat less.1

Web customers also post somewhat more.

Figure 10.13 Correlation matrix for the social network simulation demographic categories
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This result is illustrated in figure 10.14. 
 To create your own dataset like the one in figure 10.13, the first step is running the

data-preparation process that you learned in earlier chapters on the version of the
dataset that has the metrics and numeric demographic information. There is a version
of the listing configuration prepared for you to do that with one command. Recall
that listing 8.1 (with the filename listing_8_1_prepare_data.py) was the combined
data-preparation function, and this is the third use of it (version 3):

fight-churn/listings/run_churn_listing.py --chapter 8 --listing 1 --version 3 

After processing the metrics, combine them with the dummy variables. A new function
shown in listing 10.5 is a straightforward application of a Pandas DataFrame manipula-
tion. The group scores produced from the metrics are merged with the file for the dum-
mies. The merge is performed with the Pandas DataFrame merge function, using the
indices of both DataFrames to perform an INNER JOIN. The final step in listing 10.4 com-
bines the DataFrame that lists the group metrics with the names of the dummy variables;
such a file will be expected by the code that runs the regression on the combined dataset.

import pandas as pd

def merge_groups_dummies(data_set_path):

   dummies_path =                         
      data_set_path.replace('.csv', '_dummies_groupscore.csv')

Listing 10.5 Merging dummy variables with grouped metric scores
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Figure 10.14 Metric groups, metric scores, and categories in one dataset
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   dummies_df =pd.read_csv(dummies_path,index_col=[0,1])
   dummies_df.drop(['is_churn'],axis=1,inplace=True)     

   groups_path =     
      data_set_path.replace('.csv', '_nocat_groupscore.csv')
   groups_df = pd.read_csv(groups_path,index_col=[0,1])

   merged_df =                                            
      groups_df.merge(dummies_df,left_index=True,right_index=True)
   save_path =    
      data_set_path.replace('.csv', '_groupscore.csv')
   merged_df.to_csv(save_path)
   print('Saved merged group score + dummy dataset ' + save_path)

   standard_group_metrics = pd.read_csv(            
      data_set_path.replace('.csv', '_nocat_groupmets.csv'),index_col=0)
   dummies_group_metrics = pd.read_csv(    
      data_set_path.replace('.csv', '_dummies_groupmets.csv'),index_col=0)
   merged_col_df =                                                
      standard_group_metrics.append(dummies_group_metrics)
   merged_col_df.to_csv(data_set_path.replace('.csv', '_groupmets.csv'))

You should run listing 10.5 on your own simulated social network dataset to prepare
for forecasting in section 10.5.4. Issue the usual command to the Python wrapper pro-
gram with these arguments:

fight-churn/listings/run_churn_listing.py --chapter 10 --listing 5

After running listing 10.5, one of the results should be a dataset like the one you saw
in figure 10.14. Also, now that you have created the combined dataset, you can make a
correlation matrix like the one I showed you at the start of this section (figure 10.13).
Use a version of the correlation matrix listing configuration by issuing the following
command with these arguments:

fight-churn/listings/run_churn_listing.py --chapter 6 --listing 2 --version 3 

Running listing 6.2 with parameter configuration version 3 creates the raw data for a
correlation matrix like the one shown in figure 10.13. The formatting for figure 10.13
was done in a spreadsheet program (as explained in chapter 6).

10.5.4 Forecasting churn with demographic and metrics combined

Now that you have created a dataset combining the group metric scores and the demo-
graphic category dummy variables, you can run a regression or machine learning model
to forecast churn probabilities. Figure 10.15 shows the result of the regression. 

 The cross-validation of the C parameter shows that many of the variables can be
assigned zero weight before accuracy is affected. Figure 10.15 also shows the weights
resulting from the regression when the C parameter is set to 0.04. Nearly all the
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der the
ame for
e group

scores

Loads the 
group metric 
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demographic dummy variables have zero weight and retention impact (and a few of
the metrics as well).

 Figure 10.15 was created by using listings from chapter 9. To run your own regres-
sion on the dataset with dummy variables and metrics combined, you can use pre-
pared versions of the configuration. To run the cross-validation of the regression C
parameter (listing 9.5) shown in figure 10.15, use the following command:

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 5 --version 3 

To run the regression with the C parameter fixed (listing 9.4) at 0.04 on the combined
dummy variables and metrics dataset, use the command

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 4 --version 5 

Those commands produce results similar to figure 10.15, although you may have dif-
ferent weights on the country group dummy variables because they are assigned ran-
domly in the simulation. 

 You may wonder why the regression coefficients in figure 10.15 show that the chan-
nel demographic variable had no influence on the churn prediction, but early in the
chapter, both the cohort churn analysis with confidence intervals and the regression
on the dummy variables showed that the channel was strongly predictive of churn
(and retention). What’s going on here? Is something wrong in the regression?

 Nothing is wrong. When taken together with the behavioral metrics, the channel
provides no additional information about churn, and the regression discovers this
fact. The customer channels are correlated with certain behaviors, and behavior
causes customer churn and retention in the simulation. When you look at the channel
alone, it is related to churn rates, but when combined with the behavioral metrics in a
regression, the regression algorithm automatically determines the most explanatory
factors and removes the others. The regression correctly determines that customer
engagement is most predictable by watching the metrics and not the channels.

TAKEAWAY Demographic categories are often related to churn and engage-
ment because customers from different demographics behave differently. But
if you use detailed behavioral metrics, you will usually find that behaviors are
the underlying drivers of retention in a predictive forecast.

I told you that understanding demographics and firmographics is a secondary method
of fighting churn because behavior can (sometimes) be modified by interventions
but demographics cannot (ever). The fact that demographics are not usually helpful
in predicting churn is another reason why I emphasize understanding behavior
with metrics when fighting churn. But even if a demographic field is not useful for
predicting churn, it does not detract from the primary use of demographics in
fighting churn.
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TAKEAWAY If you see a strong relationship between demographics and
retention in your cohort analysis, you should try to emphasize your best
demographics in your acquisition efforts. It doesn’t matter if those same
demographics are not predictive of engagement in a regression with behav-
ioral metrics.

WARNING Do not assume that your own product or sevice’s churn data will
show exactly the same result as I presented here from the simulation. The
social network simulation was designed to mimic the result that I have most
commonly seen when studying customer churn, but there can always be
exceptions, and your product may be one of them. 

If you find that your own demographics are strongly predictive of churn, even when
you have factored in behavioral metrics, you should check your data to see whether it
can be improved. Make sure that all relevant customer behaviors are represented by
your events and that your metrics adequately capture the relationships between your
events and churn. Demographic correlations with unmeasured behaviors can lead to a

With the metrics in
the regression with
the dummy variables,
almost all of the
dummies have their
weight set to zero.

Customer age
gets a moderate
weight with churn-
increasing impact.
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Figure 10.15 Regression result for dataset combining metric scores and category dummy variables
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result in which demographics predict churn, even when including metrics. If that’s
the case, you would be better off figuring out what those behaviors are so that you can
measure them and attempt to influence them for the better.

 You can also test how much improvement demographic variables make for predic-
tion with a machine learning model like XGBoost. The result of such an experiment is
shown in figure 10.16. The demographic variables add around 0.005 to the AUC of
XGBoost, or one-half of 1%. Figure 10.16 also shows the improvement in the regres-
sion AUC, which is even smaller (but an improvement nonetheless).

TAKEAWAY The highest predictive accuracy comes from XGBoost using demo-
graphic data combined with detailed customer metrics. XGBoost may find
demographics more helpful in prediction than regression does.

To reproduce the XGBoost result in figure 10.16, you can run a version of the XGBoost
cross-validation listing configuration with the following command (listing_9_6_crossvali-
date_xgb.py):

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 6 --version 2 

Note that the listing and configuration create the results for XGBoost with demo-
graphic variables. If you have been following along, you should have already found
the accuracy for the other models and datasets.

10.6 Segmenting current customers with demographic data
The final subject for this chapter is how to use demographic information as part of the
effort to segment customers. As the data person, you’re not responsible for defining
the segments or intervening with customers, but you do need to provide the data so

Including demographics
adds a small amount
(less than 0.0 ) to the1
AUC for both regression
and XGBoost forecasts.

Regression and
demographics

XGBoost,
no demographics

XGBoost and
demographics

Regression,
no demographics
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Figure 10.16 Accuracy comparison with demographic data
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that the businesspeople can do their jobs effectively. The final dataset for segmenting
customers should include the following elements:

 All customers active on the most recently available date
 Scores for metric groups
 The original (unscaled) metric values for metrics that were not grouped
 Categorical demographic information in string format
 Categories grouped where appropriate 
 Churn forecast probabilities (optional)

Figure 10.17 is an example of a dataset that has all those features.

Creating such a dataset requires a few steps:

1 Extract all the metrics and demographic information for current customers
from the database.

2 Reprocess the metric information to form groups, using the score parameters
and loading matrix from the historical data.

3 Save a version of the dataset that has all the desired features.

Note that this process also creates a dataset ready for churn probability forecasting on
active customers. That version combines scores for all the metrics and numeric demo-
graphic data but dummy variables for the demographic categories. 

account
_id

observation
_date

metric_
group_1

metric_
group_2

customer
_age

newfriend
_per_
month

days_
since_

newfriend ...

2 5/10/20 0.092 0.081 53.7 12 ...
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7

4

...

14 5/10/20 –0.464 1.606 23.4 0 ...
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The metric groups are
scores, scaled to be small
numbers averaging to zero.

Ungrouped metrics are
on their natural scales.

Demographic categories
are included as a string.

Figure 10.17 Dataset to segment customers with metric group scores, metrics, and demographic information
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The ch
string
the acc
 Listing 10.6 provides the SQL statement to extract demographic data along with all
metrics for currently active customers. This listing is almost the same as similar listings in
chapters 4 and 8, so I’ll explain it only briefly. The main portion of the SQL program is
the aggregation to flatten the metrics. The new feature is to join on the account table
and also select the channel country and the date of birth. The date of birth is converted
to a time interval representing the customer’s age in years (following the pattern used to
create the historical dataset with demographic data presented earlier in this chapter).

WITH metric_date AS    
(
   SELECT  max(metric_time) AS last_metric_time FROM metric
),
account_tenures AS (
   SELECT account_id, metric_value AS account_tenure
   FROM metric m INNER JOIN metric_date ON metric_time =last_metric_time
   WHERE metric_name_id = 8
   AND metric_value >= 14
)
SELECT s.account_id, d.last_metric_time AS observation_date,
a.channel,   
a.country,                                                 
date_part('day',d.last_metric_time::timestamp              
    - a.date_of_birth::timestamp)::float/365.0 AS customer_age,
SUM(CASE WHEN metric_name_id=0 THEN metric_value else 0 END)
    AS like_per_month,
SUM(CASE WHEN metric_name_id=1 THEN metric_value else 0 END)
    AS newfriend_per_month,
SUM(CASE WHEN metric_name_id=2 THEN metric_value else 0 END)
    AS post_per_month,
SUM(CASE WHEN metric_name_id=3 THEN metric_value else 0 END)
    AS adview_per_month,
SUM(CASE WHEN metric_name_id=4 THEN metric_value else 0 END)
    AS dislike_per_month,
SUM(CASE WHEN metric_name_id=34 THEN metric_value else 0 END)
    AS unfriend_per_month,
SUM(CASE WHEN metric_name_id=6 THEN metric_value else 0 END)
    AS message_per_month,
SUM(CASE WHEN metric_name_id=7 THEN metric_value else 0 END)
    AS reply_per_month,
SUM(CASE WHEN metric_name_id=21 THEN metric_value else 0 END)
    AS adview_per_post,
SUM(CASE WHEN metric_name_id=22 THEN metric_value else 0 END)
    AS reply_per_message,
SUM(CASE WHEN metric_name_id=23 THEN metric_value else 0 END)
    AS like_per_post,
SUM(CASE WHEN metric_name_id=24 THEN metric_value else 0 END)
    AS post_per_message,
SUM(CASE WHEN metric_name_id=25 THEN metric_value else 0 END)
    AS unfriend_per_newfriend,
SUM(CASE WHEN metric_name_id=27 THEN metric_value else 0 END)
    AS dislike_pcnt,

Listing 10.6 Exporting metrics and demographic data for currently active customers

Most of this listing is the 
same as listings 4.6 and 8.3.

annel
 from
ount
table

The country 
string from the 
account table

Subtracts the 
date of birth 
from the 
observation 
date
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SUM(CASE WHEN metric_name_id=30 THEN metric_value else 0 END)
    AS newfriend_pcnt_chng,
SUM(CASE WHEN metric_name_id=31 THEN metric_value else 0 END)
    AS days_since_newfriend
FROM metric m INNER JOIN metric_date ON m.metric_time =d.last_metric_time
INNER JOIN account_tenures t ON t.account_id = m.account_id
INNER JOIN subscription s ON m.account_id=s.account_id
INNER JOIN account a ON m.account_id = a.id              
WHERE s.start_date <= d.last_metric_time
AND (s.end_date >=d.last_metric_time OR s.end_date IS null)
GROUP BY s.account_id, d.last_metric_time, 
    a.channel, a.country, a.date_of_birth        
ORDER BY s.account_id

You can run listing 10.6 on your own simulated social network dataset to create your
own dataset file for the current customers by running the following command and
these arguments:

fight-churn/listings/run_churn_listing.py --chapter 10 --listing 6

The Python program that converts the raw data for current customers to versions that
can be used for forecasting and segmenting is shown in listing 10.7. Much of listing
10.7 is similar to the transformation that you saw in chapter 8, and it includes several
helper functions from chapters 7, 8, and 10. But listing 10.7 also includes a few new
steps to accommodate the demographic data. 

 The one important new technique in listing 10.7 is what I call aligning the dummy
variables in the historical and current datasets. The Pandas get_dummies function
(called from listing 10.4 dummy_variables) creates dummy variable columns for every
category in the data frame, but the categories in the historical dataset and the current
dataset may not match. Typically, the historical dataset has enough customer observa-
tions that you will see a rare category in a few customers, but the current dataset will
have fewer customers and may not include any examples of the rare category. The
result in that case would be that the historical dataset has a column that the current
dataset does not have. This situation would cause a failure when you try to forecast
churn probabilities on the current dataset. 

 The same problem would happen if a category goes out of use historically and is
no longer present in the current dataset. The reverse problem would occur if a new
category comes into use: the historical dataset may lack the category, and only the cur-
rent dataset includes it. In summary, aligning the categories does two things:

 Adds to the current dataset, for any category in the historical data that is miss-
ing, a new dummy variables column containing zeros. This way, the current
dataset is equivalent in its columns to the historical dataset, and zeros are the
correct categorical value for a category of which no one is part. 

 Drops any categories from the dummy variables for the current dataset that
were missing in the historical dataset. Again, this step aligns the columns in the

JOINs with the 
account table

Includes the demographic 
fields in the GROUP BY clause
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historical and current datasets. If the category was not available in the historical
dataset, you don’t know whether or how it’s predictive of churn, so removing it
is correct for the purpose of forecasting. 

Overall, the main steps in listing 10.7 are

1 Run the dummy_variables creation listing from earlier in this chapter (listing
10.4), using the path to the current dataset. This code saves three versions of
the data: 
– Only the numeric fields for further processing by scoring and grouping
– Only the dummy variables to merge back together with the scores and groups

later
– The numeric fields and dummy variables together, which is used by XGBoost

(this file is saved from within the dummy_variables function)
2 Load the dummy variables derived from the current dataset.
3 Run the align_dummies helper function that takes care of inconsistencies between

the two sets of dummy variables.
4 Load the dataset with only numeric fields that were created from the current

data by the dummy_variables function. Also load the loading matrix and score
parameters created from the historical dataset. Run this current dataset
through the reprocessing steps you learned in chapter 8:
a Transform any skewed columns.
b Transform any columns with fat tails.
c Rescale the data so all fields are scores with a mean near 0 and a standard

deviation near 1.
d Combine any correlated metrics by using the loading matrix created on the

historical data.
5 Merge the dummy variables with the metric group and score data, and save this

version of the dataset. This version can be used for forecasting churn probabili-
ties for current customers.

6 Create the version of the dataset designed to be used by businesspeople for seg-
menting. This version of the dataset combines the following elements:
– Scores for the grouped metrics
– The original (untransformed) metrics for those that are not grouped
– The original strings (not the dummy variables) for the demographic categories

import pandas as pd

from listing_7_5_fat_tail_scores 
   import transform_fattail_columns, transform_skew_columns
from listing_8_4_rescore_metrics 
   import score_current_data, group_current_data, reload_churn_data
from listing_10_4_dummy_variables import dummy_variables

Listing 10.7 Preparing a current customer dataset with demographic fields
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def rescore_wcats(data_set_path,categories,groups):

   current_path = data_set_path.replace('.csv', '_current.csv')

   dummy_variables(current_path,groups, current=True)           
   current_dummies = reload_churn_data(data_set_path,
      'current_dummies_groupscore',  '10.7',is_customer_data=True)
   align_dummies(current_dummies,data_set_path)    

   nocat_path = 
      data_set_path.replace('.csv', '_nocat.csv')   
   load_mat_df = reload_churn_data(nocat_path,
                                   'load_mat','6.4',is_customer_data=False)
   score_df = reload_churn_data(nocat_path,
                                'score_params','7.5',is_customer_data=False)
   current_nocat = 

reload_churn_data(data_set_path,'current_nocat','10.7',is_customer_data=
True)

   assert set(score_df.index.values)==set(current_nocat.columns.values),
          “Data to re-score does not match transform params”
   assert set(load_mat_df.index.values)==set(current_nocat.columns.values),
          “Data to re-score does not match loading matrix”
   transform_skew_columns(current_nocat,
      score_df[score_df['skew_score']].index.values)
   transform_fattail_columns(current_nocat,
      score_df[score_df['fattail_score']].index.values)
   scaled_data = score_current_data(current_nocat,score_df,data_set_path)
   grouped_data = group_current_data(scaled_data, load_mat_df,data_set_path)

   group_dum_df =   
      grouped_data.merge(current_dummies,left_index=True,right_index=True)
   group_dum_df.to_csv(   
      data_set_path.replace('.csv','_current_groupscore.csv'),header=True)

   current_df = reload_churn_data(data_set_path,
                                  'current','10.7',is_customer_data=True)
   save_segment_data_wcats(      
      grouped_data,current_df,load_mat_df,data_set_path, categories)

def align_dummies(current_data,data_set_path):

   current_groupments=pd.read_csv(              
      data_set_path.replace('.csv','_current_dummies_groupmets.csv'),
      index_col=0)

   new_dummies = set(current_groupments['metrics'])
   original_groupmets =                                 
       pd.read_csv(data_set_path.replace('.csv','_dummies_groupmets.csv'),
                   index_col=0)

   old_dummies = set(original_groupmets['metrics'])
   missing_in_new = old_dummies.difference(new_dummies)   
   for col in missing_in_new:    
       current_data[col]=0.0
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try.
   missing_in_old = new_dummies.difference(old_dummies)   
   for col in missing_in_old:    
       current_data.drop(col,axis=1,inplace=True)

def save_segment_data_wcats(current_data_grouped, current_data,
                            load_mat_df, data_set_path, categories):
   group_cols =       
      load_mat_df.columns[load_mat_df.astype(bool).sum(axis=0) > 1]
   no_group_cols =                                              
      list(load_mat_df.columns[load_mat_df.astype(bool).sum(axis=0) == 1])
   no_group_cols.extend(categories)                                     
   segment_df =    
      current_data_grouped[group_cols].join(current_data[no_group_cols])

   segment_df.to_csv(
      data_set_path.replace('.csv','_current_groupmets_segment.csv'),
      header=True)

You can run listing 10.7 with the Python wrapper program with the following com-
mand and these arguments:

fight-churn/listings/run_churn_listing.py --chapter 10 --listing 7

This code creates three files for the current customer data for the purposes described
previously:

 Forecasting with regression
 Forecasting with XGBoost
 Segmenting by businesspeople

If you want to forecast with the regression model, use listing 8.5 (with the filename
listing_8_5_churn_forecast.py) with the following command and these parameters:

fight-churn/listings/run_churn_listing.py --chapter 8 --listing 5 --version 2

If you want to forecast with the XGBoost model (with the filename listing_9_7_churn
_forecast_xgb.py), use

fight-churn/listings/run_churn_listing.py --chapter 9 --listing 7 --version 2

Regarding the dataset for segmenting customers that your business colleagues will
use, it is important to realize that for businesspeople, demographic data is important
even when it does not relate to churn and retention. The marketing department, for
example, will need to write different copy for engagement campaigns targeting cus-
tomers in different countries or regions. In a large organization, the marketing
department probably has access to all of that kind of information through its own sys-
tem, but I include everything here for the sake of completeness.
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451Summary
TAKEAWAY Demographic information can be relevant to designing interven-
tions with customers, even when it is not related to engagement and retention.

Summary
 Demographic and firmographic data are facts about the customers that do not

change over time, like metrics. The type of demographic/firmographic fields
can be date, numeric, or string. 

 Date type information about customers can be converted to intervals and ana-
lyzed using the same techniques as metrics.

 To compare the churn rate in cohorts defined by demographic category strings,
you use confidence intervals that are best- and worst-case estimates for the
churn rate.

 Churn rates in different categories are said to be different by a statistically sig-
nificant amount when the confidence intervals around their churn rates do not
overlap.

 If you have many categories representing small percentages of the customer
population, you should group related categories before analyzing them.

 Grouping demographic categories is usually done using previous knowledge,
and the mapping can be efficiently represented by using a dictionary.

 To use demographic categories in regression or machine learning forecasting,
convert them to columns of binary dummy variables. 

 Dummy variables are not grouped with metric scores, but investigating the cor-
relation between dummy variables in metrics can provide useful information. 

 Using demographic information can improve forecasting accuracy, but it is usu-
ally a secondary contribution compared with behavior-based metrics.



Leading the fight
against churn
I want to start this last chapter by thanking you for sticking with me and making it
to this point. I hope that what you learned in the preceding chapters was interest-
ing and that you feel like you learned a lot that you will be able to apply. In this
short final chapter, I am going to try to give you some advice to help you put what
you learned into practice.

 In section 11.1, I tie together the strategic churn-fighting advice that was distrib-
uted throughout the book and give you a checklist of steps to take to pursue the
various strategies.

 Then I’ll go over the practical steps you need to take to use the techniques from
the book on your own data. You can take two paths, which are the subjects of the
next two sections:

This chapter covers
 Planning to go from data to data-driven churn 

reduction

 Loading your own data and running the book 
code on it

 Migrating the book listings to work in your own 
production environment
452
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 Section 11.2 goes over the steps to take if you want to load your own data into
the PostgresSQL schema used in the book and then run the book listings on
your own data.

 Section 11.3 describes the alternative, which is to take the book’s listings (SQL,
Python, or both) and port them to your own production environment.

After that, there is not much more I can teach you; it will be up to you to put your
knowledge to use and find more resources to help along the way. Section 11.4 describes
some of the resources available for learning more.

11.1 Planning your own fight against churn
This book covered a lot of different techniques and provided advice that would apply
in many scenarios. But the truth is that you can make a big difference in churn for a
typical product or service by using only some of the techniques in the book. I’m going
to back out to a higher level now and give you some advice about which techniques to
use and how to apply them. 

 Throughout the book, I’ve mentioned a variety of churn-reducing strategies,
which I summarize here:

 Product improvement—Most companies already use data to improve their prod-
ucts, typically collected in surveys or focus groups. Although surveys typically
capture the views of only a small number of participants, churn is effectively a
survey of all users, who vote with their feet. Product managers and content pro-
ducers can take the churn analysis results as valuable new insights into the pref-
erences of customers (without running a survey or focus group).

 Engagement marketing—If a company uses email marketing, it can send engage-
ment emails to customers. Use the result of churn data to target customers and
encourage them to use product features they aren’t using already, provide
advanced tips to power users, and so on. The point is to use the data to make
the communication valuable to the customers who receive it. 

 Pricing and packaging—For products that charge a fee, pricing and packaging
are crucial. A company that produces such products should use advanced met-
rics to understand the value that customers receive (or don’t) and how that
value relates to churn. This information helps when the company devises new
pricing and packaging that satisfy the various customer segments.

 Customer success and support—Larger companies probably have a customer sup-
port function that helps customers who report difficulty. A greater impact on
churn is a data-driven, proactive customer success function that helps custom-
ers before they ask for it. Track your churn versus account tenure, and try to
make sure that customers get an onboarding experience before it’s too late.

 Channel targeting—If you find your customers through multiple channels, it may
be worthwhile to understand which channel delivers the best customers in
terms of engagement and retention.
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Table 11.1 summarizes the most common churn-reduction strategies and how they
relate to the techniques you learned in this book. 

But don’t be intimidated by the long list of strategies and the fact that some of them
require several techniques to put into practice. I want to stress that you don’t need to
use every churn-reducing strategy in this book. Also, it’s better to start with something
small than to get overwhelmed and do nothing. This book taught a large number of
techniques because I wanted to cover a variety of common scenarios and pitfalls. But
you don’t necessarily need to tackle all of them to have a big impact on your com-
pany’s churn. 

TAKEAWAY It’s better to start small and deliver something than to try every-
thing and not deliver anything. The techniques in the book are front-loaded
so that you don’t have to use most of them to get most of the benefits.

I don’t want to sell short the more advanced techniques, because they can be useful,
but the benefits are front-loaded in the sense that most of the benefit is derived from
the techniques taught in the beginning of the book. I estimate that your company can
get almost half the benefit of using data to reduce churn if you can make it through
chapter 3 and deliver a correct churn rate and a well-designed set of customer metrics
to your company. By half the benefit, I mean half the benefits realized by a company that
uses all the advanced techniques in later chapters. (Achieving the full benefit also
requires various business units to use the metrics in their decision-making, of course.)

Table 11.1 Data-driven churn reduction

Churn-reducing strategy Core concepts/customer metrics Chapter(s)

Product improvement
Make more of the best features.
Make the best features easy to find.

Metric cohorts based on product-use events 
identify engaging and disengaging product 
features.

3, 5, 8

Engagement marketing
Promote the best features.
Use targeted product insights.

Metric cohorts provide benchmarks for healthy 
levels of product use. Segment customers with 
metrics for targeting.

3, 5, 7

Pricing and packaging
Differentiate pricing to provide value 
without discounting.
Understand relationships between the 
use of different features/content.

Unit cost and unit value metrics identify custom-
ers who are getting good/bad value from the 
product.

Consider monetizing valued groups of product 
features.

6, 7

Customer success and support
Help customers in need.
Identify failing customers proactively.

Metric cohorts benchmark healthy use levels.

Forecast customer risk level with regression or 
machine learning.

3, 5, 8, 9

Channel targeting
Identify your best customer channels.
Find lookalikes.

Cohort churn rates with confidence intervals 
identify the best (worst) sales channels and 
demographic/firmographic indicators of success.

10
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If you can make it through chapter 5 and deliver an analysis of basic metrics by using
metric cohorts, your company probably will get two-thirds of the total possible benefit
of using data to drive churn-reduction initiatives. Section 11.1.2 lays out the steps you
need to take.

11.1.1 Data processing and analysis checklist

When teaching these techniques, I sometimes teach some steps out of order to make
the concepts easier to follow. Table 11.2 shows you the steps to take to achieve what I
call the foundation level of data-driven churn fighting, including all the steps up to
delivering a current customer list with customer metrics based on event data. If you
can take these steps and communicate the results to the businesspeople in your com-
pany (as explained in section 11.1.3), you will achieve almost half the benefit of data-
driven churn reduction.

If you complete all the foundation steps in table 11.2, you are ready to go on to using
the more advanced techniques in the book. Table 11.3 lists the steps for advanced data-
driven churn-fighting techniques, beginning with creating the analytic dataset and
analyzing the basic metrics for their relationship to churn. The goal is the creation of
advanced metrics that reveal more important information about engagement and
retention. 

Table 11.2 Checklist for the foundation level of data-driven churn fighting

Step Step description Chapter Section(s)

1 Churn rates 2 2.4 for B2C subscription

2.5 for no subscription

2.6 for B2B subscription

2 Event-data quality assurance (QA) 3 3.8

3 Standard behavioral metrics 3 3.5, 3.6, 3.10, 3.11

4 Metrics QA 3 3.7

5 Current customer metrics dataset 4 4.5

Table 11.3 Checklist for advanced data-driven churn fighting

Step Step description Chapter Section(s)

6 Dataset creation 4 4.1–4.4

7 Dataset summary statistics and QA 5 5.2

8 Metric cohort analyses 5 5.1

9 Churn behavioral grouping and analysis 6 All

10 Advanced behavioral metrics creation and analysis 7 7.1–7.4
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The forecasting techniques in chapters 8 and 9 of this book usually provide only a lit-
tle additional benefit beyond those in the first two parts. Those techniques are most
likely to be applied by experienced statisticians, data scientists, or machine learning
engineers in a company that is accustomed to using advanced analytics. For that reason,
I’ll call these techniques the extreme level of data-driven churn fighting. Table 11.4 pro-
vides a checklist of the steps to take.

Last are the techniques for reducing churn by identifying the best channels or demo-
graphic and firmographic categories. All those techniques are discussed in chapter 10
and don’t require you to use any of the advanced techniques: you can use demo-
graphic/firmographic techniques separately or in combination with the other tech-
niques in the book. Table 11.5 lists the steps for using demographics or firmographics,
starting from step 1. The steps in table 11.5 restart from step 1 because these steps do
not depend on the steps in tables 11.2, 11.3 and 11.4.

11 Advanced metrics QA 3 3.7

12 Current customer advanced metrics dataset 8 8.4

Table 11.4 Checklist for extreme data-driven churn fighting with forecasting

Step Step description Chapter Section(s)

13 Cross-validate regression model to find best parameter. 9 9.4

14 Run regression on full dataset at optimal parameter. 9 9.3

15 Create current customer list with churn forecast and life-
time value.

8 8.4, 8.6

16 Cross validate XGBoost model to find best parameters. 9 9.5

17 Create current customer XGBoost forecasts. 9 9.6

Table 11.5 Checklist for fighting churn with demographics/firmographics

Step Step description Chapter Sections

1 Export historical dataset with demographic/firmographic information. 10 1

2 Categorical cohort analysis for demographic/firmographic categories. 10 2

3 Metric cohort analysis for numeric demographic/firmographic data. 5 1

4 Create current customer list with demographic/firmographic information. 10 6

5 Optional: demographic/firmographic data for forecasting. 10 5

Table 11.3 Checklist for advanced data-driven churn fighting (continued)

Step Step description Chapter Section(s)
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11.1.2 Communication to the business checklist

Section 11.1.1 provides a checklist of technical steps in a data-driven fight against
churn. But what about the business context? In this section, I’ll review and summarize
how you should be collaborating with your business colleagues and what outcomes
you should try to achieve. 

 Table 11.6 lists the suggested points of business involvement corresponding to
each step in achieving the foundation of data-driven churn fighting. These steps align
with the technical steps described in table 11.2. Each stage of the data processing and
analysis has one or more deliverables to the business. You should make sure that these
discussions lead to action that reduces churn (because the data person can’t do that
job alone)! 

I’m not a presentation coach, so I’m not going to attempt to go into detail about how
you should communicate with businesspeople. Remember my advice to label the data
you present clearly and make sure that the data is legible. As for the level of effort
involved, I estimate that it would take a typical data person about a day to take the
results described in table 11.6 and assemble them into an acceptable presentation
(document or slide deck). It will probably take about an hour to review them with a

Table 11.6 Checklist for the foundations of communicating churn data to the business

Step(s) Step description Business involvement

1 Churn rates Discuss churn rate calculation method.

Present monthly and annual churn rates.

If the business has an existing churn calculation, compare the results, 
and come to an agreement on the best method to measure churn for 
your product or service.

2 Event-data QA Present daily event count plots for major events.

Present a summary of events per account per month.

Come to an agreement with businesspeople that these events prop-
erly reflect the business and are not excessively affected by bad data.
Decide on any steps to improve data collection.

3, 4 Metrics and QA Present choices for metric time window and reasoning.

Present metric time series QA.

Present metric summary statistics.

Come to an agreement that these metrics are an acceptable summary 
of customer behaviors.

Agree on simple criteria for customer health. (Example: healthy cus-
tomers are those who are above average on the most common cus-
tomer metrics.)

Decide on any steps to improve data collection or metric formulas.

5 Current customer 
metrics dataset

Deliver the customer list with metrics.

Review samples of high-, typical-, and low-use accounts.
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group of businesspeople, and you should plan on having at least one follow-up discus-
sion to answer questions and agree on the next steps. 

TAKEAWAY The most important outcome from the interaction with the busi-
ness is to get the businesspeople using the metrics to evaluate customer
health with simple criteria. 

If you have read all the techniques in this book, you may think that it’s not very data-
driven to decide on customer health criteria without having done cohort analysis. I
agree that it is better to understand customer health with metric cohorts. But the
point I am trying to make (again) is that it’s better to do something than nothing. If
you can achieve only the foundation results described in table 11.6, you have accom-
plished a lot. If you followed the reasoning in the cohort and correlation analysis por-
tion of the book, you should expect that every major customer behavior will be
associated with increased engagement and churn reduction. (All the major behaviors
are likely to be highly correlated.) So the most important thing is to get the business-
people thinking about the metrics and how to improve customer engagement. That’s
why having the metrics can be so powerful. 

 That said, I encourage you to take your churn fighting to the next level if possible.
Table 11.7 summarizes the business involvement required to take on more advanced
data-driven churn fighting. Preparing for these meetings will probably be more time
consuming than preparing for the meetings about the basic level of data-driven churn
fighting. You have more results to show, and you need to prepare to explain some sta-
tistical concepts, such as correlation, scores, and averaging. If you don’t have a lot of
experience in communicating technical results to nontechnical audiences, I recom-
mend that you practice. 

Table 11.7 Checklist for advanced communication of churn data to the business

Step Step description Business involvement

6 Dataset creation Explain the lead time concept and how you chose the lead time for your 
company data.

Explain the dataset concept.

Show how many observations and how much churn were in your dataset.

7 Optional: dataset 
summary statis-
tics and QA

Skip presenting these statistics if the summary statistics in step 4 (Met-
ric QA) were acceptable.

8 Metric cohort 
analyses

Present metric cohort churn charts for the major event-based metrics and 
subscription-based metrics (if any).

Agree on healthy target levels for metrics.

Discuss which behaviors cause engagement and retention, and how well 
they are reflected by the available data.

Discuss the churn-reducing strategies suggested by the results. (Exam-
ples: product features to promote or produce more of and customer 
segments to target for training.)
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If you can achieve the results in table 11.7, you will be getting 90% of the benefit of
data-driven churn fighting (by my estimate). As it was at the foundation level, the most
important thing is getting the businesspeople to look at well-designed customer met-
rics, understand them, and use them to make decisions.

 As for the forecasting techniques in part 3 of the book, these techniques require still
more effort to explain to your business colleagues. Despite my best efforts to keep this
material accessible by providing background information, explaining concepts such as
regression forecasts and gradient boosting to your business colleagues is a talent that
you’ll need to develop (if you haven’t done so already). If you’re a data scientist or
machine learning engineer for a company that already uses advanced analytics in other
areas, you should present the churn analysis methods with your existing predictive ana-
lytics as a reference and explain how the situation changes for churn. 

11.2 Running the book listings on your own data
Running the book listings on your own data (loaded into the book schema) is proba-
bly the fastest way to get to your own results. This method will work if the data from
your product is in a format similar to the schema described in this book and if the
number of customers you have is small enough for an available PostgresSQL database.

11.2.1 Loading your data into this book’s data schema

Two main types of underlying data are used in this book:

 Customer subscriptions (chapter 2)
 Product-use events (chapter 3)

9 Churn behavioral 
grouping and 
analysis

Present examples of correlated metric scatterplots, and explain 
correlation.

Present a metric correlation heatmap for basic metrics.

Present the groups of metrics you found with the clustering algorithm.

Present metric cohorts for grouped average metric cohorts.

11 Advanced behav-
ioral metrics cre-
ation and analysis

Discuss choices made when designing advanced metrics.

Present metric cohort analyses for advanced metrics.

Update the behavioral grouping results for metric groups, if necessary. 
(Example: present the new correlation matrix and any changes to metric 
groups.)

Discuss the churn-reducing strategies suggested by the results. (Exam-
ples: segments to target for engagement or training based on efficiency 
or success metrics.)

Discuss alternative pricing strategies suggested by unit cost metric analysis.

12 Current customer 
advanced metrics 
dataset

Deliver the customer list with metrics.

Review samples of high-. typical-, and low-use accounts.

Table 11.7 Checklist for advanced communication of churn data to the business (continued)

Step Step description Business involvement
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You should consult tables 2.1 and 3.1, which show the table schemas for subscriptions
and events to check that your data has the required fields. Remember that the fields
may not have the same names in your own system.

 The first step is creating a new PostgreSQL schema with a name of your choice.
The GitHub repository contains a script that will do this job for you: fight-churn/data-
generation/py/churndb.py. (If you created the simulated dataset and ran the listings
in the book, you must have run this script way back at the beginning.) The most up-to-
date details on how to run that script are in the README file of the book’s GitHub
repository: www.github.com/carl24k/fight-churn.

 After you have created the schema, you need to get your data into it. There are
many ways to import data into a PostgreSQL database. I favor GUI tools and have had
successful experiences with the free tool PGAdmin (www.pgadmin.org). More details
are available in the README file of the book’s GitHub repository.

WARNING All database import tools are finicky and will fail if the data has
unexpected characteristics. Things to look out for are date and time formats,
separators, and null specifiers. 

Don’t be surprised if it takes several frustrating attempts to load the data for each data
source. The good news is that after you figure out the idiosyncrasies of your own data,
loading should be easier. But you might have to repeat this process if you plan to redo
your analysis in the future. In that case, you probably should go with a scripted method
of loading your data.

TIP Write a script to automate any transforms you have to make to your data
to load it into PostgreSQL. Avoid manual approaches such as search/replace,
because you may have to load the data into the database more than once.

11.2.2 Running the listings on your own data

After you have your data loaded, you need to run the listings with parameters that you
specify. There are two straightforward approaches:

 Use the Python wrapper program that came with the book in the GitHub
repository.

 Write your own wrapper program that imports the book listings as modules.

If you use the book’s wrapper program, you need to create a configuration that speci-
fies the parameters to provide each listing when you run it from the wrapper program.
Such a file was used to configure the code to run for the social network simulation:
fight-churn/listings/conf/socialnet_listings.json. If you are not familiar with JSON
(JavaScript Object Notation), all you need to know is that it is a simple format for stor-
ing key-value pairs. JSON is not meant for storing parameters but is often used for this
purpose. It has the advantage of a direct and simple mapping to a Python dictionary. 

 If you look in the file socialnet7_listings.json, you will find a key for each chapter:
chap1, chap2, and so on. Each chapter key maps to a nested object of parameters for

http://www.github.com/carl24k/fight-churn
http://www.pgadmin.org
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that chapter. Within each chapter object, each listing is specified with a string object,
such as “list1,” “list2,” and so on. Each such key maps to an object that contains fields
for the listing name and the various parameters. The object for each listing also con-
tains the additional version parameters that you have been running throughout the
book. To run the Python wrapper program on your own data, you need to make a
JSON configuration file for your own schema, with the schema name in the filename
(as in the social network simulation); then fill it with the parameter definitions suit-
able for your data. This approach is very useful if you have multiple schemas on which
you want to run the listings. (While writing this book, I ran the listings on multiple ver-
sions of the simulation, as well as the company case studies.)

 Because you probably have only one schema to run the data on, another good
approach is to write your own wrapper program in Python to call all the listing func-
tions you want to use. Because every Python listing in the book consists of a function
in its own file, it is straightforward to start a new Python code file and import the book
listing functions. (There are numerous examples of the book listings importing other
listings in chapters 8, 9, and 10.) Because you are writing your own program, you can
store all your own parameters in your program as variables or have that program fetch
them from any other database or key-value store that you are already using. 

TAKEAWAY Writing a custom Python wrapper program is probably the best
choice for most companies trying to use the book listings with a minimal
number of modifications. 

The advantage of writing your own wrapper program is that you can combine any
other custom processing you need for your data as well as your own controls for differ-
ent steps in the process. But with this approach, you will also have to write your own
methods to bind variables into the SQL listings and send them to your database
schema or refactor the examples in the wrapper program that I wrote. (I have no
doubt that many of my readers could do a better job than I did!)

 One other thing you have to do to, whether you run the book listings directly or write
a wrapper program, is write your own version of the data-extraction SQL (listing 4.5).
That example is hardcoded to the metrics in the book. For an example script that
automatically generates SQL for all the metrics in a schema, see the script that I used
for my customer case studies: fight-churn/dataset-export/py/observe_churn.py.

11.3 Porting this book’s listings to different environments
There are a lot of good reasons why you may not want to use the code provided with the
book but want to reuse the techniques. In that case, you are looking at porting the book
listings to work in different environments. This subject is big, and I must admit to not
being an expert. The best I can do is try to give you some guidelines. That said, this kind
of work is the bread and butter of professional software developers, and many other
resources are available to you. You could search for books or online resources about port-
ing code to the system of your choice or hire a contractor or consultant, for example.



462 CHAPTER 11 Leading the fight against churn
11.3.1 Porting the SQL listings

If you have a lot of data in a database other than PostgresSQL, you should consider
doing whatever is necessary to port the book listings to your database. Because the
book’s SQL code makes heavy use of common table expressions (CTEs), this process
will be a lot easier if the other database supports CTEs as well. 

 You may not want to use PostgresSQL because of its performance limitations. If
you have not already chosen your database, I recommend checking out Presto, an
open source distributed SQL engine for big data (https://prestodb.io). Presto sup-
ports CTEs, and porting the SQL code from this book to run on it would be a low-
effort task.

 If you need to port the book’s SQL code to run on a database that does not sup-
port CTEs, changes in the code will be necessary. If possible, you could replace the
CTEs with temporary tables, which would allow you to keep the layout and flow of
the code. If your system does not allow temporary tables, a port of the code may be
accomplished with subqueries. Again, this subject is a big one; I recommend search-
ing for resources specific to the system you are working on.

11.3.2 Porting the Python listings

Another option you may want to consider is refactoring the Python listings to work as
part of your own software framework. The code listings in this book were written with
the primary goal of teaching the subject clearly in a series of small increments. For
that reason, this code is admittedly suboptimal in almost every other respect, and I
certainly won’t take offense if you don’t choose to use it in its current form.

 If you want to port the code, it will certainly be easiest to keep it in Python. That
process would be like writing your own wrapper program plus doing some refactoring
(moving the code around without changing the core logic). If you want to port the
code to a different language, you have a bigger task. Whether you are refactoring or
porting the code to another language, this type of thing can be tricky.

WARNING Porting analytic code involves risk; seemingly minor differences in
calculations or analytic functions can make a significant difference in the
results. The greatest risk is from results that look correct superficially but con-
tain a calculation error that alters the meaning of a metric or analytic result. 

I recommend that you test each function by rerunning the analysis on the social net-
work simulation data as you port the code or as you refactor each function in Python.
Make sure that you can reproduce the results with your own code or that you have a
good understanding of the reason for any differences.

TAKEAWAY Use your results of the social network simulation as a regression
test for porting the code. 

https://prestodb.io
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11.4 Learning more and keeping in touch
Before I leave you to your own fight against churn, I will give you some pointers to
more information. 

11.4.1 Author’s blog site and social media

I maintain my own blog, where I post information and updates about churn fighting:

https://fightchurnwithdata.com

By now, you should know that all the code from the book is available in my GitHub
repository:

https://github.com/carl24k/fight-churn

I stream demonstrations of churn analysis on Twitch:

https://www.twitch.tv/carl24k

Also, please keep in touch with me on social media:

 Twitter: @carl24k
 LinkedIn: in/carlgold

I would love to hear about your own experiences and results fighting churn with data!

11.4.2 Sources for churn benchmark information

I did not provide any information in this book about real company churn rates. Such
information can be useful for benchmarking your own churn rate against your peers.
At the time of this writing, I know of a few online resources that provide average
churn rates based on data:

 Zuora’s Subscription Economy Index—https://www.zuora.com/resource/subscription-
economy-index (Disclaimer: I work for Zuora and am the principal author of the
index.)

 Profitwell average churn rate benchmarks—https://www.profitwell.com/blog/
average-revenue-churn-rate-benchmarks

 Recurly churn rate benchmarks—https://info.recurly.com/research/churn-rate-
benchmarks

All these reports are free, but don’t be surprised if you have to provide your email
address to download the documents. (If you provide a corporate email address, you
may receive follow-up contacts from salespeople, but they are smart enough not to
bother people who register to download the report with a personal email address.)

WARNING Typical benchmark churn rates vary widely by the type of product
or service, so make sure that your company’s product is similar to the ones in
a benchmark before comparing your churn rate with the benchmark. 

https://fightchurnwithdata.com
https://github.com/carl24k/fight-churn
https://www.twitch.tv/carl24k
https://www.zuora.com/resource/subscription-economy-index
https://www.zuora.com/resource/subscription-economy-index
https://www.profitwell.com/blog/average-revenue-churn-rate-benchmarks
https://www.profitwell.com/blog/average-revenue-churn-rate-benchmarks
https://www.profitwell.com/blog/average-revenue-churn-rate-benchmarks
https://info.recurly.com/research/churn-rate-benchmarks
https://info.recurly.com/research/churn-rate-benchmarks
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Benchmarks can be useful, but they are not perfect. The reports cover somewhat dif-
ferent types of companies, so don’t be surprised if you find differences in the bench-
mark churn rates between reports. Read the reports carefully, learn about the kinds of
companies and products covered in each report, and pick the benchmarks that most
closely match your own company and product.

11.4.3 Other sources of information about churn

If you do an online search for churn, you are going to find a lot of links, because now-
adays, many people know that churn is a big problem. But the truth is, most of the
information at these links is basic compared with the information in this book, and
many of the articles you will find are thinly disguised advertisements for products that
you have to pay for. That said, at the time of this writing, there is one free resource I
recommend that may not come up in your search (or may be buried under the ads):
ChurnFM (https://www.churn.fm), a podcast devoted to churn.

 Please contact me on social media if you know of any other free resources for fight-
ing churn.

11.4.4 Products that help with churn

Not surprisingly, some products are specifically designed to help with different aspects
of fighting churn. The focus of the book is on understanding churn by using open
source tools and your own data, but you should know that the following product cate-
gories exist:

 Customer support platforms—Software that helps organize onboarding and reten-
tion tactics

 Credit card retry automation—Software that retries failed credit cards to minimize
involuntary churn

 Exit survey and offer automation—Software that surveys users about their reasons
for canceling and offers them one last chance to keep their subscriptions

You can easily find more information about all these product categories by searching
by category name.

Summary
 The benefit of the techniques in the book are front-loaded, so you don’t have to

use all of them to get most of the benefit. 
 A typical company gets the most benefit of fighting churn with data from using

a good set of data-driven customer metrics.
 Sharing the results of churn analysis with business colleagues is an important

part of the churn-fighting process—if the businesspeople don’t take action,
there won’t be any reduction in churn.

https://www.churn.fm
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 The fastest way to run the listings in the book on your own data is to load your
own data into a PostgresSQL schema like the one used in the book and create a
configuration to run the book’s wrapper program.

 For a company wishing to reuse the code listings in a production process, the
best practice is usually to write your own wrapper program that imports and
runs the listings.

 If you want to port the book’s code to run in your own production environment,
use the social network simulation described in the book as a regression test.

 Most of the information online about churn is advertising for products, but
there are a few free resources, including the author’s own website, churn rate
benchmarks, and podcasts.
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