

Full-Stack React,
TypeScript, and
Node

Build cloud-ready web applications using React 17
with Hooks and GraphQL

David Choi

BIRMINGHAM—MUMBAI

Full-Stack React, TypeScript, and Node
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Ashitosh Gupta
Senior Editor: Hayden Edwards
Content Development Editor: Divya Vijayan
Technical Editor: Deepesh Patel and Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Jyoti Chauhan

First published: December 2020

Production reference: 1181220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83921-993-1

www.packt.com

http://www.packt.com

To my beautiful wife, Eun. Thank you for your faith and love.
I made it because of you.

– David Choi

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and, as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author
David Choi is a developer with over 10 years' experience in building enterprise-class
applications using a variety of frameworks and languages. Most of his professional
development experience has involved working in finance for companies such as
JPMorgan, CSFB, and Franklin Templeton. He currently works at his own start-up,
DzHaven, building an application to help devs help other devs.

You can find David on YouTube at the David Choi channel, or on Twitter at jsoneaday.

I would like to thank the good people at Packt, and Mike Rourke, without
whose help this book would not have been possible.

About the reviewer
Mike Rourke is a software engineer based in Chicago who works primarily with web
technologies and the Node.js ecosystem. He has been writing code for over 10 years. Mike
started out writing VB and switched to JavaScript about 2 years ago. He loves all aspects of
programming and spends most of his free time learning new technologies and improving
his skills.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents

Preface

Section 1:
Understanding TypeScript and How It
Can Improve Your JavaScript

1
Understanding TypeScript

Technical requirements 20
What is TypeScript? 20
Why is TypeScript necessary? 21

Dynamic versus static typing 23
Object-oriented programming 29

Summary 33

2
Exploring TypeScript

Technical requirements 36
What are types? 36
How do types work? 36

Exploring TypeScript types 38
The any type 38
The unknown type 39
Intersection and union types 42
Literal types 43
Type aliases 44
Function return types 45

Functions as types 46
The never type 47

Understanding classes and
interfaces 48
Classes 48
Interfaces 56

Understanding inheritance 58
Abstract classes 62
Interface 65

Learning generics 67

ii Table of Contents

Learning the latest features
and configuring the compiler 70
Optional chaining 70

Nullish coalescing 72
TypeScript configuration 72

Summary 73

3
Building Better Apps with ES6+ Features

Technical requirements 76
Learning about ES6 variable
types and JavaScript scoping 76
Learning about arrow functions 79
Changing the this context 81
Learning about spread,
destructuring, and rest 84
Spread, Object.assign, and Array.concat 84
Rest 88

Learning about new array
functions 89

find 89
filter 90
map 91
reduce 92
some and every 93

Learning about new collection
types 94
Set 94
Map 95

Learning about async await 96
Summary 102

Section 2:
Learning Single-Page Application
Development Using React

4
Learning Single-Page Application Concepts and How React
Enables Them

Technical requirements 106
Understanding how websites
were built in
the past 106
Understanding SPA benefits
and attributes 107

Understanding how React helps
build SPAs 109
Attributes of a React application 110

Summary 122

Table of Contents iii

5
React Development with Hooks

Technical requirements 123
Understanding the limitations
and issues with the old class-
style components 124
State 125
Lifecycle methods 126

Learning React Hooks and
understanding how it is an

improvement over class-style
components 143
Comparing and contrasting the
class way versus the Hooks way
 158
Code reuse 158
Simplicity 159

Summary 159

6
Setting Up Our Project Using create-react-app and Testing
with Jest

Technical requirements 162
Learning React development
methods and about the build
system 162
Project tools 162
Transpilation 170
Code repositories 172

Understanding client-side
testing for React 175
Mocking 190

Mocking with jest.fn 191
Component mocking 198

Learning common tools
and practices for React
development 207
VS Code 207
Prettier 209
Chrome Debugger 209
Alternative IDEs 213

Summary 214

7
Learning Redux and React Router

Technical requirements 215
Learning about Redux state 216
Reducers and actions 217
React Context 232

Learning about React Router 241
Summary 253

iv Table of Contents

Section 3:
Understanding Web Service Development
Using Express and GraphQL

8
Learning Server-Side Development with Node.js and Express

Technical requirements 258
Understanding how Node
works 258
Event loop 259

Learning Node's capabilities 261
Installing Node 261
Creating a simple Node server 265
Request and Response 268

Routing 271
Debugging 274

Understanding how Express
improves Node development 281
Learning Express's capabilities 283
Creating a web API with Express
 290
Summary 293

9
What is GraphQL?

Technical requirements 295
Understanding GraphQL 296
Understanding GraphQL
schemas 298
Understanding Typedefs and

Resolvers 300
Understanding queries,
mutations, and subscriptions 306
Summary 314

10
Setting Up an Express Project with TypeScript and GraphQL
Dependencies

Technical requirements 316
Creating a TypeScript-based
Express project 316
Adding GraphQL and
dependencies to

a project 321
Reviewing ancillary packages 330
Summary 331

Table of Contents v

11
What We Will Learn – Online Forum Application

Analyzing what we will build –
The forum application 334
Analyzing forum authentication
 335

Analyzing thread management 336
Analyzing the thread points
system 337
Summary 337

12
Building the React Client for Our Online Forum Application

Technical requirements 339
Creating the initial version of
our React application 340
CSS Grid 341
Error Boundaries 350
Data Service layer 352

Navigation menu 353
Authentication components 359
Routing and screens 371
Home screen 372
Thread posts screen 386

Summary 406

13
Set Up a Session State Using Express and Redis

Technical requirements 408
Understanding session state 408
Understanding Redis 409

Building session state with
Express and Redis 414
Summary 421

14
Setting Up Postgres and a Repository Layer with TypeORM

Technical requirements 424
Setting up our Postgres
database 424
Understanding object relational
mappers by using TypeORM 430

Building our repository layer
using Postgres and TypeORM 431
Summary 472

vi Table of Contents

15
Adding GraphQL Schema Part I

Technical requirements 473
Creating GraphQL server-side
typedefs and resolvers 474
ThreadPoint System 485

Integrating authentication with
GraphQL resolvers 490

Creating React client-side
Hooks for querying Apollo
GraphQL 493
The Main screen 498
Authentication-related features 512
The UserProfile screen 520

Summary 529

16
Adding a GraphQL Schema – Part II

Thread route 531
Points system 544

Summary 595

17
Deploying an Application to AWS

Technical requirements 598
Setting up Ubuntu Linux on
AWS Cloud 598
Setting up Redis, Postgres, and
Node on Ubuntu 609
Setting up Redis 609
Setting up Postgres 611

Setting up Node 613

Setting up and deploying our
app on NGINX 614
Setting up super-forum-server 614
Setting up super-forum-client 620
Troubleshooting 633

Summary 634
Other Books You May Enjoy
Index

Preface
According to GitHub, the largest repository for open source software, JavaScript is still the
most popular programming language in the world. More projects are written in JavaScript
than any other language. Even projects normally not associated with the web, such as
machine learning and crypto currencies, often use JavaScript.

The JavaScript programming language is enormously powerful and capable, but in
addition to the language, there are frameworks, including React and Node, that add to the
language's capabilities, making it even better. On top of this, TypeScript has now become
the standard for doing large JavaScript projects. It provides language features that make
coding with JavaScript more productive and better suited for large applications.

Modern web development has advanced tremendously over the years. In the past, client
code generally meant static HTML and CSS, with perhaps a tiny bit of JavaScript. And
the backend was usually written in a completely different language, such as PHP or
CGI scripts. However, it is now common to write the entire application, from client
to server, using only JavaScript and its related frameworks. This ability to write our
applications using only a single language provides enormous benefits during development.
Furthermore, the robust and mature frameworks that are available make full stack
programming in JavaScript competitive with any other platform.

In this book, we will learn to use the power of JavaScript to build complete full stack
web applications. We will augment this power with TypeScript, another powerful top-ten
language. Then, using frameworks such as React, Redux, Node, Express, and GraphQL,
we will build a realistic, fully functional best-practices web application that will give you
all the knowledge you need in order to build modern full stack web applications. And
once our application is complete, we'll deploy it to AWS cloud services, the world's most
popular and feature-rich cloud services provider.

Who this book is for
The book is for web developers who want to go beyond front-end web development and
enter the world of full-stack web development by learning about modern web technologies
and how they come together. A good understanding of JavaScript programming is
required before getting started with this web development book.

viii Preface

What this book covers
Chapter 1, Understanding TypeScript, explains what TypeScript is and what makes it ideal
for use in large application development.

Chapter 2, Exploring TypeScript, dives deep into TypeScript. We'll explore its features,
including static typing, and why these features are an improvement over JavaScript. We'll
also look at application design with object-oriented programming and how TypeScript
features enable this important programming paradigm.

Chapter 3, Building Better Apps with ES6+ Features, reviews the important features of
JavaScript that every developer needs to know. We'll focus on the latest features added in
ES6 and beyond.

Chapter 4, Learning Single-Page Application Concepts and How React Enables Them,
explains how websites are built and focuses on single-page application-style apps. We'll
then introduce React and how React is used to create a single-page application.

Chapter 5, React Development with Hooks, dives deep into React. We'll learn about the
limitations of the older class style of writing React applications, as well as learn about
Hooks and functional components and how they are an improvement on the older class
style.

Chapter 6, Setting Up Our Project Using create-react-app and Testing with Jest, describes
the modern methods used for developing React applications. This includes the standard
for creating React projects, create-react-app, and client-side testing with Jest and
testing-library.

Chapter 7, Learning Redux and React Router, covers Redux and React Router to help us
build our React application. These two frameworks have been the go-to frameworks for
managing state and routing almost since React's inception.

Chapter 8, Learning Server-Side Development with Node.js and Express, covers Node and
Express. Node is the underlying runtime that makes JavaScript server apps possible.
Express is the framework around Node that makes it easy to build powerful server-side
apps using Node.

Chapter 9, What is GraphQL?, reviews what GraphQL is and how it uses data schemas to
help build a web API.

Chapter 10, Setting Up an Express Project with TypeScript and GraphQL Dependencies,
explains how to create a production quality, server-side project using TypeScript, Express,
GraphQL, and Jest for testing.

Preface ix

Chapter 11, What We Will Learn – Online Forum Application, discusses the application
we will be building. We will review its features and how building such an app will help us
learn about web development in more detail.

Chapter 12, Building the React Client for Our Online Forum Application, explains how
to start coding the client side of our application with React. We will use functional
components, Hooks, and Redux to begin building our screens.

Chapter 13, Setting Up Session State Using Express and Redis, explores what session state
is and how to create a session for our server using Redis, the world's most powerful
in-memory datastore. We also begin coding our server using Express.

Chapter 14, Setting Up Postgres and Repository Layer with TypeORM, explains how to
create a database for our application in Postgres and how to access it using a powerful
design technique called Repository Layer.

Chapter 15, Adding a GraphQL Schema – Part I, begins the integration of GraphQL into
our application. We will build our schema and add our queries and mutations. We will
also begin adding our GraphQL Hooks to our React frontend.

Chapter 16, Adding a GraphQL Schema – Part II, completes our application by finishing
the work of integrating GraphQL into both our client and server.

Chapter 17, Deploying an Application to AWS, takes our finished application and deploys
it to AWS cloud services. We will use Ubuntu Linux and NGINX to host our server and
client code.

To get the most out of this book
You should have a year or more of programming experience in at least one modern
language, along with some basic knowledge of building applications, although this does
not have to be for the web.

This book will provide step-by-step instructions on using or installing these dependencies.
However, this list does give some idea of what will be needed. Application source code
will be for the final completed version of the application. The book will include any
intermediate code.

x Preface

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Ideally, you should always endeavor to type the code yourself as it will help you remember
both the code and give you experience of what to do when things go wrong.

Download the example code files
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Full-Stack-React-
TypeScript-and-Node. In case there's an update to the code, it will be updated
on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Create a new file in the src folder called Home.tsx and add the
following code."

A block of code is set as follows:

let a = 5;

let b = '6';

console.log(a + b);

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)

exten => s,2,Voicemail(u100)

exten => s,102,Voicemail(b100)

exten => i,1,Voicemail(s0)

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/

Preface xi

Any command-line input or output is written as follows:

 npm install typescript

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in, and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com.

Section 1:
Understanding TypeScript

and How It Can Improve
Your JavaScript

This section gives you an overview of the benefits of TypeScript and its most important
language features. We will also cover what the most important features of ES6 are, and
how we can improve code quality and readability.

This section comprises of the following chapters:

• Chapter 1, Understanding TypeScript

• Chapter 2, Exploring TypeScript

• Chapter 3, Building Better Apps with ES6+ Features

1
Understanding

TypeScript
JavaScript is an enormously popular and powerful language. According to GitHub, it
is the most popular language in the world (yes, used even more than Python), and the
new features in ES6+ continue to add useful capabilities. However, for large application
development, its feature set is considered to be incomplete. This is why TypeScript was
created.

In this chapter, we'll learn about the TypeScript language, why it was created, and what
value it provides to JavaScript developers. We'll learn about the design philosophy
Microsoft used in creating TypeScript and why these design decisions added important
support in the language for large application development.

We'll also see how TypeScript enhances and improves upon JavaScript. We'll compare
and contrast the JavaScript way of writing code with TypeScript. TypeScript has a wealth
of cutting-edge features to benefit developers. Chief among them are static typing and
Object-Oriented Programming (OOP) capabilities. These features can make for code
that is higher quality and easier to maintain.

By the end of this chapter, you will understand some of the limitations of JavaScript that
make it difficult to use in large projects. You will also understand how TypeScript fills in
some of those gaps and makes writing large, complex applications easier and less prone
to error.

16 Understanding TypeScript

In this chapter, we're going to cover the following main topics:

• What is TypeScript?

• Why is TypeScript necessary?

Technical requirements
In order to take full advantage of this chapter, you should have a basic understanding of
JavaScript version ES5 or higher and some experience with building web applications with
a JavaScript framework. You'll also need to install Node and a JavaScript code editor, such
as Visual Studio Code (VSCode).

You can find the GitHub repository for this chapter at https://github.com/
PacktPublishing/Full-Stack-React-TypeScript-and-Node. Use the code
in the Chap1 folder.

What is TypeScript?
TypeScript is actually two distinct but related technologies – a language and a compiler:

• The language is a feature-rich, statically typed programming language that adds true
object-oriented capabilities to JavaScript.

• The compiler converts TypeScript code into native JavaScript, but also provides the
programmer with assistance in writing code with fewer errors.

TypeScript enables the developer to design software that's of a higher quality. The
combination of the language and the compiler enhances the developer's capabilities. By
using TypeScript, a developer can write code that is easier to understand and refactor
and contains fewer bugs. Additionally, it adds discipline to the development workflow by
forcing errors to be fixed while still in development.

TypeScript is a development-time technology. There is no runtime component and no
TypeScript code ever runs on any machine. Instead, the TypeScript compiler converts
TypeScript into JavaScript and that code is then deployed and run on browsers or servers.
It's possible that Microsoft considered developing a runtime for TypeScript. However,
unlike the operating system market, Microsoft does not control the ECMAScript
standards body (the group that decides what will be in each version of JavaScript). So,
getting buy-in from that group would have been difficult and time-consuming. Instead,
Microsoft decided to create a tool that enhances a JavaScript developer's productivity and
code quality.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

Why is TypeScript necessary? 17

So then, if TypeScript has no runtime, how do developers get running code? TypeScript
uses a process called transpilation. Transpilation is a method where code from one
language is "compiled" or converted into another language. What this means is that all
TypeScript code ultimately is converted into JavaScript code before it is finally deployed
and run.

In this section, we've learned what TypeScript is and how it works. In the next section,
we'll learn about why these features are necessary for building large, complex applications.

Why is TypeScript necessary?
The JavaScript programming language was created by Brendan Eich and was added to the
Netscape browser in 1995. Since that time, JavaScript has enjoyed enormous success and is
now used to build server and desktop apps as well. However, this popularity and ubiquity
have turned out to be a problem as well as a benefit. As larger and larger apps have been
created, developers have started to notice the limitations of the language.

Large application development has greater needs than the browser development JavaScript
was first created for. At a high level, almost all large application development languages,
such as Java, C++, C#, and so on, provide static typing and OOP capabilities. In this
section, we'll go over the advantages of static typing over JavaScript's dynamic typing.
We'll also learn about OOP and why JavaScript's method of doing OOP is too limited to
use for large apps.

But first, we'll need to install a few packages and programs to allow our examples. To do
this, follow these instructions:

1. Let's install Node first. You can download Node from here: https://nodejs.
org/. Node gives us npm, which is a JavaScript dependency manager that will
allow us to install TypeScript. We'll dive deep into Node in Chapter 8, Learning
Server-Side Development with Node.js and Express.

2. Install VSCode. It is a free code editor and its high-quality and rich features have
quickly made it the standard development application for writing JavaScript code
on any platform. You can use any code editor you like, but I will use VSCode
extensively in this book.

3. Create a folder in your personal directory called HandsOnTypeScript. We'll save
all our project code into this folder.

https://nodejs.org/
https://nodejs.org/

18 Understanding TypeScript

Important Note
If you don't want to type the code yourself, you can download the full source
code as mentioned in the Technical requirements section.

4. Inside HandsOnTypeScript, create another folder called Chap1.

5. Open VSCode and go to File | Open, and then open the Chap1 folder you just
created. Then, select View | Terminal and enable the terminal window within your
VSCode window.

6. Type the following command into the terminal. This command will initialize your
project so that it can accept npm package dependencies. You'll need this because
TypeScript is downloaded as an npm package:

npm init

You should see a screen like this:

Figure 1.1 – npm init screen
You can accept the defaults for all the prompts as we will only install TypeScript
for now.

7. Install TypeScript with the following command:

npm install typescript

Why is TypeScript necessary? 19

After all the items have been installed, your VSCode screen should look like this:

Figure 1.2 – VSCode after setup is complete

We've finished installing and setting up our environment. Now, we can take a look at some
examples that will help us better understand the benefits of TypeScript.

Dynamic versus static typing
Every programming language has and makes use of types. A type is simply a set of rules
that describe an object and can be reused. JavaScript is a dynamically typed language. In
JavaScript, new variables do not need to declare their type and even after they are set, they
can be reset to a different type. This feature adds awesome flexibility to the language, but it
is also the source of many bugs.

20 Understanding TypeScript

TypeScript uses a better alternative called static typing. Static typing forces the developer
to indicate the type of a variable up front, when they create it. This removes ambiguity and
eliminates many conversion errors between types. In the following steps, we'll take a look
at some examples of the pitfalls of dynamic typing and how TypeScript's static typing can
eliminate them:

1. On the root of the Chap1 folder, let's create a file called string-vs-number.ts.
The .ts file extension is a TypeScript specific extension and allows the TypeScript
compiler to recognize the file and transpile it into JavaScript. Next, enter the
following code into the file and save it:

let a = 5;

let b = '6';

console.log(a + b);

2. Now, in the terminal, type the following:

tsc string-vs-number.ts

tsc is the command to execute the TypeScript compiler, and the filename is telling
the compiler to check and transpile the file into JavaScript.

3. Once you run the tsc command, you should see a new file, string-vs-
number.js, in the same folder. Let's run this file:

node string-vs-number.js

The node command acts as a runtime environment for the JavaScript file to run.
The reason why this works is that Node uses Google's Chrome browser engine, V8,
to run JavaScript code. So, once you have run this script, you should see this:

56

Obviously, if we add two numbers together normally, we want a sum to happen,
not a string concatenation. However, since the JavaScript runtime has no way of
knowing this, it guesses the desired intent and converts the a number variable into
a string and appends it to variable b. This situation may seem unlikely in real-world
code but if left unchecked it could occur, because in web development, most inputs
coming in from HTML come in as strings—even if the user types a number.

Why is TypeScript necessary? 21

4. Now, let's introduce TypeScript's static typing into this code and see what happens.
First, let's delete the .js file, as the TypeScript compiler may consider there to be
two copies of the a and b variables. Take a look at this code:

let a: number = 5;

let b: number = '6';

console.log(a + b);

5. If you run the tsc compiler on this code, you will get the error Type "'6'" is
not assignable to the type 'number'. This is exactly what we want.
The compiler tells us that there is an error in our code and prevents the compilation
from successfully compiling. Since we indicated that both variables are supposed to
be numbers, the compiler checks for that and complains when it finds it not to be
true. So, if we fix this code and set b to be a number, let's see what happens:

let a: number = 5;

let b: number = 6;

console.log(a + b);

6. Now, if you run the compiler, it will complete successfully, and running the
JavaScript will result in the value 11:

Figure 1.3 – Valid numbers addition

Great, when we set b incorrectly, TypeScript caught our error and prevented it from being
used at runtime.

Let's look at another more complex example, as it's like what you might see in larger
app code:

1. Let's create a new .ts file called test-age.ts and add the following code to it:

function canDrive(usr) {

 console.log("user is", usr.name);

 if(usr.age >= 16) {

22 Understanding TypeScript

 console.log("allow to drive");

 } else {

 console.log("do not allow to drive");

 }

}

const tom = {

 name: "tom"

}

canDrive (tom);

As you can see, the code has a function that checks the age of a user and determines,
based on that age, whether they are allowed to drive. After the function definition,
we see that a user is created, but with no age property. Let's pretend that the
developer wanted to fill that in later based on user input. Now, below that user
creation, the canDrive function is called and it claims the user is not allowed
to drive. If it turned out that user tom was over 16 years old and this function
triggered another action to be taken based on the user's age, obviously this could
lead to a whole host of issues.

There are ways in JavaScript to deal with this problem, or at least partially. We could
use a for loop to iterate through all of the property key names of the user object
and check for an age name. Then, we could throw an exception or have some
other error handler to deal with this issue. However, if we had to do this on every
function, it would become inefficient and onerous very quickly. Additionally, we
would be doing these checks while the code is running. Obviously, for these errors,
we would prefer catching them before they make it out to users. TypeScript provides
a simple solution to this issue and catches the error before the code even makes it
into production. Take a look at the following updated code:

interface User {

 name: string;

 age: number;

}

function canDrive(usr: User) {

 console.log("user is", usr.name);

Why is TypeScript necessary? 23

 if(usr.age >= 16) {

 console.log("allow to drive");

 } else {

 console.log("do not allow to drive");

 }

}

const tom = {

 name: "tom"

}

canDrive (tom);

Let's go through this updated code. At the top, we see something called an
interface and it is given a name of User. An interface is one possible kind of type
in TypeScript. I'll detail interfaces and other types in later chapters, but for now,
let's just take a look at this example. The User interface has the two fields that we
need: name and age. Now, below that, we see that our canDrive function's usr
parameter has a colon and the User type on it. This is called a type annotation
and it means that we are telling the compiler only to allow parameters of the User
type to be given to canDrive. Therefore, when I try and compile this code with
TypeScript, the compiler complains that when canDrive is called, age is missing
from the passed-in parameter, because our tom object does not have that property:

Figure 1.4 – canDrive error

24 Understanding TypeScript

2. So, once again, the compiler has caught our error. Let's fix this issue by giving tom
a type:

const tom: User = {

 name: "tom"

}

3. If we give tom a type of User, but do not add the required age property, we get the
following error:

Property 'age' is missing in type '{ name: string; }' but
required in type 'User'.ts(2741)

However, if we add the missing age property, the error goes away and our
canDrive function works as it should. Here's the final working code:

interface User {

 name: string;

 age: number;

}

function canDrive(usr: User) {

 console.log("user is", usr.name);

 if(usr.age >= 16) {

 console.log("allow to drive");

 } else {

 console.log("do not allow to drive");

 }

}

// let's pretend sometime later someone else uses the
 //function canDrive

const tom: User = {

 name: "tom",

Why is TypeScript necessary? 25

 age: 25

}

canDrive (tom);

This code provides the required age property in the tom variable so that when
canDrive is executed, the check for usr.age is done correctly and the
appropriate code is then run.

Here's a screenshot of the output once this fix is made and the code is run again:

Figure 1.5 – canDrive successful result

In this section, we learned about some of the pitfalls of dynamic typing and how static
typing can help remove and protect against those issues. Static typing removes ambiguity
from code, both to the compiler and other developers. This clarity can reduce errors and
make for higher-quality code.

Object-oriented programming
JavaScript is known as an OOP language. It does have some of the capabilities of other
OOP languages, such as inheritance. However, JavaScript's implementation is limited both
in terms of available language features and design. In this section, we'll take a look at how
JavaScript does OOP and how TypeScript improves upon JavaScript's capabilities.

First, let's define what OOP is. There are four major principles of OOP:

• Encapsulation

• Abstraction

• Inheritance

• Polymorphism

Let's review each one.

26 Understanding TypeScript

Encapsulation
A shorter way of saying encapsulation is information hiding. In every program, you
will have data and functions that allow you to do something with that data. When we
use encapsulation, we are taking that data and putting it into a container of sorts. This
container is known as a class in most programming languages and basically, it protects
that data so that nothing outside of the container can modify or view it. Instead, if you
want to make use of the data, it must be done through functions that are controlled by the
container object. This method of working with object data allows strict control of what
happens to that data from a single place in code, instead of being dispersed through many
locations across a large application—which can be unwieldy and difficult to maintain.

There are some interpretations of encapsulation that focus mainly on the grouping of
members inside a common container. However, in the strict sense of encapsulation,
information hiding, JavaScript does not have this capability built in. For most OOP
languages, encapsulation requires the ability to explicitly hide a member via a language
facility. For example, in TypeScript, you can use the private keyword so that a property
cannot be seen or modified outside of its class. Now, it is possible in JavaScript to simulate
member privacy through various workarounds, but again this is not part of the native
code and adds additional complexity. TypeScript supports encapsulation with access
modifiers such as private natively.

Important Note
Privacy for class fields will be supported in ECMAScript 2020. However, as this
is a newer feature, it is not supported across all browsers at the time of writing.

Abstraction
Abstraction is related to encapsulation. When using abstraction, you hide the internal
implementation of how data is managed and provide a more simplified interface to
the outside code. Primarily, this is done to cause "loose coupling." This means that it is
desirable for code that is responsible for one set of data to be independent and separated
from other code. In this way, it is possible to change the code in one part of the application
without adversely affecting the code in another part.

Why is TypeScript necessary? 27

Abstraction for most OOP languages requires the use of a mechanism to provide
simplified access to an object, without revealing that object's internal workings. For most
languages, this is either an interface or an abstract class. We'll review interfaces more
deeply in a later chapter, but for now, interfaces are like classes whose members have no
actual working code. You can consider them a shell that only reveals the names and types
of object members, but hides how they work. This capability is extremely important in
producing the "loose coupling" mentioned previously and allowing code to be more easily
modified and maintained. JavaScript does not support interfaces or abstract classes, while
TypeScript supports both features.

Inheritance
Inheritance is about code reuse. For example, if you needed to create objects for several
types of vehicles—car, truck, and boat—it would be inefficient to write distinct code for
each vehicle type. It would be better to create a base type that has the core attributes of all
vehicles, and then reuse that code in each specific vehicle type. This way, we write some of
the needed code only once and share it across each vehicle type.

Both JavaScript and TypeScript support classes and inheritance. If you're not familiar
with classes, a class is a kind of type that stores a related set of fields and also may have
functions that can act on those fields. JavaScript supports inheritance by using a system
called prototypical inheritance. Basically, what this means is that in JavaScript, every
object instance of a specific type shares the same instance of a single core object. This core
object is the prototype, and whatever fields or functions are created on the prototype, they
are accessible across the various object instances. This is a good way of saving resources,
such as memory, but it does not have the level of flexibility or sophistication of the
inheritance model in TypeScript.

In TypeScript, classes can inherit from other classes but they can also inherit from
interfaces and abstract classes. Since JavaScript does not have these features, in
comparison, its prototypical inheritance is limited. Additionally, JavaScript has no ability
to inherit from multiple classes directly, which is another method of doing code reuse
called multiple inheritance. But TypeScript does allow multiple inheritance using mixins.
We'll dive deep into all these features later, but basically, the point is that TypeScript has a
more capable inheritance model that allows for more kinds of inheritance and therefore
more ways to reuse code.

28 Understanding TypeScript

Polymorphism
Polymorphism is related to inheritance. In polymorphism, it is possible to create an object
that can be set to one of any number of possible types that inherit from the same base
lineage. This capability is useful for scenarios where the type needed is not immediately
knowable but can be set at runtime once the appropriate circumstances have arisen.

This feature is used less often in OOP code than some of the other features, but
nevertheless can be useful. In the case of JavaScript, there is no direct language support for
polymorphism, but due to its dynamic typing, it can be simulated reasonably well (some
JavaScript enthusiasts will strongly disagree with this statement, but please hear me out).

Let's look at an example. It is possible to use JavaScript class inheritance to create a base
class and have multiple classes that inherit from this one parent base class. Then, by
using standard JavaScript variable declaration, which does not indicate the type, we can
set the type instance at runtime to whichever inheriting class is appropriate. The issue I
find is that there is no way to force the variable to be of a specific base type since there is
no way to declare types in JavaScript, therefore there is no way of enforcing only classes
that inherit from the one base type during development. So, again, you have to resort to
workarounds such as using the instanceof keyword in order to test for certain types at
runtime, to try and enforce type safety.

In the case of TypeScript, static typing is on by default and forces type declaration when
the variable is first created. Additionally, TypeScript supports interfaces, which can be
implemented by classes. Therefore, declaring a variable to be of a specific interface type
forces all classes instantiated to that variable to be inheritors of the same interface. Again,
this is all done at development time before code is deployed. This system is more explicit,
enforceable, and reliable than the one in JavaScript.

In this section, we have learned about OOP and its importance in large application
development. We've also understood why TypeScript's OOP capabilities are significantly
better and more feature-rich than JavaScript's.

Summary 29

Summary
In this chapter, we introduced TypeScript and learned why it was created. We learned why
type safety and OOP capabilities can be so important for building large apps. Then, we
saw some examples comparing dynamic typing and static typing and saw why static typing
might be a better way of writing code. Finally, we compared the styles of OOP between
the two languages and learned why TypeScript has the better and more capable system.
The information in this chapter has given us a good high-level conceptual understanding
of the benefits of TypeScript.

In the next chapter, we'll do a deeper dive into the TypeScript language. We'll learn more
about types and investigate some of the most important features of TypeScript, such as
classes, interfaces, and generics. This chapter should give you a strong foundation for
using the various frameworks and libraries in the JavaScript ecosystem.

2
Exploring TypeScript

In this chapter, we'll dive deeper into the TypeScript language. We'll learn about
TypeScript's explicit type declaration syntax, as well as about the many built-in types in
TypeScript and their purpose.

We'll also learn how to create our own types and build applications adhering to object-
oriented principles. Finally, we'll review some of the latest features added to the language,
such as optional chaining and nullish coalescing.

By the end of this chapter, you will have a strong understanding of the TypeScript
language, which will allow you to read and understand existing TypeScript code with ease.
You will also know enough about the language to produce high-quality code that achieves
your application goals and is reliable.

In this chapter, we're going to cover the following main topics:

• What are types?

• Exploring TypeScript types

• Understanding classes and interfaces

• Understanding inheritance

• Learning generics

• Learning the latest features and configuring the compiler

32 Exploring TypeScript

Technical requirements
The requirements for this chapter are the same as in Chapter 1, Understanding TypeScript.
You should have a basic understanding of JavaScript and web technologies. You will once
again be using Node and Visual Studio Code (VSCode).

The GitHub repository is again at https://github.com/PacktPublishing/
Full-Stack-React-TypeScript-and-Node. Use the code in the Chap2 folder.

Before continuing, let's set up for this chapter:

1. Go to your HandsOnTypeScript folder and create a new folder called Chap2.

2. Open VSCode and go to File | Open, and then open the Chap2 folder you just
created. Then, select View | Terminal and enable the terminal window within your
VSCode window.

3. Type the npm init command, as in Chapter 1, Understanding TypeScript, to
initialize the project for npm, and accept all the defaults.

4. Type the npm install typescript command, as in Chapter 1, Understanding
TypeScript, to install TypeScript.

Now we're ready to get started.

What are types?
A type is a reusable set of rules. A type may include properties and functions
(capabilities). It can also be shared and reused over and over again. When you reuse
a type, you are creating an instance of it. This means that you are creating an example of
your type that has specific values for properties. In TypeScript, as the name implies, types
are very important. They're the main reason why the language was created in the first
place. Let's take a look at how types work in TypeScript.

How do types work?
As mentioned previously, JavaScript does have types. Number, string, Boolean, array,
and so on are all types in JavaScript. However, those types are not explicitly set during
declaration; they are only inferred at runtime. In TypeScript, types are normally set during
declaration. It is possible to allow the compiler to infer your type. However, the type the
compiler chooses may not be the one you desire since it isn't always obvious. In addition
to the types supported by JavaScript, TypeScript has its own unique types and also allows
you to create your own types.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

What are types? 33

The first thing to realize about types in TypeScript is that they are handled by their shape
and not by their type name. This means the name of a type is not that important for the
TypeScript compiler, but the properties it has and their types are important.

Let's look at an example:

1. Create a file called shape.ts and add the following code:

class Person {

 name: string;

}

const jill: { name: string } = {

 name: "jill"

};

const person: Person = jill;

console.log(person);

The first thing you should notice is that we have a class called Person with a
property called name. Below that, you see that we have a variable called jill that
is of the { name: string } type. This is a little weird because, as you can see,
this type declaration is not an actual type name; it's more like a type definition.
But the compiler has no issues with it and does not complain. In TypeScript, it is
possible to define and declare a type at the same time. Additionally, below that, you
can see that we have another variable called person of the Person type and we set
that to jill. Again, the compiler does not complain, and everything seems OK.

2. Let's compile this code and run it to see what happens. Type the following lines in
the terminal:

tsc shape

node shape

Once you've run the commands, you should see the following:

Figure 2.1 – The shape.ts output

34 Exploring TypeScript

As you can see, the code compiles and runs without issue. This demonstrates that in
TypeScript, the compiler looks at the shape of a type and is not concerned with its name at
all. You will see in later chapters, as we dig more deeply into TypeScript types, why it is so
important to be aware of this behavior.

Exploring TypeScript types
In this section, we'll look at some of the core types available in TypeScript. Using these
types will give you error checking and compiler warnings that can help improve your
code. They will also provide information about your intent to other developers that may
be on your team. So, let's continue and see how these types work.

The any type
The any type is a dynamic type that can be set to any other type. If you declare a variable
to be of the any type, this means that you can set it to anything and reset it to anything
else later as well. It is in effect no type because the compiler will not check it on your
behalf. This is the key fact to remember about any – the compiler will not intercede and
warn you of issues at development time. Therefore, if possible, using the any type should
be avoided. It may seem weird that a language that was built to be statically typed would
have such a feature, but it is a necessity under certain circumstances.

In a large application, it is not always possible for a developer to control the types that
come into their code. For example, if a developer is relying on a web service API call to get
data, that data's type may be controlled by some other team or even a different company
entirely. This is also true during interop, when code relies on data from a different
programming language – for example, when a company maintains a legacy system in
another language while building out its new system in a different language. Situations like
these require type flexibility and an escape hatch from the type system.

It is important not to abuse the any type. You should be careful to only use it when you
know you have no other alternative – for example, when type information is not clear or
can change. There are a few alternatives to using the any type, however. Depending on
the circumstance, you may be able to use interfaces, generics, unions, or the unknown
type instead. We'll cover the rest of these possibilities later, but for now, let's go over the
unknown type next.

Exploring TypeScript types 35

The unknown type
The unknown type is a type released in TypeScript version 3. It is similar to any in that
once a variable of this type is declared, a value of any type can be set to it. That value can
subsequently be changed to any other type. So, I could start by setting my variable to a
string type and then later set it to number. However, you cannot call any of its members or
set the variable as a value to another variable without first checking what its type really is.
I'll show an example of this as follows. The only time you can set unknown to something
else without first checking its type is when you set an unknown type to another unknown
or an any type.

Let's take a look at an example of any and then we'll see why the unknown type is
preferable to using the any type (it is in fact recommended by the TypeScript team over
using any):

1. First, let's take a look at an example of the issue with using any. Go to VSCode and
create a file called any.ts, and then type the following code:

let val: any = 22;

val = "string value";

val = new Array();

val.push(33);

console.log(val);

If you run this code using the following commands, you will see the following result:

Figure 2.2 – any run result

2. Since val is of the any type, we can set it to whatever we like and later call push
into it since push is a method of Array. However, this is obvious only because we,
as developers, are aware that Array has a method called push in it. What if we
accidentally called something that does not exist on Array? Replace the previous
code with the following code:

let val: any = 22;

val = "string value";

val = new Array();

36 Exploring TypeScript

val.doesnotexist(33);

console.log(val);

3. Now, run the TypeScript compiler again:

tsc any

You will see that unfortunately, the compiler succeeds, since again making
something of the any type causes the compiler to no longer check the type.
Additionally, we also lost IntelliSense, the VSCode development time code
highlighter and error checker. Only when we try and run the code do we get any
indication that there is a problem, which is never what we want. If we now try and
run the code, as shown next, it fails immediately:

Figure 2.3 – any failing

For this simple example, this error is unlikely, but in a large application, it is an easy error
to make, even if the mistake is simply to mistype something.

Let's see a similar example using unknown:

1. First, comment out your code inside of any.ts and delete the any.js file (as we
will use the same variable names, if you do not, it will cause conflict errors).

Important Note
We'll learn about something called namespaces later that can eliminate these
sorts of conflicts, but it's a little too soon to introduce them now.

Exploring TypeScript types 37

2. Now, create a new file called unknown.ts and add the following code to it:

let val: unknown = 22;

val = "string value";

val = new Array();

val.push(33);

console.log(val);

You will notice that VSCode gives you an error, immediately complaining about
the push function. This is weird since obviously, Array has a method called push
in it. This behavior shows how the unknown type works. You can consider the
unknown type to be sort of like a label more than a type, and underneath that label
is the actual type. However, the compiler cannot figure out the type on its own, so
we need to explicitly prove the type to the compiler ourselves.

3. We use type guards to prove that val is of a certain type:

let val: unknown = 22;

val = "string value";

val = new Array();

if (val instanceof Array) {

 val.push(33);

}

console.log(val);

As you can see, we've wrapped our push call with a test to see whether val is an
instance of Array.

4. Once we have established this to be true, the call to push can proceed without
error, as shown here:

Figure 2.4 – unknown

38 Exploring TypeScript

This mechanism is a bit cumbersome since we always have to test the type before calling
members. However, it is still preferable instead of using the any type and a lot safer since
it is checked by the compiler.

Intersection and union types
Remember when we started this section by saying that the TypeScript compiler focuses on
type shape and not the name? This mechanism allows TypeScript to support what's called
intersection types. This means that TypeScript allows the developer to "create types" by
merging multiple distinct types together. This is hard to imagine, so let me give you an
example. If you look at the following code, you can see a variable called obj that has two
types associated with it. You will recall that in TypeScript, we can not only declare named
types as a variable's type but also dynamically define and declare a type at the same time.
In the following code, each type is a distinct type, but the & keyword is used to merge the
two into a single type:

let obj: { name: string } & { age: number } = {

 name: 'tom',

 age: 25

}

Let's try running this code and displaying the result on the console. Create a new file
called intersection.ts and add the following code to it:

let obj: { name: string } & { age: number } = {

 name: 'tom',

 age: 25

}

console.log(obj);

If you compile and run this code, you will see an object that contains both the name and
age properties together:

Figure 2.5 – Intersection result

Exploring TypeScript types 39

As you can see, both IntelliSense and the compiler accept the code and the final object has
both properties. This is an intersection type.

The other type is similar and is called the union type. In the case of unions, instead of
merging types, we are using them in an "or" fashion, where it's one type or another. Let's
look at an example. Create a new file called union.ts and add the following code to it:

let unionObj: null | { name: string } = null;

unionObj = { name: 'jon'};

console.log(unionObj);

The unionObj variable is declared to be of the null type or { name: string },
by the use of the | character. If you compile and run this code, you'll see that it accepts
both type values. This means that the type value can be either null or an object of the
{ name: string } type.

Literal types
Literal types are similar to union types, but they use a set of hardcoded string or number
values. Here's a simple example of string literals that is fairly self-explanatory. As you can
see, we have a bunch of hardcoded strings as the type. This means that only values that are
the same as any of these strings will be accepted for the literal variable:

let literal: "tom" | "linda" | "jeff" | "sue" = "linda";

literal = "sue";

console.log(literal);

As you can see, the compiler is happy to receive any of the values on the list and even reset
them. However, it will not allow the setting of a value that is not on the list. This will give
a compile error. Let's see an example of this. Update the code as shown by resetting the
literal variable to john:

let literal: "tom" | "linda" | "jeff" | "sue" = "linda";

literal = "sue";

literal = "john";

console.log(literal);

40 Exploring TypeScript

Here, we set the literal variable to john, and compiling gives the following error:

Figure 2.6 – A literal error

A numeric literal is also possible in the same way, but the values are made of numbers
instead of strings.

Type aliases
Type aliases are used very frequently in TypeScript. This is simply a method to give a
different name to a type and most of the time it is used to provide a shorter simpler name
to some complex type. For example, here's one possible usage:

type Points = 20 | 30 | 40 | 50;

let score: Points = 20;

console.log(score);

In this code, we take a long numeric literal type and give it a shorter name of Points.
Then, we declare score as the Points type and give it a value of 20, which is one of
the possible values for Points. And of course, if we tried to set score to, let's say, 99,
compilation would fail.

Another example of aliases would be for object literal type declarations:

type ComplexPerson = {

 name: string,

 age: number,

 birthday: Date,

 married: boolean,

 address: string

}

Exploring TypeScript types 41

Since the type declaration is very long and does not have a name, as, for example, a
class would, we use an alias instead. Type aliasing can be used for just about any type in
TypeScript, including things such as functions and generics, which we'll explore further
later in the chapter.

Function return types
For completeness' sake, I wanted to show one example of a function return
declaration. It's quite similar to a typical variable declaration. Create a new file called
functionReturn.ts and add this into it:

function runMore(distance: number): number {

 return distance + 10;

}

The runMore function takes a parameter of the number type and returns a number. The
parameter declaration is just like any variable declaration, but the function return comes
after the parentheses and indicates what type is returned by the function. If a function
returns nothing, then you can either not declare any type for the return or you can declare
void to be more explicit.

Let's look at an example of returning void. Comment out the runMore function and
console log, and then compile and run this code:

function eat(calories: number) {

 console.log("I ate " + calories + " calories");

}

function sleepIn(hours: number): void {

 console.log("I slept " + hours + " hours");

}

let ate = eat(100);

console.log(ate);

let slept = sleepIn(10);

console.log(slept);

42 Exploring TypeScript

The two functions return nothing but write their given parameters to the console, as
shown here:

Figure 2.7 – Function void results

As you can see, their internal console.log statements do run. However, trying to grab
a return value results in undefined since nothing is being returned.

So, function return type declaration is quite similar to variable declarations. Now, let's take
a look at using functions as types.

Functions as types
It may seem a bit odd but in TypeScript, a type can also be an entire function signature.
That is to say that in the previous section, we saw how functions can accept parameters
based on types and also return a type. Well, this definition is also known as a function
signature. In TypeScript, this signature can also act as a type for an object's properties.

Let's take a look at an example of this. Create a new file called functionSignature.
ts and add the following code into it:

type Run = (miles: number) => boolean;

let runner: Run = function (miles: number): boolean {

 if(miles > 10){

 return true;

 }

 return false;

}

console.log(runner(9));

Exploring TypeScript types 43

The first line shows us a function type that we will be using in this code. The Run type
alias is only there to make it easier to reuse the long function signature. The actual
function type is (miles: number) => boolean. This looks odd, but it's nothing
more than a slimmed-down function signature. So, the only things needed then are the
parentheses to indicate parameters, the => symbol, which indicates that this is a function,
and then the return type.

In the code after the function definition line, you have the declaration of the runner
variable as the Run type, which is again a function. This function simply checks whether
the person has run more than 10 miles, and returns true if they have and false if they
have not. Then, at the bottom of the code, the console.log statement writes out the
result of the function call. You should see this once compiled and run:

Figure 2.8 – Function type result

As you can see, calling runner with a parameter of 9 would make the function return
false, which is correct. With static typing, it is important to be able to type all the ways
we can return data, which means not only variables but also functions.

The never type
This type is going to sound quite strange at first. A never type is used to indicate a
function that never returns (completes), or a variable that is not set to anything, not even
null. At first glance, this sounds like the void type. However, they are not at all the
same. In void, a function does return, in the complete sense of the word, it just does not
return any value (it returns undefined, which is no value). In the case of never, the
function does not finish at all. Now, this seems totally useless but it's actually quite useful
for indicating intent.

Again, let's look at an example. Create a file called never.ts and add the following code:

function oldEnough(age: number): never | boolean {

 if(age > 59) {

 throw Error("Too old!");

 }

 if(age <=18){

 return false;

 }

44 Exploring TypeScript

 return true;

}

As you can see, this function returns a union type that is either never or a Boolean.
Now, we could have only indicated the Boolean and the code would still work. However,
in this function, we are throwing an error if the person is over a certain age, indicating
that this is an unexpected age value. So, since encapsulation is a high-level principle
for writing good-quality code, it is beneficial to indicate explicitly that a failure of the
function to return could occur without needing the developer to know about the internals
of how the function works. never provides that communication.

In this section, we learned about the many built-in types in TypeScript. We were able to
see why using these types can improve our code quality and help us catch errors early on
in the coding cycle. In the next section, we'll learn about how we can use TypeScript to
create our own types, and also follow object-oriented programming principles.

Understanding classes and interfaces
We've already briefly looked at classes and interfaces in previous sections. Let's take a
deeper look, in this section, and see why these types can help us write better code. Once
we complete this section, we will be better prepared to write more readable, reusable code
with fewer bugs.

Classes
At a base level, classes in TypeScript look just like classes in JavaScript. They are a
container for a related set of fields and methods that can be instantiated and reused.
However, classes in TypeScript support extra features for encapsulation that JavaScript
does not. Let's take a look at an example.

Create a new file called classes.ts and enter the following code:

class Person {

 constructor() {}

 msg: string;

 speak() {

 console.log(this.msg);

 }

}

Understanding classes and interfaces 45

const tom = new Person();

tom.msg = "hello";

tom.speak();

As you can see, this example shows a simple class that, with the exception of the static
typing, is just like what you might see in JavaScript. Firstly, you have a name for the class
so that it can be reused. Next, you have a constructor, which is used to initialize any fields
that the class might have and do any other setup for the class instance (again, an instance
is just a specific example of our class with its own unique values for fields). Then, you
have a single variable called msg declared and a function called speak that writes the
msg value to the console. We then create an instance of our class. Finally, we set the msg
field to a value of hello and call the speak method. Now, let's look at how classes differ
between TypeScript and JavaScript.

Access modifiers
We stated previously that one of the main principles of object-oriented development is
encapsulation, or information hiding. Well, if we take a look at the code again clearly, we
are not hiding the msg variable as it is exposed and editable outside of the class. So, let's
see what TypeScript allows us to do about this. Let's update the code like this:

class Person {

 constructor(private msg: string) {}

 speak() {

 console.log(this.msg);

 }

}

const tom = new Person("hello");

// tom.msg = "hello";

tom.speak();

46 Exploring TypeScript

As you can see, we updated the constructor with a keyword called private. This method
of declaring a constructor parameter and also adding an access modifier is doing several
things in one line. Firstly, it is telling the compiler that the class has a field called msg of
the string type that should be private. Normally, this sort of declaration is done in a
line above or below the constructor separately, which is totally valid to do, but TypeScript
allows us to use a shortcut by adding it to the constructor parameter. Additionally,
by adding this to the constructor, you can see that it allows our msg field to be set at
instantiation time with the new Person("hello") call.

Now, what does setting something to private actually do? By setting the field to
private, we make it inaccessible from outside of the class. The result of this is that tom.
msg = "hello" no longer works and causes an error. Try removing the comments and
compile again. You should see this message:

Figure 2.9 – Classes error

As you can see, it complains that a private member, msg, cannot be accessed from outside
of the class. Now, we only applied our modifier to a field, but note that access modifiers
can be applied to any member field or function.

Important Note
As mentioned previously, ECMAScript 2020 will support private fields via the
symbol. However, only fields are supported, and it is such a new standard
that browser support is limited as of the time of writing.

Now, let's learn about the readonly modifier. This one is relatively straightforward; it
causes a field to become read-only after it has been set one time in the constructor. So,
update the code as follows and add readonly to the declaration of the msg field:

class Person {

 constructor(private readonly msg: string) {}

 speak () {

 this.msg = "speak " + this.msg;

Understanding classes and interfaces 47

 console.log(this.msg);

 }

}

const tom = new Person("hello");

// tom.msg = "hello";

tom.speak();

If you do this, IntelliSense complains because, in the speak function, we are
attempting to change the value of msg even though it has already been set once
through the constructor.

The private and readonly access modifiers are not the only modifiers available in
TypeScript. There are several other types of access modifiers. However, they will make
more sense if we explain them in the context of inheritance later.

Getters and setters
Another feature of classes is actually available in both TypeScript and JavaScript: getters
and setters:

• Getter: A property that allows modification or validation of a related field
before returning it

• Setter: A property that allows modification or computation of a value before setting
to a related field

In some other languages, these types of properties are known as computed properties.
Let's look at an example. Create another file called getSet.ts and add the
following code:

class Speaker {

 private message: string;

 constructor(private name: string) {}

 get Message() {

 if(!this.message.includes(this.name)){

 throw Error("message is missing speaker's name");

 }

 return this.message;

 }

48 Exploring TypeScript

 set Message(val: string) {

 let tmpMessage = val;

 if(!val.includes(this.name)){

 tmpMessage = this.name + " " + val;

 }

 this.message = tmpMessage;

 }

}

const speaker = new Speaker("john");

speaker.Message = "hello";

console.log(speaker.Message);

There's a fair amount happening here, so let's go over it before compiling and running.
First, you can see that our message field is not available in the constructor but is a
private field, and therefore not accessible directly from outside our class. The only
initializer the constructor takes is our name field. After that, you can see the Message
property is a getter because its name is prefixed with the get keyword. In the getter, we
test to see whether our message field value has the speaker's name in it, and if it does
not, we throw an exception to indicate an unwanted situation. The setter, also called
Message, is indicated by the set keyword and this property receives a string and adds
the speaker's name if needed by checking whether it is missing from the message field.
Note that although both getter and setter look like functions, they are not. When
they are called later in code, they are called just like a field would be called without the
parentheses. So then, toward the end of the code, the speaker object is instantiated to a
new speaker with a name of john and its Message property is set to hello. Thereafter,
the message is written to the console.

Now, we want to compile this code so that we can run it, but we need to do something a
bit differently this time. The TypeScript compiler has options that it can take in order to
customize its behavior. In the case of this example, getters and setters and the includes
function are only available in ES5 and ES6, respectively. If you're not familiar with it, the
includes function checks whether a string is a substring of a larger string. So, let's tell
the TypeScript compiler that it needs to compile to a newer JavaScript target than ES3,
which is the default.

Understanding classes and interfaces 49

Here's the new compile command you'll need (we'll go over the tsc compiler options in
more depth later, including using a configuration file):

tsc --target "ES6" getSet

Now, you can run the command. Once again, it's as follows:

node getSet

So, you now get the following output:

Figure 2.10 – getSet output

To drive the point home further, let's try switching the speaker.Message =
"hello" line to speaker.message = "hello". If you compile, you should see
this error:

Figure 2.11 – Message field error

Can you guess why this failed? Yes, this occurred because message is a private field
and cannot be accessed from outside our class.

You may be wondering why I mentioned getters and setters here when they
are available in regular JavaScript too. If you look at the example, you can see that the
message field is private and the getter and setter properties are public (note
that when you are not explicitly declaring access modifiers, the default is public). So,
to allow good encapsulation, it is a best practice to hide our field and only expose it when
needed via a getter and/or setter or some function that allows modification of the field.
Also remember, when deciding on an access level to your members, that you want to
start with the most restrictive capabilities first and then become less restrictive as needed.
Additionally, by allowing field access via accessors, we can do all sorts of checks and
modifications, as we've done in our example, so that we have ultimate control over what
comes in and out of our class.

50 Exploring TypeScript

Static properties and methods
Finally, let's discuss static properties and methods. When you mark something as static
inside of a class, you are saying that this member is a member of the class type and not of
the class instance. Therefore, it can be accessed without needing to create an instance of a
class, but instead by prefixing with the class name.

Let's look at an example. Create a new file called staticMember.ts and add the
following code:

class ClassA {

 static typeName: string;

 constructor(){}

 static getFullName() {

 return "ClassA " + ClassA.typeName;

 }

}

const a = new ClassA();

console.log(a.typeName);

If you attempt to compile this code, it will fail, stating that typeName is a static member
of the ClassA type. Again, static members must be called using the class name. Here are
the fixed versions of the code:

class ClassA {

 static typeName: string;

 constructor(){}

 static getFullName() {

 return "ClassA " + ClassA.typeName;

 }

}

const a = new ClassA();

console.log(ClassA.typeName);

Understanding classes and interfaces 51

As you can see, we reference typeName with the class name. So then, the question is
why might I want to use a static member instead of an instance member? Under certain
circumstances, it may be useful to share data across class instances. For example, I might
want to do something like this:

class Runner {

 static lastRunTypeName: string;

 constructor(private typeName: string) {}

 run() {

 Runner.lastRunTypeName = this.typeName;

 }

}

const a = new Runner("a");

const b = new Runner("b");

b.run();

a.run();

console.log(Runner.lastRunTypeName);

In the case of this example, I am trying to determine the last class instance that has called
the run function at any given time. This can be straightforward by using a static member.
Another point to be aware of is that inside a class, static members can be called by
both static members and instance members. However, static members cannot call
instance members.

Now we have learned about classes and their features in this section. This will help us
design our code for encapsulation, which will enhance its quality. Next, we will learn
about interfaces and contract-based coding.

52 Exploring TypeScript

Interfaces
In object-oriented programming design, another important principle is abstraction.
The goal of abstraction is to reduce complexity and the tight coupling of code by not
exposing the internal implementation (we've already covered abstraction in Chapter 1,
Understanding TypeScript). One way of doing this is to use interfaces to show only the
signature of a type, as opposed to its internal workings. An interface is also sometimes
called a contract, since having specific types for parameters and return types enforces
certain expectations between both the user and the creator of the interface. So, another
way of thinking about interfaces is as strict rules about what can come out of and go into a
type instance.

Now, interfaces are just a set of rules. In order to have working code, we need an
implementation of those rules to get any work done. So, let's show an example of an
interface with implementation to get started. Create a new file called interfaces.ts
and add the following interface definition:

interface Employee {

 name: string;

 id: number;

 isManager: boolean;

 getUniqueId: () => string;

}

This interface defines an Employee type that we will create instances for later. As you
can see, there is no implementation of the getUniqueId function, just its signature. The
implementation comes later when we define it.

Now, add the implementation to the interfaces.ts file. Insert the following code,
which creates two instances of the Employee interface:

const linda: Employee = {

 name: "linda",

 id: 2,

 isManager: false,

 getUniqueId: (): string => {

 let uniqueId = linda.id + "-" + linda.name;

 if(!linda.isManager) {

 return "emp-" + uniqueId;

 }

 return uniqueId;

Understanding classes and interfaces 53

 }

}

console.log(linda.getUniqueId());

const pam: Employee = {

 name: "pam",

 id: 1,

 isManager: true,

 getUniqueId: (): string => {

 let uniqueId = pam.id + "-" + pam.name;

 if(pam.isManager) {

 return "mgr-" + uniqueId;

 }

 return uniqueId;

 }

}

console.log(pam.getUniqueId());

So, we create an instance by instantiating an object literal called linda, setting the two
field names – name and id – and then implementing the getUniqueId function. Later,
we console log the linda.getUniqueId call. After that, we create another object,
called pam, based on the same interface. However, not only does it have different field
values, but its implementation of getUniqueId is also different than the linda object.
This is the main use of interfaces: to allow for a single structure across objects but to
enable different implementations. In this way, we provide strict rules about what the type
structure is, but also allow some flexibility in terms of how functions go about doing their
work. Here's the output of our code:

Figure 2.12 – Employee interface results

54 Exploring TypeScript

Another possible use of interfaces is when using third-party APIs. Sometimes, the type
information is not well documented and all you're getting back is untyped JSON or the
object type is extremely large and has many fields you will never use. It is quite tempting,
under these circumstances, to just use any as the type and be done with it. However, you
should prefer providing a type declaration if at all possible.

What you can do under these circumstances is to create an interface that has only the
fields that you know and care about. Then, you can declare your data type to be of this
type. At development time, TypeScript will not be able to check the type since for API
network call's data will be coming in at runtime. But regardless, since TypeScript only
cares about the shape of any given type, it will ignore the fields not mentioned in your
type declaration and as long as the data comes in with the fields you defined in your
interface, the runtime will not complain and you will maintain development time type
safety. However, please do be careful to handle null or undefined fields appropriately,
by allowing them to use unions or testing for those types.

In this section, we learned about interfaces and the differences between interfaces and
classes. We will be able to use interfaces to abstract away the implementation details of a
class and therefore produce loose coupling between our code and therefore better code
quality. In the next section, we will learn about how classes and interfaces allow us to
perform inheritance and therefore code reuse.

Understanding inheritance
In this section, we'll learn about inheritance. Inheritance in object-oriented programming
is a method for doing code reuse. This will shrink our application code size and make it
more readable. Also, generally, shorter code tends to have fewer bugs. So, all these factors
will improve our app quality once we get started building.

As stated, inheritance is primarily about allowing code reuse. Inheritance is also
conceptually designed to be like real-life inheritance so that the logical flow of inheritance
relationships can be intuitive and easier to understand. Let's look at an example of this
now. Create a file called classInheritance.ts and add the following code:

class Vehicle {

 constructor(private wheelCount: number) {}

 showNumberOfWheels() {

 console.log(`moved ${this.wheelCount} miles`);

 }

}

Understanding inheritance 55

class Motorcycle extends Vehicle {

 constructor() {

 super(2);

 }

}

class Automobile extends Vehicle {

 constructor() {

 super(4);

 }

}

const motorCycle = new Motorcycle();

motorCycle.showNumberOfWheels();

const autoMobile = new Automobile();

autoMobile.showNumberOfWheels();

Important Note
Quick note if you've never seen back ticks, ``, and ${} before. It's called string
interpolation and is simply a quick and easy way to insert string values inside
strings by embedding objects.

As you can see, there is a base class, also known as a parent, called Vehicle. This class
acts as the main container for source code that is being reused later by whatever classes
inherit from it, also known as children. The child classes inherit from Vehicle by using
the extends keyword. One thing to notice that's important is that in the constructor
for each child class, you see that the first line of code is the call to super. super is the
name of the instance of the parent class that a child is inheriting from. So, in this case,
that would be the Vehicle class. Now, as you can see, each child is passing a different
number of wheels to the parent's wheelCount variable via the parent's constructor.
Then, at the end of the code, an instance of each child, Motorcycle and Automobile,
is created and the showNumberOfWheels function is called. If we compile and run this
code, we get the following:

Figure 2.13 – The classInheritance result

56 Exploring TypeScript

So then, each child provides a different number of wheels to the parent wheelCount
variable, although they cannot access the variable directly. Now, let's say that there was a
reason why the child classes would want to access the wheelCount variable of the parent
directly. For example, let's say that if a flat tire occurred, an updated wheel count would be
necessary. What could we do? Well, let's try creating a function unique to each child class
that tries to update wheelCount. Let's see what happens. Update the code by adding a
new function, updateWheelCount, to the Motorcycle class:

class Vehicle {

 constructor(private wheelCount: number) {}

 showNumberOfWheels() {

 console.log(`moved ${this.wheelCount} miles`);

 }

}

class Motorcycle extends Vehicle {

 constructor() {

 super(2);

 }

 updateWheelCount(newWheelCount: number){

 this.wheelCount = newWheelCount;

 }

}

class Automobile extends Vehicle {

 constructor() {

 super(4);

 }

}

const motorCycle = new Motorcycle();

motorCycle.showNumberOfWheels();

const autoMobile = new Automobile();

autoMobile.showNumberOfWheels();

Understanding inheritance 57

As a test, if we update only the Motorcycle class and add an updateWheelCount
function as shown, we get an error. Can you guess why? It's because we are trying to access
a private member of the parent class. So, therefore, even when child classes inherit their
members from a parent, they still do not have access to that parent's private members.
This is the right behavior, again to promote encapsulation. So then, what do we do? Well,
let's try editing the code again to allow this:

class Vehicle {

 constructor(protected wheelCount: number) {}

 showNumberOfWheels() {

 console.log(`moved ${this.wheelCount} miles`);

 }

}

class Motorcycle extends Vehicle {

 constructor() {

 super(2);

 }

 updateWheelCount(newWheelCount: number){

 this.wheelCount = newWheelCount;

 }

}

class Automobile extends Vehicle {

 constructor() {

 super(4);

 }

}

const motorCycle = new Motorcycle();

motorCycle.showNumberOfWheels();

const autoMobile = new Automobile();

autoMobile.showNumberOfWheels();

Do you see the small change we made? That's right, we changed the wheelCount
parameter on the Vehicle parent class constructor to be of the protected
accessor type. protected allows the class and any inheriting classes to have access to
the member.

58 Exploring TypeScript

Before we move on to the next topic, let's introduce the concept of namespaces so that
we can create scoping containers and separate one set of code from another. Providing
scope with namespaces hides whatever is inside one namespace from the outside of it.
In that sense, it's sort of like a class, but it is capable of containing any number of classes,
functions, variables, or any other types. Here's a simple example of using namespaces.
Create a new file called namespaces.ts and add the following code:

namespace A {

 class FirstClass {}

}

namespace B {

 class SecondClass {}

 const test = new FirstClass();

}

As you can see from this code, even before compiling, VSCode IntelliSense is already
complaining that FirstClass cannot be found. This is because it is hidden from
namespace B, since it is only defined in namespace A. This is the purpose of
namespaces, to hide information within one scope, away from other scopes.

In this section, we learned about inheriting from classes. Class inheritance is a very
important tool for reusing code. In the next section, we'll look at using abstract classes,
which is a more flexible way of doing inheritance.

Abstract classes
As mentioned previously, interfaces can be useful for defining contracts, but they have
no implementation for working code themselves. Classes have working implementations,
but sometimes only a signature is required. It is possible, for certain situations, that we
may want to have both in one object type. For these types of scenarios, you would use
an abstract class instead of either a class or an interface. Let's create a new file called
abstractClass.ts and copy and paste our code from our classInheritance.ts
file into it. If you do this, you might get some errors, since the two files both have the same
class and variable names.

Understanding inheritance 59

So, in our new abstractClass.ts file, we are going to update it with namespaces and
modify the Vehicle class to be abstract. Add the namespace and update the Vehicle
class like this:

namespace AbstractNamespace {

 abstract class Vehicle {

 constructor(protected wheelCount: number) {}

 abstract updateWheelCount(newWheelCount: number): void;

 showNumberOfWheels() {

 console.log(`moved ${this.wheelCount} miles`);

 }

 }

So, to start, we've obviously wrapped all the code within a bracket called namespace
AbstractNamespace (note that a namespace can have any name; it does not need
namespace in the name). Again, this is merely a container that allows us to control
scoping so that the members of our abstractClass.ts file do not bleed out into the
global scope, and thereby affect other files.

If you look at the new Vehicle code, we have a new keyword before the class called
abstract. This is what indicates that the class will be an abstract one. You can also
see that we have a new function called updateWheelCount. This function has an
abstract keyword in front of it, which indicates that it will have no implementation
within the Vehicle class and needs to be implemented by an inheriting class.

Now, after the Vehicle abstract class, we want our child classes that are inheriting
from it. So, add the Motorcycle and Automobile classes below the Vehicle class:

 class Motorcycle extends Vehicle {

 constructor() {

 super(2);

 }

 updateWheelCount(newWheelCount: number){

 this.wheelCount = newWheelCount;

 console.log(`Motorcycle has ${this.wheelCount}`);

 }

 }

 class Automobile extends Vehicle {

60 Exploring TypeScript

 constructor() {

 super(4);

 }

 updateWheelCount(newWheelCount: number){

 this.wheelCount = newWheelCount;

 console.log(`Automobile has ${this.wheelCount}`);

 }

 showNumberOfWheels() {

 console.log(`moved ${this.wheelCount} miles`);

 }

 }

After adding the classes, we instantiate them and call their respective
updateWheelCount methods, as shown:

 const motorCycle = new Motorcycle();

 motorCycle.updateWheelCount(1);

 const autoMobile = new Automobile();

 autoMobile.updateWheelCount(3);

}

As you can see, the implementation of the abstract member updateWheelCount is
in the child classes. This is the capability that an abstract class provides. An abstract class
can act both as a regular class, providing member implementations, and as an interface,
providing only the rules for implementation for a child class. Note that since an abstract
class can have abstract members, you cannot instantiate an abstract class.

Furthermore, if you look at the Automobile class, you can see that it has its own
implementation of showNumberOfWheels, even though this function is not abstract.
This demonstrates something called overriding, which is the ability of a child's member to
create a unique implementation of the parent's member.

In this section, we learned about the different kinds of class-based inheritance. Learning
about inheritance will allow us to reuse more of our code, reducing both code size and
potential bugs. In the next section, we'll learn about doing inheritance with interfaces and
how it's different from class-based inheritance.

Understanding inheritance 61

Interface
As explained earlier, interfaces are a way of setting agreed-upon rules for a type. They will
allow us to separate implementation from definition and therefore provide abstraction,
which again is a powerful object-oriented programming principle that will give us higher-
quality code. Let's learn about how to use interfaces to inherit explicitly and in a well-
structured way.

TypeScript interfaces provide a set of type signatures for an interface's members but have
no implementation themselves. Now, we did show some examples of using standalone
interfaces, but this time, let's see how we can use interfaces as a means of doing
inheritance and code reuse. Create a new file called interfaceInheritance.ts and
add the following code:

namespace InterfaceNamespace {

 interface Thing {

 name: string;

 getFullName: () => string;

 }

 interface Vehicle extends Thing {

 wheelCount: number;

 updateWheelCount: (newWheelCount: number) => void;

 showNumberOfWheels: () => void;

 }

After the namespace, you can see that there is an interface called Thing, and after
that, the Vehicle interface is defined and it inherits from Thing using the extends
keyword. I put this into the example to show that interfaces can also inherit from other
interfaces. The Thing interface has two members – name and getFullName –
and as you can see, although Vehicle extends Thing, there is no mention of those
members anywhere inside of Vehicle. This is because Vehicle is an interface and
therefore cannot have any implementation. However, if you look at the following code,
at the Motorcycle class, you can see that, since this class extends Vehicle, the
implementations are there:

 class Motorcycle implements Vehicle {

 name: string;

 wheelCount: number;

 constructor(name: string) {

 // no super for interfaces

62 Exploring TypeScript

 this.name = name;

 }

 updateWheelCount(newWheelCount: number){

 this.wheelCount = newWheelCount;

 console.log(`Automobile has ${this.wheelCount}`);

 }

 showNumberOfWheels() {

 console.log(`moved Automobile ${this.wheelCount}
 miles`);

 }

 getFullName() {

 return "MC-" + this.name;

 }

 }

 const moto = new Motorcycle("beginner-cycle");

 console.log(moto.getFullName());

}

So, if we compile and run this code, we get the following:

Figure 2.14 – The interfaceInheritance result

Interfaces do not provide a means to do code reuse directly, as they have no
implementation. However, it is still advantageous for code reuse because the structure of
interfaces provides definite expectations around what code will receive and return. Hiding
the implementation behind an interface is also beneficial in terms of doing encapsulation
and abstraction, which are also important principles of object-oriented programming.

Learning generics 63

Important Note
When using TypeScript, take full advantage of inheritance models from object-
oriented programming that are available to you in TypeScript. Use interfaces
to abstract implementation details. Use private and protected to help
encapsulate data. Remember, when the time comes to compile and convert
your code into JavaScript, the TypeScript compiler will do any translation work
for you to get things back into the prototypical style. But while in development
mode, you should take advantage of all the capabilities that TypeScript provides
to enhance your development experience.

In this section, we learned about inheritance and how it can be used for code reuse. We
learned about how to do inheritance with the three major container types: classes, abstract
classes, and interfaces. You will see, once we begin coding our app, why being able to do
code reuse is such a critical element in large application development. In the next section,
we will cover generics, which will use the types that we learned about in this section.

Learning generics
Generics allows a type definition to include an associated type that can be chosen by the
user of the generic type, instead of being dictated by the type creator. In this way, there are
structures and rules, but still some amount of flexibility. Generics will definitely come into
play later when we code with React, so let's learn about them here.

Generics can be used for functions, classes, and interfaces. Let's look at an example
of generics with functions. Create a file called functionGeneric.ts and add the
following code:

function getLength<T>(arg: T): number {

 if(arg.hasOwnProperty("length")) {

 return arg["length"];

 }

 return 0;

}

console.log(getLength<number>(22));

console.log(getLength("Hello world."));

64 Exploring TypeScript

If we start at the top, we see a function called getLength<T>. This function is using
a generic that tells the compiler that wherever it sees the T symbol, it can expect any
possible type. Now, internally, our function implementation checks to see whether the
arg parameter has a field called length and then tries to grab it. If it does not, it just
returns 0. Finally, toward the bottom, you can see that the getLength function is called
two times: once for a number and another time for a string. Additionally, you can see that
for number, it explicitly has the <number> type indicator, whereas for string, it does
not. This is there only to show that you can be explicit, but the compiler can usually figure
out which type you meant based on the usage.

The thing with this example is that there's extra code in order to check for the length
field. This makes the code busy and longer than it needs to be. Let's update this code to
prevent calls of this function if an argument does not have a length property. First,
comment out the code we just wrote and add the following new code below it:

interface HasLength {

 length: number;

}

function getLength<T extends HasLength>(arg: T): number {

 return arg.length;

}

console.log(getLength<number>(22));

console.log(getLength("Hello world."));

This code is quite similar except we use an HasLength interface to constrain what types
are allowed. Constraining generic types is done with the extends keyword. By writing
T extends HasLength, we are telling the compiler that whatever T is, it must inherit
from or be of the HasLength type, which effectively means that it must have the length
property. Therefore, when the two previous calls are made, it fails for number types, since
they don't have a length property, but works for string.

Now, let's look at an example that uses interfaces and classes. Let's create a file called
classGeneric.ts and add the following code to it:

namespace GenericNamespace {

 interface Wheels {

 count: number;

 diameter: number;

 }

Learning generics 65

 interface Vehicle<T> {

 getName(): string;

 getWheelCount: () => T;

 }

So, we can see that we have an interface called Wheels, which provides wheel
information. We can also see that the Vehicle interface takes a generic of type T,
meaning any specific type.

Subsequently, we see that the Automobile class implements the Vehicle interface with
the generic as the Wheel type, which associates Wheel to Automobile. Then, finally, we
see that the Chevy class extends Automobile, providing some default values:

 class Automobile implements Vehicle<Wheels> {

 constructor(private name: string, private wheels:
 Wheels){}

 getName(): string {

 return this.name;

 }

 getWheelCount(): Wheels {

 return this.wheels;

 }

 }

 class Chevy extends Automobile {

 constructor() {

 super("Chevy", { count: 4, diameter: 18 });

 }

 }

After all these types are defined, we create one instance of the Chevy class and log some
output from it:

 const chevy = new Chevy();

 console.log("car name ", chevy.getName());

 console.log("wheels ", chevy.getWheelCount());

}

66 Exploring TypeScript

This code compiles and runs successfully and gives the following result:

Figure 2.15 – The classGeneric.ts result

You can see that our inheritance hierarchy is several levels deep, but our code is able to
successfully return a valid result. Although specific details in real-world code may be
different, nevertheless, the multi-level type hierarchy shown here is something that can
happen quite frequently in object-oriented programming design.

In this section, we learned about using generics on both functions and class types.
Generics are commonly used in React development, as well as some Node packages. So,
they will be of use once we start coding in later chapters. In the next section, we'll take a
look at several miscellaneous items to round out this chapter.

Learning the latest features and configuring
the compiler
In this section, we will learn about some newer features in TypeScript, as well as how to
configure the TypeScript compiler. By learning about these newer features, we will be able
to write cleaner and easier-to-read code, which, of course, will be beneficial for working
with the app in a team. By using the configuration options of TypeScript, we can have the
compiler work in the way we think is best for our project.

Optional chaining
Let's take a look at optional chaining. This feature will allow us to write simpler code, but
also prevent a small class of errors having to do with null objects. Let's create a file called
optionalChaining.ts and add the following code to it:

namespace OptionalChainingNS {

 interface Wheels {

 count?: number;

 }

 interface Vehicle {

 wheels?: Wheels;

 }

Learning the latest features and configuring the compiler 67

 class Automobile implements Vehicle {

 constructor(public wheels?: Wheels) {}

 }

 const car: Automobile | null = new Automobile({

 count: undefined

 });

 console.log("car ", car);

 console.log("wheels ", car?.wheels);

 console.log("count ", car?.wheels?.count);

}

If we look at this code, we can see that there are several types being used together. car
has a property of wheels, and wheels has a property of count. So, later when we log,
you can see that calls are being chained together. For example, the last console.log
line refers to car?.wheels?.count. This is called optional chaining. The question
mark indicates that the object could possibly be null or undefined. If it is null or
undefined, then the code will end at that object, returning whichever value the object
or property is, and not continue to the rest of the properties, but without causing an error.

So, if we wrote the bottom console code the old way, we would have to do a great deal of
code testing in order to make sure that we would not cause an error by calling something
that is potentially undefined. We would use the ternary operation and it could look
something like this:

const count = !car ? 0

 : !car.wheels ? 0

 : !car.wheels.count ? 0

 : car.wheels.count;

Obviously, this is both difficult to write and read. So then, by using optional chaining, we
allow the compiler to stop as soon as null or undefined is found and just pass that
back. This saves us from writing a bunch of verbose, potentially error-prone code.

68 Exploring TypeScript

Nullish coalescing
Nullish coalescing is simply a shortcut of the ternary operator. So, it's pretty
straightforward and it looks like this:

const val1 = undefined;

const val2 = 10;

const result = val1 ?? val2;

console.log(result);

The double question marks work from left to right. The statement means if val1 is not
null or undefined and has an actual value, then return that value. However, if val1
does not have a value, return val2. So, in this case, compiling and running would result
in 10 being written to the console.

You may be wondering whether this is the same thing as the || operator. It's somewhat
similar but more constrained. The logical or operator, when it is used in this manner,
is checking for "truthyness." In JavaScript, this is a concept where a large set of
possible values can be considered "truthy" or "falsey." For example, 0, true or false,
undefined, and "" all have true or false equivalency in JavaScript. However, in the case
of nullish coalescing, only null or undefined specifically are being checked.

TypeScript configuration
TypeScript configurations can be passed in via the command line or, more commonly,
through a file called tsconfig.json. If you use the command line, then call the
compiler like this:

tsc tsfile.ts –lib 'es5, dom'

This tells TypeScript to ignore any tsconfig.json file and just use the command-line
options – in this case, the –lib option, which states which version of JavaScript is being
used during development, and compiles only this one file. If you just put tsc onto the
command line, TypeScript will look for a tsconfig.json file and use that configuration
and compile all ts files it finds.

Summary 69

There are many options, so we won't cover all of them here. However, let's review a few of
the most important ones (when we start coding, I'll provide a sample tsconfig.json
file to use):

• --lib: This is used to indicate which JavaScript version you will use
during development.

• --target: This indicates which version of JavaScript you want to emit out into
.js files.

• --noImplicitAny: Does not allow the any type, without explicitly declaring it.

• --outDir: This is the directory where JavaScript files will be saved to.

• --outFile: This is the final JavaScript filename.

• --rootDirs: This is an array that stores the .ts file source code.

• --exclude: This is an array of folders and files to exclude from compilation.

• --include: This is an array of folders and files to include in compilation.

This section provided just a brief overview of some newer features of TypeScript, as well as
some configuration-related information. Nevertheless, these newer features and the ability
to configure TypeScript are very important and will be used extensively once we start
writing code in later chapters.

Summary
In this chapter, we learned about the TypeScript language. We learned about the many
different types that exist in the language and also how to create our own types. We also
learned about how to use TypeScript to create object-oriented code. It was a large and
complex chapter but will be absolutely necessary knowledge for when we begin building
our app.

In the next chapter, we will review some of the most important features in traditional
JavaScript. We will also learn about some of the newer features in the latest versions of
the language. Since TypeScript is a true superset of JavaScript, it is important to have an
up-to-date understanding of JavaScript in order to make maximal usage of TypeScript.

3
Building Better Apps

with ES6+ Features
In this chapter, we'll review certain important features of JavaScript in its latest ES6+ form
(I've added the plus sign to indicate ES6 and beyond). It is important to understand that
although this book uses TypeScript, the two languages are complementary. In other words,
TypeScript does not replace JavaScript. It augments and enhances JavaScript, adding
features that make it better. Therefore, we'll do a review of some of the most important
features in the JavaScript language. We'll review variable scoping and the new const and
let keywords. Also, we'll dive deeper into the this keyword and how we can switch it if
needed. We'll also learn about the many new features in JavaScript, such as the new array
functions and async await. This knowledge will give us a solid foundation upon which
we can code in TypeScript.

In this chapter, we're going to cover the following main topics:

• Learning about ES6 variable types and JavaScript scoping

• Learning about arrow functions

• Changing the this context

• Learning about spread, de-structuring, and rest

72 Building Better Apps with ES6+ Features

• Learning about new array functions

• Learning about new collection types

• Learning about async await

Technical requirements
The requirements for this chapter are the same as for Chapter 2, Exploring TypeScript. You
should have a basic understanding of JavaScript and web technologies. You will once again
be using Node and Visual Studio Code (VSCode).

The GitHub repository is at https://github.com/PacktPublishing/Full-
Stack-React-TypeScript-and-Node. Use the code in the Chap3 folder.

Let's set up this chapter's code folder:

1. Go to your HandsOnTypescript folder and create a new folder called Chap3.

2. Open VSCode and go to File | Open, and then open the Chap3 folder you just
created. Then, select View | Terminal and enable the terminal window within your
VSCode window.

3. Type the npm init command, as in the previous chapter, to initialize the project
for npm, and accept all the defaults (you can also use npm init -y to accept all
defaults automatically).

4. Type the npm install typescript command, as in the previous chapter, to
install TypeScript.

Now we're ready to get started.

Learning about ES6 variable types and
JavaScript scoping
In this section, we will learn about JavaScript's scoping rules and some new variable
types that help to clarify and improve upon some issues regarding these scope rules. This
information is valuable since you will be creating variables constantly throughout your
career as a software developer, and it is important to understand under what scope a
variable can be accessed and under what circumstances it may be changed.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

Learning about ES6 variable types and JavaScript scoping 73

In most other languages, variable scoping happens within any arbitrary set of brackets
or begin end scope statements. However, scope in JavaScript is handled by the body of
a function, which means when a variable is declared inside a function body using the var
keyword, that variable is only accessible within that body. Let's take a look at an example
of this. Create a new file called functionBody.ts and add the following code to it:

if (true) {

 var val1 = 1;

}

function go() {

 var val2 = 2;

}

console.log(val1);

console.log(val2);

In VSCode, you should see an error indication on the call to console.log(val2),
whereas the call to console.log(val1) works just fine. You might have thought that
since val1 is declared within the brackets of the if statement, it would not be accessible
later. However, clearly it is. But on the other hand, val2 scoped by the go function is
not accessible outside of it. This shows that as far as variable declaration using var is
concerned, it is functions that act as scoping containers.

This feature is actually the source of much confusion in JavaScript. So, in ES6, a new set of
variable declaration prefixes have been created: const and let. Let's review them here.

const variables support something called block-level scoping. Block-level scoping is
scoping between any squiggly brackets. For example, in our previous example, that would
be the if statement. In addition, as the name implies, const creates a constant variable
value that, once set, cannot be reset to something else. However, what this means is a
little bit different from some other languages. In JavaScript, this means that the variable's
assignment cannot be changed. However, the variable itself can be edited. This is hard to
imagine, so let's look at some examples. Create a new file called const.ts and add the
following code:

namespace constants {

 const val1 = 1;

 val1 = 2;

 const val2 = [];

74 Building Better Apps with ES6+ Features

 val2.push('hello');

}

In VSCode, this code will show an error for val1 = 2, but it will be OK for val2.
push('hello'). The reason for this is that in the case of val1, the variable is actually
being reset into an entirely new value, which is not allowed. However, for val2, the array
value remains the same and a new element is being added to it. So, this is allowed.

Now, let's look at the let keyword. let variables are, like const variables, also block-
scoped. However, they can be set and reset at will (of course, in TypeScript, the type needs
to stay the same). Let's show an example of let. Create a file called let.ts and add the
following code:

namespace lets {

 let val1 = 1;

 val1 = 2;

 if(true) {

 let val2 = 3;

 val2 = 3;

 }

 console.log(val1);

 console.log(val2);

}

So, here, we have two sets of let variables. val1 is not scoped in a block, but val2 is
scoped in an if block. As you can see, only the call to console.log(val2) is failing,
since val2 only exists inside the if block.

So then, which variable declaration method do you use? The current best practice in the
community is to prefer using const, as immutability is a beneficial attribute and also,
using constants adds a tiny performance benefit. However, if you know that you need to
be able to reset the variable later, then use let instead. Finally, avoid using var.

We've learned about scoping and the new const and let variable types in ES6.
Understanding scoping and knowing when to use const versus let is an important
skill for doing modern JavaScript development. In newer JavaScript code, you'll see these
keywords often. Next, we'll review the this context and arrow functions.

Learning about arrow functions 75

Learning about arrow functions
Arrow functions were a new addition to ES6. Basically, they serve two main purposes:

• They shorten the syntax for writing functions.

• They also automatically make the immediate scope parent, the this object, the
arrow function's parent.

Let me explain this a bit more before continuing as it's critical knowledge for JavaScript
developers.

In JavaScript, the this object, the owner object instance that member properties and
methods belong to, can change based on the context of a call. So, when a function is
called directly—for example, MyFunction()—the parent this would be the caller
of the function; that is to say, the current scope's this object. For browsers, that would
usually be the window object. However, in JavaScript, functions can also be used as object
constructors—for example, new MyFunction(). In this case, the this object inside
the function would be the object instance that was created from the new MyFunction
constructor.

Let's look at an example to clarify as this is a really important feature of JavaScript. Create
a new file called testThis.ts and add the following code:

function MyFunction () {

 console.log(this);

}

MyFunction();

let test = new MyFunction();

If you compile and then run this code, you will see the following result:

Figure 3.1 – testThis result

76 Building Better Apps with ES6+ Features

So, when MyFunction is called directly, the immediate scope parent is going to be
Node's global object, since we are not running in a browser. Next, if we create a new object
from MyFunction using new MyFunction(), the this object becomes its own
object instance since the function was used to create an object as opposed to being run
directly.

Now that we have that out of the way, let's see what an arrow function looks like. Create
the arrowFunction.ts file and add the following code:

const myFunc = (message: string): void => {

 console.log(message);

}

myFunc('hello');

If you compile and run this code, you'll see that hello is printed out. The syntax is very
similar to a function type; however, they are not the same. If we look at the code, you can
see a colon after the parameter parentheses and then the void type after the parameter
parentheses. This is the return type of the function. In the case of function types, the
return type is indicated after the => symbol.

Here are some additional things to note about arrow functions. All non-arrow functions
in JavaScript have access to a collection called arguments. This is a collection of all the
parameters given to the function. Arrow functions do not have their own arguments
collection. However, they do have access to the immediate function parent's arguments
collection.

The arrow function has several body styles. Here are examples of the three styles:

const func = () => console.log('func');

const func1 = () => ({ name: 'dave' });

const func2 = () => {

 const val = 20;

 return val;

}

console.log(func());

console.log(func1());

console.log(func2());

Changing the this context 77

Let's look at each of the three styles:

• The first function, func, shows the case where only a single line of code is used
in the function body, and nothing is returned, as you can see that the body has no
closing braces or parentheses.

• The second function, func1, shows when there is only a single line, but something
is returned. In this case, the return keyword is not needed, and parentheses are
needed only if an object is returned.

• The final case is func2. In this case, squiggly brackets are needed because it is
a multi-line statement (regardless of whether it returns or not).

We covered arrow functions in this section. Arrow functions are used a great deal in
modern JavaScript and TypeScript code, so it's beneficial to know about this feature in
depth.

Changing the this context
We already discussed the this context object in the previous section. As mentioned,
in JavaScript, functions have access to an internal object called this that represents the
caller of the function. Now, the confusing part of using this is that the value of this can
change depending on how the function is called. So, JavaScript provides helpers that allow
you to reset the this object of a function to the one you want, instead of the one given
to you. There are several methods, including apply and call, but the most important
one for us to learn is the bind keyword. This is important for us to know because bind
is used often in React class-based components. It's a bit early to show a full-blown React
example. So, let's start with something a little easier. Create a new file called bind.ts and
add the following code to it:

class A {

 name: string = 'A';

 go() {

 console.log(this.name);

 }

}

class B {

 name: string = 'B';

 go() {

 console.log(this.name);

78 Building Better Apps with ES6+ Features

 }

}

const a = new A();

a.go();

const b = new B();

b.go = b.go.bind(a);

b.go();

As you can see from this code, there are two distinct classes: A and B. Both of these classes
have a go function that writes the specific class name to the log. Now, when we reset
the this object's bind of our b object's go function to be the a object, it switches the
console.log(this.name) statement to use a as the this object. So, if we compile
and run, we get this:

Figure 3.2 – bind

As you can see, a.go() writes A but b.go() also writes A, instead of B, since we
switched this to be a instead of b. Note that also, in addition to taking the this
argument, bind can also take any number of parameters thereafter.

You may be wondering what the difference between using bind, call, and apply is.
bind is used to make the this context change and later, when the function is called, it
will have the changed this object. However, call and apply are used at the time the
function is called and immediately replace the this context at the time of calling. The
difference between call and apply is that call takes an indeterminate number of
parameters and apply takes an array of parameters. Let's look at some examples. Create a
file called call.js and add the following code to it:

const callerObj = {

 name: 'jon'

}

function checkMyThis(age) {

 console.log(`What is this ${this}`)

 console.log(`Do I have a name? ${this.name}`)

 this.age = age;

Changing the this context 79

 console.log(`What is my age ${this.age}`);

}

checkMyThis();

checkMyThis.call(callerObj, 25);

First, we are creating a new object called callerObj that has a field called name,
which is jon. After that, we declare a checkMyThis function, which tests what this
is currently and whether it has a name. Finally, we run both calls. Note that the second
call looks weird but checkMyThis.call is an actual execution of the checkMyThis
function. If we run this code, we will see something interesting. Run the following
command:

node call

You will see the following result:

Figure 3.3 – node call

The first execution of the checkMyThis function uses the global object by default, since
it was not overridden. Again, for Node, it's Node's global object, but for browsers, it's the
window object. We also see that the name and age fields are undefined, since Node's
global object does not have the name field and the age was not passed as a parameter
to checkMyThis. However, on the second execution of the function, the one that uses
call, we see that the object has changed to a standard object type and it has a name of
jon, which is the name field for callerObj, and an age field equal to 25, which is the
parameter we passed into call. You should note the order of the parameters list for call
follows the order of the parameters list of the function being called. The usage of apply
would be identical; however, it takes parameters as an array.

80 Building Better Apps with ES6+ Features

In this section, we learned about the difficulties of working with the this context and
how to deal with this using bind. We will use bind extensively later once we start
creating React components. But even beyond that specific use case, you will find that
your code will sometimes need the ability to change the this context and possibly some
parameters for your functions. So, this ability is a very useful feature to have.

Learning about spread, destructuring, and
rest
In ES6+, there are new methods for handling object copying and displaying variables and
parameters. These capabilities go a long way in making JavaScript code both shorter and
easier to read. These features have become standard practice in modern JavaScript, so it is
important that we know about them and use them properly.

Spread, Object.assign, and Array.concat
The spread, Object.assign, and Array.concat JavaScript features are fairly similar.
Basically, you are appending multiple objects or arrays together into one object or array.
However, strictly speaking, there are some differences.

In the case of objects, there are two ways of merging or concatenating objects:

• Spread—for example, { … obja, …objb }: You are creating a non-modified
copy of these two objects and then creating a brand-new object. Note that spread
can handle more than just two objects.

• Object.assign—(obja, objb): You are adding the properties from objb
into obja and returning obja. Therefore, obja is being modified. Here's an
example. Create a new file called spreadObj.ts and add the following code:

namespace NamespaceA {

 class A {

 aname: string = 'A';

 }

 class B {

 bname: string = 'B';

 }

 const a = new A();

 const b = new B();

Learning about spread, destructuring, and rest 81

 const c = { ...a, ...b }

 const d = Object.assign(a, b);

 console.log(c);

 console.log(d);

 a.aname = 'a1';

 console.log(c);

 console.log(d);

}

First, we create a new object, c, which is set using the spread operator, …. After that,
we create d from the Object.assign call. Let's try running this code. You'll need
to target ES6 since Object.assign is only available on that version of JavaScript.
Let's compile and then run with the following commands:

tsc spreadObj –target 'es6'

node spreadObj

Once these commands run, you will see the following:

Figure 3.4 – spreadObj
As you can see, c has both aname and bname properties but is a unique object
unto itself. However, d is actually object a with the properties of object b, which is
demonstrated by the aname variable being equal to a1 after a.aname = 'a1'
was set.

Now, for merging or concatenating arrays, you also have two methods:

• The spread operator: Like spread for objects, it merges the arrays and returns a
single new array. Original arrays are not modified.

• Array.concat: Creates a new array by merging the two source arrays into a
single array. Original arrays are not modified.

82 Building Better Apps with ES6+ Features

Let's take a look at an example using both methods. Create a file called spreadArray.
ts and add the following code:

namespace SpreadArray {

 const a = [1,2,3];

 const b = [4,5,6];

 const c = [...a, ...b];

 const d = a.concat(b);

 console.log('c before', c);

 console.log('d before', d);

 a.push(10);

 console.log('a', a);

 console.log('c after', c);

 console.log('d after', d);

}

As you can see, array c is created using spread from two arrays: a and b. Then, array d is
created using a.concat(b). In this case, both resulting arrays are unique and do not
refer to any of the original arrays. Let's compile and run this code as we did before and see
what we get:

Figure 3.5 – spreadArray

You will see that a.push(10) has no effect on the console.log('d after', d)
statement even though array d was created from array a. This shows that both spread and
concat for arrays create new arrays.

Destructuring
Destructuring is the ability to display and directly use the internal properties of an
object instead of relying on the object name alone. I'll explain this later with an example,
but please be aware that this is a very frequently used feature in modern JavaScript
development, especially in React hooks, so we need to be comfortable with it.

Learning about spread, destructuring, and rest 83

Let's look at an example of object destructuring. For this example, let's just use a JavaScript
file, as the example will be clearer that way. Create a new file called destructuring.js
and add the following code to it:

function getEmployee(id) {

 return {

 name: 'John',

 age: 35,

 address: '123 St',

 country: 'United States'

 }

}

const { name: fullName, age } = getEmployee(22);

console.log('employee', fullName, age);

Let's pretend for a moment that the getEmployee function goes to a server and retrieves
the information of an employee by id. Now, as you can see, the employee object has
lots of fields and perhaps not every caller of the function will need every field. So, we use
object destructuring to select only the fields we care about. Note, in addition, that we also
give the field name an alias of fullName by using the colon.

Destructuring is also possible for arrays. Let's add the following code to this file:

function getEmployeeWorkInfo(id) {

 return [

 id,

 'Office St',

 'France'

]

}

const [id, officeAddress] = getEmployeeWorkInfo(33);

console.log('employee', id, officeAddress);

84 Building Better Apps with ES6+ Features

In the case of this example, the getEmployeeWorkInfo function returns an array
of facts about the employee's work location; but it returns it as an array. So, we can
also destructure an array as well, but note that the order of the elements does matter at
destructure time. Let's look at the results for both functions. Note that we only need to call
Node since this is a JavaScript file. Run the following command:

node destructuring.js

You will see the following results for both functions:

Figure 3.6 – Destructuring

As you can see, both functions have returned the correct relative data.

Rest
Rest is a feature that allows you to refer to an indefinite set of parameters with one
keyword, the … keyword. Any rest parameters are arrays and therefore have access to all
array functions. The rest keyword refers to "the rest of the items" and not "pause" or ''stop."
This keyword allows more flexibility when creating your function signature, as it allows
the caller to determine how many parameters they want to pass. Please note that only the
last parameter can be a rest parameter. Here's an example of using rest. Create a file called
rest.js and add the following code:

function doSomething(a, ...others) {

 console.log(a, others, others[others.length - 1]);

}

doSomething(1,2,3,4,5,6,7);

As you can see, …others refers to the rest of the parameters after a. This indicates that
rest parameters do not have to be the only parameters for a function. So, if you run this
code, you get the following:

Figure 3.7 – Rest

Learning about new array functions 85

The doSomething function receives two parameters: the a variable and the rest
parameter. It then writes a log entry where the a parameter, the rest parameter (which
again is an array of parameters), and the last element of the rest parameter are written.
Rest is not as frequently used as spread and destructuring. Nevertheless, you will see it, so
you should be aware of it.

In this section, we learned about JavaScript features that make code shorter and easier to
read. The usage of these features is very common in modern JavaScript programming, so
you'll benefit greatly from learning how to use these capabilities. In the next section, we'll
learn about some very important array manipulation techniques that streamline dealing
with arrays and are also very popularly used.

Learning about new array functions
In this section, we will review the many methods added for manipulating arrays in ES6.
It is a very important section as you will have to deal with arrays frequently in JavaScript
programming, and using these performance-optimized methods is preferable over
creating your own. The use of these standard methods also makes code more consistent
and readable by other developers on your team. We will take advantage of these methods
extensively in both our React and Node development. Let's get started.

find
The find keyword allows you to grab the first instance of an element from an array that
matches your search criteria. Let's look at a simple example. Create find.ts and add the
following code:

const items = [

 { name: 'jon', age: 20 },

 { name: 'linda', age: 22 },

 { name: 'jon', age: 40}

]

const jon = items.find((item) => {

 return item.name === 'jon'

});

console.log(jon);

86 Building Better Apps with ES6+ Features

If you look at the code for find, you can see that it takes a function as the parameter and
the function is looking for an item with the name of jon. The function does a truth check
to see whether the item's name is equal to jon. If the item truth check is true, find will
return that item. However, you can also see that there are two jon items in the array. Let's
compile and run this code and see which one returns. Run the following commands:

tsc find –target 'es6'

node find

After compiling and running the preceding commands, you should see the following
result:

Figure 3.8 – find

You can see in the output that the first jon item found is returned. This is how find
works; it always gives back only one item—the first one found in the array.

filter
filter is similar to find except it returns all items that match a search criterion. Let's
create a new file called filter.ts and add the following code:

const filterItems = [

 { name: 'jon', age: 20 },

 { name: 'linda', age: 22 },

 { name: 'jon', age: 40}

]

const results = filterItems.filter((item, index) => {

 return item.name === 'jon'

});

console.log(results);

Learning about new array functions 87

As you can see, the filter function can also take an optional second parameter for
the index number of the item in the array. But moving on, internally, it looks identical to
how find works in that there is a truth check to see whether a certain match is found.
However, for filter, all matches get returned, as shown here:

Figure 3.9 – filter

As you can see, for filter, all items that meet the filter criteria are returned, which in
this sample case is both jon items.

map
The map function is one of the more important array functions to know about for ES6
style coding. It appears frequently in React component creation in order to create a
collection of component elements from an array of data. Note that the map function is
different from the Map collection, which we'll cover later in this chapter. Create a new file
called map.ts and add the following code:

const employees = [

 { name: 'tim', id: 1 },

 { name: 'cindy', id: 2 },

 { name: 'rob', id: 3 },

]

const elements = employees.map((item, index) => {

 return `<div>${item.id} - ${item.name}</div>`;

});

console.log(elements);

88 Building Better Apps with ES6+ Features

As you can see, the map function has two parameters, item and index (you can call
them whatever you like, but the order matters), and it maps custom return values to each
array element. To be clear, return means to return each item back into a new array. It
does not mean to return and stop running the iteration. If we run the code, it results in the
following DOM string:

Figure 3.10 – map

This function may in fact be the most common ES6 array function, so it is very important
that you understand how it works. Try modifying the code and practice using it with
different array item types.

reduce
The reduce function is an aggregator that takes each element in an array and, based on
custom logic, creates a single final value. Let's look at an example. Create a reduce.js
file—again, we'll use a JavaScript file to remove some noise from the TypeScript compiler
and focus—and add the following code:

const allTrucks = [

 2,5,7,10

]

const initialCapacity = 0;

const allTonnage = allTrucks.reduce((totalCapacity,
 currentCapacity) => {

 totalCapacity = totalCapacity + currentCapacity;

 return totalCapacity;

}, initialCapacity);

console.log(allTonnage);

Learning about new array functions 89

In this example, let's imagine we need to calculate the total tonnage capacity a trucking
company can carry with all its trucks. So then, allTrucks lists out the tonnage of each
of its trucks. Then, we use allTrucks.reduce to get the total capacity of all trucks. The
initialCapacity variable is used only to have some starting point, which is currently
set at 0. Then, when we log out the final value, we see the following:

Figure 3.11 – reduce

The total capacity of all the trucks is 24 since the sum of each truck's capacity is 24.
Notice the logic of the reducer can be anything; it does not have to be a sum. It could be
a subtraction or any other logic that you may need. The core point is that at the end, you
will have only a single value or object result. This is why it is called reduce.

some and every
These functions are designed to test for certain criteria. So, they only return true or
false. some tests to see whether any element in an array meets certain criteria and
every tests whether all elements meet a certain criteria. Let's take a look at both. Create
a file called someEvery.js and add the following code:

const widgets = [

 { id: 1, color: 'blue' },

 { id: 2, color: 'yellow' },

 { id: 3, color: 'orange' },

 { id: 4, color: 'blue' },

]

console.log('some are blue', widgets.some(item => {

 return item.color === 'blue';

}));

console.log('every one is blue', widgets.every(item => {

 return item.color === 'blue';

}));

90 Building Better Apps with ES6+ Features

The code is pretty straightforward and both conditions of some and every are tested. If
you run this code, you'll see the following result:

Figure 3.12 – someEvery

As you can see, the results are valid for each test.

In this section, we learned about the many new functions added to ES6 that help us deal
with and use arrays in JavaScript more efficiently. You will definitely be using many of
these functions in your own code later when we build our app. Next, we'll learn about
some new collection types that can be used instead of arrays.

Learning about new collection types
ES6 has two new collection types, Set and Map, which can be useful for certain specific
scenarios. In this section, we will learn about these two types and how to write code for
them so that we can use them later when we start building our app.

Set
Set is a collection of unique values or objects. This is a good function to use when you
simply want to see whether an item is contained in a large complex list. Let's see an
example. Create a new file called set.js and add the following code:

const userIds = [

 1,2,1,3

]

const uniqueIds = new Set(userIds);

console.log(uniqueIds);

uniqueIds.add(10);

console.log('add 10', uniqueIds);

console.log('has', uniqueIds.has(3));

console.log('size', uniqueIds.size);

Learning about new collection types 91

for (let item of uniqueIds) {

 console.log('iterate', item);

}

There are many members for the Set object, but these are some of its most important
features. As you can see, Set has a constructor that can take an array, which makes that
array a unique set.

Important Note
In regard to sets, size is used to check quantity not length.

At the bottom, notice how iterating Set is different from the normal way of using array
indexes. Running this file will result in the following:

Figure 3.13 – Set

Conceptually, it is still quite similar to an array but is optimized for unique collections.

Map
Map is a collection of key-value pairs. In other words, it's a dictionary. Every member
of Map has a unique key. Let's create a sample Map object. Create a new file called
mapCollection.js and add the following code:

const mappedEmp = new Map();

mappedEmp.set('linda', { fullName: 'Linda Johnson', id: 1 });

mappedEmp.set('jim', { fullName: 'Jim Thomson', id: 2 });

mappedEmp.set('pam', { fullName: 'Pam Dryer', id: 4 });

console.log(mappedEmp);

console.log('get', mappedEmp.get('jim'));

console.log('size', mappedEmp.size);

92 Building Better Apps with ES6+ Features

for(let [key, val] of mappedEmp) {

 console.log('iterate', key, val);

}

As you can see, some of the calls are quite similar to Set. One difference, however, is the
iteration loop at the bottom, which uses an array to indicate the key and value. Running
this file results in the following output:

Figure 3.14 – mapCollection

It's pretty straightforward. First, a list of all Map objects is logged. Then, we get the jim
item by using its key value with get. Next is size, and then finally an iteration over all
elements.

This section showed the two new collection types in ES6. These types are not used that
frequently but can come in handy should you have the needs that these collections
address. In the next section, we'll discuss async await, which is an ES7 feature. async
await has seen very rapid adoption by the JavaScript developer community because it
makes difficult-to-read asynchronous code much more readable and makes it appear as if
it is synchronous.

Learning about async await
Before explaining async and await, let's explain what asynchronous code is. In most
languages, code is usually synchronous, which means that statements run one after
another. If you have statements A, B, and C, statement B cannot run until statement
A is completed and statement C cannot run until statement B is completed. However,
in asynchronous programming, if statement A is asynchronous, it will start but then
immediately after that, statement B will start. So then, statement B never waits for A to
complete before it runs. This is great for performance but makes code harder to read and
fix. async await in JavaScript attempts to address some of these difficulties.

Learning about async await 93

So, asynchronous programming provides faster performance because statements can run
simultaneously without having to wait for each other. However, in order to understand
asynchronous programming, we need to first understand callbacks. Callbacks are a core
feature of Node.js programming since its inception, so it is important to understand. Let's
look at an example of callbacks. Create a new file called callback.js and enter the
following code:

function letMeKnowWhenComplete(size, callback) {

 var reducer = 0;

 for (var i = 1; i < size; i++) {

 reducer = Math.sin(reducer * i);

 }

 callback();

}

letMeKnowWhenComplete(100000000, function () { console.
log('Great it completed.'); });

If we look at this code, we can see that the letMeKnowWhenComplete function has
two parameters. The first one indicates the size of an iteration to do a math calculation
and the second one is the actual callback. As you can see from the code, callback is a
function that is executed once the math work is complete, hence the name. To be precise,
technically a callback is not actually asynchronous. However, it does provide capabilities
that are effectively the same in that secondary work, the callback, is done exactly once the
primary is complete without needing to wait or poll. So now, let's look at JavaScript's first
method for doing asynchronous completion.

The first capability JavaScript received to do asynchronous execution was with the
setTimeout and setInterval functions. These functions are simple; they take
a callback that is executed once a certain specified time completes. In the case of
setInterval, the only difference is that it repeats. The reason why these functions are
truly asynchronous is that when a timer runs, it runs outside of the current callstack.
A callstack is simply the sequence of code and data running for the current thread. In
the case of JavaScript, it is single-threaded, so timers generally are run by the browser
engine on behalf of JavaScript and then the result comes back to the main JavaScript
thread—again, the callstack. Let's look at a simple example. Create a new file called
setTimer.js and enter the following code:

// 1

console.log('Let's begin.');

// 2

94 Building Better Apps with ES6+ Features

setTimeout(() => {

 console.log('I waited and am done now.');

}, 3000);

// 3

console.log('Did I finish yet?');

Let's review this code. I've added comments to separate out the main sections. First,
under comment 1, we have a log message indicating that this code is starting. Then,
under comment 2, we have setTimeout, which will execute our arrow function
callback after waiting 3 seconds. When the callback runs, it will log that it finished.
After setTimeout, we see another log message, under comment 3, asking whether
the timer has finished yet. Now, when you run this code, a strange thing will happen, as
shown in the following figure:

Figure 3.15 – setTimer

The last log message asking Did I finish yet? will run first, and then the log for
I waited and am done now.' will complete. Why is that? SetTimeout is an
asynchronous function, so when it executes, it allows whatever code was written after it
to execute immediately (even though setTimeout is not done yet). That means in this
case, the log in comment 3 actually runs before the callback in comment 2. So then, if we
imagine that comment 3 had some important code that needed to run right away, without
waiting for comment 2, we can see how using an asynchronous call would be helpful for
performance. Now, let's combine our understanding of callbacks and asynchronous calls
and take a look at Promises.

Before async await, asynchronous code was handled using Promises. A Promise is
an object with a delayed completion at some indeterminate future time. An example of
Promise code would be something like this. Create a file called promise.js and add
the following code:

const myPromise = new Promise((resolve, reject) => {

 setTimeout(() => {

 //resolve('I completed successfully');

 reject('I failed');

 }, 500);

Learning about async await 95

});

myPromise

.then(done => {

 console.log(done);

})

.catch(err => {

 console.log(err);

});

In this code, we first create a Promise object and internally, we use an asynchronous
timer to execute a statement after 500 milliseconds. On the first try, we are deliberately
failing the timer by calling reject and this causes the code below the Promise
definition to go to the catch handler. Now, if we comment out reject and then
uncomment resolve, the bottom code will then go to the then handler. Clearly, this
code works, but if you imagine a much more complex Promise, having many then
statements, or even many Promises, things become increasingly complex to read and
understand.

This is where async await can help. It does two main things: it cleans up the code and
makes it simpler and smaller and it also makes the code easier to follow as it looks like
synchronous code. Let's view an example. Create a new file called async.js and add the
following code:

async function delayedResult() {

 return new Promise((resolve, reject) => {

 setTimeout(() => {

 resolve('I completed successfully');

 }, 500);

 });

}

(async function execAsyncFunc() {

 const result = await delayedResult();

 console.log(result);

})();

96 Building Better Apps with ES6+ Features

This code has a function called delayedResult, which, as you can see, has the
async prefix in front of it. Prefixing a function with async tells the runtime that this
function will return a Promise and therefore should be handled asynchronously. After
delayedResult, we see a function called execAsyncFunc that is both declared
and executed simultaneously. If you are not familiar with it, this capability is called an
Immediately Invoked Function Expression (IIFE). We'll learn about IIFE later, but for
now, let's continue. The execAsyncFunc function is also async-capable and as you can
see, internally, it uses the await keyword. The await keyword tells the runtime that we
are about to execute an asynchronous function, so it should wait on our behalf, and then,
once the statement completes, give us the actual return value instead. If we run this code,
we see the following:

Figure 3.16 – async

As you can see, the result variable contains the I completed successfully
string instead of the Promise that delayedResult normally returns. This syntax
is clearly much shorter and easier to read than having many nested Promise then
statements. Please note that async and await have taken over asynchronous
development in the JavaScript community. You must understand it well in order
to succeed with modern JavaScript. We'll look at one more example to further our
understanding.

Important Note
We had to use an IIFE for the execAsyncFunc function because in current
JavaScript, top-level await is not allowed. Top-level await basically means
being able to run a call to await a function that is not inside of another async
function. In the ECMAScript 2020 version of JavaScript, this is enabled, but as
of the time of writing, it is not yet completely supported across all browsers.

Learning about async await 97

Because async await is so important, let's look at one more example. Let's make a call
to a network resource to get some data. We'll use the fetch API, but since Node does not
support it natively, we'll need to install one more npm package first. Here are the steps:

1. Run the following command in your terminal to install fetch:

npm i node-fetch

2. Create a file called fetch.js and enter the following code:

const fetch = require('node-fetch');

(async function getData() {

 const response = await fetch('https://pokeapi.co/api/v2/
 pokemon/ditto/');

 if(response.ok) {

 const result = await response.json();

 console.log(result);

 } else {

 console.log('Failed to get anything');

 }

})();

Notice, in this example, the easy-to-read and natural flow of the code. As you can see,
we are using the fetch API, which allows us to make asynchronous network calls.
After importing fetch, we again create an async wrapper function to execute await
calls to our fetch function. If you're wondering, the URL is a public API for Pokémon
characters that requires no authentication. The first call to await is for the actual network
call itself. Once that call completes, a check for success is made using response.ok. If
successful, another call to await is made to convert the data into JSON format. Each call
to await blocks the code at that point until the function completes and returns.

98 Building Better Apps with ES6+ Features

We are awaiting because we cannot continue without this data from the network API
and therefore we have no choice but to wait. If you run this code, you will see the
following data:

Figure 3.17 – fetch

When this code ran, you probably noticed a small delay before the code completed. This
shows the code needed to wait until the network call for the data to complete.

In this section, we learned what asynchronous programming is. We also discussed both
Promises, the foundation of asynchronous programming in JavaScript, and async
await, which provides us with a means to streamline our asynchronous code. You will
see async await used heavily in both React and Node development.

Summary
In this chapter, we looked at a lot of the newer, cutting-edge features of JavaScript
programming, such as methods for merging objects and arrays with spread, new and
improved ways of handling arrays, and, of course, async await, a new and very
popular way of working with asynchronous code. It is very important to understand these
features as they are extensively used in modern JavaScript and React development.

In the next section, we will begin digging into single-page application development using
React. We will start using many of the features that we learned about in this chapter.

Section 2:
Learning Single-Page

Application Development
Using React

In this section, we will learn how to set up and build a React web application.

This section comprises of the following chapters:

• Chapter 4, Learning Single-Page Application Concepts and How React Enables Them

• Chapter 5, React Development with Hooks

• Chapter 6, Setting Up Our Project Using create-react-app and Testing with Jest

• Chapter 7, Learning Redux and React Router

4
Learning Single-

Page Application
Concepts and How

React Enables Them
In this chapter, we'll learn about Single-Page Applications (SPAs). This style of
programming web applications is relatively new in the history of web development but
has caught on strongly in recent years. Its use is now common practice for building large
complex web applications that need to feel like native desktop or mobile apps.

We will review the former methods of building web apps and why SPA-style apps were
created. We'll then learn how React can help us build this style of application in
a performant and efficient way.

In this chapter, we're going to cover the following main topics:

• Understanding how websites were built in the past

• Understanding SPA benefits and attributes

• Understanding how React helps build SPA applications

102 Learning Single-Page Application Concepts and How React Enables Them

Technical requirements
The requirements for this chapter are similar to the ones for Chapter 3, Building Better
Apps with ES6+ Features. You should have a basic understanding of JavaScript as well as
HTML and CSS. We will once again be using Node.js and Visual Studio Code (VSCode).

The GitHub repository is again at https://github.com/PacktPublishing/
Full-Stack-React-TypeScript-and-Node. Use the code in the Chap4 folder.

To set up this chapter's code folder, go to your HandsOnTypescript folder and create
a new folder called Chap4.

Understanding how websites were built in
the past
In this section, we will investigate the reasons for the creation of SPA-style programming
by reviewing the original methods for designing and writing web pages. Having this
knowledge will help us understand the reason for the shift to SPAs.

Originally, when the web was getting started, there was no JavaScript language. Initially,
it was all just static HTML pages created to share documents among scientists. Once
this document format and the internet became more popular, people realized that these
documents needed improved styling methods to enhance communication. So, CSS was
created and it became a standard for styling and the layout of HTML documents. Then,
finally, the Netscape browser company decided the web needed a scripting language to
make page content more dynamic, and they created JavaScript.

Despite these features, the original web was still very static in nature. When you entered
a URL into your browser, you got back a single document—that is, an actual file on the
server—and this would be the case for every URL you entered. CSS and JavaScript did
help to make the web look better and be more dynamic, but it did not change the page-
focused model of the web.

As websites became more and more sophisticated, many web developers wanted to have
better control over their web documents. They wanted to dynamically control the layout
and content of web pages. This resulted in Common Gateway Interface (CGI) being
created. CGI was an early attempt at doing Server-Side Rendering (SSR). This basically
means that requests from browsers were received by web servers, but instead of returning
static HTML pages, the server would run a processor that would dynamically generate
a page on the fly based on parameters and logic and then send that back.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

Understanding SPA benefits and attributes 103

Whether the website used a static HTML page that did not change or rendered its pages
on a server using server-side logic, in the past, the emphasis was on sending to browsers
complete HTML pages as files. This was how websites worked in general.

This single-file or page-based model is not at all like how native apps work, either on
desktops or mobile devices. The native app model is different in that the entire app is
downloaded and installed onto the user's device. When the user opens the app, it is ready
to use in its entirety at that moment. Any controls that need to be drawn on the screen are
done so from the code that is already there, and no additional calls to a backend server
are necessary (other than calls to send or get data). This makes apps feel noticeably more
responsive and faster than classic web applications, which constantly required a page
refresh to show new content in the old model.

The impetus of SPA applications was to make web apps feel much more like native device
applications, in order to give them the same sense of speed and responsiveness. Therefore,
the SPA style uses various techniques and libraries to make web applications function and
feel more like native applications.

In this section, we reviewed how websites were built in the early days of the web. Back
then, the focus was on generating and serving individual HTML document files. We saw
how there are limitations with this style of programming, especially when compared
with native applications, and that SPA-style applications are an attempt to address those
limitations and make web apps seem like native apps. In the next section, you will see
what SPA apps are and how they may improve upon the page-focused model of the
original web.

Understanding SPA benefits and attributes
In this section, we will learn about what the benefits and attributes of SPA applications are.
By learning about these attributes, they will help us understand some of the architectural
decisions that were made during React's creation, as well as some of the related libraries
and components used in creating React apps.

As mentioned earlier, the impetus for using SPA-style application building is to make our
web app look and feel more like a native application. By using SPA application methods,
we will make our program respond and look like it was installed on the device. Classic-
style web apps can seem sluggish since any changes to the page require a call back to
the server to get a new screen. However, SPA-style apps redraw portions of the screen
immediately without waiting for a new file to come back from the server. Therefore, as far
as the user can tell, a SPA application is a native device application.

104 Learning Single-Page Application Concepts and How React Enables Them

Building SPA applications is quite complex, with many components and libraries that
need to be used. However, whether we're using Angular, Vue, React, or some other
framework, there are certain features and requirements that will always be common across
SPA applications.

Let's understand some of the requirements:

• As the name suggests, the entire app lives on one HTML page only. Unlike standard
HTML apps, which use separate pages to show different screens, the first page is the
only page that ever loads on a SPA application.

• Instead of static HTML files, JavaScript renders the screen dynamically. Therefore,
the HTML page that is first downloaded is actually almost entirely empty of content.
But what it will have is a root element inside of the body tag that becomes the
container for the entire application, which again is rendered live as the user interacts
with the application.

• All scripts and files needed to run the application are generally downloaded in the
beginning, when retrieving the main HTML file. However, this method is changing
and more applications are downloading only a base-level script file and then
downloading other scripts on-demand as needed. We'll review how to use these
techniques later, as they can enhance the user experience by reducing screen wait
times.

• URL routing is handled differently for SPAs. In SPA applications, there is some
mechanism used, depending on the framework you choose, in order to create
virtual routing. Virtual routing simply means that although it appears to the
user that different calls to different server-side URLs are being made, in reality,
all the "routing" is only happening on the client browser in order to make logical
transitions to different screens. In other words, no calls to servers are made and
URL routing becomes a means to logically separate an app into different screens.
For example, when a user types a URL into their browser, they must then press
Enter for the submission to be posted back to the server that is the destination of
the URL. However, in the case of routing happening in a SPA app, there is no actual
server path indicated by the URL. It does not exist. Therefore, the postback is never
triggered. Instead, the application uses the URL as a sort of container for sections
of the application and also to trigger certain behaviors when certain URLs are
given. Having said this, URL routing is still a useful feature to have, as routing is an
expected capability by most users and it allows them to bookmark screens.

Understanding how React helps build SPAs 105

In this section, we have learned about the attributes that make up a SPA. We covered the
different methods to deal with having only a single file for our entire application and the
methodologies used for building these kinds of applications. In the next section, we will
drill into details about how React enables SPAs and the decisions that were made by the
React team for creating this style of application.

Understanding how React helps build SPAs
In this section, we'll learn about React at a high level. This understanding will help us
build better React-based applications as we'll understand how React operates internally.

As mentioned previously, a website is primarily just an HTML file, which is a text-based
document. This file contains code that the browser uses to create a logical tree called
the Document Object Model (DOM). This tree represents all of the HTML elements
within the file according to their order and relative to other elements in the structure.
All websites have a DOM structure on their pages, whether they use the SPA style or not.
However, React takes advantage of the DOM in unique ways in order to help build apps.

React has two main constructs:

• React maintains its own virtual DOM at runtime. This virtual DOM is distinct from
the browser's DOM. It is React's own unique copy of the DOM that it creates and
maintains based on the instructions from our code. This virtual DOM is created
and edited as needed based on a reconciliation process that the React service does
internally. The reconciliation process is a comparison process where React looks at
the browser DOM and contrasts that with its own virtual DOM. This reconciliation
process is generally known as the render phase. When differences are found—
for example, the virtual DOM contains an element not contained in the browser
DOM—React will send instructions to the browser DOM to create that element so
that the browser DOM and the virtual DOM match. This process of adding, editing,
or removing elements is known as the commit phase.

• The other main attribute of React development is that it is state-driven. In React, an
application is made up of many components, and in each component, there may be
some local state (that is, data). If this data changes for any reason, React will trigger
its reconciliation process and make changes in the DOM if needed.

To make these concepts more concrete, we should take a look at an example of a simple
React application. But before we do that, let's review what a React application is "made of."

106 Learning Single-Page Application Concepts and How React Enables Them

Attributes of a React application
At its core, a modern React application will need a few base features to function.
We'll need npm to help us manage the application's dependencies. As you've seen from
our previous exercises, npm is a repository that allows us to download open source
dependencies from a central store and use them in our application. We'll also need a tool
for doing what's called bundling. A bundling system is a service that aggregates all of our
script files and assets, such as CSS files, and minifies them into a single set of files. The
minification process removes whitespace and other unneeded text from our scripts so
that the files that ultimately get downloaded onto user browsers are as small as possible.
This smaller payload size improves app startup time and improves user experience. The
bundling system we'll use is called webpack, and we've selected it because it's the industry
standard for bundling React applications. In addition, we can use npm's built-in script
system and create scripts to automate some of our work. For example, we can create
scripts that will start up our test server, run our tests, and build the final production
version of our app.

If we use the create-react-app npm package, we can get all of the previously
mentioned dependencies, as well as common dependencies for doing React development
and some built-in scripts to manage our app. Let's use this package and create our
first app:

1. On your terminal or command line, go to the HandsOnTypescript/Chap4
folder and run the following command:

npx create-react-app try-react -–template typescript

We are using npx, instead of npm i -g, so that you don't have to install create-
react-app locally.

2. Once this command completes, open VSCode and open the newly created folder,
try-react, which we created at the start of this chapter.

3. Open the terminal in VSCode and run the following command:

npm run build

This command will create a production build of our app and put it into a folder
called build. After the build completes, you should see the following structure
from VSCode:

Understanding how React helps build SPAs 107

Figure 4.1 – try-react

Let's take a look at what create-react-app gives us, starting from the top:

• The build folder is the destination of all of our bundled and minified final
production files. They have been shrunken down to be as small as possible and
debug information has also been removed in order to enhance performance.

• Next, we have the node_modules folder, which contains all of our dependencies
that we download from the npm repository.

• Then, we have the public folder, which is a folder for static assets, such as the
index.html file, which will be used to build out our final app.

• Next, we have what is perhaps the most important folder, called src. As the
shortened name implies, this is the folder that contains all of our source scripts.
Any files with a .tsx extension indicate a React component. .ts files are just plain
TypeScript files. Finally, .css files have our styling attributes (and there can be
more than one). d.ts files are files that contain TypeScript typing information that
the compiler uses to determine static type checks it needs to do.

108 Learning Single-Page Application Concepts and How React Enables Them

• Next is the .gitignore file. This file is for use with the GitHub code repository
we are using to save this book's source code. As the name implies, with this file, we
are telling our git system to not upload certain files and folders, but to
ignore them.

• The package.json and package-lock.json files are for configuring and
setting our dependencies. Additionally, they can store configurations for our build,
test, and run scripts, as well as configurations for the Jest testing framework.

• Finally, we have our tsconfig.json file, which we discussed in Chapter 2,
Exploring TypeScript. It will configure the TypeScript compiler. Please notice that
by default, strict mode is turned on, and therefore we cannot use implicit any or
undefined.

Now that we've done this quick inventory of our project, let's take a look at the contents of
some of our files. First, we'll start with the package.json file. There are many sections
to the package.json file, but let's look at some of the most important ones:

• The dependencies section contains the libraries that our app will be using
for certain pieces of functionality. These dependencies include React, as well as
TypeScript and Jest libraries for doing testing. The @types dependencies contain
the TypeScript definition files. TypeScript definition files store static typing
information for frameworks that are written in JavaScript. In other words, this file
tells the TypeScript compiler the shape of the types being used by a framework so
that type declarations and checking can be done.

• There is another dependencies section, called devDependencies—although
it's not used here—which normally stores development time dependencies (as
opposed to the dependencies section, which normally only stores the runtime
dependencies). For whatever reason, the React team decided to merge the two
into dependencies. Having said that, you should be aware of it as you'll see this
section in many projects.

• The scripts section is for storing scripts that manage the application. For example,
the start script is used by calling npm run start, or npm start for short.
This script is used to start our application using a development server. We can also
add our own scripts, as we'll do later, for doing things such as deploying production
files to a server.

Understanding how React helps build SPAs 109

Be aware that the projects created by create-react-app have been highly modified
by the React team. They have been optimized by the team and have hidden scripts and
configurations that are not readily visible—for example, base webpack configurations
and scripts. If you're curious, you can run npm run eject to see what all these
configurations and scripts are. However, please note that this is not reversible. So, you will
not be able to undo it. We will not be using an ejected project, as there's little benefit in
doing so.

Now, let's look at some of the scripts. Open the index.tsx file from the src folder and
you'll see the following:

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './serviceWorker';

ReactDOM.render(

 <React.StrictMode>

 <App />

 </React.StrictMode>,

 document.getElementById('root')

);

// If you want your app to work offline and load faster, you

 // can change

// unregister() to register() below. Note this comes with some

 // pitfalls.

// Learn more about service workers: https://bit.ly/CRA-PWA

serviceWorker.unregister();

Service workers
Service workers are a way of doing simple threading in JavaScript. We will
not be using this feature, but it comes as part of the create-react-app
project, so I have left it for completeness.

110 Learning Single-Page Application Concepts and How React Enables Them

Again, any file containing a React component that returns JSX will have a .tsx file
extension. We are starting with this file because this is React's entry point for the
application. It's where React starts its runtime build process. Now, if we start from the
top, we can see that ES6 syntax for importing dependencies is being used. React and
related modules are being imported, including the core App module, which we'll explore
shortly. After the imports, we can see that ReactDOM.render is called, which ultimately
"writes out" the HTML of all our components combined. It takes two arguments. One is
the lowest - level React component from which rendering will start and the other is the
HTML element used to contain the rendered content. As you can see, the App component
is wrapped with a component called React.StrictMode. This component is simply an
aid to development. When compiling in production mode, it has no effect and does not
impact performance. However, in development mode, it provides extra information about
potential issues in our code. This may change over time, but here is a list of the current
help it provides:

• Identifying components with unsafe life cycles: It will show you if you
are using unsafe life cycle calls, such as componentWillMount,
componentWillReceiveProps, and componentWillUpdate. When coding
with Hooks, these issues don't apply, but it is good to be aware of them for legacy
class-based components.

• Warning about legacy string ref APIs: The older way of creating a reference to
an HTML element, as opposed to a React component, was to use a string—for
example, <div ref="myDiv">{content}</div>. Because this method uses
a string, it has issues and now the preferred method is to use React.createRef
instead. We'll discuss why you might use a ref in later chapters.

• Warning about deprecated findDOMNode usage: findDOMNode is now
deprecated because it broke abstraction principles. Specifically, it allowed parent
components, in a component tree, to code for specific child components. This tie-in
to code implementation means that it becomes difficult to change code later because
the parent now depends on something existing in its component tree. We discussed
object-oriented programming principles, including abstraction, in Chapter 2,
Exploring TypeScript.

• Detecting unexpected side effects: Side-effects are unintended consequences of
our code. For example, if my class component initializes its state in the constructor
from some other function or property, it would not be acceptable if that state
sometimes received different values for every initialization. In order to help catch
these kinds of issues, React.StrictMode will run certain life cycle calls, such as,
for example, the constructor or getDerivedStateFromProps, twice to try and
show whether this type of thing is happening. Note that this only happens during
development.

Understanding how React helps build SPAs 111

• Detecting the legacy context API: The context API is a React feature that provides
a global state across all components of an application. There is a newer version of
the API and the older one is now deprecated. This checks that you are not using the
older one.

Most of the checks being done revolve around the older class-based component style.
However, since the vast majority of existing code that you will probably have to maintain
is still written in the older style with classes, it's still important to know.

Next, let's take a look at the App.tsx file:

import React from 'react';

import logo from './logo.svg';

import './App.css';

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <p>

 Edit <code>src/App.tsx</code> and save to reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn React

 </header>

 </div>

);

}

export default App;

112 Learning Single-Page Application Concepts and How React Enables Them

Important note
Please note that the JSX syntax, as shown here, is not actually HTML. It
is custom JavaScript. Therefore, any time there is a potential conflict with
JavaScript keywords, React uses another name. For example, class is a
reserved keyword in JavaScript. So, React uses className instead to
represent CSS classes.

Although the index.tsx file is the main starting point for React, the actual components
that we will build for our app start in the App.tsx file. So, this is a very important file
for us.

Let's discuss some items in this code:

• First, we are importing React from the React npm dependency. If you look inside of
the npm_modules folder, you will find a subfolder called react, and that folder
is what this import statement is referring to. Any code imports we did not create
ourselves will be in the node_modules folder.

• Next is the logo import. Image assets are imported into a JavaScript variable—in
this case, the logo variable. Also, as you can see, since this is not an npm module,
it requires a dot reference. npm modules do not require a relative path because the
system is aware of which folder to start looking in, npm_modules.

• Next, we import App.css. This file is the styles file and therefore does not have
an associated JavaScript variable to it. Since it is not an npm package, it also requires
a relative path.

• The App component is a functional component, as shown by its syntax. The App
component is the root parent component for the entire application. This component
has no state of its own and just renders out content. So, the return statement is the
rendered content and it is using JSX.

• We'll go into much more detail about what JSX is in later chapters; however, for
now, JSX is HTML-like syntax written in JavaScript. It was created by the React
team to make it easier and clearer to create HTML content with React components.
The main thing to note is that although it looks almost identical to HTML, it is not
really HTML and therefore there are some differences in the way it works.

• The style reference to CSS classes, which is normally set as class, is set as
className, as shown in the code. This is because class is a JavaScript keyword
and so cannot be used here.

• Squiggly brackets indicate code is being passed, not strings. For example, the img
tag's src attribute takes a JavaScript variable, logo, as its value, and also that value
is inside of squiggly brackets. To pass strings, use quotes.

Understanding how React helps build SPAs 113

Let's start our app in development mode to see what this basic screen looks like. Run the
following command:

npm start

Once you run the previous command, you should see the following screen in your
browser:

Figure 4.2 – App start

As you can see, the text and logo from our App.tsx file is showing up, since this is the
main starting component of our application. Once we start coding, we will leave this
server running, and when we save any script files, the page will automatically update,
allowing us to see our changes in real time.

To get a better feel for building components in React, as well as how React routing works,
let's create our first simple component:

1. Create a new file in the src folder called Home.tsx and add the following code:

import React, { FC } from "react";

const Home: FC = () => {

114 Learning Single-Page Application Concepts and How React Enables Them

 return <div>Hello World! Home</div>;

};

export default Home;

2. Now, as you can see, we are creating a component called Home that returns a div
tag with the words Hello World!. You should also notice that we are using
the FC, functional component, declaration to type our component. Functional
components are the only way of creating components when using React Hooks, as
opposed to the older class style. This is because the React team believes composition
works better as a means of doing code reuse than inheritance. But do notice that the
importance of having code reuse, whatever the method, is still there.

3. Now, in order to get our component to show on the screen, we need to add it to our
App.tsx file. But let's also add routing to our app and explore that as well. First,
update the index.tsx file like this:

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './serviceWorker';

import { BrowserRouter } from "react-router-dom";

ReactDOM.render(

 <React.StrictMode>

 <BrowserRouter>

 <App />

 </BrowserRouter>

 </React.StrictMode>,

 document.getElementById('root')

);

// If you want your app to work offline and load faster,

 // you can change

// unregister() to register() below. Note this comes with

 // some pitfalls.

Understanding how React helps build SPAs 115

// Learn more about service workers:

 // https://bit.ly/CRA-PWA

serviceWorker.unregister();

The index.tsx file now has a component called BrowserRouter. This
component is part of React Router and is the base component that allows routing
to happen across the application. Since it wraps our App component, and the rest
of the application lives inside of this App component, it means routing services are
being provided for the entire application.

4. Since we will be using React Router, let's also create a component for a second route,
called AnotherScreen:

import React, { FC } from "react";

const AnotherScreen: FC = () => {

 return <div>Hello World! Another Screen</div>;

};

export default AnotherScreen;

5. Now, update the App.tsx file like this:

import React from "react";

import "./App.css";

import Home from "./Home";

import AnotherScreen from './AnotherScreen';

import { Switch, Route } from "react-router";

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <Switch>

 <Route exact={true} path="/"
 component={Home}></Route>

 <Route path="/another"
 component={AnotherScreen}></Route>

 </Switch>

 </header>

116 Learning Single-Page Application Concepts and How React Enables Them

 </div>

);

}

export default App;

As you can see, the header contents have been replaced. In this file, you can see that
among the tags, you have a component called Switch. This component acts a lot
like a switch statement. It tells React Router which component to display when
a certain route, URL path, is given. Inside of the Switch component, we can see
two Route components. The first one is for the default root route, as indicated
by path being equal to "/". For this route, React Router will display the Home
component (note that using exact just means the URL should be an exact match).
The second route is for the "/another" path. So, when this path is in the URL
box, the AnotherScreen component will be loaded.

6. If you left npm start running, you should see Hello World! Home, as follows:

Figure 4.3 – Home

7. If you look at the URL, you can see that it is on the root of the site. Let's try
switching the URL to http://localhost:3000/another:

Understanding how React helps build SPAs 117

Figure 4.4 – Another screen

As you can see, it loaded the AnotherScreen component, as per our instructions to
load that component for this specific URL.

Additionally, if you open your Chrome browser debugger, you will see that no network
calls to that specific path were actually made. Again, this confirms that React Router is not
doing any postbacks for these paths and they only exist on the browser locally:

Figure 4.5 – Chrome debugger

This was just a quick example of building a React app and components just to get
us started.

118 Learning Single-Page Application Concepts and How React Enables Them

In this section, we learned how React works internally and how to set up a React project.
This knowledge will be valuable in the coming chapters as we begin to build out our
application.

Summary
In this chapter, we learned about how websites were built in the early days of the web. We
also learned about some of the limitations of the older style of web development and how
SPA applications attempt to overcome them. We saw how a SPA application's main driver
is to make web apps behave more like native applications. Finally, we got an introduction
to React development and building components.

In the next chapter, we'll build upon this knowledge and go into React component
building in more depth. We'll look at class-based components and compare and contrast
them to the newer Hook-style components. The things we've learned so far about web
development and React-based web development will help us to better understand this
next chapter.

5
React Development

with Hooks
In this chapter, we'll learn about development with React Hooks. We'll compare and
contrast Hook development with the older class-based style and see why development
with Hooks is a better way of developing in React. We'll also learn about best practices
when coding with Hooks so that we can have the best quality code.

In this chapter, we're going to cover the following main topics:

• Understanding the limitations of class-style components

• Learning about React Hooks and understanding the benefits

• Comparing and contrasting the class-style and the Hooks style

Technical requirements
You should have a basic understanding of web development and the SPA style of coding.
We will once again be using Node and Visual Studio Code.

The GitHub repository is at https://github.com/PacktPublishing/Full-
Stack-React-TypeScript-and-Node. Use the code in the Chap5 folder.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

120 React Development with Hooks

To set up the Chapter 5 code folder, go to your HandsOnTypescript folder and create
a new folder called Chap5.

Understanding the limitations and issues with
the old class-style components
In this section, we'll review what class-style components are. We'll see why inheritance-
style code reuse and lifecycle methods, although well intentioned, ultimately did not
provide good code reuse and component structure capabilities. Although we will not
write our code with class components, it is very important to understand class-based
components because most existing React code uses classes, since Hooks are still somewhat
new. So, as a professional developer, you will have to read and maintain this code base
until it uses Hooks.

In order to understand the limitations of class-style components, we first need to review
what they are. A React application is made up of many individual structures called
components. When using a class-based style, these components are JavaScript ES6 classes
that inherit from React.Component. A component is basically a machine that may
contain data, called state, and the component will emit HTML via a language called JSX
based upon changes to this data. Although components can become quite complex, at
a basic level this is what they are.

A class component usually has state of its own, although this is not a requirement. In
addition, a class-based component can have child components. Child components are
simply other React components that have been embedded into the render function of
a parent component and therefore will be rendered out when the parent is rendered.

A class component must inherit from the React.Component object. By doing this, it
receives all the capabilities of a React component, including the lifecycle functions. These
functions are event handlers that React provides that allow developers to hook into events
that occur at specific times during the lifetime of a React component. In other words,
these functions allow us as developers to inject our own code and logic into a React
component at the desired time.

Understanding the limitations and issues with the old class-style components 121

State
We touched upon state in Chapter 4, Learning Single-Page Application Concepts and
How React Enables Them. Let's dive a little deeper before we learn more about React
components. React uses JSX to render HTML to the browser. However, the thing that
triggers these renders is component state or, more accurately, any change to component
state. So, what is component state? In a React class component, there is a single field called
state. This field is an object that can contain any number of properties that describe the
associated component. Functions should not be applied to state, but you can have as many
functions as you require as members of your class component.

As mentioned, changing state causes the React system to re-render your component. State
changes are what drive renders in React and components contain only the UI elements
for themselves, which is a good way of maintaining a separation of concerns and clean
coding practices. State changes in class-based components are triggered by the setState
function. This function takes a parameter that is your new state and React will later
asynchronously update your state. This means the actual state change does not happen
immediately but is controlled by the React system.

In addition to state there is the ability to share the state of a component using props. Props
are state properties that have been passed down to child components of a component.
Just like when state changes, if props change, a re-render on the child is also triggered.
A re-render of a parent will also trigger a re-render to a child. Note that a re-render does
not mean the entire UI is updated. The reconciliation process will still run and will only
change what is needed based upon what state has changed and what is already on
the screen.

122 React Development with Hooks

Lifecycle methods
The following image is a good overview of the lifecycle calls in a class-based
React component. As you can see, it's quite complicated. In addition, there are
also several deprecated functions that are not mentioned in the diagram, such as
componentWillReceiveProps, which have been completely eliminated as they were
causing issues such as unwanted renders and infinite loops:

Figure 5.1 – React class component lifecycle

Image source: http://projects.wojtekmaj.pl/react-lifecycle-
methods-diagram/

Let's review this diagram starting at a high level. First off, you can see we have Mounting,
Updating, and Unmounting. Mounting is simply the instantiation and initialization of
a component, and then the addition of the initialized component into the virtual React
DOM. We discussed the virtual DOM that React uses to reconcile components between
itself and the real browser DOM in Chapter 4, Learning Single-Page Application Concepts
and How React Enables Them. Updating refers to re-renders. That is when state changes
and the UI must be updated. Unmounting is when a component is no longer used and is
to be removed from the DOM.

http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/

Understanding the limitations and issues with the old class-style components 123

Now we'll go over the lifecycle methods. Since there are many, let's list them.

Mounting
Under mounting, we have the following methods:

• Constructor: This is not a lifecycle method but the built-in class constructor.
It is traditionally used to initialize state and bind any custom event functions. You
may recall from Chapter 3, Building Better Apps with ES6+ Features, bind is used to
switch the this object of a function. This is done in the constructor.

• getDerivedStateFromProps(props, state): If you are basing your local
state on props from a parent you would use this function. This is a static function.
It should be used sparingly as it triggers additional renders. It can also be used in
updates.

• render: This can also run during updating for re-renders. This function is what
triggers the reconciliation process for React. It should only render out JSX, which
could also be inside arrays or plain text. If due to state or props you decide there is
nothing to render you should return null. It is possible to return a boolean, but
outside of testing I see little value in doing this.

• componentDidMount: This function is triggered after a component is finished
mounting (being initialized). You can place network API calls here. You can also
add event handler subscriptions here, but you must remember to unsubscribe them
in the componentWillUnmount function or it can cause a memory leak. You can
call setState to change local state data here, but you are then triggering a second
call to render so it should be used sparingly. SetState is used to update local
state.

• UNSAFE deprecated methods (do not use) are UNSAFE_componentWillMount,
UNSAFE_componentWillReceiveProps, and UNSAFE_
componentWillUpdate.

124 React Development with Hooks

Updating
Let's look at the methods under updating:

• shouldComponentUpdate(nextProps, nextState): This is used to
decide whether a re-render should be done or not. It usually compares the previous
props to the current props.

• getSnapshotBeforeUpdate(prevProps, prevState): This runs
immediately before the render to DOM occurs so you can capture the DOM state
just before React changes it. If you return something from this function, it is given
as a parameter to the componentDidUpdate function.

• componentDidUpdate(prevProps, prevState, snapshot): This
function runs immediately after a re-render is complete. You can make changes
to the finished DOM here, or you can call to setState, but you must have
a condition so that you do not cause an infinite loop error. The snapshot state
comes from the getSnapshotBeforeUpdate function.

Unmounting
The following method is used at this level:

• componentWillUnmount: This is similar to dispose functions in languages
such as C# and can be used to do cleanup work, for example, removing event
listeners or other subscriptions.

The main concern in dealing with any of these lifecycle methods is to prevent unnecessary
or unwanted re-renders. We must select the one that is less likely to trigger unnecessary
re-renders, or if we need to use a specific method so our code runs at a specific time, we
should add prop and state checks in order to reduce unneeded re-renders. It is paramount
that you get renders until control or your user experience will suffer because of a slow and
buggy application.

Let's go over some of the main calls. Let's start with getDerivedStateFromProps.
In general, it is a good idea to avoid using this function, or just use it sparingly. From
experience, it makes it very difficult to figure out when a component will re-render. In
general, it tends to trigger unwanted re-renders, which can cause unintended behavior
that's again difficult to track down.

Understanding the limitations and issues with the old class-style components 125

The React team recommends some alternatives, and we should always prefer these as they
are almost always easier to reason about and more consistent in behavior:

• When you need to trigger behavior based upon a prop value that changed.
For example, getting network data or triggering some other action. Use
componentDidUpdate instead. It is less likely to trigger an infinite loop as long
as you do a check before causing anything that changes state. For example, you can
use the prevProps parameter and compare it to your local state values before
calling setState to change your state data.

• Use the memoization technique (note this idea is not a part of React necessarily;
it's just a programming technique). Memoization is basically like caching, except
instead of having a cache expiration you would use a variable change to update the
cache. So, in React, this simply means use a property or function that first checks
whether a props value is different from last time, and only if it is different does it
trigger a state update.

There is a built-in component wrapper in React called React.memo. It will trigger
a re-render only when a child's props change, not when the parent component
re-renders.

• Make your component fully controlled, which simply means that it will have no
state of its own and will render under the direction of its parent whenever props
change or the parent renders. Facebook also recommends using uncontrolled
components as well by changing their key (a key is a unique identifier for
the component), which then triggers a re-render. However, I disagree with
this suggestion. As you recall, we discussed encapsulation and abstraction in
Chapter 1, Understanding TypeScript, and this means that the uncontrolled
component's behavior should be unknown to the parent. This also means that it
is not entirely controllable by the parent, and it shouldn't be. Therefore to get an
uncontrolled component to do what the parent wants may make it tempting to add
implementation changes inside that component, which will then tie it more closely
to the parent. At times this may be unavoidable, but if it can be avoided it should be.

• If your component's rendered state depends on network data you can use
componentDidMount to make your network call there, and then update state
(assuming you need this data only once on load). Note componentDidMount
only runs once on the component's first load. Also, if you use this function you will
be doing one additional render, but that's still better than the potential for causing
additional unwanted renders.

126 React Development with Hooks

• ComponentDidUpdate can be used to handle scenarios where state needs to
change due to prop changes. Since this method is called after the render, it is less
likely to cause infinite render loops as long as you compare your props to state
before triggering any state changes. Having said that, it is better to avoid derived
state entirely if at all possible and keep your state in a single parent root component
and share that state via props. To be honest, this is tedious work as you will need to
pass down your state via props to children that may be several layers deep. It also
means you need to structure your state schema well so that you can cleanly separate
state bound for a specific child. When we use Hooks later, you'll see that this is
much easier to do with Hooks than with a single state object. Nevertheless, having
as little local component state as possible is a best practice for React development.

Let's create a small project where we can try out a class component and discuss its
features:

1. Switch your command line or terminal to the Chap5 folder.

2. Run the following command within that folder:

npx create-react-app class-components -–template
typescript

3. Now open Visual Studio in the folder you just created, class-components, and
also open a terminal or command line in that same folder. Let's create a new file
called Greeting.tsx in the src folder. It should look like this:

import React from "react";

interface GreetingProps {

 name?: string

}

interface GreetingState {

 message: string

}

export default class Greeting extends React.
 Component<GreetingProps, GreetingState> {

 constructor(props: GreetingProps){

 super(props);

 this.state = {

 message: `Hello from, ${props.name}`

 }

 }

Understanding the limitations and issues with the old class-style components 127

 render() {

 if(!this.props.name) {

 return <div>no name given</div>;

 }

 return <div>

 {this.state.message}

 </div>;

 }

}

If you look at this file, first you notice that the file extension is tsx. When using
TypeScript and creating a React component you must use tsx as your file's
extension. Next, when we look at the code we see the import of React, which
provides not only the Component to inherit from but also access to JSX syntax.
Next, we see two new interfaces: GreetingProps and GreetingState.
Again, because we are using TypeScript and want type safety we are creating the
expected types for both any props that come into our component and the state
that is being used inside of our component. Also take note that the name field
in the GreetingProps interface is optional, which means it can also be set to
undefined, as we'll use it later. Again, avoid having local state in your non-parent
non-root components when possible. I am doing this for example purposes here.

4. When we create our class we also need to remember to export it so that it
can be accessed by whatever component will be using it. This is done with
the export keyword. In addition, we use the default keyword to indicate that
this is the main export of this module, and therefore when importing this
module we do not need to use brackets. I'll show an example of importing this
module later. In the class definition signature, we see that it extends React.
Component<GreetingProps>. This type declaration is indicating not only that
this class is a React component but also that it takes a prop of the GreetingProps
type. Once the declaration is set we define the constructor, which takes a prop of the
same type, GreetingProps.

128 React Development with Hooks

Important Note
If your component takes props, it is important that the first call you
make inside the constructor is the call to the base class constructor,
super(props). This ensures that React is aware of your incoming props
and so can react when props change (no pun intended). Inside the constructor,
we don't need to use this.props to reference the props object since it is
being passed in as a constructor parameter. Anywhere else, this.props is
required.

5. Next, we see that state is instantiated in constructor, and the variable and
its type are declared in the line below as being the GreetingState type. Then,
finally, we have our render function, which declares JSX that will eventually be
converted into HTML. Notice that the render function has a logical if/else
statement to show a different UI depending on the value of this.props.name.
render functions should try and control the proper UI and not render anything
when there is no reason to. This can improve performance and memory when done
consistently. Just return null if there is nothing to render, as React understands
this value is indicating not to render anything.

6. Now all we need to do is update the App.tsx file so that it includes our
Greeting.tsx component. Open the App.tsx file and update it like this:

import React from 'react';

import logo from './logo.svg';

import './App.css';

import Greeting from "./Greeting";

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <img src={logo} className="App-logo" alt="logo"
 />

 <Greeting />

 </header>

 </div>

);

Understanding the limitations and issues with the old class-style components 129

}

export default App;

First, notice that we are importing the Greeting class. Since our Greeting class
is the default export of the Greeting.tsx module file (we don't need to indicate
the extension) we need not use {} in between import and from. If the Greeting
class was not the default export, for example, if we had many exports in the same
module file, then we would need to use this syntax: import { Greeting }
from "./Greeting".

7. As you can see, we used the Greeting component to replace some of the JSX that
was already there. Notice that we did not pass the name property to Greeting.
Let's see what happens when we run the app. Execute this command in your
terminal, making sure you are in the class-components folder:

npm start

You should see this screen:

Figure 5.2 – Application first load
This message appeared because we had not passed a name property to our
Greeting component. As we saw, it was possible to leave this property empty
because of the ? next to the field's type definition.

8. Now let's go to our App.tsx file and update Greeting to add a name value.
Replace the Greeting component inside App.tsx with this:

import React from 'react';

import logo from './logo.svg';

import './App.css';

import Greeting from "./Greeting";

function App() {

130 React Development with Hooks

 return (

 <div className="App">

 <header className="App-header">

 <img src={logo} className="App-logo" alt="logo"
 />

 <Greeting name="Dave Choi" />

 </header>

 </div>

);

}

export default App;

Notice that we added a property called name with a value of my own name. Feel
free to enter your name instead and then save the file. Since React includes an
auto-updating test server, the browser page should update with your new code
automatically. You should see your name like this on the screen:

Figure 5.3 – Updated screen

OK, so we've created a simple class-based component. Let's now start making use of some
of the lifecycle methods and see how they work:

1. Update Greeting.tsx to include the getDerivedStateFromProps function:

import React from "react";

interface GreetingProps {

 name?: string

}

interface GreetingState {

 message: string

}

export default class Greeting extends

Understanding the limitations and issues with the old class-style components 131

 React.Component<GreetingProps> {

 constructor(props: GreetingProps){

 super(props);

 this.state = {

 message: `Hello from, ${props.name}`

 }

 }

 state: GreetingState;

2. The code is virtually identical except we will now add the
getDerivedStateFromProps function just above the render function:

 static getDerivedStateFromProps(props: GreetingProps,

 state:GreetingState) {

 console.log(props, state);

 return state;

 }

 render() {

 console.log("rendering Greeting")

 if(!this.props.name) {

 return <div>no name given</div>;

 }

 return <div>

 {this.state.message}

 </div>;

 }

}

As you can see this is a static function, a function that is associated with the class
and not a class instance. This function takes the current props and state values and
passes them in for the component to use to update its state if needed. Right now, we
do not update our local state. We only log the props and state and just return the
state (this function must always return a state object, whether it has been updated
or not). Also notice in the render function we are console logging the fact that the
render function was called.

132 React Development with Hooks

3. Let's leave this code as is for now and update our App.tsx file so that it can accept
an input, which takes the name of the current user:

import React from 'react';

import logo from './logo.svg';

import './App.css';

import Greeting from "./Greeting";

class App extends React.Component {

 constructor(props:any) {

 super(props);

 this.state = {

 enteredName: ""

 }

 this.onChangeName = this.onChangeName.bind(this);

 }

 state: { enteredName: string }

 onChangeName(e: React.ChangeEvent<HTMLInputElement>) {

 this.setState({

 enteredName: e.target.value

 });

 }

In order to accept input and hold onto it so it can be used later, we create a state
object with a field called enteredName. We also create a new function called
onChangeName and bind it to the current this class instance, like we learned in
Chapter 3, Building Better Apps with ES6+ Features.

4. In onChangeName, we are then setting the state property enteredName to the
value of the user input by using the setState function. You must never modify
state in your class components without using this function or else your state will
lose synchronization with the React runtime:

 render() {

 console.log("rendering App");

 return (

 <div className="App">

Understanding the limitations and issues with the old class-style components 133

 <header className="App-header">

 <img src={logo} className="App-logo" alt="logo"
 />

 <input value={this.state.enteredName}

 onChange={this.onChangeName} />

 <Greeting name={this.state.enteredName} />

 </header>

 </div>

)

 }

}

export default App;

5. Next, we have added a console.log statement to see when the App.tsx
render function is called. Also, we have defined a new input control whose
value is this.state.enteredName and its onChange event is tied to our
onChangeName function. If you save this code and open the Chrome dev tools,
you will see this:

Figure 5.4 – Rendering Greeting
You can see our render logging messages and also the Greeting name prop and
message state values. Additionally, since we did not enter a value in the input,
the name prop is blank and therefore the name property of our Greeting
component and the end of the message string are also blank. You're probably
wondering why the logs for Greeting run twice. It's because we are running in
StrictMode for development purposes.

134 React Development with Hooks

6. Let's quickly remove that so we don't get confused. Go to your index.tsx file and
replace the code with this:

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import * as serviceWorker from './serviceWorker';

ReactDOM.render(

 <React.Fragment>

 <App />

 </React.Fragment>,

 document.getElementById('root')

);

// If you want your app to work offline and load faster,
 // you can change

// unregister() to register() below. Note this comes with
 // some pitfalls.

// Learn more about service workers:
 // https://bit.ly/CRA-PWA

serviceWorker.unregister();

We replaced StrictMode with Fragment. We don't actually need Fragment
as it's only used to wrap a set of JSX elements that don't have a parent wrapping
element such as div, but it's fine for our testing, and I want to leave a placeholder to
put back the StrictMode tags.

7. If you save and look at your browser debug console, you will see this:

Figure 5.5 – Browser debug console
The rationale for all this work is to show what specifically can trigger calls to render
and how we can be more careful about this.

Understanding the limitations and issues with the old class-style components 135

8. Now let's type our name into the input, and you'll see this:

Figure 5.6 – App.tsx input

9. The question is, why does my message end with "Hello from, "? If you look at the
code in Greeting, you can see that we only set the message state property once
during the constructor run (which is effectively like using componentDidMount).
So, since this event runs only once when the screen first loads, at that time this.
props.name is blank as we've not entered a value yet. So, what can we do? Well,
let's try using the getDerivedStateFromProps function and see what happens:

export default class Greeting extends React.
 Component<GreetingProps> {

 constructor(props: GreetingProps){

 super(props);

 this.state = {

 message: Greeting.getNewMessage(props.name)

 }

136 React Development with Hooks

 }

 state: GreetingState;

10. I'm only showing the Greeting class as that's the only thing I want to
change for this example. So, in the following code, take a look at the updated
getDerivedStateFromProps:

 static getDerivedStateFromProps(props: GreetingProps,

 state:GreetingState) {

 console.log(props, state);

 if(props.name && props.name !== state.message) {

 const newState = {...state};

 newState.message =

 Greeting.getNewMessage(props.name);

 return newState;

 }

 return state;

 }

 static getNewMessage(name: string = "") {

 return `Hello from, ${name}`;

 }

 render() {

 console.log("rendering Greeting")

 if(!this.props.name) {

 return <div>no name given</div>;

 }

 return <div>

 {this.state.message}

 </div>;

 }

}

Understanding the limitations and issues with the old class-style components 137

As you can see, that function has now become more complex and I am doing
a comparison against the new prop and our existing state. Then we clone our state
object. It is very important to make sure you do this so that you do not accidentally
edit your state directly. Then we update the state.message value using a new static
function, getNewMessage (since I'm setting the message in multiple places). Now let's
try adding our name. If you do this, you'll see that our name gets added to the message,
but also we get a Greeting and App render for each letter we type. Right now this
isn't too bad as we don't have much code, but you can imagine if we keep adding new
properties to our local state on our Greeting component and we have a much more
complex application, things can get very difficult.

Let's refactor this code and see if we can improve things a bit:

1. Update App.tsx:

class App extends React.Component {

 constructor(props:any) {

 super(props);

 this.state = {

 enteredName: "",

 message: ""

 }

 this.onChangeName = this.onChangeName.bind(this);

 }

 state: { enteredName: string, message: string }

 onChangeName(e: React.ChangeEvent<HTMLInputElement>) {

 this.setState({

 enteredName: e.target.value,

 message: `Hello from, ${e.target.value}`

 });

 }

138 React Development with Hooks

I'm only showing the App class since that's all we're changing. As you can see,
we add a new property to our state object called message (we'll be removing
message from Greeting shortly) and we update it whenever the user enters
a new username into the input element:

 render() {

 console.log("rendering App");

 return (

 <div className="App">

 <header className="App-header">

 <img src={logo} className="App-logo" alt="logo"
 />

 <input value={this.state.enteredName}

 onChange={this.onChangeName} />

 <Greeting message={this.state.message} />

 </header>

 </div>

)

 }

}

Then we send this message state property to our Greeting component as a prop.

2. Now we'll look at our Greeting component, but to keep things clean, let's create
a new file called GreetingFunctional.tsx and put the following code
inside it:

import React from "react";

interface GreetingProps {

 message: string

}

export default function Greeting(props: GreetingProps) {

 console.log("rendering Greeting")

 return (<div>

 {props.message}

Learning React Hooks and understanding how it is an improvement over class-style components 139

 </div>);

}

3. Once you have added this file, you'll also need to update your App.tsx file import
of Greeting to refer to this file like this:

import Greeting from "./GreetingFunctional";

As you can see, Greeting has been drastically shortened and made simpler. It is now
a functional component because it is a best practice to make components that have no
local state to be functions instead of classes. We weren't able to reduce the re-renders,
since changing the message necessarily triggers a re-render, but even this shortening and
reducing of code is worth this change. Also, even though we moved some code into App.
tsx, you'll notice that this code is also less involved than the code that was in our original
Greeting component.

There is one issue with this style of component building, where most of the state is inside
a single parent component and child components get props passed down to them, which
is that for complex multi-level component hierarchies there can be a lot of boilerplate
code to pass the props through multiple levels of components. It is for these scenarios
that we could use React Context to bypass the hierarchy and send parent state directly
to a child. However, I don't like using Context because bypassing the natural component
hierarchy to arbitrarily inject state to some component feels like an anti-pattern (a design
method you should not be using). It's bound to cause confusion and make it more difficult
to refactor code later. I'll get into Context more later in Chapter 7, Learning Redux and
React Router.

In this section, we learned about class-based React components. Since Hooks are still
relatively new, most existing React apps are still using class-based components, therefore
having an understanding of this style of coding is still important. In the next section, we
will explore Hook-based components and then later compare the two styles.

Learning React Hooks and understanding
how it is an improvement over class-style
components
In this section, we will learn about React Hooks. We'll take a look at an example project
and see how it works. Since this book is primarily about Hooks, at least with regard to
React, it will help us write our code later.

140 React Development with Hooks

Let's discuss some of the reasons for Hooks. We saw in the class components section
that classes have lifecycle methods that allow you to handle certain events that occur
while a component is alive. With React Hooks, we don't have those lifecycle methods,
because with Hooks all components are functional components. We created a functional
component in the class-components sample app called GreetingFunctional in the
previous section. A functional component is a component that is a JavaScript function
and returns JSX. The reason for this change is that the entire design is attempting to
move away from Object Oriented Programming (OOP) inheritance models and
instead use composition as its primary code reuse model. We covered OOP inheritance
models in Chapter 2, Exploring TypeScript, but composition means that instead of
receiving functionality as an inheritance from some parent class we are simply combining
functional components, sort of like Lego pieces, to design our screens.

Along with these functional components we have Hooks. Hooks are just JavaScript
functions that provide certain capabilities to the component. These include the creation
of state, access to network data, and just about anything else a component needs.
Additionally, Hooks are not component specific, and therefore any Hook can be used
in any component—assuming it's useful and makes sense. If you look back at our class-
component project, you will see that there's really no way of sharing the logic in our
lifecycle event methods. We cannot easily extract it out and then reuse it in some other
class component. This is one of the primary reasons for the creation of the Hooks model
in React. Therefore, these two pieces, functional components and reusable functions
(Hooks), are the key to understanding React Hooks.

To start, let's list some of the more important Hooks that we will be using in our code. We
will give examples of their use in code soon, but for now, we'll discuss them at a high level:

• useState: This function is the bread and butter of development with Hooks. It
replaces the state and setState calls within class components. useState
takes a value as a parameter that represents the initial state of the state property it is
trying to represent. It also returns an array. The first item is the actual state property
and the second is a function that can update that property. In general, it is used
to update a single value, as opposed to a more complex object that has multiple
properties. A better Hook for that type of state may be useReducer, which is
explained later.

• useEffect: This function triggers after components have finished being drawn on
the screen. It is similar to componentDidMount and componentDidUpdate.
However, they run before drawing onto the screen happens. It is intended to be
used to update state objects. So if, for example, you need to get network data and
then update state, you can do it here. You can also subscribe to events here, but you
should also unsubscribe by returning a function that does the unsubscribing.

Learning React Hooks and understanding how it is an improvement over class-style components 141

You can have multiple separate implementations of useEffect, each responsible
for doing something unique. This function usually runs after every completed
screen draw. So, if any component state or props change, this will run. You can force
it to run only once, like componentDidMount, by passing an empty array as a
parameter. You can also force it to run only when specific props or state changes by
passing those as arrays into the useEffect array parameter.

This function runs asynchronously, but if you need to know some element values
on the screen, such as scroll position, you may need to use useLayoutEffect.
This function runs synchronously, allowing you to get certain element values as
they currently are on the screen and then do something with them in a synchronous
manner. But, of course, this blocks your UI, so you need to only do things that are
very fast or the user experience will suffer.

• useCallback: This function will create an instance of a function once a set of
parameters has been changed. This function exists to try and save memory, because
otherwise an instance of the function would be recreated on each render. It takes
a handler function as its first parameter and then an array of items that may change
as its second. If the items don't change, the callback doesn't get a new instance.
Therefore any properties used inside this function will be the prior values. When
I first learned about this function, I found it difficult to understand, so I'll give an
example of it later.

• useMemo: This function is intended to save the result of a long-running task. It's
a bit like caching, but it only runs if the array of parameters has changed, so in this
sense it's similar to useCallback. However, useMemo returns a value that is the
result of some heavy computation.

• useReducer: This function works similarly to React Redux. It takes two
parameters, reducer and initial state, and returns two objects: a state
object that will be updated by the reducer and a dispatcher that receives updated
state data, called an action, and passes it to the reducer. The reducer acts as
a filtering mechanism and determines how action data will be used to update the
state. We will show an example later in code. This method works well when you
want to have a single complex state object with multiple properties that may need to
be updated.

• useContext: This function is a way of having global state data that can be shared
across components. It is better to use it sparingly as it gives the ability to arbitrarily
inject state into any child without regard to hierarchy. We will use React Redux
rather than Context, but it is good to know it exists.

142 React Development with Hooks

• useRef: This can be used to hold any value in its current property. This value does
not trigger a re-render if it changes, and the value lives as long as the component
it was created in lives. It's a way of holding state that has no effect on renders. One
of its use cases is to hold a DOM element. You may want to do this because under
certain circumstances it is necessary to opt out of the standard state-driven React
model and access HTML elements directly. For this purpose, useRef is used to
access an instance of an element.

There are, of course, many other Hooks out there, both from the React team and third
parties. But once you are comfortable, you'll be able to see what else you may need or, even
better, be able to create your own Hooks. We will also be creating our own Hooks for our
project as well.

Let's take a look at some examples of using Hooks. We'll create a new project in Chap5 to
get started:

1. Switch your command line or terminal to the Chap5 folder and run the following
command within that folder:

npx create-react-app hooks-components –template
typescript

2. In the last example for the class-components project, we created a class component
called Greeting.tsx that had its own state. For demonstration purposes, let's
create the same component as a React Hooks functional component. In the src
folder of your hooks-components project, create a new file called Greeting.
tsx and add this code:

import React, { FC, useState, useEffect } from 'react';

interface GreetingProps {

 name?: string

}

const Greeting: FC<GreetingProps> =
({name}:GreetingProps) => {

 const [message, setMessage] = useState("");

 useEffect(() => {

 if(name) {

 setMessage(`Hello from, ${name}`);

 }

 }, [name])

Learning React Hooks and understanding how it is an improvement over class-style components 143

 if(!name) {

 return <div>no name given</div>;

 }

 return <div>

 {message}

 </div>;

}

export default Greeting;

This is the version of the code where we get a name as a prop and have our own
local state. We should try and avoid local state, but I'm doing this for demonstration
purposes. As you can see, it's way shorter than the class version. In addition, we
have no lifecycle functions to override. We are using an arrow function because it's
shorter than using a regular function and we don't need a function's features. As
you can see, we do have a declaration for the Greeting component. It uses FC,
Functional Component, and it is a generic associated with the GreetingProps
interface. The state is stored in the message property by using the useState
function, which is a small one-line statement with no constructor since this is
a function and not a class. Note GreetingProps next to the parameter is not
necessary; I only included it for completeness. Notice also that we are using
parameter deconstruction by passing { name } instead of props.

Next, we have our useEffect function. As stated, this is sort of similar to
componentDidMount or componentDidUpdate, but runs after drawing to the
screen finishes. It will update the message state property whenever our name prop
updates because we pass it as a parameter to the useEffect function. Since this
is not a class, we have no render function. The return value of the function is the call
to render.

3. Now we'll refactor a bit by placing our state into the App.tsx component. Let's
make GreetingFunctional.tsx like we did in the class version of our
component:

import React from "react";

interface GreetingProps {

 message: string

}

144 React Development with Hooks

export default function Greeting(props: GreetingProps) {

 console.log("rendering Greeting")

 return (<div>

 {props.message}

 </div>);

}

4. Now let's refactor App.tsx as a functional component and use the useReducer
Hook we learned about in this section. We'll leave out the imports since they're
the same:

const reducer = (state: any, action: any) => {

 console.log("enteredNameReducer");

 switch(action.type) {

 case "enteredName":

 if(state.enteredName === action.payload) {

 return state;

 }

 return { ...state, enteredName: action.payload}

 case "message":

 return { ...state, message: `Hello, ${action.
 payload}` }

 default:

 throw new Error("Invalid action type " + action.
 type);

 }

}

const initialState = {

 enteredName: "",

 message: "",

};

Learning React Hooks and understanding how it is an improvement over class-style components 145

We define our reducer and an initial state object called initialState. The
default signature for reducers is parameters of the any type because both the state
and action objects can technically be of any type. If you look at the reducer
function, you'll notice it tries to handle different types of actions by returning a new
state object and an appropriate updated member (again, it is very important you
do not modify the original state object directly. Copy it and then do your update
on the new object and return that). So, this is the intended usage of useReducer.
If your state objects are complex and the logic to change the properties is
complex, you would use a useReducer function. You can think of it as a form of
containment for related logic on your state object. Next, you can see the actual call
to useReducer in the App component:

function App() {

 const [{ message, enteredName }, dispatch] =

 useReducer(reducer, initialState);

 const onChangeName = (e: React.
 ChangeEvent<HTMLInputElement>)

 => {

 dispatch ({ type: "enteredName", payload: e.target.
 value

 });

 dispatch ({ type: "message", payload: e.target.
 value });

 }

 return (

 <div className="App">

 <header className="App-header">

 <img src={logo} className="App-logo" alt="logo"
 />

 <input value={enteredName}
 onChange={onChangeName} />

 <Greeting message={message} />

 </header>

 </div>

)

 }

 export default App;

146 React Development with Hooks

As you can see, this function returns an object and a dispatch function. The
object is the entire state object after the reducer runs, but in our case we do
deconstruction so we can directly call the message and enteredName properties.
So after this setup, the onChangeName event is defined, which, when triggered,
runs the useReducer dispatcher, dispatch, to trigger the actual change by
sending over the appropriate action. If you run this code, you'll see it runs as before.

Now the nice thing about all this is that, as you can see, we can take our reducer
function and reuse it in other functional components. We can also take our dispatcher and
pass it down to child components so that the child can trigger updates to our state as well.
Let's try that out:

1. Let's update our GreetingFunctional.tsx component with this code:

import React from "react";

interface GreetingProps {

 enteredName: string;

 message: string;

 greetingDispatcher: React.Dispatch<{ type: string,
 payload: string }>;

}

export default function Greeting(props: GreetingProps) {

 console.log("rendering Greeting")

 const onChangeName = (e: React.
 ChangeEvent<HTMLInputElement>) => {

 props. greetingDispatcher ({ type: "enteredName",

 payload: e.target.value });

 props. greetingDispatcher ({ type: "message",

 payload: e.target.value });

 }

 return (<div>

 <input value={props.enteredName} onChange=

 {onChangeName} />

 <div>

 {props.message}

Learning React Hooks and understanding how it is an improvement over class-style components 147

 </div>

 </div>);

}

As you can see, we have passed down enteredName and greetingDispatcher
to our Greeting component as props. Then we also brought over the input and
onChangeName events in order to use them in our component.

2. Now, let's update our App.tsx file like this:

function App() {

const [{ message, enteredName }, dispatch] =
useReducer(reducer, initialState);

 return (

 <div className="App">

 <header className="App-header">

 <Greeting

 message={message}

 enteredName={enteredName}

 greetingDispatcher={ dispatch } />

 </header>

 </div>

)

}

As you can see, we have removed onChangeName and the input so that we
can use it in our GreetingFunctional.tsx component. We are also
passing enteredName, message, and dispatch as parameters to the
Greeting component. If you run this you should see that it is our child
GreetingFunctional.tsx that is triggering the reducer updates.

3. Next, let's look at the useCallback function. Update App.tsx like this:

function App() {

const [{ message, enteredName }, dispatch] =
useReducer(reducer, initialState);

 const [startCount, setStartCount] = useState(0);

 const [count, setCount] = useState(0);

148 React Development with Hooks

 const setCountCallback = useCallback(() => {

 const inc = count + 1 > startCount ? count + 1 :

 Number(count + 1) + startCount;

 setCount(inc);

 }, [count, startCount]);

 const onWelcomeBtnClick = () => {

 setCountCallback();

 }

 const onChangeStartCount = (e:

 React.ChangeEvent<HTMLInputElement>) => {

 setStartCount(Number(e.target.value));

 }

What we're doing is having an input that will take the user's initial number
value, using startCount. Then we will increment that number by clicking
setCountCallback. But make note of how useCallback is having the count
state as a parameter. This means that when count changes, setCountCallback
will be reinitialized with current values. The remaining code is returning the desired
JSX that will generate the final HTML:

 console.log("App.tsx render");

 return (

 <div className="App">

 <header className="App-header">

 <Greeting

 message={message}

 enteredName={enteredName}

 greetingDispatcher={dispatch} />

 <div style={{marginTop: '10px'}}>

 <label>Enter a number and we'll increment
 it</label>

 <input value={startCount}
 onChange={onChangeStartCount}

Learning React Hooks and understanding how it is an improvement over class-style components 149

 style={{width: '.75rem'}} />

 <label>{count}</label>

 <button onClick={onWelcomeBtnClick}>Increment
 count</button>

 </div>

 </header>

 </div>

)

}

The return is providing the UI for this incrementation ability.

If you run this code and click the Increment count button, you will see that it increments,
as shown here:

Figure 5.7 – Increment count clicked 8 times

150 React Development with Hooks

However, try changing the passed-in array, [count, startCount], and
remove the count variable so it just says [startCount]. Now, it does not keep
incrementing because there is no dependency on count. It only counts once, on
the first run, no matter how many times we click:

Figure 5.8 – After removing count

Therefore, even if you click many times, it will always be incremented by one, since the
function is cached in memory and it always runs with the same initial value of count.

Let's look at one more example for performance. We'll use the memo wrapper on this
example to reduce re-renders. It's not a Hook, but it is a new capability added recently to
React. Let's look at the steps:

1. Create a new file called ListCreator.tsx and add this code:

import React, { FC, useEffect, useRef } from 'react';

export interface ListItem {

 id: number;

}

export interface ListItems {

 listItems?: Array<ListItem>;

}

const ListCreator: FC<ListItems> =
({listItems}:ListItems) => {

 let renderItems = useRef<Array<JSX.Element> |
 undefined>();

 useEffect(() => {

 console.log("listItems updated");

Learning React Hooks and understanding how it is an improvement over class-style components 151

 renderItems.current = listItems?.map((item,
 index) => {

 return <div key={item.id}>

 {item.id}

 </div>;

 });

 }, [listItems]);

 console.log("ListCreator render");

 return (

 <React.Fragment>

 {renderItems.current}

 </React.Fragment>

);

}

export default ListCreator;

This component will take a list of items and render them as a list.

2. Now, let's update our App.tsx file to send new list items based on the increment
count. Again, I've only included the App function. Please note there is a new import
called ListCreator that is needed as well:

function App() {

const [{ message, enteredName }, dispatch] =
useReducer(reducer, initialState);

 const [startCount, setStartCount] = useState(0);

 const [count, setCount] = useState(0);

 const setCountCallback = useCallback(() => {

 const inc = count + 1 > startCount ? count + 1 :
 Number(count

 + 1) + startCount;

 setCount(inc);

 }, [count, startCount]);

 const [listItems, setListItems] =
 useState<Array<ListItem>>();

 useEffect(() => {

 const li = [];

152 React Development with Hooks

 for(let i = 0; i < count; i++) {

 li.push({ id: i });

 }

 setListItems(li);

 }, [count]);

As you can see, we have a list of listItems and a new useEffect function to
populate that list. The list is updated any time count is updated:

 const onWelcomeBtnClick = () => {

 setCountCallback();

 }

 const onChangeStartCount = (e:

 React.ChangeEvent<HTMLInputElement>) => {

 setStartCount(Number(e.target.value));

 }

 console.log("App.tsx render");

 return (

 <div className="App">

 <header className="App-header">

 <Greeting

 message={message}

 enteredName={enteredName}

 greetingDispatcher={ dispatch } />

 <div style={{marginTop: '10px'}}>

 <label>Enter a number and we'll increment
 it</label>

 <input value={startCount}
 onChange={onChangeStartCount}

 style={{width: '.75rem'}} />

 <label>{count}</label>

 <button onClick={onWelcomeBtnClick}>Increment

 count</button>

 </div>

 <div>

Learning React Hooks and understanding how it is an improvement over class-style components 153

 <ListCreator listItems={listItems} />

 </div>

 </header>

 </div>

)

}

If you run this example, you will see that not only do we get new list item elements
when we increment the number, but we also get them when we type our name. This
is because whenever the parent component renders, as its state was updated, so do
any children.

3. Let's do a small update to ListCreator to reduce our renders:

const ListCreator: FC<ListItems> =

 React.memo(({listItems}:ListItems) => {

 let renderItems = useRef<Array<JSX.Element> |
 undefined>();

 useEffect(() => {

 console.log("listItems updated");

 renderItems.current = listItems?.map((item,
 index) => {

 return <div key={item.id}>

 {item.id}

 </div>;

 });

 }, [listItems]);

 console.log("ListCreator render");

 return (

 <React.Fragment>

 {renderItems.current}

 </React.Fragment>

);

});

154 React Development with Hooks

I only showed the ListCreator component, but as you can see we added a
wrapper called React.memo. This wrapper only allows component updates if the
props passed in have changed. Therefore we get a small performance benefit. If this
was a complex object with lots of elements it could make a big difference.

As you can see throughout these examples, for any given Hook, we can reuse that same
Hook in different components and with different parameters. This is the key takeaway of
Hooks. Code reuse is now much easier.

Please note useState and useReducer are just reusable functions that allow you to
use functions across multiple components. So using useState in component A and then
useState in component B will not allow you to share the state across both components,
even if the state names are the same. You're just reusing capability, that's all.

In this section, we learned about React Hooks. We reviewed some of the main Hooks
available in the library as well as how to use some of them. We will cover more Hooks later
and also begin building our app in future chapters. This coverage of Hooks is going to help
us to start building our components later.

Comparing and contrasting the class way
versus the Hooks way
In this section, we will discuss some of the differences between the class way and the
Hooks way of writing code in React. We will see why the React team decided Hooks was
the way forward. Learning these details will give us confidence in using Hooks in our
own code.

Code reuse
If you look at the class-based lifecycle methods, not only are there many to remember
and understand, you can also see that for each class component you would have a pretty
much unique implementation of lifecycle functions. This makes code reuse difficult to
do with classes. With Hooks, we also have many different built-in Hooks we can use and
need to know. However, they are not component specific and can be reused for different
components at will. This is the key motivator for using Hooks. Code reuse is much easier
because the Hooks are not tied to any specific class. Each Hook is focused on providing
a specific capability or functionality, regardless of where it's used. Additionally, if we do
the work of building our own Hooks, we can reuse them when appropriate as well.

Summary 155

Take a look at Greeting in the class-component project. How could we reuse the code
in this component? Even if we could do this, it adds no real value or benefit. In addition to
this, getDerivedStateFromProps adds complexity that may trigger a re-render. And
we haven't even used any of the other lifecycle methods at all.

Hook components and React in general prioritize componentization over inheritance.
In fact, the React team states that it is a best practice to use components within other
components as a means of sharing code instead of inheritance.

So, to reiterate, lifecycle components are generally tied to a specific component, but Hooks
can be used across components with a little work to properly generalize them.

Simplicity
Do you recall how large Greeting became once we added the
getDerivedStateFromProps call into it? In addition, we always need a constructor
to instantiate our state and use bind for all of our components. Since our components
are simple, it didn't matter. But for production code, you'll see components with many
functions that will all need bind calls put on them.

Greeting in the hooks-component project was much simpler. Even when that
component grows, the Hooks being called will mostly repeat, additionally making code
easier to read.

Summary
This chapter covered a very large amount of information. We learned about class-based
components and what makes them difficult to work with. We also learned about Hook-
based components, which are simpler and easier to reuse.

We now know the fundamentals of React programming. We can now create our own
React components and begin building our application!

In the next chapter, we'll learn about the tooling around React. We'll combine the
knowledge we gained here with the tooling information, and it will help us write clean,
responsive code.

6
Setting Up Our

Project Using create-
react-app and

Testing with Jest
In this chapter, we'll learn about the tools that help us build React applications. High-level,
professional application development, regardless of the language or framework, always
involves using tooling to help build applications faster and with higher code quality.
The React development ecosystem is no different. A community has gathered around
certain tooling and coding methodologies and we will go over those in this chapter. These
sophisticated tools and methods will help us code better applications and help us refactor
our code to adapt it to new requirements.

In this chapter, we're going to cover the following main topics:

• Learning React development methods and about the build system

• Understanding client-side testing for React

• Learning common tools and practices for React development

158 Setting Up Our Project Using create-react-app and Testing with Jest

Technical requirements
You should have a basic understanding of web development and the SPA style of coding
that we've been learning in the previous chapters. We will once again be using Node
(npm) and VS Code.

The GitHub repository is at https://github.com/PacktPublishing/Full-
Stack-React-TypeScript-and-Node. Use the code in folder Chap6.

To set up the Chapter 6 code folder on your own machine, go to your
HandsOnTypescript folder and create a new folder called Chap6.

Learning React development methods and
about the build system
In this section, we will learn about the tools and practices used for coding and building
React applications. Many of these methods are used in general for modern JavaScript
development, even in competing frameworks such as Angular and Vue.

In order to build large, complex applications, we need tools – lots and lots of tools. Some
of these tools will help us write better quality code, some will help us share and manage
our code, and still others will exist only to enhance developer productivity and make it
easier to debug and test our code. Therefore, by learning the tooling used to build modern
React apps, we will ensure our application works as it should with minimal issues.

Project tools
As we've seen from the prior chapters, modern React development uses many components
to build a final application. For project structure and base dependencies, most developers
will use create-react-app, which is based on the development tools first created for
Node development (npm). We've already seen what create-react-app can do, but in
this section, we'll take a deeper look.

But first, we need to understand how we arrived at using the current state of the art in
tools and coding. This knowledge will help us better understand why a shift to this current
style was made and what the benefits are.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

Learning React development methods and about the build system 159

How it was done before tooling
The web is actually a hodgepodge of different technologies. HTML came first, to create
text sharing capabilities. Then CSS, for better styling and document structure. And then
finally, JavaScript, to add some event-driven capabilities and programmatic control.
So, it's no wonder that sometimes integrating these technologies into a single coherent
application can feel awkward and even difficult. Let's look at some examples of bringing
these pieces together without using much tooling:

1. Open your terminal or command line to the Chap6 folder. Create a new folder
called OldStyleWebApp.

2. Using VS Code create an HTML file called index.html and add this code into it.
We'll create a simple input and display:

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Learn React</title>

 <link rel="stylesheet" href="core.css">

</head>

<body>

<label>Enter your name</label>

<input id="userName" />

<p id="welcomeMsg"></p>

 <script src="script.js"></script>

</body>

</html>

3. Create a .css file called core.css in the same folder.

4. Create a .js file called script.js in the same folder.

160 Setting Up Our Project Using create-react-app and Testing with Jest

Now, we'll fill in the CSS and JS files later, but immediately we have an issue. How do I run
this app? In other words, how do I see it run so I can check whether it's working? Let's see
what we can do:

1. In your VS Code, right-click on the index.html file and copy its path like this:

Figure 6.1 – Copy index.html

2. Now, open your browser and paste this file path into the URL. You should see
the following:

Figure 6.2 – index.html in the browser
You may not have already known this, but you do not need an HTTP server
in order to view HTML files in your browser. However, you can see this process
isn't the most efficient and it would be better if it could be automated, including
auto-refreshing when I make changes to any related files.

Learning React development methods and about the build system 161

3. Now, let's fill in our CSS file:

label {

 color: blue;

}

p {

 font-size: 2rem;

}

You'll notice that even if I save this file, the label element on the web browser
does not automatically update. I have to refresh my browser and then it will update.
What if I have dozens of files that get updated during my development session?
Having to manually refresh each time would not be a good experience.

4. Next, let's add some code to script.js:

const inputEl = document.querySelector("#userName");

console.log("input", doesnotexist);

We want to read this code carefully as there are multiple issues with it. Let's see
what those issues are. If we save this file, open the browser debugger tools, and
then refresh the browser, you can see that it fails immediately with this error in the
Console tab:

Figure 6.3 – script.js first error
This type of error, an undefined variable, will usually be caught by the create-
react-app project tooling. create-react-app projects have what's called
a linter. A linter is a code checker tool that runs in the background as you're writing
your code. It will check for common errors, such as the one we just saw, so that it
they do not end up in your production code. There's a lot more functionality to
linters, but we will explore them more deeply later. The point here is we want to
avoid these types of errors before running the app. And create-react-app, or
in this case some of the built-in tooling, can help us do that.

162 Setting Up Our Project Using create-react-app and Testing with Jest

5. Let's try adding the correct variable name and try reloading the browser again.
Update the script.js file like this, save it, and then reload the browser:

const inputEl = document.querySelector("#userName");

console.log("input", inputEl);

As you can see in the debugger console, the log statement does not find the
inputEl, as it returns null. This is happening because we mistyped the id of
the input element as "userNam" instead of "userName". Now, again, with the
create-react-app project running, this sort of error is simply not possible,
because the vast majority of React code does not attempt to query or look for
elements in our HTML page. Instead, we use React components directly and
therefore we can avoid this class of error altogether. Admittedly it is possible to opt
out of this behavior and use a reference to HTML elements via useRef. However,
this is something that should be done sparingly, as you are deliberately exiting out
of the normal React ecosystem behavior by using this Hook and therefore losing its
benefits.

6. Let's fix our script.js file and complete it. Update it like so:

const inputEl = document.querySelector("#userName");

console.log("input", inputEl);

const parEl = document.querySelector("#welcomeMsg");

inputEl.addEventListener("change", (e) => {

 parEl.innerHTML = "Welcome " + e.target.value;

});

If you run this code by refreshing the browser, you will see that if you type your
name into the input box and then click out of the input element, a message will
display like this:

Figure 6.4 – Welcome display

Learning React development methods and about the build system 163

So, this code does work to display a welcome message. However, it's easy to make
mistakes, and not have any help indicating why. In addition to this, notice that
we have no TypeScript since browsers don't run TypeScript; they can only run
JavaScript. This means we are also missing the type indicators that are also helpful
in avoiding bugs related to incorrect types.

So, we've seen some of the issues around doing things in the original web way. But the
reality is we haven't even scratched the surface of issues with doing development in this
manner. For example, having script tags embedded in our HTML is a reasonable thing to
do when we have only a few scripts to deal with. But what about when our dependencies
grow? For larger apps, it is quite possible to have hundreds of dependencies. Managing
that many script tags would be very difficult. And not only that – a lot of JavaScript
dependencies no longer provide a URL from which they can be called.

Having said all this, perhaps one of the biggest issues is the highly free-form nature of the
code. If you look at the script.js file again, you can see there is no pattern or structure
to the code. Sure, it is likely your team could come up with a pattern on its own, but what
about new programmers joining the team? They would have to learn a unique way of
structuring the code that is specific to your team.

So, the point is tooling, frameworks, and structure provide consistent, repeatable ways
of writing and maintaining code. You can consider it a sort of culture of programming,
where everyone has accepted the norms and practices of the culture and therefore knows
what to do and how to behave. This makes code easier to write, share, and refactor. Now
that we've taken a look at free-form coding, let's start looking at create-react-app
more deeply.

create-react-app
In prior chapters, such as Chapter 4, Learning Single-Page Application Concepts and
How React Enables Them, and Chapter 5, React Development with Hooks, we used
create-react-app to set up our base application project. Let's look more closely
at what is inside a create-react-app project. To better understand the parts that
make up a create-react-app project, we need to eject it first. Here, eject simply
means that we will reveal all of the internal dependencies and scripts that make create-
react-app work, as normally these are hidden.

Warning: Ejection is a non-reversable action
In the vast majority of cases, you will not eject a create-react-app
project, as there is little value in doing so. We are doing it here only to gain
more insights into how this project works.

164 Setting Up Our Project Using create-react-app and Testing with Jest

Let's look at the steps:

1. Create a new project inside of the Chap6 folder by executing the following
command from inside that folder:

npx create-react-app ejected-app --template typescript

Once this command completes, you should see a new project created in Chap6
called ejected-app.

2. Now let's eject the project. Change directories in your command line to the new
ejected-app folder and run this command:

npm run eject

Then enter y at the prompt to continue.

Let's take a look at this project from the top of the VS Code explorer menu:

• config

This folder contains most of the configuration files and scripts that the project uses
to set itself up. The main thing to note is that the React team by default uses Jest
for testing and Webpack for the bundling and minification of JavaScript files. We'll
discuss Jest in the Understanding client-side testing for React section, and Webpack is
discussed later in this section.

• node_modules

As you know, this folder contains our project's dependencies. As you can see,
even before we add our own dependencies, the default set of dependencies is
vast. It would be quite difficult to try and use HTML script tags to list out these
dependencies. And in most cases, these dependencies don't support script tag
references.

• public

This folder contains static assets that are used in generating our single-page
application. This includes our one HTML file called index.html, the manifest.
json file that is needed if we are building a PWA application. It is also possible to
add additional files such as image files for deployment.

Learning React development methods and about the build system 165

• scripts

The scripts folder contains scripts that are used to manage the project, for
example, scripts that build, start, or kick off tests of the application. Actual test files
should not be added here. We'll cover testing later, in the Understanding client-side
testing for React section.

• src

This is, of course, the folder that contains the source files of our project.
• .gitignore

.gitignore is a file that tells the Git source code repository system which files
and folders not to track. We will dive deeper into Git later in this section.

• package.json

As mentioned in prior chapters, npm is the dependency management system
originally created for use with the Node server framework. The capabilities
and popularity of this dependency manager eventually made it a standard for
client-side development as well. So, the React team uses npm as its base system
for project creation and dependency management.

On top of listing dependencies for projects, it can also list scripts that can be run to
manage a project.

It also has configuration capabilities for things such as Jest, ESLint, and Babel.
• Package-lock.json

This is a related file that helps maintain a proper set of dependencies and
sub-dependencies regardless of their order of installation. We don't need to work
with this file directly, but knowing that this helps prevent issues when different
developers update their npm_modules folder at different times with a different
set of existing dependencies is good knowledge to have.

• tsconfig.json

We already reviewed this file in Chapter 2, Exploring TypeScript, and as mentioned
in that chapter, it contains the settings for the TypeScript compiler to use. Note that,
in general, the React team prefers stricter compilation settings. Also notice that the
target JavaScript version is ES5. This is because some browsers are not compatible
with ES6 yet.

166 Setting Up Our Project Using create-react-app and Testing with Jest

create-react-app also contains two very important tools that enable some of
its functionality: Webpack and ESLint. Webpack is a bundling and minification tool
that automates the task of gathering all of the files that make up a project, removing
any extraneous, unused pieces, and consolidating them into a few files. By removing
extraneous pieces, such as white spaces and unused files or scripts, it can drastically
lower the file sizes that must be downloaded by user browsers. This, of course, enhances
the user experience. In addition to this core functionality, it provides a "hot reloading"
development server, which can allow certain script changes to automatically show in
the browser without needing a page refresh (although most changes do seem to trigger
browser refreshes, but at least those are automated).

ESLint is also an important tool. Since JavaScript is a scripting language and not
a compiled language, it does not have a compiler that will check syntax and code validity
(obviously, TypeScript does but the TypeScript compiler focuses primarily on typing
issues). So, ESLint provides development-time code checking to make sure it is valid
JavaScript syntax. And in addition, it allows for the creation of custom code-formatting
rules. These rules are generally used to ensure that everyone on the team is coding using
the same style; for example, variable naming conventions and bracket indentation. Once
rules are set up, the ESLint service will enforce these rules with warning messages.

The rules are not just specific to JavaScript, but they can also be rules around how to
write code for frameworks such as React. So, for example, in a create-react-app
project, the ESLint setting is react-app, as shown in package.json, which is a set of
coding rules specific to React development. So, many of the messages we will see are not
necessarily JavaScript errors but rules around best practices for coding React apps.

Webpack, although extremely powerful, is also enormously difficult to set up. And
creating custom rules for ESLint can take a very long time to do. So, fortunately,
another benefit of using create-react-app is that it provides us with good default
configurations for both of these tools.

Transpilation
We introduced transpilation in Chapter 1, Understanding TypeScript. However, we should
cover it a little more deeply in this chapter since create-react-app depends on
transpilation for much of its code generation. create-react-app allows us to use
TypeScript or Babel so that we can develop code in one language or language version and
emit code as a different language or language version. Here's a simple diagram showing
the flow of code during the transpilation of TypeScript:

Learning React development methods and about the build system 167

Figure 6.5 – Transpilation from TypeScript to JavaScript

The TypeScript compiler will search your project and find all the ts or tsx files inside
of the root code folder, usually src. If there are errors, it will stop and let us know,
otherwise, it will parse and convert the TypeScript into pure JavaScript as js files and
that is what is run on systems. Notice in the diagram we are also changing the JavaScript
version as well. So, transpilation is a lot like compilation. Code is checked for validity
and some classes of bugs, but instead of being converted into byte code that can be run
directly, it is converted into a different language or language version. Babel is also capable
of emitting JavaScript and working with TypeScript developer code. However, I prefer
to use the original TypeScript compiler, as it is made by the same team that designs
TypeScript and is usually more up to date.

Choosing transpilation as the method of compilation has multiple important benefits.
For one, developers do not need to worry whether their code will run on a browser,
or whether the user would need to either upgrade or install a bunch of dependencies on
that machine first. The TypeScript compiler emits web standard ECMAScript (ES3, ES5,
ES6, and so on) and therefore the code can be set to run on any modern browser.

168 Setting Up Our Project Using create-react-app and Testing with Jest

Transpilation also allows developers to take advantage of newer versions of JavaScript
before their final release. Since JavaScript is on an almost annual update cycle, this
feature can be extremely useful in terms of taking advantage of new language features
or performance capabilities; for example, when a new feature of JavaScript is being
considered. The ECMA foundation, the standards body that maintains the JavaScript
language, goes through several stages before accepting changes into an official version
of JavaScript. But the TypeScript and Babel teams will sometimes accept new JavaScript
features when they are still in one of these earlier stages. This is how many JavaScript
developers were able to use async-await in their code before it became an official standard.

Code repositories
A code repository is a system that allows the sharing of source code among multiple
developers. Code can be updated, copied, and merged. For large teams, this tool is
absolutely necessary for building complex applications. The most popular modern
source code control and repository is Git. And the most popular online repository host
is GitHub.

Although thoroughly learning Git is beyond the scope of this book, it is important to
understand some of the basic concepts and commands, as you will need them when
interacting with other developers and maintaining your own projects.

One of the more important concepts of any code repository is that of branching. This
means the ability to indicate multiple versions of a project. For example, these branches
could be for the version numbers of a project, such as 1.0.0, 1.0.1, and so on. It could
also be for creating separate versions of an app where perhaps some experimental
or high-risk code is being tried out. It would not be a good idea to place such code into
the main branch. Here's an example of the React GitHub page and its many versions:

Learning React development methods and about the build system 169

Figure 6.6 – React GitHub

As you can see, there are many branches. The current stable branch, although not visible
in this screenshot, is usually called the master.

170 Setting Up Our Project Using create-react-app and Testing with Jest

Again, learning Git well would require a book of its own, so here I'll just go over some
of the main commands that you would use daily:

• git: This command is the Git CLI (command-line interface). It must start any
Git commands you want to execute. When working with the git command,
you are working on a local copy of the repository; you are not directly working
on the online repository or affecting your teammates' repositories until you push
your changes onto the server.

• clone: This command allows you to copy a repository onto your local machine.
Note that when you clone, generally, you will default to the master branch. Here's an
example:

git clone https://github.com/facebook/react.git

• checkout: This subcommand allows you to change your working branch to
a different desired branch. So, if you wanted to work in another branch other than
the master, you would use this command. Here's an example:

git checkout <branch-name>

• add: This subcommand adds the files you recently changed as needing to be
tracked, which indicates you will later commit them into the repository. You can do
all your changed files in one shot by using . after add or indicate the files explicitly:

git add <file name>

• commit: This subcommand indicates that you will eventually update your working
branch with the files that you just added locally. If you add the -m parameter, you
can add a label inline to describe your commit. This command helps team members
track which changes were done in each commit:

git commit -m "My change to xyz"

• push: This subcommand does the actual moving of local committed files into the
remote repository:

git push origin <branch name>

In this section, we covered some of the core project tools available for React developers.
create-react-app, ESLint, Webpack, and npm provide invaluable features that
make development more efficient and less error-prone. We also covered transpilation,
to understand how we can take advantage of newer language versions, without
compromising compatibility, on end user devices.

Understanding client-side testing for React 171

Additionally, we took a quick look at Git. Currently, it is the most popular code-sharing
repository. As a professional developer, you will most certainly end up using it for
projects.

Now that we have some important core tools knowledge, we'll continue in the next section
by discussing testing. Modern development practices make heavy use of testing and
test frameworks. Fortunately, JavaScript has great testing frameworks to help us write
good-quality tests.

Understanding client-side testing for React
Unit testing is a very important part of development. These days, no large projects will be
written without some level of unit testing. The purpose of tests is to ensure that your code
is always working correctly and doing the expected things. This is especially true when
code is modified, that is, refactored. In fact, it is probably more difficult to change existing
complex code than it is to create brand-new code. Unit testing can prevent breaking
existing code during refactoring. But if code does break, it can also help pinpoint the
exact place where code no longer works so it can be fixed quickly.

In React, previously, there were two main testing libraries that were commonly used: Jest
and Enzyme. Jest is the main testing library that provides base calls such as assertions to
check for specific values and wrapper functions to help set up tests. Enzyme has a set of
helpers that allows the testing of React components in concert with Jest. It has features
targeted at testing the output of React components. However, these days, a library called
testing-library, and its related versions, has basically taken the place of Enzyme. And it is
the default component testing library built into create-react-app. So, for this book,
we will be learning about Jest and testing-library.

All unit tests work in the same way. This is true not only for React and JavaScript tests,
but tests in any language will work in the same manner. So then, what is a unit test?
A unit test attempts to test one specific portion of code and it attempts to assert that
something about it is true. That's basically it. To put it another way, it means that the test
is checking to see whether something expected is indeed the case. If it is not, then the
test should fail. Although this goal is simple, creating high-quality tests is not. So, we'll go
over some examples here, but please keep in mind that large-application testing can be as
complicated if not more so than the actual code for creating the app. So, it will take some
time for you to become proficient in writing tests.

172 Setting Up Our Project Using create-react-app and Testing with Jest

To make things clearer, let's take a look at a simple test. Do the following:

1. Go to VS Code and open the file at path ejected-app/src/App.test.tsx.
This is a test for the App component. We'll go over the contents of the test in just
a moment.

2. Open your terminal to ejected-app and run this command:

npm run test

As stated earlier, there are already several npm scripts to help manage the project
and one of them is the script to run our tests, called test. Additionally, this test
script is actually running our tests in watch mode, which simply means that the
script stays active and autoruns each time we update or add new tests. If your tests
don't run and you get this prompt, select option a:

Figure 6.7 – Test run options
If your tests did run or you selected a, you should see the following result:

Figure 6.8 – Tests completed successfully

Understanding client-side testing for React 173

As you can see, our tests have automatically been found and run (although,
currently, we only have one). And in this run, the one test is successful, meaning
what was expected did occur. If any failed, the same UI would indicate how many
tests failed and how many succeeded.

Now, let's take a look at the test in App.test.tsx:

import React from 'react';

import { render } from '@testing-library/react';

import App from './App';

test('renders learn react link', () => {

 const { getByText } = render(<App />);

 const linkElement = getByText(/learn react/i);

 expect(linkElement).toBeInTheDocument();

});

First, you will notice the filename has the text test in it. This is what tells Jest that this
is a test file. Some teams like to place all their tests into a single folder. Some teams prefer
to have the test right next to the actual file being tested, as in this case. There is no right
answer. Do what works best for you and your team. In this book, we will put our tests
right next to the file being tested. Let's take a look at the contents of our test file:

1. Notice among the imports that we have a reference to @testing-library/
react. As mentioned, this library will give us some extra tooling to make the
testing of the component output easier.

2. Now, notice the test function. This function acts as an encapsulated wrapper for
our single test. This means that all the things relative to this one test live inside this
function and cannot be accessed from outside of it. This ensures that our test is not
impacted by other tests.

3. The first parameter of this function is a description. Descriptions are totally
arbitrary, and your team will have its own standard for how these descriptions
should be written. The only thing we need to focus on is making the description
brief but clear about what is being tested.

4. The second parameter is a function that runs the actual test. In this case, the test
is checking whether a certain specific text appears within the emitted HTML of
our App component. Let's go over the code line by line.

174 Setting Up Our Project Using create-react-app and Testing with Jest

5. On line 6, we run render, passing it the App component. This render function
executes our component and gets back certain properties and functions that allow
us to test the emitted HTML. In this case, we decide only to receive the function
getByText, which simply means to return an element that has certain text in it.

6. In line 7, we get our HTML DOM element by calling getByText with the
parameter /learn react/i, which is syntax for running a regular expression,
but in this case, it's hardcoded for text.

7. Finally, on line 8, an assertion is made called expect, which expects the element
object called linkElement to be in the DOM using the toBeInTheDocument
function. So, an easy way of understanding tests in general is to read their assertions
like a sentence. For example, we can read this assertion like this, "I expect the
linkElement to be in the document" (the document is, of course, the browser
DOM). By reading it this way, it's pretty clear what is intended.

8. Now, let's see what happens if we change the code a bit. Update App.tsx with the
following (I'm only showing the App function for brevity):

function App() {

 return (

 <div className="App">

 <header className="App-header">

 <img src={logo} className="App-logo" alt="logo"
 />

 <p>

 Edit <code>src/App.tsx</code> and save to
 reload.

 </p>

 <a

 className="App-link"

 href="https://reactjs.org"

 target="_blank"

 rel="noopener noreferrer"

 >

 Learn

 </header>

 </div>

);

}

Understanding client-side testing for React 175

Notice I've left everything the same except I removed the text React in
Learn React.

9. Once you save this file, you should immediately see an error like this:

Figure 6.9 – Error after changing App.tsx

176 Setting Up Our Project Using create-react-app and Testing with Jest

Again, the test runner is running in watch mode so you should see the test results as
soon as you save your change. As you can see, our test fails because the text learn
react was not found and therefore the assertion expect(linkElement).
toBeInTheDocument() is not true.

OK, so we've taken a look at a built-in test that create-react-app provided. Let's now
create a new component so we can write our own tests from scratch. Do the following:

1. Let's leave our test running in watch mode, even though it's showing an error, and
create a new terminal window by clicking the plus button at the upper-right side of
the terminal window in VS Code. The button is the plus sign shown here:

Figure 6.10: Plus sign for a new terminal

2. Now, create a new file called DisplayText.tsx in the src folder and add
this code:

import React, { useState } from "react";

const DisplayText = () => {

 const [txt, setTxt] = useState("");

 const [msg, setMsg] = useState("");

 const onChangeTxt = (e: React.
 ChangeEvent<HTMLInputElement>)

 => {

 setTxt(e.target.value);

 }

 const onClickShowMsg = (e: React.
 MouseEvent<HTMLButtonElement, MouseEvent>) => {

 e.preventDefault();

 setMsg(`Welcome to React testing, ${txt}`);

 }

Understanding client-side testing for React 177

This component will simply display a new message after someone enters their name
into the input and clicks the Show Message button. First, you can see we declare
our new component called DisplayText.

3. We then create some state necessary for the workings of our component and
event handlers to deal with new text and the display of our message (we've already
covered how to create a React component in Chapter 5, React Development with
Hooks):

 return (

 <form>

 <div>

 <label>Enter your name</label>

 </div>

 <div>

 <input data-testid="user-input"

 value={txt} onChange={onChangeTxt} />

 </div>

 <div>

 <button data-testid="input-submit"

 onClick={onClickShowMsg}>Show
 Message</button>

 </div>

 <div>

 <label data-testid="final-msg"

 >{msg}</label>

 </div>

 </form>

)

}

export default DisplayText;

178 Setting Up Our Project Using create-react-app and Testing with Jest

4. Finally, we return our UI, which includes an input and a submit button. Note the
data-testid attributes to allow elements to be easily found by our tests later.
If you run this code and enter your name and click the button, you should see
something like this:

Figure 6.11 – New component for testing
As you can see, our display simply returns the entered text with a welcome message.
However, even this simple example has several different things to test. For one,
we would like to make sure that there is text entered into the input and that it is
words and not numbers or symbols. We also want to make sure that when we click
the button, the message is displayed and that it starts with the string "Welcome
to React testing" and ends with the user's input text.

Now that we have our component, let's build our test for it:

1. We need to be aware of a small issue in our tsconfig.json file. As I stated
earlier, you can place your tests inside of a separate folder, usually called __
test__, or you can place it side by side with your component file. We will be
placing it side by side for convenience. If we do so, we will need to update our
tsconfig.json file to include this compilerOption:

"types": ["node", "jest"]

Understanding client-side testing for React 179

2. Create the test file for this component by creating a new file called DisplayText.
test.tsx and add this initial code into it:

import React from 'react';

import { render, fireEvent } from '@testing-library/
react';

import DisplayText from './DisplayText';

import "@testing-library/jest-dom/extend-expect";

describe("Test DisplayText", () => {

 it("renders without crashing", () => {

 const { baseElement } = render(<DisplayText />);

 expect(baseElement).toBeInTheDocument();

 });

 it("receives input text", () => {

 const testuser = "testuser";

 const { getByTestId } = render(<DisplayText />);

 const input = getByTestId("user-input");

 fireEvent.change(input, { target: { value:
 testuser } });

 expect(input).toBeInTheDocument();

 expect(input).toHaveValue(testuser);

 })

});

From the top, you'll notice we have imported render from @testing-
library/react and we've also imported the @testing-library/jest-
dom/extend-expect extension, which allow us to do assertions. The extensions
of the expect keyword give us additional functions that allow us to test in more
ways. For example, we are using toHaveValue to get the value of input.

180 Setting Up Our Project Using create-react-app and Testing with Jest

After the imports, you'll notice some new syntax. describe is, as the name
implies, simply a way to create a grouping container with a helpful label. This
container can have more than one test, but these tests should all be related to
testing a specific component or feature. In this case, we are trying to test the
DisplayText component so all the tests within describe will be testing
only that.

So, our first test is started using the function called it. This function checks that
our component, DisplayText, can be rendered out as HTML without crashing
or erroring out. The render function attempts to do the rendering and the
expect and toBeInTheDocument functions determine whether the rendering
was a success by checking whether it is in the DOM. As an experiment, add this
code, console.log(baseElement.innerHTML), within the first test it
function below the line starting with const { baseElement }. You should
see this HTML string in the terminal:

Figure 6.12 – Log: resultant test HTML
As you can see, there is a log of a div with a form in it and the rest of our
component's HTML. Using this method, you will be able to check what is being
rendered out and, if needed, how you can parse it.

Understanding client-side testing for React 181

Our next test, also starting with the it function, sees whether our input element is
rendered correctly and gets the value we are typing into it. This may seem strange,
but remember, in React, filling an input control is not straightforward and involves
reacting to the onChange event. So, we pass our data-testid attribute to the
getByTestId function to find the specific input element, as there could be more
than one. Now, in order to insert the changed value, we use the fireEvent.
change function to accept and send a string value. And then we test whether
that value is indeed added to our input. Here's what it looks like:

it("receive input text", () => {

 const username = "testuser";

 const { getByTestId } = render(<DisplayText />);

 const input = getByTestId("user-input");

 fireEvent.change(input, { target: { value:
 username } });

 expect(input).toBeInTheDocument();

 expect(input).toHaveValue(username);

 });

3. Now, let's create one more test to show an end-to-end test of our component.
Add the following code after our second it function:

it("shows welcome message", () => {

 const testuser = "testuser";

 const msg = `Welcome to React testing,
 ${testuser}`;

 const { getByTestId } = render(<DisplayText />);

 const input = getByTestId("user-input");

 const label = getByTestId("final-msg");

 fireEvent.change(input, { target: { value:
 testuser } });

 const btn = getByTestId("input-submit");

 fireEvent.click(btn);

 expect(label).toBeInTheDocument();

 expect(label.innerHTML).toBe(msg);

 });

182 Setting Up Our Project Using create-react-app and Testing with Jest

This test is similar to our second test in that it adds a value within our input, but
then it goes on and gets our button, and then our label. It then creates a click
event to simulate a button press that in regular code would cause our label to
be populated with our welcome message. It then tests the contents of our label.
Again, once you save this file, our tests should rerun and all of them should pass.

4. Now, let's also look at something called snapshots. Obviously, a big part of React
development is not just the behavior or actions available within our app, but the
actual UI presented to our users. So, by doing snapshot testing, we are able to check
that the desired UI, HTML elements, are indeed created by our components.
Let's add this code to our tests after our "renders without crashing" test:

it("matches snapshot", () => {

 const { baseElement } = render(<DisplayText />);

 expect(baseElement).toMatchSnapshot();

 });

As you can see, our render function is set to return the root most element of the
DisplayText component by using the baseElement property. In addition,
we can see that we have a new expect function called toMatchSnapshot.
This function does a couple of things:

• The first time it runs, it creates a folder called __snapshot__ at the root of our
src folder.

• It then adds or updates a file that has the same name as our test file and ends
with the extension .snap. So, in this case, our test file snapshot file would be
DisplayText.test.tsx.snap.

The contents of this snapshot file are the emitted HTML elements of our
component. So the snapshot you have should look something like this:

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`Test DisplayText matches snapshot 1`] = `

<body>

 <div>

 <form>

 <div>

 <label>

 Enter your name

 </label>

 </div>

Understanding client-side testing for React 183

 <div>

 <input

 data-testid="user-input"

 value=""

 />

 </div>

 <div>

 <button

 data-testid="input-submit"

 >

 Show Message

 </button>

 </div>

 <div>

 <label

 data-testid="final-msg"

 />

 </div>

 </form>

 </div>

</body>

`;

As you can see, this is an exact duplicate of our desired HTML as emitted by our
DisplayText component. Notice also the description given and the indication
that it is snapshot 1. As you add more, the number will increment.

5. OK, so now we have a snapshot and our first test run has succeeded. Let's see what
happens if we change our DisplayText JSX. Update the DisplayText.tsx
file, not your test file, like this (I'll just show the component definition for brevity's
sake):

const DisplayText = () => {

 const [txt, setTxt] = useState("");

 const [msg, setMsg] = useState("");

 const onChangeTxt = (e: React.
 ChangeEvent<HTMLInputElement>)

 => {

 setTxt(e.target.value);

184 Setting Up Our Project Using create-react-app and Testing with Jest

 }

 const onClickShowMsg = (e:

 React.MouseEvent<HTMLButtonElement, MouseEvent>) =>
 {

 e.preventDefault();

 setMsg(`Welcome to React testing, ${txt}`);

 }

The preceding code remains entirely the same, however, in the return, we add
a dummy div tag as shown:

 return (

 <form>

 <div>

 <label>Enter your name</label>

 </div>

 <div>

 <input data-testid="user-input"
 value={txt}

 onChange={onChangeTxt} />

 </div>

 <div>

 <button data-testid="input-submit"

 onClick={onClickShowMsg}>Show
 Message</button>

 </div>

 <div>

 <label data-testid="final-msg" >{msg}
 </label>

 </div>

 <div>

 this is just a test entry

 </div>

 </form>

)

}

Understanding client-side testing for React 185

If we save this file and our test reruns, we should see the following:

Figure 6.13 – Failed snapshot test

186 Setting Up Our Project Using create-react-app and Testing with Jest

As you can see, our snapshot test failed since our UI now does not match our
snapshot. So then, what if we meant to make this change to our DisplayText
component UI? In this case, we can force a snapshot update by entering the u
character under the Watch Usage list by first entering the w character. If this does
not work for you, just stop and restart your test. This is what the Watch Usage list
looks like:

Figure 6.14 – Watch Usage list

6. And after selecting u, our snapshot file should update successfully and our snapshot
test should complete. If you open your local snapshot file, you should see the same
new div tag we added to our component earlier.

So now we've seen some simple tests to help us get started. Next, we'll get introduced to
the topic of mocking.

Mocking
Mocking is simply replacing specific functionality in our test with default values. An
example of mocking could be to only pretend to make a network call but instead return
a hardcoded value. The reason we want to do this is we want to only test a single unit
or a small piece of our code. By mocking some portions of our code that are not specific
to what we are testing, we are avoiding confusion and making certain our test works
consistently. For example, if we were trying to test input in our code, we wouldn't want
a network call failure to affect the result of that test, because a network call has nothing
to do with the input element specifically. When we want to do end-to-end testing
or integration testing, we can worry about the network call as well. But that is a different
animal from unit testing (in some teams, integration testing is handled by the QA team
separately) and we won't cover it here. Now, when it comes to React components,
testing-library actually recommends against mocking, because this effectively makes
our test less like actual code. Having said that, sometimes mocking can still be helpful
to do, so I will show how to mock components as well.

Mocking 187

Mocking with jest.fn
Let's learn about mocking with Jest as it is also used with Node development. The first way
to do mocking in Jest is to mock a specific function using fn. This function takes another
function as a parameter that will do whatever you need to be done to set up your desired
mock. But also, in addition to this ability to replace arbitrary existing code and values,
creating a mock will give you access to a member called mock. This member provides
metrics about your mock call. This is difficult to conceptualize so let's create an example:

1. Let's update our DisplayText component to make a network call to a web
API. We will use the JsonPlaceholder web API. This is a free service that
provides you with a web API that returns JSON. Let's create a new property for
DisplayText that is a function that returns a user's full name based upon their
username. We need to first update the App function file like this:

function App() {

 const getUserFullname = async (username: string):
 Promise<string> => {

 const usersResponse = await

 fetch('https://jsonplaceholder.typicode.com/
 users');

 if(usersResponse.ok) {

 const users = await usersResponse.json();

 const userByName = users.find((usr: any) => {

 return usr.username.toLowerCase() === username;

 });

 return userByName.name;

 }

 return "";

 }

 return (

 <div className="App">

 <DisplayText getUserFullname={getUserFullname} />

 </div>

);

}

188 Setting Up Our Project Using create-react-app and Testing with Jest

So, here, we are creating the function called getUserFullname and then passing
that as a property to our DisplayText component. As you can see, it is based on
a network call to the web API of JsonPlaceholder. It calls into the users collection
and then it filters the collection using the find array function. The result will get
a user's full name from their username by calling userByName.name.

2. Now, let's see the updated DisplayText component code:

import React, { useState, FC } from "react";

interface DisplayTextProps {

 getUserFullname: (username: string) =>
 Promise<string>;

}

const DisplayText: FC<DisplayTextProps> =
({ getUserFullname }) => {

 const [txt, setTxt] = useState("");

 const [msg, setMsg] = useState("");

 const onChangeTxt = (e: React.
 ChangeEvent<HTMLInputElement>)

 => {

 setTxt(e.target.value);

 }

 const onClickShowMsg = async (e:

 React.MouseEvent<HTMLButtonElement, MouseEvent>) =>
 {

 e.preventDefault();

 setMsg(`Welcome to React testing, ${await

 getUserFullname(txt)}`);

 }

Mocking 189

For the most part, this code remains the same, except of course we have defined
a new interface called DisplayTextProps to house our getUserFullname
function. This function is being passed in as a prop from our App component. And
then we use that function within the onClickShowMsg event handler to show the
welcome message with the user's full name:

 return (

 <form>

 <div>

 <label>Enter your name</label>

 </div>

 <div>

 <input data-testid="user-input"
 value={txt}

 onChange={onChangeTxt} />

 </div>

 <div>

 <button data-testid="input-submit"

 onClick={onClickShowMsg}>Show Message</
 button>

 </div>

 <div>

 <label data-testid="final-msg" >{msg}</
 label>

 </div>

 </form>

)

}

export default DisplayText;

190 Setting Up Our Project Using create-react-app and Testing with Jest

The rest of the code is the same but is shown for completeness. So then, now if
we run our app, we should see something like this:

Figure 6.15 – User's full name
As you can see, the full name of the user with the username bret is Leanne
Graham.

Now let's write our test and mock out our network call using Jest:

1. Open DisplayText.test.tsx and notice that all our tests are failing since
none of them will have the new property getUserFullname. So, let's update
our test and mock this function. Here are the new tests:

import React from 'react';

import { render, fireEvent, cleanup, wait } from
 "@testing-library/react";

import DisplayText from './DisplayText';

import "@testing-library/jest-dom/extend-expect";

Near the top, we see a new function import called wait from @testing-
library/react. This is to handle asynchronous calls within our test items. For
example, getUserFullname is an asynchronous call and so we need to await
it. But if we do not await it, our test will fail because it will not have waited for the
call to finish before moving to the next step:

afterEach(cleanup);

describe("Test DisplayText", () => {

 const userFullName = "John Tester";

 const getUserFullnameMock = (username: string):

 [Promise<string>, jest.Mock<Promise<string>,
 [string]>] => {

 const promise = new Promise<string>((res, rej) =>
{

Mocking 191

 res(userFullName);

 });

 const getUserFullname = jest.fn(

 async (username: string): Promise<string> => {

 return promise;

 });

 return [promise, getUserFullname];

 }

The next thing you see is two new members, userFullName and
getUserFullnameMock. Since we will be running our mock function in several
tests, we are creating the getUserFullnameMock function so that we can reuse
it to give us our mock function getUserFullname and a few other needed items.

But then the question may be why do they look so complicated? Let's go through
the code and figure out what it's doing:

• After we set the userFullName, variable we create the getUserFullnameMock.
function As you can see, the getUserFullnameMock function takes a
username as a parameter, just like the real getUserFullname function, and
returns a promise and a Mock object.

• Inside of getUserFullnameMock, the definition instantiates a promise object
and it mocks our getUserFullname function by using jest.fn. We need
a promise to simulate a network call and also to await on it later with the wait
call from testing-library.

• As mentioned, jest.fn is used to instantiate a mock and have the mock do
whatever it is that we may need. In this case, since the getUserFullname
function we are mocking is making a network call, we need to have our jest.fn
mock return a promise. And it does so by returning the promise we created on the
line immediately above it.

• And then, finally, both the promise and the new mock function,
getUserFullname, are returned.

• We are going to quite a bit of trouble here, but in this case, it is a good idea to
eliminate the use of a slow and error-prone network call. Otherwise, if the network
call fails, we may incorrectly believe our test and code have failed.

192 Setting Up Our Project Using create-react-app and Testing with Jest

• Next, let's see how our mock is used within our tests:

 it("renders without crashing", () => {

 const username = "testuser";

 const [promise, getUserFullname] =

 getUserFullnameMock(username);

 const { baseElement } = render(<DisplayText

 getUserFullname={getUserFullname} />);

 expect(baseElement).toBeInTheDocument();

 });

 it("matches snapshot", () => {

 const username = "testuser";

 const [promise, getUserFullname] =

 getUserFullnameMock(username);

 const { baseElement } = render(<DisplayText

 getUserFullname={getUserFullname} />);

 expect(baseElement).toMatchSnapshot();

 });

 it("receive input text", () => {

 const username = "testuser";

 const [promise, getUserFullname] =

 getUserFullnameMock(username);

 const { getByTestId } = render(<DisplayText

 getUserFullname={getUserFullname} />);

 const input = getByTestId("user-input");

 fireEvent.change(input, { target: { value:
 username } });

 expect(input).toBeInTheDocument();

 expect(input).toHaveValue(username);

 });

Mocking 193

The first few tests simply take the getUserFullname function and pass it as
a property to DisplayText. They don't otherwise use it, but it's still needed since
it's a required property of DisplayText.

2. The last test is updated since it tests the welcome message. Update your last test
like this:

 it("shows welcome message", async () => {

 const username = "testuser";

 const [promise, getUserFullname] =

 getUserFullnameMock(username);

 const msg = `Welcome to React testing,
 ${userFullName}`;

 const { getByTestId } = render(<DisplayText

 getUserFullname={getUserFullname} />);

 const input = getByTestId("user-input");

 const label = getByTestId("final-msg");

 fireEvent.change(input, { target: { value:
 username } });

 const btn = getByTestId("input-submit");

 fireEvent.click(btn);

 expect(label).toBeInTheDocument();

 await wait(() => promise);

 expect(label.innerHTML).toBe(msg);

 });

});

The last test tests the welcome message because the getUserFullname function
provides the user's fullname and that is fed into the welcome message that's
shown in our label. In order to test that, we do an assertion with expect and
toBe. Additionally, notice the await wait call just above toBe. This call must
run first because our getUserFullname function is an async function and
needs therefore to be awaited in order to get its results.

So by using jest.fn, we can mock out a piece of code so that it can give us a consistent
value. Again, this helps us create consistent, reproducible tests where we are testing only
a specific unit of code.

194 Setting Up Our Project Using create-react-app and Testing with Jest

Component mocking
The second form of mocking is to replace whole components entirely and use them in
place of real components when we want to test other code. In order to test this, follow the
steps given here:

1. Let's make our DisplayText component show a list of user todos based on the
inserted username. Update the component like this:

import React, { useState, FC } from "react";

interface DisplayTextProps {

 getUserFullname: (username: string) =>
 Promise<string>;

}

const DisplayText: FC<DisplayTextProps> = ({
getUserFullname })

 => {

 const [txt, setTxt] = useState("");

 const [msg, setMsg] = useState("");

 const [todos, setTodos] = useState<Array<JSX.
 Element>>();

Here, we've created some state to use later:
 const onChangeTxt = (e: React.
 ChangeEvent<HTMLInputElement>)

 => {

 setTxt(e.target.value);

 }

Here, we update our input with the value of the username given by the user:
 const onClickShowMsg = async (e:

 React.MouseEvent<HTMLButtonElement, MouseEvent>) =>
 {

 e.preventDefault();

 setMsg(`Welcome to React testing, ${await

 getUserFullname(txt)}`);

 setUsersTodos();

 }

Mocking 195

Once the Show Message button is clicked, we update the message to be displayed as
well as the list of todos to be shown.

2. We are going to accept a prop to use as our message prefix:
const setUsersTodos = async () => {

 const usersResponse = await

 fetch('https://jsonplaceholder.typicode.com/
 users');

 if(usersResponse.ok) {

 const users = await usersResponse.json();

 const userByName = users.find((usr: any) => {

 return usr.username.toLowerCase() ===
 txt;

 });

 console.log("user by username", userByName);

Similarly to how we got the user's fullname by using their username, we get the
user's list of todos by calling the JSONPlaceholder API. First, we find the user by
calling into the users collection:

 const todosResponse = await

 fetch('https://jsonplaceholder.typicode.com/
 todos');

 if(todosResponse.ok) {

 const todos = await todosResponse.json();

 const usersTodos = todos.filter((todo:
 any) => {

 return todo.userId === userByName.id;

 });

 const todoList = usersTodos.map((todo:
 any) => {

 return <li key={todo.id}>

 {todo.title}

 });

 setTodos(todoList);

 console.log("user todos", usersTodos);

 }

 }

 }

196 Setting Up Our Project Using create-react-app and Testing with Jest

Then we call into the todos collection and match the todos to the previously
found user.

3. Finally, we return an unordered list of todos via the UI:

 return (

 <form>

 <div>

 <label>Enter your name</label>

 </div>

 <div>

 <input data-testid="user-input"
 value={txt}

 onChange={onChangeTxt} />

 </div>

 <div>

 <button data-testid="input-submit"

 onClick={onClickShowMsg}>Show Message</
 button>

 </div>

 <div>

 <label data-testid="final-msg" >{msg}</
 label>

 </div>

 <ul style={{marginTop: '1rem', listStyleType:

 'none'}}>

 {todos}

 </form>

)

}

This is what you should see in your browser (note that on the web API, only the
username bret has any todos). Note that the text that you see is lorem ipsum. It is
just placeholder text. It is coming straight from the JSONPlaceholder API:

Mocking 197

Figure 6.16 – List user todos
Here, we are displaying the user bret's list of todos.

Now, let's pretend we wanted to test our DisplayText component without testing this
list of todos. How could we refactor this code so that our test wouldn't be so monolithic?
Let's refactor our DisplayText component and pull out the todos capability as its own
component:

1. Update the DisplayText file like this:

import React, { useState, FC } from "react";

import UserTodos from "./UserTodos";

interface DisplayTextProps {

 getUserFullname: (username: string) =>
 Promise<string>;

}

const DisplayText: FC<DisplayTextProps> = ({
getUserFullname }) => {

 const [txt, setTxt] = useState("");

 const [msg, setMsg] = useState("");

 const [todoControl, setTodoControl] =

198 Setting Up Our Project Using create-react-app and Testing with Jest

 useState<ReturnType<typeof UserTodos>>();

 const onChangeTxt = (e: React.
 ChangeEvent<HTMLInputElement>)

 => {

 setTxt(e.target.value);

 }

First, we create a state called todoControl. The type of this state is the type of
our new UserTodos component, which we'll show later. We've gotten this type by
using the utility type ReturnType. As you can see, it is a simple way of creating
a type definition by using an object:

 const onClickShowMsg = async (e:

 React.MouseEvent<HTMLButtonElement, MouseEvent>) =>
 {

 e.preventDefault();

 setTodoControl(null);

 setMsg(`Welcome to React testing, ${await

 getUserFullname(txt)}`);

 setTodoControl(<UserTodos username={txt} />);

 }

Our onClickShowMsg event handler will call setTodoControl and pass our
UserTodos component the username:

 return (

 <form>

 <div>

 <label>Enter your name</label>

 </div>

 <div>

 <input data-testid="user-input"
 value={txt}

 onChange={onChangeTxt} />

 </div>

 <div>

 <button data-testid="input-submit"

 onClick={onClickShowMsg}>Show Message</
 button>

Mocking 199

 </div>

 <div>

 <label data-testid="final-msg" >{msg}</
 label>

 </div>

 {todoControl}

 </form>

)

}

export default DisplayText;

And finally, todoControl gets displayed with our UI.

2. Now let's create our new UserTodos component. Create a file called UserTodos.
tsx and add this code:

import React, { FC, useState, useEffect } from 'react';

interface UserTodosProps {

 username: string;

}

We are now taking the username as a prop from our parent:
const UserTodos: FC<UserTodosProps> = ({ username }) => {

 const [todos, setTodos] = useState<Array<JSX.
 Element>>();

 const setUsersTodos = async () => {

 const usersResponse = await

 fetch('https://jsonplaceholder.typicode.com/
 users');

 if(usersResponse) {

 const users = await usersResponse.json();

 const userByName = users.find((usr: any) => {

 return usr.username.toLowerCase() ===
 username;

 });

 console.log("user by username", userByName);

200 Setting Up Our Project Using create-react-app and Testing with Jest

First, we grab our users again from the users collection and filter to find our one
user by matching the username:

 const todosResponse = await

 fetch('https://jsonplaceholder.typicode.com/
 todos');

 if(userByName && todosResponse) {

 const todos = await todosResponse.json();

 const usersTodos = todos.filter((todo:
 any) => {

 return todo.userId === userByName.id;

 });

 const todoList = usersTodos.map((todo:
 any) => {

 return <li key={todo.id}>

 {todo.title}

 });

 setTodos(todoList);

 console.log("user todos", usersTodos);

 }

 }

 }

Then we grab the matching todos of the found user. We then run the JavaScript map
function to create a collection of li elements for each todo:

 useEffect(() => {

 if(username) {

 setUsersTodos();

 }

 }, [username]);

By using useEffect, we are indicating that any time our username prop
changes, we want to update our list of todos:

 return <ul style={{marginTop: '1rem', listStyleType:

 'none'}}>

 {todos}

 ;

Mocking 201

}

export default UserTodos;

And finally, we output our todos as unordered list elements. If you run this code,
you should see this once you click Show Message:

Figure 6.17 – Refactored todos

OK, so now we can add a new test that mocks out our UserTodos component and
therefore allows DisplayText to be tested independently. Note also that there are two
main ways of doing mocks with Jest. We can do an inline call to mock or we can use
a mock file. For this example, we will use a mock file. Let's look at the steps:

1. In the src folder, create a new folder, __mocks__. Inside that folder, create a file
called UserTodos.tsx and add this code into it:

import React, { ReactElement } from 'react';

export default (): ReactElement => {

 return <></>;

 };

202 Setting Up Our Project Using create-react-app and Testing with Jest

This file will be the mocked version of the function component. As you can see,
it returns nothing and has no real members. This means that unlike the real
component, it will not make any network call or emit any HTML, which for testing
is what we want.

2. Let's now update DisplayText.test.tsx with the following code:

import React from 'react';

import { render, fireEvent, cleanup, wait } from '@
testing-library/react';

import DisplayText from './DisplayText';

import "@testing-library/jest-dom/extend-expect";

jest.mock("./UserTodos");

afterEach(cleanup);

describe("Test DisplayText", () => {

 const userFullName = "John Tester";

 const getUserFullnameMock = (username: string):

 [Promise<string>, jest.Mock<Promise<string>,
 [string]>] => {

 const promise = new Promise<string>((res, rej) =>
{

 res(userFullName);

 });

 const getUserFullname = jest.fn(async (username:
 string):

 Promise<string> => {

 return promise;

 });

 return [promise, getUserFullname];

 }

Learning common tools and practices for React development 203

First, we can see that we import our mock UserTodos component outside of any test.
This is necessary as doing it inside a test will not work.

The rest of the tests are the same but they now internally use the mock of UserTodos.
Therefore, the test runs faster as there's no network call. As a trial of your newfound
testing skills, try creating your own test for the UserTodos component separately.

In this section, we learned about testing React applications using Jest and testing-library.
Unit testing is a very important part of application development and you will be coding
tests almost daily as a professional programmer. It can help both to write and refactor code.

In the next section, we'll continue adding to our developer skillset by discussing common
tools used in the development of React applications.

Learning common tools and practices for
React development
There are many tools that can help in writing React applications. There are too many to
list them exhaustively but we will review some of the most common here. These tools are
vital for writing and debugging your code, so you should spend some time familiarizing
yourself with them.

VS Code
We've been using VS Code as our code editor for the entirety of this book. And for
JavaScript development, VS Code is clearly the most popular editor currently in use. Here
are a few facts you should know in order to make optimal use of VS Code:

• VS Code has a large ecosystem of extensions to help in coding. Many of them are
dependent upon developer preferences, so you should do a quick search and take
a look. However, here are some common extensions you should consider using:

Visual Studio IntelliCode: Provides a language service for AI-driven code
completion and syntax highlighting.

Apollo GraphQL: Code completion and formatting helpers for GraphQL.

204 Setting Up Our Project Using create-react-app and Testing with Jest

React-related plugins: There are many React-related plugins that can help by
providing code snippets or Hooks into services like NPM. Here are just a few:

Figure 6.18 – React VS Code plugins

Learning common tools and practices for React development 205

• VS Code has a built-in debugger that allows you to break (stop) on code and
review variable values. I won't demonstrate it here as the standard for frontend
development is to use the Chrome debugger, which also allows breaking on code,
but I will demonstrate it once we start using Node.

• Configuration files: In VS Code, there are two ways of setting preferences for your
project, a workspace and the settings.json file. There is an enormous number
of ways VS Code can be configured with regard to fonts, extensions, windows, and
so on. These configurations can be done globally, or they can be done per project.
I've included a .vscode/settings.json file in the ejected-app project for
demonstration purposes. Workspace files are basically the same as settings files,
except they're intended for use with multiple projects in a single folder. Workspace
files are named <name>.code-workspace.

Prettier
When writing code, it is very important to use a consistent style to improve readability.
For example, if you imagine a large team with many developers, if they each write code
in their own style with various ways of doing indentation, variable naming, and so on, it
would be chaos. Additionally, there are industry-standard ways of formatting JavaScript
that can make it more readable and therefore more understandable. This is what tools like
Prettier provide.

Prettier will automatically format your code into a consistent and readable format upon
every save, no matter who is writing the code. Just remember, after installing Prettier,
you need to set up settings.json or your workspace file to use it. Again, I have
a sample settings.json file in our ejected-app project.

Chrome Debugger
The Chrome browser provides built-in tools for web development. These include the
ability to see all the HTML of a page, view console messages, break on JavaScript code,
and view network calls made by the browser. Even without any plugins, it is quite
extensive. For many frontend developers, Chrome is the main tool for debugging code.

206 Setting Up Our Project Using create-react-app and Testing with Jest

Let's take a look at the debugger for ejected-app and learn some of the basics:

1. If your local instance of ejected-app is not running, start it again and open your
Chrome browser to the default localhost:3000 URL. Once there, open your
Chrome debugger by either pressing the F12 key or going to Chrome Settings |
More Tools | Developer Tools. In the debugger, which will probably show at the
bottom of your Chrome screen, you should see the Elements tab like this:

Figure 6.19: Chrome Debugger Elements tab
As you can see, we have our original root div tag where the rest of our app
resides. And in this screenshot, we can see the state where we've made our call
to the web API to get todos for the user Bret. So, then we can use the Chrome
Debugger to find our HTML elements and check their attributes and play with CSS
values to get our UI precisely how we would want it.

2. Next, go to the Console tab and you should see something like this:

Figure 6.20: Chrome Debugger Console tab

Learning common tools and practices for React development 207

So, here, we can check the values for variables and function return data, making
sure they are what we want and are expecting.

3. Using the Chrome Debugger, it is possible to break on running code. Open the
Sources tab and find the UserTodos.tsx file, then add the breakpoint as shown:

Figure 6.21 – Chrome Debugger Sources tab
As you can see, we are able to stop on our breakpoint, as indicated by the dot next
to line 30. If you hover over certain variables, you will be able to see their current
values, even when they contain objects such as other components. This is a really
useful feature for debugging issues in code. This feature is enabled by something
called source maps. Source maps are files that map or tie source code to minified
runtime code. They get created and sent to the browser during development time
and allow the ability to break on and view variable values during runtime.

208 Setting Up Our Project Using create-react-app and Testing with Jest

4. Now let's remove our breakpoint and move to the Network tab. This tab shows
all the network connections made by our browser. This includes not only calls for
network resources such as data but can include calls to get images or static files such
as HTML files. If we open this tab and then make our call to get todos for the user
Bret, we should see this:

Figure 6.22 – Chrome Debugger Network tab
As you can see, we can view all the data that comes back from our call to the web
API. This is a handy tool that allows us to compare the data coming from our
network resource and compare it to what our code seems to be using. We will also
use this tool later when we do GraphQL calls as well.

OK, so that was a quick overview of the Chrome Debugger, but Chrome also provides
extensions that enable React-specific help. React Developer Tools provides information
about our component hierarchy and attribute information about each component; for
example, here's a sample in our app:

Learning common tools and practices for React development 209

Figure 6.23 – React Developer Tools

As you can see, this tool reveals our component hierarchy and it shows the currently
selected component's attributes. It also shows a highlight on the screen of the elements
that make up our component, when we select the specific component within the hierarchy.
It's a handy tool for viewing our elements from the standpoint of React component
structure, as opposed to HTML structure. The Chrome ecosystem of extensions is vast
and there are also extensions for Redux and Apollo GraphQL. We'll explore those in
Chapter 8, Learning Server-Side Development with Node.js and Express, and Chapter 9,
What is GraphQL?, respectively.

Alternative IDEs
In this book, we use VS Code as our code editor. It works great and has become the most
popular JavaScript and TypeScript editor. However, there is no reason why you have to use
it. And there are alternatives you should be aware of. I will only list out a few of them here,
just so you are aware of some options:

• Atom: Probably the most popular free editor after VS Code.

• Sublime Text: One of the faster and more responsive editors. Also has
a free version.

• Vim: A Unix text editor, often used for editing code.

• Webstorm: A commercial editor from JetBrains.

210 Setting Up Our Project Using create-react-app and Testing with Jest

Try some of these editors for yourself, as having a good code editor can definitely enhance
your productivity.

This section reviewed some of the more commonly used tools in React development.
Although these tools don't do the main work of writing code for our application, they
are nevertheless enormously important for helping us to write code faster and of higher
quality. They will also reduce our pain points while writing code, because finding bugs
can often be as challenging as resolving them.

Summary
In this chapter, we learned about the many tools professional frontend developers use to
help write high-quality code. Whether it's the VS Code editor used to write the code, or
the source code repository Git used to share it, all of the tools mentioned here are vitally
important in doing the work of a frontend engineer.

By learning about these tools, you will become a much better programmer and your code
quality will increase substantially. Additionally, your quality of life as a developer will
improve because many of these tools can help track down issues more quickly and help
you resolve them more easily than trying to tackle it entirely on your own.

In the next chapter, we will extend our knowledge of React by learning about Redux and
React Router. Redux will help us manage global state and React Router will help us create
client-side URLs. Both frameworks are very popular in the React community and provide
many features that will help us create a more sophisticated, capable application.

7
Learning Redux

and React Router
In this chapter, we'll learn about Redux and React Router. Redux is still the most common
method of managing global state shared across a React application. Using Redux global
state, we can reduce a great deal of boilerplate code and streamline the application.
React Router is also the most popular framework for managing client-side URL routing.
Client-side URL routing allows a SPA application to behave in ways that are familiar to
users expecting a classic-style web application that indicates where they are in the app.
Both of these technologies are necessary for building SPA applications that look and feel
like standard web apps.

In this chapter, we're going to cover the following main topics:

• Learning about Redux state

• Learning about React Router

Technical requirements
You should have a basic understanding of web development using React. We will once
again be using Node and Visual Studio Code.

212 Learning Redux and React Router

The GitHub repository is at https://github.com/PacktPublishing/Full-
Stack-React-TypeScript-and-Node. Use the code in the Chap7 folder.

To set up this chapter's code folder, go to your HandsOnTypescript folder and create
a new folder called Chap7.

Learning about Redux state
Redux is still the most popular enterprise-level framework for creating and managing
global state in a React application (although we can use Redux in any JavaScript app, not
just React). Many newer frameworks have been created, and some of them have gained
their own considerable following; however, Redux is still the most commonly used.
You may find that Redux is difficult to understand at first. However, once we do learn it,
we'll see its many benefits and why it is so often the go-to framework for large, complex
React applications.

We learned about React state in Chapter 4, Learning Single-Page Application Concepts and
How React Enables Them, and Chapter 5, React Development with Hooks. So, to reiterate,
state, or a component's data, is the main driver of all UI changes in React. This is the
reason why the React framework has the word "react" in its name, because it is reacting to
these state changes (this is also known as being reactive). So, when creating and managing
state, we generally want to associate local state with the component or the component's
root parent most of the time.

Component-based state can be limiting. There are cases where state is not specific to
a component or even to a component hierarchy. State can sometimes be necessary for
several components or other non-component services that make up an application. In
addition to this, state in React is passed down only one way, from the parent down to
children as props. It should not be done upstream. And this further constrains how state
can be used in React. Redux therefore provides a mechanism not only to share state
globally but also to allow injection and updating of state from any component as needed.

Let's give an example to flesh this out a bit. In a typical enterprise-class application, we will
always have authentication. And once a user is authenticated, we may receive certain data
about the user – for example, the user's full name, user ID, email, and so on. It should not
seem unreasonable to think that these data points may be used by a significant portion of
the components within an application. It would be tedious and error-prone therefore to
have each component call to get this data and then save it locally in their own state. Doing
it this way would mean that there were multiple copies of the data and as it changed, some
components may end up keeping older versions of the data.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

Learning about Redux state 213

This sort of conflict can be the source of bugs. Therefore, it would be helpful to be able to
maintain this data on the client in only one place and share it with whatever component
needed it. This way, if this data ever did get updated, we could be assured that all
components, no matter what section of the app they are in, would get the latest valid data.
This is what Redux can do for our application. We can consider it a single source of truth.

Redux is a data storage service that maintains all the globally shared data in our React
application. Redux provides not only the store itself, but also the base functions needed to
add, remove, and share this data. One difference with React state, however, is that Redux
state is not necessarily going to trigger UI updates. It certainly can if we desire to do so,
but there is no explicit necessity for doing so. So, we should keep that in mind.

Let's take a look at how to set up Redux:

1. Create a new React project in the Chap7 folder like this:

create-react-app redux-sample --template typescript

2. Once our project is set up, open it and use your command line to cd into the
redux-sample folder.

3. We will now install Redux, which is actually several different dependencies. First,
run this command:

npm i redux react-redux @types/redux @types/react-redux

This command gives us the main dependencies, including the TypeScript types.
OK, now that we've done some basic setup, we need to understand a few more things
about Redux before we continue. Redux uses a pair of concepts called reducers and
actions. Let's see what each of these does.

Reducers and actions
In Redux, there is only a single store for all data. So, all our global data will live inside
of a single Redux object. Now, the issue with this design is that, since this is global state,
different app features will require different types of data and the entirety of the data is
not always relevant to all parts of the application. So, the Redux creators came up with
a scheme that uses reducers to filter and split up the single store into separated chunks.
So, if component A only needs a specific piece of data, it does not have to deal with the
entire store.

214 Learning Redux and React Router

This design is a good way of separating data concerns. But the side effect of having such
a design is that we need some way of updating the relevant portion of data without
affecting any of the other pieces. This is what actions do. Actions are objects that provide
the data for specific reducers only.

Now that we have a high-level view of what reducers and actions are, let's look at some
examples in code:

1. Create a new folder called store under src.

2. Then, create a file called AppState.ts. This file will store our aggregated reducer
object called rootReducer of type AppState, which represents the global state.
Insert this code into the file:

import { combineReducers } from "redux";

export const rootReducer = combineReducers({

});

export type AppState = ReturnType<typeof rootReducer>;

rootReducer represents an aggregated object of all of our reducers. We don't
have any reducers yet, but we will add the actual reducers once our setup is
complete. combineReducers takes each of our reducers and combines them into
a single object. At the bottom, we are creating a TypeScript type based upon our
rootReducer by using the ReturnType utility type, and then exporting
the new type called AppState.

Note
A utility type is simply a helper class that the TypeScript team created to
give specific functionality. There are many different utility types and a list
can be found here: https://www.typescriptlang.org/docs/
handbook/utility-types.html.

3. Next, we create a file called configureStore.ts, which will contain our actual
store object used by Redux and the app. This is what it should look like:

import { createStore } from "redux";

import { rootReducer } from "./AppState";

const configureStore = () => {

https://www.typescriptlang.org/docs/handbook/utility-types.html
https://www.typescriptlang.org/docs/handbook/utility-types.html

Learning about Redux state 215

 return createStore(rootReducer, {});

};

export default configureStore;

As we can see, Redux's createStore method is used to build the actual store
based upon our AppState object, rootReducer. configureStore is exported
and used later to execute the creation of the store.

4. Now, we must update our index.tsx file to call our configureStore method
and initialize Redux for our app. Update index.tsx like this:

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import { Provider } from "react-redux";

import configureStore from "./store/configureStore";

import * as serviceWorker from './serviceWorker';

ReactDOM.render(

 <React.StrictMode>

 <Provider store={configureStore()}>

 <App />

 </Provider>

 </React.StrictMode>,

 document.getElementById('root')

);

First, we import Provider from react-redux. Provider is a React
component that acts as a parent component to all other components and provides
our store data. In addition, Provider, as shown, is receiving the initialized store
by accepting the return value of the configureStore function:

// If you want your app to work offline and load faster,

 // you can change

// unregister() to register() below. Note this comes with

 // some pitfalls.

// Learn more about service workers:

 // https://bit.ly/CRA-PWA

serviceWorker.unregister();

216 Learning Redux and React Router

This commented code is coming from the create-react-app project. It is included
here for completeness. OK, so now we have a base-level setup of Redux. So, our example
will continue by creating a call to get a user object. We will use the JSONPlaceholder
API we learned about in Chapter 6, Setting Up Our Project Using create-react-app and
Testing with Jest. After a successful login, it shares the user information by putting it into
Redux as a reducer. Let's do that now:

1. Create a new file, UserReducer.ts, inside of the store folder, like this:

export const USER_TYPE = "USER_TYPE";

The first thing we do is create a constant for the action type called USER_TYPE.
This is optional but helps us avoid issues such as typos:

export interface User {

 id: string;

 username: string;

 email: string;

 city: string;

}

Then, we create a type representing our User:
export interface UserAction {

 type: string;

 payload: User | null;

}

Now, by convention, an action has two members: type and payload. So, we create a
UserAction type with those members in it:

export const UserReducer = (state: User | null = null,
action:

 UserAction): User | null => {

 switch(action.type) {

 case USER_TYPE:

 console.log("user reducer", action.payload);

 return action.payload;

 default:

 return state;

 }

};

Learning about Redux state 217

And then, finally, we create our reducer called UserReducer. A reducer always
takes the state and action parameters. Note, state is not the entire state, it is
only the partial state relevant to some reducer. This reducer will know whether the
passed-in state is its own based on the action type. Also notice that the original
state is never mutated. This is extremely important. Never change the state directly.
You should either return the state as is, which is done in case default, or return
some other data. In this case, we return action.payload.

2. So now, we have to go back into our AppState.ts file and add this new reducer.
The file should now look like this:

import { combineReducers } from "redux";

import { UserReducer } from "./UserReducer";

export const rootReducer = combineReducers({

 user: UserReducer

});

export type AppState = ReturnType<typeof rootReducer>;

Our Redux store has one new member called user, which is updated by
UserReducer. If we had more reducers, we would simply give them a name and
add them below user with their reducer, and the combineReducers Redux
function would combine all of them into a single aggregate rootReducer.

3. Now, let's start using our new state. Update the App.tsx file like this:

import React, { useState } from 'react';

import ContextTester from './ContextTester';

import './App.css';

function App() {

 const [userid, setUserid] = useState(0);

 const onChangeUserId = (e: React.
 ChangeEvent<HTMLInputElement>)

 => {

 console.log("userid", e.target.value);

 setUserid(e.target.value ? Number(e.target.value) :
 0);

 }

218 Learning Redux and React Router

 return (

 <div className="App">

 <label>user id</label>

 <input value={userid} onChange={onChangeUserId} />

 </div>

);

}

export default App;

We will take userid as a parameter and then, based upon that ID, we will get
the associated user from the JSON Placeholder API. Now, in order to do this, we
need to use some Redux-specific Hooks so we can add our found user to the Redux
store.

4. Let's update the App component in App.tsx like this:

function App() {

 const [userid, setUserid] = useState(0);

 const dispatch = useDispatch();

As you can see, we added a Redux Hook called dispatch. We get an instance of
dispatch with the useDispatch Hook. dispatch is a Redux function that
sends our action data to Redux. Redux then sends the action to each of our reducers
for processing. Then the reducer that recognizes the action type accepts it as its state
payload:

 const onChangeUserId = async (e:

 React.ChangeEvent<HTMLInputElement>) => {

 const useridFromInput = e.target.value ?

 Number(e.target.value) : 0;

 console.log("userid", useridFromInput);

 setUserid(useridFromInput);

 const usersResponse = await

 fetch('https://jsonplaceholder.typicode.com/
 users');

 if(usersResponse.ok) {

 const users = await usersResponse.json();

Learning about Redux state 219

 console.log("users", users);

 const usr = users.find((userItem: any) => {

 return userItem && userItem.id ===

 useridFromInput;

 });

 console.log("usr", usr);

 dispatch({

 type: USER_TYPE,

 payload: {

 id: usr.id,

 username: usr.username,

 email: usr.email,

 city: usr.address.city

 }

 });

 }

Inside of the onChangeUserId handler, we make a call to the JSONPlaceholder
API. Then we use the usersResponse response object to get the result from our
network API. We then get our desired user by filtering with the user ID we got from
our UI. Then we use dispatch to send our action to our reducer. Also notice
onChangeUserId is now an async function:

 }

 return (

 <div className="App">

 <label>user id</label>

 <input value={userid} onChange={onChangeUserId} />

 </div>

);

}

This UI will take userid as an input.

220 Learning Redux and React Router

Now, let's create a child component that can display all of our user-related data:

1. Create a new component called UserDisplay.tsx and add this code:

import React from 'react';

import { AppState } from './store/AppState';

import { useSelector } from 'react-redux';

const UserDisplay = () => {

 const user = useSelector((state: AppState) =>
 state.user);

 if(user) {

 console.log("user", user);

 return (<React.Fragment>

 <div>

 <label>username:</label>

 {user.username}

 </div>

 <div>

 <label>email:</label>

 {user.email}

 </div>

 <div>

 <label>city:</label>

 {user.city}

 </div>

 </React.Fragment>);

 } else {

 return null;

 }

}

export default UserDisplay

The useSelector Hook gets the specific user reducer. It takes a function as
a parameter and this function takes the entire aggregated reducer state and only
returns the user reducer. Also in this component, we are displaying the properties
of our found user but taken from Redux and the user reducer. Notice also how
we return null if no user is found.

Learning about Redux state 221

2. Now, let's add the UserDisplay component to our App component:

import React, { useState } from 'react';

import './App.css';

import { useDispatch } from 'react-redux';

import { USER_TYPE } from './store/UserReducer';

import UserDisplay from './UserDisplay';

Here, we import the new UserDisplay component:
function App() {

 const [userid, setUserid] = useState(0);

 const dispatch = useDispatch();

 const onChangeUserId = async (e:

 React.ChangeEvent<HTMLInputElement>) => {

 const useridFromInput = e.target.value ?

 Number(e.target.value) : 0;

 console.log("userid", useridFromInput);

 setUserid(useridFromInput);

 const usersResponse = await

 fetch('https://jsonplaceholder.typicode.com/
 users');

 if(usersResponse.ok) {

 const users = await usersResponse.json();

 const usr = users.find((userItem: any) => {

 return userItem && userItem.id ===
 useridFromInput;

 });

 dispatch({

 type: USER_TYPE,

 payload: {

 id: usr.id,

 username: usr.username,

 email: usr.email,

 city: usr.address.city

 }

 });

 }

 }

222 Learning Redux and React Router

No real changes up to here:
 return (

 <React.Fragment>

 <div className="App">

 <label>user id</label>

 <input value={userid} onChange={onChangeUserId}
 />

 </div>

 <UserDisplay />

 </React.Fragment>

);

}

export default App;

Now use UserDisplay in the returned JSX UI so that our user information
is displayed.

3. Now if you load the browser at http://localhost:3000 and enter 1 in the
input, you should see this:

Figure 7.1 – User object from the Redux store

So, now that we've seen a sample of a simple Redux store use case, let's take it a step
further and show what will happen when we have multiple reducers in the same store:

1. Create a new file called PostDisplay.tsx and add the following code. This
component will display posted comments from the JSON Placeholder API:

import React, { useRef } from 'react';

import { AppState } from './store/AppState';

Learning about Redux state 223

import { useSelector } from 'react-redux';

const PostDisplay = React.memo(() => {

 const renderCount = useRef(0);

 console.log("renders PostDisplay", renderCount.
 current++);

 const post = useSelector((state: AppState) => state.
 post);

Again, like our previous example, here, we set up which state data we want using
useSelector:

 if(post) {

 return (<React.Fragment>

 <div>

 <label>title:</label>

 {post.title}

 </div>

 <div>

 <label>body:</label>

 {post.body}

 </div>

 </React.Fragment>);

 } else {

 return null;

 }

});

export default PostDisplay

As you can see, it looks very similar to UserDisplay, but it displays
post-related information such as title and body.

2. Now, we update our Redux code to add our new reducer. First, add a new file inside
of the store folder called PostReducer.ts and then add this code:

export const POST_TYPE = "POST_TYPE";

export interface Post {

 id: number;

224 Learning Redux and React Router

 title: string;

 body: string;

}

export interface PostAction {

 type: string;

 payload: Post | null;

}

export const PostReducer = (state: Post | null = null,

 action: PostAction): Post | null => {

 switch(action.type) {

 case POST_TYPE:

 return action.payload;

 default:

 return state;

 }

};

Again, this is very similar to UserReducer, but focused on posts instead of users.

3. Next, we want to update the AppState.tsx file and add our new reducer to it.
Add this code:

import { combineReducers } from "redux";

import { UserReducer } from "./UserReducer";

import { PostReducer } from "./PostReducer";

export const rootReducer = combineReducers({

 user: UserReducer,

 post: PostReducer

});

export type AppState = ReturnType<typeof rootReducer>;

All we did is add our PostReducer.

Learning about Redux state 225

4. OK, so now we'll update our App component and add code specifically for finding
a specific post by ID from the JSON Placeholder API. Update App with this code:

function App() {

 const [userid, setUserid] = useState(0);

 const dispatch = useDispatch();

 const [postid, setPostId] = useState(0);

Notice we don't have a dispatch specific to any reducer. That's because
dispatchers are just generic execution functions. The action will be routed to the
appropriate reducer eventually.

onChangeUserId has not changed but is shown here for completeness:
 const onChangeUserId = async (e:

 React.ChangeEvent<HTMLInputElement>) => {

 const useridFromInput = e.target.value ?

 Number(e.target.value) : 0;

 console.log("userid", useridFromInput);

 setUserid(useridFromInput);

 const usersResponse = await

 fetch('https://jsonplaceholder.typicode.com/
 users');

 if(usersResponse.ok) {

 const users = await usersResponse.json();

 const usr = users.find((userItem: any) => {

 return userItem && userItem.id ===
 useridFromInput;

 });

 dispatch({

 type: USER_TYPE,

 payload: {

 id: usr.id,

 username: usr.username,

 email: usr.email,

 city: usr.address.city

226 Learning Redux and React Router

 }

 });

 }

 }

onChangePostId is a new event handler for handling post-related data
changes:

 const onChangePostId = async (e:

 React.ChangeEvent<HTMLInputElement>) => {

 const postIdFromInput = e.target.value ?

 Number(e.target.value) : 0;

 setPostId(postIdFromInput);

 const postResponse = await

 fetch("https://jsonplaceholder.typicode.com/posts/"

 + postIdFromInput);

 if(postResponse.ok) {

 const post = await postResponse.json();

 console.log("post", post);

 dispatch({

 type: POST_TYPE,

 payload: {

 id: post.id,

 title: post.title,

 body: post.body

 }

 })

 }

 }

Learning about Redux state 227

OnChangePostId dispatches a relevant action via the dispatch function.

The UI has been slightly updated to handle the new PostDisplay component and
separate it from the UserDisplay components:

 return (

 <React.Fragment>

 <div style={{width: "300px"}}>

 <div className="App">

 <label>user id</label>

 <input value={userid} onChange={onChangeUserId}
 />

 </div>

 <UserDisplay />

 </div>

 <div style={{width: "300px"}}>

 <div className="App">

 <label>post id</label>

 <input value={postid} onChange={onChangePostId}
 />

 </div>

 <PostDisplay />

 </div>

 </React.Fragment>

);

}

228 Learning Redux and React Router

If you run this code and update only postid, you should see an interesting thing:

Figure 7.2 – PostDisplay result
Notice that in the console, when updating the postid input, there is no log for
UserDisplay. This shows that the Redux store is not directly attached to the
React render pipeline and only the components associated with a particular state
change will re-render. This is different behavior from React Context and can be
a benefit to performance by reducing unwanted renders (we'll talk about Context
in the next section).

In this section, we learned about Redux, the most popular way of managing global state
in React. In larger apps, we will use a global state manager frequently, as there is generally
a lot of global data sharing happening. In our application, we will store information
about our logged-in user and other data that will be shared across the app, so having
this capability will be valuable.

React Context
Context is a newer feature that came out a little before Hooks. Context is not a separate
dependency but is built into React core. It allows similar functionality to Redux in that
it allows state to be stored in a single source and then shared across components, without
having to manually pass down props through the component hierarchy.

This capability is very efficient from a developer coding perspective because it eliminates
the need to write a lot of boilerplate code to pass state down from a parent to its children.
Here's a visualization of a possible set of hierarchies in a larger React app:

Learning about Redux state 229

Figure 7.3 – React component hierarchy

In this example diagram, we have a single parent component and it has several children,
which it is using in its own JSX. Those children also have their own children, and so on.
So, if we were to configure the passing of props all the way down for every component
hierarchy, it would be quite a bit of code, especially knowing that some hierarchies involve
passing functions that may call back to some arbitrary parent. Having these sorts of prop
relationships also causes additional cognitive load for developers, as they need to think
about data relationships and how data is being moved among the components.

Both React Context and Redux are good ways of avoiding this state-passing boilerplate
code, when appropriate. And for smaller projects, the simplicity of Context works well.
However, for larger projects, I recommend against using Context.

230 Learning Redux and React Router

React Context can have multiple parent providers, meaning it is possible to have more
than one root context. For larger apps, this can be confusing and adds more boilerplate
code. Additionally, the mixing of global state providers can be confusing. If a team decides
to use both Context and Redux, when do we use each one? And if we use both now,
we must maintain two styles for global state management.

In addition, Context, unlike Redux, has no concept of reducers. Therefore, all users of
Context will receive the entire set of state data, which is not a good practice in terms of the
separation of concerns. Over time, it can become confusing as to what subset of the data
a particular component should deal with.

One additional side effect of having all state data available to all component users is that,
even if a component does not actually access the specific state member, any Context
changes will trigger a re-render. For example, let's say that the Context state looks like
this { username, userage } and our component only uses username. Even if
userage alone changes, it triggers a re-render in that component. This is true even when
memo is used (we covered memo in Chapter 5, React Development with Hooks). Let's look
at an example demonstrating this effect:

1. Remove React.StrictMode and Provider from index.tsx to avoid
confusion. We'll put this back later. Now, the index.tsx file should look like this:

import React from 'react';

import ReactDOM from 'react-dom';

import './index.css';

import App from './App';

import { Provider } from "react-redux";

import configureStore from "./store/configureStore";

import * as serviceWorker from './serviceWorker';

ReactDOM.render(

 <App />

 ,

 document.getElementById('root')

);

Learning about Redux state 231

Again, these comments are coming from create-react-app and are included
here only for completeness:

// If you want your app to work offline and load faster,

 // you can change

// unregister() to register() below. Note this comes with

 // some pitfalls.

// Learn more about service workers:
 // https://bit.ly/CRA-PWA

serviceWorker.unregister();

You can also remove any unused imports to avoid triggering warning messages.

2. Now, create these two child components, where each one will use a unique member
of our Context state. First, create the UserAgeComp.tsx component with this
code in it:

import React, { useContext } from 'react';

import { TestContext } from './ContextTester';

const UserAgeComp = () => {

 const { userage } = useContext(TestContext);

 return <div>

 {userage}

 </div>

};

export default UserAgeComp;

232 Learning Redux and React Router

This code uses object destructuring to only use the userage member of
TestContext by using the useContext Hook, which we will create later, and
displays it only. Now, create the UserNameComp.tsx component with this code:

import React, { useContext, useRef } from 'react';

import { TestContext } from './ContextTester';

const UserNameComp = React.memo(() => {

 const renders = useRef(0);

 console.log("renders UserNameComp", renders.
 current++);

 const username = "dave"; //useContext(TestContext);

 console.log("username UserNameComp", username);

 return <div>

 {username}

 </div>

});

export default UserNameComp;

You may be surprised that we are not using Context for username (note, I have
it commented out), but before we can show the ramifications of using Context,
I wanted to show this component working as expected first. So, this component has
two main features. One is a ref that counts the number of times this component
was rendered, and a variable called username that gets displayed. It will also log
the renders count as well in order to show when a re-render is triggered.

3. Now, we need to create a parent component that has Context in it. Create the
ContextTester.tsx file and add this code into it:

import React, { createContext, useState } from 'react';

import UserNameComp from './UserNameComp';

import UserAgeComp from './UserAgeComp';

Learning about Redux state 233

Here, we use createContext to create our TestContext object, which will
hold our state:

export const TestContext = createContext<{ username:
 string, userage: number }>({ username: "",
 userage:0 });

const ContextTester = () => {

 const [userage, setUserage] = useState(20);

 const [localState, setLocalState] = useState(0);

 const onClickAge = () => {

 setUserage(

 userage + 1

);

 }

 const onClickLocalState = () => {

 setLocalState(localState + 1);

 }

 return (<React.Fragment>

 <button onClick={onClickAge}>Update age</button>

 <TestContext.Provider value={{ username: "dave",

 userage }}>

 <UserAgeComp />

 </TestContext.Provider>

 <UserNameComp />

 <button onClick={onClickLocalState}>Update

 localstate</button>

 <label>{localState}</label>

 </React.Fragment>);

}

export default ContextTester;

234 Learning Redux and React Router

This component will show two main things. One is the incremented value of
localState, which is incremented by the onClickLocalState handler,
and the other is the renders of the two child components, UserNameComp
and UserAgeComp. Notice UserNameComp, for now, lives outside of
the TestContext Context component, and therefore is not affected by
TestContext changes. This is very important to note.

4. Now, if we click on Update age or Update localstate, you will see that the
console.log statement in UserNameComp is never executed. That log statement
was only executed one time when the page first loaded, which is what is supposed to
happen since UserNameComp is using memo (memo only allows re-renders when
props change). You should see only one set of logs in your Console tab (ignore the
warnings, as we'll re-add our dependencies soon):

Figure 7.4 – Context render result

5. OK, so then now, let's force UserNameComp to use the username from
our TestContext. So now, UserNameComp should look like this:

import React, { useContext, useRef } from 'react';

import { TestContext } from './ContextTester';

const UserNameComp = React.memo(() => {

 const renders = useRef(0);

 console.log("renders UserNameComp", renders.
 current++);

 const { username } = useContext(TestContext);

 console.log("username UserNameComp", username);

Learning about Redux state 235

 return <div>

 {username}

 </div>

});

export default UserNameComp;

As you can see, now UserNameComp is using the username variable from the
TestContext context. It never makes use of the userage variable and you will
recall username has a hardcoded value so it never changes. So, theoretically, the
username state of UserNameComp never changes and therefore should not cause
a re-render. Now we need to place UserNameComp inside the TestContext tag
as well. We are doing this because if a component needs to use a Context's state,
it must be inside that Context's tag. Edit ContextTester like so:

const ContextTester = () => {

 const [userage, setUserage] = useState(20);

 const [localState, setLocalState] = useState(0);

 const onClickAge = () => {

 setUserage(

 userage + 1

);

 }

 const onClickLocalState = () => {

 setLocalState(localState + 1);

 }

 return (<React.Fragment>

 <button onClick={onClickAge}>Update age</button>

 <TestContext.Provider value={{ username: "dave",
 userage

 }}>

 <UserAgeComp />

 <UserNameComp />

236 Learning Redux and React Router

 </TestContext.Provider>

 <button onClick={onClickLocalState}>Update

 localstate</button>

 <label>{localState}</label>

 </React.Fragment>);

}

Notice username is hardcoded to "dave" and never changes. And as you can see,
UserNameComp was moved into TestContext.

6. Now, if we run this code and then click on the buttons several times, we should see
something like this:

Figure 7.5 – Re-renders when using Context

Learning about React Router 237

As you can see, our UserNameComp component keeps getting re-rendered,
even when we only change the localState variable. Why is this happening?
TestContext is a component just like any other React component. And
it does not use memo. So, when the parent component, ContextTester, gets
re-rendered, it also gets re-rendered, which has a knock-on effect for any of its
children. This is why UserNameComp keeps getting re-rendered although it never
uses the userage variable.

So, as you can see, Context has some issues with its use, and it is my opinion that for large
React applications, if you had to choose between the two, it would be better, albeit more
complex, to use Redux.

In this section, we learned about Context basics. Context is relatively easy to learn and
use. And for smaller projects, it works very well. However, due to its simple design, for
more complex projects, a more sophisticated global state management system may be
preferable.

Learning about React Router
React Router is the most commonly used routing framework in React. It is relatively
simple to learn and use. Routing, as we discovered in Chapter 4, Learning Single-Page
Application Concepts and How React Enables Them, is ubiquitous in web development.
It is a feature expected by users of web apps, so learning how to use it for our React app is
a requirement.

Routes in React Router are simply React Router components that contain our own
application components, and these components in turn represent our screens. In other
words, a route in React Router is a logical representation of a virtual location (by virtual
location, I mean a URL that is just a label and does not actually exist on any server). The
"routers" in React Router act as parent components and our screen rendering components
act as children. This is a bit difficult to understand by simply reading about it, so let's
create an example:

1. Create a new React project under the Chap7 folder in your terminal by calling
this command:

create-react-app try-react-router --template typescript

2. Once it has completed creating our project, cd into the new try-react-outer
folder, then let's add some packages:

npm i react-router-dom @types/react-router-dom

238 Learning Redux and React Router

Note that React Router has several versions, so we will use the one for dom.

3. Now, let's update our index.tsx file so that it includes the root React Router
component in our app. Update index.tsx like this:

import React from "react";

import ReactDOM from "react-dom";

import "./index.css";

import App from "./App";

import * as serviceWorker from "./serviceWorker";

import { BrowserRouter } from "react-router-dom";

ReactDOM.render(

 <React.StrictMode>

 <BrowserRouter>

 <App />

 </BrowserRouter>

 </React.StrictMode>,

 document.getElementById("root")

);

// If you want your app to work offline and load faster,

 // you can change

// unregister() to register() below. Note this comes with

 // some pitfalls.

// Learn more about service workers:
// https://bit.ly/CRA-PWA

serviceWorker.unregister();

As you can see, we've added a new root component wrapping our App component,
called BrowserRouter. BrowserRouter is a bit like Redux's Provider in
the sense that it is a single parent component that provides various props to child
components that are relevant to doing routing. We will go over these props soon,
but for now, let's finish our setup of React Router.

Learning about React Router 239

4. So now, since this tool is giving us routing, we must set up our individual routes.
However, since routes ultimately are just containers for components that represent
our screens, let's create two of those screens first. Create a file called ScreenA.tsx
and add this code:

import React from "react";

const ScreenA = () => {

 return <div>ScreenA</div>;

};

export default ScreenA;

It's a simple component that displays ScreenA in the browser.

5. Now, create a file called ScreenB.tsx and add this code:

import React from "react";

const ScreenB = () => {

 return <div>ScreenB</div>;

};

export default ScreenB;

Again, it is a simple component displaying ScreenB in the browser.

6. Now, let's give our routes a try. Open App.tsx and add this code into it:

import React from "react";

import "./App.css";

import { Switch, Route } from "react-router-dom";

import ScreenA from "./ScreenA";

import ScreenB from "./ScreenB";

function App() {

 return (

 <Switch>

 <Route exact={true} path="/" component={ScreenA} />

 <Route path="/b" component={ScreenB} />

 </Switch>

240 Learning Redux and React Router

);

}

export default App;

So, what's happening here is that our app is rendering out a possible route based
on several options. The Switch component indicates a parent that determines
which route to choose by matching the browser URL to a path property of a Route
instance. For example, if we start our app and go to the "/" route (the root of our
application), we should see this:

Figure 7.6 – Routed to ScreenA
But if we were to go to route "/b", we should see ScreenB instead, like this:

Figure 7.7 – Routed to ScreenB

So, as I stated at the beginning of the section, React Router routes are React components.
This may seem weird as they have no visible UI. Nevertheless, they are parent
components, except they render their children but have no UI of their own.

Now, we know that when our app first loads, it is the index.tsx file that runs before
anything else. And this is also where the core React Router service lives. When this
service encounters a URL, it looks through the set of routes defined in our App.tsx
file and selects a matching route. Once the matching route is selected, that route's child
component is rendered. So, for example, the route with path="/b" would render the
ScreenB component.

Learning about React Router 241

Let's drill into the details of our routing code. If we look back at our routes, we should see
that our first route has a property called exact. This tells React Router not to use regular
expressions in determining a route match but instead to look for an exact match. Next,
we see a property called path, which of course is supposed to be our URL path after the
root domain. This path is by default a "contains" path, meaning that any URL that contains
the same value as the path property will be accepted and the first matching route will be
rendered, unless we included the exact property.

Now, you will also notice that we have a property called component, which of course
refers to the child component that is to be rendered. And for simple scenarios, using
this property works fine. But what if we need to pass some additional props to our
component? React Router provides another property called render, which allows us to
use what's called a render property.

A render property is a property that takes a function as its parameter. When the parent
component does its rendering, it will call the render function internally. Let's look at an
example:

1. Create a new component called ScreenC.tsx and add this code in it:

import React, { FC } from "react";

interface ScreenCProps {

 message: string;

}

const ScreenC: FC<ScreenCProps> = ({ message }) => {

 return <div>{message}</div>;

};

export default ScreenC;

The ScreenC component is much like the other components. However, it also
receives a prop called message and uses that as its display. Let's see how we pass
this prop in via our render property of React Router.

242 Learning Redux and React Router

2. Now let's update our App component and add this new component as a route:

import React from "react";

import "./App.css";

import { Switch, Route } from "react-router-dom";

import ScreenA from "./ScreenA";

import ScreenB from "./ScreenB";

import ScreenC from "./ScreenC";

function App() {

 const renderScreenC = (props: any) => {

 console.log("ScreenC props", props);

 return <ScreenC {...props} message="This is Screen C"
 />;

 };

 return (

 <Switch>

 <Route exact={true} path="/" component={ScreenA} />

 <Route path="/b" component={ScreenB} />

 <Route path="/c" render={renderScreenC} />

 </Switch>

);

}

export default App;

So, as you can see, we've created a function, renderScreenC, and it takes props
as a parameter and then passes it to the ScreenC component and then returns
that component. Along with passing props, we also have it passing the string
"This is Screen C" into the message property. If we had tried to use the
component property of Route, there would be no way to pass the message
property and so we are using the render property instead.

Learning about React Router 243

3. Next, we add a new Route that uses the render property and pass it the
renderScreenC function. If we go to the "/c" path, we see basically the same
thing as the other screens, but with our message, This is Screen C:

Figure 7.8 – Routed to ScreenC
But also, I've included a log of the props that are being passed into the component
and we can see things such as history, location, and match members being
included. You will recall our render function, renderScreenC, had a signature
of (props:any) => { … }. That props parameter is being passed in by our
Route component from the React Router service. We'll take a look at these routing
properties later.

So, now we know how to get better control of our screen component renders by using the
render property, but a typical URL can also have parameters that pass data to the screen.
Let's look at how to do this with React Router:

1. Let's update our Route for ScreenC like this:

<Route path="/c/:userid" render={renderScreenC} />

The userid field is now a parameter on the URL.

2. Now let's update our ScreenC component to accept Route props and handle our
new userid parameter field:

import React, { FC } from "react";

interface ScreenCProps {

244 Learning Redux and React Router

 message: string;

 history: any;

 match: any;

}

const ScreenC: FC<ScreenCProps> = (props) => {

 return (

 <div>

 <div>{"Your id is " + props.match.params.userid}
 </div>

 <div>{props.message}</div>

 </div>

);

};

export default ScreenC;

We've stopped using object destructuring in order to get every props member
without having to write them out. And now our component takes the history
and match props members as its own props and it is also handling the userid
field by using the match.params.userid property. Since the history object
already contains location as a member, we did not add that member to our
ScreenCProps interface. The screen should look like this:

Figure 7.9 – Routed to ScreenC with a parameter
As you can see, our userid parameter of value 1 is shown.

Learning about React Router 245

OK, so now we've used React Router more realistically, but there's another important
characteristic to note about how React Router works. React Router acts basically like
a stack of URLs. In other words, when a user visits the URLs of a site, they do so in
a linear fashion. They go to A, then B, and maybe back to A, then C, and so on. And the
result of this is that the browser history of a user can be saved as a stack, where you can
go forward to a new URL or backward to a previously visited one. This characteristic of
browser behavior is mostly maintained in React Router's history object.

So, again, let's update our code and take a look at some of the capabilities provided by the
history object:

1. Update the ScreenC component like this:

import React, { FC, useEffect } from "react";

interface ScreenCProps {

 message: string;

 history: any;

 match: any;

}

const ScreenC: FC<ScreenCProps> = (props) => {

 useEffect(() => {

 setTimeout(() => {

 props.history.push("/");

 }, 3000);

 });

 return (

 <div>

 <div>{"Your id is " + props.match.params.userid}
 </div>

 <div>{props.message}</div>

 </div>

);

};

export default ScreenC;

246 Learning Redux and React Router

As you can see, we introduced useEffect and in this function, we are waiting
3 seconds with a timer and then by using the history.push function, we are
redirecting our URL to "/", which is rendered by the ScreenA component.

2. Let's use another function inside of the history object. Update ScreenC again,
like this:

import React, { FC } from "react";

interface ScreenCProps {

 message: string;

 history: any;

 match: any;

}

const ScreenC: FC<ScreenCProps> = (props) => {

 const onClickGoback = () => {

 props.history.goBack();

 };

 return (

 <div>

 <div>{"Your id is " + props.match.params.userid}
 </div>

 <div>{props.message}</div>

 <div>

 <button onClick={onClickGoback}>Go back</button>

 </div>

 </div>

);

};

export default ScreenC;

Learning about React Router 247

So, this time, we've created a button that will try and go back to the previous URL
by using the history.goBack function. In order to test this code, we need
to open the web page to URL localhost:3000/b first and then go to URL
localhost:3000/c/2. Your screen should then look like this:

Figure 7.10 – Routed to ScreenC with a Go back button

3. You can see we have a button called Go back. If you click it, you will go back to the
original "/b" route.

4. One more thing to review: React Router recently added the Hooks capability. So,
we no longer have to pass down route properties using a child's props; we can just
use Hooks. Here's what it looks like (i've kept the non-Hooks as comments for your
convenience):

import React, { FC } from "react";

import { useHistory, useParams } from "react-router-dom";

Here, we have our new useHistory and useParams Hooks imports:
interface ScreenCProps {

 message: string;

 history: any;

 match: any;

}

const ScreenC: FC<ScreenCProps> = (props) => {

 // useEffect(() => {

 // setTimeout(() => {

 // props.history.push("/");

 // }, 3000);

 // });

 const history = useHistory();

 const { userid } = useParams();

248 Learning Redux and React Router

Here, we call our useHistory and useParams Hooks to get history and the
userid URL parameter:

 const onClickGoback = () => {

 // props.history.goBack();

 history.goBack();

 };

 return (

 <div>

 {/* <div>{"Your id is " + props.match.params.
 userid}</div>

 */}

 <div>{"Your id is " + userid}</div>

 <div>{props.message}</div>

 <div>

 <button onClick={onClickGoback}>Go back</button>

 </div>

 </div>

);

};

export default ScreenC;

And here, we use the Hooks objects to display the same messages as before. It's quite
easy and nice to use.

There are of course more capabilities of the history object and React Router overall, but
this is a good introduction to those capabilities and we will use more of these features as
we begin to build our app in the coming chapters.

Routing is a vital part of web development. Routes help users know where they are in
the application and can provide a sense of context. Routing also helps us as developers
structure the logical sections of our application and group relevant items together. React
Router allows us to do all these things by providing many programmatic features that
allow us to build sophisticated routing into our applications.

Summary 249

Summary
This chapter covered some of the most important React-related frameworks. Redux
is a sophisticated tool for managing global application state. React Router provides
client-side URL management that looks and feels like classic-style web URLs.

Working with high-quality technologies such as Redux and React Router will help us to
write better code. And this in turn will help us give our users the best experience.

We have reached the end of Part 2, which focused on client-side technologies. We will
now begin learning about server-side technologies in Part 3.

Section 3:
Understanding Web Service
Development Using Express

and GraphQL

In this section, we will learn what a web service does and understand how Express
and GraphQL can help us build high-performance services.

This section comprises of the following chapters:

• Chapter 8, Learning Server-Side Development with Node.js and Express

• Chapter 9, What is GraphQL?

• Chapter 10, Setting Up an Express Project with TypeScript and GraphQL
Dependencies

• Chapter 11, What We Will Learn – Online Forum Application

• Chapter 12, Building the React Client for Our Online Forum Application

• Chapter 13, Setting Up a Session State Using Express and Redis

• Chapter 14, Setting Up Postgres and Repository Layer with TypeORM

• Chapter 15, Adding GraphQL Schema – Part I

• Chapter 16, Adding GraphQL Schema – Part II

• Chapter 17, Deploying an Application to AWS

8
Learning Server-Side

Development with
Node.js and Express

In this chapter, we'll learn about Node and Express. We'll understand how Node can help
us create performant web services. We'll also understand what the relationship between
Node and Express is and how we can use them together to build our web API.

In this chapter, we're going to cover the following main topics:

• Understanding how Node works

• Learning Node's capabilities

• Understanding how Express improves Node development

• Learning Express's capabilities

• Creating a web API with Express

254 Learning Server-Side Development with Node.js and Express

Technical requirements
You should have a basic understanding of web development with JavaScript. We will once
again be using Node and Visual Studio Code (VSC).

The GitHub repository is again at https://github.com/PacktPublishing/
Full-Stack-React-TypeScript-and-Node. Use the code in the Chap8 folder.

To set up this chapter's code folder, go to your local HandsOnTypescript folder and
create a new folder called Chap8.

Understanding how Node works
Node is one of the world's most popular JavaScript frameworks. It is used as the core
technology for millions of websites. The reasons for this are many. It is relatively easy to
code for. It is also very fast, and when used with things such as clustering and worker
threads, it is very scalable. Also, since it uses JavaScript, it allows creating a full-stack
application, front to back, using only a single language. All of these characteristics make
Node a terrific choice if you are targeting the web. In this section, we will explore Node's
architecture and how it achieves its strong performance.

To start, it is important to realize that Node is not a server-specific framework. It is
actually a general-use runtime environment, and not just a web server. Node provides
JavaScript with capabilities it normally does not have, such as the ability to access the
filesystem and accept incoming network connections.

To explain how Node works, let's use the web browser as an analogy. The browser is also
a runtime environment for our JavaScript code (as well as HTML and CSS). The browser
works by having a core JavaScript engine that provides base-level JavaScript language
features. This includes a language interpreter that reads our code for valid JavaScript and
a virtual machine that runs our code across differing devices.

Above this core, the browser provides a secure memory container for apps to run on, the
sandbox. But it also provides additional JavaScript capabilities generally known as the web
API (not the server-side kind but at the browser level). The web API augments the base
JavaScript engine, providing things such as Document Object Model (DOM) access so
that JavaScript code can access the HTML document and manipulate it. It provides calls
such as fetch that allow asynchronous network calls to other machines, as well as WebGL
for graphics and many more. You can see a complete list here: https://developer.
mozilla.org/en-US/docs/Web/API.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API

Understanding how Node works 255

These features are provided as extras, above and beyond what JavaScript comes with "out
of the box," which, if you think about it, does make sense since, at its core, JavaScript is
just a language and therefore not specific to any particular platform, even the web.

Node follows a similar model to the browser as it also uses a core JavaScript engine
(the V8 engine from Google Chrome) and provides a runtime container for our code to
run in. However, since it is not a browser, it provides different additional capabilities that
are not so focused on a graphical display.

So then, what is Node? Node is a general-use runtime environment that is focused on
high performance and scalability. You can build many types of applications with Node,
including computer management scripts and terminal programs. But Node's scaling
capabilities make it well suited as a web server as well.

Node has many features that make it very capable as a programming runtime, but at its
heart is libuv. Libuv is a Node service written in C that interfaces with the operating
system kernel and provides asynchronous input/output facilities. In order to make timely
access to these services, libuv uses something called an event loop, which we'll explain
shortly, to process these tasks. On top of libuv, Node has an add-ons system, which
is analogous to Chrome's extensions. It allows developers to extend Node using C++
and add high-performance features that do not exist by default. Also, in order to allow
developers to keep using JavaScript to call into C++, a JavaScript-to-C++ binding system
is available called Addons. Let's explore libuv and the event loop a bit more.

Event loop
At the heart of Node are libuv and the event loop. This is the main feature of Node that
makes it scale. Libuv's primary job is to provide access to asynchronous input/output
(I/O) capabilities of the underlying operating system (Node supports Linux, macOS,
and Windows). However, this is not always possible, so it also possesses a thread pool
that can be used to make synchronous tasks effectively asynchronous by running them
inside a thread. However, the core driver of Node scalability is asynchronous I/O, not
threads. The ability to run timers, allow network connections, use operating system
sockets, and access the filesystem comes from libuv.

So then, what is the event loop? The event loop is a task runner in libuv, similar to the
Chrome event loop, that runs asynchronous callback tasks iteratively. At a high level,
here's how it works.

256 Learning Server-Side Development with Node.js and Express

When certain asynchronous tasks are triggered, they get executed by the event loop. The
event loop does processing in phases or sets. As shown in the following diagram, it first
runs timers, and if any timer callbacks are already queued, it executes them in sequence
(if not, it comes back later, and if timers have completed, it queues their callbacks). Then,
it handles any pending callbacks (callbacks set by the operating system – for example,
TCP errors), and so on, down the line of phases. Note that tasks are asynchronous in
nature if they are being executed by libuv, but the callbacks themselves may not be.
Therefore, it is possible to block the event loop as it will not trigger the next callback in the
queue until the present one returns. Here's a diagram showing roughly how this works:

Figure 8.1 – Node event loop from the Node documentation

You can also consider phases as categories of asynchronous tasks and their callbacks.

All frameworks have their strengths and weaknesses. Node's main strength lies in
asynchronous I/O-bound scalability. Therefore, Node is best used for highly concurrent
workloads that require many simultaneous connections. In later versions of Node,
starting at 10.5, the Node team did introduce worker threads to add multithreading
capability for running CPU-bound tasks, which are tasks that are mostly about
performing long-running computations. However, this is not Node's main strength.
For computation-heavy workloads, there are probably better options. But since our
priority with Node is to create a highly scalable API for our React frontend, Node works
nicely for our needs.

Learning Node's capabilities 257

In the next section, we'll start digging deeper into Node by writing code in Node without
using any wrapper libraries, such as Express or Koa. This will not only give us a clearer
understanding of how the Node core works, but it will also help us to better understand
the differences between Node and Express.

Learning Node's capabilities
In the previous section, we gave a high-level conceptual overview of what Node is and
why it scales so well. In this section, we will begin making use of this scalability by writing
code with Node. We'll install Node, set up a project, and start exploring the Node API.

Installing Node
Before we can write code with Node, we need to install it. To follow along, in the previous
chapters, you may have already done this, but let's refresh our memory of how to install it
again as Node gets updated quite frequently:

1. Go to https://nodejs.org. The following screenshot shows this page as of the
time of writing this book:

Figure 8.2 – Node website

https://nodejs.org

258 Learning Server-Side Development with Node.js and Express

For production use, you may want to go down the more conservative route and use
the Long-Term Support (LTS) version, as shown, but since we want to learn about
the latest version for this book, let's select the Current version.

Note
In general, later versions of Node will be slightly faster and have more security
and bug fixes. However, it is possible that new issues have been introduced, so
you should be careful when upgrading a production server.

By installing Node, we get the runtime as well as the latest npm package manager.

2. Once you click on your selected version, you will be asked to save an install package
that matches your operating system. Save the package and then start it. You should
then see a screen like the following:

Figure 8.3 – Node setup
Complete the installation as guided by the setup window.

Great, now we have installed or updated our Node runtime and npm package manager.
As mentioned previously, Node is not just a server framework but also a complete runtime
environment that allows you to write a great variety of different applications. For example,
Node has a command-line interface called REPL. If you open your command line or
terminal and type node, you will see that it converts to accept JavaScript commands,
like this:

Learning Node's capabilities 259

Figure 8.4 – Node REPL

We will not be using REPL in this book, but I included it here so that you are aware that
it exists and may be of use for your future projects. You can learn more about REPL in the
official documentation, https://nodejs.org/api/repl.html#repl_design_
and_features. Also, in case you're curious, undefined is returned because each
command has not returned anything and in JavaScript, that is always undefined.

Okay, so now, let's create our first Node application and explore some more of Node's
features:

1. Open VSCode, and then open the terminal to the Chap8 folder.

2. Then, create a new folder called try-node in the Chap8 folder.

3. Now, create a file called app.js. Let's avoid TypeScript for now so that we can keep
things simple.

4. Add a simple console message to app.js, like so:

console.log("hello world");

Then, run it:
node app.js

You should see the following output:

Figure 8.5 – Run app.js

https://nodejs.org/api/repl.html#repl_design_and_features
https://nodejs.org/api/repl.html#repl_design_and_features

260 Learning Server-Side Development with Node.js and Express

Not a particularly useful application, but nevertheless, as you can see, Node is running
standard JavaScript code. Now, let's do something more useful. Let's access the filesystem
using the following steps:

1. In the same app.js file, delete the console message and enter the following code:

const fs = require("fs");

You may be confused by this code since it's not the current style of doing imports.
But I wanted to include it here since a great deal of older Node code still uses this
CommonJS-style syntax for importing dependencies. So, you should be aware of it.

2. Next, write the following code to create a file and then read its contents:

fs.writeFile("test.txt", "Hello World", () => {

 fs.readFile("test.txt", "utf8", (err, msg) => {

 console.log(msg);

 });

});

If you run this code, you will see the following output and a file called test.txt
created in your try-node folder:

Figure 8.6 – app.js output
The syntax of fs is a bit cumbersome because it uses the older callback style.
Node was created long before JavaScript received Promises and async await,
and therefore some calls still use the callback style of asynchrony. However, there
is a newer, Promise-enabled version of fs – which is, therefore, async await-
capable – that can be used instead. Its syntax looks like this:

const fs = require("fs/promises");

(async function () {

 await fs.writeFile("test-promise.txt", "Hello
 Promises");

 const readTxt = await fs.readFile("test-promise.txt",
 "utf-8");

Learning Node's capabilities 261

 console.log(readTxt);

})();

Notice we are using an IIFE to allow us to make a top-level await call.

If you are on an older version of Node, fs/Promises became stable after version 11,
so you can use a tool called promisify to wrap callback-style calls to get them to
work in an async await style.

Nevertheless, it is important that you are aware of the older callback-style calls since
this is historically how Node code was written and there is probably a great deal of
Node code that remains in this style today.

3. We saw, at the top of our code, that we used require to do our fs import. Let's
switch to the newer import syntax. We'll need to do two things: change the file
extension from .js to .mjs and update the require statement like this:

import fs from "fs";

If you run app.mjs again, you will see that it still works. We could set the configuration
flag inside of package.json "type" : "module" instead, but for this example app, we did
not use npm. Additionally, if we set this flag globally, we can no longer use require. This
can be an issue as some older npm dependencies still use require for importing.

Note
There is an older command-line flag called --experimental-modules
that allows the use of import, but it is now deprecated and should be avoided
for newer versions of Node.

Creating a simple Node server
We learned that Node is based on some older JavaScript technologies, such as callbacks
and CommonJS. Node was created before JavaScript Promises and the newer versions of
JavaScript, such as ES6 and beyond. Nevertheless, Node still works well, continues to be
updated, and later, when we add additional libraries, we'll be able to use async await
and Promises in most cases.

262 Learning Server-Side Development with Node.js and Express

Now, let's work on a more realistic Node server example. We'll create a new project
with npm:

1. On the root of Chap8, create a new folder called node-server.

2. Cd into the node-server folder and initialize npm with the following command:

npm init

3. Let's call our package name node-server and accept defaults for the other
package.json attributes.

4. Create a new file on the root called server.mjs and add the following code:

import http from "http";

Don't worry, we'll start using TypeScript soon. Right now, let's keep things simple so
that we can focus on learning Node.

5. We have imported the http library from the Node core. We then use
createServer in order to create a server object. Notice that our createServer
function takes a function as an argument with two parameters. The parameters, req
and res, are of the Request and Response type, respectively. A Request object
will have all the members relevant to the request that was made by our users and the
response allows us to modify our response before sending it back out.

At the end of our createServer handler function, we are explicitly ending our
calls by using res.end and returning text. If we did not send end, our response
would never complete and nothing would appear on the browser:

const server = http.createServer((req, res) => {

 console.log(req);

 res.end("hello world");

});

6. Finally, we use our new server object to wait and listen for new requests using the
listen function with a port number and a callback function that prints that the
server has started:

const port = 8000;

server.listen(port, () => {

 console.log(`Server started on port ${port}`);

});

Learning Node's capabilities 263

7. Run this code by executing our server.mjs script (make sure to use the correct
extension of .mjs):

node server.mjs

Please remember, as we work, that there is no auto-reload function currently. So,
upon code changes, we will have to do a stop and restart manually. We'll add this
later as we continue adding more features to our projects.

8. If you open your browser to http://localhost:8000, you should see hello
world printed in your browser and the following in your console:

Figure 8.7 – First node server run
The terminal is showing the req object and its members. We'll of course go over
Request and Response in more detail soon.

Another interesting thing is that no matter what URL we give, it always returns the same
hello world text. This is because we have not implemented any route handling. Handling
routes is another item we must learn in order to use Node properly.

264 Learning Server-Side Development with Node.js and Express

You can keep refreshing your browser and the server will keep responding with hello
world. As you can see, the server remains up no matter how many requests we send it, as
opposed to returning and ending like a typical script program. This is because the event
loop, the core of Node, is a kind of infinite loop that will keep waiting for new tasks and
processing them dutifully.

Congratulations, you've now run your first Node server! Humble beginnings for sure, but
nevertheless, you can now make real browser calls and our server will respond. So, you are
well on your way.

Request and Response
When a request from a browser gets to the server, all server frameworks will generally
have two objects: Request and Response. These two objects represent the relevant
data for the request that came from the browser and the response that will be returned to
it. Let's take a look at these objects from the browser to see what they're made of. Reload
your browser but this time with the Chrome dev tools open on the Network tab:

Figure 8.8 – Chrome dev tools Network tab

Learning Node's capabilities 265

This view is only from the browser's perspective and in Node, there's a lot more
information in these objects. However, we need to first understand what a web request is
made of before we can try and create any real web server. So, let's list out some of the more
important items and describe what they mean.

Request URL
Obviously, this represents the complete URL path sent to the server. But the reason
the server needs to know the complete path is that a lot of additional information can
often be sent in the URL. For example, if our URL was http://localhost:8000/
home?userid=1, there's actually a fair amount of information here. First, we tell our
server that we're looking for either a web page or API data within the home subdirectory.
This allows the server to tailor its returned response with only an HTML page or data
specific to that URL. Additionally, we've passed a parameter called userid (parameters
start after the question mark and multiple parameters can be separated by the & symbol),
which can be used by the server to provide unique data in the request.

Request method
A request method represents what's called an HTTP verb. A verb is simply a description
that tells the server what action the client is intending to do. The default verb is GET,
which means, as the name indicates, the browser would like to read some data. The other
verbs are POST, which indicates creation or insertion, PUT, which indicates updating,
and then DELETE, indicating deletion. In Chapter 9, What Is GraphQL?, we'll see that
GraphQL only uses the POST method, but this isn't actually an error as the verbs are
not hard rules but more like guidelines. One additional thing to note is that when using
GET, any parameters needed will be provided in the URL, as the request URL bullet item
example showed. However, for POST, the parameters are provided in the body of the
request. We'll go over these differences more in the Learning Express capabilities section.

266 Learning Server-Side Development with Node.js and Express

Status code
All web requests will return these codes to indicate the result of the request. For example,
a status of 200 indicates success. I won't list all of them here, but we should know some of
the most common ones, as it can sometimes help in debugging:

Figure 8.9 – Error codes

Headers
Headers provide additional information that acts as descriptions or metadata. As shown,
there are multiple types of headers: general, request, response, and entity. Again, I won't
go over all of them, but there are a few we should be familiar with. Here are the request
headers:

Figure 8.10 – Request headers

Learning Node's capabilities 267

And here are the response headers:

Figure 8.11 – Response headers

This is, of course, dry information. However, knowing what's involved in making these
requests and responses helps us better understand how the web works and therefore write
better web apps. Let's look more deeply now at routing.

Routing
Routing is in some sense a lot like passing parameters to a server. When the server sees
a specific route, it will know that the response needs to be a certain way. The response
could be returning some specific data or writing data to a database, but having routes
helps us manage how our server should behave for each request.

Let's do some route handling in Node:

1. Update the server object in the server.mjs file in the node-server project,
like this:

const server = http.createServer((req, res) => {

 if (req.url === "/") {

 res.end("hello world");

 } else if (req.url === "/a") {

 res.end("welcome to route a");

 } else if (req.url === "/b") {

 res.end("welcome to route b");

 } else {

 res.end("good bye");

 }

});

As you can see, we take the req.url field and compare it to several URLs. For
each one that matches, we end our response with some unique text.

268 Learning Server-Side Development with Node.js and Express

2. Run the server again and try each route. For example, if your route is
http://localhost:8000/a, then you should see this:

Figure 8.12 – Route /a

3. Okay, now let's see what happens if we receive a POST request. Update your
createServer function like this:

const server = http.createServer((req, res) => {

 if (req.url === "/") {

 res.end("hello world");

 } else if (req.url === "/a") {

 res.end("welcome to route a");

 } else if (req.url === "/b") {

 res.end("welcome to route b");

 } else if (req.url === "/c" && req.method === "POST") {

 let body = [];

 req.on("data", (chunk) => {

 body.push(chunk);

 });

 req.on("end", () => {

 const params = Buffer.concat(body);

 console.log("body", params.toString());

 res.end(`You submitted these parameters:

 ${params.toString()}`);

 });

 } else {

 res.end("good bye");

 }

});

Learning Node's capabilities 269

As you can see, we added another if else statement with the /c route and the
POST method type. You may be surprised to see that in order to get the posted data
from our call, we need to handle the data event and then the end event so that we
can return the call.

Let me explain what this is about. Node is very low level, meaning it does not hide
its intricate details to make things easier, in order to be more performant. So, when
a request is made and some information is being sent to the server, this data will be
sent as a stream. This simply means the data is not sent in one shot, but in pieces.
Node does not hide this fact from the developer and uses an event system to receive
the data in chunks, since it's not clear upfront how much data is coming in. Then,
once this data is finished being received, that's when the end event triggers.

In this sample, the data event is used to aggregate our data into an array. Then, the
end event is used to put that array into a memory buffer, from which it can then be
processed as a whole. In our case, it's just JSON, so we convert to a string.

4. To test this, let's submit a POST request using curl. curl is just a command-line
tool that allows us to make web server requests without using a browser. It's great
for testing. Execute the following code in your terminal (if you're on Windows, you
may need to install curl first; on macOS, it should already be there):

curl --header "Content-Type: application/json" --request
POST --data '{"userid":"1","message":"hello"}' "http://
localhost:8000/c"

You should get the following back:

Figure 8.13 – Result of curl POST

Clearly, all of this works but is not ideal from a development productivity perspective. We
would not want 30 of these if else statements in a single createServer function.
It's difficult to read and maintain. We'll see how Express helps us avoid these types of
issues by providing extra wrappers on top of Node to make development faster and more
reliable. We'll see this in the Understanding how Express improves Node development
section. Let's learn about some tools to help our Node coding first.

270 Learning Server-Side Development with Node.js and Express

Debugging
As we saw with React, a debugger is a very important tool to help in troubleshooting
code. In the case of Node, we cannot use a browser tool, of course, but VSCode does
have a built-in debugger that will allow us to break on code and view values. Let's take
a look at that as we'll also use it with Express:

1. Click on the debugger icon in VSCode and you'll see the following screen. In the
current version, as of the time of writing, it looks like this:

Figure 8.14 – The VSCode debugger menu
The first button runs the debugger and the second shows the debugger version of
the terminal. When running the debugger, you generally want to be looking at the
debugger console as it can show errors that happen at runtime.

2. When running the VSCode debugger, you want to click on the Run and Debug
button. Then, you will see the dropdown shown in the following screenshot.
Select Node.js and that will start your Node session as a debug session. Notice the
continue, pause, restart, and stop buttons at the upper right. Note also that running
in debug mode using VSCode is a completely different run of Node from the
running of Node using the npm start command:

Learning Node's capabilities 271

Figure 8.15 – Node.js debugger selection

3. Once you start your debugger, if you have set a breakpoint by clicking next to any
line number, you will be able to have the code pause there. Then, you can view
values that are relevant to that scope:

Figure 8.16 – Break on line view

272 Learning Server-Side Development with Node.js and Express

As you can see, we have set a breakpoint on line 13 within the data event and are
able to view the current chunk. Hit the continue button or click F5 to continue
running the program.

4. Hovering over values while on a breakpoint is useful but not the only way to help
debug our app. We can also use the debugger screens to help us understand what
our values are at the moment we have stopped at a breakpoint. Take a look at the
following screenshot:

Figure 8.17 – Debug windows full view

Learning Node's capabilities 273

Look at our breakpoint, toward the middle of the screenshot. We can see that we have
broken inside of the end event handler scope. Let's look at some of the features listed:

• Starting with the upper-left menu, called VARIABLES, we can see the Local section
and two variables that exist in our currently stopped-on code scope: params
and this. Again, we are looking at the Local scope, which right now is the event
handler for the end event, and that's why we only have those two variables.

• Near the middle left, on the WATCH menu, we see a single variable called params,
which I added. There is a plus sign in this section that allows us to add variables
that we are interested in and when they come into scope, the current value will
show there.

• Then, toward the bottom left, we see CALL STACK. The call stack is the list of
calls that our program is running. The list will show in reverse order, with the last
command on top. Often, many of these calls will be code from either Node or some
other framework we did not write ourselves.

• Then, at the bottom right, we have our DEBUG CONSOLE tab, which displays any
logs or errors while the app is running. Notice that at the bottom of this tab, we can
also type in code to see results. For example, I typed the params variable and its
buffer was displayed.

• Finally, at the upper right, we see the debug continuation buttons. The first button
on the left is the continue button, which continues running our app from the last
breakpoint. Next is the step over button, which will go to the immediate next line
and stop there. Next is the step into button, which will take you inside the definition
of a function or class as it runs. Then, there's the step out button, which will bring
you out and back into the parent caller. The last, square button stops our app
completely.

That was a quick introduction to the VSCode debugger. We will be using more of it as we
get into Express, and then later with GraphQL.

Now, as you've seen, having to manually restart the Node service every time we make
any changes is a bit of a pain and slows down development. So, let's use a tool called
nodemon, which will automatically restart our Node server whenever we save script
changes:

1. Install nodemon globally by running the following command:

npm i nodemon -g

274 Learning Server-Side Development with Node.js and Express

This installs nodemon to our entire system. Installing it globally allows all apps to
run nodemon without needing to keep installing it. Note that on macOS and Linux,
you may need to prefix this command with sudo, which will elevate your rights so
that you can install it globally.

2. Now, we want to start it upon app start. Update the package.json file by finding
the "scripts" section and adding a sub-field called "start", and then add the
following command to it:

nodemon server.mjs

Your package.json "scripts" section should look like this now:

Figure 8.18 – package.json "scripts" section

3. Now, run the new script using the following command:

npm start

Note that normally, when running the npm command, you need to run npm run
<file name>. However, for start scripts, we can skip the run sub-command.

You should see the app start up as usual.

4. Now that the app is running, let's try changing and then saving the server.mjs
file. Change the string inside the listen function to be `The server started
on port ${port}`. Once you save this change, you should see Node restart and
the new text showing on the terminal.

5. The settings within package.json do not affect our VSCode debugger. So, to set
auto-restart, we'll need to set that up as well. Go to your debugger menu again and
click the create a launch.json file button, as shown here:

Learning Node's capabilities 275

Figure 8.19 – Creating a new launch.json file
If you click this button, you will then see the launch.json file in the .vscode
folder in the root of the GitHub repository (not the root of the project). It should
contain the following configurations (note that this one file can contain multiple
configurations):

{

 // Use IntelliSense to learn about possible attributes.

 // Hover to view descriptions of existing attributes.

 // For more information, visit:

 // https://go.microsoft.com/fwlink/?linkid=830387

 "version": "0.2.0",

 "configurations": [

 {

 "type": "node",

 "request": "launch",

 "name": "Launch node-server Program",

 "skipFiles": ["<node_internals>/**"],

 "program": "${workspaceFolder}/Chap8/node-

 server/server.mjs",

 "runtimeExecutable": "nodemon",

 "restart": true,

 "console": "integratedTerminal"

 }

]

}

276 Learning Server-Side Development with Node.js and Express

You can see that the configurations field is an array, which means you can
keep adding configurations to this one file. But for our configuration, notice that
type is node, of course. We've also updated name to "Launch node-server
Program". But also, notice that we switched runtimeExecutable to be
nodemon instead of node, and console is now the integrated terminal. In order
to use nodemon with the debugger, we must switch to the TERMINAL tab and not
the debugger console.

6. Now that we have at least one launch.json configuration, our debug menu will
show the following view:

Figure 8.20 – Debugger from launch.json
If your dropdown does not show Launch node-server Program, select it and then
press the play button. Then, you should see the debugger launch again, only this
time it will auto-restart.

7. Now, try and make a small change and the debugger should auto-restart. I removed
the T from the listen function log message:

Understanding how Express improves Node development 277

Figure 8.21 – Debugger auto-restarted

8. Sweet, now we can easily break on and debug our Node code!

That was a fast introduction to some tools that will help with our development and
debugging.

In this section, we learned about using Node directly to code our server. We also learned
about debugging and tooling to improve our development flow. Coding with Node
directly can be time-consuming and unintuitive. In the next sections, we will learn about
Express and how it helps make our Node development experience better.

Understanding how Express improves Node
development
As we have seen, coding with Node directly has an awkward and cumbersome sort of feel.
Having an easier-to-use API would make us more productive. This is what the Express
framework attempts to do. In this section, we will learn what Express is and how it can
help us write code more easily for our Node apps.

278 Learning Server-Side Development with Node.js and Express

Express is not a standalone JavaScript server framework. It is a layer of code that sits on
top of Node, and therefore uses Node, to make developing JavaScript servers with Node
both easier and more capable. Just like Node, has its own core capabilities and then some
additional features via dependency packages. Express also has its core abilities as well
as a rich ecosystem of middleware that provides extra capabilities.

So then, what is Express? According to the website, Express is just an application that is
a series of middleware calls. Let's explain this by first looking at a diagram:

Figure 8.22 – Express request response flow

Learning Express's capabilities 279

Whenever a new server request comes in, it travels along a sequential path for processing.
Normally, you would just have a request, and then once the request is understood and
processed, you would then get some response. When using Express, however, you can
have multiple intermediate functions that inject themselves into the process and do some
unique work.

So, in the example shown in Figure 8.22, we see that first there is middleware that adds
CORS ability, which is a way to allow requests from different URL domains than the one
that the server resides on. Then, we have middleware that handles sessions and cookies.
Sessions are just unique data that gets collected about the user's current usage of the
website – for example, their login ID. Then, finally, we see an on-error handler that will
determine some unique message that will be shown depending on the error that has
occurred. Of course, you could add more middleware as needed. The key point here is that
Express enables this injection of extra capabilities that Node normally does not have in a
fairly straightforward way.

On top of this middleware ability, Express adds additional features to the Request and
Response objects that further enhance the developer's productivity. We'll take a look at
those features and further explore Express in the next section.

Learning Express's capabilities
Express is basically a middleware runner for Node. But, like most things in life, a simple
explanation seldom provides the information necessary to make proper use of it. So, in
this section, we will explore Express and learn about its capabilities with examples.

Let's install Express onto our node-server project. Type the following command into
your terminal:

npm I express -S

This should give you an updated package.json file that has a new dependencies
section:

Figure 8.23 – Updated package.json

280 Learning Server-Side Development with Node.js and Express

Now, before we start writing code, we need to understand a few things. Again, as
mentioned, Express is a wrapper around Node. This means that Express already uses Node
internally. So, when we write code with Express, we will not be directly calling Node. Let's
see what this looks like:

1. Create a new server file called expressapp.mjs and add the following code to it:

import express from "express";

const app = express();

app.listen({ port: 8000 }, () => {

 console.log("Express Node server has loaded!");

});

As you can see, we create an instance of express and then we call a function
called listen on it. Internally, the express.listen function calls Node's
createServer and listen functions. If you run this file, you will see the
following log message:

Figure 8.24 – The expressapp.mjs file running
So, now we have a running Express server. However, it does not do anything
until we add some middleware. Middleware for Express runs under several main
umbrellas or sections. There is middleware that runs for the entire application, there
is middleware that runs only during routing, and there is middleware that runs on
errors. There is also middleware that is core to Express that it uses internally. And,
of course, instead of implementing our own code to do the work of middleware, we
can also use npm packages that provide third-party middleware. We already saw
some of these in the previous section, Understanding how Express improves Node
development, in Figure 8.22.

Learning Express's capabilities 281

2. Let's start by adding our own middleware. Update expressapp.mjs with the
following code:

import express from "express";

const app = express();

app.use((req, res, next) => {

 console.log("First middleware.");

 next();

});

app.use((req, res, next) => {

 res.send("Hello world. I am custom middleware.");

});

app.listen({ port: 8000 }, () => {

 console.log("Express Node server has loaded!");

});

So, for this first example, we have decided to use the app-level middleware by using
the use function on the app object. This means that any requests for the entire
application, regardless of route, will have to process these two middleware.

Let's go through them. First, note that all middleware is processed in the order that
they are declared in code. Second, unless ending a call at the end of a middleware,
we must call the next function to go to the next middleware, or else the processing
will stop.

The first middleware is just logging some text, but the second middleware will write
to the browser screen by using the Express send function. The send function is
a lot like the end function in Node, as it ends processing, but it also sends back a
content-type header of the text/html type. If we were using Node, we would have
to send headers explicitly ourselves.

282 Learning Server-Side Development with Node.js and Express

3. Now, let's add middleware for routes. Note that technically, you can pass routes – for
example, the /routea route – to the use function. However, it is better to use the
router object and contain our routes under one container. In Express, a router is
also middleware. Let's see an example:

import express from "express";

const router = express.Router();

First, we have created our new router object from the express.Router type:
const app = express();

app.use((req, res, next) => {

 console.log("First middleware.");

 next();

});

app.use((req, res, next) => {

 res.send("Hello world. I am custom middleware.");

});

app.use(router);

So, we have the same set of middleware as before added to the app object, which
makes it run globally across all routes. But then, we have also added the router
object to our app as middleware. The router middleware, however, runs only for the
specific routes that are defined:

router.get("/a", (req, res, next) => {

 res.send("Hello this is route a");

});

router.post("/c", (req, res, next) => {

 res.send("Hello this is route c");

});

So again, we added two middleware to our router object: one for the /a route,
which uses the get method function and the other for the /c route, which uses the
post method function. Again, these functions represent the HTTP verbs that are
possible. The listen function call is identical to before:

app.listen({ port: 8000 }, () => {

 console.log("Express Node server has loaded!");

});

Learning Express's capabilities 283

Now, a peculiar thing will happen if we run this code by going to the following
URL: http://localhost:8000/a. Instead of seeing the Hello this is route
a text, we will instead see the Hello world. I am custom middleware. text. Can you
guess why? It is because middleware order matters and since our second app-level
middleware is calling res.send, all calls will end there and not go to the next
middleware.

Remove the second app.use call that sends the Hello world… message and
try going to http://localhost:8000/a. You should see the following
message now:

Figure 8.25 – Middleware for route /a
Great, that worked, but now try using your browser to go to http://
localhost:8000/c. Does that work? No, it does not, and you get the Cannot
GET /c message. As you might have guessed, browser calls are defaulted to GET
calls but our /c route is a POST-only route. If you bring up your terminal and run
the last POST curl command that we used in the Learning Node's capabilities
section, you'll see this:

Figure 8.26 – Route /c
As you can see, we receive the appropriate text message.

4. Now, let's add third-party middleware. In the Learning Node's capabilities section,
we saw how to parse POST data and how arduous that can be using Node. For our
example, let's use the body parser middleware to make doing this easier. Update the
code like this:

import express from "express";

import bodyParser from "body-parser";

284 Learning Server-Side Development with Node.js and Express

We first import the body parser middleware. Then, we add the body parser at the
top so that all of our handlers can be automatically converted from a JSON string to
a parsed object when needed:

const router = express.Router();

const app = express();

app.use(bodyParser.json());

Then, we update our /c route handler so that its text message shows the value
passed in the message field:

app.use((req, res, next) => {

 console.log("First middleware.");

 next();

});

app.use(router);

router.get("/a", (req, res, next) => {

 res.send("Hello this is route a");

});

router.post("/c", (req, res, next) => {

 res.send(`Hello this is route c. Message is

 ${req.body.message}`);

});

As you can see, most of this work is quite a bit easier than using Node events such as
data and end.

5. Now, finally, let's do an on error middleware. Simply add the following code to just
below the bodyParser.json() middleware call:

import express from "express";

import bodyParser from "body-parser";

const router = express.Router();

const app = express();

app.use(bodyParser.json());

app.use((req, res, next) => {

Learning Express's capabilities 285

 console.log("First middleware.");

 throw new Error("A failure occurred!");

});

Then, we throw an error from our first custom middleware:
app.use(router);

router.get("/a", (req, res, next) => {

 res.send("Hello this is route a");

});

router.post("/c", (req, res, next) => {

 res.send(`Hello this is route c. Message is ${req.body.
 message}`);

});

app.use((err, req, res, next) => {

 res.status(500).send(err.message);

});

Now, we've added our error handler as the last middleware in our code. This
middleware will catch all errors that were not previously handled and send the same
status and message:

app.listen({ port: 8000 }, () => {

 console.log("Express Node server has loaded!");

});

6. Go to http://localhost:8000/a and you should see the following message:

Figure 8.27 – Error message
Since our top-level middleware is throwing an exception, all routes will throw this
exception and therefore will be caught by our error handler middleware.

286 Learning Server-Side Development with Node.js and Express

This was an overview of the Express framework and its features. As you can see, it can
make developing with Node quite a bit simpler and clearer. In the next section, we will
take a look at using Express and Node to build a web API that returns JSON, which is the
default data schema of the web.

Creating a web API with Express
In this section, we will learn about the web API. Currently, it is one of the most popular
ways of providing data across the web. In our final application, we will not be using the
web API since it is our intention to use GraphQL. However, it is good to have some
understanding of web API design since on the internet, it is very commonly used and
under the covers, GraphQL also works similarly.

What is a web API? API stands for application programming interface. This means that
it's a way for one programming system to interact with another. Therefore, a web API is an
API that uses web technologies to provide programming services to other systems. A web
API sends and receives data as a string, as opposed to binary data, and usually in JSON
format.

All web APIs will have an endpoint that is represented by a URI, basically the same thing
as a URL. This path must be static and not changing. If a change is desired, then it is
expected that the API vendor will do a version update, leaving the old URI intact and
creating a new URI delineated by a version upgrade. For example, if a URI started as /
api/v1/users, then the next iteration would be /api/v2/users.

Let's create a simple web API for demonstration purposes:

1. Let's update our expressapp.mjs file with the following new routes:

import express from "express";

import bodyParser from "body-parser";

const router = express.Router();

const app = express();

app.use(bodyParser.json());

app.use((req, res, next) => {

 console.log("First middleware.");

 next();

});

Creating a web API with Express 287

Everything up to here was the same, except notice we removed the exception that
was thrown:

app.use(router);

router.get("/api/v1/users", (req, res, next) => {

 const users = [

 {

 id: 1,

 username: "tom",

 },

 {

 id: 2,

 username: "jon",

 },

 {

 id: 3,

 username: "linda",

 },

];

 console.log(req.query.userid);

 const user = users.find((usr) => usr.id == req.query.
 userid);

 res.send(`User ${user?.username}`);

});

This first middleware is showing the /api/v1/users path. This type of pathing
is fairly standard for web APIs. It indicates the version and a related container of
data to query – in this case, users. For example purposes, we are using a hardcoded
array of users and finding only one with a matching ID. Since id is a number and
anything coming from req.query is a string, we are using == as opposed to ===.
If you load the browser to the URI, you should see this:

Figure 8.28 – User GET request
As you can see, our second user, jon, is returned.

288 Learning Server-Side Development with Node.js and Express

2. Next, for this middleware, we are doing something almost identical for groups.
Notice how the pathing is consistent between both resource paths. This is an
important feature for a web API. Again, we take a single item from an array, but in
this case, we are using a POST method, so the parameter is gotten from the body:

router.post("/api/v1/groups", (req, res, next) => {

 const groups = [

 {

 id: 1,

 groupname: "Admins",

 },

 {

 id: 2,

 groupname: "Users",

 },

 {

 id: 3,

 groupname: "Employees",

 },

];

 const group = groups.find((grp) => grp.id == req.body.
 groupid);

 res.send(`Group ${group.groupname}`);

});

If you run the terminal command to this URI, you should see the following:

Figure 8.29 – Group POST request

Summary 289

As shown, our first group, Admins, is returned. The rest of the code is identical:
app.use((err, req, res, next) => {

 res.status(500).send(err.message);

});

app.listen({ port: 8000 }, () => {

 console.log("Express Node server has loaded!");

});

Important Note
Since the web API is specific to web technologies, it supports calls with all the
HTTP methods: GET, POST, PATCH, PUT, and DELETE.

This was a quick introduction to building a web API using Express and Node. We now
have had a broad overview of Node and its most important framework, Express.

Summary
In this chapter, we learned about Node and Express. Node is the core server-side
technology that drives a huge percentage of servers on the web, and Express is the most
popular and often used Node-based framework for building web applications. We now
have a complete picture of how frontend and backend technologies work to create
websites.

In the next chapter, we'll learn about GraphQL, an extremely popular and relatively new
standard for creating web-based API services. Once we've covered this, we will have all the
knowledge we need to start building our project.

9
What is GraphQL?

In this chapter, we'll learn about GraphQL, one of the hottest web technologies currently
being used. Many large companies have adopted GraphQL for their APIs, including
companies such as Facebook, Twitter, New York Times, and GitHub. We'll learn what
makes GraphQL so popular, how it works internally, and how we can take advantage
of its features.

In this chapter, we're going to cover the following main topics:

• Understanding GraphQL

• Understanding GraphQL schemas

• Understanding typedefs and resolvers

• Understanding queries, mutations, and subscriptions

Technical requirements
You should have a basic understanding of web development using Node. We will once
again be using Node and Visual Studio Code.

The GitHub repository is at https://github.com/PacktPublishing/Full-
Stack-React-TypeScript-and-Node. Use the code in the Chap9 folder.

To set up the Chap9 code folder, go to your HandsOnTypescript folder and create
a new folder called Chap9.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

292 What is GraphQL?

Understanding GraphQL
In this section, we will explore what GraphQL is, why it was created, and what problems
it attempts to solve. It is important to understand the underlying reasons for GraphQL's
existence as it will help us design better web APIs.

So, what is GraphQL? Let's list some of its main characteristics:

• GraphQL is a data schema standard developed by Facebook.

GraphQL provides a standard language for defining data, data types, and related
data queries. You can think of GraphQL as roughly analogous to an interface that
provides a contract. There's no code there, but you can still see what types and
queries are available.

• GraphQL works across platforms, frameworks, and languages.

When we create an API using GraphQL, the same GraphQL language will be used
to describe our data, its types, and queries no matter what programming language
or operating system we use. Having a consistent and reliable representation of data
across a wide variety of systems and platforms is, of course, a good thing for clients
and systems. But it's also beneficial to programmers, since we can continue to use
our normal programming language and frameworks of choice.

• GraphQL returns control for what is queried to the caller.

In a standard web service, it is the server that controls what fields of the data will be
returned. However, in a GraphQL API, it is the client that determines which fields
they would like to receive. This gives clients better control and reduces bandwidth
usage and cost.

Broadly speaking, there are two main uses of a GraphQL endpoint. One is as a gateway to
consolidate other data services, and the other is as the main web API service that directly
receives data from a datastore and provides it to clients. Here's a diagram of GraphQL
being used as a gateway for other data:

Understanding GraphQL 293

Figure 9.1 – GraphQL as a gateway

As you can see, GraphQL is acting as the single source of truth for all clients. It works well
in this capacity due to its standards-based language that is supported across a wide variety
of systems.

For our own application, we will use it as our entire web API, but it is possible to mix it in
with existing web services so that GraphQL handles only a part of the service calls being
made. This means you do not need to rewrite your entire application. You can introduce
GraphQL slowly and deliberately where it makes sense to do so, without disrupting your
current application services.

In this section, we took a look at GraphQL at a conceptual level. GraphQL has its own
data language, meaning it can be used regardless of server framework, application
programming language, or operating system. This flexibility allows GraphQL to be
a powerful means of sharing data throughout an organization or even across the web.
In the next section, we will explore the GraphQL schema language and see how it
works. It will help us structure our data models and understand how to set up our
GraphQL server.

294 What is GraphQL?

Understanding GraphQL schemas
As stated, GraphQL is a language used to provide structure and type information to
our entity data. Regardless of which vendor's implementation of GraphQL is used on
the server, our client can expect the same data structures to be returned. This ability to
abstract away the implementation details of servers to clients is one of the strengths of
GraphQL.

Let's create a simple GraphQL schema and see what it looks like:

1. In the Chap9 folder, create a new folder called graphql-schema.

2. Open your terminal in that folder and then run this command, accepting
the defaults:

npm init

3. Now install these packages:

npm i express apollo-server-express @types/express

4. Initialize TypeScript with this command:

tsc -init

Notice, after this command completes, that the default tsconfig.json setting
is strict.

5. Create a new TypeScript file called typeDefs.ts and add this to it:

import { gql } from "apollo-server-express";

This import gets the gql object, which allows syntax formatting and highlighting
of the GraphQL schema language:

const typeDefs = gql`

 type User {

 id: ID!

 username: String!

 email: String

 }

 type Todo {

 id: ID!

 title: String!

Understanding GraphQL schemas 295

 description: String

 }

 type Query {

 getUser(id: ID): User

 getTodos: [Todo!]

 }

`;

The language is fairly simple and looks a lot like TypeScript. Starting from the top,
first we have a User entity, as indicated by the type keyword. type is a GraphQL
keyword that indicates that an object of a certain structure is being declared. As you
can see, the User type has multiple fields. The id field is of type ID!. The ID type
is a built-in type that indicates a unique value, basically a GUID of some kind. The
exclamation mark indicates that the field cannot be null, whereas no exclamation
mark would indicate that it can be null. Next, we see the username field and
its type of String!, which of course means it is a non-nullable string type. Then,
we have the description field, but it has a String type without an exclamation
mark, so it is nullable.

The Todos type has similar fields, but notice the Query type. This shows that
even queries are types in GraphQL. So, if you look at the two queries, getUser
and getTodos, you can see why we created the User and Todos types, as
they become the return values for our two Query methods. Also notice that the
getTodos function returns an array of non-nullable Todos, which is indicated by
the brackets. Finally, we export our type definitions using the typeDefs variable:

export default typeDefs;

Type definitions are used by Apollo GraphQL to describe the schema types in a schema
file. Before your server can start providing any GraphQL data, it must first have a
complete schema file that lists all of your application's types, their fields, and queries that
will be served in its API.

Another thing to note is that GraphQL has several default scalar types that are built into
the language. These are Int, Float, String, Boolean, and ID. As you noticed in the
schema file, we did not have to create a type notation for these types.

In this section, we reviewed what a simple GraphQL schema file looks like. We will be
using this syntax as we build out our API. In the next section, we will dive deeper into the
GraphQL language and also learn what resolvers are.

296 What is GraphQL?

Understanding Typedefs and Resolvers
In this section we will further explore GraphQL schemas, but we will also implement
resolvers, which are the functions that do the actual work. This section will also introduce
us to Apollo GraphQL and how to create a GraphQL server instance.

What are resolvers? Resolvers are the functions that get or edit the data from
our datastore. This data is then matched with the GraphQL type definition.

In order to see what the role of resolvers is in more depth, we need to continue building
out our previous project. Let's look at the steps:

1. Install the dependency UUID. This tool will allow us to create a unique ID for
our ID types:

npm i uuid @types/uuid

2. Create a new file called server.ts, which will start our server, with this code:

import express from "express";

import { ApolloServer, makeExecutableSchema } from
"apollo-server-express";

import typeDefs from "./typeDefs";

import resolvers from "./resolvers";

Here we import dependencies needed to set up our server. We already created the
typeDefs file and we will soon create the resolvers file.

3. Now we create our Express server app object:

const app = express();

4. makeExecutableSchema builds a programmatic schema from the combination
of our typeDefs file and our resolvers file:

const schema = makeExecutableSchema({ typeDefs, resolvers
});

5. Finally, we create an instance of our GraphQL server:

const apolloServer = new ApolloServer({

 schema,

 context: ({ req, res }: any) => ({ req, res }),

});

apolloServer.applyMiddleware({ app, cors: false });

Understanding Typedefs and Resolvers 297

context is made up of the request and response objects of Express. Then, we add
our middleware, which for GraphQL is our Express server object called app. The
cors option indicates to disable GraphQL from acting as our CORS server. We'll
discuss CORS in later chapters as we build out our app.

In this code, we are now starting up our Express server by listening on port 8000:
app.listen({ port: 8000 }, () => {

 console.log("GraphQL server ready.");

});

The listen handler just logs a message to announce it has started.
Now let's create our resolvers:

1. Create the resolvers.ts file and add this code to it:

import { IResolvers } from "apollo-server-express";

import { v4 } from "uuid";

import { GqlContext } from "./GqlContext";

interface User {

 id: string;

 username: string;

 description?: string;

}

interface Todo {

 id: string;

 title: string;

 description?: string;

}

2. Since we are using TypeScript, we want to use types to represent our returned
objects, and that's what User and Todo represent. These types will be matched
by GraphQL to the GraphQL types of the same name we had created in our
typeDefs.ts file:

const resolvers: IResolvers = {

 Query: {

 getUser: async (

298 What is GraphQL?

 obj: any,

 args: {

 id: string;

 },

 ctx: GqlContext,

 info: any

): Promise<User> => {

 return {

 id: v4(),

 username: "dave",

 };

 },

Here is our first resolver function, matching the getUser query. Notice that the
parameter is more than just the id parameter. This is coming from the Apollo
GraphQL server and adds additional information for our call. (Note that to save
time, I am hardcoding a User object.) Also, we will create the GqlContext type
later, but basically, it is a container that holds our request and response objects that
we learned about in Chapter 8, Learning Server-Side Development with Node.js
and Express.

3. Similarly to getUser, our getTodos resolver receives similar parameters and also
returns a hardcoded set of Todo:

 getTodos: async (

 parent: any,

 args: null,

 ctx: GqlContext,

 info: any

): Promise<Array<Todo>> => {

 return [

 {

 id: v4(),

 title: "First todo",

 description: "First todo description",

 },

 {

 id: v4(),

Understanding Typedefs and Resolvers 299

 title: "Second todo",

 description: "Second todo description",

 },

 {

 id: v4(),

 title: "Third todo",

 },

];

 },

4. Then we export the resolvers object:

 },

};

export default resolvers;

As you can see, our actual data getters are just normal TypeScript code. If we had
used Java or C# or any other language, the resolvers would simply be Create Read
Update Delete (CRUD) operations in those languages as well. The GraphQL server,
then, is just translating the data entity models into the types in our type definition
schema file.

5. Now let's create our GqlContext type. Create a file called GqlContext.ts and
add this code:

import { Request, Response } from "express";

export interface GqlContext {

 req: Request;

 res: Response;

}

This is just a simple shell interface that allows us to provide type safety to our
context in our GraphQL resolver calls. As you can see, this type contains the Express
Request and Response objects.

300 What is GraphQL?

6. So, now we need to compile our code to JavaScript since we are using TypeScript.
Run this command:

Tsc

This will have created js versions of all the ts files.

7. Now we can run our new code; enter this:

nodemon server.js

8. If you go to the URL http://localhost: 8000/graphql, you should see
the GraphQL Playground screen. This is a query testing page provided by Apollo
GraphQL that allows us to manually test our queries. It looks like this:

Figure 9.2 – The GraphQL dev client
Notice that I have already run one of the queries, which looks like JSON and is on
the left, and the result is shown, which is also JSON and on the right. If you look
at our query on the left, I am explicitly asking for only the id field, which is why
only the id field is returned. Notice that the standard result format is data >
<function name> > <fields>. Try running the getTodos query as a test.

9. Another thing to note is the DOCS tab, which shows all the available queries,
mutations, and subscriptions (we will go over these in the next section). It looks
like this:

Understanding Typedefs and Resolvers 301

Figure 9.3 – The DOCS tab

10. Finally, the SCHEMA tab shows the schema type information of all our entities
and queries:

Figure 9.4 – The SCHEMA tab
As you can see, it looks identical to our typeDefs.ts file.

302 What is GraphQL?

In this section, we took a look at resolvers by running a small GraphQL server. Resolvers
are the other half that makes GraphQL actually function. We also saw how relatively easy
it is to get a small GraphQL server running by using the Apollo GraphQL library.

In the next section, we will delve more deeply into queries by looking at mutations and
subscriptions.

Understanding queries, mutations, and
subscriptions
When creating a GraphQL API, we want to do more than just get data: we may also want
to write to a datastore or be notified when some data changes. In this section, we'll see
how to do both actions in GraphQL.

Let's take a look at how to write data using mutations first:

1. We will create a mutation called addTodo, but in order to make the mutation
more realistic, we will need a temporary datastore. So, we will create an in-memory
datastore for testing purposes. Create the db.ts file and add this code to it:

import { v4 } from "uuid";

export const todos = [

 {

 id: v4(),

 title: "First todo",

 description: "First todo description",

 },

 {

 id: v4(),

 title: "Second todo",

 description: "Second todo description",

 },

 {

 id: v4(),

 title: "Third todo",

 },

];

Understanding queries, mutations, and subscriptions 303

We have just added Todos from our previous list into an array that we are
exporting.

2. Now we need to update our typeDefs.ts file to include our new mutation.
Update it like this:

import { gql } from "apollo-server-express";

const typeDefs = gql`

 type User {

 id: ID!

 username: String!

 email: String

 }

 type Todo {

 id: ID!

 title: String!

 description: String

 }

 type Query {

 getUser(id: ID): User

 getTodos: [Todo!]

 }

 type Mutation {

 addTodo(title: String!, description: String): Todo

 }

`;

export default typeDefs;

As you can see, other queries remain the same, but we added a new type called
Mutation, which is where any queries that change data will reside. We also added
our new mutation called addTodo.

304 What is GraphQL?

3. Now we want to add our addTodo resolver. Add this code to your resolvers.
ts file:

Mutation: {

 addTodo: async (

 parent: any,

 args: {

 title: string;

 description: string;

 },

 ctx: GqlContext,

 info: any

): Promise<Todo> => {

 todos.push({

 id: v4(),

 title: args.title,

 description: args.description

 });

 return todos[todos.length - 1];

 },

 },

As you can see, we have a new container object called Mutation, and inside of it is
our addTodo mutation. It has similar parameters to the queries, but this mutation
will add a new Todo to the todos array. If we run this code in the playground,
we see this:

Figure 9.5 – The GraphQL playground for the addTodo mutation

Understanding queries, mutations, and subscriptions 305

When our query is of type Query, we can leave out the query prefix. However, since
this is a mutation, we must include it. As you can see, we only get back id and
title, because that is all we asked for.

Now let's take a look at subscriptions, which are a way of being notified when certain data
changes. Let's get notified when our addTodo adds a new Todo object:

1. We need to add an object of type PubSub from the apollo-server-express
library into the GraphQL server context. This object is what allows us to both
subscribe (ask to be notified when changes occur) and publish (send a notification
when changes occur). Update the server.ts file as follows:

import express from "express";

import { createServer } from "http";

import {

 ApolloServer,

 makeExecutableSchema,

 PubSub,

} from "apollo-server-express";

import typeDefs from "./typeDefs";

import resolvers from "./resolvers";

First, we get an import of the PubSub type. Notice we also get createServer;
we'll use that later.

2. Here is our pubsub object, based on the PubSub type:

const app = express();

const pubsub = new PubSub();

3. Now we add the pubsub object to the GraphQL server's context so that it can be
used from our resolvers:

const schema = makeExecutableSchema({ typeDefs, resolvers
});

const apolloServer = new ApolloServer({

 schema,

 context: ({ req, res }: any) => ({ req, res, pubsub }),

});

306 What is GraphQL?

4. Create an httpServer instance from Node directly and then use the
installSubscription Handlers function on it. Then, when we call
listen, we are now calling listen on the httpServer object and not the
app object:

apolloServer.applyMiddleware({ app, cors: false });

const httpServer = createServer(app);

apolloServer.installSubscriptionHandlers(httpServer);

httpServer.listen({ port: 8000 }, () => {

 console.log("GraphQL server ready." +

 apolloServer.graphqlPath);

 console.log("GraphQL subs server ready." +

 apolloServer.subscriptionsPath);

});

5. Now let's update our typeDefs.ts file to add our new mutation. Just add
this type:

type Subscription {

 newTodo: Todo!

 }

6. Now we can update our resolvers.ts file with our new subscription resolver:

import { IResolvers } from "apollo-server-express";

import { v4 } from "uuid";

import { GqlContext } from "./GqlContext";

import { todos } from "./db";

interface User {

 id: string;

 username: string;

 email?: string;

}

interface Todo {

 id: string;

 title: string;

Understanding queries, mutations, and subscriptions 307

 description?: string;

}

const NEW_TODO = "NEW TODO";

Here we've created a new NEW_TODO constant to act as the name of our new
subscription. Subscriptions require a unique label, sort of like a unique key, so that
they can be correctly subscribed to and published:

const resolvers: IResolvers = {

 Query: {

 getUser: async (

 parent: any,

 args: {

 id: string;

 },

 ctx: GqlContext,

 info: any

): Promise<User> => {

 return {

 id: v4(),

 username: "dave",

 };

 },

As you can see, nothing in our query changes, but it's included here for
completeness:

 getTodos: async (

 parent: any,

 args: null,

 ctx: GqlContext,

 info: any

): Promise<Array<Todo>> => {

 return [

 {

 id: v4(),

 title: "First todo",

 description: "First todo description",

308 What is GraphQL?

 },

 {

 id: v4(),

 title: "Second todo",

 description: "Second todo description",

 },

 {

 id: v4(),

 title: "Third todo",

 },

];

 },

 },

Again, our query remains the same:
 Mutation: {

 addTodo: async (

 parent: any,

 args: {

 title: string;

 description: string;

 },

 { pubsub }: GqlContext,

Notice that in place of the ctx object, we have deconstructed it to just use the
pubsub object, as it's the only one we need:

 info: any

): Promise<Todo> => {

 const newTodo = {

 id: v4(),

 title: args.title,

 description: args.description,

 };

 todos.push(newTodo);

 pubsub.publish(NEW_TODO, { newTodo });

Understanding queries, mutations, and subscriptions 309

Here we have publish, which is a function to notify us when we have added a new
Todo. Notice the newTodo object is being included in the publish call, so it can
be provided to the subscriber later:

 return todos[todos.length - 1];

 },

 },

 Subscription: {

 newTodo: {

 subscribe: (parent, args: null, { pubsub }:
 GqlContext) =>

 pubsub.asyncIterator(NEW_TODO),

Here we subscribe to new Todo adds. Notice that our subscription newTodo is not
a function. It's an object with a member called subscribe:

 },

 },

};

export default resolvers;

The rest is the same as before.

7. Let's try testing this. First, make sure you have compiled your code with tsc,
started your server, and refreshed the playground. Then, open a new tab in the
playground, enter this subscription, and click the play button:

Figure 9.6 – The newTodo subscription

310 What is GraphQL?

When you click the play button, nothing happens, because a new Todo has not
been added yet. So, let's go back to our addTodo tab and add a new Todo. Once
you've done that, come back to the newTodo tab and you should see this:

Figure 9.7 – The newTodo subscription result
As you can see, that works, and we get the newly added Todo.

In this section, we learned about GraphQL queries, mutations, and subscriptions. We will
be using these to build out our application API. Because GraphQL is an industry standard,
all GraphQL client frameworks can work with any vendor's GraphQL server framework.
Furthermore, clients using a GraphQL API can expect consistent behavior and the same
query language regardless of server or vendor. This is the power of GraphQL.

Summary
In this chapter, we explored the power and capabilities of GraphQL, one of the hottest
new technologies for creating web APIs. GraphQL is an extremely capable technology, but
also, because it is an industry standard, we can always expect consistent behavior across
servers, frameworks, and languages.

In the next chapter, we will start bringing together the technologies we've learned about
thus far and create an Express server using TypeScript, GraphQL, and helper libraries.

10
Setting Up an

Express Project
with TypeScript

and GraphQL
Dependencies

One of the biggest hurdles for learning modern JavaScript programming is the enormous
number of packages and dependencies available. It can be overwhelming and daunting
trying to select the right set of packages for your project. In this chapter, we'll learn how
to set up a well-configured TypeScript, Express, and GraphQL project. We'll see what
dependencies are popular and how we can benefit by using them for our project.

312 Setting Up an Express Project with TypeScript and GraphQL Dependencies

In this chapter, we're going to cover the following main topics:

• Creating a TypeScript-based Express project

• Adding GraphQL and dependencies to a project

• Reviewing ancillary packages

Technical requirements
You should have a basic understanding of web development using Node, Express, and
GraphQL. We will once again be using Node and Visual Studio Code.

The GitHub repository is available at https://github.com/PacktPublishing/
Full-Stack-React-TypeScript-and-Node. Use the code in the Chap10 folder.

To set up the Chap10 code folder, go to your HandsOnTypescript folder and create
a new folder called Chap10.

Creating a TypeScript-based Express project
In this section, we'll build a starting project that we will use to base our server on. We'll
manually review and select each dependency and understand what role each will play
in our application. When we're done, we will have a strong base for building out our
server app.

There are many pre-made project templates that can be used to build Node projects.
A common one for TypeScript users is the TypeScript-Node-Starter project from
Microsoft. It has a good variety of useful dependencies. Unfortunately, it's geared
toward MongoDB users, but our app will use Postgres.

Another project template, from the team that makes Express, is express-generator.
It is a CLI that takes parameters and sets up a base project. However, this template
generator is geared toward servers that do server-side HTML using template engines such
as pug and ejs. This would be unnecessary for us since we are creating an API for an
SPA application. In addition, it has no GraphQL packages to help us create our API.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

Creating a TypeScript-based Express project 313

Therefore, in order to eliminate extraneous packages and as a learning exercise, let's build
out our project manually. This will allow us to see every piece that is needed to build out
our app and understand what each one does. Follow the steps given here:

1. Create a new folder in the Chap10 folder and call it node-server.

2. In your terminal, run the following command:

npm init

3. Next, we install TypeScript and initialize it:

npm i typescript

tsc -init

4. Update the tsconfig.json file like this:

{

 "compilerOptions": {

 "target": "es6",

 "module": "commonjs",

 "lib": ["ES6", "ES2017", "ES2018", "ES2019",
 "ES2020"],

 "sourceMap": true,

 "outDir": "./dist",

 "rootDir": "src",

 "moduleResolution": "node",

 "removeComments": true,

 "noImplicitAny": true,

 "strictNullChecks": true,

 "strictFunctionTypes": true,

 "noImplicitThis": true,

 "noUnusedLocals": true,

 "noUnusedParameters": false,

 "noImplicitReturns": true,

 "noFallthroughCasesInSwitch": true,

 "allowSyntheticDefaultImports": true,

 "esModuleInterop": true,

 "emitDecoratorMetadata": true,

 "experimentalDecorators": true

314 Setting Up an Express Project with TypeScript and GraphQL Dependencies

 },

 "exclude": ["node_modules"],

 "include": ["./src/**/*.tsx", "./src/**/*.ts"]

}

We've already learned about the tsconfig.json file in Chapter 2, Exploring
TypeScript, but let's review what we see here:

• We can target ES6 since we are running on our own server and can control the V8
version by using an appropriate version of Node.

• We are using commonjs as the module system to avoid issues with mixing
require and import for modules.

• We want to use the latest JavaScript versions, so lib is set to allow them.

• The outDir field represents the folder that transpiled js files will be saved into.

• rootDir represents the code source directory.

• We are allowing emitDecoratorMetadata and experimentalDecorator
as TypeORM; the dependency for the repository layer that accesses our database will
need to use them.

• The exclude and include folders, as implied, represent folders we would like to
either hide or make available to the TypeScript compiler.

5. Now let's add some of our base dependencies:

npm i express -S

npm i @types/express jest @types/jest ts-jest nodemon
ts-node-dev faker @types/faker -D

Let's go over some of these packages:
• We installed both Express and its TypeScript types.

• We installed jest and its types for testing.

• The ts-jest package allows us to write our tests in TypeScript.

• I am showing nodemon for completeness, but we will be running the globally
installed version that we installed in Chapter 8, Learning Server-Side Development
with Node and Express.

Creating a TypeScript-based Express project 315

• faker is a fake data generator for testing and mocking.

• ts-node-dev will help our Node server to restart when any TypeScript code is
changed.

Now that we have our base dependencies installed, let's start up our plain Express server
to make sure everything is working:

1. We'll need to create a server setup script to initialize our server as we've done before
in Chapter 8, Learning Server-Side Development with Node and Express. Create
a folder called src and then create another file called index.ts inside of it.
Then, add this code:

import express from "express";

import { createServer } from "http";

const app = express();

const server = createServer(app);

server.listen({ port: 8000 }, () => {

 console.log("Our server is running!");

});

Basically, this is what we've done before: creating an express instance and then
using it to create our server.

2. Now, we'll need to create a "start" script inside of package.json. Open that
file and find the "scripts" section. Then, under the existing "test" entry, add
this code:

"scripts": {

 "test": "echo \"Error: no test specified\" &&
 exit 1",

 "start": "ts-node-dev --respawn src/index.ts"

 },

The command uses ts-node-dev to monitor when TypeScript changes occur and
then "respawn". This means it will automatically restart Node as needed.

3. Now if you type this command, your server should run:

npm start

316 Setting Up an Express Project with TypeScript and GraphQL Dependencies

You should see something like this once it is running:

Figure 10.1 – First server run
As you can see, our server started with our command and the emitted console
log message.

4. If you update the index.ts file by changing the log message, you'll see that the
server is auto-restarted, as this screenshot shows:

Figure 10.2 – Server restarted
The server restarts and then our new message, Our server is running
great!, is shown.

In this section, we started learning about important dependencies for our server. We will
be using all of these packages as well as other packages to build our GraphQL API. In the
next section, we'll add our GraphQL dependencies.

Adding GraphQL and dependencies to a project 317

Adding GraphQL and dependencies to
a project
We've already taken a look at GraphQL in Chapter 9, What is GraphQL?. In this chapter,
let's review these packages as well as introduce some new related packages that we will
be using.

Let's list some of the GraphQL-related packages we will be using for our app:

• graphql

This package is the reference implementation for JavaScript of GraphQL. It is
created by the GraphQL foundation and we will be using it to do some of our
GraphQL query testing.

• graphql-middleware

This is a package that allows us to inject our code either before or after a resolver
runs. Some possible actions include, but are not limited to, authentication checks
and logging.

• graphql-tools

This package provides some helpers for testing and mocking our GraphQL queries
when needed.

• apollo-server-express

This is the main library we will use to create our Express GraphQL server, which we
already used in Chapter 9, What is GraphQL?.

These are the main packages we will use for our GraphQL implementation. Next, we will
create a GraphQL server and also build some tests for it. In later chapters, we'll merge the
various packages we use here into a single project. Let's look at the steps:

1. Create another folder inside our Chap10 folder called gql-server. Then, cd into
it from the terminal and run these commands:

npm init

2. Accept all defaults and then run this command:

npm i express graphql graphql-tools graphql-middleware
apollo-server-express uuid -S

318 Setting Up an Express Project with TypeScript and GraphQL Dependencies

3. Once that completes, run this:

npm i @types/express typescript @types/faker @types/jest
faker jest nodemon ts-jest ts-node-dev @types/uuid -D

4. Now initialize TypeScript with this command:

tsc -init

5. Once this is complete, copy the contents of the tsconfig.json file from our
node-server project into the tsconfig.json file in this new gql-server
project folder.

6. Now, in our package.json file, add a start entry to our scripts section
like this:

Figure 10.3 – The start script

7. Now let's create a new src folder in the root of our gql-server folder. Then
copy these files from the Chap9/graphql-schema project and paste them into
the src folder: db.ts, GqlContext.ts, resolvers.ts, server.ts, and
typeDefs.ts.

8. Let's test that our app will run by starting it up with this command:

npm start

Now let's add some middleware and see how it runs:

1. Create a new file called Logger.ts in the src folder and add this code to it:

export const log = async (

 resolver: any,

 parent: any,

 args: any,

 context: any,

 info: any

) => {

 If(!parent) {

 console.log("Start logging");

Adding GraphQL and dependencies to a project 319

 }

 const result = await resolver(parent, args, context,
 info);

 console.log("Finished call to resolver");

 return result;

};

In this code, we are intercepting any resolver calls and logging them before the
resolver function runs. Notice that we check that the parent object is null,
which indicates that the resolver call has not yet run. Let's also add logging to
our getTodos resolver. Open resolvers.ts and add this line at the start of the
getTodos function body, just before the return statement:

console.log("running getTodos");

2. Now we need to update our server.ts file so that it makes use of this logger.
Update server.ts like this:

import express from "express";

import { createServer } from "http";

import {

 ApolloServer,

 makeExecutableSchema,

 PubSub,

} from "apollo-server-express";

import typeDefs from "./typeDefs";

import resolvers from "./resolvers";

import { applyMiddleware } from "graphql-middleware";

import { log } from "./Logger";

Here we have imported the applyMiddleware function and the log middleware
we created earlier. Note that this applyMiddleware function is coming
from the graphql-middleware package and is distinct from the Apollo
applyMiddleware function, which merely associates the Express instance with
our Apollo server:

const app = express();

const pubsub = new PubSub();

320 Setting Up an Express Project with TypeScript and GraphQL Dependencies

const schema = makeExecutableSchema({ typeDefs, resolvers
});

const schemaWithMiddleware = applyMiddleware(schema,
 log);

const apolloServer = new ApolloServer({

 schema: schemaWithMiddleware,

 context: ({ req, res }: any) => ({ req, res, pubsub }),

});

Here we have taken our schema that was created by makeExecutableSchema
and used the applyMiddleware function to create a schema that has a
middleware association. Then, we apply this schema, schemaWithMiddleware,
to our Apollo server. The rest of the code is unchanged, so I won't include it here.

3. Start your server if you have not done so already and open your browser to the
GraphQL server URL. If you run the call to getTodos, you will see the todos
data come back as shown:

Figure 10.4 – Calling getTodos

Adding GraphQL and dependencies to a project 321

Additionally, you should see in the Visual Studio Code terminal the console.log
messages we set up earlier:

Figure 10.5 – The getTodos result
Our middleware runs and does its log. Then, the actual resolver runs and returns
the data.

So, we've now seen GraphQL middleware that allows us to intercept calls and inject our
own code into the GraphQL process. Let's now try to create some tests with GraphQL:

1. We need to create a GraphQL query runner for testing purposes. Create a new file
called testGraphQLQuery.ts and add this code to it:

import { graphql, GraphQLSchema } from "graphql";

We import graphql and GraphQLSchema so that we can make manual queries
and type schema files.

2. Import Maybe as it is a GraphQL type indicating whether parameters may or may
not be used:

import { Maybe } from "graphql/jsutils/Maybe";

3. Create our Options interface, which will later act as the testGraphQLQuery
function's parameters type to run our query:

interface Options {

 schema: GraphQLSchema;

 source: string;

 variableValues?: Maybe<{ [key: string]: any }>;

}

322 Setting Up an Express Project with TypeScript and GraphQL Dependencies

The code [key: string] represents object property names – for example,
myObj["some name"]. The testGraphQLQuery function is called with the
required parameters and will return the relevant data:

export const testGraphQLQuery = async ({

 schema,

 source,

 variableValues

}: Options) => {

 return graphql({

 schema,

 source,

 variableValues,

 });

};

4. Now let's write our test. Create a getUser.test.ts file and add this code to it:

import typeDefs from "./typeDefs";

import resolvers from "./resolvers";

import { makeExecutableSchema } from "graphql-tools";

import faker from "faker";

import { testGraphQLQuery } from "./testGraphQLQuery";

import { addMockFunctionsToSchema } from "apollo-server-
express";

The imports are pretty self-explanatory, but the faker import is used to help us
create fake entries for the field values of our test objects.

5. We set up our test using describe and then we create our query for getUser
with the fields that we want:

describe("Testing getting a user", () => {

 const GetUser = `

 query GetUser($id: ID!) {

 getUser(id: $id) {

 id

 username

 email

 }

Adding GraphQL and dependencies to a project 323

 }

 `;

6. Now in our test, we first create our schema from the merger of typeDefs and
resolvers and then we set up our fake data fields for our mocked User object:

 it("gets the desired user", async () => {

 const schema = makeExecutableSchema({ typeDefs,
 resolvers });

 const userId = faker.random.alphaNumeric(20);

 const username = faker.internet.userName();

 const email = faker.internet.email();

 const mocks = {

 User: () => ({

 id: userId,

 username,

 email,

 }),

 };

As shown in Chapter 6, Setting Up Our Project Using create-react-app and Testing
with Jest, mocking allows us to focus on the unit of code we want to test without
having to worry about other items.

7. Using addMockFunctionsToSchema, we add our mocked User object to the
schema so that it will be returned when relevant queries are made:

 console.log("id", userId);

 console.log("username", username);

 console.log("email", email);

 addMockFunctionsToSchema({ schema, mocks });

8. Finally, we run the testGraphQLQuery function to get back our mocked data:

 const queryResponse = await testGraphQLQuery({

 schema,

 source: GetUser,

 variableValues: { id: faker.random.alphaNumeric(20)
 },

 });

324 Setting Up an Express Project with TypeScript and GraphQL Dependencies

 const result = queryResponse.data ? queryResponse.
 data.getUser : null;

 console.log("result", result);

 expect(result).toEqual({

 id: userId,

 username,

 email,

 });

 });

});

If the returned object has the same fields, it shows that the logic of querying the
getUser query is working, since the call has gone through the entire code path to
get our User object.

9. Before we run our test, we need to add a configuration to the package.json file
for jest. Add this to the end of the configuration:

"jest": {

 "transform": {

 ".(ts|tsx)": "<rootDir>/node_modules/ts-

 jest/preprocessor.js"

 },

 "testRegex": "(/__tests__/.*|\\.(test|spec))
 \\.(ts|tsx|js)$",

 "moduleFileExtensions": [

 "ts",

 "tsx",

 "js"

]

 }

This configuration makes certain that all files with spec or test in the name
are tested (this is the testRegex section), and that any TypeScript files are first
transpiled to JavaScript before running (this is the transform section).

10. If you run the jest command on your terminal, you should see this result; make
sure you are on the gql-server path:

Adding GraphQL and dependencies to a project 325

Figure 10.6 – The GraphQL query test result
As you can see, the test passes. I've added several log statements in order to show
that the fields of the mocked User are the same. You should avoid this in your tests
as it is difficult to read.

Note
In your package.json file's scripts section, you can replace the "test"
entry with "test" : "jest". This way, it will be more consistent with other NPM
scripts. As with any NPM script, you would run it with the npm run test
command.

In this section, we learned about some of the NPM packages available for GraphQL. These
packages can help us build and test our servers, making them more reliable. In the next
section, we'll look at some other packages that will help us build our servers.

326 Setting Up an Express Project with TypeScript and GraphQL Dependencies

Reviewing ancillary packages
In this section, we'll review some of the ancillary dependencies of our project. Our server,
at its heart, is Node, Express, and GraphQL, of course. But there are also many other
activities our server will need to perform in order to be complete and fully functional.

Let's list some packages we will be using throughout our application that should allow us
to write less code and focus more on our core business logic:

• bcryptjs

Every server will have some need to encrypt data for security purposes. An obvious
example would be our users' passwords. Bcrypt is an industry-standard encryption
algorithm that exists on numerous platforms, including C++ and Java. bcryptjs is
a JavaScript implementation of the algorithm and will help us secure our application.

• cors

The web is full of security hazards and hackers attempting to break servers. Because
of this, the standard behavior of any web server is to only allow client requests
coming from the same domain as the server. For complex server setups, such as
microservices and proxies, this would not be feasible. So, Cross-Origin Resource
Sharing (CORS) was created to allow requests from other domains. The cors
package provides tools for executing CORS on our server.

• date-fns

The JavaScript Date object is notoriously cumbersome to deal with directly and
date-fns provides lots of useful methods for parsing, formatting, and displaying
dates and times.

• dotenv

Every large application needs to store configuration information in a central place,
both to manage and secure sensitive data and settings. Using dotenv will allow us
to maintain our sensitive information settings without revealing it to end users.

• nodemailer

nodemailer allows us to send emails from within our Node server. We can send
emails, for example, to allow users to reset their password or notify them of activity
on the site.

Summary 327

• request

This package will allow us to make HTTP requests from within our Node server.
This can be useful, for example, when we need to grab data from another API,
whether it be third-party or internal.

• querystring

querystring will allow us to easily create URL querystring parameters from
objects and parse the body of POST requests into fields. This package can be used
together with the request package.

• randomstring

randomstring can be used to generate random temporary passwords.
There are many more packages we will be using as we build out our application – for
example, packages that allow us to connect to our Postgres database and to our Redis
storage. However, I will introduce those packages in the relevant sections as it will be
clearer what those packages do at that time.

In this section, we learned about some of the miscellaneous packages we will be using
in our project. Although these tools are not the main focus of our application, they
are nonetheless extremely valuable. If we were to write these dependencies ourselves,
we would have to become experts in various fields such as encryption and date time
management, which would be a huge waste of time for us since it is not central to our
goals.

Summary
In this chapter, we learned about additional NPM package dependencies that we will use
to build out our application. These tools are well used by the community and therefore
well tested and reliable. Using packages from the Node ecosystem is one of the most
valuable benefits of Node. It saves us from having to write, test, and maintain this extra
code ourselves.

In the next chapter, we will review what we will be building in detail. We'll see what the
various components of our application will be, and we'll start coding the React side of our
application.

11
What We Will

Learn – Online
Forum Application

No matter how many books we study, we as developers cannot truly learn how to program
with a certain technology stack without building a realistic application that uses it. In this
chapter, we'll learn about the application that we intend to build. We'll see how we will
apply some of the topics we've covered. We'll see what features our application will have
and some of the rationale for including those features. This author also has a fair amount
of experience of building forum-style applications, such as my latest app, DzHaven. So,
you can rest assured that what you'll learn is production-grade code that's actually being
used in real-world applications.

In this chapter, we're going to cover the following main topics:

• Analyzing what we will build – The forum application

• Analyzing forum authentication

• Analyzing thread management

• Analyzing the thread points system

330 What We Will Learn – Online Forum Application

Analyzing what we will build – The forum
application
As noted, we are building a forum application. It will be somewhat similar in style to other
forum applications, such as StackOverflow and Bitcointalk.org. A user will be able to
post a topic or ask a question and receive responses from other users in the application's
community.

Why build a single forum application?

We could have demonstrated JavaScript development by building several smaller simpler
applications. The problem with demonstrating full-stack programming with simple apps
is that they do not show all the capabilities of a modern JavaScript application. In other
words, it could leave holes in your knowledge of how to implement certain features, such
as authentication or database access.

We could, of course, build a graphically intense photo or video application, but the issue
with these apps is the enormous focus needed on graphical design and aesthetics. Also,
working on editing photos or video is nice, but those skills don't translate well to general
full-stack programming. There's nothing wrong with apps like these, but in a book such as
this, the main goal is obviously to learn how to code a full-stack app, and not necessarily
become a graphics specialist.

So, a forum application will give us a good depth of understanding of the myriad
frameworks necessary in a large full-stack application. It will also show the kind of
features we need to implement in an app that will serve many users in a publicly accessible
website. At a high level, we will be implementing the following technology features:

• Security

Broadly speaking, web security entails two main parts. Authentication is the server's
ability to verify that a user is who they say they are, and authorization is the ability
to control user access to features of the application.

• Sessions and cookies

Server-side sessions allow a server to maintain data about a user's current activity
on the site. We will use sessions and cookies to identify users and provide an easier
experience while they are using the site.

• Object Relational Mapper

An Object Relational Mapper (ORM) is technology that allows code, in our case
TypeScript, to be used to interact with a database instead of SQL.

Analyzing forum authentication 331

• Database access and repository layer

Database access is complex, so we will use a design pattern called Repository
to separate our database access code from the rest of our application code.

These days, an application needs to be mobile-enabled by default. We need to make sure
users on mobile phones are able to access and engage with our application community.
Therefore, we'll build our application using responsive methods so that our app will work
on both desktops and mobile devices. Responsive web design simply means that our
application's screen will change to best fit the device screen size and dimensions. We will
use modern CSS and JavaScript techniques to do this.

In this section, we reviewed what type of application we will be building and the reasons
for our selection. In the next section, we'll look at forum authentication and some of
its features.

Analyzing forum authentication
In any large multi-user application, we need to use a system to recognize and authorize
users. Our forum application is no different.

Users will be able to post forum topics and answer forum questions. They therefore need
to be able to distinguish their own activity from that of other users. So, we will build
a login system to allow users to authenticate and perform activities on the site with their
own unique account. We will therefore build the following features:

• Login and logout

This feature will include not only the GraphQL resolvers to allow logging in and
logging out, but also the screens to allow the user to enter their ID and password.
We will also be using several technologies to provide a unique session state for the
user's activities at any given time.

• Registration system

A registration system will include both screens and resolvers that allow a user to
create a unique account in order to distinguish their activities on the site.

• Password reset

The ability for users to change their password when required, but in a secure way.
• Profile screen

A screen and features that show a user's account information. This information will
include their email and user ID. In addition to that, it provides the ability for the
user to view all of their prior posts, including both topic posts and responses.

332 What We Will Learn – Online Forum Application

• Categories

Groupings based on categories should be created to allow users to view only the
posts in categories that they are interested in and reduce noise.

• Notification emails

A system for contacting users via email and notifying them of additional
requirements or news about the site. For example, this could include a verification
email that checks that the email they registered with is valid and accessible by the
same user.

In this section, we went over the list of features we will be building to allow users to
authenticate and uniquely identify themselves and their activities on the site. In the next
section, we'll review how we will implement threads, the main means of communication
within our application.

Analyzing thread management
Every post on the site can be considered the beginning of a thread; that is to say, the initial
thread posting kicks off a discussion on a topic and creates a chain of responses. So, our
application needs to be able to allow a user to start the discussion by adding the initial
thread post. This post would then be viewable to all users and they can respond to it. Each
thread item, including the initial post, will be uniquely identified to the user that made the
post. So, in order to create this functionality, we will need the following features:

• Topic thread posting and editing

This feature will, of course, include the ability to be viewed by anyone, as well as
adding and editing topic posts by an author. Users will also be able to see all their
posts from their UserProfile screen.

• Responding to a thread topic

This feature will include the ability for the topic-starting user and other users to
respond to a topic post with their own comments. It has the ability to view a topic
post and all responses related to that topic on one screen.

In order to keep the application's complexity down to a minimum, users will not
be allowed to respond to specific responses, but only respond to the main topic.
They will, however, be able to quote other posts in their response.

In this section, we reviewed the features for the main capabilities of the application.
Creating and responding to new threads will be the core feature of the application,
although we will add other related features in order to enhance its capabilities. In the
next section, we will review what we will build for the thread points system.

Analyzing the thread points system 333

Analyzing the thread points system
Users should be able to tag comments that they like and upvote them. Showing which
postings are popular also helps users be more engaged in the communication. In this
section, we'll review how we'll enable users to indicate their approval of posts.

To enable this capability, we will include the following features in our app:

• Points system

A points system will be created to allow users to upvote or downvote thread
postings and responses.

• Display view count

Show the number of times a thread post was viewed by users.
• Display response count

Show the number of responses a post has to let users know what topics are popular
or trending.

In this section, we reviewed how the system is important to enable users to indicate how
they feel about certain posts and view the popularity of topics. The points system will
enhance user engagement and activity.

Summary
In this chapter, we looked at the application we will be building, the list of features
it will have, and some of the reasons for going with this type of application. Since we are
building a full-stack application, the code we are about to build will be quite complex
and challenging. You may even be surprised by the ultimate size and scope of this app.
However, once we are done, we will have built a modern, sophisticated, and complete
end-to-end application.

In the next chapter, we will start coding the React client-side portion of our application.
We won't be able to entirely finish it since we've not started our backend. However, we will
build a very large portion of it, and you will be able to see many of the screens.

12
Building the React

Client for Our Online
Forum Application

We've come a long way. In this chapter, we'll start coding our application, starting with the
React client. We will take everything we learned about in the previous chapters and build
our React app using the new Hooks API. We will also use Responsive techniques to build
a mobile client that will adapt its views to handle both mobile and desktop devices.

Technical requirements
You should now have a good understanding of web development using React, Node,
Express, and GraphQL. You should also be familiar with CSS. We will once again be using
Node and Visual Studio Code to write our code.

The GitHub repository for this book can be found at https://github.com/
PacktPublishing/Full-Stack-React-TypeScript-and-Node. Use
the code in the Chap12 folder.

To set up the Chapter 12 code folder, go to your HandsOnTypescript folder and create
a new folder called Chap12.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

336 Building the React Client for Our Online Forum Application

Creating the initial version of our React
application
In this section, we will be building out our React client. We won't be able to complete
the client entirely since it will need our backend features, such as our GraphQL API, the
ability to authenticate, post threads, and so on. However, we'll begin creating our main
screens and set up Redux and React Router.

There will be a very large amount of code in this section. Please take frequent breaks and
pace yourself. The code will evolve and get iterated and refactored numerous times during
our build. Sometimes, it will be for better code reuse. Sometimes, it will be to improve our
design and its readability. So, if you get stuck, please refer to the source code. This will be
the most challenging section of this book so far.

Note
We will not be showing every line of code as that would be redundant. Please
download and open the source code in your editor to follow along.

In this section, we will be covering the following topics:

• React project setup and dependency configuration

• Styling and layout

• Core component and feature creation

Tip
Having everything compile and work from the beginning is actually not of any
benefit to your learning. Do not focus on getting stuff to simply compile and
run the first time you do this. Instead, try experimenting and making changes.
In other words, break the code so that it does not compile and then fix it. This
is the only way to ensure you understand what you're doing.

Let's start by creating our base project by using create-react-app. Then, we will add
Redux and React Router:

1. Go to the Chap12 folder from your Terminal and run the following command:

create-react-app super-forum-client --template typescript

Creating the initial version of our React application 337

2. Next, cd into the new super-forum-client folder and run the start
command to make sure it's working:

npm start

3. Now, let's install Redux and React Router:

npm i redux react-redux @types/redux @types/react-redux
react-router-dom @types/react-router-dom

Note
If you ever have issues with NPM packages where the app does not start
properly, try deleting the package-lock.json file and the node_
modules folder. Then, do a clean install using npm install.

So, now, we have our core packages installed. Before we start coding, we need to discuss
how we will lay out our application. In our case, we want our application to work on both
mobile devices and desktops. This way, we can have a single application that runs on
phones, desktops, and laptops.

There are multiple ways of approaching this goal. We can use a library such as Bootstrap
or a UI framework such as Ionic to help us build out a UI and layout. These frameworks
are great and work well, but they also hide some of the details about how layout and
styling work on the web. You can also lose some control when using frameworks and end
up with a site that looks similar to other sites that use the same framework.

CSS Grid
For our application, we will use Responsive Web Design. Responsive Web Design is simply
the intent that our web application adapts to different devices and screen dimensions.
There are many ways, when using web technologies, that we can do this. One of them is
CSS Grid. With this system, we can structure our application screen to make optimal use
of desktop space, while at the same time automatically reconfigure it for mobile devices.
Due to this, we will be using CSS Grid, as well as other web technologies, to create our
layout.

CSS Grid gives us most of the capabilities that programs such as Bootstrap could
accomplish. However, CSS Grid is part of the CSS web standard, instead of being part of
a third-party library. So, we know that our layout will always work with the web and will
never suddenly become unsupported.

338 Building the React Client for Our Online Forum Application

So, what is CSS Grid? CSS Grid is a layout method built into standard CSS that allows
us to create flexible layouts using rows and columns. It was created to replace the use of
tables for layouts. CSS Grid is very capable and there are numerous ways of doing the
same thing. To keep things simple, I will show you one specific way to do this, though you
can explore more options later if you think you'll find that useful. Let's get started using
CSS Grid:

1. First, go back to our project, open App.tsx, and remove the contents of the App
object. Do the following:

import React from "react";

import "./App.css";

function App() {

 return (

 <div className="App">

 <nav className="navigation">Nav</nav>

 <div className="sidebar">Sidebar</div>

 <div className="leftmenu">Left Menu</div>

 <main className="content">Main</main>

 <div className="rightmenu">Right Menu</div>

 </div>

);

}

export default App;

As you can see, we've gotten rid of most of the contents and replaced it with layout
placeholders. Of course, we will make components out of these elements eventually,
but for now, we'll focus on getting our Grid layout working.

2. Now, let's replace the contents of the App.css file, like this:

:root {

 --min-screen-height: 1000px;

}

Creating the initial version of our React application 339

First, there's a :root pseudoclass, which we will use as a container for the CSS
Variables for our app theme. To make styling and theming more consistent and
easier, we will use variables instead of hardcoding values. As we build out our app,
you will see more and more variables being added here:

.App {

margin: 0 auto;

The following margin settings centers our layout:
 max-width: 1200px;

 display: grid;

 grid-template-columns: 0.7fr 0.9fr 1.5fr 0.9fr;

 grid-template-rows: 2.75rem 3fr;

 grid-template-areas:

 "nav nav nav nav"

 "sidebar leftmenu content rightmenu";

 gap: 0.75rem 0.4rem;

}

Here's a rundown of the Grid-related attributes:
• display: Here, we declare that our element will be of the grid type.

• grid-template-columns: This attribute tells our app the width of our columns
in a relative way. In our setup, it indicates we have four columns. The fr value
indicates that some portion of the available width should be given to the column.
So, for example, in our case, we have four columns, so if each column had exactly
equal amounts of the available width, each column's value would be 1fr. But in our
case, each column will be using a different amount of width smaller or greater than
the equal distribution, which is why we have the varying values. Possible values can
be specific, such as 100px or 2rem, percentages, such as example 20%, or implicit,
such as .25fr.

• grid-template-rows: Indicates the number and size of rows. Possible values
are the same as columns.

• grid-template-areas: Every Grid can have labeled sections called areas.
As this example shows, you simply add the labels for each area in Grid form to the
columns and rows that you want them to be in. So, in our case, "nav nav nav
nav" represents the first of our two rows with four columns, while "sidebar
leftmenu content rightmenu" represents our second row and each of its
columns.

340 Building the React Client for Our Online Forum Application

• gap: This is a way of adding padding in-between columns and rows. The first entry
indicates the row, while the second indicates the column.

3. Now that we've explained the basic features of CSS Grid, let's look at the styling for
the related sections of the Grid. The remaining styles are for the Grid content areas:

.navigation {

 grid-area: nav;

}

.sidebar {

 min-height: var(--min-screen-height);

 grid-area: sidebar;

 background-color: aliceblue;

}

.leftmenu {

 grid-area: leftmenu;

 background-color: skyblue;

}

.content {

 min-height: var(--min-screen-height);

 grid-area: content;

 background-color: blanchedalmond;

}

.rightmenu {

 grid-area: rightmenu;

 background-color: coral;

}

As you can see, they have a grid-area attribute, which indicates which area of
the Grid the element belongs to. The nav area will be for navigation. sidebar will
show a menu of user-specific settings and will only appear for desktops and laptops;
it will be hidden for mobile devices. leftmenu will be used to store our Thread
categories list. content will house our main list of Threads, filtered by category.
Finally, rightmenu will show a list of popular or otherwise relevant Threads.

Note
I am using these awkward background-color settings temporarily, only
to distinguish between each area clearly. Eventually, we will remove them.

Creating the initial version of our React application 341

Now, we have a basic layout for our app that works for desktop and laptop devices. But
how can we make this auto reconfigure itself for smaller screens, such as phones and
tablets? There is a CSS technology called Media Queries that could be of help in situations
like this. However, for our needs, it alone is insufficient.

We are building our app dynamically, using React driven by state changes. This means
that certain screen components should not be drawn if they are not needed or cannot be
displayed on smaller devices. So, although we could use Media Queries to hide elements
when smaller screens are detected, it would be an inefficient use of resources to have React
render something that is never going to be seen or directly used by the user.

Instead, let's see what we can do in code using event handling and React Hooks to take
care of this issue:

1. The first thing we want to do is convert our elements into React components. Let's
create a new folder inside the src folder called components.

2. Then, inside that folder, create a container component for each of the elements that
were inside the root div of our App component. Your src folder and the App.
tsx file should now look like this:

Figure 12.1 – Refactored App.tsx file

342 Building the React Client for Our Online Forum Application

Due to brevity, I won't review every single file we need to create here since it
is highly repetitive code, but here's a sample of the updated Main component
(the source code will, of course, contain the complete application code for all
components):

import React from "react";

const Main = () => {

 return <main className="content">Main</main>;

};

export default Main;

As you can see, we just moved our code from App.tsx into the component's
Main.tsx file. This means you'll need to create the remaining components; that
is, Nav, SideBar, LeftMenu, and RightMenu. Here's a screenshot of the React
Developer Tools screen showing our component hierarchy so far. React Developer
Tools was discussed in Chapter 6, Setting Up Our Project Using create-react-app and
Testing with Jest:

Figure 12.2 – Component hierarchy view
Notice that we have the Nav, SideBar, LeftMenu, Main, and RightMenu
components here. Each component represents the areas of our app on the root of
our website. Note that we will have more screens than this as we build out our app.

We had to do this componentization anyway because we are building a React application.
But how does this help us with our desire to make our web app responsive so that it auto-
configures to different device screens? By separating out each area of the Grid into its own
component, we can allow each component to use a React Hook that looks for screen size
information. Due to this, if the component is not appropriate for a certain screen size, it
will not render or render differently.

Creating the initial version of our React application 343

In order to make this responsive system work, we'll need two main features. First, we'll
need some additional CSS styles that use Media Queries to lay out our Grid differently
when smaller devices are detected. Additionally, we'll need to have our components
become aware when certain screen sizes are being used and either not render the
component or render it differently. Let's see what that code looks like.

First, let's create our media queries for mobile devices. Open your App.css file and add
the following Media Query to the bottom of our file:

@media screen and (orientation: portrait) and (max-width:
768px) {

 .App {

 grid-template-columns: 1fr;

 grid-template-areas:

 "nav"

 "content";

 }

}

Here, we are overriding the original App class definition whenever the device's
orientation is in portrait mode and the resolution is 768px or less. If you run the
app using Chrome Developer Tools in mobile mode as an iPhone X, you should see this:

Figure 12.3 – Chrome Developer Tools view of our app in mobile mode

344 Building the React Client for Our Online Forum Application

The app has a white right-hand side because we are still rendering the elements that
existed in the original desktop mode. We'll fix this soon. Now, let's create our Hook, which
helps handle device size-based rendering:

1. Create a folder inside the src folder called hooks. Then, add a file called
useWindowDimensions.ts. Notice that it is not a component since it has a ts
extension. Copy the source code from this book's GitHub repository and let's go
through it.

First, we create an interface called WindowDimension so that we can type in
what is returned by our Hook, which in this case is the browser's window object
dimensions.

Then, on line 8, we name our useWindowDimensions Hook. Then, on the next
line, we create a state object called dimension and give it a value of 0 for height
and 0 for width.

2. Next, we create our handler function, handleResize, which will use the state
update method, setDimension, to set our dimension values. The window object
of our browser provides the dimension values.

3. Finally, starting no line 21, we use the useEffect Hook to handle the window's
resize event. Note that an empty array, [], means that this will run only once
on first load. Also, note that when we add an event handler, we must also return
an event remover (this prevents memory leaks and redundant event handlers from
being added).

4. Now, we need to update our SideBar, LeftMenu, and RightMenu components
so that they will use our useWindowDimensions Hook and know not to render
when a device has a width of less than or equal to 768 (the same as our media
query). The code to use with the Hook is identical across each of these components,
so I will only show the SideBar component here. Please update the other
components yourself in a similar manner:

import React from "react";

import { useWindowDimensions } from "../hooks/
useWindowDimensions";

const SideBar = () => {

 const { width } = useWindowDimensions();

 if (width <= 768) {

 return null;

 }

Creating the initial version of our React application 345

 return <div className="sidebar">Sidebar</div>;

};

export default SideBar;

As you can see, we use the useWindowDimensions Hook to get the width
dimension. We then check if it is 768 or lower and if it is, we return null;
otherwise, we return the normal JSX. The other components will have the same
code for the useWindowDimensions Hook.

If you run the app, you will see that the white gap is now gone and that these
components are not rendered in the HTML. Note that to save time, we will
only support desktop and mobile portrait mode for iPhone X. Supporting every
possible device configuration is beyond the scope of this book. Here is a good
link on the topic of supporting multiple device screens from Google:
https://developers.google.com/web/fundamentals/codelabs/
your-first-multi-screen-site.

Before we continue, let's flesh out our client base configurations, such as Redux and
React Router.

5. Update your index.tsx file so that it includes Redux and React Router. We
covered Redux and React Router in Chapter 7, Learning Redux and React Router.
As always, the source code is available if you get stuck.

6. Now, let's create a folder inside the src folder called store and add our Redux
files there. Create the AppState.ts and configureStore.ts files and enter
the code as shown in the source files. We are not ready for UserProfileReducer
yet, so you can leave it out for now. We won't be using Redux middleware since
I showed this in Chapter 7, Learning Redux and React Router.

Now, before we continue and start creating components, let's add a newer React feature to
our app that will help us add more polish.

https://developers.google.com/web/fundamentals/codelabs/your-first-multi-screen-site
https://developers.google.com/web/fundamentals/codelabs/your-first-multi-screen-site

346 Building the React Client for Our Online Forum Application

Error Boundaries
Error Boundaries is a lot like exception handling for React Components. In a large app, it
is not always possible to prevent all errors that may occur. So, by using Error Boundaries
with our components, we can "catch" unanticipated errors and provide a better user
experience to our users. When errors occur, we'll display an error screen that we
pre-create rather than some ominous looking technical error message. Let's get started:

1. First, let's create our Error Boundary file. Inside of the components folder, create a
file called ErrorBoundary.tsx and add the source code from this book's GitHub
repository to it. Note that Error Boundaries still uses the older class style because we
need the getDerivedStateFromError and componentDidCatch life cycle
event handlers to catch errors. The React team does plan to add a Hooks equivalent
eventually.

At the top of the file, notice that we also have a matching CSS style file. It's trivial, so
I won't show it here, but you can find it in the source code.

First, we will create a type for our Error Boundary's props called
ErrorBoundaryProps.

Next, we must create another type for our Error Boundary's local state called
ErrorBoundaryState. At the beginning of the ErrorBoundary class
definition, we will see some boilerplate with the constructor for setting up the state.
Immediately following this, we will use the getDerivedStateFromError
function to tell React to show the error UI if hasError is true.

On line 31, it is in our componentDidCatch function that our component
realizes an error of some kind occurred and sets our hasError state variable to
true. We can also run our own code here to log errors and notify support if needed.

Finally, if hasError is true, we render our message so that users do not have to
see strange technical messages that can be confusing. You can, of course, write your
own custom message.

Warning
Error Boundaries do not catch errors that are occurring inside event handlers,
asynchronous code, or server-side rendered React, as well as errors thrown
by Error Boundaries themselves. You must deal with those yourself generally
using try catch.

Creating the initial version of our React application 347

2. Now, let's test our Error Boundary by throwing an error inside one of our
components. Update the Main.tsx file's Main function, like this:

const Main = () => {

 const test = true;

 if (test) throw new Error("Main fail");

 else {

 return <main className="content">Main</main>;

 }

};

As you can see, we deliberately throw an Error.

3. Try running the app now. You should see the type of screen we were trying to avoid.
Why is this happening? This is happening because we are currently in development
mode and React deliberately shows all errors in this mode. If we were in production
mode, by running npm run build, we would see the Error Boundary message.

However, we can still view our Error Boundary screen while in development mode if we
click on the x button on the Chrome browser's upper right-hand corner. If you do this,
you should see the following message:

Figure 12.4 – Error Boundary message

As you can see, our normal error message now appears. And again, feel free to style this
message as you see fit. To save time, we will leave it as-is.

348 Building the React Client for Our Online Forum Application

Data Service layer
In our application, we will be making calls to either a GraphQL API or a Web API, or
fetching network calls. However, none of these backend services are ready yet. For now,
we'll create a file that will contain fake network calls to simulate a real backend. Once our
real backend arrives, we will remove this feature:

1. First, create a folder called services inside src and then create the
DataService.ts file inside it. Since this is code we will soon discard, I won't
show it here, but you can grab the code from the source files. Note that some
references to Model types will be in this service, so you'll need to add those and
we'll cover them as this chapter progresses.

2. Now that we have a way of getting data, let's update our LeftMenu component
so that it uses it. But first, we need to create our Category type since we are
using TypeScript. Create a new folder called model inside src. Then, create the
Category.ts file and add the source code to it.

3. Now, update the LeftMenu.tsx file. First, we will update the imports by adding
the model type called Category and then the LeftMenu.css file. We'll be using
these later in our code.

4. Then, on line 9, create our state object called categories that contains our list of
categories. Before we can load Category data, we need some default text, Left
Menu.

5. Then, on line 13, we have useEffect, where we make a call to our
getCategories function and get our Categories. Then, we use the ES6 map
function to convert our objects into JSX.

6. Finally, in the returned JSX, we use the Categories state object in our UI.

If you reload your browser, you will see a 2-second delay due to the timers in our fake
DataService, and then the list of categories, like this:

Figure 12.5 – Loaded categories

Creating the initial version of our React application 349

Again, we'll remove DataService once our real server calls are ready.

Navigation menu
Now that we have a base configuration and layout, we can start creating our SideBar
menu. The interesting thing about our SideBar menu items is that they will be used on
both the SideBar and as a drop-down modal for mobile devices. This way, we can write
less code by having only a single component for both display types.

Now, in order to create the SideBar with a correct set of links, we need to know if the user
is logged in. If they are not logged in, we will show them login and register menus. If they
are logged in, we will show them logout and UserProfile menus. The UserProfile menu
screen will show the user's settings, as well as a list of posts that they have made. Since
the login state of our user will be shared across the application, let's put this data into our
Redux store:

1. We will use the existence of a UserProfile object instance, or lack thereof, as
an indication that a user is logged in. First, let's add a new reducer to our currently
empty reducers set. Create a new folder inside store called user. Now, create
a file called Reducer.ts and add the required source code.

2. Then, create an action type called UserProfileSetType so that our
UserProfileReducer can be distinguished from other reducers.

3. Next, we must create a payload type called UserProfilePayload. This is the
data that will be in our actions when they are dispatched later.

4. Then, we must create the UserProfileAction interface, which is of the action
type. This is used to distinguish an action for UserProfiles from some other action
type.

5. Finally, we have our actual reducer, UserProfileReducer, which performs
filtering based on our desired UserProfileSetType. Again, Redux was covered
in Chapter 7, Learning Redux and React Router.

6. In order to help us style our components, we'll need to use icons to provide a
better visual presentation. Let's install Font Awesome as it is a free and provides an
attractive kit of styles and icons that are very popular for web development. Run the
following command:

npm i @fortawesome/fontawesome-svg-core @fortawesome/
free-solid-svg-icons @fortawesome/react-fontawesome

350 Building the React Client for Our Online Forum Application

7. Now that we've added our icons, let's create a new folder inside src/components
called sidebar and move our existing SideBar.tsx file into it. Now, create a
new file called SideBarMenus.tsx and add the following code to it. Make sure
you've added the necessary imports:

const SideBarMenus = () => {

 const user = useSelector((state: AppState) => state.
 user);

const dispatch = useDispatch();

We use the useSelector and useDispatch Hooks to access Redux's
capabilities:

useEffect(() => {

 dispatch({

 type: UserProfileSetType,

 payload: {

 id: 1,

 userName: "testUser",

 },

 });

 }, [dispatch]);

Then, we use a useEffect Hook to call, dispatch, and update our UserProfile
object. Notice that it is now hardcoded, but we will use a GraphQL call later when
our backend is ready:

 return (

 <React.Fragment>

 <FontAwesomeIcon icon={faUser} />

 {user?.userName}

 </React.Fragment>

);

};

Creating the initial version of our React application 351

Next, we must add a FontAwesome font for the UserProfile and then show the
current username. This menu item will eventually be clickable so that our user's
profile screen appears:

export default SideBarMenus;

As we build out our screens to log in, log out, register, and so on, we will add these
menu items to this JSX.

I personally find bullet points distracting, so let's remove all the bullets from all the
app's unordered lists by adding the following style to the index.css file:

ul {

 list-style-type: none

}

8. Now, we need to update SideBar.tsx so that it uses SideBarMenus.
tsx. Update SideBar like this. First, add the appropriate imports, such as
SideBarMenus, first:

const SideBar = () => {

 const { width } = useWindowDimensions();

 if (width <= 768) {

 return null;

 }

 return (

 <div className="sidebar">

 <SideBarMenus />

 </div>

);

};

Now, we can update the JSX to include it.

Note that we will eventually write some code so that the UserProfile icon and
userName will only appear when our user is actually logged in. We will also click
enable it so that clicking on it opens our user's UserProfile screen. However, we
cannot do this without our backend. For now, we will have it as a placeholder.

352 Building the React Client for Our Online Forum Application

9. Let's continue and reuse our SideBarMenus component for mobile display.
Update the Nav.tsx file inside the components folder. Add the appropriate
imports:

const Nav = () => {

 const { width } = useWindowDimensions();

 const getMobileMenu = () => {

 if (width <= 768) {

 return (

 <FontAwesomeIcon icon={faBars} size="lg"
 className="nav-mobile-menu" />

);

 }

 return null;

 };

Again, we have used our useWindowDimensions Hook to determine if we
are on a mobile device. However, this time, we have created a function called
getMobileMenu to handle the logic of deciding what JSX to return. If we
are not running a mobile device, it returns nothing; otherwise, it returns the
FontAwesome icon for the hamburger menu:

 return (

 <nav className="navigation">

 {getMobileMenu()}

 SuperForum

 </nav>

);

};

export default Nav;

Creating the initial version of our React application 353

The screen, when viewed on a mobile device, should look like this:

Figure 12.6 – Nav menu in mobile mode

10. As we build out our app, we need to be able to display modals. So, before we
continue, we need to install react-modal. This package will allow us to make
some components modal popups. This makes them more flexible in terms of when
we can display them. Install react-modal like this:

npm i react-modal

npm i @types/react-modal -D

11. In order to use this modal and have it be responsive and adapt to different device
screens, we need to update our styles. In our App.css file, you will see a class
called modal-menu that has been applied to all our modals.

This is the default style for modals that our non-mobile devices will get. The main
thing to note here is that the modal starts its left position at 50% of the screen.
Then, we use transform to pull it back halfway (50% of itself). This should center
our modal so that it's in the middle of the screen. Notice that z-index is set high
to ensure this modal always appears on top.

For mobile devices, we use our App.css file's existing Media Query to hold an
updated modal-menu. Basically, we are overriding the same attributes that were in
the desktop styles with styles for the mobile Media Query. In this case, we are using
left, right, and top to stretch out the modal to the ends of the available screen.
This is why our transform is now 0, since it's not needed.

12. Moving on, we will add our click handler to the hamburger icon and then show our
SideBarMenus component when the icon is clicked. So, we'll need to update our
Nav.tsx file again so that it includes our modal, which displays SideBarMenus.
Let's update Nav.tsx. Add the appropriate imports first. Then, add the code from
the source.

354 Building the React Client for Our Online Forum Application

13. If we start by looking on line 10, we will see we have a new local state called
showMenu. We'll use this to control whether we show or hide our modal menu.

14. The onClickToggle handler is used in FontAwesomeIcon, inside the
getMobileMenu function, to toggle the showMenu local state, which shows or
hides the modal.

15. In a ReactModal, when any request to close comes into the component, we
need to set the state controlling display so that it can be explicitly set to false;
otherwise, the modal will not go away. This is what onRequestClose does. The
shouldCloseOnOverlayClick property allows us to close the modal, even
when we click anywhere outside it. This is a commonly expected behavior by users,
so it's good to have.

16. Finally, the JSX has been updated so that we can add our ReactModal, which
includes our SideBarMenus component.

As you can see, the modal is called ReactModal and that among its properties,
there's the prop called isOpen. This determines whether the modal is shown or
not.

17. If you run the code and then click on the hamburger icon, you will see this:

Figure 12.7 – ReactModel with SideBarMenus

Again, we will be building out this menu as we add more features.

Creating the initial version of our React application 355

Authentication components
Now that we have our SideBar set up, let's start building our authentication components.
We'll start by building our register, login, and logout screens:

1. Let's create the registration modal first. In order to do this, we'll need to add
a link for registration inside our SideBarMenus component. Open the
SideBarMenus.tsx file and update it like this:

As always add appropriate imports first.

The first few lines of code remain the same, so I haven't shown them here. Here is
the updated JSX:

 return (

 <React.Fragment>

 <FontAwesomeIcon icon={faUser} />

 {user?.userName}

 <FontAwesomeIcon icon={faRegistered} />

 register

 </React.Fragment>

);

};

We've added an additional li to the returned JSX and included the new icon and
label for the register.

356 Building the React Client for Our Online Forum Application

2. Now, before we create our Registration component, let's create a helper service that
validates our passwords for us. We want to make sure users enter sufficiently long
and complex passwords, so we need a validator. Create a new folder inside src
called common and then another folder called validators. In the validators
folder, create a file called PasswordValidator.ts and add the following code
to it. The code is pretty simple, so I won't show all of it here, but do notice the
password strength and the Regular Expression. A Regular Expression is just
a programmatic way of searching for patterns in a string:

const strongPassword = new RegExp(

 "^(?=.*[a-z])(?=.*[A-Z])(?=.*[0-9])(?=.*[!@#$%^&*])
 (?=.{8,})"

);

 if (!strongPassword.test(password)) {

 passwordTestResult.message =

 "Password must contain at least 1 special
 character, 1 cap letter, and 1 number";

 passwordTestResult.isValid = false;

 }

Here, we've used a Regular Expression to check for proper complexity by ensuring
that we have both letters, numbers, and symbols in our password. Parantheses
represent a set of related expressions. So, first, we have lowercase letters, then
uppercase letters, then numbers, then symbols, and finally an expected length:

 return passwordTestResult;

};

This code isn't particularly complicated, but since we are going to need this across
several components, such as registration and on the server, having it in a separate
file is better for code reuse.

Note
In SPA web development, validations are generally done twice – once on the
client and again on the server. Doing this twice may seem redundant, but it's
necessary for added security. Once we start building out our server code, we'll
learn how to share dependencies like this across projects.

Creating the initial version of our React application 357

3. Since we're creating multiple authentication-related components, let's create a folder
inside components called auth and then place our authentication-related files
there. Once you've created the auth folder, add a file called Registration.tsx
in there. Add the following code to the file. If you look at the source code, you will
be able to see the necessary imports. Make sure your App.css file is updated as
well. Note that eventually, we'll move some of this code into a shared location, but
for now, we'll use it directly in our Registration component:

const userReducer = (state: any, action: any) => {

 switch (action.type) {

 case "userName":

 return { ...state, userName: action.payload };

 case "password":

 return { ...state, password: action.payload };

 case "passwordConfirm":

 return { ...state, passwordConfirm: action.payload
 };

 case "email":

 return { ...state, email: action.payload };

 case "resultMsg":

 return { ...state, resultMsg: action.payload };

 default:

 return { ...state, resultMsg: "A failure has
 occurred." };

 }

};

Here, we are creating our reducer, which has many related fields:
export interface RegistrationProps {

 isOpen: boolean;

 onClickToggle: (

 e: React.MouseEvent<Element, MouseEvent> | React.
 KeyboardEvent<Element>

) => void;

}

358 Building the React Client for Our Online Forum Application

Since this is a modal component, we are allowing our parent components to control
how this component is viewed by passing props. The isOpen prop controls how
the modal is displayed, while the onClickToggle function controls hiding and
showing the modal:

const Registration: FC<RegistrationProps> = ({ isOpen,
onClickToggle }) => {

 const [isRegisterDisabled, setRegisterDisabled] =
 useState(true);

 const [

 { userName, password, email, passwordConfirm,
resultMsg },

 dispatch,

] = useReducer(userReducer, {

 userName: "davec",

 password: "",

 email: "admin@dzhaven.com",

 passwordConfirm: "",

 resultMsg: "",

 });

Here, we have the isRegisterDisabled local state value, which disables the
register button if the given values are not correct, and, of course, our local reducer,
userReducer:

 const allowRegister = (msg: string, setDisabled:
 boolean) => {

 setRegisterDisabled(setDisabled);

 dispatch({ payload: msg, type: "resultMsg" });

 };

allowRegister is just a helper function for setting the register button to disabled
and showing a message if needed.

4. Next, we have a series of onChange event handlers for each field, such as the
userName field. They each do validation as needed, as well as update the
typed-in text:

const onChangeUserName = (e: React.
ChangeEvent<HTMLInputElement>) => {

 dispatch({ payload: e.target.value, type: "userName"
});

Creating the initial version of our React application 359

 if (!e.target.value) allowRegister("Username cannot
 be empty", true);

 else allowRegister("", false);

};

The onChangeUserName function is used to set a userName and validate
whether registration is allowed to continue:

const onChangeEmail = (e: React.
ChangeEvent<HTMLInputElement>) => {

dispatch({ payload: e.target.value, type: "email" });

if (!e.target.value) allowRegister("Email cannot be
empty", true);

else allowRegister("", false);

};

The onChangeEmail function is used to set the email and validate whether
registration is allowed to continue:

const onChangePassword = (e: React.
ChangeEvent<HTMLInputElement>) => {

dispatch({ payload: e.target.value, type: "password" });

const passwordCheck: PasswordTestResult =
isPasswordValid(e.target.value);

if (!passwordCheck.isValid) {

allowRegister(passwordCheck.message, true);

return;

}

passwordsSame(passwordConfirm, e.target.value);

};

The onChangePassword function is used to set the password and validate
whether registration is allowed to continue:

const onChangePasswordConfirm = (e: React.
ChangeEvent<HTMLInputElement>) => {

 dispatch({ payload: e.target.value, type:
 "passwordConfirm" });

 passwordsSame(password, e.target.value);

};

360 Building the React Client for Our Online Forum Application

The onChangedPasswordConfirm function is used to set passwordConfirm
and validate whether registration is allowed to continue:

const passwordsSame = (passwordVal: string,
passwordConfirmVal: string) => {

if (passwordVal !== passwordConfirmVal) {

allowRegister("Passwords do not match", true);

return false;

} else {

allowRegister("", false);

return true;

}

};

Finally, since this is a registration component, we use passwordsSame to check
whether the password and the confirmation password are equal.

5. Next, we have onClickRegister and onClickCancel. The
onClickRegister button click handler will submit the attempted registration.
Currently, since we have no backend, it does no actual submission, but we'll fill it in
once we have the server up. On the other hand, the onClickCancel handler exits
the Registration component:

const onClickRegister = (

e: React.MouseEvent<HTMLButtonElement, MouseEvent>

) => {

e.preventDefault();

onClickToggle(e);

};

const onClickCancel = (

e: React.MouseEvent<HTMLButtonElement, MouseEvent>

) => {

onClickToggle(e);

};

Note that the e.preventDefault function simply prevents the standard
behavior, which is different depending on the context. In the case of forms, our
onClickRegister handler is associated with a button inside a form tag, so the
default behavior is to submit and cause a page refresh. A page refresh is not what we
want in a SPA, so we restrict it by using preventDefault.

Creating the initial version of our React application 361

6. Now that the event handlers have been set up we return the JSX that is tied to those
handlers. First, we start with the ReactModal wrapper component:

return (

 <ReactModal

 className="modal-menu"

 isOpen={isOpen}

 onRequestClose={onClickToggle}

 shouldCloseOnOverlayClick={true}

 >

 <form>

 <div className="reg-inputs">

 <div>

 <label>username</label>

 <input type="text" value={userName}
 onChange={onChangeUserName} />

 </div>

Again, our modal is controlled externally by a parent component via the isOpen
and onClickToggle props.

<div>

 <label>email</label>

 <input type="text" value={email}
 onChange={onChangeEmail} />

 </div>

Here, we have our email field.
 <div>

 <label>password</label>

 <input

 type="password"

 placeholder="Password"

 value={password}

 onChange={onChangePassword}

 />

 </div>

362 Building the React Client for Our Online Forum Application

This is our password field.
 <div>

 <label>password confirmation</label>

 <input

 type="password"

 placeholder="Password Confirmation"

 value={passwordConfirm}

 onChange={onChangePasswordConfirm}

 />

 </div>

 </div>

This is our password confirmation field.
 <div className="reg-buttons">

 <div className="reg-btn-left">

 <button

 style={{ marginLeft: ".5em" }}

 className="action-btn"

 disabled={isRegisterDisabled}

 onClick={onClickRegister}

 >

 Register

 </button>

Here, we have our button to register.
 <button

 style={{ marginLeft: ".5em" }}

 className="cancel-btn"

 onClick={onClickCancel}

 >

 Close

 </button>

Here is our button to cancel.
 </div>

 {resultMsg}

Creating the initial version of our React application 363

 </div>

 </form>

 </ReactModal>

);

};

export default Registration;

Finally, note that we have a message section that's using the resultMsg reducer
field. This will show errors if something has gone wrong.

7. Now, if you run the app in desktop mode, you should see something this:

Figure 12.8 – Desktop registration modal view

364 Building the React Client for Our Online Forum Application

If you run your Chrome debugger and switch to mobile mode, you will see the
following screen after clicking on your hamburger icon and then the register label:

Figure 12.9 – Mobile registration modal view
As you can see, we were able to effectively get two screens with only a single
component by using CSS responsive capabilities.

8. Now, let's move on to the login modal. If we take a look at the existing
Registration component, we will see that it contains some code that we
could also use in our Login component. We really should refactor the code so
that it can be reused. For example, Registration, Login, and Logout will
all use ReactModal and therefore receive props to control the modal's display.
So, let's see what we can do to reuse our existing code. First, let's extract the
RegistrationProps interface from the Registration.tsx file and place it
in its own file. Create a folder called types inside components. Then, create a file
called ModalProps.ts and add the RegistrationProps interface. Rename it
ModalProps.

Creating the initial version of our React application 365

As you can see, it's the same as RegistrationProps except for the name change.
Now, open the Registration.tsx file, remove RegistrationProps, and
import ModalProps. Then, replace RegistrationProps with ModalProps.
Check that everything still runs.

9. We refactored ModalProps so that it can be reused across components. Now, let's
pull out UserReducer since Login uses some of its fields. Create a new folder
called common inside the existing auth folder and create the UserReducer.ts
file. Place the following code inside it:

const userReducer = (state: any, action: any) => {

 switch (action.type) {

 case "userName":

 return { ...state, userName: action.payload };

 case "password":

 return { ...state, password: action.payload };

 case "passwordConfirm":

 return { ...state, passwordConfirm: action.payload
 };

 case "email":

 return { ...state, email: action.payload };

 case "resultMsg":

 return { ...state, resultMsg: action.payload };

 case "isSubmitDisabled":

 return { ...state, isSubmitDisabled: action.payload
};

 default:

 return { ...state, resultMsg: "A failure has
 occurred." };

 }

};

export default userReducer;

Notice that we added a new field called isSubmitDisabled. This field will
replace the existing isRegisterDisabled so that it can be used to disable
buttons across any authentication screens.

366 Building the React Client for Our Online Forum Application

Now, remove userReducer from the Registration.tsx file and import it
from the new UserReducer.ts file. Also, replace isRegisterDisabled
with isSubmitDisabled and include isSubmitDisabled in your
destructured object, as well as the state initializer of the useReducer
Hook call.

10. Now, let's do one more refactor. The allowRegister function in
Registration disables a button and updates the status message. This can also
clearly be reused. Let's create a new file called Helpers.ts inside the common
folder and add the following code inside it:

import { Dispatch } from "react";

export const allowSubmit = (

 dispatch: Dispatch<any>,

 msg: string,

 setDisabled: boolean

) => {

 dispatch({ type: "isSubmitDisabled", payload:
setDisabled });

 dispatch({ payload: msg, type: "resultMsg" });

};

As you can see, we changed the function name to allowSubmit and we are
now taking dispatch as a parameter. Now, remove allowRegister from
Registration and import the new allowSubmit function and update
the allowRegister calls to allowSubmit calls. Check the code of your
Registration.tsx file against the source code.

We'll leave the two onClick calls as-is, even though Login will also have similar
calls, as we'll probably have to do some component-specific things for these calls
later once our backend is ready.

You should now be able to run this code.

11. Now, we can use the newly extracted code in our new Login component. In the
auth folder, create a new file called Login.tsx and add the relevant code from
the source code. I'll highlight a few items here:

 const [

 { userName, password, resultMsg, isSubmitDisabled },

 dispatch,

Creating the initial version of our React application 367

] = useReducer(userReducer, {

 userName: "",

 password: "",

 resultMsg: "",

 isSubmitDisabled: true,

 });

Since our Login component has different needs than our Registration
component, we are only using a subset of the fields from our userReducer
by using object destructuring.

In the JSX, notice that we've updated some of the CSS classes in order to align the
buttons better. These new classes are in the App.css file.

12. Finally, we need to add a link for logging in. Update the SideBarMenu.tsx file,
as shown in the source code.

Since Logout is very similar, I've added the component but will not cover it here. We'll
add code to control which menu links are shown depending on user login status later as
the backend gets more fleshed out. We'll also add additional validation. However, we have
a lot more work to do before that, so let's continue.

Routing and screens
Now, let's continue by creating the routes that our application will need. Up to
this point, we have had only a single URL for our app. The root URL is http://
localhost:3000. We now want to divide our application so that it has distinct routes
for specific sections of our application. We'll start by taking our existing code, modifying
it, and making that into our first root React Route. Let's get started:

1. First, let's move our Grid area-related components into distinct folders. First, create
a folder called areas inside the components folder. Then, move the Nav.tsx,
Nav.css, RightMenu.tsx, Main.tsx, LeftMenu.tsx, and LeftMenu.css
files, as well as the entire sidebar folder, into the new areas folder. Your file path
imports will need to be updated, including the App.tsx file. Take a look at the
source code to learn how to do that.

2. Once you've done that, create a new folder inside areas called main and move the
Main.tsx file inside it. Make sure to update your paths. We'll be adding all our
main area-related components into this folder.

368 Building the React Client for Our Online Forum Application

3. The first new component we'll create in this folder is a MainHeader component.
As the name implies, it will be used as a header for the main section. It will
show what category of thread items we are currently looking at. Create the
MainHeader.tsx file inside the main folder and add the code from the source
into it.

This control's only purpose is to display the current Category name.
Again, note that we have some new CSS classes in the MainHeader.css and
App.css files.

Home screen
Before we continue, let's perform some basic setup for our new route. Here, we'll create
our new screen component, Home, and update any related files, such as App.tsx:

1. When we first created our App.tsx file, we did so as if our application will have
only one screen. Obviously, this is not true. Now that we have fleshed out our
layout, let's begin adding our distinct screens and routes. Open the App.tsx file
and update it like this.

Here, we have added a new import called Home that represents the main page route.
We will build this later:

import Home from "./components/routes/Home";function
App() {

const renderHome = (props: any) => <Home {...props} />;

We are defining a function here to send to our route's render property. This
function allows all the route's props, as well as any custom props we would like
to send, to be included in the initialization of our Home component:

 return (

 <Switch>

 <Route exact={true} path="/" render={renderHome} />

 <Route

 path="/categorythreads/:categoryId"

 render={renderHome}

 />

 </Switch>

);

}

Creating the initial version of our React application 369

So, the previous code that showed our Grid areas will now be in the Home
component, which again, we will build shortly.

As shown in Chapter 7, Learning Redux and React Router, our Switch component
allows React Router to change the rendering of route screens based on the URL
provided. For now, we will have two routes pointing to the same Home screen, but
we will add more later. The root path will show Threads for a default category, while
the categorythreads route will show Threads for a specific category.

2. Before we create our new Home component, let's refactor our CSS a bit and make it
more reusable. First, update the App.css file by adding the following class above
the App class:

.screen-root-container {

 margin: 0 auto;

 max-width: 1200px;

 margin-bottom: 2em;

 border: var(--border);

 border-radius: 0.3em;

}

This will now become the root class for any components that represent route screens
in our app.

3. Next, create a new file called Home.css inside the components/routes folder.
Now, cut this entire set of CSS styles from App.css:

.App { // note this class is rename into home-container
 // later

 margin: 0 auto;

 max-width: 1200px;

 display: grid;

 grid-template-columns: 0.7fr 0.9fr 1.5fr 0.9fr;

 grid-template-rows: 2.75rem 3fr;

 grid-template-areas:

 "nav nav nav nav"

 "sidebar leftmenu content rightmenu";

 gap: 0.75rem 0.4rem;

}

370 Building the React Client for Our Online Forum Application

The next set of CSS classes are the Grid areas:
.navigation {

 grid-area: nav;

}

.sidebar {

 min-height: var(--min-screen-height);

 grid-area: sidebar;

 background-color: aliceblue;

}

.leftmenu {

 grid-area: leftmenu;

 background-color: skyblue;

}

.content {

 min-height: var(--min-screen-height);

 grid-area: content;

 background-color: blanchedalmond;

 padding: 0.5em 0.75em 0.5em 0.75em;

}

.rightmenu {

 grid-area: rightmenu;

 background-color: coral;

}

Now, copy this code into our new Home.css file. Once they've been copied over,
change the name of the App class to home-container. We're changing the
name so that the class' purpose is clearer. Now, let's create our new Home screen
component and learn how to use these CSS classes.

4. Create a folder inside the components folder called routes and add a new file
called Home.tsx inside it. The code is short and simple, so you can just copy it
from the source. It's mostly the old code from the previous version of App.tsx.

We've updated our root CSS App class so that it's now screen-root-
container home-container. Using two classes in one class attribute simply
means to first apply the first class style and then apply the next, which will override
any settings from the prior. Also, we will now be able to use screen-root-
container in the other screens.

Creating the initial version of our React application 371

We've successfully moved our original App.tsx code into the Home.tsx file.
Notice that we also placed our Nav component inside a div tag. We're doing
this so that we can reuse the Nav component later in other screens. You should
now remove the className="navigation" attribute from your Nav.tsx
component file.

5. Now that we have updated our Home screen, we need to update our Main
component so that it lists the threads within the given category. In order to do this,
we actually need to do quite a few updates. First, we need to create two new models
called Thread and ThreadItem. Thread is the initial post, while ThreadItem
is a response. Let's start with our models.

First, create Thread.ts in the models folder, as shown in the source code.

There's not much to explain here as it's fairly obvious. However, note that points
indicates the total number of likes.

Next, let's do ThreadItem.ts. Create the required file and add the source code to
it. It's pretty similar to Thread.

6. Now, we will create the thread card file component. This component will represent a
single Thread record and will show things such as its title, body, and points. Create
a file called ThreadCard.tsx inside the components/areas/main folder.
Then, add the code to it:

import React, { FC } from "react";

import "./ThreadCard.css";

import Thread from "../../../models/Thread";

import { Link, useHistory } from "react-router-dom";

import { faEye, faHeart, faReplyAll } from "@fortawesome/
free-solid-svg-icons";

import { FontAwesomeIcon } from "@fortawesome/react-
fontawesome";

import { useWindowDimensions } from "../../../hooks/
useWindowDimensions";

First, we have various imports, including the Link object and the useHistory
Hook from React Router:

interface ThreadCardProps {

 thread: Thread;

}

372 Building the React Client for Our Online Forum Application

Notice we are accepting the Thread object as our parameter. We will use this object
and its members as we render our ThreadCard UI:

const ThreadCard: FC<ThreadCardProps> = ({ thread }) => {

 const history = useHistory();

 const { width } = useWindowDimensions();

 const onClickShowThread = (e: React.
 MouseEvent<HTMLDivElement>) => {

 history.push("/thread/" + thread.id);

 };

Here, we are using the React Router useHistory Hook to get the history
object. When someone clicks on our Thread, we use the history object to redirect
the app to a new URL by pushing the new URL on top of the history object. We
will build our thread route and component later:

 const getPoints = (thread: Thread) => {

 if (width <= 768) {

 return (

 <label

 style={{

 marginRight: ".75em",

 marginTop: ".25em",

 }}

 >

 {thread.points || 0}

 <FontAwesomeIcon

 icon={faHeart}

 className="points-icon"

 style={{

 marginLeft: ".2em",

 }}

 />

 </label>

);

 }

 return null;

 };

Creating the initial version of our React application 373

The getPoints function creates the UI for displaying "likes" on our post.
However, since our UI is responsive, it does not appear in desktop mode when we
check the screen's width property:

 const getResponses = (thread: Thread) => {

 if (width <= 768) {

 return (

 <label

 style={{

 marginRight: ".5em",

 }}

 >

 {thread && thread.threadItems && thread.
 threadItems.length}

This function shows the response count, as indicated by the thread.
threadItems.length property:

 <FontAwesomeIcon

 icon={faReplyAll}

 className="points-icon"

 style={{

 marginLeft: ".25em",

 marginTop: "-.25em",

 }}

 />

 </label>

);

 }

 return null;

};

The getResponses function shows how many ThreadItems responses there
are for this Thread. However, since our UI is responsive, it does not appear in
desktop mode when we check the screen's width property:

 const getPointsNonMobile = () => {

 if (width > 768) {

 return (

 <div className="threadcard-points">

374 Building the React Client for Our Online Forum Application

 <div className="threadcard-points-item">

 {thread.points || 0}

 <FontAwesomeIcon icon={faHeart}
 className="points-icon" />

 </div>

 <div

 className="threadcard-points-item"

 style={{ marginBottom: ".75em" }}

 >

 {thread && thread.threadItems && thread.
 threadItems.length}

This function is getting the likes count, as indicated by the thread.
threadItems.length property:

 <FontAwesomeIcon icon={faReplyAll}
 className="points-icon" />

 </div>

 </div>

);

 }

 return null;

 };

The getPointsNonMobile function returns the points column on the right of
ThreadCard, but only renders it if the device is a desktop or laptop with a screen
width bigger than 768 pixels.

Remember that every React component that may be used multiple times on the
same screen must have a unique key value. So, later, when we use this component,
you will see that each instance has been given a unique key value. The following
JSX is returning the Category name as a Link so that when it's clicked, the user
will be sent to the screen showing the Threads for that Category:

return (

<section className="panel threadcard-container">

 <div className="threadcard-txt-container">

 <div className="content-header">

 <Link

Creating the initial version of our React application 375

 to={`/categorythreads/${thread.category.id}`}

 className="link-txt"

 >

 {thread.category.name}

 </Link>

Link is a React Router component that renders a URL anchor (HTTP link). Notice
that categorythreads is the second route we created earlier and that it takes
categoryId as a parameter:

 <span className="username-header" style={{
 marginLeft: ".5em" }}>

 {thread.userName}

 </div>

 <div className="question">

 <div

 onClick={onClickShowThread}

 data-thread-id={thread.id}

 style={{ marginBottom: ".4em" }}

 >

 {thread.title}

 </div>

 <div

 className="threadcard-body"

 onClick={onClickShowThread}

 data-thread-id={thread.id}

 >

 <div>{thread.body}</div>

 </div>

As you can see, we use the thread prop extensively while rendering our UI.

Here, we are using the getPoints and getResponses functions to render a
subset of our UI so that it shows points and responses:

 <div className="threadcard-footer">

 <span

 style={{

 marginRight: ".5em",

376 Building the React Client for Our Online Forum Application

 }}

 >

 <label>

 {thread.views}

 <FontAwesomeIcon icon={faEye}
 className="icon-lg" />

 </label>

 {getPoints(thread)}

 {getResponses(thread)}

 </div>

 </div>

 </div>

Here, we are using getPointsNonMobile to show our response count and likes:
 {getPointsNonMobile()} </section>

);

};

export default ThreadCard;

Notice that we have referenced many CSS classes in this component, all of which
can be found in the ThreadCard.css and App.css files in the source code.
I won't go over every single CSS class here, but if you look at the ThreadCard.
css file, you'll notice that there is a reference to something called flex. Flexbox
is another method of creating a layout in CSS similar to Grids. However, Flexbox is
intended to be used for single-row or single-column layouts; for example:

.threadcard-txt-container {

 display: flex;

 flex-direction: column;

 width: 92%;

margin: 0.75em 1em 0.75em 1.2em;

border-right: solid 1px var(--border-color);

}

Creating the initial version of our React application 377

In this CSS, the display method is indicated as flex and flex-direction is
column. This means that the layout of all the elements inside threadcard-txt-
container will be in a single stacked column. So, even if we had elements such
as labels or buttons, which are normally set in a horizontal line, if they live inside a
column-based flex container, they will be laid out vertically. If we had used the row
attribute, then the layout would be horizontal.

7. Now that we've created our Thread container, ThreadCard, let's update our
Main.tsx file so that we can use it. Add the code from the source.

if you look on line 8, you will see the useParams function being used. Previously,
we created two routes for React Router in the App.tsx file. One of the routes,
categorythreads, accepted a URL parameter. By using the useParams Hook,
we can get route parameters – in this case, categoryId – so that we can use them.

Then, on line 9, we have the category state. Once we've retrieved our category
from the list of threads, we will update this state.

On line 10, we have a state object, which is a list of our ThreadCards, called
threadCards.

Then, in useEffect, we are updating our list of ThreadCards if we get a new
categoryId. When we get a valid categoryId, we use our DataService to
query for a list of threads that are specific to that category and then build out a list
of ThreadCards. We also take the first thread to get the name of the category,
since they all have the same category.

Finally, we return our UI.

Note
Sometimes, you will see warnings about missing dependencies on the array of
the useEffect Hook. These are what I consider opinionated warnings and
with experience, you will be able to judge which of them can be safely ignored.
For example, in useEffect for Main.tsx, I am deliberately ignoring this
warning about the category state object, because including the object in
the array would trigger an unnecessary double run of useEffect (because
useEffect runs whenever something in its array list has changed) and
possibly a double render.

378 Building the React Client for Our Online Forum Application

8. Now, let's try running in desktop mode. Go to http://localhost:3000/
categorythreads/1. You should see the following:

Figure 12.10 – Desktop view of the categorythreads URL

Creating the initial version of our React application 379

Here's what it looks like on mobile:

Figure 12.11 – Mobile view of the categorythreads URL
As you can see, in mobile mode, we don't have the right column of points. Instead,
those points are in the bottom of the main text section. The icons show that, for the
first post, two people have seen it. 55 people liked it, and one person responded.

Wow – that was a lot of code we just went through! However, we're not done yet! Let's
continue by building our RightMenu component.

On our RightMenu, we want to show a list of the top three categories with the most
thread postings. In each category, we'll show the topmost viewed threads. Let's get started:

1. First, create a folder for RightMenu inside the areas folder called rightMenu.

2. Now, create a new file inside that folder called TopCategory.tsx. This
component will represent a single top category and its threads.

3. Create a new model that will represent the data coming from the server. Let's call it
CategoryThread. Create a file called CategoryThread.ts inside the models
folder and enter the source code.

380 Building the React Client for Our Online Forum Application

4. Now, we need to update our existing RightMenu component and create a new
component that will display our CategoryThread items. To group and organize
our CategoryThread items, we need to use a tool called Lodash to help us.

Lodash is a dependency that provides an enormous library of JavaScript helper
functions. It would be impossible to go through all its capabilities here. However,
Lodash is particularly useful for managing arrays and collections. You will see it's
pretty straightforward to use, but if you would like more details, here's a link to their
documentation: https://lodash.com/docs/. Install Lodash like this:

npm I lodash @types/lodash

Note
Never import the entire Lodash library by using import _ from
"lodash". You will add an enormous amount of code to your project by
doing so. Only import the specific call using import groupBy from
"lodash/groupBy".

Now, we can update our RightMenu.tsx file as shown in the source code.

First, notice that in addition to Lodash, we also imported a new RightMenu.
css file, along with some minor styling. We also imported the TopCategory
component, which we'll build after.

Next, we have a new state object called topCategories that we will use to store
our array of top categories.

Then, in useEffect, we have our top categories from the getTopCategories
function. Then, we group the results by category and create our array of
TopCategory elements. The TopCategory component elements will display
our data. Notice that the TopCategory component receives each group of top
categories through the topCategories prop.

The component then returns the topCategories elements.

5. Now, we need to build our TopCategory component. Create the file called
TopCategory.tsx in the same folder as RightMenu and add the relevant
source code to it.

At the top, notice that we have a complementary CSS file called TopCategory.css.

Creating the initial version of our React application 381

Next, we have a new interface called TopCategoryProps for receiving props. On
line 10, the threads state object will store our JSX element when it's ready.

Then, on line 12, we have useEffect, which we will use to build our UI elements
based on the passed in prop; that is, topCategories.

The returned JSX has a strong header, which is the name of the first category
element that was found, since the array of top categories is always from one
category. Then, we included our list of threads.

6. Since this RightMenu does not render for mobile devices, let's see what it looks
like on desktop:

Figure 12.12 – RightMenu with top categories

OK – we're getting there! We've completed most of what we need for our main screen, but
now, we need our application to show an individual Thread posting.

382 Building the React Client for Our Online Forum Application

Thread posts screen
This screen will be multi-use. Using this screen, we will be able to create a new posting or
display an existing one. We will also show Thread responses on the same screen. Let's get
started:

1. First, we need to create our new route component. We'll call it Thread.tsx and
place it inside a new folder called thread, which should be placed inside the
routes folder. However, our Thread component will be complex, so we should
split it into modular pieces known as child components. In this case, doing this will
not give us code reuse benefits. However, it will make the code easier to read and
refactor since it will be distributed in chunks instead of a single very large monolith.
Let's create a new component file called ThreadHeader.tsx and add the source
code to it.

First, notice the new function we are importing, getTimePastIfLessThanDay.
This function will look at a passed-in date and format it appropriately for ease of
readability.

This component will take the fields in as parameters and not have a state of its
own. ThreadHeader is acting as a display-only component. It shows the thread's
title, userName, and lastModifiedOn time.

2. Now, create the Thread.tsx file and add the source code to it.

Notice that we are importing a new Thread.css file and our new
ThreadHeader component. Also, notice that since our component is also called
Thread, as is our model, I am importing our model as ThreadModel. This type
of issue can occur somewhat frequently in large projects, so you should be aware
that you can import in this manner.

Next, we must create our local thread state object, which is of the ThreadModel
type. Then, we must use the useParams Hook once again to get the route
parameter's id, which is the ID of the thread for this route.

In useEffect, if the id route parameter exists and it is greater than 0, we attempt
to get our thread. Later, once our backend is ready, we'll write some code so that
new threads can be inserted.

Finally, we return our UI, which includes ThreadHeader. Notice that the
lastModifiedOn field is non-nullable, so we are using a ternary check for a null
thread and returning the current date if it is null.

Creating the initial version of our React application 383

3. Now, we need to create a new route for our Thread screen component. Open App.
tsx again and update the code, like this:

function App() {

 const renderHome = (props: any) => <Home {...props} />;

 const renderThread = (props: any) => <Thread {...props}
/>;

Here, we've added the renderThread function for our Thread component:
 return (

 <Switch>

 <Route exact={true} path="/" render={renderHome} />

 <Route

 path="/categorythreads/:categoryId"

 render={renderHome}

 />

 <Route

 path="/thread/:id"

 render={renderThread}

 />

 </Switch>

);

}

Notice that our route for Thread is "/thread/:id", which means that after the
thread path, it expects a parameter. Internally, React Router will label it id.

4. Now, we'll add the next section of our Thread screen. On this screen, we will
be displaying the Thread's category via a drop-down menu. However, since the
standard dropdown in HTML, called a select element, is ugly and does not
integrate well with React, we'll use an NPM package called react-dropdown to
help us get a more attractive and React integrated control.

Install react-dropdown like this:
npm I react-dropdown

Now, create a file called ThreadCategory.tsx in the thread folder and add
the source code to it.

384 Building the React Client for Our Online Forum Application

Once you've set up the imports, create the ThreadCategoryProps interface,
which will represent our prop type.

Next, we start creating our ThreadCategory component and set up a constant
variable, catOptions, that contains the items that will appear as selectable options
in our dropdown. Again, we are only temporarily hardcoding values until our
backend is ready.

Finally, we are returning the JSX with an initialized DropDown control.

5. Now, let's create our Title component. We'll call it ThreadTitle. Create a file
called ThreadTitle.tsx inside the thread folder and add the source code to it.

This is just a simple renderer, so I won't explain it here. However, notice that, at
the moment, our onChangeTitle handler is blank. Again, once our backend
is ready, we will distinguish between read and write states and implement the
onChangeTitle function.

6. Now, let's update our Thread.tsx file and take a look at what we have so far.
Update Thread.tsx like this. Note that as we've been adding these Thread-related
components, we've been updating the Thread.css file, so keep your CSS file
updated as well.

The state and useEffect code is basically the same, so I won't show it here:
 return (

 <div className="screen-root-container">

 <div className="thread-nav-container">

 <Nav />

 </div>

 <div className="thread-content-container">

 <ThreadHeader

 userName={thread?.userName}

 lastModifiedOn={thread ? thread.lastModifiedOn
: new Date()}

 title={thread?.title}

 />

 <ThreadCategory categoryName={thread?.category?.
name} />

 <ThreadTitle title={thread?.title} />

 </div>

 </div>

Creating the initial version of our React application 385

);

};

Here, we have added our new components to our returned JSX. As you can see, our
code is a lot shorter and easier to read than if we had the individual elements and
event handlers all in the Thread.tsx file.

If you run the app via http://localhost: 3000/thread/1, you should
see this:

Figure 12.13 – Thread screen
Note that the gap on the right is where we will add likes and response count
information for the Thread.

Now, we're not reviewing every single CSS file here because we want to focus on the
code, but since this is a major screen and route destination, let's review the CSS to
see how we laid this out. This is what we have thus far. Update your Thread.css
file so that we can take a look together.

As we did previously with the Home screen, we placed our nav control inside its
own div container called thread-nav-container.

This thread-content-container class is where the actual Thread content
is being laid out. As you can see, the layout is a Grid with two columns and an
undefined indeterminate number of rows.

The rest of the content is being added to the first column using the grid-column
attribute. We will add the second column to hold our Thread's points (likes) later.

7. Now, we need to add a section for the body of our Thread posting. The body entry
is a bit more complicated because we will need to add a Rich Text entry formatter.
This control will allow users to format their text and do more sophisticated editing.

386 Building the React Client for Our Online Forum Application

To create our body, let's install an NPM package called Slate.js. This will be our Rich
Text editor and formatter. We'll also need to install several dependencies, including
something called Emotion. Emotion is a library that allows us to use CSS directly
inside JavaScript:

npm i slate slate-react slate-history emotion is-hotkey @
types/is-hotkey @types/slate @types/slate-react

Using Slate.js and implementing Rich Text editing is quite complex. It could easily
fill a book of its own. Due to this, we'll try and keep things somewhat simple,
but as you'll soon see, there's no easy way to implement Rich Text editing. Let's
create a folder called editor inside our components folder and create a new
file called RichTextControls.tsx. This file contains the controls that we will
be using in our editor. The source code I am using is from the Slate.js project at
https://github.com/ianstormtaylor/slate/blob/master/site/
components.tsx. This code is fairly large, so I'll show and explain the relevant
code as we use each control.

8. Next, we need to create the RichEditor.tsx file in the same editor folder and
add this code to it.

At the top of our imports section, we can see the usual React-related imports, but
also two Slate.js imports. These are there to help us create our editor UI. I'll explain
these in more detail later.

The isHotKey import is a tool that helps us build keyboard shortcuts for our
editor.

The withHistory import allows the editor to save the edits that have occurred,
in their correct order, so that they can be undone if needed.

Button and Toolbar are controls that can be used to build our editor UI. We'll
create the RichTextControls file in a moment.

Now, we can import our icons and CSS stylesheet.

The HOTKEYS variable is a dictionary that contains the various shortcut keys to
formatting pairings. [keyName: string] on the left represents the dictionary
key; the right-hand side shows the value.

https://github.com/ianstormtaylor/slate/blob/master/site/components.tsx
https://github.com/ianstormtaylor/slate/blob/master/site/components.tsx

Creating the initial version of our React application 387

On line 26, we have the initialValue variable. Our editor uses objects for its
value, not strings. So, the initialValue variable represents the starting value
object of the editor. The type is a Node array that comes from the Slate.js editor. In
Slate.js, text is represented as hierarchical trees of nodes. This is to make sure that
the structure of the text is kept intact, but also to allow formatting information to
live alongside the text. You can think of it as text and metadata together.

The LIST_TYPES array is used to distinguish between whether an entry is a
paragraph or a list of text.

On line 38, we start creating our RichEditor component. As we mentioned
previously, in Slate.js, the value or content of the text inside the editor is not plain
text. It is a JSON object and its root type is Node. So, our main text value, called
value, is a state object of the Node array type.

Next, we have the renderElement function, which is used internally to render
larger text pieces. An Element is a multi-line set of text. We'll build the Element
component in a bit.

Then, we have the renderLeaf function, which is used to render smaller bits of
text. A Leaf is a small snippet of text. We will create this component a bit later.

Note that we covered Hooks, such as useCallback and useMemo, in Chapter 5,
React Development with Hooks.

We then have the editor variable. The editor is the React component that
accepts and displays text, as opposed to the Slate, Toolbar, and Editable
components, which act as wrappers around the editor and inject or modify text
formatting for it.

The useEffect function is used to grab the existingBody prop and make
it the local state value, assuming existingBody was passed in. Again, an
existingBody is passed in only during view mode, not create mode.

The onChangeEditorValue event handler sets the local value state when it is
changed in the UI. Again, notice how the value type is not text, but a Node array.

Starting on line 59, we start our JSX definition. We initialize our Slate
wrapper component with our editor instance, local value state, and the
onChange event.

388 Building the React Client for Our Online Forum Application

Next, Toolbar, which is from the RichTextControls.tsx file, represents a
layout container and contains our buttons for formatting. They look like this. I will
explain MarkButton and BlockButton later:

Figure 12.14 – Slate.js Toolbar buttons
The Editable control contains the main formatters, shortcut keys, and base settings
for our editor.

Notice that I've moved out most of the functions outside the main component for
readability.

On line 92, we have our MarkButton control. MarkButton is a function that
generates the button UI and also associates the actual formatter that triggers when
that specific button is clicked. Generally, marks are used for words or characters,
as opposed to blocks, which are usually multi-line statements. Button is from our
RichTextControls.tsx file. It represents a styled button on our Toolbar.

Next, we have the isMarkActive function. The isMarkActive function
determines if a formatter has been applied already.

Next, the toggleMark function will toggle the formatting based on whether it has
been applied or not. It associates the editor with the format.

BlockButton sets the formatting for a block of text and creates its button. Usually,
a block contains multiple Nodes.

The isBlockActive function determines if formatting was applied.

ToggleBlock toggles the applied formatting.

Next, the Element component determines which type of HTML to use.
Elements are used quite frequently in Slate.js.

We use Leafs to determine smaller HTML to return. Leafs are frequently used in
Slate.js.

We now have a reusable Rich Text editor. We will certainly use this component
in our Thread display. Now, since it is its own component, we can reuse this code
wherever we like.

Creating the initial version of our React application 389

9. Now, we need to add our new RichEditor to our ThreadBody.tsx file. It is
a small component, so just add the code from the source.

10. Finally, we need to reference our ThreadBody from our Thread component,
like this. Make sure you have all the necessary imports. Then, in the JSX, just below
ThreadTitle, add the following code:

 <ThreadBody body={thread?.body} />

Again, notice how easy it is to read and understand this JSX now that we have put it
into components.

Now, let's take a look at what this looks like:

Figure 12.15 – Thread entry screen and its editor

390 Building the React Client for Our Online Forum Application

Our Rich Text editor provides the following options: bold, italic, underline, show as
code, make header, wrap in quotes, number list, and bullet list. As you can see, all
our formatters work.

When using Slate.js, you might be wondering why the bullets appear, even though
we added the CSS to remove ul styling to our index.css file earlier. In order to
get proper styling in our editor, I updated that style like this:

ul:not([data-slate-node="element"]) {

 list-style-type: none;

}

This is a CSS selector that says "do not apply this style if the element has a custom
attribute on it called data-slate-node". This is what Slate.js uses to distinguish
its own elements from other standard HTML.

Wow, that was a lot of code! However, we're not done yet. We still have to create our points
column on the right, add our response capability, and allow ThreadItems to be added.
Let's leave the points column for a little later and work on our response system next:

1. The first thing we want to do is some refactoring. In our ThreadHeader
component, we displayed userName and lastModifiedOn to let users know
who created the post and when. We can use this display for our responses as
well. So, let's pull out this bit of code and put into a separate component so that
we can reuse it. Create a file called UserNameAndTime.tsx in the routes/
thread folder and add the source code to it. Since we're basically copying over the
ThreadHeader code, I won't review it here.

2. Now, we can use this by updating our ThreadHeader component code. Update
it by replacing the JSX under the h3 tags for title with the following code. Don't
forget to add the import statement:

 <UserNameAndTime userName={userName}
lastModifiedOn={lastModifiedOn} />

Great! Now, we can start building our ThreadItems component. But this time, we'll do
things a little differently. In the case of Thread responses, it is possible that we might have
more than one response. So, this scenario is somewhat analogous to a machine in a widget
factory. There is only one machine but potentially many widgets that need to be created.
This sort of situation in programming design would usually entail using something called
a factory pattern.

Creating the initial version of our React application 391

So, what we're going to make is actually two components. One component will act as the
factory "building" Thread responses. The other component will define what a response
actually looks like. So, together these two components can churn out any number of
responses. Note that we're not using the formal design pattern for the factory, just a rough
conceptual model. Let's get started:

1. First, we need to create our ThreadResponse component, which will define what
our ThreadItem UI and behavior look like. Create a ThreadResponse.tsx file
inside routes/thread and add the relevant source code.

First, notice we are importing and reusing the RichEditor and
UserNameAndTime components we created earlier. Can you imagine how much
work it would take to have to recreate them again if we had not componentized
them? Thank goodness we put them into their own components!

Next, we have our ThreadResponseProps interface. Notice that all our props
are optional. This is in preparation for when we refactor this component and make
it capable of creating new response entries.

Finally, we have the returned JSX. This is a pretty simple UI – we just display our
UserNameAndTime and RichEditor.

2. Now, let's create our ThreadResponse factory. Create a file called
ThreadResponseBuilder.tsx in the same folder and add the relevant source
code to it.

First, we have the ThreadResponsesBuilderProps interface. This component
will receive a props that contains a list of ThreadItems. We'll have to update our
Thread parent component so that it passes the list down.

Starting on line 12, since our builder is churning out multiple responses, our only
state, responseElements, is a JSX element that's used to contain them.

Next, we use useEffect to create our list of response elements. Each
ThreadResponse instance has a unique key, which prevents rendering
issues. Whenever our threadItems props change, we will create a ul of
ThreadResponses.

Finally, we return our JSX, which is a list of TheadResponse elements.

3. We're almost done. Let's update our Thread.tsx file so that it now uses our
ThreadResponsesBuilder component. Note that the styling has been updated
in the App.css and Thread.css files.

392 Building the React Client for Our Online Forum Application

In the JSX just below ThreadBody, add the highlighted tags shown in the
following code:

 return (

 <div className="screen-root-container">

 <div className="thread-nav-container">

 <Nav />

 </div>

 <div className="thread-content-container">

 <ThreadHeader

 userName={thread?.userName}

 lastModifiedOn={thread ? thread.lastModifiedOn
: new Date()}

 title={thread?.title}

 />

 <ThreadCategory categoryName={thread?.category?.
name} />

 <ThreadTitle title={thread?.title} />

 <ThreadBody body={thread?.body} />

 <hr className="thread-section-divider" />

 <ThreadResponsesBuilder threadItems={responses}
/>

 </div>

 </div>

);

};

Notice that we also added a new line, hr, to separate out the Thread post from any
responses.

Creating the initial version of our React application 393

Our screen should now look like this:

Figure 12.16 – A Thread and its responses

We now have an almost complete Thread posting and viewing UI. But again, we're not
done yet. We still have to build our points viewer and enable Thread and ThreadItem
posting. We'll build the points viewing component here, but let's leave the posting
capability for later chapters, when we have our backend ready to tie it together. Also, when
our backend is ready, it will become clearer as to why we did certain things the way we did
them here.

394 Building the React Client for Our Online Forum Application

For our categorythreads route, you saw that we had a vertical bar showing our
likes and response count. If you take a look at how we created that section, you'll see
we put that code into a function called getPointsNonMobile. We could extract this
feature into its own React component. Obviously, this will allow us to use it in both our
ThreadCard component and our Thread component, as well as anywhere else we may
need it later. Let's get started:

1. Create a new file called ThreadPointsBar.tsx and place it inside the root of
the components folder. We'll take the getPointsNonMobile function from the
ThreadCard component and add it inside this new component.

On line 6, we use ThreadPointsBarProps as our props type. You may be
wondering why I didn't just pass the entire Thread object in. Adding only the
member data that's needed allows us to keep better separation of concerns. If we
passed the entire Thread, not only would we be telling our ThreadPointsBar
about what model types we are dealing with, but we would be giving it information
it does not actually use or need.

Next, the returned JSX is basically the same as the original function as it does
the same thing. Now, try updating the ThreadCard component so that the
getPointsNonMobile function gets removed. In its place, we will add our
new ThreadPointsBar component. Note that our ThreadCard.css file was
updated slightly, so you should refresh it. The screen should look identical to our
original screen since we only moved things around.

2. Now, let's add our new ThreadPointsBar component to our Thread route
component. The JSX changes are small but significant, so let's go over them here
and then look at our updated Thread.css file:

 return (

 <div className="screen-root-container">

 <div className="thread-nav-container">

 <Nav />

 </div>

 <div className="thread-content-container">

 <div className="thread-content-post-container">

Creating the initial version of our React application 395

Here, we've moved the order of some of our elements around. Now, the main
Thread post-related elements are under this div in the thread-content-post-
container class:

 <ThreadHeader

 userName={thread?.userName}

 lastModifiedOn={thread ? thread.
lastModifiedOn : new Date()}

 title={thread?.title}

 />

 <ThreadCategory categoryName={thread?.
category?.name} />

 <ThreadTitle title={thread?.title} />

 <ThreadBody body={thread?.body} />

 </div>

 <div className="thread-content-points-container">

Here, we have a brand new div with a thread-content-points-container
class that contains our new ThreadPointsBar component:

 <ThreadPointsBar

 points={thread?.points || 0}

 responseCount={

 thread && thread.threadItems && thread.
threadItems.length

 }

 />

 </div>

 </div>

 <div className="thread-content-response-container">

 <hr className="thread-section-divider" />

 <ThreadResponsesBuilder threadItems={thread?.
threadItems} />

 </div>

396 Building the React Client for Our Online Forum Application

We've also moved our responses down into their own parent, thread-content-
response-container:

 </div>

);

};

Let's look at our refreshed CSS Thread.css file to see what's going on.

Near the top of the file, I've explicitly given a definition for grid-template-
rows. The Grid now has two rows: one for posts and one for responses. Posts take
up one part of available space, but responses can take up as much space as needed,
which is what auto means, since it could have 0 or more responses.

We now have this new class, thread-content-points-container. We need
this to change the layout of our ThreadPointsBar, which is now different from
the main screen. Notice that it puts itself into the second column start index and
first Grid row. The > div element on the second definition means to give the div
elements inside ThreadPointsBar and threadcard-points a specific height
of all available.

Now, our main Thread post items, such as ThreadTitle and ThreadBody, live
inside this thread-content-post-container.

Our responses – mainly ThreadResponsesBuilder – live inside this thread-
content-response-container. Notice that grid-row is set to 2.

After the thread-content-response-container class, you'll notice that
all the section-related classes no longer need references to any Grid column or
Grid since they all live inside thread-content-post-container.

3. Now, we want to give our points totals for our responses. However, because we
could end up having many responses, it might not look that great to have 20 or 30
little vertical points bars for each response. So, to make things look cleaner, let's
just put these points on the same line as our userName and createdOn dates.
Luckily for us, we've already created most of the code to show these points in our
ThreadCard component with the getPoints function. So, let's convert that into
a component too.

Create a new file called ThreadPointsInline.tsx and add the relevant
source code to it. We've basically just copied and pasted our getPoints code
into here, so there's not much to explain. However, notice that we reused the
ThreadPointsBarProps interface from the ThreadPointsBar component.
So, we need to make this type exportable.

Creating the initial version of our React application 397

I'll assume you know how to update the ThreadCard.tsx file since we did this
earlier with ThreadPointsBar. Now, let's update the ThreadResponse.tsx
file so that it uses our new ThreadPointsInline component. Try and do this on
your own; only look at the code if you get stuck. So, here's what we have now:

Figure 12.17 – Displaying thread points
As you can see, both our points systems can be seen. Now, there's one final small
trick we need to implement to get this screen showing up properly on mobile
devices.

4. Open the Thread.css file and make sure it contains the same Media Query as the
source code.

398 Building the React Client for Our Online Forum Application

Now, open the Thread component's code so that we can go through it.

On line 32, you will see that our Thread post-related items all live inside thread-
content-container. The CSS class, via the Media Query, has been set so that it
only has a single column on mobile devices. This setting will make sure that when
we remove our ThreadPointsBar component from that area, we don't end up
with an empty space, because we had two columns previously.

Next, we can see that our ThreadPointsBar actually lives inside thread-content-
points-container. In the Media Query, we are making that element invisible. This
is still efficient because, as you may recall, internally, ThreadPointsBar is using our
useWindowDimensions Hook to determine if it should render itself or not. It will not
do this for mobile devices.

Awesome! Let's take a look our screen now on mobile:

Figure 12.18 – Mobile view of the Thread screen

Terrific! Now, we have one code base and two screens.

Creating the initial version of our React application 399

For the final item in this chapter, we will build out our UserProfile screen. We want to
do a few things with this screen:

• Allow users to reset their passwords.

• Show all user-generated Thread posts.

• Show all user-generated responses (ThreadItems).

Let's get started:

1. The very first thing we have to do is actually make a change to the SideBarMenus
component. We need to move out the useEffect call in order to send our user to
Redux, and then to the Login component. We're doing this so that when the user
successfully logs in, the new user object will be sent to Redux. By now, you should
be comfortable with making this kind of change. So, go ahead and remove this code
from SideBarMenu and add it to Login.

Tip
Make sure that when you put the code into Login, you change the name of
dispatch to something else, as there is already a dispatch in the Login
component.

2. This new screen will include a password reset feature, but you may recall we already
have a lot of code for doing password confirmations in our Register component.
Let's try to extract that code into its own component so that we can reuse it in both
the Register component and our new UserProfile component.

Create a file called PasswordComparison.tsx inside the components/
auth/common folder. Add the relevant source code to it.

This is a fairly straightforward copy and paste, but there's a couple of things to
note. Notice that this component does not use userReducer, instead taking props
for its values. In particular, notice that one of them is the dispatch function.
This is what allows this component to share its password values with its parent,
because the dispatch call belongs to the parent. Everything else is basically a copy
and paste.

Try removing this code yourself from the original Register component. Ensure
that you remove all the unnecessary imports.

400 Building the React Client for Our Online Forum Application

3. Now, let's create a new userProfile folder inside the routes folder so that we
can create our new UserProfile.tsx file and add the relevant source code to it.

Starting on line 14, we use our userReducer since we need some of its properties,
such as userName. We also get the Redux user reducer and set some local state for
the user's Threads and ThreadItems.

On line 28, the useEffect function is using thegetUserThreads function of
DataService, which gets the user's Threads. We don't need another call to get
ThreadItems because Threads contains related ThreadItems. However, I did
update the ThreadItem class so that it includes its parent ThreadId. Take a look
at those files for that code.

Next, starting on line 38, we map each Thread in the query results to an li. We also
add all ThreadItems to a single array so that we can use them later.

Then, starting on line 53, we've taken our ThreadItems and mapped them to a set
of li as well.

On line 77, we use the PasswordComparison component that we created earlier.

On line 82, notice we have our button using isSubmitDisabled. Can you guess
how this disabling is working, even though UserProfile does not contain any
code to change it? That's right – PasswordComparison is doing it internally
using our UserProfile's dispatch function.

Finally, we have our Threads and ThreadItems rendered off our local state
objects.

4. For the final change, let's update our App.tsx file so that it includes our new route
for UserProfile. Note that we also need to temporarily add the userName
Redux call until the same call, inside Login.tsx, is completely working (we'll
finish the call in Login.tsx once our backend is ready). This is because when
we load our UserProfile, there is no guarantee that the user has already loaded
their Login screen. However, we know that if they've loaded any screen in the
app, they must have loaded the App.tsx component. Update App.tsx from the
source code.

So, first, we have a useEffect with a hardcoded userName being sent to the
Redux store. Again, this is only temporary until our backend is ready.

On line 26, renderUserProfile is the function that returns our UserProfile
component. That function is then used on line 33 as the destination for the new
route; that is, "/userprofile/:id".

Creating the initial version of our React application 401

There's one more tiny change we need to make. In our SideBarMenus
component, let's update our userName label so that it's a link to our new
UserProfile screen. You can find this JSX in the SideBarMenus.tsx file:

{user?.userName}

Then, replace it with this:

 <Link to={`/userprofile/${user?.id}`}>{user?.
userName}</Link>

Now, if you run the app, you will see the following:

Figure 12.19 – UserProfile screen

If you click on any of the Thread links, you'll see that they take us to the thread route.

That was amazing! We've gone through so much React code in this chapter. We learned
about the layout, folder structure, component creation, code reuse, code refactoring,
styling, and more. Code refactoring in particular can be very time-consuming and even
stressful. However, the reality is that most of the time, we will not be writing new code but
refactoring existing code. So, this was a good way to build our skills.

In the next few chapters, we will be building out our backend and tying it together with
our client side. You should now feel very confident – you've made a huge effort in getting
through this complex chapter.

402 Building the React Client for Our Online Forum Application

Summary
In this chapter, we began our journey of building our full stack application by creating
our React client. We used Hooks to create our components, implemented component
hierarchies, and designed layouts using CSS Grid. We then refactored a ton of code, and
we tried to reuse as much code as possible. Even though we're not done yet, we've built out
a large important piece of our final application.

In the next chapter, we will learn about the session state on our backend server, what
the session state is, how to use it, and the most popular tool for creating and managing
session data: Redis.

13
Set Up a Session

State Using Express
and Redis

In this chapter, we'll learn about creating session state using Express and the Redis data
store. Redis is one of the most popular in-memory data stores. It is used by companies
such as Twitter, GitHub, Stack Overflow, Instagram, and Airbnb. We'll use Express
and Redis to create our session state, which will be the basis for our application's
authentication capabilities.

In this chapter, we're going to cover the following main topics:

• Understanding session state

• Understanding Redis

• Building session state with Express and Redis

404 Set Up a Session State Using Express and Redis

Technical requirements
You should have a good understanding of web development using Node.js. We will once
again be using Node and Visual Studio Code.

The GitHub repository is at https://github.com/PacktPublishing/Full-
Stack-React-TypeScript-and-Node. Use the code in the Chap13 folder.

To set up the Chapter 13 code folder, go to your HandsOnTypescript folder and create
a new folder called Chap13.

Understanding session state
In this section, we'll learn what session state is and why it's necessary. We'll revisit some of
the concepts of how the web works and understand why we need session state.

The web is actually not one thing. It is a collection of many technologies. The core of
the web is the HTTP protocol. This is the communication protocol that allows the
web to work over the internet. A protocol is simply an agreed-upon set of rules for
communication. This sounds somewhat straightforward, and for some things, it can be.
However, for our application, it's a little more complicated.

The HTTP protocol is a connectionless protocol. This means that HTTP connections
are made only at the time a request is made and then released. So, a connection is not
maintained, even if a user is actively using a website for hours. This makes HTTP more
scalable. However, this also means certain features that larger websites need are more
difficult to create when using this protocol.

Let's take a look at a real-world example. Let's pretend we are Amazon and we have
millions of users on our site trying to buy items. Now because people are trying to buy
things, we need to be able to uniquely identify these users. For example, if we were both
using Amazon at the same time and you were trying to add items into your cart, we would
need to make sure that none of your items ended up in my cart and vice versa. This seems
like it should be easy to do. However, with a connectionless protocol like HTTP, it's hard.

In HTTP, every request creates a new connection and each new request knows nothing
about any prior requests. That is, it holds no state data. So, to go back to our Amazon
example, this means that if a user makes a request to add an item to a cart, there is no
built-in facility to distinguish this user's request from any other request. Of course, we
could intervene with our own capabilities, and certainly, that's what we'll be discussing in
this chapter. But the point is that there is nothing out of the box that we can just use.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

Understanding Redis 405

To be clear, there are numerous ways of dealing with this particular issue. Perhaps we
could give each user a unique ID and they could pass it on each call. Or maybe we could
save session information onto the database, for example, to hold purchase items in a cart.
And certainly, there are many more options than this depending on what specifically is
the requirement. However, these simple ideas would need to be fleshed out and detailed.
Then we would need to spend time testing them. So, realistically, wherever we can, we
want to avoid rolling our own capabilities and, instead, we should select industry-standard
solutions. If we use these, we know they have been tested for robustness and security and
will use best practices.

The method we will use for distinguishing users will put the emphasis on server-side
technology by using Express sessions and Redis as our data store. We will not use JWT
as it is a client-side technology and is more susceptible to security vulnerabilities than a
server-side solution.

Important note
Every solution has its pros and cons. Certainly, any server can be hacked. And
having security solutions on a server does not guarantee anything. However,
when it comes to your server, you can secure and control its settings to at least
try and maximize its security. On a user's machine, you have no control at all.

In this section, we learned about what session state is and why it's necessary. We learned
about some of the missing features of the HTTP protocol and how we can provide
ourselves with those capabilities. In the next section, we will continue by learning about
Redis, the data store that we will use to maintain our session data.

Understanding Redis
In this section, we will learn about Redis and install it. We will also give a simple
introduction to Redis and how it works.

Redis is an in-memory data store. It is extremely fast and scalable. You can use Redis to
store strings, lists, sets of data, and more. Thousands of companies use Redis and it is free
and open source. In general, Redis is most often used as an in-memory database or cache.

For our use case, we will use Redis to act as the data store for our Express sessions. Redis
is supported on Linux and Mac. It is not officially supported on Windows. You can get
unofficial support by using a Docker image on Windows, but that is beyond the scope of
this book. However, you can usually get free Linux VM's on cloud providers for a trial
period. So if you're on Windows, you could try one of those services.

406 Set Up a Session State Using Express and Redis

Note
Redis.conf has a setting called bind which sets the local IP address, the
Redis server will use as well as which external IP addresses will be allowed
to access it. Leaving this setting commented will allow any IP address to
access the server. This is ok for development purposes. However, once you go
into production you should set this to a specific value and only allow the IP
addresses you desire to have access to the server IP.

Let's begin by installing Redis. Currently, I am using a Mac:

1. Go to the Redis website at https://redis.io/download and select
Download under the stable version. Here's a sample screenshot of the current 6.0.7
version:

Note
Please download a 6.0.x version as higher or lower versions may have breaking
changes.

Figure 13.1 – Redis download

2. Once you have downloaded and successfully unzipped or unpacked the file into
a folder, use your terminal and go to that folder. For example, this is what my
terminal looks like after I have unpacked the tar file:

https://redis.io/download

Understanding Redis 407

Figure 13.2 – Redis stable unpacked

3. Now we must make our source files into a runnable application. Simply type make
into the terminal and let it run. It will take some time to finish. The beginnings of
the make command run will look like this:

Figure 13.3 – Running the make command

408 Set Up a Session State Using Express and Redis

4. Now that we've built our server, feel free to move it wherever you would like. I
moved it into my Applications folder. You'll need to run this command after
changing directories into the Redis folder:

src/redis-server

Here's a screenshot of my local Redis server running:

Figure 13.4 – Running Redis

Warning
On Mac, you may get a warning asking if you want to give Redis permission to
accept incoming network requests. You should allow this.

Understanding Redis 409

5. Let's quickly test that Redis is working. Open a new terminal window while Redis is
running, and from your Redis src folder, type this command:

redis-cli

Here's a test that I did:

Figure 13.5 – Test Redis
In Figure 13.5, we first ping to check that Redis is running. Then we use the set
command to create a new value with the key test and value 1. Then we get that
value successfully.

6. Now that we know our server is installed properly, we need to do some minor
configuration. Shutdown the server first with this command:

src/redis-cli shutdown

Once shut down, go to the Chapter13 source code folder and copy the contents of
the redis/redis.conf file. Then, in the terminal, run the following command:

sudo mkdir /etc/redis

If asked for a sudo password, enter your password. This is the default folder for
most Redis configuration locations. Next, run this command:

sudo nano /etc/redis/redis.conf

Nano is a text editor for the terminal. Now paste the contents of the source code,
redis.conf, file into this newly created file on /etc/redis/redis.conf.

If you view this file and search for the keyword requirepass, pressing Ctrl + W
or viewing from VSCode, you will see the password we are going to use for testing
purposes only. Please do not use this password in production.

For any other settings, we should be fine with the defaults.

410 Set Up a Session State Using Express and Redis

7. OK, now let's restart our Redis server, but this time pointing to our new redis.
conf file. Type this command:

src/redis-server /etc/redis/redis.conf

Notice this time the log message says Configuration loaded.

Note that if you want to test the server again, this time you need to authenticate
since we configured a password:

src/redis-cli

auth <password>

This is what it looks like:

Figure 13.6 – Test restart and auth of Redis

In this section, we discussed what Redis is and did a basic installation of the Redis service.
In the next section, we will be starting our backend server code by creating a bare-bones
Node and Express server and setting up Redis-based session state.

Building session state with Express and Redis
In this section, we will start building out our backend. We'll create our Express project and
set up Redis-based session state.

Now that we understand what Redis is and how to install it. Let's go over how Express and
Redis will work together in our server. As we discussed in Chapter 8, Learning Server-Side
Development with Node.js and Express, Express is basically a wrapper around Node. And
this wrapper provides additional capabilities for Node by using middleware. Session state
is also an Express middleware.

In our application, Express will provide a session object with relevant capabilities, such as
creating cookies on the user browser and various functions to help set up and maintain
the session. Redis will be the data store for our session data. Since Redis is ultra-fast at
storing and retrieving data, it is a good use case of Redis.

Building session state with Express and Redis 411

Let's now create our project using Express and Redis:

1. First, we need to create our project folder, super-forum-server. Once created,
we need to initialize it as an NPM project by running this (make sure your terminal
is already in the super-forum-server folder first):

npm init -y

Once it's complete, just update the name field inside of package.json to say
super-forum-server. Feel free to also update the author field to your name
as well.

2. Now let's install our dependencies:

npm i express express-session connect-redis ioredis
dotenv

npm i typescript @types/express @types/express-session @
types/connect-redis @types/ioredis ts-node-dev -D

As you can see, we installed our express package, but we also installed
express-session. This package is what enables sessions in Express. We also
installed connect-redis, which is what connects our Express session to a
Redis data store. In addition to connect-redis, we need the ioredis package
because it is the client that gives us access to the Redis server itself. I'll explain this
further once we start coding. The dotenv package will allow us to use a config file,
.env, to hold things like server passwords and other configurations.

Then, in the second install command, we can see our development-related
packages, which are mostly TypeScript definition packages like @types/express.
However, notice in the end, we also install ts-node-dev. We use this package
to help us start our server through the main index.ts file. The ts-node-dev
package will trigger tsc, the TypeScript compiler, and get the final server up and
running.

Warning
Never include your dotenv config file, .env, in your Git repository. It has
sensitive information. You should have an offline process to maintain this file
and share it with your developers.

412 Set Up a Session State Using Express and Redis

3. Let's now update our package.json file to use the ts-node-dev helper. This
package is super useful because it also auto-restarts our server whenever we change
any of our scripts. Add this line to the scripts section of package.json:

"start": "ts-node-dev --respawn src/index.ts"

Notice there are two dashes before respawn. The index.ts file will be our root
file that starts our server.

4. Now we should set up TypeScript in our project. We've seen the TypeScript config
file, tsconfig.json, many times before so I won't list it here (you can of course
find it in our source files). But do notice that we have target as ES6 and the
production files are saved to the ./dist folder.

5. Create the src folder on the root of the project.

6. Now let's create our .env file and its entries. Copy these settings into your own file,
but use your own unique secret values:

Building session state with Express and Redis 413

7. Now let's create the index.ts file. Let's create a bare-bones file first, just to make
sure our server will run. Enter this into the file:

import express from "express";

Here, we have imported Express.
console.log(process.env.NODE_ENV);

Here, we are showing which environment we are on – production or development.
If you have not set your local environment already, use this command on your
terminal to set it.

For Mac, use this command:
export NODE_ENV=development

For Windows, use this command:
SET NODE_ENV=development

On your production server, you may also need to run this command but set it
to production:

require("dotenv").config();

Here, we import our dotenv package and set up default configurations. This is
what allows our .env file to be used in our project.

const app = express();

Here, we instantiate our app object with express. So, we'll add all our middleware
onto the app object. Since almost everything in Express is middleware, session state
is also middleware.

app.listen({ port: process.env.SERVER_PORT }, () => {

 console.log(`Server ready on port ${process.env.
 SERVER_PORT}`);

});

And here, we have initialized our server and when it is running, it will show the log
message shown. Run the following command:

npm start

414 Set Up a Session State Using Express and Redis

You should see the following log message on your terminal:

Figure 13.7 First run of the Express server

8. Now that we know our base server is running properly, let's add our Express session
state and Redis:

import express from "express";

import session from "express-session";

import connectRedis from "connect-redis";

import Redis from "ioredis";

To start, you can see we import expression-session and our Redis related
packages.

console.log(process.env.NODE_ENV);

require("dotenv").config();

const app = express();

const router = express.Router();

Here, we've initialized our router object.
const redis = new Redis({

 port: Number(process.env.REDIS_PORT),

 host: process.env.REDIS_HOST,

 password: process.env.REDIS_PASSWORD,

});

Building session state with Express and Redis 415

The redis object is the client to our Redis server. As you can see, we've hidden the
values to our configuration information behind our .env file. You can imagine how
unsafe it would be if we could see the passwords and other security information
hardcoded into our code.

const RedisStore = connectRedis(session);

const redisStore = new RedisStore({

 client: redis,

});

Now we've created our RedisStore class and the redisStore object, which we
will make the data store for our Express session.

app.use(

 session({

 store: redisStore,

 name: process.env.COOKIE_NAME,

 sameSite: "Strict",

 secret: process.env.SESSION_SECRET,

 resave: false,

 saveUninitialized: false,

 cookie: {

 path: "/",

 httpOnly: true,

 secure: false,

 maxAge: 1000 * 60 * 60 * 24,

 },

 } as any)

);

416 Set Up a Session State Using Express and Redis

The session object gets some options. One option, store, is where we are adding
our redisStore object. The sameSite value indicates that cookies from other
domains are not allowed, which enhances security. The secret field is again a kind
of password or unique ID for our specific session. The cookie field sets up our
cookie that gets saved onto user browsers. The httpOnly field means the cookie
is not available from JavaScript. This makes the cookie much more secure and can
prevent XSS attacks. The secure field is false because we are not using HTTPS.

app.use(router);

router.get("/", (req, res, next) => {

 if (!req.session!.userid) {

 req.session!.userid = req.query.userid;

 console.log("Userid is set");

 req.session!.loadedCount = 0;

 } else {

 req.session!.loadedCount = Number(req.session!.
 loadedCount) + 1;

 }

We've set up our router object and our one route, which is GET. Basically, what
we're doing is taking userid from the URL query string and then setting our user's
unique session.userid field with it. We also count how many times the call was
made to show that the session is being kept alive between calls.

 res.send(

 `userid: ${req.session!.userid}, loadedCount:

 ${req.session!.loadedCount}`

);

Here, we're responding by sending the session information as a string return.
});

app.listen({ port: process.env.SERVER_PORT }, () => {

 console.log(`Server ready on port ${process.env.SERVER_
 PORT}`);

});

Summary 417

And finally, we have our express server listen on port 5000, which is what our
SERVER_PORT is set to. As shown in the following image, the cookie gets created
on the first load:

Figure 13.8 – Two browsers showing distinct session state
Note that we use two browsers to show that unique sessions are created. If we used
one browser, the sessions would not be unique as the same cookie would be used.

In this section, we used our knowledge of Express and Redis and implemented a base
project for our SuperForum application. We saw the role both Express and Redis play in
creating the session. And we saw how to use the session to create a unique data container
for each user that comes onto our site.

Summary
In this chapter, we learned about sessions and the Redis data store service. We also learned
how to integrate Redis with Express so we can create unique sessions for our users. This
will be critical for building our authentication services in later chapters.

In the next chapter, we will set up our Postgres server and create our database schema. We
will also learn about TypeOrm, which will allow us to integrate and use Postgres from our
application. And finally, we will also build out our authentication service and tie it to our
session state.

14
Setting Up Postgres

and a Repository
Layer with TypeORM

In this chapter, we'll learn about setting up a repository layer using Postgres as our
database and TypeORM as our library for accessing the database. We'll build our database
schema and, with the help of TypeORM, we'll be able to perform CRUD (Create, Read,
Update, Delete) operations for our application. This is a crucial chapter as the core
activity of our backend will be to retrieve and update data.

In this chapter, we're going to cover the following main topics:

• Setting up our Postgres database

• Understanding object relational mappers by using TypeORM

• Building our repository layer using Postgres and TypeORM

420 Setting Up Postgres and a Repository Layer with TypeORM

Technical requirements
This book will not be teaching you about relational databases. So, you should have a basic
understanding of SQL, including simple querying and table structures, as well as web
development using Node. We will once again be using Node and Visual Studio Code to
write our code.

The GitHub repository is available at https://github.com/PacktPublishing/
Full-Stack-React-TypeScript-and-Node. Use the code in the Chap14 folder.

To set up the Chapter 14 code folder, go to your HandsOnTypescript folder and create
a new folder called Chap14.

Setting up our Postgres database
In this section, we will install and set up a Postgres database. Relational databases are
still very relevant, and these days NoSQL databases are all the rage. However, according
to StackOverflow, Postgres continues to be one of the world's most popular databases.
Additionally, its performance is world class, beating MongoDB by a significant margin
(https://www.enterprisedb.com/news/new-benchmarks-show-
postgres-dominating-mongodb-varied-workloads). So, Postgres is what
we will be using as our database technology.

Let's install our Postgres database. We will use the installer provided by EDB. EDB is
a third-party company that provides tools and services for supporting Postgres:

1. Go to the URL https://www.enterprisedb.com/downloads/postgres-
postgresql-downloads and select the download for your platform. I will be
using version 12.4 for Mac, which is the latest Mac version as of the time of writing.

2. Accept all the defaults on the installer, including the list of components to be
installed, as shown here:

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://www.enterprisedb.com/news/new-benchmarks-show-postgres-dominating-mongodb-varied-workloads
https://www.enterprisedb.com/news/new-benchmarks-show-postgres-dominating-mongodb-varied-workloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

Setting up our Postgres database 421

Figure 14.1 – Postgres Setup screen

3. Once your install finishes, start up the pgAdmin application. This application is the
administrator application for Postgres. You should see a screen like this:

Figure 14.2 – First view of pgAdmin
As you can see, it is a web browser application. I have some other servers on my
installation, but your install should not have any if this is your first pgAdmin install.

4. Now, let's create a new server group called HandsOnFullStackGroup so we
can keep our work separate from others. A server group is just a container to house
multiple server instances, and each server can have multiple databases inside them.
Note that a server does not indicate a single physical machine.

422 Setting Up Postgres and a Repository Layer with TypeORM

5. First, select the option for Server Group by right-clicking over the Servers item, as
shown here:

Figure 14.3 – pgAdmin adding a server group

6. Next, create a server by right-clicking on the new HandsOnFullStackGroup and
selecting Server. Then, enter the name SuperForumServers on the first screen,
as follows:

Figure 14.4 – The Create - Server tab

Setting up our Postgres database 423

7. Now, select the second tab, Connection, and enter localhost as the Host name/
address. Then enter the password for postgres. The Postgres account is the root
administrator account, so you need to remember this password. Here's a screenshot
of this tab:

Figure 14.5 – The Connection tab

424 Setting Up Postgres and a Repository Layer with TypeORM

8. Select Save and your server will be created. You should see the following view:

Figure 14.6 – View of the new HandsOnFullStackGroup and SuperForumServers
Notice that there is already a database called postgres there. This database is empty,
but can be used to store global data.

Now, let's create the database for our application. However, before we can do that, we
need to create a new account specifically to use in relation to our new database. Using
the default administrator account, postgres, would not be a good idea as, if it were to be
hacked, it would give the attacker access to our entire server:

1. In pgAdmin, right-click on Login/Group Roles and select Create | Login/Group
Role. Then, in the General tab, for a name, use superforumsvc. Then, in the
Definition tab, set your own password. Next, go to the Privileges tab and make
sure to enable login. The rest you can keep as the default settings.

Setting up our Postgres database 425

2. Next, right-click on the Databases item in the view and select Create | Database.
Then, in the General tab, use the name SuperForum and select superforumsvc
as Owner:

Figure 14.7 – Creating the SuperForum database

3. Then, click Save. Your view should now show this:

Figure 14.8 – New database and user

426 Setting Up Postgres and a Repository Layer with TypeORM

Terrific! We now have a database. If we were not using an ORM, we would have to go
through the tedious process of manually creating our tables and fields. But, as you'll see,
TypeORM saves us from this grunt work, as well as providing us with great language
features to query our database.

In the next section, we'll dig into TypeORM. We'll learn about how it works and how it
helps us, at many levels, to interact with our database.

Understanding object relational mappers by
using TypeORM
In this section, we'll learn what Object Relational Mapper (ORM) technology is. We'll
also learn about TypeORM, one of the most popular ORM frameworks for JavaScript.
ORM can make working with databases a lot easier and reduce some cognitive load for
the developer.

As a programmer, you know that different programming languages have types that are
incompatible. For example, JavaScript, despite the name, cannot use or even access Java
types directly. In order for either language to use the types from the other, we would need
to do some sort of translation. In part, this is the reason for having services such as the
Web API. The Web API provides all data to callers as a string format, like JSON. This
allows any caller to use the data since it can be read by any language.

Database to coding language conversion has similar type incompatibilities. So, normally
after making a query that returns data, we would have to take each field's value from the
database and manually write code to convert it to a specific type in the coding language.
However, if we use an ORM, most of this work goes away.

An ORM is designed so that it knows how to map database fields into code fields and
handles that translation work for us. Additionally, most ORMs have some sort of
capability to autocreate tables and fields on the database based on entity structures created
in code. You can think of entities as types on the coding language side that represent
similar objects to tables on the database side. For example, if we have an entity called
User in our JavaScript, it would be expected that we would have a table called Users on
the database to match it (it's plural because a table holds more than one user).

This feature alone can save an enormous amount of time and effort for developers, but on
top of this, a good ORM will also have features to help build queries, insert parameters
safely (reducing the chance of SQL injection attacks), and also handle transactions.
Transactions are atomic database operations that must complete in their entirety or all
the actions involved are undone.

Building our repository layer using Postgres and TypeORM 427

Note
A SQL injection attack is an attempt by a malicious person to insert SQL code
that is different from the one originally intended by the developers. It can result
in issues such as data loss and application failure.

For our application, we will be using TypeORM. TypeORM is a popular and highly rated
ORM for TypeScript, with over 20,000 likes on GitHub. It provides all of the features
mentioned and is easy to get started with, although becoming an advanced user does take
considerable effort. It supports multiple databases, including Microsoft SQL, MySQL, and
Oracle.

It will save us a great deal of time with its rich feature set, and because many JavaScript
projects use TypeORM, there is a large community of developers that can help if you run
into issues when using it.

In this section, we learned about ORM technology. We learned what it is and why it's
important and valuable to use. In the next section, we will be using TypeORM to build our
own project. Let's get started.

Building our repository layer using Postgres
and TypeORM
In this section, we'll learn about the importance of using a repository layer. Having a
separate layer for a large and important part of our application can help make code
refactoring easier. It is also helpful in terms of understanding how the app works since
major sections are logically separated out.

In Chapter 1, Understanding TypeScript, we learned about Object-Oriented
Programming (OOP). One of the major mechanisms for implementing OOP design
is the use of abstraction. By creating our database access code in its own separate layer,
we are using abstraction. As you may recall, one of the benefits of abstraction is that
it hides the implementation of the code internally and exposes an interface to outside
callers. Additionally, because all code related to accessing the database is in one place, we
don't have to hunt around to find our database query code. We know which layer of our
application this code lives in. Keeping code logically separate is known as the separation
of concerns.

428 Setting Up Postgres and a Repository Layer with TypeORM

So, let's get started with building our repository layer:

1. First, we need to copy our server code that we created in Chapter 13, Setting Up
Session State Using Express and Redis. Go to the Chapter13 folder in the source
code and copy the super-forum-server folder into the Chapter14 folder.

Note
You will need to delete the node_modules folder and the package-
lock.json file and then re-run the installation with the command.

npm install

2. Next, we need to install TypeORM and its related dependencies. Run the following
command:

npm i typeorm pg bcryptjs cors class-validator

npm i @types/pg @types/cors @types/bcryptjs -D

With this command, we have installed typeorm. pg is the client to communicate
with Postgres. bcryptjs is an encryption library that we will use to encrypt our
passwords before inserting into the database. cors is needed to allow us to receive
client-side requests from a different domain, other than our server's domain. In
modern apps, it's possible the client-side code is not being served from the same
server as the server-side code. This is especially true when we are creating an API
such as GraphQL, which may be used by multiple clients. You'll also see this when
we start integrating our client's React app with the server, as they will run on
different ports.

class-validator is a dependency for assigning decorators for validation. We'll
discuss this in more detail later with the help of examples.

3. Now, before we can start creating our Entities database, we need to create a
configuration file so that our TypeORM code can access our Postgres database. This
means that we also have to update our .env file with our database configurations.
Open the .env file and add these variables. Our server was installed locally, so PG_
HOST has the value localhost:

PG_HOST=localhost

The port the server uses for communication is as follows:
PG_PORT=5432

Building our repository layer using Postgres and TypeORM 429

Our database account name is as follows:
PG_ACCOUNT=superforumsvc

Use the password you created for your own database:
PG_PASSWORD=<your-password>

Our database name is as follows:
PG_DATABASE=SuperForum

As mentioned before, TypeORM will create our tables and fields for us and maintain
them as they change. PG_SYNCHRONIZE enables that feature:

PG_SYNCHRONIZE=true

Of course, once you go live in production, you must disable this feature so as to
prevent unwanted database changes.

The location of our Entity files, including subdirectories, is as follows:
PG_ENTITIES="src/repo/**/*.*"

The root directory for our entities is as follows:
PG_ENTITIES_DIR="src/repo"

PG_LOGGING determines whether to enable logging on the server:
PG_LOGGING=false

Logs should be enabled in production in order to trace issues. However, logs can
create huge files, so we won't enable it for our development.

4. Now we can create our TypeORM configuration file. In the root of our project,
Chap13/super-forum-server, create the file ormconfig.js and add this
code to it:

require("dotenv").config();

First, we get our .env configurations by requiring them:
module.exports = [

 {

 type: "postgres",

Which database type will we connect to? Since TypeORM supports multiple
databases, we need to indicate this.

430 Setting Up Postgres and a Repository Layer with TypeORM

The rest of the values use the configurations from our .env file, so they are self-
explanatory:

 host: process.env.PG_HOST,

 port: process.env.PG_PORT,

 username: process.env.PG_ACCOUNT,

 password: process.env.PG_PASSWORD,

 database: process.env.PG_DATABASE,

 synchronize: process.env.PG_SYNCHRONIZE,

 logging: process.env.PG_LOGGING,

 entities: [process.env.PG_ENTITIES],

 cli: {

 entitiesDir: process.env.PG_ENTITIES_DIR

 },

 }

];

Now, we're ready to start creating our entities.

5. Now that we've installed our dependencies and set up the configuration to the
database, let's create our first entity, the User. Change the directory to the Chap14/
super-forum-server folder and then create, inside the src folder, a folder
called repo. We'll place all of our repository code there. Then, create a file inside
repo called User.ts with the following code in it:

import { Entity, PrimaryGeneratedColumn, Column } from
"typeorm";

These TypeORM imports will allow us to create our User entity class. Entity,
PrimaryGeneratedColumn, and Column are what are known as decorators.
Decorators are attributes placed just before a relevant line of code that provide
additional configuration information about a field or object. You can think of them
as a shortcut. Instead of writing some long lines of code, you can simply add a tag
that sets configurations. We'll see examples in this code:

import { Length } from "class-validator";

This is a validator for length.

Building our repository layer using Postgres and TypeORM 431

Next comes our first use of decorators. The Entity decorator tells TypeORM that
the class that is about to be defined is an entity with the name Users. In other
words, in our code we will have objects called User that map directly to tables in
our database called Users:

@Entity({ name: "Users" })

In databases, every table must have a unique identifying field. This is what
PrimaryGeneratedColumn indicates. The field name will be id. Notice that the
""" in id is not capitalized. We'll fix this issue later:

export class User {

 @PrimaryGeneratedColumn({ name: "id", type: "bigint" })

 id: string;

Next, we have our first use of the Column decorator:
 @Column("varchar", {

 name: "Email",

 length: 120,

 unique: true,

 nullable: false,

 })

 email: string;

As you can see, it is used to define the database field Email, which will be called
email in our TypeScript code. So again, decorators are being used to map our
code objects to database entities. Now, let's go through the Column decorator more
closely. First, it defines that our column is of the varchar database type. Again,
database types are different from code types, as shown here. Next, we see the name
field, which is set to Email. This will be the exact name of this field in the Users
table. Then we have length, which indicates the maximum allowed character
count of this field. The unique attribute tells Postgres to enforce the fact that
each User entry must have a unique email. And finally, we have nullable set to
false, which means this field must have a value in the database:

 @Column("varchar", {

 name: "UserName",

 length: 60,

 unique: true,

 nullable: false,

 })

432 Setting Up Postgres and a Repository Layer with TypeORM

 userName: string;

 @Column("varchar", { name: "Password", length: 100,
 nullable: false })

@Length(8, 100)

Here, we used the Length decorator to make sure that the field entered has a
minimum and maximum character length:

 password: string;

The two fields, userName and password, have varchar as columns, with similar
settings to email:

 @Column("boolean", { name: "Confirmed", default: false,

 nullable: false })

 confirmed: boolean;

Now, here we see a confirmed field that is of the boolean type. The confirmed
field will show whether the newly registered user account has been email verified
yet. Note, it's pretty self-explanatory, but the default setting indicates that at the
moment the record is inserted into the database, unless explicitly set, it will be set to
false:

 @Column("boolean", { name: "IsDisabled", default:
 false, nullable: false })

 isDisabled: boolean;

}

And finally, here's the isDisabled field, which will allow us to disable an account
for management purposes.

6. Great! Now we can see whether TypeORM will create our new Users table on our
behalf. The last thing we need to do is connect to the Postgres database from our
code. Update index.ts like this:

import express from "express";

import session from "express-session";

import connectRedis from "connect-redis";

import Redis from "ioredis";

import { createConnection } from "typeorm";

require("dotenv").config();

Building our repository layer using Postgres and TypeORM 433

We have imported the createConnection function from TypeORM:
const main = async () => {

 const app = express();

 const router = express.Router();

await createConnection();

Here, we've called createConnection. But notice that our code is now wrapped
in a function called main that is async. The reason we needed this is that
createConnection is an async call and requires an await prefix. So, we had
to wrap it in an async function, which is what the main function does.

The remaining code is the same, as follows:
 const redis = new Redis({

 port: Number(process.env.REDIS_PORT),

 host: process.env.REDIS_HOST,

 password: process.env.REDIS_PASSWORD,

 });

 const RedisStore = connectRedis(session);

 const redisStore = new RedisStore({

 client: redis,

 });

 app.use(

 session({

 store: redisStore,

 name: process.env.COOKIE_NAME,

 sameSite: "Strict",

 secret: process.env.SESSION_SECRET,

 resave: false,

 saveUninitialized: false,

 cookie: {

 path: "/",

 httpOnly: true,

 secure: false,

 maxAge: 1000 * 60 * 60 * 24,

 },

434 Setting Up Postgres and a Repository Layer with TypeORM

 } as any)

);

Again, the code is the same:
 app.use(router);

 router.get("/", (req, res, next) => {

 if (!req.session!.userId) {

 req.session!.userId = req.query.userid;

 console.log("Userid is set");

 req.session!.loadedCount = 0;

 } else {

 req.session!.loadedCount = Number(req.session!.
 loadedCount) + 1;

 }

 res.send(

 `userId: ${req.session!.userId}, loadedCount:

 ${req.session!.loadedCount}`

);

 });

 app.listen({ port: process.env.SERVER_PORT }, () => {

 console.log(`Server ready on port

 ${process.env.SERVER_PORT}`);

 });

};

main();

And finally, we've called our main function to execute it.

7. Now, let's run our application by running the following command:

npm start

Building our repository layer using Postgres and TypeORM 435

Nothing has changed on the terminal. However, if you open pgAdmin and go to the
Tables view, you'll see our new Users table with all of its columns created for us:

Figure 14.9 – New Users table
This is such a huge time saver! Could you imagine if we had to create each of our
tables manually ourselves? With all of their fields and constraints? This would take
hours.

Notice that our columns have the same settings as from our decorators. For
example, our email has a variety of characters, with a length of 120, and is
not nullable.

436 Setting Up Postgres and a Repository Layer with TypeORM

8. However, we have a small issue. Our id column is not using capitalization even
though our other columns are. Let's fix that. Open the User.ts file again and
simply change the name setting of the PrimaryGeneratedColumn decorator
to be Id instead of id (only in the decorator; leave the id field name in our
JavaScript). If your server is not running, start it again. But after it restarts, refresh
the Tables view by right-clicking on it and selecting Refresh. You should see that
our id column has been updated to Id. This is a terrific feature of TypeORM, as
manually changing column names or constraints can sometimes be painful.

9. Great! Now we just need to create our other entities: Thread and ThreadItem.
Again, Thread is the initial starting post in our forum and ThreadItems are the
responses. First, stop your server so that it doesn't create our database items before
we're ready. Now, since this is mostly repetitive, I'll just show the code here without
comment.

The imports for both these files will be identical and as shown here:
import { Entity, PrimaryGeneratedColumn, Column } from
"typeorm";

import { Length } from "class-validator";

The Thread entity looks like this for now (we'll be adding more fields once we
build our table relationships):

@Entity({ name: "Threads" })

export class Thread {

 @PrimaryGeneratedColumn({ name: "Id", type: "bigint" })

 id: string;

 @Column("int", { name: "Views", default: 0, nullable:
 false })

 views: number;

 @Column("boolean", { name: "IsDisabled", default:
 false, nullable: false })

 isDisabled: boolean;

 @Column("varchar", { name: "Title", length: 150,
 nullable: false })

 @Length(5, 150)

 title: string;

Building our repository layer using Postgres and TypeORM 437

 @Column("varchar", { name: "Body", length: 2500,
 nullable: true

 })

 @Length(10, 2500)

 body: string;

}

ThreadItem looks like this:
@Entity({ name: "ThreadItems" })

export class ThreadItem {

 @PrimaryGeneratedColumn({ name: "Id", type: "bigint" })

 id: string;

 @Column("int", { name: "Views", default: 0, nullable:
 false })

 views: number;

 @Column("boolean", { name: "IsDisabled", default:
 false, nullable: false })

 isDisabled: boolean;

 @Column("varchar", { name: "Body", length: 2500,
 nullable: true

 })

 @Length(10, 2500)

 body: string;

}

438 Setting Up Postgres and a Repository Layer with TypeORM

10. As you can see, both entities are pretty straightforward. Now, restart your server and
you should see the two new tables: Threads and ThreadItems:

Figure 14.10 – Threads and ThreadItems

We still have many fields to add, such as the points column. But first, let's build out some
relationships between tables. For example, every table should have an association with a
specific user. Let's begin by adding these relationships:

1. First, stop your server. Then, in your User.ts file, add this to the bottom of your
class. I'll assume you know how to add any required imports by now and won't
mention them further:

@OneToMany(() => Thread, (thread) => thread.user)

 threads: Thread[];

Building our repository layer using Postgres and TypeORM 439

The OneToMany decorator shows that for each individual User, there are
potentially multiple Threads associated.

2. Now, add this to the bottom of your Thread.ts file's Thread class:

@ManyToOne(

 () => User,

 (user:User) => user.threads

)

 user: User;

The ManyToOne decorator shows that every Thread, of multiple threads, has only
one User associated with it. Although teaching SQL is beyond the scope of this
book, put simply, these relationships act as constraints on the database, meaning
we are prevented from inserting data that does not make sense; for example, having
multiple Users owning a single Thread.

3. Now, let's establish the relationship of our Thread to ThreadItems. Add this
code to the Thread class:

@OneToMany(

 () => ThreadItem,

 threadItems => threadItems.thread

)

 threadItems: ThreadItem[];

Again, this shows that one Thread can have multiple ThreadItems associated
with it. Now, let's update our ThreadItem:

@ManyToOne(() => User, (user) => user.threads)

 user: User;

A ThreadItem, like a Thread, can only have one User associated with it as
the owner:

 @ManyToOne(() => Thread, (thread) => thread.
 threadItems)

 thread: Thread;

440 Setting Up Postgres and a Repository Layer with TypeORM

4. Each ThreadItem can only have one parent Thread. Now, if you restart the
server, you should see these new relationships:

Figure 14.11 – Relationships
You will see in the Threads and ThreadItems tables that new columns have
been added. For example, in ThreadItems, userId and threadId were added
to indicate their respective relationships. However, in the Users table, nothing was
added. This is because the Users table has a OneToMany relationship with the
Threads table. Therefore, this relationship is indicated by the constraint shown in
the image for the CREATE TABLE public."Threads" script. As you can see,
there is a constraint for the userId column. So, by indicating that each thread has
a single User associated with it, it implicitly indicates that each User can have one
or more Threads that it owns.

Building our repository layer using Postgres and TypeORM 441

Now, let's set up our points system. In the case of points, that is, likes or dislikes, we need
to allow users to be able to vote either up or down only once. However, there's no way to
indicate that in terms of a single table. So, we'll create two new tables, ThreadPoints
and ThreadItemPoints, which will have associations with relevant Users, Threads,
and ThreadItems.

1. First, shut down your server and then create the ThreadPoint.ts file. Then, add
this code to it:

@Entity({ name: "ThreadPoints" })

export class ThreadPoint {

 @PrimaryGeneratedColumn({ name: "Id", type: "bigint" })

 // for typeorm

 id: string;

 @Column("boolean", { name: "IsDecrement", default:
 false, nullable: false })

 isDecrement: boolean;

 @ManyToOne(() => User, (user) => user.threadPoints)

 user: User;

 @ManyToOne(() => Thread, (thread) => thread.
 threadPoints)

 thread: Thread;

}

So, what we're doing here in this code is saying that this point is for a specific User
and Thread. We are also indicating that if the isDecrement field is true, then
this constitutes a dislike. This means that points have three possible states: no points
at all, a like, or a dislike. We'll write some code in our repository queries later to
handle these three states.

2. Now, add this code to the User.ts class:

@OneToMany(() => ThreadPoint, (threadPoint) =>
threadPoint.user)

 threadPoints: ThreadPoint[];

442 Setting Up Postgres and a Repository Layer with TypeORM

Again, this code completes the associations in code.

3. Next, add the following to the Thread.ts class:

@OneToMany(() => ThreadPoint, (threadPoint) =>

 threadPoint.thread)

 threadPoints: ThreadPoint[];

This also completes the association with ThreadPoint.

4. Now, we need to do the same thing for ThreadItemPoints. Create
ThreadItemPoint.ts and add the following code:

@Entity({ name: "ThreadItemPoints" })

export class ThreadItemPoint {

 @PrimaryGeneratedColumn({ name: "Id", type: "bigint" })

 // for typeorm

 id: string;

 @Column("boolean", { name: "IsDecrement", default:
 false,

 nullable: false })

 isDecrement: boolean;

 @ManyToOne(() => User, (user) => user.threadPoints)

 user: User;

 @ManyToOne(() => ThreadItem, (threadItem) =>

 threadItem.threadItemPoints)

 threadItem: ThreadItem;

}

This is a pretty similar setup to ThreadPoint.

5. Now we update our User class by adding the following:

@OneToMany(() => ThreadItemPoint, (threadItemPoint) =>

 threadItemPoint.user)

 threadItemPoints: ThreadItemPoint[];

Building our repository layer using Postgres and TypeORM 443

And we update our ThreadItem class by adding this:
@OneToMany(

 () => ThreadItemPoint,

 (threadItemPoint) => threadItemPoint.threadItem

)

 threadItemPoints: ThreadItemPoint[];

And this completes the associations needed in relation to ThreadItemPoint.
We're not done yet though. You may recall from Chapter 11, What We Will Learn – Online
Forum Application, that our threads will have categories, so we need to create that entity
and its relationship as well:

1. First, create the ThreadCategory.ts file and add this code to it:

@Entity({ name: "ThreadCategories" })

export class ThreadCategory {

 @PrimaryGeneratedColumn({ name: "Id", type: "bigint" })

 // for typeorm

 id: string;

 @Column("varchar", {

 name: "Name",

 length: 100,

 unique: true,

 nullable: false,

 })

 name: string;

 @Column("varchar", {

 name: "Description",

 length: 150,

 nullable: true,

 })

 description: string;

 @OneToMany(() => Thread, (thread) => thread.category)

 threads: Thread[];

}

ThreadCategory has a pretty similar setup to the other entities.

444 Setting Up Postgres and a Repository Layer with TypeORM

2. Now, add this to the Thread.ts class:

@ManyToOne(() => ThreadCategory, (threadCategory) =>

 threadCategory.threads)

 category: ThreadCategory;

This, of course, creates the relationship between Thread and ThreadCategory.

3. Now, run the server and it should create the tables and associations.

Now we've created the entities that we need and also their associations. But whenever
we add data to a database, we want to log when it was created or changed. However,
implementing this will create identical fields across all entities, and we don't want to write
the same code over and over again.

Well, since TypeScript allows us to use inheritance in classes, let's create a base type that
has these fields that we need and then have each entity simply inherit from this base class.
Additionally, TypeORM requires that our entities inherit from its own base class in order
to be able to connect to its API. So, then let's add the TypeORM base class in our own base
class as well:

1. Create a file called Auditable.ts and add this code:

import { Column, BaseEntity } from "typeorm";

export class Auditable extends BaseEntity {

 @Column("varchar", {

 name: "CreatedBy",

 length: 60,

 default: () => `getpgusername()`,

 nullable: false,

 })

 createdBy: string;

Getpgusername is the service account superforumsvc and that's what this
field will default to, unless explicitly set:

 @Column("timestamp with time zone", {

 name: "CreatedOn",

 default: () => `now()`,

 nullable: false,

 })

 createdOn: Date;

Building our repository layer using Postgres and TypeORM 445

This field will default to the current time and date, now(), unless explicitly set.

As you can see, the fields are pretty self-explanatory as to what they do. However,
notice that our base class, Auditable, also extends the TypeORM base class called
BaseEntity. This BaseEntity inheritance is what allows our entities to access
the Postgres database through TypeORM:

 @Column("varchar", {

 name: "LastModifiedBy",

 length: 60,

 default: () => `getpgusername()`,

 nullable: false,

 })

 lastModifiedBy: string;

 @Column("timestamp with time zone", {

 name: "LastModifiedOn",

 default: () => `now()`,

 nullable: false,

 })

 lastModifiedOn: Date;

}

2. OK, so that's the new Auditable base class covered. Now we want to make
our entities inherit it. This is simple. For example, in the User class, just add the
extends keyword and add the Auditable class like this:

export class User extends Auditable {

446 Setting Up Postgres and a Repository Layer with TypeORM

Repeat this process for every entity and then restart your server (remember to add
your import statements as needed). Once you refresh your view, you should see the
new fields like this:

Figure 14.12 – User updated for Auditable

Awesome! Now we can create our repository library that will actually call into our
database. Since we created our Session State in the last chapter, Chapter 13, Setting Up
Session State Using Express and Redis, let's create our authentication-related calls first:

1. Before we create our main code, we need to do something first. You may recall from
Chapter 11, What We Will Learn – Online Forum Application, we used a function
called isPasswordValid to check that the user's password was sufficiently
long and complex. We will need to reuse that code on our server because, as I
mentioned then, validation in general should be done on both the client and server.
So, let's temporarily copy the PasswordValidator.ts file and the common/
validators folder structure into our server project, and later I'll show a method
for sharing code across multiple projects.

2. Let's also create a validator for email addresses. Create an EmailValidator.ts
file in the same common/validators directory and add this code:

export const isEmailValid = (email: string) => {

if (!email) return "Email cannot be empty";

Building our repository layer using Postgres and TypeORM 447

Here, I've checked for an empty address.
 if (!email.includes("@")) {

 return "Please enter valid email address.";

And here, I've checked for the @ symbol.
 }

 if (/\s+/g.test(email)) {

 return "Email cannot have whitespaces";

And finally, here I've checked for white space.
 }

 return "";

};

If no issue is found, an empty string is returned.

3. Create the UserRepo.ts file and add this code:

import { User } from "./User";

import bcrypt from "bcryptjs";

import { isPasswordValid } from "../common/validators/
PasswordValidator";

import { isEmailValid } from "../common/validators/
EmailValidator";

First, we have our imports, including our validators.
const saltRounds = 10;

saltRounds is for password encryption, as you'll soon see.
export class UserResult {

 constructor(public messages?: Array<string>, public
 user?:

 User) {}

}

448 Setting Up Postgres and a Repository Layer with TypeORM

We will use the UserResult type to indicate whether an error occurred during
authentication. As you can see, it is basically a wrapper around the User object.
We're using this object as the return type of our functions. We're doing this because
when making network calls or other complex calls, it's not unusual for something to
go wrong. Therefore, having the ability to include error or status messages with our
objects is beneficial. Note how both members, messages and user, are optional.
This will come in handy once we start using this type.

export const register = async (

 email: string,

 userName: string,

 password: string

): Promise<UserResult> => {

This is the start of our register function.
 const result = isPasswordValid(password);

 if (!result.isValid) {

 return {

 messages: [

 "Passwords must have min length 8, 1 upper
 character, 1 number, and 1 symbol",

],

 };

 }

 const trimmedEmail = email.trim().toLowerCase();

 const emailErrorMsg = isEmailValid(trimmedEmail);

 if (emailErrorMsg) {

 return {

 messages: [emailErrorMsg],

 };

 }

Building our repository layer using Postgres and TypeORM 449

Here, we've run our two validators, isPasswordValid and isEmailValid.
Notice how we've used an object literal as our return object and not included
the user member. Again, TypeScript only cares about the shape of our objects
matching the shape of the type. So, in this case, since our UserResult member,
user, is optional, we can create a UserResult object that does not include it.
TypeScript is really flexible.

 const salt = await bcrypt.genSalt(saltRounds);

 const hashedPassword = await bcrypt.hash(password,
 salt);

Here, we've encrypted our password using the saltRounds constant and
bcryptjs.

 const userEntity = await User.create({

 email: trimmedEmail,

 userName,

 password: hashedPassword,

 }).save();

And then, if we pass our validations, we create our User entity and then
immediately save it. These two methods are both from TypeORM, and note that
when making changes to the Entities database, you must always run the save
function or else it will not complete on the server.

 userEntity.password = ""; // blank out for security

 return {

 user: userEntity

 };

};

Then, we return the new entity and again, since our call has no errors, we only
return the user object without any messages.

450 Setting Up Postgres and a Repository Layer with TypeORM

4. Let's try this new function, register, with a real network call. Update the
index.ts file like this:

import express from "express";

import session from "express-session";

import connectRedis from "connect-redis";

import Redis from "ioredis";

import { createConnection } from "typeorm";

import { register } from "./repo/UserRepo";

import bodyParser from "body-parser";

Notice that we now import bodyParser.
require("dotenv").config();

const main = async () => {

 const app = express();

 const router = express.Router();

 await createConnection();

 const redis = new Redis({

 port: Number(process.env.REDIS_PORT),

 host: process.env.REDIS_HOST,

 password: process.env.REDIS_PASSWORD,

 });

 const RedisStore = connectRedis(session);

 const redisStore = new RedisStore({

 client: redis,

 });

 app.use(bodyParser.json());

Here, we have set up our bodyParser, so we can read json parameters
from posts.

 app.use(

 session({

 store: redisStore,

 name: process.env.COOKIE_NAME,

 sameSite: "Strict",

Building our repository layer using Postgres and TypeORM 451

 secret: process.env.SESSION_SECRET,

 resave: false,

 saveUninitialized: false,

 cookie: {

 path: "/",

 httpOnly: true,

 secure: false,

 maxAge: 1000 * 60 * 60 * 24,

 },

 } as any)

);

All this code remains the same:
 app.use(router);

 router.post("/register", async (req, res, next) => {

 try {

 console.log("params", req.body);

 const userResult = await register(

 req.body.email,

 req.body.userName,

 req.body.password

);

 if (userResult && userResult.user) {

 res.send(`new user created, userId: ${userResult.
 user.id}`);

 } else if (userResult && userResult.messages) {

 res.send(userResult.messages[0]);

 } else {

 next();

 }

 } catch (ex) {

 res.send(ex.message);

 }

 });

452 Setting Up Postgres and a Repository Layer with TypeORM

As you can see, we removed the previous get route and replaced it with post on
the register URL. This call now runs our UserRepo register function and, if it
is successful, it sends a message back with the new user's ID. If it's not successful,
it sends back the error message from the repo call. In this case, we just use the first
message, as we'll be removing these routes and replacing them with GraphQL in
Chapter 15, Adding GraphQL Schema – Part I:

Warning
We are sending back errors for learning purposes only. You do not want to
send error messages emanating from exceptions to users in production. It is
confusing and, in some cases, can open your site up to attack.

 app.listen({ port: process.env.SERVER_PORT }, () => {

 console.log(`Server ready on port

 ${process.env.SERVER_PORT}`);

 });

};

main();

Now we'll start testing. However, we need to switch to using Postman instead of curl.
Postman is a free application that will allow us to make GET and POST calls to our server
while accepting session cookies. It's very easy to use:

1. First, go to https://www.postman.com/downloads and download and
install Postman for your system.

2. Following installation, the first thing you should do is run a GET call on the root of
the site using Postman. I've created a simple route for the root, in index.ts, that
will initialize the session and its cookie. Run the GET call on our site like this:

https://www.postman.com/downloads

Building our repository layer using Postgres and TypeORM 453

Figure 14.13 – Running Postman on the root of the site

This is how you can run this same GET call:

1. Below the top tab labelled GET, you should see a dropdown to the left. Select GET
and add the local URL. There are no parameters, so just click Send.

2. Then, toward the bottom-left, you will see another dropdown. Select Cookies and
you should see our cookie called superforum.

454 Setting Up Postgres and a Repository Layer with TypeORM

Now you have the cookie required to maintain the Session State. So, we can now continue
our testing, starting with the register function:

1. Open a new tab, select POST, and then add the URL
http://localhost:5000/register.

2. Click on the Headers tab and insert Content-Type, as shown here:

Figure 14.14 – Content-Type

3. Now, select the Body tab right next to Headers and enter the JSON shown in
Figure 14.15. Running this should show the same error result:

Figure 14.15 – Register fail

Building our repository layer using Postgres and TypeORM 455

As you can see, we are passing the email, although it's invalid, the userName, and
a password, which is also invalid.

But still, this failure is good, as we have confirmed our validation is working.

4. Let's fix the password and try again. Update the password to Test123!@# and run
it again like this:

Figure 14.16 – Trying to register again
Now you should see the message Please enter valid email address. Again, this is
what we want, as clearly the email given is not valid.

456 Setting Up Postgres and a Repository Layer with TypeORM

5. Let's try one more time. Update the email to test@test.com and run this:

Figure 14.17 – Successful registration
The output message, new user created, userId: 10, shows that our user was indeed
created and saved.

Note
I am showing an ID of 10 as I was doing some testing in preparing this book.
ID fields will normally start at 1. If you don't see this result again, make sure
you ran Postman on the root of our website while using a GET call.

6. Sweet! That worked! Now, let's look at our Users table to check that the user was
indeed added:

Figure 14.18 – A new user added to the Users table

Building our repository layer using Postgres and TypeORM 457

You can run the query shown by right-clicking on the Users table in pgAdmin
and selecting Scripts > SELECT Script. You can run the script by clicking
on the play button at the top. But, as you can see, our user was inserted into the
database.

7. Now, let's update UserRepo with our login function. Add the following code to
the end of UserRepo:

export const login = async (

 userName: string,

 password: string

): Promise<UserResult> => {

 const user = await User.findOne({

 where: { userName },

 });

 if (!user) {

 return {

 messages: [userNotFound(userName)],

 };

 }

 if (!user.confirmed) {

 return {

 messages: ["User has not confirmed their
 registration email yet."],

 };

 }

 const passwordMatch = await bcrypt.compare(password,

 user?.password);

 if (!passwordMatch) {

 return {

 messages: ["Password is invalid."],

 };

 }

 return {

 user: user,

 };

};

458 Setting Up Postgres and a Repository Layer with TypeORM

Not much to show here. We try and find a user with the given userName. If not
found, a message is sent back that the user is not found, using a function called
userNotFound. I'm using a function because we will reuse this message later. It's a
simple function, so I won't cover it here (it's in the source code). If the user is found,
then we first see whether the account was confirmed. If not, we provide an error
regarding it. Next, we check their password by using bcryptjs, since we used that
tool to encrypt it during registration. If it does not match, we also provide an error
regarding that. If all goes well and the user exists, we return the user.

8. Let's try running this as well. Update index.ts by adding this new route just
below the register route:

router.post("/login", async (req, res, next) => {

 try {

 console.log("params", req.body);

 const userResult = await login(req.body.userName,

 req.body.password);

 if (userResult && userResult.user) {

 req.session!.userId = userResult.user?.id;

 res.send(`user logged in, userId:

 ${req.session!.userId}`);

 } else if (userResult && userResult.messages) {

 res.send(userResult.messages[0]);

 } else {

 next();

 }

 } catch (ex) {

 res.send(ex.message);

 }

 });

This is quite similar to our register route. However, here we save the user's id to
the Session State and then send back a message using that session.

9. Let's run this route and see what happens. Again, open a new tab in Postman and
run the settings as shown here. Remember to add the Content-Type header in the
Headers tab:

Building our repository layer using Postgres and TypeORM 459

Figure 14.19 – Login route
Again, this is good to see as our validations are working.

10. Go to your pgAdmin and open the same screen you used to run the SELECT query
to see our first inserted user. Then, run this SQL to update our user's confirmed
column to be true:

Figure 14.20 – Update user's confirmed field

460 Setting Up Postgres and a Repository Layer with TypeORM

Once you run your query, you should see the same message, as shown in
Figure 14.20.

11. Now, let's run Postman to try and log in again:

Figure 14.21 – Logging in the user
Now, our users can log in and, based on the returned message, we can now see that
our Session State is being used. I've created the logout function and route in the
source code. I won't show it here since it's simple.

Note
If you're attempt to save to the session fails, make sure that your Redis service is
running.

Awesome! We've come a long way. We now have working session-based authentication,
but we're not done yet. We need to create ways of inserting Threads and ThreadItems,
as well as retrieving them. Let's start with Threads:

1. Before we create our new ThreadRepo repository, let's build a small helper. In
UserRepo, we had a type called UserResult that had an array of messages and
a user as members. You'll notice that any repo of Threads, ThreadItems, and
Categories will need a similar construction. It should have an array of messages
and entities, although the entity returned will be an array of items and not just one.

Building our repository layer using Postgres and TypeORM 461

This seems like a good place to use TypeScript Generics, so that we can share
a single result type across all these entities. Let's create a new general-purpose
result object type called QueryResult. We learned about TypeScript Generics
in Chapter 2, Exploring TypeScript.

Create a file called QueryArrayResult.ts and add this code to it:
export class QueryArrayResult<T> {

 constructor(public messages?: Array<string>, public
 entities?: Array<T>) {}

}

As you can see, it's very similar to the original UserResult. However, this type
uses a generic of type T to indicate any of our entities.

Warning
The pg dependency also has a type called QueryArrayResult. When
importing our dependency, please make sure you import our file, and not pg.

2. Now, let's use this new QueryArrayResult type in our ThreadRepo. Create
a new file, ThreadRepo.ts, inside the repo folder and add the following code:

export const createThread = async (

 userId: string,

 categoryId: string,

 title: string,

 body: string

): Promise<QueryArrayResult<Thread>> => {

The parameters shown are needed because every Thread must be associated with a
user and a category. Do note, however, that userId is coming from our session.

 const titleMsg = isThreadTitleValid(title);

 if (titleMsg) {

 return {

 messages: [titleMsg],

 };

 }

 const bodyMsg = isThreadBodyValid(body);

 if (bodyMsg) {

 return {

462 Setting Up Postgres and a Repository Layer with TypeORM

 messages: [bodyMsg],

 };

 }

Here we validate our title and message.
 // users must be logged in to post

 const user = await User.findOne({

 id: userId,

 });

 if (!user) {

 return {

 messages: ["User not logged in."],

 };

 }

Here, we take our session provided userId and try and find a matching user. We
need this user object later to create our new Thread.

 const category = await ThreadCategory.findOne({

 id: categoryId,

 });

 if (!category) {

 return {

 messages: ["category not found."],

 };

 }

Here we get a category object, because again we need to pass it during the
creation of our new Thread.

 const thread = await Thread.create({

 title,

 body,

 user,

 category,

 }).save();

 if (!thread) {

 return {

 messages: ["Failed to create thread."],

Building our repository layer using Postgres and TypeORM 463

 };

 }

As you can see, we pass title, body, user, and category in order to create our
new Thread.

 return {

 messages: ["Thread created successfully."],

 };

};

We are only returning messages as we don't need to return the actual object. Also,
returning an object that is not required is inefficient in terms of API payload size.

3. Before we can continue, we need to add some ThreadCategories to our
database so that we can actually use the createThread function. Go to the source
code and find the utils/InsertThreadCategories.txt file. Copy and paste
these insert statements into a query screen of pgAdmin and run it. This will
create the listed ThreadCategories.

4. Next, we need to add our route for creating Threads. Add the following code to
index.ts:

router.post("/createthread", async (req, res, next) => {

 try {

 console.log("userId", req.session);

 console.log("body", req.body);

 const msg = await createThread(

 req.session!.userId, // notice this is from
 session!

 req.body.categoryId,

 req.body.title,

 req.body.body

);

In this super simple call, we pass parameters to the createThread function.
Again, our userId comes from our session, since a user should be logged in in
order to be allowed to post, and then we simply return the result message.

 res.send(msg);

 } catch (ex) {

 console.log(ex);

464 Setting Up Postgres and a Repository Layer with TypeORM

 res.send(ex.message);

 }

 });

5. Let's try running this route. First, however, run the logout route in Postman. You'll
find it on the http://localhost:5000/logout URL. I'm sure you can set
up Postman yourself now. Once that is done, let's try and run the createthread
route and hopefully, it should fail validation:

Figure 14.22 – Test createthread route
Yes, it failed validation as expected.

6. Now, let's log in again so that our session gets created. Go ahead and do that with
Postman again, and then run the createthread route again. This time, it should
work with the message, Thread created successfully.

Building our repository layer using Postgres and TypeORM 465

7. OK. Now we need two more functions, one to get a single Thread by its ID,
and another to get all the threads for ThreadCategory. Add this code to
ThreadRepo:

export const getThreadById = async (

 id: string

): Promise<QueryOneResult<Thread>> => {

 const thread = await Thread.findOne({ id });

 if (!thread) {

 return {

 messages: ["Thread not found."],

 };

 }

 return {

 entity: thread,

 };

};

This getThreadById function is pretty simple. It just looks for a single thread
based on an ID.

export const getThreadsByCategoryId = async (

 categoryId: string

): Promise<QueryArrayResult<Thread>> => {

 const threads = await Thread.
 createQueryBuilder("thread")

 .where(`thread."categoryId" = :categoryId`, {
 categoryId })

 .leftJoinAndSelect("thread.category", "category")

 .orderBy("thread.createdOn", "DESC")

 .getMany();

This getThreadsByCategoryId function is much more interesting. Thread.
createQueryBuilder is a special function in TypeORM that allows us to
build more sophisticated queries. The function's thread parameter is an alias
used to represent the Threads table in our query. So, if you look at the rest of the
query, such as the where clause, you can see that we use thread as a prefix for
fields or relationships. The leftJoinAndSelect function means that we want
to do a SQL left join, but also we want to return the related entity, in this case,

466 Setting Up Postgres and a Repository Layer with TypeORM

ThreadCategory, with the result set. OrderBy is pretty self-explanatory, and
getMany just means to return all items.

 if (!threads) {

 return {

 messages: ["Threads of category not found."],

 };

 }

 console.log(threads);

 return {

 entities: threads,

 };

};

8. The rest of the code is pretty straightforward. Let's test
getThreadsByCategoryId as a route. Add this to the index.ts file:

router.post("/threadbycategory", async (req, res, next)
=> {

 try {

 const threadResult = await

 getThreadsByCategoryId(req.body.categoryId);

Here, we have made our call to getThreadsByCategoryId using the
categoryId parameter.

 if (threadResult && threadResult.entities) {

 let items = "";

 threadResult.entities.forEach((th) => {

 items += th.title + ", ";

 });

 res.send(items);

 } else if (threadResult && threadResult.messages) {

 res.send(threadResult.messages[0]);

 }

Building our repository layer using Postgres and TypeORM 467

In this if else code, we either have all titles displayed or the error displayed.
 } catch (ex) {

 console.log(ex);

 res.send(ex.message);

 }

 });

9. The rest of the code is as before. Run this in your Postman client and you should see
this. Again, your ID numbers may vary:

Figure 14.23 – Test threadsbycategory route
I'll leave the testing of getThreadById up to you, as it's pretty easy. Again, the
source code is in our project repository.

468 Setting Up Postgres and a Repository Layer with TypeORM

The code for ThreadItems is almost identical and is in our source code. So, I won't
review it here. Now, we do need a few more functions for getting things such as
ThreadCategories to populate our React app's LeftMenu. We also need to retrieve
points for our Threads and ThreadItems. And we also need relevant Thread data
for our UserProfile screen. However, those calls will repeat a lot of the concepts we
learned in this section, and we'll have to create routes that we'll ultimately end up deleting
once we start our GraphQL server code. Therefore, let's leave those for Chapter 15, Adding
GraphQL Schema – Part I, where we can also start integrating the backend GraphQL code
with our React frontend.

In this section, we learned how to build a repository layer and make queries into Postgres
using TypeORM. We'll be reusing our query skills once we start integrating GraphQL in
the next chapter, so this is important knowledge that we'll continue to use.

Summary
In this chapter, we learned how to set up a Postgres database and how to query it using
an ORM, TypeORM. We also learned how to keep our code cleanly separated by using
a repository layer.

In the next chapter, we'll learn how to enable GraphQL on our server. We'll also finish our
database queries and integrate our backend into our React frontend.

15
Adding GraphQL

Schema Part I
In this chapter, we'll continue building out our application by integrating GraphQL.
We'll do this on both the client and the server. We'll also finish building out our backend
Express server and integrating that backend with our React client.

In this chapter, we're going to cover the following main topics:

• Creating GraphQL server-side typedefs and resolvers

• Integrating authentication with GraphQL resolvers

• Creating React client-side Hooks for querying Apollo GraphQL

Technical requirements
You should have a basic understanding of GraphQL and a good understanding of React,
Node.js, Postgres, and Redis. We will once again be using Node and Visual Studio Code
(VSCode) to write our code.

The GitHub repository is at https://github.com/PacktPublishing/Full-
Stack-React-TypeScript-and-Node. Use the code in folder Chap15.

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

470 Adding GraphQL Schema Part I

To set up the Chapter 15 code folder, do this:

1. Go to your HandsOnTypescript folder and create a new folder called Chap15.

2. Now go to the Chap14 folder and copy the super-forum-server folder into
the Chap15 folder. Make certain all files have been copied.

3. Within the super-forum-server folder delete the node_modules folder and
the package-lock.json file. Make sure you're in the super-forum-server
folder and run this command:

npm install

4. Now make sure your Postgres server and Redis server are running, as shown in
Chapter 13, Setting Up a Session State Using Express and Redis, and Chapter 14,
Setting Up Postgres and Repository Layer with TypeORM. Then, test your server by
running this command:

npm start

5. Now let's copy our client app. Go to the Chap13 folder and copy super-forum-
client to the root of Chap15. Make sure all files are copied over.

6. Delete the node_modules folder and the package-lock.json file. Now make
sure you're in the super-forum-client folder and run this command:

npm install

7. Test that it works by running this:

npm start

Creating GraphQL server-side typedefs and
resolvers
In this section, we'll add our GraphQL service to our Express server. We'll also start
transforming our routes into GraphQL queries, which we created in Chapter 14, Setting
Up Postgres and Repository Layer with TypeORM. We'll also flesh out the rest of the calls
that we need, as GraphQL queries.

Creating GraphQL server-side typedefs and resolvers 471

Let's start by first integrating GraphQL into our Express application (we covered GraphQL
in Chapter 9, What is GraphQL?, and Chapter 10, Setting Up an Express Project with
TypeScript and GraphQL Dependencies):

Note
There will be a very large amount of code in this chapter and not all of it can
be shown in text. Please refer to the chapter source code, which is the GitHub
repository code, frequently. Note also the chapter source code is the final
running project and will contain only the final working code.

1. Let's begin by installing GraphQL. Run this command:

npm i apollo-server-express graphql graphql-middleware
graphql-tools

2. Next, let's create our initial type definitions, typeDefs. Create a folder called gql
inside of the src folder. Then create the file typeDefs.ts inside of it. Now add
this code:

import { gql } from "apollo-server-express";

const typeDefs = gql`

 scalar Date

We define a new custom scalar type, Date, not available by default in GraphQL
for dates and times:

 type EntityResult {

 messages: [String!]

 }

This EntityResult type will be used when errors or messages are returned
instead of entities from our resolvers:

 type User {

 id: ID!

 email: String!

 userName: String!

 password: String!

 confirmed: Boolean!

 isDisabled: Boolean!

 threads: [Thread!]

472 Adding GraphQL Schema Part I

 createdBy: String!

 createdOn: Date!

 lastModifiedBy: String!

 lastModifiedOn: Date!

 }

We created our User type here. Notice the relations to Thread and ThreadItem.
We've also used our Date type:

 type Thread {

 id: ID!

 views: Int!

 isDisabled: Boolean!

 title: String!

 body: String!

 user: User!

 threadItems: [ThreadItem!]

 category: ThreadCategory

 createdBy: String!

 createdOn: Date!

 lastModifiedBy: String!

 lastModifiedOn: Date!

}

We created our Thread type and its relations:
 union ThreadResult = Thread | EntityResult

Now that we are implementing our real application, it's time to use some more
sophisticated features of GraphQL. The union type is the same concept as in
TypeScript. It will allow us to return any type from a list of possible GraphQL
types. For example, in this example, this type may represent either a Thread or an
EntityResult, but not both at the same time. I'll show the usage of this type soon and
it will become clearer how it works.

 type ThreadItem {

 id: ID!

 views: Int!

 isDisabled: Boolean!

 body: String!

 user: User!

Creating GraphQL server-side typedefs and resolvers 473

 thread: Thread!

 createdBy: String!

 createdOn: Date!

 lastModifiedBy: String!

 lastModifiedOn: Date!

 }

We created our ThreadItem type.
 type ThreadCategory {

 id: ID!

 name: String!

 description: String

 threads: [Thread!]!

 createdBy: String!

 createdOn: Date!

 lastModifiedBy: String!

 lastModifiedOn: Date!

}

The ThreadCategory type also refers to the Threads that it contains.
 type Query {

 getThreadById(id: ID!): ThreadResult

 }

`;

Here, we have our Query with the getThreadById function. Notice it returns
our union ThreadResult. We'll flesh this out more later.

export default typeDefs;

3. Now let's create a simple resolvers file to get started with our GraphQL installation.
Create a file called resolvers.ts in the gql folder and add this code:

import { IResolvers } from "apollo-server-express";

interface EntityResult {

 messages: Array<string>;

}

474 Adding GraphQL Schema Part I

We'll be using EntityResult as our return type for errors and status messages.
Also, add our type mapping to the same type in the typeDefs file:

const resolvers: IResolvers = {

 ThreadResult: {

 __resolveType(obj: any, context: GqlContext, info:
 any) {

 if (obj.messages) {

 return "EntityResult";

 }

 return "Thread";

 },

},

Here's another new feature of GraphQL we are using. ThreadResult is the
union that represents the two types, Thread and EntityResult, in GraphQL.
This resolver notices when a ThreadResult is about to be returned and
figures out which type it is internally. The method you use is entirely up to you
to determine the type sent back, but here we have used a simple check for the
EntityResult type's message field by checking obj.message:

 Query: {

 getThreadById: async (

 obj: any,

 args: { id: string },

 ctx: GqlContext,

 info: any

): Promise<Thread | EntityResult> => {

 let thread: QueryOneResult<Thread>;

 try {

 thread = await getThreadById(args.id);

 if (thread.entity) {

 return thread.entity;

 }

 return {

 message: thread.messages ? thread.messages[0] :
 "test",

 };

 } catch (ex) {

Creating GraphQL server-side typedefs and resolvers 475

 throw ex;

 }

 },

 },

};

export default resolvers;

We learned about GraphQL queries in Chapter 9, What is GraphQL?, so I won't go
over it too deeply here. Just note that in this call, I accept the result type from the
call to getThreadById, QueryOneResult, and after some processing, I return
the actual entity itself or EntityResult. Again, since our typeDefs file has our
query as returning a ThreadResult, it will go to the ThreadResult query and
figure out which type to return. This is a pattern that we'll repeat for most of our
repository calls. Repositories were covered in Chapter 14, Setting Up Postgres and
Repository Layer with TypeORM.

Note
For this sample application, we are just rethrowing the errors that may occur.
But in your production app, you should handle the error as appropriate to your
app, which, in general, means to at least log the issue so it can be looked at later.

We will populate this code with more queries and mutations later, but for now, let's
focus on completing our base setup.

4. Copy and paste the GqlContext.ts file from the Chap10/gql-server/src
folder into the gql folder. As shown in Chapter 9, What is GraphQL?, this is where
our Request and Response objects live inside of a GraphQL call.

5. Now let's open our index.ts file and add GraphQL into it. Update it by adding
this code just before the call to listen and make sure to add the necessary
imports, which you should be able to do yourself now:

const schema = makeExecutableSchema({ typeDefs, resolvers
});

const apolloServer = new ApolloServer({

 schema,

 context: ({ req, res }: any) => ({ req, res }),

});

apolloServer.applyMiddleware({ app });

476 Adding GraphQL Schema Part I

This is basically similar code to Chapter 9, What is GraphQL?, where we instantiate
our ApolloServer and bring it our typeDefs, resolvers, and Express app
instance.

6. Let's test this to make sure it's working. Open the URL http://
localhost:5000/graphql. This is the GraphQL playground we reviewed
in Chapter 9, What is GraphQL?. Run it as shown:

Figure 15.1 – First query into GraphQL
So, as you can see, our call now works. The only difference from some of our prior
calls into GraphQL is that since our call could return two different types, we use
the … on <some type> syntax to decide which entity and fields we want upon
return (this feature is called inline fragments). Also, again, please remember your
local ID numbers will not necessarily be the same as mine, so you need to send IDs
that definitely exist in your database.

7. OK, let's do another. This time, we'll pick one that does not return an entity – the
createThread function. First, add this mutation to the end of your typeDefs
file:

type Mutation {

 createThread(

 userId: ID!

 categoryId: ID!

Creating GraphQL server-side typedefs and resolvers 477

 title: String!

 body: String!

): EntityResult

}

Notice we are not returning a ThreadResult. Our createThread function
only returns a string message. So that's all we need.

8. Now let's update the resolvers file. Add this function as a mutation. Again,
you'll need to import anything that is needed yourself:

Mutation: {

 createThread: async (

 obj: any,

 args: { userId: string; categoryId: string; title:
 string; body: string },

 ctx: GqlContext,

 info: any

): Promise<EntityResult> => {

Again, the same parameters list as always, but this time we return only the
EntityResult as there is no need to return the entire entity:

 let result: QueryOneResult<Thread>;

 try {

 result = await createThread(

 args.userId,

 args.categoryId,

 args.title,

 args.body

);

Here, we made our call to the repository's createThread and got back our result.
 return {

 messages: result.messages

 ? result.messages

 : ["An error has occurred"],

 };

478 Adding GraphQL Schema Part I

And now we're returning the list of possible messages to indicate the status of the
result.

 } catch (ex) {

 throw ex;

Again, in production, you should not simply rethrow but log or otherwise deal with
an error. We rethrow here in order to simplify and focus on the concepts at hand,
without getting sidetracked.

 }

 },

 },

9. So, now if we run our code, we should see this:

Figure 15.2 – createThread function

10. OK, so let's do one more call for Threads. In the ThreadRepo is the call
getThreadsByCategoryId, which returns an array of Threads. This is
a problem because the GraphQL union operator does not support arrays. So we'll
need to create another new entity in the typeDefs file to represent an array of
Threads and then we can create our union. Update the typeDefs file by adding
this under the ThreadResult union:

type ThreadArray {

 threads: [Thread!]

}

union ThreadArrayResult = ThreadArray | EntityResult

So we created an entity that returns an array of Threads first. Then we created our
union that either returns that entity type or the EntityResult.

Creating GraphQL server-side typedefs and resolvers 479

Now add this after the getThreadById query:
getThreadsByCategoryId(categoryId: ID!):
ThreadArrayResult!

11. Now we can build our resolver. Update the resolvers Query section by
adding this:

getThreadsByCategoryId: async (

 obj: any,

 args: { categoryId: string },

 ctx: GqlContext,

 info: any

): Promise<{ threads: Array<Thread> } | EntityResult>
 => {

 let threads: QueryArrayResult<Thread>;

 try {

 threads = await getThreadsByCategoryId(args.
 categoryId);

 if (threads.entities) {

 return {

 threads: threads.entities,

 };

 }

Here, we return our array of threads.
 return {

 messages: threads.messages

 ? threads.messages

 : ["An error has occurred"],

 };

And here we return our messages if there are no threads.
 } catch (ex) {

 throw ex;

 }

 },

480 Adding GraphQL Schema Part I

12. We're missing just one more item. When we first started using union, we had
to create a query for the EntityResult type. So, we need to do the same
thing for our new ThreadArrayResult type. Enter this code just after the
EntityResult definition inside the resolvers file:

ThreadArrayResult: {

 __resolveType(obj: any, context: GqlContext, info:
 any) {

 if (obj.messages) {

 return "EntityResult";

 }

 return "ThreadArray";

 },

 },

It's the same situation as before. If obj has a messages property, we return the
type EntityResult; if not, then we return the ThreadArray type.

13. If we run this Query, we should see something like this (note my results are filled
with duplicate testing data):

Figure 15.3 – The getThreadsByCategoryId function
Notice we added an additional field called __typename. This field will tell us
which type is coming back, which as shown is ThreadArray.

Creating GraphQL server-side typedefs and resolvers 481

OK, so now we have a working GraphQL server with queries for Threads. Try and
integrate the non-authentication related calls from Chapter 14, Setting Up Postgres and
Repository Layer with TypeORM, yourself. If you get stuck, you can refer to the source
code. But it's important you try and do this without looking as that's how you know for
sure you understand the material.

ThreadPoint System
Now that we've integrated our existing resolver calls, let's create some of the calls that
we still need. We created a points system for our Threads and ThreadItems. Let's now
implement a way to increment and decrement points. If it's been a while, take a look at
the ThreadPoint and ThreadItemPoint entities before continuing. You'll notice a new field
called points, which I'll explain once we start writing our code:

1. First, create a file called ThreadPointRepo.ts inside of the repo folder and add
this code into it (again, I assume you know how to add the necessary imports):

export const updateThreadPoint = async (

 userId: string,

 threadId: string,

 increment: boolean

): Promise<string> => {

Notice the parameters have an increment boolean. This determines whether we
are trying to add or remove a point.

 // todo: first check user is authenticated

Once we create our authentication calls, we'll revisit this comment and fill it in with
code. Note that adding a todo comment is a good way of keeping track of the items
remaining to be completed. It also notifies team members of this fact.

 let message = "Failed to increment thread point";

 const thread = await Thread.findOne({

 where: { id: threadId },

 relations: ["user"],

 });

 if (thread!.user!.id === userId) {

 message = "Error: users cannot increment their own
 thread";

 return message;

}

482 Adding GraphQL Schema Part I

So, we start by getting the Thread for the given threadId. Notice we also check
that the given User is not the same User who owns the thread. If you have only
one User in your database, you'll need to add another User, so that the owner of
the Thread is not the same one trying to increment its point. You can add a user
by using a SQL insert query or reusing our register route from Chapter 14, Setting
Up Postgres and Repository Layer with TypeORM.

 const user = await User.findOne({ where: { id: userId }
});

Here, we've gotten the matching User a bit before we actually need to use them.
We'll see in a bit why we're doing something that may seem inefficient.

 const existingPoint = await ThreadPoint.findOne({

 where: {

 thread: { id: threadId },

 user: { id: userId },

 },

 relations: ["thread"],

});

Here, we are seeing if an existing point entity already exists. We will use this object
to make decisions on how to add or remove points later:

await getManager().transaction(async
(transactionEntityManager) => {

As you can see, we have a bit of new TypeORM code. The getManager().
transaction call is creating a SQL transaction. A transaction is a way of doing
multiple SQL operations as a single atomic operation. In other words, either every
single one will complete successfully or all will fail. So then everything running
inside of this scope is part of the transaction.

Additionally, we noticed previously that we had created a User entity in advance of
using it. This is because it is a best practice to avoid making selection queries inside
of a transaction. This is not a hard rule. But in general, having selection queries
inside of transactions makes things slower.

 if (existingPoint) {

 if (increment) {

 if (existingPoint.isDecrement) {

 await ThreadPoint.remove(existingPoint);

 thread!.points = Number(thread!.points) + 1;

Creating GraphQL server-side typedefs and resolvers 483

 thread!.lastModifiedOn = new Date();

 thread!.save();

 }

 } else {

 if (!existingPoint.isDecrement) {

 await ThreadPoint.remove(existingPoint);

 thread!.points = Number(thread!.points) - 1;

 thread!.lastModifiedOn = new Date();

 thread!.save();

 }

 }

In this section, we checked if a ThreadPoint already exists by checking for
existingPoint (remember a ThreadPoint can represent a positive or negative
point, as indicated by the isDecrement field). Once that is determined, we decide
if we are doing an increment or a decrement. If doing an increment and there is
an existing decrement ThreadPoint, we delete that entity and do nothing else. If
we are doing a decrement and there is an existing increment ThreadPoint, we
delete that entity and do nothing else.

Now, the other thing to notice is that our Thread Entity now has a field called
points, which we increment or decrement as appropriate. This field will act as a sort
of shortcut in our UI that will allow us to get the current Thread's points total
without having to sum all the ThreadPoints for that Thread:

 } else {

 await ThreadPoint.create({

 thread,

 isDecrement: !increment,

 user,

 }).save();

 if (increment) {

 thread!.points = Number(thread!.points) + 1;

 } else {

 thread!.points = Number(thread!.points) - 1;

 }

 thread!.lastModifiedOn = new Date();

 thread!.save();

 }

484 Adding GraphQL Schema Part I

Else if we have no existing points at all, we just create a new one that is either an
increment or a decrement:

 message = `Successfully ${

 increment ? "incremented" : "decremented"

 } point.`;

 });

 return message;

};

2. Now add Mutation to typeDefs like this:

updateThreadPoint(userId: ID!, threadId: ID!, increment:
Boolean!): String!

3. Then, update the resolver by adding the updateThreadPoint call to the
Mutation section. Since this is just a wrapper around the repository call that
does the actual work, I won't show the code here. Try and see if you can create the
Mutation yourself without looking at the code.

Note
Most of the resolvers we will use are just wrappers around our Repository calls.
This keeps our resolver code separate from our database and Repository calls.
So, most of the time, I will not show the resolver code since it is slight and
available in the source code.

4. Run the Mutation as shown and then check your database:

Figure 15.4 – Run updateThreadPoint

Creating GraphQL server-side typedefs and resolvers 485

Here, we have the result of our mutation in the Postgres database, using pgAdmin:

Figure 15.5 – Run the updateThreadPoint database result

So, our record is created successfully, as shown.

Now let's discuss a bit more about this points system that we have and how it works. A
like points system can allow for both a positive and a negative point, as does our system.
However, it must also prevent users from voting more than once. In order to do that, we
need to associate each point with both the user that gave it and the Thread or ThreadItem
they put it on. This is why we have the ThreadPoint and ThreadPointItem entities.

On a well-trafficked site having many users, adding or removing points at any given time
can be a significant load on the server. But worse than this is if we were to have to sum up
all of these ThreadPoints or ThreadItemPoints upon each call to get Thread or ThreadItem
data. This would be untenable. So for the first issue, we must accept it as part of having
a "one vote per user" points system. However, for the summing of points issue, we could
attempt several different things in order to improve performance.

The most performant would be to add a caching system, using a secondary service like
Redis. However, building a caching system is no trivial matter and well beyond the scope
of this book. And we could argue that while our site is just getting started, before it
achieves glorious success and billions of dollars, we won't have that kind of traffic. So, as
a start, we could try something a little simpler.

So what we are doing instead is adding the points field to our Thread and ThreadItem
entities and incrementing the values as calls to add or remove points are made. Not
the best solution, but it will do for now. Over time, a caching system or some other
mechanism can be built out that is more sophisticated.

The code for ThreadItemPoint is virtually identical. Go ahead and see if you can build
the ThreadItemPointRepo.ts file yourself. As always, take a look at the code in the
source if you get stuck.

486 Adding GraphQL Schema Part I

In this section, we began integrating our Repository calls with our GraphQL layer. We also
fleshed out our Thread and ThreadItem points system. In the next section, we'll continue
building out our GraphQL API by integrating our authentication calls.

Integrating authentication with GraphQL
resolvers
Integrating authentication into GraphQL isn't much different from adding any other
functionality. In this section, we'll learn how to do that.

Let's now integrate our authentication-related calls. Let's start with the register call:

1. You'll recall we already created our register call in Chapter 14, Setting Up
Postgres and Repository Layer with TypeORM. So now, let's add our typeDefs
and resolvers. First, add the register call from the source code, to the
typeDefs file in the Mutation section:

2. Now, in our resolvers file, in the Mutation section, add the code from our GitHub
source code.

This is again just a wrapper of our repository call so there's not much to explain,
but notice we do not return a User object; we only return a status message. This
is because we want to reduce the chance of any unnecessary information being
spilled out. Before we try running it, let's enable our GraphQL playground to accept
cookies so we can test it. We need to enable cookies so that our Session State can be
saved, which is what allows our calls to check if the User has already logged in.

In the upper-right corner of the playground, click on the gear icon. Set the
request.credentials field to include as shown, then save it and refresh the
screen. We should see this if we run it now:

Figure 15.6 – Register

Integrating authentication with GraphQL resolvers 487

3. Let's continue with the login function. Add the login source code to the
Mutation section of your typeDefs file.

4. Now add the resolver code for login from the source code. Our Repository login
call is checking that the user exists and making sure the password matches. The
GraphQL call then takes the user.id and sets it to the Session object, ctx.req.
session.userId, if a successful login happens. Notice also that our resolver does
not return the user object upon success. We'll create a new function to provide
User info later.

5. Now let's do the logout function. First, add the typeDefs entry inside of the
Mutation section as shown by the source code.

6. Now update the resolvers Mutation with the logout resolver code from the
source. Notice no matter what response comes back from the Repository logout
call, we destroy the session using ctx.req.session?.destroy and this
sets ctx.req.session?.userId to undefined.

7. Now we need to add one more new call and a new type to our typeDefs. Add the
function me to the Query section of the typeDefs file, as shown by the source
code. Next, underneath the User type, add this union:

union UserResult = User | EntityResult

Why do we need these? In our calls to register and login, we eliminated the
returned User object because User details may or may not be used after these calls
and we don't want to unnecessarily expose User data. However, there are times
when once a User is logged in, we may want to see their relevant data. For example,
when they access their UserProfile screen. So, we will use this me function to handle
that.

8. Now let's add our UserRepo call for the me function. Add this function to
UserRepo:

export const me = async (id: string): Promise<UserResult>
=> {

 const user = await User.findOne({

 where: { id },

 relations: ["threads", "threads.threadItems"],

});

488 Adding GraphQL Schema Part I

First, notice that the user object we find includes any Threads and
ThreadItems that belong to the user. We will use these in our UserProfile screen:

 if (!user) {

 return {

 messages: ["User not found."],

 };

 }

 if (!user.confirmed) {

 return {

 messages: ["User has not confirmed their
 registration email yet."],

 };

 }

 return {

 user: user,

 };

};

The rest of the function is a lot like the login function.

9. Now let's create our resolvers for the UserResult and the me function. At the
top of the resolvers const, add the UserResult resolver as shown in the code. This
is the same as the other Result union resolvers – there's nothing new to explain
here.

10. In the Query section, add the code for the me function from the source code.

Notice this resolver takes no parameters, as it gets the userId from the session.
On line 193, it checks the userId is in the session. If it is not, it exits early. If the
userId is in the Session, it uses our UserRepo me function to get the currently
logged-in user. And the rest is basically the same as other functions returning an
entity.

11. Let's try running our me resolver. Make sure you've logged in once and have
followed the instructions in Step 3 for the GraphQL playground. If you run me as
shown, you should get back relevant data:

Creating React client-side Hooks for querying Apollo GraphQL 489

Figure 15.7 – Call to the me resolver
As you can see, we use inline fragments again and are able to get back both related
Threads and ThreadItems.

In this section, we tied our Repository layer authentication calls to GraphQL and tested
their functionality. In the next section, we will finish our application by tying our nearly
complete backend to our frontend.

Creating React client-side Hooks for querying
Apollo GraphQL
In this section, we will finish off our application by connecting our React client to our
GraphQL backend. We've come a long way and we're almost there.

In order to tie the two parts of our app together, we need to add CORS to our Express
server. CORS stands for Cross-Origin Resource Sharing. It means that our server will be
set up to allow a client domain that is not the same as its own domain.

In most server configurations of even modest complexity, the server that hosts the client-
side application and the server that provides the API do not exist on the same domain. In
general, you will have a proxy of some kind, for example, NGINX, that will accept calls
coming from the browser. And that proxy will "redirect" calls as required. We will explain
how reverse proxies work in more detail in Chapter 17, Deploying an Application to AWS.

490 Adding GraphQL Schema Part I

Note
A proxy is a stand-in for a service or some services. When a proxy is used, if
a client makes a call to a service, they end up accessing the proxy first and
not the service directly. The proxy then determines where the client's request
should be routed to. A proxy, therefore, provides companies with better control
of their service access.

Enabling CORS is also necessary because the React application runs on its own test web
server. In our case, it runs on port 3000, while the server runs on port 5000. Although
they both use localhost, having different ports effectively means different domains. To
update CORS, do this:

1. First, we need to update our .env file to have the path to the client development
server:

CLIENT_URL=http://localhost:3000

2. Open index.ts and add this code immediately after const app =
express();:

app.use(

 cors({

 credentials: true,

 origin: process.env.CLIENT_URL,

 })

);

The credentials setting enables the header Access-Control-Allow-Credentials.
This allows client JavaScript to receive responses from servers after successfully
providing credentials.

3. Also update the Apollo Server so that its own cors is disabled. Update this line just
before listen:

apolloServer.applyMiddleware({ app, cors: false });

The Apollo Server has its own cors, which is enabled by default so we want to
disable it.

Creating React client-side Hooks for querying Apollo GraphQL 491

Now we've installed CORS onto our server. Let's now open our React project in its own
VSCode window and install GraphQL to get started integrating with our GraphQL server:

1. After opening the super-forum-client folder in its own VSCode window, try
running it first to make sure it's working. If you have not done so already, delete
the node_modules folder and the package-lock.json file and run npm
install once.

2. Now let's install Apollo GraphQL Client. Open your terminal to the root of super-
forum-client and run this:

npm install @apollo/client graphql

3. Now we need to configure our client. Open index.ts and add this code above
ReactDOM.render:

const client = new ApolloClient({

 uri: 'http://localhost:5000/graphql',

 credentials: "include",

 cache: new InMemoryCache()

});

As always, add your imports – pretty self-explanatory. We set the URL of the server,
include any credentials needed, and set the cache object. Note this means that
Apollo caches all our query results.

4. Next update ReactDOM.render and have it include the ApolloProvider:

ReactDOM.render(

 <Provider store={configureStore()}>

 <BrowserRouter>

 <ApolloProvider client={client}>

 <ErrorBoundary>{[<App key="App" />]}</
 ErrorBoundary>

 </ApolloProvider>

 </BrowserRouter>

 </Provider>,

 document.getElementById("root")

);

492 Adding GraphQL Schema Part I

5. Now let's test that its working by getting ThreadCategories. Open the src/
components/areas/LeftMenu.tsx file and update it like this:

import React, { useEffect, useState } from "react";

import { useWindowDimensions } from "../../hooks/
useWindowDimensions";

import "./LeftMenu.css";

import { gql, useQuery } from "@apollo/client";

We've imported some items from the Apollo client. gql allows us to get syntax
highlighting and formatting for GraphQL queries. UseQuery is our first GraphQL
related client-side Hook. It allows us to do a GraphQL Query, as opposed to doing
a Mutation, but it runs immediately. Later, I'll show a Hook that allows lazy loading:

const GetAllCategories = gql`

 query getAllCategories {

 getAllCategories {

 id

 name

 }

 }

`;

Here is our query. Not much to explain here, but note we get both id and name.
const LeftMenu = () => {

const { loading, error, data } =
useQuery(GetAllCategories);

Our useQuery call returns the properties loading, error, and data. Each
Apollo GraphQL Hook returns a different set of relevant properties. We'll see how
these particular properties are used in the following code:

 const { width } = useWindowDimensions();

 const [categories, setCategories] = useState<JSX.
 Element>(

 <div>Left Menu</div>

);

 useEffect(() => {

 if (loading) {

 setCategories(Loading ...);

Creating React client-side Hooks for querying Apollo GraphQL 493

In the code just shown, we first check if data is still being loaded by using the
loading property and providing placeholder text in that case.

 } else if (error) {

 setCategories(Error occurred loading
 categories ...);

In this error section, we indicate an error occurred during the query run.
 } else {

 if (data && data.getAllCategories) {

 const cats = data.getAllCategories.map((cat: any)
 => {

 return <li key={cat.id}>

 <Link to={`/categorythreads/${cat.id}`}>{cat.
 name}</Link>

 ;

 });

 setCategories(<ul className="category">{cats}
);

 }

Finally, if all went well and we got our data, then we display an unordered list of
elements representing each ThreadCategory. Notice each li element has a unique
key identifier. It is always important to have keys when providing an array of similar
elements, as it reduces unnecessary renders. Also, each element is a link that shows
the user all Threads related to a specific ThreadCategory:

 }

 // eslint-disable-next-line react-hooks/exhaustive-
 //deps

 }, [data]);

 if (width <= 768) {

 return null;

 }

 return <div className="leftmenu">{categories}</div>;

};

export default LeftMenu;

494 Adding GraphQL Schema Part I

6. Running the app should show this screen in desktop mode. Notice I've clicked on
one of the ThreadCategory links that have associated Thread data. But of course, we
are currently still using dataService to return hardcoded data:

Figure 15.8 – LeftMenu ThreadCategory list

Awesome – we are now connected to our GraphQL server!

The Main screen
Congratulations – you've come a long way. Now we need to update our Main component
so that we return real data from our GraphQL service. Let's create that now:

1. Go to our super-forum-server project and open the typeDefs file and
add the schema entry for the function getThreadsLatest just below the
getThreadsByCategoryId query from the source. Here, we are creating a new
resolver, getThreadsLatest, that gives us the latest Threads when no specific
ThreadCategory is given. When a ThreadCategory is given, we already have the
getThreadsByCategoryId resolver.

2. Open ThreadRepo and add this function:

export const getThreadsLatest = async ():
Promise<QueryArrayResult<Thread>> => {

 const threads = await Thread.

Creating React client-side Hooks for querying Apollo GraphQL 495

createQueryBuilder("thread")

 .leftJoinAndSelect("thread.category", "category")

 .leftJoinAndSelect("thread.threadItems",
 "threadItems")

 .orderBy("thread.createdOn", "DESC")

 .take(10)

 .getMany();

We have a query that includes ThreadCategories and ThreadItems –
leftJoinAndSelect, is ordered by the createdOn field, orderBy, and takes
only up to 10 items (take):

 if (!threads || threads.length === 0) {

 return {

 messages: ["No threads found."],

 };

 }

 return {

 entities: threads,

 };

};

The rest is self-explanatory as it's similar to getThreadsByCategoryId.

Let's also update our getThreadsByCategoryId function to include the
ThreadItems as well:

export const getThreadsByCategoryId = async (

 categoryId: string

): Promise<QueryArrayResult<Thread>> => {

 const threads = await Thread.
 createQueryBuilder("thread")

 .where(`thread."categoryId" = :categoryId`, {
 categoryId })

 .leftJoinAndSelect("thread.category", "category")

 .leftJoinAndSelect("thread.threadItems",
 "threadItems")

 .orderBy("thread.createdOn", "DESC")

 .getMany();

 if (!threads || threads.length === 0) {

 return {

496 Adding GraphQL Schema Part I

 messages: ["Threads of category not found."],

 };

 }

 return {

 entities: threads,

 };

};

It's the same as before only with the additional leftJoinAndSelect function.

3. Open the resolvers file and add the getThreadsLatest function from the
source code at the end of the Query section. This is a wrapper almost identical to
the getThreadsByCategoryId resolver, except it calls getThreadsLatest
instead.

4. Now we need to update our Main React component so that it uses our GraphQL
resolvers instead of the fake data from our dataService. Open Main and update
the file like this.

The const GetThreadsByCategoryId is our first query. As you can see, it uses
inline fragments and gets back our Thread data fields:

const GetThreadsByCategoryId = gql`

 query getThreadsByCategoryId($categoryId: ID!) {

 getThreadsByCategoryId(categoryId: $categoryId) {

 ... on EntityResult {

 messages

 }

 ... on ThreadArray {

 threads {

 id

 title

 body

 views

 threadItems {

 id

 }

 category {

 id

 name

Creating React client-side Hooks for querying Apollo GraphQL 497

 }

 }

 }

 }

 }

`;

GetThreadsLatest is basically identical to GetThreadsByCategoryId:
const GetThreadsLatest = gql`

 query getThreadsLatest {

 getThreadsLatest {

 ... on EntityResult {

 messages

 }

 ... on ThreadArray {

 threads {

 id

 title

 body

 views

 threadItems {

 id

 }

 category {

 id

 name

 }

 }

 }

 }

 }

`;

498 Adding GraphQL Schema Part I

Now we begin our Main component definition with our use of useLazyQuery
Hooks:

const Main = () => {

 const [

 execGetThreadsByCat,

 {

 //error: threadsByCatErr,

 //called: threadsByCatCalled,

 data: threadsByCatData,

 },

] = useLazyQuery(GetThreadsByCategoryId);

 const [

 execGetThreadsLatest,

 {

 //error: threadsLatestErr,

 //called: threadsLatestCalled,

 data: threadsLatestData,

 },

] = useLazyQuery(GetThreadsLatest);

The two Hooks that were shown are now using our queries. Notice these are lazy
GraphQL queries. This means they do not run immediately, unlike useQuery,
and only run when the execGetThreadsByCat or execGetThreadsLatest
calls are made. The data property is what contains our query's returned data.
Additionally, I have commented out two of the returned properties because we are
not using them. However, they are available for use should your call run into errors.
Error contains information on failures and called indicates whether the Hook
was called already.

 const { categoryId } = useParams();

 const [category, setCategory] = useState<Category |
 undefined>();

 const [threadCards, setThreadCards] =
 useState<Array<JSX.Element> | null>(

 null

);

Creating React client-side Hooks for querying Apollo GraphQL 499

The previous state objects remain unchanged.
 useEffect(() => {

 if (categoryId && categoryId > 0) {

 execGetThreadsByCat({

 variables: {

 categoryId,

 },

 });

 } else {

 execGetThreadsLatest();

 }

 // eslint-disable-next-line react-hooks/exhaustive-
 // deps

 }, [categoryId]);

This useEffect was updated to now only execute execGetThreadsByCat or
execGetThreadsLatest as needed. If the categoryId parameter is given,
execGetThreadsByCat should run; if not, the other should run:

 useEffect(() => {

 if (

 threadsByCatData &&

 threadsByCatData.getThreadsByCategoryId &&

 threadsByCatData.getThreadsByCategoryId.threads

) {

 const threads = threadsByCatData.
 getThreadsByCategoryId.threads;

 const cards = threads.map((th: any) => {

 return <ThreadCard key={`thread-${th.id}`}
 thread={th} />;

 });

 setCategory(threads[0].category);

 setThreadCards(cards);

 }

}, [threadsByCatData]);

500 Adding GraphQL Schema Part I

In useEffect, threadsByCatData changes cause us to update category and
threadCards with data from the getThreadsByCategoryId query.

 useEffect(() => {

 if (

 threadsLatestData &&

 threadsLatestData.getThreadsLatest &&

 threadsLatestData.getThreadsLatest.threads

) {

 const threads = threadsLatestData.getThreadsLatest.
 threads;

 const cards = threads.map((th: any) => {

 return <ThreadCard key={`thread-${th.id}`}
 thread={th} />;

 });

 setCategory(new Category("0", "Latest"));

 setThreadCards(cards);

 }

 }, [threadsLatestData]);

In useEffect, threadsLatestData changes cause us to update category
and threadCards with data from the getThreadsLatest query. Notice
when no categoryId is given, we just use a generic "Latest" name for our
ThreadCategory.

 return (

 <main className="content">

 <MainHeader category={category} />

 <div>{threadCards}</div>

 </main>

);

};

export default Main;

The rest of the code remains the same as before.

Creating React client-side Hooks for querying Apollo GraphQL 501

5. Now if we run this for a categoryId, we should see this:

Figure 15.9 – With categoryId
If we run this without a categoryId, we should see this:

Figure 15.10 – Without categoryId

502 Adding GraphQL Schema Part I

Good – now we have some actual real data populating on our site screen. Before
continuing, let's clean up our styling a bit and get rid of some of these placeholder
background colors. I've made minor changes to the Nav.css and Home.css files.
This is what it looks like now:

Figure 15.11 – Home screen style update

OK, that's better. Here's one thing to notice on the mobile version of our screen – we have
no way for the user to switch to another category, as shown in this screenshot:

Figure 15.12 – Home screen mobile view

Creating React client-side Hooks for querying Apollo GraphQL 503

So, let's add a dropdown that will allow the user to switch categories. This dropdown
should only appear while in mobile mode. Try and build this control yourself before
following along. Hint: use React-DropDown to build the dropdown and replace the
category label with the drop-down control. For example, in Figure 15.12 we see the
selected category is Programming as shown on the MainHeader control. So then
replace that label with the dropdown, but only in mobile mode. Note that we are already
using a dropdown in our ThreadCategory route so we should create a component out of it
so it can be reused.

If you've given it a try, let's now start building it together so you can compare. Here's the
thing I lied a little bit. This is a fairly complex change as it requires two main things. First,
we would want to add a new Reducer for ThreadCategories since we know that the list
of ThreadCategories is being used in at least two separate components. We also need to
componentize the dropdown in the ThreadCategory component so that it can be used in
several places. This second piece is fairly involved as the new drop-down component has
to be complex enough to receive props from the outside and also send out the selected
category whenever it changes:

1. First, let's create our new Reducer. Create a new folder in the store folder called
categories. In that folder, create a file called Reducer.ts and add the source
code to it. This file is a lot like our User Reducer, except it returns as payload an
array of Category objects.

2. Next, we need to add our new Reducer to our AppState's rootReducer
like this:

export const rootReducer = combineReducers({

 user: UserProfileReducer,

 categories: ThreadCategoriesReducer,

});

Our new rootReducer member will be called Categories.

3. Now update the App.tsx component so that upon application load, we
immediately get our ThreadCategories and add them to the Redux store.

Here, we are adding the GetAllCategories GraphQL query:
const GetAllCategories = gql`

 query getAllCategories {

 getAllCategories {

 id

 name

504 Adding GraphQL Schema Part I

 }

 }

`;

function App() {

 const { data } = useQuery(GetAllCategories);

 const dispatch = useDispatch();

 useEffect(() => {

 dispatch({

 type: UserProfileSetType,

 payload: {

 id: 1,

 userName: "testUser",

 },

 });

 if (data && data.getAllCategories) {

 dispatch({

 type: ThreadCategoriesType,

 payload: data.getAllCategories,

 });

Most of this code we've seen before, but this is where we've sent our payload of
ThreadCategories to the Redux store:

 }

 }, [dispatch, data]);

 const renderHome = (props: any) => <Home {...props} />;

 const renderThread = (props: any) => <Thread {...props}
 />;

 const renderUserProfile = (props: any) => <UserProfile
 {...props} />;

 return (

 <Switch>

 <Route exact={true} path="/" render={renderHome} />

 <Route path="/categorythreads/:categoryId"
 render={renderHome} />

 <Route path="/thread/:id" render={renderThread} />

 <Route path="/userprofile/:id"
 render={renderUserProfile} />

Creating React client-side Hooks for querying Apollo GraphQL 505

 </Switch>

);

}

Everything else remains the same. Note you will need to update your imports.

4. The LeftMenu and ThreadCategory components will need to have their
code for getting ThreadCategories and creating the dropdown removed. But first,
let's create our shared control that will do all this. Create a file inside of src/
components called CategoryDropDown.tsx and add this code. Make sure you
add any necessary imports:

const defaultLabel = "Select a category";

const defaultOption = {

 value: "0",

 label: defaultLabel

};

With defaultOption, we've created an initial value for our dropdown.
class CategoryDropDownProps {

 sendOutSelectedCategory?: (cat: Category) => void;

 navigate?: boolean = false;

 preselectedCategory?: Category;

}

CategoryDropDownProps will be our parameter type for our
CategoryDropDown component. sendOutSelectedCategory is a function
passed by the parent caller that will be used to receive the selected drop-down
option by the parent. Navigate is a boolean that determines whether the
screen will move to a new URL upon selection of a new drop-down option. And
preselectedCategory allows the parent to force the dropdown to have selected
the specified ThreadCategory on load:

const CategoryDropDown: FC<CategoryDropDownProps> = ({

 sendOutSelectedCategory,

 navigate,

 preselectedCategory,

}) => {

 const categories = useSelector((state: AppState) =>
 state.categories);

 const [categoryOptions, setCategoryOptions] = useState<

506 Adding GraphQL Schema Part I

 Array<string | Option>

 >([defaultOption]);

 const [selectedOption, setSelectedOption] =
 useState<Option>(defaultOption);

 const history = useHistory();

Based on our previous learning, the usage of these listed Hooks is pretty obvious.
But do notice that we are getting the list of ThreadCategories from our Redux store
using useSelector.

 useEffect(() => {

 if (categories) {

 const catOptions: Array<Option> = categories.
 map((cat: Category) => {

 return {

 value: cat.id,

 label: cat.name,

 };

 });

Here, we build our array of options to feed to our dropdown later.
 setCategoryOptions(catOptions);

Here, in setCategoryOptions, we are receiving our list of ThreadCategory
option elements and setting them so they can be consumed by our dropdown later.

 setSelectedOption({

 value: preselectedCategory ? preselectedCategory.
 id : "0",

 label: preselectedCategory ? preselectedCategory.
 name : defaultLabel,

 });

Here, we have set our default drop-down selection.
 }

 }, [categories, preselectedCategory]);

 const onChangeDropDown = (selected: Option) => {

 setSelectedOption(selected);

 if (sendOutSelectedCategory) {

 sendOutSelectedCategory(

 new Category(selected.value, selected.label?.

Creating React client-side Hooks for querying Apollo GraphQL 507

valueOf().toString() ?? "")

);

 }

In this drop-down change handler here, we are notifying the parent of a selection
change.

 if (navigate) {

 history.push(`/categorythreads/${selected.value}`);

 }

We navigate to the next ThreadCategory route if requested by the parent.
 };

 return (

 <DropDown

 className="thread-category-dropdown"

 options={categoryOptions}

 onChange={onChangeDropDown}

 value={selectedOption}

 placeholder=defaultLabel

 />

);

};

export default CategoryDropDown;

And finally, here's our actual JSX, which is pretty self-explanatory.

5. Now we need to update the MainHeader.tsx file like this:

interface MainHeaderProps {

 category?: Category;

}

const MainHeader: FC<MainHeaderProps> = ({ category }) =>
{

 const { width } = useWindowDimensions();

The only significant change is this getLabelElement function, which decides
whether the screen is mobile and renders CategoryDropDown if it is:

 const getLabelElement = () => {

 if (width <= 768) {

 return (

508 Adding GraphQL Schema Part I

 <CategoryDropDown navigate={true}
 preselectedCategory={category} />

);

 } else {

 return {category?.name || "Placeholder"}
 ;

 }

 };

 return (

 <div className="main-header">

 <div

 className="title-bar"

 style={{ marginBottom: ".25em", paddingBottom:
 "0" }}

 >

 {getLabelElement()}

Here, we use the getLabelElement function.
 </div>

 </div>

);

};

The rest of the code is the removal of code mostly, so try and do that yourself. You can, of
course, look at the source code if needed. The affected files are ThreadCategory.tsx,
LeftMenu.tsx, and Thread.css.

Authentication-related features
Now let's continue by updating our authentication-related features. Please remember
that all your User accounts must have their confirmed field set to true before they
can log in:

1. The first thing we want to do is have the user be able to log in. In order to do this
and then be able to update our User object in the global Redux store, we're going
to refactor our Redux User Reducer.

First, in the models folder, create a new file called User.ts and add the source
code to it. Notice that our User class has a field called threads. This will contain not
only the Threads belonging to the user but the ThreadItems of those Threads.

Creating React client-side Hooks for querying Apollo GraphQL 509

2. Now let's update our Reducer. Open store/user/Reducer.ts and update it by
removing the UserProfilePayload interface and replacing its references with
the new User class we just created. Look at the source code if you need to.

3. Now we can update our Login component like this. Update the imports as needed.

Notice we have imported the Hook useRefreshReduxMe. We'll define this Hook
in a moment, but first I want to introduce some features of the useMutation
GraphQL Hook:

const LoginMutation = gql`

 mutation Login($userName: String!, $password: String!)
 {

 login(userName: $userName, password: $password)

 }

`;

Here is our login Mutation:
const Login: FC<ModalProps> = ({ isOpen, onClickToggle })
=> {

 const [execLogin] = useMutation(LoginMutation, {

 refetchQueries: [

 {

 query: Me,

 },

],

 });

Let me explain this useMutation call. The call takes as parameters the
Mutation query LoginMutation and something called refetchQueries.
refetchQueries forces whatever queries are listed therein to rerun and then
caches their values. If we did not use refetchQueries and ran the Me query
again, we would end up getting the last cached version instead of the freshest data.
Please note it does not auto-refresh any calls that depend on its queries; we still have
to make those calls to get the new data.

510 Adding GraphQL Schema Part I

The output, execLogin, is a function that can be executed later as desired.
const [

 { userName, password, resultMsg, isSubmitDisabled },

 dispatch,

] = useReducer(userReducer, {

 userName: "test1",

 password: "Test123!@#",

 resultMsg: "",

 isSubmitDisabled: false,

 });

 const { execMe, updateMe } = useRefreshReduxMe();

 const onChangeUserName = (e: React.
 ChangeEvent<HTMLInputElement>) => {

 dispatch({ type: "userName", payload: e.target.value
 });

 if (!e.target.value)

 allowSubmit(dispatch, "Username cannot be empty",
 true);

 else allowSubmit(dispatch, "", false);

 };

 const onChangePassword = (e: React.
 ChangeEvent<HTMLInputElement>) => {

 dispatch({ type: "password", payload: e.target.value
 });

 if (!e.target.value)

 allowSubmit(dispatch, "Password cannot be empty",
 true);

 else allowSubmit(dispatch, "", false);

 };

The prior calls are the same as they were previously.
const onClickLogin = async (

 e: React.MouseEvent<HTMLButtonElement, MouseEvent>

) => {

 e.preventDefault();

 onClickToggle(e);

 const result = await execLogin({

 variables: {

Creating React client-side Hooks for querying Apollo GraphQL 511

 userName,

 password,

 },

 });

 execMe();

 updateMe();

 };

The onClickLogin handler is now calling our execLogin function with
appropriate parameters. After execLogin finishes, it will automatically call our
refetchQueries list of queries. After that, we make a call to the functions
from our Hook, useRefreshReduxMe, execMe, and updateMe. The execMe
function will get the latest User object and updateMe will add it into the Redux
store. The rest of the code is identical so I will not show it here.

4. Now let's define our Hook useRefreshReduxMe. We want to create this Hook
so that our code to set or unset our Redux User object can be in this single
file. We will be using this Hook from several components. Create a file called
useRefreshReduxMe.ts in the hooks folder and add the source code.

From the top, we can see the Me const is our query to get user information. The
EntityResult inline fragment is used to get the string of messages if that's what
is coming back. If we get actual user data, then the fields desired are defined by the
User inline fragment.

Next, the UseRefreshReduxMeResult interface is a return type for our Hook.

On line 37, we have defined useLazyQuery to allow our Hook users to be able to
execute the call to the Me query at a time of their own choosing.

Next, we have defined a function, deleteMe, to allow users of our Hook to destroy
the Redux User object at any time. For example, when the user logs off.

And finally, we have the updateMe function to allow the setting of the Redux
User object. And then we return all of these functions so they can be used by our
Hook callers.

5. Upon app load, we should immediately check if our User is logged in and who that
is. So, open App.tsx and update it like this:

function App() {

 const { data: categoriesData } =
 useQuery(GetAllCategories);

 const { execMe, updateMe } = useRefreshReduxMe();

512 Adding GraphQL Schema Part I

Here, we've initialized our useRefreshReduxMe Hook.
 const dispatch = useDispatch();

 useEffect(() => {

 execMe();

 }, [execMe]);

Here, we call our execMe to get the User data from GraphQL.
 useEffect(() => {

 updateMe();

 }, [updateMe]);

And here, we call updateMe to update our Redux User Reducer with the User
data if any.

 useEffect(() => {

 if (categoriesData && categoriesData.
 getAllCategories) {

 dispatch({

 type: ThreadCategoriesType,

 payload: categoriesData.getAllCategories,

 });

 }

 }, [dispatch, categoriesData]);

I changed our original data field name to categoriesData so it would be clearer
what it's for. The rest of the code remains the same.

6. If you log in now, you'll see that our SideBar userName updates to the
logged-in user:

Figure 15.13 – Logged-in user
So, now we can log in, and then show the userName as well.

Creating React client-side Hooks for querying Apollo GraphQL 513

Awesome, but now let's fix our SideBar so that only the appropriate links show at
the right time. For example, if the user is logged in, we should not see the login or
register links:

1. To make sure that the right menus show when the user logs in or out, let's first
update our Logout component. Make sure imports are up to date:

const LogoutMutation = gql`

 mutation logout($userName: String!) {

 logout(userName: $userName)

 }

`;

Here's our logout mutation.
const Logout: FC<ModalProps> = ({ isOpen, onClickToggle
}) => {

 const user = useSelector((state: AppState) => state.
 user);

 const [execLogout] = useMutation(LogoutMutation, {

 refetchQueries: [

 {

 query: Me,

 },

],

 });

Here, again, we've forced a refresh of our GraphQL cache for the Me query.
 const { execMe, deleteMe } = useRefreshReduxMe();

 const onClickLogin = async (

 e: React.MouseEvent<HTMLButtonElement, MouseEvent>

) => {

 e.preventDefault();

 onClickToggle(e);

 await execLogout({

 variables: {

 userName: user?.userName ?? "",

 },

514 Adding GraphQL Schema Part I

 });

 deleteMe();

 };

Again, we've taken our useRefreshReduxMe Hook, but here we only call the
deleteMe function since we're just logging out. The rest of the code remains the
same, so I won't show it here.

2. Now we're going to update the SideBarMenus component so that only the
appropriate menus show at the right time. Open that file and update it as follows.

In this case, I'll only show the returned JSX as that's the only thing that changed
(other than imports):

return (

 <React.Fragment>

 {user ? (

 <FontAwesomeIcon icon={faUser} />

 <Link to={`/userprofile/${user?.
 id}`}>{user?.userName}</Link>

) : null}

As you can see, we are testing whether the user object has a value and then
showing our same userName UI, else we show nothing.

 {user ? null : (

 <FontAwesomeIcon icon={faRegistered} />

 <span onClick={onClickToggleRegister}
 className="menu-name">

 register

 <Registration

 isOpen={showRegister}

 onClickToggle={onClickToggleRegister}

 />

Creating React client-side Hooks for querying Apollo GraphQL 515

)}

In this case, we don't want to show our registration UI if the user does exist so that's
what we are doing.

 {user ? null : (

 <FontAwesomeIcon icon={faSignInAlt} />

 <span onClick={onClickToggleLogin}
 className="menu-name">

 login

 <Login isOpen={showLogin}
 onClickToggle={onClickToggleLogin} />

)}

Again, we don't show the login if the user object exists already, because that
indicates the user had already logged in.

 {user ? (

 <FontAwesomeIcon icon={faSignOutAlt} />

 <span onClick={onClickToggleLogout}
 className="menu-name">

 logout

 <Logout isOpen={showLogout}
 onClickToggle={onClickToggleLogout} />

) : null}

Here, we show the logout UI if the user object has a value.

 </React.Fragment>

);

516 Adding GraphQL Schema Part I

3. If you run this code now, when not yet logged in, you'll see this:

Figure 15.14 – Not logged in SideBarMenus
Now, when logged in, we should see this:

Figure 15.15 – Logged in SideBarMenus
So our sidebar now displays proper links and text. Let's now work on our
UserProfile screen.

The UserProfile screen
Now, since we are in the authentication sections, let's finish our UserProfile screen. We
will need to make multiple changes to configure this screen:

1. First, let's update our GraphQL by adding a field to our User type. Update the
typeDefs file's User type by adding this just below the threads field:

 threadItems: [ThreadItem!]

We've added only one new field, threadItems. Note that this is different from
threadItems that's part of the threads field, as we are trying to retrieve the
ThreadItem entities the user themselves has authored.

2. We also need to update our User Entity by adding one new field. Update the User.
ts file by adding this field in it:

 @OneToMany(() => ThreadItem, (threadItem) =>
 threadItem.user)

 threadItems: ThreadItem[];

Creating React client-side Hooks for querying Apollo GraphQL 517

This allows our User entity to have associated entities on the ThreadItems entity.
Also, make sure you already have the matching field in the ThreadItem.ts file,
like this:

@ManyToOne(() => User, (user) => user.threadItems)

 user: User;

3. Now let's open our UserRepo Repository file and update our me function so that it
includes the user's ThreadItems. Update the UserRepo User.findOne function
like this:

 relations: ["threads", "threads.threadItems",
 "threadItems", "threadItems.thread"],

We've only made a single change, as shown by the highlight, which is to add the
threadItems and threadItems.thread relations.

4. You'll notice that the UserProfile screen has a change password feature. So let's build
that out now. First, we'll need to add a new Mutation to our typeDefs file. Add
this Mutation to the Mutation section:

changePassword(newPassword: String!): String!

A pretty self-explanatory Mutation definition.

5. Now let's implement this function in our UserRepo. Add the changePassword
function to the end of the UserRepo from the source code.

Starting at line 125, since the user will be logged in if this call is made, we are
expecting the user id from the resolver code to be passed in. If it does not exist,
then of course we'll error out.

Then we try and get the User object and then run a few checks to make sure the
user is valid. And finally, we use bcrypt to generate our hashed password.

6. Now we can create our resolver. Open the resolvers file and add the source code
for the changePassword function into the Mutation section.

First, on line 389, we check if a valid Session and userId in that Session exist,
because this is what indicates the user is logged in.

And lastly, we call our changePassword Repository function with the Session
userId and the given new password.

518 Adding GraphQL Schema Part I

7. Let's now update our UserProfile component. Update the code as follows:

Update the imports as we have imported a couple of new items, gql and
useMutation:

const ChangePassword = gql`

 mutation ChangePassword($newPassword: String!) {

 changePassword(newPassword: $newPassword)

 }

`;

Here, we have our new Mutation, ChangePassword.
const UserProfile = () => {

 const [

 { userName, password, passwordConfirm, resultMsg,
 isSubmitDisabled },

 dispatch,

] = useReducer(userReducer, {

 userName: "",

 password: "*********",

 passwordConfirm: "*********",

 resultMsg: "",

 isSubmitDisabled: true,

 });

 const user = useSelector((state: AppState) => state.
 user);

 const [threads, setThreads] = useState<JSX.Element |
 undefined>();

 const [threadItems, setThreadItems] = useState<JSX.
 Element | undefined>();

 const [execChangePassword] =
 useMutation(ChangePassword);

Here, we've set up our ChangePassword Mutation with useMutation.

The useEffect code shown here is the same as before:
 useEffect(() => {

 if (user) {

 dispatch({

 type: "userName",

Creating React client-side Hooks for querying Apollo GraphQL 519

 payload: user.userName,

 });

 getUserThreads(user.id).then((items) => {

 const threadItemsInThreadList: Array<ThreadItem>
 = [];

 const threadList = items.map((th: Thread) => {

 for (let i = 0; i < th.threadItems.length; i++)
{

 threadItemsInThreadList.push(th.
 threadItems[i]);

 }

 return (

 <li key={`user-th-${th.id}`}>

 <Link to={`/thread/${th.id}`}
 className="userprofile-link">

 {th.title}

 </Link>

);

 });

 setThreads({threadList});

 const threadItemList = threadItemsInThreadList.
 map((ti: ThreadItem) => (

 <li key={`user-th-${ti.threadId}`}>

 <Link to={`/thread/${ti.threadId}`}
 className="userprofile-link">

 {ti.body}

 </Link>

));

 setThreadItems({threadItemList});

 });

 }

 }, [user]);

520 Adding GraphQL Schema Part I

This onClickChangePassword function is new. It triggers the
changePassword call and then updates the UI status message.

 const onClickChangePassword = async (

 e: React.MouseEvent<HTMLButtonElement, MouseEvent>

) => {

 e.preventDefault();

 const { data: changePasswordData } = await
 execChangePassword({

 variables: {

 newPassword: password,

 },

 });

 dispatch({

 type: "resultMsg",

 payload: changePasswordData ? changePasswordData.
 changePassword : "",

 });

 };

 return (

 <div className="screen-root-container">

 <div className="thread-nav-container">

 <Nav />

 </div>

 <form className="userprofile-content-container">

 <div>

 User Profile

 <label style={{ marginLeft: ".75em"
 }}>{userName}</label>

 </div>

 <div className="userprofile-password">

 <div>

 <PasswordComparison

 dispatch={dispatch}

 password={password}

 passwordConfirm={passwordConfirm}

 />

 <button

Creating React client-side Hooks for querying Apollo GraphQL 521

 className="action-btn"

 disabled={isSubmitDisabled}

 onClick={onClickChangePassword}

 >

The onClickChangePassword handler is set here onto our Change Password
button.

 Change Password

 </button>

 </div>

 <div style={{ marginTop: ".5em" }}>

 <label>{resultMsg}</label>

 </div>

 </div>

 <div className="userprofile-postings">

 <hr className="thread-section-divider" />

 <div className="userprofile-threads">

 Threads Posted

 {threads}

 </div>

 <div className="userprofile-threadIems">

 ThreadItems Posted

 {threadItems}

 </div>

 </div>

 </form>

 </div>

);

};

export default UserProfile;

The remaining code is the same.
Now let's show the user's Threads and ThreadItems:

1. First, we need to update our User model. Add this field to the User.ts file:

public threadItems: Array<ThreadItem>

522 Adding GraphQL Schema Part I

2. Now update the Me query inside of the useRefreshReduxMe Hook like this:

export const Me = gql`

 query me {

 me {

 ... on EntityResult {

 messages

 }

 ... on User {

 id

 userName

 threads {

 id

 title

 }

 threadItems {

 id

 thread {

 id

 }

 body

 }

 }

 }

 }

`;

We've changed the threadItems from getting the threads' threadItems to
getting the user's threadItems. We also now get the threadItems' thread.

3. Now, in your UserProfile component, update useEffect like this:

useEffect(() => {

 if (user) {

 dispatch({

 type: "userName",

 payload: user.userName,

 });

Creating React client-side Hooks for querying Apollo GraphQL 523

We are now getting our threads from the user.threads array, instead of our fake
dataService call, as shown:

 const threadList = user.threads?.map((th: Thread)
 => {

 return (

 <li key={`user-th-${th.id}`}>

 <Link to={`/thread/${th.id}`}
 className="userprofile-link">

 {th.title}

 </Link>

);

 });

 setThreads(

 !user.threadItems || user.threadItems.length ===
 0 ? undefined : (

 {threadList}

)

);

We do the same thing for threadItems as well. Notice our Link to gets
updated so that it uses ti.thread?.id instead of ti.threadId:

 const threadItemList = user.threadItems?.map((ti:
 ThreadItem) => (

 <li key={`user-ti-${ti.id}`}>

 <Link to={`/thread/${ti.thread?.id}`}
 className="userprofile-link">

 {ti.body.length <= 40 ? ti.body : ti.body.
 substring(0, 40) + " ..."}

Here, we had added a tiny bit of extra logic to format long text that might go
horizontally off the screen and wrap. Basically, it just means that if the text is longer
than 40 characters, we add "…" to it.

 </Link>

));

 setThreadItems(

 !user.threadItems || user.threadItems.length ===
 0 ? undefined : (

524 Adding GraphQL Schema Part I

 {threadItemList}

)

);

 } else {

 dispatch({

 type: "userName",

 payload: "",

 });

 setThreads(undefined);

 setThreadItems(undefined);

 }

 }, [user]);

The remaining code is identical. If you run this, you should see something like the
following (again, your data will be different):

Figure 15.16 – User's Threads and ThreadItems

Summary 525

OK, that's it for our UserProfile. Because this was an enormous amount of material
to cover, let's continue our work in the next chapter, Chapter 16, Adding a GraphQL
Schema – Part II.

Summary
In this chapter, we have almost completed our application by integrating the frontend and
the backend with GraphQL. This was a large and complex chapter so you should feel good
about how far you have come.

In the next chapter, Chapter 16, Adding a GraphQL Schema – Part II, we will finish coding
our application by working on the Thread screen, so that we can view and post Threads,
and work on the Points system so that users can see the popularity of individual Threads.

16
Adding a GraphQL

Schema – Part II
In this chapter, we're going to continue completing our client and server code. We will
complete our Thread screens, which allow us to post new Threads and their responses,
and also finish the Points system for the site. Please use the source code from Chapter 15,
Adding a GraphQL Schema – Part I, to do this.

Thread route
In this section, we will update our Thread component, which provides our thread route.
We're going to be touching on a lot of files as we go through this. Follow these steps:

1. Open typeDefs and edit the Thread and ThreadItem types. Then, add this
field just below views:

points: Int!

2. Now, open the ThreadRepo file and update the getThreadById function,
like this:

export const getThreadById = async (

 id: string

): Promise<QueryOneResult<Thread>> => {

528 Adding a GraphQL Schema – Part II

 const thread = await Thread.findOne({

 where: {

 id,

 },

 relations: ["user", "threadItems", "threadItems.
 user", "category"],

 });

All we did here was add the following relations to our findOne query:
 if (!thread) {

 return {

 messages: ["Thread not found."],

 };

 }

 return {

 entity: thread,

 };

};

3. Next, update the getThreadsByCategoryId function's call to Thread.
createQueryBuilder, like this:

const threads = await Thread.createQueryBuilder("thread")

 .where(`thread."categoryId" = :categoryId`, {
 categoryId })

 .leftJoinAndSelect("thread.category", "category")

 .leftJoinAndSelect("thread.threadItems",
 "threadItems")

 .leftJoinAndSelect("thread.user", "user")

 .orderBy("thread.createdOn", "DESC")

 .getMany();

We've included the relation for the User entity here. The rest of the code for this
function remains the same.

Thread route 529

4. Now, open the User.ts file in your client app and update the threads and
threadItems fields so that they're optional. We need to do this so that we can add
a User account that has not posted anything yet:

public threads?: Array<Thread>,

public threadItems?: Array<ThreadItem>

5. Now, open the models/Thread.ts and models/ThreadItem.ts files in the
React client project and replace the userName and userId fields with a single
field user, like this:

public user: User,

6. We also need to replace the references to the userName and userId fields in our
DataService.ts file with a user object. Here, I've placed an object at the top of
the file and used it throughout the file to replace those two fields:

const user = new User("1", "test1@test.com", "test1");

Take a look at the DataService.ts file if you need any help, though this should
be pretty trivial.

7. Now that we've updated our User schema type and our entities, we need to update
some queries. In the Main.tsx file, update the GetThreadsByCategoryId and
GetThreadsLatest queries, like this:

const GetThreadsByCategoryId = gql`

 query getThreadsByCategoryId($categoryId: ID!) {

 getThreadsByCategoryId(categoryId: $categoryId) {

 ... on EntityResult {

 messages

 }

 ... on ThreadArray {

 threads {

 id

 title

 body

 views

 points

 user {

 userName

530 Adding a GraphQL Schema – Part II

 }

 threadItems {

 id

 }

 category {

 id

 name

 }

 }

 }

 }

 }

`;

For both these queries, we added the points and user fields, as follows:
const GetThreadsLatest = gql`

 query getThreadsLatest {

 getThreadsLatest {

 ... on EntityResult {

 messages

 }

 ... on ThreadArray {

 threads {

 id

 title

 body

 views

 points

 user {

 userName

 }

 threadItems {

 id

 }

 category {

 id

 name

Thread route 531

 }

 }

 }

 }

 }

`;

8. Now, in our ThreadCard.tsx file, find the following JSX:

<span className="username-header" style={{ marginLeft:
".5em" }}>

 {thread.userName}

Replace it with the following:
<span className="username-header" style={{ marginLeft:
".5em" }}>

 {thread.user.userName}

As you can see, we are now using user to get its userName field instead of trying
to access it directly.

9. Now, we need to make some more changes to our RichEditor.tsx file. Note
that our Thread screen will be showing user submitted text. So, once a user has
submitted what they wish to post, we will make it so that they cannot edit it
afterward. We'll do this by making the read-only setting a prop.

Turn the RichEditorProps interface into a class and update it, like this:
class RichEditorProps {

 existingBody?: string;

 readOnly?: boolean = false;

}

We have made this a class so that a default value of false is the normal setting
(interfaces don't allow default values). Now, update the parameter list in the
RichEditor component, like this:

const RichEditor: FC<RichEditorProps> = ({ existingBody,
readOnly }) => {

532 Adding a GraphQL Schema – Part II

We use destructuring to add the readOnly field as a parameter. Now, inside the
Editable component, add it as an attribute, like this:

<Editable

 className="editor"

 renderElement={renderElement}

 renderLeaf={renderLeaf}

 placeholder="Enter some rich text…"

 spellCheck

 autoFocus

 onKeyDown={(event) => {

 for (const hotkey in HOTKEYS) {

 if (isHotkey(hotkey, event as any)) {

 event.preventDefault();

 const mark = HOTKEYS[hotkey];

 toggleMark(editor, mark);

 }

 }

 }}

 readOnly={readOnly}

/>

As you can see, all we did was append the one readOnly prop.

10. Now, open the src/components/routes/thread/Thread.tsx file. This file
is our main screen for loading the Thread route. Let's update this file.

Here, we're adding a new GetThreadById query to get our relevant Thread:
const GetThreadById = gql`

 query GetThreadById($id: ID!) {

 getThreadById(id: $id) {

 ... on EntityResult {

 messages

 }

 ... on Thread {

 id

 user {

 userName

 }

Thread route 533

 lastModifiedOn

 title

 body

 points

 category {

 id

 name

 }

 threadItems {

 id

 body

 points

 user {

 userName

 }

 }

 }

 }

 }

`;

const Thread = () => {

 const [execGetThreadById, { data: threadData }] =
 useLazyQuery(GetThreadById);

Here, we are using our GetThreadById query, along with our useLazyQuery
Hook, and creating an executor function called execGetThreadById, which
we will run a bit later.

 const [thread, setThread] = useState<ThreadModel |
 undefined>();

The thread state object is what we will be using to populate our UI and share
it with other components.

 const { id } = useParams();

id is the URL parameter representing the Thread's id value.
 const [readOnly, setReadOnly] = useState(false);

534 Adding a GraphQL Schema – Part II

We will use this readOnly state to make our RichEditor read-only if we are
dealing with an existing Thread record.

 useEffect(() => {

 if (id && id > 0) {

 console.log("id", id);

 execGetThreadById({

 variables: {

 id,

 },

 });

Here, we've run our execGetThreadById call by using the parameter given by
the URL for the Thread's id.

 }

 }, [id, execGetThreadById]);

 useEffect(() => {

 console.log("threadData", threadData);

 if (threadData && threadData.getThreadById) {

 setThread(threadData.getThreadById);

 } else {

 setThread(undefined);

 }

Once our execGetThreadById call is completed, a threadData object is
returned. We can use this to set our local thread state.

 }, [threadData]);

 return (

 <div className="screen-root-container">

 <div className="thread-nav-container">

 <Nav />

 </div>

 <div className="thread-content-container">

 <div className="thread-content-post-container">

 <ThreadHeader

 userName={thread?.user.userName}

Thread route 535

Here, we are using the thread?.user object to get our userName field, instead
of thread?.userName, which is how we had it set up previously.

 lastModifiedOn={thread ? thread.
 lastModifiedOn : new Date()}

 title={thread?.title}

 />

 <ThreadCategory category={thread?.category} />

ThreadCategory has now been updated so that it will set CategoryDropDown
to the Category option provided. We'll look at this later.

 <ThreadTitle title={thread?.title} />

 <ThreadBody body={thread?.body}
 readOnly={readOnly} />

Here, we passed the readOnly state value to ThreadBody since ThreadBody
uses RichEditor internally.

 </div>

 <div className="thread-content-points-container">

 <ThreadPointsBar

 points={thread?.points || 0}

 responseCount={

 thread && thread.threadItems && thread.
 threadItems.length

 }

 />

 </div>

 </div>

 <div className="thread-content-response-container">

 <hr className="thread-section-divider" />

 <ThreadResponsesBuilder threadItems={thread?.
 threadItems} readOnly={readOnly} />

Here, we passed the readOnly state value to ThreadResponsesBuilder,
which shows our ThreadItem responses.

 </div>

 </div>

);

};

536 Adding a GraphQL Schema – Part II

The remaining UI is the same as it was previously.

11. Now, let's look at the ThreadCategory component. Here's how it looks now:

interface ThreadCategoryProps {

 category?: Category;

}

We've switched our interface definition so that it takes a Category object instead
of a string. This allows us to pass it down to our CategoryDropDown component:

const ThreadCategory: FC<ThreadCategoryProps> = ({
category }) => {

 const sendOutSelectedCategory = (cat: Category) => {

 console.log("selected category", cat);

 };

 return (

 <div className="thread-category-container">

 {category?.name}

Here, we've used category?.name of the Category object, whereas previously,
we used categoryName as the necessary parameter:

 <div style={{ marginTop: "1em" }}>

 <CategoryDropDown

 preselectedCategory={category}

Here, we've explicitly passed in the preselectedCategory prop from
our component's category prop:

sendOutSelectedCategory={sendOutSelectedCategory}

 />

 </div>

 </div>

);

};

Thread route 537

12. Now, update your ThreadBody component's call to RichEditor by passing the
readOnly field, like this:

interface ThreadBodyProps {

 body?: string;

 readOnly: boolean;

}

Here, we've added the readOnly field to our props type; that is,
ThreadBodyProps:

const ThreadBody: FC<ThreadBodyProps> = ({ body, readOnly
}) => {

 return (

 <div className="thread-body-container">

 Body

 <div className="thread-body-editor">

 <RichEditor existingBody={body}
 readOnly={readOnly} />

 </div>

 </div>

);

};

As you can see, we've passed the readOnly prop to our RichEditor.

13. Now, let's update the ThreadResponseBuilder component, like this:

interface ThreadResponsesBuilderProps {

 threadItems?: Array<ThreadItem>;

 readOnly: boolean;

}

Again, this is a readOnly prop definition. This is because this component uses
a ThreadResponse, which internally uses RichEditor:

const ThreadResponsesBuilder:
FC<ThreadResponsesBuilderProps> = ({

 threadItems,

 readOnly,

}) => {

 const [responseElements, setResponseElements] =
 useState<

538 Adding a GraphQL Schema – Part II

 JSX.Element | undefined

 >();

 useEffect(() => {

 if (threadItems) {

 const thResponses = threadItems.map((ti) => {

 return (

 <li key={`thr-${ti.id}`}>

 <ThreadResponse

 body={ti.body}

 userName={ti.user.userName}

Here, we've used the Thread's user object to get the required userName.
 lastModifiedOn={ti.createdOn}

 points={ti.points}

 readOnly={readOnly}

Here is our readOnly field being passed into ThreadResponse.
 />

);

 });

 setResponseElements({thResponses});

 }

 }, [threadItems, readOnly]);

 return (

 <div className="thread-body-container">

 <strong style={{ marginBottom: ".75em"
}}>Responses

 {responseElements}

 </div>

);

};

The rest of code is the same as it was previously.

Finally, we have our ThreadResponse component, which is updated with the
readOnly prop, like this:

interface ThreadResponseProps {

 body?: string;

Thread route 539

 userName?: string;

 lastModifiedOn?: Date;

 points: number;

 readOnly: boolean;

Here's the prop definition.
}

const ThreadResponse: FC<ThreadResponseProps> = ({

 body,

 userName,

 lastModifiedOn,

 points,

 readOnly,

Here, we've used destructuring to pass the readOnly prop in.
}) => {

 return (

 <div>

 <div>

 <UserNameAndTime userName={userName}
 lastModifiedOn={lastModifiedOn} />

 <ThreadPointsInline points={points || 0} />

 </div>

 <div className="thread-body-editor">

 <RichEditor existingBody={body}
 readOnly={readOnly} />

And here, we've passed readOnly into our RichEditor component.
 </div>

 </div>

);

};

It's a bit difficult to see since there's no significant visual clue, but you'll notice that on the
thread route for any existing Thread, such as http://localhost:5000/thread/1,
your editors for your Thread and any responses will all be in read-only mode, which
means they can't be edited.

540 Adding a GraphQL Schema – Part II

Points system
Now that we've set everything up so that we can display points, we need a mechanism for
setting them. This is what we'll do now. Let's get started:

1. Open the Thread.tsx file and take a look at the code. You will find a component
called ThreadPointsBar near the end of the JSX. This is what shows the vertical
bar of points in our ThreadCard and our Thread.tsx route.

2. We're going to add buttons to allow an increment or decrement of points.
We've already built our backend and resolvers, so the work we'll be doing here will
just tie that to our client code.

Inside the ThreadPointsBar.tsx file, update the existing JSX, as follows. This is
a significant change, so let's break it down:

import React, { FC } from "react";

import { FontAwesomeIcon } from "@fortawesome/react-
fontawesome";

import {

 faHeart,

 faReplyAll,

 faChevronDown,

 faChevronUp,

} from "@fortawesome/free-solid-svg-icons";

import { useWindowDimensions } from "../../hooks/
useWindowDimensions";

import { gql, useMutation } from "@apollo/client";

const UpdateThreadPoint = gql`

 mutation UpdateThreadPoint(

 $userId: ID!

 $threadId: ID!

 $increment: Boolean!

) {

 updateThreadPoint(

 userId: $userId

 threadId: $threadId

 increment: $increment

)

Thread route 541

 }

`;

First, we have our updateThreadPoint mutation.
export class ThreadPointsBarProps {

 points: number = 0;

 responseCount?: number;

 userId?: string;

 threadId?: string;

 allowUpdatePoints?: boolean = false;

 refreshThread?: () => void;

}

With that, we've converted our ThreadPointsBarProps interface into a class
so that we can give some of the fields default values. Notice that, among the fields,
we have a refreshThread function, which we'll use to force an update to our
parent Thread so that once we update the points, this will be reflected in our UI.
We'll go through the other fields as we use them. Also, we will no longer be sharing
this prop with our ThreadPointsInline component, which I'll show later.

const ThreadPointsBar: FC<ThreadPointsBarProps> = ({

 points,

 responseCount,

 userId,

 threadId,

 allowUpdatePoints,

 refreshThread,

}) => {

 const { width } = useWindowDimensions();

 const [execUpdateThreadPoint] =
useMutation(UpdateThreadPoint);

542 Adding a GraphQL Schema – Part II

Notice that our useMutation does not use refetchQueries to refresh Apollo
Client. Normally, I would use this mechanism, but in testing, I found that the
Apollo Client cache, which caches all GraphQL queries by default, was unable to
refresh the Thread properly. These sorts of issues happen from time to time for all
frameworks. It will be part of your job as a developer to figure out workarounds and
solutions to these types of problems. So, instead of relying on refetchQueries,
we will use our refreshThread function, which we can get from our parent, to
force a refresh. I will show you the implementation of this function a little later in
the Thread route component.

 const onClickIncThreadPoint = async (

 e: React.MouseEvent<SVGSVGElement, MouseEvent>

) => {

 e.preventDefault();

 await execUpdateThreadPoint({

 variables: {

 userId,

 threadId,

 increment: true,

 },

 });

 refreshThread && refreshThread();

 };

 const onClickDecThreadPoint = async (

 e: React.MouseEvent<SVGSVGElement, MouseEvent>

) => {

 e.preventDefault();

 await execUpdateThreadPoint({

 variables: {

 userId,

 threadId,

 increment: false,

 },

 });

 refreshThread && refreshThread();

 };

Thread route 543

Both these functions, onClickIncThreadPoint and
onClickDecThreadPoint, are executing the execUpdateThreadPoint
mutation before calling refreshThread. The refreshThread &&
refreshThread() syntax is one of JavaScript's capabilities that allows you to
write less code. This syntax allows you to check that this optional function exists
and if it does, execute it.

 if (width > 768) {

 console.log("ThreadPointsBar points", points);

 return (

 <div className="threadcard-points">

 <div className="threadcard-points-item">

 <div

 className="threadcard-points-item-btn"

 style={{ display: `${allowUpdatePoints ?
 "block" : "none"}` }}

 >

Here, we have a small bit of logic that uses the allowUpdatePoints prop,
which decides whether to show or hide the icon container that allows the user to
increment points. We must do the same for the decrement button as well:

 <FontAwesomeIcon

 icon={faChevronUp}

 className="point-icon"

 onClick={onClickIncThreadPoint}

 />

 </div>

 {points}

 <div

 className="threadcard-points-item-btn"

 style={{ display: `${allowUpdatePoints ?
 "block" : "none"}` }}

 >

 <FontAwesomeIcon

 icon={faChevronDown}

 className="point-icon"

 onClick={onClickDecThreadPoint}

 />

544 Adding a GraphQL Schema – Part II

 </div>

 <FontAwesomeIcon icon={faHeart}
 className="points-icon" />

Here, we've added two new icons, faChevronUp and faChevronDown. When
clicked, they will increment or decrement the points of our Thread.

 </div>

 <div className="threadcard-points-item">

 {responseCount}

 <FontAwesomeIcon icon={faReplyAll}
 className="points-icon" />

 </div>

 </div>

);

 }

 return null;

};

export default ThreadPointsBar;

The rest of the code remains the same. However, notice that our CSS has changed
slightly. We've updated the existing threadcard-points-item class and added
a new class called threadcard-points-item-btn.

.threadcard-points-item {

 display: flex;

 flex-direction: column;

 justify-content: space-between;

 align-items: center;

 color: var(--point-color);

 font-size: var(--sm-med-font-size);

 text-align: center;

}

Thread route 545

The threadcard-points-item class is now a flexbox on a column so that it can
show its content vertically.

.threadcard-points-item-btn {

 cursor: pointer;

 margin-top: 0.35em;

 margin-bottom: 0.35em;

}

The threadcard-points-item-btn class converts our icon cursor into
a pointer so that when a user hovers over it, the cursor becomes a hand, indicating
that it can be clicked.

3. Now that we've made these changes, we need to update some other relevant
components. The first thing we want to do is disable resultCaching in our
ApolloClient. Open the index.tsx file and update the client object,
like this:

const client = new ApolloClient({

 uri: "http://localhost:5000/graphql",

 credentials: "include",

 cache: new InMemoryCache({

 resultCaching: false,

 }),

});

As the name suggests, this setting is supposed to disable query results from being
cached. However, it does not do this on its own – we have to add another setting
to our queries.

4. Update the Thread.tsx file. We'll just show the code that has been changed.

First, the getThreadById query has been updated slightly:
const GetThreadById = gql`

 query GetThreadById($id: ID!) {

 getThreadById(id: $id) {

 ... on EntityResult {

 messages

 }

 ... on Thread {

 id

546 Adding a GraphQL Schema – Part II

 user {

 id

We will need this field for our points system later, in order to determine that this
user is not trying to increase their own points.

 userName

 }

 lastModifiedOn

 title

 body

 points

 category {

 id

 name

 }

 threadItems {

 id

 body

 points

 user {

 id

Again, we'll be needing this field to check that a user is not updating their
own points.

 userName

 }

 }

 }

 }

 }

`;

const Thread = () => {

 const [execGetThreadById, { data: threadData }] =
 useLazyQuery(

 GetThreadById,

 { fetchPolicy: "no-cache" }

);

Thread route 547

Here, we've added a new option to our query called fetchPolicy, which controls
the caching policy for our individual call. In this case, we want no caching at all.
Again, I had to use fetchPolicy and resultCaching together to get the
desired no-cache effect.

 const [thread, setThread] = useState<ThreadModel |
 undefined>();

 const { id } = useParams();

 const [readOnly, setReadOnly] = useState(false);

 const refreshThread = () => {

 if (id && id > 0) {

 execGetThreadById({

 variables: {

 id,

 },

 });

 }

 };

Here, we have defined a function, called refreshThread, that calls our
execGetThreadById executable. This function will be passed to our
ThreadPointBar component later.

 useEffect(() => {

 if (id && id > 0) {

 execGetThreadById({

 variables: {

 id,

 },

 });

 }

 }, [id, execGetThreadById]);

548 Adding a GraphQL Schema – Part II

You're probably wondering why we haven't reused refreshThread in the first
useEffect call. To reuse it, we would have to include refreshThread in our
useEffect call list and make an additional call to useCallback so that changes
to refreshThread do not trigger a re-render. The tiny benefit this brings does
not justify the extra code:

 useEffect(() => {

 if (threadData && threadData.getThreadById) {

 setThread(threadData.getThreadById);

 setReadOnly(true);

 } else {

 setThread(undefined);

 setReadOnly(false);

 }

 }, [threadData]);

 return (

 <div className="screen-root-container">

 <div className="thread-nav-container">

 <Nav />

 </div>

 <div className="thread-content-container">

 <div className="thread-content-post-container">

 <ThreadHeader

 userName={thread?.user.userName}

 lastModifiedOn={thread ? thread.
 lastModifiedOn : new Date()}

 title={thread?.title}

 />

 <ThreadCategory category={thread?.category} />

 <ThreadTitle title={thread?.title} />

 <ThreadBody body={thread?.body}
 readOnly={readOnly} />

 </div>

 <div className="thread-content-points-container">

Thread route 549

Here, in our ThreadPointsBar, we are passing the new props we defined earlier:
 <ThreadPointsBar

 points={thread?.points || 0}

 responseCount={

 thread && thread.threadItems && thread.
 threadItems.length

 }

 userId={thread?.user.id || "0"}

 threadId={thread?.id || "0"}

 allowUpdatePoints={true}

 refreshThread={refreshThread}

 />

 </div>

 </div>

 <div className="thread-content-response-container">

 <hr className="thread-section-divider" />

 <ThreadResponsesBuilder

 threadItems={thread?.threadItems}

 readOnly={readOnly}

 />

 </div>

 </div>

);

};

550 Adding a GraphQL Schema – Part II

5. Here's what the Thread route screen now looks like with our new points system
in place:

Figure 16.1 – Thread route screen
If you try clicking the points buttons, you'll notice two things. For one, sometimes,
the points change does not immediately show on the screen, despite all the work
we did in eliminating caching as an issue. This is because we have a subtle bug in
our Repository call, which I'll discuss in a bit. The other issue is that our user can
add or remove more than one point at a time. This is another issue in our Styling
layer. We'll revisit these two issues once our client code is complete.

6. Now, we need to update the points capability for our ThreadItem and Thread
responses. We'll start with ThreadResponsesBuilder. Update useEffect,
like this:

useEffect(() => {

 if (threadItems) {

 const thResponses = threadItems.map((ti) => {

 return (

 <li key={`thr-${ti.id}`}>

 <ThreadResponse

 body={ti.body}

 userName={ti.user.userName}

 lastModifiedOn={ti.createdOn}

 points={ti.points}

Thread route 551

 readOnly={readOnly}

 userId={ti?.user.id || "0"}

 threadItemId={ti?.id || "0"}

 />

We are now passing the ThreadReponse component, which shows the Thread's
ThreadItem, userId, and threadItemId. In this component, we have
the ThreadPointsInline component, which displays the like points for
ThreadItem or Thread, depending on which was passed in, which I'll clarify
once we get to that control:

);

 });

 setResponseElements({thResponses});

 }

 }, [threadItems, readOnly]);

7. Now, the ThreadResponse component can be updated. I'm only showing the
changed code here.

First, add the following two fields to the ThreadResponseProps interface:
 userId: string;

 threadItemId: string;

Now, in the JSX, we can add our userId and threadItemId fields:
 return (

 <div>

 <div>

 <UserNameAndTime userName={userName}
 lastModifiedOn={lastModifiedOn} />

 {threadItemId}

 <ThreadPointsInline

 points={points || 0}

 userId={userId}

 threadItemId={threadItemId}

 />

552 Adding a GraphQL Schema – Part II

Here, we've passed our userId and threadItemId data to the
ThreadPointsInline component. Note that this component will display
points for either Threads or ThreadItems eventually. Also, note that I put
threadItemId in there just so we could distinguish between each ThreadItem
for now:

 </div>

 <div className="thread-body-editor">

 <RichEditor existingBody={body}
 readOnly={readOnly} />

 </div>

 </div>

);

8. Now, let's look at the changes we must make to the ThreadPointsInline
component.

Add the following import to the list of existing imports:
import "./ThreadPointsInline.css";

Take a look at the source code. For the most part, it's a lot like the
ThreadPointsBar CSS:

const UpdateThreadItemPoint = gql`

 mutation UpdateThreadItemPoint(

 $userId: ID!

 $threadItemId: ID!

 $increment: Boolean!

) {

 updateThreadItemPoint(

 userId: $userId

 threadItemId: $threadItemId

 increment: $increment

)

 }

`;

Thread route 553

Here, we added our updateThreadItemPoint mutation definition.
class ThreadPointsInlineProps {

 points: number = 0;

 userId?: string;

 threadId?: string;

 threadItemId?: string;

 allowUpdatePoints?: boolean = false;

 refreshThread?: () => void;

}

This is now going to be our props list. Notice that we have a field for threadId.
We will be using this ThreadPointsInline control to display our Thread points
on mobile screens:

const ThreadPointsInline: FC<ThreadPointsInlineProps> =
({

 points,

 userId,

 threadId,

 threadItemId,

 allowUpdatePoints,

 refreshThread,

}) => {

 const [execUpdateThreadItemPoint] =
 useMutation(UpdateThreadItemPoint);

 const onClickIncThreadItemPoint = async (

 e: React.MouseEvent<SVGSVGElement, MouseEvent>

) => {

 e.preventDefault();

 await execUpdateThreadItemPoint({

 variables: {

 userId,

 threadItemId,

 increment: true,

 },

 });

 refreshThread && refreshThread();

 };

554 Adding a GraphQL Schema – Part II

There's nothing particularly special here – both our
onClickIncThreadItemPoint and onClickDecThreadItemPoint calls
are doing similar things to the ThreadPointsBar component in that they call
our update mutation and then refresh the Thread data:

 const onClickDecThreadItemPoint = async (

 e: React.MouseEvent<SVGSVGElement, MouseEvent>

) => {

 e.preventDefault();

 await execUpdateThreadItemPoint({

 variables: {

 userId,

 threadItemId,

 increment: false,

 },

 });

 refreshThread && refreshThread();

 };

Now, in our JSX, we will do something similar to our ThreadPointsBar
component and include icons that allow us to increment or decrement the entity
points:

 return (

 <div

 className="threadpointsinline-item-btn"

 style={{ display: `${allowUpdatePoints ? "block"
 : "none"}` }}

 >

 <FontAwesomeIcon

 icon={faChevronUp}

 className="point-icon"

 onClick={onClickIncThreadItemPoint}

 />

 </div>

 {points}

 <div

 className="threadpointsinline-item-btn"

Thread route 555

 style={{ display: `${allowUpdatePoints ? "block"
 : "none"}` }}

 >

 <FontAwesomeIcon

 icon={faChevronDown}

 className="point-icon"

 onClick={onClickDecThreadItemPoint}

 />

 </div>

 <div className="threadpointsinline-item-btn">

 <FontAwesomeIcon icon={faHeart}
 className="points-icon" />

 </div>

);

};

export default ThreadPointsInline;

9. Now, if you load the Thread route screen again, you should see ThreadItems
for our Thread. Again, your local data will vary, so please make sure your Thread
contains ThreadItem data and their respective points, along with the icon
buttons, as shown in the following screenshot:

Figure 16.2 – ThreadItem points

556 Adding a GraphQL Schema – Part II

Again, if you click the increment and decrement buttons, you should see that
we have the same issue that we had with the Thread points. Our points score does
not always update, and the user can keep adding or removing points. Let's fix this
issue now.

10. Go to your server project, open the ThreadItemPointRepo.ts file, find the
updateThreadItemPoint function, and go to the first call to threadItem.
save(). Add a prefix to all these calls in the function, like this:

await threadItem.save();

Can you guess why this will fix the issue we're having? By calling await on the
save call, we are forcing our function to wait until the save completes. Then, when
we get our ThreadItem data, we are assured that it does indeed contain the newest
points value. This is one of the tricky sides of using asynchronous code. It's faster,
but you have to think about what you're doing; otherwise, you may run into issues
like this.

Now, go ahead and update the updateThreadPoint function yourself, similar
to what we just did with our updateThreadItemPoint function. Make sure to
update every save function.

Now, if you try incrementing or decrementing the points, you should see them
update properly.

11. Now, let's fix the issue of users being able to keep adding or removing points.
There's actually multiple issues in this code path. Our two resolvers that update
points, updateThreadPoint and updateThreadItemPoint, do not check
for user authentication before trying to allow the user to update their points. This is
obviously wrong. Additionally, our client-side code is actually passing the userId
value of Thread or ThreadItem instead of the currently logged-in user. We can
fix both issues together. First, update the updateThreadPoint resolver, like this:

updateThreadPoint: async (

 obj: any,

 args: { threadId: string; increment: boolean },

 ctx: GqlContext,

 info: any

): Promise<string> => {

Thread route 557

We no longer take userId as a parameter for this resolver. This is because,
as shown in the following code, we now check that the user is logged in via
the session.userId field. Then, when we call our updateThreadPoint
Repository query, we pass that session.userId field in as the userId
parameter:

 let result = "";

 try {

 if (!ctx.req.session || !ctx.req.session?.userId)
 {

 return "You must be logged in to set likes.";

 }

 result = await updateThreadPoint(

 ctx.req.session!.userId,

 args.threadId,

 args.increment

);

 return result;

 } catch (ex) {

 throw ex;

 }

 },

Make this same change for the updateThreadItemPoint resolver, since
they are virtually identical calls. Also, don't forget to update our typeDefs so
that the Mutation signatures for these calls no longer have the userId parameter.
We'll also need to update the code paths in our client and remove the userId
parameter there later.

12. Now, add this code to the updateThreadPoint Repository call at the top of the
implementation:

if (!userId || userId === "0") {

 return "User is not authenticated";

}

This will prevent any odd values for userId getting passed in, and us thinking
that the user is authenticated when they are not. Add the same code to the
updateThreadItemPoint Repository call.

558 Adding a GraphQL Schema – Part II

Now, let's fix the client-side code and remove the userId parameter. The
easiest way to do this is to remove the call from the ThreadPointsBar and
ThreadPointsInline components. If you then save the code, you'll get the
compiler telling you where the related calls are via userId.

13. Let's start with ThreadPointsBar. Update it like this. Remove userId from the
UpdateThreadPoint Mutation parameters. Then, remove it from the props of
the component's ThreadPointsBarProps type. Next, remove it from the props
parameters of ThreadPointsBar. Finally, remove userId from the calls to
execUpdateThreadPoints.

14. Next, in the Thread.tsx route component, find the call to ThreadPointsBar
and simply remove the userId props. Also, remove the useSelector call to get
the user reducer as it's no longer being used.

The ThreadPointsInline component also needs the same kind of refactor, but
I'll leave that change up to you since it's basically the same type of change we made
for ThreadPointsBar. Again, try making the change while beginning with the
ThreadPointsInline component and save your code. The compiler should tell
you where the references to userId still exist.

With that, our points should update properly. The points should only update when
the user is logged in, and only be able to change by one point, either incremented
or decremented. The user should also not be allowed to change the points for their
own Thread or ThreadItem.

Now, let's look at something else. When looking at the Thread route component in
mobile mode, you will see that our points counts are no longer visible, as shown here:

Figure 16.3 – Thread route screen mobile mode

Thread route 559

This, of course, is deliberate since there is so little horizontal room. So, let's put our
ThreadPointsInline component in this mobile screen and update it so that it can
work for Threads as well as ThreadItems:

1. Because ThreadPointsInline is being refactored to use the
updateThreadPoint Mutation that ThreadPointBar is using, we must move
those calls into their own Hook and share them. Create a new file inside the Hooks
folder called useUpdateThreadPoint.ts and add the respective Git source
code to it.

By doing this, we have simply copied most of the code from the ThreadPointBar
component into here. Once we've done this, we return the event handlers to
be used by our calling component; that is, onClickIncThreadPoint and
onClickDecThreadPoint.

2. Now, let's refactor the ThreadPointBar component so that it can use this Hook.
Update it like this:

import useUpdateThreadPoint from "../../hooks/
useUpdateThreadPoint";

Here, we've imported our new Hook and removed the Mutation for
UpdateThreadPoint:

export class ThreadPointsBarProps {

 points: number = 0;

 responseCount?: number;

 threadId?: string;

 allowUpdatePoints?: boolean = false;

 refreshThread?: () => void;

}

const ThreadPointsBar: FC<ThreadPointsBarProps> = ({

 points,

 responseCount,

 threadId,

 allowUpdatePoints,

 refreshThread,

}) => {

 const { width } = useWindowDimensions();

 const { onClickDecThreadPoint, onClickIncThreadPoint }
 = useUpdateThreadPoint(

560 Adding a GraphQL Schema – Part II

 refreshThread,

 threadId

);

Here, we've received the event handlers from our useUpdateThreadPoint
Hook. The rest of the code is identical.

3. Now, let's refactor ThreadPointsInline, like this:

import React, { FC } from "react";

import { FontAwesomeIcon } from "@fortawesome/react-
fontawesome";

import {

 faHeart,

 faChevronDown,

 faChevronUp,

} from "@fortawesome/free-solid-svg-icons";

import { gql, useMutation } from "@apollo/client";

import "./ThreadPointsInline.css";

import useUpdateThreadPoint from "../../hooks/
useUpdateThreadPoint";

const UpdateThreadItemPoint = gql`

 mutation UpdateThreadItemPoint($threadItemId: ID!,
 $increment: Boolean!) {

 updateThreadItemPoint(threadItemId: $threadItemId,
 increment: $increment)

 }

`;

class ThreadPointsInlineProps {

 points: number = 0;

 threadId?: string;

 threadItemId?: string;

 allowUpdatePoints?: boolean = false;

 refreshThread?: () => void;

}

const ThreadPointsInline: FC<ThreadPointsInlineProps> =
({

Thread route 561

 points,

 threadId,

 threadItemId,

 allowUpdatePoints,

 refreshThread,

}) => {

 const [execUpdateThreadItemPoint] =
 useMutation(UpdateThreadItemPoint);

 const { onClickDecThreadPoint, onClickIncThreadPoint }
 = useUpdateThreadPoint(

 refreshThread,

 threadId

);

Here, we've gotten our event handlers from the useUpdateThreadPoint Hook:
 const onClickIncThreadItemPoint = async (

 e: React.MouseEvent<SVGSVGElement, MouseEvent>

) => {

 e.preventDefault();

 await execUpdateThreadItemPoint({

 variables: {

 threadItemId,

 increment: true,

 },

 });

 refreshThread && refreshThread();

 };

 const onClickDecThreadItemPoint = async (

 e: React.MouseEvent<SVGSVGElement, MouseEvent>

) => {

 e.preventDefault();

 await execUpdateThreadItemPoint({

 variables: {

 threadItemId,

 increment: false,

 },

 });

562 Adding a GraphQL Schema – Part II

 refreshThread && refreshThread();

 };

 return (

 <div

 className="threadpointsinline-item-btn"

 style={{ display: `${allowUpdatePoints ? "block"
 : "none"}` }}

 >

 <FontAwesomeIcon

 icon={faChevronUp}

 className="point-icon"

 onClick={threadId ? onClickIncThreadPoint :
 onClickIncThreadItemPoint}

In the following code, there's a tiny bit of logic that decides whether we will update
the point of a Thread or ThreadItem:

 />

 </div>

 {points}

 <div

 className="threadpointsinline-item-btn"

 style={{ display: `${allowUpdatePoints ? "block"
 : "none"}` }}

 >

 <FontAwesomeIcon

 icon={faChevronDown}

 className="point-icon"

 onClick={threadId ? onClickDecThreadPoint :
 onClickDecThreadItemPoint}

 />

We have the same point selection logic here as well:
 </div>

 <div className="threadpointsinline-item-btn">

 <FontAwesomeIcon icon={faHeart}
 className="points-icon" />

 </div>

Thread route 563

);

};

export default ThreadPointsInline;

Now, if you run the Thread route in mobile mode, you'll see this:

Figure 16.4 – Thread route screen on mobile with our points incrementor

Note that I've made some styling updates to the ThreadCategory component so that it
can be viewed on the Home route in mobile mode as well.

Now, we can view existing Threads on our screen. However, we also need to be able to add
new Threads, as well as ThreadItems. Let's add those features now:

1. First, we need to make a small change to our createThread Repository
call. Open the ThreadRepo file and update the last return statement for
createThread, which looks as follows:

return { messages: ["Thread created successfully."] };

Change it so that it looks like this:
return { messages: [thread.id] };

Now, if our createThread is successful, it will only return the ID. This minimizes
payload sizes but gives our client what it needs to know.

564 Adding a GraphQL Schema – Part II

2. Next, we must make another small change to our Thread route. Open App.tsx
and find the route for Thread. Update that route like this:

<Route path="/thread/:id?" render={renderThread} />

This is a very subtle change, but we added a ? immediately after the id parameter.
This will allow the Thread route to load with no parameters, which is what tells the
screen that we want to make a new Thread post.

3. Now, we will add a Post button to our Home screen, as shown here:

Figure 16.5 – New Post button
Here's the core code update for the Main.tsx file:

const Main = () => {

 const [

 execGetThreadsByCat,

 {

 //error: threadsByCatErr,

 //called: threadsByCatCalled,

 data: threadsByCatData,

 },

] = useLazyQuery(GetThreadsByCategoryId);

 const [

 execGetThreadsLatest,

 {

 //error: threadsLatestErr,

 //called: threadsLatestCalled,

 data: threadsLatestData,

 },

] = useLazyQuery(GetThreadsLatest);

Thread route 565

 const { categoryId } = useParams();

 const [category, setCategory] = useState<Category |
 undefined>();

 const [threadCards, setThreadCards] =
 useState<Array<JSX.Element> | null>(

 null

);

 const history = useHistory();

Not much has changed here, but as you can see, we call useHistory so that
we can modify the URL we are on:

 useEffect(() => {

 if (categoryId && categoryId > 0) {

 execGetThreadsByCat({

 variables: {

 categoryId,

 },

 });

 } else {

 execGetThreadsLatest();

 }

 // eslint-disable-next-line react-hooks/exhaustive-
 // deps

 }, [categoryId]);

 useEffect(() => {

 console.log("main threadsByCatData",
 threadsByCatData);

 if (

 threadsByCatData &&

 threadsByCatData.getThreadsByCategoryId &&

 threadsByCatData.getThreadsByCategoryId.threads

) {

 const threads = threadsByCatData.
 getThreadsByCategoryId.threads;

 const cards = threads.map((th: any) => {

 return <ThreadCard key={`thread-${th.id}`}
thread={th} />;

 });

566 Adding a GraphQL Schema – Part II

 setCategory(threads[0].category);

 setThreadCards(cards);

 } else {

 setCategory(undefined);

 setThreadCards(null);

 }

 }, [threadsByCatData]);

 useEffect(() => {

 if (

 threadsLatestData &&

 threadsLatestData.getThreadsLatest &&

 threadsLatestData.getThreadsLatest.threads

) {

 const threads = threadsLatestData.getThreadsLatest.
 threads;

 const cards = threads.map((th: any) => {

 return <ThreadCard key={`thread-${th.id}`}
 thread={th} />;

 });

 setCategory(new Category("0", "Latest"));

 setThreadCards(cards);

 }

 }, [threadsLatestData]);

 const onClickPostThread = () => {

 history.push("/thread");

 };

Here, we have a new handler for the Post button click, which redirects the user to
the thread screen without any id. I'll show you why that's important in a bit:

 return (

 <main className="content">

 <button className="action-btn"
 onClick={onClickPostThread}>

 Post

 </button>

Thread route 567

Here, we have our button declaration with that handler:
 <MainHeader category={category} />

 <div>{threadCards}</div>

 </main>

);

};

The rest of the code is the same as it was previously.

4. Now, we need to update our Thread.tsx component so that when it sees
we have no id, it knows to set itself up so that it can add a new Thread. However,
in order to do this, we need to update some of its child components. Let's start with
RichEditor. Update this component as follows. I'll only show the code that's been
changed here:

export const getTextFromNodes = (nodes: Node[]) => {

 return nodes.map((n: Node) => Node.string(n)).
 join("\n");

};

getTextFromNodes is a new helper that will allow the Slate.js format of our
Node array to be translated into a string:

Note
Slate.js allows complex formatting to be performed on a user's text. This
information is very complex and cannot be saved as simple text. Therefore,
Slate.js uses objects based upon the Node type at hand to store this formatted
text. When this data needs to be stored in our database, we will have to
convert it into text (JSON) first. This is part of the reason we need this
getTextFromNodes function.

const HOTKEYS: { [keyName: string]: string } = {

 "mod+b": "bold",

 "mod+i": "italic",

 "mod+u": "underline",

 "mod+`": "code",

};

const initialValue = [

 {

568 Adding a GraphQL Schema – Part II

 type: "paragraph",

 children: [{ text: "" }],

InitialValue is now an empty string:
 },

];

const LIST_TYPES = ["numbered-list", "bulleted-list"];

class RichEditorProps {

 existingBody?: string;

 readOnly?: boolean = false;

 sendOutBody?: (body: Node[]) => void;

We've added this additional prop so that when our editor has its text updated, that
change will go up the component hierarchy to our Thread.tsx component.
Thread.tsx needs to know the latest value so that it can send it as a parameter
when it tries to create a new Thread. We'll be repeating this sendOut pattern in these
child components:

}

const RichEditor: FC<RichEditorProps> = ({

 existingBody,

 readOnly,

 sendOutBody,

}) => {

 const [value, setValue] =
 useState<Node[]>(initialValue);

 const renderElement = useCallback((props) => <Element
{...props} />, []);

 const renderLeaf = useCallback((props) => <Leaf {...
 props} />, []);

 const editor = useMemo(() =>
 withHistory(withReact(createEditor())), []);

 useEffect(() => {

 console.log("existingBody", existingBody);

 if (existingBody) {

 setValue(JSON.parse(existingBody));

Thread route 569

The existingBody prop is the initial value being sent in from the parent
component. This value will come in when the Thread.tsx route screen is loaded
from an existing Thread. This Thread is, of course, being loaded from our database,
which means that the text data will be saved into our database as a string. This is
because Postgres does not understand Slate.js' Node types. The side effect of this is
that before setValue can receive this data, it must first be parsed in JSON format,
which is why you can see setValue(JSON.parse(existingBody)).

 }

 // eslint-disable-next-line react-hooks/exhaustive-
 // deps

 }, [existingBody]);

 const onChangeEditorValue = (val: Node[]) => {

 setValue(val);

 sendOutBody && sendOutBody(val);

Here, we've set our val from the editor, but also sent it back to the parent
component using sendOutBody.

 };

 return (

 <Slate editor={editor} value={value}
 onChange={onChangeEditorValue}>

 <Toolbar>

 <MarkButton format="bold" icon="bold" />

 <MarkButton format="italic" icon="italic" />

 <MarkButton format="underline" icon="underlined"
 />

 <MarkButton format="code" icon="code" />

 <BlockButton format="heading-one" icon="header1"
 />

 <BlockButton format="block-quote" icon="in_
 quotes" />

 <BlockButton format="numbered-list" icon="list_
 numbered" />

 <BlockButton format="bulleted-list" icon="list_
 bulleted" />

 </Toolbar>

 <Editable

 className="editor"

570 Adding a GraphQL Schema – Part II

 renderElement={renderElement}

 renderLeaf={renderLeaf}

 placeholder="Enter your post here."

The following is a trivial placeholder change.
 spellCheck

 autoFocus

 onKeyDown={(event) => {

 for (const hotkey in HOTKEYS) {

 if (isHotkey(hotkey, event as any)) {

 event.preventDefault();

 const mark = HOTKEYS[hotkey];

 toggleMark(editor, mark);

 }

 }

 }}

 readOnly={readOnly}

 />

 </Slate>

);

};

5. Now, we need to update ThreadCategory component. I'll only show the code
that has been changed here:

interface ThreadCategoryProps {

 category?: Category;

 sendOutSelectedCategory: (cat: Category) => void;

Here, we have the sendOutSelectedCategory function, which allows us to
send back a category selection using the sendOut method:

}

const ThreadCategory: FC<ThreadCategoryProps> = ({

 category,

 sendOutSelectedCategory,

}) => {

Thread route 571

6. Next, we'll update our ThreadTitle component, like this:

import React, { FC, useEffect, useState } from "react";

interface ThreadTitleProps {

 title?: string;

 readOnly: boolean;

Now, we want to make our title read-only when we've loaded an existing Thread:
 sendOutTitle: (title: string) => void;

Once again, here, we have the sendOut pattern using sendOutTitle:
}

const ThreadTitle: FC<ThreadTitleProps> = ({

 title,

 readOnly,

 sendOutTitle,

}) => {

 const [currentTitle, setCurrentTitle] = useState("");

 useEffect(() => {

 setCurrentTitle(title || "");

 }, [title]);

 const onChangeTitle = (e: React.
 ChangeEvent<HTMLInputElement>) => {

 setCurrentTitle(e.target.value);

 sendOutTitle(e.target.value);

Here, we've set our title and also sent it out to our component's parent:
 };

 return (

 <div className="thread-title-container">

 Title

 <div className="field">

 <input

 type="text"

 value={currentTitle}

 onChange={onChangeTitle}

 readOnly={readOnly}

572 Adding a GraphQL Schema – Part II

Here, we are using our new props:
 />

 </div>

 </div>

);

};

export default ThreadTitle;

7. Now, let's update ThreadBody, like this:

import React, { FC } from "react";

import RichEditor from "../../editor/RichEditor";

import { Node } from "slate";

interface ThreadBodyProps {

 body?: string;

 readOnly: boolean;

 sendOutBody: (body: Node[]) => void;

Again, we need the sendOut pattern for the sendOutBody function:
}

const ThreadBody: FC<ThreadBodyProps> = ({ body,
readOnly, sendOutBody }) => {

 return (

 <div className="thread-body-container">

 Body

 <div className="thread-body-editor">

 <RichEditor

 existingBody={body}

 readOnly={readOnly}

 sendOutBody={sendOutBody}

Now, we must send the sendOutBody function to our RichEditor since that
control handles body updates:

 />

 </div>

 </div>

Thread route 573

);

};

export default ThreadBody;

8. Finally, we have the Thread.tsx file. We must make a number of changes here.
Let's look at all of them.

You should be able to add the appropriate imports yourself; for example, here,
we need the getTextFromNodes helper:

const GetThreadById = gql`

 query GetThreadById($id: ID!) {

 getThreadById(id: $id) {

 ... on EntityResult {

 messages

 }

 ... on Thread {

 id

 user {

 id

 userName

 }

 lastModifiedOn

 title

 body

 points

 category {

 id

 name

 }

 threadItems {

 id

 body

 points

 user {

 id

 userName

 }

574 Adding a GraphQL Schema – Part II

 }

 }

 }

 }

`;

const CreateThread = gql`

 mutation createThread(

 $userId: ID!

 $categoryId: ID!

 $title: String!

 $body: String!

) {

 createThread(

 userId: $userId

 categoryId: $categoryId

 title: $title

 body: $body

) {

 messages

 }

 }

`;

Here, is our new CreateThread mutation:
const threadReducer = (state: any, action: any) => {

 switch (action.type) {

 case "userId":

 return { ...state, userId: action.payload };

 case "category":

 return { ...state, category: action.payload };

 case "title":

 return { ...state, title: action.payload };

 case "body":

 return { ...state, body: action.payload };

 case "bodyNode":

 return { ...state, bodyNode: action.payload };

 default:

Thread route 575

 throw new Error("Unknown action type");

 }

};

A new reducer also needs to be added; that is, threadReducer:
const Thread = () => {

 const { width } = useWindowDimensions();

 const [execGetThreadById, { data: threadData }] =
 useLazyQuery(

 GetThreadById,

 { fetchPolicy: "no-cache" }

);

 const [thread, setThread] = useState<ThreadModel |
 undefined>();

 const { id } = useParams();

 const [readOnly, setReadOnly] = useState(false);

 const user = useSelector((state: AppState) => state.
 user);

Here's our user object, which only appears if the user is logged in. We will only use
this object when we're creating a new Thread:

 const [

 { userId, category, title, body, bodyNode },

 threadReducerDispatch,

] = useReducer(threadReducer, {

 userId: user ? user.id : "0",

 category: undefined,

 title: "",

 body: "",

 bodyNode: undefined,

 });

Here's our reducer. These fields will be used to submit new Threads during
creation mode:

 const [postMsg, setPostMsg] = useState("");

The following code shows the status of our Thread creation attempt:
 const [execCreateThread] = useMutation(CreateThread);

576 Adding a GraphQL Schema – Part II

Here's our actual CreateThread Mutation caller, execCreateThread:
 const history = useHistory();

We'll be using useHistory() to switch to the newly created Thread's route.
For example, if the new Thread id is 25, then the route will be "/thread/25":

 const refreshThread = () => {

 if (id && id > 0) {

 execGetThreadById({

 variables: {

 id,

 },

 });

 }

 };

 useEffect(() => {

 console.log("id");

 if (id && id > 0) {

 execGetThreadById({

 variables: {

 id,

 },

 });

 }

 }, [id, execGetThreadById]);

 useEffect(() => {

 threadReducerDispatch({

 type: "userId",

 payload: user ? user.id : "0",

 });

 }, [user]);

Here, we are updating the reducer's userId, in case the user has logged in:
 useEffect(() => {

 if (threadData && threadData.getThreadById) {

 setThread(threadData.getThreadById);

Thread route 577

 setReadOnly(true);

 } else {

 setThread(undefined);

 setReadOnly(false);

 }

 }, [threadData]);

 const receiveSelectedCategory = (cat: Category) => {

 threadReducerDispatch({

 type: "category",

 payload: cat,

 });

 };

Here, we have started adding the definitions for our handler functions in the
sendOut pattern, which we've been using in our child components. In this case,
receiveSelectedCategory receives the newly set ThreadCategory from
the CategoryDropDown control:

 const receiveTitle = (updatedTitle: string) => {

 threadReducerDispatch({

 type: "title",

 payload: updatedTitle,

 });

 };

 const receiveBody = (body: Node[]) => {

 threadReducerDispatch({

 type: "bodyNode",

 payload: body,

 });

 threadReducerDispatch({

 type: "body",

 payload: getTextFromNodes(body),

 });

 };

578 Adding a GraphQL Schema – Part II

The receiveTitle and receiveBody functions also handle updates that are
made to title and body from their respective child components:

 const onClickPost = async (

 e: React.MouseEvent<HTMLButtonElement, MouseEvent>

) => {

The onClickPost function handles the Post button being clicked and submits
a new Thread:

 e.preventDefault();

 if (!userId || userId === "0") {

 setPostMsg("You must be logged in before you can
 post.");

 } else if (!category) {

 setPostMsg("Please select a category for your
 post.");

 } else if (!title) {

 setPostMsg("Please enter a title.");

 } else if (!bodyNode) {

 setPostMsg("Please select a category for your
 post.");

The previous if/else statements are validations for the reducer field values, which are
used for submitting a new Thread:

 } else {

 setPostMsg("");

 const newThread = {

 userId,

 categoryId: category?.id,

 title,

 body: JSON.stringify(bodyNode),

Note that we are converting the Slate.js array of the Node type into a JSON string,
which again is what gets saved into the database:

 };

This is builds our parameters to our CreateThread mutation:
 const { data: createThreadMsg } = await
 execCreateThread({

Thread route 579

 variables: newThread,

 });

Here, we've executed the Mutation:
 if (

 createThreadMsg.createThread &&

 createThreadMsg.createThread.messages &&

 !isNaN(createThreadMsg.createThread.messages[0])

) {

 setPostMsg("Thread posted successfully.");

 history.push(`/thread/${createThreadMsg.
 createThread.messages[0]}`);

If the Thread creation attempt was successful, then we redirect the user to the newly
created Thread route screen, based on its id:

 } else {

 setPostMsg(createThreadMsg.createThread.
 messages[0]);

If the attempt fails, we show the user a server error:
 }

 }

 };

 return (

 <div className="screen-root-container">

 <div className="thread-nav-container">

 <Nav />

 </div>

 <div className="thread-content-container">

 <div className="thread-content-post-container">

 {width <= 768 && thread ? (

 <ThreadPointsInline

 points={thread?.points || 0}

 threadId={thread?.id}

 refreshThread={refreshThread}

 allowUpdatePoints={true}

 />

) : null}

580 Adding a GraphQL Schema – Part II

If the screen is being shown on a mobile device and the thread exists, we show this
control; otherwise, we don't:

 <ThreadHeader

 userName={thread ? thread.user.userName :
 user?.userName}

 lastModifiedOn={thread ? thread.
 lastModifiedOn : new Date()}

 title={thread ? thread.title : title}

 />

 <ThreadCategory

 category={thread ? thread.category :
 category}

 sendOutSelectedCategory=

 {receiveSelectedCategory}

 />

 <ThreadTitle

 title={thread ? thread.title : ""}

 readOnly={thread ? readOnly : false}

 sendOutTitle={receiveTitle}

 />

 <ThreadBody

 body={thread ? thread.body : ""}

 readOnly={thread ? readOnly : false}

 sendOutBody={receiveBody}

 />

The rest of these child components contain the same logic. If the thread object
exists, we display a thread. If not, then we go into Thread Post mode:

 {thread ? null : (

 <>

 <div style={{ marginTop: ".5em" }}>

 <button className="action-btn"
 onClick={onClickPost}>

 Post

 </button>

 </div>

 {postMsg}

Thread route 581

 </>

)}

Here is our Thread Post button and status message. Again, if our thread object
exists, we do not show these, whereas if the thread does, we show them.

The rest of code is identical to what we had previously, so I won't show it here.

9. Now, if we run the Thread route with no id, we get the following screen:

Figure 16.6 – New Thread screen

Warning
Since we are now saving Slate.js Nodes as JSON strings inside the Body field of
our Thread table, before you can test the code, you must purge any existing
Thread and ThreadItem data before you can display it again.

582 Adding a GraphQL Schema – Part II

There is an issue here. Since we now have JSON strings in the Body field of our
database, when this data comes back, it will look like this on the Home screen:

Figure 16.7 – Home screen
Obviously, this is not what we want. Here, we need to update this text so that it's
a normal string. Luckily, we can just use our existing RichEditor to display the
text and keep all the formatting intact.

Thread route 583

10. Update the RichEditor component by putting a readOnly check on the
Toolbar, like this:

{readOnly ? null : (

 <Toolbar>

 <MarkButton format="bold" icon="bold" />

 <MarkButton format="italic" icon="italic" />

 <MarkButton format="underline"
 icon="underlined" />

 <MarkButton format="code" icon="code" />

 <BlockButton format="heading-one"
 icon="header1" />

 <BlockButton format="block-quote" icon="in_
 quotes" />

 <BlockButton format="numbered-list" icon="list_
 numbered" />

 <BlockButton format="bulleted-list" icon="list_
 bulleted" />

 </Toolbar>

)}

So, as an example, if we are in readOnly mode, this Toolbar does not appear.

11. Update the ThreadCard component by replacing the <div>{thread.body}</
div> line in the JSX with the following:

<RichEditor existingBody={thread.body} readOnly={true} />

Again, make sure your import of RichEditor is also there.

584 Adding a GraphQL Schema – Part II

12. You should now see something like this on the Home screen. Your own data will
vary from what's being shown here:

Figure 16.8 – Home screen with body

Thread route 585

Note that this will also cause RichEditor on our Thread route screen to hide the
Toolbar in readOnly mode. Now, we just need to allow new ThreadItem responses
to be made and we're done with this section. We will repurpose the ThreadResponse
component so that it also allows ThreadItems to be submitted, instead of just being
displayed:

1. First, we need to make some minor adjustments to the server side. Open
ThreadItemRepo and find createThreadItem. In the last return statement,
update it, as follows:

return { messages: [`${threadItem.id}`] };

Just like what we did with our createThread function, we are returning the
ThreadItem's id.

2. Now, inside ThreadRepo, update the call to findOne, like this:

const thread = await Thread.findOne({

 where: {

 id,

 },

 relations: [

 "user",

 "threadItems",

 "threadItems.user",

 "threadItems.thread",

 "category",

],

 });

We now want to add the parent Thread information so that when we submit
a ThreadItem response, we can associate it with the correct parent Thread.

586 Adding a GraphQL Schema – Part II

3. Now, we need to refactor the ThreadItem.ts model in our client-side code so
that it takes a thread object instead of a threadId:

public thread: Thread

By doing this, we receive the Thread object from the query we just updated.

4. Now, update ThreadResponse, as shown in the source code. Make sure you have
all your imports.

First, you'll see we have our new CreateThreadItem Mutation.

In the ThreadResponseProps interface, we can see that the body prop is the
initial value of RichEditor before any changes are made. We'll also need to
receive the parent threadId if we are going to submit a new ThreadItem.

After that, we need to get the user object from useSelector. We're doing this
because the current user will be submitting new ThreadItems.

Next, we have execCreateThreadItem, which is our Mutation executor for
CreateThreadItem.

Then, we have our status message, postMsg, for when the user attempts to save.

Then, we have the current editing body value, bodyToSave, inside RichEditor.

Next, useEffect is used to initialize our bodyToSave value from the passed-in
prop body so that we have an initial value to start with.

The onClickPost function allows us to do some validation checks before we
attempt to submit our new ThreadItem. Once we've done this, we can submit and
refresh our parent Thread.

In the receiveBody function, we receive our updated text from our
RichEditor component. We use this if we are submitting a new ThreadItem.

In the returned JSX, we decide not to show ThreadPointsInline if we are not
in readOnly mode. However, if we are in edit mode, we allow the Post button and
the status message to be shown.

Thread route 587

5. Now, if we create a few ThreadItem posts, we should see something like this:

Figure 16.9 – Submitted ThreadItem responses

That's it for the Thread route screen.

We're almost there and you've done a phenomenal job thus far. We've covered so much
material and code to get to this stage. You should feel wonderful about your progress.
We have one more section to complete and then we're done with our app!

588 Adding a GraphQL Schema – Part II

The last item we need to configure is RightMenu. In this menu, we will list up to three of
the top ThreadCategories, based on the number of Threads each ThreadCategory has
attributed to it. This will involve a longer multi-part query and is a good exercise:

1. First, we need to add a new type called CategoryThread to the typeDefs file,
like this:

type CategoryThread {

 threadId: ID!

 categoryId: ID!

 categoryName: String!

 title: String!

 titleCreatedOn: Date!

 }

Note that titleCreatedOn is only there for checking the sort. We won't use it in
our client-side code.

2. Now, add a new model to our repository folder called CategoryThread.ts and
add the following code. Note that this class will not be an Entity in our database.
Instead, it will be an aggregation class that will contain fields from multiple entities:

export default class CategoryThread {

 constructor(

 public threadId: string,

 public categoryId: string,

 public categoryName: string,

 public title: string,

 public titleCreatedOn: Date

) {}

}

3. Now, get the code from the source and create the CategoryThreadRepo.ts file
with that code.

From the top, first, we have made our initial query to get
ThreadCategory data from our database using ThreadCategory.
createQueryBuilder("threadCategory"). Notice that we have also
included our relationship to the Threads table.

Thread route 589

Now, we are about to post-process our query to get the results we want. We are not
doing this work in our TypeORM query because, for more complex sorting and
filtering, TypeORM is sometimes difficult and finicky to work with. Using standard
JavaScript will get us what we need more easily.

In the call to categories.sort, on line 14, we are doing a descending sort based
on the number of Thread records each ThreadCategory contains. Then, we take
only the first three records of the result.

Then, we take this result and sort the actual Thread records by their createdOn
timestamp in descending order.

By doing this, we get, at most, three Thread records for each category, ordered by
their createdOn timestamps.

4. Now, let's test this using GraphQL Playground:

Figure 16.10 – GetTopCategoryThread sort result
As you can see, the sorts and filters are working.

5. Now, let's finish our client-side code. Open CategoryThread.ts and update
category so that it's now categoryName. This will match our server-side model
name for this field.

590 Adding a GraphQL Schema – Part II

6. Open TopCategory.tsx and update the line shown in the return JSX:

{topCategories[0].category}

Change category so that it's now categoryName.

7. Now, open RightMenu.tsx and update it from the source code:

After making the necessary imports, we need to define our GraphQL query,
GetTopCategoryThread, and then use that query on line 20 by calling
useQuery on it. Here, we're using that query.

Then, on line 26, useEffect has been updated to make use of the resulting
categoryThreadData. The groupBy method from lodash is grouping our
data by categoryName so that it's easier to work with. The original code for this
was covered in Chapter 11, What We Will Learn – Online Forum Application.

Finally, we need to check for mobile width, which returns either null or our UI.

8. Now, if we run our Home screen, we should see our RightMenu populated
with data:

Figure 16.11 – Home screen with popular categories shown

Summary 591

Again, your local data will vary.

With that, we're done! There was a lot of code, and many frameworks and concepts.
You've done an amazing job getting through it all. Take a much-deserved break.

In this section, we covered the client-side code of our app and how to glue it to our
backend GraphQL server. We had to tweak our styling and make adjustments by
refactoring our code. We also had to fix hard-to-find bugs. This is exactly what we'll be
doing in real life, so this was great practice.

Summary
In this final coding chapter, we brought everything together by finishing our code and
integrating the frontend React app with the backend GraphQL server. We've learned an
enormous amount in this chapter and this book as a whole. You should feel proud of how
far you've come.

My suggestion would be, before you move on to the final chapter, to try and make changes
to the app. Come up with your own ideas for features and try building them. Ultimately,
this is the only way you will really learn.

In the final chapter of this book, Chapter 17, Deploying an Application to AWS, we will
learn how to deploy our application to Linux and NGINX on the Azure cloud.

17
Deploying an

Application to AWS
An application, once finalized, must be deployed before it can be used. We have many
options to choose from, including using our own infrastructure. These days, however,
most companies prefer to use the services of a cloud provider in order to reduce their
IT-related expenditures.

In this chapter, we'll learn about deploying our application to Amazon Web Services.
(AWS) is, of course, the standard when it comes to Cloud providers. We'll be setting up
our application services Redis, Postgres, and NGINX on top of a Linux VM.

In this chapter, we're going to cover the following main topics:

• Setting up Ubuntu Linux on AWS Cloud

• Setting up Redis, Postgres, and Node on Ubuntu

• Setting up and deploying our app on NGINX

594 Deploying an Application to AWS

Technical requirements
You should now have a solid understanding of web technologies. Although it can
take years to become a senior-level developer, you should now feel comfortable with
TypeScript, JavaScript, React, Express, and GraphQL. In this chapter, we will once again
be using Node and Visual Studio Code.

The GitHub repository is again available at https://github.com/
PacktPublishing/Full-Stack-React-TypeScript-and-Node. Use the code
in the Chap17 folder.

Let's do some basic setup on your development machine:

1. Create a Chap17 folder and then copy the super-forum-server and super-
forum-client folders from the source code of the Chap15 folder.

2. If node_modules and package-lock.json get copied over, then delete those
folders and files.

3. Now, terminal into the Chap17/super-forum-server folder and run this
command:

npm install

4. Now, terminal into the Chap17/super-forum-client folder and run this
command:

npm install

Setting up Ubuntu Linux on AWS Cloud
In this section, we'll learn about selecting and setting up an Ubuntu Linux server on an
AWS VM. I'll assume you know how to create an AWS account already. The process is
fairly straightforward, as an existing Ubuntu Linux image will already be available to use.
Let's start:

1. After we log in, the screenshot shown here will be the current AWS portal. Note that
these screens change frequently, so your view may be different:

https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node
https://github.com/PacktPublishing/Full-Stack-React-TypeScript-and-Node

Setting up Ubuntu Linux on AWS Cloud 595

Figure 17.1 – AWS Portal home

2. We can see the Launch a virtual machine link. Select it and you will get to this
next screen:

Figure 17.2 – Initial VM screen

596 Deploying an Application to AWS

Let's select the image for Ubuntu 20.04 LTS. This is the latest Long Term Support
version of Ubuntu.

3. Once selected, you should see the following screen:

Figure 17.3 – VM instance type selector
I have gone ahead and selected a lower-end image with 1 vCPU and 2 GB of
memory. Note that EBS is an AWS-specific performance optimization for storage.

Let's keep things simple by keeping the default settings and select the Review and
Launch button at the bottom of the screen after making our selection.

Setting up Ubuntu Linux on AWS Cloud 597

4. Here are the major details of what I have selected:

Figure 17.4 – Initial provisioning screen
Now, select the Launch button at the bottom to continue.

598 Deploying an Application to AWS

5. Next, you will see the following prompt:

Figure 17.5 – Select an existing key pair dialog
This screen creates a set of encryption keys for use with SSH, one for you and one
for AWS, so we can remote terminal into the VM. Download these files and keep
them secure. Click the Launch Instances button to continue.

Warning
You must keep your pem file somewhere safe and accessible. You will not be
able to download it again.

Setting up Ubuntu Linux on AWS Cloud 599

6. Once complete, you should see the Launch Status screen. Just click on the View
Instances button at the bottom to continue to the portal:

Figure 17.6 – VM setup complete screen

600 Deploying an Application to AWS

7. This will be your VM instance portal:

Figure 17.7 – VM portal

Setting up Ubuntu Linux on AWS Cloud 601

8. Click on Instance ID and you will get the Instance summary screen:

Figure 17.8 – Instance summary
You can see quick facts, such as the running instance state, the public IP address,
and the public DNS name.

602 Deploying an Application to AWS

9. Near the top-right corner of this screen, you will see the Connect button. Click it to
get the Connect to instance screen:

Figure 17.9 – Connect to instance screen

Setting up Ubuntu Linux on AWS Cloud 603

The first tab is EC2 Instance Connect, which is a terminal provided for us by AWS.
Click the Connect button and we will see a terminal to our Ubuntu server inside
our browser, as shown here:

Figure 17.10 – AWS EC2 Instance Connect
This is an optional interface we can use if SSH is not working for some reason. For
this demonstration, I will use the SSH interface.

604 Deploying an Application to AWS

10. Go back to your Connect to instance screen and select the third tab, SSH client.
You should see something like this. Of course, your values will be unique:

Figure 17.11 – SSH how to instructions

11. Here's a sample of how I ran these instructions on my own terminal:

Figure 17.12 – First SSH terminal

Setting up Redis, Postgres, and Node on Ubuntu 605

First, I changed the permissions of my local pem file as per the AWS instructions.
Then, I ran SSH as shown. Note that I used ubuntu as the username, your VM
should also be the same, and I used DNS name for my server.

Note
If this does not work for you, try opening your network inbound rules for SSH
to be Source Anywhere. If that, too, does not work, you can also revert to using
the terminal provided by AWS, as shown previously.

This completes our setup of Ubuntu Linux. Let's install Redis next.

Setting up Redis, Postgres, and Node on
Ubuntu
In this section, we will install our main requirements onto our Linux server. We already
covered the setup and configuration of Redis in Chapter 13, Setting Up a Session State
Using Express and Redis, but let's do it one final time since we will now all have the same
underlying OS.

Setting up Redis
In this section, we will install our Redis server and configure it for our application:

1. On your terminal, log in to the server and run these two commands:

sudo apt update

sudo apt install redis-server

Apt is a software dependency packaging tool for Linux distributions such as
Ubuntu and Debian. Its roughly comparable to NPM. So here, we are updating our
apt to the latest version and then using it to install Redis.

2. Once the installation is complete, open the redis.conf file like this:

sudo nano /etc/redis/redis.conf

606 Deploying an Application to AWS

3. Find the requirepass entry, uncomment it, and then add your own password.

Warning
The password in the source code folder's super-forum-server/dev-
config/.env file for the REDIS_PASSWORD variable must match the
password you entered in your redis.conf file. We will be including the
files in the dev-config folder later when we do our deployment.

4. Next, find the supervised entry and set it to a value of systemd. This allows
Ubuntu to control Redis via its init system, which uses a command called
systemctl. Now, save and exit.

5. Now, let's restart our Redis server to take the new settings:

sudo systemctl restart redis.service

If we want to stop the service, we can run the following command:
sudo systemctl stop redis.service

If we want to start the service, we run the following command:
sudo systemctl start redis.service

6. If you run this command, it will show whether Redis is running properly:

sudo systemctl status redis

You should see something like this:

Figure 17.13 – Redis status

In this section, we installed Redis onto our Ubuntu server and turned on the ability to
start and stop the server as desired. We will now continue by installing Postgres.

Setting up Redis, Postgres, and Node on Ubuntu 607

Setting up Postgres
Now, let's install Postgres for our app:

1. We'll use apt again. Run this command:

sudo apt install postgresql

2. Let's check that it's working by running the command shown in this screenshot:

Figure 17.14 – The psql command
The postgres role shown in the command is the global admin account created by
default in Postgres. We are basically making our logged-in Linux account act as if it
is the postgres account temporarily by using -i in the command. -u indicates
which role we are using.

Note
We are not using pgAdmin because we get the same capabilities using the
psql command-line tool, and enabling pgAdmin with AWS is cumbersome
and difficult.

3. So, now we are running as the postgres@<your ip> user, as was shown in
the screenshot. If we were not running as Postgres, we would need to prefix any
Postgres commands with sudo -u postgres. But since we are running as the
role of Postgres, we can just run the command as shown in Figure 17.13.

The createuser –-interactive command creates a new user based on a
series of prompts. Run this command and answer the prompts as shown:

Figure 17.15 – createuser
I've set the username to superforumsvc.

608 Deploying an Application to AWS

4. Now, we'll give our new user a password like this:

Figure 17.16 – Setting a new user password
First, I enable the command-line tool, psql. Then I enter a SQL query to change
the superforumsvc user's password.

Note that I cut off the end after the keyword password, which shows what the
password is, but it should be in single quotes like this, '<your password>'.
Obviously, you'll want to create your own password.

5. Now, let's create the database for the app. First, exit the psql command and then
create the database like this:

\q

createdb -O superforumsvc SuperForum

This command creates the database and makes the superforumsvc role the
owner of the new database.

6. Let's now add our ThreadCategory default to our database. In
the super-forum-server project, you will find the utils/
InsertThreadCategories.txt file. Therein are the Categories we've been
using. Of course, you can add your own Categories if you like as well. Here's a
sample of my insert attempt for a category:

Figure 17.17 – Inserting ThreadCategory

Setting up Redis, Postgres, and Node on Ubuntu 609

As you can see, it fails the first few times. So, let's dig through this. First, you must
be on the correct database. So, again use \c to do that. Note that the database name
is case-sensitive. Then, make sure your table and field names have double quotes
around them. For the psql command line, do not use the public prefix; this is for
pgAdmin only.

That's it for our Postgres setup. Next, let's set up Node.

Setting up Node
Now, let's install Node:

1. Run the following command:

sudo apt install nodejs

2. Now, run this to check and you should see the version number of your Node
installation:

node -v

Your node version should be at least version 12 or higher. If not, you'll need to run
this command:

curl -sL https://deb.nodesource.com/setup_12.x | sudo -E
bash -

And then run this command again:
sudo apt install nodejs

3. Now, let's install NPM by running the following command:

sudo apt install npm

4. Now we need to install a way to manage our Node server, that is, to shut it down
and autorestart it. So, we will use pm2, which is currently one of the most popular
ways of managing Node. Notice we use the -g switch to install it globally:

sudo npm install -g pm2

In this section, we reviewed how to set up our core service dependencies: Redis, Postgres,
and Node. We are now ready to begin setting up the actual server using NGINX.

610 Deploying an Application to AWS

Setting up and deploying our app on NGINX
In this section, we will install and configure our app for using NGINX. NGINX is a very
popular high-performance web server, reverse proxy, and load balancer. It is respected for
its strong performance and also its capabilities to handle different configurations for sites
using multiple servers.

We will use it to serve two sites. One will serve our React client, and the other will serve
our GraphQL Express server. All of our site traffic will be going to NGINX first and then
it will redirect those requests to the appropriate part of our application. Let's start by
installing NGINX:

1. SSH into your server, as shown previously in the Setting up Ubuntu Linux on AWS
Cloud section and run these commands to install NGINX:

sudo apt update

sudo apt install nginx

2. Now that NGINX is installed, let's create a folder to store our server files:

sudo mkdir /var/www/superforum

sudo mkdir /var/www/superforum/server

The /var/www directory is the default location for web files, as the name implies.

Setting up super-forum-server
In this section, we will create the build and deployment process for our server code. It
is good to have a standardized process for deployment so that your deployments are
consistent and reliable:

1. Before we can start copying our files, we need to do some basic setup and a build of
our server project. Open the super-forum-server project in VSCode. If you
look at the package.json file's scripts section, you will see that we have a new
script called build. This will compile our server code and package it appropriately
for distribution into the dist folder. Now, in order to get this command to work,
we will need to install some NPM packages globally first. Run the following
command on your developer machine, not the Ubuntu server:

sudo npm i -g del-cli cpy-cli

Setting up and deploying our app on NGINX 611

The del-cli package is a universal command-line delete command. This
means that irrespective of whether your development machine is Linux, Mac, or
Windows, this command will work the same. Similarly, the cpy-cli package
allows the universal copying of files and folders. We use these commands so that we
can have a single NPM script command that will work the same across all developer
operating systems.

Let's explain this script. The build script first deletes the dist folder, so that we
start afresh each time. It then copies the contents of dev-config into dist and
separately copies the .env file into dist. And then, finally, it runs the TypeScript
compiler.

So, notice we also have a new folder called dev-config. This folder will hold
configuration-related files that will ultimately be copied into our dist folder by the
build script. The files in this folder are the .env file, for global configuration, the
ormconfig.js file, for TypeORM configuration, and our package.json file.

Note
Your .env file in the dev-config folder must have the working
configuration for your server. This includes the passwords you are using, the
account names, and the IP addresses. They must all be set correctly according
to your configurations. If you have trouble getting your server to work, this file
is the first place to look.

2. Unfortunately, there seems to be some sort of bug with the latest Express NPM
packages, so we will need to install one more NPM package dependency. Run this
command on your development machine:

npm i -D @types/express-serve-static-core

This dependency is actually already installed when installing @types/express,
but we are making sure the latest version is now there. If you want to learn more
about this bug, refer to this link: https://github.com/DefinitelyTyped/
DefinitelyTyped/issues/47339.

3. Note one thing. In the super-forum-server/src/index.ts file, I've added a
new function, loadEnv, near the top of the file. This file will deal with relative path
differences of the .env file between your development and server environments,
using the Node __dirname variable.

https://github.com/DefinitelyTyped/DefinitelyTyped/issues/47339
https://github.com/DefinitelyTyped/DefinitelyTyped/issues/47339

612 Deploying an Application to AWS

I've also tweaked the super-forum-server/dev-config/ormconfig.js
file so that it uses __dirname for the path to the TypeORM entities.

Warning
We have enabled the synchronize field in ormconfig.js to be true.
This setting is for development deployments only. Do not use this setting in
production, since it can trigger unwanted database changes. For production,
you should use a pre-made database and then deploy that directly, with the
synchronize setting set to false.

4. OK. Let's now try running our build script. Run this command on your
development machine:

npm run build

Running this should create the dist folder, as shown in the following screenshot:

Figure 17.18 – The dist folder

Setting up and deploying our app on NGINX 613

5. Now, let's try copying our dist folder to our server. On the terminal of your
development machine, run this command with configurations appropriate to you:

scp -i <your pem path> -r <source folder>/*
<username>@<ip>:<dest folder>

Note that on Windows, the command will use pscp.

Now, when I run this on my machine, I get the following result:

Figure 17.19 – Attempt dist copy failure
So, obviously this failed. This failure is due to a lack of permissions on the
destination folder on the Ubuntu server. Let's fix this now.

6. Log back in to your Ubuntu SSH session and run the following command:

sudo chmod -R 777 /var/www/superforum/server

This command will open all access temporarily so that we can copy our files. We
will close it back up after our copy has happened to reduce security risks.

7. Now, copy the files by using the same scp command from your development
terminal. For example, here's my command, run from my developer machine, after
opening permissions:

Figure 17.20 – Scp copy

614 Deploying an Application to AWS

8. Now, check that all the configuration files were copied onto the server by looking in
the server folder, as follows:

Figure 17.21 – Server folder check
If the .env file is missing, you must manually copy it with the following command.
Note, this is an issue with Macs, where .env files are not visible for some reason:

scp -i <your pem path> <your path>/.env
<username><yourserverpath>/.env

Again, the precise paths will be different for your machine.

Now, we should close our permissions back up again with this command:
sudo chmod -R 755 /var/www/superforum/server

This permission gives the owner full access, but gives others only execute and read
access.

Note
If we fall down the rabbit hole of security optimizations, we could end up
writing another book. Since this will be a development server that will probably
be thrown away, let's focus on the main tasks for now. Once you're ready to go
live to production with your billion-dollar app, you'll need to exercise some
due diligence on security or, better yet, hire someone with at least 10 years'
experience.

9. Now, on our SSH terminal session on the Ubuntu server, cd into the /var/www/
superforum/server folder and then run this command:

npm install

This will, of course, install all the dependencies for our Node app server.

Setting up and deploying our app on NGINX 615

10. Now, we need to set up our pm2 system so that it will control our Node server. Run
this command:

pm2 startup

This command tells us the specific settings our current user needs in order to
configure to use pm2 with systemd and start our Node server when restarting
the server. Systemd again is our Ubuntu services controller. After running that
command, you should see something similar to this:

Figure 17.22 – pm2 startup

11. So, copy and paste this command starting at sudo, and then run it on your SSH
session of your Ubuntu server. Once run, you should see something like this:

Figure 17.23 – Result of pm2 startup running

616 Deploying an Application to AWS

12. Next, we want to start our Node server as follows:

Figure 17.24 – Node server started

13. We can now save this as part of pm2's startup list by running this command:

pm2 save

Once run, you should see the following:

Figure 17.25 – pm2 save run
By doing this save operation, our Node server will now start automatically
whenever our server is restarted.

In this section, we created a process to build, deploy, and start our Node server. Having
configured this setup, we can be sure that it will be repeatable as we update our code in the
future.

Setting up super-forum-client
OK, so now we have to do a similar process for our client-side project. You should have
the super-forum-client already copied over to your Chap17 folder, as that's the first
thing we did at the start of this chapter:

1. Now, go back to your SSH terminal session on your Ubuntu server and create the
folder for the client project like this:

sudo mkdir /var/www/superforum/client

Setting up and deploying our app on NGINX 617

2. Now, go back to your development terminal in the super-forum-client
project folder so that we can do the client build and deploy. First, we need to do
a minor tweak to our project. You saw that our server project uses an .env file
for settings. We don't need anything that involved our client project. However, we
should be able to at least set the GraphQL server URL as required, depending on the
deployment environment. Therefore, perform the following steps:

• Open index.ts with VSCode and update the ApolloClient code like this:

const client = new ApolloClient({

 uri: process.env.REACT_APP_GQL_URL,

 credentials: "include",

 cache: new InMemoryCache({

 resultCaching: false,

 }),

});

As you can see, we added an environment variable, called REACT_APP_GQL_URL,
just like how we did it on our server. But where is this variable coming from? I'll
show that now.

• Open the package.json file and look at the scripts section. You should see a new
script called build-dev that sets the REACT_APP_GQL_URL variable. Feel free
to create multiple versions of this script for your own needs with differing variable
values.

3. So, now let's run the build-dev script:

npm run build-dev

618 Deploying an Application to AWS

The build script in the client project is already created for us as part of create-
react-app, but we tweaked it by adding the environment variable. Once it
completes, you should see this folder called build:

Figure 17.26 – The super-forum-client build folder

Note
Two things to know about React environment variables:

1. The environment variables in React must always start with REACT_APP_.
If this prefix is missing, the variable will be ignored.

2. They are inserted into our code at build time and the value gets deployed
as part of our client script code. This means users will be able to search
the browser scripts and view this data. Therefore, never include sensitive
information in these environment variables.

Setting up and deploying our app on NGINX 619

4. Now, we just need to open the server's client folder temporarily so that we can do
our copy. Run the following command:

sudo chmod -R 777 /var/www/superforum/client

5. Now we can deploy our client-side build files. From your development terminal, run
this command, with your own proper paths of course:

scp -i <your pem path> -r <your path>/*
<username><yourserverpath>

The result will look something like this:

Figure 17.27 – Copying client files to the server

6. Now, undo the permissions as follows:

sudo chmod -R 755 /var/www/superforum/client

620 Deploying an Application to AWS

Configuring NGINX
All right. We have done a lot of configuring of our server build, so now we can continue
by configuring our installed NGINX server:

1. We need to have NGINX start when starting the system in our Ubuntu server. Run
the command shown on your SSH terminal and then authenticate as shown:

Figure 17.28 – Enabling NGINX start when the system boots

2. Now, check that NGINX is running with the status command shown here:

Figure 17.29 – NGINX status

3. Now, we need to open Port 80 on our AWS VM firewall. Open the browser to the
AWS portal and then select Security Groups, under the Network & Security menu.
Then you'll see this:

Figure 17.30 – Security Groups

Setting up and deploying our app on NGINX 621

4. Now, select the non-default group and you'll see the screen shown in the following
screenshot. Notice Inbound rules near the bottom:

Figure 17.31 – Networking tab; adding an inbound port rule

5. Select the Edit inbound rules button and then, on that next screen, click the Add
rule button.

622 Deploying an Application to AWS

Once that's selected, you should see this screen shown in Figure 17.32. Add the new
inbound rule for HTTP, as in the following screenshot:

Figure 17.32 – New HTTP inbound rule
By selecting 0.0.0.0/0 as the source, you are allowing any IP addresses, which is
what we want. Now, save the rule by clicking the Save rules button.

6. Usually, the local Ubuntu firewall is not enabled. However, if it is enabled, we also
need to let traffic through to NGINX on the firewall. If necessary, run the following
command:

sudo ufw allow 'Nginx HTTP'

sudo ufw status

Setting up and deploying our app on NGINX 623

Running the preceding command should produce the following result:

Figure 17.33 – Ufw open firewall for NGINX
Now, if we go to our URL with our browser, in my case, it's ec2-3-16-168-210.
us-east-2.compute.amazonaws.com, yours will be different and again you
can find it on your VM instance screen, you should see this:

Figure 17.34 – Default NGINX load screen

7. So, clearly our NGINX is installed and working. So now we need to make it serve up
our site. Note that there appears to be a bug in NGINX for dealing with very long
domain names, like the one I received after registering on AWS. Therefore, for our
website, we will use the IP address instead.

NGINX has two options for setting up sites. One allows us to use the configuration
file in the /etc/nginx/conf.d folder. The other, called Server Blocks, uses the
/etc/nginx/sites-available folder. We will use the conf.d method.

Run this command:
sudo nano /etc/nginx/conf.d/superforum.conf

624 Deploying an Application to AWS

8. Now this is what your file should contain, again with your own folder paths and
domain name:

Figure 17.35 – New NGINX conf file

Here are some things to note:
Do not forget the concluding semi-colon on each line. Without it, you will get
errors.

server_name is the domain name or IP address.

root is the folder that contains our HTML file.

location / is the root of our website.

location /graphql is where our GraphQL server lives. We are using
proxy_pass to redirect calls to http://<domain or ip>/
graphql to our http://localhost:5000/graphql server (our
Node server).

<prefix>_timeout fields are to prevent Error 503 Gateway Timeout
issues, which can sometimes happen with NGINX.

Setting up and deploying our app on NGINX 625

9. Next, we need to test that our config changes are OK by running the following
command:

sudo nginx -t

You should see this:

Figure 17.36 – NGINX config file status
If there are no errors, we can restart our NGINX server with this command:

sudo systemctl restart nginx

10. Let's now see whether our app on the browser comes up. First, let's stop our Node
server and restart it without using pm2, so that we can see any errors that might be
occurring. Run these commands on your Ubuntu SSH terminal:

pm2 stop index

node /var/www/superforum/server/index.js

You should see something like this:

Figure 17.37 – First run of the Node server
Again, your IP address will be different, and possibly your paths if you changed
them. If you see errors instead, go to the troubleshooting section later.

626 Deploying an Application to AWS

11. Now, open your browser and go to your IP address as given by AWS. Then, click on
the Register button and let's register a new user, as shown next:

Figure 17.38 – Registering a new user test
Fill in the values as you see fit and click the Register button. You should see
something like this:

Figure 17.39 – Registration success

Setting up and deploying our app on NGINX 627

12. Now we need to confirm our new user. Run these commands on the Ubuntu SSH
terminal:

sudo -u postgres psql

\c SuperForum

Update "Users" set "Confirmed" = true;

Let's just confirm that all of our users are registered. Once the commands are
complete, you should see a confirmation, as follows:

Figure 17.40 – Confirm registered users

13. Now, let's try and log in with our new user:

Figure 17.41 – Logged-in test3 user

628 Deploying an Application to AWS

14. Of course, currently we have no data, so now we'll add one thread post, like this:

Figure 17.42 – First post
And this is now our home page:

Figure 17.43 – Home screen following the first post

Setting up and deploying our app on NGINX 629

That's it. We're done!

In this section, we finalized our setup of our application using NGINX and all of our other
services. Congratulations! You've done a phenomenal job and have gotten through an
enormous amount of highly technical material.

Troubleshooting
Setting up and using cloud services can be a great deal more complex than just using
a server on your own network. Here are some basic tips for dealing with issues:

• Any time you update client files, you must restart NGINX.

• Any time you update the server files, you must restart the Node server.

• Always verify that your .env settings are correct and match the names you chose
during setup; for example, the name of your Postgres database, its username, and
password. Also make sure that the path to your .env file is correct and is being
picked up by the Node server.

• Make sure the PG_ENTITIES and PG_ENTITIES_DIR variables have the correct
paths. For our current app, this would be the following:

PG_ENTITIES="/repo/**/*.*"

PG_ENTITIES_DIR="/repo"

If these are not set properly, you may get an error, such as No repository for
<Entity Name> was found.

• If you edit your .env file on your server, make sure it is not being overwritten
during the deploy process. In other words, don't edit your file on the server!

• Always use the sudo nginx -t command after updating any .conf files for
NGINX and then restart the NGINX service once configuration changes are
complete. If you do get an error, make sure all of your configuration lines end with a
semi-colon.

• If you're making changes in your development environment and testing them there,
make sure you have set the NODE_ENV environment variable to development. You'll
need to set this permanently or else it will disappear on reboot.

• NGINX has a common error of 504 Gateway Timeout. Make sure your
timeout configurations are sufficient. You'll have to play with them.

• Note that very long domain names seem to be an issue in NGINX. For testing
purposes, see whether using the IP address works. If it does, and the domain does
not, you then know your issue.

630 Deploying an Application to AWS

Summary
In this chapter, we cemented our knowledge of web development with React, Node, and
GraphQL by finally deploying our application to the cloud. Learning how to deploy our
app onto the AWS Cloud is extremely valuable since it is currently the most popular and
widely used cloud service. Also, doing this with NGINX was the right move since NGINX
is very performant and extremely popular in the Node community.

Thank you so much for joining me on this journey. As a developer, there is always
something new to learn and try. But you have taken a huge step by gaining an
understanding of some of the most important and key web technologies. You now have all
the tools you need in order to create real, full stack, cutting-edge web applications. Again,
congratulations!

I wish you continued success.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Node Cookbook - Fourth Edition
Bethany Griggs

ISBN: 978-1-83855-875-8

• Understand the Node.js asynchronous programming model

• Create simple Node.js applications using modules and web frameworks

• Develop simple web applications using web frameworks such as Fastify and Express

• Discover tips for testing, optimizing, and securing your web applications

• Create and deploy Node.js microservices

• Debug and diagnose issues in your Node.js applications

https://www.packtpub.com/product/node-cookbook-fourth-edition/9781838558758

632 Other Books You May Enjoy

Full-Stack React Projects - Second Edition
Shama Hoque

ISBN: 978-1-83921-541-4

• Extend a basic MERN-based application to build a variety of applications

• Add real-time communication capabilities with Socket.IO

• Implement data visualization features for React applications using Victory

• Develop media streaming applications using MongoDB GridFS

• Improve SEO for your MERN apps by implementing server-side rendering
with data

• Implement user authentication and authorization using JSON web tokens

• Set up and use React 360 to develop user interfaces with VR capabilities

• Make your MERN stack applications reliable and scalable with industry best
practices

https://www.packtpub.com/product/full-stack-react-projects-second-edition/9781839215414

Leave a review - let other readers know what you think 633

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abstract class 58
abstraction 26, 27
access modifiers 45, 46
actions 213-228
any type 34
Apollo GraphQL

about 203
authentication-related features 508-516
main screen, creating 494-508
querying, to create React client-

side Hooks 489-494
UserProfile screen, creating 516-525

application programming
interface (API) 286

array functions
every function 89, 90
filter function 86, 87
find function 85, 86
learning 85
map function 87, 88
reduce function 88, 89
some function 89, 90

arrow functions
learning 75-77
styles 77

async await
learning 92-98

Atom 209
authentication

integrating, with GraphQL
resolvers 486-488

authentication components
building 355-367

AWS Cloud
Ubuntu Linux, setting up 594-605

B
Bootstrap 337
build system, React 158
bundling 106

C
callstack 93
Chrome Debugger 205-208
classes

about 44, 45
access modifiers 45-47
getters 47-49

636 Index

setters 47-49
static properties and methods 50, 51

class-style components
improving 139-154
issues 120
limitations 120

class way
versus Hooks way 154

client-side testing
for React 171-186

code repository 168, 170
collection types

learning 90
map 91, 92
set 90, 91

commit phase 105
Common Gateway Interface (CGI) 102
component 120
component mocking 194-203
create-react-app project 163-166
Create Read Update Delete (CRUD) 299
Cross-Origin Resource Sharing

(CORS) 326
CSS Grid 337-345

D
Data Service layer 348
default keyword 127
destructuring

about 82, 84
learning 80

development methods, React 158
Document Object Model (DOM) 105, 254
dynamic typing

versus static typing 19-25

E
encapsulation 26
Enzyme 171
Error Boundaries 346, 347
ES6 variable types

learning 72, 74
event loop 255, 256
every function 89, 90
examples

without tooling 159-162
export keyword 127
Express

capabilities, learning 279-286
used, for building session state 410-417
used, for creating web API 286-289
used, for improving Node

development 277
Express framework

used, for improving Node
development 279

F
filter function 86, 87
find function 85, 86
forum application

building 330
forum application, technology features

database access and repository layer 331
Object Relational Mapper (ORM) 330
security 330
sessions and cookies 330

forum authentication
analyzing 331

forum authentication, features
categories 332
login and logout 331

Index 637

notification emails 332
password reset 331
profile screen 331
registration system 331

Functional Component 143
function return types 41, 42

G
generics 63-65
getter 47, 49
GraphQL

about 292, 293, 331
characteristics 292

GraphQL mutations
about 302-310
used, for writing data 302

GraphQL packages
adding, to TypeScript-based

Express project 317-325
reviewing 326, 327

GraphQL queries 302-310
GraphQL resolvers

creating 470-481
used, for integrating

authentication 486-488
GraphQL schemas 294, 295
GraphQL server-side typedefs

creating 470-481
GraphQL subscriptions 302-310

H
headers 266, 267
home screen

creating 368-381

Hook 344
Hooks way

code, reusing 154, 155
simple components 155
versus class way 154

I
Immediately Invoked Function

Expression (IIFE) 96
inheritance

about 27, 54-58
abstract classes 58-60
interface 61-63

input/output (I/O) 255
interfaces 44, 52-54
intersection types 38, 39
Ionic 337

J
JavaScript scoping 72, 74
Jest 171
JSX language 120

L
libuv 255
lifecycle methods, React components

mounting 123
unmounting 124-139
updating 124

literal types 39, 40
Long-Term Support (LTS)

version 258, 596

638 Index

M
Mac

used, for installing Redis 406-410
map function 87, 88
Media Queries 341
mocking

about 186
component mocking 194-203
with jest.fn 187-193

mounting
about 123
methods 123

multiple inheritance 27

N
namespaces 58
navigation menu

creating 349-354
never type 43, 44
NGINX

configuring 620-629
super-forum-client, setting up 616-619
super-forum-server, setting up 610-616
troubleshooting 629
used, for deploying app 610
used, for setting up app 610

Node
capabilities, learning 257
debugging 270-277
event loop 255, 256
installing 257-261
request and response 264, 265
routing 267-269
server, creating 261-264
setting up 609

setting up, on Ubuntu 605
working 254, 255

Node development
improving, with Express

framework 278, 279
nullish coalescing 68

O
object-oriented programming

(OOP) 25, 140, 427
object-oriented programming

(OOP), principles
about 25
abstraction 26, 27
encapsulation 26
inheritance 27
polymorphism 28

Object Relational Mapper (ORM)
about 330
learning, with TypeORM 426, 427

optional chaining 66
overriding 60

P
polymorphism 28
Postgres

database, setting up 420-426
setting up 607-609
setting up, on Ubuntu 605
used, for building repository

layer 427-468
Postman

reference link 452
Prettier 205

Index 639

project tools, React 158
prototypical inheritance 27
proxy 490

R
React

build system 158
client-side testing 171-186
development methods 158
SPA applications, building 105

React application
attributes 106-117

React application version
authentication components,

building 355-367
creating 336, 337
CSS Grid 337-345
Data Service layer 348
Error Boundaries 346, 347
home screen, creating 368-381
navigation menu, creating 349-354
routing 367, 368
screens 367, 368
thread posts screen, using 382-401

React client-side Hooks
creation, for querying Apollo

GraphQL 489-494
React components

lifecycle methods 122
state 121

React Context 228-237
React development

practices 203
tools 203

React Hooks
learning 139-154

React-related plugins 204
React Router 237-248
Redis

about 405
installing, on Mac 406-410
setting up 605, 606
setting up, on Ubuntu 605
used, for building session state 410-417

reduce function 88, 89
reducers 213-228
Redux

actions 213-228
reducers 213-228
setting up 213

Redux state 212
render phase 105
render property 241
REPL commands

reference link 259
repository layer

building, with Postgres 427-468
building, with TypeORM 427-468

request 264, 265
request method 265
request URL 265
resolvers 296-302
response 264, 265
rest

about 84, 85
learning 80

RightMenu
configuring 588-591

routing 267-269

640 Index

S
Server-Side Rendering (SSR) 102
session state

about 404, 405
building, with Express 410-417
building, with Redis 410-417

setter 47-49
single forum application

building 330, 331
Single-Page Applications (SPA)

attributes 103-105
benefits 103-105

single source of truth 213
some function 89, 90
spread

about 80-82
learning 80

state 120
static properties and methods 50
static typing

about 20
versus dynamic typing 19-25

status code 266
Sublime Text 209

T
testing-library 171
this context object

modifying 77-80
Thread component

updating 527
ThreadItems

adding 563-583
thread management

analyzing 332

thread management, features
thread topic, editing 332
thread topic, posting 332
thread topic, responding to 332

ThreadPointsInline component
updating, in mobile screen 559-563

thread points system
analyzing 333

thread points system, features
points system 333
response count, displaying 333
view count, displaying 333

ThreadPoint system
creating 481-485

thread posting 381
thread posts screen

using 382-401
ThreadResponse component

repurposing 585-587
thread route

about 527-539
ThreadPoint system, setting 540-558

thread route component
in mobile mode 558, 559

threads
about 332
adding 563-583

transpilation 17, 166, 167
type aliases 40, 41
type annotation 23
typedefs 296-302
TypeORM

used, for building repository
layer 427-468

used, for learning Object Relational
Mappers (ORM) 426, 427

Index 641

types
about 32
working 32-34

TypeScript
about 16
need for 17-19
object-oriented programming (OOP) 25

TypeScript-based Express project
creating 312-316
GraphQL packages, adding to 317-325

TypeScript compiler
configuring 66-69
features 66
nullish coalescing 68
optional chaining 66, 67

TypeScript types
aliases 40, 41
any type 34
exploring 34
function, as types 42, 43
function return types 41, 42
intersection type 38, 39
literal type 39
never type 43, 44
union type 38
unknown type 35-37

U
Ubuntu

Node, setting up 605
Postgres, setting up 605
Redis, setting up 605

Ubuntu 20.04 LTS 596
Ubuntu Linux

setting up, on AWS Cloud 594-605
union types 38, 39
unit testing 171

unknown type 35-38
unmounting

about 124-139
methods 124

updating
about 124
methods 124

V
Vim 209
virtual routing 104
Visual Studio Code (VSCode) 16, 203, 205
Visual Studio IntelliCode 203

W
web 159
web API

creating, with Express 286-289
websites

designing, history 102, 103
Webstorm 209

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1:
Understanding TypeScript and How It Can Improve Your JavaScript
	Chapter 1: Understanding TypeScript
	Technical requirements
	What is TypeScript?
	Why is TypeScript necessary?
	Dynamic versus static typing
	Object-oriented programming

	Summary

	Chapter 2: Exploring TypeScript
	Technical requirements
	What are types?
	How do types work?

	Exploring TypeScript types
	The any type
	The unknown type
	Intersection and union types
	Literal types
	Type aliases
	Function return types
	Functions as types
	The never type

	Understanding classes and interfaces
	Classes
	Interfaces

	Understanding inheritance
	Abstract classes
	Interface

	Learning generics
	Learning the latest features and configuring the compiler
	Optional chaining
	Nullish coalescing
	TypeScript configuration

	Summary

	Chapter 3: Building Better Apps with ES6+ Features
	Technical requirements
	Learning about ES6 variable types and JavaScript scoping
	Learning about arrow functions
	Changing the this context
	Learning about spread, destructuring, and rest
	Spread, Object.assign, and Array.concat
	Rest

	Learning about new array functions
	find
	filter
	map
	reduce
	some and every

	Learning about new collection types
	Set
	Map

	Learning about async await
	Summary

	Section 2:
Learning Single-Page Application Development Using React
	Chapter 4: Learning Single-Page Application Concepts and How React Enables Them
	Technical requirements
	Understanding how websites were built in
the past
	Understanding SPA benefits and attributes
	Understanding how React helps build SPAs
	Attributes of a React application

	Summary

	Chapter 5: React Development with Hooks
	Technical requirements
	Understanding the limitations and issues with the old class-style components
	State
	Lifecycle methods

	Learning React Hooks and understanding how it is an improvement over class-style components
	Comparing and contrasting the class way versus the Hooks way
	Code reuse
	Simplicity

	Summary

	Chapter 6: Setting Up Our Project Using create-react-app and Testing with Jest
	Technical requirements
	Learning React development methods and about the build system
	Project tools
	Transpilation
	Code repositories

	Understanding client-side testing for React
	Mocking
	Mocking with jest.fn
	Component mocking

	Learning common tools and practices for React development
	VS Code
	Prettier
	Chrome Debugger
	Alternative IDEs

	Summary

	Chapter 7: Learning Redux
and React Router
	Technical requirements
	Learning about Redux state
	Reducers and actions
	React Context

	Learning about React Router
	Summary

	Section 3: Understanding Web Service Development Using Express and GraphQL
	Chapter 8: Learning Server-Side Development with Node.js and Express
	Technical requirements
	Understanding how Node works
	Event loop

	Learning Node's capabilities
	Installing Node
	Creating a simple Node server
	Request and Response
	Routing
	Debugging

	Understanding how Express improves Node development
	Learning Express's capabilities
	Creating a web API with Express
	Summary

	Chapter 9: What is GraphQL?
	Technical requirements
	Understanding GraphQL
	Understanding GraphQL schemas
	Understanding Typedefs and Resolvers
	Understanding queries, mutations, and subscriptions
	Summary

	Chapter 10: Setting Up an Express Project with TypeScript and GraphQL Dependencies
	Technical requirements
	Creating a TypeScript-based Express project
	Adding GraphQL and dependencies to
a project
	Reviewing ancillary packages
	Summary

	Chapter 11: What We Will
Learn – Online Forum Application
	Analyzing what we will build – The forum application
	Analyzing forum authentication
	Analyzing thread management
	Analyzing the thread points system
	Summary

	Chapter 12: Building the React Client for Our Online Forum Application
	Technical requirements
	Creating the initial version of our React application
	CSS Grid
	Error Boundaries
	Data Service layer
	Navigation menu
	Authentication components
	Routing and screens
	Home screen
	Thread posts screen

	Summary

	Chapter 13: Set Up a Session State Using Express
and Redis
	Technical requirements
	Understanding session state
	Understanding Redis
	Building session state with Express and Redis
	Summary

	Chapter 14: Setting Up Postgres and a Repository Layer with TypeORM
	Technical requirements
	Setting up our Postgres database
	Understanding object relational mappers by using TypeORM
	Building our repository layer using Postgres and TypeORM
	Summary

	Chapter 15: Adding GraphQL Schema Part I
	Technical requirements
	Creating GraphQL server-side typedefs and resolvers
	ThreadPoint System

	Integrating authentication with GraphQL resolvers
	Creating React client-side Hooks for querying Apollo GraphQL
	The Main screen
	Authentication-related features
	The UserProfile screen

	Summary

	Chapter 16: Adding a GraphQL Schema – Part II
	Thread route
	Points system

	Summary

	Chapter 17: Deploying an Application to AWS
	Technical requirements
	Setting up Ubuntu Linux on AWS Cloud
	Setting up Redis, Postgres, and Node on Ubuntu
	Setting up Redis
	Setting up Postgres
	Setting up Node

	Setting up and deploying our app on NGINX
	Setting up super-forum-server
	Setting up super-forum-client
	Troubleshooting

	Summary

	Other Books You May Enjoy
	Index

